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Chapter 1

Introduction

1.1 History of soliton equations

One hundred years ago. Korteweg and de Vries proposed the equation'.

uy + Guu, + u 0 (L.1)

as a model system for shallow water wave. Equation (1.1) is now called the Kd}
cquation and is one of the most fundamental and important equations in the soliton

1965 when Zabusky and Kruskal

theory. It was no less than seventy years later i
found numerical solutions with periodic boundary condition. The solution, which

they named a soliton solution. represents a stable solitary wave and retains its identity

after it interacts with other solitons. In 1967. Gardner, Greene. Kruskal. and Miura
discovered an epoch-making method for solving eq. (1.1) under a boundary condition
u — 0 as [r| — oo, which is now called the inverse scattering method.

After the discovery of the inverse scattering method. this successful method has

been applied to many other nonlinear evolution equations and exact solutions for

Equation (1.1) is written in a scaled form, which we now adopt
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them have been found. Typical examples of such nonlinear equations are the nonlin

car Schrodinger equation,

I 2 == )
the Sine-Gordon equation
Z I S11 (1.3)
and the Toda equation.
d2Q o
2 Quir) +6xp(Qnar — Qn). nEZ (1

—_ exp (@
a PAE

optical soliton. dislocation in crystals.

['hey are first proposed as model equatior

v originate with different phy

and nonlinear lattices. respectively. Thot

round, all of them are called integrable* in the sense that

bac

e Theyv admit an exact solution called the N soliton solution

1 symmetries

e They have an infinite number of conserved guan

o They possess the Lax pair and their initial value problem can be exactly solved

by the inverse scattering method.

o They satisfy the Painlevé property.

Soliton equations. including the above fundamental equations, have been activel

as thematics. physics, and engineering. In

various aspects sucl

hat the solutions for these equations are related

early 80°s, Sato [29] discovered

irassmann manifold and that there are linearized equations

nsional

ith infinite din

hidden behind the nonlinear integrable equations.

It is still difficult to give a precise definition of the term infegrable
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1.2 Integrable discretization

In this section. we review integrable discretization of soliton equations. Developmier

of computers has enabled us to solve numerically nonlinear differential equation
which do not admit analytical solutions. It should be noted. however, that simple
discretization of given continuous equations does not necessarily preserve the origi
properties. or sometimes brings about numerically induced chao
As a simple but famous example. let us consider the logistic equation,
du

dt

au(l —u (1.5)

I'he above equation has an exact solution.

ult 3 6)

1¢

where A is an arbitrary parameter determined by the initial condition. As one possible

discretization of eq. (1.5). we ma) 1 the following difference equation.

where ¢ stands for a lattice parameter. If @ exceeds a certain critical value, eq. (1.7)
shows a chaotic behavior and does not conserve the structure of solution for eq. (1.5)

On the other hand. another discretization of eq. (1.5).

does not show chaotic behavior and ac

", = ———— 1.9)

for any 0. The solution (1.9) reduces to eq. (1.6) if we take the continuous limit
n — o s 0 with 1 = ne kept finite. We call the discretized eq. (1.8) the integrable

discretization of eq. (1.5).
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Integrable discretization of soliton equat

1977. in which he presents an integrable dis

X(n+1L,m)—X(n—Lom+1) 1.10)

X(n.m+1) X (n,m)
Since then. discrete analogues of many other soliton equations. including eqgs

have been constructed

1.3 Discrete soliton equations and convergence
acceleration methods

Recently. it has been revealed that discrete soliton equations appear in rather u

expected area, the numerical analysis. In 1982, Symes [35] pointed out that the

finite, nonperiodic Toda equation, which we call the Toda molecule equation in this

context. relates with the QR algorithm to calculate eigenvalues of a given matrix
Since then relations between soliton equations and matrix eigenvalue algorithms have
been actively studied [S. 11. 17. 25, 24]. In 1993. Papageorgiou. Grammaticos. and
Ramani [27] showed that one of the well-known convergence acceleration schemes

the z—algorithm. is nothing but the discrete potential KdV equation.

Our main interest in this thesis is on the convergence acceleration methods. We
first present a simple introduction of convergence acceleration methods. Let {5, }
be a sequence of numbers which converges to S.. In order to find an approximate

value of S.. by direct calculation. we often need a large amount of data. Sequence

= R (EEEL)

et (1.12)
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are {ypical examples. Besides these simple cases. one has often to deal with slowly

convergent sequences in the field of applied mathematics. In such cases we transforn
the original sequence {S,, } into another sequence {7 nstead of calculating direc
If {71, } converges to S faster than {S,.}. that is

lim ——— = 0. 113
we say that the transformation 7' : {S,,} — {1, } accelerates the convergence of the

sequence {S,,}. In eq. (1.13). a(m) is a function in m such th

} t sequence

{1

determined by {S;}7457. In the case of the Aitken acceleration, for instance,

given by m 4 2

\s proved by Delahaye and Germain-Bonne

accelerating all the converging sequences cannot exist. This negative result.

means that ill be always interesting to find and to study new sequer

formations since each of them is only able to accelerate the converg

o(m) is

1 universal transformation 7

classes of sequences. In fact. we now h v convergence acceleration meth
ods such as e—algorithm [10]. y—algorithm [3]. p sorithm [41]. BS-algorithm [T
f—algorithm [4]. Levin’s t—, u—. and v—transformation [20], and E—algorithm [5
We focus our attention mainly on the n—. and p—algorithms. We show there

being a strong tie between these algorithms and discrete soliton equations

1.4 Outline of the thesis

Ihe thesis is organized as follows. In chapter

(m) (m) (m+1) (m+1)
Nan41 T M2y bl M2n—1

we discuss the p—algorithm.
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and algorithm.

which are equivalent to the discrete KdV and the discrete potential KdV equation. re

discrete KAV eq. (2.7) to the KdV eq

spectively. The continuous limit fron

also considered. We mention the performance of these algorithms as convergence

accelerators and the reasons for which these algorithms accelerate (or fail to acceler

ate) the convergence of given sequences. These algorithms, when viewed as difference

equations. possess solutions expressed as ratios of Hankel determinants, which appear

in the field of the Padé approximation. We also relate the asymptotic behavior of

solutions for the Toda molecule equation with convergence acceleration by means o

gorithm appears in the

one reason ul\\

continued fractions and g
field of soliton theory
In chapter 3. we introduce a different type of convergence acceleration algorithn

the p—algorith

Ius

ite of its apparent similarity with the

different characteristics not only as a convergence accelerato;

soliton equation. We show that one generalized version of the p—algorithm is con

sidered as an integrable discretization of the cylindrical KdV ation [21

wy + Guw, + u

I'he p—algorithm, w viewed as a difference equation. admits a double Casorat

determinant solution. We explain that this fact is quite natural if we discuss the

algorithm in relation with Thiele’s rational interpolation formula [36]. By changing

elements of the double Casorati determinants. the p—algorithm is naturally extended
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to the algorithm of the following form:

