




Boundary Integral Equations
for the Time-Domain and Time-Independent

Analyses of 2D Non-Planar Cracks

by

Taku Tada

Submitted in partial fulfilment
of the requirements for the degree of

Doctor of Science
(Earth and Planetary Physics)

at the university of Tokyo

December 1995



Acknowledgments

The present work would have never been compleLt>d without contll1ual discussion::; with Prof (NUO

Yamashita at every stagt> of tht> present study. It would never ha\'e been compleLed. either without
continual encourgement by him and by Prof. Kunihiko Shimazakl Their attention and pal ience in
supen'ising my research career at Earthquake Research Institute. LiIP L IIlversity of Tokyo. are mO:il
cordially appreciated.

Prof. Raul Madariaga allowed me to retrieve a preprint of his article through Internet. Discussions
and correspondences with him and with Dr. Alain Cochard, Dr. Eiichi Fukuyama, t'llr. TOlTlohiro Inoue,
{'vir. Nobuki Kame. Dr. JUll Kawahara, Prof. Takashi Miyatake, Mr. f'\lasao Nakat.ani, Prof. Naoshi
I\ishimura and Prof. Yasuhiro Umeda (in alphabetical order of the sUfllames) were both suggesti\e and
informative.

In addition. encouragements and assistance were extended to IlIP by innumerous scientists and col­
leagues. both horne and outside. among others by Dr. Renata Omowska. Prof. Y081110 Fukao, Prof. Robert
J. Geller. Dr. Shin'ichiro Kamiya. Prof. lIitoshi Kawakatsu. Is. obuyo f\latsushima, Prof. litsuhiro
~Iatsu'ura. ~Ir. Fenglin Kiu, ~Ir. ~Iasayuki Obayashi. Prof. James R. Rice, and Is. Kazue Ceda. although
this list is far from complete.

Financial support was provided by Research Fellowships of the Japan Society for the PrOillotion of
Science for Young Scientists.

Abstract

l'nderstanding of the effects of non-planar fault geometry is a crucial key to a better understanding of
the dynamics of earthquake rupturing. 1I0wever, available numerical methods have practically precluded
modeling of fault mechanics based on non-planar geometry. except for a few recent pioneering works.

I ha\'e derived a set of rigorous boundary integral equations, both time-domain (elastodynalllir) and
time-independent (elastosta' ic), for the analysis of arbitrarily shaped 20 anti-plane I in-plane crack(s)
located in an infinite homogeneous isotropic medium. The hypersingularities of the integration kernels
were removed after the regularization method of Koller, Bonnet and Madariaga (1992) and Cochard
and t'lladariaga (1994). These formulations 1 rendered in a unified nomenclature, significantly broaden
the range of fault mechanics problems to which the boundary integral equation method (BIEt'll) can be
applied. The specific procedure of their derivation is described in full in Chapter 2 of the present paper.

In Chapter 3 1 the piecewise constant interpolation is introduced as a specific method of numerical
implementation of the BIE~I formulations. and the numerical results for some simple cases, both time­
dependent and time-independent 1 are verified against the known analytic solutions. Some demonstrative
analyses of crack mechanics based on non-planar geometry are described in Chapter 4.

In Chapter 51 it is pointed out that in the case of in-plane shear faulting a smoothly curved crack
cannol be represented as a limiting case of a chain of finite line elements as the discretization interval
tends to zero, a situation which previous researchers were apparently unaware of. The two geometries
may produce differenL normal traction distributions along the crack, so Lhat care should be taken so as
noL to misinterpret the numerical resulls. It is also shown Lhat no similar problem arises in the cases of
anti-plane shear and open in-plane faulting.
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where sand { denote location along the crack and t and T denote time. In this case, the slip distribution
is obtained by a simple forward convolution procedure once the traction distribution is known. However

1

this class of approach allows only the study of planar crack(s) in an infinite domain, in which case the
kernel k is explicitly known (Koller el ai., 1992).

There is another class of integral representation that expresses the traction as a convolution of the
slip with an operator (kernel) i:

\Vith this formulation, solving for the slip distribution with the traction known is an inverse problem.
This class of approach is more versaLile in that it is applicable to the general case of non-planar crack
problems. Thus Ihe syslem (e) shall be used throughout Ihe present study. Moreover, Das and Kostrov
(1987) pointed out that the system (2) requires a smaller integration domain than does the system (I),
because the slip vanishes oulside the crack and the locked part of the fault may be excluded from the
integration domain.

It should be noted that in the formulation (2) hypersingular terms (~lartin and Rizzo, 1989) appear
in the convolution integral, which requires special attention in the numerical treatment. Use of the
Fourier wavelength domain instead of lhe usual spatial coordinate (Geubelle and Rice, 1995) can suppress
the occurrence of such singularities. However, as long as the boundary integral equations (BIEs) are
formulated in the usual spatial coordinate} the hypersingular integrals should be numerically evaluated in
some way or other, One approach directly evaluates the hypersingular integrals in the sense of Hadamard
finite part integrals, while another approach rewrites (or regularIZes) the hypersingular integrals into an
equivalent form which involves only weakly singular integrals, which are at most integrable in terms of
Cauchy principal values (Martin and Rizzo, 1989; Koller el ai., 1992).

1\ ishllnura. 1994: Jeyakllmaran and h:eer. 1994). soh'es integral equation, that relate the slip on the
crack with the stress on the crack. wh~re the rest of th~ model spaee is not explicitly concerned in the
formulation. The third. the finite element method (FE~I) (e.g., Wet and De Uremaecker. 1995a). is akin
to the rD~1 except that the model domalll is d"'ided into a lIlesh of elelllent of ,"nple (e.g. triangular)
.hape that need not be regularly spaced.

As was discussed by Das and Kostrov (19 7) and hy 1\011er <I ai. (1991), the rOM permits the
introduction of inhomogeneous properties of the mediulll hut the principal numerical shortcomings of
the FD~I concern the resolution of stress near the crack tip. the numerical dispersion by the computational
grid, the necestiity to solve the equations all over the model 001113111. and the fact that treatment of nOll
planar crack geometry is practically prohibited by the configuration of th~ grid scheme that has two
orthogonal axes (although Inoue and i\liyatake. 1995. ha\'e recently developed an rDi\t code for kinked
fault problem). On the other hand, the BIEi\t formulation IS luore efficient and flexible for the problem
of cracks in a homogeneous medium. in that the equation hks to be sohed only inside the crack and
also in that non-planar crack geometry is admissible. The FLi\1 can. in prll1ciple

1
deal with non-planar

geometry} but its application to dynamic crack propagation analysis has been practically restricted to
20 straight crack problems, because of the difficulties in the remeshing procedures (Geubelle and Rice.
1995). Thus in the sequel u'e shall be exrlus",dy concerned wllh Ihe BIE.\t, which is believed to be Lhe
most suitable approach to dynamic analyses of non-planar cracks.

The most generalized I3IEM formulations for the lime-dependent (elastodynamic) analysis of 3D crack
of arbitrary geomeLry was obtained by Zhang and Achenbach (1989) and by Sladek and Sladek (1981),
in the Fourier frequency darn am and the Laplace domam respectively. lIowever

1
since both of these

generali~ed formulations are concerned with the transient response of a sLat.ionary crack, they do not
lend themselves to the analyses of cracks that propagates wilh Lime. Thus a lame·domam formulat.ion is
necessary when the geometry of the studied crack is not !Stationary.

I\oslrov (1966, 19(5), Das and Aki (1977), Das (1980) and Andrews (1985, 1991) used integral rep­
resentations t.hat express the slip (also called displacement discontinuity) .6.11 as a convolution of the
traction T with an operator (kernel) !{:

Introduction

1.1 Background

In the !'f'lslIlological fracture theory, heterogeneous behavior on an earthquake fault h,a\'e most ~rten been
ascribed to heterogeneous diSlribulion~ of strength. stre~:; drop or ~hp charactefl~lICS on a single fauIL
plane (see review by DlIlowska and Hice, 1986). Amol~g othE"rs. "harrier". an~ ." asperity" are the two
terms that han> been most popularly and most extenslyely used to describe mhomogeneous zone~ on
an earthquake fault plane. Though these twO terms have often been used in a. v~gue and ambiguous
way. the for Iller might be defined as a site where rupture durlllg an earthquake IS Impeded or arresl~d,

while the lattrT might be taken as a region characterized by all exceptionally large moment drop dUring
rurturf' (Scholz, 1990. Section 4.5). However. it has been implicit~y assumed tl,lat the co~cept of f~ult
inhol1logent>ities is not so l1luch a representation of real changes III the matenal propertIes as It IS a
rt>prest>ntalloll of geometrical irregularities restated in the context of planar geometry (e,g., Das and
Scholz, 1981: Andrews, 1989; Cochard and ~Iadariaga. 1991). .

8vidently, the source of heterogenous behavior in natura,l earthqua~e.s must be much more ~olllpll­

eated. possibly involving fault bends and bifurcations, activaLion of su.bs,d,~ry falills, transfer of slip onto
a different fallit plane (formation of fatllt steps), involvement of tensile IIllcrocracks, and so on. 111 fact}
in the field survey of the Nojima fault that was ruptured in the 1995 lIyogoken-N.ambu earthquake. l.he
surface fault trace has been recognized as a series of generally linear but, discontllluous segments. With
an evidence of bifurca.tion near the southwestern end (I\'akata and Yomoglda, 1995)

Field evidences for tensile cracks as secondary features in shear fault zones are abundan~ (e.g.. Segall
and Pollard, 1983: Martel and Pollard, 1989) and kink cracks, possibly involving tensile dlSplacenlents.
that develop at the lip of a shear fault has been lheoret ically studied (Jeyakumaran, 1995. and references
therein). Experimental studies of rock failure in anti-plane (I\nauss, 1970: Cox and Scholz, 1988) and
in-plane (Petit and l3arquins, 1988; Reches and Lockner. 1991) modes even suggest that shear cannot
exist a..'i a primary fracture mechanism but can only be a macroscopic fracture phenomenon which must
necessarily involve formation of tensile microcracks.

A better understanding of the effects of non-planar fault geometry is thus a crucial key to a. betl~r
understanding of the dynamics of t'arthquake rupturing. ElaMosl atic (time-independent) and quasl-~tatJc

analy~t's of interactions among closed in-plane shear fault !-,egmenls (e.g., Segall and Pollard, 1980.; 81111all1
and King, 1989; ,\ydin and Du, 1995: Wei and De Bremaerker. 1995b) as well as those among tens,le (open
Ill-plane) fault segments (Du and Aydin. 1991; Olson and Pollard, 1991: Reches and Lockner. 1994) are
fairly abundant in literature. Howe\'er, elaslodynamic (lime-dependent) analj'sis of crack(~) of non-planar
geollletry has been carried out only quite recently. I\oller d ai. (1991) proposed a numer.,cal method for
the dynamic analysis of 2D anti-plane shear cracks of arbitrary shape. but their num.erlcal. apl~lIcallOn
to non planar crack problems went no further than a mere preliminary one. O~her investigations are
confined to non-coplanar (mutually parallel) crack problems: the study by HarriS and Day (1993) for
two non-coplanar 20 cracks in in-plane shear, and those by Yamashita and Umeda (1994). Kame and
Yamashita (1996) and emeda et ai. (1996) for two or more non-coplanar 20 cracks m anti-plane shear
The present study is devoled to the development of a new comprehenSive numerical method for the
analyses of 20 cracks of arbitrary geometry. .

Three modes of fracture, modes I, II and III, are often referred to in the literature offracture mechamcs.
Mode III corresponds to the anti-plane shear motion, mode II to the in-plane shear motion, .and mO,de I
to the in-plane tensile motion} as illustrated in Figure 1. Motion of a closed in-plane crack IS desc~lbed

by pure mode II motion, whereas that of an open in-plane crack is a mixture of mode I and II motions.

1.2 The boundary integral equation method for crack analysis

So far, three difTerenl numerical approaches have been used in the study of dynamic earthquake source
mechanies. One of lhem, the finile difTerence method (FDM) (Andrews, 1976b; lV1Jkumo and Mlyatake,
1978; Day, 1982; Virieux and Madariaga, 1982) discretizes Lhe equations of motion by representing lhe
model domain by a regularly spaced rectangular grid system, A second, the boundary lntegral equation
method (BIEM) (Kostrov, 1966, 1975; Burridge, 1969; Dmowska and Kostrov, 1973; Crouch, 1976;
Andrews, 1976a. 1985. 1994; Das and Aki, 1977; Das, 1980; Cheung and Chen, 1987; Fleck, 1991;

.c.U(s, t) = JJdf,dT K(s, t;(. T)' T({, T).

T(s,t) =JJd{dT L(S,t;{.T) • .c.U({,T).

(I)

(1)



Sladek and Sladek (1984). who took the latter approach. demonstrated how the hypersingular 81Es,
for the lime-dependent 3D crack analysis in the Laplace domain. may be converted. through integration
by paris. into a more weakly singular form. Aided by their method, Koller el al. (1992) derived, for the
first time, a regularized DI E: in the time domain for an arbitrarily shaped 20 anti-plane crack, although
their expressions for non-planar cracks ...."ere still somewhat cumbersome.

Koller <I ai's (1992) work was continued by eochard and Madariaga (1994), who concentrated on
the special case of a straight anti-plane crack. They reduced Koller el al.'s (1992) integral equation to
a more easily tractable form and devised a sophisticated semi-analytic method of its numerical solution.
Their approach was later extended by Yamashita and Pukuyama (1996) and by Kame and Yamashita
(1996) to incorporate the case of more than one non-coplanar anti-plane straight cracks. A continuation
of these studies in a differenl direction was realized by Fukuyama and ~ladariaga (1995), who dealt with
bolh time-dependent and -independent analyses of a 3D plane crack. The previous BIEI\J studies for
crack analysis are summarized and classified in Table L

In the present study I enlarge Koller et al.'s (1992) and eochard and ~ladariaga's (1994) BIEM ap­
proach to incorporate a much broader variety of 20 crack mechanics analysis. Sets of BI EM formulations
for both llme-domam and tlme-mdependent analyses 0[20 non-planar both anh-plane and in-plaue cracks
are derived. As is evident from Table 1, the formulation for the time-domain analysis of non-planar 2D
Ill-plalle cracks ha' first been achieved in the present study. Another importance of the present study
consists in that it renders in a unified nomenclature the BIEf\·! formulations for different settings, which
have previously been studied separately by different authors based on inconsistent terminologies. Anti-plane shear

(Mode III)

In-plane shear
(Mode II)

In-plane tension
(Mode I)

Figure I: Anti-plane and in-plane motions. The three modes of fracture.



2 Formulation of the boundary integral equations

2.1 Representation theorem
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where (Tk/(x, t) is the kl-component of the stress at position i and time t and

where ur(i. t) is the displacement in the I-th direction at potiition £ and tillle (, I' the whole length of
the crack trace(s), ~ the arc lengLh along r, .6.u.{C r) the slip on the crack in Lhe i-Lh direcLion at arc
length ~ and time T, Cijpq the elastic constants, ii(() the unit vector HOrillal La the crack trace (\L arc
length ~ that is directed to the left when seen toward the orientation of the increasing ~ I y(~) the location
of the position on the crack at arc length ~ I G1p (X 1 t - r; y. 0) the displacenlellt Green fundion delloLing
the displacement in the I-th direction observed at position J7 and time t - T due to a unit force in the
p-th direction applied at position fj and time 0, and summation over the repeated indices is implied. See
Figure 2 for the nomenclature.

