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Chapter 1

Introduction

Topological Field Theory was first constructed by Edward Witten to answer Atiyah's
question : "Is there any physical field theory that corresponds to Donaldson theory
in mathematics ?"
We don't know details of Donaldson theory, but it is well-known that moduli space
of anti-self dual instanton in SU(2) gauge theory plays an important role in the
proof of main theorems of this theory. Moduli spaces come out naturally in field
theory through path-integral which integrates all the field configurations with weight
exp( - Action). Roughly speaking, the question at the beginning arises from these
two facts. In ordinary field theory, moduli space is non-dynamical degree of freedom
which should be integrated after integrating out all the dynamical degrees of freedom.
In other words, it is continuous family of equation of motion which should be treated
as background. So, at first sight, it seems unnatural to seek for the theory that picks
up non-dynamical degrees of freedom.

But with success in "Supersymmetry and Morse Theory" that explained the
Hodge theory and Morse theory on finite dimensional real manifold M in terms of
N = 1 super symmetric sigma model on M and its deformation via Morse function,
Witten thought the key is super symmetry (BRST-symmetry), or fermionic degrees of
freedom that kill corresponding dynamical bosonic degrees of freedom. Then in case
of SU(2) Yang-Mills theory, he introduced entire ghost field 1/11' and anti-ghost field
XI'V which kill entire bosonic gauge field AI' and many other fields which are needed to
make BRST-transformation clo ed, and wrote out Lagrangian of Topological Yang­
Mills theory on 4 dimensional manifold M.

(1.0.1)

The solution of bosonic equation of motion of this theory is anti self-dual instanton of
SU(2) Yang-Mills theory. And Lagrangian L has BRST-symmetry, i.e., {Q, L} = O.

Moreover it can be written as L = {Q, S} modulo equations of motion. Then mod­
uli space of instanton reveals itself under the following logic. Under the condition
L = {Q, S}, we can take weak coupling limit of the theory because path integral
is invariant under the variation of coupling constant. In this limit, contributions
from dynamical modes are integrated by Gaussian integration around the instanton
solution and equal det~~~;~t;;\D) = 1 where numerator comes from fermionic modes

and denominator comes from bosonic modes and D, Dt are differential operators
obtained from quadratic term of Lagrangian expanded around instanton configura­
tions. Then there remains integration over moduli space of instantons as the bosonic
degrees of freedom. We denote this moduli space as M. Correspondingly, fermionic
degrees of freedom arise as the zero-modes of differential operator D, the number of
which equals the dimension of moduli space. These zero-modes can be regarded as
differential form on M.

Next, consider the observables of this theory. Since this theory has BRST­
symmetry, observables 0 has to be BRST-closed, i.e., {Q, O} = O. Then Witten
daringly but correctly assumed that this condition is equal to the condition dMO = 0
if we regard 0 as the form on M. And correlation function (010 2 ... Ok) reduces to
intersection number on moduli space M, ~(PDM(OI)n PDM (02) n··· PDM(Ok))
where PDM(w) represents Poincare dual of wE H·(M).

In this way, this theory turns into intersection theory of moduli space M of
SU(2) anti-self dual instanton on M and Donaldson invariants are reconstructed as
correlation functions of topological Yang-Mills theory.[9]

After that, he constructed various topological field theory. We write out four of
these.

1. Topological Yang-Mills theory on four dimensional manifold.

2. Chern-Simons gauge theory on 3-dimensional manifold.

3. Topological Sigma Model from Riemann surface E to Kahler manifold M.

4. Two dimensional Topological Gravity.

When these theory are constructed, people ought to have had the impression :"Of
course, they are well-formed, but how to treat these theories or to compute correlation
functions ?"

We think break-through of this problem was occurred in the following order
4 -t 3 -t 1. (As for 2, we don't know much about it and don't mention it).

Topological quantum gravity was identified with intersection theory on moduli
space Mg,n of complex structure of genus 9 Riemann surface Eg,n with n-punctures by
Witten. Observables of this theory are given as Mumford-Morita classes c~(T%. Eg,n).[30]



..

The reason why correlation functions are determined from (1.0.3) will be explained
in Section 2. First idea came from discussion with Dr.Okai. With him, we found the
simple statement in the famous textbook of algebraic geometry [19J.

PD(eMN) = PD(ecPN-') n MN (1.0.4)

where d represents degree of holomorphic maps and Oe is BRST-closed observable
induced from Kahler form eMN E H*(MN). Then we find that for N ~ 5 case,
these correlation functions have instanton corrections whose values are integers. Of
course, at the same time, Morri on et al. treated the same model and compute
some correlation functions, they did not explain clearly the meaning of instanton
corrections.

Then what remains to show is that our result is really a correlation function of
A-model on MN, in other words, the number of holomorphic maps f from Cpl to
M N which satisfy the following condition.

ing N = 2 super conformal field theory. Witten pointed out in [8] that N = 2 super
symmetric sigma model becomes conformal invariant when target space is Calabi­
Yau manifold and that there are two ways of twisting (we denote them as A-twist
and B-twist).

Then mirror symmetry can be reinterpreted as isomorphism between A-twisted
topological sigma model (A-model) on M and B-twisted topological sigma model
(B-model) on M*. He also pointed out in [30J that the above Yukawa coupling is
equivalent to three point function (Oe(ZI)Oe(Z2)Oe(Z3)) of A-model on Ms where Oe
is the BRST-closed operator induced from Kahler form of Ms.

Another flow occurred from Batyrev who gave systematic way of construction
of mirror pair of Calabi-Yau manifolds. He suggested that two toric variety Pt:>
and Pt:>. that are constructed from two reflexive polyhedra D. and D. * dual to each
other are ambient spaces of mirror pair of Calabi-Yau manifolds Mt:> and Mt:> •. This
construction tells us that mirror pair of Calabi-Yau manifolds exist in arbitrary
dimension. This was supported by the work of Nagura and Sugiyama who generalized
the result of P.Candelas et al to the cases of torus and K3 surface.[2J,[37] They
generalized the mirror symmetry as the symmetry of topological sigma model of
Calabi-Yau manifold of dimension lower than three and concluded that corresponding
correlation functions (in our words, (Oe(z)) for torus and (Oe(ZI)Oe(Z2)) for K3­
surface) have no instanton corrections. Then Nagura and myself analyzed topological
sigma model (A-model) on Calabi-Yau hypersurface MN in CpN-l and (B-model)
on M'N( mirror manifold of MN ). Assuming that the result of Candelas et al is
the one of topological sigma model on Ms, we generalized the treatment of [15J and
computed (N - 2)-point function

(1.0.2)

(1.0.3)

N-2 00 N-2

(II Oe(Zj)(t)) = L( II Oe(Zj))de-d'
j=l d=O j=l

Using this identification, he derived some recursion relation between correlation func­
tions of this theory and reproduce the dispersion-less limit result of matrix model.

Complete treatment was done by Kontsevich, who constructed matrix integral
representation of generating function of all correlation functions by identifying Mg,n
with the moduli space of ribbon graphs. This work also revealed the relation between
topological gravity and KP-hierarchy.[31]

Break-through on 3 occurred in quite non-trivial way. It came out from compact­
ification of the heterotic string theory on Calabi-Yau manifolds of complex dimension
3. Then at energies small compared to Planck scale, an effective four-dimensional
super gravity theory whose component fields correspond to the parameters that de­
scribe the possible deformations of Calabi-Yau manifold emerges. These massless
fields correspond to the parameters that take one vacuum into nearby equivalent
one. The terms that make up the effective Lagrangian of the low energy were said
to have topological significance, one of which is the Yukawa coupling, the cubic term
of the effective Lagrangian.

For Calabi-Yau manifolds, the deformation parameters (massless fields) are fac­
torized into two moduli spaces, one of which is the Kahler moduli space that deforms
the size of Calabi-Yau manifolds, the other of which is the Complex structure mod­
uli space that changes the shape of Calabi-Yau manifolds. Then the above Yukawa
coupling broke up into two pieces,i.e., the coupling of Kahler moduli space and the
coupling of complex structure moduli space. The coupling of Ka.hler moduli space
turn out to receive instanton corrections but the coupling of complex moduli space
is exact at classical level.

Candelas et al proposed Mirror Symmetry between two Calabi-Yau manifold M
and AI*, i.e., string theory compactified on M and the one compactified on M*
are isomorpbic to each other nnder exchange of Kahler moduli space and complex
structure moduli space. To give more concrete foundation of this isomorphism, they
calculated Kahler Yukawa coupling on string theory compactified on Calabi-Yau
manifold of Fermat type in CP' (we denote it as M s), by using the result of complex
structure Yukawa coupling compactified on its mirror manifold !vI;, and mirror map
that relates deformation parameter of complex structure of M; and that of Kahler
structure of Ms. Their result tells us that Yukawa coupling arising from Kahler
class deformation indeed has instanton corrections which come from holomorphic
maps from CP1 (string world sheet) to Ms. By evaluating contributions from one
instanton solution, one can count the number of instantons from Cpl to !vIs from
their result.[15J

Then reinterpretation of this result emerged.

In [28], Eguchi and Yang, inspired by the statement of Witten that topological
Yang-Mills theory can be regarded as twisted N = 2 super symmetric Yang-Mills
theory, propo ed that a class of topological field theories are constructed from twist-

1



Then condition (1.0.3) decomposes into the following two conditions on holomorphic
map f from Cpl to CpN-I.

With this idea and the following fact that holomorphic map f from Cpl of degree
d is described by polynomial map,

we roughly evaluated <nj,;;2 Ge(Zj))d as NdN+l. This result is different from our re­
sult from mirror symmetry, but reproduces the top term of N-expansion of (TIj=i2Ge(Zj),
Then we thought "the condition (1.0.5) is fundamentally right, but we have to know
more about moduli space MR: N

-
1

of holomorphic maps from CPI to CpN-l of de­
gree d". We also concluded that differences between exact results and NNd+l come
from boundary part of space of polynomial maps that consists of maps superficially
of degree d but truly of lower degree by projective equivalence. In degree 1 case,
with the help of Prof.Oguiso and Dr.Hori, we exactly reproduced <nj=i2Ge(zj)h
using the condition (1.0.5) and the fact that Mfi

N
-

1
/8L(2, C) = Gr(2, N). This

result was the first step for explicit statement that'mirror symmetry is the symmetry
between A-model on MN and B-model on M;'.

In the same year, many works on topological sigma model (A-model) appeared
mainly from Kontsevich. These works focused on A-model coupled to gravity. In
[21], Kontsevich and Manin proposed that A-model on Fano variety (complex man­
ifold with positive first Chern class or positive Ricci curvature) can be solved by
using Dijkgraaf-Witten-Verlinde-Verlinde equation (later we abbreviate it as DWVV
equation) or associativity of operator algebra of BRST-closed observables. With this
statement, Dr.Y.Sun and myself solved topological sigma models coupled to gravity
on Cp3, CP\ and Gr(2,4) and found that in Gr(2,4) case, symmetry in classical
cohomology ring are conserved in correlation functions of BRST-closed observables
induced from elements of H*(Gr(2,4)). This work suggested that the associativity
condition is powerful in treating topological sigma model coupled to gravity on Fano
variety.

The reason why mathematicians prefer A-model coupled to gravity to pure A­
model lies in the fact that (gravitational) moduli space of complex structure of Cpl
with n-punctures Mo,n is compactified by stable curves and analyzed completely in
terms of tree graphs. Geometrical proof of DWVV equation was given by Kontsevich
and Manin in [21J using the result on homology of Mo,n by Keel [36J and splitting
axiom. With this concept, Kontsevich proceed further to the notion of stable maps,
which compactify moduli space of holomorphic maps from Cpl with n-punctures
to Kahler manifold M that corresponds to moduli space associated with A-model

f(Cpl) C M N

f(zi) E PDcPN-l(ecPN-l)

coupled to gravity from Cpl to M. With these set up, he performed exact calculation
of correlation functions on Ms and CP2 by use of Bott-residue formula in [1] (we
call this method torus action method).

We thought that by combining the condition (1.0.5) and torus action method
(to be more precise, some subtle changes occur because we couple gravity to the
model), we can calculate correlation correlation functions of A-model on MN cou­
pled to gravity. This speculation turned out to be right and we reached integral
representation of generating function of correlation functions of this model. Using
the fact that 3-point functions of pure A-model and the ones coupled with gravity
coincide (notified by Prof. Y. Yamada) and that fusion rule holds in pure A-model
(pointed out by Witten in [30]), we reproduced mj=i2Ge(Z,))d up to degree 3 and
suggested that we can reproduce them to arbitrary degree d. Thus we gave practical
proof of string tree level mirror symmetry in the sense of symmetry between A-model
on M N and B-model on M;'.

Topological sigma model (pure matter theory) on Fano variety (esp. for CpN
and Grassmannian) was studied from another point of view, by Vafa and Intriligator.
They argued that classical cohomology ring of Grassmann variety (including CpN)
is described as polynomial ring divided by the ideal generated by the derivative
dW of Landau-Ginzuburg super potential W. And they suggested perturbation
of W by the elements corresponding to Kahler form gives quantum cohomology
ring which is equivalent to pure matter theory on Grassmannian. Because resulting
correlation functions given as the residue of perturbed super potential are non-zero
only if topological selection rule of pure matter theory is satisfied. Of course, they
are integers. But their argument was merely a conjecture.[5]

Geometrical proof of this was given by Bertram [4] who constructed the com­
pactified matter moduli space of holomorphic maps from Cpl to Grassmanians and
evaluate three point functions of pure matter theory with this moduli space. And
using the fact that fusion rule which reduces correlation functions into products of
three point functions holds in pure matter theory, he reproduced the result of Vafa
and Intriligator.

This geometrical reproduction tells us that if we can evaluate three point functions
of pure matter theory, we can solve pure matter theory on any target space.

With this idea, we analyzed pure A-model on degree k hypersurface in CpN-I
(we denote it as M]v) to seek for the reason why N dN+! gives the top term of
mj=i2Ge(Zj))d. Tracing the same logic which gives (TIj=i2Ge(Zj))d c:= N dN+1 , we

roughly evaluated mf=~2+(N-k)dGe(Zj))d c:= kkd+l for pure A-model on M]v . Then

we used the idea which reproduced mj=i2Ge(Zj))d in M!: = M N case, i.e., fusion
rule that decomposes any correlation functions into sum of products of three point
functions. More explicitly, we assumed pure matter theory on M]v is constructed by

(1.0.5)

(1.0.6)
d

:2: ajsltd-j)
j=1

d

f : (s : t) t-+ (2: aJsjtd
-

j :
j=1



This is the natural generalization of the well-known result of CpN-2 model,

where 0" denotes BRST-closed operator induced from e{1~ E H*(MI;,). We eval­

uated all the three point functions in need by torus action method and found the
following relations hold if k is no more than N - 2.

and it corresponds to ax W(X) if we set X := Oe. (1.0.9) tells us that if the
condition k ~ N - 2 is satisfied, (I1f=12+(N-k)d Oe(Zj))d = kkd+le-dt. The exactness
of the rough evaluation can be explained from the dimensional counting of boundary
parts of polynomial maps mentioned before. In this way, we showed that (1.0.5) is
fundamentally right and the first speculation about difference between NdN+l and
exact result of (11)"=12Oe(Zj))d is adequate. Of course, we limited the Hilbert space
of this model to the space spanned by 0", so generalization of this discussion to
full Hilbert space is expected. But we think this is the first step to generalization
of the discussion of Vafa and Intriligator to pure matter theory on arbitrary Kahler
manifolds.

Thi thesis consists of these works. Chapters are ordered from geometric formu­
lation to field theoretic formulation.

In Chapter 2, we review topological sigma model (A-model) and show the strategy
to treat topological sigma model on MI;,.

In Chapter 3, we perform geometrical calculations of correlation functions on MI;,.
In Section 3.1, we introduce pure matter moduli space of hoiomorphic maps from cpt
to CpN-t and under the strategy of Chapter 2, we derive (l1f=l2+(N-k)d Oe(Zj))d ~
kkd+le-dt and discuss the limitation of this evaluation. In Section 3.2, we perform
exact calculation of (I1f~2+(N-k)Oe(zj)h using Schubert calculus of H*(Gr(2, 4)).
In section 3.3, we review mathematical theory of gravitational moduli space of cpt
with punctures to prepare for the notion of stable map. In Section 3.4, we introduce
stable map and using the results of Section 3.3, we give geometrical proof of DWVV
equation. In Section 3.5, we introduce torus action method and perform some explicit
calculation of correlation functions of A-model coupled to gravity on MN and evaluate
(I1)"=120e(Zj))d of pure A-model on MN up to degree 3. Finally, we give integral
representation of generating function of A-model coupled to gravity on MI;,.

Chapter 4 is devoted to topics in connection with operator algebra of BRST­
closed observables. In Section 4.1, we construct quantum cohomology ring of pure
A-model on MI;, and derive the formula (1.0.9). In Section 4.2, we solve A-model
coupled to gravity on Cp3, Cp4 and Gr(2,4) using DWVV equation derived from
associativity of operator product algebra.

In Chapter 5, we treat mirror symmetry between A-model on M Nand B-model
on M'N, both of which are Calabi-Yau manifolds. In section 5.1, we construct mirror
pair of MN and M'N using the result of Batyrev, Hosono et al. Section 5.2 and
5.3 are given for review of B-model. In section 5.4 and 5.5, we introduce Kodaira­
Spencer equation and give the formalism for calculating the correlation function of
B-model. From Section 5.6 to Section 5.8, we apply the above formalism to B­
model on M'N and calculate (11)"=12OB(Zj)(X)) where x is deformation parameter of
complex structure of M'N. It corresponds to (I1)"=120,(Zj)(t)) of A-model on MN .

In section 5.9, we construct mirror map which translates x into coupling constant
(Kahler deformation parameter) t of A-model on MN and give the N-expansion form
of (11)"=12O,(Zj)(t)) = L~o(l1)"=12 Oe(Zj))de-dt. Finally we write out some numerical
results and see the coincidence with the result of Section 3.5.

(1.0.7)

(1.0.8)

(1.0.9)

(1.0.10)

1
(Oe.0"O")r51+m,N-20e~

1
(Oe;0"O")7/)I+m,N-2(Oe~*)

two relations,

10



This Lagrangian possesses N=2 super symmetry. In terms of fermionic parameter
(L, a_, and a+, a+, the super transformation laws are given as follows.

A-model is obtained by twisting the fermionic degrees of freedom. In this case we
subtract half of U(I) charge (we put -1 to i and 1 to ~) from fermionic world sheet
spin quantum number.

Chapter 2

Topological Sigma Model
(A-model)

ia_1/J~ + ia+ 1/J~

ia_1/J~ + ia+1/J~

-a_8,¢i - ia+1fl-Qm1/J'.;

-a_8,¢' - ia+1/J~r}m1/J':'

-a+8z¢i - ia_7/4r~m1/J":

-a+8z¢' - ia_1/J~r}m1/J~ (2.1.4)

(2.1.2)

Then we have the A-model Lagrangian.

1/J~ --+ 1/J~

1/J~ --+ x'
1/J'-- --+ x'

1/J~ --+ 1/J: (2.1.5)

This invariance allows us to consider only BRST-invariant observables. We define
BRST operator Q by OV = -ia{Q, V} for any field V. Of course, Q2 = O.

Moreover, we can rewrite the Lagrangian (2.1.6) using the 1/J equation of motion,

(2.1.7)

O¢i =iaX'

o¢' =iaX'

OXi = oX' = 0

o1/J~ = -a8z¢' - iaXJr}m1/J:'

o1/J~ = -a8,¢i - iaxjqm1/J~

L = 2thd2Z(~9i](8z¢i8,q? + 8,¢i8zq?) + i1/J~Dd9i] + i1/J;DzxJ9i] - R;,jJ1/J;1/J:XjxJ)
(2.1.6)

(2.1.6) is invariant under the infinitesimal BRST - transformation obtained from
(2.1.4) by twisting fermionic degrees of freedom and setting a+ = a-_ = a and
a-+ = a_ = 0 (Note that remaining fermionic infinitesimal variables become spin 0
under twisting).

Note that since M and l: are Kahler, remaining connections on tangent bundle are
fjk, rh, r~z and r~,. They are written in terms of Kahler metric 9i], gz,' as follows.

2.1 Action

The A-model is obtained by twisting a N=2 super symmetric non-linear sigma model
defined on a Kahler manifold. N=2 super symmetric non-linear sigma model is de­
fined as follows. Let M be a n-dimensional Kahler manifold and ¢' be a holomorphic
coordinate on M (i = 1,'" n)(and ¢' be a anti-holomorphic coordinate ), l: be a
Riemann surface, which, in this thesis, is restricted to genus zero, and z be a holo­
morphic coordinate on l:.

The Lagrangian is

L = 2t ( d2z(~giJ(8z¢i8,q?+8,¢i8zq?)+i1/J~D,1/J~giJ+i~Dz1/J~9i3+R;,jJ1/J~1/J~1/?-~)Jr; 2
(2.1.1)

where ¢i(Z) is a map from l: to M (these are the main dynamical variables in this
model). 1/J fields are fermionic degrees of freedom. We put world sheet spin quantum
number +1 to z and -1 to z. For 1/J fields, + (resp.-) means spin quantum number
~ (resp.-~). D" D, represent covariant derivatives with respect to pull-back of
tangent bundle on M and to world sheet spin. Explicitly, they are

D,1/J~ = 8,1/J~ + 8,¢1rjk1/J~

D,1/J~ = 8,1/J+ + 8,¢1r~k1/J~·

rjk = g
if
8j9kf,

r~z = gzi' 8z9,i',

rh = l&]gkl

r~, = gZ"8,gz" (2.1.3)
i1/J: D'XJ

9;j

i1/J~DzX)9i]

R;,jJ1/J;1/J: XJ XJ

R;,jJ1/J;1/J:XJ X) (2.1.8)

11 12



as follows,

L = it hd2z{Q, V} +thq,*(e) (2.1.9)

We have to note one important things. The saddle point equation shown in (2.1.16)
has moduli. Dimension of moduli space can be counted by infinitesimal variation of

</>.
where

V

{Q,v}

9;J(v)A</>i + az¢l'l/J~)

-2i9;Ja,</>iaz¢l + 2giJ'l/J~DzXJ + 2giJ'l/J~Dd - 2RiijJ'l/J~'l/J~xjXJ
(2.1.10)

</> = </>0 + 8</> (2.1.17)

Note that 8</> takes value in tangent bundle on M. Since a,</>'o = az</>~ = 0, we have
the following equation for 8r/!.

(2.1.18)

hq,*(e) = d (2.1.12)

where d is the degree (or winding number) of </>. Next, we consider the correlation
function of BRST-invariant observables {O;}, i.e.

(2.1.20)

(2.1.22)

(2.1.23)

(2.1.19)

1,

</>

X

'l/J

det(D:)det(D~)

det(D~D'z)

k

/, V</>V'l/JVxe-itIEd2z {Q,v} II Oi
Bd i=l

k

/, M VM JV'l/JoVXo JV</>'V'l/J'Vx'e-itLquad II Oi
MO,d i=l

We can see from (2.1.19) that X equation of motion is the same as the bosonic moduli
equation. This tells us that x-zero mode can be regarded as the basis of tangent
space of M8'"d' Of course, dim(M8'"d) = {U of x-zero modes} (In this thesis, we use
U to represe~t the number of elem~nts of a set). With these discussions, we separate
the integration into the integration of saddle point moduli and the integration of
variations around the saddle points,

k

(II Oi)d
i=l

where D:, D~ represent operators that act on functional space except for zero modes.

Next, we discuss the case of 'l/J-zero modes integration. We decompose </>, X and
'l/J into zero mode part and oscillation mode part.

Lquad = -2iDz</>;D,</>,i + 2'l/J~iDzx; + 2'l/J~,;Ddi (2.1.21)

</>', 'l/J'andx' represent oscillation modes perpendicular to zero modes. In (2.1.21), we
assumed that there are no 'l/J-zero modes, which results in no insertion of R;]kiXoiXOJ'l/J~k'l/J~f
because there are no measure for 'l/J0. Then integration of </>', 'l/J' and X' results in

The number of linear independent solutions is the dimension of moduli space. In
this thesis, we will treat the genus 0 world sheet, and we denote the moduli space in
this case as Mf!;d'

We write out the fermionic equation of motion in the saddle point. Solutions of
these equations are zero modes of fermionic degrees of freedom.

D'Xi = DzX' = 0

D,'l/J~ = Dz'l/J~ = 0

where

(2.1.16)

(2.1.15)

(2.1.13)

(2.1.11)

(ll Oi) = JV</>V'l/JVxe- L IT Oi'
i=l l=l

a,r/!' = 0 az</>' = 0 X· = X· = 'l/J~ = vi, = 0

(IT Oi)d = /, V</>V'l/JVxe-itIEd2z {Q,V} IT 0i
i=l Bd. 1,,;:1

We can easily see that fr; d2z{Q, V} = {Q, IE J2zV}, i.e., Lagrangian is BRST exact
except for topological terms. Then by taking infinitesimal variation of coupling
constants, we have insertion of M{Q, IE d2zV}. It follows from this and {Q, Oi} = 0
that (0:=10i)d doesn't depend on the coupling constant t and we can take weak
coupling limit t ~ 00 in evaluating the path integral.

In this limit, the saddle point approximation of the path integral becomes exact.
Saddle points of the Lagrangian are evaluated from (2.1.10) as follows.

We have seen IE q,*(e) = d and we decompose the space of maps </> into different
topological sectors {Ed} in each of which deg(q,) is a fixed integer.

We can rewrite (2.1.12) as follows.

k k 00 . 2 k

(II Oil = JV</>V'l/JVxe- LII Oi = I:e-d
' /, V</>V'l/JVXe-,'IE d z {Q,v} II Oi

i-J i=l d;;:O Bd 1,=1
- (2.1.14)

And we set

r q,*(e) = j, (az</>ia,¢l9;J - a,</>iaz¢l9;J)'
JE E

(2.1.11) is the integral of the pull-back of the Kahler form e of M, and it depends only
on the intersection number between q,*(E) and PD(e) (PD(e) denotes the Poincare
Dual of e), which equals to the degree of q,. By an appropriate normalization of 9;],

we have

and
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And Lquad. is given as follows,

L quad. = 2t(Dz</>'i Dz</>; + i1/J:iDzX'i + i1/J; DzX; + i</>'icpzzi - i</>'irpzzi - Ri]kfll;~o1/J~OXkOiO)
(2.1.25)

(2.1.33)Wd = ad - bd = 2(dim(M) + dCl (T'M)).