We show that the above extended version of p

ences than the original p—algorithm (1.16)

Chapter 4 is mainly devoted to one of quite generalized rhomb

orithms.
the PGR algorithm. The algorithm, when viewed as a difference equation. satisfic
the so-called singularity confinement condition. We discuss its relation with discrete
integrable equations and the performance as a convergence accelerator

Finally in chapter 5. we give concluding remarks




Chapter 2

The - and =—-algorithms

2.1 The n—algorithm and the discrete KdV eqution

In this section we show that Bauer’s p—algorithm [3], which is one of the famous

convergence acceleration algorithms. is equivalent to the discrete KdV equation. The

n—algorithm involves a two-dimensional array called the y—table (Figure 2.1 I'he

table is constructed from its first two columns. Let initial values 75" and 5"’ be
o 0, My = ¢ ASp—1, (m=0.1,2 s =40 2.1

where A is the forward difference operator given by Aay ay. Then al

the other elements are calculated from the following recurrence relations called the

n—algorithm:

(m) (m) (m+1) (m+1)
MN2nt1 T 72 2 T N2n-1
% 1 1 1 1 (rhombus rules (2.2)
| 7 o7 + e
Man+2 1 2
; ; (m)
Equation (2.2) defines a transformation of a given series ¢ e (1)
to a new series ¢, = . n = 1,2,... such that )¢, converges more rapidly to the
1

same limit S...
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(1)
(00 =), ]
(00 =)
Ui
(oc g 1
mn 7y
(4) (%)
(e =)ny s
1)
Ui
igure 2.1: The p—table.
As an empirical example we consider a slowly convergent series for log 2
1 1 1 I p o
1 + ' = . y log 2 = 0.693147 (2.3)
% i | 5 6
and construct the p—table for the series (2.3). We see from Figure 2 the
transformed series
1 1 ! |
1 4 =
3 30 130
converges more rapidly to log2 than the original series. While the sum of the fir
seven terms of the original series gives 0.7595- - -, that of the corresponding seven

terms of the transformed series does 0.693
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1
5 1/3
2 1 /30
X ) 30
5 105 975
e T 1/350 5
L/4 I 1100 1/32508
x 1/9 1/738 1 /15867
1/5 1/495 1/12505
> < 1/11 1/1342
( 1/858
X 1/13
Figure 2.2: The n—table for log2
I'he quantities (") arve given by the following ratios of Hankel determinants:
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AT Acuy e Acyi42

We next show the equivalence between the n—algorithm and the discrete Kd\

equation. If we introduce dependent variable transformations

the y—algorithm (2.2) is rewritten as
1 o
Xt X1 tmd ( 2.1
\ X
which is the discrete KdV equatior
Let us derive the KdV eq. (1.1) from the discrete KdV eq. (2.7). We replace
variables n and m by
t it ct
n=-—,.m (2.8)
¢ 2 ¢ ¢
respectively and rewrite X" as p+ ¢*u( ¢/2.t). where ¢ is a small parameter and
c. p are finite constants related by
St t. = 2.0
['hen eq. (2.7) becomes
) « ) ) ¢ 1
cula -+ ce. b+ ) €U =2 ce,t { A e
2 2 !
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If we take the small limit of ¢, eq. (2.10) yields the KdV equation.

at the order of

I'he discrete KAV eq. (2.7) is rewritten as

l.m } 1)
{r(n—2.m+ 1)7(n+ L.m)+7(n — Lom)r(n.m+1) lm—1), (2.12)
through a dependent variable transformation,
s wln )7 ( "
\ == 2.13)
(n.r T )
Subtracting 7(n — L. + 1)7(n 1.1 )7(n.m) from both sides of eq. (2.12 ¢
obtain the bilinear form of the discrete KdV equation,
(n n )7 m)+7(r m)T T )—T1(r )7 ) 0. (2.14
It is noted that the solutions (2.1) and (2.5) are recovered by putting
T(2n.m) = (2.15)
Ac Ac
7(2n )= 2. 16

in eq. (2.13). Substitution of eqs. (2.15) and (2.16) into the bilinear eq. (2.14) gives

Jacobi's (or Sylvester’s) identity for determinants.
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2.2 The c—algorithm and the discrete potential

KdV equation

In this section, following the result by Papageorgiou et a

ntial KdV equa

id the discrete pote
id the d I

equivalence between the algorit

10]. It also involves two-dimensione

algorithm originates with Shanks [32] and Wyni

array called the table (Figure 2.3)
igure 2.3: The table
0 2
0 )
2 it (
1
(0=)eg” il 2
1
= 2
1
Define =" anc ) by
5 0, 5 S (m=0,1,2,...) (2.17)

algorithm




he y— and algorithms

\ccording as n becomes large , converges more rapidly to S. as m —
On the other hand. diverges as n so. This fact reminds us of
the singularity confinement [l

to the same limit

has been shown in 1993 by Papageorg

regarded as the discrete potential KdV equation. It should he noted. hov
\rai, Okamoto. and Kametaka [1] had already indicated the relation between the
algorithm (or

\itken accelaration method) and the soliton equation seven years

before the result by Papageorgiou et

I'he quantities ) are also given by 1

he following ratios of Hankel determinants
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] g

ABS 3G, \*S

NG, ok 5 RN e

Equation (2.19) is called the Shanks transformation [32]. Substitution of 1 in

eq. (2.19) gives the well-known Aitken acceleration algorithm.

that the n— and the algorithms are interpreted as

We have so [ar sec

crete KdV and the discrete potential KdV equations. respec

wo algorithms are the same in their performance as convergence acceleration

rithms. This equivalence can also be understood from the fact [3] that the quantitic
() ( [
7 and are related by
) w=1) _ _(m) "
12 241 20—1 (2.21)
(m) (m) (m=1) .
2041 2 1 (2.22
et us apply the =—algorithm to the following sequence
S 2" sin [ — ) — = = 3.1415926535897 993
>
1)k-1 =
S Y 1 0.5) = 0.604898643421 2.21
= W
Numerical results are given in Tables 2.1 and 2.2

ousidered the quantitic

It is interesting to remark that Japanese mathematician Takakazu S¢

namely the Aitken acceleration method, in calculating 7 and obtained its numerical valuc

orrectly to the 16th degit
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Table 2.1: The e—algorithm for the sequence Sy, = 2™ sin(r/2
(m) (m) ( | (mi)
( (
2.000000 3.152682 3141590268 ‘ 3.141592653609
2 3. 142231 3. 141592617 ‘ 3141592653589 |
| |
3 3.06 1167 3.141632 9t 592653 | 3.141592653589 |
|
3121445 3.141594 3.141592658
b 3136518 3.11159280 3.111592653589 |
() 3.140331 3. 14159266 |