This leads to the following integral representation of the stress fieltl in lerms of the slip on the crack(s):

I start from the dynamlc (time-dependent) representation Lheorelll that expresses the elastic displacement
field over the entire medium in terms of the slip distribution along I he crack(s). Assuming that the mediuln
is at fest with no slip for time t :s; 0 and also t.hat the lranioll is continuous across the crack(s). we have,
for the problem of one or more crack(s) located in an infinite honlogelleous isotropic elastic medium (e.g ..
Aki and Richards, 1980; Section 3.1),

It would be informative Lo refer here to the equation of mOLion for the Green functions, which shall
be used later in the manipulations of formulae:

is the stress Green function denoting the kl-component of the stress observed at position i and time t - T

due to a unit force in the p-th direction applied at position fj and time O.
In the lime-independent problem, a parallel representation theorem holds which does not include time

dependence:
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where p denotes the density.

Table 1: Classification of previously published BIEM modeling studies of crack mechanics problems. The
scope of the present study is denoted by the shaded part of the table



2.2 Time-domain formulation for anti-plane cracking

for the 2D problem, I choose the coordinate axes so that lhe elastic field variables are independent of the
third coordinate. In the anti-plane (mode HI) case, t.he only nOll-zero displacement and stress components
are U3 and 0"31,0"32, so that we have

(9)

and

n(~)

u(x, t)

/

(11)

/731(i,t)

where integration by parts has been implemented so as to rewrite (or 1'egularize) the hypersingular integral
into a more weakly singular form (S]adek and Sladek, ]984; Koller el al., J992). Likewise,

L
r

'OSeS

~ \~::::::::==:::::~~_---:

where /1, is the rigidity, (3 the S wave velocity and the equation of motion

(]2)

was made use of.
With the limiting process i ----;. y(s), we get, for the traction in the x3-direction 1'3(8, t) on the crack

at arc length 5 and time t,

Figure 2: Nomenclature used in the crack analysis. The sign ii(i,t) denotes the displacement at, positIOn
i and time I, r the whole length of the crack trace(s), ~ the arc length along r, ~11(~, r) the slip on the
crack at arc length ~ and time r, ii(O the unit vector norma] to the cra:k trace at arc length ~ that IS

directed to the left when seen toward the orientation of the mcreasmg C yeO the locatIOn of the posItIOn

on the crack at arc length ~.

(]3)

This is Lhe displacement 131 E that expresses the traction on the crack(s) in terms of the slip on the
crack(s), equivalent to EquaLion (6) of Koller et al. (1992).

The explicit form of the Green function for the anti-plane case is (Achenbach, 1973, Section 3.10.2;
Koller el aI., 1992; Cochard and Madariaga, ]994)

_ 1 1 r

G33 (X, t - r; y, 0) = 21ri' J(t _ r)2 _ (1'/(3),I1(t - r - (3)' (14)

10 11



where ";: IIi - Y11 and fI(·) is the Heaviside step function.
from this expression It is evident that the integral terms inrluding first-order spatial derivatives of

C33 are still hyper ingular. eochard and ~ladariaga (1994) pointed ont that these hypersmgularities may

be removed by noting the following identities'

(26)

where

I "I; I fI(t _ T-!:')
2,,1' rp [(t - T)' - (1'1,3)2]"/0 j3

I -" 8 t - T fI(t _ T _ !:.)
2,,1' l' 8T J(t - T)' - (1'13)" ,8

~ --" 8', J(t _T)' _ ("I,1)'//(t - T - !:.).
2,,1' r 8T- .8

(15)

(16)

Differentiating (18) with respect to t we get the following representation for the displacement \'elocity:

u3(i, I) = -2
1 r~ (nd~)~ + 11,(~)2) X
1r Jr J' r

f' 8 . 1- T r
X Jo dTO:;:..'.U3(~' T) J(I _ T)' _ (/'1.1)' fI(1 - T - J)'

1',;: (x, - y,)/"· (Ii)

Substituting Equations (15) and (16) into (9), (10), (11) and (13), we finally get. after performing
integration by parts, at the following expressions, where the singular integrals should be interpreted in
terms of Cauchy principal values:

where

U3(X,t) =

0"3,(i,t)

1!r (1" 1")- d~ n,(O- + n,(O- x
271" r r l'

!' 8 . ,.
x J

o
dTo:;:t.U3(~' T)J(t - T)' - (I'I{3)'fI(l. - T - fj)

I'!r 1" i' 8 . t - T I'- d~- dT-t.U3(~ T) fI(t - T - -) -
2" r r 0 8~ 'J(t - T)' - (''1f3)' f3

I' 1 !r l' 8 . 1 r--- ~111(0 dT-t.U3(~,T) fI(t-T--)
2" f3' r 0 8T J(t - T)' - (1'If3)' f3

I' j -1'1 i' 8 t - T l'- ~- dT-t.U3(~,T) fI(t-T--)-
2" r l' 0 8~ J(t - T)' - (rlf3)' f3

I' 11 l' 8 . 1 ,.--,. ~I1,(O dT-t.U3(~,T) fI(t-T- -).
2"f3- r 0 8T J(t-T)'-(1'18)' f3

r ;: J(x, - y,(O)' + (x, - y,(O)'

1', ;: (x; - y;(O)/1'

(18)

(19)

(20)

(21)

(22)

and the dot over a variable denotes the time derivative, and

where

T3 (s,t) = I' j (1" 1")- ~ I1I(S)- - ",(s)- X
~ r r r

i' 8 t - T l'
X dT-t.U3(~ T) fI(t - T - -) -
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X J
o

dTo:;:t.U3(~' T) J(t _ T)' _ (1'If3)' fI(t - T - fj)'
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(y;(S) - y;(Ol/1'.

12
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(24)

(25)
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The set of the 20 Green functions for the time-independent anti-plane case is familiarly known as the
Kelvin solution and is given by (Maruyama, 1966; Zhang and Achenbach, 1989)

Cnlike in the time-dependent ease, the integral terms including first-order spatial derivatives of G33 are
not hypersingular I but call be understood as Cauchy principal value integrals.

Substituting Equation (32) into (27), (28), (29) and (30), we get at the expressions:

(37)

(38)

(39)

(40)

u,(i,t) =

u2(i,t)

~(O"II(i,t)-O",,(i,t)) =

~(0"1I(i,t)+0"22(i,t))

{
~UI((,T) = n2(O~uI«(,T)
j.U2(CT) = - n,(~)~uI«(,T)

l"sing the above nOLation, we have

2.4 Time-domain formulation for closed in-plane cracking

In the 20 in-plane (plane strain) shear crack problem to be treated In thiS section. we assume, for sim­
plicity. that the crack surface is closed everywhere. or that the dibplacement dIscontinuity on the cTack(s)
has only the langenllal (purely mode II) componenl. In fact, no normal displacement discontinuity exists
in natural faults as a macroscopic f~ature. so that consideration of the tangt"ntial slip suffices for most of
the practical purposes, Denoting the amount of right-lateral shear slip by ~u" we obtain the relations

-[ ~ J.' dT {[~UI (~, T)(A + 21')",(0 + ~U2(~, T)A n2(0] a~, Gil +

+ [~u,«(, T),",(O + j.U2«(, T)(), + 21')n2(0] a~2 G12 +

+ (~UI «(, T)/1n2(() + ~U2(~, r)l'nl«()) (a~2G'l + a~, GI2) }

- r d( r' dT~U,«(,T)1' [2n l(On 2(0 (-aa Gil - ~GI2) +Jr Jo XI ax').

+ (n~«() - n;(m (a~2Gil + a~, GI2)]

- r~ [' dT~UI«(,T)/1 [2n
'
(0"2«() (~G21 - ~G22) +)r )0 OXI aX2

"( , (a a)]+ (n2 () - nj(m a
X

2 G21 + aXI G"

and, likewise, the stress field is expressed as"

(31)

(32)

(30)

(29)

(28)

(27)

~(-Iogl')
2,,1'

I -'/i
2,,1' --;:-.

G33(i;jj)

/;;G33(i; jj)

1 1 '/1 '/', (33)u3(i) - ~~u3(()(nl(()- + n2(0-=-)
2-n- r J" r

0"31 (i) I' 1 a '/" (34)- ~-~U3«()-=-
2" r a( "

0"32(i) I' 1 a -,I (35)- ~-~U3«()-
2" r a( r

T,(s) /11 a '2" (36)2,;" r ~~~u3(0(nl(s)-; - n2(s)-;),

0"3,(i)

2.3 Time-independent formulation for anti-plane cracking

The time-mdependent counterpart of the displacement 81 Es for the 20 anti-plane crack problem follows

by analogy to the time-dependent version:
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and(41 )

(42)

where A and Jl are the Lame constants and the identity

(43)

\Va:;; made use of, The other non-zero stress component 0'33, for which the formulae shall not be given
herein, is related with other components by a simple relation

i(<TlI(x.t) + <T22(i".t))

It is convenient, for the purpose of regularization of the above integral equations, to represent the
spatial derivative operators and the Green functions in terms of a different coordinate system, so defined
at each location ~ on the crack(s) that the first coordinate axis Xl is locally tangent La the crack trace
and the second axis Xll is normal to it:

and

'i' = n,(~h, - n,(O'i'
'in n,W'i, +n,(O'i,

(44)

(45)

(46)

(47)

(48)

Unlike in the anti-plane case, the regularization process for the stress components is rather cumber­
some. Although the explicit form of the displacement Green functions for the 20 in-plane case is not
available in customary textbooks, an integral representation given by Achenbach (J 973, Section 3. J0.3)
IS reduclble J after performlllg the definite inlegration, to:

G I ,
J I)'

27rp I)x;(Io - Ip) + G33 (57)

G'2
I 1)2

27rp I)xi(Io - Ip) + G33 (58)

Gl2

J 1)2
27rp I)x,l)x, (10 - I,), (59)

where G33 is the displacement Green function for the anti-plane case (see previous section) and

I, == {(t - r) log [crt - r)lr + )(e(t - r)lrJ2 - 1J -

-)(t - rJ2 - (rIel'} H(t - r - rIc) (e = <>.{3). (60)

G"
Gnn

G'n

n~(OG" + n;(~)G22 - 2n, (~)n,(~)G"

n;(OGlI + n~(OG" + 2n,(~)n,(~)G12

n,(On2(~)(GlI - G,,) + (n~W - n;(O)G",

(49)

(50)

(51)

The. explicit form of the Green functions for the in-plane case shall be given elsewhere in the present
section.

On the basis of the above derivative representations and the equation of motion

which leads to the following expressions:

u,(x,t) = - [d{ldrc,u,(cr)J.+'(O(I)~nG,,+-kG,n) +

+ n,(O (I)~n G'n +-kGnn )]

u,(x,t) - [d~ l drC,u,(Cr)1' [-n,(o (I)~n G" + -kG'n) +

+ n,(O (I)~n G'n + -kGnn ) ]

16

(52)

(53)

1)2 ( I)' 1)2 )
P7ft2G33 = I' I)x1+ I)xi G33

it can be proven that the following identities hold true:

17

(61)

(62)

(63)

(64)



It should be kept in mind hereafter that the form of the Green functions for the in-plane case is
subje-ct to no modification if we simultaneously replace XI with Xl and X2 with xn . since the transformation
between the two coordinale system can be achieved by simple rotation. For the displacement components

we get:

(65)

(66)

-lr d~ fa' dT~C.U'(~. T)J1' X

x [-2n,(On,(02-a
a

(Cll - C",,) + (niW - n;(0)4-
a
a

C.n]
Zu Xu

-[ d~ fa' dT ::,c.u,(~, T)~(ni(~) - n;(O)C33 (72)

With the limiting process i - y(s), we get, for the tangential traction T,(s, I) on the crack at arc
length s and time t,

T,(s, t) 2n,(s)n,(s)~(0"1l(Y(s). t) - O",,(y(s),t)) + (nils) - n;(s))O"12(17(S), t)

-[~ l' dT~C.U'(~, T)J1' X

X {[2n,(S)n,(S)2n,(On,(0 + (ni(s) - n;(s))(ni(~) - n;(O)J4 a~" C'n +

+[2n,(s)nAs)(ni(~) - n;(O) - (ni(s) - n;(s))2n1(~)n,(~)]2 a~" (Cll - C"n)} -

r f' a' 1"- Jr d~ J
o

dT aT' c.u,(C T)/fi x

x [2n1(s)n,(s)2n,(On,(0 + (ni(s) - n;(s))(ni(O - n;W)]C33 . (73)

This is the displacement BI E that expresses the traction on the crack(s) in terms of the slip on the
crack(s). Likewise, the normal traction 7;,(s, I) across the crack at arc length s and time t is given by

7;,(s, I) = ~(O"l1(Y(S), t) + O",,(y(s), t)) -

-(n~(s) - n;(s))~(O"l1(Y(s). t) - O",,(y(s),!)) + 2n,(s)n,(s)u1,(fj(S),t)

-[ d~ 10' dT-kC.Uc(~, T)J1' x

x {[2n,(s)n,(s)(n~(O - n;(m - (ni(s) - 11;(s))2n,(~)n,(~)14 a~n C'n ­

-[2nl(s)n,(s)2n,(~)n,(~) + (n~(s) - n;(s))(ni(~) - n;(0l12 a~" (Cll - Cnn) +

+~ (I -~) 2a~n (Cu + Cnn - C33)} -

r f' a' 1"- J
r
d~ J

o
dT aT' c.u,(~, T)/fi x

x[2n,(s)n,(s)(n~(~) - n;(m - (n~(s) - n;(s))2n,(On,(01C33 . (74)

The explicit form of the Green functions for the in-plane case can be derived from the derivative
representation which has been given earlier in this section:

u,(i,l) = -lr~fa'dTc.U,(~.T)I"[n'(O(2kC,n+a~nC33) +

+ n,(O (2 a:n C'n + kC33)] (67)

u,(i, t) -[ d~ l' dTC.U,(C T)I' [-u, (0 (2-/;;C'" + a~n C33) +

+ n,(O (2 a:n C'n + -/;;C33) ] . (68)

KOling the relation

kCij = -~Cij (69)

and performing integration by parts, we obtain, for the stress components,

~(O"Il(i, t) - O",,(i, t)) = -[ d~ 10' dTC.U,(~, T)lt' x

x [2n,(on,(~) (4 aX~;Xn C,n + ~:izC33) +

+ (niW - nM)2
a

aa' (Cll - Cnn)]
x, Xn

-[ d~ l' dT~C.U'(~, T)I"' x

x [2n,(~)n,(04 a~n C'n + (n~W - n;(0)2 a~n (Cll - Cn,,)] -

r f' a' .,- Jr d~ J
o

dT a;' c.u.(~. T)f,2nl(~)n,(OC33 (70)

~(O"Il(i, t) + O",,(i, I)) -lr d~ 10' dTC.U,(~, T),'P + 1") x

a'
x2 ax,axn (Cll +C"n - C33 )

r f' a ,- J/~ J
o

dT~C.U,(~,T)I"· x

x~ (I -~) 2a~" (Gil + C"n - C33 ) (7J)

O"di, t) -[ d~ l' dTC.U,(~, T)J1' X

x [-2nlWn,(~)2a aa'.. (Cll - C",,) +
Xl X n

+ (ni(O - nM) (4 ax~;x" C,,, + ;kft,C33 )]

18

Cdi,t - T;y,O) =
I , ,{3'[ ,r'] I ,.

