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Chapter 1
Introduction

In natural vegetation, a plant population is composed of individuals having

various sizes (e.g. plant weight, plant height, and stem diameter) and different

crown architectures and competing with other individuals for light and nutrients.

To investigate how competition and coexistence processes emerge from such

a complex system is one of the most interesting subjects in plant ecology.

Furthermore, to investigate size-structure dynamics and species coexistence

conditions in plant communities is important for applied biological sciences

such as agriculture and forestry. In this thesis, I study mechanisms of the

size-stnlcture dynamics of plant communities theoretically, and quantify the

effects of competition between individuals on plant community dynamics,

using dynamic canopy photosynthesis and continuity equation models. First,

previous studies concerning size-structure dynamics, competition processes

and coexistence among species in plant communities are briefly reviewed,

and the subjects which will be discussed in this thesis are addressed.

Individual-based models ofgrowth dynamics for plant populations

Many models so far proposed for the study of growth dynamics in plant

populations divide into two categories, spatial and non-spatial models (e.g.

review by Hara, 1988). Most of these models consider interactions between

individuals based on the growth of each individual in a population. Spatial

models take into account spatial distributions of individuals, whilst non-spatial

models do not, assuming that the spatial distribution of individuals is

homogeneous. Firbank and Watkinson's model (1985) is one of the most

successful spatial models. It reproduced several well-known phenomena in

plant ecology such as the reciprocal equation of crowding effect and the

self-thinning rule (Yoda et aI., 1963; White, 1981; Westoby 1984; but see

Weller, 1987a, b; Osawa and Sugita, 1989; Lonsdale, 1990). Aikman and



Watkinson's non-spatial model (1980) also reproduced the self-thinning rule.

These models as well as other successful individual-based models (e.g. Botkin,

Janak and Wallis, 1972; West, 1987; Prentice and Leemans, 1990; Clark,

1990), however, assume some a priori growth equations and/or competition

functions between individuals. West (1987) proposed a spatial, dynamic, canopy

photosynthesis model with an a priori competition function and reproduced

the self-thinning rule. Hara (1986a) proposed a canopy photosynthesis model

for the growth of individual plants in a stand based on the diffusion model

(Hara, 1984a, b). Assuming not any a priori growth or competition functions

but an allometric relationship between plant height and weight (i.e. allocation­

growth pattern), this model reproduced realistic size-dependent growth of

individuals as affected by competition between them (Hara, 1986a, b). Hara's

model is a non-spatial canopy photosynthesis model for one growth period.

Effects of variations in physiological traits on si::.e structure dynamics and

competition in plant populations

Temporal and spatial variations in the environmental conditions generate

variation in physiological parameters of individuals in a plant population such

as leaf photosynthetic rate, maintenance and growth respiration rates, etc.,

influencing the process and outcome of interactions between individuals and

thus the dynamics of plant communities. Few ecophysiological studies have

taken into account processes at the population level, such as size-structure

dynamics, assuming instead that each species, genotype or population consists

of identical individuals (e.g. Lambers and Dijkstra, 1987; Hirose, 1987, 1988a,

b; Hirose et aI., 1989; Lambers et aI., 1990). Few size-structured models of

plants have considered variation in physiological parameters, assuming that

each species under consideration has fixed species-specific values of these

parameters (e.g. Botkin, Janak and Wallis, 1972; Shugart and West, 1977;

Shugart, 1984; Huston and Smith, 1987; Tilman, 1988). In the real world,

however, a plant population consists of individuals of different sizes and ages,



and physiological parameters of each individual even in a single-species

population are varied by temporal and spatial variations of the environment.

Allometry and growth pattern ofan individual and plant population dynamics

The growth pattern of an individual plant is generally species-specific,

and two typical types have been recognized in trees, height-growth and diameter­

growth type (e.g. Marks, 1975; Maruyama. 1978; Boojh and Ramakrishnan,

1982; Bicknell, 1982; Sakai, 1987, 1990; Kohyama, 1987; Kohyama and

Hotta, 1990; King, 1990; Hara, Kimura and Kikuzawa, 1991). Trees of the

height-growth type allocate more assimilates to height growth than to stem

diameter growth and construction of lateral branches and foliage. The reverse

is true with trees of the diameter-growth type. Therefore, the relationship

between stem diameter and tree height reflects a species characteristic. This

relationship is usually described by allometry. Allometry is given as a power

equation between two sizes of individual plants in a population at one point in

time. Allometry is given as a straight line on a log-log plot. However, it has

been reported that the relationship between stem diameter and tree height in

crowded tree stands at one point in time is usually curvilinear on a log-log

plot. Kohyama et al. (1990) argued that the curvilinear D-H relationship is

brought about by competition for light (asymmetric competition). Holbrook

and Putz (1989) showed that sweet gum (Liquidambar styraciflua) trees respond

to the presence of neighbours by changing stem biomass allocation patterns.