2.1.1 The Ghost Number anomaly and BRST observables

In the previous subsection, we come to the conclusion that path integral (2.1.12) is
reduced to an integral over M{1d weighted by one loop determinants of the non zero
modes (which turns out to be i). But as we saw in (2.1.19), there are fermion zero
modes which are given as the solution of Dzi = Dzx' = 0 and Dz1/J~ = Dz1/J~ = O.
Let ad (resp.bd) be the number of X (resp.1/J) zero modes. We can see from Riemann­
Roch Theorem (we treat the matter more explicitly later ),

(2.1.24)

where

Then we have quadratic part of Lagrangian by carefully treating the pararell trans­
port of X and 1/J caused by </>' perturbation like

Xi Xi - </>,krLxj

1/J~ = 1/J~ - </>'kr~j1/J~.

(2.1.34)

(In this thesis, we denote T'M (resp.T" M) as the holomorphic (resp. anti-holomorphic)
part of tangent bundle on M.) The factor 2 comes from left-right symmetry of this
model. We will omit this factor in later discussion. The existence of Fermion zero
modes is understood as Ghost number anomaly, because Lagrangian (2.1.6) classi­
cally conserves the ghost number. In path integration, these zero modes appear only
in the integration measure except in Tl7=1 Oi, and the correlation function (Tl7=1 Oi)d
vanishes unless the sum of the ghost number of Oi is equal to Wd·

Wd is usually called "virtual dimension " of M{1d' In generic case bd = 0 and
dim(M8;d) = ad = Wd holds. '

BRST cohomology classes of the A-model are constructed from the de Rham
cohomology classes H'(M) of the manifold M. Let W = WIII, ... I,. (</»d</>Il II·· ·lId</>l,.
be an n form on M. Then we define a corresponding local operator of the A-Model,

(2.1.29)

(2.1.27)

(2.1.26)

For later convenience, we rescale 1/J into -li1/J. Then L quad. changes into,

L quad = -2t</>,i DzD,</>; + 2Vti1/J:iD,x'i + 2.../i.i1/J;Dzx;

+2.../i.i</>'i'P'zi - 2Vti</>'irpz'i - 2Ri)kfll;~o1/J[OXkOiO (2.1.28)

We introduce Green's operator G = W. to rewrite bosonic part of Lquad.' Then
bosonic part turns into, • •

-2t</>'iDzD,</>; + 2Vti</>,icp,zi - 2Vti</>;rp~,

= _2t(</>,i + .. ·)DzDz(</>; + ...) + 2rp~,G(CPZzi)'

CP'zi = XjOa,</>mo Rjmifll;~O

rpz', = 1/J;OX]Oaz</>mO R]m'k·

In deriving this, we used the following equations.

R'jlm = amr~l' Rjrm = amfjr

Integrating out oscillation modes results in cancelation of bosonic and fermionic
determinant like no 1/J-zero modes case. Then we finally get effective Lagrangian for
this case.

where we define Euler class xlv) as differential form on M8;d obtained from inte­
grating out 1/J-zero modes of L ell . If we regard 0; as closed forms on M8;d' we can
rewrite (2.1.31) as follows.

which shows that if WE H'(M), Ow(P) is BRST-closed. Note that if we limit
our interest to analytic class ,i.e., Hi,i(M) and define dim(W) = i for W E Hi';(M),
ghost number of Ow is equal to i. (We ignore left-right multiplicity.)

We can construct non-local operators oW, (i = 1,2) from the following recursion
relation,

L ell = 2rp~zG(CPzzi) - 2Ri]kfll;~o1/J~-OXkOio

Of course, in no 1/J-zero modes case, we have L eff. = O. Then we have

k1M 'DM J'D1/Jo'Dxo exp(- Leff) II Oi
MO,d i=l

1M 'DM J'Dxo(x(v)) IT Oi
M O•d i=l

(2.1.30)

(2.1.31)

From (2.1.7) we have

where

{Q, Ow} = -OdW

i{Q,OfV}

i{Q,OlV}

(2.1.35)

(2.1.36)

(2.1.32)
(2.1.37)
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, and dE represents the external differential operator on world sheet. (2.1.36) shows

fe, oW (where Ci denotes non-trivial i-dimensional cycle on E.) is BR.ST-closed.
When world sheet is genus 0, these non-local operator has httle meaning, so we
concentrate on Ow. But with these set up, one can show one important fact, i.e.,
correlation functions (Ilj=l OWj (Zj) does not depend on the position of insertion

point Zj.

Let us evaluate the difference between (Ow, (Zl) Ilj=2 OWj(Zj) and

(Ow, (z;) m=2 OWj(z,».

When dim(M8:d) = bd :::: 1, there are bd 'If; zero modes which we can regard as

the fiber of the vector bundle 1/ on M8:d' In this case, contributions to (TI~=I OWJd
are known as the integration of Euler class X(I/) on M{!;'d' If we consider 1/ as a
O-dimensional vector bundle on a point in the generic cas~, we can apply the same
logic there. We denote each component of M8:d as M8:d,m and obtain

(2.2.41)

(OW, (ZI) IT OWj(Zj) - (Ow,(z~) IT Owj(Zj»
j=2 j=2

Hence from (2.1.14)

Now we discuss how we can evaluate (Il~=l Oi)d. We take Oi to be Ow, which is
induced from Wi E H"(M). By adding appropriate exact forms we can make Wi into
the differential form which has delta function support on PD(Wi). Then OW,(Pi) is

non zero only if

In algebraic geometry, generic instantons of degree d correspond to irreducible
maps of degree d, which can not be written as the combination of maps from CPl to
C pI of degree j > 1 and instantons of degree d wi th non-zero 'If; zero mode correspond
to reducible maps which are combination of degree j multiple cover maps from Cpl
to Cpl and irreducible maps of degree d/j (Of course, j must divide d and we
represent this condition as jld). We will discuss it in section 2.4.

Let M8:d,j,m be the m-th connected component of moduli spaces which are j-th
multiple cover of d/j-th irreducible instantons, and I/j,m be vector bundle of 'If; zero
modes on M8:d,j,m' Then we have from (2.2.42),

t' k
= (Jz; dEOw,(z) UOWj(Zj»

z, (I) k
= (],; i{Q, Ow,} }]20Wj(Zj»

=0

From this, one can see that correlation functions are just the numbers.

2.2 Evaluation of Path Integral

(2.1.38)

(2.2.42)

(2.2.43)

Then integration over M{!;'d is restricted to M8:d , which consists of q, E M8:d
satisfying (2.2.3_9). In evaluati~g (TI~=I OWJd' (2.2.39) imposes L::~kl di~(Wi) condi­
tions, so dim(Mg~d) = dim(M8:d) - L::~=l dim(Wi) = Wd + bd - L::i~1 dlm(Wi). But
from the fact that ghost number of Ow, equals to_ dim(Wi ) (contnbutlOn from X)
and anomaly cancelation condition, we have dim(M8:d) = bd · In generic case where

bd = 0, M8:d turns into finite set of points. Then we perform an one loop integral mrer
each of these points. The result is a ratio of boson and fermlOn determinants, whIch
cancel each other. Then contributions to (Il~=1 OWJd in the generic case equals to
the number of instantons which satisfies (2.2.39), i.e.,

Lagrangian of topological sigma model coupled to topological gravity is written as
sum of gravity part and matter part.

2.3 Topological Sigma Model coupled to Topo­
logical Gravity.

Lmatter = hd2z(9i]8z¢l8zt/Ji + i'lf;zi(DiX' + X~8z¢i) + i'lf;z,(DzX' + X;8zt/J')

-R;Jkr/J~'If;~Xki - x~X;'If;:'If;Zi + i'lf;~'If;zi(Dz'Yz + Dz'Yii )
+i'lf;zd Dz'lf;~ + i'lf;~'Yz Dii'lf;zi) (2.3.45)

(2.3.44)L = Lgravity + Lmatter

We write out the matter part of Lagrangian.

(2.2.40)

(2.2.39)t/J(Zi) E p D(Wi)

(IT OwJgeneric = "Mg:d·
i=l
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This system has additional degrees of freedom that are complex structure of Riemann
surface J;, corresponding ghosts x~ and reparameterization ghosts (b, c) and (fJ, "().
This Lagrangian also has BRST-symmetry. BRST-transformation law is given as
follows.

oj; 2ax~ + ... oj; = 2aX; + ...
OX~ ... OX; =.
oq,' iaXi oq,' = iaX'
OX' ... OXi = ..
o'l/J~ -a8zq,' - iaX]r}"..'l/J:" +.. o'l/J~ = -a8,q,i - iaxjr;m'l/J;' + ...

(2.3.46)

Then dim(HO(I:, I<t)) is counted by using Riemann-Roch Theorem,

dim(HO(I:, I<E'J) - dim(HI(I:, I<t)) = (2g - 2) ·2- (g - 1) = 3g - 3 (2.3.52)

where we used the fact that deg(I<E) = 2g - 2. q,zz';' E HI(E, I<t) is mapped into
v' = gZ'q,zz,;,gZ';' which corresponds to conformal Killing vector of E. Then we turn
to genus zero case which is the main subject of this thesis. In this case, we have
dim(Hl(E, I<t)) = 3 which tells us that Opl has no non-trivial complex moduli
but three conformal Killing vectors. Since these Killing vectors are integrated into
global action of 5£(2,0) of CP!, we conclude that

(2.3.53)

... means the terms involving reparameterization ghosts. For later use, we write out
explicit BRST-transformation law for X.

oxi = a"(z8zq,i + a"('8,q,'
OX' = a"(z8zq,' + a"('8,q,' (2.3.47)

Next we turn to BRST-closed observables of this model. This is important also
for the notion of moduli space of this theory. Ow is not an BRST-closed operator
because of (2.3.47). In this case we have to introduce gravitational dressing of Ow
defined as follows.

Then Lagrangian is written as BRST-exact form modulo equation motion and re­
maining degrees of freedom are moduli degrees, which is the same as pure matter
case.

In this section, we just notify some differences from pure matter theory. First,
remaining moduli space include moduli space of complex structure of E. We denote
this moduli space as M~d,grav. and it can be realized as follows.

Then Ow becomes BRST-closed operator again because of insertion of delta func­
tions of reparameterization ghosts. This dressing has geometrical meaning. Since
insertion of delta functions of reparameterization ghosts corresponds to taking dif­
feomorphism gauge group as diffeomorphisms fixing operator insertion points, we
have additional moduli degree of freedom, i.e., position of operator insertion points.
Then we define Mtd,k as gravitational moduli space with k-operator insertions.

M;:d,grav = {(J, f)lf : Eg,J ~. Mof degree d} (2.3.48)

Ow(Z) HOW := Ow(Z)CZ(z)c'(z)o{"(Z(z))o{"('(z)) (2.3.54)

Eg,J is the Riemann surface of genus 9 with complex structure J. Using local coor­
dinates, the condition of f to be holomorphic map is written as

where we used local holomorphic coordinates z. Then zero modes of of part is
counted in the same way as pure matter case. So with respect to dimension of moduli
space, we simply add the dimension of complex structure of Riemann surface. This
dimension can be counted by counting the dimension of HI (E, T'I:) or equivalently,
number of holomorphic section of q,zz E HO(I:, I<t) where

(2.3.57)

~dxl'(OV + iJ")8 fi = 02 I' I' v .

Then taking the variation of (2.3.49) results in

D,o!, + ~OJ;8zr = 0

q,zz gz'v;
v; = v~ E HI(I:,T'I:).

19

(2.3.49)

(2.3.50)

(2.3.51)

(2.3.55)

Then 5£(2, C) action is naturally defined as follows.

U 0 {(ZI,' " Zk), f E M~d} := {(u(zd,"" U(Zk)), (u-h)f}
u E 5£(2, C) (2.3.56)

Finally we write out the representation of correlation functions as an integral of
moduli space.

(!1 0wJ = LM x(v) AOWj
1=1 O,d,1e J=1

We regard OWj as a form on M~d,k' Euler class X(v) is evaluated fundam:ntally the
same way as pure matter case. See for details [33]. Later we use Ow for Ow in case
of theory coupled with gravity.
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where we used the fact that Cl (T'Mt) = N - k. This can be derived as follows.
Since T'Mt and T'· Mt are dual to each other, we have the identity,

where a(Oei) is the closed form on M:J induced from 0ei. Since the form degree
of a(Oei) equals the ghost number of eJei(= dim(&) = j), correlation functions are
nonzero only if the following conditions are satisfied.

(2.4.62)

(2.4.61)

(2.4.64)

(Oeh (Zl)Oei2 (Z2)'" Oeim (Zm))d,generic

= 1M~a(Oeil)/\a(Oei2)/\ ... /\a(Oeim)
MO,d

we have

cl(T'M~) = -cl(T'·M~) = -C,(KM~J

Then from the adjunction formula,

cl(KM~) = cl(KcPN-l) + cl(kH) = -N + k. (2.4.63)

Then Cl (T'Mt) = N - k follows.

First, we consider the generic case where dim(H1(Cpl,r(T'Mt))) = O. From
the argument of previous section, we can heuristically represent correlation functions,

(2.4.58)

Observables of this model can be constructed from elements of W E H·(Mt) which
we denote as Ow, and in the following discussion we consider the observables which
are induced from the sub-ring of H·(Mt, C) generated by Kahler form e of Mt
(we denote it as H;(Mt,C)). One of the reason why we take this sub-ring is that
we can obtain it directly from H·(CPN-l, C) and Poincare dual of its elements are
analytic submanifold of Mt. More explicitly, elements of H;(Mt, C) are given as ej

(j = 1,2,·· " N - 2) and Poincare dual of & is the intersection of the zero locus of
the section of HO(CpN-l, O(j· H)) and Mt. So in the following discussion we treat
the observables •

2.4 Reduction to an Integral of Forms on Moduli
Spaces

In this thesis, we treat the topological sigma model (A-Model) on degree k hypersur­
face Mt in CpN-l (k ::; N). This manifold is realized as the zero-locus of section
of kH (H is hyperplane bundle of CpN-l and kH represents k-times tensor product
of hyperplane bundle). Note that when N = k, kH is equivalent to -[{CPN-l and
M/J turns into Calabi-Yau manifold ([{M represents the canonical line bundle of M
which is equivalent to A(M, /\dimMT'· M)). We can take homogeneous polynomial
of degree k as the defining equation of Mt. For example,

·When coupled to gravity, 0, corresponds to puncture operator P, but in the small phase space,
P insertion is suppressed except for constant map sector because of puncture equation. And in
Calabi-Yau case, as we know from the later discussion of topological selection rule, ghost number
of inserted operator must be less than N - 3. So it suffices to consider only N - 4 elements
Vel 0e2,'" l 0eN-4 in this case.

Then the fact that Lagrangian of the topological sigma model is BRST-exact allows
us to take the weak coupling limit and correlation functions of this model reduces
to the integral of closed forms corresponding to the BRST closed observables on
moduli spaces of holomorphic maps f from Riemann surface 2:g to target space Mt
(we focus our attention to the case of 9 = 0, i.e, CPl). When the target space is
a hypersurface of simple projective space CpN-l, we can classify moduli spaces by
the degree d = ~(J(CPl) n PD(e)) and we denote the moduli space of degree d as

M:J. Dimension of M:J which counts the number of x-zero modes is evaluated
by the Riemann-Roch Th~orem as follows,

(2.4.66)

(2.4.65)

(2.4.67)

dim(M~}) Lji
i=l

<=} N - 2 + (N - k)d

(Oeil (zdOeh (Z2)'" Oeim (Zm))d,generic

= ~{J : Cpl ~. M~ of degree dl!(Zi) E P D(&i)}

(2.4.66) imposes (dim(&)-l)+l = j independent conditions on M:J ((dim(&)-l)
corresponds to the degree of freedom which makes f(CPI) n P D(~j) # 0 and 1 to
the one which sends f(Zi) into P D(ej )). And from (2.4.65), what remains is the
discrete point set of holomorphic maps f which satisfy (2.4.66) for all i. Then we
have

Now, let us consider non-generic case. In this case, dim(Hl(Cpl, r(T'Mt)) > 0
and moduli space have additional dim(Hl(CPt, r(T'Mt)) degrees of freedom.

If we take ej as the forms which has the delta function support on PD(ej
), then

from (2.1.34), a(Oei) can be interpreted as the constraint condition on f,

(2.4.59)

dim(HO(Cpl,r(T'Mt)))

dim(M~) + deg(J)· cl(T'M~) + dim(H1(Cpl, r(T'M~)))

dim(M~)+d(N - k) +dim(H'(CPl,r(T'M~)))

N - 2+d(N - k) + dim(Hl(CPl,r(T'M~))) (2.4.60)

dim(M~})
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We can see these degrees of freedom correspond to multiple cover maps by the
following argument. A multiple cover map I can be decomposed into the form
I = 10 'P where I is irreducible map from Cpi to Mt and 'P represents the map

from CP1 to Cpl of degree n ~ 2. Then let us count dim(M~}) by taking the

(holomorphic) variation of 10 'P.

We can refine (2.4.74) by using the argument which leads us to (2.4.66) and define
the evaluation map,

(Oeh (zd Oei2 (Z2)'" Oei~ (Zm))d

r Mko:(Oeh(ZI))/\"'/\o:(Oei~(Zm)) (k<N)
1M 0,::
r Mk X(v) /\ o:(Oeil (Zl)) /\ ... /\ o:(Oei~ (Zm)) (k = N) (2.4.74)

JM o,:8(10 'P)

= 81 0'P+ 108'P

8I corresponds to the generic degrees of freedom, i.e.,

dim(8lo 'P) = N - 2 + (N - k)~
n

(2.4.68)

(2.4.69) We have

'Pi :M~} -t Mt : I H I(Zi) (2.4.75)

In (2.4.70) we subtract the double counted 5L(2, C) which comes from the indeter­
mination of the decomposition of I, i.e.,

10 8'P counts the deformation of the multiple cover map which can be realized
using the section 'P' E HO(CP!''P*(T'CP1)) as 'P'aJ. We can count these by using
Riemann-Roch,

After all when k equals N, generic degrees of freedom doesn't depend on d. And
we find additional 2n - 2 X zero modes in this case (When k is less than N, we can
see that contribution of multiple cover maps don't exceed the generic dimension of
M8;d and we can conclude that dim(H1(CP',j*(T'Mt))) = 0). But we can also
construct 2n - 2 'I/J; which comes from H1(CP1,j*(T'MN)). By the Kodaira-Serre
duality, the following equation holds.

I 10 'P
= 10uou-lo'P

(2.4.76)

(2.4.77)

I: Cp1 -t CpN-1

I(Cpl) C Mt

(Oeh (ZI)Oei2 (Z2) ... Oei~ (Zm))d

r M k 'Pi(ei' ) /\ .,. /\ 'P;"(e]~) (k < N)
JM o,::

r M~ X(v) /\ 'Pi(ejl
) /\ ••• /\ 'P;"(ei~) (k = N)

lMo'd

In k = N case, we can relate the non-generic part of the correlation functions to
the ones of lower degree, because in such case I decomposes into I = 10 'P where
deg('P) = nand deg(1) = din < d. But good results are given only in the case of k =
3, which was derived by Greene, Aspinwall, Morrison and Plesser [7] [34]. Of course,
if we use the fusion rule that holds in the matter theory, we can reduce the correlation
functions into the product of three point functions and formally distinguish the non­
generic part from the generic ones. But geometrical meaning is still not clear.

Then we slig~tly change our point of view. Since Mt is a hypersurface in CpN-I,

we can see M~; as a submanifold of M~:N-I which consists of maps satisfying the
following condition.

(2.471)

(2.4.70)

u E 5L(2,C)

dim(HO(CP','P*(T'Cpl))) - 3

1 + deg('P) . cl(T'Cpl) - 3

2n - 2

dim(108'P)

dim(HI (Cpl, j*(T'Mt)) dim(HO(Cpl, K 0 j*(T'* Mt )))
( = dim(HO(Cpl,j<0j*(T"*Mt)))) (2.4.72)

If we can realize the condition (2.4.77) as the closed forms (which we hypotheti­
cally denote as cd(Mt)) on M~:N-l, we have an alternate representation for the
correlation functions as follows,

and

In this case, as we have said in section 2.1, by integrating 'I/J zero-modes first, we
have the Euler class X(v) where v ~ H1(CP!''P*(T'Mt)). This leads us to

(2.4.73)
(Oeh (Zl)Oei2 (Z2) ... Oei~ (Zm))d,alt

= r N ICd(Mt)/\<Pi(eil)/\"'/\<p;"(ej~)
JMcp -

O.d

<Pi : MR:
N
-

1
-t CpN-l : I H I(Zi) (2.4.78)
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Note that e represents the Kahler class of CpN-l In (2.4.78), we can drop off the
Euler class xlv). This is because

(2.4.79)

where we used the fact that e corresponds to the first Chern class of hyperplane
bundle H. Then we have to find the realization of cd(M~). We can roughly do it as
follows. First consider the coordinate representation of MR:

N
-

1
,

Dimension of moduli space does not jump in this case. Then naturally arises the
question about the relation between (2.4.76) and (2.4.78). However we want to
proceed further with the formula (2.4.78).

Then we want to use the torus action method invented by Kontsevich in Section
3.5, which enables us to compute correlation functions of topological sigma model
coupled to (topological) gravity. And we couple gravity to the topological sigma
model. Roughly speaking, we add to the moduli space "puncture" degrees of free­
dom which correspond to the insertion points of external operators. So for m-point
correlation function, dimension of moduli space (we denote it as M~::-l) increases
by m - 3. -3 corresponds to dividing by automorphism of C pi, i.e., '5L(2, C) which
is induced by c-ghost zero-modes. And topological selection rule (2.4.65) is changed
into

where (an's are the coordinates of MR:N
-

1
. Then the condition imposed by cd(M~)

is equal to

(2.4.86)

(2.4.85)

(m = 0, 1,· ", kd)

j : Cpl >--+ CpN-l

j : (s : t) >--+ c1:, a~ Sd-iti : ... :t a'r,sd-iti)
i=Q i=O

j(s : t) E M~ for all(s, t)
d d

<=> (La~sd-iti)k + .. + (La~sd-iti)k = 0 for all(s,t)
i=O i=O

<=> r(aj)=O

where jm(aj)'s are the coefficient polynomials of smtkd- m of the l.h.s of the second

line of (2.4.86). This imposes kd + 1 condition on M~:N-l. We can describe this

condition mathematically in terms of moduli space Mf.:':-
l

. Let 7fj be a forgetful

map 7fj : MR:,;-l -t Mf.:';~; which "forget" the existence of one of the punctures.

Then for j = 1, the fiber of 7fl is CPl. And consider the sheaf ¢;(kH) on M~:~-l

where kH corresponds to defining polynomial of Mt and HO(MR:'~-l,¢;(kll)) to
the second line of (2.4.86) modulo 5L(2, C) equivalence. Then consider direct image
sheaf R2

1
(¢;(kH») (we denote it as £kd+d. It locally equals HO(CPl, j*O(kH)) and

has rank (kd + 1). We can translate the operation in going from the second line
of (2.4.86) to the third one into the evaluation of the zero locus of the section of
£kd+!' This condition is equivalent to the insertion of top Chern class Cr(£kd+d by
Gauss-Bonnet Theorem.

Considering the map,

(2.4.82)

(2.4.81)

(2.4.80)

N -2+ (N -k)d+m- 3 = Lji
i=)

<=> N - 5 + (N - k)d = LUi - 1)
i=l

This action of 5L(2, C) is compatible with the "evaluation map",

Mf,:,:-l ~ {(zl,z2,,,,,zm),J}j5L(2,C)

where U E 5L(2, C) acts

MR:,~,-l can be generically represented as follows,

because (u- 1)*j(U(Zi) = j(Zi)' In (2.4.81), (ZI,''',Zm) are considered as distinct
points, but to compactify the moduli space, we have to add boundary parts which
describe coincidence of these points. We will discuss it in section 3.4 and 3.5.

Then the integral representation of amplitudes (2.4.78) turns into

We will use this formula in explicit calculation of amplitudes with the aid of torus
action method in section 3.5.

¢i : Mf,:,:-l >--+ CpN-I

{(ZI,Z2,' . ,zm),J}j5L(2,C) >--+ j(Zi)

(Oeil (ZdO";2 (Z2) .. ·0.,;, (Zm»d,alt,grav.

= LCPN-l cd(M~) /\ ¢;(c{l (H» 1\ ... /\ ¢~(c{m(H»)
O,d,nl

(2.4.83)

(2.4.84)

We have
cd(M~) = cr(ir~(£kd+I»)

Finally the representation (2.4.84) turns into

(2.4.87)

(2.4.88)

(2.4.89)
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3.1 Moduli Space of the Pure Matter Theory

Chapter 3

In this section, we take our first step of geometrical calculation of correlation function
of A-model (pure matter theory) on M~. We have mentioned the strategy in previous

section. Since M~ is a hypersurface in CpN-l, moduli space M~~} is realized as

submanifold of Mf,:N-l. The condition of f E Mf,:N-l to be a point of M~} is,

We can regard M~:N-I as Cp(d+l)N-l if we ignore the boundary parts of positive
codimension by the following identification.

Boundary parts will be discussed later.

Then we can realize the condition (3.1.1) as the constraint on GP(d+l)N-J.

d d d

f: (s : t) H (L ajsjtd- j : L a~sjtd-j : ... : L af sjtd-j) (3.1.2)
j~O j~O j~O

(3.1.1)

(3.1.4)

f(Gpl) c M'N
= f(s : t) E M~ for all (s : t)

= 2:~J(2:1~oa;sjtd-j)k = 0 for all (s: t)

= 2:~~ogm(a;)smtdk-m = 0 for all (s: t)

= gm(a;) = 0 (for m = 0,1,···, kd)

d d d.. N I

q; : f = (L ajsjtd-i : L a~sitd-j : ... : L af sJtd- J) E MR: -
j=O j=O j=O

H (a~ : a: : ... : a~ : ag : ... : a':) E GP(d+J)N-l (3.1.3)

where gm(ai .) are homogeneous polynomials of degree k. Of course, the condition
(3.1.4) is i~posed only for the elements of q;(Mf,:N-') c Gp(d+J)N-l and has no

meaning on Cp(d+I)N-l - q;(M~:N-l). But let us assume the condition (3.1.4) is
extended to the whole Cp(d+l)N-I. Then we can regard (3.1.4) as kd + 1 homoge­
neous polynomial constraint of degree k. This constraint is equivalent to insertion

Then if we have appropriate realization of Mf,:N-l and good description of (3.1.1),
we can calculate correlation functions. We will calculate simple, but non-trivial cor­
relation function ([]f~-;2+(N-k)dOe(Zi))d by simple compactification of M~:N-l, and
discuss limitation of this generic argument. It is based on the followmg assumptIOn.