T | 3.141277 | 3.141592654

S | 3.141514

9 | 3.141573




and algorithms

d |
1 1.000000 | 0.610730 | 0.605044 | 0.604903 1 0.604898755
2 [ 0.292893 | 0.602294 | 0.604850 | 0.604897 ‘ 0.6018986 1 1
3| 0.870243 [ 0.606311 | 0.604919 | 0.6048994 | 0.604898652
1] 0.370243 | 0.604035 | 0.604889 | 0.6048934 | 0.604895640
5 | 0817457 | 0.605470 | 0.604904 | 0.6048987

G| 0.409209 | 0.604497 | 0.604896 | 0.6048986

T 0787173 | 0.605193 | 0.604900
8 | 0.433620 | 0.604676 | 0.604897

9 | 0.766953 | 0.605073

10 | 0.450725 | 0.604760

1

\s far as we see from these tables. the algorithm seems like a ve powerfu

acceleration tool he algorithm, however, fails to accelerate rationally decaying

sequences such as?

S N s — = 1644934066848 - - - . (2:25)
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lable 2.3: The z—algorithm for the sequence S L1/
: .
1.000000 | 1.450000 | 1551617 | 1.590305 | 1.609087
2 1.250000 | 1.503968 ZTIT6T 599981 0 74 |
3 | 1361111 | 1.534722 | 1.584826 | 1.606777 | 1.618468 !
|| 1423611 | 1.554520 | 1.593954 | LGL1T99 | 1.621542
5 | 1464611 | 1.568312 | 1.600687 | 1.615658
| o LaE "
6 | 1491389 | 1.578464 | 1.605854 | 1.618716
T | LALITOT | 1.586246 [ 1.609943
8 2 592399 | 1.613260 |
| |
9 539768 597387 ;
10 | 1.549768 601510 [
1.558032 | |
2 | 1.564977 ‘ \
— =k _—

2.3

The Richardson and the Aitken acceleration

methods

We see in the previous section that the algorithm accelerates exponentially and

alternatively decaying sequences but cannot do rationally decaying sequences. In

order to give its intuitive account, we review in this section the Richardson and the

algorithm is based. Let {S,.} be ¢

\itken acceleration methods. on which the
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sequence whose asymptotic behavior is

where ¢;’s are constants and A;’s satisfy

known. Let us define a new sequence {77!

We first consider the case that each A

g
A + (2.28)

=T,

I'hen the sequence {7V} converges to S.. in O(AJ) and therefore faster than the
original sequence {S,.}. Similarly. if we recursively define sequences ,
2.3 by
1 A
T = = )90
the new sequences {1} converge to S 1 ( .1)- The algorithm (2.29) is called

the Richardson acceleration method

Next we consider another case; i.e. each A; is unknown. We replace Ay in eq.

by its estimated value A, defined by

Aji= = . .30
S S
Then eq. (2.28) gives the following transfor o
S o
1
OO e s
&(1) _ (23

AZS
e above transformation is called the Aitken acceleration method. The Shanks

transformation (2.19) is a generalized version of the Aitken acceleration. Since one
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needs a large amount of calculation in order to find the numerical value of determi
nants (2.19), Wynn [40] proposed the algorithm. from which one finds it withont

calculating directly.

Since the vorithm originates with the Richardson and the Aitken acceleration
methods. it may well accelerate the s 2.23). which decays exponential
rationally decaying sequences such as eq. (2.23). A, is very close to 1. This makes the
denominator of eq. (2.28) near 0. Therefore. the algorithm. intuitively sj

fails to accelerate rationally decaying sequences
Ihen how is the acceleration for alternatively decaying sequences? Since Ay is

very close to —1. approximation of A, Iin eq. (2.28) gives

ch is the mean value of wn that the mean value of two

neighboring elements of alternatively decaying sequence {S,, } gives a better approx

mation of S.. We remark that the Richardson acceleration method for alternativel

decaying sequences is equivalent to the Euler transformation [23

2.4 The Toda molecule equation and convergence

acceleration methods

In this section. we first consider the Toda molecule equation
Qi Y
di? ;
d*Q o g
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Equation (2.33) is obtained by imposing the formal boundary condition.

Oy 0, QN x (2.31)

the Toda lattice eq. (1.4). Owing {o its boundary condition (2.31).

described by the Toda molecule eq. (2.33) moves

1ors of solutions

neighboring particles becomes infinite. We here relate such be
for the Toda molecule eq. (2.33) with convergence acceleration. It should be noted
(2

that the relation between the Toda molecule eq.(2.33) and the matrix eigenvalue

algorithms has been clarified (See Appendix A or ref. [25

Figure 2.4: Toda molecule equation

Since the c—algorithm (2.18) is regarded as a full discrete equation. we here

consider the time discrete version of the Toda molecule equation [17].

(2.35
| gm0 — g =y — e
The quantities I0™) and V™ correspond to @, (#) and exp(—(Qus(t) — Qult)
respectively. Therefore V") tends exponentially to zero as m — oc. We relate the
time evolution of eq. (2.35) with the z—algorithm by means of the Padé approximation

and continued fraction
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2 The n— and

Padé approximation

)¢ given lormal power series. Substitutior o n eq 2.36) @ ¢ «
series. Padé approximation of f(x) consists in finding a rational on R
ith the numerator of the m—th degree and the denominator of the th degre
R (@) £a S i il /’, “, )37
by + by + bya? b, Drmte)
such that
f(a fif 9] By (2.38
or equivalently
Q f = P alz)= 0(z™""") 2.39
holds. Putting by = 1. we see that eq. (2.39) is equivalent to ollo
equations for (ag.a @y, ) and (by, by, b,
¢ 2 5l ¢ b Gk
i ¢ & | S e by Cort
r ¢ i i Cinsd bys ¢ ! 2.40)
: Bockt  Cins2 . by y
a ¢
ay Ca - byey + bycp,
(2.41)
win(ri.1)
a emt Y bic
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Solving linear eqgs. (2.40) and (2.41). we have a Padé approximant K v) for [(a)
By changing degrees m and n. we see that the functions R r) are arranged in a
vo-dimensional array called the Padé table (Figure 2.5

