

Boundary Integral Equations
for the Time－Domain and Time－Independent
Analyses of 2D Non－Planar Cracks
（境界積分方程式法で解く
自由形状 2 次元亀裂の動力学と静力学）

学位論文

Boundary Integral Equations for the Time－Domain and Time－Independent Analyses of 2D Non－Planar Cracks （境界積分方程式法で解く自由形状 2 次元亀裂の動力学と静力学）

平成7年12月博士（理学）申請

東京大学大学院理学系研究科地球惑星物理学専攻

多田 卓

Boundary Integral Equations for the Time-Domain and Time-Independent

Analyses of 2D Non-Planar Cracks

by

Taku Tada

Submitted in partial fulfilment
of the requirements for the degree of
Doctor of Science
(Earth and Planetary Physics)
at the University of Tokyo

December 1995

Acknowledgments

The prosent work would have never been completed without contimual discussions with Prof. Teruis Kamanhita at every stage of the proent study It would never have been completed, either. without cootinual etcourgement by him and by Prof. Kunithiko Slimasaki. Their attention and patience in cordially apprecinted
 Ad cortespondences with him aud with Dr Mr. Nobuki Kame. Dr. Jun Kawahara. Prof. Takachii Miyatake. Mr. Masio Nakatani, Prof Nour Nishumura and Prof. Yasuhiro Umeds (in alphabetical order of the surnames) were both suggestive and informative.

In addition, encouragements and nassistacice were extended to me by innumerous scientists and cof
 d. Geller, Dr. Shin'ichito Kiuniya, Prof. Hitoshi Kawakatsu, Ms. Nobuyo Matsashima, Prof, Mitsuhiro
Matsuura, Mr. Fenglin Niu, Mr Masayuki Obayashi, Prof. James R. Rice, and Ms. Kasue Veda although Matsu ura, Mir. Fenglin Niu,

Finameinl sumpatt was provided by Reseatch Pellowahins of the Japan Society fot the Promotion of Science for Young Scientits

Abstract

Understanding of the effects of non-planar fault geometry is a crucial key to a better undesstanding of the dynamics of earthquake rupturing. However, available numerical methods have practically precluded modeling of fault mechanics based on non-planar geometry except for a fow tecrnt pionerting works

Thave derived a set of rigorous boundary integral equations, both time domain (elastodynamic) and (ime-independent (elastostatic), for the amalysis of arbitrarily shaped 2D anti-plane (in-plane crack(s) located in an infinite homogeneous isotropic medium. The hypersingularities of the integration kernels were removed after the regularization mirthod of Kollet, Bonnet and Madariaga (1992) and Cochard and Madariaga (1994). These formalations, rendered in a unified nomenclature, significautly broaden the range of fault mechanics problens to which the boundary integral equation method (BIEM) cas be applied. The specific procedure of their detivation is decribed in full in Chapter 2 of the present paper. In Clapter 3, the piecrwise constant interpolation is introduced as a specific method of mumerical implementation of the BIEM formulations, and the numerical results for some simple cases, both time analyses of crack mechanios based on non-phanar goonetry are described in Chapter 4 . demonstrative In Chapter 5 , it is pointed out that in the case of in-plane shear faulting a smot
cainnot be represented as a limiting case of a chain of finite line elements ns the discretization interval tends to xero, a situation which previous researchers were apparently unaware of. The two geometries may produce different normal traction distributions along the crack, so that care should be taken so as not to misinterpret the numerical results. It is also shown that no similar problem arisss in the cases of
anti-plane shrat and open in-plane faulting.

Contents

Acknowledgments 1
Abstract 1

1 Introduction 4
1:1 Background
2 Formulation of the boundary integral equations
21 Representation theorem
2.2 Time-domnin formulation for anti-plane cracking
2.3 Time-independent formulation for anti-plane cracking

24 Time-domain formulation for closed in-plane cracking
25 Time-independent formulation for closed in-plane crack
2.6 Time-domsin formulation for open in-plane cracking
2.8 Relevance to other methods of time-independent in-plane crack analysis

3 Numerical implementation and corroborative examples
Numerical implementation and corroborative examples 5.1. Discretiastion with the piecewise constant interpolation
3.2 Kostrov's self-similar crack evolution problem in three modes of fracture
3.3 A straight crack is three modes of time-independent stress
3.4 Three radial cracks and a circular are crack in time-independent anti-plane shear

35 Giemetrical compatibility at a junction of crack branches
4 Demonstrative analyses of hackly cracks
5 Can a curved 2D crack be represented as a limiting case of a chain of finite line elements? - BIEM viewpoint
5.1 Concept

2 Closed in-plane crack 67
53 Anti-plane shear crack .
5.4 Open in-plane crack7
6 Conclusion
75
References 79
appendices 79

B Analytic solution to Kostrov's self-similar crack evolution problem in three modes of fracture 79 racture 79
79
80
B.2 In-plane shear $\begin{array}{r}79 \\ 80 \\ 82 \\ \hline\end{array}$
B. 3 Tension

Formulation of Cochard and Madariaga for the time-domain analysis of a straight 2D 8 shoar crack

List of Figures

1 Anti-plane and in-phane motions. The three modes of fracture
2 Nomenclature used in the crack anslysis
3 The basis functions of the piecewise constant and piecewise linarar interpolations Kostrov's self-similat crack evolution problem
of Kotrov's problem in in-plane shear.
7 Kostrov's problem in tension
8 (a) Numerical solution to the time-independent straight crack problem in anti-plane sheat
8 (b) Analytic solution to the time independent straight crack problem in anti-plane shear (a) Numerical solution to the time independent straight crack problem in in-plane shear (b) Analytic solution to the time-independent straight crack problem in in-plaue shear

10 (a) Numerical solution to the time-independent straight crack problem in tension
10 (b) Analytic solution to the time-independent straight crack problem in tension.
11 Numerical and analytic stres intensity factors in the time-independent analyeis of three radial cracks in anti-plane shear
Numerical and analyticstress intensity factors in the time-independent analysis of a circulat Ste crack in anti-plane shear
Slips on three radial cracks in anti-plane shear that meet at a junction
14 Geometry and time evolution history of the hackly crack analyzed
15 (a) Stress concentration at the tip of the propagating hackly crack in anti-plane shear
15 (b) Stress concentration at the tip of the propagating hackly crack in in-plane shear
16 Stress concentration at the tip of hackly cracks at rest
is Normal stress distribution along a curved in-plane shear crack. Cswes of a amooth curve
and a chain of finite line elements a curved in
Conceptual models of a chain of finite line elements.

List of Tables

Relevance to previous BIEM modeling studies of crack mechanics problems

1 Introduction

1.1 Background

In the eeismologial fracture theory, betefogmeneux behavior oa an sarthquake fault have most often been weribed to lecterogeneous diatritations of etrength, stren drop of slip characteristion on a single fant plane (see rview by Dinowska and Rice, 1986). Among otbers, "bastier' and "asperity" are the two an earthquake faukt plame. Thoush there two terms have often been uesd in a vagoe and ambiguous
 while the later might be taken as a region characteriadd by am exceptionally lasge monvat drop during rupture (Schota, 1990, Section 4.5). Howeret, it has been implicitly asoumed that the concept of fault ithomogenicities is not so nuch a reprecentation of real changes in the material properties as it in a

 a different falt plaue (formation of fault steps), involvenent of travile microctacks, and to on. In fact, in the fiedd survey of the Nojima fault that was ruptured in the 1995 Hyogoken- Natrba earthquake, the surface fault trace has been reogguzed as a serio of geverealy linear bur discontinuous segurats, with an evidence of bifurcation nest the southwestern end (Salata and Yomogida, 1995)
Field evidencos for tenaile cracks as necondary features in shear fuut zono are abundaut (e.s. Segall and Pollard, 1983; Martel and Pollard, 1989) and kiok cracks, poseibly iavolving tensile displacements,

 exist ax a primary frecture mechunimm but can only be a maccoscopic fracture phenonenon which must necesarily imolve fortuation of tensile mictocracks.
A better understanding of the effects of too-planar fuilt geometry is thus a crucial key to a betcer undestanding of the dynarmics of earthquake rupturing, Binstontatic (tuine-indipentent) and quasis static analymos of interactions ambong cloed in-plane sherat faul tegments (e.g. Segall and Pollard, 1980, Bilham and Kins, 1989, Aydin and Du, 1995, We and De Bremaecker, 1995b) as well as those among tervisil (open in plane) faut segneusts (Du and Aydin. 1991; Oloon and Pollard, 1991; Rechers and Lockner, 1994) are Chirly abundast in literature. However, elastodynamic (Limes dependent) analyyis of ctack(e) of non-phanar

 confined to non-coplanar (nutually paralle) crack problems: the study by liarris and Day (1933) for two non-coplanar 2D cracks in in.plane shear, and thoer by Yannashita and Umeda (1994), Kame and Yannehita (1996) and Umeda et al (1996) for two or more non -coplanar 2D cracks in anti- plane shear. The present study is deroted to the development of a new compreheasive numerical method for the analyee of 2 D cracks of arbitraty geometry.
Three modes of fracture, modes 1 , 11 and ill, are ofteen referred to in the literature of fracture mechanica Mode III corrapponds to the anti-plane shear motion, mode II to the in-plane shear motion, and mode I竍

1.2 The boundary integral equation method for crack analysis

So far, three differeat numerical approachess have been used in the study of dynamic earthquake source mechanico. One of them, the finite difference method (FDM) (Andrews, 1976b, Mikumo and Miyatak 1978; Day, 1982, Virieux and Madariaga, 1982) discretizs the equations of motion by repreenenting the
 necthod (19763 (1985. 1991. Das and Aki, 1977, Das, 1980. Cheung and Chen, 1987. Fleck, 1991

Nishimura, 1994; Jeyakumaran and Keer, 1999), solve integral equations: that relate the slip on the crack with the xtress on the crack, where the test of the model space is mit explizitly concerned in the formulation. The third the finite eletumet mefhod (FEM) (-s Wei and D. Beemueker, 1995a) is nkin to the FDM except that the model domair is divided into a meah of elenent of simple (eg. triangulat) shape that need not be regulatly spaced.
As was discussed by Das and Kortrov (1987) and by Koller ef al (1992), the FDM permits the introduction of inhomogeneous propertirs of the medtum, but the primcipal sumerical shortcomiags of
 planar crack grometry is practically prohibited by the configuration of the grid scheme that haw two orthogonal axes (although lioue and Miyatake, 1995, have recently developed an FDM code for kinked fault problem). On the other hand, the BIFM formulation is more efficient and flexible for the problem of cracks in a hompgreneone meitumb, it that the equation his to be solved unly inside the crack and also in that not-planar crack geometry in admissbie. The FEs cati, in pribciple, deal with noti-plathat geometry, but its application to dynamic crack propagation amalysis thas heen practically restricted to 2D struigh cmik problems, ball for difficulies in the remeshing procndits (Geabelle and hice 1995). Thus in the sequel we shall be ceclesutiy concerned with in The most meneralized BIEM formulations for the time denende
of arbitrary geometry wau obtuined by Zhang and Achenbarh (1989) and by SLack annlysis of 3D crack in the Fourser frequency domain and the Laplace domain rapectively. However, since both of these generalized formulations are concerned with the transient response of a stationary crack, they do not lend themselven to the analyme of cracks that propagntes with time. Thur a time-doman formulation is necessary when the geometry of the studied crack is not stationaty
Kostrov (1966, 1975), Das and Aki (1977), Das (1980) and Andrews (1985, 1994) uned integral representations that express the sip (also called displacement discontinuity) Δu as a convolution of the traction T with an operator (kernel) K

$$
\begin{equation*}
\Delta u(s, t)=\iint d \xi d \tau K(s, t ; \xi, \tau) \cdot T(\xi, \tau), \tag{1}
\end{equation*}
$$

where s and ξ denote location along the crack and t and τ denote time In this case, the slip distribution is obtained by a simple forward convolution procedare once the traction distribution is known. However, this elaes of appoacth allomer anly the study of plamar ctack(s) in an infinite domain, in which cue the There slip with an operator (kernel) \dot{L}

$$
\begin{equation*}
T(s, t)=\iint d \xi d r \bar{L}(s, t ; \xi, T) \cdot \Delta u(\xi, r) . \tag{2}
\end{equation*}
$$

With this formulation, solving for the slip distribution with the traction known is an inverse problem. This class of approach is more versatile in that it is applicable to the general case of non-planar crack problems. Thus the system (2) siall be ased throughoar the present andy. Moreover, Das and Kostrov (1987) pointed out that be system (2) equires a maler ine graion duain than dors the system (1), integration domain.
It should be noted that in the formulation (2) hypersingular terms (Martin and Rizzo, 1989) appear in the convolution integral, which requires special attention in the numerical treatment. Use of the Fourier wavelength domain instead of the usual upatial coordinate (Geubele and Rice, 1995) can suppress the occurrence of such singularities. However, as long has the boundary integral equations (BIEs) are formulated in the usual spatial coordinate, the hypersingular integrals should be numerically evaluated in some way or other. One approach directly evaluates the hypervingular integrals in the sense of Hadnmard finite part integrals, while another approach rewrites (or reyularizes) the bypersingular integrals into an Cauchy principal values (Martin ind Rimo 1989, Koller it al 1992) Cauchy principal values (Martin and Rizzo, 1989; Koller of al. 1992).

Sladek and Sladek (1984), who took the latter approach, demonstrated how the hypersingulat BIEs. for the time-dependent 3D crack analysis in the Laplace domain, may be converted, through integration by paris, into a more weakly singular form. Alded by thelr method, Koller et at f(1992) derived, for the first tune, a regularized BIE in the time domuin for an arbitrarily shaper
Koller et al';s (1992) work was continued by Cochard and Madariaga (1994), who concentrated on the special case of a straight anti-plane crack. They reduced Koller et al', (1992) integral equation to a more easily tractable form and devised a sophisticated semi-analytic method of its numerical solution. Their approach was later extended by Yumashita and Fukuyama (1996) and by Kame and Yamashita (1996) to itcorporate the case of more than one not-coplanat anti-plane straight cracks. A continuation of these studies in a different direction was realized by Fukuyama and Madariaga (1995), who dealt with both time-dependent and-independent analyser of a
crack analynis ate summarized and classified in Table 1
In the preent study 1 enlarge Kollet et al's (1902) and Coclard and Madariagn's (1994) BYEM approach to iticorporate a much broader variety of 2D crack mechanics analysis. Sets of BIEM formulations for both time-domaim and time-independent analyses of 2 D non-planar both anth-plane and in-plane cracks ate derived. As is evident from Table 1, the formulation for the time domain analysis of non-planar 2D in-plane cracks has first been achieved in the present study. Another importance of the present study consists in that it renders in a unified nomenclature the BIEM formulations for different settings, have previously been studied separately by different authors based on inconsistent terninologies.

Anti-plane shear (Mode III)

In-plane shear (Mode II)

In-plane tension (Mode I)
Relevance to previous BIEM approaches to shear crack analyses

	Time-independent (Elastostatic)	Time-domain (Elastodynamic)	Fourier-domain or Laplace-domain (Elastodynamic)
2D planar anti-plane		Kostrov (1966); Burridge (1969) Andrews (1976a) Das and Aki (1977) Cochard and Madariaga (1994)	Sladek and Sladek (1984) Zhang and Achenbach (1989)
2D non-coplanar anti-plane		Yamashita and Fukuyama (1995): Kame (1995)	
2D non-planar anti-plane		Koller, Monnet and Madariaga (1992)	
2D planar in-plane		$\begin{aligned} & \text { Das and Aki (1977) } \\ & \text { Andrews (1985) } \end{aligned}$	
2D non-planar in-plane	Dmowska and Kostroy (1973) Fleck (1991); Jeyakumaran and Keer (1994)	present study	
3D planar	Fukuyama and Madariaga (1995)	Das (1980) Fukuyama and Madariaga (1995)	
3D non-planar			

Table 1: Classification of previously published BIEM modeling studies of crack mechanics problems. The scope of the present study is denoted by the shaded part of the table.

2 Formulation of the boundary integral equations

2.1 Representation theorem

Istatt from the dynamuc (tmae-dependen) representation theorem that expresses the elastie displacement tield over the entire mediun in terms of the slip distribution along the crack(s). Assuming that the medium is at rest with no slip for time $t \leq 0$ and also that the traction is contimuons across the crack(s), we have for the problem of one or more crack(s) located in an infinite homogeneous iontropic elantic medium (e.g Aki and Richards, 1980, Section 3.1)
where $w(\vec{y}, t)$ is the displacement in the l-th ditection at position \vec{z} and time $t, \mathrm{~F}$ the whole length' of the crack trace($\theta)$. ξ the arc length along $\Gamma, \Delta u_{i}(\xi, \tau)$ the slip on the crack in the i-th direction at ar length ξ and time τ, cijf the elastic constants, $\bar{n}(\xi)$ the wit vector normal to the crack trace at ar length ξ that is dirrected to the left when seen toward the orientation of the increasing ξ, (NE) the location of the position on the crack at arc length $\xi, G_{\varphi,}(\bar{Z}, t-r ; 7,0)$ the displacement Green function denoting the displacement in the l th direction observed at position \bar{F} and time $t-T$ due to a unit force in the pth direction applied at position \vec{y} and time 0 , and summation over the repeated indios is implied. Se Figure 2 for the nomenclature

This leads to the following integral representation of the stress field in terms of the slip on the crack(s)

$$
\begin{align*}
\sigma_{t(}(\overrightarrow{z, t}) & =\frac{1}{2} c_{k r r} \cdot\left(\frac{\partial u_{s}}{\partial x_{r}}+\frac{\partial u_{r}}{\partial z_{s}}\right) \\
& =-\int_{\mathrm{r}} d \xi \int_{0}^{1} d r \Delta u_{i}(\xi, r) \varepsilon_{i j r r} n_{j}(\xi) \frac{\partial}{\partial z_{q}} \Sigma_{\left.k t_{p}(z, t-r ; \bar{\xi} \xi), 0\right),} \tag{4}
\end{align*}
$$

where $\sigma_{u}(\vec{z}, t)$ is the $k l$-component of the stress at position \bar{Z} and time t and
is the stress Green function denoting the $k l$-component of the stress observed at position \vec{x} and time $t-$ due to a unit force in the p th direction applied at position \bar{y} and time 0 .
In the time-independent problem, a parallel representation theorem holds which does not include time

$$
\begin{align*}
w_{i}(\bar{x}) & =-\int_{r} d \xi \Delta u_{i}(\xi) c_{j j v} n_{j}(\xi) \frac{\partial}{\partial x_{i}} G_{l_{p}}\left(\overline{z_{i}} \bar{y}(\xi)\right) \tag{6}\\
\sigma_{k i}(\bar{z}) & =-\int_{r} d \xi \Delta w_{i}(\xi) c_{j p v^{\prime}} n_{j}(\xi) \frac{\partial}{\partial x_{i}} \Sigma_{k p_{p}}(\bar{z} ; \bar{y}(\xi)) \tag{7}
\end{align*}
$$

It would be informative to refer here to the equation of motion for the Green functions, which shal be used later in the manipulations of formulae

$$
\begin{equation*}
\rho \frac{\partial^{2}}{\partial t^{2}} G_{i k}=\frac{\partial}{\partial x_{j}} \Sigma_{i j k} \tag{8}
\end{equation*}
$$

where ρ denotes the density

Figure 2. Nomenclature used in the crack analysis. The sign $\tilde{u}(\vec{Z}, t)$ denotes the displacement at position and time, F the whole length of the crack trace(s) \& the arc length along $\mathrm{T}, \Delta \bar{i}(\xi, T)$ the slip on the \bar{z} and time t, The whole length of the crack trace(s), ε the arc to the atnek trace at are length ξ that is directed to the left when seen toward the orientation of the increasing ξ, $\bar{g}()$ the location of the position on the crack at atc length \&
2.2 Time-domain formulation for anti-plane cracking

For the 2D problem, I choone the coordinate axes so that the elastic field variables are independent of the third coordinate. In the anti-plane (mode III) case, the only non-sero displacement and strese components are u_{3} and σ_{31}, σ_{32}, so that we have

$$
\begin{equation*}
u_{s}(\bar{x}, t)=-\int_{r} d \xi \int_{0}^{t} d \tau \Delta u_{a}(\xi, \tau) \mu\left[n_{1}(\xi) \frac{\partial}{\partial x_{1}} G_{a 3}+n_{2}(\xi) \frac{\partial}{\partial \pi_{2}} G_{a s}\right] \tag{9}
\end{equation*}
$$

and

$$
\begin{aligned}
& \sigma_{3 y}(\dot{\xi}, t)=-\int_{\mathrm{T}} d \xi \int_{0}^{t} d r \Delta_{u_{a}}\left(\xi_{1} r\right) \mu\left[n_{1}(\xi) \frac{\partial}{\partial x_{1}} \Sigma_{311}+n_{2(\xi)} \frac{\partial}{\partial x_{2}} \Sigma_{313}\right] \\
& =-\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta u_{s}(\xi, r) \mu^{2}\left[\frac{\partial}{\partial x_{2}}\left(n_{2}(\xi) \frac{\partial}{\partial z_{1}}-n_{1}(\xi) \frac{\partial}{\partial x_{2}}\right) G_{x_{3}}+n_{1}(\xi) \frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial \theta^{2}} G_{x 3}\right] \\
& =-\int_{T} d \xi \int_{0}^{1} d \tau \Delta u_{3}(\xi, r) \mu^{2}\left[-\frac{\partial}{\partial x_{2}}\left(n_{2}(\xi) \frac{\partial}{\partial \xi_{1}}-n_{1}(\xi) \frac{\partial}{\partial \xi_{2}}\right) G_{33}+n_{1}(\xi) \frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial \tau^{2}} G_{x 3}\right] \\
& =-\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta v_{3}(\xi, \tau) \mu^{2}\left[-\frac{\partial}{\partial x_{2}} \frac{\partial}{\partial \xi} G_{x x}+n_{1}(\xi) \frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial r^{2}} G_{x s}\right] \\
& =-\int_{r} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{a}(\xi, r) \mu^{2} \frac{\partial}{\partial x_{2}} G_{x a}- \\
& -\int_{F} d \xi \int_{0}^{t} d \tau \frac{\partial^{2}}{\partial r^{2}} \Delta w_{3}(\xi, r) \frac{\mu^{2}}{\beta^{2}} \pi_{3}(\xi) G_{33} .
\end{aligned}
$$

where integration by part shas been implemented so as to rewrite (or regnlarie) the hypersingular integral into a more weakly singular form (Sládek and Sládek, 1984; Koller et al, 1992). Likewie,

$$
\begin{align*}
\sigma_{32}\left(z_{1}, \ell\right)= & -\int_{\Gamma} d \xi \int_{0}^{t} d \tau \Delta u_{3}(\xi, r) \mu\left[n_{1}(\xi) \frac{\partial}{\partial x_{1}} \Sigma_{333}+n_{2}(\xi) \frac{\partial}{\partial x_{2}} \Sigma_{333}\right] \\
= & -\int_{\Gamma} d \xi \int_{0}^{1} d \tau \frac{\partial}{\partial \xi} \Delta u_{3}(\xi, r) \mu^{2}\left(-\frac{\partial}{\partial x_{1}} G_{33}\right)- \\
& -\int_{T} d \xi \int_{u}^{t} d \tau \frac{\partial^{2}}{\partial r^{2}} \Delta u_{3}(\xi, r) \frac{\mu^{2}}{\beta^{2}} n_{2}(\xi) G_{33} . \tag{11}
\end{align*}
$$

where μ is the rigidity, β the S wave velocity and the equation of motion

$$
\begin{equation*}
\rho \frac{\partial^{2}}{\partial t^{2}} G_{x x}=\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{\frac{1}{2}}}\right) G_{x x} \tag{12}
\end{equation*}
$$

was made use of.
With the limiting proct
at are length s and time

$$
\begin{align*}
T_{3}(s, t)= & n_{1}(s) \sigma_{31}(\overline{\tilde{y}}(s), t)+n_{2}(s) \sigma_{32}(\bar{y}(s), t) \\
= & -\int_{r} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{3}(\xi, r) \mu^{2}\left(n_{1}(s) \frac{\partial}{\partial x_{2}} G_{33}-n_{2}(s) \frac{\partial}{\partial x_{1}} G_{33}\right)- \\
& -\int_{\Gamma} d \xi \int_{0}^{t} d r \frac{\partial^{2}}{\partial r^{2}} \Delta u_{3}(\xi, r) \frac{\mu^{2}}{\beta^{2}}\left(n_{1}(s) n_{1}(\xi)+n_{2}(s) n_{2}(\xi)\right) G_{33} . \tag{13}
\end{align*}
$$

This is the displacement BIE that expresee the fraction on the crack(s) in terms of the slip on the crack(s), equivalent to Equation (6) of Koller et al. (1992) The explicit form of the Gireen fanction for the anti-plane case is (Achenbach, 1973. Section 3.10.2 kotler et at., 1992; Cochard and Madariaga, 1994)

$$
\begin{equation*}
G_{30}(\tilde{\bar{x}}, t-r ; \bar{y}, 0)=\frac{1}{2 \pi \mu} \frac{1}{\sqrt{(t-r)^{2}-(r / g)^{2}}} H\left(t-r-\frac{r}{\beta}\right), \tag{14}
\end{equation*}
$$

Whete $r \equiv\|z-g\|$ and $H(\cdot)$ is the Heaviside step function.
From this expression it is evident that the integral terms including fint-order spatial derivatives of G_{33} are still hypersingular. Cochard and Madariaga (1994) point ed out that these hypersingularitios may be removed by noting the following identities

$$
\begin{align*}
\frac{\partial}{\partial x_{i}} G_{x \partial} & =\frac{1}{2 \pi \mu} \frac{r_{i}}{\beta^{2}} \frac{1}{\left[(t-r)^{2}-(r / \beta)\right]^{2 / \beta}} H\left(t-r-\frac{r}{\beta}\right) \\
& =\frac{1}{2 \pi \mu} \frac{\partial}{r} \frac{\partial}{\partial r} \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \tag{15}\\
& =\frac{1}{2 \pi \mu} \frac{-\gamma}{r} \frac{\partial^{2}}{\partial r^{2}} \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right),
\end{align*}
$$

where

$$
\begin{equation*}
\psi_{0} \equiv\left(x_{1}-y_{i}\right) / r . \tag{17}
\end{equation*}
$$