--2({,-1'.1,. 2(t-T) -2" H(t-T--) +
1TJ1 r " -.I(t - T)' - (r/")' "

+-.!.- ; _ ,f!:. [21 _ T '- ,C] I H t - T _::.
21TJ1 (1'. 1'.1 ,., ( ) /3' -.I(t - T)' - (r/{3)' ( (3)

(,',,(i,1 - T;y,O) =
I {3' 1 r

hit'" -.I(t _ TJ' _ (r/,,)'H(t - T-;;) +

19
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Next we shall proceed to the final stage of the regularization process. Making use of the relations

It. would be informative, for the sake of interested readers, Lo note the following simple identity which
was utilized in the derivation of the above formulae'

(87)

(88)

(86)

(89)

+2_,;,J~ t-T ] H(I-r-!:-)-
'-a'J(I-r)2-(I'/o)2 a

I ,t a [ ? "J2 J ?-;--) --a 2(3,; - - i).,(1 - 7)(1 - r)- - (r/.3)' +
_1rJ1 r T ,'-

+2 ;; t - r ] If(l _ r _ !:-)
1_ J(t - r)2 - (r/;3)2 .3

--'-~~ [2(3,f - ii)~(1- r)J(t - r)2 - ("/0)2 -
27rJ.L r aT r-

? ,/3' t - r] ,.-(1';--(,) ? " " H(I-r--)-
0- J(t - T)- - ("/0)- a

1 -I? a [ ? ?,3'----"- 2(3,i - -,,)...,..(1- r)v'(1 - r)' - (1'/,3)2 -
21fJ1. J' or ~ f''!

?? t - r] ,.
-(,; - ,i) J(I _ r)' _ ("/;3)' /I(t - r - ;3)

0
2

( /3') a-.8' 1- -, -a (GlI +G'2 - G"3) =
0- X'I

= --'-1?(1-~) a I-r 11(I-r-!:-)
2,,1' I' a' ar J(t - rl' - (r/a)' a .

u,(x,t)

U1(X.t) =

As has been mentioned elsewhere, it is to be noted that the form of the Green functions for tlw in-plane
case is subject to no modification if we simultaneously replace XI with Xl and X2 with X n . Suhstit.uting
E:quations (84), (85), (86), (87) and (88) into (67), (68), (70), (71). (72), (73) and (74), we get. after
lengthy algebraic manipulations, at the following expressions. in which the singular integrals ~hollld be
interpreted in the sense of Cauchy principal values·

(85)

(84)

(82)

(83)

(81)

(80)

(79)

(78)

(77)

(76)

--fr [(I - r)J(t - r)2 - (r/c)2]

~ ::' [(t _ r)' _ (r/c)2] 312

'Ii a I, - r

r ar J(t - r)' - (r/e)'

-;' ::' J(t - r)2 - (r/c)'

I I "+ H(I - 7 --:-)
2,,1' J(l- 7l' - (r/{3l' ;3

I {3' [ r'] I r-1'11'?- 2(t-7)'-- H(I-7--)-
2,,1' - ,,' a' J(t - 7l' - (r/al' a

I J' [ ? r'] I _ "
- 2,,1' 1'11'2-;:2 2(t - 7)- - 7fi J(I _ r)' _ ("h~), H(t - , - 73)'

I I r
G33(x,t - r;y.O) = hI' J(t _ r)' _ (I'/3)2H(t - r -;3)

1 1't a [ 2 ?)(3'( )v'( )' (/)2--- 2(31', -1'i 2" t - r t - r - TO +
2,,1' I' ar r

a I

ax, J(t - r)' - ("/e)'

[ r'] I
2(t - r)2 -"2' J(t _ r)2 _ (r/c)2

2-a
a

GI2+-a
a

G33
%2 Xl

2-a
o

G12 + -aa G33
Xl %2

Gdx,t - 7;y,0)

and

we can prove that lhe following identities hold true:

and

where "'" IIx - Y11 and H(·) is the Heaviside step function. The Green function for the anti-plane case
is given again for quick reference:
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(93)

(91)

~(uldx,l) - U22(x,I»

~(U'I(X,t) +U22(X,t))

u12(x,l)

and

(90)

t!. ( d~ [n,(~)l!.('r? - 3,i) + n,(O~(3r; -,;)] x
1T Jr" 7

X l' dT~6.U'(CT)2~ [(I - T)yT.""(t-_-T7')';-_--'(;-r/'a0)'/{(1 - T-~) -

-(t - r)J(t - T)' - (r/,J)' H(t - T - J)] +

+t!. { ~ (n 1(OIe + n,(O~) (rf -1i) x
'iT ir r r

f' /). [fJ' t - T H(t _ T _ !:..) _
x Jo dT~6.Ul(~' T) n' J(t _ T)' _ (1'/n)" 0

I-T H(I-T-!:..)] _
J(t T)' (l"/fJ) , {3

_L~ ( ~2n,(On,(~) x
27r {3- Jr
f' /)') I H(t-T-!:..)

x Jo dTa:;6.Ul(~' T J(t _ T)' _ ("/{3)' {3

t!. { d~ (nl(OIe + n,(~)~) x
11" ir r ,

f' /) ({J') t - T ( l' ) (92)
x Jo dT~6.UI(CT) 1-;:;; J(I-T)' (r/ol' H t-T-~

t!. ( d~ [nl(O~(31; -1i) - n,(OIe(1; - 31i)] x
11'" ir r r

'/) fJ' ~----,.,,....--,c--;-'" r
x1dT~6.Ul(~' T)2-;:2 [(I - T)J(t - T)' - (r/o)'H(t - T - ~) -

-(I - T)J(t - T)' - (r/fJ)'H(1 - T- ~)] +

+t!. { ~ (n,(O~ + n,(~)~) 2111' x
7r i r ' r

f' /). [fJ' 1- T r)
x J

o
dT~6.ri,(~, T) a' J{I _ T)' _ (r/n)' H(I - T- ~ -

I-T H(I-T-!:..)] _
J(t - T)' HfJ)' .8

_L~ ( ~(n;(~) - n1<O) x
27r .13- JT
f' fJ I ( r)

x Jo dTa:;6.U,(C T) J(t _ T)' _ (r/fJ)' H 1- T - Ii

t!. { d~ {12n,(s)n,(S)nl(O - (n~(s) - n;(s))n,(~)Jl!.hi _ 31~) +
7r ir '"
+ [2nl(S)n,(s)n,(~) + (n;(s) - n;(.))nl(~)]~(31; -,i)} x

x {' dT':.3.U,(~ T)2~ [(I - T)J(t - Tl' - (1'/n)' H(I - T _.':) _Jo v~ r n

-(I - T)J(t - T)' - (r/(3)'H(1 - T - J)] +

+t!. ( ~[-2nl(s)n,(s)(r~ - r;) + (n~(s) - n;(s»2rl"J x7r Jr

x (nd07 + n,(~)~) x

x f'dT~6.U( T)[fJ' I-T H(t-T-.':)-
Jo /)~ l~, n' J(I - Tl' - (r/al' a

I-T H(t-T-.':)]-
J(I - T)' - (r/fJ)' {3

_L~ ( d~[2nl(s)n,(s)2nl(~)n,(O + H(s) - n;(s))(n;(O - n;(~)] x27r fJ- Jr
f' /) I r

x Jo dTa:;6.U,(C T) J(I _ Tl' _ (1'/{3)'H(t - T - Ii) (94)

~(Ull(Y(S), t) +u,,(y(s), I» -

-(n~(s) - n;(S»~(Ull(Y(S), t) - u,,{y(s), I)) +2n,(s)n,(s)udY(s), I)

t!. { d~ {12n1(s)n,(s)n, (~) - (n~(s) - n;(s))n,(~)]~(3rf - ri) _
1r i r r

- 12n,(s)n,(s)n,(~) + (n~(s) - n;(s»n'(~)]7(rf - 3ri)} x

x f' dT~6.U,(~,T)2~ [(t - T)J(t - T)' - (r/al'H(t - T _.':) _Jo /)~ r n

-(I - T)J(I - Tl' - (r/fJ)'H(1 - T - ~)] +

+t!. ( ~[2n,(s)n,(s)2r'-f' + (n;(s) - n;(s))(ri - ·ri)l x
7r Jr

x (nl(07+n,(~)~) x

x l' dT~6.Ut(~, T) [:: J(I _ :)~ T (r/nl' H(I - T -;-) -

t-T H(t-T-.':)] +
J(I - Tl' - (r/fJl' fJ

+t!. { ~ (n1(OIe + n,(~)~) x
1T ir r r

x 1'dT~6.u,(~,T)(I-f,) J(t_:)~~(I'/nl'H(t-T-;-)-

_L.2... ( d~12n,(s)n,(s)(n;(0 - ni(O) - (n;(s) - n;(s))2n,(On,(OJ x
27r fJ' Jr

1I(s, t) 2n'(s)n'(s)~(Ull{Y(S),t) - U22(!i(S), 'll + (n;(s) - n1{s»ud!i(s),I)
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converge to finite limit values as y' - 0, so that the integral terms that include these expressions are not

hypersingular. . .
Differentiating (89) and (90) with respect to t we get the following representations for the displacement

velocity field:

and

Kate that the expressions

(103)

(104)

(106)

(105)

(107)

I [( (3') , , ]--1--("(-"1)
4iTJJ 02 2 1

I [( (3") ( (3') ]- I -., - 2 I +., log r
41r1' 0- 0-

1 ( (32)- 1-- ,1/,.
41r1' 0'

Cll(i; Yl- C,,(i; Yl

r a ,- J
r
~~!;.U'(~)I' x

x {[2nl(S)n'(S)2nl(on,(~) + (n~(s) - n;(s))(n~(O - n;(0)J4 a~n C'n +

+[2nl(s)n,(s)(n~(0 - n;(O)- (n~(s) - n;(s))2nl(~)n,(~)]2 a~n (Gil - Gnn)}

r a ,- J
r
~~!;.u'(~)1' x

x {[2nl(S)n,(s)(n~(~) - n;(m - (n~(s) - n;(s))2nl(~)n'(OJ4~G,n ­aXn

-[2nl(s)n,(s)2nl(On,(~) + (ni(s) - n;(s))(n~(~) - n;(mJ2 a~n (Cu - Cnn) +

0' ( (3') a }+{j'i I -;:;:; 2aX
n

(Cu + Cnn - G33 ) .

~(""(i) - ",,(i)) -lr ~~!;.u,(~)I" x

x [2n ,(On,(04';-G,,, + (n;(~) - n;(~))2';-(G" - Cnn)] (100)
UX n UX n

~(""(i) + ",,(i)) -lr d~~t.U,(~)I" x

X~(I-f,)2a~n(Cu+Gnn-C3:J) (lUI)

"l2(i) -lr ~~t.u,(OI" x

x [-2nl(on,(~)2 a~n (Cu - Cnn) + (n~(~) - n;«))4 a~n G'n] (102)

Ul(X) = -lr d£..l",(~)1' [n,(~) (2-kG'n + a~n G33) +

+ nl (0 (2 a~n G'n + -kG33) ] (98)

u,(i) -lr d~..lu,(OI' [-nl (0 (2-kG'n + a~n G33) +

+ n,(O (2 a~n G,,, + -k(33)] (99)

1I(s)

Tn(s)

The Kelvin solutions, or the Green functions for the time-independent in-plane case, are given by
(Maruyama, 1966; Zhang and Achenbach, 1989)

2,5 Time-independent formulation for closed in-plane cracking

The time-independent counterpart of the displacement BlEs for the 20 closed in-plane crack problem
follows by analogy to the time-dependent version:

(97)

(96)

(95)

~ {[(t - T)' - (r/o)']'!' - [(t - T)' - (rlB)']3!'}

r' a I r
x Jo drert.u,(~. r) J(t _ T)' _ (,'/,3)' fI(t - T - ;1).

~ [(t - T)J(t - Tl' - (r/o), - (t - T)J(t - T)' - (r/8)']

u,(i,t)

ul(i, t) = ..2... r~ [2nl(~)n,(~)I!.('r? - 3"1i) + (n;(~) - n;(O)~(3"1i - "I~)] x
2iT Jr r J

x r' dTi-t.u,(C T)2~ [(t - T)J(t - T)' - (r/o)'fI(t - T - 2:.)Jo aT r 0'

-(t - T)J(t - T)' - (r/{3)'fI(t - T - ~)] +

+~ lr d~ [2nl(On,(0~("Ii - "I~) + (n;(~) - n;(0)72"1i] x

r' a (3' t - T "
x J

o
dTert.U,(~, T) 0' J(t _ T)' _ (r/of fI(t - T -;;) -

_..2... r~ [2nl(~)n,(0I!.( -2"1;) + (n;(~) - n;(O)2!("(t - "I~)] x
27T ir - r - - r

r' a t - T "

x Jo dTert.U,(C T) J(t _ T)' _ (r/{3l' lI(t - T - Ii)

~ lr~ [2nl(~)n,W7(3"1t - "I~) + (n~(~) - ni(m~(3"1i - "Ii)] x

x r' dTi-t.U,(~, T)2~ [(t - T)J(t - Tf - (r/o)'H(t - T - 2:.)Jo aT r 0

- (t - T)J(t - T)' - (r/{3)'fI(t - T - ~)] +

+..2... r~ [2nl(On,(~)1!("I; - "I~) + (n~(~) - n;(0)I!.2"1i] x
271'" i r r J

r' a (3' t - T "

x Jo dTert.l"(~' T) 0' J(t _ T)' _ (r/o)' fI(t - T -;;) -

_..2... r~ [2nl(~)n,(~)1!2"1t + (n~(~) - n;(O)I!.('y~ - "It)] x
27[' ir r r

f' a t- T "
x J

o
dTert.U,(C T) J(t _ T)' _ (l'/{3l' H(t - T - 73)·
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The Green function for the anti-plane case is given again for quick reference:

G33(X;Y) = ~(-2Iogr).
4"/1

and thus we have

2a~, G" + a~, G33

2a~, G" + a~l G33

2a~,G
"

-aa (GII-G,,)x,

1"I, [( 8') , , ]-- 1- - ("12--1,)-1
27f1l r 0'2

1 "II [( 13') " , ]-- - 1-- ("I;-i,)-1
27fJl r 0 2

1 -,I ( ,3') , ,-- 1-- (i,-r,)
21fJl r 0 2

~ -r, (I _~) 2-1~
27rIJ. J' 0'2

(108)

(109)

(110)

(Ill)

(112)

4(0'11 (17(s)) + O',,(y(s))) -

-(n~(s) - n;(s))4(O'II(Y(s)) - O'22(y(S))) + 2n,(s)n,(s)O'12(17(s))

/1 ( (3') f a;: 1 -;:;> J
r

d{azt.u, (O x

x{(nl(O~+n'({)7) +

+[2n,(s)n,(s)(r~ - r~) - (n~(s) - n~(s))2rlr,](n,({)~ - n'({)7)}' (120)

",' ( (3' ) a I -r, ( (3')- 1-- -(GII +G,,-G33) = -- 1--(3' "" ax, 2"/1 r ",'
(113)

As has been mentioned elsewhere, it is to be noted that the form orthe Green functions for the in-plane
case is subject to no modification if we simultaneously replace Xl with Xt and X2 with X n . Substituting
Equations (109), (110), (111), (112) and (113) into (98), (99), (100), (101), (102), (103) and (104), we get,
after lengthy algebraic manipulations, at the following expressions, where the singular integrals should
be understood as Cauchy principal value problems:

(114)

(115)

and

4(O'II (i) - 0',,(£))

4(0'11(£) + 0'22(£))

(116)

(117)

(118)

7,(s)
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(129)

(133)

(132)

(128)

(126)

(134)

(127)
a'P8(i(GlI - Gn )

a'P8(i(GlI + Gd

-J.l (ax~;x" (Gll - G",,) + U:; - ::~) GI")]}

Paying attention to the equations of motion

~(11ICx,t)+(122(.l,t))

the following new relations can be found:

a' a' ,8' a' 1 a'
axiGlI - axjG22 2;:;> axiG33 + ;:;>w(GlI - Gn - G33 ) (130)

a' a' a' I a'
ax; Gil + axJG22 -2aXlaX,G12+;:;>w(Gll+Cn-G33). (131)

Ma~ing use of these formulae and of those derived in a previous section, we arrive at I he following
expreSSiOns:

(125)

(124)

(121)

-] dE. [ dT~U,,(~,T)J.l x

x {(n~(O - n;(O) [p + J.l) U:; Gil - ::~ G",,) -
( a' a' a')]-I' -a,G"+-a,G",,-2-a a G,,, +

