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Chapter 1
Introduction

Topological Field Theory wa

first constructed by Edward Witten to answer Atiyval’s
question ¢ “Is there any physical field theory that corresponds to Donaldson theory
in mathematics 7"

We don't know details of Donaldson theory, but it is well-known that moduli space

of anti-self dual instanton in SU(2) gauge theory plays an important role in the
proof of m

theorems of this theory, Moduli gpaces come out naturally in field

theory through path-integral which integrates all the field configurations with weight
exp(—Action), Roughly speaking, the question at the beginning arises from these
v, moduli space is non-dynamical degree of freedom
rated after integrating out all the dynamical degrees of freedom.
In other words, it is continuous family of equation of motion which should be treated
as background. at first sight, it seems unnatural to seek for the theory that picks
up non-dynamical degrees of freedom

two facts. In ordinary field thec
which should be in

But wit

suceess in “Supersymmetry and Morse Theory” that explained the
Hodge theory and Morse theory on finite dimensional real manifold Al in terms of
N 1 super svmmetric sigma model on M and its deformation via Morse function,
Witten thought the key is super symmetry (BRST-symmetry), or fermionic degrees of
freedom that kill corresponding dynamical bosonic degrees of freedom. Then in case
of SU{2) Yang-Mills theory, he introduced entire ghost field ¢y, and anti-ghost field
X Which kill entire bosonic gauge field A, o
make BRST-transformation closed, and wrote out Lagrangian of Topological Yang-
Mills theory on 4 dimensional manifold M.

T j".r';\m"r.

needed to

d many other fields which a

1
1P + 56D,DA — inD* +iD,t - X"

;..-._\,,,_ | ;,\,a_-,.. * ;u_r,_ n-gle ] (100)
anti self-dual instanton of

e, {Q L}=0.

T'he solution of bosonic equation of motion of this theory i
SU(2) Yang-Mills theory. And Lagrangian L has BRST-symmetry,

Moreover it can be written as L = {@Q, 5} modulo equations of motion. Then mod-
uli space of instanton reveals itsell under the following logic. Under the condition
L = {Q,5}, we can take weak coupling limit of the theory because path integral
is invariant under the variation of coupling constant, In this limit, contributions

from dynamical modes are integrated by Gaussian integration around the instanton

solution and egual 1 where numerator comes from fermionic modes

» iy
from bosonic modes and [, [)' are differential operators
obtained from gquadratic term of Lagrangian expanded around instanton configura-
tions. Then there remains integration over moduli space of instantons as the bosonic
degrees of freedom. We denote this moduli space as M. Correspondingly, fermionic
degrees of freedom arise as the zero-modes of differential operator D, the mumber of
which equals the dimension of moduli s
differential form on M.

and denominator coms

¢, These gero-modes can be regarded as

Next, consider the observables of this theory. Since this theory has BRST-
symmetry, observables @ has to be BRST-closed, ie., {@. O} = 0. Then Witten
daringly but correctly assumed that this condition is equal to the condition dyO =0
il we regard © as the form on M. And correlation function (OO - - - O) reduces to

e PD(O)

intersection number on moduli space M, (P Dy (O) N POy (O,
where PD g (w) represents Poincare dual of w € H*(M)

In this way, this theory turns into intersection theory of moduli space A of
SU(2) anti-self dual instanton on M and Donaldson invariants are reconstructed as
correlation functions of topological Yang-Mills theory

After that, he constr
these.

‘ted various topological field theory. We write out four of

1. Topological Yang-Mills theory on four dimensional manifold.

2. Chern-Simons gauge theory on 3-dimensional manifold
3. Topological Sigma Model from Riemann surface £ to Kahler manifold M.

4. Two dimensional Topological Gravity.

"Of
are well-formed, but how to treat these theories or to compute correlation

When these theory are constructed, people ought to have had the impression
course, th

functions 7

We ik break-through of this problem was oceurred in the following order
4 -+ 3 - 1. (As for 2, we don't know much about id don't mention it)

Topological quantum gravity was identified with intersection theory on moduli
space M, of complex structure of genus g Riemann surface £, ., with n-punctures by
Witten. Observables of this theory are given as Mumford-Morita classes o] (T,




Using this identification, he derived some recursion relation between correlation func-
tions of this theory and reproduce the dispersion-less limit result of matrix model

Complete treatment was done by Kontsevich, who constructed matrix integral
representation of generating function of all correlation functions by identifying M,
with the moduli space of ribbon graphs. This work also revealed the relation between
topological gravity and KP-hierarchy.[31]

Break-through on 3 oceurred in quite non-trivial way. It came out from compact-
ification of the heterotic string theory on Calabi-Yan manifolds of complex dimension
3. Then at energies small compared to Planck scale, an effective four-dimensional
super gravity theory whose component fields correspond to the para
scribe the possible deformations of Calabi-Yau manifold emerges.
ficlds correspond to the parameters th

t take one vacuum into oearby equi
tive Lagrangian of the low energy were said

the Yukawa coupling, the cubic term

one, The terms that make up the eff
to have topological significance, one of which
of the effective Lagrangian.

sless fields) are fac-

For Calabi-Yan manifolds, the deformation parameters (ma
ees, one of which is the ler moduli space that deforms
anifolds, the other of which is the Complex structure mod-
shape of Calabi-Yau manifolds. Then the above Yukawa

torized into two moduli s;

the size of Calabi-Yau n
uli sp that changes
coupling broke up into two piecesie., the coupling of Kihler moduli space and the
coupling of complex structure moduli space. The coupling of Kihler moduli space
turn out to receive instanton corrections but the coupling of complex moduli space
is exact at classical level,

Candelas et al proposed Mirror Symmetry between two Calabi-Yau manifold M
and M*, e, string theory compactified on M and the one compactified on M*
are isomorphic to each other under exchange of Kahler moduli space and complex
structure moduli space. To give more conerete foundation of this isomorphism, they
calenlated Kihler Yukawa coupling on string theory compactified on Calabi-Yau
manifold of Fermat type in CP* (we denote it as M), by using the result of complex
structure Yukawa coupling compactified on its mirror manifold MZ and mirror map
that relates deformation parameter of complex structure of M7 and that of lor
structure of My, Their result tells ns that Yukawa coupling arising from Kihler
tion indeed has instanton corrections which come from holomorphic
maps from CP' (string world sheet) to M5, By evaluating contributions from one
instanton solution, one can count the number of instantons from CP to M, from
their result.[15]

class deform

Then reinterpretation of this result emerged.

In [28], Eguchi and Yang, inspired by the statement of Witten that topological
Yang-Mills theory can be regarded as twisted N = 2 super symmetric Yang-Mills
theory, proposed that a class of topological field theories are constru

ed from twist-

o

ing
symmetric sigma model becomes conformal invariant when target space is Ca
Yau manifold and that there are two ways of twisting (we denote them as A-twist
and B-twist).

N = 2 super conformal field theory. Witten pointed out in [8] that N

Then mirror symmetry can be reinterpreted as isomorphism between A-twisted
topological sigma model (A-model) on M and B-twisted topological sigma model
(B-model) on M*. He also pointed out in [30] that the above Yukawa
equivalent to three point function (O.(2; 1O, (2:)0,(z3)) of A-model on A
is the BRST-closed operator induced from Kihler form of M.

ling is
; where O,

Another flow occurred from Batyrev who gave systematic way of construction
of mirror pair of Calabi-Yau manifolds. He suggested that two toric variety Py
and Pa. that are constructed from two reflexive polyhedra A and A* ¢
other are ambient spaces of mirror pair of Calabi-Yau manifolds My and M.
construction tells us that mirror pair of Calabi-Yau manifolds exi
dimension. This was supported by the work of Nagura and Sugivama who generalized
the result of P.Cande et al to the cases of torus and K3 surfac | They
generalized the mirror symmetry as the symmetry of topological sigma model of
n three and concluded that corresponding
) for torus and (O, (z,)0.(z5)) for K3-
nton corrections, Then Nagura and myself analyzed topological
sigma model (A-model) on Calabi-Yau hypersurface My in CPY' and (B-model)
on M%( mirror manifold of My). Assuming that the result of Cande
the ene of topological sigma model on My, we generalized the treatment of [15] and
computed (N — 2)-point function

N-2 w N-2
{IT Oalz) (1)) = 3(IT Oclzy))ue™ (1.0.2)
3=1 d=0 3=1

Calabi-Yau manifold of dimension lower

correlation functions (in our words, (O,(z)
surface) have no in

of al is

where d represents degree of holomorphic maps and @, is BRST-closed observable
induced from Kahler form ey, € H*'(My) hen we find that for N > 5 case,
these correlation fur instanton corrections whose v
course, at the same time, Morrison et al. treated the » model and compute
some correlation functions, they did not explain clearly the meaning of instanton

ons ha ues are integers. Of

corrections.

Then what remains to show is that our result is really a correlation function of
A-model on My, in other words, the number of holomorphic maps f from P! to

My which satisfy the following condition
I(z;) € PDyy(epry) (1=1,2,+-- N -2) (1.0.3)
The reason why correlation functions are determined from (1.0.3) will be explained

in Section 2. First idea came from discussion with Dr.Okai. With him, we found the
simple statement in the famous textbook of algebraic geometry [19].

PD(ey, ) = PDlegpn-) 0 My (1.0.4)

G




Then condition (1.0.3) decomposes into the following two conditions on holomorphic
map [ from CP' to CPN-!

HCPY © My
fl{z) € PDgpx-1lecps-i) (1.0.5)

With this idea and the following fact that halomorphic map f from CF* of degree
d is described by polynomial map,

d
Lifsat) o (Fafslttd .
=1

-1 3 af s'ttd) (1.0.6)
)

we roughly evaluated (1177 O, (z;))q as N*¥*1. This result is different from our re-

sult from mirror symmetry, but reproduces the top term of N-expansion of fﬂ‘ 0.1z
Then we thought “the condition (1.0.5) is fundamentally right, but we have to know
more about moduli space MEF™" of holomorphic maps from CP' to CPY1 of de-
gree d”. We also concluded that differences between exact results and NV come
from boundary part of space of polynomial maps that consists of maps superficially
of degree d but truly of lower degree by projective equivalence. In degree 1 case,
with the help of Prof.Oguiso and Dr.Hori, we N.nr]\ n-prm[mr-r] -[1"‘ 2Oz
using the condition (1.0.5) and the fact that M ’ C') = Gr(2, N). §
result was the first step for explicit statement that nlllll.' mmetry is the symmetry
between A-model on My and B-model on My,

In the same year, many works on topological sigma model (A-model) appeared
mainly from Kontsevich. These works focused on A-model coupled to gravity. In
[21], Kontsevich and Manin proposed that A-model on Fano variety (complex man-
ifold with positive first Chern class or positive Ricel curvatun 1 be solved by
using Dijkgraaf-Witten-Verlinde-Verlinde equation (later we abbroviate it as DWVV
equation ] or associativity of operator algebra of BRST-closed observables. With this
statement, Dr.Y.Sun and myself solved topological sigma models coupled to gravity
on CP* CP* and Gr(2,4) and found that in Gr(2.4) case,
cohomology ring are conserved in correlation functions of BRST-closed observables
induced from elements of H*(Gr(2,4)). This work suggested that the associativity
condition is powerful in treating topological sigma model coupled to gravity on Fano
\'ill'l(‘l_i'.

The reason why mathematicians prefer A-model coupled to gravity to pure A-
model lies in the fact that (gravitational) moduli space of complex structure of C P!
with n-punctures My, is compactified by stable curves and analyzed completely in
terms of tree g |]|- Geometrical proof of DWVV equation was given by Kontsevich
and Manin in | the result on homology of Ay, by Keel [36] and splitting
axiom. With this concept, Kontsevich proceed further to the notion of stable maps,
which compactify moduli space of holomorphic maps from CP' with n-punctures
to Kihler

ifold M that corresponds to moduli space associated with A-model

)

coupled to gravity from CP' to M. With these set up, he el exact calenlation
of correlation functions on M and CP? by use of Bott-residue formula in [1] (we

call this method torus action method).

We thought that by combining the condition (1.0.5) and torus action method
(to be more precise, some subtle changes occur because we couple gravity to the
model), we can caleulate correlation correlation functions of A-model on My cou
pled to gravity, This speculation turned out to be right and we reached integral
representation of generating function of correlation functions of this model. Using
the fact that 3-point functions of pure wdel and the ones conpled with gravity
coincide (notified by Prof. Y ‘l amada) and that fusion rule holds in pure A-model
(pointed out by Witten in , we reproduced ([17 up to degres 3 and
suggested that we can reproduce them to arbitrary degree d. Thus we gave practical
proof of string tree level mirror symmetry in the sense of symmetry between A-model

on My and B-model on My,

Topological sigma model (pure matter theory) on o variety (esp, for CPY
and Grassmannian) was studied from another point of view, by Vafa and Intriligator
Th ied that classical cohomology ring of Grassmann variety (including € PY)
is described as polynomial ring divided by the ideal generated by the derivative
dW of Landau-Ginzuburg super potential W, And thev suggested perturbation
of W by the elen corresponding to Kahler form gives quantum cohomology
ring which is equivalent to pure matter theory on Grassmannian. Because resulting
correlation functions given as the residue of perturbed super potential are non-zero
only if topological selection rule of pure matter theory is satisfied. Of course, they

are integers. But their argument was merely a conjectire

Geometrical proof of this was given by Bertram [4] who constructed the com-
pactified matter moduli space of holomorphic maps from CP' to Grassmanians and
evaluate three point functions of pure matter theory with this moduli space. And
using the fact that fusion rule which reduces correlation functions into products of
three point functions holds in pure matter theory, he reproduced the result of Vafa
and Intriligator,

This geometrical reproduction tells us that if we can evaluate three point functions
of pure matter theory, we can solve pure matter theory on any target space.

With this idea, we analyzed pure A-model on degree k hypersurface in CPY!

(we denate it as M) to seek for the reason why N*V+! gl\p- the lnp term of
(T2 Ou(z)))e- Traci mg the x«urlr logic which gives ([T25% O,( m~ NN+l e
roughly l\'?l]ll-nf‘!l. {ﬂ 1 "o, ()} = E**! for pure \m:uid on My, . Then
we used the idea which reproduced l,’[]) 1 O,{_,]_.,, in MY = My case, i.e., fusion
rule that decomposes any correlation functions into sum of products of three point
functions, More explicitly, we assumed pure matter theory on MY is constructed by




two relations,

1
(OO0 0u) W N=2 (1.0.7)

(00,0, i e ®) (1.0.8)
where €, denotes BRST-closed operator induced from &) M € e H*(ME). We eval-
uated all the three point functions in need by torus action method and found the
following relations hold if & is no more than N —2

()= = Pract(O )t (1.0.9)
This is the natural generalization of the well-known result of CPY* model,
(@)Yt =e* (1.0.10)

and it corresponds to dxW(X) if we set X = @, (1.0.9) tells us that if the
condition k < N — 2 is satisfied, (11757 0,(2;))s = k***1e~*. The exactness
of the rough evaluation can be explained from the dimensional counting of boundary
parts of polynomial maps mentioned before. In this way, we showed that (1.0.5) is
fundamentally right and the first speculation about difference between N***' and
exact result of ([T @.(z;))4 is adequate. OF course, we limited the Hilbert space
of this model to the space spanned by O, so generalization of this discussion to
full Hilbert space is expected. But we think this is the first step to gene ion
of the discussion of Vafa and Intriligator to pure matter theory on arbitrary Kéhler
manifolds.

This thesis consists of these works. Chapters are ordered from geometric formu-
lation to field theoretic formulation.

In Ch 2, we review topological sigma mode] (A-model) and show the strategy
to treat topological sigma model on MY

In Chapter 3, we perform geametrical ealculations of correlation functions on MY,
In Section 3.1, we introduce pure matter moduli space of ||cl||11r|ur|:1m maps from C'P!
to CPY! and under the strategy of Chapter 2, we derive \H “0,(z A FE—
Erde—# and discuss the limitation of this evaluation. In Section 3.2, we perform
exact caleulation of "['|: L %)) using Schubert caleulus of H*(Gr(2,4)).
In section 3.3, we review mathematical theory of gravitational moduli space of CP!
with punctures to prepare for the notion of stable map. In Section 3.4, we introduce
stable map and using the results of Section 3.3, we give geometrical proof of DWV \
equation. In Section 3.5, we introduce torus action method and perform some expli
aleulation of correlation functions of A-model coupled to gravity on My and eva
{[l_," ,"’ @ (2;))a of pure A-model on My up to degree 3. Finally, we give integral
representation of generating function of A-model coupled to gravity on M.

Chapter 4 is devoted to topics in connection with operator algebra of BRST-
closed observables. In Section 4.1, we construct quantum cohomology ring of pure
A-model on MY and derive the formula (1.0.9). In Section 4.2, we solve A-model
coupled to gravity on CP?, CP* and Gr(2,4) using DWVV equation derived from
associativity of operator product algebra

In Chapter 5, we treat mirror symmetry between A-maodel on My and B-model
on My, both of which are Calabi-Yau manifolds. In section 5.1, we construct mirror
|n|r of My and M} using the result of Batyrev, Hosono et al. Section i

are given for review of B-maodel. In n 5.4 and 5.5, we introduce Kodaira-

nd give the formalism fi leulating the correlation function of
B-model. From Section 5.6 to Section 5.8, w ply the above formalism to B-
model on M3 and caleulate ([1Y
complex structure of M. It mrrr-\pund-\ to {T177 Ou(5)(t)) of A-model on My
In section 5.9, we construct mirror map which 1I|II]‘-|ill1"‘ 7 into coupling constant
<I\';i]|!1 r deformation pe ) ¢ of A- r1|u|| Inn My and give the N-expansion form
of ([T)5% O ) =T C . Finally we write out some numerical
i '-Iill'- and see the coincidence with the result of Section 3.5

x)) \\h- ore 7 is deformation parameter of




Chapter 2

Topological Sigma Model
(A-model)

2.1 Action

The A-model is obtained by fwisting a N=2 super svmmetric non-linear sigma model
defined on a Kihler manifold. N=2 super symmetric non-linear sigma model is de-
fined as follows. Let M be a n-dimensional Kihler manifold and ¢ be a holomorphic
coordinate on M (i = 1,---n){and ¢ be a anti-holomorphic coordinate ), £ be a
Riemann surface, which, in this thesis, is restricted to genus zero, and = be a holo-

morphic coordinate on X,

The Lagrangian is
3y

L 3:[.!"; .y
v 2.1.1)

where @'(2) is a map from ¥ to M (these are the main dynamical variables in this
maodel). o fields are fermionic degrees of freedom. We put world sheet spin quantum
wd —1 to z. For o fields, 4+ (resp.—) means spin quantum mumber
mtives with respect to pull-back of

'8, )il Dt gig i Dol g+ R

number 41 to 2
1 D,, Dy represent covariant der

tangent bundle on A and to world sheet spin, Explicitly, they are

(resp.

Dyl = ol +ad'ly ik

D, = Ol + & Tk (2:1.2)

and £ are Kihler, remaining connections on tangent bundle are

Note that since M
5 of Kihler metric g, g. ¢« as follows.

Py Dy T and I, They are written in ters

O =", T =9"eu

angian possesses N uper symmetry. In terms of fermionic parameter

o, b, and o, g, the super transformation laws are given as follows

6 = doou + i

dg' = ia_y + a0t

Mt = —a 8 —iouy!

st o Oy’ — iy

. = eyt — i

i = —o i — ih (2.1.4)

A-model is obtained by twisting the fermionic degrees of freedom. In this case we
subtract half of /(1) charge (we put =1 to i and 1 to i) from fermionic world sheet
spin quantum number,

W ¥ U
v
v
W o= ol (2.1.5)

HiDax" g

{2.1.6)
(2.1.6) is invariant under the infinitesimal BRST - transformation obtained from
(2.1.4) by twisting fermionic degrees of freedom and setting o, o o and
o, = a_ = 0 (Note that remaining fermionie infinitesimal variables become spin 0
under twisting).
dg = 1oy!
66 = i
dx'=dx'=0

S = —0ad,d — iayIIE

—odyd — iy T v
T'his invariance allows us to consider only BRST-invariant observables. We define

BRST operator @ by 6V = —ie{Q, V'} for any field V. Of course, % = 0.
Moreover, we can rewrite the Lagrangian (2.1.6) using the ¢ equation of motion,
.n_-i!)_. X'gy =

iD.xlg; = (2.1.8)




as follows,

Iraa 24Q.V )+ rfq:'m (219)
where
v 95 + 8,
{Q.V} = -2igz;04¢'0.0 j
(2.1.10)
and
@) = [ @.0'0:00; - 080600, (2.1.11)

(2.1,11) is the integral of the pull-back of the Kihler form e of M, and it depends only
on the intersection number between @,(E) and PD(¢) (PD(e) denotes the Poincare
Dual of £), which equals to the degree of . By an appropriate normalization of g;,

we have

f_m'l.-]= d (2.1.12)

whore d is the degree (or winding number) of ¢. Next, we consider the correlation
function of BRST-invariant observables {O], i.e.
L l
(Tos = [D».um-.n\« I o (2.1.13)
=] b =1
We have seen [y #*(e) = d and we decompose the space of maps ¢ into different

topological sectors { By} in each of which deg(®) is a fixed integer.

We ecan rewrite (2.1.12) as follows.

k T [ l- .
{Il[lo,;. .fn._-. Dxe -I]'jlo_ =S e ”f”.l DoDUDxe ™"

d=0

s {QV) fi o,
“l2114)
And we set . %
(I1ode= [H DeDiDye o fs 19V} Ie (2.1.15)
=l bt i=l

We can easily see that [ @{Q, V} = {Q, [ d®2V}, i.e., Lagrangian is BRST exact
except for topological terms. Then by taking infinitesimal variation of coupling
constants, we have insertion of §4{Q, [ 2V}, It follows from this and {Q, O} =0
that (1%, O} doesn't depend on the coupling constant ¢ and we can take weak
coupling limit ¢ — oc in evaluating the path integral.

In this limit, the saddle point approximation of the path integral becomes exact
Saddle points of the Lagrangian are evaluated from (2.1.10) as follows.