Substituting Equations (15) and (16) into (9), (10), (11) and (13), we finally get, after performing integration by parts, at the following expressions, where the singular integrals should be interpreted in terms of Cauchy principal values:

$$
\begin{align*}
u_{a}(z, \theta)= & \frac{1}{2 \pi} \int_{r} d \xi\left(n_{1}(\xi) \frac{\gamma t}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \times \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta u_{a}(\xi, r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right) \\
\sigma_{31}(\bar{z}, t)= & \frac{\mu}{2 \pi} \int_{r} d \xi \frac{\gamma_{2}}{r} \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \dot{u}_{3}(\xi, r) \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)- \\
& -\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{r} d \xi n_{1}(\xi) \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta u_{3}(\xi, r) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \tag{19}\\
\sigma_{22}(\tilde{z}, t)= & \frac{\mu}{2 \pi} \int_{r} d \xi \frac{-\gamma_{1}}{r} \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{3}(\xi, r) \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)- \\
& -\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{r} d \xi n_{2}(\xi) \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta u_{3}(\xi, r) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) . \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
r & \equiv \sqrt{\left(x_{1}-y_{1}(\xi)\right)^{2}+\left(x_{2}-y_{2}(\xi)\right)^{2}} \\
r_{1} & \equiv\left(x_{i}-y_{1}(\xi)\right) / r
\end{aligned}
$$

and the dot over a variable denotes the time derivative, and

$$
\begin{aligned}
T_{3}(s, q)= & \frac{\mu}{2 \pi} \int_{r} d \varepsilon\left(n_{1}(s) \frac{\gamma_{2}}{r}-n_{2}(s) \frac{\gamma_{1}}{r}\right) \times \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial \xi} \Delta \dot{u}_{3}(\xi, r) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)- \\
& -\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{r} d \xi\left(n_{1}(s) n_{1}(\xi)+n_{2}(s) n_{2}(\xi)\right) \times \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial \tau} \Delta \dot{u}_{3}(\xi, r) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
r & \equiv \sqrt{\left(y_{1}(s)-y_{1}(\xi)\right)^{2}+\left(y_{2}(s)-y_{2}(\xi)\right)^{2}} \\
r_{1} & \equiv\left(y_{1}(s)-y_{1}(\xi)\right) / r .
\end{aligned}
$$

$$
\begin{aligned}
& (24) \\
& (25)
\end{aligned}
$$

Differentiating (18) with repect to t we get the following representation for the displacement velocity

$$
\begin{align*}
\omega_{0}(\vec{F}, t)= & \frac{1}{2 \pi} \int_{r} d \xi\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \times \\
& \times \int_{0}^{r} d \tau \frac{\partial}{\partial r} \Delta v_{3}(\xi, r) \frac{t-r}{\sqrt{(t-r)^{2}-(r / d)^{2}}} H\left(t-r-\frac{r}{\beta}\right), \tag{26}
\end{align*}
$$

2.3 Time-independent formulation for anti-plane cracking

The time-independent counterpart of the displacement BIFs for the 2D anti-plane crack problem follows tiy analogy to the time dependent version:

$$
\begin{aligned}
& u_{3}(\bar{z})=-\int_{\mathrm{r}} d \xi \Delta u_{3}(\xi) \mu\left(n_{1}(\xi) \frac{\partial}{\partial x_{1}} G_{33}+n_{2}(\xi) \frac{\partial}{\partial z_{2}} G_{3 x}\right) \\
& \sigma_{31}(\bar{z})=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta w_{3}(\xi) \mu^{2} \frac{\partial}{\partial x_{2}} G_{33} \\
& \sigma_{33}(\bar{z})=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{3}(\xi) \mu^{2}\left(-\frac{\partial}{\partial x_{1}} G_{3 x}\right) \\
& T_{33}(n)=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta a_{3}(\xi) \mu^{z}\left(n_{1}(n) \frac{\partial}{\partial x_{2}} G_{33}-n_{2}(s) \frac{\partial}{\partial x_{1}} G_{3 s}\right)
\end{aligned}
$$

The set of the 2D Gieen functions for the time-independent anti-plane case is familiarly known as the Kelvin solution and is given by (Maruyama, 1966; Zhang and Achenbach, 1989)

$$
\begin{aligned}
G_{33}(\vec{x} ; \bar{y}) & =\frac{1}{2 \pi \mu}(-\log r) \\
\frac{\partial}{\partial x_{i}} G_{33}(\bar{z} ; \bar{y}) & =\frac{1}{2 \pi \mu} \frac{-\eta i}{r},
\end{aligned}
$$

Unlike in the time-dependent case, the integral terms including first-order spatial derivatives of G_{33} ate not hypersingular, but can be understood as Cauchy principal value integrals.

Substituting Equation (32) into (27), (28), (29) and (30), we get at the expressions:

$$
\begin{aligned}
u_{3}(\bar{z}) & =\frac{1}{2 \pi} \int_{r} d \xi \Delta u_{3}(\xi)\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\partial z}{r}\right) \\
\sigma_{31}(\bar{z}) & =\frac{\mu}{2 \pi} \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{3}(\xi) \frac{\gamma_{2}}{r} \\
\sigma_{32}(\bar{z}) & =\frac{\mu}{2 \pi} \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{3}\left(\xi \frac{-\frac{\gamma 1}{r}}{r}\right. \\
T_{3}(\xi) & =\frac{\mu}{2 \pi} \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{3}(\xi)\left(n_{1}(s) \frac{\gamma_{2}}{r}-n_{2}(s) \frac{\partial 1}{r}\right) .
\end{aligned}
$$

2.4 Time-domain formulation for closed in-plane cracking

In the 2D it-plane (plane strain) shear crack problem to be treated in this section, we assume. for simp plicity, that the crack surfice is closed everywhere, or that the dapplacement dacontinuity on the crack(s) hiss only the tangential (purely mode II) component. In fact, no normal displaceurnt discontinuity exists in natural faules as a macroscopic feature, so that consideration of the tangential slip suffices for most of the practical purposes. Denoting the amoutit of righe-lateral shear slip by $\Delta \mathrm{s}_{\mathrm{t}}$, we obtain the relations

$$
\left\{\Delta u_{1}(\xi, \tau)=n_{2}(\xi) \Delta u_{1}(\xi, \tau)\right.
$$

Using the above notation, we hime

$$
\begin{aligned}
v_{1}(z, i)= & -\int_{\Gamma} d \xi \int_{0}^{t} d r\left\{\left[\Delta w_{1}(\xi, r)(\lambda+2 \mu) n_{1}(\xi)+\Delta u_{2}(\xi, r) \lambda n_{2}(\xi)\right] \frac{\partial}{\partial x_{1}} G_{11}+\right. \\
& +\left[\Delta u_{1}(\xi, r) \lambda n_{1}(\xi)+\Delta w_{2}(\xi, r)(\lambda+2 \mu) n_{2}(\xi) \frac{\partial}{\partial z_{2}} G_{12}+\right. \\
& \left.+\left(\Delta w_{1}(\xi, \tau) \mu n_{2}(\xi)+\Delta n_{2}(\xi, r) \mu m_{1}(\xi)\right)\left(\frac{\partial}{\partial x_{2}} G_{11}+\frac{\partial}{\partial z_{1}} G_{12}\right)\right\} \\
= & -\int_{\Gamma} d \xi \int_{0}^{1} d r \Delta u_{1}(\xi, \tau) \mu\left[2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial}{\partial x_{1}} G_{11}-\frac{\partial}{\partial x_{2}} G_{12}\right)+\right. \\
& \left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left(\frac{\partial}{\partial x_{1}} G_{11}+\frac{\partial}{\partial x_{1}} G_{12}\right)\right]
\end{aligned}
$$

$$
u_{2}(\tilde{x}, t)=-\int_{\Gamma} d \xi \int_{0}^{t} d r \Delta w_{1}(\xi, \tau) \mu\left[2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial}{\partial x_{1}} G_{21}-\frac{\partial}{\partial x_{2}} G_{22}\right)+\right.
$$

$$
\begin{equation*}
\left.+\left(n_{2}^{2}(\xi)-n_{i}^{2}(\xi)\right)\left(\frac{\partial}{\partial x_{2}} G_{21}+\frac{\partial}{\partial x_{1}} G_{2 z}\right)\right] \tag{3}
\end{equation*}
$$

and, likewise, the stress field is expressed a

$$
\begin{aligned}
\frac{1}{2}\left(\sigma_{11}(\bar{z}, t)-\sigma_{22}(\bar{z}, t)\right)= & -\frac{1}{2} \int_{\mathrm{r}} d \xi \int_{0}^{\prime} \mathrm{d} \tau \Delta u_{1}(\xi, \tau) \mu \times \\
& \times\left[2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial}{\partial x_{1}} \Sigma_{111}-\frac{\partial}{\partial x_{2}} \Sigma_{112}-\frac{\partial}{\partial x_{1}} \Sigma_{231}+\frac{\partial}{\partial x_{2}} \Sigma_{222}\right)+\right.
\end{aligned}
$$ $\left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left(\frac{\partial}{\partial z_{2}} \Sigma_{111}+\frac{\partial}{\partial x_{1}} \Sigma_{112}-\frac{\partial}{\partial x_{2}} \Sigma_{221}-\frac{\partial}{\partial z_{1}} \Sigma_{2 z 2}\right)\right]$ $=-\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta u_{t}(\xi, \tau) \mu^{2} \times$ $\times\left\{2 n_{1}(\xi) n_{3}(\xi)\left(\frac{\partial^{2}}{\partial x_{1}^{2}} G_{11}+\frac{\partial^{2}}{\partial x_{2}^{2}} G_{\gamma_{2}}-2 \frac{\partial^{2}}{\partial z_{1} \partial x_{2}} G_{12}\right)+\right.$ $\left.+\left(n_{2}^{2}(\epsilon)-n_{1}^{2}(\varepsilon)\right)\left[\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(G_{11}-G_{2 z}\right)+\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right) G_{12}\right]\right\}$

$\frac{1}{2}\left(\sigma_{11}(\vec{z}, t)+\sigma_{22}(\vec{F}, t)\right)=-\frac{1}{2} \int_{\mathrm{r}} d \xi \int_{\theta}^{t} d \tau \Delta u_{t}(\xi, r) \mu \times$ $\times\left[2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial}{\partial x_{1}} \Sigma_{111}-\frac{\partial}{\partial x_{2}} \Sigma_{112}+\frac{\partial}{\partial x_{1}} \Sigma_{221}-\frac{\partial}{\partial x_{2}} \Sigma_{222}\right)+\right.$ $\left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left(\frac{\partial}{\partial x_{2}} \Sigma_{111}+\frac{\partial}{\partial x_{1}} \Sigma_{112}+\frac{\partial}{\partial x_{2}} \Sigma_{221}+\frac{\partial}{\partial x_{1}} \Sigma_{2 z 2}\right)\right]$
$=-\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta u_{r}(\xi, r) \mu(\lambda+\mu) \times$
$\times\left\{2 n_{1}(\xi) n_{\partial}(\xi)\left(\frac{\partial^{2}}{\partial x_{1}^{2}} G_{11}-\frac{\partial^{2}}{\partial x_{2}^{2}} G_{22}\right)+\right.$

$$
\begin{align*}
& \left.+\left(n_{3}^{3}(\xi)-n_{1}^{2}(\xi)\right)\left[\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(G_{11}+G_{2 z}\right)+\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) G_{12}\right]\right\} \\
\sigma_{12}(\tilde{f}, t)= & -\int_{\Gamma} d \xi \int_{0}^{t} d r \Delta n_{1}(\xi, r) \mu\left[2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial}{\partial x_{1}} \Sigma_{121}-\frac{\partial}{\partial x_{2}} \Sigma_{122}\right)+\right. \\
& \left.+\left(n_{3}^{3}(\xi)-n_{1}^{2}(\xi)\right)\left(\frac{\partial}{\partial x_{2}} \Sigma_{121}+\frac{\partial}{\partial x_{1}} \Sigma_{122}\right)\right] \\
= & -\int_{r} d \xi \int_{0}^{1} d r \Delta u_{1}(\xi, r) \mu^{2} \times \\
& \times\left\{2 n_{1}(\xi) n_{2}(\xi)\left[\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(G_{n 1}-G_{2 z}\right)+\left(\frac{\partial^{2}}{\partial z_{1}^{2}}-\frac{\partial^{2}}{\partial x_{3}^{2}}\right) G_{12}\right]+\right. \\
& \left.+\left(n_{2}^{3}(\xi)-n_{1}^{2}(\xi)\right)\left(\frac{\partial^{2}}{\partial x_{2}^{2}} G_{11}+\frac{\partial^{2}}{\partial x_{1}^{2}} G_{22}+2 \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} G_{12}\right)\right\}, \tag{42}
\end{align*}
$$

where λ and μ are the Lame constants and the identity

$$
G_{12}=G_{21}
$$

was made use of. The other non-zero stress component $\sigma_{3 s,}$ for which the formulae shall not be given herein, is related with other components by a simple relation

$$
\begin{equation*}
\sigma_{33}=\frac{\lambda}{2(\lambda+\mu)}\left(\sigma_{11}+\sigma_{22}\right)=\frac{\alpha^{2}-2 \rho^{2}}{2\left(\alpha^{2}-\beta^{2}\right)}\left(\sigma_{11}+\sigma_{22}\right) \tag{44}
\end{equation*}
$$

It in convenient, for the purpose of regularization of the above integral equations, to represent the spatial derivative operators and the Green functions in terms of a different coordinate system, so defined at each location ξ on the crack(s) that the first coordinate axis x, is locally tangent to the crack trace and the second axis z_{n} is normal to it:

$$
\begin{aligned}
& \gamma_{1}=n_{2}(\xi) \gamma_{1}-n_{1}(\xi) \gamma_{2} \\
& \gamma_{s}=n_{1}(\xi) \gamma_{1}+n_{2}(\xi) \gamma_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial z_{1}}=n_{2}(\xi) \frac{\partial}{\partial x_{1}}-n_{1}(\xi) \frac{\partial}{\partial x_{2}} \\
& \frac{\partial}{\partial z_{n}}=n_{1}(\xi) \frac{\partial}{\partial x_{1}}+n_{2}(\xi) \frac{\partial}{\partial x_{2}}
\end{aligned}
$$

and
$G_{11}=n_{2}^{2}(\xi) G_{11}+n_{1}^{2}(\xi) G_{22}-2 n_{1}(\xi) n_{2}(\xi) G_{13}$
$G_{n n}=n_{1}^{2}(\xi) G_{11}+n_{2}^{2}(\xi) G_{22}+2 n_{1}(\xi) n_{2}(\xi) G_{11}$
$G_{t m}=n_{1}(\xi) n_{2}(\xi)\left(G_{11}-G_{22}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) G_{12}$
which leads to the following expressions:

$$
\begin{align*}
u_{1}(\bar{z}, t)= & -\int_{\mathrm{r}} d \xi \int_{0}^{t} d \tau \Delta u_{1}(\xi, r) \mu\left[n_{2}(\xi)\left(\frac{\partial}{\partial z_{n}} G_{n}+\frac{\partial}{\partial x_{1}} G_{m n}\right)+\right. \\
& \left.+n_{1}(\xi)\left(\frac{\partial}{\partial z_{n}} G_{t n}+\frac{\partial}{\partial z_{1}} G_{n n}\right)\right] \tag{52}\\
u_{2}(\vec{z}, t)= & -\int_{\mathrm{r}} d \xi \int_{0}^{t} d \tau \Delta u_{1}(\xi, r) \mu\left[-n_{1}(\xi)\left(\frac{\partial}{\partial x_{n}} G_{n}+\frac{\partial}{\partial x_{t}} G_{m n}\right)+\right. \\
& \left.+n_{2}(\xi)\left(\frac{\partial}{\partial z_{n}} G_{t n}+\frac{\partial}{\partial x_{1}} G_{n n}\right)\right] \tag{53}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2}\left(\sigma_{11}(\vec{z}, t)-\sigma_{22}(\vec{z}, t)\right)=-\int_{\Gamma} d \xi \int_{0}^{t} d r \Delta u_{i}(\xi, \tau) \mu^{2} \\
& \times\left\{2 n_{1}(\xi) n_{2}(\xi)\left(\frac{\partial^{2}}{\partial z_{n}^{2}} G_{n}+\frac{\partial^{2}}{\partial z_{1}^{2}} G_{n n}+2 \frac{\partial^{2}}{\partial z_{1} \partial z_{0}} G_{n n}\right)+\right. \\
& \left.+\left(n_{2}^{z}(\xi)-n_{i}^{z}(\xi)\right)\left[\frac{\partial^{2}}{\partial z_{i} \lambda_{z a}}\left(G_{u n}-G_{s n}\right)+\left(\frac{\partial^{2}}{\partial z_{1}^{2}}-\frac{\partial^{2}}{\partial z_{n}^{2}}\right) G_{b s}\right]\right\} \tag{54}\\
& \frac{1}{2}\left(\sigma_{11}(z, t)+m_{z z}(z, t)\right)=-\int_{r} d \varepsilon \int_{z^{2}}^{t} d+\Delta u_{t}\left(\xi_{,} r\right) \mu(\lambda+\mu) \times \\
& \times\left[\frac{\partial^{2}}{\partial z_{1} \partial x_{n}}\left(G_{n}+G_{n n}\right)+\left(\frac{\partial^{2}}{\partial z_{i}^{2}}+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) G_{n n}\right] \tag{55}\\
& \sigma_{12}\left(\overrightarrow{F_{2}}, t\right)=-\int_{\Gamma} d \xi \int_{0}^{t} d+\Delta v_{t}(\xi, \tau) u^{2} \times \\
& \times\left\{-2 n_{1}(\xi) n_{2}(\xi)\left[\frac{\partial^{2}}{\partial x_{1} \partial x_{a}}\left(G_{n}-G_{m n}\right)+\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{\partial^{2}}{\partial x_{a}^{2}}\right) G_{t n}\right]+\right. \\
& \left.+\left(n_{j}^{2}(\epsilon)-n_{i}^{2}(\epsilon)\right)\left(\frac{\partial^{2}}{\partial z_{j}^{2}} G_{n}+\frac{\partial^{2}}{\partial x_{i}^{2}} G_{n n}+2 \frac{\partial^{2}}{\partial x_{i} \partial x_{n}} G_{n n}\right)\right\} \tag{56}
\end{align*}
$$

Unlike in the anti-plane case, the regularization process for the stress components is rather cumbersome. Although the explicit form of the displacement Green functions for the 2 D in-plane case is not available in customary textbooks, an integral representation given by Achenbach (1973. Section 31.10.3)
is reducible, after performing the definite integration, to:

$$
\begin{align*}
& G_{11}=\frac{1}{2 \pi \rho} \frac{\partial^{2}}{\partial x_{1}^{2}}\left(I_{a}-I_{\beta}\right)+G_{3 s} \tag{57}\\
& G_{22}=\frac{1}{2 \pi \rho} \frac{\partial^{2}}{\partial z_{2}^{2}}\left(I_{a}-I_{\rho}\right)+G_{3 s} \\
& G_{12}=\frac{1}{2 \pi \rho} \frac{\partial^{2}}{\partial x_{1} \partial z_{2}}\left(I_{p}-I_{p}\right),
\end{align*}
$$(58)

where $G_{x 3}$ is the displacement Green function for the anti-plane case (see previous section) and

$$
\begin{align*}
t_{e} \equiv & \left\{(t-r) \log [d t-r) / r+\sqrt{(c(t-r) / r)^{2}-1}\right]- \\
& \left.-\sqrt{(t-r)^{2}-(r / c)^{2}}\right\} H(t-r-r / c)(c=a, p) \tag{60}
\end{align*}
$$

The explicit form of the Green functions for the in-plane case shall be given elsewhere in the present section

On the basis of the above derivative representations and the equation of motion

$$
\begin{equation*}
\rho \frac{\partial^{2}}{\partial t^{2}} G_{x a}=\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial z_{2}^{2}}\right) G_{x a} \tag{61}
\end{equation*}
$$

it can be proven that the following identities hold true

$$
\begin{align*}
\frac{\partial}{\partial z_{2}} G_{12} & =\frac{\partial}{\partial z_{1}} G_{12}+\frac{\partial}{\partial x_{2}} G_{31} \tag{62}\\
\frac{\partial}{\partial z_{1}} G_{22} & =\frac{\partial}{\partial z_{2}} G_{12}+\frac{\partial}{\partial z_{1}} G_{33} \\
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right) G_{12} & =\frac{\partial^{2}}{\partial x_{1} \partial z_{2}}\left(G_{11}-G_{23}\right)
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) G_{12}=\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(G_{11}+G_{22}-2 G_{30}\right) \tag{65}\\
& \frac{\partial^{2}}{\partial x_{3}^{2}} G_{11}+\frac{\partial^{2}}{\partial x_{1}^{2}} G_{22}=2 \frac{\partial^{2}}{\partial x_{2} \partial x_{2}} G_{22}+\frac{1}{\partial^{2}} \frac{\partial^{2}}{\partial x^{2}} G_{32} . \tag{66}
\end{align*}
$$

it should be kept in mind heteafter that the form of the Green functions for the in-plane case in sabject to no modification if we simultaneously replace z_{1} with z_{1} and z_{z} with z_{n}, since the transformation betwen the two coordinate system can be achieved by simple rotation. For the displacement components we get

$$
\begin{align*}
u_{1}(z, t)= & -\int_{\mathrm{r}} d \xi \int_{0}^{t} d r \Delta u_{1}(\xi, r) \mu\left[n_{2}(\xi)\left(2 \frac{\partial}{\partial z_{t}} G_{i n}+\frac{\partial}{\partial x_{n}} G_{z a s}\right)+\right. \\
& \left.+n_{1}(\xi)\left(2 \frac{\partial}{\partial z_{n}} G_{t n}+\frac{\partial}{\partial x_{1}} G_{3 a}\right)\right] \tag{67}
\end{align*}
$$

$$
u_{2}(\tilde{z}, t)=-\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta u_{r}(\xi, \tau) \mu\left[-n_{1}(\xi)\left(2 \frac{\partial}{\partial x_{1}} G_{m n}+\frac{\partial}{\partial x_{n}} G_{3 x}\right)+\right.
$$

$$
\begin{equation*}
\left.+n_{z}(\xi)\left(2 \frac{\partial}{\partial x_{n}} G_{t n}+\frac{\partial}{\partial z_{1}} G_{z s}\right)\right] \tag{08}
\end{equation*}
$$

Noting the relation

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}} G_{y}=-\frac{\partial}{\partial \xi} G_{v} \tag{69}
\end{equation*}
$$

and performing integration by parts, we obtain, for the streak components,

$$
\begin{aligned}
& \frac{1}{2}\left(\sigma_{u}(\neq, t)-\sigma_{2 r}(\bar{F}, t)=-\int_{\Gamma} d \varepsilon \int_{0}^{t} d r \Delta u_{t}(\xi, r) \mu^{2} \times\right. \\
& \times\left[2 n_{1}(\xi) n_{2}(\xi)\left(4 \frac{\partial^{2}}{\partial z_{1} \partial z_{n}} G_{6 n}+\frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial t^{2}} G_{23}\right)+\right. \\
& \left.+\left(n_{2}^{2}(\varepsilon)-n_{1}^{2}(\xi)\right) 2 \frac{\partial^{2}}{\partial z_{1} \partial x_{n}}\left(G_{11}-G_{n n}\right)\right] \\
& =-\int_{r} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{r}(\xi, \tau) \mu^{2} \times \\
& \times\left[2 n_{1}(\xi) n_{2}(\xi) 4 \frac{\partial}{\partial x_{n}} G_{n n}+\left(n_{2}^{3}(\xi)-n_{1}^{2}(\xi)\right) 2 \frac{\partial}{\partial z_{n}}\left(G_{n}-G_{n n}\right)\right]- \\
& -\int_{r} d \xi \int_{0}^{1} d \tau \frac{\partial^{2}}{\partial \tau^{2}} \Delta u_{1}(\xi, \tau) \frac{\mu^{2}}{\beta^{2}} 2 n_{1}(\xi) n_{2}(\xi) G_{33} \\
& \frac{1}{2}\left(\sigma_{11}(\bar{F}, t)+\sigma_{22}(\bar{F}, t)\right)=-\int_{T} d \varepsilon \int_{0}^{t} d r \Delta u_{1}(\xi, r) \mu(\lambda+\mu) \times \\
& \times 2 \frac{\partial^{2}}{\partial x_{1} \partial x_{n}}\left(G_{11}+G_{n n}-G_{33}\right) \\
& =-\int_{\Gamma} d \xi \int_{0}^{1} d r \frac{\partial}{\partial \xi} \Delta u_{t}(\xi, \tau) \mu^{2} \times \\
& \times \frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\partial^{2}}{a^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{30}\right) \\
& \sigma_{12}(\vec{z}, t)=-\int_{r} d \xi \int_{0}^{t} d \tau \Delta u_{d}(\xi, r) \mu^{2} \times \\
& \times\left[-2 n_{1}(\xi) n_{2}(\xi) \frac{\partial^{2}}{\partial z_{1} \partial x_{n}}\left(G_{11}-G_{n n}\right)+\right. \\
& \left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left(4 \frac{\partial^{2}}{\partial x_{i} \partial x_{n}} G_{n n}+\frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial y^{2}} G_{33}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & -\int_{r} d \xi \int_{0}^{t} d \tau \frac{\partial}{\partial \xi} \Delta \mathrm{v}_{1}(\xi, r) \mu^{2} \times \\
& \times\left[-2 \mathrm{~m}_{1}(\xi) n_{2}(\xi) 2 \frac{\partial}{\partial x_{0}}\left(G_{n}-G_{n n}\right)+\left(n_{2}^{3}(\xi)-n_{1}^{2}(\xi)\right) \frac{\partial}{\partial x_{n}} G_{n n}\right] \\
& -\int_{\Gamma} d \xi \int_{0}^{t} d r \frac{\partial^{2}}{\partial \tau^{2}} \Delta \mathrm{w}_{1}(\xi, r) \frac{\mu^{2}}{\beta^{2}}\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) G_{3 s} . \tag{72}
\end{align*}
$$