Xl X n Xt Xn

[ ( a' ( a' a' ) )
+2n,(~)n,(~) (A + J.l) ax, ax" (Gil + G",,) + ax; + ax~ G,,, -

( a' ( a' a') )] }-J.l ax,ax" (Gil - G",,) + ax; - ax~ G,,,

-] dE. l' dT~U,,(C T)(A + J.l) x

[ (
a' a' a')

x P+J.l) -a,G"+-a,G",,+2-a a G,,, -x, X n XI Xn

(a' a')]
-/1 8x~Gu - ax~ Gnn

-] dE. [ dT~U,,(CT)J.l x

x {-2n,(On,(0 [(H J.l) U:;G" - :X'~ Gnn) -

( a' a' a')]-J.l -a,Gll +-a ,G",,-2-a ,a G,,, +
X t Xn Xt Xn

[ ( a' ( a' a' ) )
+(n~(O-n;(~)) (A+J.l) ax,ax"(G,,+G,,,,)+ ax;+ax; G,,, -

-] dE. [ dr~u,,(C T) { n,(O [A/;;Gll + (A + 2J.l) a~" G".] +

+ nl (0 [A/;;G'" + (A + 2J.l) a~" G",,] } (122)

-] d~ [dT~U,,(~,T){-nl(O [A/;;Gll + (H 2Ij)a~" GI"] +

+Jl,(~) [A/;;G,,,+(A+2J.l)a~,, G",,]} (123)

~(1l1(i,t) -(1,,(x,t))

~«111(i, t) + (1~,(i, t))

u,(x,t)

and

following a sequence of algebra similar to that practiced in the case of closed in-plane cracking. we

arrive at the expressions

2.6 Time-domain formulation for open in-plane cracking

For the sake of completeness I now consider the case of open in-plane crack(s). which has both non-zero
normal and tangential (mixed modes I and II) displacement discontinuities along its trace. In the present
section I derive the expressions for the elastic field induced by the normal displacement discontinuity
(opening slip) ~un. For simplicity I omit all terms relevant to the tangential displacement discontinuity
(shear slip) ~UI' but all the formulae that follow should be understood as snpplementary terms specific to
the case of open crackmg that should be added to the formulae for the case of closed in.plane cracking.
Denoting the amount of opening by ~u,,' we obtain the relations

28 29



This is the displacement BlE that expresses the traction on the crack(s) in terms of the slip on the
crack(s). Likewise, the normal traction T,,(s, t) across the crack at arc length s and time 1 is given by

With the limiting process x - y(s), we get, for the tangential traction T,(s, t) on the crack at arc
length s and time I,

(138)

(139)

(140)

(141)

a' ( fJ') & &jj2 1-2;;; &""(Gll+G22-G33)+2a,,,?G12=

1 1', a' [2 {3' •
2"/1 7 aT' "3(1'; - 31'i)-;:>[(t - T)' - (r/a)')"/' +

+(21';f,-I)V(t-T)'-(.-;a)2]H(t-T-;) -

1 1', &' [2 {32
- 2"/1 7&;2 "3C1'i - 31'i);:2-[(t - T)' - (r/{3)'J3/' -

-21'iv(1 - T)2 - (r/{3)'] fI(1 - T - ~)

a' & a
jj2 &"" (G'l + G" - G33 ) - 2&"" GJ2 =

1 1, &' [2 {3'
- 2"/1 7 &T' 3(1i - 31;);:2(t - T)' - (r/a)']3/2 -

-(21f~-I)V(t-T)'-(r/a)']H(t-T-;) +

1 l' a' [2 {3'+ 2"/1 7&;2 3(1i - 3"'1;);:2[(1 - T)' - (r/{3)')3/' -

-21;V(t - T)' - (r/{3)'] H(t - T - ~)

lr 1
, a' ,

- ~ dT-
a

, 8u,,({. T)t:... x
roT fJ'

X {-(2n,(s)n,(s)2n,({)n,({) + (ni(s) - n;(s))(n~(O - n;({))J x

x [(1 - ~) (Gil - G"" - G33 ) - ;;(GII + G"" - G33)] +

[a' ( fJ')' ( ;3') ]}+ jj2 1 - ;;; (Gil +G"" - G33 ) - 1 -;;; (Gil - G"" - G33 ) .

Since we can prove that the following identities hold true:

(137)

x [~ (I - f,)' (Gil + Gn " - G33 ) - (I - f,) (GIl - G"" - G33+ 35 )

-[~ l' dT~8U"(~.T)/1' x

x {-2n,(on,(~) [4 &~" Gt " + (I-~) 2-kG33] + (n~(O - n;(01 x

x [~(I-~) 2&~" (Gil +G"" -G33)-2&~"(GIl-G",,)]} -

r r' &' /1'
- )r ~ )0 dT aT,8u,,(~, T)jj2(-2ndOn,(0l x

x [(I -~) (Gil - G"" - G33 ) - f,(GIl + G"" - G33)]. (136)

U12(;;,t)

T,(s,l)

T,,(s,t) = ~(Ull(fj(S),I)+U22(Y(S),t))-

-(n~(s) - n;(s))~(Ull(Y(S), I) - U22(Y(S) , t)) + 2n,(s)n,(s)u12(Y(s), I)

-[~ l' dT~8U,,(~,T)/1' x

x {-(2n,(s)n,(s)2n,({)n,(O + (n~(s) - n;(s))(n~({) - n;(O)] x

x [4 a~" G,,, + (I - f,) 2-kG33] +

+[2n,(s)n,(s)(n~({) - n;({)) - (n~(s) - n;(s))2n,(On,({)J x

[
a' ( {3') a &]x jj2 1 -;;; 2&"''' (Gil + G"" - G33 ) - 2&"''' (Gil - G,,,,)

(
{32) & }- 1 -;;; 2ax;G33 -

30 31



we get, after lengthy algebraic manipulations, at the following expressions, in which the singular integrals
are to be interpreted in terms of Cauchy principal values:

and

1 'l' a [ , ,(3' ..; , /'+--- 2(3'l. - 'l,)-(t - T)(t - r) - (T (3) -
27fIJ raT r 2

" t - r] I'
-('l' - 'll) Jet _ T)' _ (1'/(3)' H(t - r - 73)

(1-~)~C33 = ~2!-(I_~) a t-r H(t-r-~)
0' ax. 27f1" I' 0' aT Jet - r)' - (1'//3)' (3

( (3') (3'1-;:;; (C, • - c" - C33) - ;:;;(C" +C" -C33 ) =

-~ {2(-r~ - 'l~) (I - ~) ~";(t - r)2 - (1'/0)' +
27fJ.l O'~ r 2

[( (3' )' '] (3' 1 } I'+ 2;:;; - 1 'll + 'li 0' v(t _ r)' _ (1'/0)' H(t - T - ;:;) +

+~ [2('l~ -'l~) (J -~) ~V(t - T)' - (,./(3)' -
27f1" - 0 1'-

(
(3') 1 ] ,.-2' 1 - - fJ t - T - -

'll 0' Jet - T)' - ("/(3)' ( (3)

0' ( (3')' ( (3')- 1-- (C,,+C,,-C33 )- 1-- (C,,-C,,-C33)=
(3' 0' 0'

1 { ((3') (3'-2 2('l~-'l~) 1-, ,V(t-T)'-(r/o)' +
7rfl Q r

+ [_ (2~ - 1) 'l~ + 'l~] (1 -~) I } H(t - T - ~) -
0' 0- Jet - r)' - (1'/0)' 0

1 [ , '( (3') ii'-- 2('l~-'l1) J-- -v(t-r)'-(r/(3)' -
27fJJ - 0-2 r 2

(
(3') 1 ] I'-2' 1 - - H t - r --

'l. 0' Jet - T)' - (1'/(3)' ( (3)'

UI(X,t) = ~ l d{ [2nl«)n,«)~(3'l~ -'l~) - (ni«) - ni(m7(-r~ - 3'li)]

l ' a. 2 (3' {[ , '] 3/' I'x 0 dTartlUn«, r):i-;:2" (t - r) - (1'/0) H(t - r - -;;;) -

- l(t - r)' - (1'/(3),]3 /' H(t - r - ~)} +

+~ r d{ [~ (I -~) 2!- +
2" Jr (3' 0' I'

+2nl«)n'(O~2'l~+ (ni«) - n~(m7('l~ - 'l~)] x

X l' dT-aa tlUn(CT)~V(t - T)' - (r/o)'H(t - r -~) -
o T 0' Q'

--2
1 r d{ [2nl«)n,«)1!(-r~ - 'li) + (ni(O - n~(O)2!-2'l~] x
7f Jr r J"

32

(142)

(143)

(J44)

(145)

x l' drfrtlUn«. r)V(t - r)' - (rJB)'fI(t - T - ~)

u,(x. t) ~ l d{ [-2nl«)n,(07(-r~ - 31~) - (ni«) - n;(m7(3-d - 'l~)l

l ' a 2 (3' {
x 0drartlun «, r):i-;:2" [(t - Tf - (1'/0),]3/ ' H(t - T -~) -

- [(t - r)' - (r/ii)'] 31' H(t - T-~)} +

+~ r d{ [~ (J -~) 1! +
2« ir fP 0 2 r

+2nl(On,(0721~ + (ni«) - n~(m7('l~ - 'In] x

l ' a (3'
x 0 drartlun(Cr);:;;V(t-T)'-("/o)'H(t-T-~)-

-f,; rd<[2nl(On,(02!-('l~-'l?)-(ni«)-n~«»)!22'l;] xi r r l'

x l' dT-aa tlun «, T)V(t - T)' - ("//3)'H(t - T - ::.)
o T (3

33

(146)
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g£ .£

(" ") 1"x 1.l(;»'U - ZZ(~)IU [O)'U(~l'uo((s)!.u - (s)iu) + (O)!.u - O)iu)(s)'u(s) luo-J~ ri+

v ,(vi") - ,(" -1)1' (V) ~g Y+ (--"-I)U -'----I ("'~)Un,,_"p x
" "-1 ,V g ,

(" ") 1"x zzO)'U + 1.l(d)IU [(O)!.u - O)iu)((s)!.u - (s)iu) + (~)'UO)lUO(S)'U(S)luoJ~ 11+

[
V ,(Vi") - z{" -1)1'

+ (-:;-"-I)H "-I

v ,(vi") - ,(" -1)1' ,v] ig Y
- (- -" - I)U (" '~)Un,,_"p x

" "-I ,v g,

(" ") 1"zz(~)'U + 1.l0)IU [(i.l- i.l)((s)!.u - (s)iu) + '.It.lo(sFU(s)luol~ 11+

+ [(~ -" -I)u,(vl") - ,(" -1)1'(" -1)-

v ] ", ~g or
- (-:; -" -1)H,(vl") -,(" -1)1'(" -I) -;}jot" '~)Un"e"P,J x

x {w£ - i.l)-iI[(~)IU((S)!.U - (s)iu) + O)'u(s)'U(S)lUO]-

" } 1"- w- i.l£)zz[(~)'u((s)!.u - (s)~u) - O)lu(,')'u(s)'uo] ~ ri

(I '(S).fi)Zl.o((s)!.u - (s)iu) + ((I '(s).fi)".o - (I '(S).fi)ll.o)~(s)'U(S)IUZ = (1 's)'J:

{
Ef ,(Efl") - ,(J -1)1' ° ,(0/") - ,l" -Ill' ,0

(-:;-J-I)U 1 -(-:;-J-I)H [ ,Ef+

+ [(~ - J -1)HMI,') - ,(J -1)1'-

" ]," }(,0) Jg J_ (--J-I)H,(o/,)-,(J-I)1' -Z --1 (J'i)"lly-Jp x, ,v ,v g ,

x [(!..l- i.l)(Oliu - OlH + '.ll.lzOl'uO)luO][(Ol!.u - O)~u)-]~ 1 ~-';f-

((
v ) ,(Efl") - ,(J -1)1' (,V )

- --J-IH --I +
" 1 ,Ef

{
Ef ,(Efl") - ,(J -1)1' v ,(0/") - ,(J - 1)1' ,0

(-:;-J-I)H [ (-:;-J-I)U [ ,v+

+ [(~ - J -OuMI") - ,(J -1)1'-

° ] ," } (,0) Jg J(--J-I)u,(vl")-,(J-I)I' -Z --1 (J'~)"ny-Jp x" ,v ,Ef g ,

x [( l.l_ ~.l)(O)lu - (~)~u) + '.l'.lZ(~)'UO)'UZ]~1!!!..'!:L
Z c. Z c. 111

_ ((f!. _" -I)H ,(Efl") - ,(J -1)1' (~- I) +
,I I ,V

" ,(0/') - ,(J -1)1' (_0)] Jg J+ (--J-I)U' !:....-I (J'~)"n"-Jp x
.1 [, ,Ef g ,

1,Ef"Zx ~p ---
I rI

_ (f!. _J _ I)H ,(Efl") -,(J - 1)1' (~ _ I) (J 'i)""Y!!?Jp or x
" J -I ,v g ,J

(" ') 1"-O)'U - -0) 'U ~ -l.l '.l rI

((I'.'!')".o+(I'.'!')ll.o)~

(Ogl) {
Ef ,(Efl") - ,(" -1)1' (v ) ,(Vi") - ,(" - 1)1' ,v

(-:;-"-I)H 1 -:;-"-IH 1 ,Ef+

+ [(~-"-I)U,(Eff.')-'("-I)I'­

- (~-" -1)H,(vI") - ,(" -1)1'] £o} (~ - I) (" '~)U"".:Q"P or x" ,v ,Ef g ,J

x [(£.l - ~.l)(O)!.u - (~)iu) + '.ll.lZO)'UO)luzJ(~)'UO)lUZ~ 1 ~-';f-

[( Ef ) ,(Efl") - ,(" -1)1' (,V )- --"-IU --I +
" 1 ,Ef

v ,(vi") - ,(" -1)1' v] "g Y+ (- -" -I)H • ("'~)Un,,_"p x
" I.Ef' g ,

X (~)'U(~)lUZ~ 1 !!!..J:L
1 rI

Ef ,(Efl,') - ,(" -1)1' (,V) ~g Y- (--"-l)u --I ("'~)ull"_"P x
" "-I ,v ' g ,

(" ") 1"x 1.l00'u - ZZO)lU O)'UO)lUZ~ ri+

v '(vl,l) - ,(" - 1)1' (0) ~g y+ (--"-I)U -'----I ("'~)Un,,_"p x
" "-I ,v . g ,

(" '1) 1"x ZJ:(d)'U + TlO)lu (O)!.u - O)~u)~ 11+

pUR

(6.1)

(s.Il

((
Ef ) MI") - ,(" -1)1'

