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fluid phase transitions in systems with hard-core potential. In chapters 2 and 3, we
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(a) and square (b) lattices ; s er matrices used . v, In this table
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<5 and
fficie triangular
attice (hard he transi-
tion to the

ngs to the same universality class
= contrary, the non-interacting model on th
solved exactly. In connection with the ph
Ising model, this model has been s
3], mea
simulations transfer-matrix methods without the finite-siz ; [42, 43)

transfer m tion and conformal invari-

1 y

specially, Miiller-Hartmann and Zittarz [46] derived an analytic expression for
the critical line of the Ising antiferromagnet by considering the interfacial tension.
Althot i hod is approximate, it gives the exact critical temperature for zero
magnetic field. Unfortunately it is not exact for non-vanishing . Evenso itisa
remarkably simple and reasonably accurate approximation

The best estimate for the critical point of hard squares is obtained by Bléte and
Wu [4

— 1.3340151004(8) ,

by means of the phenomenological renormalization and the conformal invariar
unive ty class of the transition is believed to be the same as the Ising fe gnet
(e=1/2), and has been numerically confirmed very accurately |45

The transfer mat for hard hexagons and squares (type (a) and (b) in TABLE 2.3)
are calculated for N = 3,6,9,-+-,27 and 2,4,6,---,28, respectively. To

btain an
approximate critical point, we use Eq. (2.28) instead of Eq. (2.29), because the former
is slightly more robust to rounding errors in computer caleulations. The leading scaling
dimension z,, which corresponds to the order-order correlation function, is given by

for the three-state Potts universality class,

for the Ising universality class

By solving Eq. (2.28) numerically, approximate eritical points I/ are obt
hard hexagons and squares, as listed in TABLE 2.4. In the case of hard hexagons
the approximate critical point converges very rapidly to the exact value as O(N e
ceording with the fact that {for the three-state Potts universality class)
ior indicates that the leading correction to the scaling dimension

1 the conformal pertuchation theory [47] predicts a non-analytic
g correction N~ for the three-state Potts universality class. In fact, the effective

*Far example, it gives [, = logd = 1.386 for hard squa Compare with Eq. (

Ising

Approximate critical point U} and effective leadir
Iz, of hard hexagons (left) and squares {right) by using the
matrices of type (a) and (b), respectively.

leading scaling dimension at the eract critical point [

converges 1o
In the ard sq th
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2.5. Interacting Hard H
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¢ 1 instead of a seco ircle ion of the three-state
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otly by the » technique as in [57-58) (for details, see boundary . 9,11 80 t o () Eramish 234
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For a first-order transition, it remains finite for N
For small

density by using the BS srithm with w = {
W, the extrapolation with w = ads to the expected result Ap However,
e error of estimate, which
Un
and

near the t itical point it gives a finite density gap with larg
may be due to a crossover effect to the tricritical three-state Potts universality
the co ¥, the extrapolation with w T ovi timates in the ¢ = 4/5 reg

causes a change of sign in the estimate of the der gap close to the tricritical point

(Ficure 2.7). Thus, we obtain a location of the tricritical point as -

3 phase 1

3 (diamond ) and

along the v/
thm withw = 4

transfer matrix for 5,12,

2.5.2. Transition in Region IV, In this

owing to the competing repulsive W, and positive U, First

limit, e.g 3 ~o. This limit has been studied by Orban and Bell

Runnels, e i1|. They concluded a first-order phase transition to the 2 x 2 phase
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mod
The approximate critical point L7} is obtained by the phe
malization (2.29) with N' = N + 4 by using the transfer matrix of type (g) for
N =4,8,--+,28 The results are listed in TaBL An lation to the ther-
namic limit yields [62]

(2.4

which s with the previous ¢ e L730(3) [60].
T'he leading scaling dimension and the thermal exponent can be stimated as
\ respectively | These re slightly differ from that
ir-state Potts universal (s = 1/8 and j ) 1 pected

sneracy of the ground * and the symmetry [ parame

ever, this discrepancy may be due to the presence of a logarithmic correction to
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»d phases |
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Quantum Hard Rods