Weiner, Berntson and Thomas (1990), Weiner and Thomas (1992) and Weiner

and Fishman (1994) have also obtained the same results for several species of

annual plants as those for trees mentioned above. However, few theoretical

researches have been done for relationships between these allometries and

allocation pattern in crowded plant populations.

Crown architecture and species coexistence in plant communities

Many researchers have investigated the relationships between species-



specific crown architecture, successional status and responses to gaps in trees

(Pickett and Kempf, 1980; Veres and Pickett, 1982; Kempf and Pickett, 1981;

Shukla and Ramakrishnan, 1986). Hom (1971) suggested adaptive growth

dynamics of modules in relation to crown architecture and light regimes in the

foliage. KOppers (1989) discussed the adaptive significance of crown

architecture based on cost-benefit relationships of carbon gain. However, most

of these studies have simply discussed adaptive significances of species-specific

tree crown architecture as simple allometries between crown dimensions (crown

depth, crown width, crown area) and individual sizes (mass, stem diameter at

breast height, stem height), and have not investigated the effects of individual

crown architecture as vertical foliage profile on the interactions between

individuals and population dynamics. Crown architecture is an important factor

for photosynthetic production (Hom, 1971; KOppers, 1989; Kikuzawa et a!.,

1986). Tree communities are usually composed of species of various crown

shapes (Kohyama, 1987; King, 1990; Kohyama and Hotta, 1990; note that

these studies used simple allometries between crown dimensions and individual

sizes for crown shape), and the crown architecture may play an important role

in species coexistence. In the boreal and sub-boreal zones, forests are composed

of two tree groups having distinct crown shapes (e.g. Youngblood, 1995),

conifers having conic crowns and deciduous broad-leaved trees (hardwoods)

having spheroidal crowns (e.g. Umeki, 1993). Conifers and hardwoods coexist

at a large scale (Tatewaki, 1958; Ishikawa, 1990; Youngblood, 1995) and the

difference in the crown architecture may contribute to species coexistence in

the conifer-hardwood mixed-species forests. Several researchers have

investigated the effects of crown shapes on stand dynamics and species diversity

of sub-boreal forests. Ishizuka (1984) pointed out that spatial pattern of

individual crowns affected the stand dynamics of sub-boreal forests. Fujimoto

Hasegawa and Shinoda (l99l) and Fujimoto (1993) suggested that the difference

in crown shape between species affected the successional status of each species.

However, few have investigated quantitatively the effects of crown shapes as



a vertical foliage profile on community dynamics or species coexistence patterns.

Outline of this thesis

The primary objective of this thesis is to study the plant ecological

subjects mentioned above using size-structured dynamical models together

with canopy photosynthesis of plant communities. I focus only on light

competition, assuming that nutrients and water in the soil are homogeneously

distributed. The effects of nutrients and water conditions can be indirectly

incorporated in the photosynthetic ability of an individual. To investigate

biological meanings of competition processes and size-structure dynamics, I

mainly use a continuity equation for the size-structured dynamical model

instead of a diffusion equation assuming that environmental conditions are

homogeneous. With the continuity equation model and the dynamical canopy

photosynthesis model, aspects of competition, stability of size structure for

physiological and environmental variations, relationships between growth

patterns of individuals and size-structure dynamics and relationships between

crown architecture and species coexistence in plant communities are described

theoretically, and implications about mechanisms of these processes are

discussed based on actual data.

Chapter 2 describes the details of a continuity equation model together

with dynamic canopy photosynthesis for the time development of size structure

in plant populations, and addresses the competition modes not a priori but

functionally using the model. In Chapter 3, using the model, effects of

physiological and environmental variations on the dynamics of size structure

and competition mode in a plant population are examined. In Chapter 4, the

model is extended to a two-dimensional model which is capable of treating

two different sizes (plant height and stem diameter) for investigating

relationships between dynamic allocation patterns of individuals, size-structure

dynamics and competition in plant populations. Chapter 5 deals with the

coexistence of species with two different crown architectures, using the model



of Chapter I extended to the case for multi-species plant community dynamics,

and discuss the coexistence conditions. The overall findings and implications

obtained by this study are summarized in Chapter 6.



Chapter 2
A canopy photosynthesis model for the dynamics of size-structure and

self-thinning in plant populations

In this chapter, Hara's canopy photosynthesis model (1986a) is extended to

describe the dynamics of stand structure based on a continuity equation (a

simple version of the diffusion model; e.g. Hara, 1984a). This model has the

foundamental structure which will be used and/or extended in the succeeding

chapters. With this basic model, mechanisms of the dynamics of size structure

and self-thinning and the relationships between density, size-dependence in

individual growth, allocation-growth patterns of plant height and stem diameter

and the mode of competition are discussed.