+ --"-IH
..I ..L-1

_ (~_ J _1)U,(vl ") - ,(J -1)1' ,0] (J '~)"n,,~Lp or x
, J -I ,Ef . g ,J

(" ") 1"x (!..l- ~.l) zzO)'U + 1I0)'u ~ 11+

+ [(~ - J -I)HMI") - ,(J -I)I'(J -1)-

° ] " ~g J_ (__ J - I)H ,(o/J) - ,(" - 1)1'(" -I) .LO(J '~)Ull"_"P x
,I ,Ef g,

[ ' "] 1"x (~.l- !..l£)ZJ:(~)'U - (~.l£ - i.l)lI(~)'U- ~p 11 (1'.'!')Zl.o



Differentiating (146) and (147) with respect to t we get the following representations for the displace­
ment velocity field:

xf'dr:--::.u,,({,r)[f3: 1 H(t-r-l:..) +Jo ur a J(t - r)2 - (r/a)2 a

(
(32) 1 r ]+ 1-;;2 J(t_ r f_(1'1(3)2H(t-r-fj) -

_L2.. rd{ x
211" (32 Jr

x r' dr:--::'u,,({. r) [(1 _~)2 I H(t _ r _ l:..) +
Jo ur a J(t - r)2 - (r/af a

(
(32) J r]+ 1-;;2 J(t-r)2_(7'1(3)2f1(t-r-fj) -

-~:b l d{[1 + 2n,(s)n2(s)2n,(On2({) + (n~(s) - n;(s))(n~(O - n;(O)] x

x [2ndOn2({)2rl-12 + (ni(O - n;(O)(ri - r;)J x

x 10' dr~t.ti,,({,r) (I - f,) {2~ [J(t - r)2 - (r/aj2H(t - r -~) -

-J(t - r)2 - (rl/3)2 H(t - r - ~)] +

(32 J r I H(t-r-l:..)}.
+a 2 J(t _ r)2 _ (rla)2 H(t - r - ;;-) J(t _ r)2 - (rl(3)2 (3

f' a ([32) t - r r
X Jo dr~t.tin(C r) 1-;;2 J(t _ r)2 _ (rl(3f H(t - r - jj) -

_L2.. r 1i{[-2nds)n2(s)(n~({) - n;(O) + (n~(s) - n;(s))2nl(On2(0] x
211" (32 Jr

f' a. [(34 I I'

X Jo drart.u,,(C r) a4 J(t _ r)2 _ (r/a)2 H (t - r -;;-) +

(
(32) 1 r ]+ 1-- H(t-r--) -
a 2 J(t - r)2 - (rl(3)2 (3

_L~ r 1i{[-2nds)n2(s)(n~({) - n;({)) + (n~(s) - n;(s))2n,(On2({)] x
211" (3- Jr

X[2nl({)n2(02,YY2 + (ni({) - n;({))(-y~ - ,;)] x

1, a ((32) { (32 [ I'x dr-t.ti,,({,r) 1-, 2, J(t-r)2-(r/a)2f1(t-r--)-
o aT 0' r a

-J(t-r)2-(rl(3fH(t-r-~)] +

+(32 I H(t-r-l:..)- 1 H(t-r-l:..)}
a 2 J(t - r)2 - (r/a)2 a J(t - r)2 - (rl(3)2 (3
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(151)

udx,t) =

ti 2 (x,t)

-2
J r 1i{[2nl(On2({)2!(3r:-rn-(n~(0-n;(0)2'.(r;-3r;)] x
1r Jr r ,. ~

1
, a (32 r

X dr"t.u,,({, r)2? [(t - r)J(t - rf - (r/afH(t- r - -) -
o uT rw Q'

-(t - r)J(t - r)2 - (rl(3)2H(t - r - ~)] +

1 l [a2
( (32) r+- Ii{ - 1-- -!.+

211". r (32 a 2 r

+2nlWn2({)72r; + (n~({) - n;(O)~(r~ - ,;)] x

x r'dr~t.ti,,({,r)(3: t-r H(t-r-!:..)-
Jo or a J(t - r)2 - (rlo)2 a

--2
1

r Ii{ [2n,(On2(02!(r~- r~) + (n~({) - n;(ml!..2ri] x
IT Jr r r

1, a . t - r r
x dr"t.u,,({,r) H(t- r- -(3)

o ur J(t - r)2 - (rl(3)2

i; l Ii{ [-2nl({)n2({):;'(r~- 3r~) - (n~(O - n;({))7(3r; - r~)] x

1
, a (32

x dr"t.ti,,({, r)2, [(t - r)J(t - r)2 - (r/a)2H(t - r - l:..) -
o uT r 0

-(t - r)J(t - r)2 - (rl(3)2H(t - r - ~)] +

Ii [a2
( (32)r2+- Ii{ - 1-- - +

211" r (32 a 2 r

37

(152)

(153)



38

(154)

2.7 Time-independent formulation for open in-plane cracking

The time-independent counterpart of the displacement BI Es for the 2D open in-plane crack problem
follows by analogy to the time-dependent version. As in Section 2.6, all Ihe formulae thai follow should
be ullderslood as supplemenlary terms specific 10 the case of opell cracklllg thai should be added to the
formulae for the case of closed m-plane cracking.

UI(i) = -!rd(I'>.U,,(OI' x

{ [0' ( (32) a a ]
x n2(0 7i' 1 - 2~ &;"(G" + G"" - G33 ) + 2OX" G". +

+ nl(() [~o~" (G.. + G"" - G33 ) - 2-/;;GI"]} (155)

U2(i) -!r d(l'>.u" (01' x

x {-nl(() [~ (I -2~) -/;;(G.. +G"n - G33 ) +2 o~" GIn] +

+ n,(() [~O~n (G.. + Cn" - C33 ) - 2-/;;Cln]} (156)

~(Ull(i) - un(i))

~(Ull(i)+ Un(i))

T,(s)

T,,(s)
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Substituting the explicit forms of the Kelvin solutions, we have

---.!..- -11 [(I - ~) 21~ - ~](162)
21rJ-l J' 0-- Q-

---.!..- -12 [(I - ~) 21~ + ~](163)
27TJ.1 r 0- 2 0--

---.!..- -11 (I _~) 212 (164)
27TJ-l r a- 2

---.!..- -12 (I -~) (-y; -1~) (165)
21rJi ,. ,,--

---.!..- -11 (I _!E.) (166)
27r1J r 0'2'

In view of the above expressions we get, after lengthy algebraic manipulations, at the expressions,
where the singular integrals should be in terms of Cauchy principal values

Tn(s) ~(O"l1(17(S)) + O",,(17(s))) -

-(n~(s) - ni(S))~(O"l1(17(s)) - O",,(17(s))) + 2n,(s)n2(s)0",,(!7(s))

Ji ( fJ2) lr a- 1 - - d{-~u ({) X
1r ,,2 r a{ n

X {(nl(O:;' - n2(O~) +

+[2n, (s)n2(s)h'~ -1;) - (n~(s) - ni(s))21'112)(nl({)~ + n2({)~)}' (173)

(167)

(168)

and

~(0"11(i) - 0"22(i) 1

~(0"11(i) +O",,(i))

(J69)

(170)

(171)

T,(s)
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(172)
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2.8 Relevance to other methods of time-independent in-plane crack analysis

~luskhelishvili (1953, 1963) expressed the lIme-mdependent plane-strain elastic field in terms of two
analytic functions o;I>(z) and !p(z), often called the Goursat functions, where z '='" + i"2:

3 Numerical implementation and corroborative examples

3.1 Discretization with the piecewise constant interpolation

As is evident from the appearance of the system (2) that I adopted as my approach of the present study,
solvmg for the slzp w.th the tractIOn k" own IS an inverse problem. O"ce the slIp is known, solving for the
slress and d.splacement fields .5 a forward problem.

0"1i +0'22

0"22- UtI +2iU12

2[0;I>'(z) + o;I>'(z)]

2[zo;l>"(z) +1/I'(z)]

-' + 31' o;I>(z) - zo;l>'(z) -1/I(z).
-'+1'

(174)

(175)

(176)
solve for Llv,(sl.t]) inverse

1;(s[.t]) known

He~eafter 1 describe how the 81 EM formulations are translated into the scheme of numerical implemen­
tations.

. The crack trace(s) are discretized by a set of equally spaced nodal points with an interval of Lls and,
If the problem IS time-dependent, time is also discretized by a set of equally spaced time steps with an
interval of Llt. My choice for /3Llt/Lls is 0.5 (Koller et al., 1992; Cochard and Madariaga, 1994) in all
modes of fracture. In addition, I postulate that 0//3 = V3 in all the numerical calculations that follow.

The slip rate Llu or the slip Llv is approximated by a linear combination of a set of properly chosen
basiS functions, as is a common practice in FEM. This takes the following form for the time-dependent
case (Koller et al., 1992):

Llv(s) = v'(s)o;I>j, (178)

where v'(s) and 0n(t) are the spatial and temporal basis functions respectively, and o;I>n or 0;1>' is the
discretized slip at the i-th nodal point and the moth time step. ' ,

.1'wo oCthe m~st represen~ati~echoices of the basis function are the pieceWise constant interpolatioll, in
which the apprmomate function IS assumed to be constant. across an element and is discontinuous between
e.lements, and the piecewise linear interpolation, in which the approximate function is assumed to vary
linearly across an element and is continuous between elements. The former has been in use by Crouch
(1976). Das and Aki (1977), Das (1980), Andrews (1985), Cochard and Madariaga (1994), Yamashita
and Fukuyama (1996) and Kame and Yamashita (1996), whereas the latter is illustrated by the studies
of Gerasoulis and Srivastav (1981), Cheung and Chen (1987), Koller et at. (1992) and Jeyakurnaran and
Keer (1994)

The basis functions of the piecewise constant interpolation are (Figure 3):

Llu(s, t) = v'(s)On(t)o;I>!

Muskhelishvili's (1953. 1963) complex potential method has been applied to a considerable variety of
analytic and semi-analytic analyses of open in-plane (mixed modes I and II) cracks (see review by Isida,
1976). In a typical open crack problem in which no body force is present, the Goursat functions are so
determined that the normal and tangential tractions Tn, T, may be equal to the prescribed values along
the the crack and along the outer boundary of the medium (or at infinity, if the medium is infinite). The
two degrees of freedom of the stress field are matched by the set of two independent boundary conditions.

In the closed m.planf (pure mode II) crack analysis, on the other hand, a different class of constraints
are to be imposed on the stress functions. The boundary conditions along the crack trace are the zero
tangential traction Tt and the continuous normal displacement Un' This category of problem is beyond
the reach of Muskhelishvili's (1953,1963) complex potential method, except for some cases of a straight
crack and a system of co-planar cracks in which certain symmetry holds.

A different class of BIEM formulations for the lime-independent in-plane closed / open crack analysis
is found in the studies of Cheung and Chen (1987), Fleck (1991), Jeyakumaran and Keer (1994) and by
Jeyakumaran (1995). The underlying concept of their method is practically equivalent to mine, except
that they did not give their formulation so explicitly as I have done. Their formulation is applicable to
2D in-plane cracks of arbitrary shape, although their method cannot deal with the time-dependent crack
problems.

once Llv,(sl. t]) known

and for the time-independent case:

forward
solve for v,(il.t]) and u,j(il.t])

(177)

vj(s) = { I ifls-sjl<Lls/2
- 0 if Is - 5,1 > Lls/2

with Sj being the position of the j-th nodal point and

o (t)={ I iflt-tnl<Llt/2
n - 0 if It - t,,, I > Llt/2

with tn being the time of the n-th time step
The basis functions of the piecewise linear interpolation are (Figure 3):

j( )={ I-Is-sj!/Lls ifls-sjl<Lls
v s - 0 otherwise

(179)

(180)

(181)
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On(t) '= { I -It - tnl/Lll if It - t.nl < Lll (182)
o otherWise

One should now pay special attention to the fact that the regularization procedure, utilized in the
derivation of our BIEM formulations, relies on the assumption that the first-order spacial derivalive of tbe
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(183)

3.2 Kostrov's self-similar crack evolution problem in three modes of fracture

I verify my numerical solutions for some simple problems against known analytic solutions. Kostrov's
(1964) self-similar crack evolution problem is one of the few cases 10 which the elastic field around a
propagating crack is known analytically.

Suppose that in an infinite homogeneous isotropic elastic medium a straight crack, either in antl­
plane shear, in-plane shear or in tension, begins to form at the instant t = 0 along the X3-ax.is and then
propagates in the J::} x3-plane bilaterally from the origin with a constant speed v, the stress drop being
equal to <70 everywhere on the crack plane (rigure 4). The crack tip velocity u should be less than the S
wave velocity {3 for anti-plane shear, or less than the Rayleigh wave velocity for in-plane shear and tension.
The anti-plane shear and in-plane shear problems, as pointed out by Kostrov (1964). can be analytically
solved on the basis of Srnirnov and Sobolev's ingenious method of functional-invariant solutions, and the
expliciL solutions given by Kikuchi (1976) are duplicated in Appendix 13.1 and 13.2. The tension problem
can be solved in an analogous way (Cherepanov and Afanas'ev. 197,1; rreund, 1990) and the solution I
obtained is described in Appendix 13.3.

Figures 5, 6 and 7 compare the numerical and analytic solutions of the self-similar crack evolution
problem, in anti-plane shear. in-plane shear and in tension respectively, with various values of viP. The
slip at the center of the crack is compared quantitatively at all instant when the crack has reached a length
of 19.0, or 19 discrete elemenLs. The parameters assumed are <70 = 1.0. jJ = 1.0 and a/fl = )3. The
verifications show that the numerical results with an adequate choice of lhe artificial damping coefficient
C (Appendix A) are in good agreement with the analytic solutions.

Cochard and Madariaga (1994) and Madariaga (1995) gave Lime-domain HIEs in a form somewhat
different from those given here, for the straight anti-plane crack and straight in-plane shear crack prob­
lems respectively (Appendix C). Numerical results based on their formulations are also shown in the
figures, which are as good as those according to mine, except that a slightly lighter artificial damping is
appropriate for their formulations. Note that no artificial damping was nece sary with the unique semi­
analytic method of numerical implementation used by Cochard and Madariaga (1994), but thaL method
was not used in the present study because it is not applicable to curved crack cases

~'l7" =LtA:;-n~j.
J1 j 0:;;:1

where Tm and ~m are the discretized traction and slip, respectively, on the crack at the i-th nodal point
and the I m_th ti~e step and

A;j = l dE. (nt{Si)~ - n2(S;)~) au;~O x

j '" n6.t-r H(n6.t-r-:2.)-
x _"I drOo{r) J(n6.t _ r)2 _ (I';/fl)' fl

-f, l dE.(nt(si)nIW + n2(s.)n2(O)JW x

xj'" dr&Oo(r) I H(n6.t-r-:2.) (184)
_"I Or J(n6.t - r)2 - (I',/fl)2 fl

slip function (a/as)6.u(s, t) (or the dislocation density) is continuous. Thus the numerical evaluation of
the regularized Cauchy principal value integrals is valid only for collocation POlOtS at \~h.ch (a/a,)6.u(s.l)
is continuous.. lienee Koller f! al. (1992). who used the piecewiseli~ear.~terpolatlo;, h;?hi~OI~~k~ot~~
collocation POlOtS at the m.dpolOts of the nodal POlOtS (s,_. + s,)/2 (j - 1,2, ... ,. ). .
constraining equations at the .V collocation points for N - I degrees of free~om ~t the J\ - 1 nodal POints.
Koller et al. (1992) thus chose to sol\"e an overdetermined system of equations 111 the least squares sense.

In order Lo match the number of degrees of freedom with that of the constraIning equatIOns: J use. the
pIeceWIse constant l1lterpolatlon m all the numencal calc~/~hons.th~t !oll~wl with the collocation POln~S

coinciding with the nodal points Sj (j = L 2, ... ,N -I). 1 hIS chOIce ISJustlfied because (a/as)6.u(s, t) IS
continuous at the nodal points WIth the pIecewIse constant Interpolation. . .

The discretization reduces the integral equation (23), for instance} to a set of simultaneous llllear

algebraic equations:

'ate that the inlegrand, with the piecewise constan~ interpolat~on, .has to be ev~luated ~nly at .t~e

ends of the element for all the time-domain calculations, Since the derlvalIYes of the basiS functIOns exhibit
a delta-function type behavior at the element ends and are equal to zero elsewhere:

{

6(s) ats=sj-:'>s/2
au'(s) = -6(s) at S = Sj + 6.s/2 (187)

as 0 otherwise

and likewise for aOn(t)/at. The numerical integration was carried out with a modified trapezoidal law in

a general form l J(",)dx~ b~a ~f(a+ n~vl/2(b_a)). (188)

The endpoints of the integration interval are avoided in the summation because the integrands usually
behave like a step function there. Note that in the time-depe.ndent case s~me of the .elements may be cut
across by one (or both) of the wavefront t - T = riP, in which case the lI1tegrand IS non-zero only over
that part of the element which lies within the wavefr~nts.