3.1, Introduction
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to the salf d
the ground state has 2
m 2 (Ising univer
while it is of
ground-sta f tt i Ase 0 g the
xpects form = 3
{ have studied the
and found a phase transition of the thre ate Potts model universality
accordance with the ground-state degeneracy of the ordered phase. However,
r s in the numerical data were so strong for =3 5 =2 that no conclusion
could be made in this region
In the hard-core limit, Hamiltonian (3.1) has been studied by the exact diag-
wm = 2 and 3, and by the quantum M Carlo simulation [86]
or m = 2, they found a second-order transition of the lsing

v class 6], which is expected to be so from the consideration of the

state degeneracy. On the other hand, 4, the energy distribution fune-
at the eritical point exhibits clear double peaks [86] and the first-order transition
was concluded. For m = 3, they concluded a transition of weakly first order due to
the presence of a finite but quite small latent heat (AL = 0.004(4)) [75]. However,
is comparable with the error of the estimate, so the possibility of a second-order
transition cannot be exeluded
In the § hapter, we study the quantum hard model (3.1} in the same
We perform diag

exact-dingonali hod as in the previous work by Iglé
onalization for quite larger systems (Lya. = 30 and 42 for m =2 and 3, r tively),
while they have caleulated up to Ly, = 22 and 30, respectively. In addition :
investigate the lel for m =4, 5, 6, and 7 usin o algorithm, wh

made possible accurate estimation, and calculate the d

Intent heat, which are associated with the first-order transition

3.2. Exact Diagonalization

While the dimension of the eigenvalue matrix corresponding to the multispin-coupling
model (3.2) is given by 2%, that of the hard-rod Hamiltonian (3.1) is extremely reduced
due to the presence of the near-neighbor exclusion as in the case of the transfer matrices
for the two-dimensional classical hard-core lattice gases discussed in the last chapter

T'he effective dimension of our eigenvalue matrix is given by

L 1. where [
ving equation

Ly

7. For details, see apy

For example, ry = 1.61803 and ; = 1465 I

this highl T
pendix B ule, caused t ird term of r. Eq 1
satisfied. Consequen the Hamiltonian can be reduc he following e
non-interacting H

5, the multiplication of the sigenvalue matrix to a trial vector can be ¢
iply. By using the g 1 algorithm [28-7 lominant e

Ie COrT neli

sthod

3.3. Phenomenological Renormalization

In terms of the lowest and second-lowest cigenvalues, Fy and E,, o
relation length cor onding to the order-order corre
~ Ey. The finite-s -aling | . 27] states

= L{Ey(L) — Ey(L)),

a constant, and consequently, an approximate critical point can be o

ed as a fixed point of the phenomenological-renorma ation mapp 2-2, I

LIANTY

for differe ) 5 and L'. Moreover, according to the conf

ance [15 1 g alue up to an unknown factor

for 4
d velocity, must be in
real-spice i ary-time directions. Alth
ape and the way 7 the transi
formalism of two-dimensional classical systems it can not be d
beforehand in the case of one-dimensional quantum systems. It must be fixed by means

of finite-size ‘he ground-state energy also has a universal finite-size correction

L2

» ¢ 15 the ce




50380
33 09632817 1.44731
36 0.96 18 1.39516
39 0.9¢

TaBLE 3.2. ed point of the phenomenological ren
TABLE 3.1. Fixed point of the phenomenclogical renormali . ve scaled gap g1, (45), and effective thermal exponer
effective scaled gap gp(u} ), effective thermal exponent gy r, and ef
scaling dimension ratio (z,/c)g for m = 2. Their £
I, =3 oo are also listed. - suliihit: tood 6 acs, anil we obtained

1 = 1.0000(1)

I /o= 0.240808(3)
rithm with w =
» exact value of the

We have also ca

and the effective central

o get rid of the
iplyasing Results for m 3. In this case, we have calcul
» matrix up to :

imum dir 1 rorresponding eigenvalue r
with the

Results for m =

{ 30. Due tot

used in th

(i L0} are

v En

with L' = L+2 own in TABLE

to its limit rapidly as O(L™"). By using the ¥
ohtained

1 1.32

e i ) . e tes . 2 ? T O0

whi hand, the s the approximate erit s in the

i . - ¥ ! e it (FIGURE 7). Thus, we conclude the o
effective thermal exponent and the ratio of the s g dimension and th oc limit (FiGure 3.2). Thus, we conclude the m