2.1 Model

Basic assumptions

Let consider an even-aged plant population which grows in a homogeneous

environment, i.e. the plants have the same size distribution per unit area at

any place in the stand we consider. Let f(t,w) be a distribution density of

individuals of plant weight w per unit area at time t. It is assumed that the

basic equation governing the dynamics offit,w) is given by

OJ(t,w)_ d [ ]-Jt--- dw G(t,w)f(t,w) -M(t,w)f(t,w), (2.1)

where G(t,w) is the mean growth rate (instantaneous mean of increments of

plant weight per unit time) of individuals of plant weight w at time t and

M(t,w) is the mortality rate of individuals of plant weight w at time t (Hara,

1984a; 1988). The density (number of individuals per unit ground area) at

time t, p(t), is given by



p(t)= [om" f(t,w)dw, (2.2)

where W o and wmax are the minimum and maximum plant weight, respectively.

The function forms of G(t,w) and M(t,w) are determined by the mode

and degree of interactions between individuals. Competition is assumed to be

only for light in this thesis. The equation (2.1) is the deterministic version of

the diffusion model proposed by Hara (l984a). The diffusion model can describe

fluctuations in species characteristics caused by environmental heterogeneity,

genetic variation, spatial variation of individuals in the neighbourhood compe­

tition effects, etc.

Photosynthetic process ofa single isolated plant

A population dynamic model must also simulate effectively the growth

of individual plants. Therefore, I firstly describe a single isolated plant. It is

assumed that each isolated plant has a similar conic canopy as illustrated in

Fig. 2.1. For the conic canopy, total leaf area of an individual increases with

its plant height. Thus It is further assumed that the foliage layer at height x

from ground dies if the daily total net photosynthetic rate per unit leaf area at

that height of an individual of plant height h, p,,(x,h), is negative because of

self-shading within the crown of a plant. The vertical distribution of leaf area

density of an individual of plant height h at height x from ground,fLA (x,h), is

therefore given by

f/..A(x,h)=8(h-x),

=0,
(Pn(x,h) 2.' 0);

(Pn(x,h) < 0);

(2.3a)
(2.3b)



h

Leaf area density, fu.(x,h)

Fig. 2.1. A hypothetical vertical distribution of leaf

area density of an isolated plant of height h at height x

from ground. The foliage layer (shaded zone in the

figure) dies if daily net photosynthetic rate per unit leaf

area, Pn(x,h), is negative.

where, using a rectangular hyperbola as an absorbed irradiance-photosynthetic
rate curve (see Hara, 1986a),

(2.4)

(2.5)

Here l(td,x) is light intensity at height x from ground at time of day td and
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daylength Td• 10 is irradiance incident on a canopy at midday, k is light

extinction coefficient, a and b are photosynthetic parameters which are assumed

to be constant throughout the canopy, and Tfis respiration rate per unit leaf

area per day. Equation (2.5) is based on the assumptions that plant foliage is

homogeneously reducing the intensity of radiation by absorption according to

Beer-Lambert law and that the radiation is vertically incident. This can only

be an approximation for discretely and homogeneously located leaves, with

transmittance and reflectance, for non-vertical sky irradiance and for direct

sunlight in sunflecks. However, these equations should be reasonable approx­

imations for this application and they do allow a tractable solution.

In the model, the following hypothetical allometric relationship between

plant weight, w, and plant height, h, is assumed:

(2.6)

where a and f3 are allometric parameters. The daily total net photosynthetic

rate of a single isolated individual of plant height h is then obtained as

_ I { h ( /3 1ih
)}Pn(h)--- u r Pn(x,h)fLA(x,h)dx-rm ah -- fLA(x,h)dx ,

1+ rg Jo s 0
(2.7)

where u, Tg , rm' S are conversion factor, growth respiration rate, maintenance

respiration rate and specific leaf area, respectively. Finally, Pn(h) is transformed

to a function of w, Pn(w), using eqn (2.6).

Photosynthetic process of individual plants in a crowded stand

In this section, let consider an individual in a crowded stand to formulate

the function form of G(t,w). At first, I briefly review the canopy photosynthesis
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model proposed by Hara (l986a). ow letfJt,h) be a distribution density of

plant height h per unit area at day t in a stand. Thus the vertical leaf area

density in the stand at height x from ground at day t is given by

(2.8)

where h
max

is the maximum plant height in the stand. From the assumption of

homogeneity of the stand, light intensity at height x from ground at time of

day td at day t is given as (cf. eqn (2.5»

(2.9)

Then daily net photosynthetic rate per unit leaf area at x from ground for an

individual of plant height h in the stand at day t, p,,(t,x,h), is given as follows

(cf. eqn (2.4»:

(2.10)