Bt =0 8,6=0 x¥=x =1 (2.1.16)

13

We have to note one important things. The saddle point equation shown in (2.1.16)
has moduli. Dimension of moduli space can be counted by infinitesimal variation of
@,

d=it 6 (2.1.17)
Note that d¢ takes value in tangent bundle on M. Since
the following equation for d¢

= @,y = 0, we have

D¢ = D¢ =0 (2.1.18)

The number of linear independent solutions is the dimension of moduli space. In
this thesis, we will treat the genus 0 world sheet, and we denote the moduli space in
this case as ;\/l,,'{,.
We write out the fermionic equation of motion in the saddle point. Solutions of
these equations are zero modes of fermionic degrees of freedom
Dy = D=0
Deyr; =) (2.1.19)

We can see from (2.1.19) that y equation of motion is the same as the bosonic moduli
equation. This tells us that y-zero mode can be regarded as the basis of tangent
space of M3, Of course, dim(M}%) = {§ of x—zero modes} (In this thesis
# to represent the number of elements of a set). With these discussions, we separate
the integration into the integration of saddle point moduli and the integration of
variations around the saddle points,

L3 [
o) = DY Dye—t f,. &= {@Q.V}
(‘H:L D ]m DEDyDy .] {‘ o,

i
— ]M._‘.', DM f PuaDxp [ DD Dye et “. O, (2.1.20)

where

Liuad, = —2iD, D1 + ¢

¢, 'andy’ represent oscillation modes perpend

ED.x, + 20, Dex” (2.1.21)

to zero modes. In (2.1.21), we
assumed that there are no y-zero modes, which results in no insertion of Rgu™ ¥ ul*y
becanse there are no measure for ©°. Then integration of ¢, ¢ and ' results in
det(D2)det (D)) =
det(DLD) b s

where [, I} represent operators that act on functional space except for zero modes.

Next, we discuss the case of i-zero modes integration. We decompose ¢, x and
v inte zero mode part and oscillation mode part.

o = ¢'+¢
X = x'+¥
P P

ol




Then we have quadratic part of Lagrangian by carefully treating the pararell trans-
port of y and ¥ caused by ¢' perturbation like

i gk

X = xX -9y

(2:1.24)

And Ly is given as follows,

L 20 D" Datd| + i, Dex” + e Dox + 10" o

sgrunal

where

= 0™ R,

(2:1.26)

In deriving this, we used the following equations.

R = 80T, B = 0l (2.1.27)

For later convenience, we rescale 3 into ;:fr

Lywd, = —204"D.Dyd} + 28y, Dex* + 2v/Fin)f
2V Pt — 2R

We introduce Green's operator G = “,:'”-. to rewrite bosonie part of L. Then

Then Lyua. changes into,

2V e (2.1.28)

bosonic part turns into,
—2t¢" D, Dy, + 2/Hig ppa — 241 .
20 4 - YD Dy A+ ) + 285Gl

(2.1.20)
Integrating out oscillation modes results in cancelation of bosonic and fermionic
determinant like no ¢-zero modes case. Then we finally get effective Lagrangian for

this case.

4G len) — 2R L'jﬁ"\""\'l"’ (2.1.30)

ave Lopp. = 0. Then we have

Legp. =2

Of course, in no yi-zero modes case, we

: =
([0 = _[_“:Ln-w f Dr.'u'f‘\“t‘-‘iir[—h_rfIJIIL'-’,

=1
k
f J T.'!.Mf!‘\..,'\[m]]a (2.1.31)
Mo val
where we define Euler class y(v) as differential form on M} obtained from inte-

grating out y-zero modes of L,y;. If we regard @, as closed forms on MJ', we can
rewrite (2.1.31) as follows.

k k
(1 9= f . x(w) A O (2.1.32)
i=1 Mo i=1
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2.1.1 The Ghost Number anomaly and BRST observables

In the previous subsection, we come to the conclusion that path integral (2.1.12) is
reduced to an integral over M}
modes (which turns out to be 1 ). But as we saw in (2.1.19), there are fermion zero
modes which are given as the solution of Dyx' = D.x' = 0 and Dyl = Dol = 0.
Let ay (resp.by) be the number of y (resp.¢r) zero modes. We can see from Riemann-
Roch Theorem (we treat the matter more explicitly later ),

weighted by one loop determinants of the non zero

wy = ag — by = 2(dim(M) + dey (T'M)) (2.1.33)

{In this thesis, we denote 7'M (re:

part of tangent bundle on M.) The factor 2 comes from left-right symmetry of this
model. We will omit this factor in later discussion. The existence of Fermion zero
modes is understood as Ghost number anomaly, becanse Lagrangian (2.1.6) classi-
cally conserves the ghost number. In path integration, these zero modes appear only
in the integration measure except in [T%., @, and the correlation function ([IX, O},
vanishes unless the sum of the ghost number of @, is equal to wy.

wy 8 usually called “virtual dimension * of M

dim{M}) = ay = wy holds.

In generic case by = 0 and

BRST cohomology classes of the A-model are constructed from the de Rham
cohomology classes H*(M) of the manifold M. Let W = Wy, (@)dd™ A- - Adg's
be an n form on M. Then we define a corresponding local operator of the A-Model,

Owel(z) = W™ - x™(2) (2.1.34)

From (2.1.7) we have

(@00} = —Ouw (2.1.35)

which shows that if W e H*(M), Ow(P) is BRST-closed. Note that if we limit
our interest to analytic class je., HY'(M) and define dim(W) = § for W € HY (M),
ghost number of Oy is equal to 1. (We ignore left-right multiplicity.)

We can construct non-local operators Oy, (i = 1,2) from the following recursion
relation,

deOy = i{Q, 04}

deOl) = i{Q, 04} (2.1.36)
where
Ol = inWy g ded’ e xs
oy = "'[”.,_ ”11}.11 1 dzd™ A dy -y (2.1.37)
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1. T" M) as the holomorphie (resp. anti-holomorphic)




, and dy represents the external differential operator on world sheet. (2.1.36) shows
[« O (where C; denotes non-trivial i-dimensional evele on £.) is BRST-closed.
When world sheet is genus 0, these non-local operator has little meaning, S0 we
i SeL Up. One can show one important fact, i.e.,
does not depend on the position of insertion

concentrate on Q. But with the
ation functions il]ﬁ 1 Ow, (
point z;.

COTTiE

Let us evaluate the difference between (Ow, (1) I'Ef 2 Ow, (%)) and
(O, () TT5=2 Ow, (53))

& k
{Ow, (21) H Ou, (25)) - (O, (1) H Ow, (2}

j=3 =2

£y k
= [ dy O, (2) TT Ow, ()
£ =12

=0 (2.1.38)

a1 G

= ([ #Q. 0} T Ow(z
j=2

From this, one ean see that correlation functions are just the numbers.

2.2 Evaluation of Path Integral

Now we discuss how we can evaluate {1~ O)a. Wo take O to be Oy, which is
induced from W, € H*(M). By adding appropriate exact forms we can make W, into
form which has delta function support on PD(W;). Then Oy, (F) is

the differen
non zero only if

&(z) € PD(W;)

Then integration over My, is restricted to M2, | which consists of & € M,
39). In evaluating (T15, Ow, )4, (2.2 s ¥ | dim(W;) condi-
tinns, so dim(MR) = dim(MY) — T, dim(Wi) = wa + by - ¥ dim(W;). But
from the fact that ghost number of O, equals to dim(W;) (contribution from )
and anomaly cancelation condition, we have dim(M}) = by. In generic case where
by = 0, M, turns into finite set of points. Then we perform an one loop integral over
wich of these points. The result is a ratio of boson and fermion determinants, which
cancel each other. Then contributions to ([IX, Ow,}q in the generic case equals to
the number of instantons which satisfies (2.2.39), i.e,

satisfying (22

(2.2.40)

(II O, fgemeric = 1

When dim(M},) = by > 1, there are by ¢ zero modes which we can regard as
the fiber of the vector bundle » on ,\4;‘:’”, In this case, contributions to {[1}., Ow, }a
are known as the integration of Euler elass y(v) on M, If we
O-dimensional vector bundle on a point in the generic case, we can apply the same

logic there. We denote each component of M, as MJ, | and obtain

msider 1+ as a

k
(ITOw)a=3¢ bt oy [M” x(1) (2.2.41)
W=l m MY,
Hence from (2.1.14)
[ x ma
(Mow)=3 §_I (58 dmiw), (2.2.42)
=l el mc %

In algebraic geometry, generic instantons of degree d correspond to irreducible
maps of degree d, which can not be written as the combination of maps from CF' to
CP ol J > 1 and instantons of degree d with non-zero y zero mode correspond
to reducible maps which are combination of degree j multiple cover maps from P
to CP' and irreducible maps of de rse, § must divide d and we
represent this condition as jld). We will discuss it in section 2.4.

Let My ;m be the m-th connected component of moduli spaces which are j-th
multiple cover of d/j-th irreducible instante

modes on '“"g.r-f.;.'r-' Then we have from (

and ¥, be vector bundle of ¢ 2ero

o

“ o) =3T3

d=0 jjd m=1

5 ) a) o [““ X(¥5m) (2.2.43)
2.3 Topological Sigma Model coupled to Topo-
logical Gravity.

Lagrangian of topological sigma model coupled to topological gravity is written as
sum of gravity part and matter part

D=1 it Dinastar (2.3.44)

We write out the matter part of Lagrangian.

Loatter = [r!’:(g,-‘,i),,y;}__‘;.' + i (D + x20,6") + ivg(D.x' + 2 8d")

D0y + Dyy')

Jo T
RXX = XaX
Lty + iy Dy

) {2.3.45)




This system has additio
surface JI,
This L

follows.

al degrees of freedom th
corresponding ghosts
angian also has BRST-

are complex structure of Riemann
erization ghosts (b, ¢) and (4,9)

z

and reparam
ymmetry. BR

-transformation law is given as

LEH 2anyi + = 20 4 -+

B = Gy

' = iay & = 'y

! = o Sy =

b oy — iox T + -+ 6y = —adig' — iox' TS 07" +

(2.3.46)

« means the terms involving reparameterization ghosts. For later use, we write out
explicit BRST-transformation law for y.

dy' = o' 0.6

X =o'

0" + oy’ S’ (2.3.47)

Then Lagrangian is written as BRST-exact form modulo equation motion and re-
maining degrees of freedom are moduli degrees, which is the same as pure matter
Case,

In this section, we just notify some differences from pure matter theory. First,

rematning moduli space include moduli space of complex structure of £, We denote
this moduli space as AM and it can be realized as follows

o grav

M e = LU OIS 2 Er ' Mof degree d) (2.3.48)

Y. 15 the Riemann surface of genus g with complex structure J. Using local coor-
dinates, the eondition of f to be holomorphic map is written as

1 .
I)rf.r“[d:_' + 030, = 0. (2.3.49)

Then taking the variation of (2.3.49) results in

Dysf' + %.i. F0: =0 (2.3.50)

where we used local holomorphic coording Then zero modes of §f part is
counted in the same way as pure matter case. So with respect to dimension of moduli
space, we simply add the dimension of complex structure of Riemann surface. This
dimension can be counted by counting the dimension of H'(

number of holomorphic section of ¢, € HY(E, K

) or equivalently,

;€ H'(X,T'E). (2.9.51)
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Then dim(H"(E, K§

) is counted by using Riemann-Roch Theorem,

dim(H(E, KE)) - dim(H'(8, K&

» fact that deg(K'y) 1 = HI(E, K§¥ *) is me apped into
4% which corresponds to conformal
to genus zero case which is the main subject of this thesis. In this case, we have
dim{H'(E, K¥")) = 3 which tells us that CP" has no non-trivial complex moduli
but three conformal Killing vectors. Since these Killing vectors are integrated into
global action of SL(2,C) of CF', we conclude that

where we used th

Then we turn

ing vector of 3

MM /SL(2,C)

Next we turn to BRST-closed observables of this model. This is important also
for the notion of moduli space of this theory. Oy is not an BRST-closed operator
because of (2.3.47). In this case we have to introduce gravitational dressing of Oy
defined as follows.

4 C'-’“ = Ow(z) e (=)0 2.3.54)

Owl

Then &y becomes BRST-closed operator again because of insertion of delta fune-
tions of reparameterization ghosts. This dre:
insertion of delta functions of reparameterization ghosts corresponds to taking dif-
feomorphism gauge group as diffeomorphisms fixing operator insertion points, we
have additional moduli degree of freedom, i.e., position of operator insertion points

Then we define M), , as gravitational moduli space with k-operator insertions.

1 has geometrical meaning. Since

Vi), Moy /SL(2,C)

{(ulz1), -+ ulze)), (=) [}

Finally we write out the representation of correlation functions as an integral of
moduli space.

&

&
j=1 b Y F=1

We regard Oy, as a form on M2, .. Euler class y(v) is evaluated fundamentally the

Later we use Ow for Gy in case

same way as pure matter case. See for details |3
of theory coupled with gravity.
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2.4 Reduction to an Integral of Forms on Moduli
Spaces

In this thesis, we treat the topological sigma model (A-Model) on degree & hypersur-
face MY in CPN-! (k < N). This
of kH (H is hyperplane bundle of CPY" and &H represents k-times tensor product
of hyperplane bundle). Note that when N = k, kH is equivalent to —Kepr-1 and
M} turns into Calabi-Yau manifold (K represents the canonical line bundle of M

wnifold is realized as the zero-locus of section

which is equivalent to A(M, ASMMTAN) We can take homogeneous polynomial
of degree k as the defining equation of UI‘,-. For example,

My = (X s Xa i i Xpn) € CPY XS+ X2 4+ -- 0 4 X5 =0) (2.4.58)

;) which
we denote as O, and in the following discussion we consider the observables which
are induced from the sub-ring of H*(M%,C) generated by Kihler form e of .-1.!_{-
(we denote it as H2(ME, C)). One of the reason why we take this sub-ring is that
we can obtain it directly from H*(CPY¥-',C) and Poincare dual of i
analvtic submanifold of .'|J'§.. Mare explicitly, elements of H}(My, C') are given as &

+ N — 2) and Poineare dual of ¢ is the intersection of the zero locus of
vof HYCPY-1,0(i- H)) and M%. Soin the following discussion we treat
the observables *

Observables of this model can be constructed from elements of w € H* (A}

s elements are

04,0 Opyne s Opaa (2.4.59)

Then the fact that Lagrangian of the topological sigma model is BRST-exact allows
us to take the weak coupling limit and correl
to the integral of closed forms corresponding
moduli spaces of holomorphic maps f from 38 M
(we focus our attention to the case of g = 0, i n the target space is
a hypersurface of simple projective space CPY-!, we can classify moduli spaces by
the degree d = {(f(CP') n PD{(e)) and we denote the moduli space of degree d as
P Ak

ation functions of this model reduces

to the BRST closed observables on

to targel space

M : 3 7 . -
M, ¥ Dimension of M, which counts the number of y-zero modes is evaluated
by the Riemann-Roch Theorem as follows,

1ii1||l.-\-||:'r|} ) = dim(HYCP, [ (T'MX))
= dim(ME) + deg(f) - eo(T' M%) + dim{H(CPL, f1(T'M3)))
= dim(ME) +d(N — k) + dim(H' (CP', f*(T'M})))
= N—24d(N—k)+dim(H'(CP", f(T'M%))) (2.4.60)
“When coupled to gravity, @y corresponds to punciure operator P, but in the small phase space,
P insertion is suppressod exeept for constant map sector because of punc equation. And in

n rule, ghost number
only N — 4 elements

Yan case, as we know from the later discussion of topologic
rted operator must be less than ¥V — 3. So it suffices to consid
-y @ x4 in this case

where we used the fact that e (T'M¥) N = k. This can be derived as follows.
Since T"ME and 7" M} are dual to each other, we have the identity,

a(T'My) = —e(T"My) = =6 (Ky ). (2:4.61)
Then from the adjunction formula,
Kuy = Kepn-r @ kH (2.4.62)

we have
er(Kys) = es(Keprt) +er(kH) = =N + k. (2.4.63)
Then e (T'MY) = N — k follows.

First, we consider the generic case where dim(H(CP', f(T'M%))) = 0. From
the argument of previons seetion, we can heuristically represent correlation functions,

(O (21)053 (22) *» - Ot (2 ) e gemeric
= [ ak (O A (O ) A Aa(Ou=) (2.4.64)
'“u.a\ b ¥

+ MY L o~
where a(Q,;) is the closed form on My [ induced from O, Since the form degree
of a(O.) equals the ghost number of Oy (= dim(e!) = j), correlation functions are
nonzero only if the following conditions are satisfied

dirn[.\a‘[,'::;:' ] = Z Ji
i=]
= N-24(N—kd = ¥ 4 (2.4.65)
=l

If we take ' as the forms which has the delta function support on PD{e7), then
from (2.1.34), (@) can be interpreted as the constraint condition on [,

al(0.) « fz) € PD(e") (2.4.66)

(2:4.66) imposes (dim(e’) = 1) +1 = j independent conditions on \r{r:r} ((dim{e?) ~1)
corresponds to the degree of freedom which makes f(CP')n PD(e?) # @ and 1 to
the one which sends f(z,) into PD(e?)). And from (2.4.65), what remains is the
discrete point set of holomorphic maps f which satisfy (2.4.66) for all 1. Then we

(O ()0, AT R
=Hf:CP ol Af% of degree d|f(z) € PD(e#)} (2.4.67)

Now, let us consider non-generic case. In this case, dim(HY(CP, f*(T'ME)) > 0
and moduli space have additional dim(H'(CPY, f*(T"MY)) degrees of freedom,
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We can see these degrees of freedom correspond to multiple cover maps by the
following argument. A multiple cover map f can be decomposed into the form
to MY and ¢ represents the map

f = f o where [ is irreducible map from CP'
from CF' to CP' of degree n > 2. Then let us count 1li||;|_,-l/1:,_r.,‘] by taking the

(holomorphic) variation of fop.

=§f o (2.4.68)
& corresponds to the generic degrees of freedom,
.z ’ - d 2
dim(§fop)=N-24+(N-£k) (2.4.69)
n

f o di counts the deformation of the multiple cover map which can be realized
using the section ¢* € HY(CP', " (T"CP')) as ¢*d.f. We can count these by using
Riemann-Roch,

dim(f 0 dp) = dim(H(CP, " (T'CP'))) -3
= 1 +deg(p)-ei(T'CP') -3

= -2

In (2.4.70) we subtract the double counted SL(2,C) which comes from the indeter-
mination of the decomposition of f, i.e.,

[ = fop

= fououlop u € SL(2,C) (2.4.71)

After all when k equals N, generic degrees of freedom doesn't depend on d, And
we find additional 2n — 2 y zero modes in this case (When k is less than N, we can
see that contribution of multiple ¢ exceed the generie dimension of
MY, and we can conclude that dim(H'Y{CP!, f*(T'M}))) = 0). But we can also
construet 2n — 2 b which comes from H'(CP', f*(T"My)). By the Kodaira-Serre
duality, the following equation holds.

‘er maps don’

dim(HYCP, f(TME)) = dim(H(CP, K& [*(T"MY))
( = dim(H(CP" K@ f(T"M5))) (24.72)

and

Y =g9"0;

; € HYCP K ® f*(T"'M}))) (2.4.73)

as we have said in section 2.1, by integrating v zero-modes first, we
1%)). This leads us to

In this case,
have the Euler class x(¢) where = H'(OP', *(

(O [21)O0;

= / k. a(Qs(z)h A An|Oualzs)) (k< N)
I

= ] ah () Aa(Qu () A Aa(Ounlza)) (E=N) (2.4.74)
M ]

We can refine (2.4.74) by using the argument which leads us to (2.4.66) and define
the evaluation map,

P (2.4.75)
We have
(D (21) Oy ++ Ogtm (Zm )}t
[~r". i) A Agile™) (k< N)
My ¥
f o XA E) A Aghle™) (k=N) (2.4.76)
Mod

In k = N case, we can relate the non-generic part of the correlation functions to
the ones of lower :i!'p,_rm. bhecause in such case [ decomposes into f = f o @ where
deg() = nand deg(f) = d/n < d. But good results are given only in the case of k =

3. which was derived by Greene, Aspinwall, Morrison and Plesser 7] [34]. OF course,
if we use the fusion rule that holds in the matter theory, we can reduce the correlation
functions into the product of three point functio
generic part from the generic ones. But geometrical meaning is still not elear,

and formally distinguish the non-

Then we slightly change our point of view. Since M} is a hypersurface in PN,
AfE SN -

ee My as a submanifold .11"\4,‘,.," "' which consists of maps satisfying the

following condition

we

[:CP' = CcPY-!
flePy c My (2.4.77)

If we can realize the condition (2.4.77) as the closed forms (which we hypotheti-

cally denote as cg(M%)) on MES" ™', we have an alternate representation for the
correlation functions as follows,

(O (21) O (22) - - O

Gl ME) A BHE) A= A (el

y PNV ey Flz) (2.4.78)




Note that ¢ represents the Kihler class of CPY-L, In (2.4.78), we can drop off the

Euler elass y(v). This is becanse

dim(H'(CP', f(T'CPY"))) = 0. (2.4.79)

Dimension of moduli space does not jump in this case. Then naturally arises the
question about the relation between (2 8). However we want to
proceed further with the formula (2.4.78

.76) and (2.4

Then we want to use the torus action method invented by Kontsevich in Section
3.5, which enables us to compute correlation functions of topological sigma model
coupled to (topological) gravity. And we couple gravity to the topological sigma
model. Roughly speaking, we add to the moduli space “puncture” degrees of free-
dom which correspond to the insertion points of external operators. So for m-point
correlation function, dimension of moduli space (we denote it as ,-\4:,_‘{,’;:. '} increases
by m — 3. —3 corresponds ta dividing by automorphism of CP', i.e, SL(2,C) which
is indueed by c-ghost zero-modes. And topological selection rule (2.4.65) is changed
into

N-24(N-kKd+m-3= Z_;,
iml
= N-5+(N—-kd=Y (-1 (2.4.80)
=1

=i ;
MEF can be generically represented as follows,

04dm

MERI Ky 2y 2 FHSL(2C)  fEMER™ (2.4.81)

0,d,m

where u € SL(2,C) acts

we {(z1, 32, v 3o 1 = {lu(z1), -+ -y ulzm))y (472 0 [} (2.4.82)

This action of SL(2,C) is compatible with the “evaluation map”,

Bo: MG oy O

{(=1 =y 3mh SHSL(2,C) = f(=) 2.4.83)
because (u™')" fulz)) = flz). In (24.81), (2, 2m) are considered as distinet
, but to compactify the moduli space, we have to add boundary parts which
55 it in section 3.4 and 3.5.

poin
describe coincidence of these points. We will disc

Then the integral representation of amplitudes (2.4.78) turns into
(O (2
= [ prs CME) A G

)+ O (2m)) it att,gran
JLH)) A - A gilem (H))
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where we used the fact that e corresponds to the first Chern class of hyperplane
bundle H. Then we have to find the realization of cg{ M%), We can roughly do it as
follows. First consider the coordinate representation of MSE™

e il e i
o

d
fila:8) — g e Y alatlt) (2.4.85)
(=0
where (al)'s are the coordinates of MEL™ ™", Then the condition imposed by eq( M%)

is equal to
4;:1) € .u_i for all(s, t)

o
rJ'I.-i" 'f'?" dorae [Zr y

iwll

=0 forall(s,t)

> f™a;)=0 (m=0,1,-++,kd) (2.4.86)

flm of the Lhs of the second

rpR=1
0

where f™(a})’s are the coefficient polynomials of s™¢
line of (2.4.86). This imposes kd 4+ 1 condition on M, We can describe this

' Let 7 be a forgetful

condition mathematically in terms of moduli space M

map m; : ‘Mf,i,’,f: —+ ‘\A‘,f“‘ ,' which “forget” the existence of one of the punctures

Then for j = 1, the fiber of 7, is €'P'. And consider the sheaf ¢](kH) on MEL]
N4

ial of M% and H(MEET ™ #2(kH)) to

where kH corresponds to defining polyno
the second line of (2.4.86) modulo SL(2, C') equivalence. Then consider direct image
sheal Y (¢7(kH)) (we denote it as Exesy). Tt locally equals HYOP!, f*O(kH)) and
has rank (kd + 1). We can translate the operation in going from the second line
of {2.4.86) to the third one into the evaluation of the zero locus of the section of
Erasy. This condition is equivalent to the insertion of top Chern class ep{Epgsr) by
Gauss-Bonnet Theorem.