Assumption. Any holomorphic map f from Cpl to GpN-1 of degree d is
described by polynomial map of degree d.

Geometrical Calculation

In this chapter, we perform geometrical calculation of correlation functions of topo­
logical sigma model on M~ from the point of view of the formula (2.4.89). In
section 3.1, we approximately evaluate ([]f~-;2+(N-k)dOe(Zj)) using compactification

of Mf:N
-

1
and discuss its limitation of this method. In section 3.2, we exactly

evalua~e ([]f~12+N-kOe(Zj)) by using the fact that Mf,r- 1 /8L(2, C) = Gr(2, N).
This calculation is an example of classical method for enumeration of instantons of
algebraic manifolds. But the application in this thesis is rather exceptional because
we treat the case where operator insertion points are fixed or we treat pure matter
theory. We think this is the first treatment of direct geometrical calculation of pure
matter theory. Section 3.3, 3.4 and 3.5 are devoted to the geometrical calculation
of correlation functions of general degree instantons. For general degree, the cal­
culation of amplitudes from the point of view of (2.4.89) is difficult. But in case
of theory coupled with gravity, the notion of stable map and the developments in
topological gravity enable us to calculate them through torus action method. It is
application of Bott residue formula (a variation of fixed point theorem for complex
manifold) to the integral on Mf,:,~,-l. In section 3.3 and 3.4 we introduce the no­
tion of stable curve and stable map which compactify M~m' In section 3.5, we
review the torus action method and by using the formula (2:4.89), we perform some
explicit calculations of amplitudes of the theory coupled with gravity on M!: ,i.e.,
Calabi-Yau manifold in CpN-l We also compute (f1f~12Oe(Zj))matter. by use of the
fact that three point functions of pure matter theory and the theory coupled with
gravity coincide and fusion rules that hold in matter theory. We finally construct the
integral representation of generating function of amplitudes for the theory coupled
with gravity on M~. Relation of pure matter theory and the theory coupled with
gravity are pursued further in section 4.1. We argue that this is the first application
of torus action method to the general hypersurfaces in CpN-l
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of (ke)kd+l where e is the Kahler form of Cp(d+l)N-l. We have the following generic
result.

M~} ~ PDCP(d+l)N-l ((ke)kd+l) (3.1.5)

where PDM(w) denotes the Poincare dual of the closed form w E H*(M). From

(3.1.5), we can see dim(M~}) = dim(PDCp(d+l)N-J) = N(d + 1) - 1 - (kd + 1) =
(N - k)d + N - 2 which is consistent with the result of Riemann-Roch Theorem.

Next, we evaluate m;=~2+(N-k)dOe(Z;))d using this generic argument. Combining
(2.4.78) and (3.1.5), we have the following formula.

where e denotes Kahler form of CpN - 1 and cp; is the evaluation map,

Or, if we take Fundamental Theorem of Algebra into account, we can use following
map sequence instead of 17m'S.

(3.1.11)..: (Ldfsitm- i ))
i=O

~ ((I=d}sitm- i ): (I=d;sitm- i )
i=O i=O

17d-m : cp(m+l)N-l x cpk-m >-+ Cp(k+l)N-I

(dj)jC* (i = 1,2,"', N j = 0,1,"', m) x (10 : !J : ... : Id-m) >-+

((I=d}sitm-i)(~ lisitd-m-i): ... : (I=dfsitm-i)tf f;sitd-m-i))
j=O i=D j=O i=O

CpN(d+l)-1~

CpN(d)-1 X Cpl ~ CpN(d-I)-1 X (Cp l)2~

now on, we omit the operation 4> which turns the coefficients (al) into the variables
of Cp(d+l)N-l).

(3.1.6)

(N-k)d+N-2
/, CpN-l cd(M~) /\ cpi(e)

MO,d j=1

(N-k)d+N-2
r (ke)kd+1 /\ cp*(e)

lcp(d+l)N-l j=1 1

N-2+(N-k)d
( II Oe(Z;))d =

i=1

(3.1.7)

Since P DCPN-l (e) is hyperplane in CpN-I, it is realized as zero locus of linear
equation. (3.1.12)

Then by taking Poincare dual, cpi(e) corresponds to the condition that I(s; : til
should be in PDcPN-l(e), i.e.,

N

PDCpN-l (e) = {(Xl: X 2 : ... : X N) E CpN-11 L I;Xi = O} (3.1.8)
i=l

N d

L L a;'ls{tt-i = 0
1=li=O

(3.1.9)

where

iji: CpN(d-i+l)-1 x (Cpl)i >-+ CpN(d-i+2)-1 x (Cpl)i- I

((A~_i(s, t),"', A:i"_i(s, t)), (als + bIt),···, (ais + (!i))

>-+ ((A~_i(s, t)(als + bIt)"", A:i"_i(s, t)(als + bIt))

,(a2s + b2t),"', (aJs + b1t))
d

A~(s, t) := L ajsitd-i
j=o

(3.1.13)

Now we discuss the limitation of this generic argument. Boundary part Cp(d+l)N-I_
4>(M~~N-l) is described by the polynomial maps superficially of degree d but really
of low~r degree by projective equivalence. Let us consider the following map (from

In treating pure matter theory, (s; : til is kept fixed and II'S are constant. And we
can regard (3.1.9) as linear relation on Cp(d+l)N-l in our generic treatment. Then
again taking Poincare dual, we conclude cpi(e) = e. Finally from (3.1.6), we evaluate
m;=~2+(N-k)dOe(Zi))d.

N-2+(N-k)d
( II Oe(Zi))d

i=l

r (ke)kd+l A e(N-k)d+(N-2)
JC P{d+l)N-l

(3.1.10)

The image of the map 17d-m corresponds to, by projective equivalence, the space of
maps of degree m in Cp(d+I)N-I, so obviously it belongs to Cp(d+l)N-I - MR~N-l.

Naive counting of dim(Im(17d-m)) concludes that it equals to ((m + l)N -1) + (d­
m) = (m + l)N +d - m -1, while the condition for I E Im(17i) to be a holomorphic
map from Cpl to M~ only reduces the dimension of cp(m+l)N-l from ((m+1)N -1)
to N -2+(N -k)m. Then in translating the condition (3.1.4) into (kejkd+\ we make
mistakes in dimensional counting on Im(17d-m). These mistakes becomes relevant if

contributions from Im(17d-m) exceeds M~} with respect to dimensional counting,
i.e.,

(N - k)m + (N - 2) + d - m ~ (N - k)d + (N - 2)

<=> (N - k - l)(d - m) ~ 0 (3.1.14)
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302 Schubert Calculus
(3.2.19)0".',.2 = {I E Gr(2, N)ldimc(l n VN-2+i-.;) ~ i}

rfi-2
O.(Zi))t =1 er(Symk(UO)) 1\ PD(~0(PD(2NA-k <i5;(e))) (3.2.18)

j=l Gr(2,N) i=l

We can explicitly calculate PD(er(Symk(U0))) using Schubert calculus. Let us
introduce Schubert cycles in Gr(2,N). Schubert cycles 0".',.2 <;;; Gr(2,N) (N - 2 ~

at ~ a2 ~ 0) form a basis of H.(Gr(2, N), Z)(~ H*(Gr(2, N), Z)) and are given by
the following definition.

Then we have the following formula

(3.1.15)

ed+1(k:<::: N - 2)

From (3.1.14), if k ~ N - 1, we cannot believe the approximation (3.1.10), but in
k :<::: N - 2 case, it seems to give the appropriate result. With these discussion, we
give the following statement.

N-2+(N-k)d
( II O.(Zi))d

j=l

In the d = 1 case, boundary part comes only from the map rh, and we can eliminate
it by using Gr(2,N) instead of CP2N-l/lm(r/J) = MRi N

-'. Using this fact we

perform exact calculation of ([[;;;I-k- 2 0.(Zi)h. (An important difference between
Gr(2,N) and (CP2N-l/lm(T/o)) is that Gr(2,N) is the SL(2, C) quotient space of
the latter. Indeed dim(Gr(2, N)) is 2N - 4 = (2N - 1) - 3.)

There is a map ~

where Vi's are linear subspace of C N of dimension i satisfying following condition.

(3.2.20)

Considering these elements of H*(Gr(2, N), C), multiplication rules of HO(Gr(2, N), C)
are determined thoroughly through the following formula.

bl:5ci~bi_1

Cj +c2=a+bl +b2
~: Cp2N- 1/lm(T/o)

(a~s+alt, ... ,ats+a~t) rl (~t

--+ Gr(2,N)

a~ a~ ) /GL(2, C)
a~ ao

(3.2.16)

Pieri's formula

Giambelli's formula

(32.21)

(3.2.22)

Then, we have to decide the condition which corresponds to (3.1.4), i.e the condition
for IE Gr(2, N) to be contained in Mt. This condition can be translated into words
of cohomology ring H*(Gr(2, N)). Let Ft be the defining equation of Mt and st be
the section of Symk(UO) defined from the restriction of Ft to I E Gr(2, N), where
U is the universal bundle of Gr(2, N) (See Appendix A for the definition of st.

niversal bundle U is the bundle which is given as the vector bundle on Gr(2, N)
whose fiber is two dimensional complex vector space in CN corresponding to the
point in Gr(2, N). U' is dual bundle of U.) Symk(UO) represents k-times tensor
product of UO modulo the action of symmetric group.). Then

From Fact and (3.2.24), we have c(UO) = c(E)c(F) = 1 + (x + y)t + (xy)t2, and

c(U) = 1 - O"lt + 0"1,lt
2 => c(UO) = 1 + O"tt + 0"1,tt2 (3.2.23)

where c(E) denotes total Chern class of vector bundle E and U denotes universal
bundle of Gr(2, N).

We formally represent UO as direct sum of line bundles E and F i.e. UO = E 63 F
and we set

Then we calculate er(Symk(UO)). We first introduce the following fact.

Fact.

(3.2.24)

l+xt

1+yt
(x and yare formal variables).

c(E)

c(F)

(3.2.17)

I E Gr(2, N) is contained in Mt

<=} FtlL = 0

<=} st = 0 at I E Gr(2, N)
<=} IE PD(er(Symk(UO)))

In deriving last line from the third one, we used Gauss-Bonnet theorem that says
zero locus of a section of vector bundle E is homologically equivalent to PD(CrtE)).
Since rank(Symk(UO)) equals to k+l, dim(PD(er(SymN(U')))) is (2N -4)-k-l =

2N - k - 5, which agrees with dim(M~h = 2N - k - 2 and SL(2, C) equivalence.

x+Y=O"I
xy = 0"1,1

We can formally decompose Symk(U') into the form

Symk(Uo) = E®k 63 E®k-I ® F 63 ... 63 E®k-l ® F 63 F®k

(3.2.25)

(3.2.26)
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and we have

c(Symk(U')) = (1 + kxt)(l + ((k - l)x + y)t)··· (1 + kyt)

Top Chern class is given as the coefficients of tk+l.

Or(Symk(U')) = kx((k - l)x + y)((k - 2)x + 2y)· .. ky

(3.2.27)

(3.2.28)

Combination of (3.2.29),(3.2.30) and (3.2.31) leads to the formula,

PD(cr(Symk(U'))) =
W i

k(k!) L Sym{~}-i(,Bm) L(2iCj - 2iCj-l)a{~}+i_j+l,{~}-i+j+l
i=O j=O

(k 5. N -2) (3.2.32)

cr(Symk(U')) consists of symmetric polynomials of x and y,so from (3.2.25), we can
represent Cr(SymN(U')) as polynomials of al and al,l' The result is

From (3.2.21) and (3.2.22), we can derive two formula.

a~,l = an,n (n 5. N - 2)

where

{~}
2

,Bi

Symj(,Bi)

(k: odd)

{~} k

k(k!) L Sym{~}-i(,Bm)ai:ta~,i}-i+l
i=O

(k : even)

k'2 - '2 (k: odd)

~ - 1 (k: even)
2
(k - 2i)2 . k
(k _ i)i (1 5. ~ 5. '2)

L ,Bi,· .. ,Bij

1:Si1S···:SijS{i}

(3.2.29)

(3.2.30)

PD(cr(Symk(U'))) =

{~}-l i

k(k!) L SymW-i(,Bm) L(2iCj - 2iCj-Ila{~l+i_j+l,{~}-i+j+1
i=O j=O

g}
+k(k!) L(k-lCj - k-ICj-l)ak-i.i+l

j=1
(k = N - 1) (3.2.33)

PD(cr(Symk(U'))) =
W-2 i

k(k!) L Sym{~}-i(,Bm) L(2iCj - 2iCj-l)a{~}+i-j+l,{~}_i+i+1
i=O j=O

W-l
+k(k!)Sym1(,Bm) L (k-3Cj - k-3Cj-l)ak-l-j,i+2

j=l

{~}

+k(k!) L(k-1Cj - k-lCj-l)ak-j,j+l
j=2

(k = N) (3.2.34)
(for k: odd)

PD(cr(Symk(U'))) =

{i} i

k(k!) t Sym{~}-i(,Bm) L(2i+lC j - 2i+lCj-Ila{~}+i-j+l,{~}-i+j+l
i=O j=O

(3.2.35)

(3.2.36)

(k 5. N-2)

PD(cr(Symk(U'))) =

{~}-l k. i

k(k!) L Sym{-;-}-'(,Bm) Lb+ICj - 2i+ICj-da{~}+i_i+I,{~}_i+j+l
i=O J=O

{~}

+k(k!) L(k-lCj - k-1Cj-dak-j,i+l
j=l

(k = N -1)

(3.2.31)

[~l

L(kCi - kCi-l)ak+n-i,n+i (k + n 5. N - 2)
i=O

[~J

L(N-ICi - N- 1Ci- 1)aN-i,i+l
i=2

[~J-l

L (N-3Ci - N-3Ci-daN-l-i,i+2
i=1

u~,O' O"n,n
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PD(cT(Symk(U0))) =

m-2 i

k(k!) L Sym{~l-i(.Bm) L(2i+ICj - 2i+ICj- I)U{-'-l+i-j+!,{-'-l-i+i+l
i=O j=O 2 2

{~l-I

+k(k!)Syml(.Bm) L (k-3Cj - k-3Cj-IlUk-I-jj+2
j=1

(3.2.41)

(1 ~ k ~ N - 3)

(where ai,.Bi are arbitrary complex numbers)

We can count d(Uk_j,i+1 n a~) by use of matrix representation of Uk-j,j+!'

(3.2.37)

(
'YI 'YN-k+i-2 1 0 0 0 0 00)

ak-j,i+1 = "I "N-k+i-2 0 "N-k+i-l "N-i-3 1 0 .
(3.2.42)

('Yi, "i represents arbitrary complex number and precisely speaking, we have to add
boundary points to (3.2.42) to compactify the cycle.)

Then (a~ n ak-j,i+Il are given as the following k - 2i points. (In matrix repre­
sentation dim(a~) + dim(uk_j,j+!) = 2N - 4 < 2N = dim(Matrix), so we have to
permit multiplying each row of~ by constant and adding one row to another when
we calculate intersection number. See Local Appendix B for details.)

m
+k(k!) L(k-1Cj - k-1Cj-I)Uk-j,i+1

j=2

(k=N)

(for k: even)

These formulas represent the exact moduli spaces M~{ divided by S£(2, C).

Next, from (3.2.18), what we have to do is to determine
~(ak-j,j+l n ~o(PD(/\~:I-k-2 <pHe)))). We define a~ as PD(/\~:I-k-2<pi(e)). a~ is
constructed from the definition of <Pi.

<Pi : Mf,fN-l >-t CpN- 1

f E M~iN-l >-t f(zi) (3.2.38)

Since PD(/\~:I-k-2 <pHe)) = n~:I-k-2 PD(<pi(e)) = n~:I-k-2 <Pio(PD(e)), a~ is con­
structed as subspace of Cp2N- 1 satisfying the following conditions.

(~ ::: ~ ~ ~ ~ ::: ~), ... ,(~

Thus we have

o 1 0
000

o 0 0
o 1 0 n

(3.2.43)

(3.2.44)

where

!(Zi) EPD(ei) (i=1, .. ·,2N-k-2) (3.2.39) Combining (3.2.44) with formulas of PD(or(Symk(UO))), and using the following
identities,

(k ~ N - 2)

! E Cp2N- 1= (aA a~ a~) /Coal a~ af"
Zl = (0 : 1), Z2 = (1 : 0), Z3 = (1 : -1)

zi=(e;:-l) (4~i~2N-k-2)

PD(ei) = {(Xl:'" : X N) E CpN-IIXi = O}

(1 ~i ~ N)

PD(ei) = {(Xl:"': X N) E CpN-1IXk+2 = Xk+2+i-N}
(N + 1 ~ i ~ 2N - k - 2)

By solving (3.2.40) and using map~, we can construct cycle a~.

ak ._ (al 0 a3 a4 a2N-k-2 a2N-k-I" aN) ( )
N .- 0.B2 a3 C4a4 C2N-k-2a2N-k-2 .B2N-k-1 .BN 3.2.40

(N - 2 ~ k ~ N)
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t,(2iCj - 2iCj-I)(2j - 2i + 2) = 22i

j=O

t(2i+ ICj - 2i+!Cj -d(2j - 2i + 2) = 22i+1

j=O

{~l •. .B {~l .B
LSym{2l-J(~) = II (1 +..2.)
j=O 4 j=1 4

we get the final result of this section.

(N-2)+(N-k)
( II Oe(Zi))I

i=l

kHI - e .k! (k = N - 1)

kk+l - (k - 2). k· k!· (I: ---:L.,) - 2k· k'
j=l k - J

(k=N)
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(3.2.45)

(3.2.46)

(3.2.47)



Note that this result agrees with the statement of (3.1.15). And we can see in
k ~ N - 1 case, boundary part appears as correction term in correlation function.

Appendix A of Section 3.2

Construction of section SN

Let Lf=l !JiXj = O(i = 1,2, ... , N - 2) be defining equations of l E Gr(2, N). In
matrix form, it can be written as

BX=O (3.2.48)

where B = (!Ji) and X = (Xj ).

We transform B into a simple form by multiplying an (N - 2) x (N - 2) invertible
matrix D from the left and N x N invertible matrix C- 1 from the right, i.e

.. 0]o ... :
(3.2.49)

Then base transformation CX = X' = (Xj) turns (3.2.48) into a form

X;=O (i=3,4, ... ,N) (3.2.50)
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From (3.2.50) we can see X; and X~ as dual coordinate basis of l E Gr(2, N).ln
other words, they are the basis of the fiber of U' at l.(U denotes universal bundle of
Gr(2,N).)

Let FN = L~l X[" be defining equation of M N. We substitute Xi in FN by
(C- 1);Xj and set XI = O(i = 3,4, .. , N). (This operation corresponds to restriction
of FN at l.)

Then we get homogeneous polynomial of X; and X~ of degree N, which defines
section of SymN(U') at l.

Appendix B of Section 3.2

• Counting of ~(Or(PD(SymN(U')))n a~)

We will limit the discussions to the case of aZ· Other cases can be treated in the
same manner.

Since we have cr(SymN(U')) written in terms of Schubert cycles, we only have
to determine the intersection number ~(O'N-i,i+l n a).(i = 2,3, ... , {N/2})

'We owe this part of discussion to Dr. Hori
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As we have said in the body of this paper, by solving (3.2.40) explicitly and using
map ~,we have a represented as N + 1 dim subspace in the space of 2 x N matrix.

3.3 Gravitational Moduli Space of CP1

(fJi, 'Yi : arbitrary complex number)

On the other hand,aN - i, i + 1 can also be represented as N - 5 dim subspace as
follows.

aN-2 aN-l

CN-2aN-2 fJN-I
(3.2.51)

This section is given to prepare for the notion of stable maps which describes moduli
space related to topological sigma model (A-model) coupled with gravity. Gravita­
tional,or complex structure moduli space of CPl with n-punctures, Mo,n is roughly
the positions of distinct n points on Cpl divided by the automorphism group of
Cpl,8L(2,C).

(3.3.55)

hi,6i represents arbitrary complex number, and, precisely speaking, (3.2.52) rep­
resents internal points subset of aN-i,i+!, so we have to compactify it by adding
boundary points.)

Then, what we have to do is to determine the intersection points between (3.2.51)
and (3.2.52).

We have two troubles:
1. (3.2.51) and (3.2.52) are in 2 x N matrix form and GL(2, C) indeterminate. So in
counting intersection points,we can multiply each row vector of (3.2.51) by constant
and add one row to the other.
2. In i :::: 3 case,(3.2.51) and (3.2.52) do not intersect transversely, i.e intersect in more
than one dimension, so we have to substitute aZ by the cycles af,N (i = 2,3, ... , {if})
which are homologically equivalent to aZ and intersects transversely with aN-i,i+!'

... 'Yi-2 1 a a a a
• •• <5i - 2 a <5i - 1 ... <5N - i - 3 1 a

aN-HI

. .. CN-i-laN-i+1

A (stable) tree T is a collection of finite sets VT (vertices), ET (interior edges), TT
(exterior edges, or tails), and two boundary maps b: TT >-t VT (every tail has one end
vertex), and b : ET>-t {unbranched pairs of distinct vertices}. (every interior edge
has exactly two vertices).

The geometric realization of T must be connected and simply connected. Every
vertex must belong to at least three edges, exterior and / or interior (stability).

3.3.1 Trees

R.h.s of (3.3.55) is non-compact, since z;'s are distinct. To compactify MO,n, we add
stable curves which consist of several component Cpl 's glued by double singularities.
From a puncture on one component of a stable curve, punctures lying on the other
components cannot be distinguished. In this way, we can describe the coincidence
of punctures in systematic way. We will review some topological structures of Mo,n
following the formalism of [21).

Definition

We introduce trees describing combinatorial structure of Mo,n. Their vertices corre­
spond to components, and edges to punctures.

(3.2.52)

aN)
fJN

(3.2.53)

.. 0)

.. a

0'3 + aN-3 aN-2 aN-I

0'3 + CN-3aN-3 CN-2a N-2 fJN-l

0'1 a ai+1

a f32 <;+lai+l

CXN-i+ai

CN-iaN-i + <;ai

Then,aN_i,i+! and (l> intersects in the following N - 2i points. Definition

(
0 ... a 1 a a ... 0) ... (0 ... a 1 a
0···0010···0' '0···000 ~ )

(3.2.54)
(Notice that intersection points lie in boundary component of aN-i,i+1 except for last
one.)

Finally we have ~(aN-i,i+! nO') = N - 2i.

A morphism of trees I : T>-t a is a collection of three maps (notice arrow directions)

(3.3.56)

with the following properties.

a) Iv is surjective, It and r are injective.

b) If VI, V2 are ends of an edge e' of T, then either Iv(vd = Iv(V2), or Iv(Vi) are
ends of an edge e" of a : we say that e' covers this edge, and we must then have
e' = r(e").
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Flags and dimension

A pair { edge, one end of it} is called a flag. For a tree r, We denote by FT the set of
its flags, and by F.(v} the set of flags ending in vertex v. We have 1FTI= 21ETI + ITTI.

The dimension of r is defined by

c} If Vi E VT is such a vertex that fv(v') is the end of til E T" then Vi is the end
of fL(t"}.

In other words, f contracts interior edges from ETIr(Eu } and tails from TTl fL(Tu },

and is one-to-one on the remaining edges. We will denote by f(e) the image of a
non-contracted edge.

Objects

(3.3.63)M T = II MO,F,(v)'
vEVT"

Put

We have dim(M(r}} = dim(r}.

This space parameterizes a family of (generally reducible) stable rational curves
C(r} with marked points indexed by TT' The dual graph of a generic (but not
arbitrary) curve of this family is (canonically identified with) r. To describe it,
consider a point x = (xv) E M(r}, Xv E MO,F,(v) and let C(xv} be the fiber of a
universal curve at this point. If VI, V2 bound an edge e of r, C(xv } contains a point
y(vi,e) marked by the flag (vi,e). Identify y(vl,e} with y(v2,e} in the disjoint union
UVEF, C(xv} for all e. This will be C(r)(x}.

Clearly, its remaining special points are marked by TT so that we have a canonical
morphism (closed embedding) M(r} >-t MO,T,. This is a special case of morphisms
defined below.

(3.3.57)dim(r} := L (IFT(v) - 31) = 21ETI + ITTI- 3IVTI
vEV-r

Gluing

Let (ri' til, i = 1,2, be two pairs consisting each of a tree and its tail. Then gluing
(t 1 to t2) produce a pair (r, E) consisting of a tree and its interior edge:

Morphisms

This operation is functorial in the following sense: for two morphisms h : ri >-t (Ji
not contracting t i , we have a self explanatory morphism

Formally:

VT= VT, II V,." ET= ETI II ET2 II{e}
TT = (TTl IIT,.,)/{tJ,t2}, b(e} = {b(ttl,b(t2)}

(3.3.58)

(3.3.59)

(3.3.60)

(3.3.61)

Any morphisms of trees f : r >-t (J contracting no tails induces a closed embedding
M(r) >-t M((J}. To construct it, identify TT = Tu = T by means of fL, and denote
by p the one vertex tree with tails T. Clearly ,M(p} = MO,r, and by universality, we
have embedding of M((J} and M(r} into M(p}. In this embedding, M((J} C M(r}
which is seeked for morphism.

Any morphism of one-vertex trees contracting tails induces the forgetful mor­
phism of the respective moduli spaces.

The general construction of moduli space morphism of trees can be can be ob­
tained by combining these two cases: embed M(r) into MO,r., M((J} into MO,T"
and restrict the forgetful map onto M(r}.

Gluing

3.3.2 From trees to moduli spaces

In this subsection, we define a functor
M(r) = M{rt} x M(r2}

H*(M(r}} = H'(M(rtl} I8i H*(Mh}}
(3.3.64)

(3.3.65)

M : {trees} >-t {algebraic manifolds} (3.3.62)
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3.3.3 Homology of moduli spaces

Additive generators

Theorem

Relation (3.3.66) span the space of all linear relations between dr.

Lemma

As an algebra, H' := H'(Mo,n) is generated by the boundary divisorial cohomology
classes Ds indexed by unordered partitions S of {l, 2, ... , n} into two parts SI, S2
of cardinality;::: 2 and satisfying the following generating relations.

if four sets Si n Tj are pairwise distinct and non-empty. (In this case we will call S
and T in compatible).