In this case, leaves in the foliage layer at height x from ground also dies if

p,,(t,x,h) is negative. The height of leaf death depends on the crowdedness of

the stand. Let f~ (x,h) represent f LA (x,h) in the crowded stand and let

p:(t,x,h) , which is calculated using f~ (x,h), represent p,,(t,x,h) in the crowded

stand. Therefore, daily net photosynthetic rate of an individual of plant height

h in the stand at day t is obtained as follows:
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, _ 1 { rh
" ( {3 1 rh

, )}Pn(t,h)-l+r
g

uJoPn(t,x,h)Jv.(x,h)dx-rm ah -sJ/v.(x,h)dx ,(2.11)

where Lt, r~, rm, s are the same parameters as in the case of an isolated

individual. The above equation is given in tenns of plant height h. Therefore,

we can transfonn it into a function of plant weight, P;Ct, w), using the hypo­

thetical allometric relationship between plant height, h, and plant weight, W

[eqn (2.6)]. In the transfonnation of distribution density, we should take account

of the following relationship:

Jf/(t,h)dh = J(t, w)dw, (2.12)

where dh and dw are infinitesimal intervals of plant height and weight, respec­

tively. Finally, the function fonn ofG(t,w) in the basic equation (2.1), which

is identical to Pn'Ct,w), is obtained.

Mortality process

Throughout this thesis, it is assumed that light mainly governs competition

processes between individuals. In fact, many studies have suggested that com­

petition between plants in a monoculture stand is principally for light and

one-sided (asymmetric; e.g. Kuroiwa, 1960; Ford, 1975; Ford and Diggle,

1981; Cannell, Rothery and Ford, 1984; Rara, 1986b; Weiner and Thomas,

1986; Weiner, 1990). Thus the growth rate of an individual surrounded by

large plants is reduced and it can be negative. In the model, it is assumed for

simplicity that mortality occurs when daily net photosynthetic rate of an indi­

vidual is negative. Then, I assume the function fonn of MCt,w) as

M(t,w)=O,

=1,

(P,,'Ct,W)~O);

(P,,'(t,W) < 0).

(2.l3a)
(2.13b)
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2.2 Simulation procedure

Since the above model cannot be solved analytically, numerical calculations

are used to investigate the dynamics of size distribution of plant weight w,

j{t,w). The simulation procedures are as follows:

0) Assume an initial size distribution of plant weight (normal distribution

in this simulation) and calculate its plant height distribution using the

allometric relationship given by eqn (2.6)

I) Calculate the vertical distribution of leaf area density of individuals

using eqn (2.8) and the size distribution of plant height.

2) Calculate the vertical distribution of light intensity using eqn (2.9) for

the canopy structure given by step I).

3) Remove the foliage layer where daily net photosynthetic rate per unit

leaf area given by eqn (2.10) is negative.

4) Calculate the growth rate in plant weight of individuals using eqns

(2.11) and (2.12), which gives rise to the G(t,w) function. If it is

negative, these individuals die, giving rise to the M(t,w) function defmed

as eqn (2.13). Then calculate the size distribution of plant weight at

the next time-step using the continuity equation (2.1)

5) Calculate the size distribution of plant height at the next time-step

from plant weight using the allometric relationship given by eqn (2.6).

Then proceed to step 1).

Calculations of numerical integration were executed by the spline inte­

gration method (e.g. Davis and Rabinowitz, 1984). For the time development

of the basic equation (2.1), I used the Lax-Wendroff method (e.g. Smith,

1985). A normal distribution with a mean plant weight 1.0 (g) and a standard

deviation 0.1 was used as the initial distribution of plant weight for each

simulation set, and the simulations were conducted over the time interval
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from 0 to 500 (in days).

Parameter values used for simulations are given in Table 2.1 and are

the same as used in Hara (1986a). Two sets of simulations were performed as

follows:

i) variation in the allometric parameter, [3,

ii) variation in the initial density of the stand, p(O).



Table 2.1. Parameter values used/or simulations in Chapter 2

Parameter Units Definition
a=4.2x10o (gm-/l) for f3=2.0 Allometric parameters:

=3.9xLO I for {3=2.5 eqn (2.6)

=3.7xI02 for {3=3.0

=3.6x103 for f3=3.5

e=1.0xlO-3 (m 2m-2 ) Parameter for leaf area
distribution: eqn (2.3a)
and (2.3b)

u=0.65 (gdwlgC~,) Conversion factor: eqn (2.7)

k=0.70 Light extinction coefficient:
eqns (2.4), (2.5), (2.9) and
(2.10)

a=O.OI (W- lm2) Parameters for light-
b=0.05 (gco, W-1h- l

) photosynthetic rate curve:

eqns (2.4) and (2.10)

[0=250 (Wm-2) Irradiance incident on the
canopy at midday: eqns
(2.5) and (2.9)

Td=14 (hour) Day length: eqns (2.5) and
(2.9)

r
f
=0.06 (gco, m-2d- l

) Respiration rate of leaves:

eqns (2.4) and (2.10)

rm=0.05 (gg-'d-I) Maintenance respiration rate:
eqns(2.7) and (2.11)

rg=O.30 (gg-I) Growth respiration rate:
eqns (2.7) and (2.11)

s=0.02 (m2g- l ) Specific leaf area: eqns (2.7)
and (2.11)

15
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2.3 Simulation results

As the allometric parameter, /3, in eqn (2.6) decreases, there is more allocation

to height growth giving plants which may be ternled as 'height-growth' type,

because for the same value of w, plants with smaller /3 have greater height h.