Results for m > 3, 6, and 7
42, and 49, t ; critic
in the

for

for

3) for

1.749(1) for

As is seen app v in FIGURES 3.1 and 3.2, the effective therr KO-
| gap vanishes more quickly as m increases. Consequently,

=3

5 and the s

n zy B
all the transitions are of first order as in the case for m

3.4. Density Gap

Next we e h should be associated with a first-order tra
eigenstate |0), which is even under

ribut nsity of hard rods:

2L du

{0} 410} ,

where § is the rator defined by

Let E, the
lation. In the th
each other at a first-order transition point. Applying degenerate perturbation theory
to the L — oo limit, one finds [57] that the densities which corres ta the high-
and low-d

|(0lgl0) — p

| ieial0

The lar
ever,
due to the symmetry
Thus, the densities at a transition point are given by
, ap




0.0000(
0.01(1)
0.05(2)
0.867(6) 0.056{6) 0.07(2)
0.899(9) 0.076(7)  0.09(2)
0.92 '_ 0.927(9)

TABLE Jensity gaps for m
normalized by the maximum den

with

Ll
£ = 5 ({DIAI0) + (elale))

Ap = [((0]510) — (elple))* + 4(0]pfe)’

For a finite svstem, on the other hand, the above density gap Ap always has a finite
1=alfv while it remains finite for
a first-order Lransit This scheme has been applied for the p-state Potts model [58]

interacting hard squares [59) and it has been confirmed that it reproduces the

value. For a second-order transition, it vanishes as L

nown results for the density gap or latent heat
valuate p. and Ap at the fixed point of the phenomenological renormali
s for L and L' = L+ m, and ext ate it to the L — oo limit. The results are
listed in TABLE 3.3, For m = 2, p. and Ap converge to their limits as O(L™*) and
O(L™"), respectively, and we obtained
Pz po = 0.68916 7) £ 0.00001(2) (3.27)
po = 1/2, which is the consistent with the result in the previous that is,
ccond-order transition in the Ising universality class
On the other hand, for m = 3, p and Ap both converge to finite values as O(L™")
Especially, we have obtained
s/ po = 0.7871(3) = 0.005(1) (3.

for m = 3, where gy = 1/3. Thus, we clude that the transitions are of first order
for all m > 3. We summarize our results in TABL 3

3.5. Summary and Discussion

In the present chapter, the phase transition of the quantum hard-rod system (3.1) has
been studied. The model exhibits a solid-fluid phase transition, w} the ordered
ph has n-fold degenerated antiferromagnetic-like order. For m = 2.3, -+ . T we
performed exact diagonalization up to quite large system sizes (L = 30 - 42). For

» reconfirmed that the t
s th model, whi
ed state, 2 with the sy
itical point parameters (g,
estimates
t ¢ to the quick d
to the d We als

_ estimated t sity gap directly
and conel 2

pecially, for . WE S ated

1 hard-rod model is a special limit of the multispin-coupling
Ising model (3.2) with cerse and longitudin k 2, along th
transition line, the phase transition is of second order and shows the Isi
as is expected from the consideration of the ordered-state degeneracy. On the ¢
hand, for m = 3, the second-order se transition, which be t

to the same univ
5 class as the three-state Potts model, terminat

at & multicritical point A,

the first-order transition occurs for —: he < hy, where a naive classification on the

universality, based on the degeneracy of the ordered state, breaks down

on. Finally, for
4, the transition is of first order along the whole transition line