With the limiting process $z \rightarrow \tilde{F}(s)$, we get, for the tangential traction $T_{1}(s, t)$ on the crack at arc length s and time t
$T_{i}(s, t)=2 n_{1}(s) n_{2}(s) \frac{1}{2}\left(\sigma_{11}(\bar{y}(s), t)-\sigma_{22}(\tilde{y}(s), t)\right)+\left(n_{3}^{2}(s)-n_{1}^{2}(s)\right) \sigma_{12}(\bar{y}(s), t)$
$=-\int_{\mathrm{r}} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{r}(\xi, r) \mu^{2} \times$
$\times\left\{\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \frac{\partial}{\partial x_{n}} G_{i m}+\right.$
$\left.+\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] 2 \frac{\partial}{\partial s_{n}}\left(G_{n 1}-G_{n n}\right)\right\}-$ $-\int_{\mathrm{r}} d \varepsilon \int_{0}^{t} d r \frac{\dot{\sigma}^{2}}{\partial \sigma^{2}} \Delta u_{t}(\xi, r) \frac{\mu^{2}}{\beta^{2}} \times$
$\times\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] G_{3 s}$
This is the displacement BIE that expresses the traction on the crack(s) in terms of the slip on the crack(s). Likewise, the normal traction $T_{n}(s, t)$ across the crack at arc length s and time t is given by
$T_{n}(s, t)=\frac{1}{2}\left(\sigma_{11}(\bar{g}(s), t)+\sigma_{22}(\bar{y}(s), t)\right)-$
$-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \frac{1}{2}\left(\sigma_{11}(\tilde{\eta}(s), t)-\sigma_{22}(\tilde{y}(s), t)\right)+2 n_{1}(s) n_{2}(s) \sigma_{13}(\tilde{\eta}(s), t)$
$=-\int_{r} d \xi \int_{0}^{t} d \tau \frac{\partial}{\partial \xi} \Delta v_{t}(\xi, r) \mu^{2} \times$
$\times\left\{\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right\} 4 \frac{\partial}{\partial z_{0}} G_{1 m}-\right.$
$-\left[2 n_{1}(x) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(x)\right)\left(n_{2}^{2}(\xi)-n_{3}^{2}(\xi)\right)\right] 2 \frac{\partial}{\partial z_{n}}\left(G_{n}-G_{n n}\right)+$
$\left.+\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{x 3}\right)\right\}-$
$-\int_{\Gamma} d \xi \int_{\mathrm{a}}^{t} d r \frac{\partial^{2}}{\partial r^{2}} \Delta u_{r}(\xi, r) \frac{\mu^{2}}{\beta^{2}} \times$
$\times\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right) G_{x}$
The explicit form of the Green functions for the in-plane case can be derived from the derivative representation which has been given earlier in this section:
$G_{11}(\vec{z}, t-\tau ; \vec{y}, 0)-G_{22}(\vec{z}, t-r ; \vec{y}, 0)=$

$$
\begin{aligned}
= & -\frac{1}{2 \pi \mu}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \frac{\beta^{2}}{r^{2}}\left[2(t-r)^{2}-\frac{r^{2}}{\alpha^{2}}\right] \frac{1}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)+ \\
& +\frac{1}{2 \pi \mu}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \frac{\beta^{2}}{r^{2}}\left[2(t-r)^{2}-\frac{r^{2}}{\beta^{2}}\right] \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \quad(75)
\end{aligned}
$$

$G_{11}(\vec{z}, t-r ; \vec{y}, 0)+G_{22}(\vec{z}, t-r, \vec{y}, 0)=$
$=\frac{1}{2 \pi \mu} \frac{\beta^{2}}{\alpha^{2}} \frac{1}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-\tau-\frac{r}{\alpha}\right)+$

$$
\begin{aligned}
& +\frac{1}{2 \pi \mu} \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \\
G_{12}(\vec{z}, t-r ; \bar{y}, 0)= & \frac{1}{2 \pi \mu} 2 \pi / 2 \frac{\beta^{2} r^{2}}{r^{2}}\left[2(t-r)^{2}-\frac{r^{2}}{\alpha^{2}}\right] \frac{1}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)- \\
& -\frac{1}{2 \pi \mu} \gamma r \tau \frac{p^{2}}{r^{2}}\left[2(t-r)^{2}-\frac{r^{2}}{\beta^{2}}\right] \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) .
\end{aligned}
$$

where r $\begin{aligned} & \text { II } \| F-y| | \text { and } H(\cdot) \text { is the Heaviside step function. The Green function for the anti-plane case }\end{aligned}$ 5 given agnin for quick reference

$$
\begin{equation*}
G_{39}(\vec{z}, t-r ; \vec{y}, 0)=\frac{1}{2 \pi \mu} \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) . \tag{78}
\end{equation*}
$$

It would be informative, for the sake of interested readers, to note the following simple identity which was utilized in the derivation of the above formulae

$$
\frac{\partial}{\partial r} L_{s}=-\frac{1}{r} \sqrt{(t-r)^{2}-(r / c)^{2}} H\left(t-r-\frac{r}{c}\right) .
$$

Neat we shall proceed to the final stage of the regularization process. Making use of the relations

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \frac{1}{\sqrt{(t-r)^{2}-(r / c)^{2}}} & =\frac{\gamma_{i}}{r} \frac{\partial}{\partial r} \frac{t-T}{\sqrt{(t-r)^{2}-(r / c)^{2}}} \\
& =\frac{-7}{r} \frac{\partial^{2}}{\partial r^{2}} \sqrt{(t-r)^{2}-(r / c)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[2(t-r)^{2}-\frac{r^{2}}{c^{2}}\right] \frac{1}{\sqrt{(t-r)^{2}-(r / c)^{2}}} } & =-\frac{\partial}{\partial r}\left[(t-r) \sqrt{(t-r)^{2}-(r / c)^{2}}\right] \\
& =\frac{1}{3} \frac{\partial^{2}}{\partial r^{2}}\left[(t-r)^{2}-(r / c)^{2}\right]^{3 / 2}
\end{aligned}
$$

we can prove that the following identities hold true:

$$
\begin{aligned}
2 \frac{\partial}{\partial x_{1}} G_{12}+\frac{\partial}{\partial x_{2}} G_{33}= & \frac{1}{2 \pi \mu} \frac{\pi 2}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma \frac{\gamma}{2}-3 \gamma_{i}^{2}\right) \frac{\beta^{2}}{r^{2}}\left[(t-r)^{2}-(r / a)^{2}\right]^{3 / 2}-\right. \\
& \left.-2 \gamma^{3} \frac{\beta^{2}}{a^{2}} \sqrt{(t-r)^{2}-(r / a)^{2}}\right] H\left(t-r-\frac{r}{\alpha}\right)- \\
& -\frac{1}{2 \pi \mu} \frac{\gamma z}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma_{2}^{2}-3 \gamma_{i}^{2}\right) \frac{\beta^{2}}{r^{2}}\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2}+\right. \\
& \left.+\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \sqrt{(t-r)^{2}-(r / \beta)^{2}}\right] H\left(t-r-\frac{r}{\beta}\right) \\
2 \frac{\partial}{\partial x_{2}} G_{12}+\frac{\partial}{\partial x_{1}} G_{33}= & \frac{1}{2 \pi \mu} \frac{\gamma 1}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right) \frac{\partial^{2}}{r^{2}}\left[(t-r)^{2}-(r / a)^{2}\right]^{3 / 2}-\right. \\
& \left.-2 \gamma_{2}^{2} \frac{\beta^{2}}{\alpha^{2}} \sqrt{(t-r)^{2}-(r / a)^{2}}\right] H\left(t-r-\frac{r}{\alpha}\right)- \\
& -\frac{1}{2 \pi \mu} \frac{\partial 1}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right) \frac{\beta^{2}}{r^{2}}\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2}-\right. \\
& \left.-\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \sqrt{(t-r)^{2}-(r / \beta)^{2}}\right] H\left(t-r-\frac{r}{\beta}\right)
\end{aligned}
$$

and

$$
2 \frac{\partial}{\partial x_{2}} G_{12}=\frac{1}{2 \pi \mu} \frac{\eta_{1}}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma_{2}^{2}-\gamma_{1}^{2}\right) \frac{\sigma^{2}}{r^{2}}(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}}+\right.
$$

$$
\begin{align*}
& \left.+2-\frac{2}{\frac{t^{2}}{\alpha^{2}}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}}\right] H\left(t-r-\frac{r}{a}\right)- \\
& -\frac{1}{2 \pi r} \frac{7 t}{F} \frac{\partial}{\partial r}\left[2\left(3 \gamma \frac{2}{2}-\gamma \frac{2}{2}\right) \frac{d^{2}}{r}(t-r) \sqrt{(t-r)^{2}-(t / i}\right)^{2}+ \\
& \left.+2 \tau_{\frac{2}{2}}^{\frac{1}{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / S)^{2}}}\right] H\left(t-r-\frac{r}{3}\right) \\
& \frac{\partial}{\partial x_{2}}\left(G_{11}-G_{22}\right)=\frac{1}{2 \pi \mu} \frac{\eta z}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right) \frac{r^{2}}{r^{2}}(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}}-\right. \\
& \left.-\left(\theta^{2}-\tau^{2}\right) \frac{\beta^{2}}{a^{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}}\right] H\left(t-+-\frac{r}{o}\right)- \\
& -\frac{1}{2 \pi \mu} \frac{\partial z}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma \tau_{i}^{2}-\tau_{z}^{2}\right) \frac{\beta^{2}}{r^{2}}(t-\tau) \sqrt{(t-r)^{2}-(r / \beta)^{2}}-\right. \\
& \left.-\left(t^{2}-\gamma_{1}^{2}\right) \frac{t-T}{\sqrt{(t-r)^{2}-(r / g)^{2}}}\right] H\left(t-r-\frac{r}{\beta}\right) \tag{87}\\
& \frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{\partial}{\partial x_{2}}\left(G_{11}+G_{22}-G_{2 s}\right)= \\
& =\frac{1}{2 \pi \mu} \frac{2 z}{r}\left(1-\frac{\partial^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial r} \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)
\end{align*}
$$

As has been mentioned elsewhere, it is to be noted that the form of the Grven functions for the in-plane case is subject to no modification if we simultaneously replace z_{1} with z_{1}, and x_{2} with z_{0}. Substituting Equations (84), (85), (86), (87) and (88) into (67), (68), (70), (71). (72), (73) and (74), we get, aftirt lengthy algebraic manipulations, at the following expressions, in which the singular integrals slould be interpreted in the sense of Cauchy principal values:
$u_{1}(z, t)=\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{21}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{\frac{2}{2}}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)\right] \times$ $\times \int_{0}^{i} d r \frac{\partial}{\partial r} \Delta \dot{u}_{t}(\xi, r) \frac{2}{3} \frac{\partial^{2}}{r^{2}}\left\{\left((t-r)^{2}-(r / a)^{2}\right\}^{3 / 2} H\left(t-r-\frac{r}{a}\right)-\right.$ $\left.-\left[(t-r)^{2}-(r / s)^{2}\right]^{3 / 2} H\left(t-r-\frac{r}{\beta}\right)\right\}+$ $+\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\eta_{1}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\eta_{2}}{r} 2 \gamma_{1}^{2}\right] \times$ $\times \int_{0}^{1} d r \frac{\partial}{\partial \tau} \Delta \dot{u},(\xi, \tau) \frac{\partial^{2}}{a^{2}} \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-$ $-\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{2}{r}\left(-2 \tau_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{2}^{2}(\xi)\right) \frac{22}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)\right] \times$ $\times \int_{0}^{1} d \tau \frac{\partial}{\partial \tau} \Delta u_{t}(\xi, \tau) \sqrt{(t-\tau)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)$
$u_{2}(\bar{z}, t)=\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{2}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{\gamma}{r}\left(3 \gamma_{j}^{2}-\gamma_{1}^{2}\right)\right] \times\right.$
$\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta \dot{u}_{t}(\xi, r) \frac{2}{3} \frac{\partial^{2}}{r^{2}}\left\{\left[(t-r)^{2}-(r / \alpha)^{2}\right]^{3 / 2} H\left(t-r-\frac{r}{\alpha}\right)-\right.$
$\left.-\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2} H\left(t-r-\frac{r}{\beta}\right)\right\}+$
$+\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{3}^{2}(\xi) \frac{\gamma_{1}}{r} 2 \gamma_{2}^{2}\right] \times\right.$

$$
\times \int_{0}^{1} d r \frac{\partial}{\partial r} \sin (\xi, r) \frac{\partial^{2}}{a^{2}} \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-T-\frac{r}{a}\right)-
$$

$$
-\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r} 2 \gamma_{1}^{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{1}}{r}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right] \times
$$

$$
\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta u_{1}(\xi, r) \sqrt{(t-r)^{2}-(r / \Delta)^{2}} H\left(t-r-\frac{r}{\beta}\right)
$$

$\frac{1}{2}\left(\sigma_{11}(\bar{z}, t)+\sigma_{22}(\tilde{z}, t)\right)=\frac{\mu}{\pi} \int_{r} d \xi\left(n_{1}(\xi) \frac{\eta_{1}}{r}+n_{2}(\xi) \frac{\gamma_{z}}{r}\right) \times$

$$
\begin{equation*}
\times \int_{0}^{t} d r \frac{\partial}{\delta \xi} \Delta u,(\xi, r)\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\alpha}\right) \tag{92}
\end{equation*}
$$

$$
\sigma_{12}(\vec{z}, t)=\frac{\mu}{\pi} \int_{r} d \xi\left[n_{1}\left(\xi \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)-n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)\right] \times\right.
$$

$$
\times \int_{n}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{1}(\xi, r) 2 \frac{\partial^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-\right.
$$

$$
\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+
$$

$$
+\frac{\mu}{\pi} \int_{r} d \xi\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) 2 \gamma_{1} \gamma_{2} \times
$$

$$
\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \hat{t}_{1}(\xi, \tau)\left[\frac{\beta^{2}}{\alpha^{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)-\right.
$$

$$
\left.-\frac{t-t}{{\sqrt{(t-r)^{2}-(r / \beta)^{2}}}^{n}} H\left(t-\tau-\frac{r}{\beta}\right)\right]-
$$

$$
-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d \xi\left(n_{2}^{2}(\xi)-n_{i}^{2}(\xi)\right) \times
$$

$$
\times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{t}(\xi, r) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)
$$

and
$T_{1}(s, t)=2 n_{1}(s) n_{2}(s) \frac{1}{2}\left(\sigma_{11}(\bar{p}(s), t)-\sigma_{22}(\bar{p}(s), t)\right)+\left(n_{2}^{2}(s)-n_{3}^{2}(s)\right) \sigma_{12}(\tilde{y}(s), t)$

$$
\begin{align*}
& \frac{1}{2}\left(\sigma_{11}\left(Z_{1}, t\right)-\sigma_{22}\left(Z_{1}, t\right)\right)=\frac{\mu}{r} \int_{r} d \xi\left[n_{1}(\xi) \frac{2}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)+n_{2}(\xi) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)\right] \times \\
& \times \int_{0}^{t} d \tau \frac{\partial}{\partial \xi} \Delta u_{s}(\xi, r) 2 \frac{\beta^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-\right. \\
& \left.-(t-\tau) \sqrt{(t-\tau)^{2}-(r / \phi)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+ \\
& +\frac{\mu}{\pi} \int_{r} d \xi\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right)\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right) \times \\
& \times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \psi_{i}(\xi, r)\left[\frac{\beta^{2}}{\alpha^{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)-\right. \\
& \left.-\frac{t-r}{\sqrt{(t-\tau)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)\right]- \\
& -\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\mathrm{r}} d \xi 2 n_{1}(\xi) n_{2}(\xi) \times \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{r}(\xi, r) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \tag{91}
\end{align*}
$$

$=\frac{\mu}{r} \int_{r} d \xi\left\{\left(2 n_{1}(s) n_{2}(x) n_{1}(\xi)-\left(n_{3}^{2}(\theta)-n_{1}^{2}(\theta)\right) n_{2}(\xi)\right) \frac{21}{r}\left(r_{1}^{2}-3 \gamma_{2}^{2}\right)+\right.$

$\times \int_{0}^{1} d r \frac{\partial}{\partial \xi} \sin _{n}\left(\xi r+\frac{\sigma^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-\right.\right.$
$\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$

$\times\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}\left(\xi \frac{\eta_{2}}{r}\right) \times\right.$
$\times \int_{0}^{1} d+\frac{\partial}{\partial \xi} \Delta \dot{t}_{t}(\xi, \tau)\left[\frac{\beta^{2}}{\sigma^{2}} \sqrt{(t-r)^{2}-(r / \alpha)^{2}} H\left(t-r-\frac{r}{a}\right)-\right.$

$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{T} d\left\{\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{3}(\theta)-n_{1}^{2}(s)\right)\left(n_{j}^{2}(\xi)-n_{i}^{2}(\xi)\right)\right] \times\right.$
$\times \int_{0}^{t} d \tau \frac{\partial}{\partial \tau} \Delta \dot{u}_{1}(\xi, \tau) \frac{1}{\sqrt{(t-r)^{2}-(r / \theta)^{2}}} H\left(t-\tau-\frac{r}{\beta}\right)$
$T_{n}(s, t)=\frac{1}{2}\left(\sigma_{11}(\overline{\tilde{\varphi}}(x), t)+\sigma_{22}(\tilde{\tilde{\varphi}}(), t)\right)-$
$-\left(n_{2}^{2}(\theta)-n_{1}^{2}(s) \frac{1}{2}\left(\sigma_{1}(\tilde{y}(s), t)-\sigma_{22}(\tilde{y}(\theta), t)\right)+2 n_{1}(s) n_{2}(s) \sigma_{12}(\tilde{\varphi}(s), t)\right.$
$=\frac{\mu}{\pi} \int_{\Gamma} d \xi\left\{\left[2 n_{1}(s) n_{2}(s) n_{1}(\xi)-\left(n_{2}^{2}(\theta)-n_{1}^{2}(\theta)\right) n_{2}(\xi)\right] \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)-\right.$
$\left.-\left\{2 n_{1}(s) n_{2}(\theta) m_{2}(\xi)+\left(n_{2}^{2}(\theta)-n_{2}^{2}(\theta)\right) m_{1}(\xi)\right]_{\frac{\gamma_{1}}{r}}^{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)\right\} \times$
$\times \int_{0}^{i} d \tau \frac{\partial}{\partial \xi} \Delta i_{1}(\xi, r) 2 \frac{\partial^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{\sigma}\right)-\right.$
$\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$
$+\frac{\mu}{\pi} \int_{r} d\left\{\left[2 n_{1}(s) n_{2}(\theta) 2 n_{1} 7_{2}+\left(n_{2}^{2}(s)-n_{i}^{2}(\theta)\right)\left(\gamma_{2}^{2}-\gamma_{i}^{2}\right)\right] \times\right.$
$\times\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}\left(\xi \frac{\gamma_{2}}{r}\right) \times\right.$
$\times \int_{0}^{1} d r \frac{\partial}{\partial \xi} \Delta u_{t}(\xi, \tau)\left[\frac{\beta^{2}}{\sigma^{2}} \frac{t-\tau}{\sqrt{(t-\tau)^{2}-(r / a)^{2}}} H\left(t-\tau-\frac{r}{a}\right)-\right.$
$\left.-\frac{t-\tau}{{\sqrt{\left.(t-r)^{2}-(r / \beta)\right)^{2}}}^{H}}{ }^{\left(t-\tau-\frac{\tau}{\beta}\right)}\right]+$
$+\frac{\mu}{\pi} \int_{\mathrm{r}} d \xi\left(n_{1}(\xi) \frac{\gamma_{r}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{t}(\xi, \tau)\left(1-\frac{\beta^{2}}{\sigma^{2}}\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\sigma}\right)-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d\left\{\left[2 n_{1}(\theta) n_{2}(\theta)\left(n_{2}^{2}(\varepsilon)-n_{3}^{2}(\varepsilon)\right)-\left(n_{2}^{2}(\theta)-n_{1}^{2}(\theta)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times\right.$

$$
\times \int_{0}^{1} d r \frac{b}{\partial r} \Delta \dot{u}_{t}\left(\xi_{1} r\right) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) .
$$

Note that the expressions

$$
\frac{a^{2}}{r^{2}}\left\{\left((t-r)^{2}-(r / a)^{2}\right]^{3 / 2}-\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2}\right\}
$$

and

$$
\frac{\beta^{2}}{r^{2}}\left[(t-T) \sqrt{(t-r)^{2}-(r / a)^{2}}-(t-r) \sqrt{(t-r)^{2}-(r / \Delta)^{2}}\right]
$$

converge to finite limit valurs as $r \rightarrow 0$, so that the integral terme that include these expressions are not hypersingular.
Differentiating (89) and (90) with respect to t we get the following representations for the displacement velocity field:

$$
\begin{aligned}
& u_{1}(\vec{z}, t)=\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3_{7}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{2}}{r}\left(3_{1}^{2}-\gamma_{2}^{2}\right)\right] \times \\
& \times \int_{0}^{t} d \tau \frac{\partial}{\partial \tau} \Delta \dot{u}_{t}\left(\xi_{,}\right) 2 \frac{\beta^{2}}{r^{2}}\left[(t-\tau) \sqrt{(t-\tau)^{2}-(r / \alpha)^{2}} H\left(t-\tau-\frac{r}{a}\right)-\right. \\
& \left.-(t-\tau) \sqrt{(t-\tau)^{2}-(r / \beta)^{2}} H\left(t-\tau-\frac{r}{\beta}\right)\right]+ \\
& +\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{z_{2}}{r} 2 \gamma_{i}^{2}\right] \times\right. \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial \tau} \Delta \dot{u}_{1}(\xi, r) \frac{\beta^{2}}{a^{2}} \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-\tau-\frac{r}{a}\right)- \\
& -\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{1}}{r}\left(-2 \gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{2}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)\right] \times x \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{t}(\xi, r) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)
\end{aligned}
$$

$\dot{u}_{2}\left(\bar{x}_{,} t\right)=\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{1}}{r}\left(3 \gamma_{2}^{2}-\gamma_{1}^{2}\right)\right] \times$ $\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta \dot{u}_{t}(\xi, \tau) 2 \frac{\beta^{2}}{r^{2}}\left[(t-\tau) \sqrt{(t-\tau)^{2}-(r / \alpha)^{2}} H\left(t-\tau-\frac{r}{\alpha}\right)-\right.$
$\left.-(t-r) \sqrt{(t-r)^{2}-(r / \phi)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$
$+\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{1}}{r} 2 \gamma_{2}^{2}\right] \times$ $\times \int_{0}^{r} d r \frac{\partial}{\partial \tau} \Delta u,(\xi, r) \frac{\beta^{2}}{\alpha^{2}} \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)-$ $-\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r} 2 \gamma_{1}^{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{1}}{r}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right]$, $\times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta u_{t}(\xi, r) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)$
2.5 Time-independent formulation for closed in-plane cracking The time-independent counterpart of the displacement BIEs for the 2D dosed is-plane crack probletn follows by analogy to the time-dependent version:

$$
\begin{align*}
& u_{1}(z)=-\int_{\Gamma} d \xi \Delta u_{1}(\xi) \mu\left[n_{2}(\xi)\left(2 \frac{\partial}{\partial z_{1}} G_{k n}+\frac{\partial}{\partial x_{n}} G_{\Delta s}\right)+\right. \\
& \left.+n_{1}(\xi)\left(2 \frac{\partial}{\partial x_{n}} G_{\mathrm{nn}}+\frac{\partial}{\partial x_{1}} G_{2 n}\right)\right] \tag{98}\\
& u_{z}(\bar{x})=-\int_{T} d \xi \Delta u_{i}(\xi) \mu\left[-m_{1}(\xi)\left(2 \frac{\partial}{\partial z_{i}} G_{m}+\frac{\partial}{\partial x_{n}} G_{x a}\right)+\right. \\
& \left.+n_{2}(\xi)\left(2 \frac{\partial}{\partial x_{n}} G_{t n}+\frac{\partial}{\partial x_{1}} G_{N S}\right)\right] \tag{99}\\
& \begin{aligned}
\frac{1}{2}\left(\sigma_{11}(\vec{x})-\sigma_{22}(\bar{z})\right)= & -\int_{\mathrm{r}} d \xi \frac{\partial}{\partial \xi} \Delta u_{t}(\xi) \mu^{2} \times \\
& \times\left[2 n_{1}(\xi) n_{2}(\xi) 4 \frac{\partial}{\partial x^{2}} G\right.
\end{aligned} \\
& \times\left[2 n_{1}(\xi) n_{2}(\xi) 4 \frac{\partial}{\partial x_{n}} G_{i n}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) 2 \frac{\partial}{\partial z_{n}}\left(G_{n}-G_{n n}\right)\right] \tag{100}\\
& \frac{1}{2}\left(\sigma_{11}(\bar{I})+\sigma_{22}(\bar{Z})=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{1}(\xi) \mu^{2} \times\right. \\
& \times \frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial z_{n}}\left(G_{11}+G_{s n}-G_{3 s}\right) \tag{101}\\
& \sigma_{12}(\bar{Z})=-\int_{\mathrm{r}} d \xi \frac{\partial}{\partial \xi} \Delta \mathrm{u}_{1}(\xi) \mu^{2} \times \\
& \times\left[-2 n_{1}(\xi) n_{2}(\xi) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}-G_{n n}\right)+\left(n_{2}^{3}(\varepsilon)-n_{1}^{2}(\xi)\right) 4 \frac{\partial}{\partial x_{n}} G_{i n}\right] \tag{102}\\
& T_{i}(s)=-\int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{l}(\xi) \mu^{2} \times \\
& \times\left\{\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \frac{\partial}{\partial n_{n}} G_{5 n}+\right. \\
& \left.+\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] 2 \frac{\partial}{\partial x_{n}}\left(G_{11}-G_{\mathrm{sn}}\right)\right\} \quad(103) \\
& T_{n}(s)=-\int_{\Gamma} d \varepsilon \frac{\partial}{\sigma \epsilon} \Delta v_{1}(\xi) \mu^{2} \times \\
& \times\left\{\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{j}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \frac{\partial}{\partial x_{n}} G_{5 n}-\right. \\
& -\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] 2 \frac{\partial}{\partial x_{n}}\left\{G_{n 1}-G_{n n}\right)+ \\
& \left.+\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{3 y}\right)\right\} \tag{104}\\
& \text { The Kelvin solutions, or the Green functions for the time-independent in-plane case, are given by } \\
& \text { (Maruyama, 1966; Zhang and Achenbach, 1989) } \\
& G_{11}(\bar{z}, \hat{i})-G_{22}(\vec{z} ; \hat{\eta})=\frac{1}{4 \pi \mu}\left[-\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(\gamma_{2}^{2}-\gamma_{i}^{2}\right)\right] \\
& G_{11}(\vec{z} ; \vec{y})+G_{22}(\vec{z} ; \vec{y})=\frac{1}{4 \pi \mu}\left[\left(1-\frac{\beta^{2}}{a^{2}}\right)-2\left(1+\frac{\beta^{2}}{a^{2}}\right) \log r\right] \quad \text { (106) } \\
& G_{13}(\vec{x} ; \hat{y})=\frac{1}{4 \pi \mu}\left(1-\frac{a^{2}}{a^{2}}\right) \text { rivz. }^{2} \tag{107}
\end{align*}
$$