Similarly, plants with large values of /3 is defined as 'diameter-growth' type.

On the other hand, a in eqn (2.6) is a scaling factor: dimensionless statistics

such as CV (coefficient of variation) and skewness are independent of a.

Direct comparison of the absolute value of mean plant weight for different

values of a is meaningless, because the mean of w is proportional to a.

Growth of a single isolated plant

If the relationship between the relative growth rate (RGR) given by

Pn(w)/w, and plant weight, w, is given as a straight line with a negative slope,

then the growth of w is the logistic curve. If the relationship between RGR

and logw is given as a straight line with a negative slope, then the growth of

w follows the Gompertz curve. /3=2.0 except for large values of w approximately

corresponds to the logistic growth, and /3=2.5, 3.0 and 3.5 except for large

values of w approximately correspond to the Gompertz growth (Fig.

2.2).Therefore, this canopy photosynthesis model approximates the well-known

a priori growth curves for an isolated individual. Moreover, this model shows

that a single isolated plant of 'height-growth' type (small /3) tends to follow

the logistic growth in plant weight, and that of 'diameter-growth' type (large

/3) tends to follow the Gompertz growth (or Richards growth) in plant weight.

Generally, the following Richards equation (e.g. see Causton and Venus,

1981) can be used as the G(t,w) function of a single isolated plant over a wide

range of the allocation-growth pattern in terrns of /3 (Fig. 2.2):

(2.14)
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where ao' a, and m are constants. In particular m=1 represents the logistic

growth (Fig. 2.2A).

0.1 r------,,--------,...-------,
"0

C,
.9 0.08

Q)

~ 0.06

oS 0.04
::
e 0.02
OJ
Q)

>
~
Qi
II:

100 200 300 400 500 1

Plant weight (g)

10 100

Fig. 2.2. Simulated relationships between relative growth rate (RGR)

and weight of a single isolated plant. A, allometric parameter f3

=2.0; B, f3=2.5 (--); f3=3.0 (-- -); and f3=3.5 (--).

Curves, . . represent regressions by the Richards equation [

RGR=ao-a1wm for {3=2.0 (A, m=1.0 i.e. logistic equation) and

for {3=3.5 (B, m=-0.48)]. Other parameters as in Table 2.1.

Dynamics ofstand structure

It is well documented that as plants grow size distribution of individual

weight (or stem diameter) becomes positively skewed (e.g. Koyama and Kira,

1956; Obeid, Machin and Harper, 1967; White and Harper, 1970; Ford, 1975;

Mohler, Marks and Sprugel, 1978; Hara, 1984a, b; Westoby, 1984) with

increasing CV (e.g. Hara, 1986b; Weiner and Thomas, 1986; Bonan, 1988;

Knox and Peet, 1989), but intensive self-thinning reduces skewness (e.g. MoWer,

Marks and Sprugel, 1978; Hara, 1984a, b; Hara et a!., 1990; Westoby, 1984)

and CV (e.g. Kohyama and Fujita, 1981; Hara, 1986b; Weiner and Thomas,

1986; Knox and Peet, 1989) or keeps them rather constant (e.g. Hara, 1985;
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Hara et a!., 1990; Knox and Peet, 1989). These phenomena are well reproduced

in simulations of this chapter (Figs. 2.3 and 2.4 together with Fig. 2.7).

In the model, the value of allometric parameter, f3 (i.e. allocation pattern

between height growth and diameter growth), also brings about changes in

stand structure. If f3 =2.0, 2.5, 3.0, larger plants rapidly grow suppresing the

growth of smaller ones and a small number of larger plants survive through

the progress of time (Fig. 2.3A, B, C). The size distribution becomes positively

skewed with increasing CV until the onset of intensive self-thinning (Fig.