CHAPTE

Alder Transition of Hard Disks and Spheres
in Continuous Space

4.1, Introduction

In the present chapter our subject to the | particles

the continuous space. An analytic equation of s em

mtinuous space plays an important role as a reference system in perturbation t

8] and other approximate theories for fluid
its has aroused a great de

fluid phase t 1 of hard disks,

SV 5. On the ot {, the

ted by the maol

repulsive interaction

-Core syste 5 the cular-dynamics

« state d ates a first-order phase transiti
thermodynamic quantities ¢

* also been performed on this system and ed a fir

etical understandin

er transitiol
In spite of the 1 numerical simulati
no means
ased on the ¢
15-Yevick equation [98], sr-netted chain equ:
[100-102], ete.) Especi » Percus-Yevick equatic
een sol alytically by Thiele v Wertheim [10
none of them can predict ph siti
* virial expansion. It is the

There is another theoretical approach based on t
5], and generalizations of this equation have

known Carnahan-Starling equation [106]
been proposed [107]. However, the physical meaning in their procedure is not so cl
Recently, Hu and Suzuki [108] proposed a new intuitive argument by treating kinet

particles using s -l meck They derived an effective attraction b




ito account. They predicted a localization
2 3 « to the solid-fluid phase transition, only
in two dime t in three dimensions

A theoret tion of state for the hard-core system is expected to have t
following [

r.!
kTp
In the present chapter, we assume the above form of the singularity in the equation
of the hard-core system and estimate the singular point g and the non-trivial
it A in two and three dimensions by means of the virial series expansion, namely,
I..w density expansion. In the low sity limit, the system is in the fuid (disordered)

E Therefore . (4.1) with y. and A obtained through the virial expansion should

be the fluid hr:i:u'h.

If there were no phase transitions, the system may have only one singular point
at the ¢ -packing density pe, and the state described by Eq. (4.1) is always stable
for 0 < p < piey. Thus, pc = pep. On the contrary, if the system were to exhibit a
solid-fluid phase transition of first order, there exists another branch (solid branch),
which has a singular point at g, and it is not necessary for p; in Eq. (4.1} to equal

{1+ 0(p)}. (4.1)

Pepy BOY MOre.

In the next section, the virial expansion and coefficients of rhr' lmr-l core system
are briefly reviewed, and the Padé approximant for the virial ex constructed.
In section 4.3, we analyze the canonical series of the Padé approximants by means
of the coherent-anomaly meth [109-111] and conclude that the singular point p. is
equal to the density at the pac LlllL, fraction of unity and the exponent A is equal to the
dimensionality of the sy 2] ] 1 the final section uf rI|-- present chapter, we discuss

i comparison with other

4.2. Virial Expansion and Padé Approximant

The virial coefficients {B;} are defined as the following coefficients in the expansion of
the pressure in powers of the density:
P
— = By + Bay Byy' + By +
kT
where P is the pressure, T the temperature, k the Boltzmann constant, and the v
y is the density, Hereafter, we use the dimensionless density defined as follows:

where N is the number of particles, 1 is the volume of the 'm, and | is the
volume of a particle of diameter ¢ in d dimensions.* (Sy = o, mo”/4, and /6 for
wid 3, respectively,) The density defined above is called tlu- packing fraction

prob

The reduced pressure P/kT is also normalized
Eq. (4.2) may become un
15 given by

= {).740

The density at the packing fraction of unity,
all the space is filled and apparently cannot

As mentioned in chapter 1, the reduced pressure .I"I;I.I of [hv pure re system
does not depend on the temperature; it depends only on t sity ]I||-||- fore, the
virial coefficients become temperature-independent constants, In one dimension, the
equation of state of hard rods is given by

which is well known as Tonks' exact solution [114], and all the virial coefficients becoma
unity, consequently. In two and three dimens the virial coefficients only up to
the fourth order are known exactly by explicit integration [114-120], while higher
coefficients leulated approximately he eighth -rr\I--r'I._\ num | evaluation
f the cluster integrals [121-131]:

= 7.351(

= 8.34(1) in two dimensions,

and

1 1
ArCCos = | = 18.36477
Ly

Bg = 39.74(6) ,
and

¢ dimens




Yansition of Hard Disks and

0.7978

0.4 0.5445 0.6507 0.710(1) 0.742(3)
1.6 2.9650 5.0500(1) T7.18(4) 9.0(3)

TaBLE 4.1. Coefficients of the Padé approximants in two (above) and
three (below) dimensions. The approximate singular point and the crit-
ical coefficient are also listed in. We have omitted the coefficients pg, ro,

and ry, because py = ry = 1 and ry = —y', obviously.