The Green fanction for the anti-plane case is given again for quick reference:

$$
G_{3 x}(z=\bar{y})=\frac{1}{4 \pi \mu}(-2 \log r)
$$

and thus we have

$$
\begin{align*}
2 \frac{\partial}{\partial z_{1}} G_{12}+\frac{\partial}{\partial x_{2}} G_{22} & =\frac{1}{2 \pi \mu} \frac{\eta 2}{r}\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-1\right] \\
2 \frac{\partial}{\partial x_{2}} G_{12}+\frac{\partial}{\partial x_{1}} G_{23} & =\frac{1}{2 \pi \mu} \frac{n}{r}\left[-\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-1\right] \\
2 \frac{\partial}{\partial x_{2}} G_{12} & =\frac{1}{2 \pi \mu} \frac{-\gamma_{1}}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \\
\frac{\partial}{\partial x_{2}}\left(G_{11}-G_{22}\right) & =\frac{1}{2 \pi \mu} \frac{-\gamma 2}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \gamma_{1}^{2} \\
\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{2}}\left(G_{11}\right. & \left.+G_{22}-G_{23}\right)=\frac{1}{2 \pi \mu} \frac{-\gamma_{2}}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)
\end{align*}
$$

As has been mentioned elsewhere, it is to be noted that the form of the Green functions for the in-plane ase is subject to no modification if we simultaneously replace x_{1} with x_{1} and x_{2} with z_{n}. Substituting Equations (109), (110), (111), (112) and (113) into (98), (99), (109), (101), (102), (103) and (104), we get, after lengthy algebraic manipulations, at the following expressions, where the singular integrals should be understood as Cauchy principal value problems

$$
u_{1}(\tilde{x})=\frac{1}{2 \pi} \int_{r} d \xi \Delta u_{1}(\xi) \times
$$

$$
\times\left\{2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{1}}{r}\left[\gamma_{1}^{2}+\left(2 \frac{\beta^{2}}{\sigma^{2}}-1\right) \gamma_{2}^{2}\right]+\right.
$$

$$
\begin{equation*}
\left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{\gamma_{2}}{r}\left[\left(2-\frac{\beta^{2}}{\alpha^{2}}\right) \gamma_{1}^{2}+\frac{\beta^{2}}{\alpha^{2}} \gamma_{2}^{2}\right)\right]\right\} \tag{114}
\end{equation*}
$$

$$
u_{z}(\bar{x})=\frac{1}{2 \pi} \int_{\Gamma} d \xi \Delta u_{r}(\xi) \times
$$

$\times\left\{-2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left[\left(2 \frac{\beta^{2}}{\sigma^{2}}-1\right) \gamma_{1}^{2}+\gamma_{2}^{2}\right]+\right.$
$\left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{z_{1}}{r}\left[\frac{\beta^{2}}{a^{2}} \gamma_{2}^{2}+\left(2-\frac{\beta^{2}}{a^{2}}\right) \gamma_{2}^{2}\right]\right\}$

$$
\begin{align*}
\frac{1}{2}\left(\sigma_{11}(\bar{z})-\sigma_{22}(\bar{z})\right) & =\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{1}(\xi) 2 \gamma_{1} \gamma_{2}\left(n_{2}(\xi) \frac{\eta}{r}-n_{1}(\xi) \frac{\eta_{2}}{r}\right) \\
\frac{1}{2}\left(\sigma_{11}(\bar{x})+\sigma_{22}(\overline{\bar{F}})\right) & =\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{1}(\xi)\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \\
\sigma_{13}(\bar{x}) & =\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{4}(\xi)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\left(n_{2}(\xi) \frac{\gamma_{1}}{r}-n_{1}(\xi) \frac{\gamma 2}{r}\right) \tag{117}
\end{align*}
$$

and
$T_{1}(s)=2 n_{1}(s) n_{2}(s) \frac{1}{2}\left(\sigma_{11}(\vec{r}(s))-\sigma_{22}(\vec{r}(s))\right)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \sigma_{12}(\vec{y}(s))$
$=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{a^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{i}(\xi) \times$
$\times\left[2 n_{1}(s) n_{2}(s) 2 \gamma_{1} \gamma_{2}+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right)\left(n_{2}(\xi) \frac{\gamma_{n}}{r}-n_{1}(\xi) \frac{\gamma 2}{r}\right)$
$T_{n}(s)=\frac{1}{2}\left(\sigma_{11}(\vec{y}(s))+\sigma_{22}(\tilde{y}(s))\right)-$
$\left.-\left(n_{3}^{2}(s)-n_{3}^{2}(s)\right) \frac{1}{2}\left(\sigma_{n}(\vec{\eta} s)\right)-\sigma_{22}(\bar{\pi}(s))\right)+2 n_{1}(s) n_{2}(s) \sigma_{12}(\bar{y}(s))$
$=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta v_{r}(\xi) x$
$\times\left\{\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right)+\right.$
$+\left[2 n_{1}(n) n_{2}(s)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(x)-n_{3}^{2}(s)\right) z_{\gamma_{1}} \gamma_{2}\left(n_{2}(\xi) \frac{\eta_{1}}{r}-n_{1}(\xi) \frac{72}{r}\right)\right\}$
2.6 Time-domain formulation for open in-plane cracking

For the sake of completeness 1 now consider the case of open in-plane crack(s), which has both non-zero sormal and tangential (mixed modes I and II) displacement discontinuities along its trace. In the presen) ection I derive the expemions for the elastic field induced by the normal displacement discontinuity (opening slip) Δu_{n}. For simplicity 1 ormit all terms relevant to the tangential displacement discontinuity (shear slip) Δv_{t}, but all the formulae that follow should be underateod as sapplementarg terms specific the case of open cracking that should be added to the formulae for the case of closed in-plase cracking. Denoting the amount of opening by Δw_{g}, we obtain the relations

$$
\left\{\begin{array}{l}
\Delta u_{1}(\xi, r)=n_{1}(\xi) \Delta u_{n}(\xi, r) \\
\Delta w_{2}(\xi, r)=n_{2}(\xi) \Delta u_{n}(\xi, \tau)
\end{array}\right.
$$

Following a sequence of algebra similar to that practiced in the case of closed in-plane cracking, wn arrive at the expressions

$$
\begin{align*}
u_{1}(z, r)= & -\int_{\Gamma} d \xi \int_{0}^{1} d \tau \Delta u_{n}(\xi, r)\left\{n_{2}(\xi)\left[\lambda \frac{\partial}{\partial x_{1}} G_{11}+(\lambda+2 \mu) \frac{\partial}{\partial x_{n}} G_{n n}\right]+\right. \\
& \left.+n_{1}(\xi)\left[\lambda \frac{\partial}{\partial x_{1}} G_{m n}+(\lambda+2 \mu) \frac{\partial}{\partial x_{n}} G_{n n}\right]\right\} \tag{122}\\
u_{2}(\tilde{z}, t)= & -\int_{\Gamma} d \xi \int_{0}^{1} d r \Delta u_{n}(\xi, r)\left\{-n_{1}(\xi)\left[\lambda \frac{\partial}{\partial x_{1}} G_{n}+(\lambda+2 \mu) \frac{\partial}{\partial x_{n}} G_{1 n}\right]+\right. \\
& \left.+n_{2}(\xi)\left[\lambda \frac{\partial}{\partial x_{1}} G_{m n}+(\lambda+2 \mu) \frac{\partial}{\partial x_{n}} G_{n n}\right]\right\} \tag{123}
\end{align*}
$$

and
$\frac{1}{2}\left(\sigma_{11}(z, t)-\sigma_{2 z}(\tilde{z}, t)\right)=-\int_{\Gamma} d \xi \int_{0}^{t} d \tau \Delta u_{n}(\xi, \tau) \mu \times$
$\times\left\{\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left[(\lambda+\mu)\left(\frac{\partial^{2}}{\partial x_{i}^{2}} G_{n}-\frac{\partial^{2}}{\partial z_{n}^{2}} G_{n n}\right)-\right.\right.$
$\left.-\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}} G_{n n}+\frac{\partial^{2}}{\partial x_{n}^{2}} G_{n n}-2 \frac{\partial^{2}}{\partial z_{i} \partial z_{n}} G_{i n}\right)\right]+$
$+2 n_{1}(\xi) n_{2}(\xi)\left[(\lambda+\mu)\left(\frac{\partial^{2}}{\partial z_{1} \partial x_{n}}\left(G_{n}+G_{m n}\right)+\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial z_{n}^{2}}\right) G_{m n}\right)-\right.$
$\left.\left.-\mu\left(\frac{\partial^{2}}{\partial x_{1} \partial x_{n}}\left(G_{n}-G_{n n}\right)+\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{\partial^{2}}{\partial z_{n}^{2}}\right) G_{t n}\right)\right]\right\}$
$\frac{1}{2}\left(\sigma_{11}(\vec{z}, t)+\sigma_{22}(\vec{x}, t)\right)=-\int_{\mathrm{r}} d \xi \int_{0}^{t} d r \Delta \mathrm{n}_{n}(\xi, r)(\lambda+\mu) \times$
$\times\left[(\lambda+\mu)\left(\frac{\partial^{2}}{\partial x_{i}^{2}} G_{n t}+\frac{\partial^{2}}{\partial z_{n}^{2}} G_{n n}+2 \frac{\partial^{2}}{\partial x_{1} \partial z_{n}} G_{t n}\right)-\right.$

$$
\begin{equation*}
\left.-\mu\left(\frac{\partial^{2}}{\partial z_{i}^{2}} G_{n 1}-\frac{\partial^{2}}{\partial z_{n}^{2}} G_{m n}\right)\right] \tag{125}
\end{equation*}
$$

$\sigma_{12}(\bar{x}, t)=-\int_{\Gamma} d \xi \int_{0}^{t} d \tau \Delta u_{n}(\xi, \tau) \mu \times$
$\times\left\{-2 n_{1}(\xi) n_{2}(\xi)\left[(\lambda+\mu)\left(\frac{\partial^{2}}{\partial z_{1}^{4}} G_{11}-\frac{\partial^{2}}{\partial x_{n}^{2}} G_{n n}\right)-\right.\right.$
$\left.-\mu\left(\frac{\partial^{2}}{\partial x_{i}^{2}} G_{n}+\frac{\partial^{2}}{\partial x_{n}^{2}} G_{n n}-2 \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} G_{n n}\right)\right]+$
$+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left[(\lambda+\mu)\left(\frac{\partial^{2}}{\partial x_{1} \partial x_{n}}\left(G_{n}+G_{n n}\right)+\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) G_{m}\right)-\right.$

$$
\begin{equation*}
\left.\left.-\mu\left(\frac{\partial^{2}}{\partial x_{1} \partial x_{n}}\left(G_{n}-G_{n n}\right)+\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{\partial^{2}}{\partial x_{n}^{2}}\right) G_{m n}\right)\right]\right\} \tag{126}
\end{equation*}
$$

Paying attention to the equations of motion

$$
\begin{align*}
\rho \frac{\partial^{2}}{\partial t^{2}}\left(G_{11}-G_{2 z}\right)= & (\lambda+2 \mu)\left(\frac{\partial^{2}}{\partial z_{1}^{2}} G_{11}-\frac{\partial^{2}}{\partial z_{2}^{2}} G_{22}\right)+\mu\left(\frac{\partial^{2}}{\partial x^{2}} G_{11}-\frac{\partial^{2}}{\partial z_{1}^{2}} G_{22}\right) \tag{127}\\
\rho \frac{\partial^{2}}{\partial t^{2}}\left(G_{11}+G_{22}\right)= & (\lambda+2 \mu)\left(\frac{\partial^{2}}{\partial z_{1}^{2}} G_{11}+\frac{\partial^{2}}{\partial z_{2}^{2}} G_{22}\right)+\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}} G_{11}+\frac{\partial^{2}}{\partial x_{1}} G_{22}\right)+ \\
& +2(\lambda+\mu) \frac{\partial^{2}}{\partial z_{1} \partial z_{2}} G_{12} \tag{128}\\
\rho \frac{\partial^{2}}{\partial \theta^{2}} G_{23}= & \mu\left(\frac{\partial^{2}}{\partial z 1}+\frac{\partial^{2}}{\partial z_{2}^{2}}\right) G_{22} \tag{129}
\end{align*}
$$

the following new relations can be found:

$$
\begin{align*}
& \frac{\partial^{2}}{\partial x^{2}} G_{11}-\frac{\partial^{2}}{\partial x_{j}^{2}} G_{22}=2 \frac{y^{2}}{\alpha^{2}} \frac{\partial^{2}}{\partial x_{1}^{2}} G_{23}+\frac{1}{a^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(G_{11}-G_{22}-G_{30}\right) \tag{130}\\
& \frac{\partial^{2}}{\partial x y^{2}} G_{11}+\frac{\partial^{2}}{\partial x_{2}^{2}} G_{22}=-2 \frac{\partial^{2}}{\partial x_{2} \partial x_{2}} G_{12}+\frac{1}{\alpha^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(G_{11}+G_{22}-G_{23}\right) . \tag{131}
\end{align*}
$$

Making use of these formulae and of those derived in a previous section, we arrive at the following expressions

$$
\begin{align*}
& u_{1}(z, t)=-\int_{\mathrm{r}} d \xi \int_{0}^{T} d \tau \Delta u_{\mathrm{s}}(\xi, r) \mu x \\
& \times\left\{n_{2}(\xi)\left[\frac{a^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}}\left(G_{n}+G_{n n}-G_{23}\right)+2 \frac{\partial}{\partial x_{n}} G_{0 n}\right]+\right. \\
& \left.+n_{1}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}} \frac{\partial}{\partial x_{n}}\left(G_{n 1}+G_{n n}-G_{33}\right)-2 \frac{\partial}{\partial x_{1}} G_{n n}\right]\right\} \tag{132}\\
& u_{2}(z, t)=-\int_{\Gamma} d \xi \int_{0}^{t} d \tau \Delta u_{n}(\xi, \tau) \mu \times \\
& \times\left\{-n_{1}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}}\left(G_{n}+G_{n n}-G_{x 0}\right)+2 \frac{\partial}{\partial x_{n}} G_{m n}\right]+\right. \\
& \left.+n_{2}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}} \frac{\partial}{\partial z_{n}}\left(G_{n 1}+G_{n n}-G_{33}\right)-2 \frac{\partial}{\partial z_{1}} G_{m n}\right]\right\} \tag{133}
\end{align*}
$$

$\frac{1}{2}\left(\sigma_{11}(\tilde{X}, t)-\sigma_{22}(\vec{X}, t)\right)=-\int_{r} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{n}(\xi, r) \mu^{2} \times$
$\times\left\{\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left[4 \frac{\partial}{\partial z_{n}} G_{m n}+\left(1-\frac{\partial^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial z_{1}} G_{2 s}\right]+2 n_{1}(\xi) n_{2}(\xi) \times\right.$
$\left.\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial z_{n}}\left(G_{11}+G_{n n}-G_{23}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n 1}-G_{n n}\right)\right]\right\}-$
$-\int_{r} d \xi \int_{0}^{r} d r \frac{\partial^{2}}{\partial r^{2}} \Delta u_{n}\left(\xi_{+} \tau\right) \frac{\mu^{2}}{\beta^{2}}\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \times$
$\times\left[\left(1-\frac{\beta^{2}}{a^{2}}\right)\left(G_{n t}-G_{n n}-G_{s a}\right)-\frac{j^{2}}{a^{2}}\left(G_{n}+G_{a n}-G_{3 s}\right)\right]$
(134)
$\frac{1}{2}\left(\sigma_{11}(\vec{z}, t)+\sigma_{22}(\vec{z}, t)\right)=-\int_{\Gamma} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{n}(\xi, r) \mu^{2}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(-2 \frac{\partial}{\partial x_{1}} G_{33}\right)-$ $-\int_{r} d \xi \int_{0}^{1} d r \frac{\partial^{2}}{\partial r^{2}} \Delta u_{n}(\xi, \tau) \frac{\mu^{2}}{\sigma^{2}} \times$

$$
\begin{align*}
& \left.\left.\times\left[\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)^{2}\left(G_{n 1}+G_{m n}-G_{33}\right)-\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(G_{n 1}-G_{m n}-G_{3 x}\right)\right] \right\rvert\, 135\right) \\
& \sigma_{12}(Z, t)=-\int_{r} d \delta \int_{0}^{1} d+\frac{\theta}{\partial \xi} \Delta u_{n}(\xi, r) \mu^{2} \times \\
& \times\left\{-2 n_{1}(\xi) n_{2}(\xi)\left[\frac{\partial}{\partial z_{n}} G_{1 n}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{2}} G_{2 x}\right]+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\varepsilon)\right) \times\right. \\
& \left.\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n 1}+G_{n n}-G_{x 3}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n 1}-G_{m n}\right)\right]\right\}- \\
& -\int_{T} d \delta \int_{0}^{1} d r \frac{\partial^{2}}{\partial r^{2}} \Delta u_{n}(\xi, \Gamma) \frac{\partial^{2}}{\beta^{2}}\left(-2 n_{1}(\xi) n_{2}(\xi)\right) \times \\
& \times\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(G_{n 1}-G_{n n}-G_{m}\right)-\frac{\beta^{2}}{\alpha^{2}}\left(G_{n 1}+G_{m n}-G_{m i}\right)\right] \tag{136}
\end{align*}
$$

With the limiting process $\vec{z} \rightarrow \bar{Y}(s)$, we get, for the tangential traction $T_{1}(s, t)$ on the crack at arc length s and time t.
$T_{1}(s, t)=2 n_{1}(s) n_{2}(s) \frac{1}{2}\left(\sigma_{11}(\tilde{\varphi}(s), t)-\sigma_{2 n}(\vec{\varphi}(\theta), t)\right)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \sigma_{12}(\vec{y}(s), t)$
$=-\int_{\mathrm{r}} d \xi \int_{0}^{1} \mathrm{dr} \frac{\partial}{\partial \xi} \Delta \mathrm{u}_{n}(\xi, \tau) \mu^{2} \times$
$\times\left\{\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right\} \times\right.$
$\times\left[4 \frac{\partial}{\partial x_{n}} G_{m n}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}} G_{x s}\right]+$
$+\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \times$
$\left.\times\left[\frac{\frac{\alpha}{}^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{a^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{11}+G_{n n}-G_{33}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n 1}-G_{n n}\right)\right]\right\}-$
$-\int_{\Gamma} d \xi \int_{0}^{\tau} d \tau \frac{\partial^{2}}{\partial r^{2}} \Delta u_{n}(\xi, \tau) \frac{\mu^{2}}{\beta^{2}} \times$
$\times\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times$
$\times\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(G_{n 1}-G_{n n}-G_{33}\right)-\frac{\beta^{2}}{\alpha^{2}}\left(G_{11}+G_{n n}-G_{33}\right)\right]$
This is the displacement BIE that expresses the traction on the crack(s) in terns of the slip on the crack (s). Likewise, the normal traction $T_{n}(s, t)$ across the crack at are length s and time t is given by
$T_{n}(s, t)=\frac{1}{2}\left(\sigma_{11}(\vec{y}(s), t)+\sigma_{22}(\vec{y}(s), t)\right)-$
$-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \frac{1}{2}\left(\sigma_{11}(\vec{y}(s), t)-\sigma_{22}(\vec{y}(s), t)\right)+2 n_{1}(s) n_{2}(s) \sigma_{13}(\vec{y}(s), t)$
$=-\int_{\mathrm{r}} d \xi \int_{0}^{t} d \tau \frac{\partial}{\partial \xi} \Delta u_{\mathrm{n}}(\xi, \tau) \mu^{2} \times$
$\times\left\{-\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \times\right.$
$\times\left[4 \frac{\partial}{\partial x_{n}} G_{n n}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{1}} G_{x s}\right]+$
$+\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times$
$\times\left[\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{33}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n}-G_{n n}\right)\right]-$ $\left.-\left(1-\frac{\beta^{2}}{a^{2}}\right) 2 \frac{\partial}{\partial z_{1}} G_{x x}\right\}-$
$-\int_{r} d \xi \int_{0}^{1} d r \frac{\mathscr{D}^{2}}{\partial r^{2}} \Delta u_{m}(\xi, r) \frac{\mu^{2}}{\mathcal{F}^{2}} \times$
$\times\left\{-\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{3}^{2}(\xi)\right)\right] \times\right.$
$\times\left[\left(1-\frac{\beta^{2}}{a^{2}}\right)\left(G_{n 1}-G_{n n}-G_{33}\right)-\frac{\beta^{2}}{a^{2}}\left(G_{n 1}+G_{n n}-G_{3 a}\right)\right]+$
$\left.+\left[\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)^{2}\left(G_{11}+G_{m n}-G_{23}\right)-\left(1-\frac{a^{2}}{\alpha^{2}}\right)\left(G_{n 1}-G_{m n}-G_{33}\right)\right]\right\}$
Since we can prove that the following identities hold true:

$$
\begin{aligned}
& \frac{\alpha^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}}\left(G_{11}+G_{22}-G_{33}\right)+2 \frac{\partial}{\partial x_{2}} G_{12}= \\
& \left.=\frac{1}{2 \pi \mu} \frac{\eta}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(r_{1}^{2}-3\right)_{2}^{2}\right) \frac{\beta^{2}}{r^{2}} l(t-r)^{2}-(r / a)^{2}\right]^{3 / 2}+ \\
& \left.+\left(2 \gamma_{i}^{2} \frac{2^{2}}{\alpha^{2}}-1\right) \sqrt{(t-r)^{2}-(r / \alpha)^{2}}\right] H\left(t-r-\frac{r}{\alpha}\right)- \\
& -\frac{1}{2 \pi \mu} \frac{\eta}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma_{i}^{2}-3 \gamma_{2}^{2}\right) \frac{\beta^{2}}{r^{2}} l(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2}- \\
& \left.-2 \gamma_{2}^{2} \sqrt{(t-r)^{2}-(r / \beta)^{2}}\right] H\left(t-r-\frac{r}{\beta}\right) \\
& \frac{a^{2}}{\beta^{2}} \frac{\partial}{\partial x_{2}}\left(G_{11}+G_{22}-G_{33}\right)-2 \frac{\partial}{\partial z_{1}} G_{12}= \\
& =-\frac{1}{2 \pi \mu} \frac{\gamma_{2}}{r} \frac{\partial^{2}}{\partial r^{2}}\left[\frac{2}{3}\left(\gamma_{2}^{2}-3 \gamma_{1}^{2}\right) \frac{\beta^{2}}{r^{2}}!(t-r)^{2}-(r / a)^{2}\right]^{3 / 2}- \\
& \left.-\left(2 \gamma_{1}^{2} \frac{\beta^{2}}{\alpha^{2}}-1\right) \sqrt{(t-r)^{2}-(r / a)^{2}}\right] H\left(t-r-\frac{r}{\alpha}\right)+ \\
& +\frac{1}{2 \pi \mu} \frac{\gamma_{2}}{\Gamma} \frac{\partial^{2}}{\partial \tau^{2}}\left[\frac{2}{3}\left(\gamma_{2}^{2}-3 \gamma_{1}^{2}\right) \frac{\beta^{2}}{r^{2}}\left((t-r)^{2}-(r / \beta)^{2}\right]^{2 / 2}-\right. \\
& \left.-2 \gamma_{1}^{2} \sqrt{(t-r)^{2}-(r / \beta)^{2}}\right] H\left(t-r-\frac{r}{\beta}\right) \\
& 2 \frac{\partial}{\partial z_{2}} G_{12}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}} G_{30}= \\
& =\frac{1}{2 \pi \mu} \frac{\gamma_{1}}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma_{2}^{2}-\gamma_{1}^{2}\right) \frac{\beta^{2}}{r^{2}}(t-r) \sqrt{(t-r)^{2}-(r / \alpha)^{2}}+\right. \\
& \left.+2 \gamma \frac{3}{2} \frac{\beta^{2}}{\alpha^{2}} \frac{t-r}{\sqrt{(t-\tau)^{2}-(r / a)^{2}}}\right] H\left(t-\tau-\frac{r}{\alpha}\right)- \\
& -\frac{1}{2 \pi \mu} \frac{\gamma_{1}}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma \gamma_{2}^{2}-\gamma_{i}^{2}\right) \frac{\beta^{2}}{r^{2}}(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}}+\right. \\
& \left.+\left(\gamma_{2}^{2}-\gamma_{1}^{2}+\frac{\beta^{2}}{\alpha^{2}}\right) \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}}\right] H\left(t-r-\frac{r}{\beta}\right) \\
& \frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{2}}\left(G_{11}+G_{22}-G_{33}\right)-\frac{\partial}{\partial x_{2}}\left(G_{11}-G_{22}\right)= \\
& =-\frac{1}{2 \pi \mu} \frac{\gamma_{2}}{r} \frac{\partial}{\partial r}\left[2\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right) \frac{\beta^{2}}{r^{2}}(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}}+\right. \\
& \left.+\left(2 \gamma_{1}^{2} \frac{\beta^{2}}{\sigma^{2}}-1\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}}\right] H\left(t-r-\frac{r}{a}\right)+
\end{aligned}
$$

$$
\begin{gather*}
+\frac{1}{2 \pi \mu} \frac{\gamma 2}{r} \frac{\partial}{\partial r}\left[2 \left(3 \gamma_{t}^{2}-\gamma^{2} \frac{\beta^{2}}{\sigma^{2}}(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}}-\right.\right. \\
\left.-\left(\gamma_{2}^{2}-\gamma^{2}\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}}\right] H\left(t-r-\frac{r}{\beta}\right) \\
\left(1-\frac{\partial^{2}}{a^{2}}\right) \frac{\partial}{\partial x_{1}} G_{3 s}=\frac{1}{2 \pi \mu} \frac{\gamma_{1}}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial r} \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \tag{143}
\end{gather*}
$$

and
$\left(1-\frac{p^{2}}{a^{2}}\right)\left(G_{n}-G_{n}-G_{\mathrm{m}}\right)-\frac{\beta_{2}^{2}}{\rho^{2}}\left(G_{n}+G_{\mathrm{n}}-G_{\mathrm{w}}\right)=$