2.4A, B, C). On the other hand, if f3=3.5, larger plants indeed have the

advantage of growth over smaller ones at first, but growth of these larger

plants are gradually limited (Fig. 2.3D). Then the size distribution becomes

negatively skewed with constant CV (Fig. 2.4D). Generally, plants of 'height­

growth' type (small f3) tend to exhibit larger CV and skewness than those of

'diameter-growth' type (large f3) (Fig. 2.4C, D).
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Plant weight (g)

Fig.2.3. Simulated changes in size distribution, !(t,w), of plant weight W

at time t. In all cases, initial density is 400 (m.") with the initial normal

distribution of plant weight (mean plant weight, 1.0 (g); standard deviation,

0.1). A, allometric parameter {3=2.0; B, {3=2.5; C, {3=3.0; and D, (3

=3.5. Other parameters as in Table 2.1. Time steps are 1=0 ( ),

1=50 (--),1=100 (-- -), and t=150 (--) for {3=2.0, 2.5; t=O (

....... ), FIOO (--), 1=300 (---), and t=500 (--) for /3=3.0,

3.5.
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Fig.2.4. Simulated changes over time in A, mean plant weight; B, leaf area

index (LA!); C, coefficient of variation (CY); and D, skewness. Allometric

parameter {3=2.0 (--), {3=2.5 (--), .B=3.0 (-- -), and {3=3.5 (

.. ). Other parameters as in Table 2.1.

Growth of individual plants in a crowded stand

Size-dependent growth rate of individuals at each growth period, G(t,w)

(Fig. 2.5), explains these dynamics of stand structure (Fig. 2.4) theoretically

(Hara, 1984a, b). If mortality is low, the G(t, w) function is monotonically

increasing convex with respect to w (Fig. 2.5A, B) and brings about increases

in CV and skewness (Fig. 2.4C, D), whilst a G(t,w) function that is linearly
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dependent on w (at the early time-step in Fig. 2.SC) brings about little changes

in these statistics (Fig. 2AC, D). If mortality is high, the negatively size­

dependent M(t, w) and/or the G(t, w) function that is concave with respect to w

(Fig. 2.SD) decreases CV and skewness or keeps them constant (Fig. 2AC,

D).

As the allometric parameter, f3, in eqn (2.6) increases (i.e. as the

allocation-growth pattern changes from 'height-growth' type to 'diameter­

growth' type), the size-dependent growth curve, G(t,w), changes from convex

to linear and then concave with respect to w (Fig. 2.5). If f3 is small, then

larger individuals are at an advantage from light interception in spite of

respiration loss, and the size-dependent growth rate becomes a monotonically

increasing convex function (Fig. 2.SA, B). If f3 is large, larger individuals

have large respiration loss, then growth rate becomes a bounded concave

function (Fig. 2.SC, D).



22

0.1
A B

0.08

0.06 /-0 0.04

.9 / " /'
/ "

.,
Q) 0.02 /' ., ~

~
.... /.," /' ~

./.,~ ,
.,/

~ 0

"i 0.05
0

C DOJ
c: 0.04
ell

..
Q)

::: 0.03

0.02

0.01 ...-- -'
-~_--:~ ----

00 1 2 3 4 50

Plant weight (g)

Fig. 2.5. Simulated relationships between plant weight wand mean

growth rate at time I, G(t,w). A, allometric parameter {3=2.0; B, {3

=2.5; C, f3=3.0; and D, {3=3.5. Other parameters as in Table 2.1.

Time steps are 1=0 ( ....... ),1=50 (--),1=100 (- - -), and 1=150 (

--) for {3=2.0, 2.5; FO ('''),1=100 (--), 1=300 (---),

and 1=500 (--) for {3=3.0, 3.5.

Mode of compelition

The growth rate of an individual plant surrounded by larger neighbours

is reduced because of their shading effect, which is generally regarded as

asymmetric one-sided competition for light (e.g. Kuroiwa, 1960; Ford, 1975;

Ford and Diggle, 1981; Cannell, Rothery and Ford, 1984; Hara, 1986b; Weiner

and Thomas, 1986; Weiner, 1990). Therefore, relationships between RGR of
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an individual plant and the accumulated leaf area of other neighbouring plants

are investigated.

6RGR is defined as a difference between RGR in an isolated condition

and RGR in a crowded condition for an individual of plant weight w. The

RGR of an individual of plant weight w at time t is given by

RGR == P'~(t, w) = G(t, w).
W w

(2.15)

Accumulated leaf area can be used as a competition function, C(t,w), which is

a monotonically decreasing function of wand expresses the effect of other

individuals on the growth of the subject one of size w at time t. Therefore,

C(t,w) can be given as the total leaf area of individuals larger than w at time t

(Fig. 2.6),

S
h(Wmox ){ih', .} .•C(t,w) = fLA(x,h)dx ff/(t,h)dh.
h(w) 0

(2.16)

We see that C(t,wo)=LAI (leaf area index) and CCt,wm,)=O, where Wo and wm'"

represent the minimum and maximum plant weights in the stand, respectively.