Classes Ds are dual to the homology classes du where u run over n-trees with
two vertices, and (3.3.67) is a consequence of (3.3.66).

Denote now by H, the linear space generated by the symbols [du ] subject to all
relations (3.3.66) where U,7 run over all n-isomorphism classes of n-trees.

There is an obvious surjective map a : H, H H',

If Tr = {l, 2,···, n}, we will call 7 an n-tree. A morphism of n-trees 7 H u identical
on tails will be called n-morphism. If such a morphism exists, it is unique. Let
Pn be a one-vertex n-tree. Then M(Pn) = MO,n. For any n-tree 7, there exists a
unique n-contraction 7 H Pn. Let dr E H,(Mo,n) be the homology class of M(7)
corresponding to this contraction. It depends only on the n-isomorphism class of
7. The manifolds M(7) embedded into each other in this way will be called strata.
Then the following theorem holds.

Theorem

dr span H,(Mo,n)

Linear relations

Choose a system R = (7, {i,j,k,l},v) where 7 is an n-tree,l :'::: i,j,k,l:,::: n are its
pairwise distinct tails, and v E Vr is such a vertex that paths from v to i, j, k, I start
with pairwise distinct edges ei, ej, ek, el respectively (some of these edges may be tails
themselves).

Consider all n-contractions 7' H 7 which contract exactly one edge onto the
vertex v and satisfy the following condition: lifts to r of ei, ej on the one hand,
and ek, el on the other, are incident to different vertices of the contracted edge.
Below we will denote by {ij7' kl} the summation over n-isomorphism classes of such
contractions, R being fixed.

and

Main Theorem

L Ds = L Dr
{ijSkl} {ikrjl}

DsDr = 0

a([duD := the cohomology class dual todu.

(3.3.67)

(3.3.68)

(3.3.69)

Lemma

For any R, we have
L dr ,= L dr "

{ijr'kl} {ikr"jl}
(3.3.66)

H, can be endowed with a structure of cyclic H'-module generated by [dpJ := 1 so
that the map

b: H' H H" b(h) = h· 1 (3.3.70)

is surjective.

inH,(Mo,n)

Proof Consider a morphism of 7 contracting all edges and tails except of i, j, k, l.
It induces the forgetful morphism M(7) H MO,{i,j,k,l} ~ Cpl Then both sides of
(3.3.66) are mapped to points which are homologically equivalent to each other on
C pl. Two fibers over boundary divisors of the latter moduli space are represented
by the cycles 8Um{ijr'kl}M(7') and 8Um{ikT"jl}M(7") respectively.

3.4 Stable Map

Let M be a Kahler manifold with HI,I(M, Z) ~ Ze. Moduli space corresponding to
topological sigma model coupled to gravity from Cpl to M is the moduli space of
holomorphic maps from punctured cpt to M. It is fundamentally constructed as
follows.

(3.4.71)
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We can easily extend (3.4.72) to boundary part of moduli spaces with the notion of
stable curve and stable map.

Let M be a Fano variety ,i.e., Cl (TM) > 0 and Wi(i = 1," " m) be the element
of H'(M). From (3.3.68), we have the following equality.

where f denotes holomorphic maps from Cpl to M of degree d. As we have said in
the previous section, n-punctures are in distinct positions. Then expression (3.4.71)
is non-compact. To compactify M~d,n we have to introduce the notion of stable map
which describe the coincidence of punctures.

Definition. Stable map is a structure (C; Zl> Z2, ... ,Zn, 1) consisting of a con­
nected compact reduced C with k 2: 0 pairwise distinct marked non-singular points
z, and at most ordinary double singular points, and a map f : C ..... M having
no nontrivial first order infinitesimal automorphisms, identical on M and Zl,"', Zn

(stability).

Then M~d,n is defined by the

Definition. M~d,n is the moduli space of stable maps to M of curves of arith­
metic genus 0 with n 2: 0 marked points such that f,[C] = de.

With this definition, we can naturally define the map II : M~d.n ..... Mo,n as
follows.

(3.4.77)

(3.4.78)
m m tnp

f)IAA.FM = L (Ow.oWjOw. II O~) II~
np~O p=l p=l np .

Then using (3.4.76), we derive the following equation.

f)t;f)t;f)t.FM7)"~f)t~f)tkf)t,FM

m m m ~

= L (Ow,Ow, II O;;:OwJ7)"P(OW~OWkOW,II O~p-mp) II npCmp~
O~mp~np,O:::;:np p=l p=l p=l np .

= f)t.f)tkf)t.FM7)"Pf)t~f)tjf)t,FM (3.4.79)

We can eliminate the condition d = d1 + d2 using topological selection rule.

Now we introduce the generating function of correlation functions (free energy).

And we have

and the fact that M is Fano variety, we have

L (OWm.OWm, II OWmpOW.)7)"Il(OW~OWmkOWm/ II OWm)
AU B={l ..··,n}-{i.j,k,lj pEA pEB

L (OWm,OWmk II OWmpOWJ7)"P(OW~OWm,OWm,II OWmp )
AU B={1 .... ,nj-{i,j.k,I} pEA pEB

(3.4.76)

This is DWVV equation. We will return to it in Section 4.2.

(3.4.72)

Then we assume the following formula.

L 1d i\ 4>;(Wmp ) A W(Ds )
{ijSkl} MO'I'l,M p=l

L .. L Ldt ¢;(Wm,) A 4>;(Wm,) /\ ¢;(Wmp ) A 4>:(W,,)
AU B={l .. ··,n}-{.,J,k,l} dt+dFd O,'A+S,M pEA

·rl"~ r d ¢;(Wp) A ¢k(Wmk ) A 4>i(Wm,) /\ 4>;(Wmp ) (3.4.74)
JMo~~B+3,M pEB

3.5 Torus Action Method

In this section we introduce torus action method invented by Kontsevich, and per­
form some explicit calculation of correlation functions of A-model on M!: coupled
with gravity from the formula (2.4.89). We also give path-integral representation of
generating function of correlation functions of A-model on M~ coupled with gravity.

where
7)"p := LW" II Wil 7J<>p7)P~ = O~ (3.4.75)

¢a and ¢b are the evaluation map corresponding to the double singularity punctures
Za and Zb coming from the contracted edge of 1" in (3.3.66). We can understand the
meaning of (3.4.74) by physical logic ,i.e., infinite time evolution are described by the
insertion of projection operator to ground states. Then combining (3.4.73),(3.4.74)

3.5.1 Introduction of the Torus Action and the Bott Residue
Formula

Torus action method is the strategy to use the Bott residue formula [27J which
reduces the integral of Chern classes of vector bundle on X to the one on XI of the
fixed point set of the torus action flow on X to the case where X is Mf,:':-'.
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(3.5.82)

We can represent the total Chern class of EZ/,.;(A.) and Nj,9j(A.) as the product of
first Chern class of formal line bundles as follows.

where Ai E C is the character of the flow. Then (3.5.80) induce the flow on MR::- 1

from the compatibility with the evaluation map.
(3.5.87)

(3.5.88)

(3.5.89)

Pi:= (0,0, ... ,0,'l',0, ... ,0).

/, II ~'(£i) =
X i

/,
IT ·ITn~, ITT:!i'J.) (e7J'.j(A.) + f· .(.A ))'"L t 1-1 k-l "',J,k t,l *

X ITn/V ITT/V(.)( 7,gj(A.) + .('))
"(.., j=1 k=l ni,j 9J A.

i j- -It.j: (s,t) >-7 (0"",0, Sd ,0,···,0, t d ,0,···,0)

Top Chern classes are given as the coefficient form of tk of highest degree.

With these preparations, we introduce the Bott residue formula.

3.5.2 Construction of Fixed Point Set

Of course Lt.j is kept fixed under 5£(2, C) equivalence. But now that we have coupled
gravity with the theory, we have to consider the boundary components of moduli
space of CP1, i.e., stable curves. Stable curve C with k-punctures is constructed with
the set of Cpl'S {C,,} with punctures assigned on them and additional punctures
of double singularity which connect two components of G,,'s. Then we can translate
the condition into the condition that the genus of stable curve is zero into imposing
its arithmetic genus to be zero. In geometrical language, if we represent C" as a line
and define a figure with lines which intersect at singular punctures, this is equivalent
to the non-existence of closed loops in it. This addition makes us to introduce stable
maps which map stable curves to CpN-l.

With these considerations, we can label the connected components of the fixed
point set MR::~; with a tree graph f with the following structure. We denote them
by MR::- 1

(r). The rules of correspondences are,

Fixed points of CpN-l under T t are given by considering the projective equivalence

1) The vertices v E Vert(f) correspond to the connected component Cv of
j-l (PI, ... ,PN). Cv can be a sum of connected irreducible components of C or
be a point.

2) The edges a E Edge(f) correspond to the irreducible component C"mapped
to It.j'

Then, we can find the fundamental maps It.j from CPl >-7 CpN-l which remain
fixed under T t as the degree d maps which connect Pi and Pj'

(3.5.86)

(3.5.85)

(3.5.84)

(3.5.81)

(3.5.83)

(3.5.80)

ef ',i(A.)tE7J'.j(A.)
',J

egj(A')'Nj,9j(A.)

n&i rdi,j)

II II (1 + t . e7.f.~j(A.))
j=1 k=1

n/VT/V(j)
II II (1 + t . n]:fj(A.))
j=1 k=1

rank(Ei~l'·j(A.))= rc(i,j)

rank(Nj,9j(A.)) = rNU)

<Pi (T,((Zh Z2,"', Zm, 1)/ ~))

:= Tt 0 <Pi((ZI, Z2,"', Zm,!)/ ~)

= Tt 0 j(Zi)

T,(Ei:/',j(A.))

Tt(Nj,9j(A.))

First, let us introduce the torus action flow on CpN-l,

T, : CpN-l >-7 CpN-l

(X1,X2,'" ,XN ) >-7 (eAl'Xl,eA"X2," ',eAN'XN )

(tEC)

where

and we set

Next, we introduce the Bott residue formula. For simplicity, we use X for MR::-'.
Let El ,' " En be a holomorphic vector bundle on X, and X f be the fixed point set
of X under the flow (3.5.81). We can decompose X f as the sum of the connected
components X 7 .

Then consider Eil x , and the normal bundle N7 c:= T'Xlx,/T'X7 and decompose
them into the eigen vector bundle under the torus action T" i.e.,

Eil x , - EBEZ/',i(A.)
j=l

N
7

"" EBNj,9j(A.)
j=1

47 48



Then we have to add the additional structures to f,

1) We label each v E Vert(r) by fv E {1, 2,···, N} which is defined by PI. =

f(Cv).

2) The m-punctures are distributed among the vertices v E Vert(r). We represent
this distribution by Bv E {1, 2,"', m}.

3) We attach degree d", to each a E Edge(r) defined by the degree of 11.;.

We have to set punctures on the vertices Vert(r) because if we put punctures on C"',
they move with the flow Tt , which contradicts with the assumption of fixed point
sets. Then we can construct M~::-1 (r) under conditions that emerge from the
above three structures, , ,

(where

means a sum with double-singularity gluing operation.), [TMIM(r)] consists of the
following degrees of freedom,

1) Moving ftC) in CpN-l.

2) Resolution of double singularities of C, i.e., from xy = 0 to xy = €.

3) Moving puncture degrees of freedom.

And we have

1) If a E Edge(f) connects v, u E Vert(r), fv =I- fv.

2) {1, 2,··· ,m} = UVEVert(r) Bv ·

3) L"'EEdge(r) d", = d

[T'MIM(r)] [HO(C, j"(T'CpN-I))]

+ L [T;C", 0 T;C~J
zEc"nC/3

0#

Then we have Mf.:.:- 1
(r) ~ II (Mo,sJ/(Aut(r))

vEVert(r)

(3.5.90)

+ L [T;C",] + [T;C~]
zEcQncp

0#

+ L [T;,C] - L[HO(C"', T'C"')]
z"iE{I,. .. ,kj

(3.5.92)

The last term of (3.5.92) corresponds to devision by B£(2, C) of each component
Ca' From (3.5.90) M(f) has continuous degrees of freedom which come only from
C'" mapped to a point, we have

where we used the fact that all the punctures lie in the component mapped to a
point.

From (3.5.92) and (3.5.93), we have

where Mo,s. is the moduli space of complex structure of Cpl with Bv punctures.
It represents the gravitational degree of freedom of Cv' According to Kontsevich,
division by Aut(r) reflects the orbispace structure of M~::-l. It may reflect the
multiplicity of the degeneration of stable maps. ' ,

3.5.3 Determination of the contribution from Normal and
Vector bundles

Contributions from N;!;(r)

With these preparations, we determine the contribution from M~::-l (in the fol­
lowing discussion we abbreviate the notation as M(f)) to (3.5.87): '

First, we calculate the contribution from NM(r). Following Kontsevich,we will
use the expression of vector bundles as the K-group [ ], which translates sum and
quotient operations into addition and subtraction. Then we have

(3.5.91)

If we set

[T'M(r)] L [T;Ca 0 T;CIIJ
zEcancp

Q=#3o,fJ~Edge(r)

+ L [T;C",]
zEc"ncp

o¥-P,0f'Edlle(r)

+ L [T;.C]
z"iE{1,2,,··,kj

L [HO(C"', T'C"')]
",¢Edge(r)

(3.5.93)

(3.5.94)
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Local coordinate around z E C" n Cp on C" and Cp are ~ and;;; , and we have

(3.5.110)

(3.5.106)

(3.5.108)

(3.5.109)

II II wpl ( L wpl )val(v)+IS.-3

vEVert(r) flagfl flag,.
F=(v,o) F=(v,Q)

(val(v) + ttSv ~ 3)

Then the r.h.s of (3.5.104) can be rewritten as follows.

Is.times

(r.h.s of (3.5.107)) = II L II Wpd,-l(Ud, ·"Ud••,. ~))

vEVert(r) Ld:;~;:~(:\(:~;:_3 F;:'(;,:)

where val (v) represents the valency of v and FI(v) and F2 (v) are the flags whose
sources are v. Note that in this case f-l(V) is a point.

Next we consider the contributions from (3.5.97). Again from (3.5.93), TzC" is
trivial as the line bundle on M(r) but has an eigenvalue WF as in the derivation of
(3.5.103). On the other hand, T:Cp has trivial torus action (because Cp is mapped
to a point) but non trivial line bundle on M(r). And if tt(punctures onCv ) ~ 3,
Mo,s. is well-defined and we have

where ZF represents the gluing point of Cv and F. We can evaluate the r.h.s
of (3.5.107) by expanding in terms of 2;; and using the fact that CI (T:FC

V
) =

-cl(T:;Cv)' Expansion coefficients are intersection numbers of Mumford-Morita
class on the Cpl-moduli space, which is identified as the correlation function of
gravitational descendants by Witten [30]. Continuing the calculation, we have

(Contribution from (3.5.97) to (3.5.87)) = II (j, II 1 )
vEVert(r) MO,ual(v)+~Stl paYIJ WF + Cl (T~F(CV))

1'=(v,o)

(val(v) + ttsv ~ 3) (3.5107)

Is.times
~

(Ud1 •.• Ud••I• p . .. P) is calculated in [29],

(Contribution from (3.5.97) to (3.5.87)) =

Combining (3.5.107),(3.5.108) and (3.5.109), we have

Then we consider (3.5.97). Contributions of the first terms are, as before

(3.5.95)

(3.5.96)

(3.5.97)

(3.5.98)

(3.5.104)

(3.5.99)

(3.5.100)

(3.5.102)

(3.5.103)

(3.5.101)

~t
Z2 H Z2eda

~t
W2 t-+ W2edp

[T~C,,] - L [HO(C",T'C")]
"EEdge(r)

L [T~C" I8i T~Cp]
zEGg nC/3

o'#IJo,.8EEdge(r)

L
zECo nC/3

o¥-(3aEEdge(r)

~t
Zl I---t zle do

~t
WI t-+ wle dp

+ L [T~C" I8i T~Cp]
:ECanC,e

aEEdge(r),.BIj!Edge(r)

+

J-. -.
C" : (Zl, Z2) t-+ (0, ... , 0, zto,0,· ·,0, zgo ,0, ... ,0)

i I-. -.
Cp : (Wl,W2) t-+ (O,···,O,wtP,O, ... ,O,wgP,O,···,O)

(Contribution from (3.5.96) to (3.5.87)) = II
cO-ncp#:-0

o#fJo,PEEdge(r)

where

Again following Kontsevich, we introduce the notation "Flag" F = (v,a) which
represents edge a with a direction specified by the source vertex v. We define

, ,~d d
TzC"I8iTpp = d(~) I8i d(;;;)

Definition of torus action (3.5.81) leads us to

The result is,

and

Then we determine the contribution from the first term of (3.5.94), (3.5.96), (3.5.97)
and (3.5.97).

First, consider the contribution from (3.5.96). Since a, (3 E Edge(r), TzC,,- and
TzCp's are trivial as the line bundle on M(r). Let C" and Cp be mapped to 11,'1 and

It:

A/. - A/.
WF:=-d-,,- (3.5.105) II

cancp WFi(a)
o¥-f3oEEdge(r)

(3.5.111)
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(Contributions from (3.5.97)) = II II Wp II C([O]) (3.5.114)
vEVert(r) /1f191J aEEdge(r)

\lo.l(v)=1 ~Sv=O F=(v,o)

where C([O]) represents the factor from [0]. Multiplying (3.5.111) and (3.5.113), what
remains except for C([O]) is the products of wp's whose edges have only one double
singularity. In other words, the corresponding F = (v, a) has val (v) = 1 and f-l(v)
is a point. We have

where F.(a)'s are two flags having a as their edges.

The second terms that represent the automorphism group degrees of freedom of
edge components can be expressed by the tangent bundles on the inverse images of
two vertices of the edges and scaling transformation degree of freedom fixing the
punctures (We denote it as [0]). In terms of the K-group, we have

This contribution is then given as the contribution from the second term divided by
the one from from the third term. As the independent basis of HO(C", !*(T'CPN-l))
describing the deformation of f(C,,) in CpN-l where C" is

(3.5.118)

(3.5.117)

(3.5.119)

(3.5.120)

(3.5.121)

(3.5.122)

(-d,,:<=; m:<=; d,,)

(O:<=;m:<=;d,,) k#i,j

(;;)mxi ;&
(;;)mXja~.

a)

b)

J----..
(0,··· ,o,zto+ tZ;"zg.-m,O,··· ,0, zgo ,0,··· ,0)

j----..
(0,···,0, zto,0,···, o,zgo + tzl"zgo-m, 0,···,0)

k , J
,.--"---" ----.. ----..

(0"", 0, fZrnZ~Q-m, 0,'" 1 0, zto 1 0,"', 0, z~o 1 0,'" 1 0).

i J----.. ----..
C,,: (Zl' Z2) H (0,· .. ,0, z'fo ,0, ... ,0, zgo ,0, ... ,0)

,we have

We can write these basis in more sophisticated form,

This expression directly leads us to

(3.5.113)

(3.5.112)

II Wp,(,,) . wp,(,,) . CnO])
"EEdge(r)

L [HO(C", T'C,,)]
"EEdge(r)

L ([T~,(",e,,] + [0] + [T~,("P,,])
"EEdge(r)

And contributions to (3.5.87) are

After all, from (3.5.106),(3.5.110) and (3.5.114), we put all the factors from [Nt;(r)]
into the form,

Determination of the contributions from [HO(C, !*(T'CPN-l))]

(3.5.124)

(3.5.123)

(3.5.125)

(m#O)

(m=O)

m·wp
1

C([O])

(Contribution from (3.5.122))

(Contribution from (3.5.122))

(Contributions from cval(v)-l I8i T~f. CPN-l) = II (>'1. - Aj)val(v)-l (3.5.126)
vEVert(r)

(3.5.115)II II WF 1( L w F
1)val(v)+'S.-3 II C([O])

vEVert(r) IlaglJ flagll aEEdge(f)
F=(Il,o) F=(v,a)

f(C) = U"EEdge(r/(C,,)

, we can construct [HO(C, !*(T'CpN-l ll] by gluing

Since

(3.5.127)

Combining (3.5.124), (3.5.125), (3.5.125) and (3.5.126), we have

II (d,,!)-2(C([0]))-1 II (II (AI. - Aj))val(v)-I
"EEdge(r) vEVert(r) jIll.

EB [H°(C", r(T'CpN-l))]
"EEdge(r)

at PI•. This process can be described using exact sequences,

oH HO(C, r(T'CpN-l)) H

EB HO(C", r(T'CpN-l)) H EB cva1(v)-1 I8i T~f. CpN-l H 0(3.5.116)
"EEdge(r) vEVert(I')

II (wpt do

Ilags P=(v,,,)
II II IT (mAl. + (d" - m)AI.

oEEdge(r) k¥f... .!v m=O do
(lL,v):vertices o/a
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Factors from Vector Bundles £i

Then since the basis of HO(C",,f*(O(k· H))) are given as

3.5.4 Some Explicit Calculation of Amplitudes

and the section of 0pfJkH) is xj., we have

II Plj - Am,)-l(Ak - Am,)-l
m2i-j,k

~ 2:) II (Ai - Ak)-l(Aj - Akt 1 IT (aAi + (N _ a)Aj) (A{"-4 - Af-4))
#J k;<',J a=O W F,

(from (a))
1 1 AN- 4 + ,N-4_L( ----:( i WF. /lk WF, + AN-4)
2 '#j NAJ WF, +WF, J

i#k

1 II (Aj - An)
WF\WPzWF3WF4 ntj

II (Ai - Am,)-l(Aj - Am,)-l II (Aj - Am,)-I(Ak - Am,t 1

fflli-i,j m2:Fj,k

N N

II (alAi + (N - aIlAj) II (a2Aj + (N - a2)Ak)
al=O a2=O

(from (c))

+ ~ L((AN-4 _ AN - 4 ) _1_
4 i;<j' J WF,W}, w},

II (Ai - AktJ(Aj - Ak)-l(Ai + Aj - Akt J
k;<i,j 2

IT (aAj + (2N - a)Ak))
a=O 2
(from (b))

~ L ((A N - 4__1 1_
2 i-:j:.j t WF2 + WF3 WP4 + WFfj WF6

j,!-k,k#l

Af-4 1
+ WF,-----WF.

WF,WF, WF. + WF,

+ WF, __l__ A[;-4 WF.

WF2 + WF3 WF4Wps

+ WF, __1 1__Af- 4 )

WF, + WF, WF. + WF,

1 1

WF,WF,WF,WF.WF,WF. (NAjNAd

II (Aj - An,) II (Ak - An,)
nl::f:.j n2:f:.k

II (Ai - Am,)-l(Aj - Am,)-l
mlt-i,i

(3.5.131)

(3.5.130)

(3.5.129)

II IT tAl., + (kd", - a)AI.,)

oEEdge(r) a=O do.
(VI.lIZ):veTtice" 0/ Q

II (kAly-val(v)
vEVert(r)

(Contributions from ¢:(c{' (H))) = Aj~I')

(Contributions from CT(£kd+l)) =

ot-t HO(C, j*(O(kH))) t-t

EB HO(C"" j*(O(kH))) t-t EB cva1(v)-1 0 0pfJkH) t-t 0 (35.128)
"'EEdge(r) vEVer«r)

For some examples, we calculate (OeN-.),,(OeN-.h and (OeN-.h for k = N case.
First, we write out tree graphs that contribute to the amplitudes up to degree 3. (See
Fig3,1.) In Fig3,1, we omit the external insertion of "punctures". So in calculation,
we have to add all the cases of external operator insertions of (OeN-') to vertices.
Note that the two character numbers (for example "i") of neighboring vertices never
coincide with each other. Then direct application of the argument of the previous
subsections leads us to the following formula.

Local Appendix

We have to divide the above factors by dAut(r) coming from (3.5.90) and in practice,
we have to multiply a factor t for each edge a. We cannot justify the reason for
this factor at this stage.

Next, we determine the factor from ¢:(c{' (H)). From the argument of §3.2, puncture
i lies on the vertex veil of r, and ¢:(c{'(H)) reduces to 0Pf.I') (jiH). This leads us

to

First, we calculate the factors from ii;"£kd+l' Since iim is merely the operation
to forget the operator insertion points, we can consider it as vector bundle £kd+l
on M~:;-'. As we have mentioned in section 2, this fiber locally corresponds to
[HO(C,f~(O(k.H)))]. We can construct it as in (3.5.115), by the exact sequence,
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where t is the deformation parameter coupled to the Kahler form. By using fusion
rules, and flat metric 'fI"1I = N . 1i"+II,N-2,

These results are generically independent of the values Ai, so we set Ai equals to 3'.
Similarly we calculate the amplitudes (OeQOe~lt,(OeoOe~)2, and (OeoOe~lJ (00+(3 =
N - 3). The results are collected in Table 3.1,~ Table 3.4.

Note that (OeN-4)n' n = (OeOeN-')n. This implies that the Kahler equation of
Gromov- Witten invariants holds for the amplitudes defined by (2.4.89). Assuming
this relation for all amplitudes, the results of Table 3.1~ Table 3.4 coincide with the
ones calculated from mirror symmetry [7J. t We calculate amplitudes (TIf,,;;20e(Zj))
of matter theory on M~ for later use. Fusion rules hold in the matter theory, so we
can reduce the amplitudes into the products of three-point functions.