$\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)^{2}\left(G_{11}+G_{22}-G_{33}\right)-\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(G_{11}-G_{22}-G_{33}\right)=$

we get, affer lengthy algebraic manipulations, at the following expressions, in which the singular integrats are to be interpreted in terms of Cauchy principal values:

$$
\begin{aligned}
u_{1}(\bar{z}, t)= & \frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(3 r_{1}^{2}-\gamma_{2}^{2}\right)-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)\right] \times\right. \\
& \times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta i_{s}(\xi, r) \frac{2 \beta^{2}}{3} \frac{\sigma^{2}}{r^{2}}\left\{(t-r)^{2}-(r / \alpha)^{2}\right]^{3 / z} H\left(t-r-\frac{r}{\alpha}\right)- \\
& \left.-\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2} H\left(t-r-\frac{r}{\beta}\right)\right\}+ \\
& +\frac{1}{2 \pi} \int_{r} d \xi\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\gamma_{1}}{r}+\right.
\end{aligned}
$$

$+2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r} 2 \gamma_{1}^{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right] \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \tau} \Delta \dot{u}_{n}(\xi, r) \frac{\beta^{2}}{\alpha^{2}} \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-\tau-\frac{r}{\alpha}\right)-$ $-\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)+\left(n_{2}^{2}(\xi)-n_{3}^{2}(\xi) \frac{\gamma_{2}}{r} 2 \gamma_{2}^{2}\right] \times\right.$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \tau} \Delta \dot{u}_{n}(\xi, \tau) \sqrt{(t-\tau)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{\tau}{\beta}\right)$
$\left.w_{2}(\xi, t)=\frac{1}{2 \pi} \int_{r} d \xi\left[-2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3\right)_{2}^{\frac{2}{2}}\right)-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{2 z}{r}\left(3 r_{i}^{2}-\gamma_{2}^{2}\right)\right] \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \tau} \Delta \hat{u}_{n}(\xi, r) \frac{2}{3} \frac{\beta^{2}}{r^{2}}\left\{\left[(t-\tau)^{2}-(r / a)^{2}\right]^{3 / 2} H\left(t-\tau-\frac{r}{a}\right)-\right.$
$\left.-\left[(t-r)^{2}-(r / \beta)^{2}\right]^{3 / 2} H\left(t-r-\frac{r}{\beta}\right)\right\}+$
$+\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[\frac{\alpha^{2}}{p^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial z}{r}+\right.$
$\left.+2 n_{1}(\xi) n_{2}(\xi) \frac{z_{1}}{r} 2 \tau_{2}^{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{23}{r}\left(\gamma_{3}^{2}-\gamma_{1}^{2}\right)\right] \times$
$\times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{n}(\xi, r) \frac{\beta^{2}}{\alpha^{2}} \sqrt{(t-r)^{2}-(r / \alpha)^{2}} H\left(t-r-\frac{r}{\alpha}\right)-$
$-\frac{1}{2 \pi} \int_{T} d \xi\left[2 n_{1}(\xi) n_{z}(\xi) \frac{\eta}{r}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{2 z_{2}}{r} 2 \gamma_{i}^{2}\right] \times$
$\times \int_{0}^{t} d \tau \frac{\partial}{\partial \tau} \Delta \dot{u}_{n}(\xi, \tau) \sqrt{(t-\tau)^{2}-(r / \beta)^{2}} H\left(t-\tau-\frac{r}{\beta}\right)$
$\frac{1}{2}\left(\sigma_{11}(\vec{z}, t)-\sigma_{22}(\vec{z}, t)\right)$
$=\frac{\mu}{\pi} \int_{\Gamma} d \xi\left[n_{1}(\xi) \frac{\gamma_{2}}{\tau}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)-n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)\right] \times$
$\times \int_{0}^{t} d \tau \frac{\partial}{\partial \xi} \Delta \dot{u}_{n}(\xi, \tau) 2 \frac{\beta^{2}}{r^{2}}\left[(t-\tau) \sqrt{(t-\tau)^{2}-(r / \alpha)^{2}} H\left(t-\tau-\frac{r}{o}\right)-\right.$
$\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$
$+\frac{\mu}{\pi} \int_{\Gamma} d \xi\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{T}\right) 2_{7172} \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{n}(\xi, \tau)\left[\frac{\beta^{2}}{\alpha^{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{o}\right)-\right.$
$\left.-\frac{t-\tau}{\sqrt{(t-\tau)^{2}-(r / \beta)^{2}}} H\left(t-\tau-\frac{r}{\beta}\right)\right]+$
$+\frac{\mu}{\pi} \int_{\Gamma} d \xi 2 n_{1}(\xi) n_{2}(\xi)\left(n_{1}(\xi) \frac{\gamma_{1}}{T}+n_{2}(\xi) \frac{\gamma_{2}}{\tau}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta u_{n}(\xi, \tau)\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{t-\tau}{\sqrt{(t-\tau)^{2}-(r / a)^{2}}} H\left(t-\tau-\frac{r}{a}\right)+$
$+\frac{\mu}{\pi} \int_{r} d \xi\left[-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right]\left(n_{2}(\xi) \frac{\eta_{2}}{r}-n_{2}(\xi) \frac{\gamma_{1}}{r}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \mathrm{u}_{n}(\xi, r)\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)-$
$\left.-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d \xi-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta u_{n}(\xi, r)\left[\frac{\beta^{4}}{\alpha^{4}} \frac{1}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-\tau-\frac{r}{\alpha}\right)+\right.$

 $+\left[\left(\frac{e}{2}-1-\lambda\right) H_{s}(f / t)-\varepsilon(1-\lambda) \mu(t-\lambda)-\right.$

$\left.\times\left(\frac{1}{\pi}(3)\right)^{2}+\frac{1}{\pi}(3)(4)(3) \varepsilon^{u}-(3) \varepsilon^{4}\right)\left(p^{3} \int \frac{x}{n^{2}}+\right.$

$$
\begin{aligned}
& \times\left(\frac{1}{2} L-{ }_{2}^{2} L\right)\left(\frac{A}{2 i}(3)^{2} u+\frac{1}{1 i}(3)^{1 u}\right) 3 p^{1} \int^{\frac{2}{n}}+ \\
& +\left[\left(\frac{\varepsilon}{4}-1-\lambda\right) H_{z}(\varepsilon / \alpha)-{ }_{\varepsilon}(1-1) \wedge(1-\lambda)-\right.
\end{aligned}
$$

 $+\left[\left(\frac{g}{4}-1-\lambda\right) H_{t}(\xi / A)-z(2-\lambda) \wedge-\right.$

$\left.+\left(\frac{0}{\alpha}-1-1\right) H \frac{2(0 / \Delta)-s(\Delta-1) \mu}{1}\left(\frac{t^{0}}{z^{g}}-1\right)\right](\alpha-3)^{\infty} n \nabla \frac{\Delta \theta}{\theta}+p \int_{1}^{0} x$
$\times 3 p \int^{4} \frac{2 d}{1} \frac{\Delta z}{n}-$

$\times\left(\frac{1}{4}(3)^{z} u-\frac{1}{2 i}(3)^{\prime} u\right) 3 p \int^{4} \frac{u}{\pi}=$

$$
+\left[\frac{\epsilon}{4}-1-\lambda\right) H_{2}(\varphi / 4)-x(1-2) \mu-
$$

$$
-\left[\left(\frac{\xi}{x}-2-\lambda\right) H \frac{d(f / t)-x(t-1)}{1}\left(\frac{x^{0}}{z^{f}}-1\right)+\right.
$$

$\times \int_{0}^{t} \mathrm{dr} \frac{\partial}{\partial \xi} \Delta \dot{u}_{n}(\xi, r)\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{t-r}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d \xi\left[-2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times$
$\times \int_{0}^{t} d \tau \frac{\partial}{\partial r} \Delta \hat{i}_{n}(\xi, \tau)\left[\frac{\sigma^{4}}{\alpha^{4}} \frac{1}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-\tau-\frac{r}{\alpha}\right)+\right.$
$\left.+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)\right]-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{r} d \xi\left[-2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)+\left(n_{2}^{2}(s)-n_{3}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times$
$\times\left[2 n_{1}(\xi) n_{2}(\xi) 2 \gamma_{1} \gamma_{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right] \times\right.$
$\times \int_{0}^{1} d r \frac{\partial}{\partial \tau} \Delta \dot{u}_{n}(\xi, r)\left(1-\frac{\partial^{2}}{\alpha^{2}}\right)\left\{2 \frac{\beta^{2}}{r^{2}}\left[\sqrt{(t-r)^{2}-(r / \alpha)^{2}} H\left(t-\tau-\frac{\tau}{\alpha}\right)-\right.\right.$
$\left.-\sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$
$\left.+\frac{\beta^{2}}{\sigma^{2}} \frac{1}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-\tau-\frac{\tau}{\alpha}\right)-\frac{1}{\sqrt{(t-\tau)^{2}-(r / \beta)^{2}}} H\left(t-\tau-\frac{\tau}{\beta}\right)\right\}$
$T_{n}(s, t)=\frac{1}{2}\left(\sigma_{11}(\tilde{F}(s), t)+\sigma_{2 n}(\tilde{\eta}(s), t)\right)-$
$-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \frac{1}{2}\left(\sigma_{11}(\bar{y}(s), t)-\sigma_{22}(\bar{y}(s), t)\right)+2 n_{1}(s) n_{2}(s) \sigma_{12}(\bar{y}(s), t)$
$=\frac{\mu}{\pi} \int_{\Gamma} d \xi\left\{\left[-2 n_{1}(s) n_{2}(s) n_{1}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) n_{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{2}\right)-\right.\right.$
$\left.-\left[2 n_{1}(s) n_{2}(s) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{i}^{2}(s)\right) n_{1}(\xi)\right] \frac{\gamma 2}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)\right\} \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta_{n}(\xi, r) 2 \frac{\beta^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-\right.$
$\left.-(t-\tau) \sqrt{(t-\tau)^{2}-(r / \beta)^{2}} H\left(t-\tau-\frac{r}{\beta}\right)\right]+$
$\left.+\frac{\mu}{\pi} \int_{r} d \xi\left[2 n_{1}(s) n_{2}(s)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 \gamma_{1} \gamma_{2}\right)\right]\left(n_{1}(\xi) \frac{\eta_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \dot{u}_{n}(\xi, \tau)\left[\frac{\beta^{2}}{\alpha^{2}} \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-\tau-\frac{r}{\alpha}\right)-\right.$
$\left.-\frac{t-T}{\sqrt{(t-\tau)^{2}-(r / \beta)^{2}}} H\left(t-\tau-\frac{r}{\beta}\right)\right]+$
$+\frac{\mu}{\pi} \int_{\Gamma} d \xi\left\{2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right]\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta i_{n}(\xi, \tau)\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{t-\tau}{\sqrt{(t-\tau)^{2}-(r / \alpha)^{2}}} H\left(t-\tau-\frac{r}{\alpha}\right)+$
$+\frac{\mu}{\pi} \int_{r} d \xi\left[1+2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right]\left(n_{1}(\xi) \frac{\gamma_{2}}{r}-n_{2}(\xi) \frac{\gamma_{1}}{r}\right) \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \hat{u}_{n}(\xi, r)\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-\tau-\frac{r}{\beta}\right)-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d \xi\left[2 n_{1}(s) n_{2}(s) 2 n_{3}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{2}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right\} \times$
$\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta i_{n}(\xi, r)\left[\frac{\rho^{4}}{\alpha^{4}} \frac{1}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{a}\right)+\right.$
$\left.+\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)\right]-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{r} d \xi x$
$\times \int_{a}^{t} d r \frac{\partial}{\partial \tau} \Delta i_{n}(\xi, r)\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)^{2} \frac{1}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{\alpha}\right)+\right.$
$\left.+\left(1-\frac{\beta^{2}}{\rho^{2}}\right) \frac{1}{\sqrt{(t-T)^{2}-(r / \beta)^{2}}} H\left(t-\tau-\frac{r}{\beta}\right)\right]-$
$-\frac{\mu}{2 \pi} \frac{1}{\beta^{2}} \int_{\Gamma} d \xi\left[1+2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{2}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \times$
$\times\left[2 n_{1}(\xi) n_{2}(\xi) 2 \gamma_{1} 7_{2}+\left(n_{2}^{2}(\xi)-n_{(\xi)}^{2}(\xi)\right)\left(7_{2}^{2}-\gamma_{i}^{2}\right)\right] \times$
$\times \int_{0}^{r} d \tau \frac{\partial}{\partial \tau} \Delta \dot{u}_{n}(\xi, \tau)\left(1-\frac{\beta^{2}}{a^{2}}\right)\left\{2 \frac{\partial^{2}}{r^{2}}\left[\sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{a}\right)-\right.\right.$
$\left.-\sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$

$$
\left.+\frac{\beta^{2}}{\alpha^{2}} \frac{1}{\sqrt{(t-r)^{2}-(r / \alpha)^{2}}} H\left(t-r-\frac{r}{a}\right)-\frac{1}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)\right\} .
$$

Differentiating (146) and (147) with respect to t we get the following representations for the displacement velocity field:
$\dot{u}_{1}(\overline{\boldsymbol{z}}, t)=\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{3}^{2}\right)-\left(n_{2}^{2}(\xi)-n_{3}^{2}(\xi)\right) \frac{\gamma_{1}}{r}\left(\gamma_{1}^{2}-3 \gamma_{2}^{3}\right)\right] \times$

$$
\times \int_{0}^{t} d r \frac{\partial}{\partial r} \Delta \dot{u}_{n}(\xi, r) 2 \frac{\beta^{2}}{r^{2}}\left[(t-r) \sqrt{(t-r)^{2}-(r / a)^{2}} H\left(t-r-\frac{r}{o}\right)-\right.
$$

$$
\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+
$$

$$
+\frac{1}{2 \pi} \int_{r} d \xi\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\tau_{1}}{r}+\right.
$$

$+2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r} 2 \gamma_{1}^{2}+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi) \frac{\gamma_{1}}{r}\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right] \times$
$\times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{n}(\xi, r) \frac{\beta^{2}}{a^{2}} \frac{t-r}{\sqrt{(t-r)^{2}-(r / a)^{2}}} H\left(t-r-\frac{r}{a}\right)-$ $-\frac{1}{2 \pi} \int_{r} d \xi\left[2 n_{1}(\xi) n_{2}(\xi) \frac{72}{r}\left(\gamma_{1}^{3}-\gamma_{2}^{2}\right)+\left(n_{2}^{3}(\xi)-n_{1}^{2}(\xi)\right) \frac{212}{r} 2 \gamma_{2}^{2}\right] \times$
$\times \int_{0}^{1} d r \frac{\partial}{\partial r} \Delta \dot{u}_{n}(\xi, r) \frac{t-\tau}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right)$
$\dot{u}_{2}(\vec{F}, t)=\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[-2 n_{1}(\xi) n_{2}(\xi) \frac{\eta_{1}}{r}\left(\gamma_{1}^{2}-3_{7}^{2}\right)-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{\gamma_{2}}{r}\left(3 \gamma_{1}^{2}-\gamma_{2}^{2}\right)\right] \times$ $\times \int_{0}^{1} d r \frac{\partial}{\partial \tau} \Delta u_{n}(\xi, \tau) 2 \frac{\beta^{2}}{r^{2}}\left[(t-\tau) \sqrt{(t-\tau)^{2}-(r / \alpha)^{2}} H\left(t-\tau-\frac{r}{\alpha}\right)-\right.$ $\left.-(t-r) \sqrt{(t-r)^{2}-(r / \beta)^{2}} H\left(t-r-\frac{r}{\beta}\right)\right]+$ $+\frac{1}{2 \pi} \int_{\Gamma} d \xi\left[\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\gamma_{2}}{r}+\right.$

2.7 Time-independent formulation for open in-plane cracking

The time-independent counterpart of the displacement BIEs for the 2D open in-plane crack problem follows by analogy to the time-dependent version. As in Section 2.6. all the formular that follow shonld formulae for the case of closed is.plane capic to the casse of open cracking that should be added to the formulae for the case of closed in-plane cruding.

$$
\begin{align*}
& u_{1}(\bar{x})=-\int_{\Gamma} d \xi \Delta u_{m}(\xi) \mu \times \\
& \times\left\{n_{2}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial z_{i}}\left(G_{n 1}+G_{m n}-G_{s a}\right)+2 \frac{\partial}{\partial z_{n}} G_{n n}\right]+\right. \\
& \left.+n_{1}(\xi)\left[\frac{a^{2}}{\beta^{2}} \frac{\partial}{\partial z_{n}}\left(G_{n 1}+G_{n n}-G_{23}\right)-2 \frac{\partial}{\partial z_{1}} G_{t n}\right]\right\} \\
& u_{2}(\bar{z})=-\int_{\mathrm{r}} d \xi \Delta u_{n}(\xi) \mu \times \\
& \times\left\{-n_{1}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial z_{1}}\left(G_{11}+G_{n n}-G_{3 s}\right)+2 \frac{\partial}{\partial x_{a}} G_{n n}\right]+\right. \\
& \left.+n_{2}(\xi)\left[\frac{\alpha^{2}}{\beta^{2}} \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{30}\right)-2 \frac{\partial}{\partial z_{1}} G_{n n}\right]\right\} \\
& \frac{1}{2}\left(\sigma_{11}(\bar{X})-\sigma_{22}(\bar{x})\right)=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{n}(\xi) \mu^{2} \times \\
& \times\left\{\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\left[4 \frac{\partial}{\partial z_{n}} G_{i n}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{1}} G_{n y}\right]+2 n_{1}(\xi) n_{2}(\xi) \times\right. \\
& \left.\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\sigma^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{x s}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n}-G_{n n}\right)\right]\right\} \\
& \frac{1}{2}\left(\sigma_{11}(\bar{z})+\sigma_{22}(\bar{X})\right)=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta \mathrm{u}_{n}(\xi) \mu^{2}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(-2 \frac{\partial}{\partial z_{1}} G_{x s}\right) \\
& \sigma_{12}(\bar{z})=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta \mathrm{u}_{n}(\xi) \mu^{2} \times \\
& \times\left\{-2 n_{1}(\xi) n_{2}(\xi)\left[4 \frac{\partial}{\partial z_{n}} G_{m n}+\left(1-\frac{\beta^{2}}{a^{2}}\right) 2 \frac{\partial}{\partial z_{1}} G_{33}\right]+\left(n_{3}^{3}(\xi)-n_{1}^{2}(\xi)\right) \times\right. \\
& \left.\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{z a}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n}-G_{n n}\right)\right]\right\} \tag{159}\\
& T_{1}(s)=-\int_{\Gamma} d \xi \frac{\partial}{\partial \xi} \Delta u_{0}(\xi) \mu^{7} \times \\
& \times\left\{\left[2 n_{1}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{3}^{2}(s)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times\right. \\
& \times\left[4 \frac{\partial}{\partial z_{n}} G_{n n}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial z_{1}} G_{x s}\right]+ \\
& +\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{3}(\xi)-n_{1}^{2}(\xi)\right)\right] \times \\
& \left.\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{n}}\left(G_{n}+G_{n n}-G_{33}\right)-2 \frac{\partial}{\partial x_{n}}\left(G_{n}-G_{n n}\right)\right]\right\} \\
& \times\left\{-\left[2 n_{1}(s) n_{2}(s) 2 n_{1}(\xi) n_{2}(\xi)+\left(n_{2}^{3}(s)-n_{1}^{2}(s)\right)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)\right] \times\right. \\
& \times\left[4 \frac{\partial}{\partial x_{n}} G_{\mathrm{m}}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial x_{t}} G_{3 x}\right]+
\end{align*}
$$

$+\left[2 n_{3}(s) n_{2}(s)\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right)-\left(n_{2}^{2}(s)-n_{3}^{2}(\sigma)\right) 2 n_{1}(\xi) n_{2}(\xi)\right] \times$
$\times\left[\frac{\alpha^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\sigma^{2}}\right) 2 \frac{\partial}{\partial z_{n}}\left(G_{n}+G_{m a}-G_{m a}\right)-2 \frac{\partial}{\partial z_{n}}\left(G_{n}-G_{m n}\right)\right]$
$\left.-\left(1-\frac{\sigma^{2}}{\alpha^{2}}\right) 2 \frac{\partial}{\partial z_{1}} G_{x x}\right\}$
(161)

Substituting the explicit forms of the Kelvin solutions, we have

$$
\begin{align*}
\frac{a^{2}}{\beta^{2}}\left(1-2 \frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}}\left(G_{11}+G_{22}-G_{23}\right)+2 \frac{\partial}{\partial x_{2}} G_{12} & =\frac{1}{2 \pi \mu} \frac{-\eta}{r}\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \gamma_{2}^{2}-\frac{\beta^{2}}{\alpha^{2}}\right](162) \\
\frac{\alpha^{2}}{\beta^{2}} \frac{\partial}{\partial x_{2}}\left(G_{11}+G_{22}-G_{33}\right)-2 \frac{\partial}{\partial x_{1}} G_{12} & =\frac{1}{2 \pi \mu} \frac{-\gamma 2}{r}\left[\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \gamma_{2}^{2}+\frac{\beta^{2}}{\alpha^{2}}\right](163) \\
2 \frac{\partial}{\partial x_{2}} G_{12}+\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}} G_{23} & =\frac{1}{2 \pi \mu} \frac{-\gamma_{1}}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) 2 \gamma_{2}^{2} \quad \text { (164) } \\
\frac{a^{2}}{\beta^{2}}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{2}}\left(G_{11}+G_{22}-G_{33}\right)-\frac{\partial}{\partial x_{2}}\left(G_{11}-G_{22}\right) & =\frac{1}{2 \pi \mu} \frac{-\gamma_{2}}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right) \quad \text { (165) } \\
\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \frac{\partial}{\partial x_{1}} G_{33} & =\frac{1}{2 \pi \mu} \frac{-\gamma}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) .
\end{align*}
$$

In view of the above expressions we get, after lengthy algebraic manipulations, at the expressions, where the singular integrals should be in terms of Canchy principal values:

$$
\begin{aligned}
u_{1}(z)= & \frac{1}{2 \pi} \int_{r} d \xi \Delta_{u_{n}}(\xi)\left\{\frac{n}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)+\right. \\
& \left.+2 n_{1}(\xi) n_{2}(\xi) \frac{\gamma_{2}}{r}\left[\left(2-\frac{\beta^{2}}{\alpha^{2}}\right) \gamma_{1}^{2}+\frac{\beta^{2}}{\alpha^{2}} v_{2}^{2}\right)\right]-
\end{aligned}
$$

$\left.-\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{r_{1}}{r}\left[\gamma_{1}^{2}+\left(2 \frac{\beta^{2}}{\alpha^{2}}-1\right) \gamma_{2}^{2}\right]\right\}$
$w_{2}(\bar{z})=\frac{1}{2 \pi} \int_{\Gamma} d \varepsilon \Delta u_{n}(\xi)\left\{\frac{\gamma 2}{r}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)+\right.$
$+2 n_{1}(\xi) \operatorname{man}_{2}(\xi) \frac{\gamma_{1}}{r}\left[\frac{\beta^{2}}{\alpha^{2}} \gamma_{1}^{2}+\left(2-\frac{\beta^{2}}{\alpha^{2}}\right) \gamma_{2}^{2}\right]+$
$\left.+\left(n_{2}^{2}(\xi)-n_{1}^{2}(\xi)\right) \frac{z_{2}}{r}\left[\left(2 \frac{\beta^{2}}{\alpha^{2}}-1\right) \gamma_{1}^{2}+\gamma_{2}^{2}\right]\right\}$
$\frac{1}{2}\left(\sigma_{11}(\bar{z})-\sigma_{22}(\bar{z})\right)=\frac{\mu}{r}\left(1-\frac{\beta^{2}}{\sigma^{2}}\right) \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{n}(\xi) 2 \gamma_{1} \gamma_{2}\left(n_{1}(\xi) \frac{\eta}{r}+n_{2}\left(\xi \frac{\gamma_{2}}{r}\right)\right.$
$\frac{1}{2}\left(\sigma_{11}(\bar{z})+\sigma_{22}(\bar{z})\right)=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\beta_{\xi}} \Delta u_{n}(\xi)\left(n_{1}(\xi) \frac{\gamma_{2}}{r}-n_{2}(\xi) \frac{\gamma_{1}}{r}\right)$
$\sigma_{12}(\bar{z})=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\beta \xi} \Delta u_{n}(\xi)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma z}{r}\right)$
and
$T_{1}(s)=2 n_{1}(s) n_{2}(s) \frac{1}{2}\left(\sigma_{11}(\tilde{y}(s))-\sigma_{22}(\bar{\eta}(s))\right)+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \sigma_{12}(\tilde{y}(s))$
$=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{a^{2}}\right) \int_{r} d \xi \frac{\partial}{\partial \xi} \Delta u_{n}(\xi) \times$
$\times\left[2 n_{1}(s) n_{2}(s) 2 \gamma_{1} \gamma_{2}+\left(n_{3}^{2}(s)-n_{1}^{2}(s)\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right)\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right)$
$\left.T_{n}(s)=\frac{1}{2}\left(\sigma_{11}(\tilde{n} s)\right)+\sigma_{22}(\vec{r}(s))\right)-$
$-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) \frac{1}{2}\left(\sigma_{11}(\vec{y}(s))-\sigma_{22}(\bar{y}(s))\right)+2 n_{1}(x) n_{2}(x) \sigma_{12}(\bar{y}(s))$
$=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi \frac{\theta}{\partial \xi} \Delta u_{n}(\xi) \times$
$\times\left\{\left(n_{1}(\xi) \frac{\gamma_{2}}{r}-n_{2}(\xi) \frac{\gamma_{1}}{r}\right)+\right.$
$\left.+\left[2 n_{1}(s) n_{2}(s)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 \gamma_{1} 7_{2}\right]\left(n_{1}(\xi) \frac{\partial 1}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right)\right\}$
2.8 Relevance to other methods of time-independent in-plane crack analysis Muskhelishvili (1953, 1963) expressed the time--independent plane-strain elastic field in terms of two analytic functions $\phi(z)$ and $v(z)$, often called the Goursat functions, where $z \equiv z_{1}+i x_{2}$

$$
\begin{align*}
\sigma_{11}+\sigma_{22} & =2\left[\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}\right] \tag{174}\\
\sigma_{22}-\sigma_{11}+2 i \sigma_{12} & =2\left[s^{\prime \prime}(z)+v^{\prime}(z)\right] \\
2 \mu\left(\sigma_{1}+i v_{2}\right) & =\frac{\lambda+3 \mu}{\lambda+\mu} \phi(z)-z \bar{\phi}^{\prime}(z)-\overline{\psi(z)} \tag{176}
\end{align*}
$$

Muskhelishvili's (1953,1963) complex potential method has been applied to a considerable variety of analytic and semi-analytic analyses of open in-plane (mixed modes 1 and II) cracks (see review by lsidn, 1976). In a typical open crack problem in which no body force is present. the Goursat functions are so determinied that the normal and tangential tractions T_{n}, T_{i} may be equal to the prescribed values along the the crack and along the outer boundary of the medium (or at infinity, if the medium is infinite). The
two degrees of fredom of the stress field are matched by the set of two independent boundary conditions. two degrees of freedom of the stress field are matched by the set of two independent boundary conditions.
In the closed in-plane (pure mode II) crack analysis, on the other hand, a different class of constraints
re to be imposed on the stress functions. The boundary conditions along the crack trace are the zero are to be imposed on the stress functions. The boundary conditions along the crack trace are the zeto
tangential traction $T_{\text {t }}$ and the continuous normal displacement u_{n}. This category of problem is beyond the reach of Muskhelishvili's $(1953,1963)$ complex potential method, except for some cases of a straight. crack and a system of co-planar cracks in which certain symmetry holds.
A different class of BIEM formulations for the time-independent in-plane elosed / open crack analysis is found in the studies of Cheung and Chen (1987). Fleck (1991), Jeyakumaran and Keer (1994) and by Jeyakumaran (1995). The underlying concept of their method is practically equivalent to mine, except 2D in-plane cracks of athitrary shape, athough their method cannot deal with the time-dependent crack problems.