Under completely one-sided competition, the relationship between 6RGR

and C(t,w) at a given time t is given as a monotonically increasing function

passing through the origin, whereas under completely symmetric two-sided

competition 6RGR is a constant irrespective of C(t,w) (Bara, 1992; "two-sided

competition" there means completely symmetric two-sided competition in this

study). The model in this chapter shows that the mode of competition is

between these two extremes, two-sided but asymmetric, even though

competition was assumed to be only for light (Fig. 2.6). Moreover, it is

notable that the 6RGR-C(t,w) relationship converges to a nearly-linear
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stationary curve as the stand develops and LAI becomes more or less constant

(Figs. 2.4B and 2.6), even when size structure still changes greatly (Figs. 2.3

and 2.4). Therefore, from Fig. 2.6 we have

(2.17)

over a wide range of stand development except for the early growing stage,

where c\ and c2 are constants, c\ represents a slope of the linear ~RGR-C(t,w)

relationship, and c2C(t,WO) (=c2LAI) is the intercept on the ordinate. c\=O and

c2=0 represent the extremes of symmetrically two-sided and completely one­

sided competition, respectively.

The slope of ~RGR-C(t,w) relationship, c\' becomes gentler and c2

increases as the value of f3 increases (Figs. 2.6 and 2.7), indicating that the

asymmetry in competition decreases as the allocation-growth pattern becomes

'diameter-growth' type from 'height-growth' type. This is also supported by

small CV and skewness and by the linear or concave G(t,w) function of the

'diameter-growth' type with large f3 as compared with the 'height-growth'

type with small f3 (Figs. 2.4 and 2.5), which are regarded as the characteristics

of symmetric two-sided competition (e.g. Hara, 1986b, 1988, 1992 ; Weiner

and Thomas, 1986; Weiner, 1990).
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Fig, 2.6. Simulated relationships between t.RGR and accumulated leaf area

of individuals larger than plant weight wat time I, C(/,W). L'>RGR denotes a

difference between RGR in an isolated condition and RGR in a crowded

condition for an individual of plant weight w at time t. A, allometric

parameter {3=2.0; B, {3=2.5; C. {3=3.0; and D. {3=3.5. Other parameters

as in Table 2.1. In all cases. time steps are 1=0 (·· .. ····).1=100 (- -),

1=200 (- - - ).1=300 (-----).1=400 (-.-.-). and 1=500 (--).
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2 2.5 3 3.5

Allometric parameter, f3

Fig. 2.7. Simulated relationships between coefficients of eqn (2.17),

C I and c2' and allometric parameter f3. c, represents the slope of the

linear t.RGR-C(I,w) relationship, and C2C(I,Wo) (=c,LAI) is the

intercept on the ordinate; in the figure, both c, and c2 are given as

an average between time steps 1=300 and 1=500. A, coefficient c,;

B, coefficient cr Other parameters as in Table 2.1.
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Self-thinning rule

Yoda et al. (1963) proposed the so-called '-3/2 power law of self-thinning',

which states that the relationship between mean plant weight, W, and density,

p, is given as logw= 10gK +clogp where K and c are constants and c""'-3/2

irrespective of species and conditions (see also Westoby, 1984; White, 1981).

Weller (l987a, b), however, claimed that thjs law is a statistical artifact and

that biomass (total plant weight per unit area) should be taken instead of mean

plant weight, but admitted that there exists a power relationship between

biomass per unit ground area,y, and density, p: logy= 10gK' +c' logp, where

K' and c' are constants and especially c' is variable between species and

conditions contrary to the claim of the '-3/2 power law'.

The model in this chapter shows also that there exists power relationships

between y and p, although slopes on the log-log plot are somewhat greater

than -1/2 (-1/2 is a claimed value for p and y derived from the -3/2 power law

for p and w since y = pw) (Fig. 2.8), not conforming to the clajmed value of

the '-3/2 power law'. Moreover, self-thinning trajectories starting from ilifferent

initial densities converge to the same line on the log-log plot (Fig. 2.8). It is

also notable that the slope of self-thinning trajectories is nearly constant

irrespective of the allometric parameter, {3, in eqn (2.6), i.e. irrespective of

'height-growth' type or 'diameter-growth' type, if other parameters remain the

same.

These behaviours of self-thinning trajectories were also reproduced by

other individual-based models (e.g. Aikman and Watkinson, 1980; Firbank

and Watkinson, 1985; West, 1987; Kohyama, 1989; Clark, 1990; Prentice and

Leemans, 1990). Especially Prentice and Leemans' result (their Fig. 4) resembles

the Fig. 2.8, that is, little increase in biomass per unit ground area during the

course of intensive self-thinnjng, which also agrees to a statistical finding by

Weller (l987a).
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Fig. 2.8. Simulated developments of biomass per unit ground area, y, and

density, p, at 50 time-step intervals until 1=500 in stands staning from

initial densities, 300 ( 0), 400 (0) and 500 (f:;.) (m·2
). The solid line has a

slope of -1/2 on a log-log plot. A, allometric parameter {3=2.0; B, {3=2.5;

C, {3=3.0; and D, {3=3.5. Other parameters as in Table 2.1.