Consider the "matter" expansion

(OeOeoOe~) = N + L(OeOeoOe~he-kt
k;j

Then for example, (TIf;J.20 e(Zj)lt can be calculated as

(3.5.132)

(3.5.133)

(3.5.134)

N-4
N 5

-N II (OeOe,OeN-3-i)
i=l

00 N-2times
N + L~·~he-kt.

k;l

N-2
(II Oe(Zj))
j;l

II (Ai - Am3 t l (Ak - Am,)-l
m3#i,k

N

II (alAi + (N - adAj)
Ut=O

N

II (a2 Ai + (N - a2)Ak)
a2=O

N

II (a3 Ai + (N - a3)AI)
U3=O

II (Ai - An)2
n#i
(from (g))

II (Ak - Am3 t l (AI - Am3 )-1

m3#,1

N N

II (alAi + (N - al)Aj) II (a2 Aj + (N - a2)Ak)
al=O U2=O

IT (a3 Ak + (N - a3)At))
U3;:::O

(from (f))

1 1 1 AN- 4 1 N-4+ - L(-(AN- 4__-WF4+WF,-J-WF4 +WF,~Ak )
2 'oFj 4 ' WF, + WF3 WF,WF3 WF, F3

j~1c

~~-I-II(Aj-An)
NAj wF,WF, WF3WF. n#j

-I )_I(Ai + Aj A)-III (Ai - Am,) (Aj - Am, -2- - m,
m,#i,j

II (Aj - Am,)-I(Ak - Am,)-l
mdj,k

IT (alAj + (2~ - al)Ak) IT (a2Aj + (N - a2)Ak))
al=O U2=O

(from (e))

+ 1 L( 1 (w (AN-4 _ AN- 4)_I_
6 i#j 36 F" J w},w~,

II (Ai - Am)-1( 2Ai: Aj _ Am)-I(Ai ~ 2Aj - Amtl(Aj - Amtl

m=f:.~,j

IT (aAi + (3~ - a)Aj))

a=O

(from (d))

+ ~ L (AN-4 __1_-wF.WF6 + Ar-4__1_-WF,WF6
6 i#i J Wp,WF3WFr., WFtWP3WF5

i,H,i#1

+ Af-4--
1
--wF,wF4

WF, WF3WF5

+ wF,wF4wF6Af-4__1__(~+~+~))
WPIWF3WPS WF, WP3 wPs

1 1

(NAi)2WF,WF,WF3WF.WF,WF6

II (Ai - Am,tl(Aj - Am,tl

ml:f;i,j

II (Ai - Am,)-I(AI - Am,t l

rn2;ti,l
INote that for three-point function, amplitudes of the matter theory and the ones of theory

coupled with gravity coincide.
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((N - 4)(Af-2 - A;'-2) - (N - 2)(Af-3 Ai - A;'-3 Aj))

1
(Ai - Aj)3 (3.5.135)

N -1 1
NN+l_(N-2).N.N!(-1-+···+ N-1)

-2N·NI (3.5.136)

explicitly the contribution from M(f) to the amplitude (Oe;' ···Oeik)d,altgrav.

(Contribution from M(f) to (Oe;' ... 0eik)n,alt.grav.)

- 1 ( II >,1;
- ~Aut(r) vEVert(r) I. (i)

II II wp;1( L wpl)"al(v)+iS.-3

vEVert(r) F~(:,:) F~(:,:)

If we set Ai = i, we can derive (3.5.135) from (3.5.136) by a rather clumsy but
elementary calculation. This agrees with (3.2.47). We write out numerical results of
(Of=120e(Zj)) for 5 ::; N ::; 10 case.

II (II (AI. - Aj))val(v)-1
vEVert(r) itl.

II ~
"'EEdge(r) d",

(ii) II (II (AI. - Aj))val(v)
vEVert(r) itl.

II (d",!)-2 II (II (AI. - Aj))val(v)-I
"'EEdge(r) vEVert(r) j:j#l.

II II IT (mAl. + (d", - m)AI. _ Ak)-I
aEEdge{r) k#:Ju'/v m=O do

(u,v):vertice"oja

II (WF)-do

/10.08
F=(v,o-)

(i) II W p1

flag ..
F=(v,Q)

Then we classify the factors into two groups. One consists of the factors from edges,
and the other from vertices. The factors from the edges are

+9217712440694086335170560000000e-3t +... (3.5.137)

+148146924602880e-3t + ..

7 + 3727381e-t + 2637885990187e-2t

5 + 2875e-t + 4876875e-2t + 8564575000e-3t + ..

+26611692333081695092736e-3t + ..

9 + 310393692ge-t + 1165013014173543657e-2t

6 + 120960e-t + 4136832000e-2t

+1927092954108108787e-3t + ..

8 + 106975232e-t + 1672023727001660e-2t

+441297815019235844688286425e-3t + .

10 + 94327552000e-t + 930496455109619200000e-2t

6

(il0e(Zj))
j=1

5

(il0e(Zj))
j=1

8

(il0e(Zj))
j=1

7

(il0e(Zj))
j=1

3

UIOe(Zj))
j=1

4

(fIOe(Zj))
j=1

3.5.5 Construction of Generating Function

In the previous subsection, we see that we can calculate the amplitudes (*)d,grav.alt.
for topological sigma model on Mfj coupled to gravity by torus action method. As
we have seen in section 3 and section 4 , this method has a structure of summing
over tree graphs, so we can construct a representation of Path-Integral form of the
generating function of all amplitudes. In this subsection we treat general Mt for later
use. Changes occur only in contributions from vector bundles. First, let us write out

1
(v) II d

Edge(r) '"

And the factors we can push into the contribution from vertices are,

(i) II Aj~(i)
vEVert(r)

(ii) II (L Wpl)val(v)+iS.-3

vEVert(r) F~(:,:)

(3.5.139)
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Then we introduce the field variables <Pij,d,propagator 9ij,d;i'j',d', vertex
Citi\,d,;".;""jm,dm<Piti\,d' ... <Pimjm,dm and external field source parameters t l ,"', tN-2.

In this formulation, field variables correspond to the edges with characters i and j
and degree d, 9ij,d;i'j',d' remains nonzero only if i = j', j = ii, d = d' , and the nonzero
value of propagator is given as the reciprocal of the product of (3.5.139) (i)~(v).

Then we have

where we introduce h and dummy variable Z to pick up the portion that comes from
tree graphs and satisfies the topological selection rule (2.4.80). We must make one
final remark. As we can easily see from the formulation of this calculation, (3,5,143)
represents only quantum part., So we have to add classical part t fMIV (2:::~02 t i ei )3
by hand to obtam full generatmg function,

(iii) II (II (.>\fo - Aj))-l
vEVert(r) j¥f.

(iv) II (kAfJ
vEVert(f)

(3.5.140)

exp((tIAiZ + .. ,+ tN_2Af'-2zN-2)tiiJ,d' +.,. + Vijm,dm)))))
Z Z

(3.5.143)

_dN- 2-(N-k)d(Ai - Aj)2 n~1 n~=;(aAi + (d - a)Aj - dAl)
9ij,d := 9ij,d;ji,d = n~~ll(aAi + (kd - a)Aj)

(3.5.141)
Vertex Citi\,d\; ...imjm,dm<Piti"d,· . <Pimjm,dm are constructed with pairing the factor Ai
to tm as follows.

f~f~t kAi L L
m=l m! l=l 11 i=l Dj#t(At

- Aj) ~ll': ',~::::~;l II, .. JIE{1,2, -,N-2}

(Vij\,d\ + ... + Vijm,d,Jm+1-3<pij\,d\ ... <Pijm,dmti, til (A{' + +il)

= t .kAi . f ~ L (Vij"d, + + Vijm,d,Jm-3<pij\,d,'" <Pijm,dm
i;1 nj¥,(A, - AJ ) m;l m! dl,.··,dm,d.~1

iJ ,···,jm,j~'f;.;

exp((t1Ai +'" + tN_2At-2)(Vijl,dl +.,. + Vijm,dm))
d

Vij,d:= Ai - Aj (3.5.142)

where 11m! is the factor that produces lidAut(r) and II I! is the combinatorial
factor in the insertions of the external operators. With these preparation, we have
the path-integral representation of generating function.

FM~ (t l ,"', tN-2)

L (O~i ... OnN -') t~' , .. t"t:-'2'
,nN_2~O e

N
-

2
nI!' . nN-2!
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F1

.1 .
IQ-------{)J

F1

. --.;.
lQ-------{)J

F)

.3.
)Q-------{)J

F1 F3 Fs

. 1j1k1 I
1Q----O------O--

Table 3.1: (0.N-4)alt,grav

(0.N-4h (0.N-4h (0.N-4)3
N=5 2875 == ~
N=6 60480 440899200 6255156284160
N 7 1009792 122240038536
N 8 15984640 33397163702784
N=9 253490796 9757818404032059 897560654227562367535680
N=10 4120776000 3151991359959750000 6298886011657402651840000000

N=5 (O.O.h = 2875
N-6 (0.0.2h - 60480
N=7 (0.0.3h - 1009792

(0.20.2)1 = 1707797
N=8 (0.0.4h = 15984640

(0.20.3h = 37502976
N-9 (0.0.')1 - 253490796

(0.20.4)1 = 763954092
(0••0. 3h = 1069047153

N=10 (0.0.6)) = 4120776000
(0.20.')1 = 15274952000
(0.30.4)1 = 27768048000

Figure 3.1: Tree Graphs up to Degree 3
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Table 3.3: (O•• O.~halt,grav

N=5 (O.O.h=~

N=6 (O.O"h = 881798400
N=7 (0.0.3h = 244480077072

(O.,O.,h = 10215:q199083

N=8 (O.O"h = 66794327405568
(0.,0.3)2 = 224340722909184

N=9 (O.O"h = 19515636808064118
(O.,O.,h = 93777295510651590
(0.30.3)2 312074853388012521

N=10 (0.0.6h = 6303982719919500000
(O.,O.,h = 40342298393756700000
(0.30,'h = 100290980414189400000

Chapter 4

Operator Product Approach

In this chapter, we treat approaches using operator product algebra of topological
sigma model (A-model). In pure matter theory, we can insert identity operator
IOW.)1)",il(OWp I into correlation functions because Ow. span entire Hilbert space (of
local vertex operators). This leads us to fusion rules of correlation functions.

(4.0.1)

remains. Assuming this algebra is associative,

we can rederive DWVV equation derived geometrically in Section 3.4. Using this
equation, we solve A-model coupled with gravity on CP3,GP4 and Gr(2,4).

In Section 4.1, under the assumption that fusion rules are closed under the subring
spanned by O.. 's in case of topological sigma models on Mf;", we construct I-variable
polynomial representation of sub ring of quantum cohomology ring of Mf;" using the
results of Section 3.5.

In Section 4.2, we treat operator algebra of A-model coupled to gravity. In this
case, because of existence of gravitational descendant states, 10w.)1)",il(Ow~1 is not
an identity operator. But operator product algebra defined by

(4.0.2)

(4.0.3)

Table 3.4: (O•• O.~halt.grav

N~5 (O.O.h-~

N~6 (O.O"h = 18765468852480
N 7 (0.0.3h

667645611328487267(0.,0")3
N, 8 (O.O"h 3

(0.,0.3)3 = 2000750410187353882624
N~9 (0.0")3 - 2692681962682687102607040

(0.,0")3 = 17873898563070361650868344
(0.30.3)3 = 33815935806268253789898819

N-I0 (0.0.6)3 - 18896658034972207955520000000
(0.,0")3 = 524473167338866;32269440000000

(0.30")3 = 546627811934015785508480000000
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epi : MR:;-I H CpN-l (4.1.11)

{(Zl,Z2,ZJ),J}/5£(2,C) E MR:;-I H f(zi)

where H is hyperplane bundle on CpN-t, 7TJ is 3-fold forgetful map from
Mf.:'~-' to Mf.:.t' and Ckd+l denotes direct image sheaf
R~, (epi(kH)) coming from forgetful map 7[1 from Mf.:.;-I to Mf.:'~-'.

M~~} and M~l3 denote moduli spaces of holomorpbic maps of degree d. from
Cpl to Mt of pure matter theory and of theory coupled to gravity. We insert
8o +p+""!,(N-k)d+N-2 to represent topological selection rules explicitly. The equality
between the first line and the second line of (4.1.7) can be explained as follows.

M:,1 has internal 5£(2, C) which moves {J(zd, f(z2), f(zJ)} without changing the

posiotion of f(CPl) in Mt. In M:'1.J, these degrees of are killed by dividing by
5£(2, C) but the degrees of freedom that change the position of {Zl> Z2, zJ} on Cpl
are added. Since 5£(2, C) can be considered as the degrees of freedom which maps
{O, 1,00} to any distinct points {Zl' Z2, zJ}, this difference cannot be distinguishd
under the action of the evaluation maps <Pi, ¢ii'

Then we determine H;,q(Mt) with the following strategy.

1. Using equality of 4.1.7, we evaluate all the three point functions using torus
action method with the following equation (3.5.143).

r M k ¢l;(eO) 1\ ¢i;(efJ ) 1\ ¢lj(e""!)
JMo':'3

= LR:,Z-' CT(irj(Ckd+l)) 1\ epi(cf(H)) 1\ ep;(c{(H)) 1\ epj(c7(H))

= a'oatP(\ReszReSh(~ log(det((gii,i'i"d)-I)~ f d<Pii,d

1 _d(N-2-(N-k)d)(5iz - 5i z)2 IT~I IT~::(5iaz + 5i(d - a)z - 5l dz)
exp(-2 L: rrkd 1(5i + 5i (kd _ ) ) <Pii.d<Pii,d

i,J,d a=1 az a z

+~ 5
i
kz ~.!. '" (V.J1,d, + .. + ViJZ"dl )'-J<piJI,d' ... <PiJ'"d,

~ ITi;ti(5iz - 5i z) ~ I! dl"~d.~1 z
Jl '···.jl'j~ i=-i

exp((5it lz + ... + 5i(N-2)tN_2ZN-2)tii~,d' + .. ,+ Vi:,d, )))))1,.=0

where

(4.1.8)

(4.1.9)

(4.1.10)

_d(N-2-(N-k)d) (5iz - 5iZ)2 IT~I IT~:\(5iaz + 5i (d - a)z - d5'z)

IT:~11(5iaz + 5i(kd - a)z)

d
5i - 5iVij,d

9ij,j'i',d

(4.1.6)

(0.0 (zdOeP (Z2) 0.> (zJ))

= f 8o+P+,,(N-k)d+N-2 r M'N <Pi (eO) 1\ <P2(eP) 1\ <pj(e""!) . qd
d:;;O JMO'd

= f 8a+fJ +""! (N-k)d+N-2 r Mk ¢i;(eO) 1\ ¢i;(eP) 1\ ¢ij(e""!) . qd (4.1.7)
d=O' JMo,f.3

In this section, we treat pure A-model having target space as degree k hypersurface
(k ::; N) in CpN-I, Mt.

Mt:= {(Xl: X2 :···: X N) E cpN-'IX~ + ... +xt = O} (4.1.4)

4.1 Pure Matter Case

4.1.1 Strategy for Determination of Quantum Cohomology
Ring of M7"

where

<Pi : M:,1 H MN,k

f E M~} M !(Zi)

¢li : M:'1.J H MN,k

{J,Zl,Z2, ZJ}/5£(2,C) E M:'1.J H f(zi)
q e-'.

From the above definition we can easily see 0.0 acts trivially on H;,q(Mt), and we
regard 0.0 as identity. Three point functions are determined from the geometrical
evaluation of correlation functions of topological sigma model,

Since Mt is hypersurface in CpN-l, we can choose subring H;(Mt) generated by
Kahler class e E H1,I(Mt). Correspondingly, we assume that BRST-closed observ­
abies 0.0 (ex = 0,1,"', N - 2) form closed subalgebra in quantum cohomology
ring of Mt (Operator algebra in pure matter theory). Then we investigate this sub­
algebra H;,q(Mt) in the following way. Operator product algebra is constructed by
three point functions and metric.

O.o·O.P = (O.oO.pO.»r(roO.,

'fJ,o := (0.00.>0.,) = fM'N e' 1\ eO = k8Ho,N-2

'fJafJ'fJ1h = 8~ (4.1.5)

Correlation functions in pure matter theory satisfy the fusion rule.
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4.1.2 Reformulation as One Variable Polynomial Algebra

2. We can consider O. as the generator of H;,q(MN,k) , and we only have to
determine multiplication rules for 0 •. In other words, if we set

(4.1.29)

(4.1.30)

(4.1.31)

(4.1.28)

(4.1.25)

(4.1.27)

(4.1.26)

(4.1.24)

(4.1.23)

(k"5. N -2)

(rZ~k,I)2
--2-

((N - k)2 = N - 2)
N,k N,k

IZ~k,1 (IN-;+J'l - IN,t1)

N,k N,k
IZ~k,I(IN-;+J,1 + IN~k,l)

((N - k)2 = N - 3)
N,k N,k N,k

N,k (IN-k+2,1 _ IN-k+l,l _ IN-k,l)
IN-k,l 2 4 8

(rZ~k+l,I)2

2
N,k N,k N,k

N,k (IN-k+2,1 + IN-k+l,l + IN-k,l)
IN-k,l 2 4 8

((N - k)2 = N - 4)
N,k N,k N,k N,k

N,k (IN-k+3,1 _ IN-k+2,1 _ IN-k+J,1 _ IN-k,l)
IN-k,l 2 4 8 16

G:,N: 0 •• dIlf'N(q))(O.)D (4.1.20)
j=l

(2"5. (Y."5. N -2)

N-2
G~,N: 0 (II Ij",N (q))(0.t- 1 (4.1.21)

j=l

(N=k)

These results are collected in Table B. At first sight, this reformulation seems to be
superficial, but we find some curious relation between I:'dk for k "5. N - 2 case.

relation 1

I:'i
k

relation 2

where
Ij",N(q):= N/(0.Oei-10.N-'-i). (4.1.22)

Then we can realize H;,.(Mt) as one variable polynomial algebra by regarding O.
as X, 0 •• as r.h.s of G~,k, and G~,k as a relation. And if we define r.h.s of G~,k as
f::,k(X) for (Y. = 0,2,3, ... , N - 2 and X as !J (X) , correlation functions are written
in the residue form which follows from (4.1.6) as is well known in [5] .

(4.1.13)

(4.1.14)

(4.1.15)

(4.1.16)

(4.1.19)

(4.1.17)

(4.1.18)

1
(0.0•• 0.N-3-.) NO.H.

(k=N)

l%=tl
(O.)N-l _ L 5;,k(0.)N-l-(N-k)d. qd

d=l

(N) k)

N-2+{N-k)d
( II O.(z;)) = kkd+l . qd

i=l

[hi
G:,k : 0.. = (O.l" - L I:';(O.)D-(N-k)d. qd

d=l

(2"5. (Y."5. N -2)

,H;(Mt) is constructed as follows.

[~I 1
F::,k : 0.·0.. = E(0.0.. 0.N-3-.+(N-.).)/;0.1+.-(N-.). (4.1.12)

(k < N)

(0.t-1 - kk. q. (O.)k-l = 0

umerical results are shown in Table A. In this case, using (4.1.15) and
mf:t2 O.(z,))o = k, we can easily see

With some algebra, we can rewrite the relations (4.1.14) into the form

This agrees with the statement (3.1.15).

where e[o., 0.""" O.N-,J denotes the polynomial ring generated by 0 •• and
I[Fi',k, F{"\ ... , F::.-k2] is the ideal generated by F::,k'S.

We calculate F::,k for k "5. N - 2 and N "5. 9 case and find the ideal includes the
following relation.
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We can reconstruct some of the above relations from the compatibility of the expan­
sion form of (2.12) and relation (4.1.15), but we are not sure that all of them follow
from it at this stage. With these relations, we can figure out some characteristic
feature of H;,.(M~).
Fir t, quantum correction of degree 1 to H;,.(MM does not depend on N, which
can be easily seen from relation 1. So we think these correction coefficients 'Y~ I (:=
'YZ~k+O-I,I) play central role in the ring when k :::: N - 2. In other words, we e~pect
all the higher degree quantum correction coefficients are determined by 'Y~ I' Relation
2 are found from these speculations. Second, from the expansion form 'of (4.1.18),
degree d coefficients of 0.0 occur when Ct ~ (N - k)d holds. Then if k :::: [~] + 1, no
corrections occur from sectors with degree greater than 1. But degree 1 corrections
remain stable since they exist as long as Ct is no less than N - k. This seems to
support our first speculation. We will show some examples of these features using
the results of H;,.(Mt).

relation 3

'YZ~2,3

0 ••

0.,

0 ••

N,k N,k
'YZ~k+l,I('YN-;+2,1 _ 'YN-tl,l)

N,k N,k N,k N,k
+ 'YN-k, I ('YN-k+2,1 _ 'YN-k+I,1 _ 'YN-k,l)

2 2 4 8
N,k N,k

'YZ~k+I,1 ('YN-t2,1 + 'YN-tl,l)

N,k N,k N,k N,k
_ 'YN-k,1 ('YN-k+2,1 _ 'YN-k+l,1 _ 'YN-k,l)

2 2 4 8
N,k N,k N,k N,k

N,k ('YN-k+3,1 + 'YN-k+2,1 + 'YN-k+I,1 + 'YN-k,l)
'YN-k,1 2 4 8 16
((N - k)2 = N - 5)

X

X
2

-'Yf"q

X 3 -'YLXq

X4 6 X2 6 ('Yg,1 'Ytl 'Yf,I) 2
- 1'3,1 q - 1'1,1 2 - 4 - 8 q

X5 6 X3 hg,lfx 2
- 1'4,1 q - -2- q

X6 _ 6 X4 _ 6 ('Yg,1 + 'Ytl + 'Yf,I)X2 2
1'5,1 q 1'1,1 2 4 8 q
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(4.1.32)

(4.1.33)

(4.1.34)

(4.1.35)

6 6 6
-('Yf,,)2( 'Y~,I _ 'Y~,I _ 'Y~I )q3 (4.1.36)

H;,.(Mg)
0. X

0.2 X 2

0.3 X 3 -'YLq

0 •• X 4 -'YtIXlq

0., x5 -'Yg,I X2 q

0., X 6 6 X3 6 eg,1 'Yf,,) 2
-1'4,1 q-'Y',I 2-4 q

0.7 X 7 _ 1'6 X 4q _ 1'6 eg,] + 'YL)Xq2 (4.1.37)5,1 1,1 2 4

H;,.(M~o)

0. X

0.2 X 2

0.3 X 3

0 •• X 4 -'YLq

0., X 5 - 'YtlXq (4.1.38)

0 •• X 6 - 'Yg,I X2 q

0.7 X 7
- 'Y~,IX3q

0 •• X8 _ 1'6 X4q _ ('Yf,,)2 q2 (4.1.39)5,1 2

H;,.(Mt) (N ~ 11)

0 •• X k (1:::: k:::: N -7)

°eN - 7+Q X N- Ho _ 'Y:,IXO-Iq(l :::: Ct :::: 5) (4.1.40)

where

'YL = 720, 'Y~,I = 6984, 'Ytl = 23328, 'Yf,1 = 39672, 'Y~,I = 45936 (4.1.41)
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H;,.(M;)
V • . V. = V.2 + 120q

V • . V.2 = V.3 + 770V.q

V • . V.3 = V.' + 13450.2q + 211200q2

V • . V.' = V.' + 7700.3q + 692500V.q2

V • . V.' = 120V•• q + 211200V.2q2

H;,.(M~)

V • . V. = V.2

V • . V.2 = V.3 + 120q

V • . V.3 = V.' + 770V.q

V • . V.' = V.' + 1345V.2q

V • . V.' = V.6 +770V.3q + 99600q2

V • . V.6 = 120V•• q + 99600V.q2

H;,.(M~)

V • . V. = V.2

V • . V.2 = V.3

V • . V.3 = V.4 + 120q

V • . V.' = V.' + 770V.q

V.O· V.' = V.6 + 1345V.2q

V • . V.6 = V.7 + 770V.3q

V.· V.7 = +120V.4q + 14400l

Table A. Multiplication Rules of H;,e(Mfr.,)

H;,.(M~)

V.· V.a = Vea+1 (0::; a ::; N - 3) V.· V.N-2 = q (4.1.42)

H;,.(M~)

V • . V.a = V.a+1 (0::; a ::; N - 4) V.· V.N-3 = V.N-2 + 2q

V.· V.N-2 = 2V.q (4.1.43)

H;,.(M;)
V • . V. = V.2 + 6q V.· V.2 = V.3 + 15V.q

V • . V.3 = 6V.2q + 36q2 (4.1.44)

H;,.(M;) (N ~ 6)
V• . V.a = V.a+1 (0::; a ::; N - 5)

V • . V.N-. = V.N-3 + 6q V.· V.N-3 = V.N-2 + 15V.q

V • . V.N-2 = 6V.2q (4.1.45)

H;,.(Mt)
V• . V. = V.2 + 24q

V • . V.2 = V.3 + 104V.q

V • . V.3 = V.4 + 104V.2q + 2784q2

V • . V.4 = 24V.3q + 2784V.l (4.1.46)

H;,.(M:)
V • . V. = V.2

V • . V.2 = V.3 + 24q

V • . V.3 = V.' + 104V.q

V • . V.' = V.' + 104V.2q

V • . V.' = 24V.3q + 576l (4.1.47)

H;,.(Mt)
V• . V.a = V.a+l (0::; a ::; N - 6)

V.· V.N-' = V.N-. + 24q

V • . V.N-. = V.N-3 + 104V.q

V • . V.N-3 = V.N-2 + 104V.2q

V • . V.N-2 = 24V.3q (4.1.48)
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H;,.(Mt) (N ~ 10)

V• . V.a

V • . V.N-6

V • . V.N-'

V • . V.N-.