3 Numerical implementation and corroborative examples
3.1 Discretization with the piecewise constant interpolation

As is evident from the appearance of the system (2) that I adopted as my approach of the present study soleing for the ship with the truction knewn is an inkerse problem. Once the slip is known, solumg for the atress and displacement fields is a forward problem.
solve for $\Delta \mathrm{w}\left(\mathrm{si}\left[\mathrm{t}^{(t)}\right.\right.$) inverse
ce $\Delta w(s[t))$ forward
solve for $\left.u_{i}(\vec{x}, t]\right)$ and $\left.\sigma_{i, j}(\vec{y}, t]\right)$
Uereafter 1 describe how the BIEM formulations are translated into the scheme of numerical implemen ations.
The crack trace(s) are discretized by a set of equaslly spaced nodal points with an interval of Δs and If the problem is time-dependent, time is also discretized by a set of equally spaced time steps with an interval of Δt. My choice for $\Delta \Delta t / \Delta s$ is 0.5 (Koller et al. 1992; Cochard and Madariaga, 1994) in all
The slip rate. $\Delta \dot{u}$ or the slip Δu is approximated by a in all the numerical calculations that follow
This sip rate Δu of the slip Δu is appraximated by a linear combination of a set of properly chosen case (Koller et al., 1992)
$\Delta u(s, t)=v^{J}(t) \theta_{n}(t) \theta_{j}$
and for the time-independent case:
$\Delta u(s)=t^{j}(s) \phi_{j}$.
Where $t(s)$ and $\theta_{n}(t)$ are the spatial and temporal basis functions respectively, and ϕ^{n} or $\phi_{\text {; }}$ is the iscretized slip at the i-th nodal point and the m-th time step.
ane of most represeatative choices of the basis function are the piccenise constant interpolation, it which the approximate function is assumed to be constant across an element and is discontinuous between inals, and the precervise linear interpolation, in which the approximate function is assumed to vary linearly across an element and is continuous between elements. The former has been in use by Crouch and Fukuyama (1996) and Kar (1280), Andrews (1985), Cochard and Madariaga (1994), Yamashith (Gernsoulis and Srivatav (1981) Cheung and Chen (1987) Kollen al (1592) al ded by the studici 1992) and Jeyakumaran and

The bas

$$
v(s) \equiv \begin{cases}1 & \text { if }\left|s-s_{j}\right|<\Delta s / 2 \tag{179}\\ 0 & \text { if }\left|s-s_{j}\right|>\Delta s / 2\end{cases}
$$

with $s ;$ being the position of the j-th nodal point and

$$
\theta_{n}(t) \equiv \begin{cases}1 & \text { if }\left|t-t_{n}\right|<\Delta t / 2 \\ 0 & \text { if }\left|t-t_{n}\right|>\Delta t / 2\end{cases}
$$

with t_{n} being the time of the n-th time step.
The basis functions of the piecewise linear interpolation are (Figure 3):

$$
\begin{align*}
& v^{\prime}(s) \equiv\left\{\begin{array}{cc}
1-\left|x-s_{j}\right| / \Delta s & \text { if }\left|s-s_{j}\right|<\Delta s \\
0 & \text { otherwise }
\end{array}\right. \tag{181}\\
& \theta_{n}(t) \equiv\left\{\begin{array}{cc}
1-\left|t-t_{n}\right| / \Delta t & \text { if }\left|t-t_{0}\right|<\Delta t \\
0 & \text { otherwise }
\end{array}\right. \tag{182}
\end{align*}
$$

One should now pay special attention to the fact that the regularization procedure, utilized in the derivation of our BIEM formulations, relies on the assumption that the first-order spacial derivative of the
slip function $(\partial / \partial s) \Delta v(s, t)$ (or the dielocation density) is continuous. Thus the numerical evaluation of the regularized Cauchy principal value integrals is valid only for collocation points at which ($\partial / \partial n) \Delta u(s, 1)$ is continuous. Hence Kolier et al. (1992), who used the piecewise linear interpolation, had to take the

 koller et ai (1992) thus chose co solve an over freedom with that of the constraining equations, I sse the piecerise constant interpolation is all the numerical calculations that follow, with the collocation points coinciding with the nodal points $4,(j=1,2 \quad N-1)$. This choice is justifind because $(\theta / \partial s) \Delta u(s, t)$ is continuous at the nodal points with the piecewise constant interpolation.
The discrelization reduces the integral equation (23), for instance, to a set of simultaneous linear algebraic equations:

$$
\begin{equation*}
\frac{2 \pi}{\mu} T_{n}^{m}=\sum_{i} \sum_{n=1}^{m} A_{j}^{m-n} \theta_{j}^{n} . \tag{183}
\end{equation*}
$$

where T^{3} and ϕ^{m} are the discretized traction and slip, respectively, on the crack at the i-th nodal point and the m-th time step and

$$
\begin{align*}
& A_{i j}^{n} \equiv \int_{\mathrm{r}} d \xi\left(n_{1}\left(s_{i}\right) \frac{\partial z}{r_{i}}-n_{2}\left(s_{i}\right) \frac{\gamma_{i t}}{r_{i}}\right) \frac{\partial^{\prime}(\xi)}{\partial \xi} \times \\
& \times \int_{-\Delta t}^{\Delta 1} d r \theta_{0}(\tau) \frac{n \Delta t-\tau}{\sqrt{(n \Delta t-r)^{2}-\left(r_{0} / \beta\right)^{2}}} H\left(n \Delta t-r-\frac{r_{i}}{\beta}\right)- \\
& -\frac{1}{\beta^{2}} \int_{\Gamma} d \xi\left(n_{1}\left(s_{i}\right) n_{1}(\xi)+n_{2}\left(s_{i}\right) n_{2}(\xi)\right) d^{j}(\xi) \times \\
& \times \int_{-\Delta t}^{\Delta t} d r \frac{\partial \theta_{0}(\tau)}{\partial \tau} \frac{1}{\sqrt{(n \Delta t-r)^{2}-\left(r_{1} / \beta\right)^{2}}} H\left(n \Delta t-r-\frac{r_{i}}{\beta}\right) \tag{184}
\end{align*}
$$

$r_{i} \equiv \sqrt{\left(y_{n}\left(s_{i}\right)-y_{1}(\xi)\right)^{2}+\left(y_{2}\left(s_{i}\right)-y_{2}(\xi)\right)^{2}}$
$h_{w} \equiv\left(m_{i}\left(s_{i}\right)-y_{2}(\xi)\right) / r_{i}$
Note that the integrand, with the piecewise constant interpolation, has to be evaluated only at the nds of the element for all the time-domain calculations, since the derivatives of the basis functions exhibit a delta-function type behavior at the element ends and are equal to zero elsewhere

$$
\frac{\partial v^{j}(s)}{\partial s}=\left\{\begin{array}{cl}
\delta(s) & \text { at } s=s_{s}-\Delta s / 2 \tag{187}\\
-\delta(s) & \text { at } s=s_{j}+\Delta s / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

a general form

$$
\int_{a}^{1} f(x) d x \simeq \frac{b-a}{N} \sum_{n=1}^{N} f\left(a+\frac{n-1 / 2}{N}(b-a)\right)
$$

The endpoints of the integration interval are avoided in the summation because the integrands usually behave like a step function there. Note that in the time-dependent case some of the elements may be cut across by one (or both) of the wavefront $t-r=r / \beta$, in which case the integrand is non-zero only over that part of the element which lies within the wavefronts.
In a time-marching numerical scheme, ripple noises tend to arise due to the abrupt progresses of the fracture front along the discretized fault trace, which may later lead to numerical instabilities. In order to suppress such numerical instabilities that evolve with time, artificial damping is introduced (Appendix A). This is a common practice in time-marching FDM schemes (e.g. Virieux and Madariaga 1982) and was also used in the time-marching BIEM scheme of Koller et al. (1992). Stronger artificia damping suppresses the ripples, but tends to oversuppress the quantity of slip, so that there is a problen of trade-off in the decision of the damping factor.
3.2 Kostrov's self-similar crack evolution problem in three modes of fracture I verify my numerical solutions for sotne simple problens againat known analytic solutions. Kostrov 1964) self-similar crack evolution problem is one of the few cases in which the elastic firld around propagating crack is known analytically.
Pappose that in an infinite homogeneous isotropic elmatic merdium a straight crack, either in ant. ropagates in the z_{1} shear of in tenaion, begins to form at the instant $t=0$ along the z_{a}-axis and the equal to σ_{0} everywhere on the crack plane (Figure 4) The rrack tip wallocity s should be less than the $\$$ The velocity $\&$ for anti-plane shear, or less than the Rayleigh wave velocity for in-plane shear and tension The anti-plane shear and in-platie shear problems, as pointed out by kontrov (1964), can be annlytically enplicit solutions given ty Kiludi (1976) an dunlicus mecthod of fonctionas-invatiant solutions, and the an be solved in an min (Cension problem obtained is described in Appendix B3 Figures 5, 6 and 7 compare the mand
roblem, in anti-plane shear, in-plane shene and in analytic solutions of the selfsimular crack evolution lip at the center of the crack is compated quantitatively at an instant when the crack has reached a length of 19.0, or 19 discrete elements. The parameters assumed are $\sigma_{0}=1.0, \mu=1.0$ and $\alpha / \beta=\sqrt{3}$. The verifications show that the numerical results with an adequate choice of the artiffial damping coefficient (Appendix A) are in good agreement with the analytic solutiona
diferent from those given here. for the straight antiplane gack and somint BiFs in a form somewhn ems ropectively (Appendix C) Numerical results based on figures, which are as good as those according to mine, except that a slightly lightef artificial damping is appropriate for their formulations, Note that no artificial damping was necessary with the unique semianalytic method of numerical implementation used by Cochard and Madariaga (1994), but that method was not used in the present study because it is not applicable to curved crack cases.

3.3 A straight crack in three modes of time-independent stress

Next I verify the numerical solution for the time-independent crack problem, either in anti-plane shear in-plane shear or in tension, against the known analytic solution for the case of an isolated straight crack in an infinite homogeneous isotropic medium. As before, the stress drop is equal to σ_{0} everywhere on the crack

Find 8,0 and 10 verify the mumerieal solutions ngainst the chasical analytic solutions taken fron the crack is ad analytic results is recognized in the figures

Piecewise constant interpolation

Piecewise linear interpolation
function approximated by a linear combination of basis functions
 by a linear combination of basis functions

Figure 3. The bavis functions of the piecewise constant and piecewise linear interpolations. A function is approximated by a linear combination of the basis functions.

Kostrov's self-similar crack evolution problem

Figure 4: Kostrov's self-similar crack evolution problem (Kostrov, 1964; Cherepanov and Afanns'ev, 1974). In an infinite homogeneous isotropic elastic medium a straight shear crack begins to form at the
instant $t=0$ along the x_{x}-axis and then propagates in the $x_{1} x_{x}$-plane bilaterally from the origin with a instant $t=0$ along the z_{z}-axis and then propagates in the $x_{1} z_{3}$-plane biasterally from the origin with a everywhere on the crack plane. The speed v is leas than the S wave velocity for the anti-plane case and less than the Rayleigh wave velocity for the in-plane cases.

Kostrov's Problem in Anti-Plane Shear

Open triangles: No damping
Filled triangles: Damping coeff. $=5.0$
Crosses: Cochard and Madariaga (1994)
(damping coeff. $=1.0$)
Solid line: Rigorous solution (Kikuchi, 1976)

[^0]Kostrov's Problem in In-Plane Shear

Open triangles: Damping coeff. $=0.2$ Filled triangles: Damping coeft. $=5.0$ Crosses: Madariaga (1995)

Figure 6: Comparison of the numerical and analytic solutions to Kostrov's self-similar crack evolution problem in in-plane shear, with $\sigma_{0}=1.0, \mu=1.0, \alpha / \beta=\sqrt{3}$ and for vatious values of v / β. The alip at the crack center is compared ar the definition of the damping coefficient. and Appendix C for the formulation of Madariaga (1995):

Kostrov's Problem in Tension

Open triangles: Damping coeff. $=5.0$ Filled triangles: Damping coeff. $=12.0$ Solid line: Rigorous solution
 Ser Appendix A for the definition of the damping coefficient.

Figure 8: (b) Analytic solution to the time-independent atraight crack problem in anti-plane shear (Pollard and Segall, 1987), with $\sigma_{0}=1.0$ and $\mu=1.0$.

Figure 9: (a) Numerical solution to the time-independent straight crack problem in in-plane shear, with $\sigma_{0}=1.0, \mu=1.0$ and $\alpha / \beta=\sqrt{3}$. The length of the crack is equal to 19.0 , or 19 discrete elements.

Figure 9: (b) Analytic solution to the time-independent straight crack problem in in-plane shear (Pollard and Segall, 1987), with $\sigma_{0}=1.0, \mu=1.0$ and $\alpha / \beta=\sqrt{3}$.

Figure 10: (a) Numerical solution to the time-independent ntraight crack problem in tension, with $\sigma_{0}=$ $1.0, \mu=1.0$ and $a / \beta=\sqrt{3}$. The length of the crack is equal to 19.0 , or 19 diacrete elements.

Figure 10: (b) Analytic solution to the time-independent straight crack problem in tension (Pollard and Segall, 1987), with $\sigma_{0}=1.0, \mu=1.0$ and $\alpha / \beta=\sqrt{3}$.

Three radial cracks

Figure 11: Numerical and analytic results of the time-independent analysin of three radial cracks of length a under an anti-plane shear stres of unit magnitude (Sih. 1965), in terms of the normalized ntress inteasity factor (SIF) at one of the crack tips. The reference SIF is that at the tip of a straight crack with length $2 a$ subject to an ant-plane shear stress of unit magnitude normal to the crack. The length a was discretized into 39 elements.

Circular Arc

Figure 12: Numerical and analytic rosults of the timeindependent analysis of a curved crack of length $2 a$ in the shape of a quarter part of a circumference of a circle, under an anti-plane shear stress of unit magnitude (Sih 1985) in terms of the normalized strese intensity factor (SIF) at one of the crack tips. The reference SIF is that at the tip of a straight crack with length $2 a$ subject to an anti-plane shear stress of unit magnitude normal to the crack. The length $2 a$ was discretized into 79 elements.

Figure 13: The numerically calculated slips on three radial cracks in time-independent anti-plane shear that meet at a junction, in the same setung as in Figure 11. The slip values on the nodal points closest to the branch junction are plotted against the varying stress axis direction. The anti-plane shear stress is of unit magnitude, $\mu=1.0$ and the branch length a is 39.0 or 39 discrete elements

4 Demonstrative analyses of hackly cracks
As mentioned in the Introduction settion, mumerical elastodyuamic analynis of 2 D cracks has been, until recently, practically coosfined to the straight crack problems, due to the limitations of the available numerical methods. Dynamic analysis of non-planar cracks has been impossible, except for the coves of non-coplanar (mutually paralle) cracks that have been enabied recently (Harris atd Day. 1993; Yamwehita
 numerical method for the dyuamic analysis of 2 D anti-plane shrat c numerical application goes no further than a mere preiminary one
Hower. the complexity of crack geometry along natural faults
teprecated by a model consisting of nob-coplanat cracks. Curves, kinks and bifurcations along natura) fauls and fault zones are documented abundantly in field surveys (eg. Segall and Pollard, 1980; Nakata and Yomogida, 1935). Furthermore, theory predicts that a shear crack, even when isolated, is likely to deviate from its initial plane of propagation during fant dynamic propagation, becaune for a sufficiently large propagation speed the maximum sheat sttres at the crack tip is known to occur is as off-plane direction that is inclined at a non-zero angle to the plane of crack propagation (Freund, 1990). In order to investigate and more properly understand the role of geometrical comple
fault models that incorporate off-plane crack segments ahould be developed.
The BIEM fornulations derived in the present study, which enable the numerical dynamic annlysi of arbitrary non-planar 2D cracks, mark an important step toward this objective. In the present section a 2 D crack model with small off-plane side-branches on its sides (called a hackly crack in the sequel) in introduced as an idealized model of a complex crack geometry, and its dynamion is numerically analyzed on the basis of the BIEM developed in the present study. The specific geometry and time evolution history studied are shown in Figure 14.

All the side-branches are inclined at 30 deg from the orientation of the central crack plane. The rupture is assumed to initiate at a quarter part from the left of the final caick length, propagating from there bilaterally at a speed of 0.8 times the S wave velocity. In the calculations, $a / j=\sqrt{3}$ was assumed and the artificial damping coefficient C (Appendix A) was taken equal to 5.0 . The final crack length was

It examining the numerical reults, I specifically concentrate on the stres concentration level at the rupture front, with a view to addressing the problem of how rupture propagation stops. Rupture is expected to decelerate and finally come to an arrest as the crack-tip stress concentration is decreased,
but, as long as the crack is assumied to grow in the initial plane of propagation, the stress concentration but, as long as the ctack is assumed to grow in the initial plase of propagation, the stress concentration level grows infinitely large with further growth of the crack. Thus practically all existing models of earthquake arrest, which were baed on planar crack geometry, failed to explain the spontaneous atrest of rupture unless some kind of inhomogeneities in the fracture properties was postulated a priori near the site of artest (eg. Andrews. 1975; Husseini et al, 1975; Das and Schols, 1981) Umeda ef al s (1990)
modeling studies suggested that the interactions among not-coplanar cracks can reduce the crack-tip stress concentration only by an insignificant amount, which does not otviate the need for the a prior postulation of inhomogeneities. In the present study I specifically concentrate ot how hackly crack geometry can influence the crack-tip stress concentration level and, consequently, the tendency for the acceleration or deceleration of rupture
Figure 15 shows the temporal varimtions, for both the anti-plane and in plane caves, of the shear stress concentration level at the nodal point that is located on the immediate right of the rupture front. The shear stress is assumed to be equal to 1.0 with the principal axis oriented parallel to the central branch of the crack, and the crack surface is free of shear traction. so that the shear stress drop on the central of a planar crack with no side-branchee, repreented by the broken line The irregular fluctuations of the lines are due to the abrupt progrosses of the rupture frout along the discretized fault trace.
One may notice that the stress concentration level is lowered by the presence of the side-branches especially in the in-plane shear case, in which the stress concentration significantly decreases in spite of the crack that ever grows longer. This effect is due to the partitioning of the slip into multiple crack branches that takes place at each subsequent branch point. The numerical results strongly suggest tha branching of the crack plyys an important role in the deceleration and arrest of earthquake rupturing.

For the sake of completeness, I also calculated the elastostafic stress concentration levels at the tip of the hackly ctack in time-independent ant-plane sheat and it-plane shear. Figure 16 shows the result or different geometries in a normalized appearance, the reference value being the stress concentration at the tip of an isolated straight crack with no side-branches. One can observe the decrense in the stres concentration, which compares well with the resulus of the elastodynamic analymes
The mechanics of hackly cracks, ws modeled in the preent chapter, belongs to a class of problem to which no previous numerical methods were applicable. As illustrated in the present example, the new Biekis hoped to ind its broad applications in the axalyse of the

Figure 14: Geometry and time evolution history of the hackly crack analyzed, with the numerals denoting the abscissal locations. Each discrete element has a unit length, so that the total crack length 40.0 was divided into 40 discrete elements. $a / \beta=\sqrt{3}$.

Broken line: No branching
Solid line: With branching

Figure 15: (a) The temporal varintion of the stress concentration level at the tip of the propagating hackly crack (Figure 14) in anti-plane shear. The ordinate shows the shear stress on the nodnl point that is located on the immediate right of the rupture front. The shear stress is equal to 1.0 with the principal
axis oriented parallel to the central branch of the crack, and the crack surface is free of shear traction.

In-Plane Shear

Broken line: No branching
Solid line: With branching

Figure 15: (b) The temporal variation of the stress concentration level at the tip of the propagating hackly crack (Figure 14) in in-plane shear. The ordinate shows the shear ntress on the nodal point that is located on the immediate right of the rupture front. The shear atres is equal to 1.0 with the principal

Figure 16: The normalized strese concentration levels at the tip of hackly cracks (Figure 14) in timeindependent anti-plane shear and in-plane sheas. The reference level is that for an isolated straight crack with no side-branchis.

5 Can a curved 2D crack be represented as a limiting case of a chain of finite line elements? - a BIEM viewpoint
5.1 Concept

In time-independent analyses of curved 2 D cracks, it has often been a common practice to represent a curved bend by a chain of a large mumber of finite straight line elements (e.g. Crouch, 1976; Cheung and Chen, 1987; Bilham and King. 1989; Aydin and Du, 1995). In the present chapter, however, I point out, in a context of the BIEM, that it in only in the case of anti-plane shear faulting and of open in-
plane faulting that a smoothly curved bend can be plane faulting that a smoothly curved bend can be represented as a limiting case of a chain of finite line
elempnts (see Figurr 17). In the cove of closed inplanefulted she elements (see Figure 17). In the cave of closed in-plane faulting the two geometries may produce different
normal traction distributions along the crack, so that care should be taken so as not to misinterpret the numerical results. The difference can be important, eg when one is concerned with a friction law that depends on the relation betweell the iormat and tangential tractions along the crack.
5.2 Closed in-plane crack

Suppose a curved closed crack is undet time independent in-plane shear, which consists of two straight segments and a smooth circular arc segment commecting them. Jeyakumaran and Keer (1994) dealt with and a piecewise finear tuterpolation approach of Gerasoulis and Srivastay (1981) potential method resuls, when a concave-upward crack is subject to a right-lateral in-plane shear, extensional normal traction across the crack appeats on the right of the curved bend and compresional one appeass on the Ieft. This reall was confirmed by a model calculation based on the BIEs detived in the present paper (Figure 18, left)
However, when the curved part of the crack is repreaented as a chain of a large number of firite line elements, mumerical simulations revealed a notmal traction along the crack with the opposite sign, compressional on the tight and exiemional on the leff (Figure 18, right). Such a patten of normal traction distribution was confirmed by repeated calculations with different discretization intervals.

$$
\text { solve for } \Delta u_{r}(s \mid, t) \text { inverse } \quad T(x, t, t) \text { knowa }
$$

corresponding to the two situations is an intrinsic one, resulting from the different nature of the BIEs corresponding to the two cases. To prove this, I demonstrate analytically that the forward problem

$$
\text { once } \left.\left.\Delta \mathrm{u}_{i}(s \mid, t) \text { known forward } \quad \text { solve for } u_{i}(\bar{z} \mid t]\right) \text { and } \sigma_{i j}(\bar{z}, t]\right)
$$

has completely different solutions for the two situations even for an identical set of input data. I choose the forward formulation because it allows rigorous treatment of the limiting case of a chain of finite line elements as the discretization interval tends to zero. Rigorous consideration of such a limiting case is prohitited in the numerical treatment of the inverse problem.