In a time-marching numerical scheme, ripple nOIses tend to arise due to the ~bru~t pro?~e~ses of
the fracture front along the discretized fault trace, which may later lead ~o .numerlca~ lI1~ta?lhtJes. In
order to suppress such numerical instabilities that evolve with time, artIflclal d.a~ptng IS II1trod~ced

(Appendix A). This is a common practice in time-marching rDM schemes (e.g. Ylneux and Madanag~,

1982) and was also used in the time-marcillng B1EM scheme of Koller et 0.1. (1992). Stronger artIficial
damping suppresses the ripples, but tends to oversuppress the quantity of slip, so that there IS a problem
of trade-off in the decision of the damping factor.

I'i = J(Yt(s.) - Yt(~))2 + (y,(Si) y,(O)2

1'li = (y,(Si) - y,{O)/I'i.

(185)

(186)
3.3 A straight crack in three modes of time-independent stress

l\ext I verify the numerical solution for the time-independent crack problem, either in anti-plane shear,
in-plane shear or in tension, against the known analytic solution for the case of an isolated straight crack
in an infinite homogeneous isotropic medium. As before, the stress drop is equal to 0'0 everywhere on the
crack.

Figures 8, 9 and 10 verify the numerical solutions against the c1a'iSical analytic solutions taken from
Pollard and Segall (19 7). The parameters assumed are <70 = 1.0. J1 = 1.0 and a/fl = )3, and the length
of the crack is taken equal to 19.0 or ]9 discrete elements. The good agreement between the Ilumerical
and analytic results is recognized in the figures.
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Figure 3: The basis functions of the piecewise constant a,nd piecewise linear interpolations. A function is
approximated by a linear combination of the basis functIOns
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Figure 4: Kostrov's self-similar crack evolution problem (Kostrov, 1964; Cherepanov and Afanas'ev,
1974). In an infinite homogeneous isotropic elastic medium a straight shear crack begins to form at the
instant t = 0 along the X3-axis and then propagates in the Xl x3-plane bilaterally from the origin with a
constant speed VI the stress drop either in anti-plane shear, in-plane shear or tension being equal to 0'0

everywhere on the crack plane. The speed v is less than the S wave velocity for the anti-plane case and
less than the Rayleigh wave velocity for the in-plane cases.
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Kostrov's Problem in Anti-Plane Shear
Kostrov's Problem in In-Plane Shear
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Open triangles: No damping

Filled triangles: Damping coeff. =5.0

Crosses: Cochard and Madariaga (1994)

(damping coett. = 1.0)

Solid line: Rigorous solution (Kikuchi, 1976)
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Filled triangles: Damping coeff. =5.0

Crosses: Madariaga (1995)

(damping coett. = 1.0)

Solid line: Rigorous solution (Kikuchi, 1976)

Figure 5: Comparison of the numerical and analytic solutions to Kostrov's self-similar crack evolution
problem in anti-plane shear, with (To = 1.0, jJ = 1.0 and for various values of v/(3. The slip at the crack
center is compared at an instant when the crack has reached a length of 19.0, or 19 discrete elements. See
Appendix A for the definition of the damping coefficient, and Appendix C for the formulation of Cochard
and Madariaga (1994).

Figure 6: Comparison of the numerical and analytic solutions to Kostrov's self-similar crack evolution
problem in in-plane shear, with ero = 1.0, I" = 1.0, a/{3 = v'3 and for various values of v/{3. The
slIp at the crack center is compared at an instant when the crack has reached a length of 19.0

1
or 19

discrete elements. See Appendix A for the definition of the damping coefficient, and Appendix C for the
formulation of Madariaga (1995).
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Kostrov's Problem in Tension

Open triangles: Damping coeff. = 5.0

Filled triangles: Damping coeff. = 12.0

Solid line: Rigorous solution
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Figure 7: Comparison of the numerical and analytic solutions to Kostroy's self-similar crack evolution
problem in tension, with 0'0 = 1.0, J.l = 1.0, ,,/{3 = V3 and for various values ofv/{3. The slip at the crack
center is compared at an instant when the crack has reached a length of ] 9,0 , or 19 discrete elements
See Appendix A for the definition of the damping coefficient.

Figure 8: (al Numerical solution to the time-independent straight crack problem in anti-plane shear, wiih
0'0 =1.0 and J.L =1.0. The length of the crack is equal to 19.0, or 19 discrete elements.
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"0 = 1.0, I" = 1.0 and 0/(3 = .)3. The length of the crack is equal to 19.0, or 19 discrete elements.
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Figure 9: (b) Analytic solution Lo the time-independent sLraight crack problem in in-plane shear (Pollard
and Segall, 1987), with "0 = 1.0, JJ. = 1.0 and a/fJ = J3.

Figure 10: (a) Numerical solution to the time-independent straight crack problem in tension, with Uo =
1.0, I" = 1.0 and a/fJ = J3. The length of the crack is equal to 19.0, or 19 discrete elements.
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3.4 Three radial cracks and a circular arc crack in time-independent anti­
plane shear

3.5 Geometrical compatibility at a junction of crack branches

for the in-plane case. An equivalent of (190) for the special case of a triple junction in in-plane shear
is found in Andrews (1989). Note that in the in-plane shear crack problem any attempted slipping at a
junction is accompanied by a volume change (Andrews, 1989), which may be resisted by the surrounding
medium.

In the numerical implementation based on the piecewise constant interpolation, however. no con­
straint need be imposed at crack junctions explicitly, because each discrete element is an independent
calculational unit and the compatibility relations (189) and (190) are satisfied automatically (Crouch,
1976; Cheung and Chen, 1987; Andrews, 1989). As an example, the numerically obtained slips Ll.uj
on each of the three radial anti-plane cracks that meet at a junction, in the same setting as (reated in
Section 3.4, is plotted in figure 13. One may confirm that the numerically calculated slips on the three
branches always sum up to make zero, as is predicted by the compatibility relation (189).

(189)

(190)
N N

L~u; =L~u~ = 0
j;l

for the anti-plane case and

Some remarks on the slip behavior on different crack branches that llleet at a junction shall be nlade
in this subsection. It followb from geometrical considerations that at a junction point lht> slips on (-,3eh
branch are not independent of one another but are required to satisfy a spt>cial logic (Andrf'ws. 198~).

Suppose N branches of a 2D crack meet at a junction. and let us define tht> anti-plane slip ~u~i'

or the in-plane slip compollf>nts .6.u1 and ..1U2. as the displacement discontinuity across the i-I h branch
of the crack in the vicinity of the junction point, measured on the left-hand sidf> with reft>renc(-' 10

the right-hand side as seen from the junction. Lel us make a circuil trip counterclockwise around the
junction, measuring and accumulating the amount of the displacement discontinuity each time we cOllie
across one of the crack bran('hes. Geometrical compatibility requires that the acculllulated displacement
discontinuity should have reduced to zero when we come back to the original local ion which we started
from. In mathematical terms, this requiremenl is expressed by

N

L~U3=0
1;1

KeXl Illy formulations are corroborated in two types of non-planar crack problem In time-independent
anti-plane shear, for which analytic solutions are given by Sih (1965) by us. of a complex potential method
(also outlined in (sida. 1976). One of the models is a set of three equally spaced radial cracks with equal
length a, (Figure 11). while the other is a crack of length ~a in the shapt" of a quarlN part of a circular
circumference (figure] 1). each subject to an anti-plane shear stress of unit magnitude with the principal
axis oriented in arbitrary direction. 1\1y numerical result!'! were \erified again~l the analytic solutions in
terms of the normaliz.ed stress intensity factor (SIF) at one of the crack tips, where the reff'rence SIF is
that at the tip of a straight crack with length 2a subject to an anti-plane shear slrt>~~ of unit magnit ude
normal to the crack.

It is known from analytical considerations that the slip distribution decays toward a crack tip III a
square root curve, with a coefficient of steepness proportional to the SIF (Appendix D). Based on this
factI I modified the basis functions for the discrete elements located at the end of I hp crack to repre~en t

the square-root spatial variation as in Koller et al. (1991), and evalualed the r.lative 51 Fs in terms of
the slip on the crack-end element.

Figures 1J and 12 show how the norlllalized SI F at one of the crack tips varies as lhe principal axis of
the anti-plane shear stress is rotaled. In the three radial cracks model, the length a of each branch was
divided into 39 discrete elements, while in the circular arc crack model the entire crack length 2a was
discretized into 79 elements. As is evident from the figures. the numerical SI Fs are in good agreelllent
with the analytic solutions.

figure 10: (b) Analytic solution to the time-independenL straight crack problem in tension (Pollard and

Segall, 1987), with Uo = 1.0, J1 = 1.0 and o/f3 = J3
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Figure 11: Numerical and analytic results o~ the time-independent analysis of three radial, cracks of
length a under an anti-plane shear stress of ~lllt magnitude (Sih, 19?5), in terms of ,the normal~zed stress
intensity factor (51!') at one of the crack LipS. The reference 511' IS that at the tiP of a stra~ght crack
with length 2a subject to an anti-plane shear stress of Ulllt magllltude normal to the crack. 1he length
a was discretized into 39 elements.

!'igure 12: Numerical and analytic results of the time-independent analysis of a curved crack of length
2a in the shape of a quarter part of a circumference of a circle, under an anti-plane shear stress of unit
magnitude (Sih, 1965), in terms of the normalized stress intensity factor (51!') at one of the crack tips.
The reference 51!' is that at the tip of a straight crack with length 2a subject to an anti-plane shear stress
of unit magnitude normal to the crack. The length 2a was discretized into 79 elements.
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4 Demonstrative analyses of hackly cracks
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As mentioned in the Introduction section, numerical elastodynanuc analysis of 20 cracks has been. until
recently. practically confined to the straight crack problems. due to the limitations of the available
numerical method&. Dynamic analysis of non-planar cracks has been Impossible. except for the cases of
non-coplanar (mutually parallel) cracks that haye been enabled recently (Harris and Day. 1993; Yamashita
and Cmeda. 1994: Kallle and Yamashita, 1996: (meda fl al.. 1996). h.oller ft al. (1992) proposed a
numerical method for the dynamic analysis of 2D anti-plane shear cracks of arbitrary shape. but their
numerical application goes no further than a mere preliminary one.

However. the complexity of crack geometry along nat ural faults and fault zones can hardly be fully
represented by a model consisting of non-coplanar cracks. Cun'es. kinks and bifurcations along natural
faults and fault zones are documented abundantly in field slm'eys (e.g.. Segall and Pollard, 1980: I\akala
and Yomogida, ]995). PUrlhermore, theory predicts that a shear crack. even when isolated, is likely to
deviate frolll its initial plan!"' of propagation during fast dynamic propagation. because for a sufficiently
large propagation speed the ma.ximum shear stress al the crack tip is known to occur in an off-plant>
direction that is inclined at a non-zero angle to the plane of crack propagat ion (Fr~ulld, 1990). III ord!"'r
(0 investigate and more properly understand the role of geomeLrical cOlllplexity III the crack dynalllics.
fault models that incorporate ofT-plane crack segments should be deYe'loped.

The BI EM formulations derived in the present study. which enable the numerical dynamic analySIS
of arbitrary non-planar 2D cracks, mark an important step toward this objectiVE>. In the present section,
a 2D crack model with small off-plane side-branches on its sides (called a hackly frock in lhe sequel) is
introduced as an idealized model of a complex crack geometry, and its dynalllics is Illllllerically analyzed
on the basis of the 81 Ervl developed in the present study. The specific geometry and lime evolution
history studied are shown in F'igure 14

All the side-branches are inclined at 30 deg from the orientation of the central crack plane. The
rupture is assumed to initiale at a quarter part from the left of the final crack length, propagating from
there bilaterally at a speed of 0.8 times the S wave velocity. In the calculations, 0/,3 = J3 was assumed
and the artificial damping coefficient C (Appendix A) was taken equal to 5.0. The final crack leng.h was
divided into 40 discrete elements.

In examining the numerical results, I specifically concentrate on the strE>SS concentration level at the
rupture front, with a view to addressing the problem of how rupture propagation stops. Rupture is
expected to decelerate and finally come to an arrest as the crack-tip stress concentration is decrea<;ed,
but. as long as the crack is assumed to grow in the initial plane of propagal ion, the stress concentration
level grows infinitely large with further growth of the crack. TllU:) practically all existing models of
earthquake arrest. which were based on planar crack geometry, failed to explain the spontaneous arrest
of rupture unless some kind of inhomogeneities in the fracture properties was postulated a pnoTl near the
site of arrest (e.g.. Andrews. 1975; Ilusseini ft al., 1975; Das and Scholz, 1981). meda et al.'s (1!196)
modeling studies suggested that the interactions among non-coplanar cracks can reduce the crack-tip
stress concentration only by an insignificant amount, which does not obviate the need for the a pnOrl
postulation of inhomogeneil ies. In the present study I specifically concentrate on how hackly crack
geometry can influence the crack-tip stress concentration level and, consequently. the tendency for the
acceleration or deceleration of rupture.

Figure 15 shows the temporal variations, for both the anti-plane and in-plane ca~es, of the shear stress
concentration level at the nodal point that is located on the immediate right of the rupture front. The
shear stress is assumed to be equal to 1.0 with the principal axis oriented parallel to the central branch
of the crack, and the crack !'iurface is free of shear traction, so that the shear stress drop on the central
branch equals 1.0. The results of the analysis of the hackly crack, the solid line, is compared to the case
of a planar crack with no side-branches, represented by the broken line. The irregular fluctuations of the
lines are due to the abrupt progresses of the rupture front along the discretized fault trace.

One may notice that the stress concentration level is lowered by the presence of the side-branches,
especially in the in-plane shear case, in which the stress concentration significantly decreases in spite of
the crack that ever grows longer. This effect is due to the partitioning of the slip into multiple crack
branches that takes place at each subsequent branch point. The numerical results strongly suggest that
branching of the crack plays an important role in the deceleration and arrest of earthquake rupturing.
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figure 13: The numerically calculated slips on three radial cracks i~ time-independent anti-~lane shear
that meet at a junction, in the same setting as in Figure]]. The slip values on the ~odal powts closest
to the branch junction are plotted against the varying stress axis direction. The anti-plane shear stress
is of unit magnitude

l
J-l == 1.0 and the branch length a is 39.0 or 39 discrete elements
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For the sake of completeness, I also calculated the dastastallc stress concentration levels at the tip
of the hackly crack in time-independent anti-plane shear and in-plane shear. Figure 16 shows the results
for different. geometries in a normalized appearance, the reference value being the stress concentration at
the tip of an isolated straight crack with no side-branches. One can observe the decrease in the stress
concentration, which compares well with the results of the elaslodynamic analyses.