Considering the map,

o 5= T} -0 T (2.4.87)
We have
calMy) = or(®h (Exasn)) (2.4.88)
Finally the representation (2.4.84) turns into
(O (211005 (22) * + » Qi (200t gras
= f apves Or(TnlEran)) A G (e (H) Ao A (el (H)) (2.4.89)
‘HU.J.--

We will use this formula in explicit calenlation of amplitudes with the aid of torus
action method in section 3.5,
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Chapter 3

Geometrical Calculation

In this chapter, we perform geometrical caleulation of correlation funetions of topo-
logical sigma model on MY from the point of view of the formula (2.4.89). In
section 3.1, we approximately evaluate {[]",\. ,."": iy k;'{I‘IJ,{:J]} using compactif
of MY and discuss its limitation of this method. In section 3.2, we exactly
evaluate ([1**¥~*©,(z)) by using the fact that MY ISL(2,€) = Gr(2,N)
culation is an example of classical method for enumeration of instantons of
algebraic manifolds, But the application in this thesis is rather e soptional because
we treat the case where operator insertion points fixed or we treat pure matter
theory, We think this is the first treatment of direct grometrical ealeulation of pure
matter theory. Section 3.3, 3.4 and 3.5 are devoted to the geometrical caleulation
of correlation functions of general degree instantons, For general degree, the eal-
culation of amplitudes from the point of view of (2.4.89) is diffieult, But in case
of theory coupled with gravity, the notion of stable map and the developments in
topological gravity enable us to calculate them through torus action method . It is
application of Bott residue formula (a variation of fixed point theorem for complex
manifold) to the integral on M) ', In section 3.3 and 3.4 we introduce the no-
tion of stable curve and stable map which compactify M, . In section 3.5, we
review the torus action method and by using the formula (2.4.89), we perform some
explicit caleulations of amplitudes of the theory coupled with gravity on MY e,
Calabi-Yau manifold in CPY-'. We also compute {57 Ol %)) matter, by use of the
fact that three point functions of pure matter theory and the theory coupled with
gravity coincide and fusion rules that hold in matter theory. We finally construct the
integral representation of generating function of amplitudes for the theory coupled
with gravity on M%. Relation of pure matter theory and the theory coupled with
gravity are pursued further in section 4.1, We argue that this is the first application
of torus action method to the general hypersurfaces in CPY-1,

3.1 Moduli Space of the Pure Matter Theory

In this section, we take our first step of geometrical caleulation of correlation function
of A-model (pure matter theory) on M. We have mentioned the strategy in previous
section. Since MY is a hypersurface in € PY~!, moduli space A is realized as

opy

submanifold of MEF" ™', The condition of f € METT to be a point of My,
HEPY) ¢ ME (3.1.1)

Then if we have appropriate realization of MES" " and good description of (3.1.1),
we can caleulate correlation functions. We will caleulate simple, but non-t " 1 cor-
relation function (I1; 2HN-EM & ()4 by simple compactification of MEE™ ", i.llill
discuss limitation of this generic argument. [t is based on the following assumption

As stion.  Any holomorphic map [ from CP' to CPY1 of degree d is

described by polynomial map of degree d
d d .
fo(szt) o (Cajadt®™: Yol o
j=0 j=n

We can regard M{] as CPUHINT G we ignore the boundary parts of positive
codimension by the following identification.

=0

d d L eph=1
$: f= {Zrajn’rd 4, Eujx'f'r s el lrf;\.\-'f" e MES
=0 j=0

2 Ny = o pld+ )N
b (ahialieeizalialioeial) e CF

Boundary parts will be discussed later,
T we can realize the condition (3.1.1) as the constraint on CPUEHHN
fICP') c M,
= fls:t) e ME forall(s:¢)
= L (Sloalt™) =0 forall (s:1)
s ‘?‘.J n.’l"'ll-’l;,l.i"‘f'd* =0 forall(s:t)

= gr{ay) =0 (for m=0,1,---, kd) (3.1.4)

where g™ (a') are homogeneous polynomials of degree k. Of course, the condition
9™\aj ) ;

1 PN -1 v gald i -

(3.1.4) is imposed only for the elements of S(MEY" ) c CPY and has no
- - N =1 x - "
meaning on CPUHIN-! — &(AMTT" ). But let us assume the condition (3.1.4) is
extended to the whole CP™ YY1 Then we can regard (3.1.4) as kd + 1 homoge-
rous polynomial constraint of degree k. This constraint is equivalent to insertion
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of (k&)**! where @ is the Kihler form of CPUUN1 W have the following generic
result o
M3 = PDgpusie-i ((kEYHY) (3.1.5)

where PIDy(w) denotes the Poincare dual of the closed form w € H*(M)., From
) = dim(PDppsinat) = N({d+1) =1 — (kd + 1) =
2 which is consistent with the result of Riemann-Roch Theorem.
Next, we evaluate -:'l]J" | O,
(2.4.78) and (3.1.5), we have the following formula.

(3.1.5), we can see dim(M
(N=kld+ N

L+ {N -l

Ja using this generic argument. Combining

N=B+ (N =k)d [N-k)d4+N-2

( I Odade = [ 0cdMh) A dile)

= j (ke)re+t (3.1.6)
e plas N =1 a
where ¢ denotes Kihler form of P! and & is the evaluation map,
Gt fEMEY v o t) eCPY, (3.1.7)

PN

Since PDppsoi(e) is hyperplane in € it is realized as zero locus of linear

equation.

N
PDepy-i(e) = {(Xy : Xz :--: Xy) € CPY Y X =0} (3.1.8)
=1
Then by taking Poincare dual, 3} (e) corresponds to the condition that f(s; : t,)
should be in PDepx-1(e), ie.,

N

o
Y ¥ dudt? =0 (3.1.9)
0

I=1j

In treating pure matter theory, (s : &) is kept fixed and +'s are constant. And we
ard (3.1.9) as linear relation on CPE Y1 iy gur generic t ment. Then

again taking Poincare dual, we conclude !(e) = £. Finally from (3.1.6), we evaluate

fhidre Syt LS

=1 Oulz)}a

N=24(N-k)d
(s 25 Lyl o SNk (N=3)
C I odea = [ (kA

o

e+t (3.1.10)

Now we discuss the limitation of this generic argument. Boundary part ¢ plé+1N-1

DLMEE"") is described by the polynomial maps superficially of degree d but really
of lower degree by projective equivalence. Let us consider the following map (from
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now on, we omit the operation
of CPU+IN=1

which turns the coefficients (a]) into the variables

T 2GRN o opkem el 1)¥ -1

()/C* (i=1,2,-« N j=0,1-+m)x (fo:fizret fam)
" d-m m =
(X dle'tm 41 Sttty Qo Al e ™) (30 ft=)
j=i i=0 j=0 i=0
~ (3 diatm ) o (30 diadtmd) e (B dl s T)) (3.1.11)
J=0 o= j=0

Or, if we take Fundamental Theorem of Algebra into account, we can use following
map sequence instead of g,

PN
C PN

L x CP! ¢ epNE-Il « (OPY)?
O pNid-k+i)-1 ‘.(-f.l it CpN=kl-L o {r'p'.‘"i Pz

CP*™-' x (CPY)* & OPY-' x (CP')* (3.1.12)
where
iy s CPYUFI-1 5 (P 1y @pN=343-1 (Pl
(AL {zt) -+ A
- (AL (s, t)(a's 4+ B'8), - -+, AT (s, ) (a"s -+ b'1))

Aa®s =+ 0'1), -, (2?5 + 1))

¥ (s t)), (a's + b't), - - (a?s+ bt))

[

ie—= er:.--'r" .4 13:1.13)

j=0

corresponds to, by projective equivalence, th
, 80 obviously it belongs to CPUHHUN=1 _ gqt

The image of the map n
maps of degree m in € P o
Naive counting of dim{Fm(n-..)) concludes that it equals to ((m 4+ 1N — 1)+ (d -
m) = (m+ 1)N +d—m—1, while the condition for [ € Im(n;) to be a holomorphie
map from CP' to M} only reduces the dimension of CP™ N1 from ((m+1)N 1)
to N =24 (N —k)m. Then in translating the condition (3.1.4) into (k&) we make
mistakes in dimensional counting on fming_p,). These mistakes becomes relevant if

MY s " . +
contributions from Fm(nu-m) exceeds M, with respect to dimensional counting,

(N—k)m+(N=2)+d—m>(N=kld+(N-2)
=t (N—k-1)d-m)<D (3.1.14)
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From (3.1.14), if k = N = 1, we cannot believe the approximation (3.1.10), but in
k< N-2
give the fl-|l-m|1||_ statement

cems to give the appropriate result, With these discussion, we

N=2+{N-kM
{ I ©Odz)e = P ksN-2)
=1
> N 1) (3.1.15)

3.2 Schubert Calculus

In the d = 1 case, boundary part comes only from the mu[: 1, and we can eliminate
it by using Gr(2,N) instead of CP™-1/lm(n) = . ,‘ ', Using this fact we
perform exact calealation of ([T3Y%2 0,

(An important difference between
Gr(2,N) and (CP*™-1/I'm{n)) is that Gr(2, N) is the SL(2,C) quotient space of
the latter. Indeed dim(Gr(2, N)) is 2N —4= (2N =1)-3.)

There is a map £

E:CP™' Y Imim)

(aps +ajt,...,a0 s +al't) ( J ) JGL(2,C) (3.2.16)
Then, we have to decide the condition which corresponds to (3.1.4), i.e the condition
for [ € Gr(2, N) to be contained in M¥. This condition can be translated into words
uftnllnumlru'\ ring H*(Gr(2, N)). [.ul f * he the defining equation of M% and \"\- he
the section of Sym*(U*) defined from [hf' restriction of F§ to [ € Gr(2, N), where
U s the universal bundle of Gr(2, N) (See Appendix A for the definition of s&.
Universal bundle U/ is the bundle which is given as the vector bundle on Gr(2,N)

whose fiber is two dimensional complex vector space in €Y corresponding to the
point in Gr(2, N). U is dual bundle of {7.) Sym*(U*} represents k-times tensor
product of I7* modulo the action of symmetric group.). Then

Le Gr{2,N) is contained in M¥

Fili=t
&k =0atl e Gr(2,N)
= L € PD(er(Sym*(U)) (3.2.17)

In deriving last line from the third one, we used Gauss-Bonnet theorem that
zero locus of a section of vector bundle £ is homologically equivalent to PD{op(E
Since rank(Sym*(U*)) equals to k+1, dim{ PD{er( Sym™(17*)))) is (2N —4) -k

2N — k= 5, which agrees with -Iinlt/\’f',‘_i.,: ) =2N — k-2 and SL(2,C) equivalence.

Then we have the following formula

IN-k-2 2 2k
I Odzih= [. w er(Sym* (L") APDEAPD( A\ @He)))  (3.218)
We can explicitly caleulate PD({cy m*(L'*))) using Schubert caleulus. Let us
introduce Schubert eyeles in Gr(2, N) C Gr(2,N) (N=-2>
ay 2 ay 2 0) form a basis of H,(Gr(2,N), Z)(= H*(Gr(2,N),Z)) and are given by
the following definition.

o, = {l ¢ 2, N)|dime (! 1 Vg4 13.2.19)

where V)'s are linear subspace of €Y of dimension i satisfying following condition.

BecWaC -+ CVy,cC” (3.2.20)

Considering these elements of H*(Gr(2, N), C), multiplication rules of H*(Gr(2, N}, €)
are determined thoroughly through the following formula

Pieri's formula Oul * Ohy by b ey (3.2.21)
hSeighoy
) 4o a4by+b
Giambelli’s formula Ty oas = Oy 00a5.0 — Tay 41,0 y (3.2.22)

Then we caleulate o (Sym®*(07°)). We first introduce the following fact

Fact.
clU)=1—ait+ ot = eU*) =14 o1t + 048 {3

where ¢ E) denotes total Chern class of vector bundle E and [ denotes universal
bundle of Gr{2. N).

We formally represent L7 as divect sum of line bundles £ and F e, U*
amd we set
cofE) = 14zt
elF) = 144t

(x and y are formal variables)

From Fact and (3.2.24), we have ¢[l") = e(E)e(F) = 1 + (z + g}t + (zy)#*. and
r4+y=0
y=a, (3.2.25)

We can formally decompose Sym*(U*) into the form

Sym*(U*) = E¥




and we have

Combination

e(Sym* (L)) = (1 + ket)(1 + ((k = 1)+ y)t) - (1 + kyt) (3.2.27) PD{cy(Sym*(U*)))
Top Chern class is given as the coefficients of $*+! (Bw) E aiC ( Jerg s
=0 e '
(Sym* (1)) = kx((k — 1)z + y)((k - 2)= + 2y) - -~ ky (3.2.28) (k< N-—2)

ep(Sym*(L*)) consists of symmetric polynomials of x and y.s0 from (3.

i ; we can PD(er(Sym*(U*))) =
represent op(Sym™ (")) as polynomials of o) and oy ;. The result is

{411
k(k) 3= Symist-i(s,

or(Sym*(U)) = k(k) Y Symi(8,)a0l ! 7
=0 %)
(k : odd) ”\'U-"I)_h 10— 41Cia1) =441
=1
(3} 174 (k=N
or(Sym*(U7)) = k(k)Y Symit (8, )0t oy 1 (k=N-1)
i=0
(k : even) PD{(cp{Sym*(U*)))
where 1312 8 2
; k kEY S symith-ya., SO
{5 - — 5 (k:odd) =
- E - "‘l 1
Pl ikrene) (k) Sym' (Bn) 3 (k-aC) = k-aCjr)ony
(k - 2i)? k 7
% Y lsi<3)
(E—1n & l
Gr— Lt AU
Sym? (5 E 3 - i i J i ET
1hs-<u <) (k= N)
(3.2.29) (for k : odd)
From (3.2.21) and (: ), we can derive two formula. PD(er(Sym*(U*) =
oy =0y (REN-2) (3.2.30) L L A
k(k! L_‘:':-;m':’ § = sl Josy
=0
& (k<N -=2)
o G Y (aCi— 41 )b sninti (KFNESN-2)
= = PD{er(Sym* (L)) =
- 1§ = -
os o = P (warGi— va1Cict)on-iin (k) 30 Symiiis, {05~ aiCit)on
‘ 1 I.,"
oyt ony = = (w=aCy = w-aCiy)an (3.2.31) ;A.H.!:IIE:,* 1Cj = 51Cj=1)Thj i1
i=1 ”

(k=N=1)

33 K2

(€5 — 5Cii)o 4y

f (3.2.29),(3.2.30) and (3.2.31) leads to the formula

L b =ieie

(3.2.33)

(3.2.34)

(3.2.35)

Jri=g+ 1§ ) =ts41

(3.2.36)




PD(op(Sym*(U*))

k(k) ¥ Syml?

3)

are arbitrary complex numbers)

II‘--.'X"'-.:"'- 2105 -1)0  a i E it

(where oy, 5 8

Na%) by use of matrix representation of o441

+k(K)Sym' (Bn) Y- (k-3C; — 5-2C5-1)Th-1-4442 We can count *
2 € Cin COUnt *(T—j 541

’ Y . 1 0 ‘e 0 0o ]
C; G A
(6-1C5 = -1Cj T j 41 VO v Opeksi-a 0 Onoapien ree Oy BOOE eee 0
ENy (3.2.42)
(k= N) | _ ) (3.2.42
(for k (. & represents arbitrary complex mumber and precisely speaking, we have to add
(orik: (Even) boundary points to (3.2.42) to compactify the cycle.)

These formulas represent the exact moduli spaces ,\rl:"" divided by SL(2,C)

Next, from (3.2.18), wha

t we have to do is to determine

2i points. (In matrix repre-

Then (af Moy 1) are given as the following k
dim(Matrix), so we have to

sentation dim(ak) + dim(oa_j 1) = 2N —4 < 2N =
permit multiplying each row of oy, by constant and adding one row to another when

Hon_g i1 NE(PD( 51(e)))). We define o, as PDAIY 5 G1(e)). ok i
,,:.d:','u:(,,}}, ym the ¢ 1-1|::i|i|rm of % il it ) R we caleulate intersection number. See Local Appendix B for details.)

con ‘ i

- __'Mr-r‘- s CpN-l o s LR T e 0 == 0 L D == 0 0.0 =D

: I_Z}._. ) i D 000 D O TR e DO D e 0T 0O

[ € My fl=) (3.2.38) (3.2.43)
Since PD{AXY %2 21 (e)) = MY 2 PD(@(e)) = M2 3 (PD(e), of; is con- Thus we have B

Mok Nasejiel) =k =24 (3.2.44

structed as subspace of CP*Y

flz=) € PDle)) (i=1,--+,2N—%k

! satisfying the following conditions

(3.2.39) Combining (3.2.44) with formulas of PD{cp(Sym*(U*))), and using the following

identities,

where
#Cj —uCj1)(2) —2i+2) = 2%
= (¢ 1 2 ) ¥ (261€5 — 22 Cy1) (25 — 2i + 2) = 2% (3.2.45)
PD(e)) = {(Xi:-+: Xn) € CP¥ X, = 0} =0
(1<i<N) 3.
PD(e) = {(X) : Xx) ECPY X 24i-m} Z.S-;lrai-:' i | '-l'- ] (7
(N+1<i<2 k=-2) j=0
we get the final result of this section
By solving (3.2.40) and using map £, we can construct cycle af,.
(N=2}+(N=k
ot m 0 oy ay 0N -k-3 OgN_k-1 t+ O (319.40) { 1-[ o.( _ jkt (k< N =3)
0 B oy oy CaN—h-2095 k-2 Bav—e-1 ¢ B : =1 1
(N-2<k<N) = K=Kk (K
= K — (k—2) - k- k- ( k!
¥ m 0 ay & v Okeg
it B Ceralieed (k= N) (3.247)
36
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Note that this result agrees with the statemen

k>N

3.1.13). And we can see ir

1 case, boundary part appears as correction term in correlation function.

Appendix A of Section 3.2

Construction of section sy

Let )_J\ WX =00 =1,2,..., N —2) be defining equations of [ € Gr(2, N
matrix form , it can be written as

BX-=0D (3.2.48)

where B = (b)) and X = (X;).

We transform B into a simple form by multiplying an (N = 2) x (N = 2) invertible
matrix D from the left and N = N invertible matrix €' from the right, i.e

0 0 I 0 e wae s D
1] 0 V] 1 0 0

\ 0 0 0 0 0. =i
o 0 0 0o o g 1

Then base transformation CX = X' i.\'_:j turns (3.2.48) into a form

=0 (i=34;c..5N) (3.2.50)

From (3.2.50) we can see X| and X as dual coordinate basis of [ € Gr(2, N).In

other words, they are the basis of the fiber of U'® at (U denotes universal bundle of
Gr(2,N).)

VXN be defining equation of My, We substitute X, in Fy by
J' and set X/ =0(i = 3,4,..., N). (This operation corresponds to restriction

Then we get homogeneous polynomial of X| and X} of degree N, which defines
section of Sym™ (L7*) at [,

Appendix B of Section 3.2

* Counting of *{ep(PD(Sym™ (7)) Nnay)
We will limit the discussions to the case of o}, Other cases can be treated in the
SAME THANDer.

Sinee we have ep(Sym™(U")) written in tern
to determine the intersection number *{oy_, 4y

s of Schubert eycles, we only have
Ji=2,3,..., (N

" *We owe this part of discussion to Dr. Hori




As we have said in the body of this paper, by solving (3.2.40) explicitly and using
map £we have o represented as N + 1 dim subspace in the space of 2 x N matrix

0 ay oy <o ay_3 ay_y ay B
2 K 3 (3.2.51)
L ooy ooy Ivoa Bn

{3, v : arbitrary complex number)

On the other hand,oN — i, i + 1 can also be represented as N — 5 dim subspace as

follows.

TN ji+1 ("’l

(7, §; represents arbitrary complex number, and, precisely speaking, (3.2.52) rep-
resents internal points subset of oy 41, 50 we have to compactify it by addin
8.)

boundary poi

Then, what we have to do is to determine the intersection points between (¢
and (3.

We have two troubles:
1. (3.2.51) and (3.2.52) are in 2 x N matrix form and GL(2, C) indeterminate. So in
counting intersection points,we can multiply cach row vector of (3.2.51) by constant

and add one row to the other.
2. Ini> .2.51) and (3.2

than one dimension, so we have

2} do not intersect transversely,

i.e intersect in more
N1y

substitute o by the cycles oy (i =1

N oy oy - oy oy 0 [T [ F T
o'y

Oy oy o gy 0 By ey

oy + 0 oy + Giy-3 ay-3 ay-y

EN—ON-i TGO "' g+ Oy a0iy_3 Cn-30N-2 [HN-1

Then,oy .41 and o intersects in the following N — 24 points.
0 =« 0100 =0 b 0 - 010 .+000:+«-10
(1] -0010 AR e G0N0 e 0 10 -0
(£ 4)

(Notice that intersection points lie in boundary component of ay 4y except for last
one. |

Finally we have *(ay .4 0

3.3 Gravitational Moduli Space of C' P’

This section is given to prepare for the notion of stable maps which describes moduli
space related to topological sigma model (A-model) coupled with gravity. Gravita-
tional,or complex structure moduli space of CP' with n-punctures, Mg, is roughly
the positions of distinet n points on CP' divided by the automorphism group of
CP, SL(2,C).