Suppose a smootbly curved concave-apward closed in-plane crack on the $x_{1} x_{2}$-plane extends indefinitely in both left and right directions, and that a uniform slip $\Delta v_{1}(\xi) \equiv \Delta u_{10}$ is precribed on it (Figure 19, top). In this case, no traction is induced by the presence of the slip, since $n_{1}(\xi)$ and $n_{2}(\xi)$ are along the crack. Consider nex
right straight segments, extending in-plane crack with a single abrupt kink and let each of the left and length s along the crack so that s increnses from left to right and that $x=0$ corresponds to the kink point (Figure 19 , middle). Preceribe a uniform slip $\Delta u_{0}(\xi)=\Delta u_{t 0}$ along the crack and assume that any point on the crack surface that originally belongs to the left segment is allowed to slip only in the orientation of the left segment and that likewise for the right segment (a requisite assumption of the linear elatiecty
theory). Then our BIE kertuels for the stress components exhibit a delta function type behavior at the location of the kink. Desoting the BIE kernels for the tangential traction $T_{1}()$

$$
\begin{aligned}
F_{u 1}(\xi, s) \equiv & {\left[2 n_{1}(s) n_{2}(x) 2 \gamma_{1} \gamma_{2}+\left(n_{2}^{2}(s)-n_{1}^{2}(x)\right)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\right)\left(n_{2}(\xi) \frac{\gamma_{1}}{r}-n_{1}(\xi) \frac{\gamma_{2}}{r}\right) } \\
F_{\mathrm{ti}}(\xi, s) \equiv & \left(n_{1}(\xi) \frac{\gamma}{r}+n_{2}(\xi) \frac{\gamma_{1}}{r}\right)+ \\
& +\left[2 n_{1}(s) n_{2}(s)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(x)-n_{1}^{2}(s)\right) 2 \gamma_{1} \gamma_{2}\right]\left(n_{2}(\xi) \frac{\gamma_{1}}{r}-n_{1}(\xi) \frac{\gamma_{2}}{r}\right)
\end{aligned}
$$

the distribution of the traction along the crack is given by

$$
\begin{align*}
& T(s)=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{T} \pi \xi \frac{\partial}{\delta \xi} \Delta n_{i}(\xi) F_{u}(\xi, s) \\
& =\frac{\mu}{\eta}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \Delta u_{n 0}\left[F_{n}(\xi, s) k++0-F_{u n}(\xi, s) k--0\right] \\
& T_{n}(x)=\frac{\mu}{\pi}\left(1-\frac{j^{2}}{\sigma^{2}}\right) \int_{\Gamma} d \xi \frac{\partial}{\hat{\beta}} \Delta u_{c}(\xi) F_{i n}(\xi, x) \\
& =\frac{\mu}{\pi}\left(1-\frac{j^{2}}{\alpha^{2}}\right) \Delta u_{i 0}\left[F _ { i n } (\xi , n) \left\langle\left\langle+0-F_{i n}(\xi, s)\right|\{--0]\right.\right. \tag{19}
\end{align*}
$$

which after some algebra becomes

$$
\begin{align*}
& T_{i}(s)=-\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \Delta u_{10} \frac{1}{\mid n} 2 \sin ^{2} \eta \tag{195}\\
& T_{n}(s)=-\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \Delta u_{10} \frac{1}{s} \sin 2 \eta
\end{align*}
$$

Let us proceed to connider a case in which the crack bend consists of a finite number N of straight line elements mutually connected at abrupt kinks. Let the radius of curvature of the crack bend be R and tet each of the left and right straight segments outside the crack bend be inclined at an angle η to the s_{1}-axis. Define the are length s along the crack so that s incremas from left to right and that $s=0$ corresponde to the right extremity of the curved part of the crack (Figure 19, botorn). A uniform slip $\Delta u_{i}(\xi) \equiv \Delta u_{e d}$ is again prescribed along the crack under the assumption that any point on the ctack surface is allowed to slip only in the orientation of the straight segment (or element) to which it originally elongs (a requisite assumption of the linear elasticity theory). The relative location of the i-th kink from he left relative to the center of curvature is given by a vector

$$
\begin{equation*}
\left(+R \sec \frac{\eta}{N} \sin \frac{2 i-N-1}{N} \eta,-R \sec \frac{\eta}{N} \cos \frac{2 i-N-1}{N} \eta\right), \tag{197}
\end{equation*}
$$

the crack orientation changing discontinuously at each subsequent kink by an angle η / N Consider the traction across the crack at a sufficient distance $s \geqslant R$ to the right of the crack bend and tuppose the number of the abrupt kinks along the bend $N>1$ is sufficiently large. Negleeting second and higher order terms with ropect to $R / /$ and $1 / N$, we obtain, after cumbersome algebra, the following expresion for the contribution $T_{i}^{i}(x)$ and $T_{n}^{i}(s)$ of the i th kink unto the traction at arc length $s:$

$$
\begin{align*}
T_{i}^{\prime}(x)= & -\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \Delta \mathrm{w}_{r 0} \frac{2 \eta \frac{1}{N}}{} \frac{1}{s}\left(\sin \frac{2 i-2 N-1}{N} \eta+\right. \\
& \left.+\frac{R}{s} 2 \sin \frac{2 i-2 N-1}{2 N} \eta \sin \frac{3(2 i-2 N-1)}{2 N} \eta\right)+O\left((R / s)^{2} \cdot(1 / N)^{2}\right) \\
T_{n}^{i}(s)= & -\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \Delta u_{t 0} \frac{2 \eta \frac{1}{N}}{N}\left(\cos \frac{2 i-2 N-1}{N} \eta+\right. \\
& \left.+\frac{R}{s} \sin \frac{2 i-2 N-1}{N} \eta\right)+O\left((R / s)^{2} \cdot(1 / N)^{2}\right) . \tag{199}
\end{align*}
$$

5.4 Open in-plane crack

Ifinally discuss the case of open in-plane faulting. Again, a uniform slip with components $\Delta v_{1}(\xi) \equiv \Delta u_{10}$ and $\Delta u_{2}(\xi) \equiv \Delta u_{20}$ along an infinitely long smothly curved crack induces no traction, as is evident from the fact that the integral reprosentations for the traction components in terms of $(J / \partial \xi) \Delta u_{t}(\xi)$ and $(\partial / \partial \xi) \Delta u_{n}(\xi)$ can be rewritten in the form with $(\partial / \sigma \xi) \Delta u_{1}(\xi)$ and $(\partial / \partial \xi) \Delta u_{y}(\xi)$ under the integral sign.
a uniform slip with components $\Delta w_{1}(\xi) \equiv \Delta u_{10}$ and $\Delta v_{2}(\xi) \equiv \Delta w_{20}$. This means that
and
$\left\{\begin{array}{l}\Delta u_{r}(\xi)=\Delta u_{10}(\xi) \cos \eta+\Delta u_{z_{20}}(\xi) \sin \eta \\ \Delta u_{n}(\xi)=-\Delta u_{10}(\xi) \sin \eta+\Delta u_{20}(\xi) \cos \eta\end{array} \quad(s>0)\right.$
$\left\{\begin{array}{l}\Delta u_{1}(\xi)=\Delta u_{10}(\xi) \cos \eta-\Delta u_{20}(\xi) \sin \eta \\ \Delta u_{n}(\xi)=\Delta u_{10}(\xi) \sin \eta+\Delta u_{2(}(\xi) \cos \eta\end{array}(s<0)\right.$.

Denoting the BIE kernels for the tangential traction $T_{t}(s)$ and that for the normal traction $T_{n}(s)$ acrose the crack due to normal slip component $\Delta u_{m}(\xi)$ by

$$
\begin{aligned}
F_{n 1}(\xi, s) \equiv & {\left[2 n_{1}(s) n_{2}(s) 2 \gamma_{1} \gamma 2+\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right)\left(\gamma \frac{1}{2}-\gamma_{i}^{2}\right)\right]\left(n_{1}(\xi) \frac{\gamma_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right) } \\
F_{n n}(\xi, s) \equiv & \left(n_{1}(\xi) \frac{\gamma_{2}}{r}-n_{2}(\xi) \frac{\eta_{2}}{r}\right)+ \\
& +\left[2 n_{1}(s) n_{2}(s)\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)-\left(n_{2}^{2}(s)-n_{1}^{2}(s)\right) 2 \gamma_{1} \gamma_{2}\left(n_{1}(\xi) \frac{\eta_{1}}{r}+n_{2}(\xi) \frac{\gamma_{2}}{r}\right),\right.
\end{aligned}
$$

the distribution of the traction along the crack is given by
which after some algebra becoms-

$$
\begin{aligned}
& T_{1}(x)=0
\end{aligned}
$$

(210)

$$
T_{n}(s)=0
$$

This means that no additional traction along the crack is induced by an abrupt kink at $s=0$. In the case of open in-plane faulting there is no difference in the nature of the BIE whether a curve along a crack pecurs in a smooth or an abrupt way. A smeothly curved open in-plane crack may safely be approrimated Chen (1987), who approximated a curved open crack in in-plane tension by a chain of finite line elements.

$$
\begin{aligned}
& T_{1}(s)=\frac{\mu}{\pi}\left(1-\frac{\sigma^{2}}{a^{2}}\right) \int_{\Gamma} d \xi\left[\frac{\partial}{\partial \xi} \Delta u_{i}(\xi) F_{i i}(\xi, s)+\frac{\partial}{\partial \xi} \Delta u_{n}(\xi) F_{s i}(\xi, s)\right] \\
& =\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{a^{2}}\right)\left\{\left[\Delta u_{t} F_{u}\left(\xi_{t} s\right)+\Delta u_{n} F_{n}\left(\xi_{t} s\right)\right\}-+a^{-}\right. \\
& \left.-\left[\Delta \mathrm{m}_{1} F_{n 1}(\xi, s)+\Delta v_{n} F_{n t}(\xi, s)\right\}_{--0}\right) \\
& T_{n}(\theta)=\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{\alpha^{2}}\right) \int_{\Gamma} d \xi\left[\frac{\partial}{\partial \xi} \Delta u_{t}(\xi) F_{\mathrm{n}}(\xi, \theta)+\frac{\partial}{\partial \xi} \Delta u_{n}(\xi) F_{n n}(\xi, \theta)\right] \\
& =\frac{\mu}{\pi}\left(1-\frac{\beta^{2}}{a^{2}}\right)\left\{\left\{\Delta u_{1} F_{m}(\xi, s)+\Delta u_{n} F_{n n}(\xi, s)\right\}<-+a^{-}\right. \\
& -\left\{\Delta u_{1} f_{n o n}(\xi, s)+\Delta v_{n} F_{n n}(\xi, \alpha)\right\}(--0)
\end{aligned}
$$

Figure 17: A smoothly curved crack and a chain of finite line elements, in three modes of fracture

Figure 18. Normal stress distribution along a curved in-plane shear crack, for the cases of a smooth curve compression. Each discrete element hiss a unit length, so that the curved part with length 45 was divided into 45 elenents.

6 Conclusion

in the present study 1 hinve derived a set of rigorous BIEs, both timp-domain (elsastodyuamic) and time undependent (elnstostatic), for the analysis of arbitrarily shaped 2D anti-plane / in-plane crack(s) located is an infinite homogeneous sootropic medium. Among othes, the formulation for the time-domain aualysis of non-planar 2D in.plane crack, which has been obtwined in enlargenent of Koller et at: (1992) and Cochard and Maddriages's (1994) apptoach, is a fist achievenemt in this firld of study and belone to an ngenuity of the present paper. The approach is claracteried by the use of the method of regulariation or removal, of the hypersingularitie in the integrat, In addition, althought the formulation for the time independent couse is bot a arw aclivvenent of the present tudy, an adrantuge consists in that thave for

For the sake of numerical implementation, the BIEs are diccretiaed with the piecewise constant ineerpolation, is which the approximate fanction is assumed to be constant acroses an elenent and in discontimuous between elements. The numerical resulis were verified against the known amalytic soluhoos for a tume-dependent elfrsimilat crack evolution problem and for two type of time-indepeaden han-planar ctack problem in anti-plane shear
The new BIEM numerical approad has subseruently been applied to both time-domain and time ndependent analyes of a backly crick, of A 2 D crack in either in-plane sherar or anti-plane sheas consisting of a straighe main branch and a set of small side branches splaying out from it. The mumericil realts a straighe crack, thus sugkesting that branching of the crack pllys an important role in the deceleration and arrot mechanisms of earthquake rupturing.
Finally, it has been pointed out, in the context of the BIEM, that in the cnase of im-plane shear faulting asmoothy curved crack may not be tepresented as a linuting case of a chain of tinte inee elements an hie dircretization interval tends to xero, a situation which previous reosarchers were apparendy unawar of. The equations that govern the crack mechanios have distinet forms depending on whether the crack srientation changee contimoously or nbruptly along a bend however small the kink interval may be ent
 hie case of anti-plane stiras and open in-plane fauting

References

[1] Acheabach, J.D. (1973). Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 425 pp .
[2] Aki, K. and PG. Richards (1980). Quantitative Seismology - Theory and Methods. 2 vols., Free man, New York. 932 pp
13) Andrews, D.J. (1975). From antimoment to moment: planestrain models of earthquakes that ntop, Boll. Seismol Soc. Am, 65, 163-182
(4) Andrews, D. (1976a) Rapture propagation with finite stress in antiplane strain. J. Geophys. Re, 81. 3575-3582
[5] Andrews, D.J. (1976b). Hupture velocity of plane strain sheat cracks, \mathcal{L}. Geophys. Res. 81,5679
5687 .
6) Andrews, D. . (1985). Dynamic planestrain shear rupture with a slip-weakening friction law cal culated by a boundary integral method, Bull. Sessmol. Soc Am., 75, 1-21
[7] Andrews, D.J. (1989). Mechanic of fault junctions, I. Geophys. Res, 94, 9389-9397
[8] Andrews, D.J. (1994). Dynamic growth of mixed-mode shear cracks, Bull. Seismol. Soc. Am, 84 , 1184-1198
[9] Aydin, A. and Y. Du (1995). Surface rupture at a fault bend the 28 June 1992 Landers, California, rarthquake, Bull. Sersmol. Soc. Am., 85, 111-128.
[10] Bilhmm. R. and G. King (1989). The morphology of strike-slip faults examples from the San Andrens fault, California, J. Geophys. Res., 94, 10204-10216
[11] Burridge, R. (1969), The numerical solution of certain integral equations with non-integrable kernels rising in the theory of crack propagation and elastic wave diffraction, Phil. Trans. R. Soc. London A, 265, 353-381.
[12] Cherepanov, G.P. and E.F. Afanas'ev (1974). Some dynamic problens of the theory of elasticity a review, lut. J. Engng. Sa., 12, 065-690
[13] Cheung, Y.K. and Y.Z. Chen (1987). Solutions of branch crack problems in plane elasticity by using a new integral equation approach, Engng. Fract. Mech., 28, 31-41
[14] Cochard, A. and R. Madariaga (1994). Dynamic faulting under ratedependent friction, Pare Appl Geophys., 142, 419-445
[15] Cox, S.J.D, and C.H. Schola (1988). On the formation and growth of fauls: an experimental study J. Struct Geol, 10, 413-430
[16] Crouch, S. L. (1976). Solution of plane elasticity problems by the dieplacement discontinuity method. Int. J. Numer. Meth. Eng, 10, 301-343.
[17] Das, S. and K. Aki (1977). A numerical study of two-dimensional spontaneous rupture propagation Geophys. J. R. astr. Soc., 50, 643-668
[18) Das, S. (1980). A numerical miethod for determination of source time functions for general threedimensional rupture propagation, Geophys. J. R. astr. Soc., 62, 591-604
[19] Das, S. and B.V. Kontrov (1987). On the numerical boundary integral equation method for three dimensional dynamic shear crack problems, Trans. ASME J. Appl. Mech., 54. 99-104.
[20] Das, S. and C.H. Scholz (1981). Theory of time-dependent rupture in the earth, J. Geophys. Res. 86, 6039-6051
21) Day, SM. (1982). Three dimentional simulation of sponianeous tupture: the effect of nonumiform prestress, Bull. Seismol. Soc. Am. 72. 1881-1902
[22] Dmowska, R and B V Kostrov (1973). A shearing crack in A semi-spact under plane strain conditions, Arch. Mech. (Warsaawa), 25, 421-440.
[23] Dmowska, R. and J.R. Hice (1986). Fracture theory and its mismological applications, in: R. Teissegre (ed.). Continaum Theorics in Solid Earth Physics, Physics and Evolution of the Earth's Interior 3. PWN - Pol. Sci. Publ. Warszawa, and Elsevier, Amsterdam, pp 187-255.
[24] Du, Y, and A. Aydin (1991), Interaction of multiple cracks and formation of echelon crack arrays, Int. J. Numer. Anal. Meth. Geomech., 15, 205-218.
[25) Fleck. N.A. (1991). Brittle fracture due to an array of microcracks. Proc. R. Soc. Lond. A. 432, $55-76$
(26) Freund, L.1. (1990). Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 563 pp .
[27] Fukuyama, E. and R. Madariaga (1995). Integral equation method for plane crack with arbitrary shape in 3D elastic medium, Bull. Scismot Soc. Am., 85, 614-628.
28] Gernooulis, A and R.P. Srivastax (1981). A method for the numerical solution of singular integral equations with a principal valur integral, Int. J. Engng. Sci., 19, 1293-1298.
[29] Geabelle, P.H. and J.R. Rice (1995). A spectral method for three dimensional elastodynamic fracture problems, J. Mech. Phys. Solids, 43, 1791-1824.
[30] Harris, R.A. and S.M Day (1993). Dynamics of fault interaction: parallel strike-slip faults, J. Geophys. Res, $98,4461-4772$
[31) Husseini, M.1. D.B. Jovanovich, M.J. Randall and L.B. Freund (1975). The fracture energy of earthquakes, Grophys. J. R. astr. Soc, 43, 367-385
[32] Lnoue, T. and T. Miyatake (1995). Computet simulation of dyamic source proces on an arbitrary shaped fault (Japanese abstract), Abstr, Jpn. Earth Planct. Sch. Joint Meeting, 361.
(33) Isida, M. (1976). Elastic Analysis of Cracks and Stres Intensity Factors (in Japaneen), Fracture Mechanics and Strength of Materials 2, Baifuukan, Tokyo, 231 pp.
[34] Jeyakumaran, M. (1995). Kinking of shallow dip-alip zones, J. Geopays. Hes. 100, 6505-0515.
[35] Jeyakumaran. M. and L.M. Keer (1994). Curved slip zones in an elastic half-plane. Bull. Seismol Soc. Am. 84, 1903-1915
[36] Kame, N and T. Yamashita (1996). Dynamic nucleation process of shallow earthquake faulting in a fault zone, Geophys. J. Int, submitted.
[37] Kikuchi, M. (1976). Displacement velocity and stress fields caused by a two-dimensional elf-similar crack (in Japanese with English abstract), Zisin J. Seismol. Soc. Jpn. 29, 277-285.
[38] Kinaus, W.G. (1970). An observation of crack propagation in anti-plane sbear, Int. J. Fract. Mech., 6, 183-187.
[39] Koller, M.G., M. Bonnet and R. Madariaga (1992), Modelling of dynamical crack propagation using time-domain boundary integral equations, Wave Motion, 16, 339-366.
[40] Kostrov, B. V. (1964). Selsimilar problems of propagation of shear cracks (transl. from Russian) PMM J. Appl. Math. Mech., 28, 1077-1087
[41] Kostrov, B.V. (1960), Unsteady propagation of longitudinal shear cracks (transi. from Russian), PMM J. Appl Math. Mech., 30, 1241-1248.
[42] Kostrov, B. V. (1975), On the crack propagation with variable velocity, Int. J. Fruct., 11, 47-56.
[43] Madariaga, R. (1995). Integral equation for the plane sheat crack (mode II) problem. preprint.
(44] Martel, S. . and D.D. Pollard (1989). Mechanics of slip and fracture aloogs small faults and simple strike-slip fault zones in granitic rock, J Geophys. Res, 94, 8417 -9428.
[45] Martin, P.A. and F.J. Kizzo (1989). On boundary integral equations for crack problems, Proc. A Soc: Lond. A, 421, 341-355.
[46] Maruyama, T. (1966), On two-dimensional elatic dislocations in an infinite and semi-infinite medium, Bull. Earthq. Res. Inst. Vuis. Taky, 44, 811-871.
[47] Mikumo, T. and T. Miyatake (1978). Dymamical rupture process on a thre-dimensional fault with non-uniform frictions and neat-field serismic waves, Geophys. J. R. astr-Soc, 54, 417-438.
[48] Muskhelishvili, N1. (1953). Singular Integral Equations (transl, from Rusian), J. R.M. Radok (ed). Noordhoff, Groningen, 447 pp; reprinted (1992), Dover, New York, 447 pp.
[49] Muskhelishivili, N. . (1963). Some Basic Problems on the Mathernatical Theory of Elasticity, J. R.M Radok (transl, from Russian), Noordhoff, Groningen, 718 pp.
[50] Nakata, T. and K. Yomogida (1995). Surface fault characteristics of the 1995 Hyogoken-Nambu earthquake, J. Nat. Dusas. Sci, 16, 1-9
[51] Nishimura, N. (1994). Numerical Solutions of various crack determination problems with BIEM, in Y. Fujitani, T. Miyoshi and T. Taniguchi (eds.), Modelling, Computation and Analyais in Fracture Mechantes, Lecture Notes in Nameriat and Applied Analytes 13. Kinokuniyn, Tolyo, pp 201-213
[52] Olson, J.E.E and D.D. Pollard (1991). The initiation and growth of en tchelon veins, J. Stract. Geol, 13, 595-608
[53) Petit, J.-P. and M. Barquins (1988). Can natural faults propagate under mode II conditions? Tretonice, 7, 1243-1256.
[54) Pollard, D.D. and P. Segall (1987). Theoretical displacements and stresses near fractures in rock with applications to faults, joints, veins, dikes, and solation surfaces, in: B.K. Akineon (ed.) with applications to faults, joints, veins, dikes, and solation surfan
Fracture Mechanies of Rock. Academic Press, London, pp. 277 - 349.
[55] Reches, Z. and D. A. Lockner (1994). Nucleation and growth of faults in brittle rocks. J. Geophys. Res. 99, 18159-18173
[56] Scholz, C.IL (1990). The Mechanios of Earthquakes and Faulting, Cambridge Univ Press, Cambridge, 439 pp .
[57] Segall, P. and D.D. Pollard (1980). Mechanics of discontisuous faults. J. Geophys. Res, 85, 4337 4350 .
[58] Segall, P, and D.D. Pollard (1983). Nucleation and growth of atrike alip faults in granite. J. Geophyp
Res $88,555-568$. Res, 88, $555-568$
[59] Sih. G.C. (1965). Strear distribution near internal crack tipa for longitudinal abear problems, Thans ASME J. Appl. Mech. 32, $51-58$.
[60] Slidek, V. and J. Sladek (1984). Transient elastodynamic threedimensional problems in cracked bodies, AppL Math. Modelling, 8, 2-10
[61] Umeda, Y, T. Yamashita, T. Tada and N. Kame (1996), Possible mechanisms of dynamic nucleation and arresting of shallow earthquake faulting, Tectonophys,, in preas.
[62] Virieux, J. and R. Madariaga (1982). Dynamic faulting studied by a finite difference method, Bull Seismol. Soc. Am., 72. 345-369.
(63) Wei, K. and J.C1. De Bremaecker (1995a). Fracture growth-1. Formulation and implementations, Geophyn. J. Int., 122, 735-745
[0f] Wei, K. and J. CI. De Bremaoder (1995b). Fracture growth - II. Cave studiss, Grophys. J. Int. 122, 746-754.
[65] Yamashita, T. and E. Fukuyama (1996). Apparent critical nlip displacement caused by the existence of a fault zone, Geophys. J. Int in press.
[00] Yamashita, T, and Y. Umieda (199). Earthquake rupture complexity due to dyuamic mucleation and interaction of subsidiary faults, Pare Appl. Geophys., 143, 89-116
[67] Zhang, Ch. and J.D. Achenbach (1989). A new boundary integral equation formulation for elastodynamic and elastostatic crack analysis, Trans. ASME I Appl. Mech., 56, 284-290.

Appendices

A Artificial damping applied in the time-marching scheme Here I outline the procedure of artificial damping which in introduced so as to suppres the numerical noises and instabilities in the time-marching nodeling schrme, which arise due to the abrupt progresiss of the fracture front along the discretized fault trace. This damping procedure is practiced at every time
step. Denoting the slip rate at the - -th nodal point and the m-th time step before the damping by om nnd that after thie damping by $\left(0^{-r}\right)^{-1}$ ', we solve the following set of simeltaneous linear equations

$$
\left(\phi_{1}^{m}\right)^{\prime}=\phi_{1}^{m}+C\left[\left(\phi_{i+1}^{m}\right)^{\prime}+\left(\phi_{i-1}^{m}\right)^{\prime}-2\left(\phi_{1}^{m}\right)^{\prime}\right] \text { for each } i
$$

where $C>0$ is a positive constant. As long as the piecewise constant interpolation is used, no special treatment of the damping matrix is required at fault junctions
Stronger artificial damping or a bigger value of C supprouss
Stronger artificial damping or a bigger value of C suppremes the ripples more effectively, but Lends to distort the slip distribution, so that there is a problem of trade-off io the decision of the damping factor

B Analytic solution to Kostrov's self-similar crack evolution problem in three modes of fracture

B. 1 Anti-plane shear

Described below is the analytic solution to Kostrov's (1964) self-similar crack evolution problem in antiplane shear, which was obtained by Kikuchi (1976). I duplicate his results, partly because I have replaced part of his integral representations of non-analytic functions with a combination of complete elliptic
integrals, partly because his paper is not written in Eunlish Suppose that in an infinite homogrorous isotropic elastic
form at the instant $t=0$ ntong the 2 -axis and then propagates in the straight shear crack begins to form at the instant $t=0$ nlong the z_{2}-axis and then propagates in the $x_{1} z_{x}$ plane bilaterally from the
origin with a constant speed o (which is leas than the S wave velocity do qual to σ_{0} everywhere on the crack plane (Figure 4). We introduce the complex variables $\theta_{\text {drop }}$ being enotes the P wave velocity and β that of the S wave) defined by

$$
\begin{align*}
t-\theta_{c} x_{1}-\sqrt{e^{-3}-\theta_{2}^{2}} x_{2} & =0 \quad(c=a, \beta) \tag{B1}\\
\operatorname{lm} \theta_{c} & >0 \text { for } y>0
\end{align*}
$$

or, denoting $z_{1}=r \cos \varphi$ and $z_{2}=r \sin \varphi$, by

$$
\theta_{t}= \begin{cases}(t / r) \cos \varphi+i \sqrt{(t / r)^{2}-e^{-7}} \sin \varphi & (r<c t) \tag{B2}\\ (t / r) \cos \varphi-\sqrt{e^{-2}-(t / r)^{2}} \sin \varphi & (r \geq c t)\end{cases}
$$

 $z_{1} z_{2}$-plane $x_{2}>0$ may be mapped onto the upper half of the complex $\theta_{\text {c-plane }} \operatorname{lm} \theta_{c}>0$. Note that the variable θ_{0} does not appear in the solution of the anti-plane problem since the P wave field is not
involved.