Nate that all of these coefficients are positive at least up to the present order.! If we
consider a polynomial obtained by truncating the virial expansion 4.2) at first N
terms (N it increases monotonically as the density does. There is no singular
point in this finite-order polynomial. A singularity appears when we sum up all the
terms up to infinite order by means of the Padé approximant or other re-summation
technigques.

A Padé approximant Q“Ml(z) 10 a function F(z) is defined as a ratio of two

polynomials

The coefficient rg can be taken as unity without loss of generality. The other coe
{p.} and {r,} are chosen so that the expansion of @*¥I(x) in powers of * may agree
with th f Fiz) for the first (L + M + 1) terms

The Padé approximants for the compressibility factor Z(y) = P/kTy are con-
structed [112] for [0,1] ~ [6,1]. The coefficients in these approximants are listed in
TABLE 4.1, Each of these a sproximants has a simple pole at a finite density ., and
near this pole the behavior of the approximate compressibility factor can be represented

THaweve
sion has be ated as ~ 7.8 by Lubar

s the following skeletonized form

P
Z(y)

= I.I".l = 1 —u/ft

The residue of the divergence, Z, is called the eritical coefficient

4.3. Coherent-Anomaly Method

Although the approximate singular point y, of the Padé appraximant approaches the
true singular point 3 by improving the degree of approximation, t L ty at the
critical point remains classical. On the other hand, the critical coe i tends to
tically as seen in TABLE 4.1. This is due to the discrepancy between
the classical singularities of the Padé approximants and the expected s
1
A=wfz)
with the non-trivial exponent A, According to the coherent-anomaly method [109-111],
the critical coefficient is presumed to exhibit the following anomalons behavior:
5 I
Z(ye) = — (4.11)
e = 2

Z(y) ~

We can thus obtain the true non-trivial exponent A by estimating the fitting parameters
foul o in Eq. (4.11).

The ystems are shown to exhibit clear co-
herent & alie 2] (TABLE 4.1). In two dimensions, by the least-squares fitting
for [L,M] = | [6,1], we obtained y2 = 1.02 and A = 1.98 (or 1.01 and

1.95 for [L, M] = [1,1] ~ [6,1]). Note that the estimate for y° is very close to

In three dimensions, on the other hand, y’ = 1.06 was obtained by the least-

es fitting for [L, M) |- If we assume tha true singular point is

at the packing fraction of unity as is in the two-dimensional case tain A = 2.4

for [L, M] 1] ~ [6,1] (or A = 3.02 for [L, M] = [1,1] ~ [6,1].) The plots for these
fittings are shown in FIGURES 4.1 and 4.2,

In both cases the estimatec
and the expe A is also close to the dimensionality of the space. Thus, we propose
the following unified form [112]

{4.13)

for d-dimensional hard-core systems.




r Transition

¥, = 1.02

slope = -0.98

logly,"~
RE 4.1, The CAM plot of the data in two dimensions. The solid line
15 of least-squares fitting for the Padé approximants

ained by m:
lope of this line corresponds to (1 — A) according

~ [6,1]
! 19, 1}
to the coherent-anomaly method. The error of estimate does not exc

the symbol size

v." = 1 (fixed)

shope = =1.94

The CAM plot of the data in three dimensions. The solid
ns of least-squares fitting for the Padé approxi-
¥ is fixed to be unity. The error