Moq = {22+, 2. }/SL(2,C) (3.3.55)

are distinct. To compactify My, we add
glued by double singularities

R.h.s of (3.
stable curves which consist of several component €' P!

) is non-compact, sinee 2

From a puncture on one component of a stable curve, punctures lying on the other
uished. In this v

ay, we can describe the coincidence

annot be distin

compon
of punctures in systematic way. We will re
following the formalism of [21].

view some topological structures of Ay,

3.3.1 Trees

We introduce trees describing combinatorial structure of My .. Their vertices corre-

spond to components, and edges to punc

Ares,

Definition

A (stable) tree 7 is a collection of finite sets V7, (vertices), E, (interior ec
(exterior edges ry maps b: T, 5 |

vertex), and b : E. —+ {unbranched pairs of distinet vertices}. (every interior edge

il has one end

(ever

or tails), and two bounc

has exactly two vertic

The geometric realization of + must be connected and simply connected. Every
vertex must belong to at least three edges, exterior and / or interior (stability)

Definition

A morphism of trees [ : 7~ o is a collection of three maps (notice arrow directions)

foi Vi Ve, [iTam T, [°: B, E,

56)

with the following properties.
a) f, is surjective, f* and f* are injective.
b) If v ge ¢ of 7, then either f, (v

ends of 2

e =Y

are ends of an ed




c) If v' € V; is such a vertex that f,(v') is the end of ' € T, then o' is the end

of f1{t")

In other words, f contracts interior edges from E, /f*(E,) and tails from T,/ f(T,),

and is one-to-one on the remaining edges. We will denote by f(e) the image of a
non-contracted edge.

Flags and dimension

A pair { one end of it } is called a flag. For a tree 7, We denote by F; the set of

its flags, and by F,(v) the set of flags ending in vertex v. We have |F.| = 2|E |+ |T5|
The dimension of 7 is defined by

) =2|E;| + |T;| = 3]V4] (3.3.57)

dim(r) :== ¥ (|Fe(v) - 3))
eV,

Glu

B

Let (7, £),1 = 1,2, be two pairs consisting each of a tree and its tail. Then gluing
(t; to t3) produce a pair (v, F) consisting of a tree and its interior edge:

(r,e) == (71, t1) = (72, 12) (3.3.58)
Formally:

V= Vo [l Va. E:=E, 1B, II{e} (3.3.59)

T = (T, [I T5)/{ts tz},  ble) = {B(ty), bit2)} (3.3.60)

This operation is functorial in the following sense: for two morphisms f; : 77— a;
not contracting f,, we have a self explanatory morphism

Fiow fas (rty) = (maata) = (o, filt)) (oo, falta)) (3.3.61)

Finally, F = F,, [ Fy,

3.3.2 From trees to moduli spaces

In this subsection, we define a functor

M : {trees} s {algebraic manifolds} (3.3.62)

Objects

Put
M, = I[ Mo wea (3.3.63)

We have dim{M(r)) = dim(r)

TI'his space parameterizes a family of (generally reducible) stable rational curves
C(r) with marked points indexed by T,. The dual graph of a generic (but not
arbitrary) curve of this family is (canonically identified with) r. To describe it,
€ Mg e and let C(x,) be the fiber of a
universal curve at this point. If vy, 1 bound an edge e of 7, C(r,) contains a point
w(wi, e) marked by the flag (v, e). Identify y(w, e) with y(vs, ¢) in the disjoint union
Lier. Clx,) for all e. This will be C(r)(x)

consider a point r = (r,) € M(r

Clearly, its remaining special points are marked by 7' so that we have a canonical
morphism (closed embedding) M(7) — My, This is a special case of morphisms

defined below

Morphisms

Any morphisms of trees f : 7 b o contracting no tails induces a closed embedding
M(r) = M(o). To construct it, identify T, =T, = T by means of f*, and denote
by p the one vertex teee with tails 7. Clearly M(p) = My 7, and by universality, we
mbedding of M({a) and M(7) into M(p). In this embedding, M(o) C M7
which is seeked for morphism

have

Any morphism of one-vertex trees contracting tails induces the forgetful mor
phism of the respective moduli spaces

The general construction of moduli space morphism of trees can be can be ob-
tained by combining these two cases: embed M(r) into My, M(a) into My,
and restrict the forgetful map onto M(7)

Gluing
If (7, t) = (11, ;) * (72, £2), we have canonically

Mir) = Min) x M(n
H'(M(r)) = H'(M(ny)) @ H* (M(mz

(3.3.64)
(3.3.65)




3.3.3 Homology of moduli spaces
Additive generators

UT, ={1,2-,n}, wewill call 7 an n-tree. A morphism of n-trees  — o identical
on tails will be called n-morphism. If such a morphism exists, it is unique, Let
pn be a one-vertex n-tree. Then M(p,) = Ma,. For any n-tree 7, there e
unique n-contraction 7 — p,. Let d, € H.(My,) be the homology class of M(7)
corresponding to this contraction. It depends only on the n-isomorphism class of
r. The manifolds M(7) embedded into each other in this way will be called strata.
Then the following theorem holds.

sts a

Theorem

d, span H.(Mpz)

ar relations

s system R = (7, {i, 4, k, 1}, v) where 7 is an n-tree, ] <§j, k1 < n are its

istinct tails, and v € V; is such & vertex that paths from v to i, j, k, [ start
with pairwise distinct edges ¢, ¢;, ey, € respectively (some of these edges may be tails

themselves).

Consider all n-contractions ™ — 7 which contract exactly one edge onto the
vertex v and satisfy the following condition: lifts to 7' of e, ¢, on the one hand,
incident to different vertices of the contracted edge.
{ij7'kl} the summation over n-isomorphism classes of such

and ey, e; on the othe
Below we will denote |
contractions, ff being

ixed.

Lemma

For any R, we have
de= Y d» (3.3.66)
(it} fike* 1)

in H.(Mya)

Proof Consider a morphism of 7 contracting all edges and tails except of € 5, k, [
It induces the forgetful morphism M(7) — Mg ey = CPL Then both sides of
(3:3.66) arc mapped to points which are homologically equivalent to each other on
C'P'. Two fibers over boundary divisors of the latter moduli space are represented
by the cyeles sumji;upM(r') and sumgueM(T") respectively.

Theorem

Relation (3.3.66) span the space of all linear relations between d,

Lem

As an algebra, H* := H
classes Dy
of cardinal

Mo, ) is generated by the boundary divisorial cohomology
cedd by unordered partitions S of {1

<=, n} into two parts 5y, Sy
v = 2 and satisfving the following generating relations

Y Ds= ¥ Dr (3.3.67)
{ii5k1) {51}
and
DDy =10 (3.3.68)
if four sets S; N T} are pairwise distinct and non-empty. (In this case we will call 8
and T in compatible).
Classes Dg are dual to the homole classes d. where o run over n-trees with
two vertices, and (3.3.67) is a consequence of (3.3.66).

Denote now by H, the linear space generated by th
relations (3.3.66) where @, 7 run over all n-isomorphism cla

ihols [d,] subject to all
ses of n-trees,

There is an obvious surjective map a : H, — H*,

af[d,]) := the cohomology class dual tod,. (3.3.69)

Main Theor

H. can be endowed with a structure of eyelic H*-module generated by [d,

o] =1 50
that the map

b:H = H, bWh)=h-1 (3.3.70)

is surjective.

3.4 Stable Map

Let M be a Kihler manifold with HYY(M, Z) = Ze. Moduli space corresponding to
topological sigma model coupled to gravity from CP' to M is the moduli space of
holomorphic maps from punctured CP' to M. It is fundamentally constructed as
follows

Ml = {21, 22,00+, 20, [}/SL(2,€) (3.4.71)

&




where f denotes holomorphie maps from CP' 1o M of degree d. As we have said in
the previous section, n-punctures are in distinet positions. Then expression (3.4.71)
y compactify M), we have to introduce the notion of stable map

i non-compact
which describe the coincidence of punctures,

. f) consisting of a con-
rkul non-singular points

Definition. Stable map is a structure (€
nected compact reduced C with k = 0 pairwise 1|IH[I!H t mi

z, and at most ordinary double mm.nl.n points, and a map f : € — M h
no nontrivial first order infinitesimal automorphisms, identical on M and 2, -

{stahility).

Then MpY,, is defined by the

is the moduli space of stable maps to M of curves of arith-
metic genus 0 with n > 0 marked points such that f,[C] = de.

With this definition, we can naturally define the map [T : M}, |~ Mg, as
follows,

IT: {(21, 22+, 2u)s FY/SL(2,C) = (21,25, -y 2}/ SL(2,0)
We can easily extend (3.4.72) to boundary part of moduli spaces with the notion of
stable curve and stable map.

Let M be a Fano variety Jie., oy (TM) > 0 and Wi(i = 1,-++,m) be the clement
of H*(M). From (3.3.68), we have the following equality.

> [ AgWa)ammg= % [ A 6w,

{ij Sk} o ar p=t {ikT 3t} Aomn p=1

*(Dy) (3.4.73)

Then we assume the following formula

f A E(Wany) AT (D)

~ M p=1

= L__f‘,

AL f={1 )= {ia R}

{15k}

fasan

.,,---‘f ) GWa) AL Wind) A 61 (Wi A\ 62(Wo,) (3.4.74)
Mo, el
where
o= [ Wa AWy et =4 (3.4.75)
M

¢ and ¢y are the evaluation map corresponding to the double singularity punctures
z, and 7, coming from the contracted edge of 7' 6). We can understand the
meaning of (3.4.74) by physical logic ,i.e., infinite time evolution are described by the
insertion of projection operator to ground states. Then combining (3.4.73),(3.4.74)
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O W) A 83 (Win,) A 3(Wo,) A 62(Wa)
pEA

and the fact that M is Fano varicty, we have

(O, O, ” Ow.., Ow, 1™ (O, Ow,, Ow,,, T] Ow....)

AT =1 ) ~figkt) pc B :
= b3 (Ow,,, Oy ]'[ Ow.. Ow,)
ALl B={1-m)={idkd)

Ow, 0w, Ow,, ] Ow...)
: pelt

(3.4.76)
We can eliminate the condition d = dy + d; using topalogical selection rule

Now we introduce the generating function of correlation functions (free encrgy)

ety taye o,

Z ':II (“u' } lI (3.4.77)

np20 pal
And we have

8,60, Fy = 3 (O, 0, Oy, ]U“ y I[ ” (3.4.78)

Then using (3.4.76), we derive the following equation.

3,8, 0., Fyn™,, 00, 8, Fag

D<m, <

m
= y B {Ow,0w, T1 O Ow, ™" (O, Ow, Ow, [[ o
: =1 =1

= O, O o118, 00,04, Far (3.4.79)

This is DWVV equation. We will return to it in Section 4.2

3.5 Torus Action Method

In this section we introduce torus action method invented by Kontsevich, and per-
form some explicit calculation of ¢ ition functions of A-model on MY coupled
with gravity from the formula (2.4.89). We also give path-integral representation of
generating function of correlation functions of A-model on MY coupled with gravity.

3.5.1 Introduction of the Torus Action and the Bott Residue
Formula

Torus action method is the strategy to use the Bott residue formula [27] which
reduces the integral of Chern classes of vector bundle on X to the one on X of the

action flow on X to the case where X is MED™

fixed point set of the toru: 131
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‘ N=1
First, let us introduce the torus action flow on CP* 4
Te: CPY1 = OPNT?
X)) = (€V0Xy, X, MK

(te) (3.5.80)

-1

where A € € is the character of the flow. Then (3.5.80) induce the flow an My

from the compatibility with the evaluation map.

Al Ti((2 “vimy £ ~))
= Tiodl vesgma S ™)
= Tiof(

Next, we introduce the Bott residue formula. For simplicity, we use X for ML.‘:’ ,,'I

£, be a holomorphic vector bundle on X, and X be the fixed point set
5.81). We can decompose Xy as the sum of the connected

(3.5.81)

of X ur the flow (&
components X,

Xp= U v (3.5.82)

n consider &y, and the normal bundle A, = T'X|x /T'X, and decompose

them into the eigen voctor bundle under the torus action T}, ie.,

6in, = Berp
f=1

Ly

r AraiiAe) & B
N, = @.A’v (3.5.83)
F )

where

figihpgnbiaie)
"

’._...\,u’.\’?.y_.u.- (3.5.84)
and we set
r'rmk(f.'.‘;f"':'\'\] = relt, )
rank(N7 %) = rald) (3.5.85)

(A.)

We can represent the total Chern class of {.',':J','r and ,\.:""':"" as the product of
first Chern class of formal line bundles as follows.
ne; relng)
(e M) = I1 IT (2l

F=1 k=1

e T lr) y
ey = I IT @+t njf™)) (3.5.86)
k=1

j=1
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Top Chern classes are given as the coefficient form of £* of highest degree

With these preparations, we introduce the Bott residue formula,

[_\ Il <€) -

£, M

3.5.2 Construction of Fixed Point Set

(3.5.87)

Fixed points of CPY~! under T} are given by considering the projective equivalence

—~
pi=(0,0,-+,0,71",0,+:-,0). (3.5.88)

Then, we can find the fundamental maps (¢, from CP' s CPN=' which remain
fixed under T; as the degree d maps which connect p; and p;
i 1

I 2 (s,) =4 (0,052,0, 3% ,0,-+-,0, t1,0,---,0) (3.5.89)

Of course I is kept fixed under SL(2, €) equivalence. But now that we have coupled
gravity with the theory, we have to consider the boundary components of moduli
space of CP!, i.e,, stable curves, Stable curve € with k-punctures is constructed with
the set of CPYs {C,} with punctures assigned on them anc

ditional punctures
! hen we can trans
the condition into the condition that the genus of stable curve is zero into imposing
its arithmetic genus to be zero. In geometrical I
and define a figure with lines which intersect at singular punctures, this is equivalent
to the non-existence of closed loops in it. This addition makes us to introduce stable
maps which map stable curves to OPY¥-1,

of double singularity which connect two components of te

guage, if we represent €, as a line

With these

considerations, we can label the connected components of the fixed
: Nt
point set M

¢ with a tree graph I with the following structure. We denote them

“J. The rules of correspondences are,

1} The vertices v € Vert(I') correspond to the connected component C, of
S, px). C, ean be a sum of connected irreducible components of € or
be a point

2) The edges o € Edge(I') correspond to the irreducible component €, mapped
to 1%
iy




Then we have to add the additional structures to T,

1) We label each v € Vert(l') by f, € {1,2,--+, N} which is defined by p;, =
HC).

2) The m-punctures are distributed among the vertices v € Vert(I'). We represent
this distribution by S, € {1,2,+--,m}

3) We attach degree d,, to each o € Edge(I') defined by the degree of 17,

We have to set punctures on the vertices Vert(I') because if we put punctures on C°,
they move with the flow Ty, which ¢
sets. Then we can construct MEE,
above three structures,

tradicts with the assumption of fixed point
(') under conditions that emerge from the

e(I') eonnects v, u € Vert(T'), fu # [
2) {1,2,+++,m} = Useyerury S
3) Eoetdgeir) b =1

Then we have =
MIETr) 2 JI (Mg )/ (Aut(T)) (3.5.00)
sEVertl)
where Mg s, is the moduli space of complex structure of CP' with S, punctures.
It represents the gravitational degree of freedom of €. According to Kontsevich,
division by Aut(I') reflects the orbispace structure of MEEY ', It may reflect the
multiplicity of the degeneration of stable maps.

3.5.3 Determination of the contribution from Normal and
Vector bundles

Contributions from N

With these preparations, we determine the contribution from .\4,’.'.’,’:' ' {in the fol-
lowing di on we abbreviate the notation as M(I')) to (3.5.87).

First, we calculate the contribution from Nyyry. Following Kontsevich,we will
use the expression of vector bundles as the K-group | |, which translates sum and
quotient operations into addition and subtraction, Then we have

M ] = [T M(T)] (3.5.91)
If we set

=0
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(where

U,

means a sum with double-singularity gluing operation.), [T" M| | consists of the
following degrees of freedom,

1) Moving f(C) in CP¥-1,

2) Resolution of double singularities of C, i.e., from ry = 0 to xy = ¢

3) Moving puncture degrees of freedom.
And we have

[T*Mlpn] = [HYC, f(T'CPYY))

e (3.5.92)

The last term of (3.5.92) corresponds to devision by SL(2,C) of each eamponent
C,. From (3.5.90) M(I') has continnous degrees of freedom which come only from
C, mapped to a point, we have

[FM(r)] =

2, 46 {12, k)
- T [BECe, TCY) (3.5.93)

af Edge(T")

where we used the fact that all the punctures lie in the component mapped to a
point .

From (3.5.92) and (3.5.93), we have

am)l = [HC, f(T'CPY )] + Wikt

(3.5.94)
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where

(3.5.93)

[4.6.96)

Yy [HY(ChT'C) (3.5.97)

ae Edge(I')

£ Edge(T)

Then we determine the contribution from the first term of (3.5.94), (3.5.96), (3.5.97)
and (3.5.

96). Since o, 3 € Edge(I"), T.C.
Let €, and €y be mapped to [

First, consider the contribution from (
re trivial as the line bundle on M(T).

. 0) (3.5.98)

Cy & (g, i) = (0,0, 0, w02+, 0, 0,+++,0)

Local coordinate around = € C, N C5 on C, and Cy are and *2  and we have

(3.5.101)

Definition of torus action (3.5.81) leads us to

i g
- neds

E”
3
T
Wy =+ wye

(3.5.102)

and .,
(ol dim by
e

3.5.103)

The result is,

(Contribution from (3.5.96) to (3.5.87)) = 3.104)

Again following Kontsevich, we introduce the notation “Flag” F = (v,a) which
represents edge o with a direction specified by the source vertex v. We define
A A
wp =2 A (3.5.105)

d,

Then the rhus of (3.5.104) can be rewritten as follows.

= (3.5.106)
Wy (w) + Wingw)

where val(v) represents the valency of v and F,(v) and Fy(v) are the flags whose
sources are v. Note that in this case f~'(v) is a point.

Next we consider the contributions from | 3), T.C, is
trivial as the line bundle on M(T) but has lerivation of
(3.5.103). On the other hand, T]C; has trivial torus action (becanse € is mapped
to a point) but non trivial line bundle on M(T). And if *(punctures onC,) > 3,
My s, is well-defined and we have

Again from
tlue we as in the

(Contribution from (3.5.97) to (3.5.87)) = H II
wEVert(T) aitsibts, flogs W
A
(val(v) +*5, = 3) (3.5.107)

where zp represents the gluing point of €, and F. We can evaluate the rh.s
of (3.5.107) by expanding in terms of - and using the fact that (T3, Cp) =
—a(T3;C,). Expansion coefficients are intersection numbers of Mumford-Morita
class on the CP-moduli space, which is identified as the correlation function of
gravitational descendants by Witten [30]. Continuing the caleulation, we have

15, times
o

I we“ "ow - ou., P--

(rhsof (35.107) = I

viEVert(l")

(3.5.108)
is,times
(04«04, P---P) is caleulated in [29],
15, times

P P)

{74, -+ o4, (3.5.100)

Combining (3.5.107),(3.5.108) and (3.5.100), we have

(Contribution from (3.5.97) to (3.5.87)) = H H | Z ,,-J_ll\'--'*-""-:"'- a
vEVert(l) flags Alem
(val(v) + 5, = 3) (3.5.110)

Then we consider (3.5.97). Contributions of the first terms are, as before

= (3.5.111)




where Fi{a)'s are two flags having o as their edges.

The second terms that represent the automorphism group degrees of freedom of
edge components can be expressed by the tangent bundles on the inverse images of
two vertices of the edges and scaling transformation degree of freedom fixing the
punctures (We denote it as [0]). In terms of the K-group, we have

Y WG, T'CL))

of Edge(l
= |+ (0] + | (3.5.112)
aeEdge(l’)
And contributions to (3.5.87) are
I wew weye - €0]) (3.5.113)

o Edge(l")

where C([0]) represents the factor from (0], Multiplying (3.5.111) and (3.5.113), what
remains except for C([0}) is the products of we's whose edges have only one double
singularity. In other words, the corresponding £ = (v, @) has vel(v) = 1 and f~'(v)
is a point, We have

(Contributions from (3.5.97)) = 11 II we II cC(o) (3.5.114)
Ver

i Edge(I")

After all, from (3.5.106),(3.5.110) and (3.5.114), we put all the factors from [/ ik
into the form,

II I wi'( X 'y

vEVer

=3 11 cliop (3.5.115)

i Edge(I')

¥

Determination of the contributions from [HY(C, f*(T'CPY 1))
Since

1) = U, papurnf(Co)
, we can eonstruct [HO(C, f*(T'CPY-"))] by gluing

@ [H(C. [(TePh1))

o Edge(l')
at py,. This process can be described using exact sequences,
0 HO(C, f1(T'CPY ")) =
@ H(C.,reP-)— @ et cPY - 0(35.116)

o Edge(l’) wEVert(l")
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This contribution is then given as the contribution from the

nd term divided by
the one from from the third term. As the independent basis of H2(C,, f4(T'CPY-1)
describing the deformation of f{(C,) in CPY-! where €, is

Ca (z1,22) =+ (0,:+-,0, 2§, 0 -.m (3.5.117)
, we have
- m {3.5.118)
o, 0) (3.5.119)
(0, o ) (3.5.120)

[3.5.121)
(3.5.122)
This expression directly leads us to
(Contribution from (3.5.122)) — - (m #0) (3.5.123)
m - W
1
- [m =0) (3.5.124)
i S E e 1 A
(Contribution from (3.5.122)) = — 13:-5.125)
m-wE -+ Ay — Ay 4
And from T, CPV-t o
(Contributions from ' @ 1" CPY¥-') = lI (Ag, = A==t (3.5.126)

vEVert(l')

Combining (3.5.124), (3.5.125), (3.5.125) and (3.5.126), we have

i . =l
I-[ ()~ I II 1 I-r“'\-"‘ +(da —m)Ay, At

flags  F={vao) o o ket fu Sy =t 1
II @Oeqom™ TI (I (g —ap))ie=
e Edge(l’) veVert{l') ji#ls

(3.5.127)




Factors from Vector Bundles &

First, we calculate the factors from 75,8k, Since 7, is merely the aperation
to forget the operator insertion points, we can consider it as vector bundle S
As we have mentioned in section 2, this fiber locally corresponds to

0 — HYC, f(O(kH)))

criv-le o, (kH)—0 (3.5.128)

@ HAC. [(OKH)—~ B

wEVert(l'}

at Edge(T') Pl
Then since the basis of HY(Cl,, f*(O(k - H))) are given as

Sl
=1

Vs oo i 2h0) (3.5.129)

and the section of Oy, (kH) is \} we have

(Contributions from cp(Eeasa)) =

(3.5.130)

‘(H)). From the argument of §3.2, puncture

Next, we determine the factor frc 4
d &} (e (H)) reduces to O, (iH). T

i lies on the vertex u(i) of I',
Lo

s leads us

(Contributions from ¢ (c]'(H))) = \j, (3.5.131)

Local Appendix

We have to divide the above factors by * Aut(I') coming from (3.5.90) and in practice,
we have to multiply a facto for each edge a. We cannot justify the reason for

this factor at this stage.