V • . V.N-3

V • . V.N-2

V.a+1 (0::; a ::; N - 7)

V.N-' + 120q

V.N-. + 770V.q

V.N-3 + 1345V.2q

V.N-2 + 770V.3q

120V•• q
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(4.1.49)

(4.1.50)

(4.1.51)

(4.1.52)



H;,.(M;) H;,.(MJ)
0.·0. 0.2 +720q 0.·0. 0.2 + 5040q

0. ·0.2 0.3 + 62640.q 0.·0.2 0.3 + 561960.q
0. ·0.3 0.4 + 163440.2q + 18843840q2 0.·0.3 0.4 + 2004520.2q + 205625920q2
0. ·0.4 0., + 163440.3q + 1314584640.l 0.·0.4 0., + 3001670.3q + 246995068320.q2
0. ·0., 0.6 + 62640.4q + 1314584640.2q2 0.·0., 0.6 + 2004520.4q + 537516856240.2q2

+l44069995520q3 +534155202302400q3
0.·0.6 +7200.,q + 188438400.3q2 0.·0.6 0.7 + 561960.,q + 246995068320.3q2

+ 1440699955200.q3 (4.1.53) + 19203656359900320.q3

0.·0.7 50400.6q + 20562595200.4l

H;,.(M;) +5341552023024000.2q3

0.·0. 0.2 +5112982794486067200q4

0.·0.2 0.3 + 720q (4.1.56)

0.·0.3 0.4 + 62640.q

0.·0.4 0., + 163440.2q H;,.(M;o)
0.·0., 0.6 + 163440.3q + 14152320l 0.·0. 0.2
0.·0.6 0.7 + 62640.4q + 440069760.q2 0. ·0.2 0.3 + 5040q
0.·0.7 7200.,q + 141523200.2q2 (4.1.54) 0.· 0.3 0.4 + 561960.q

0.· 0.4 0., + 2004520.2q

H;,.(l'vf~o) 0.· 0., 0.6 + 300l670.3q + 2091962880q2

0.·0. 0.2 0.·0.6 0.7 + 2004520.4q + 135706813200.l
0. ·0.2 0.3 0.·0.7 0.8 + 561960.,q + 135706813200.2q2

0. ·0.3 0.4 +720q 0.·0.8 50400.6q + 20919628800.3q2

0. 0.4 0., + 62640.q + 13462263763200q3

0. ·0., 0.6 + 163440.2q (4.1.57)
0. ·0.6 0.6 + 163440.3q

0. ·0.7 0.8 + 62640.4q + 47692800.l

0. ·0.8 7200.,q + 47692800.2q2 (4.1.55)
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Table B. One Variable Polynomial Representation of H;,e(Mjy)

H;,e(Mfl)

Oe·Oe

Oe· Oe2

Oe· Oe3

Oe·Oe·

Oe·Oe'

Oe· Oe6

Oe· Oe7

Oe· Oe8

Oc·Oc'

Oe2

Oe3 + 40320q

Oe' + 5541120eq

0e' + 25521920e2q

Oe6 + 52419840c3q + 345655618560q2

OC7 + 52419840c.q + 38572142837760cl
Oe8 + 25521920c,q + 81502224486400e2q2

Oc' + 5541120c6q + 38572142837760e3q2

+235354398279598080q3

403200c7q + 3456556185600c.q2

+235354398279598080q30 c

(4.1.58)

H;,e(M~)

fo(X) X N - 1 _ q

Oeo X" (0::; a::; N - 2)

H;,c(M~)

fo(X) X N - 1 _ 22Xq

Oco X" (0::; a::; N -3)

°eN
-

2 X N - 2 - 2qX

H;,c(M~)

fo(X) X N - 1 _ 33X 2q

Oco X" (0::; a::; N - 4)

°eN - 3 X N - 3 - 6q

°eN
-

2 X N - 2 - 21Xq

H;,c(M:)

fo(X) X 5 _44X 3q

Oeo 1

Oe X

Oe2 X 2 - 24q

Oe3 X 3 -128Xq

°c' X 4 - 232X2q - 288q2

(4.1.59)

(4.1.60)

(4.1.61)

(4.1.62)

77

H;,e(Mt) (N 2 7)

fo(X)

Oco

X N - 1 _ 44 X 3q

X" (0::; a ::; N - 5)
X N - 4 - 24q

X N
- 3 -128Xq

X N - 2 _ 232X2q

78

(4.1.63)
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Oe

Oe'

Oe3

Oe'

Oe'

Oee

H;,e(M;o)
fo(X)

Oe

X 8 _77X 6q

1

X
X 2 - 5040q

X 3 - 61236Xq

X 4
- 261688X2q - 1045981440q2

X 5 - 561855X3q - 7364461860Xq2

X 6 - 762307X 4q - 8660264508X2q2

- 53577635146560q3

X 7 - 818503X 5q - 1785767760X3q2

-47590972087680q3

X 9 _ 77 X 6q

1

X
X 2

X 3 - 5040q

X 4
- 61236Xq

X 5
- 261688X2q

X 6 - 561855X3q - 579121200q2

X 7 - 762307X4q -1874923848Xq2

X 8
- 818503X5q - 739786320X2q2
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(4.1.70)

(4.1.71)

H;,e(M~I)

fo(X)

Oe·

Oe

X IO _ 88X 7q

1

X

X 2

X 3 - 40320q

X 4
- 594432Xq

X 5
- 3146624X2q

X 6 - 8388608X3q - 134298823680q2

X 7
- 13630592X4q - 875510074368Xq2

X 8
- 16182784X5q - 994943923200x2l

X 9
- 16736896X6q - 203929850880XV

-5414928570777600q3
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4.2 Gravitational Case

4.2.1 Meaning of the Correlation Function

PD(Wij ) # 0 and in case dimcU(Cpl)) = 1, we have to usc one further degree
of freedom to let Zj to lie on f(CPI) n PD(Wi,). Condition (4.2.3) tells us that
by imposing all the constraints i = 1,· " k, we have zero degrees of freedom and
topological correlation functions reduce to

In the topological sigma model (A-model) which describes maps from Cpl to the tar­
get space M, BRST-closed observables are constructed from elements of H*(M). We
denote the BRST-closed observable constructed from W E H*(M) as Ow. Witten
showed in the pure matter case [8] (without coupling to gravity) topological correla­
tion functions are given in terms of intersection numbers of holomorphic maps from
Cpl to M as follows.

(M;;:d is the moduli space of holomorphic maps from Cpl to M of degree d,and
(Zl, ... , Zk) are "fixed" distinct points on CPl. Degree d is related to the sum of
dimc(Wi;l by the topological selection rule which we will introduce later ).

v is the additional degree of freedom which arises when f can be decomposed as
f = loa where a is a map from Cpl to Cpl of degree ~ and 1a map from Cpl
to M of degree j(dJj). But as we will discuss later, we have to consider v only when
Mis C.Y manifold, i.e. cI(T'M) = O.

Since ¢j(Wi,) defines dime(Wi,) form on Mt;d, in generic case when v is trivial,
(Ow., ... Ow..) doesn't vanish only when the following conditions are satisfied.

(4.2.5)( IT <Pj*(Wi,)
JMd,O,.(M)j=1

M

f(zj)

<Pj: M~:d,k >-t

{(ZI, Z2,''', Zk), J}jSL(2, C) >-t

(OW" (zIl'" Ow,. (Zk))generic

= d{J: Cpl ~ Mlf(zj) E PD(Wi,),j = 1,··· ,k} (4.2.4)

At this point, we conside~ the case of multiple cover map. From the above argument,
multiple cover map f = f_ 0 a also has to satisfy the condition (4.2.3) which restricts
the motion of f(CP1) = f(CPI) in the target space M. But since 1is a map of degree
j, it has as many as jCl(T'M)+dime(M) « dCI(T'M)+dimc(M)) freedom in M and
this is imcompatible with (4.2.3). Only when cl(T'M) = 0 i.e. Mis C.Y manifold,
compatibility of (4.2.2) and (4.2.3) holds in the case of multiple cover map and we
have to integrate the additional v. Then we conclude that when cl(T'M) > O,we
can neglect X(v) and only consider the generic case.

Next, let us consider what happens if we couple topological gravity to the above
topological sigma model. Roughly speaking, we have to integrate over moduli space
of Cpl with punctures. Since the moduli space of Cpl with k-punctures are given
by the position of k-distinct points on Cpl divided by SL(2, C), which is the internal
symmetry group of Cpl, the difinition (4.2.2) is modified as follows.

(4.2.1)1M xCv) IT ¢j(Wi;l
MO,d j=l

M

f(Zj) EM j = 1,···,k

¢j: M~:d >-t

f E M;;:d >-t

We can easily see the above condition imposes dimc(Wi) independent constraints
on Mt;d (use count degrees of freedom in the complex sense). Since we have to use
(dimc(M) - dimcU(Cpl)) - dime(PD(Wi,)) degrees of freedom to let f(CPI) n

In deriving the third line from the second line, we used Rieman-Roch theorem and
assumed HIU*(T'M)) = O.

If we take Wi, as the form which has a delta-function support on the Poincare dual
of Wij , PD(Wi,), we can interpret ¢i(Wi;l as the following constraint on Md(M).

(4.2.8)

k

L dime(Wij ) = dCl (T'M) + dime(M) + k - 3
j=1

k

<=> Ldime(Wij -1) = dCI(T'M) + dimc(M) - 3 (4.2.7)
j=1

where the action of U E SL(2, C) is defined as follows.

U 0 {(ZI, Z2,"', Zk), J} = {(u(zIl, U(Z2),"" U(Zk)), (u- 1)*J} (4.2.6)

This action is natural in the sense that the image of <Pj remains invariant under
SL(2, C). Main difference between (4.2.4) and (4.2.6) is that in the former case, we
keep Zi "fixed" on cpt but in the latter they move. Then we have dime(Mrtdk) =
k - 3 + dCI(TM) + dime(M) and modify (4.2.2) as follows. ' ,

Integrating over the positions of k-punctures the codition (4.2.3) changes into

(4.2.3)

(4.2.2)

dimHOU* (T'M))

dCl(T'M) + dime(M)

k

Ldime(Wi;l
j=l
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Under the condition (4.2.7), f(Cp 1) n PD(Wi,) must be a finite point set for each
j and Zi integration contributes (J(CP 1) n PD(Wi,))C to the correlation function.
Then we have

And there exists a free energy (prepotential) Fu (tt, .. , tD) which satisfies following
conditions.

(Ow.,' . Ow•.) = L IT (J(Cp 1) n PD(W;,))~
f j=l

{J: cpt ~ Mlf(Cp l ) nPD(Wij ) i- 0 j = 1,2... ·.k} (4.2.9)

(4.2.8)

(4.2.9)

Combining (4.2.7) and (4.2.9), we obtain a series of partial differential equations for
FM ·

4.2.2 Set up of the calculation (4.2.10)

Topological Sigma Model (A-Model) can be constructed as the twisted version of
N = 2 super conformal field theory [28]. We can perturb topological field theory
by adding the terms L:; tiOW. to the lagrangian and correlation functions depend on
variables {t;} [24J.

We can also consider prepotential as the generating function of all topological cor­
relation functions.

(4.2.11)

where X denotes the field variables of the A-Model. We set D = dim(H'(M)). As
the twisted version of =2 SCFT (coupled with gravity and on small phase space
),{Ow,} has ring structure which can be determined from three point correlation
functions.

ni times

(O~. represents~ and should not be confused with O(w.)n. ). At the topo­
logical point (i.e., all the i;'s are set to zero) correlation functions become intersection
numbers on moduli spaces of holomorphic maps from CP1 (with k- marked points)
to target space M.

Holomorphic maps f are characterized by their degree which equal the intersec­
tion number of j'(CPl) with the Kahler form of target space M. Then (O~, ... O~D)
remains non-zero only when the following topological selection rule is satisfied.

(OW,! Ow" ... Ow" (tl, t2, . .. , tdim(H' (M))))

= jVXe-L(X)+L:.,.ow.Ow- Ow- ... OW
II '2 'k

Ow,Owj = Ct(tl, t2,·· .• tD)OW.

where C;~ = Cijl17lk

Cij1 = (Ow. Ow,Ow,(t l ,t2, ... ,tD))

17kl17lm = ,,;:,
171m = ClIm(tl, t2.···, tD)

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

D D
L nidimc(Wi) = L ni - 3 + dimHO(Cp 1, </J'(T'M))
i=1 i=1

D

{=> Ln;(dimc(W;) -1) = -3 + dCl(T'M) + dimc(M)
1=1

(4.2.12)

In our notation WI corresponds to 1 E H'(M) and we set W2 to the Kahler form of
M (in our case where M is CP3,CP4 or Gr(2,4), dim(H2(M)) = dim(H1,I(M)) =
1,this notation is O.K). We assume that t;'s are flat coordinates and 171m do not
depend on them and determined by classical intersection number fM W, A Wm . Next,
we impose associativity condition on this algebra.(This relation is DWVV eq.)

Here d is the degree of holomorphic map and we used Riemann-Roch theorem in
deriving the second line from the first one. When d equals zero, f is a constant
map to the target space and moduli space becomes just the direct product of target

D

space and moduli space of CP 1 with Ln; punctures. Then selection rules (4.2.12)
i=1

(OW.OW,)Ow. = Ow. (OWjOw.)

{=> C;jOW,Ow. = Ow,cjkOwm

{=> C;p~OWn = Cj'kC;:"Own

{=> C;p~ = CjkC;:"

{=> C;jm17lmClkn = Cjkm17lmCimn
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(4.2.7)

decomposes to

and

D

L n;dimc(Wi) = dimc(M)
i=l

D

Ln;=3
i=1
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(4.2.13)

(4.2.14)



respectively. By means of wedge product we obtain an associative, commutative ring
H*{M, Q) for each manifold M.For CP3, CP4, and Gr(2,4) we have the multiplica­
tion table as follows.

Table 4.1: The ring of CP3

d,mc(Wtl~Od.mc(W,)~l

dimc(W3)=2 dimc(W4)=3

(4.2.3)~z = 2

WI W z W3 W 4
WI WI W z W3 W 4
W z W z W 3 W4 0
W 3 W3 W 4 0 0
W 4 W4 0 0 0

boo = bll = b33 = b44 = 1,From (4.2.14), we conclude that in d = 0 case only 3-point functions survive and
correlation functions are just classical intersection numbers fM Wi 1\ W j 1\ Wk'

From the flat metric condition, insertion of WI remains non-zero only for three
point functions from constant maps because one and two point functions including
WI cannot remein nonzero when CI (M) 2: 1 and d 2: 1 and if we suppose n{2: 3)
point functions remain nonzero in d 2: 1 sector, flat metric condition is broken{in
three point functions in d 2: 1 sector, we take into account of the insertion of operator
Ow,{dimc(Wz) = 1) which we will discuss later).

With these considerations, expansion of the free energy becomes

(where the product of the first term of r.h.s. means taking the wedge product of
H'{M)). Table 4.2: The ring of CP4

Next, we consider the insertion of the operator Ow, which corresponds to the
Kahler form of the target space. Since codimc(PD(Wz)) = 1, holomorphic map f of
degree d always intersects with it in d-points,and the condition f(CPI) nPD(Wz) #
o imposes no constraint. Then from (4.2.9) the insertion of Ow, results in the
multiplication by a factor d,

(4.2.16)

WI Wz W3 W4 W s
WI WI Wz W 3 W4 Ws
Wz W z W3 W 4 Ws 0
W3 W 3 W4 Ws 0 0
W4 W4 Ws 0 0 0
Ws W s 0 0 0 0

Combining (4.2.15) and (4.2.16) we obtain the following expansion

Then by combining (4.2.10) and (4.2.17), we determine the correlation functions in
the case where target space is Cp3, C p 4 and Gr(2,4).

d.mdWtl~Od.mdW,)~1

dimdW3)~Zdimc(W4)~3dimc(W.)~4

d.mc(Wl)~Od.mdW,)~1d,mdW3)~Z

dimc(W4 )=2 dime (W~);::3 dime W6=4

Table 4.3: The ring of Gr(2, 4)

WI W z W3 W4 W s W6

WI WI W z W3 W 4 Ws W6

W z Wz W 3+W4 Ws Ws W6 0
W 3 W3 Ws W 6 0 0 0
W 4 W4 Ws 0 0 0 0
Ws Ws W 6 0 0 0 0
W 6 W6 0 0 0 0 0

(4.2.1)

The non zero Betti numbers of CP3, Cp4 and Gr(2,4) are

boo=bl1=bzz=b33=1

4.2.3 The Calculations

11 D 00 t n3 t nD
- (LtiWi)3+ L L 2- ... _D_{O~ ... O~D)edL,
6 M i=1 d=l n3, ...,nD~O n3! nD! 3

D

(Lni(dimc(Wi) -1) = -3 + dCI(T'M) + dimc(M)) (4.2.17)
i=3

(4.2.2)
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Once we specify the target space , we know its frist Chern class, then the above
formula give the dimension of its moduli space. In case of CpJ cl(T'CPJ) = 4 so,

Dual to each cohomology class is a class of cycles (e.g. for the case of CpJ W J is
dual to a point, W2 is dual to a line, W, is dual to the CpJ).

As a point intersects the CpJ in a point and a line intersects the plane by a point.
Thus we have for CpJ,

(4.2.4)

(4.2.5)

From (2.7) the Riemann-Roch theorem tell us

dimHO(Cp',r(T'M)) - 3 = (dimM - 3) + dc, (T'M)

dimHO(Cpt,r(T'CpJ)) - 3 = 4d

For CP4 and Gr(2, 4), the frist Chern class are

cl(T'CP4) = 5, cl(T'Gr(2,4)) = 4

(4.2.14)

(4.2.15)

(4.2.16)

All other intersections on generators being zero. The CP3, Cp4 ring can be identified
the ring of polynomials in one indeterminate C[x] modulo the gradient of

and for Gr(2,4) it becomes

< W1,W6 >= 1,

< WJ,WJ >= 1,

< W2 , Ws >= 1

<W4 ,W4 >=1

W(x) = xS /5

(4.2.6)

(4.2.7)

(4.2.8)

Thus

dimHO(CP',j"(T'CP4)) - 3 = 5d+ 1

dimHO(CPI, j"(T'Gr(2,4))) - 3 = 4d+ 1

From (4.2.17) we can expond fM further as follows

< On, On. >
fcp' = L: L: w~ ~. t~3t~'edt2

d=l n3+2n4=4d n3·n4·

(4.2.17)

(4.2.18)

Ine the case of Grassmanians their cohomology H"(Gr, Q) can't be generated
by H 2(Gr,Q). The cohomology ring of Grassmanian Gr(2,4) for instance, can be
written as the singularity ring generated by a single potential[26]

(4.2.19)

(4.2.9)

Where x, correspond to W 2 and X2 correspond to HWJ + W 4).

From (3.6) one can split FM into a classical part and instanton correction part
as

fcp' = L: L:
d:;:l Jl3+2n4+3ns=5d+l

(4.2.20)

FM=fcl+fM

So for CP3, Cp4 and Gr(2,4) we have

1 2 1 J ( )Fcp' = 2t1t4 + t,t2tJ+ "6 t2 + fcp, t2, tJ, t4

(4.2.10)

(4.2.11)

fCr(2,4) = L: L:
d=l n3+n4+2ns+3n6=4d+l

1 2 1 2 1 2 1 2 1 2
FCr(2,4) = 2t1t6 + 2t ,t3+ 2t1t4 + t,t,ts + 2t2tJ + 2t2t4

+ fCr(2,4) (t2, tJ, t4, ts, t6)
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(4.2.12)

(4.2.13)

Then, we abbreviate the notion in the following calculation as

< o~;2n·o~. >cP' = N~.
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(4.2.22)

(4.2.23)

(4.2.24)



(4.2.28f)

(4.2.27g)

(4.2.27h)

(4.2.27i)

(4.2.27j)

(4.2.28a)

(4.2.28b)

fvxzOw, + fvxyOw, + fVWXOW3 + fvxxOw, + (Jvvx + I)Ow"

(4.2.28c)

fvyzOw, + fvyyOw, + fvwy OW3 + fvxyOw, + fvvyOw, , (4.2.28d)

fwyzOw, + fwyyOw, + fwwy OW3 + fwxyOw, + fvwyOw" (4.2.28h)

fvvzOw, + fvvyOw, + (Jvvw + 1)Ow3

+ (Jvvx + I)Ow, + fvvvOw"

+ fvwxOw, + (Jvvw + I)Ow"

OW30 W3

The quantum ring of Gr{2, 4) is

(4.2.25)

(4.2.26a)

(4.2.26b)

(4.2.26c)

(4.2.26d)

(4.2.26e)

(4.2.26f)

Ow,Ow3

Ow,Ow,

We let t2 = X,t3 = Y,t. = z for Cp3,t2 = W,t3 = x,t. = Y,ts = z for CP4 and
t 2 = V, t3 = W, t4 = X, ts = Y, t6 = z for Gr{2, 4). A deformation of the multiplication
table (table 1, table 2, table 3) become the fusion rules for the quantum cohomology
ring with Ow. 's substituted for t's as

The structure constants of the quantum cohomology obey the so called WDVV
equation which satisfying the requirements[3]

(i)commutativity

(ii) associativi ty

(iii)existence of a unit Ow,

Commutativity follows from the definition, while condition{3.6) (equivalently{3.17)
expresses that Ow, plays the role of unit. The crucial assumption is the associativity
which imposes strong conditions on fM. Now let us introduce some more notations,
by fM,xyz we mean 8x8y8zfM' In the following we will simply omit the index "M",
and just denote it as fxyz'

The quantum ring of CP3 is

The quantum ring of C p4 is

fxyzOw, + fxyyOw, + fwxy OW3 + fxxyOw, + fvxyOw" (4.2.28k)

Ow,Ow,

(4.2.27b)

(4.2.27d)

fxxzOw, + fxxyOw, + fXXXOW3 + fwxxOw, + Ow" (4.2.27e)

fwyzOw, + fwyyOw, + fwxyOW3 + fwwyOw, + Ow" (4.2.27c)

fwwzOw, + fwwyOw, + fWWXOW3 + (Jwww + I)Ow" (4.2.27a)Ow, Ow,

Ow,Ow,

(4.2.27f) fyzzOw, + fyyzOw, + fwyzOW3 + fxyzOw, + fvyzOw, , (4.2.28n)
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For CP4 there are 17 independent constraint equations. We just write down five
of them which are enough to determine the correlation functions of CP4

Ow,Ow, = fzzzOw, + fyzzOw, + fWZZOW3 + fxzzOw, + fvzzOw,. (4.2.280)

Associativity condition (3.7) implies the free energy of Cp3 must satifying the
following constraint equation

Substituting the free energy (4.2.19-4.2.21) into (4.29),(4.30) and (4.31) one ob­
tains the recursion relations of correlation functions. For C p3 one has

(4.2.31£)

(4.2.31i)

(4.2.31e)

(4.2.31g)

(4.2.31d)

(4.2.31h)

- fxyz - fvxyfwwy + fwwxfwwy + fvwyfwxy + fwxxfwxy

- fwwwfwxy + fvwxfwyy - fwwxfxxy - fvwwfxyy = 0,

- fxxz - fvxzfwwy + fwwxfwwz + fvwzfwxy + fwxxfwxz

- fwwwfwxz + fvwxfwyz - fwwxfxxz - fvwwfxyz = 0,

- fwwwfwxx - fwwxfxxx - fvwwfxxy = 0,

fwxy + fvwyfwwy + fvxyfwxy + fvvyfwyy

- fvwwfwyy - fvwxfxyy - fvvwfyyy = 0,

fwxz - fvwyfvxy + fvwxfvyy + fvwyfwwx + fvxyfwxx

- fvwxfwwy + fvvyfwxy - fvxxfwxy - fvvxfwyy = 0,

- fyyz + fvwzfwyy - fvwyfwyz + fvxzfxyy

+ fvvzfyyy - fvxyfxyz - fvvyfyyz = o.

(4.2.30a)

(4.2.30b)

(4.2.29a)

(4.2.29b)

(4.2.29c)

(4.2.29d)

(4.2.2ge)

(4.2.29f)

-2fxyzfxxz + fxzzfxxy + fyzzfxxx = 0,

fzzz - f;yz + fxzzfxyy - fyyzfxxz + fyzzfxxy = 0,

fyyyfxzz - 2fyyzJzyz + fyzzfxyy = o.

- fwwz - fwwyfwxx + f~xx + 2fwwxfxxx - fwwwfxxy = 0,

f~xy + fwwyfwyy + 2fwyz - fwwxfxyy - fwwwfyyy = 0,

fwxyfwxz + fwwzfwyy + fwzz - fwwxfxyz - fwwwfyyz = 0, (4.2.30c)

- fwxzfxyy + fwxyfxyz - fwwzfyyy + fwwyfyyz + fyzz = 0, (4.2.30d)

2dN:;'+l - N:;' = L (~)
f+g=d

n+n'=:m

fwxyfxxy + fwwyfxyy - fwxxfxyy + fxyz - fwwxfyyy = o. (4.2.30e) [ (
4d - 2m - 3 ) f 9 ( 4d - 2m - 3) 3 f 9 ]

- 4f-2n-2 fNnNn-+ 4f-2n-3 9 NnNn, , (4.2.32a)

For the case of Gr(2, 4) there are fifty-six independent equations. We also write
down nine of them that determine the corelation functions of Gr(2, 4)

- fvvz - fvvyfvww + f;ww + f;wx + 2fvvwfvwy

- fvvwfwww - fvvxfwwx - fvvvfwwy = 0,

- fvvz - fvvyfvxx + f;wx + f;xx + 2fvvxfvxy

- fvvwfwxx - fvvxfxxx - fvvvfxxy = 0,

- fvxz - fvwwfvxy + fvwxfvwy - fvwxfwww + fvwwfwwx

- fvxxfwwx - fvvxfwwy + fvwxfwxx + fvvwfwxy = 0,

- fwwz - fxxx - fvxxfwwy + f~wx + f~xx + 2fvwxfwxy

(4.2.31a)

(4.2.31b)

(4.2.31c)

[ (
4d - 2m - 4) 3 f 9 (4d - 2m - 4) 2 f 9 ], )
4f - 2n - 4 9 Nn+1N n, - 4f _ 2n _ 2 fg NnNn'+l 4.2.32b

N:;'+2 = L (~)
J+g=d

n+n'=rn
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For the case of C p4 the recursion relations read as follows

( ~11)(~:)
f+g=d

nl +n'l :;;;ml ,n2+n;=m2

95

(4.2.33a)

(4.2.33b)

( ~11)(~:)
f+g=d

nl +n'l =m\ ,n2+n2=m2

For the case of Gr(2, 4) the recursion relation of becomes
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(4.2.33c)

(4.2.33d)



(4.2.34c)

I+g=d,nt+n;=ml
n2+n~=m2,n3+n3=m3

(4.2.34a)

(4.2.34b)

1+9=d,nl+.. 'I=·nl

n2+n~=m2,n3+n3=m3

d2N:'1,m2,m3+1 - 2dN~1.m2+1,m3 + N~I,m2,m3 + N~1+1,m2.m3

L ( :: ) ( :: ) ( :: )
f+g=d,nj+n;=mj

n2+n~=m2In3+n;=m3

[ (
4d - mj - 2m2 - 3m3 - 2 ) /2 Nf NY

- 4f - nl - 2n2 - 3n3 - 1 9 fll,fl2+ 1,n3 n'l'n~.n~
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(4.2.34f)

( ~ll)(~:)(~:)
f+g=d.nl +n~=ml

n2+n2=m2,n3+n3=m3

(4.2.34e)

(4.2.34d)

(~: )(~: )(~: )
I+g=d,nl +t1~=ml

n2+n~=n12,n3+n3=m3

( ~11 ) ( ~: ) ( ~: )
I+g=d,nl +.. '1 =ml

n2+n2=m2,n3+n~=m3
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(4.2.34i)

J+g=d'"1 +"'1 =ml
n2+n~=m21n3+n~=m3

J+g=d,n,+"',=mt
n2+n~=m2,n3+n~=m3

(4.2.34h)

(~: )(~: )(~: )
J+g=d,"l+"'l=ml

n2+n~=m21n3+n3=m3

N:n"m2+3,m3 - N~l"m2+1,m3+1
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In these recursion relations, d, f, and g are all greater or equal to one. So when
d equals one, r,h,s of these equations vanish since g+f 2 2. Then we have a set of
linear relations for N: 's. We can use these linear relations to determine all the the <
Ow,Ow, >=1 for CP3, < Ow,Ow, >=1 for CP4 and < OW,OW6 >=1 for Gr(2,4).
Then we put these degree 1 correlation functions to the r,h,s of (4.35),(4.36),(4.37)
and obtain linear relations for N;'s. This time, these linear relations thoroughly
determine them. For higher degree, the process is the same as d=2 case. We observe
that recursion relations we have written down are suffcient for determination. We
checked the compatiable condition in the case of d ~ 4. It seems that the over
determined system of WOVV equation work well in all degrees of maps in the case
of Cp3,Cp4 and Gr(2,4). The intersection numbers of moduli space of d ~ 4 are
given in the tables.