The mechanics of hackly cracks, as modeled in the present chapter, belongs to a class of problem to
which no previous numerical methods were applicable. As illustrated in the present example. the new
BIE~I is hoped to find its broad applications in the analyses of 20 cracks of various complex geometries.
including more realistic models of fault zones that exist in nature. Geometry

I
o

62

Time evolution history

time

80 -----------------------------

40

Figure l~: Geome~ry and time evolution history of the hackly crack analyzed, with the numerals denoting
t~e. absclssal locations. Each discrete element has a unit length l so that the total crack length 40.0 was
divIded into 40 discrete elements. alf3 = V3.
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Figure 15: (a) The temporal variation of the stress concentration level at the tip of the propagating
hackly crack (Figure 14) in anti-plane shear. The ordinate sholVs the shear stress on the nodal point that
is located on the immediate right of the rupture front. The shear stress is equal to 1.0 with the principal
axis oriented parallel to the central branch of the crack , and the crack surface is free of shear traction

Figure 15: (b) The temporal variation of the stress concentration level at the tip of the propagating
hackly crack (Figure 14) in in-plane shear. The ordinate shows the shear stress on the nodal point that
IS ~oca~ed on the immediate right of the rupture front. The shear stress is equal to 1.0 with the principal
aXIs oflented parallel to the central branch of the crack J and the crack surface is free of shear traction
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5 Can a curved 2D crack be represented as a limiting case of
a chain of finite line elements? - a BIEM viewpoint

5.1 Concept
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In time-independent analyses of curved 20 cracks, it has often been a common practice to represent a
curved bend by a chain of a large number of finite straight line elements (e.g .. Crouch, 1976: Cheung
and Chen, 1987; Bilham and King, 1989; Aydin and Du, 1995). In the present chapter. however, I point
out. in a context of the BIEl\l, that it is only in the cases of anti-plane shear faulting and of open in­
plane faulting that a smoothly curved bend can be represented as a limiting case of a chain of finite line
elements (see Figure 17). In the case of closed in-plane faulting the two geometries may produce different
normal traction distributions along the crack. so that care should be takt>n so as not to misinterpret the
numerical results. The difference can be important, e.g., when one is concerned with a friction law Ihal
depends on the relation between the normal and tangential tractions along the crack.

5.2 Closed in-plane crack

Suppose a curved closed crack is under time-independent in-plane shear, which consists of two straighl
segments and a smooth circular arc segment connecting them. Jeyaklllllaran and Keer (1994) dealt with
this problem with a BIEM formulation based on Muskhelishvili's (1953,1963) complex potential method
and a piecewise linear interpolation approach of Gerasoulis and Srivastav (19SI). According to their
results. when a concave-upward crack is subject to a right-lateral in-plane shear, extensional normal
traction across the crack appears on the right of the curved bend and compressional olle appears on the
left. This result was confirnled by a model calculation based on lht> BI Es derived ill the present paper
(Figure 18, left)

However. when the curved part of the crack is represf'lIted as a. chain of a large number of finite
line elements. numerical simulations revealed a normal traction along the crack with the opposite sign,
compressional on the right and extensional on the left (Figure 18, right). Such a pattern of normal
traction distribution was confirmed by repeated calculations with different discretization intenals.

The objective of the present section is to point out that the discrepancy in the solutions of the inverse
problem

Figure 16: The normalized stress concentration levels at the tip ofhackly cracks (Figure 14) in time­
independent anti-plane shear and in-plane shear. The reference level IS that for an Isolated straight crack
with no side-branches.

corresponding to the two situations is an intrinsic one, resulting from the different natures of the BIEs
corresponding to the two cases. To prove this, I demonstrate analytically that the forward problem

has completely different solutions for the two situations even for an identical set of input data. I choose
the forward formulation because it allows rigorous treatment of the limiting case of a chain of finite line
elements as the discretization interval tends to zero. Rigorous consideration of such a limiting case is
prohibited in the numerical treatment of the inverse problem.

Suppose a smoothly curved concave-upward closed in-plane crack on the xtx2-plane extends indef­
initely in both left and right directions, and that a uniform slip t.u,(€) = t.UIO is prescribed on it
(Figure 19, top). In this case, no traction is induced by the presence of the slip, since ndO and n2(O are
continuous everywhere and the kernels of our B[Es for the stress components are equal to zero everywhere
along the crack

Consider next a concave-upward in-plane crack with a single abrupt kink and let each of the left and
right straight segments, extending to infinity, he inclined at an angle TJ to the xl-axis. Define the arc
length s along the c.rack so that s increases from left to right and t.hat 8 = 0 corresponds to the kink point
(Figure 19, middle). Prescrihe a uniform slip t.uo(€) = t.UIO along the crack and assume that any point
on the crack surface that originally belongs to the left segment is allowed to slip only in the orientation
of the left segment and that likewise for the right segment (a requisite assumption of the linear elasticity

inverse
7;(s[, t)) known

solve for u,(il. tJ) and u,,(i[, tJ)
forward

solve for L'"ui(S[,tJ)

once t.u, (.,[, tJ) known1I ~ IrI ~
x
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which after some algebra becomes

the distribution of the traction along the crack is given by

theory). Then our BIt:: kernels for the stress components exhibit a de.lta-function type behavIOr at l~e
locati'on of the kink. Denoting the BIE kernels for the tangentialtracllon T,(s) and that for the normal
traction Tn{s) across the crack due to tangential slip component ~11,(~) by

F,,(~. s) [2ntls)n2{s)211"12 + (ni(s) - n;{s))(i~ -1;)](n2{O;- - nl(07) (191)

F'n(~.s) (n"0;-+n2(07) +

+(2nl(s)n2(s)(r~ - "I;) - (n~(s) - n;(s))2111,](n2CO:;!- - nl(~):;')' (192)
(200)

(203)

solve for 1I,(x[.t]) and ",,(xl,t]),
forward

I' r {)
2,;" Jr d~~Ll1l3WF33{~.s)

f,;:Ll1l30IF33{~'5)1(_+0 - F33 (C s)I<--ol

o.

Ta(s)

I' ( ,32) I ;0 ( . R. I . 3 ) ,- 1-, ~UIO- dO sIll0+-2slIl;-Oslll;-0 + o (RIs)")
iT" a s -211 s 2 2

I' ( ,3' ) I. 2 ( R.) ( ')-- 1-, ~u,0-2slll '1 1--sm21} + 0 (Rls)" fors>U
iT 0- S S

once Ll1l,(s[. t]) known

N

T,(s) ,J~~ ~T!(,')

Thus in the case of anti-plane faulting there is no difference in the nature of the BI E whether a curve
along a crack occurs in a smooth or an abrupt way. A smoothly curved aniz-plane crack may safely be
approximated by a chain of finite straight line elements.

.v
Tn(s) ,J~~~r.:(S)

_!!:. (1 - ~) LlUro~;O dO (COSO + !!.sin 0) + 0(Rls)2)
iT cr S -2" S

-; (I - f,) Ll1l'0~ (sin2ry - ~2sin2 7') + 0(1/ls)2) for s> 0 (201)

I~ follows from symmetry that T,(-s) =T,(s) and tha~ Tn(-s) = -T.,(s). The forlllulae (200) and (201)
in fact coincide with the earlier derived solutions (195) and (196) for the single kink case in the limit of
infinite remoteness sf R ---10 00, and become equal to zero in the limit of a straight crack case '7- 0, which
is a maLter of natural consequence.

Thus it is evident that the BI E, solved as a forward problem

5.3 Anti-plane shear crack

The total traction at arc length:, as the sum of all cOlltrlbulioll~ from lht:' S kinks is givt'll. in the
limit tY - X, by

has completely different solutions for the two geometries. a smooth curve and a chain of finite line
elements, even for an identical set of input data. The Bl E has distinct natures for the two cases. This
means that a smoothly curved closed in-plane crack is not equ&valellt to the IUnJlulg case of a chalf1 of
firute Ime elements as the d18cret1zatton mterval tends to ::ero. This fact Illay be more readily understood
by a plainer statement that abrupt kinks at the junctions of finite line elements behave as a suppressor
to tangential slipping along an in-plane fault (Andrews, }989).

Incidentally, Jeyakumaran and Keer (1994) and Jeyakumaran (1995) were apparently unaware of this
situation, so that care must be taken in the interpretation of their numerical results.

I shall next discuss the case of anti-plane faulting. It can be shown by analogy to the case of the previous
section that a uniform slip .:'.113(~) ;: Ll1l30 along an infinitely long smoothly curved crack induces no
traction. Now consider an anti-plane crack with exactly the same geometry as in the previous case, and
prescribe a uniform slip Ll1l3(~);: Ll1l30. Because the BIE kernel for the shear traction T3 {s) a, denoted
by

F33(~. s);: nl(s):;' - n2(s):;!- (202)

does not explicitly include nl (0 nor n2(~). no additional traction along the crack is induced by an abrupt
kink at s = 0, since

(199)

(198)

(197)

( 196)

(195)

(194)

(193)

T,(s)

T.,(s)

1'( (3') 2ryl(.2;-2N-I-- 1 - --;; .6.UtO-- Sin --,,-.-ry +
iT" Q'~ N s jv

R . 2i - 2N - I . 3(2i - 2.1~ - I) ) + 0 (Rls)' (l/Nf)
+ ~2sJJl--2/1-,-lIS1n 2N '1 •

1-'( (3') 2ry1( 2;-2N-1-- 1 - - Lluro-- cos --/1-'-ry +
iT" 0'2 N 8

R 2i - 2N - I ) ( 1)2 ( IN)')+ -sin---'1 + 0 R s • I .
5 N

T:.(s)

T{(s)

Tn(s)

T,(s)

I' ({32) 1. 2-; 1-;2 LlUlOiSi2Slll '1

I' ( (32) 1.,-- 1- 2 ~{ttO-Sln '211
11'" a S

Lel liS proceed to consider a case in which the crack bend consists of a finite number N of straight
lint> elt'J\Ienls Iliutually connected at abrupt kinks. Let the radius of curvature. of ,the crack bend be R
and let each of the left and right straight segments outside the crack bend be IIlclined at an angle ':..to
the xl-axis. Define the arc length s along the crack so that S IIlcreases from left to fight and l!laL S -,0
corre~ponds to lhe right extremity of the curved part of the crack (Fig~re 19, bOllom) .. A ulliform sll~
~11,(~) ;: iluro is again prescribed along the crack under the assumpllon that any POJJlt on the crack
surface is allowed to slip only in the orientation of the straight segment (~r eleme~t) to whlc~ It ~.r,g.lIlallY
belongs (a requisite assumption of the linear elasticit), theory). The relallve locatIon of the ,-th kmk from
the left relative to the center of curvature IS given by a vector

(
'1 . 2; - N - 1 ry 2; - N - 1 )

+Rsec-sm---1], -RsecVcos N 1],N N , .

the crack orientation changing discontinuously at each subsequent kink by an ~ngle 1]1 N.
Consider the traction across the crack at a sufficient distance s .» R to. the right of th

1
e crac~ bend and

suppose the number of the abrupt kinks along the bend N ~ 1 IS sufficiently large. NeglectJJlg second
and higher order terms with respect to Rls ~nd lIN I we obtain, after cumbers~me algebra, the followlI1g
expression for the contribution T!(s) and T,,(s) of the i-th kink unto the traction at arc length s:
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Denoting the BIE kernels for the tangential traction T,(s) and that for the normal traction T,,(s)
across the ('.rack due to normal slip component ~un({) by

{ tJ,u,(~) tJ,UIOW cosry + tJ,u2o(Osin ry (s> 0) (204)
tJ,u,,(~) - .">UIO(O sin ry + tJ,U20(O cos ry

and
{ tJ,lI,(O tJ,UIO(~) cos ry - tJ,U20(~) sin ry (s < 0) . (205)

tJ,u,,(~) tJ,UIO(O sin ry + tJ,u,o(~) cos ry

5.4 Open in-plane crack

I finally discuss the case of open in-plane faulting. Again, a uniform slip with components tJ,Ul(O '= tJ,UIO
and ~U2(O == 6.u20 along an infinitely long smoothly curved crack induces no traction, as is evident from
the fact that the integral representations for the traction components in terms of (a/a~)tJ,u,(O and
(a/a~)tJ,u,,(O can be rewritten in the form with (a/aotJ,u"~) and (a/a~).">U2(~) under the integral

sign.
Consider an open in-plane crack with exactly the same geometry as in the previous cases, and prescribe

a uniform slip with components I'>.Ut(O '= tJ,UIO and tJ,u,(~) '= tJ,u,o. This means that

Chain of finite
line elements

Smooth curve

-- t

•In-plane shear / tension
with crack closed / open

element length
(kink interval)
~

Anti-plane
shear

(209)

(20 )

[2Tlt(s)n2(s)2/tl2 + (n~(s) - n!(s))(/~ -,!)](nt(07 + n2(O~) (206)

(Tlt(O~ - n2(~)7) +
+[~Tlt(S)Tl2(S)(I~ -/il- (n~(s) - n!(s))2-/1/2](nt(07 + n2(~)~)' (207)

T,(s) ; (I -5) [~[~tJ,U,(OFll(~'S) + ~tJ,u"(~)F,,,(~,S)]

; (I -~) ([tJ,u,Fll(Cs) + .'>lI"F,..(~,s)]{_+o­

- [tJ,U,Fll(~' s) + tJ,u"F",(~. s)]{ __ o}

J1 ( {j2) r [a a )T,,(s) :;; 1 -;:;2 Jr ~ 8{tJ,u,(~)F,,,(~. s) + 8{tJ,u"(~)F,,,,(~, s)

; (1- 5) ([tJ,u,F,,,(~,s) +.">lI"F",,(Cs)){_+o-

- [l'>.u,F,,,(C s) + tJ,u"F,,"(~,s)]{__ o},

F",(Cs)

F",,(~, s)

which after some algebra becomes

the distribution of the traction along the crack is given by

T,(s) = 0

T"(s) = O.

(210)

(211)

This means that no addil ional traction along the crack is induced by an abrupt kink at s =O. In the
case of open in-plane faulting there is no difference in the nature of the BIE whether a curve along a crack
occurs in a smooth or an abrupt way. A smoothly curved open lJt-plane crack may safely be appr'oximated
by a chcnn of /i,nte straIght lme elements. This justifies the approach of Crouch (1976) and Cheung and
Chen (1987), who approximated a curved open crack in in-plane tension by a chain of finite line elements.

Figure 17: A smoothly curved crack and a chain of finite line elements l in three modes of fracture.
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Figure 18: Normal st.ress distribution along a curved in-plane shea~ crac,k, for t!?e cases of ,a smoot.h curve
and a chain of finit.e line elements, A posit.ive ordinate denot.es dllataLlon, whll,e a negative one d~n~tes

compression, Each discrete element has a unit lengt.h, so thaI.. the curved parI.. with lengl.h 45 was divIded
into 45 elements.

Figure 19: Simplified concepLual models of a chain of finiLe line elements studied in this chapter.
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6 Conclusion

In the present study I have derived a set of rigorous BIEs, both time-domam (elastodynamic) and time­
independent (eJastostatic). for the analysis of arbitrarily shaped 2D anti-plane / in-plane crack(s) located
in an infinite homogeneous isotropic medium. Among others , the formulation for the time-domain analysis
of non-planar 2D in-plane crack>. which has been obtained in enlargement of Koller fI al.'s (1992) and
Cochard and l\1adariaga's (1994) approach. is a first achievement in this field ofsLudy and belongs LO an
ingenuity of the present paper The approach is characterized by the use of the method of regularization.
or removal I of the hypersingulanLies in the integrals. In addition. although the formulation for the time­
independent casE'S is not a Ilt'W achievement of the present study, an advantage consists in that I havf' for
the first time used a unified nomenclature for both the time-domain and time-independent cases. which
used to be studied separately by different authors based on inconsistent terminologies

for the sake of numerical implementation, the BI Es are discretized with the piecewise constant in­
terpolation. in which the approximate function is assumed to be constant across an element and is
discontinuous between elements, The numerical results were verified against the known analytic solu­
tions for a time-dependent self-similar crack evolution problem and for two types of time-independent
non-planar crack problem in anti-plane shear.