Fiure 4.2
line is obtained by n
2,1 ~ singular point

mants |
1 the svmbaol size except for [6, 1]

of estimate does not exo

metasiable fluid branch

fluid

v packing fraction
3. A schematic state diagram of the hard-core system in di
mensions higher than one. The stable state is ted by the thick solid
line. At the critical reduced pressure (P/kT),, the first-order phase tran
s irs and the density jumps from gy to ¥, In the s
the reduced pressure diverges at the close-packing density y.,
branch (long-dashed line), on the o

k 1 of unity (i

I
metastable Auic seems to
diverge at the dimensions
for example, gy = 0.711{2) and , = 0.72 ) by the molecular-dvnamics

simulat and Yo, = 0.907

n of unity, ¥ = 1, is an unphysical r, because

¢ Eq. (4.4)). On th ha
¥ is consistent with th
18, 103-105

density at th g fr
d ng density ye,
e packing fraction of 1

ater e
1 solution of the Percus-Y < Bgua

means of the Padé apy pant

and with the ar s of computer-simulation data by
[107].
Our conjecture
anet introduces bi- or poly-dispersities into
3] have s 1 that the fluid branch is not s0
1 branch is extrem fected

fact implies that the particles in the

tence of the universal fluid
branch w rticle-radii distributions
The molecular-dynamics simulations |
sensitive to the bi-
by the change of the close-packir
» are excluded by the volume of |
. Eq. (4.13) is consistent with t

themsel
result in one dimension, the
lume of & hard particle, namely,
lume. H 13

wt solut

sition. In one dimens
is identical to the

d phase are ex

» of particles the
vstem to attain th




s to predict
slecular-dynamics he A . lo simulations. If
ion terms to the leading sing

fuid phase is obtair

+0.12803° + 0.00182;° +

in two dimen

in three dimensions
Here, the coetficients of the col ion terms are chosen so that the expansion of r.h.s

may reproduce the correct virial coefficients.

CHAPTER 5

Concluding Remarks

In the present thesis, we have investigated several systems with hard-core potential in
conjunction with the first-order solid-fluid phase transition:

the nearest-neighbor exclusion and the next-n
the transfer-matrix method, the pl
invariance. To caleulate the tran 'r systems than the previous
works, we tion and
the dimensional reduction of the transfer matrix. Thi

detail in ap fices. By using our improved methe

and found the s d am of the hard-core lattice gases on the triz

lattices. Especially, we concluded that the second-order transitions of the hard-core

wmenol

lattice gases can be quite generally classified into the correspon Potts maode
terms of the degeneracy of the ordered state,

In chapter 3, the ground-state phase transition of the one-dimensional quantum
hard-core lattice gas (quantum hard rods) has been inves ‘e perfor

the diagonalization of the eigeny matrix for 2 < m " sponds 1o
the | h of a hard rod. The maximum number of lattice sites i 19, which is
* larger than the previous works. In the case of m = 2, the phase trans is of

ul order and belongs to the same universality class as the Ising model th

other hand, for m we confirmed that the transition i first order. We have
also estimated the density gap associated with the first-order transition accurately and
concluded it is finite for m > 3 and becomes larger as the m increases
4 e studied the equation of state in the fluid phase of the hard-
n in the continuous space by means of the virial expansion. By using the
Padé appros nt and the coberent-anomaly method, the si arity of the equation
of state of the fluid branch
1

= — — (] + (M
(1= p/pc)

As a result, we he luded that the ilar point g,

equal to the density at the pack tion of unity and the




higher than one e existence

mds to the fluid phase tran

ults and aspects in the p
r hand, hov

e transition still rem

invest

desired

APPENDIX A

wse transitic
understanding of
unsatisfactory

tions are to be

Sparse-Matrix Factorization for Hard-Core Lattice Gas

In the present appendix, we discuss in detail & new method to treat large-sc:
fer matrices of the hard-core

hereafter we consider a nearest-neighbor lattice-gas Hamiltonian on the square lattice

attice gases in numerical cale 5 AN examy

o= E'S-‘n_. + W \

al potential, W the reduced near

e for W

reduced chemi
r

> (1 and repul

sther direction (the

ted as ‘row-to-r

s are then chosen to be rows. The

T ) de

the unit sl
T=[n,m wte those on two ne

Sparse-Matrix Factorization. The t is a dense matr

ments vanish on However

in this f i Fo

elementary arith
Lo 5L
the matrix elements. How

the use of the o
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(a) ()
Figure A.1. The step-transfer matrix M, (Eq. (A.5)), which adds a

horizontal bond (thick line). That is, it transfers the nth site to the next
Tow,
where the in-slice matrix D and the step-transfer matrices M, are defined as follows:*
% =
exp \,' (Wooisy + Ui | (Ad)