The field variables at any point on the $z_{1} z_{2}$-plane are represented in a normalized appearanor

$$
\begin{aligned}
v_{i} & =\frac{\sigma_{0}}{\mu P(v)} \operatorname{lm} \tau_{1}^{\prime} \\
\sigma_{i j} & =\frac{\sigma_{0}}{P(v)} \operatorname{lm} \sigma_{i j}^{\prime} .
\end{aligned}
$$

where the normalized displacement velocity and stress components are given as follows

$$
\begin{equation*}
\tau_{3}=\frac{\theta_{3}}{\sqrt{v^{-2}-\theta_{3}^{2}}} \tag{B5}
\end{equation*}
$$

$$
\begin{aligned}
& \sigma_{31}=\frac{-1}{\sqrt{1-2}-\theta_{3}^{2}} \\
& \sigma_{32}^{\prime}=\frac{-1}{v} \int_{0}^{t,}\left(\beta^{-2}-\theta^{2}\right)^{1 / 2}\left(v^{-2}-\theta^{2}\right)^{-2 / 2} d \theta
\end{aligned}
$$

and the normalization factor $P(v)$ in

$$
P(0) \equiv-\left.\operatorname{lm} \sigma_{s_{1}}\right|_{t=+i \infty}=E_{31}
$$

where

$$
E_{c} \equiv E\left(\frac{\pi}{2}, k_{e}\right), k_{c} \equiv \sqrt{1-\left(\frac{t}{c}\right)^{2}}
$$

is a complete elliptic integral of the second kind. The slip actoos the crack is given by

$$
\Delta u_{a}=\frac{2 \sigma_{0}}{\mu P(v)} \sqrt{v^{2} t^{2}-x_{i}^{2}}
$$

Though the shear stress component $\sigma_{3 y}$ is not expressible in terms of an analytic fuection, it to fiducible to a telatively simple expression on the axes of symmetry. On the z_{2} or the y-axis, for $0 \leq$ $|y|<B t$, denoting

$$
\xi^{\xi} \equiv 1 / \sqrt{1-(v / c)^{2}+(v t / y)^{2}} \neq z^{\prime} \equiv \sqrt{1-(y / c)^{2}}
$$

and

$$
E z \equiv E\left(\sin ^{-1} z_{k}^{y}, k_{c}\right) ;
$$

we have

$$
\operatorname{Im} \sigma_{32}^{\prime}=-E_{3}^{z}+k_{2}^{2} \xi_{j}^{\prime} x_{3}^{\prime \prime}
$$(B13)

On the z_{1} of the z-axis, for $\mathrm{vt}<|z|<\beta t$, denoting

$$
\xi^{\prime} \equiv 1 / \sqrt{1-(x t / x)^{2}}, z_{\ell}^{z} \equiv \sqrt{1-(x / d)^{2}}
$$

and

$$
E_{\varepsilon}^{*} \equiv E\left(\sin ^{-1}\left(z_{\varepsilon}^{t} / k_{c}\right), k_{c}\right),
$$

we have

$$
\operatorname{Im} \sigma_{32}^{\prime}=-E_{1}^{*}+\varepsilon^{z} z_{j}^{\prime}
$$

This leads to the following expresaion for the stress intensity factor (Appendix D)

$$
\begin{equation*}
K_{m}=\frac{\sigma_{0} \sqrt{\pi a}}{P(v)} \sqrt{1-(\mathrm{v} / \beta)^{2}} \tag{B17}
\end{equation*}
$$

where $a \equiv$ ot is the half length of the crack. By using the equations (B10) and (B17), obe can easily confirm that Freunds (1990) formula (D9), relating the slip rate near the tip of a running crack with the SIF, is satisfied. On the other hand, noting that $P(p) \rightarrow 1$ as $v / 3-0, K_{r u}$ tends in the static limit to $\sigma_{0} \sqrt{\pi a}$, which coincides with the familiar expression for the SIF at the tip of a stationary straight crack of length a

B. 2 In-plane shear

 Hete I describe the analytic solution Kikuchi (1976). The setting of the problem and the nomenclature are parallel to that used for the anti-plane shear case. The discussion of this problem is also found in Freund (1990).The normalized displacement velocity and stress components amr

$$
\begin{align*}
& v_{i}=\frac{v \sigma_{0}}{\mu P(v)} \operatorname{tm} v_{i}^{\prime} \tag{B18}\\
& \sigma_{i j}=\frac{\sigma_{0}}{P(v)} \operatorname{lm} \sigma_{i j}^{\prime}
\end{align*}
$$

where σ_{0} is now the in-plane shear stress drop, are given as follows:

$$
\begin{align*}
& r_{1}=\frac{2 \partial^{2}}{\Sigma^{2}} \frac{\theta_{\alpha}}{\sqrt{v^{-2}-\theta_{a}^{2}}}+\left(1-\frac{2 a^{2}}{\Sigma^{2}}\right) \frac{\theta_{A}}{\sqrt{v^{-2}-\theta_{2}^{2}}}+ \\
& +\frac{2 a^{2}}{v^{2}} i \log \frac{i \theta_{a}-\sqrt{v^{-2}-\theta_{2}}}{i \theta_{a}-\sqrt{r^{-2}-\theta_{a}^{2}}} \\
& \zeta_{2}=\frac{2 \rho^{2}}{r^{2}} \frac{\sqrt{a^{-2}-\sigma_{g}}}{\sqrt{v^{-2}-\sigma_{5}}}+\frac{1-2(\beta / \mathrm{s})^{2}}{1-(v / \beta)^{2}} \frac{\sqrt{g^{-2}-\sigma_{5}}}{\sqrt{v^{-2}-\sigma_{j}}}+ \\
& +\frac{2 \beta^{2}}{v^{2}} \log \frac{\sqrt{v^{-2}-\theta_{j}}+\sqrt{\beta^{-2}-\theta_{g}}}{\sqrt{v^{-2}-\theta_{\sigma}^{2}}+\sqrt{\sigma^{-2}-\theta_{j}^{2}}} \tag{B21}\\
& \frac{1}{2}\left(\sigma_{11}^{\prime}-\sigma_{22}^{\prime}\right)=2\left(\frac{\beta^{2}}{\sigma^{2}}-\frac{2 \beta^{2}}{v^{2}}\right) \frac{1}{v \sqrt{v^{2}-\theta_{\alpha}^{2}}}-2\left(1-\frac{2 \beta^{2}}{v^{2}}\right) \frac{1}{v \sqrt{v^{-2}-\theta_{j}^{2}}}+ \\
& +\frac{4 \theta^{2}}{E}\left(\sqrt{v^{-2}-\theta_{j}^{2}}-\sqrt{v^{-2}-\theta_{5}^{2}}\right) \\
& \frac{1}{2}\left(\sigma_{11}^{\prime}+\sigma_{22}^{\prime}\right)=-2\left(1-\frac{\beta^{2}}{a^{2}}\right) \frac{1}{\sqrt{1^{-9}-\sigma_{1}^{2}}} \\
& \sigma_{13}^{\prime}=\frac{-4 \theta^{2}}{\varepsilon} \int_{0}^{\theta} \theta \theta^{2}\left(a^{-2}-\theta^{2}\right)^{1 / 2}\left(\theta^{-2}-\theta^{2}\right)^{-3 / 2} d \theta+ \\
& +\frac{-4 \beta^{2}}{\pi} \int_{0}^{3}\left(\frac{1}{2} \beta^{-2}-\theta^{2}\right)^{2}\left(\theta^{-2}-\theta^{2}\right)^{-1 / 2}\left(e^{-2}-\theta^{2}\right)^{-3 / 2} d \theta .
\end{align*}
$$

and the normalization factor $P(t)$ is

$$
\begin{equation*}
P(v) \equiv-\operatorname{lm} \sigma_{12}^{\prime} k_{=+\infty}=\frac{v^{2}}{\beta^{2}-v^{2}}\left(K_{p}-E_{s}\right)+\frac{8 \beta^{2}}{v^{2}}\left(K_{s}-E_{s}\right)+4\left(K_{s}-\frac{\beta^{2}}{a^{2}} K_{a}\right) \tag{B25}
\end{equation*}
$$

whete

$$
\begin{equation*}
\kappa_{\varepsilon} \equiv K\left(\frac{\pi}{2}, k_{\mathrm{c}}\right), K_{\pi} \equiv E\left(\frac{\pi}{2}, k_{n}\right), k_{z} \equiv \sqrt{1-\left(\frac{t}{e}\right)^{2}} \tag{B26}
\end{equation*}
$$

are complete elliptic integrals of the first and second kinds respectively. The slip across the crack is given

$$
\begin{equation*}
\Delta u_{1}=\Delta v_{1}=\frac{2 \sigma_{0}}{\mu P(t)} \sqrt{v^{T} z^{2}-x_{1}^{2}} \tag{B27}
\end{equation*}
$$

Though the shear stress component σ_{13} is not expressible in terms of an analytic function, it is reducible to a relatively simple expression on the axes of symmetry. On the x_{2} or the y-axis, for $0 \leq$ $|y|<\Delta t$, denoting

$$
\varepsilon \equiv 1 / \sqrt{1-(v / c)^{2}+(v t / y)^{2}}, z^{?} \equiv \sqrt{1-(y / c t)^{2}}
$$

and
we have

The expressions for $; t \leq|y|<o t$ can be obtained by dropping all the terms that are accompanied with the index \Rightarrow

On the $\%$, or the x-axis for $a t<|z|<$ At denotine

$$
\xi^{x} \equiv 1 / \sqrt{1-(\mathrm{tt} / \mathrm{x})^{2}}, z_{\varepsilon}^{x} \equiv \sqrt{1-(z / \mathrm{c})^{2}}
$$

and

$$
K_{\varepsilon}^{\tau} \equiv K\left(\sin ^{-1}\left(z_{c}^{z} / k_{c}\right), k_{c}\right), E_{\varepsilon}^{\tau} \equiv E\left(\sin ^{-1}\left(z_{c}^{z} / k_{c}\right), k_{c}\right) .
$$

we have

$$
\begin{aligned}
& \operatorname{lm} \sigma_{12}^{\prime}=\frac{v^{2}}{\sigma^{2}-v^{2}}\left(E_{j}^{z}-K_{j}^{z}-\xi^{2} z_{0}^{2}\right)+\frac{4 g^{2}}{\varepsilon^{2}}\left(2 E z-2 E_{a}^{z}-\right.
\end{aligned}
$$

Thie exprosions for $\operatorname{at}^{\prime \prime} \leq|y|<\alpha t$ can be obtained by dropping all the terms that are accompanied wit he index β. The above leads to the following expression for the stress intensity factor (Appendix D):

$$
K_{t t}=\frac{\sigma_{0} \sqrt{\pi a}}{P(v)}\left(\frac{\beta}{v}\right)^{2}\left\{4 \sqrt{1-(v / a)^{2}}-\frac{\left[2-(v / \beta)^{2}\right]^{2}}{\sqrt{1-(v / \beta)^{2}}}\right\}
$$

where $a \equiv v t$ is the half length of the crack. By using the equations (B27) and (B34), one can easily confirm that Freund's (1990) formula (D10), relating the slip rate near the tip of a running crack with the SIF, is satisfled. On the other hand, noting that $P(v)-2\left(1-\beta^{2} / \alpha^{2}\right)=\pi / \beta \rightarrow 0, K_{\text {It }}$ tends in the static limit to $\sigma_{0} \sqrt{\pi a}$, which coincides with the familiar expression for the SIF at the tip of a stationary straight crack of length a.

B. 3 Tension

Now I describe the analytic solution to Kostrov's self-similar crack evolution problem in tension, discussed by Cherepanov and Afanas'ev (1974) and Freund (1990), which I derived following the method of Kikuch (1976). The setting of the problem and the nomenclature are parallel to those used in the anti-plane thear and in-plane shear cases

The normalized displacenent velocity and stress components ate

$$
\begin{aligned}
r_{i} & =\frac{v \sigma_{0}}{\mu P(v)} \ln t_{i} \\
\sigma_{i j} & =\frac{\sigma_{0}}{P(v)} \ln \sigma_{i j}
\end{aligned}
$$

where σ_{C} is now the tensile stress drop, are given as follows

$$
\begin{aligned}
v_{1}^{\prime}= & \frac{-2 s^{2} \sqrt{v^{2}} \sqrt{v^{-2}-\theta_{3}^{2}}}{\sqrt{v^{-2}-\theta_{j}^{2}}}-\frac{1-2(\theta / \omega)^{2} \sqrt{\sigma^{-2}-\theta_{\sigma}^{2}}}{1-(v / o)^{2}} \sqrt{v^{-2}-\theta_{a}^{2}}
\end{aligned}+
$$

and the normalization factor $P(v)$ is

$$
P(v) \equiv-\left.\operatorname{Im} \sigma_{z 2}^{2}\right|_{n=+\infty \infty}=\frac{a^{2} v^{2}-4 \omega^{2} \beta^{2}+4 \beta^{2}}{s^{2}\left(\alpha^{2}-v^{2}\right)}\left(K_{a}-E_{a}\right)+\frac{8 y^{2}}{v^{2}}\left(E_{p}-E_{a}\right)+4\left(K_{a}-K_{p}\right),
$$

$$
K_{s} \equiv K\left(\frac{\pi}{2}, k_{c}\right), E_{c} \equiv E\left(\frac{\pi}{2}, k_{c}\right), k_{s} \equiv \sqrt{1-\left(\frac{c}{c}\right)^{2}}
$$

are complete elliptic integrals of the first and second kinds respectively. The slip acroses the crack is given

$$
\begin{equation*}
\Delta u_{y}=\Delta u_{n}=\frac{2 \sigma_{0}}{\mu P(v)} \sqrt{r^{2} t^{2}-z_{1}^{2} .} \tag{B44}
\end{equation*}
$$

Though the diagonal strmss components $\sigma_{11} \pm \sigma_{2 z}$ are not expressible in terms of analytic functions, they are reducible to relatively simple expresions on the axes of symmetry

On the crack surface, i.e on the x, or the x-axis for $|x|<x t$

$$
\begin{align*}
& \frac{1}{2} \operatorname{lm}\left(\sigma_{11}^{\prime}-\sigma_{22}^{\prime}\right)=\frac{2 a^{2}-2 \beta^{2}-v^{2}}{\alpha^{2}-v^{2}}\left(E_{a}-K_{a}\right)-\frac{8 \beta^{2}}{\kappa^{2}}\left(E_{a}-E_{j}\right)+2\left(\frac{\beta^{2}}{\alpha^{2}}+1\right) K_{a}-4 K_{j} \text { (B45) } \\
& \frac{1}{2} \operatorname{lm}\left(\sigma_{11}^{\prime}+\sigma_{22}^{\prime}\right)=\frac{\left(\alpha^{2}-\beta^{2}\right)\left(r^{2}-2 \beta^{2}\right)}{\beta^{2}\left(a^{2}-v^{2}\right)}\left(E_{\alpha}-K_{a}\right)+2\left(\frac{\beta^{2}}{\alpha^{2}}-1\right) K_{\alpha} \tag{B46}\\
& \text { (B46) }
\end{align*}
$$

On the x_{2} or the y-axis, for $0 \leq|y|<\beta t$, denoting

$$
\begin{equation*}
e \equiv 1 / \sqrt{1-(v / c)^{2}+(v t / y)^{2}}, \quad z \equiv \sqrt{1-(y / d)^{2}} \tag{BAI}
\end{equation*}
$$

and
e have

$$
\frac{1}{2} \operatorname{lm}\left(\sigma_{11}^{\prime}+\sigma_{22}^{\prime}\right)=\frac{\left(\alpha^{2}-\beta^{2}\right)\left(v^{2}-2 \beta^{2}\right)}{\beta^{2}\left(\alpha^{2}-v^{2}\right)}\left(E_{0}^{z}-K_{\alpha}^{\beta}-k_{0}^{2} \xi_{\alpha}^{2} z_{\alpha}^{y}\right)+2\left(\frac{\beta^{2}}{\alpha^{2}}-1\right) K_{\alpha}^{\jmath}
$$

The expressions for $\beta t \leq|y|<$ at can be obtained by dropping all the terns that are accompanied with index p
On the z_{1} or the x axis, for $\mathrm{H}<|z|<A t$, denoting
$\xi^{z} \equiv 1 / \sqrt{1-(t t / x)^{2}}, x_{\varepsilon}^{z} \equiv \sqrt{1-(x / c t)^{2}}$

$$
\begin{align*}
& \frac{1}{2}\left(\sigma_{11}^{\prime}-\sigma_{12}^{\prime}\right)=\frac{4 \beta^{2}}{\pi} \int_{0}^{\theta \prime} \theta^{2}\left(\sigma^{-2}-\theta^{2}\right)^{1 / 2}\left(v^{-2}-\theta^{2}\right)^{-3 / 2} d \theta+ \\
& +\frac{4 \beta^{2}}{D} \int_{0}^{0} \theta\left(\frac{1}{2} a^{-2}-\theta^{2}\right)\left(\frac{1}{2} \sigma^{-2}-\theta^{2}\right)\left(a^{-2}-\theta^{2}\right)^{-3 / 2}\left(\theta^{-2}-\theta^{2}\right)^{-3 / 2} d \theta \tag{H39}\\
& \frac{1}{2}\left(\sigma_{11}^{\prime}+\sigma_{22}^{\prime 2}\right)=\frac{-2}{x}\left(1-\frac{\beta^{2}}{a^{2}}\right) \int_{0}^{2-}\left(\frac{1}{2} \sigma^{-2}-\theta^{2}\right)\left(a^{-2}-\theta^{2}\right)^{-1 / 2}\left(\theta^{-2}-\theta^{2}\right)^{-3 / 2} d \theta \tag{B40}\\
& \sigma_{12}=2\left(1-\frac{2 \sigma^{2}}{v^{2}}\right)\left(\frac{1}{v \sqrt{v^{-2}-\theta_{2}^{2}}}-\frac{1}{x \sqrt{x^{-2}-\theta_{S}}}\right)+ \\
& +\frac{4 \theta^{2}}{v}\left(\sqrt{v^{-2}-\theta_{a}^{2}}-\sqrt{v^{-2}-\theta_{B}}\right) \tag{B41}
\end{align*}
$$

and
$K_{c}^{z} \equiv K\left(\sin ^{-1}\left(z_{\varepsilon}^{z} / \mathbf{k}_{\mathrm{z}}\right), \mathbf{k}_{\mathrm{e}}\right), E_{c}^{*} \equiv E\left(\sin ^{-1}\left(z_{\varepsilon}^{z} / k_{z}\right), k_{\mathrm{s}}\right)$,
we have

$$
\begin{aligned}
& \frac{1}{2} \operatorname{lm}\left(\sigma_{11}^{\prime}-\sigma_{22}^{\prime}\right)=\frac{2 \alpha^{2}-2 \sigma^{2}-v^{2}}{a^{2}-v^{2}}\left(E_{0}^{z}-K_{a}^{z}-\varepsilon^{2} z_{\sigma}^{z}\right)-\frac{4 \beta^{2}}{\varepsilon^{2}}\left(2 E_{\alpha}^{\alpha}-2 E_{g}^{z}-\right. \\
& \left.-\xi^{z} z_{\varepsilon}^{z}+\varepsilon^{z} z_{\xi}^{z}-\frac{z_{g}^{z}}{\xi^{z}}+\frac{z_{g}^{z}}{\xi^{z}}\right)+2\left(\frac{\beta^{2}}{a^{z}}+1\right) K_{n}^{z}-4 K_{\xi}^{z} \\
& \frac{1}{2} \operatorname{Im}\left(\sigma_{11}^{\prime}+\sigma_{z 2}^{\prime}\right)=\frac{\left(\sigma^{2}-\beta^{2}\right)\left(v^{2}-2 \beta^{2}\right)}{\beta^{2}\left(a^{2}-v^{2}\right)}\left(E_{\theta}^{z}-K_{\alpha}^{z}-\xi^{z} z_{\sigma}^{z}\right)+2\left(\frac{\beta^{2}}{\alpha^{2}}-1\right) K_{\theta}^{z}
\end{aligned}
$$

The expressions for $3 t \leq|y|<o t$ can be obtained by dropping all the terms that are accompanied with the index β. The above leads to the following expression for the stren intensity factor (Appendix D)

$$
\begin{equation*}
K_{t}=\frac{\sigma_{0} \sqrt{\pi a}}{P(v)}\left(\frac{\partial}{v}\right)^{2}\left\{4 \sqrt{1-(v / \beta)^{2}}-\frac{\left[2-(v / \beta)^{2}\right]^{2}}{\sqrt{1-(v / \alpha)^{2}}}\right\} . \tag{B57}
\end{equation*}
$$

where $a \equiv n t$ is the half length of the crack. By using the equations (B44) and (B57), one can easily confirm that Freund's (1990) formula (D11), relating the slip rate near the tip of a running crack with the SIF, is satisfied. On the other hand, noting that $P(v) \rightarrow 2\left(1-d^{2} / \alpha^{2}\right)$ as $\varepsilon / \beta \rightarrow 0 . K_{7}$ tends in the tatic limit to $\sigma_{0} \sqrt{r a}$, which coincides with the familiar expression for the SIF at the tip of a stationar traight crack of length a

C Formulation of Cochard and Madariaga for the time-domain analysis of a straight 2D shear crack

Here I cite the boundary integral equations for the time-domain analysis of a struight 2 D shear cracks derived by Cochard and Madariaga (1994) and by Madariaga (1995) reppectively, on the baxis of the double Laplace transform and the Cagniard-de Hoop method. The results for the cases of anti-plane shear and in-plane shear, repectively are

$$
\begin{align*}
T_{3}(s, t)= & -\frac{\mu}{2 \beta} \Delta i_{3}(s, t)- \\
& -\frac{\mu}{2 \pi} \int_{\Gamma} d \xi \int_{0}^{1} d r \frac{\partial}{\partial \xi} \Delta \dot{i}_{3}(\xi, r) \frac{\sqrt{(t-r)^{2}-(r / \beta)^{2}}}{(t-r)(s-\xi)} H\left(t-r-\frac{r}{\beta}\right) \tag{C1}
\end{align*}
$$

$T_{i}(s, t)=-\frac{\mu}{2 g} \Delta \hat{i}_{t}(s, t)-$

$$
\begin{aligned}
& -\frac{\mu}{2 \pi} \int_{\Gamma} d \xi \int_{0}^{t} d r \frac{\partial}{d \xi} \Delta \dot{u}_{1}(\xi, r) \frac{4 \beta^{2}(t-r)}{(s-\xi)^{3}} \sqrt{(t-r)^{2}-(r / a)^{2}} \|\left(t-r-\frac{r}{\alpha}\right)+ \\
& +\frac{\mu}{2 \pi} \int_{\Gamma} d \xi \int_{0}^{t} d r \frac{\partial}{\partial \xi} \Delta \dot{u}_{\mathrm{C}}(\xi, r) \frac{\beta^{2}}{(s-\xi)^{2}(t-r)} \frac{\left.\mid 2(t-r)^{2}-(r / \beta)^{2}\right]^{2}}{\sqrt{(t-r)^{2}-(r / \beta)^{2}}} H\left(t-r-\frac{r}{\beta}\right) \quad(C 2)
\end{aligned}
$$

with

$$
\begin{equation*}
r \equiv|x-\xi| \tag{C3}
\end{equation*}
$$

and the singular integrals should be interpreted in terms of Canchy principal valuss (it can be easily shown that the hypersingular parts of the second and third terns of the right hand side of Equation (C2) cancel out each other). Note that Cochard and Mndariagn (1994) proposed a unique semi-annlytic necessary in the time mimplementation, with the use of which no artificial damping (Appendix A) was study because it is not applicable to curved crack cases

D Stress intensity factor

The stress intensity factor (SIF) is an index of the stras concentration at a crack tip and is defined as a linear multiplier appearing in the asymptotic expression of the stross field in the cloee vicinity of the crack up. The SIFs can be defined independently for the three modes of fracture, which are usaally a way that the crack $K_{n \prime \prime}$. Suppose a local 2 D rectangular coordinate systemi x_{1}, z_{2} is defined in such the z_{1}-axis near the crack tip. A local polar coordinate system r. θ is also defined by $r=\sqrt{x_{1}^{2}+x^{2}}$ and $\tan \theta \equiv x_{2} / x_{1}$. According to the conventional definition of the SF, the asymptotic expression of the and $\tan \theta \equiv x$
stress field is

$$
\begin{align*}
\sigma_{31} & =-\frac{K_{1 I}}{\sqrt{2 \pi r}} \sin \frac{\theta}{2} \tag{D1}\\
\sigma_{32} & =\frac{K_{H I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2} \\
\frac{1}{2}\left(\sigma_{11}-\sigma_{22}\right) & =-\frac{K_{1}}{\sqrt{2 \pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \sin \frac{3 \theta}{2}-\frac{K_{H}}{\sqrt{2 \pi r}} \sin \frac{\theta}{2}\left(1+\cos \frac{\theta}{2} \cos \frac{3 \theta}{2}\right) \\
\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right) & =\frac{K_{l}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}-\frac{K_{I \prime}}{\sqrt{2 \pi r}} \sin \frac{\theta}{2} \\
\sigma_{12} & =\frac{K_{l}}{\sqrt{2 \pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3 \theta}{2}+\frac{K_{11}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left(1-\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right) \tag{Dis}
\end{align*}
$$

(e.g. Jsids, 1976; Freund, 1990). Note that Sith' (1965) definition of the SIF differs from the conventional one by a factor of $\sqrt{\pi}$. In the time-indeperdent case, the asymptotic form of the slip near the crack tip is expresed by

$$
\begin{align*}
\Delta u_{3} & =\frac{2}{\mu} \sqrt{\frac{2 r}{\pi}} K_{m} \tag{D6}\\
\Delta v_{1}=\Delta u_{1} & =\frac{2(\lambda+2 \mu)}{\mu(\lambda+\mu)} \sqrt{\frac{2 r}{\pi}} K_{\| r} \tag{D7}\\
\Delta v_{2}=\Delta v_{n} & =\frac{2(\lambda+2 \mu)}{\mu(\lambda+\mu)} \sqrt{\frac{2 r}{\pi}} K_{f}
\end{align*}
$$(D8)

Freund (1990) gives the neymptotic elastic field in the proximity of the crack tip that is ranamg with speed e. According to his expressions, the axymptotic form of the slip rate near the crack tip is

$$
\begin{align*}
\Delta \dot{u}_{n} & =\frac{2 v}{\mu} \frac{K_{m}}{\sqrt{2 \pi r}} \frac{1}{\sqrt{1-(v / \beta)^{2}}} \\
\Delta u_{1}=\Delta \dot{u}_{1} & =\frac{2 v}{\mu} \frac{K_{n}}{\sqrt{2 \pi r}} \frac{(v / \beta)^{2} \sqrt{1-(v / \beta)^{2}}}{\sqrt{1-(v / \alpha)^{2}} \sqrt{1-(v / \beta)^{2}-\left[2-(v / \beta)^{2}\right]^{2}}} \\
\Delta u_{2}=\Delta \dot{u}_{n} & =\frac{2 v}{\mu} \frac{K}{\sqrt{2 \pi r}} \frac{(v / \beta)^{2} \sqrt{1-(v / a)^{2}}}{4 \sqrt{1-(v / \alpha)^{2}} \sqrt{1-(v / \beta)^{2}-[2-(v / \beta)]^{2}}} \tag{DII}
\end{align*}
$$

(D9)
(D10)

[^0]: Figure 5: Comparison of the numerical and analytic solutions to Kostrov's self-similar crack evolution
 problem in anti-plane shear, with $\sigma_{0}=1.0, \mu=1.0$ and for various values of v / β. The slip at the crack problem in anti-plane shear, with $\sigma_{a}=1.0, \mu=1.0$ and for various values of v / β. The slip at the crack
 center is compared at an instant when the crack has reached a length of 19.0 , or 19 discrete elements. Sce Appendix A for the definition of the damping coefficient, and Appendix C for the formulation of Cochard and Madariaga (1994).