3.5.4 Some Explicit Calculation of Amplitudes

For some examples, we caleulate (Qv-o)y,(@n-i)g and (Opv-a)s for k = N case.
First, we write out tree graphs that contribute to the amplitudes up to degree 3, (See
ig3.1.) In Fig3.1, we omit the external insertion of “punctures”. So in calculation,
we have to add all the cases of external operator insertions of (Q.x-4) to vertices.
Note that the two character numbers (for example “i") of neighboring vertices never
coincide with each other. Then direct application of the argument of the previous
subsections leads us to the following formula.
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(Our=s}s

(I
t#) k#iy
(from (a))

Y we + A wg

. _\:\ '_I

Ui, + g,

)

T (A=A
W W W tE, 5

II = 2m) 7O = )™ TT = Aua) (M

y #i g -k

N N
H (ar i + (N = a;)Ay) H (azd; + (N —ag)he)
=0 u3=0

(from (c))

1 >
r Z[I,\_'\ ¥ .\;\ Y,
i)

AR

I (= A0y )5
2
ki g 2
2w .
ad; + (2N — a)A
I 1473*.”
a=0 2
(from (b))
l 1 1
3t — —w
2 >:\" A Uiy + W, W, + Wiy WFy
g
A=t 1
W, — s
i i S O Wy
1 ANt
L e e T
W, + We, We,We,
sl S N )
Wy + W, We, + e, %
1 1

W, Wy Wy W Wi e, (N

T (%= A) TT-0

mi#y ny#k

IT (% = %) 7 = Ay)
myFEig

IT (%= ) = Ans) !

miyg
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1q 1 5 - A
A) A = )T TT (s + (N — a)d))(
=0

e,




IT (= Am) (A = Awa) I (=) (A=A

madk ) my#i i
N N N

IT (as i+ (N = ai)Ay) I (a2d; + (N = az)As) TT (i + (N = ay)Ay)
a =0 ng=il =0

N N

IT (asAu+ (N —as) M) I (aadi + (N — az)hs)
2350 =0

n) i .

(from (f) : \Nt . II (agh + (N — ag)Ay)

: b3 ]'l-\.‘ . — i, + e ' L, + W, —— ApTY A=l
2574 Wry + W Wiy Wy Wy l_[|)\_ — M)

] n#ti

_] : - T (% = As) (from (g)) (3.5.132)
NX; wg, W WE, g

1 These results are generically independent of the values
IT O\ = A )M - ) Similarly we calculate the amplitudes (O O,4),(0,-

i i L : N — 3). The results are collected in Table 3.1,~ Table
II (= Ama) (A = Ars)

Note that {(Ov-a}y - n = (0,0,5-),. This implies that the Kihler equation of
M+ N — )M W " : Gromov- Witten invariants holds for the amplitudes defined by (2.4.89). Assuming
. 5 S22 T (azd; 4 (N = a2)Ay)) this relation for all amplitudes, the results of Table 3.1~ Table 3.4 coincide with the
3 a0 ones calculated from mirror symmetry [7]. ' We caleulate amplitudes ([T¥* 0,(z,))
of matter theory on MY for later use. Fusion rules hold in the matter theory, so we

1 can reduce the amplitudes into the products of three-point functions.

d_AN-1y

Consider the “matter” expansion

2+ A 3o )
H = Xe) 32 o A
el 3 (0400 0u) = N + 3 (0,0, O}y (3.5.133)
k=1
: where £ is the deformation parameter coupled to the Kihler form. By using fusion
(from (d)) rules, and fat metric 7os = N - Gapan-2,
1 ; 1 N N-d
_ A4 — g iy A v
(i ; ! 1l WEy W, L o II (00O Op-s-t)
il G
] 1 atimes
+ ANt — W, atimes
b wpwp e, = N+ Y (0. --0O)e™. (3.5.134)
e 1 1 1 1 k=1
+ A Wp R A T = + T i )
W W Wy WE Fy Fa s irTN =3 \
;' i Then for example, \[!J\ 1 Oulz5))1 can be calculated as
00, My M W, W0 W ey N=3 1 N
T = = A (I Oz = =55 IT =270 = A7 TIaA + (¥ — a)Ay)
my#L g & i ; ' =1 2 i iy a=0

i -

I (=2

'Note that for three-point function, amplitudes of the matter theory and the ones of theory
conpled with gravity coineide.
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(N = 2)(AF 2 =A%) — (N = 2)(AF 2 = AT )

e 5.133)
N— A
N+ ’ 1 )
=N (N—-2) N -N{———+ ]
2N - N! (3.5.136)
If we set A, = i, we can derive (3.5.135) from (3.5.136) by a rather clumsy but

elementary calenlation. This agrees with (3.2.47). We write out numerical results of

(M52 Ou(z;)) for 5 < N < 10 case

5+ 2875¢ M | 85645750008 4 .-+

1
(I1 ©.(=
=1

1
(T1 Oulz)) = 6+ 120060¢" + 41368320000
j=1

148146924602880 " + - .-

= 7437 85000187¢ 2

27381e" + 263

1927002054 1081087876 4. ..

8 + 1069752326 " + 1672023727001660e

+26611602333081695092736e ™ + - ..
9+ 3103936929 " + 116501301417354365T¢
+441207815019235841688286425¢ ™ + . -«
{f[ Q.(z)) = 10+ 943275520006 + 930496455109619200000:
f=1
+92177124406940863351 70560000000 4 - -+ (3.5.137)

3.5.5 Construction of Generating Function

In the previous subsection, we see that we can calculate the amplitudes (#) grae o
for topological sigma model on MY coupled to gravity by torus action method. As
we have seen in section 3 and section 4 , this method has a structure of summing
construct a representation of Path-lntegral form of the
uplitudes. In this subsection we treat general M}, for later

over tree graphs, so we
generating function of all
use. Changes occur only in contributions from vector bundles. First, let us write out
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explicitly the contribution from M(T) to the amplitude (O, -+ O Yitattaran

{Contribution from M(I') to (O, --- O,

ot Yot gras,)
1

= )
°.-qu[]'|| II Aot

veVert(l')

11 I[ wip( Z wi! )l is-3

vEVert(I') flags
Feion)

H ( n (Ar. .\J]_I"’”"' 1

VEVertT) 54/

dy

H ()~ ]—[ H [[ {m,\_,,l : I__[":‘L = rlu_:_.\;_ A

1k fue m=0
e

IT (T (A=At

veVert(l') fii#fe

My ghp + (kd, — ) "
[[l_f.-_ e ) II (kAg)' ")) (3.5.138)

i) o vEVerr(1')

Then we classify the factors into two groups. One consists of the factors from edges,
and the other from vertices. The factors from the edges are

(i) r[ wy'
fii?‘ I (IT(An = A=t

vEVert(l') i#/s

Gi) I @ T I Id"lli”ﬂ’-‘4j,‘—— a7 1

Ly WL m=0 v o Edge(l')

Pl s
A (kd, —a)A
d:

) IT (kAg)™ite

- vEVert(l")

™ I 5 (3.5.139)

d,

Edge(r) %o
And the factors we can push into the contribution from vertices are,

@ TII ot

vEVert(T')

(ii) I] (5 wptyite)

EVert([') flags
s Hr) F=ivm)
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) T (I1(an—=2"

VEVertiT) i#fe

iv) TI (kAn) (3.5.140)

Vertl')

Then we introduce the field variables dy; 4 propagator g; 405 #, vertex
Clissn s riom don o @ity * ** Birn fouidee B external field source parameters ¢y, -« ty_y

In this formulation, field variables correspond to the edges with characters i and j
and degree d, g4+ remains nonzero only if i = j',j = ',d = d', and the nonzero
value of propagator is given as the reciprocal of the product of (3.5.139) (i)~(v).
Then we have

i ¥ F il e A 5_[]|\] 4= ak + (d - a)h; —dj)
Giga °= Yizatgid —— FE1(0, + (kd — a);)
(3.5.141)
Vertex Oy, -4 Diviidy = i fon e L€ constructed with pairing the factor AT
1o by as follow:

*+ Bifwidly .._fh{_\lll' +i)

n-3
g

o Ui} Pisnady ** ° Pifon den

(3.5.142)

factor in the insertions of the external operators, With these preparation, we have
the path-integral representation of generating function.

Fyy (b1~ tn-a)

Y (on--ons

) o= 2l

= Res, Resy,

1 : b fabaeo) rAq) |_-[,\..| T2 (az X + (d = a)zA; —_e..f:X;J

v (— =
exp(—5

T (az, + (kd — a)ahy) B
T (Rt gy Sindagmeds Gy

< |

) ammlt

expl(ti iz + -+ (3.5.143)

where we introduce h and dummy variable = to pick up the portion that comes from
tree graphs and satisfies the topolo selection rule (2.4.80). We must make one
final remark. As we can easily see from the formulation of this caleulation,
represents only quantum part. So we have to add classical part PP el
by hand to obtain full generating function L




Table 3.1 {Opv—a Yair grav

1009792
081640 |

0796

=10 | 4120776000 |

|
208BR601165740265 1840000000 |

Table 3.2: (O Ot} 1 att gras

2875
= GO480

2 ¥y = 100
(0,00}, = 1707

763954002
(0.0, 3} = 1069047153
{0,000}y = 4120776000
(020, =1 152000
(0,30,4), = 27768048000 |

Figure 3.1: Tree Graphs up to Degree 3
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Chapter 4

3)y =2 722909184
(0,0,3)2 = 19515636808064118
(02 O0u)y = 93T 551590

105368 | Operator Product Approach

Woog | In this chapter, we treat approaches using operator product algebra of topological

700000 sigma model (A-model). In pure matter theory, we can insert identity operator
(0 0,4)y = 100290980414189400000 | |Ow, )" (O, | into correlation functions because Oy, span entire Hilbert space (of
loeal vertex operators). This leads us to fusion rules of correlation functions.

(Ow O, #) = (Ow, O, Ow " (Owy #) (4.0.1)

In Section 4.1, under the assumption that fusion rules are closed under the subring
spanned by O 's in case of topological sigma models on My, we construct 1-variable
polynomial representation of sub ring of quantum cohomology ring of My using the
results of Section 3.5.

Table 3.4: (O Ot} it gran In Section 4.2, we treat operator algebra of A-model coupled to gravity. In this
case, because of tence of gravitational descendant states, | Oy, )™ (O, | is not
an identity operator. But operator product algebra defined by

Ow,, * Ow, = (Ow, Ow, Ow, Jn™ Ow, (4.0.2)

remains. Assuming this algebra is associative,
(Ow, - Ow,) - Ow, = Ow, - (O, - Ow,) (4.0.3)

we can rederive DWVV equation derived geometrically in Section 3.4. Using this
equation, we solve A-model coupled with gravity on CPLCP* and Gr(2,4).

(0204)y = —
1 {(:',_I 0,4}y = 546627811934015 SOEA80000000 |




4.1 Pure Matter Case

4.1.1 Strategy for Determination of Quantum Cohomology
Ring of M¥

In this section, we treat pure A-model having target space as degree k hypersurface
(k< N)in CP¥-1 ME.

ME = {(X; : Xai- 2 Xn) € CPYXE 4 -4 XE =0} (4.1.4)

Sinee MY is hypersurface in CPY¥1, we can choose subring H? (M%) generated by
Kahler class e € H'' (M%), Correspondingly, we assume that BRST-closed observ-
ables O (o = 0,1,-+- N — 2] form closed subalgebra in quantum cohomology
ring of My (Operator algebra in pure matter theorv), Then we investigate this sub-
algebra H,‘v[.'l}'i-l in the following way. Operator product algebra is constructed by
three point functions and metric.

O - Opp = (0,0 0,20, )1 O
5 1= {O000:0.) = et ne = ki,
i 1= (0w O Ops) [w\ Aeb = ki

Vaa?l | = 0]

(4.1.5)
Correlation functions in pure matter theory satisfy the fusion rule

(O O,a%) = (OwOb O I (O %) (4.1.6)
From the above definition we can easily see O acts trivially on H7 (M), and we

regard Cls as identity. Three point functions are determined from the geometrical
evalustion of correlation functions of topological sigma model,

[ e $1(e%) A @3(e”) A 3 (e7) - ¢
Mo J - i

x = .
= Lan-_l_-n._\ kel + \-'.’f b o1 (e®) A g3 (e’ (e7) - q*

d=0 Mo
where
ar
0

M

feMyd

dt M

3 MY

dit My ds
s}/SL(2,C) e MYY,
1

MM% and _\,i,‘,j}‘ denote moduli spaces of holomorphic maps of degree . from
CP! to My of pure matter theory and of theory coupled to gravity. We insert
Bospiqin-bpsn-2 to represent topological selection rules explicitly. The equality
between the first line and the second line of (4.1.7) can be explained as follows
.\A’,':’} has internal SL(2, €) which moves { f(z,), f(z2), f(z3)} without changing the
pasiotion of F{CP') in MY. Tn M7, these degrees of are killed by dividing by
SL(2,C) but the degrees of freedom that change the position of {2y, 23, 23} on CP!
are added. Since SL(2,C) can be considered as the degrees of freedom which maps
{0,1,00} to any distinet points {2y, 22, 23}, this difference cannot be distinguishd
under the action of the evaluation maps &y, é;.

Then we determine H) (M%) with the following strategy.

1. Using equality of 4.1.7, we evaluate all the three point functions using torus
action method with the following equation (3.5.143).

(H)) A @3(e (H) A @l (H)

. 1
log(det ({gij ) I]h [d'."u_.f

) (5'z — 52)2 T, [1%2)(5%az + 5/ (d — a)z — 5'dz)
i i1 e

exp((5'tz+---

where
AIN-2-(N-E) i ‘-"-::l-_-lll\I]L

T, (5'az + & (kd — a)z)

Dijid =
(4.1.9)
(4.1.10)
@ MEEY = opht (4.1.11)
{{z1, 22, 23), [}/5L(2,C) € MEEY = fla)

where H is hyperplane bundle on OPY 3 is 3-fold forgetful map from
o -1

MEET to MEY, T and Eigyy denotes direct image sheaf

RS, (#}(kH)) coming from forgetful map m from MEEy " to M
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2, We can consider O, as the generator of H? (Mys), and we only have to
determine multiplication rules for O,. In other words, if we set

\'"]
N0, 0. Y (0.000 w-seuin
=0

(k< N)

! ! 1
FEN 0,00 = (0.0.0,4:3-2) \;rJ,...

(k= N)
.H',:f..‘.f‘\] is constructed as follows.
ClO., O+, Ope-a| HHFN, BN, o, FEE) (4.1.14)

0., € yO,v-3] denotes the polynomial ring generated by O.. and
ek k] i the ideal generated by FY&
We calculate FX¥* for k < N — 2 and N < 9 case and find the ideal includes the
following relation
(0N g (O =0 (4.1.15)
Numerical results are shown in Table A. In this case, using (4.1.15) and
k, we can easily see

NA N
(" I %)) = K. (4.1.16)

T'his agrees with the statement (3.1.15)

4.1.2 Reformulation as One Variable Polynomial Algebra
With some algebra, we can rewrite the relations (4.1.14) into the form
v
r_-l-'lt.l:p'l = (0. - L (O, (N I‘c:illlrd (4.1.17)

d=1
(2<a<N-2) {4.1.18)

14.1.19)

(IT " a0 (4.1.20)
=
N-12)

A (1) (o A i (4.1.21)

where
NNy 14 A e
% (g) = NHOO-10pn-3-4) (4.1.22)
Then we can realize H} (M5 ) as one variable polynomial algebra by regarding O,
as X, O asr.hs of € :

INE(XY) for o= 0),2, 3

(XY~ NN
(0,0, -+ O_1) ya = res; DARRF ralt )k (4.1.23)

These results are collected in Table B. At first sight, this reformulation seems to be
= ; ; i Rl ;
superficial, but we find some curious relation between vy for k < N — 2 case.

relation 1
Nk
o1

relation 2

(4.1.28)
(4.1.29)

(4.1,30)

1."*
Nohly' (4.1.31)




(4.1.33)

(4.1.34)

relation 3
N N, p \
YnN=23 TN=k 1 V2N " H (A

(N -Fk)3= L

Wi can reconstruct some of the above relations from the compatibility of the expan-
sion form of (2.12) and relation (4.1.15), but we are not sure that all of them follow
from it at this stage. With these relations, we can figure out some characteristic
feature of H (M%),

First, quantum correction of degree 1 to Hy,

can be easily seen from relation 1. So we think these correction coefficients 4% | (:=

(M%) does not depend on N, which

. : 'l ta-11) Play central role in the ring when & < N — 2. In other words, we expect

all the higher degree quantum correction coefficients are determined by 45 . Relation

2 are found from these speculations. Second, from the expansion form of (4.1.18),

degree d coefficients of O occur when a > (N — k)d holds. Then if k < [$]+1, no

corrections occur from sectors with degree greater than 1. But degree 1 corrections

remain stable since they as long as o is no less than N — k. This seems to

support our first speculation. We will show some examples of these features using X : 7 3) (4.1.40)

the results of Hy, (M%)

where

H3 (M) , e e T
0. - i 6984, 93, = 23328, 4y, = 30672, 45, = 45936
Oa
O
O




Table A. Multiplication Rules of H] ( ME)

0, 0 = 0us

H; (M}

0, Op=04au (0=

O, Oz =20,

H (M)

> )
[ Y
= On

+6g O,

(0<a<N-5)

s 46y O, Op-z=0,ns 4

2 = 60,3

H; (MF)
0,0,

0, 0a
.- ¢

= O + 24q
0,0, =

O + 1040,
= O + 10402 + 2784¢°
=210 + 27840, 4°

0, =0
cOa=0a+2
cOp = O + 1040,q
Ou=0p + 10402
+ O = 240,30 + JTiiaf

(M)

OO =

Q.- O
Q.- O
O, - O
0.:Oun

Oue (0<a<N-6)
Qx4 + g

¢ = n-a+ 10409

3 = Opwv-a + 1040,2q

1 =M0,q

73

O = 0p +150,.q

(4:1.42)

(4.1.46)

+ 120g
+ 77004

+ 13450,0q + 211200¢°

7700, g + 6925000, 4°

« O = 120049 + 2112000,:9°

H: (M3
Q0. =0,
0,02 = 0.+ 120g
Oy Op = Ou +TT00,q
O, - Op = Op + 1345049
O, - Op = O + TT0O 2 + 996004°
O, + O = 120044 + 996000,4"

Hy (M)
0,0, =04
0, 0a =0
O, 0p =04+ 1204
Q-0 = 0p +TT00.q
Q0O = O + 1345039
- O 4 TT0O aq
= +1200,4q + 14400¢4*

H; L (M)
ODuit (D<a<N-T)
O, n-s + 1209
Oi-2 + THO,q
= O+ 1509
= Ouw-:+TT00,aq
120049

{4.1.49)

{4.1.50)




T20q

62640,
O + 163440 2q + 188438404°
O, + 16M40,1q + 1314584640,¢°
O + 626400 + 1314584640,20°
+1440699955204"

+7200,:q + 188438400 5"
+ 14406999 -;.tl(‘.‘l,q'

O
Q.+ T20q

O+ 62640,

O + 163440 29

O + 163440,5g + 14152320¢*
O, + 6264049 + 440069760, 4°
T200,4 + 141523200,2¢"

0,

Oa

O + T20q

O + 62640,q

O + 163440 29

O+ 163440 g

O + 6264049 + 4T692800,4°
T20Oaq + 47692800, 2¢°

(4.1.55)

0,
Ou

O 4

o,
O,

4S040
+ 561960,
200452C

2004520 4 +

+5341552023024004

+ 246995068320 5"
03200,4°

504002 + 20562505200,4"
341552023024000,29"
+511208270448606T72004*

+ Hldlg
+ 561960,
b 20045202
300167027 + 20019628804"

r + 200452044 + l.‘-rfllfi-“i:\zlll.‘j,af"
s + 561960,5q + 135706813200,2q7
= 50400, + 20919628800,:¢"

+13462263763200¢"

{4.1.56)




Table B. One Variable Polynomial Representation of H ME)

0. H; (My)
Q.0+ 40320¢ JolX)
O+ 5541120,
(R 21920,2q
0 + 52419840 g + 3456556185604
A + 38572142837760.4°

O + 25521920, + B1502224486400,:4°

41120,4q + 3857214283776 ,aq”

3082795980804"
403200,7q + 3 S6185600,4q°
42, 3982705080804"0,

(4.1.60)

(4.1.58) Jo(X)
0.

Oon-s

[

H; (M)
Sil(X) =
Op =
o,
0.
On
Ou
Hy (MY) (N27)
JolX) =
O =
On-a -
O,xs
Qw1 XF2_ (4.1.63)




H: (M2
folX)

X85ty

0, 1
X

1209
— 890X ¢
2235X %9 — 498004
3005X % — 57000X¢*
(4.1.64)

1204

2235X%

X
X
X
X' —890X¢q
X"
X - 3005X% — 72004

H\:II_U:! (N<9

fol X)

0.
O s
Ot
Ov-a
O,pn-1

X1 _ Shyey
X® (0<a<N
XN=5_ 1apy
XV _gooXyg
XN _9935X %
XN-2 _3005X %
(4.1.66)

||

6° X%

1

X

X* — 7204
B98N g
- 8X%

X% — 24388128X ¢

15936X 'g — 9720000,
5094835200

Hy (M)
(X)) = X*—6'XY%
O = X" (1<a<2)
O = X* =724
O X' - G984X g
Os = X®—23328X%
On = X*-—: X — 23846404°
Op = X7 —45936X g — 2643840X ¢

H; (M)
fal X)
O,
Ou
O
O,
Oy 2
O = X°—45936X % — 260200X¢*

(4.1.67)

(4.1.69)




! — 5040y
61236Xq
[ 10459814404°
561856.X % — TI64461860.X ¢
07X Yg — 8660264508 X 2?
35146560
Yq — 1T85T6TT60.X g
-47590072087680q"

H; (M)
folX) b S i
O, 1
Q,
Oa
0.