M, (r]o) = l—lq exp [Wraon]

Ita functions

The sparseness of these matrices is manifested by the Kron
non-zero ele

deed, D is a diagonal matrix and M, is a matrix with only 2%
The step-transfer matrix M,, adds one horizontal bond, which connect between 7, and
In other words, it transfers the nth site on a unit slice to the adjacent site on the
t row (FIGURE A.1), while the other sites are not affected at all. After N steps
ate states), all the sites have been transferred to the next unit

a
it
(via (N — 1) interm
slice. Note that these intermediate states, or slices, are not geometrically identical to
the original unit slice

In terms of the factorized matrix (A.3), the number of operations and the use of the
memory storage are reduced to roughly N2¥ and 2%, respectively. This factorization
so can be applied to the case of other boundary conditions, or further-

nearest-neighbor interactions (24,1341

Dimensional Reduction. On the other hand, if there are infinite near-neighbor re-
, another scheme for reducing the number of operations and the use of the
the in-slice matrix D is fur ed into simpler matrices, that s, D =

(TS, br. ) espl

mems

ber « % gur: 15 on A unit sl

of the transfer matrix (A.2) with W —
161803 - - - in this case. See appendix B) /@ restrict ours -'|~|'~ in this
d configuration space (referred to as 43" in appendix B), the tran

can be simplified to the following form

(A6)

where o and 7 denote configurations in the restricted space of dimension Of AY). Note
that the exclusions within the unit slices (3 7im4 and 3 ai00, in Eq. (A "r h
been already taken into account by ¢ t-umll‘ru-r the restricted con n;,umlh 1 space. The
number of operations and the use of the memory storage associs il ieation
by this matrix are reduced to the order of A This technique has been applied
frequently to the hard-core lattice gases [43,60,13

Sparse-Matrix Factorization for Hard-Core ttice Gas. The dimensional-
reduction technique above mentioned is also quite efficient as the sparse-matrix factor-
ization. For example, the transfer matrix (A.2) with W= —co is tractable up to N=19
and 24 on & computer with the main memory of 1 Ghytes by using the dimensional
reduction and the sparse-matrix factorization, respectively, if one use the original
dense transfer matrix, the maximum is limited only to N =13

However, in a usual manper, th *ful methods are compatible with each
other at all. In the sparse-matrix-factorization scheme, a transfer s from & unit
slice to the next one is divided into N steps. In each step, only
the next unit slice (FIGURE A.1). At intermediate s
identical to that of the original unit slice. In the case of Figurg A.1 (a), for example
the nth site is not a nearest neighbor of the (r — 1)th site. Therefore, these two sites
can be occupied at t contained
in our restricted space. Similar situations can occur everywhere in the intermediate
steps. Thus, the dimensional reduction does not work in this case.

This difficulty can be overcome by using a slightly modified step-tea
In our modified process, a site is transferred to the diagonal direction instead
its adjacent site (FIGURE A.2). During this process the ith site (i = 1,2,-.- N
always stays as a nearest neighbor of the (i + 1)th site is seen in FIGURE A2, the
Nth sit a nearest neighbor of the 1st site in the interm e steps. Moreow
we have to introduce an additional (N + 1)th site in order that all the contributions ¢
the interaction are correctly taken into account. Thus, in our modified transfer proces
the dimension of the matrix should be slightly extended to 2 = dy ' (N)

Thus, there are ? oy " (N) possible states of (N + 1) sites in the intermediate
states. How it ~}-.||I|' be noted that the matrix is decomposed into two blocks
corresponding to different values of the (N + 1)th site. So the number of intermediate

results to be stored simultaneously on the memory storage is only dy (N)
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Counting Possible States

In this appendix we consider the dimension of the transfer matrix for the hard-core
: se of th i Isi
matrix is given by
imvolved in a unit : he transfer matrix
the number of poss states in 2
the near-neighbor excl