103

Table 4.4: 0=1 Cp3

I No - 2 t N, - 1 I N 2 - 1

Table 4.5: 0=2 Cp3

I No - 92 I N, - 18 I N2 - 4 I N 3 - 1 I N 4 - 0 I

Table 4.6: 0=3 CP3

I No - 80160 I N, - 9864 I N 2 - 1312 I N3 - 190 I N4 - 30 I N5 - 5 I N 6 1 I

Table 4.7: 0=4 Cp3

Table 4.8: 0=5 CP3

Table 4.9: 0=6 CP3

No - 244274488980962304 N, - 14207926965714432 N2 - 855909223176192
N 3 - 53486265350784 N4 - 3472451647488 N5 - 234526910784
N 6 - 16492503552 N, - 1207260512 N8 - 91797312
No - 7200416 N lO - 573312 Nll - 44416
N'2 - 2576
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Table 4.10: D=l Cp4

I Noo - 5 I N IO - 3 I N20 - 2 I N 30 - 1 I NOl - 1 I Nll - 1 I N 02 - 1 I

Table 4.11: D=2 Cp4

Table 4.12: D=3 CP4

Nooo-O
N oo ! 0
NOlO-O
N Oll -1
N o2o 1

NlOo-O
N lOl -1

Table 4.14: D=l Gr(2,4)

N,oo-O N,oo -0

Noo - 213709980
No,=O
N 14 -5
N 2,-1
N,o - 194024
N,o - 34780
Noo = 6216
N70 - 1108
N so -188

No! - 2770596
N IO - 35806494
N20 - 6165822
N30 - 1085892
N 41 - 3512
N,! - 664
N6! = 128

N02 - 45954
Nil - 511012
N2 ! - 96548
N3l - 18469
N'2 -76
N'2 -16

N03 - 1011
N!2 - 9386
N22 -1931
N32 - 385

No, - 30
N'3 - 225
N23 -45

Table 4.13: D=4 CP4

Noo - 47723447905060 No! - 327439797532 N02 - 2679044142 N03 - 26578256
No, - 324764 N05 - 4830 N 06 -61 No7 -1
N IO - 5876564125104 Nll - 43242657488 N!2 - 380720598 N'3 - 4063860
N 14 - 52507 N!, = 732 N ,6 -9
N 20 - 738764469204 N2l - 5823161346 N22 - 54948346 N23 - 622980
N 2, - 8133 N2, -107
N 30 = 94605276228 N3! = 796460052 N 32 - 7990720 N33 - 94104
N 3, -1218 N3,-14
N,o = 12302188692 N41 = 110031632 N'2 = 1159218 N'3 - 13962
N 44 -178
N 50 - 1617593360 N,! - 15251816 N52 - 166936 N'3 - 2056
N 60 - 213984472 N6! - 2110864 N 62 - 23968 N 63 - 320
N 70 - 28346212 N71 - 291632 N 72 - 3516
N so = 3748804 NSl = 40492
N go - 343260 N9l - 5552
N lOo - 63740
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Table 4.15: D=2 Gr(2,4)

N ooo -2 N IOO -6 N 200 -18 N300 -34 N400 -42 N,oo - 42 N 600 - 34 N7oo =18
N soo -6 N goo -2
N OOl -1 N lOl - 3 N20l -5 N30! -5 N'Ol-5 N 50 ! =3 N 60 ! =1
N oo2 -1 N 102 -1 N202 -1 N302 -1
N OO3 1
N OlO -3 N lIo -9 N 2!o -17 N31O -21 N410 -21 N,lO -17 N61O -9 N710 - 3
N Oll -2 N lll -3 N 211 -3 N311 -3 N,"- 2
N Ol2 1 N 1I2 1
N o2o -5 N!20 -9 N220 -11 N320 -11 N'20-9 N520 - 5
N o2!-2 N I21 -2 N22!-2
N o30 -5 N13o -6 N230 -6 N330 -5
N o3l -1
No,o 3 N 140 3
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I""'- ....

Table 4.16: D=3 Gr(2,4) Table 4.17: D=4 Gr(2,4)
N""" 504 N,.." 100 Nom 25 N,.." 6 N""" 2
N,,.., 1824 N lOl 307 N'D' 55 N 103 9 NIf14 2
No~ 5159 N?DI 676 NOn? 83 N?m 10 Nooo - 1044120 Nom - 93726 Noo' - 9970 NOO3 - 1170 Noo• - 138 Noos - 20
N?~ 11319 N'DI 1109 N?D? 101 N,o, 9 N ,oo - 3094440 N lOl - 251402 N lO, - 22570 N 103 - 2058 N lO, -190 N lOS -20
N.,.., 19512 N'OI 1460 N'D' 101 N.n? 6 N,oo - 8093840 N,ol - 570998 N,o, -4179 N'03 - 2998 N,o, -214 N,os - 20N,~ 27472 N'DI 1605 N'D? 83

N 300 - 18245976 N301 - 1086890 N30, - 64434 N303 - 3690 N30, - 214No"" - 32517 N601 1460 NOD? 55
N,oo - 35219976 N,ol - 1752446 N,o, - 84818 N'03 - 3942 N,o, -190No~ 32517 N7nl 1109 N7n? 25
Nsoo - 58571280 Nsol - 2434530 Nso, - 96894 NS03 - 3690 Nso' -138No"" 27472 N.ol 676
N 600 - 84843440 N601 - 2951174 N60, - 96894 N603 - 2998No"" -19512 N901 307

N.""" 11319 MoO! 100 N700 - 108066120 N701 - 3143726 N70, - 84818 N703 - 2058
N,,,,, 5159 N.oo - 121770480 N.oI - 2951174 N.o, - 64434 N.03 - 1170
N,M 1824 N 900 - 121770480 N901 - 2434530 N90, - 41794
N"nn 504 N lOOO - 108066120 N lOOI - 1752446 N lO02 - 22570
1'l"n 538 NOI 109 III,,? 23 NOl 5

NlIoo - 84843440 NlIOI - 1086890 NlIo, - 9970N.n 1603 N 246 NO? 35 N 5
N 1200 - 58571280 N1201 - 570998N"n 3607 N" 403 N?,? 42 N,I 5

N.n 6278 N?, 528 N .. 42 N,300 - 35219976 NI301 - 251402
N.n 8864 N41 579 N .. 35 N 1400 - 18245976 N140l - 93726
N In - 10499 NS1 528 N, 23 NIsoo - 8093840
Nln 10499 NOI 403 N ,600 - 3094440
N,n 8864 N7I 246 N1700 - 1044120
N,o 6278 N., 109

NOlO - 692760 NOli - 63904 No1 , - 6528 NOl3 - 675 No.. -74 Nois -6N,n 3609
N IIo - 1852184 NlIl - 147070 N1I2 -12060 N Il3 - 976 Nil. -80Nlnlo -1603
N 210 - 4249660 N," - 281764 N21 , -18506 N',3 -1181 N'14 -80N ,n 538
N 310 - 8297556 N31l - 454858 N312 - 24196 N31S -1254 N314 -74Nn?n 523 No" 94 Nn?? 16 No" 2

N"o 1203 NI2l 153 N ,22 -18 N4Io - 13886500 N411 - 631136 N4I , - 27526 N4l3 - 1181
N,?n 2100 N" 198 N??? 18 NSIO - 20177804 N5Il - 764000 NS12 - 27526 NS13 976
N,?O - 2960 N", 216 N??? 16 N 610 - 25736664 N611 - 813396 N61 , - 24196 N613 - 675N..n 3501 N.., 198 N710 - 29015656 N7II - 764000 N71 , -18506N,?O 3501 N<21 153

N810 - 29015656 N8lI - 631136 N812 -12060N..n 2960 No" 94
N 910 - 25736664 N911 - 454858 N9l , - 6528N7?n 2100
N lOlO - 20177804 NlOll - 281764N.?o 1203
NlllO - 13886500 NIIII - 147070No?n 523

NO?n 420 No" 61 Nn?? 7 Nl2lo - 8297556 N1211 - 63904
N"o 729 N'3I 76 N", 7 N l3lo - 4249660
N??n 1019 N"I 82 N l4l0 - 1852184
N"n 1200 N331 76 Nl510 - 692760N..n 1200 N." 61

No,o - 440638 N021 - 39460 N022 - 3624 NO'3 - 332 No" -26N"n 1019
N 120 - 1025894 NI2l - 75712 N 122 - 5512 N 123 - 338 N 12• - 26N"o 729

N7?n 420 N 220 - 2019894 N'21 -121884 N22, - 7112 N223 408
Nn.n 262 N04l 28 N 3,o - 3391958 N321 - 168332 N3" - 8032 N323 - 338
N"n 358 NI" 30 N"o - 4932358 N421 - 203048 N", - 8032 N423 - 332
N"n 418 N'41 28 Ns,o - 6290046 Ns" - 215904 NS22 - 7112
N"D -418 N6,o - 7089646 N621 - 203048 N622 - 5512
N"n 358

N720 - 7089646 N721 - 168332 N722 - 3624N"n 262
N.,o - 6290046 N821 - 121884No,o 124 NOS1 10
N 920 - 4932358 N921 - 75712N,," 144
NlO,o = 3391958 N lO21 - 39460N20n 144

N"n 124 N 1l20 - 2019894
NnRD 48 N 1220 - 1025894
N,60 48 N ,3,O - 440638
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Table 4.18: D=4 Gr(2,4)

N030 - 256946
N ,30 - 508026
Nno - 852818
N330 - 1237234
N'30 - 1574370
N030 - 1772374

N031 - 21072
N '31 - 33665
N231 - 46042
N331 55181
N43I - 58548
N031 - 55181

N032 -1695
N'32 - 2131
N232 2379
N332 - 2379
N432 -2131
N532 -1695

N033 -121
N133 -126
N233 -121

4.2.4 Appendix of Section 4.2:Derivation of Initial Condi-
tions and Some Direct Counting of Amplitudes

We first show (Ow, Ow,) = 1 for CP3 (resp. (OwoOw,) = 1 for CP4). From (2.1.16)
this is just number of lines passing through two points of Cp3(resp. CP4), so it
equals to 1 trivially. But we derive this result using schubert calculus of Gr(2,4)
(resp.Gr(2, 5)) which corresponds to the space of lines in CP3 (resp.Cp4). Schubert
cycles aa"a, <;; Gr(2, N) (N - 2:::: a, :::: a2 :::: 0) form a basis of H*(Gr(2, N), Z) and
are given by following definition.

where Vi's are linear subspace of C N of dimension i satisfying following condition.

N030 1772374
N730 1574370
NB30 - 1237234
N 030 852818
N I030 - 508026
N1I30 256946
No,o - 131874

N631 - 46042
N731 33665
NB31 - 21072

N041 - 9540 NO'2 - 626 N043 -36

aa"a, = {I E Gr(2, N)ldimc(l n VN - 2+i - a;] :::: i} (4.2.35)

(4.2.36)

(4.2.37)

N140 - 220250
N 2,o 317466
N3,o - 402090
N 440 451610
N..o - 451610
NB'O 402090
N"o 317466
NB,o - 220250

N I41 - 12808
N241 15196
N341 - 16072

N'41 -15196
No41 -12808
N641 - 9540

N142 - 690
N2'2 690
N342 - 626

From this definition, subset of Gr(2, N) passing through a point of CpN-l is given
as aN-2,O because this condition is equivalent to dimc(l n Vd = 1. Then we can
calculate (Ow,Ow.l for CP3 (resp.(Ow,Owo) for CP4) as follows.

(Ow,Ow,) = ~(a2,0 . a2,O)cr(2,4) = ~(a2,2)Gr(2,4) = 1

(Ow,Ow,) = ~(a3,O . a3,O)cr(2,5) = d(a3,3)cr(2,5) = 1

No,o 131874
Nooo - 58170
N ,oO - 82790
N200 - 104070
N300 - 116486
N,oo - 116486
N..o - 104070
N650 - 82790
N750 - 58170
Nooo - 21638
N I60 - 26958
N260 - 30062
N360 - 30062
N'60 - 26958
N560 - 21638
N070 - 6888
NJ70 - 7664
N270 = 7664
N370 - 6888
NOBO -1916
N'BO -1916

NOol 3544 N002 - 190
N iol - 4156 N '02 - 190
N201 - 4380
N301 - 4156

N'ol - 3544

N061 - 1104
NI61 - 1160
N261 - 1104

N071 - 290

In this derivation, we used Pieri's formula

(4.2.38)
bi$Ci9i_l

Cl +c2=a+bl +b2

and aN-2,N-2 corresponds to a point of Gr(2, N).

Next we derive (OW,OW6) = 1 for Gr(2,4). Using Pliicker map, Gr(2,4) can
be embedded in Cp5 as a quadratic hypersurface. This embedding is constructed
as follows. We map a line {VI> V2}C in CP3(C4) to a multivector V, /\ V2 E A2C4

This map (we call it .) is injective and conversely the image of a line in A2C4 is
characterized by decomposability, i.e. wE A2C4 is in Im(.) iff w can be written as
w = VI /\ V2· It can be shown that this condition is equiivalent to w /\ w = o. So
using a basis {ej, e2, e3, e4} of C 4 and expanding was follows,

we can realize Gr(2,4)(~ Im(.)) in CP5 as follows.
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w/\w =0

{==} AI2A34 - AI3A24 + AI4A23 = 0
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In summary, we can see Gr(2,4) as a quadratic hypersurface G in Cps. Then we
want to find the realization of a2,1(= W 5) and a2,2(= W6) in G. From the study of
the structure of G (see Chap.6 of Griffith Harris [19]) a2,1 corresponds to a line in G
and trivially a2,2 to a point. If we consider plane h (resp. line I) in CP5, quadratic
feature of G makes the intersection (h n G) (resp.(1 n G)) into conic of G (resp. two
points of G).Then we have to devide them by factor 2,i.e.

1
a2,1 f-t 2(hnG) (4.2.41)

1
a2,2 f-t 2(1 n G) (4.2.42)

The space of lines in G (we denote it as Le ) is constructed as the subspace of
Gr(2, 6) (space of lines in CPS) using bundle calculation (see [3]).

Le = er(Sym2(U')) = 4a2,1 (4.2.43)

where U is the universal bundle of Gr(2, 6).

(We denote schubert cycles of Gr(2, 6) as aal,a, in order to distinguish them from
the ones of Gr(2, 4)).

From (4.2.42), in Le , to count the number of lines which passes through a2,1 and
a2,2 are equivalent to picking up the lines which passes through hand 1 (multiplied
by factor ~). Then we have

1 1
(Ow,Ow.) = ~(2a3' 2a2 . 4a2,d = 1 (4.2.44)

Lastly, using this technique, we calculate the topological amplitude of d = 1 sector
for CP3 and CP4.

~

Ow, f-t al Ow, f-t a2 (inGr(2,4))

(Ow,Ow,) = ~(a2 . a2) = 1

(O~,ow.) = ~(a~ . a2) = 1

(otv, = d(ai) = 2

Chapter 5

Mirror Symmetry

So far, we have discussed A-model, but in case that target space is a Calabi-Yau
manifold, there is another way of twisting N=2 super symmetric sigma model. We
call this topological sigma model as B-model.

Mirror symmetry is the conjectural symmetry which asserts that for Calabi-Yau
manifold M, there is another Calabi-Yau manifold M' which satisfy Hp,q(M) =
Hq,d,m(Ml-p(M'), and in addition, correlation function of A-model (resp. B-model)
on M and the ones of B-model (resp. A-model) on M' are coincide. To be more
precise, we have a way of translating the correlation functions of B-model on M' into
the ones of A-model on M by identifying deformation parameters of both models.
Reverse operation is not well-defined in the present circumstances. In this chapter,
we treat B-model on M;" which is mirror counterpart of degree N hypersurface in
CpN-l, the only one Calabi-Yau manifold in it and calculate (n~12 Oe(Zi))' We
will see the complete coincidence with the previous result and the evidence for the
conjecture in the case of general dimensional Calabi-Yau manifold.

5,1 Construction of M N
Ow, f-t al Ow, f-t a2 Ow, f-t a3 (inGr(2,5))

(Ow,Ow,) = ~(a3 . a3) = 1

(O~,ow,) = d(a: . a3) = 1

(OU = ~(ag) = 1

(Ow,Ow,Ow,) = d(a, . a2 . a3) = 1

(O~,o~.) = d(a~ . ai) = 2

(otv,ow,) = d(ai . a2) = 3

(Ofv,) = ~(ar) = 5
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(4.2.45)

Construction of a mirror manifold of Calabi-Yau manifold is systematically done with
the toric geometry. Let us consider an n-dimensional convex integral polyhedron 6. E
Rn containing the origin Llo = (0,0" ··,0). An integral polyhedron is a polyhedron
whose vertices are integral, and is called reflexive if its dual defined by

6.' = {(Xl, X2,''', xn)1 LXiYi 2: -1 for all (YI, Y2,''', Yn) E 6.} (5.1.1)
i=l

is again an integral polyhedron. Note if 6. is reflexive, then 6.' is also reflexive since
(6.')' = 6.. From 6. we can construct toric ambient space P" (for detailed construc­
tion see [18]). We introduce complex variable z; (i = 1,2"", n) corresponding to
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integral base vectors ei = (0,· " 0, L0,"', 0) of R:'. Denote Vj (j = 0, 1,···, s) the
integral points in t. and consider the zero locus Z, of the Laurent polynomial

V[" = (N - 1, -1,"" -1) v:: = (-1, N - 1, -1"", -1)

"', vZ_ 1 = (-1, -1"", -1, N -1), v:: = (-1, -1, -1,···, -1) (5.1.3)

in the algebraic torus (cxt C Pt;. Fundamentally, this gives the defining equation of
Calabi-Yau manifold Mt; in Pt;. Operation which translate (5.1.2) into homogeneous
polynomial form are discussed later. Correspondingly, mirror counterpart of Mt; is
constructed as Calabi-Yau manifold Mt;. in Pt; ..

Then we turn to our CpN- I case. Cp N- I is constructed from the polyhedron
t.N in RN-I with vertices

f(a, Z) = t ajz~] z;J ... ;:l
j=O

Then defining equation for Mt;N becomes

!fiN (a, Zi) = ~, ad"d,,. '.dNoIZt,-IZ~,-I ... z'ft_i l

O~d;,2:;~, d;~N

(5.1.2)

(5.1.4)

And defining equation of Mt;N' is

N-l
'£ ajzj + ao + aNz,1 zi l .. ZN~1 = a
j=l

In this case, the toric variety Pt;N. can be identified with

Pt;N. H N

N

: UN) E cpNI II Ui = Ut'}
i=!

where the variables Zi are related to Ui by

(1: Zl: Z2:'" : ZN-I : ----iT-) = (1: Ul : UN)
fli=l Zi Uo Uo

Then we can rewrite (5.1.10) in terms of Ui as follows.

N-l U U
Uo('£ arrf +ao +aN r;) = a

J=l 0 vo
N

{=? '£apj =0
j=O

(5.1.10)

(5.1.11)

(5.1.12)

(5.1.13)

But the second condition in (5.1.14) is rewritten in more convenient form using etaJe
map.

Coordinates Zi are identified with the homogeneous coordinates Xi of CpN-1 via

(5.1.5)

Then we have the well known form of defining equation of Mt;N as follows

And we have
N N

: UN) E cpNI I:aPj = 0, II Ui = un
j=O i=l

(5.1.14)

Combining (5.1.14),(5.1.15) and (5.1.16), we have

'£ ad,d, ...dNo'XIX 2", X;r_l' X:-2::':~' d,

O~d;, 2:::':~' d;~N

'£ o'd,d, ...dNo,Xt'Xg'·· x'ir-l'X'ft(5.1.6)
O~d" 2::':, d;=N

(ad1d2· ..dN := ad j d2···dN_l)

(5.1.7)

(5.1.7) defines a family of Calabi-Yau Manifolds in CpN-1 with different complex
structure, but A-model doesn't distinguish this difference. Then we can choo e
simple representation of defining equation of Mt;N := MN.

Next, we consider Mt;N' .t.N' is the polyhedron whose vertices are

v['" = (1, 0,·· . ,0), v::' = (0,1, 0,' ", 0), VZ~1 = (0", " 0, 1)

vZ' = (-1,-1"",-1). (5.1.9)
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¢: CpN-I H H N

(Xl: X 2 : ... : X N) H (XIX 2··· X N : X[" : XI! : ... : XZ) (5.1.15)

This map is equivalent to dividing CpN-I by discrete group Z~N-2 generated by

91 = (e~,l, ... )1,e-~),g2= (l,e~,l, ... , l,e-~)"" ,9N-l = (1", 'll,e~,e-~)
(5.1.16)

N N
Mt;.N = {(XO : Xl: ... : X N) E CpN-IIZ~N-21 '£ajXf' + ao II Xj} (5.1.17)

j=l j=l

(5.1.17) also defines the family of Calabi-Yau manifold with different complex struc­
ture. Since B-model describes the deformation of complex structure of target space,
we cannot ignore ai'S in contrast to M N. But we can set ai = 1, (i = 1,' " N) using
the linear transformation compatible with the action of ~N-2 For later convenience
we define ao as -N"Ij; and we have the following family of Miv := Mt;N"

Miv:= {(Xl: X 2 :···: X N) E CpN-IIZ~N-2IX["+xI! +.. ·+xZ -N"Ij;X1 • ··XN}
(5.1.18)
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5.2 B-model

The B-model is obtained by twisting a N = 2 non-linear sigma model defined on a
Calabi-Yau space [8J in a way different from A-twist. N = 2 non-linear sigma model
is defined as follows. let M be a n-dimensional Calabi-Yau manifold and ¢f be a
holomorphic coordinate on M (i = 1,'" n)(and if} be a anti-holomorphic coordinate
), E be a Riemann surface, which is restricted to genus zero, and z be a holomorphic
coordinate on E. The Lagrangian is

Since the canonical bundle J( (or K) is trivial, the twisting does nothing at all at
least locally. Therefore the transformation law (5.2.20) should he still valid. But to
keep up with the change of the spin of 1/J~, 1/J~ etc., we also have to change the spin
of 0<+, 0<_ etc. By the B-twisting the infinitesimal parameter o<_,Q_, 0<+, and 0,+
turn followingly;

o<_,a'_: spin -1/2 ---; { 0<_: spin -1
a'_ : spin 0 on E

L = 2t1d2Z(~giJ(8zifi8,¢l)+8,<pi8z</})+i'lj;~Dz1/J~g;i+i1/J~D,1/J~gIi+R.;'jJ1/J~ 1/J~v?-vl)
E 2 (5.2.19)

where <pi(z) is a map from E to M. Spin quantum numbers are already explained in
Section 2.1. This Lagrangian possesses N = 2 super symmetry. In terms of fermionic
parameter <:L, Q_, and 0<+, Q+, the super transformation laws are given as follows.

where

(5.2.23)

iO<T/'

alii = 0
-o<d<pi

Also we can introduce the BRST operator Q which generate topological transforma­
tion such that oW = -i{Q, V} for any field V. Q satisfies the condition Q2 = 0
modulo equation of motion. In terms of this BRST operator Q, we can rewrite the
Lagrangian (5.2.22) as;

L=itj{Q,R}+tW,

{
0<+: spin + 1

0<+, a'+ : spin + 1/2 ---; 0<+ : spin 0 on E

According to Eguchi-Yang [28], reinterpretating the above scalar transformations by
0,_, Q+ as BRST transformation, we can obtain a topological field theory.

That is , the BRST transformation is obtained from (5.2.20) by setting 0<_ =
0<+ = 0 and setting 0,_ = 0,+ = 0< = constant. The topological transformations are

(5.2.21)

(5.2.20)

io<_1/J~ + io<+1/J'..

iQ_1/J~ + iQ+ 1/J~

-Q_8z <pi
- io<+v?-qm1/J:;:

-0<_8,<p' - iQ+vlr}m1/J~

-Q+8z <pi
- io<_1/4qm1/J'::

-0<+8,<p' - iQ_~r}m1/J~

1/J~ >-+ p~

1/J~ >-+ p:

(1/J't+1/J~) >-+ rl'
(1/J~ -1/J~) >-+ (1'

B-model is obtained by twisting the above Lagrangian as follows;

Here for convenience we redefine the variables;

r/ 1/J~ +1/J~

Iii gd'lj;~ -1/J~)

p~ 1/J~

p~ 1/J'..

The B-model Lagrangian is

L = t ~ d2Z(~9G(8z<pi8,¢l + 8z ¢l8,<p' + +/(DzP~ + D,P:)gi, + i~lii(D,P: - Dzp~)
1 .. - k' ( )

-2R.;;jJP~fJ'zT/'likg J) 5.2.22

and
W = ~ (-liiDpi - i/2R.;,jJpi /\ piT/'likl') ,

here D is the exterior derivative on E and extended to act on forms with values in
ep*(T1,O M) by using the pull-back of the Levi-Civita connection on M. Then we
can take weak coupling limit t ---; 00. Since W is homogeneous with respect to the
variable Ii, we rescale Ii into r Then the theory does not depend on Wand we can
conclude that correlation function does not depend on coupling constant t. Instead,
B-model is deformed by the variation of complex structure of target space M, which
is the key to the later discussion.