5040y
— 61236Xq

— 51688

B

O,
0.
O

5791212004°
1874923848 X q°
818503.X g — 730786320 *¢*

X

X

X

= X

O X
X

X

X

32X g

¥ — 3146624X %

8388608.X % — 13 236804
00T4368X ¢*

- 994943923200.X

203929850880.X




4.2 Gravitational Case

4.2.1 Meaning of the Correlation Function

In the topological sigma model (A-model) which describes maps from CP to the tar-
pet space M, BRST-closed observables are constructed from elements of H*(M). We
denote the BRST-closed observable constructed from W e H* (M) as Oy, Witten
showed in the pure matter case [8] (without coupling to gravity) topological correla-
tion functions are given in terms of intersection numbers of holomorphic maps from
CP' to M as follows.

k
(Ow,, (2)0w,, () - Ow ()} = [ x() [T 5(W%)
j=1

\fJJ:.-'VI.}i,
feMly = flz)eM j=1.-k

(M3 is the moduli space of holomorphic maps from CP' to M of degree d,and
(21y .00, 26) are “fixed” distinet points on CP'. Degree d is related to the sum of
dime(W;, ) by the topological selection rule which we will introduce later ).

w is the additional degree of freedom w! 55
f = foa where o is a map from CP' to CP! of degree ': and [ a map from CP'

to M of degree j{dlj). But as we will discuss later, we have to consider ¢ only when
M is C.Y manifold, ie. o (T'M) =0,

ss when f can be decomposed as

Since ¢} (W;,) defines dime (W, ) form on Mg, in generic case when v is trivial,
iL‘)Il.I o EJ-,ll_} doesn't vanish only when the following conditions are satisfied.
[
Erf:mr”l’.j = rfmlr-[f{rl[:_'ﬂ
J=1
= dimH"(f*(T'M))
= dey(T'M) + dime (M) (4.2.2)

In deriving the third line from the second line, we used Rieman-Roch theorem and
assumed H'(f*(T'M)) = 0.
If we take Wi, as the form which has a delta-function support on the Poincare dual
of Wi, PD(W, ), we can interpret ¢f (W), ) as the following constraint on My(M).
f(z5) € PD(Wi,) (4.2.3)

We can easily see the above condition imposes dime(W;) independent constraints
on MY, (use count degrees of freedom in the complex sense). Since we have to use
(dime(M) = dime(f(CP')) — dime(PD{W,,]) degrees of freedom to let f(CP') N

83

PD(W,,) # 0 and in case dime(f(CP'Y)) = 1, we have to use one further degree
of freedom to let z; to lie on f(CPY) N PD(W,,). Condition (4.2.3) tells us that
by imposing all the constraints 1 = 1,--+ k, we have zero degrees of freedom and
topological correlation functions reduce to

(O, (21) =+ - Oy, (2)) gemeric
=4[ : CP 22 M|f(3) € PD(W;)ij=1,++,k} (4.2.4)

At this point, we consider the case of multiple cover map. From the above argument,
multiple cover map [ = f_cn also has to satisfy the condition (4.2.3) which restricts
the motion of f{(CP') = f{CP') in the target space M. But since f is a map of degree
J» it has as many as jo, (T'M ) +dime(M)(< dey (T'M) +dime (M) freedom in M and
this is imcompatible with (4.2.3). Only when ¢ (T'M) = 0 i.e. M is C.Y manifold,
compatibility of (4.2.2) and .3) holds in the case of multiple cover map and we
have to integrate the additional v. Then we conclude that when e (T"M) > 0,we
can neglect x(») and only consider the generic case

Next, let us consider what happens if we couple topological gravity to the above
topological sigma model. Roughly speaking, we have to integrate over mod
of €P! with punctures. Since the moduli space of CP' with k-punctures a
by the position of k-distinct points on CP! divided by SL(2, '), which is the internal
symmetry group of CP', the difinition (4.2.2) is modified as follows

&
Ow,+-Ow,) = [ 14, W)

TunslM) 5oy

G MM, o M

{(z1, = va), JHSL(2,C) — flz)
where the action of u € SL(2,C) is defined as follows.
wo (2,2, ), S} = {(ulzy), ulza), -+ ulze)), (u™) f} (4.2.6)

This action is natural in the sense that the image of -} remains invariant under
SL{2,C). Main difference between (4.2.4) and (4.2.6) is that in the former case, we
keep z; d" on CP' but in the latter they move. Then we have dime (M} ,) =
k — 3+ dey(TM) + dime (M) and modify (4.2.2) as follows

-

Y dime(Wi,) = dey(T'M) + dime(M) + k — 3

=1

&k
Lt Eduru-[i'l',_ 1) = dey (T'M) + dime (M) — 3 4.
fe=l

Integrating over the positions of k-punctures the codition (4.2.3) changes into

HEPYNPD(W,) #0 (4.2.8)
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Under the condition ( 7). FICPYyn PD(W, ) must be a finite point set for each
j and z; integration contributes ( f{CP') N PD(W, ))* to the correlation function
Then we :

*
(Ow, -+ Ow, ) =Y [TUA(CP)yn PD(W, )
I =1

A

{f«ap! S MIf{CPYNPD(W, ) £0 j=1,2,--

4.2.2 Set up of the calculation

Topological Sigma Model (A-Model) can be constructed as the twisted version of
N = 2 super conformal field theory [28], We can perturh topological field theory
by adding the terms 32, £, to the lagrangian and correlation functions depend on
variables {#;} [24]

'f(’u',iou,‘ ses f}u,l”| B PR eI )

- [D.\-r' L{X I-E':'rw'a“'., C‘!"._. : "Clll'., (4.2.1)
where X denotes the field variables of the A-Model. We set D = dim(H*(M)). As
the twisted version of N=2 SCFT (coupled with gravity and on small phase space
), {Ow,} has ring structure which can be determined from three point correlation
functions.

Ow,Ow, = Cli(ty, ta, ..., tp)Ow, (4.2.2)
where CF = Cim™ (4.2.3)

= {Ow, Ow, Ow; (L1, ta; .-, tp)) (4.2.4)

T e = %, (4.2.5

M = Cutm(try b2, -+ o tp) (4.2.6)

In our notation Wy corresponds to 1 € H*(M) and we set W; to the Kihler form of
M (in our case where M is CP*, CP* or Gr(2,4), dim(H*(M)) = dim{H"(M)) =
1,this notation is O.K). We assume that &'s are flat coordinates and #y, do not
dep on them and determined by classical intersection number [y, Wi A W,,. Next,
we impose associativity condition on this algebra.(This relation is DWVV eq.)

(Ow, Ow, )Ow,, = O, (O, O, )

C},0w, 0w, = Ow,CJi0Ow,,

ClChOw, = CECi O,

Gica =036

Cigm "Clkn = Ciomt) ™ o

B3

And there exists a froe gy (prepotential) Fa(ty, ..., tp) which satisfies following
conditions.

Cikltista,- .. tp) = 89,0 Fy (4.2.8)
d
(8 := )
¥ Bl

Combining (4.2.7) and (4.2.9), we obtain a series of partial differential equations for
Far.

08,80, Fadyihd, Fy = nf™ 0,840, Fuy 8,000, Fye {4.2.10)
We can also consider prepotential as the generating function of all topological cor-
relation functions

" 1 n“_r“! Y
Fa(tiyeostp) = 3 (O O )= - (1.2.11)

ARl

n; times

(O, represents Oy, - - Oy, and should not be confused with O )- At the topo-
logical point (i.e., all the 4's are set to zero) correlation functions become intersection
numbers on moduli spaces of holomorphic maps from CP' (with &~ marked points)
to target space M

Holomorphic maps f are characterized by their degree which equal the intersec-
tion number of f*(CP') with the Kihler form of target space M. Then (O} - OR? )
remains non-zero only when the following topological selection rule is satisfied

D o
3 ndime (W) = ¥ n; — 3+ dimHY(CP*, " (T'M))
- =
= ¥ nildime(W;) = 1) = =3 + dey (T'M) + dimg(M) (4.2.12)
=]

Here d is the degree of holomorphic map and we used Riemann-Roch theorem in

deriving the second line from the first one. When d equals zero, [ is a constant

map to the target space and moduli space becomes just the direct product of target
D

space and moduli space of CP' with }: n; punctures. Then selection rules (4.2,12)

=
decomposes to

D
N nidime (W) = dime(M) (4.2.13)
=]

and

D
Zu,—fi (4.2.14)
i=1




From (4 , we conclude that in d = 0 case only 3-point functions survive and
correlation functions are just classical intersection numbers [y, Wi A WA Wi

From the Hat metric condition, insertion of W) remains non-zero only for three
point functions from constant maps becanse one and two point functions including
W; cannot remein nonzero when ¢;(M) 2 1 and d > 1 and if we suppose n(> 3)
point functions remain nonzero in d > 1 sector, flat metric condition is broken(in
three point functions in d > 1 sector, we take into account of the insertion of operator
Ow, (dime (W) = 1) which we will discuss later).

With these considerations, expansion of the free energy becomes

£ "2 o ]
Fulthy oo itp) = (fri:u} Z, T Tl OO

1 tamp20 20
fz:;r[_ra’nm-[ﬂ',] ~ 1) = =3+ dey (T'M) + dime (M) [4.2.15)

[where the product of the first term of r.hs. means taking the wedge product of
H*(M))

Next, we consider the insertion of the operator O, which corresponds to the
Kahler form of the target space , Since codime(PD{W;)) = 1, holomorphic map [ of
degree d always intersects with it in d-points,and the condition f(CP')nPD(W;) #
0 imposes no constraint. Then from (4.2.9) the insertion of Oy, results in the
multiplication by a factor d,

(OWOR, - ORR) =d™ (O, - ORF.) (4.2.16)
Combining (4.2.15) and (4.2.16) we obtain the following expansion
™ .‘ "

Fatltssreitp) = fl)__rlis +3 0 W %o onp e

d=1ny,~np>a M3 np!

I,Zu.iehrur-{“'.l — 1) = =3+ dey(T'M) + dimec(M)) (4.2.17)
el

Then by combining (4.2.10) and (4.2.17), we determine the correlation functions in
the case where target space is CPY, CP* and Gr(2,4)

4.2.3 The Calculations

The non zero Betti numbers of CPY, CP* and Gr(2,4) are

boe = biy =tz = lny =1

bog=by =bm=byz=byy=1

B7

b =by =bu=by=1, bn=12 (4.2.3
respectively. By means of wedge product we obtain an associative, commutative ring

H*(M, Q) for each manifold M .For CP*, CP, and Gr(2,4) we have the multiplica-
tion table as follows

Table 4.1: The ring of CP!

Udii 4
atimg (W)= dimg (W

Table 4.2: The ring of C P!

T | Wy u.]—u,

Table 4.3: The ring of Gr(2,4)

W, [ W2

0 [_ﬂ
J[Wa)=2
dima (W)= ).n-f.‘ru... A dime Wa=14




Dual to each cohomology class is a class of cycles (e.g. for the case of CP? W, is
dual to a point, Wy is dual to a line, W, is dual to the CP3),

As a point intersects the CP% in a point and a line intersects the plane by a point.
Thus we have for CPY,

< Wi, Wy >=1,< Wy, Wy >=1 (4.2.4)

Wi Ws>=1, <WaW.s=1l, <W:,W;s=1
and for Gr(2,4) it becomes

<Wy,We>=1, <W;;Ws>=1 (4.2.6)
<Wy,Wy>=1 <W, W >=1 (4.2.7)

All other intersections on generators being zoro, The CP3, € P* ring can be identified
the ring of polynomials in one indeterminate Clx] modulo the gradient of

Wiz) = z/4, W(z) =2"/5 (4.2.8)
Ine the case of Grassmanians their cohomology H*(Gr, @) can’t be generated
by H*(Gr, Q). The cohomology ring of Grassmanian Gr(2,4) for instance, can be
written as the singularity ring generated by a single potential|26]
W) =
Where 1y correspond to Wy and x5 correspond to 2(W; + W)

From (3.6) one can split Fyy into a classical part and instanton correction part

Fir= fa+ fur (4.2.10)

So for CP*, CP* and Gr(2,4) we have

. 1,
Fem = oty + bitsts + ik - fepal(ts, s, 1)

.-).r_fr, + titats + fop(ta, ta, Ly ts)

: 1., 1
Fope = Stits + Stith +

Y L o :
sht3+ _-Er-,ré + tityly + =0

. 1.4
Feriea) = Shits +

From (2.7) the Riemann-Roch theorem tell us
dimHY(CP', f*(T'M)) - 3 = (dimM — 3) + dc, (T'M) (4.2.14

Once we specify the target space | we know its frist Chern class, then the above
formula give the dimension of its moduli space. In case of CP* ¢ (T'CPY) = 4 s0,

dimH(CP, f*(T'CPY)) =3 =ad (4.215)
For CP' and Gr(2, 4), the frist Chern class are
alT'CPY) =5, ei(T'Gr(2,4)) =4
Thus
dimH(CP', f*(T'CPY)) — 3= 5d +1
dimH(CP, f(T'Gr(2,4))) =3 =4d + 1
From (4.2.17) we can expond fy, further as follows
oy >

fom=Y ¥ SEMINZ

d=1 ng+2ni=ad

- L pyll=Tng ayng
Tl '}_c_ju_, d _‘Ulu 7 g 2ng ng iy
‘

= t
=t (4d=2ny)ing! J

4 (5d - 2ng = 3ng+ 1)Inging!

feriaay X

d=1 ng+ng+ing+Ing=dds |

A —my g — g+ 1 " -
< Ofae OR OV, O, > 1dony -y
1

(1d - ng — 2ns — 3ng + 1)tny!ng!

d=1 e mame
Then, we abbreviate the notion in the following caleulation as
. -y o

- t')l\'l L”l". :’l'ﬂ" L ’.\llt

eIy =Tns L pyng oyne -
< O A

-~ id=n=ng=dng+1 gny yns pyng
< Oy, O O3, O,

>r.'q'1.|j- =N
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Weilstify =& =)ty =arliic OFS il =k —.IU.-"_ =z for .f'I" ;1.ull. | O, O Feee O T Lot Ot foei O+ s O (4.2.272)
ty = 0,1y = w, by = x,ts = y, bg = z for Gr(2,4). A deformation of the multiplication
table (talle 1, table 2, table 3) become the fusion rules for the quantum cohomology OwiOw, = JyuiOw, + ForyOws + JersOWi + Somy s (4.2.27h)
ring with Oy, 's substituted for {'s as
Ow, Oy, Oy + S Owis + SOy + fes Oy, 1.2.27
Ow, o Ow, = ;’j,fi_,f},!-'"”“‘c!“_ (4.2. b S Sy Wi o+ SOz + Sy O+ — bl { )
e I v T - o
Ihe structure constants of the quantum cohomology obey the so called WDVV Ow, Ows, JeaeOw, + SyeaOwy + fee:Owy + fuexOw, (4.2.27j
equation which satisfving the requirements|3] The quantum ring of Gr(2, 4) is
(i)eommutativity
B w0, = [oe:Owy + firi Oy + (foww + 11O,
(11 Jassociativity
(iii}existence of a unit O, 4+ (fuie + 1)Ow, + foer Ows,, (4.2.28a)
Commutativity follows from the definition, while condition(3.6) (equivalently(3.17) ]
y s 2 D O, O = JoesOW: + St + o,
expresses that Oy, plays the role of unit. The crucial assumption is the associativity g Jow: O, + Seuy O + S Oy
which imposes e;lrnljlp. 1.'|J.l11|il jons on fu. f\'uu_\- let us |.||lrr_|.|]||‘-(- ;,'um.l' umrf_-l [uﬂul]uuii. F fouxOws + fovu + 1O, (4.2.28h)
by faseye we mean 8,8,8, fy. In the following we will simply omit the index *M",
and just deniote it 88 feys. Ow,Owy, = fureOw, + faryOwy 4 Focs Oy + Fone Oy + (fore + 1)Ow,
The quantum ring of CP* is (4.2.28¢)
Ow,Ony = fes:Ow, + FesyOwy + (feez +1)Owy, (4.2.26a) OwsOwi = SO, + Loy Oy + LowyOws + fusy Owy + JonyOwsy,  (4.2.28d)
e + + oL N - (4.2.980)
OwsOn, = LosOW, + FerOuws + (Fery) Oty + O, (4.2.26b) OwyOwy = fersOw, + oy Oy + fines Owy + fueaOw, + fosOwyy  (4.2.280)
4 = = 4 4
Ow,Ow, = [fe2:Ow, + [aaOwy + (Jere) Oy, OwaOw, Jrres O + oy O + furune Oy
+ o 4 = " Qe
OwiOws = SorsOy + Sy Orwa + (i) O (4.2.26d) | SuneeOwy + fouwOw, + Owy,, (4.2.28f)
e O 7 Sup 2 ¥ 9980
i OwsOw, = LousOW, + Ligi O, + (Jege) Oy (4.2.26¢) OwsOwy = fuesOwy + SuryOwy + SouwzOws + FuesOwi + frns O, (4.2:28g)
it OwiOw, = [fiOw; + JysaOwy + (F22:)Owsy (4.2.26f) OOy, = fugeOw, + fanOws + funsOwy + LuayOw, + fomy O, (4.2.28h)
The quantum ring of CP is w0, = fuu:Ow, + JuneOws + farisOws + fuas Oy + fone i, (4.2.281)
Ouw, Oy, =  JfowOwy + funyOwy + fonaOwy + (funww + 1) Oy, (4.2.27a) OwOw, = [fer:Ow, + fosy Oy + furzOw,
OusOwy, = furOwy + LumnOws + SOy + frnzOwis (4.2.27h) t+  JeeaOwy + fozzOw, + Oy, (4.2.28j)
5 OwsOw, = JupOwi + funyOws + SunyOws + JuuyOwe + Owy, (4.2.27c) OwiOwy = SapuOw, + FeyOwiy + LenyOwis + feyOw, + SoxyOwy,  (4.2.28k)
OwyOwy = FfueeOwy + FoyeOwy + faesOwy + Fun:Ow,, (4.2.27d) Ow,Owy = fessOw, + JesiOws + FussOwy + ForsOwy + forsOwics (4.2,
OwiOwy, = feesOw, + Jey Oy + feeeOwy + fuweeOw, + Ow,, (4.2.27¢) OO = fumOw, + LuyOws + Sy Owy + Sy Owi + FoyyOwss (4.2.28m)
| O, Ow, = [a3: 0wy + FonyOwi + foryOwy + FasyOwrs (4.2:270) OwiOwe = Lye:Owi + Siy:Ows + fuyeOws + Sy O, + fuyzOyy, (4
I ¥ 92




OwiOwy, = JeasOw, + ey + JussOwy + Jee:Ow, + fonsOwy.  (4.2.280)

Associativity condition (3.7) implies the free energy of CP® must satifying the
following constraint equation

i T Foi ¥ Tin Jas =0,

Fose = Jayy Feas + Jgys fexe =0, (4.2.205)

(4.2.29a)

T ot oot =01 (4.2.20¢)
e Tos - LucsTeny + fisfuse =0, (4.2.20d)
Jus = Py 4 Fessfouy = SgsFras + Jies ey = 00 (4.2.29¢)

St =2 e ¥ osa Ty =0, (4.2.201)

For CP' there are 17 independent constraint equations. We just write down five
of them which are enough to determine the correlation functions of cpP

Juwis = fenyfues + Jare + Uwnizfezs — funenfery =0,
Sy + Jamglogy + Uogs = famfogy — JiiaSywa = 0 (4.2.30b)

Jonyfwnz - fmsd gy Sz — fwuntags — Juwad e =0 (4:2:30c)

(4.2.30n)

fuzeSoyy + Juzyfoye = Faoweliwy + fuouylyps + fea =0, (4.2.30d)

JoaySexy + SuwySowy = JuxeSoyy + Jfoyr — JunseFypy = 0 (4.2.30¢)

For the case of Gr(2,4) there are fifty-six independent equations. We also write
down nine of them that determine the corelation functions of Gr(2,4)

er Ill!'\ll
fu.f-uu—

ol 5 R
Fondim =0y

(4.2.31a)

A

f..,f,,

—fezz — Jown Soay + Jowa fony = Sow fuwn + Lo Junea
~forz fuvwr = Jova funy + Sowa fuze + fovefury =0,

Jous = fezs = Fessloun + Foa + Losa+ 2visa Sy

(4.2.31h)

(4.2.31c)

93

Jowwliwzz = Juowefees = fown Sy = O, (4.2.314)

—foys — JuaySuwy + Ji
~ fuwn f..u + fow Sy

= Jexs Sy + fomsFars + fows Jury + funa S
erF SowzSows — Fowe Sraz = fownSiga =0, (4.2.31f)

Sery + Fouyl ¥ zy + feupSuyy
=JowSugy = Sowz Feyy — Frewlywy = 0,

Suez = fowySoay + Sown foyy + Sowglunss + SusyLies
FoueSoiy + Joigfuoey = Sorsfomy — fovafom =0,

Sowyloys + feas Sy
— ey Fiya =0, (4.2.317)

o [ J
wicSany — JowuTuyy =0, (4.2.31¢)

(4,2.31g)

{4.2.31h)

+Sove fyuy = Soey frye

Substituting the free energy (4.2.19-4.2.21) into (4.29),(4.30) and (4.31) one ob-

2ING ., — N

I_
(

A

{

tains the recursion relations of corre

o

(_

ru.-'

4d —2m —4 dd — 2m — 4
4f —2n -1 )"’ Nas3 - ( -I’f n-2 )M N WM J6

4d
if

4d-2m=-3\ ,rne 4d — 2m
4f=2n-2 )“"'\"' t  4f-2n

ation functions. For CF one has

-z (%)

(4.2.32a)

3 -
3 ) NI \:}

NEL =%

&%)

-2m-5 3 f v dd —2m —5 2 ! m—t
2n )f Noaa N (,;_.,,_1 )f NaNG ]e:z..s,n
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For the case of CP* the recursion relations read as follows

2my — 3my
5f —2ny —3n; —

y — iy — of
3 N
= )f_r: L

S sd=2m =3me =2 At
f—.!( ’:'.f 2 )_f _r;_\.;!_,‘__.\lj.‘!_“._

2ny — 3ny 1

bd — 2my — 3m
5f —2ny — 3ng

( Sd — 2my — 3my— 2

N2 imast — AN

mi+lmg mima 2

( 5d — 2m; —3m,

5f =2 —3ny

.. v
(34

( 5d — 2my — 3ms

5f —2ny—3ng+1

A

my 2dNg, 1y myd1

5 ()R]

) =y g ng =g
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(4.2.33a)

(4.2.33b)

[ 5d—=2mi —3my—4 7
I( 5f —2n; —3ng — 2 )'w\" Hh

5 — 2my — 3mg — 4 g oF
t ( 5 =2y 8ns =1 ),r_-;_\,,_ Him

5d—2my —3my—4 Y\ 4.,

- e
[ 5f =2ny —3ny ) FN;
- 5cl — 2my — 3mg — 4 PN NS R
5f =2y —3ny 41 7 Tmmieidam | L)

.\'1[

my+1ang+2

Sd=2my —3ma—T \ ;01
2 !
l[ 5/ — 20, —3n;—3 )*" et
5d —2my —3m;—T o o
( 5f—2n; —3np -2 ) SNt N 1

g ( 5d —2my —3my -7

5/ —2n; —3ny

( 5d — 2my — 3ms ]T J PNL LN 1 1.2.33d)

5f —2ny — 3ny e TN

For the case of Gr(2,4) the recursion relation of becomes

v
Naisaoms

- N

o
my+1lmg+1

ey el

S5d—2my =3ma—5\ .y
l[ 5/ — 2 —3na—2 )J-'\-.-_-u.-._.-

B 275 — Sria—5 X sanii o
( 8f —2n —3ny 1 )f No """-"\“': +
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2y —3my -2

2ng—=3ny -1

- Ty — 2my — 3my

2 f
2y — 3my ) SON 2000

dd — my — 2my — 3Imy
if—m — 2y — 3ny

( y 2y — 31y — 2 )!’*u ! N
! DNy g+ 10 Yt

if—my —2ng = 3ny -1
4d —my — 2mg — Jmy —2 oF P dd —m g

+ NI N !
( 4f =ny = 2ng—3ny -1 )f'l'l' Ny S Af —ny—2

4d — my — 2my — 3mg —2 i -
b . s gN NE
( §f —ny — 203 —8ng —1 ) IV 1mma Nz,

id = my — 2my — 3my — 2 -
2 1 N/ NY
( = . )Iu minmat Ve

2ny — 3ng

( 4d —my — 2my — 3my
4f —ny —2ny
id — my — 2my — Imy

3 o
4f — 1y —%ny—3ny—1 )Jr-"'\“""
4d — my — 2y — 3my — 3

NI
ny—2ny —3ny — 1 fo!