Figure 2.5: The Padé table

Example 2.1 Lel function f(x) be
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0 1 2 b )
i
Figure 2.6: Values of f(x). its Padé approximant R ;. and its truncated Taylor series
3z/4 39232,

2.4.2 Padé approximation and the -—algorithm

We here reveal the relation between the Padéapproximation and the algorithm (2

We see from Cramer’s formula that the numerator and the denominator of the Padc

approximant R, («) are expressed as the following determinant form
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s 44 ) 13
i '
Substitution of 1 in eqs. (2.42) and (2.43) give
S S S
S, Sk &
Pl S >
R =

L (2.44)
wighs Gtk £

is a summation of ¢;”

Equation (2.44) immediately reminds us of the Shanks transformation (2.19). In fact
the Padé approximation and the algorithm are related by
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2.4.3 Padé approximation and the discrete Toda molecule
equation

We here clarify the relation between the Padé approximation and the QD algorithm

yw means of continued fractions.” Let us begin with the following theorem

Theorem 2.1 (Gragg [14]. Baker and Graves-Morris [2])

Let

b m =2 0) (247

denote a sequence of Padd approvimants for [(x). any three consecutive clements of

which are different. Then there cxisls a conlinued fraction

dy+ dya + -+ - + dp ™ + — -} (2.48)
such that the h Y AR) is ecqual to the | st of 1
Let ¢,,(x) be a continued fraction whose n—th approximant is equal to the (r
1)—st term of T}, for any n. We write ¢, () as follow
(2.19
laking the even part of eq. (2.49), w ()
OmlE). = gyt
}Elementary properties of continued fractions are given in Appendix B or in refs. [39, 19
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il l !
) A0
(/ ; | I . |
|
In the same way. we consider a contimed fraction
o |
P12 co + ey ¢ PR o |
RS
gL |
e ] (2:51)
| i
the n—th approximant of which equals the (n 4+ 1)—st term of 7 laking the odd
part of eq. (2.51). we have
ot |
| + )
‘\ /s !
LY ‘ 131 ‘
: | Mt | oy
5™+ o — (r oy
I'he n—th approximants of egs. (2.50) and (2.52) are equal to (21 1)—st term of 1
and (2n+2)—nd term of T,,_,. respectively, both of which is nothing but R

Pherefore, two continued fractions (2.50) and (2.52) are equivalent. This leads to the

following relation between the quantities {/| and {1
(AT [ERy 2.53
[ V! gt S Al (2.54
yim) — g it S 9,55

which is nothing but the time-discrete Toda molecule eq. (2.35). or equivalently the
QD algorithm in terms of numerical analysis [34]. The QD algorithm is used to solve

N
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| algebraic equation and is equivalent to the LR algor o cale ¢ ergenvaluc
of en tridiagonal matrix [38
We see from the above discussion that the formal power serie
f(x) co + 1 4 2.56

1as a continued fraction expression.

and that each coefficient is governed by the time-discrete Toda molecule

Putting 1 in eq. (2.57). we have a continued fraction ¢ - infinite
eries
(m+1 1
S pel]
o+ ¢ [ — -
= I & 1
[ 3
1t M‘ 1l ,‘ /! \l \ ‘

2.35). Since variables

We again consider the time-discrete Toda molec

VO and 109 correspond to exp(—(Qu1(t) — Qu(1))) and P,(1), respectively, |

decays exponentially to 0 as m tends to infinity. If we approximate V("1 =0 in

57) for fixed n 1. we have one approximation for the infinite series

I'he approximation of V(") = 0 is equivalent to taking the 2n—th convergent of the

continued fraction (2.58). From the theorem 2.1. the 2n—th convergent of eq. (2.58)

equals (2n + 1)—st term of the sequence T, (1). namely R, {1):
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Combining the above result with eq. (2.46). we arrive at the follo : 0

etween the algorithm ¢ e time-discrete Toda molecule e 35

We remark that approximation of 1} 0 in eq. (2.58) gives the Aitken accel

eration. We see from properties of continued fraction that the error between the

) i A
quantities 23, 1, and the limit S lim S, is roughly estimated as

LW e i R T (2,60

or equivalently

g
: ~ Vi) (2.61
2u—1 —

srovided that [ ~ O(1). Since the quantities V") tends exponentially to zero

as m — oo, the right hand side of eq. (2.61) also tends the same order to zero

tion of convergence acceleration

vhich matches exactly the defir
I'he Toda molecule equation. though it may not be interesting in a physical sense.

stands for a dvnamical system which converges to a diagonal matrix

manv other fields of engineering. We should in future consider such molecule-type

soliton equations which are expected to find applications in mathematical engineering

See also Cuyt [10]




Chapter 3

The p—algorithm

3.1 The p—algorithm and the Cylindrical KdV

equation
Ihe p—algorithm is traced back to Thiele’s rational interpolation [36]. It was first
1sed as a convergence accelerator by Wynn [41]. The initial values of the algorithn

and all the other elements fulfill the following rhombus rule

( +1) 1)

(plh — it — by = 3.2
Ihe p—algorithm is almost the same as the s—algorithm except that “17 in the right
hand side of eq. (2.18) is replaced by *n” in eq. (3:2). This slight change. however

vields considerable differences in various aspects between these two algorithms.
['he first difference is in their performance [33 I'he z—algorithm accelerates

exponentially or alternatively decaying sequences, while the p—algorithm does ratio




decaying sequences as eq. (2.25) (See Table 3
I'able 3.1: The p—algorithm for the sequence S
1 e P : p | pr
I 1.000000 | 1.650000 1.GH4895 164493437 611931061

2 | 1.250000 | 1.646825 1.644923 | 1.6H193414 | 1.6449310662

31361011 | 1645833 | 1601930 | 164493409 | 1.6419310666 |
b LA23611 | 1645429 | 1.644932 | 164493407 | 1.6449340667

5 | LAG3611 | 1.645235 | 1.644933 | 1.64493407
6 | 1.491389 | 1.645130 | 1.64493457 | 1.64493406

T L5LITOT | 1.645069 | 1.64493478

1.645031 | 1.64493439

9 1.539768 615006

10 | 1.519768 | 1.641989

11 | 1.558032 |

1 1 AL
I'he second difference is in their determinant expressions. The quantities are
en by ratios of Hankel determinants. while the quantities p!”) are given by [36
) )= . (3.3
)
where [¢] stands for the greatest integer less than or equal to w. Moreover. the

functions 7" and 7{") are expressed as the following double Casorati determinants:

‘ [ ik k) n =2k,




algorithm

3 The 4

m " 1 Nt — 1
m* m+ 1) (m+p+q
1
m (m+1) (m+p+qg—1)
/! det
| S S S
ms (m 4+ 1)Spar m+p+q—1)8
mes, (m 128 (rr p+yq 1)4S
mi1G m 4 1)9-18 n+p+yq 1
3.6
I'he third difference is in the relation discrete soliton equations. We ¢
seen in the previous section that the z—algorithm is regarded as the discrete potentia

y—alsorithm (3.2) itself, we consider the algorithm of

KdV equation.

the following form

an + blm + 1 3

re a and b are constant. Emploving a dependent variable transformation.

we obtain




algorithm

om eq. (3.7). Equatior 3.9) possesses o1 P e disc
However. the nonautonomous property of ec 3.9 elds S8 ¢
continuous limit. Let us introduce new variables defined b
{ I I
— a b, — « 1 -y 3.10
a3 )
and rewrite ZU as 2/t {p + Eulx — ¢ 1) €15 2 parameter anc

are finite constants satisfying

P

/
20— b 2
[hen eq. (3.9) becomes
¢ - ¢
“ulx +ce. ae’) “ula - cet (b—a)e”)
)
1
p+ ctula t+ be*) )+ 2ula
I
o i ¢ g 1
o |aqptcCu - + ce ae’) p
by 4 2 £
= |2 0 (3.12
aking the small limit of ¢. we have
1 | b)
(2a — b)yu; — —uu (] u =10 3.13
P ISp?
at the order of ¢ from eq. (3.12 Since the coel is alwavs twice as

e as that of u/t. eq. (3.7) is considered

cylindrical KdV equation. It is interesting

not exactly discretization of the cylindrical KdV equation

p=0ineq. (3.11) and coeflicients of wu, and u

p—algorithm.

as one integrable discretization of the

to note that the algorithm (3.2) is

[his is because we have

become infinite in the case of the




3 The p—algorithm

['he third difference can be understood clearly fror

YR )

from eq

F(n

F(n.m

sl )E(n —1,m)

1) F(n.m)

eq. (3.9) is rewritten as the following trilinear form

Fin+2.m—=1) Fn+1l.m—=1) nF(n.m
Fn+1.m) 1] F( om
nl(n.m+1) Fin—1.m+1) F(n—2,m

1e functions F(n.m) and 71" in eq. (3.1) are related by

Because of

form with a single variable /(r

us of the similarity constraint of the discrete KdV equation

however, that a pair of functions 7 and 71" given by eqs
bilinear equations
_(m) _(m+1) () =(m+1) 4 (mtl) =(m) — g
+1T—1
s ) _(m) 2 (m+1) —(m)( 1)
1 1 L

Employing the same dependent variable transfor

2). Moreover. through the same dependent variabl

tonomous property of eq. (3.9). there is no way

from the trilinear eq. (3.16)

I'his fact

shoulc

1) and (

5) sati

transformation

reminds

(3.19
(3.20)

which are considered to be the Jacobi and the Pliicker identities for determinants

respectively.
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sequences and that the quantities p!™) are given by the tios of double (‘asorati

determinants. In this section, we show that these facts are quite natural if we discuss

the p—algorithm in relation with Thiele’s interpolation formula [36

Let the values of an unknown function f(x) be given for the values rq.

1o two of which are equal. Then reciprocal differences p; (a2 copy ) are defined
by
pilag) f (o) (3.2
by, — 1Ty
pal oy : 3.22)
pr(ag) — pr(ay)
pa(xoris) — + pilay (3.23
9a(Toy) — palit1za)
30
(o ) - ——— + s 2) (3.24)
Prsa(Tod =0
9, (rpa - oy,
We remark that substitution of k in the above equations y—algorithm (3
Let us replace o by @ in eqs. (3.22)—(3.25). Then eqs. (3.21)—(3.25) are eqt
lent to the following ntities:
f(x) ) (3.26)
v
i) pilay) (3.2
ry)
i
polrry) paleyay) 4 (3.28)
palaay ey
v — &
3.29)

palaayry) oslEasae) = ———————————— (3
palrag




3 The p—algorithm

Int1(FT1T2 142
- 3.30
We obtain the following continued fraction expr or f(x) from eqgs. (3.26 3.30
r—u
[(x) = pi(ay
v—
palyay) —
r—
(g piley)
palTynonany)
(3.31)
When we take n—th convergent of eq. (3.31), we obtain a rational function. which
agrees in value with f(x) at the points
vhich is called Thiele’s interpolation formu
Let us consider continued fraction of the forn
2 a9
ay — .32
b
.
1
ay
P . 339 I
If == denotes the n—th convergent of eq. (3.32). we have the well-known recurrence
q

relations,




3 The p—algorithm

In particular, the components p,.q, are given by

Let us return to eq. (3.31). We rewrite

y=f(x), s = J(2:)s ps = pol@ias ) (3.36

pal)
for brevity. If we put n—th convergent of eq. (3.31) as ==, we see [rom the above
q.la

fact that the components p,(x) and ¢,(x) are given by

Bl R \“ R N O

| 2 3.37
: 0 .
L L J
We easily see that py,pi(2). qauerl(@). and py, () are polynomials in & of degree
hile function g, () is a polynomial of degree n — 1. and that these polynomials are
itten as

Paal®) ag + ayr + axt a (3.38

Qo) = bo+b bya? b2 %+ pa k 3.39
Pona() = God-eqa + cr” I i P i 3.40)
q () dy -+ dy + d Lt (3.41)

Regarding
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arc




3 The p—algorithm

det

Determinants in eqs. (3.44) and (3.4

changing their rows. It should be notec
1

noeqs. (3.44) and (3.45

originates with rational interpolation

algorithm accelerates sequences whose

ry 242 24112
1 1
v r5 rY
1 1
Ly 1 \W2usr |
iy v 80 Y | o
- (3.45)

5) become double Casorati deterninants b

| that eq 3.6) 1s recovered by pn [

we see that the p—algorithm

formula. This fact 1

asymptotic behavior is
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3.3

polation. When we redefine

o(m)

o(m)*

a(m)

uNiep g = det

ve can construct an e 1

Since we obtain the p—algorit

Thiele’s p—a

xtended

Igorithm

—i hin according to the on o ele’s inte
piq) in eq. (3.6) b
pig)i
a(m a(m q )
olm+1)? 5 alm+p+q )
. 1 i
o(m ) alm+p+q 1)
A S
g B G alm+p+q—1)8
alm 1)28 a(m D=+ 1)28
7 (1 J4=18 5 )y g q i
version of the p—algorithn
1) i )
(2 (1 ) — a(r 3.19)
hm (3 putting o(x) = x. we call eq. (3.49) Thiele s
uences of the following forn

algorithm.