Let us consider an open chain of length N (Ficune B.1 (a)). To each site a one-

bit variable s; (i = 1,2,:-- N assigned. H ans that the 1
is occupied The pu :
restriction - space of these config
states as d; (V). If there is an exclosion up to
these configurations should be prohibited. We call the restricte

d its dimensi s 42 N)

1I¥) <
V) < oo < di?U(V)

wn below, dimension of these spaces can be «

mulas
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~J

g B.1. Open chain (a)

on each triangle (¢). Here, |

Nearest-neighbor exc
ng{N) and ny (V) as follov
k, in the configuratio N} = ng[N) + ny (V). Suppos
add a new (N + 1)th site. If sy = 1, then sy = 1 is not allowed. Tl

n, (N satisfy the following recursive formulas:

=mil)=1

This recursive | lved to give

For large N, dy

1.17082 x (1.61803)"

e. First we consider the case of m = 2. We defir
denotes the number of states, which satisfies sy

In the case of the periodic chain, some states, where 5, = 1 and sy = 1, are prohibited

owing to the periodicity, Therefore,

(N = di(

~ (L61R03)Y for N >

Further-nearest-neighbor exclusion case. The above proce
eralized for m > 3. The recursion relations for general m can be written
form as follows
mgl N +1)
m(N +1)
(N +1)

with

where ng(N) denotes the niumber
2L 3,- L, and N) (1

i=0for L-m+2

number of possible states is g




7) and ¢

sspectively. It is too complicated to obtain an
n for m = 3. Indeed, it is impossible for m > 6. The
1 is given by

(B.11)

N

2 O A

(B.12)

where A, is the largest eigenvalue of the recursion matrix gi in Eq. (B.7). Itis
obtained as the largest solution of the following characteristic equ

= (1= A)(=A)"!-

= (=1)"{A™ = A" =0, (B.13)
and a,, is obtained from the elements of the eigenvector of the recursion matrix corre-
sponding to the 7y envalue Ay (TABLE B.1)
Triangular chain, When we consider a matrix which transfers in the direction parallel
to a set of lattice ed on the triangular lattice (tyvpe in °
unit slice is chosen as a triangular chain (Figure B.1 (b)) rle, which

ains three lattic s, there are only four possible states (Fiourg B.1 (c)). If

we do not take the exclh

configuration spac

natrix-diagonalizat
w of vect on the m
the maximum system
computer with the main memory of M byte is estimated by

v =0 (B.15)
, and use of Real*8 is assur ent typical
r about 1 Ghyte (= 10° 5 , if we suppose
we obtain
o [ Nena) =

In TABLE B.2, Nuux are listed for the open and periodic chains and also for the triangle
chain
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TYPE (a). |

figuration spa

with

e that the matrix T

TYPE (b). [lattice=

figuration space=ysy;

its explicit e

i¥n

s not symmetric. However, T' =R - T

square, direction=nR, interaction=(

", symmetric

), unit sli

T? becomes symmetric.

), con-

with

TYPE (c). [lattic
figuration spa
for each configurati

with

and oy =
TYPE (d).
figuration space:
from the others

, interaction=(241),
. the definition is

unit slice={~), con
hat different




\\'].u-n' M=N nd & : 3) denote one of t TYPE (f). [I
(Ficure B.1 (c) and by are 4 x 4 matrices;

uration spa

ba(tls) =

1
1
1
1

T =R-T° For T, the conjugation matrix G can be defined as
M

Gitls) = l'[ a(tils:) (C.17)

=1

1
0100
0001
0010

glt]s) =

TYPE (e). [lattice=square, direction=Rg, interaction=(2+1), unit slice={a), config
uration space=1;, , symmetric TYPE (g). [lattice=triangle, direction

figuration space=1", non-symmetric|

PO, interaction=(3+0), unit slice=(

¢ 9o——r




% {1 = ox_10x542
Hrle) = Rirle)

Here we assume on.psz = oy for k > 1 and o_y = oy, for simple notations.

TYPE (h). [lattice=square, direction=pD, interaction=(3+-0), unit slice=(§), config-

uration space=y" , non-symmetric]

with
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