Wi = 2ma S 2 ) Ay I (4.2.34b) i
ny — 2ns — 3ny + i y ]
dd—my; —2my — 3my; — 3

—2ny—3n3 — 1 ‘f\

1y — 2y = 3ng — 1

4d —my — 2my — 3my — 3

4f —my =2y -3y — 1 ) INmsanmed

(% )

' (% )

= '34-\':..',,. / 'j’, : T ( 1d — m, 2m; — 3my —3 )
g )

)

2ng — 3my Af —ny — 2y — 3ny N

2mis — 3mis — 2 i ¢ ’
2my — 3my ! )Jf.,_\_{_ - o ( Ad — my — fo.iz- dmy -3
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(4.2.34d)

3ms

(

_( s e
(
(

if —ny — 2ng —3ny

[(-I-f my — 2my — 3my

4f —ny = 2ny = 3ny ’
LT my

( 4f —n
Ad — my — 2mig — 3my —
4f —ny — 2ny — 3ny —

(!u‘ miy — 2y — 3my

4f =y = 2na — 3ng

dd = my — 2mg — 3Imy -4 V!
Af =np =y -3ng =2 ] mimm

ddd —my — 2my — 3my — 4 !
( L —ny — 20ty — 3ns—2 )'\" i

_ | dd—my —2mg —:
4f —ny —2ng —

4d — my - 1y — 3my —4 of .
+2 , - N} NS o o

( Ad —my — 2my — Imy — 4 J v/ : v
N e it s

| if—ny—ng —3ny -2 s e
) fd — my — 2my — 3Im; l 4d — my — 2my — 3my — 6 N/ N
) ( Af —ny - s S (4.2.34¢) if —my— g — 33 ) I Vmrtmmet i N ot
| 2
] E F .
4d —my — 2my — 3Imy — 6 I g
' ( A —ny—2ng—3ng =2 ) VotV naian
o
4d—m; —2mz — 3m; — 6 of 9
) D T el
L L 4d —my — 2my — 3Imy — 6 N/ =
g Af =y = 2ny —3ng =2 ) Tmimamatieg 4l




(‘ dd — my — 2my — 3my — 6 )

—ny — 2ng — Iny — 2

dd — my; — 2mg = Imy — 6 .
] B S A

Af —ny — 2np — 3na

id — m,

=

At

2my — 3y
dng =12

my — 2mg —3my — 5
n; —2ng — 3ng — &
T

(
d

1
1
id — my — 2mz — 3my =5

1

4f —ny —2ny — 3Iny
id —my — 2mg —3Imy =5 f
4 m —2ny — 3ng

: ( dd — my — 3”.,_‘. - 3|!u1 —=5" N
4f —ny —2n3 —3ny

el
ey gty = Vgl mymay bl

TN

Ty
ny

Ny mg+1ng

N%,

Lngma® ' md 41,0l

/ )

LT PR RS BT
1My 1)

(4.2.34g)

(4.2.34h)

2mg — 3my

T 3my
2ny — 3ny

Jms
dny

— 2my —3my —

— 2ng — 3nj -

21y -

2ny —3ny — 1

2my — 3my

2ng — Ing — 4

2y — 3my -

2ny = Ing —

my — 2y — 3my

_4 ”
— 2y —3ny — 1 )Jr'\"'

2ny —3ny

<8 b

id — my — 2my —3my =T
2ny — 3ng — &

dd —my —2my —3my =T ;
4f —ny— 2ny—3ny — 2 I,




dd — my — & dmy =T oF
1 R,
x ( 4f —ny - 31y — 3 )’r "

dd —my — 2mg — 3my =T o7
- ( if —m —2n3—3n; — 2 f oo,

dd —my —2my —3my =T 2arf o
) ( Af —ny—2ny —3ny — 2 I Ny s "'\"'u iy

( 4d — rmy — 2my .:;m:‘ -7 )1\_; af
if = —=2ny=3ny—1 ol e
In these recursion relations, d, f, and g are all greater or equal to one. So when

d equals one, rhs of these equations vanish since g+f > 2. Then we have a set of
linear relations for N!'s. We can use these linear relations to determine all the the <
Ow, O, >=1 for CF O, Oy, >=1 for CP' and < Oy, O, 1 for Gr(2,4).
Then we put these degree 1 correlation functions to the r.hs of (4.35),(4.36),(4.37)
and obtain linear relations for N7s. This time, these linear relations thoroughly
determine them. For higher degree, the process is the same as d=2 case, We observe
that recursion relations we have written down are suffcient for determination. We
checked the ecompatiable condition in the case of d < 4. It seems that the over
determined system of WDVV equation work well in all degrees of maps in the case
of CPYCP* and Gr(2,4). The intersection mumbers of moduli space of d < 4 are
given in the tables.

(4.2.34j)

Table 4.4: D=1 CP*

Table 4

=0 _[Ni=18 |1

Table 4.6: D=3 CP?

Table 4.7: D=4 CP?

3Z60680_| =3 ]
L —

Table 4.8: D=5 CP*

Table 4.9: D=6 CP?




Fable 4.10: D=1 CP*

Table 4.12; D=3 CP*

Table 4

3: D=4 CP*

JBOTINGH8

A0GIBG0

Nig=9
161340 | Moy = GA0ARSA6 | Ny = 622080 |
107
TOGA60052 Nag = 7000720 = O4104

| Nas =M

| N = 110031632

1816

Nypo = 63740

Table 4.14:

D=1 Gr{2,4)

Table 4.15:

D=2 Gr(2,4)

Naar = §

Nuo

Naii

Nizo




Table 4.16: [ J(‘ri’ 4) Tat
able 4.17: D=4 Gr{2.4)

Nog, = 93726 Noog = 0970_| Noy = 1170

Nooo = 1044120

\-u—l]'li

Niver = 1752446
\..r,, = 10868590 | /

\mn = 3‘."944 10
= 1044120

=058 |

Ny = 147070
Nz = 63904

e e T

Nazt




Table 4.18: D=4 Gr(2,4)

Nouz = 36

Nyp = 220250
{340 = 317406

Nawo = 402090

p = 58170

150

y = B2TH0

N

y = 14070

190

116486
116486
104070

| | Nosa =190 |

4.2.4 Appendix of Section 4.2:Derivation of Initial Condi-
tions and Some Direct Counting of Amplitudes

st show (Ow, Ow,) = 1 for OP* (resp. (Ow,Ou,) = 1 Tor CPY). From (2.1.16)
just number of lines passing through two points of CP*(resp. CPY), so it
5 to 1 trivially. But we derive this result using schubert calculus of Gr(2,4)
(resp.Gir(2,5)) which corresponds to the space of lines in CP? (resp.CP*). Schubert
eycles @y, 43 € Gr(2, N) (N =2 > a; = ay > 0) form a basis of H*(Gr(2, N), Z) and
are given by following de

ion.

Oy = {1 € Gr{2, N)|dime(I N Vy_api-a) = i} (4.
where Vi's are linear subspace of OV of dimension i satisfying following condition

necwc-cWyqaco® (4.2.36)

From this definition, subset of Gr(2, V') passing through a point of CPY~! is given
as oy_ag because this condition is equivalent to dime(I N V) = 1. Then we can
calculate (Ow, Oy, ) for CP? (resp.(Ow, Ow, ) for CPY) as follows.

(Ow,Ow,) = Houa * a0)ariaa) = Houg) gy =1
(Ow,Ow,) =*lowp aa0)eras =(T3a)Gran = 1 (4.2.37)

In this derivation, we used Pieris formula

Ta * Oy y = B Lo (4.2.38)
..:., ::‘b‘.l‘b‘,
and oy_y y-2 corresponds to a point of Gr(2, N).
Next we derive (Ow,Ow,) = 1 for Gr(2,4).
be embedded in CP* as a quadratic hypersurface,
as follows. We map a line {v), v2}¢ in CPY(C*) to a multivector vy A v

sing Pliicker map, Gr(24) can
This embedding is constructed

€ NiCt

This map (we call it ¢) is injective and conversely the image of a line in ACY is

characterized by decomposability, i.e. w € A*C* is in Tm(1) iff w can be written as
w =w Awg It can be shown that this condition is equ ot to wAw = 0. So
using a basis {e;, €5, €3, €4} of C* and expanding w as follows,

w=Ape AeatApe Aes+ A e Ae 4 desAes+ dnerhe, + e ey (4.2.39)

we can realize Gr(2,4)(= Im(:)) in CP? as follows.

whw=10
=% Aadsi— Msdg+ Aadas =0




=

In summary, we can see Gr{2,4) as a quadratic hypersurface & in CP%. Then we
want to find the realization of oy,,(= Wy} and o22(= Wy) in G. From the study of
the structure of G (see Chap.6 of Griffith Harris [19]) o4
and trivially a2z to a point. If we consider plane h (resp. line [} in CP®, quadratic
feature of G makes the intersection (h N &) (resp.(I NG)) into conic of G (resp. two
points of G).Then we have to devide them by factor 2,i.e

corresponds to a line in G

Oy _I;rh nG) (4.2.41)

-+ ‘.l,r;rn o) (4.2.42)

The space of lines in & (we denote it as Lg) is constructed as the subspace of

Gr(2,6)(space of lines in CP*) using bundle ealculation (see [3]).

Lg = op(Sym?(U*)) = ddy, (4.2.43)
where [7 is the universal bundle of Gr(2,6).

(We denote schubert cycles of Gr(2,6) as 64, 4, in order to distinguish them from
the ones of Gr(2,4)).

.42}, in Ly, to count the number of lines which passes through oy, and
nt to picking up the lines which passes through f and ! (multiplied
Then we have

{Ow, Ow,) =* s o ddyy) =1 (4.2.44)
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using this technique, we cale » topological amplitude of d = 1 sector

Lastly,
for CP? and CP*.

cP
Ow, ++ 0, Ow, ++ 02 (inGr(2,4))
(Ow,Ow,) = oz ) =1

(05,0w,) =*(o] -
(O, =) =2

cp!
Oy, &40y Oy, 303 Oy, ++0y (inGr(2,5))
(Ow, Ow,) =z ) = 1
':0II‘I',L?||'_-_} = :f”:r coy) =1
(Oh.) =*(03) =1
(O, Ow, O} = By -
(O, Oh,) = (01 - 0})
(%, Ow,) =Hol - o) =3
(O} =*o}) =5 (4.2.45)

Chapter 5

Mirror Symmetry

So far, we have discussed A-model, !nlr in ca
manifold, there is another way of twis
call this topologic

se that target space is a Calabi-Yan
g N=2 super symmetric sigma model. We
al sigma model as B-model

Mirror symmetry is the conjectural symmetry which asserts that for Calabi-Yan
manifold M, there is another Calabi-Yau manifold M* which satisfy HP9(M)
HeAimM-p(Af*) and in addition, correlation function of A-model (resp. B-model)
on M and the ones of B-model (resp. A-model) on Af* are coincide. To be more
precise, we have a way of translating the correlation functions of B-model on M* into
the ones of A-maodel on M by identifying deformation parameters of both models
Reverse operation is not well-defined in the present circumstances, In this chapter,
we treat B-model on My which is mirror counterpart of degree N h\|\! rrsurface in
CPN-!, the only one Calabi-Yau manifold in it and calculate (1357 0.(2)). We
will see the complete coincidence with the previous result and the evidence for the
conjecture in the case of general dimensional Calabi-Yau manifold

5.1 Construction of M}

Construction of a mirror manifold of Calabi-Yau manifold is systematically done with
the toric geometry. Let us consider an n-dimensional convex integral polyhedron A €
R" containing the origin 1y = (0,0,---,0). An integral polyhedron is a polyhedron
whose vertices are integral, and is called reflexive if its dual defined by

A" = {(zy, 2z,e -+ 2 )| iy = =1 forall (g, 42+, ) € A} (5.1.1)
=1

is again an integral polyhedron. Note if A is reflexive, then A® is also reflexive since
(A*)* = A, From A we can construct toric ambient space Py (for detailed construe-
tion see [18]), We introduce complex variable 5 (i = 1,2,-+ 1) corresponding to
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integral base vectors ¢ = (0,-++,0,1,0,-++,0) of &, Denote #; (j =0,1,---, ) the
integral points in A and consider the zero locus Zy of the Laurent polynomial

fla,Z) = i"_

3=0

o2y (5.1.2)

in the algebraie torus (€™ )" € Ps. Fundamentally, this gives the defining equation of
Calabi-Yan manifold My in Py, Operation which translate (5.1.2] into homogeneous
polynomial form are discussed later. Correspondingly, mirror counterpart of My is
constructed as Calabi-Yau manifold My. in Fa.

Then we turn to our CPY¥=Y case, CPY¥! is constructed from the polyhedron
AY in BY! with vertices

) = (-1LN=-1,-1-,-1)
sy == =l =L N = 1) el = (=1, =1, =1, 1) (5.1.3)

Then defining equation for My becomes

Jaylo, Zi) = 5 Oy gy B e (5.1.4)

o<d, 30 e

Wiy by -y .'\.u\'.""'.:‘. :\\ Lo

(XiXg - Xy} fan(a,

XPN-LX%51.6)

(5.1.7)

(5.1.7) defines a family of Calabi-Yau Manifolds in € P¥~' with different complex
structure, but A-model doesn't distinguish this difference. Then we can choose
simple representation of defining equation of Max 1= My

veen i Xp) e CPYNXY 4 4ok XN =0} (5.1.8)

My:={

Next, we consider Mav..AY* is the polyhedron whose vertices are

w¥* = (1,0,-+-,0),04" = (0,1,0,---,0), 0§, = (0,---,0,1)
,a_Q.‘_-|_1,-1,-.-,_1]_ (5.1.9)

And defining equation of My, is
N1
Y ozt oatanz gt =0 (5.1.10)
j=i

In this case, the toric variety Pyv. can be identified with

e = H¥
<
= {(Up: Uy :---: Uy) e CPY| [ Ui = UY) {5.1.11)
=]

where the variables z; are related to U by

Uy Uy - %
1'1\ :f'n:” : J“u‘I (B

Then we can rewrite (5.1.10) in terms of U as follows.

= (1

(Ligypimieeizn s

(5.1.13)

And we have

Mywe = {(Up: Uy z -+ : Uy) € CPY| Y ail; =0 Hr Xy (5.1.14)
=0 i=1
But the second condition in (5.1.14) is rewritten in more convenient form using etale
map.
$:CPY o g¥
(X1 :Xy) = (XiX;---

This map is equivalent to dividing €' P~

Xu: XY XY XE) (5135)
by discrete group Z5Y 2 generated by

co e R ) gver = (= 1560 e
(5.1.16)

e —[f!‘.".],---.lJ ":':J._rp_-:[l.

Combining (5.1.14),{5.1.15) and (5.1.16), we have

N N
Maw = {(Xo: Xyt Xn) € CPYYZE¥ Y 0 XY +ap [[ X} (5.117)
J=1 =1

(5.1.17) also defines the family of Calabi-Yau manifold with different complex struc-

ture. Since B-model describes the deformation of complex structure of target

we cannot ignore a;'s in contrast to My. But we canset a; = 1,(i=1,--+, N) using

the linear transformation compatible with the action of Z5¥ 2. For later convenience

we define ag as — Ny and we have the following family of Mj := Mawx..

My o= {(X: X Xy)ecpPi-iy XY+ X} +X¥ Xy - Xn)
(5.1.18)




5.2 B-model

The B-model is obtained by twisting a N = 2 non-linear sigma model defined on a
Calabi-Yau space [8] in a way different from A-twist. N = 2 non-linear sigma model
is defined as follows. let M be a n-dimensional Calabi-Yan manifold and ¢ be a
holomorphic coordinate on M (i = 1, -+ n)(and ¢' be a anti-holomorphic coordinate

2 be a Riemann surface, which is restricted to genus zero, and 2 be a holomorphic
coordinate on £. The Lagrangian is

|+ 8" 8¢ )i Dol gty Dol gfi+ Ry

where ¢'(z) is a map from E to M. Spin quantum mumbers are already explained in
Section 2.1, This Lagrangi ssesses N = 2 super symmetry. In terms of fermionic
parameter o, é

iy, 4oyt

i, 4 didut

o, Bed’ —ia g I,

B-model is obtained by twisting the above Lagrangian as follows;

. 1 4 J
9(0:6'0:) + .00, + i (Dopls + Dei)ga + i50(Depl — Dig)

3 e d
5 Ragooin teg™)

Since the canonical bundle K (or K) is trivial, the twisting does nothing at all at
least locally. Therefore the transformation law (5.2.20) should be still valid. But to
keep up with the change of the spin of ¢, ¢ ete., we also have to change the spin
of ay, a_ ete. By the B-twisting the infinitesimal parameter a_a

y 0oy, and ag
turn followingly;

” " ; a_ ; spin
o_,c0:spin —1/2 — - *F ! -
o : spin 0 on X

x = oy spin + 1
a0 spin 412 — . # y
¥ d ay : spin 0 on E
According to Eguchi-Yang [28], reinterpretating the above scalar transformations by
G, 0 s BRST transformation, we can obtain a topological field theory
That is , the BRST transformation is obtained from (5.2.20) by setting o
ay =0and setting &_ = G, = a = constant. The topological transformations are

o¢' 0

80" = ion'

an' 58, =0

da' — g’ (5.2.23)

Also we can introduce the BRST operator § which generate topological transforma-
tion such that W = —i{Q,V'} for any field V. @ satisfies the condition Q* = 0
maodulo equation of motion. In terms of this BRST operator @, we can rewrite the

T s [{Q_R} + 1V
where
R= g;(p.0:" + pidoip’) |
and
(~8.Dp" = if2Rz50' A p'yi0ug") ,

here D is the exterior derivative on £ and extended to act on forms with values in
@*(T'M) by using the pull-back of the Levi-Civita connection on M. Then we
can take weak coupling limit ¢ —+ oo, Since W is homogeneous with respect to the
variable f, we rescale # into 2. Then the theory does not depend on W and we can
conclude that correlation function does not depend on coupling constant t. Instead,
B-model is deformed by the variation of complex structure of target space M, which
is the key to the later discussion.




5.3 The Observables

While the BRST-invariant observables of A-model form De-Rahm(Dolbeaut) coho-
mology on M, those of B-model are given by d-cohomology of

AP(M, AYTYONL) ¢+ AP(M, ASTYOA) is the set of (0, p) forms on M which take values
in ATTYA, (Here AYT'YYM means the g-th exterior power of holomorphic tan-
gent bundle on M, T'9M.) Such an object can be written;

AP (M ATVOM) 3 V = VIR hgehs pde® Ao Ad2 8, A8y, Ao A By, (5.3.24)

W
Of course, the sheaf cohomology group H'(M,AYT'YM) is defined by the quo-
tient space (module) of Z*(M, AST"OM) which is the space of solution of 9V = 0
module B*(M, AYT1OAf) which is the set of S's such that 85 = 0 for all S €
AP M, ATV M), Given any point z € £, we can give the correspondence of every
elements V' of AP~H{M, AT M) to the quantum field theory operator Oy(z);

Oylz) =V =V I:‘:;pf':,"‘- el By, - -+ 0, (5.3.25)

h¥h

and we can find that
(@.0v} = -0y
nt if and only if 3V = 0, and Oy is BRST-exact if

Therefore Oy is BRST-inva
and if only V = @8 for some

This correspondence gives a natural map from @T-5H"(M, A'T'OM) to the
BRST cohomology or the observables of B-model. This map, in fact, is isomorphic

5.4 n-point Correlation Function

We deseribe the observable which corresponds to the elements V, € H (M, A9 T100)
as Oy,. Our concern is the formulation of the correlation function

(M ow(=). (5.4.26)
where 25 are arbitrary points on . The operator Oy, has a left-moving ghost
number % and a right-moving one ;. In order for (5.4.26) not to vanish, the

conservation law between the left(or right}-moving ghost number and back ground
ghost charge demands that

Y A=Y Q. =dim(M)=n,

In this section, we especially concern the correlation function of the type

n
(1 @sl=))

17

where B € H'(M, T'°M). According to Vafa [26] and Witten [8], it is revealed
that the path-integral of B-model can be reduced to the integral on the space of the
stant maps from the world sheet ¥ to its target M, the integral on the target
space M itsell. The Physical Proof is the following. Let T be some function space
*h we wish to path-integrate. Consider the theory we are dealing with (of
course, in this case B-model) has a group symmetry 6. Suppose that G acts freely
on T. Then there fibration T —+ T/, and we can reduce the path-integral over
T to T/G. If we consider only @ invariant observables O, we have the formula,

on

[T‘r,ar 50 = |_|-uH';'ij Do 0, {5.4.28)
T T/G :

where tolG is the volume of the group 6. We can apply this formula to the case in
which G is a super group generated by the BRST charge €. but this case is rather
strange, since for any fermionic variables §

frﬂ)-l:”.

the volume of any super group & becomes zero. Do we have to conclude any correla-
tion function of BRST invariant operators are all zero ? In general, the group € does
not act freely, In almost all cases there are some fixed point sets Ty, The nonzero
contribution to the correlation function comes from only Ty . Sinee on T - T, &
acts freely the can apply (5.4.28) there. In the B-model Q-invariant points must
sfy from ( ) that

8 = —adg’ =0,
therefore
der = 0.
This mes

have s

15 that the maps @ : £ — M should be constant maps on M. Thus we
reded in reducing the path-integral over T to the integral over the space
of constant map on M, t is, the integral on target space M itself. Next we will
consider how to caleulate n-point correlation function

(I 1O8(2)) concretely.