This is because application

I'his algorithm accelerates se

(3.50)

o(m)

of the algorithm (3.49) is equivalent to interpolating

original sequence {5,,} by
o+ cro(m) + caa(m)” Cuio(m) t pangro(m) :
— i
Lo (m) - oGP & A G (R + o)

dy
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Let us apply Thiele's p orithm fo ) ple mp ! ¢
I the p—algorithm (3. I ¢ consider a sequence
A4 5 -
S S — ).61237534868 ]
247
1
vhose asymptotic behavior is given b

In eq. (3.58), Ci(i = 1,2,...) are constants. We put o(z) = «'/* in eq. (3.49) and
compare the result with the p—algorithm.

N

we consider the problem of evaluating

w the trapezoidal rul

If ¢() is sufficiently smooth. an asymptotic behavior of .S,, is given b

We put g(x) = (0.05 + «)~"/* in eq. (3.54) and apply Thiele’s p—algorithm witl

As one can see from Figures 3.1 and 3.2, Thiele’s /

algorithm accelerates con

vergence better than the original p—algorithm (3.2). We should select of o) in

eq. (3.19) appropriately according to an asymptotic behavior of a given sequence S




3 hhe

algorithm

Figure 3.2: Acceleration methods for [

(0.05 +

[hiele S
) 10 5 20 25 30
n
Figure 3.1: Acceleration methods for Y -
Thiele (a(a
5 10 15 20 25 30
n
1




Chapter 4

The PGR algorithm

4.1 Discrete integrable systems and singularity
confinement method

Recently, Grammmaticos. Ramani. and Papageorgion [15] proposed the singularity
confinement test as a discrete version of the Painlevé test. The idea of the singular
ible mappings are

v confinement is as follows; The movable singularities of int

confined, i.e.. they are canceled out after a finite number of steps. Moreover. the

cmory of the initial conditior

\s a simple example. we first con integrable equa

X—1s (4.1)

Under the initial conditions X, _, affinite), X + e. where ¢ is a small

parameter, we have from straightforward calculation

|
\ S D Ola) (4.2

¢



{ The PGR algorithm

We see from the above equations that singular

alue a reappears in X

Following the result by Grammaticos et

Painlevé equation [ from the viewpoint of the

from a nonautonomous mappings.

Under the initial conditions a(finite)

('(n
- B(n) —a)— ¢

C(n

(B B(1

B(n+2)+ B(n a+0(¢

['he singularity confinement condition. i

he solutions for these equations are

ity of

al

singularity

conlinement

derive

Gt
B(n) 3
i
| |
and ¢. we have
( n +
a) BRI
(1
( ( )
(
( 5
('(n ( 1 (
(]
y finite is given by
B(n 0
1)+ C(n)=0
an

B(n) = b(= const). ('(n) =

We start

(4.11)
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from eq. (1.5). i.e.. the discrete Painlevé equation of type |
\lthough the singularity confinement test is not mather i ell «
discrete soliton equations are known to pass this test. Therefore it has been used to

check integrability of given discrete nonlinear maps®

4.2 The PGR algorithm

In this section. we discuss “the PGR algorithm™. First of all. we consider the algo

rithm given by

1 11
where =) is a given function in m and 1 al.. [27] applied thi
singularity confinement test to eq. (4.14) (See Fig. 4.1). If we have x b= g8,
then )} diverges as )/6. At the next iteration. we find

1 O+ 0(d )
; ( * ) &+ O (1.16
I'he singularity confinement condition. i.e. @, finite. gives the following cor
dition for z{™)
(m) _ _{m=1) 1) =
z 1 o e 0 (4.17)

We call this generalized class of algorithms (4.14). wher ! satisfies eq. (4.17).

“the PGR algorithm™.  The (20 Blepid ! 1). and Thicle’s p |

I'he derivation of the other discrete Painlevé equations is given, for example, in refs. [15, 28

Sce refs. [28, 31, 34], for example




{ The PGR algorithm

Figure 4.1: The PGR algorithm

alm+4n)—c(m)) algorithms belong to the class of the PGR algorithm. It is interesting
to remark that Cordellier [9] has already proposed the algorithm (1.14) satislying
the singularity confinement condition (4.17), which he termed “the homographic

invariance”

I'wo question arises; (1) what kind of integrable equations is the PGR algorithm

associated with if it is considered as a difference equation? (2) how is the performance

of the PGR algorithm as a convergence accelerator?

to the discrete

\s one solution to the first question. we show that it is rel

Painlevé equation of tvpe I (4.13). Let us consider a special case of the PGR algo

L v | (i I ) =an —am+ C (' = const) (1.18)

17). Through variable tran

which passes the singularity confinement condition (
lormations

k=n—m,l=m (4.19)

X'(k 1)) (X (k

(X(k+4+1,1) — 2,14




been clarified yet

1 The PGR algorithm

Elimination of dependence of

I'irough dependent variable transformatior

Yi(k) (4

|
we have

ak — (
Y(k+1)+Y(k)+Y(k—-1)

Y (k)
from eq. (4.21). The equation (4.23) is the discrete Painlevé equation 1 (4.13) with
=t

Let us go to the second question. i.e. acceleration performance of the PGR al
sorithm. Intuitively speaking, most of the PGR algorithm do not well accelerate
nvergence as far as we have tested. However. when we take

)
1 1
the algorithm accelerates both alternatively and monotonically decaying sequence
We employ s—algorithm, p—algorithm, and PGR algorithm with
accelerate the series.
(I
S L s log 2(= 0.69314718---) 1.25)
k
S w2
S S —(= 1.6449336 (1.26)
1 O
2 {2k I v da
S N = Y / —— — (= 0.31102877
= k) 1) 0 V1 A

numerical results of which are given in Figures 4.2 I

I'he relation between discrete integrability and convergence acceleration has not
I'he PGR algorithm. which is considered as a nonlinear integrable




1 The PGR algorithm

93 0 2

(m) (m+1)

(2 /i (4.29)
0" =0 o =8 G ¢y ¢

is not integrable in the sense of the singularity confinement. The algorithm, however
accelerates hoth alternatively and rationally decaying sequences (See Tables 4.1 and

PGR —

BN
\cceleration methods for Y ————
£y 7
1

Figure 4
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og
210

PGR(z

Figure 4.4: Acceleration methods for
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[able 4.1:

O—algorithm for the sequence S

(m)
m| 6

1 ' ].Ull}m[n)
2 | 0.292893
3 | 0.870243
I | 0.370243
) | 0.817457
6 | 0.409209
7 | 0.787173
8 | 0.433620
9 | 0.766953
10 | 0.4507

11 | 0.752237
|

o™
0.606153
0.604430
0.605116
0.604783
0.601966
0.604856
0.604927
0.604879
0.604913
0.601388

0.604906

o™

0.601902

0.604899

0.6048989
0.60489854
0.60489869
0.60489862
0.604898655
0.604898636

0.604898647

0.604898644927 | 0.604898643422

0.604898642991
0.601898643562
0.604898643370
0604898643411

0.604898643412

0.6048986434 21

0.604898643121
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Table 4.2: f—algorithm for the sequence S L L/
m e i (i g 7//“ ;
1 . 1.000000 | 1.638889 | 1.64493149 | 1.64 umirj 164149340672
2 | 1.250000 | 1.642361 1.6449345 | 1.6419340703 | 1.6449340676
3| L3GLLLL | 1.643G11 1.6449343 | 1.6449340678 | 1.6449340677
1423611 | 1644167 | 1.6449342 | 1.6449340673
5 1463611 | \.MQH“»()‘ 1.644934 ‘ 1.6119340666
[ 1 ‘.’l,:\w} \_wlmu‘ 1.6419341 1.64193406389
1511797 | 1.644706 | 1.64493409 |
8 | 1.527422 644768 | 1.64493408 ‘
9 | 1.539768 [ 1.644509 | 1.64493408
10 | 1.549768 | 1.644838
11 1644858

1.558032 ‘




Chapter 5

Concluding remarks

rithm are equivalent to the dis

We have seen that the yp—algorithm and the

crete KdV and the discrete potential KdV equations. respectively and that their

performance as convergence acceleration algorithms is completely the same. The

the Diophantine approximation fo

application of the algorithm is equivalent tc ]

the limit lim S, and coefficients appearing in the continued fraction obey the time

ion of the Toda molecule equatio

discrete Toda molecule equation. The time evol

relates strongly with convergence acceleration by the algorit

We have also shown that the p—algorithm is considered to be one integrable

cretization of the cylindrical KdV equation [he =— and the p— algorithms

spite their apparent similarity. possess different properties both as convergence

accelerators and as discrete soliton equations. The difference in performance of thesc

wo algorithms depends on their different determinant expressions. By changing the
determinant in the p—algorithm. we can naturally derive Thiele’s p—algorithm. which

accelerates larger class of sequences

I'he PGR algorithm, quite general integrable rhombus algorithm, relates with the



5 Concluding remarks

discrete Painlevé equation of type I besides the discrete KdV-type ec
i interesting problem to consider the relation between convergence accele o
the Painlevé property

When we apply =— and p—algorithms to a convergent sequence., odd terms con
verge to the same limit as the original sequence though even terms diverg

agrees with the idea of the singularity confinement. |
two different notions. acceleration and integra

other. In other words. we should consider whether we

acceleration algorithms from the other discrete soliton equations

equations the other algorithms correspond to

Why are these two areas. soliton theory and nume

other

I'he

even though they have different targets?

shed a new light on the study of integrable systems a

al. have proposed a new algorithm |

Papageorgion et

t is a future problem to cla

sility, are associated with cach

can construct new convergence

"and what kind of

rical analysis, related with each

solution of these problems will

nd numerical anal

wsed on the diserete modified KdV
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Appendix A

matrix eigenvalue algorithms

gorithm

algorithim

matrix X € M(n.C). This is based on the QR decomposition'.

X = QR,

I'he QR decomposition is equivalent to Gram-Sehmidt’s orthogonalization

GO

The Toda molecule equation and

A.1 The Toda molecule equation and the QR al-

We here give a simple introduction of the QR algorithm and review its relation with
the Toda molecule equation [35]. In addition. we discuss how solutions for the Toda

molecule equation reflect on the evolution of a given matrix in iterations of the QR

Ihe QR algorithm is the most popular method to find cigenvalues of a given

(A-L)

where () is a unitary matrix (or an orthogonal matrix in the case of real) and R is
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an lower-triangular matrix with all of its diagonal entries positive. If we decompose
\ QR and multiply the factors in reverse order we obtain a matrix X" = R(Q)
whose eigenvalues are equal 1o those of the initial matrix . II we rename the initial

matrix Xy, then the algorithm is defined by the equations.
\ 7 e e e ) X, (n 2 (A.2)

Since the relation

holds. the matrix X, is similar to X,,_; and hence by induction to Xg. It was shown
that under certain restrictions the matrix X, and its diagonal entries converge to
upper-triangular matrix and eigenvalues of the initial matrix Xy, respectively as n
tends to ~c

We next explain about the QR flow. Given a fixed matrix X, € M(n. let ((z)

ve an analytic function defined in © containing all eigenvalues of Xy. The QR flow
is written in the following matrix differential equation

d

“\\/\*[\\/\.H‘\(U.\\/IH‘. X(0) =X, € M(n,C). (A.3)
In eq. (A.3), the operator I1; maps a certain matrix Y into its skew-hermite part
when the matrix Y is decomposed into the direct sum of skew-hermite part and

upper-triangular part. The QR flow is equivalent to the following set of equations

for matrix Q(1)
d 3
erm = Q1) - (I (G(X(1)))), Q) =1, X(t)=Q (1) XeQ(!). (A4)
.

I'he matrix Q(f) is unitary for all £ € R. In addition. if the matrix ¢/“1Y9) has a QR

decomposition as

Q1) R(t). (A.5)
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then the matrix Q1) solves eq. (A4). Equation (A.5) implies that initial valuc
problem of the QR flow can be solved by using the QR decomposition

I

we put
b(l) ay(t) 0

a(t) bo(t) as(l)

X(t) ay(1)

and

in the QR flow (A.3). we obtain the Toda molecule equation in the Flaschka's form

J”‘ N 8 e o G v —1).
b, el —al ) (n=1,2..., N, (A6
l ag =, =0

where a,(1). b, (1) and @, (1) in eq. (2.33) are related by

[13],

1 O =) B
anl) = exp [—— — (ALT)

B

I
(A =Q(1) (A.8)
Furthermore, the following theorem connecting the QR algorithm and the Toda

molecule eq. (A.6) holds

Theorem A.1 (Symes [35

If the matric exp[=X (k)] has the QR decomposition

exp[=X (k)] = QK)R(k), (A.9)
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then the relation

R(k)Q(k) = exp[=X(k+ 1) \L10)
holds.