The new 1311,M nUlllerical approach has subsequently been applied to both time-domain and time­
independent analyses of a hackly crack} or a 20 crack in either in-plane shear or anti-plane shear consisting
of a straight main branch and a set of small side-branches splaying out from it. The numerical results
demonstrated a significant decrease in the crack-tip stress concentration level with reference La the case of
a straight crack) thus suggesting that branching of the crack plays an import.ant roJe in the decelerat.ion
and arrest mechanisms of earthquake rupturing

Finally, it has been pointed out., in the cont.ext of the BI EM, that in the case of in-plane shear faulting
a smoothly curved crack may not be represented as a limiting case of a chain of finite line elements as
the discretization interval tends to zero, a situation which previous researchers were apparently unaware
of. The equations that govern the crack mechanics have distinct forms depending on whether the crack
orientation changes continuously or abruptly along a bend. however small the kink interval may be sel.
The two geometries may produce different normal traction di tributions along the crack, so that care
should be taken so as not to misinterpret the numerical results. However} no similar problem arises in
the ca."ies of anti-plane shear and open in-plane faulting.
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Appendices

A Artificial damping applied in the time-marching scheme

where C > 0 is a positive constant. As long as the piecewise constant inlf>rpolation i used, 110 special
treatment of the damping matrix is required at fault jUllcLions.

Stronger artificial damping or a bigger value of C suppresses the ripples more effecti\'ely. but tends (0

distort the slip distribution. so that there is a problem of trade-ofT in the decision of lhe damping factor

lIt're I outline the procedun~ of artificial damping which is illlroduced so as to suppress the numerical
noises and instabilities in the time-marching modeling scheme. which arise due to the abrupt progre Sf'S

of the fracture front along the discreLized fault trace. This damping procedure is practiced at every time
step. Denoting the slip rate at the i-lh nodal point and lhe rn-th time step before lhe damping by <1>;"
and that after the damping by (<1>;")'. we solve the following set ofsimullaneous linear equations:
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[65] Yamashita. T. and E. Fukuyarna (1996). Apparent critical slip displacement caused by the existence
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dynamic and elastostatic crack analysis, Trans. ASME J. Appl. Meeh., 56, 284 290.

(<p;")' = <1>7' + C[(<I>:+Il' + (<I>;"-Il' - 2(<1>:")'] for each i. (AI)

B Analytic solution to Kostrov's self-similar crack evolution
problem in three modes of fracture

E.l Anti-plane shear

Described below is the analytic solution to Kostrov's (1964) self-similar crack evolution problem in anti­
plane shear, which was obtained by Kikuchi (1976). I duplicate his resulls, partly because I have replaced
parl of his inlegral represenlalions of non-analytic funclions with a combination of comple'e elliplic
integrals, partly because his paper is not written in English.

Suppose that in an infinite homogeneous isotropic elastic medium a straight shear crack begins (0

form at the instant t = 0 along the x3-axis and then propagates in the xl.l3-plane bilaterally from lhe
origin with a constant speed v (which is less than the S wave velocity J3), the shear stress drop being
equal to 0'0 everywhere on the crack plane (Figure 4). \'Ve introduce the cOlllplex variables Oa and 0

13
(cr

denoles the P wave velocity and (3 that of lhe S wave) defined by

t - 8,XI - Jc-' - 8~X2 =0 (e= 0,(3)

1m 8, > 0 for y > 0

or I denoting Xl = "cos lp and X2 = r sin 'P, by

° _{ (l/r)cosop+iJ(t/rF-c- 2 sinop (r<cl)
,- (t/r)cosop-Jc- 2 -(t/r)'sinop (r2'el)

(Bl)

(B2)

so that the 8, plane may have branch cuts on the real axis at 10,[ > c- I and that the upper half of the
xt x 2-plane X2 > 0 may be mapped onto the upper half of lhe complex O,-plane 1m 8, > O. Note thal
the variable ()a does not appear in the solution of the anti-plane problem since the P wave field is not
involved

The field variables at any point on the Xl z2-plane are represented in a normalized appearance:

Vi = p;;:) 1m <
O'iJ P~:) 1m O':j,

where the normalized displacement velocity and stress components are given as follows:

(B3)

(B4)



(B20)

(B22)

(B21)

(B2:3)

(B24)

2,3' 9" (23') 98-,---+ 1-- ---v· /v-' - 9~ t" ~ +y" -"8

2f3'. i98-~
+-;;21 log iOa_ Jv-2 _ O~

2/3' /0.-' - 9~ 1- 2(,3/v)' Jf3-' - 9~
-;;2 /v-' - O~ + 1- (v/iJ)' Jv-' _ O~ +

2f3' ~+~
+7 log Jv-2 _ O~ + JO-2 - O~

2(~_2/3') __I_ 2(1 2/3') I
a 2 v 2 vJv- 2 - O~ - - ~ vJv- 2 _ O~ +

4/3'
+~ (Jv-' - 9~ - /v-' - O~)

(
/3') I-21-- ---
a 2 vJv-2_ o~

-4/3'1'·-- 9'(0.-' - 9')I/'(v-' _ 0')-3/'dO +
v 0

-4/3'1" 1+-- (-/3-' - 0')'(/3-' - O')-I/'(V-' _ O')-3/'dO
v 0 2 I

where 0'0 is now the in-plane shear stress drop, are given as follows:

and the normalization factor P(v) is

(B9)

(B8)

(B6)

(B7)

(BI4)

(B11)

(BI2)

(B13)

(BID)

e :; 1//1 - (v/c)' + (vt/y)'. z; :; /1- (y/cl)'

1m <7~, =-E~ + k~(~z~.

On the Xl or the x-axis, for vt < Ixl < /3t, denoting

C :; 1//1 - (vt/x)', z~ :; /1 - (x/ct)'

we have

and

Though the shear stress component 0"32 is not expressible in terms of an analytic function, it is
reducible to a relatively simple expression on the axes of symmetry. On the X2 or the y-axis, for 0 ~

Iyl < /3t, denoting

E,:; E(%,k,), k,:; }I- (~)'
is a complete elliptic integral of the second kind. The slip across the crack is given by

2(J"o~
t.V3 = JiP(v) yv-t- - Xi·

0-32 =

where

and the normalization factor P(v) is

B.2 In-plane shear

where a :; t't is the half length of the crack. By using the equations (BID) and (BI7). one can easily
confirm that Freund's (1990) formula (09), relating the slip rate near the tip of a running crack with the
SIF, is satisfied. On the other hand, noting that P(v) - 1 as v//3 - 0, Kill tends in the static limit to
uo.j1ro, which coincides with the familiar expression for the SIF at the tip of a stationary straight crack

of length a.

(B25)

where

and

1\, :; K(~, k,), E,:; E(~,k,), k,:; }I _ (~) , (B26)

~~,e complete elliptic integrals of the first and second kinds respectively. The slip across the crack is given

t.VI = t.u, =~Jv't' - x'. (B27)
JiP(v) I

T~ough the shear stress component 0'12 is not expressible in terms of an analytic function it is
;~f~c:~ie d~On~tir:~ativelY simple expression on the axes of symmetry. A" the x, or the y-axis, fo'r 0 S

(: :; 1//1 - (v/c)' + (vt/y)'. z; :; VI - (y/ct)' (B28)

(BI7)

(BI6)

(BI5)

.<7o"fiW.~
KIlT = pt;;fv1- (v//3)-,

we have
1m"';, = -E; +Cz~.

This leads to the following expression for the stress intensity factor (Appendix D):

and

81

we have

lIere I describe the analytic salul-ion to Kostrov's (1964) self-similar crack evolution problem in in-plane
shear, which was obtained by Kikuchi (1976). The setting of the problem and the nomenclature are
parallel to that lIsed for the anti-plane shear case. The discussion of this problem is also found in Freund

(1990).
The normalized displacement velocity and stress components are

v. 11~:) Imv: (B18)

(J",j ~:) 1m <7:j, (BI9)
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(B29)

(B30)
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The expressions for {3i :5 lyl < at can be obtained by dropping all the terms that arE' accompanied with
the index {3.

On the x, or the x-axis, for d < Ixl < ;3t, denoting

(841)

(839)

(040)

and the normalization factor P(v) is
(B33)

(B32)

(B31)~r == I/Jl - (vt/x}2, z~ == JI - (x/eI}2

we have

and

The expressions for ;3t :5 Iyl < at can be obtained by dropping all the terms that ar(" accompanied with
the index 13. The above leads to the following expression for the stress intensity factor (Appendix D) (841)

D.3 Tension

where a == vt is the half length of the crack. By using the equations (027) and (034), one ran easily
confirrn that Preund's (1990) formula (OtO), relating the slip rate near the tip of a running crack with
the SIP, is satisfied. On the other hand, noting that P(v) - 2(1 -13'/0') as vl{3 - 0, ['.f[ tends in the
static limit to O'"oJ1Tli, which coincides with the familiar expression for the SIF' at the tip of a stationary
straight crack of length a.

J( = uo-JiU (i!-) , {4 J l_(v/a)' _ [2 - (v/P)'f}
f[ P(v) v JI - (v/{3J2 '

(B34)
where

J(, == [(~, k,), E, == E(~, k,), k, == Jl - (~)' (013)

are complete elliptic integrals of the first and second kinds respectively The slip across the crack is given
by

Co", = Coun = I"~:) -/"2t' - xi- (Ll44)

Though the diagonal stress components 0'11 ± 0'22 are not expressible in terms of analytic functions,
they are reducible to relatively simple expressions on the axes of symmetry.

On the crack surface, i.e. on the XI or the x-axis for Ixl < vt,

I"ow I describe the analytic solution to KosLrov's self-similar crack evolution problem in tension, discussed
by Cherepanov and Manas'ev (1974) and Preund (1990), which I derived following the method of Kikuchi
(1976). The setting of the problem and the nomenclature are parallel '0 those used in the anti-plane
shear and in-plane shear cases.

The normalized displacement velocity and stress components are

~Jm (1';, - 1';,)

~Im (1';1 + 1';,)

v; I"":t:) 1m v;
~:) Irnu:j,

(835)

(836)

On the X2 or the y-axis. for 0 $ Iyl < {Jt, denoting

~~ == I/Jl - (vic)' + (vtly}2· oi == JI - (ylct),

and

(847)

The expressions for {3t $ Iyl < at can be obtained by dropping all the terms that are accompanied with
the index {J.

On the Xl or the x-axis, for vt < Ixl < {3t, denoting

where 0'0 is now the tensile stress drop, are given as follows:

-2{3' J;3-' - O~ 1 - 2({3lv)' Ja-' - O~------ - ------ +
v' Jv-' _ O~ 1 - (via)' Jv-' - O~

2{32 ~+~
+-;;Iog Jv-' _ O~ + Ja- 2 - O~

2{3' O~ (2{3') 00

-;; Jv-' - O~ + 1 - -;; Jv-' - O~ -

2{3'. iO~-~
--;21 log iB

a
_ Jv-2 _ B~

(837)

(838)

we have

(B4 )

(849)

(850)

(851)

(852)
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and
(853) D Stress intensity factor

we have

~lm(O';l +0';,) =

20' -2(3' - v'(EX _ [(X -CzX)- ~(2E' _2£x_
0'2 _ '(;2 (I' 0 a ti2 ex fJ

ZX .X) ('" )_'x ZX + 'x ZX _ ~ +~ + 2 ~ + I K X _ 4/,x
... a ... {j {E {X 02 cr (3

(0' - /3')(v' - 2/3') (EX _ [(X _ ,XZX) + 2 (f!: _1) [(X
/3'(0' - v') Q Q' Q 0' Q

(B54)

(B55)

(856)

The stress intensity factor (Sir) is an index of the stress concentration at a crack tip and is defined as
a linear Ilmltiplier appearing in the asymptotic expression of the stress field in the close vicinity of the
crack tip. The Sirs can be defined independently for lht'" three modes of fracture. which are usually
denoted K/. Kll and 1\'11[. Suppose a local 20 rectangular coordinate system XI. X2 is defined in such

~h;'a:l_t~~~ ~:::rcrt~~k::~c~o;ir;sp~n~c~~~~~a~r:~~~;:'I:~~et~~s~:~~k7"tr;ci:~~~~IY;~17e~h~;,~g:iJ:t~:f
and tan (J == X2/ Xl' According to the conventional definition of the SI F, the asymptol ic expression of the
stress field is

The expressions for {it :S lvl < at can be obtained by dropping all the terms that are accompanied with
the index /3 The above leads to the following expression for the stress intensity factor (Appendix D):

where a := vt is the half length of the crack. By using the equations (B44) and (B57), one <an easily
confirm that I"reund's (1990) formula (OIl), relating the slip rate near the tip of a running crack with
the SlI', is satisfied. On the other hand, noting that P(v) ~ 2(1 - /3'/0') as v//3 ~ 0, [(I tends in the
static limit La O'o.j1T(i, which coincides with the familiar E"xpression for the SIP at the Lip of a stationary
straight crack of length a.

1\, = O'o,fifO. (~)' {4 J I _ (vI8)' _ [2 - (v//3)')'}.
P(v) v JI - (v/o),

(857)
~(O'll -0',,)

~(O'll +0',,)

_ {{fir sin ~
v"i1IT 2

Kill cos ~
v"i1IT 2

K, . 0 O. 30 1\11. 0 ( 0 30)---sm-cos-sm - - --sm- I +C05-C05-
v"i1IT222~2 2 2

~cos~-~sin~
~ 2 ~ 2

I" 0 0 30 J\II 0 ( 0 30)--sin -C05-C05- + --C05- I-sin-sin­
~22 2v"i1IT1 22

(DI)

(D2)

(D3)

(D4)

(D5)

C Formulation of Cochard and Madariaga for the time-domain
analysis of a straight 2D shear crack

lIere I cite the boundary integral equations for the time-domain analysis of a slmlghl 2D shear cracks,
derived by Cochard and Madariaga (1994) and by Madariaga (1995) respectively, on the ba,is of the
double Laplace transform and the Cagniard-de Hoop method The results for the ca<jes of anti-plane
shear and in-plane shear 1 fespeclively, are'

T3(s.l) = -~L'.u3(S,l)-

_L r d{ f'dT~L'.U3({,T)J(t-T)'-(7·18)'H(t_T_~)
2" Jr Jo fJ{ (t - T)(S - 0 /3

(el)

(e.g., Isida, 1976; Freund, 1990). Note that Sih's (1965) definition of the SII' differs frolllthe conventional
one by a factor of Vi. In the t&rnt-mdependent case, the asymptotic form of the slip near the crack tip
is expressed by

-1u3 2~. (D6)- -All,
I' "

~111 ::::~Ut
2(A + 21') f!f .

(D7)--- -1\11
I'P +1') "

6.u';,?:::: D.un
2(A + 21') J'!t- .

(D8)--- -1\{

1'(-'+1') "

Freund (1990) gives the asymptotic elastic field in the proximity of Lhe crack tip that is running with
speed v. According to his expressions, the asymptotic form of the slip rate near the crack tip is

with

T,(s,t) -iJL'.u,(S,f) -

1'1 l' fJ. 4/3'(t-T) ,.-- d{ dT-L'.U,({,T)---. V(l-T)'-(7'/0)'f1(t-T--) +
2" r 0 fJ{ (s - Os 0

I' 1 l' fJ . /3' [2(t - T)' - (7"//3)')' ,.+- d{ dr-L'.u,({ T) H(l - T - -)
2" r 0 fJ{ '(s-{)3(t-T) J(t-T)'-(7'//3)2 j3

r:= Is-{I

(C2)

(C3)

2v KII' I

--; ~JI-(v//3),

2v KII (v//3)\/l~T;rjjfi

/' ~4JI - (v/o)'J1 - (v//3)' - [2- (v//3),J'

2,[(, (v//3)'~

I' ~4Jl - (v/o),JI - (v//3)' - [2 - (v//3)2)"

(D9)

(DI0)

(DII)

and the singular integrals should be interpreted in terms of Cauchy principal values (it can be easily
shown that the hypersingular parts of the second and third terms of the right hand side of Equation
(C2) cancel out each other). Note that Cochard and Madariaga (1994) proposed a unique semi-analytic
method of numerical implementation) with the use of which no artificial damping (Appendix A) was
necessary in tht> time-marching numerical scheme. However, that method was not lIsed in the present
study because it is not applicable to curved crack cases.
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