Oplz) = b,
[[Os(z) = [T - (n8y)
k=1 k=1

= fy.

Corresponding to the map &85 —+ By, we can construct the map:

@ "H'(M,T'"M) = HM,A"T'oM),
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It is apparent that this map is merely a classical wedge product

Now in order to carry out the integral over Calabi-Yau manifold M, we need to
transform the element of H"(M,A"T'¥M) to the element of H*(M ("M) (here
£ M means the sheaf of (n,0) form.) We can realize the requested transformation

by operating the square of the holomorphic (n,0)-form on M. According to the
general theory of Calabi-Yau manifold, the holomorphic (ni, 0)-form on n-dimensi
M exists uniquely up to constant. So we don’t have to worry about how to
the holomorphic forms. Therefore we can formulate n-point correlation function up

to constant by the integral on M itself,

(L Oulz)) —f QABAB A AV {5.4.20)
=] M
where
Bo= B
0 = Qopds AdeH A Adsh € HM(M).

Note that this formula is defined only up to a constant

5.5 Kodaira-Spencer equation

It is well-known that & € HY (M, T""M), (i = 1 - - - dim(H}( M, T"M))) form a basis
of the tangent space to the moduli space of the complex structure of M ( we will
denote it A

TMeomp st = H'(M,T'M)

Kodaira and Spencer [11], [12] showed that the complex-structure moduli space
, itself is also a complex manifold.

v = 1,00, dim( Mg ) = dim(HY(M, T'®M))) be a holomorphic coordinate
ant Mo (In this section we will deal only with the case dim(Momg ) = 1).

he deformation equation of Kodaira and Spencer is the following;

= kD + Xas (5.5.30)

where k, depends only on z,, but not on the coordinate of M, and x, € H™ (M),

That is, this means a decomposition:

Let us guess what happens here. We can describe the holomorphie (n, 0)-form £2 in
terms of a holomorphic local coordinate 2# of M as

fi= Ilh[.rlc_,,.. S Adr” Ao Adxt
n
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Noting that the holomorphic local coordinate # depends on the complex structure
2%, derivate the both sides of {5.5.31) with 2. Then
dx*

1
g Adz” A Ade® + ———h(x) e Adr” Ave Adz®.
(n—1)! azn

a2)
The first term is apparently a pure (n, 0)-form. But the second term is a direct linear
combination of (n,0)-form and (n — 1, 1)-form, and especially, we should note the
term * 5 of (1,0)-form part and (0, 1)-form part. Thus,

1,1)-form part

1 Belr? |
Thiz)eun ., 2L Adr A Ade?
(n—1) ln—1,1)-form part
1 e | - -
= - i £ L =l Ade" Aee-pde?  (5.5.33)
(n—1)! L 1)-form part

It is also well known that H™"(M) and H'(M,T'"M) are isomorphic each other
with the help of the holomorphic (n, 0)-form 2. There is the map from Hj(M,TM)
to H* MY M);

Hj

(M, TM) — H"Y(M)

pdT" 2 Xo = Xh ofhup ot Adz" A .- A d2]

We can inverse this map;

H () HY(M, TM)

Yo = Xa,sppalt AdeP Ao Adr™ = ¥, = : =4 X, et
|

The original Kodaira-Spencer equation (5.
clement of HI'-,UI.F. T™),

where x5 5 € Hi(M,TM), and £, means

Q= D pddt” A+ A d.

From (5.5.33) and (5.5.38) we can infer that

u _ Ode®
Xo# = G

(5.5.39)

{0.1)-form part
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Therefore from all the fact above we can immediately derive

f]]‘ Og,(z))

g A AR s (5.5.40)

3.41)

n times
It is because obviously from (5.5.33)
i 5 e
e = = X8 AXE A AR D (5.5.42)
m times ||n-|||_ml form part
where €., 1= iy A fr e B2 A dZ?? A oo A dzdv==. We should also note

aQ
that after integrating over M only (0, n)-form part of FRT
o<

remaing nomn-

n times
zero. Thuos all we have to do for the caleulation of the n-point Yukawa coupling is to

calculate the holomorphic (n, 0)-form £2 on M as a function on the complex-structure
moduli space (roughly speaking, in our model as a function of ¥).

5.6 B-model on M}

We will apply the formalism of the previous section to B-model on My, First, we
have to determine the observables. Complex structure of M}, is parameterized by
the coefficients (ag, -, ax) of the defining equation modulo linear transformation
of variables compatible with the action of Z§¥ %, As we have said in section 5.1, it
kills N degrees of freedom of N + 1 parameters. Thus we can take X, X -« - Xy (or
a,) as the basis of H'(My, T"9M}y ), and we have the following relation.

H (M3 T'OMy) =~ C[XiXz:-+ Xy] (5.6.43)
dim(H (M5 T'°M3)) = dim(H"(MY,C)) =1 (5.6.44)

By extending (5.5.35) to the case of H™(M, A™T"WM ), we can identify B-model ob-
servables as elements of HY ™My, C). We define this subring of H*
H s (M), Then we can generalize (5.6.44) into isomorphism between H_ L (My)

m:l‘l Hi{(My). It is based on the following fact.

\ N-
od from Z5 /Al m! humu;,p—
Nm (0 €£m < N—2) modulo &W by use of the

lml Let W be Ellfllll]l}.‘ equation of M},

neous |N|]\1||u||m| of deg
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map,

{5.6.45)
where

N
(1) XEX A AdXTA - AdXY (5.6.46)

(7 is a small one dimensional

defined by 1! =(). In (*

le \nrlrinu, .m:nnri the hypersurface in CPY-!
* can be considered as multiplication

n ngular Im us |.m.-.e~r1 by Z¥
integrand. We will omit this factor from now on.)

® is measure zero in the

'\m\ using this fact, we will determine the structure nE HY3
t homogeneous polynomials Pym(X) (0 < m <
invariant homogeneous monomials of degree N

(My). Zg*
2) are gencrated by

XN L e X (5.6.47)
But we have to identify these monomials via relations 8W
AW =N XN - NpX oo Byeos Xy (5.6.48)

In particular, (5.6.48) tells us that

.\‘,’v =¢X; - Xy (modulo W), (5.6.49)
Thus we can choose Xy -+« Xy as the generator of Py,, (X W. And we have the
following result.
Him ™"(M3) = Clm! [ i (5.6.50)
dim(HEI2™™(Mz)) = 1

(5.6.51) tells us that HY-2 (My) = H:(My)

comp

5.7 Construction of Holomorphic (N
Q

— 2,0) form

From Fact,, holomrphic (N = 2,0) form 0 is given as follows.



N=2

Then we expand 02 by integral basis o, (i=1,2,--« N = 2) of H o0 (M3, Z)

Iszh.. = |j| [‘“i'_p.. (5.7.52)

= uyly)ay

where T'; denotes PDy; (). Since we integrate out all the form variables, wy(y)'s
are merely functions of 3.

wi(¥')'s are known to satisfy certain differential equation (Picard-Fuchs equa-
tion), derived from the definition (5.7.53). We will determine the form of this
differential equation. First, we return to the representation (5.1.17) and consider
wilag, @y, -+, ay) instead of wy(v).

wio)= [ [ e (5.7:53)
L [I [ N e XY 4 a0 IT:.. X;
From the form of (5.7.53), we can easily see w;(a) satisfies the following equation.
LU
[Eu.{;}ul + uy(a) =0 (3.7
B/ & B
a d a (L A Yiwi(a) =0

( Ll g sk
‘Oay day  day i

The invariance under rescaling of integration variables leads us to,

i a
(0o — ay——Juy(a) =0 (i=1,2,-+-,N=1)
1 day’

Equations (5.7.54) and (5.7.56) are satisfied by making the ansatz,

F 1. ogig--ay
wila) = =Wil——5—
gy lag)’

Then equation (5.7.55) becomes,

0,(0F 1+ (-1)¥ ' Ny(NB, +1)(NO, +2)--- (NO, + N - 1))Wi(y) = 0 (5.7.58)

We can ignore the factored operator @, since it
lution which have to be set to zero in caleulation of

and 8, =
nt factor to the

where y =
adds cor

N — 2-point correlation function. If we set a; =+« = ay = 1 and ay = =Ny, we
obtain the following equation for w,(«).
d sy d ool 22 Nl o
e e e s - Wilz) =
{t i ( i ,\I_Jt =t \.] N NWilz)

u'.l'M—.:*"li'.[:] z = -

The solutions of The Picard-Fuchs equation

We will adopt the D.Morrison's recipe [14] for the construction of the mirror map
on Calabi-Yau 3-fold, also in our [NV = 2)-dimensional case. At first we will caleulate
the series solution around = = 0.

We substitute a series solution W9 = ¥ a,,2" into (!
relation such that

J,and obitain a recursion

(N[n—1) +1)(N(n—1) (N(n=1)+N—-1)

— “y-1 (5.7.60)

a, =

(n =12,

)

Fixing the first term as a; = 1, we obtain that

(5.7.61)

(5.7.62)

The Picard-Fuchs equation (5.7.60) has (N — 1) solutions with singularities arcund
z = 0 such as (log z}°, (log z)', -« (log 2)¥ ', since it is a ordinary differential equa-
tion of degree (N — 1). Now we want to obtain all of them. We introduce the
following ansatz;

w, =5 {Nn+

= ke (5.7.63)
o (n+ )™

In ather words we have shifted all the n in (5.7.62) to n+ z. Since (5.7.63) satisfies

(5.7.61) for n = 1, W, satisfies that

_ (Mo
(=) NR=

iz N

Differentiate both sides of the above equation i-th times with =z, then set = = 0.
Noting that the right-hand side becomes zero for 0 < § < N — 2, we find that
BWel, g for 0 <4 < N — 2 is a solution of the Picard-Fuchs equation (5.7.60)
Further calculation shows that

Wiz oW, = SOy E}'”"m] "
=0 a=0 !

" (log

where
N ) (N .
““UIE{. {u-trj_]. ['(N(n+ )




That means 85, |,_, has the singularity of (log z)* at z = 0. From (5.7.64), we can
easily see that W, has the form,

Wi(z) = ¥ iCyllog 2V yi—y(z) + wil ), (5.7.65)

where yi(=) is the non-negative power series of z. In particular,

3 = {Na)l o i
Wolz) = 3 T (5.7.66)
e U ee O iy nRl g il e
Wiz) = Wpylz)logz %t_n!y".\"-i,z—,,)-*,n.\'u—k'ri' (5.7.67)

5.8 Calculation of (1Y Op(z))

From the equation (5.5.37) and (5.7
N-2
(I] Oalz)(z)) =
=1

(5.8.68)

We introduce new variable ¢ for later convenience using the fact that (5.5.37) doesn't

specify the choice of deformation parameter of complex structure, To proceed further,

we have to determine _f'u; oy Aoy can be done by using the following equation
which follows from the fact that £2 A €2 doesn’t include anti-holomorphic variables,
or Kodaira-Spencer equation

f QAN = :\"'1i'_|:|u',|:|j aihay =10 (5.8.69)
My My, 2

Then we can determine r’\;; oy Ay unigquely if we demand all the (logz)' terms
vanish when we expand [y, QA€ in terms of y's. And we have

] ay Aoy = Gy vealw-aCy) (=1} (5.8.70)
M

Combination of (5.8.69) and (5.8.70) leads us to,

N-2 N-2
(II On(z)(2)) = T w-aCi(=1uyle) g wn-a-s(7) (5.8.71)
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Next, we will evaluate {[J¥? On(z)(r)) as the function of r. Let us introduce the
following integral,

o
= 1A )
5 [\r; 2N o

\>'_"; O 1wyl 2 ( 3
= v2Ul =1 wilx)——Fwy - ;(x) (CR
=0 g I gk g
Ry equals to zero for k = 0,1,--- | N =3 because of Kodaira-Spencer equation. Then

by using Leibnitz rule successively , we obtain the formula,

i L Ml S
)'Re = TN G R
= (=)NRyo+ (=) = u-”l-m.‘.
‘dx
N-1d
= Ry_=— 3 1 Ry_a (5.8.73)
2 dr

We can verify another relation between Ry, and Ry o

(o B
YW=1 _ o= Il (8 + i_lln',h'l (1]

(3 - 5

e ; N-1 ] .
= ((1 —e)a)¥ ' = —===((3 —e*) + =) (D)2

N -3
- Ehﬂ)]ﬁ)‘,!’]u',l’i‘] =
j=n

we have e \_

(1 =e)Ry_s — ——((1 —¢*) 4 '_e,‘;.ff.. 2=0. (5.8.75)
('nn_uhiuim.’. (5.8.73) and (5.8.75), we get the ordinary differential equation of Ry_
(M5 Oulx)(z))-

) Rycs (5.8.76)

We can solve (5.8.76) explicitly and we reach the final result of B-model in this
Chapter,
d=

e

(5.8.77)

{II Oplz)(x)) = const ]_"
i=1
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5.9 The mirror map and the translation into A-
model

Let us now construct a mirror map between the moduli space of A and B models.
Aceording to Morrison [14] the mirror map can be obt ained by the following process,
Let the solution of the Picard-Fuchs equation which is regular at maximally unipotent
up = !"\L'“-H‘J'H. And let wy,, (r) be the

point, say, = = 0 be Wy (r) (in our cas §
solution which has a singularity of log z at == 0 (also in our case, uy = e¥ *Wylx)).
The mirror map is : Srere
Wiy, (2) _ wn(z) Wilx)

B (@) wal@)  Wole)

(5.9.78)

where ¢ is a coordinate of the moduli space of A-model on My, or as we have
mentioned in Chapter 1, coupling constant of A-model.

We will adapt his idea in the arbitrary dimensional case. Now we want to translate
the (N — 2)-point correlation function of B-model on My to the one of A-model on
My. The (N — 2)-point correlation function of B-model is given by

" 2
2 ek

N-2 '
{.I]| Oplz)(t))a = [.u“n i 1=

.__\—‘, H =y (5.9.79)
We should note that the correlation function on the B-model is not a scalar on
the moduli space but take the value on the square of the line bundle on which the
holomorphic (N — 2, 0)-form lives, Therefore we should consider not only l‘hn r-ﬂ'!-rr
of the transformation of the coordinate but also the gauge choice of 1. Following
Candelas et.al. and Morrison, we will adapt the gauge ;

Lazh
— - :
wyl )
The B-model operator O (in our it is represented by Xy Xy -+ Xy ) corresponds to

the A-model operator O, induced from Kihler form ¢ on My. Hence we have

N-2 {1 A A 1
<.I]| Oclz) (s = f"; wolz) BN wy(x)

1 i}
e [ QA
gl x)* Jaey

1 3.
e QA (===
up(x)? ].\r;

(5.9.80)

All the nontrivial equivalences are guaranteed by the argument of section 5.5. Henee
combining (5.9.79) and (5.9.80), we obtain the following formula.

et 1 1 dr. s
(I Oc(2)(t)) = s —— (=) H(const.). (5.9.
\IH[ a.(2)(t) Wolz(D) 1 =) (const.) (5.9.81)

Combining (5.9.78) and (2.4.77) we obtain

t=NlogN - {ZEﬂ.,t!’”]!er:..r"'ﬁ x

Oy =

(5.0.82)

-an represent ¢ as power series of 7!, ([TY2O.(
This can be done as follows. We rewrite (5.

(1)) takes the form of
} in 4 more convenient

form.

—t==NlogN +x+ Y ™ (5.9.83)
n=]
where
o = oy
Z Gt = {L bz )/ L a,2") [5.9.84)
nml n=] ne=(}

Then we assume the following expansion,
z=—t+NlogN+ 3 que™ (5.9.85)
na]

s tan be determined from compatibility of (5.9.83) and (5.9.85). We put (5
into (5.9.81) and determine the constant with the assumption that constant term
of (T1¥5% ©,.(=)(1)) coincides the classical value iy €7 = N. This assumption is
equivalent to large radius limit which asserts the theory turns into classical one when
t = o0,

Then we have {1

9.85)

O, (=)(t)) represented in the form of (2.2.43),
N-2
(IT ©az)(e))

i=1

N-2 N=2 P N-2

=N+ (][] Oulzi)yie™t + (IT Oulz))ae™ + ([] Oulz))ae™ + .-+
iml =] (B ]

wl_m't-

N-2
{TT Oclz))s = N1 = 20; — w-oCi (1))
i=1




T _aN(NY
- 2ag + 2ai by +

—2a; — by + 343

2by) + n-2Cabii}

+ 2a1by — 2a,

Bally — 3a,b] + 6ayay + dagh

+n_aCil—by + 368 + dayby — 2b; — 10a7by — 150,57
!
— b} Tayby + Sagby + 9byby — 3by)

+n-2Ca(l} — Gayby — -ihll + dbyby)
+n-2Ca( =01}
Then we write out numerical results from N =5 to N = 10,

6+ 120060e~" + 41368320000

( fll 0.5,))

u S

+148146924602880¢

T381e" 4+ 263TBEGH9018Te

(IIO(z) = 74
j=i

£192709205410810878Te > 4 - -+

L]

' (o) =

5
| (IT O:(z)) =

8 + 106975232¢ " + 1672023727001660e

+26611692333081695092736¢ Y +

0 + 3103936929 + 1165013014173

> I
2ay — 20y + 3ay + Sayhy + _-,fJf 2a;

5 + 28756~ + 48T6RT5e " 4+ B564575000e + - -+

Note that this result naturally represents the structure of correction terms argued at
Section 3.1. Morrison and Plesser proposed that the top term is explained from the
1-loop level effective action of Gauged Linear Sigma Model

We hope these structures are explained in the framework of Section 3.1 in the future.
Of course, by complete coincidence with the result of Geometrical Calenlations, we
give practical proof of Mirror Symmetry Conjecture at correlation function level in
case of A-model on My and B-model on M3,

(5.9.86)

(5.9.87)

|
| j=)
I +441297815019235844688286425¢ ™ Mpis
| H 1
| (IT ©-(=: 10 + 94327552000¢ " + 930496455109619200000¢
I 3=l
! +9217712440694086335 1 70560000000 + -+
o We can see complete coincidence with the result of geometrical (A-model) caleulation

(3.5.137) and (3.2.47)! We sce that in general ([T2;* Oc(z))a

N2
1 (IT Oul=)a= NN+ _ (eorrection terms)
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as the structure

(5.9.88)
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Chapter 6

Conclusion

In this thesis, we solved topological sigma model(A-model) from €P' to M} both in
pure A-model case and in case coupled to gravity, We gave inte representation
of generating function of correlation functions for gravity coupled theory and o
variable polynomial representations of quantum cohomology algebra for pure A-

maodel.

The fundamental strategy is the use of the fact that algebraic hypersurface in
CPY¥1 ig realized as zero locus of homogeneous algebraic equation of CPY-Y. In
other words, the assertion of this thesis is that topological sigma model on these
hypersurface should be treated as the natural extension of these algebraic constraint
to the moduli space of embedding space, ie, CP¥'. The main feature of the
discussion in the algebraic category is that in that category, topological invariants
are connted as the number of equation of algebraic equations. We can never reach
this of vie the category of differential geometry, or just secing the local
connection or curvature, Because of this feal which is expressed as the “solidity”
of algebraic manifolds or corresponding moduli space, we can compute the correlation
functions by * geometrical approach”. Of course, in this thesis, these algebraic
equations on moduli space are written in terms of Chern classes of “holomorphi
vector bundles, but the spirit is the same. With this fundamental understandin
what is needed is the technical developments and these are the “fruits” of rec
developments in two-dimensional topological 1 theory. And we can pursue the
analysis of topological sigma model as the algebraic geometry of moduli space. We
think that the pursuit of this point of view is never seen in other works because of
technical difficulty in classical algebraic geome

This spirit is reflected in -mr:lhvr flow of this thesis , which is the search for
the structure of {[] *O,(zj))a for pure matter theory. Our result tells us
that our speculation in Section 3.1 which argue that moduli space is realized as
the #ero locus of algebraic equations derived from the defining equation of classical
target space is right. We think our result of OF~' = k*Of e~ is the reflection

of the solidity, What remains to show is to calculate :[II‘ 12 Oc(2y)) gy in view of

analysis of pure matter moduli space from CP' to CPY¥-'. We think this problem
is equivalent to the exact construction of MSP" ™"
Generalization of our strategy to various weighted projective space is interesting,

Because this case reduces to changing of embedding space into weighted projective
space. It is treated in [32] at the level of Section 3.1. So more accurate treatment
is expected. Another interesting question is that the search for field theory counter

part of this solidity of algebraic manifolds. Witten's gauged linear sigma model is one
of the approaches in these flow. But accurate treatment is vet to be done. We think
the relation of this model and our remaining problem should be pursued further.

Lastly, we have to mention the mirror symmetry. This tells us that our notion of
solidity and the structure of N = 2 super conformal field theory (special geometry)
have deep relation. Because the result from mirror symmetry naturally reflects the
stru » speculated in section 3.1, And obviously, the caleulation of correlatic
func: from mirror symmetry is very rigid, with no wasting part. So we
have to search for the geometrical (in A-model) meaning of pe
words, reverse

V]
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vl integral. In other
ransformation from A-model to B-model is very important for deeper
understanding of this symmetry.
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