115 116



5.3 The Observables

While the BRST-invariant observables of A-model form De-Rahm(Dolbeaut) coho­
mology on M, those of B-model are given by 8-cohomology of
AP(M, A"TI,o M) : AP(M, A"Tl,O M) is the set of (O,p) forms on M which take values
in A"T1,oM. (Here /\qTl,OM means the q-th exterior power of holomorphic tan­
gent bundle on M, T1,o M.) Such an object can be written;

AP(M, /\qT1,OM) :3 V = v,~;~'.i:'dz'1 /\ dz" /\ ... /\ dz'p8jl /\ 8j, /\ ... /\ 8j , (5.3.24)

Of course, the sheaf cohomology group HP(M, /\qT1,O M) is defined by t~e quo­
tient space (module) of ZP(M, /\qT1,O M) which is the space of solution of 8V = 0
modulo BP(M,/\qT1,OM) which is the set of S's such that 8S = 0 for all S E
AP-l (M, /\qT1,O M). Given any point Z E E, we can give the correspondence of every
elements V of N-I(M, /\qT1,O M) to the quantum field theory operator Ov(z);

(5.3.25)

and we can find that
{Q,ov} = -Olivo

Therefore Ov is BRST-invariant if and only if 8V = 0, and Ov is BRST-exact if
and if only V = 8S for some S.

This correspondence gives a natural map from tB::~~oHP(M, A"Tl,OM) to the
BRST cohomology or the observables of B-model. This map, in fact, is isomorphic.

5.4 n-point Correlation Function

where B E HI (M, Tl,O M). According to Vafa [26J and Witten [8], it is revealed
that the path-integral of B-model can be reduced to the integral on the space of the
constant maps from the world sheet E to its target M, i.e., the integral on the target
space M itself. The Physical Proof is the following. Let Y be some function space
on which we wish to path-integrate. Consider the theory we are dealing with (of
course, in this case B-model) has a group symmetry G. Suppose that G acts freely
on Y. Then there is a fibration Y -+ Y /G, and we can reduce the path-integral over
Y to Y /G. If we consider only G invariant observables 0, we have the formula,

(5.4.28)

where volG is the volume of the group G. We can apply this formula to the case in
which G is a super group generated by the BRST charge Q. but this case is rather
strange, since for any fermionic variables B

JdB· 1 = 0,

the volume of any super group G becomes zero. Do we have to conclude any correla­
tion function of BRST invariant operators are all zero? In general, the group G does
not act freely. In almost all cases there are some fixed point sets Yo. The nonzero
contribution to the correlation function comes from only Yo . Since on Y - Yo G
acts freely then we can apply (5.4.28) there. In the B-model Q-invariant points must
satisfy from (5.2.23) that

8p' = -ad¢i = 0,

therefore
d¢ = O.

We describe the observable which corresponds to the elements Va E H P• (M, /\Q·Tl,O M)
as Ov•. Our concern is the formulation of the correlation function

(il0V,(Zi)), (5.4.26)

This means that the maps <P : E -+ M should be constant maps on M. Thus we
have succeeded in reducing the path-integral over Y to the integral over the space
of constant map on M, that is, the integral on target space M itself. ext we will
consider how to calculate n-point correlation function
(ITt;1OB(Zi)) concretely.

where z;'s are arbitrary points on E. The operator Ov; has a left-moving ghost
number Pi and a right-moving one Qi. In order for (5.4.26) not to vanish, the
conservation law between the left(or right)-moving ghost number and back ground
ghost charge demands that

Corresponding to the map ®nBB >-t By, we can construct the map:
2: Pi = 2:Qi =dim(M) =n, (5.4.27)

OB(Zk)

IIOB(Zk)
k;J

bir/'Bj

IIil;~' (1)i'Bj ,)
k;l

By.

In this section, we especially concern the correlation function of the type

(fI0B(Zi)),
i=l
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It is apparent that this map is merely a classical wedge product.
Now in order to carry out the integral over Calabi-Yau manifold M, we need to
transform the element of Hn(M,lInT1,OM) to the element of Hn(M,nnM) (here
nnM means the sheaf of (n,O) form.) We can realize the requested transformation
by operating the square of the holomorphic (n, a)-form on M. According to the
general theory of Calabi-Yau manifold, the holomorphic (n, a)-form on n-dimensional
M exists uniquely up to constant. So we don't have to worry about how to select
the holomorphic forms. Therefore we can formulate n-point correlation function up
to constant by the integral on M itself,

oting that the holomorphic local coordinate xl' depends on the complex structure
z''', derivate the both sides of (5.5.31) with zO. Then

an 1 ah(x) 1 adx"
azo = ;j~f~" .. pdx" IIdx" II .. ·lIdxP + (n _1)!h(x)f~" ...p~ IIdx" II .. ·lIdxp.

(5.5.32)
The first term is apparently a pure (n, a)-form. But the second term is a direct linear
combination of (n, a)-form and (n - 1, I)-form, and especially, we should note the
term a:zX:' This term consists of (1, a)-form part and (0, I)-form part. Thus,

(5.4.29)

where

bik bjkdzi

n n iIh ...j "dzlI II dzh II ... II dz j " E Hn,O(M).

Note that this formula is defined only up to a constant.

Xa an I
aza (n-I,l)-form part

1 adx~ I
(n _1)!h(x)f~"..p~ II dx" II··· II dxP

Z (n-I,l)-form part

1 adx~1-(_1)lh(x)f~"...p~ IIdx" II ... IIdxP

n. z (o,I)-form part
(5.5.33)

5.5 Kodaira-Spencer equation

It is also well known that Hn-I,I (M) and HI (M, TI,o M) are isomorphic each other
with the help of the holomorphic (n, a)-form n. There is the map from HJ(M, TM)
to Hn-I,I(M);

where ko depends only on Za, but not on the coordinate of M, and Xa E Hn-I,I(M).
That is, this means a decomposition:

an E Hn,O Ell Hn-I,l.
aza

Let us guess what happens here. We can describe the holomorphic (n, a)-form n in
terms of a holomorphic local coordinate xl' of M as

It is well-known that bi E HI(M, TI,o M), (i = 1· .. dim(H~(M,T',o M))) form a basis
of the tangent space to the moduli space of the complex structure of M ( we will
denote it M comp. );

TMcompl M = HI(M,TI,OM).

Kodaira and Spencer [11], [12] showed that the complex-structure moduli space
M comp itself is also a complex manifold.
Let zO(a = 1,···, dim(M comp.) = dim(HI(M, T1,o M))) be a holomorpbic coordinate
on M comp. (In this section we will deal only with the case dim(Mcomp.) = 1).
The deformation equation of Kodaira and Spencer is the following;

W-I"(M) t-+ HJ(M, TM) (5.5.36)
- 1 - _

X" = Xa, .~p ...udx" II dxP II··· II dxu t-+ ~,. = 21InWn~p,,,uXo,.p...udx"

The original Kodaira-Spencer equation (5.5.30) can be rewritten in terms of the
element of HJ(M, TM),

(5.5.35)

(5.5.34)

(5.5.37)

(5.5.38)

HM!vI,TM) t-+ W-I,I(M)

X~ = X~, .dx· t-+ Xo = X~, .n~p...udx· II dx P II ... II dxU
•

We can inverse this map;

an
az" = kan + X~ .n~. ,

where X~. E HJ(M,TM), and n" means

From (5.5.33) and (5.5.38) we can infer that

(5.5.30)
an
azo = kon + Xo,

n = ~h(X)f~". pdx~ II dx" II ... II dxp.
n.

(5.5.31)
adx~1

X~. = ~ (o,I)-form part'
(5.5.39)
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Therefore from all the fact above we can immediately derive map,

(5.6.45)

(5.6.47)

N

~]-1)iXidXt II. ... II. dXi II. ... II. dX N(5.6.46)
i=l

t--+ m!1PNm(X) W E H N- 2- m,m(M*)
'1 W m +1 compo N .

where

(')' is a small one dimensional cycle winding around the hypersurface in CpN-I
defined by W = O. In (5.6.46), dividing by Z~N-2 can be considered as multiplication
factor of (fr )N-2 because singular locus caused by Z~N-2 is measure zero in the
integrand. We will omit this factor from now on.)

. Now, using this fact, we wil~ determine the structure of H:',,;;'~.(MN). Z~N-2

Ill~~r~;nt homogeneous polynomials PNm(X) (0 ~ m ~ N - 2) are generated by
ZN Illvanant homogeneous monomials of degree N.

(5.5.42)

(5.5.40)

(5.5.41)

- fM n II. b~ II. b~ II. ... II. b;nni'i'in
8n n

fM n II. 8za8zfJ .. . 8z-' .

n times

(il0B,(Zi))
i=l

It is because obviously from (5.5.33)

onn I .8zaozfJ . .. ozP = X:; II. X~ II. ... II. X~mni,i, ...im.'

m times (n-m,m)-form part

where ni,i, ...im. := n ili,. imjd, ... jn_mdxjl II. dxi2 II. ... II. dxj,,-m. We should also note
8n n

that after integrating over M only (0, n)-form part of oz
Q
8

z
fJ ... ozP remains non-

n times
zero. Thus all we have to do for the calculation of the n-point Yukawa coupling is to
calculate the holomorphic (n,O)-form non M as a function on the complex-structure
moduli space (roughly speaking, in our model as a function of'l/i).

5.6 B-model on Miv

But we have to identify these monomials via relations OiW.

OiW = N ·Xf-1-N'l/iX1 " Xi' "XN

In particular, (5.6.48) tells us that

xf='l/iXt,,,XN (modulo OiW).

(5.6.48)

(5.6.49)

We will apply the formalism of the previous section to B-model on MN. First, we
have to determine the observables. Complex structure of MN is parameterized by
the coefficients (ao,' .. ,aN) of the defining equation modulo linear transformation
of variables compatible with the action of ~N-2 As we have said in section 5.1, it
kills N degrees of freedom of N + 1 parameters. Thus we can take X 1X2··· X N (or
ao) as the basi of H1(MN,TI,OMN), and we have the following relation.

By extending (5.5.35) to the case of Hm(M, II.mT I,o M), we can identify B-model ob­
servables as elements of H N- 2-m,m(MN, C). We define this subring of HN- 2(MN) as
H:';;'~(MN)' Then we can generalize (5.6.44) into isomorphism between H:',,;;,;,(MN)
and H;(MN ). It is based on the following fact.

Fact. Let W be defining equation of MN, x{" +xf+.. ·+XjJ -N'l/iX j X 2", X N·
H:;';;'~(MN) = Ef);:':~H:',,;;,~~m,m(MN) is constructed from Z'r-2 invariant homoge­
neous polynomial of degree Nm (0 ~ m ~ N - 2) modulo OiW by use of the

Thus we can choose XI ... X N as the generator of PNm(X)/OiW. And we have the
following result.

5.7 Construction of Holomorphic (N - 2,0) form
D

(5.6.50)

(5.7.51)

H n - 2-m,m(M*) ~ C[m!1(XI' .. X N)m 1
compo N -, Wm+1 W

dim(H~;~m,m(MN)) = 1

(5.6.51) tells us that H~~(MN)~ H;(MN).

From Fact., holomrphic (N - 2,0) form n is given as follows.

n=l~w-,W

(5.6.43)

(5.6.44)

H1(MN,T1,OMN) ~ C[XtX2···XN]
dim(HI(MN,T1,OMN)) = dim(HI,I(MN,C)) = 1
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Then we expand n by integral basis O'i (i = 1,2,···, N - 2) of H::';;'~_(MN'Z). The solutions of The Picard-Fuchs equation

Then equation (5.7.55) becomes,

8 y (8:-1 + (-1)N- INy(N8y + 1)(N8y + 2)··· (N8 y + N -l))Wi(y) = 0 (5.7.58)

(5.7.61)

(5.7.62)

(5.7.64)

(Nn)!
an = (n!)N NNn'

00 (Nn)! n
Wo = ~ (n!)NNNn z .

an(x) =(N(n + x))! = r(N(n + x) + 1)
(n+x)!N f(n+x+1t

W i - ai w I - ~ C ~ (jJ (0) z n(l Z )i- j= z z z=o - L i j L FJan Iii og Iii '
j=O n=O X

Fixing the first term as ao = 1, we obtain that

Thus the series solution around z = 0 is

(N(n - 1) + l)(N(n - ~) 72~.;. (N(n - 1) + N - 1) an-I (5.7.60)
n N

n = 1,2",,)

Wz =f {N(n + x)}! zn+z. (5.7.63)
n=O (n + X)!N NN(n+z)

In other words we have shifted all the n in (5.7.62) to n+x. Since (5.7.63) satisfies
(5.7.61) for n ~ 1, Wz satisfies that

[
a N-I a 1 a 2) a N - 1)] (Nx)! N-l z

(za;-) - z(za;- + Iii)(za;- + Iii ... (Za;- +~ Wz = (X!)N NNZ X Z.

The Picard-Fuchs equation (5.7.60) has (N - 1) solutions with singularities around
z = 0 such as (Jog z)O, (Jog Z)l,"', (Jog Z)N-I, since it is a ordinary differential equa­
tion of degree (N - 1). ow we want to obtain all of them. We introduce the
following ansatz;

We will adopt the D.Morrison's recipe [14] for the construction of the mirror map
on Calabi-Yau 3-fold, also in our (N - 2)-dimensional case. At first we will calculate
the series solution around z = O.
We substitute a series solution WO = 2:~=o anzn into (5.7.60),and obtain a recursion
relation such that

Differentiate both sides of the above equation i-th times with x, then set x = O.
oting that the right-hand side becomes zero for 0 :::: i :::: N - 2, we find that

a~wzlz=o for 0 :::: i :::: N - 2 is a solution of the Picard-FUchs equation (5.7.60).
Further calculation shows that

where

(5.7.55)

(5.7.54)

(5.7.56)

(5.7.57)

(5.7.53)

(5.7.52)

o (5.7.59)

1
1/JN

((Z!£)N-l _ z(z!£ + 2-)(z!£ +!) ... (z!£ + N -l))Wi(z)dz dzNdzN dz N

w;(1/J) = zfrWi(z) Z.-

(ai~ -aN~)wi(a)= 0 (i = 1,2,···,N -1)
aai aaN

Equations (5.7.54) and (5.7.56) are satisfied by making the ansatz,

N a
(~aiaai + l)wi(a) = 0

(~~ ...~ - (~)N)Wi(a) = 0
aat aa2 aaN aao

The invariance under rescaling of integration variables leads us to,

where y = "'(:~'i::N and 8 y = y-iy. We can ignore the factored ope~ator 8 y since it
adds constant factor to the solution which have to be set to zero In calculatIOn of
N - 2-point correlation function. If we set al = ... = aN = 1 and ao = -N1/J, we
obtain the following equation for Wi(1/J).

Wi(a):= (! NNW NJr. ,2:j =t ajXj + ao ITj=1 X j

From the form of (5.7.53), we can easily see wi(a) satisfies the following equation.

where f i denotes PDM;'(O'i)' Since we integrate out all the form variables, Wi(1/J)'S
are merely functions of 1/J.

Wi(1/J)'S are known to satisfy certain differential equation (Picard-Fuchs equa­
tion), derived from the definition (5.7.53). We will determine the form of this
differential equation. First, we return to the representation (5.1.17) and consider
wi(aO, al," " aN) instead of Wi(1/J).
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That means a~wzlz=o has the singularity of (logz)i at Z = O. From (5.7.64), we can
easily see that Wi has the form,

ext, we will evaluate m;:'i2 OB(Zi)(X)) as the function of x. Let us introduce the
following integral,

R k equals to zero for k = 0,1,' ", N - 3 because of Kodaira-Spencer equation. Then
by using Leibnitz rule successively, we obtain the formula,

i

Wi(Z) = LiCj(logz)jYi-j(z) +Yi(Z),
j=l

where Yi(Z) is the non-negative power series of z. In particular,

00 (Nn)! n

:; (n!)N NNn Z

00 (Nn)! n N-l k n

Wo(z) log Z+:; (n!)N NNn (~ {; i(Ni _ k))z

From the equation (5.5.37) and (5.7.53), we have

(5.7.65)

(5.7.66)

(5.7.67)
N-l . di
L (-1)N-l-'N_ 1Ci dXiRN-l-i
i=l

d(-1)N- 1R N_1 + (_1)N-2(N -1)d:;;RN- 2

N-1 d
<==> RN- 1 = -2-d:;;RN- 2.

(5.8.72)

(5.8.73)

We introduce new variable x for later convenience using the fact that (5.5.37) doesn't
specify the choice of deformation parameter of complex structure. To proceed further,
we have to determine fM. ai /\ aj' This can be done by using the following equation
which follows from the fact that n /\ n doesn't include anti-holomorphic variables,
or Kodaira-Spencer equation.

N-2
(II OB(Zi)(X))

i=l

aN - 2

IMiv n /\ axN - 2 n
dN - 2

Wi(X) dXN- 2Wj(x) IMiv ai /\ aj

x:= logz

(5.8.68)

We can verify another relation between R N - 1 and RN - 2 .

Since wis are solutions of the following differential equation obtained from (5.7.60),

1 N-2 .
((az - Jij)N-l - eZ II (az + N))Wj(X) = 0

]=0

<==> ((1 _ ez)(az)N-I _ N;; 1((1 _ eZ) + ~eZ)(az)N-2

+I:3

bj(x)(az)j)Wj(x)
j=O

(5.8.74)

Then we can determine fMiv ai /\ aj uniquely if we demand all the (Jog z)i terms
vanish when we expand fMiv n /\ n in terms of yis. And we have

we have

(1 - eZ)RN_1 - N;; 1((1 - eZ) + ~eZ)RN_2 = O. (5.8.75)

Combining (5.8.73) and (5.8.75), we get the ordinary differential equation of RN - 2 =
m;:'i20B(Zi)(X)).

(5.8.77)
N-2 ekx
(II OB(Zi)(X)) = const.--

i=1 1 - eZ

d 2 eZ

d:;;RN- 2 = (Jij + 1="&)RN- 2 (5.8.76)

We can solve (5.8.76) explicitly and we reach the final result of B-model in this
Chapter.

(5.8.69)

(5.8.71)

(5.8.70)

N-2 N-2 . dN-2
(II OB(Zi)(X)) = L N-2Cj(-l)Jwj (x) dXN- 2WN-2-j(X)

t;;1 1=0

Combination of (5.8.69) and (5.8.70) leads us to,
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5.9 The mirror map and the translation into A­

model

All the nontrivial equivalences are guaranteed by the argument of section 5.5. Hence
combining (5.9.79) and (5.9.80), we obtain the following formula.

(5.9.78)

(5.9.81)

00 00

t = N log N - (L bnenx)/(~:=anenx)- X
n=l n=O

(Nn)! n N-I k
an = (n!)N NNn' bn = an(~Ei(Ni - k))

Combining (5.9.78) and (2.4.77) we obtain

(5.9.82)

If we can represent eX as power series of e-', (TI~12 O.(Zi) (t)) takes the form of
(2.2.43). This can be done as follows. We rewrite (5.9.82) in a more convenient
form.

t _ Wlog(X) _ Wj(x) = Wj(x)
- wr.g.(x) - wo(x) Wo(x)

where t is a coordinate of the moduli space of A-model on MN , or as we have
mentioned in Chapter 1, coupling constant of A-model.
We will adapt his idea in the arbitrary dimensional case. Now we want to translate
the (N - 2)-point correlation function of B-model on M'N to the one of A-model on
MN . The (N - 2)-point correlation function of B-model is given by

Let us now construct a mirror map between the moduli space of A and B models.
According to Morrison [14] the mirror map can be obtained by the following process.
Let the solution of the Picard-Fuchs equation which is regular at maximally umpotent
point, say, Z = 0 be wr.g.(x) (in our case Wo = e*'xWo(x)). And let WI09.\X) be the
solution which has a singularity of log Z at Z = 0 (also in our case, Wj = ewxWl(x)).
The mirror map is

N-2 aN- 2 e-t x
(II OB(Zi)(t))MN = LnA axN-2n= I-ex'

i=l

(5.9.79)
-t=-NlogN+x+ LCnenx

n=l

where

(5.9.83)

We should note that the correlation function on the B-model is not a scalar on
the moduli space but take the value on the square of the line bundle on which the
holomorphic (N - 2, D)-form lives. Therefore we should consider not only the effect
of the transformation of the coordinate but also the gauge chOice of n. Followmg
Candelas et.al. and Morrison, we will adapt the gauge;

00 00 00

L Cnzn = (L bnzn)/(L anzn)
n=l n=! n=O

Then we assume the following expansion,

x = -t + NlogN + L 'Yne-nt
n=l

(5.9.84)

(5.9.85)

The B-model operator OB (in our it is represented by X j X2 • • X N ) corresponds to
the A-model operator 0. induced from Kahler form e on MN · Hence we have

N-2
(II O.(Zi)(t))MN

i;::}

(5.9.80)

'Yn can be determined from compatibility of (5.9.83) and (5.9.85). We put (5.9.85)
into (5.9.81) and determine the constant with the assumption that constant term
of (TI~12 O.(Zi)(t)) coincides the classical value fMN eN- 2 = N. This assumption is
equivalent to large radius limit which asserts the theory turns into classical one when
t --+ 00.

Then we have (TI~12 O.(Zi)(t)) represented in the form of (2.2.43),

N-2
(II O.(Zi)(t))

i=l

= N + (If O.(zi)he-t +{if 0.(Zi))2e-2t +{if 0.(Zi))3e-3t +.
i=l i=l i:::;:l

where
N-2
(II O.(zi)h = NN+l(l_ 2aj - N-2CI(bl))

i=l
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= NN+I _ (N _ 2)N(NI) I;I N :- i - 2N(N!)
1=1 t

N-2
(II Oe(zi)h = N2N+1{1 - 2a1 - b1+ 3ai - 2a2 + 2a1b1 +

i=1

N-2C 1(-b1 + 4a1b1+ 2bi - 2~) + N-2C2bi}
N~ 3(II Oe(Zi))3 = N3N+1{1 - 2a] - 2b1+ 3ai + 5a 1bl + 2bi - 2a2 - b2
1=1

-4a~ - 8aib1- 3a1bi + 6ala2 + 4a2bl + 2a1b2 - 2a3

+N-2C1(-b1 + 3bi + 4a1b1- 2b2 -10aib1-15a1bi

-~b~ + 7a lb2 + 5a2bl + 9b]b2 - 3b3)
2

+N-2C2(bi - 6a,bi - 4b~ + 4btb2)

+N-2C3(-bm (5.9.86)

Then we write out numerical results from N = 5 to N = 10.

Note that this re ult naturally represents the structure of correction terms argued at
Section 3.1. 10rrison and Plesser proposed that the top term is explained from the
I-loop level effective action of Gauged Linear Sigma Model.
We hope these structures are explained in the framework of Section 3.1 in the future.
Of course, by complete coincidence with the result of Geometrical Calculations, we
give practical proof of Mirror Symmetry Conjecture at correlation function level in
case of A-model on M N and B-model on MN.

3

(II Oe(z;))
;=l

4

(II Oe(Z;))
;=1

5

(II Oe(Z;))
;=1

6

(II Oe(Z;))
;=l

7

(II Oe(Z;))
;=l

8

(II Oe(Z;))
;=1

5 + 2875e-t + 4876875e-2t + 8564575000e-3t + ..

6 + 120960e-t + 4136832000e-2t

+l48146924602880e-3t + ...

7 + 3727381e-t + 2637885990187e-2t

+l927092954108108787e-3t + ...

8 + 106975232e- t + 1672023727001660e-2t

+26611692333081695092736e-3t + ...

9 + 310393692ge- t + 1165013014173543657e-2t

+441297815019235844688286425e-3t + ..

10 + 94327552000e-t + 930496455109619200000e-2t

+9217712440694086335170560000000e-3t + ... (5.9.87)

We can see complete coincidence with the result of geometrical (A-model) calculation
(3.5.137) and (3.2.47)! We see that in general mf:12 Oe(Zi))d has the structure

N-2
(II Oe(Zi))d = NdN+l - (correction terms)

1=1
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Chapter 6

Conclusion

In this thesis, we solved topological sigma model(A-model) from CP1 to Mt both in
pure A-model case and in case coupled to gravity. We gave integral representation
of generating function of correlation functions for gravity coupled theory and one
variable polynomial representations of quantum cohomology algebra for pure A­
model.

The fundamental strategy is the use of the fact that algebraic hypersurface in
CpN-I is realized as zero locus of homogeneous algebraic equation of CpN-l In
other words, the assertion of this thesis is that topological sigma model on these
hypersurface should be treated as the natural extension of these algebraic constraint
to the moduli space of embedding space, i.e., CpN-l The main feature of the
discussion in the algebraic category is that in that category, topological invariants
are counted as the number of equation of algebraic equations. We can never reach
this point of view in the category of differential geometry, or just seeing the local
connection or curvature. Because of this feature, which is expressed as the "solidity"
of algebraic manifolds or corresponding moduli space, we can compute the correlation
functions by " geometrical approach". Of course, in this thesis, these algebraic
equations on moduli space are written in terms of Chern classes of "holomorphic"
vector bundles, but the spirit is the same. With this fundamental understanding,
what is needed is the technical developments and these are the "fruits" of recent
developments in two-dimensional topological field theory. And we can pursue the
analysis of topological sigma model as the algebraic geometry of moduli space. We
think that the pursuit of this point of view is never seen in other works because of
technical difficulty in classical algebraic geometry.

This spirit is reflected in another flow of this thesis, which is the search for
the structure of (TI(~lk)d+N-2 Oe(Zj))d for pure matter theory. Our result tells us
that our speculatio~ in Section 3.1 which argue that moduli space is realized as
the zero locus of algebraic equations derived from the defining equation of classical
target space is right. We think our result of 0:'-1 = kkO;-l e-' is the reflection
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of the solidity. What remains to show is to calculate mf=i2 Oe(Zj))d.M~ in view of
analysis of pure matter moduli space from cpt to CpN-I. We think this problem
is equivalent to the exact construction of Mf,:N-l.

Generalization of our strategy to various weighted projective space is interesting.
Because this case reduces to changing of embedding space into weighted projective
space. It is treated in [32] at the level of Section 3.1. So more accurate treatment
is expected. Another interesting question is that the search for field theory counter
part of this solidity of algebraic manifolds. Witten's gauged linear sigma model is one
of the approaches in these flow. But accurate treatment is yet to be done. We think
the relation of this model and our remaining problem should be pursued further.

Lastly, we have to mention the mirror symmetry. This tells us that our notion of
solidity and the structure of N = 2 super conformal field theory (special geometry)
have deep relation. Because the result from mirror symmetry naturally reflects the
structure speculated in section 3.1. And obviously, the calculation of correlation
functions from mirror symmetry is very rigid, with no wasting part. So we also
have to search for the geometrical (in A-model) meaning of period integral. In other
words, reverse transformation from A-model to B-model is very important for deeper
understanding of this symmetry.
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