Ihe above theorem states that the A—th iteration of the QR algorithm is equivalent

) )

to the time evolution of the Toda molecule eq. (2.33) from / k to 1 k41

I'his equivalence between the Toda molecule eq. (2.33) and the QR algorithm is
also interpreted as follows; Since distance between two neighboring particles hecomes
infinite as  tends to infinity. the off-diagonal quantities a, (1) decays exponentially

to zero. This is nothing but diagonalization of the initial matrix X(0) in terms of

numerical analysis

A.2 The discrete Toda molecule equation and the
LR algorithm

In this section, we discuss the integrable discretization of the Toda molecule equa
tion and its relation with another matrix eigenvalue algorithm. the LR algorithmn

I'irough dependent variable transformation.
Vald) = expl@alt) — Quni()): (A1)
we have

(1) Vw1 () = 2V, (1) + Vo1 (2) (A.12)

3). Introducing variable 7,(1) defined by

from eq. (2.3

iaks
V() = — log 7, (1). (AL13)
dt?
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we obtain the bilinear equation.
dam ) -
diz di i
I'he solution for eq. (A.14) is given in the following Hankel determinant
dw d =1y
i e et
di (o
dw e dmw
- (1) di dr?
| de='y  drg d? /]
din=1" s S
where W(#) is defined by
(1) e

With the above definition of the function W(1). each quantity

2 !

mal(l) S Vpryepise e pin) exp (i + 0

where V(py. ps pi) stands for the Vandermonde determinant.

V(pi.pas

of 7,,(1) by
|
3 (1) (1 +0) DL+ (n— 1)8)
O(1 +6) O(1+426) - ®(f+ nd)
T ()
Dt + (n—1)8) ¢(t+nd) -+ B+ (2n —2)8)

(A.16)

(1) is rewritten as

(A.

(A.18)

In order to discretize the Toda molecule equation. we redefine the discrete analogue

(A.19)
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where @(1) is defined by

ci.b, (A.20)

Ihen we see from Jacobi's identity for determinants that 7,,(f) in eq. (A.19) satisfies

the following discrete bilinear equation,

Tt 4 28)7, (1) — 7, (1 + 0)* = &% 7p (1) Te (8 + 20) (A2

['hrough dependent variable transformations.

To1 (1) 7 (1 + &)
1,(1) & (A.22)
Tue1(t + )7 (1)
(#)Tn—1(f 4+ 0)
[ = et b (A.23)
T ) Tt (8 =F-i03)
we finally obtain the discrete Toda molecule equation.
Lo (V4 (1) L[t + 8V, (t+4). A\.24)
Lt +8) — L,(t) = &[Va(t) = Vi (b +9) (A.25)
I'he above equation is rewritten as
Lt + &) R(t + &) = R(t)L(1). (A.26)
where L(1) and R(f) are matrices defined by
I 0
Valt) 1
L(t) Valt) ° : (A.27)

() Voa(t) 1
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Ii(1) o ()
R(1) i A28

(] L ()

I'he equation (A.26) is nothing but the LR algorithm. which is one of the famous
matrix eigenvalue algorithms [17]
We can again see the relation between the time evolution of the Toda molecule

cquation and the LR algorithm. Through the iterations (A.26). the matrix

I(1) s 0

Vit L(t) L(t)+0Vi(t) &

X(t) = L)L) = Va(h)15(1)

() Ves@ 1@ Ll at ()
(A.29)
is known to converge to an upper triangular matrix with diagonal entries approaching
the eigenvalues of X (1). This is equivalent to the time evolution of the quantities

V3.(1). which correspond to exp(—(Q, (1) =@, (1)) and decay exponentially to zero
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Appendix B

Fundamental properties of

continued fraction

Ihis chapter deals with fundamental properties of continued fractions which have

been used in this thesis (See refs. [39, 19] for details.).

B.1 Basic definitions of continued fractions

We first give a recursive definition for the continued fraction.

ay
by + ——mM8 (B.1)
ay
by +
a
by +
© by
or
|
|
1 a a
by +— +— +— e (B.2)
by b. by
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=

as follows. Let {a,} and {b,} be sequences of mumbers with all a, # 0 and {f,} b

a sequence defined by

BSOS =D (B.1)
where
Solw) = solw);  Sulw) = Si(sy(1w)) =550 8 splw) (B.5
silb) =ty wy ) L R B e (B.6)
b u
['hen each f, defines n—th convergent of the continued fraction (B.1). (B.2). o
(B.3).

Theorem B.1 Lel A, and B, be numerator and denominator of the n—th convergent

[ Then they are determined recursively by

e = b R =g P = (e By L (B.7)
L =il A gk aA, . (B.8)
By = BBy i+ s By (B.9)

B.2 Equivalence transformations and contractions

We say that two continued fractions.

b + K(as/bs) (B.10)
e + Kla/ik) (B.11)

are said to be equivalent if

fu=Ir (B.12)
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holds for any 0

Theorem B.2 Two continued fractions (1.10) and

f there cxists a sequence of nonzero constants {r,} such that
o B.13)
a Tl 1l T 3. B.14)
b PO e = O T D B.15)

Next we discuss contractions and extensions of continued fractions. A continued
fraction b5+XK (a= /b7) is said to be a contraction of a continued fraction by+K(a, /b, )

it {f7} is a subsequence of { [, }. Inversely we say that by +K(a,/b,) is an cxtension

of by + K(az/b7).

\s a special case, if
/ fs B.16)
holds for any n > 0. then b ‘ s called the cven part of by + K(a, /b
Theorem B.3 A continued fraction b K(a,/b,) he cven part if and only if
bor #0, k 18 Do, (B.17)
If eq. (B.1T) holds, then the elements of the cven part by + K(az /b7) are given (up
to cquivalence transformation) by
b = bo, @ =ayby, B = ay+ biby, @)= —azasby (B.18)
d ] o (B.19)
by = agk—1bop + bak—y (az + bar—1b2x) (B.20)
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Similarly if

holds for any n > 0. then b7 + (az /%) is called the odd part of by
o L

Theorem B.4 A continued fraction by + K(a,/b,) has an odd part

+ K(a, /b,)-

if and only if

(B.22)

If eq. (B.22) holds, then the clements of the odd part by + X (a7 /b7) are given (up to

cquivalence transformation) by

= ay + byby
b, —,
by
ayaghy
— . b7 = agbs + by(as + bybs)
] 2 2
41
A/j bR rbY
b bt & Dapei (G =t baibope ).

70

(B.24)

(B.25)

(B.26)
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