2.4 Discussion

Growth pattern and the mode ofcompetition

The theoretical model in this chapter can reproduce several well-documented

phenomena in plant population ecology except for the effects of spatial

distribution on the growth dynamics: (1) correspondence between the dynamics

of size structure and the G(t,x) and M(t,x) functions; (2) a power relationship
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between density and biomass during the course of self-thinning irrespective of

the initial density and the allocation-growth pattern ('height-growth' type or

'diameter-growth' type). It is evident that there exists a power relationship

between density and biomass as reproduced by this model as well as many

other simulation models (references cited in the previous section), although

the value of exponent, c', differs between models and plant populations studied

(e.g. Hara, 1985; Weller, 1987a, b, 1989; Zeide, 1987; Carleton and

Wannamaker, 1987; Norberg, 1988; Kikuzawa, 1988; Osawa and Sugita, 1989).

Thus further theoretical investigation into this power relationship is needed,

especially about the value of the exponent.

The model in this chapter further revealed the relationships between the

mode of competition, growth function of individuals and allocation-growth

pattern: (i) competition between individuals in a crowded stand is always

between one-sided and symmetric two-sided, and completely one-sided

competition is never realised, even though competition is only for light; (ii) as

the allocation-growth pattern changes from 'height-growth' type to 'diameter­

growth' type, the mode of competition changes from a highly asymmetrical to

more symmetrical, with the G(t,w) function changing from convex to linear

and then concave with respect to wand also with decreasing size variability in

terms of CV and skewness. Therefore, it should be noted that plants of 'diameter­

growth' type tend to exhibit a two-sided competition effect that is close to

symmetric, even though competition is only for light, suggesting that

competition for light is not always one-sided as hypothesi~ed so far (e.g.

review by Weiner, 1990).

The above-stated theoretical result (i) is supported by Thomas and Weiner

(1989) who demonstrated, using an a priori competition-growth model, that

competition in Ambrosia artemisiifolia and Pinus rigida populations was

between one-sided and symmetric two-sided. However, their model showed

the best fit (the highest r value) of completely one-sided competition in
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Impatiens pal/ida (r 2=0.44, P<O.Ol), but the 70-90% proportions of one-sided

competition were also significant at P<O.Ol (;=0.39-0.42) and even completely

symmetric two-sided competition was still significant at P<0.05 (r 2=0.26).

Therefore, their results do not necessarily demonstrate complete one-sidedness

of competition in Impatiens pal/ida, because a slight change of the empirical

model may bring about a different result.

Plants of 'height-growth' type are regarded as early-successional shade­

intolerant species, whilst plants of 'diameter-growth' type are regarded as

late-successional shade-tolerant species (Hara, Kimura and Kikuzawa, 1991).

Although direct comparison between shade-tolerance and shade-intolerance,

which are expressed in terms of the photosynthetic and respiration parameters

in the model, was not performed in this chapter, the theoretical result (ii)

conforms to the findings by Hara et al. (1991; "two-sided competition" there

means completely symmetric two-sided competition in this study) that diameter

growth of Abies veitchii and A. mariesii (species of 'diameter-growth' type) is

less affected by one-sided competition than is diameter growth of Betula

ermanii (a species of 'height-growth' type); dynamics of diameter growth are

parallel to those of weight growth rather than to those of height growth (e.g.

Hara, 1984a, b).

It should be noted that 'one-sided competition' and 'symmetric two-sided

competition' are an a priori conception and the two extremes that are never

realised in the real world; the mode of competition in nature is always in

between: two-sided but asymmetric. The mode of competition as well as the

stand structure is not the cause but the consequence of growth and allocation

dynamics based on the canopy photosynthetic process. In this respect, I agree

with Bonan (1988, 1991) that the study of size hierarchies should be shifted

away from considerations of one-sided versus two-sided competition as an a

priori starting point and toward a direct understanding of the consequences of

neighbourhood competition. But I still believe that the mode of competition is
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a useful conception and should play an important role in looking at the growth

dynamics in the real world, as shown in this chapter.

Growth of individuals and competition function

From eqns (2.14) and (2.17), I propose the following equation as the

general G(t,w) function for individuals in a crowded stand, which covers a

wide range of stand development, allocation-growth pattern and the mode of

competition:

(2.18)

where ao' a" m, c1 and c2 are positive constants. Here m decreases from 1 and

c
1

approaches 0 as the allocation-growth pattern changes from 'height-growth'

type to 'diameter-growth' type [i.e. as f3 increases in eqn (2.6)].

An empirical finding by Kohyama (1989,1991) is a special case of eqn

(2.18). He obtained

(2.19)

for trees of mixed species in a warm-temperate rain forest which can be

assumed to be at a stationary state as a climax forest. Here x represents dbh

(stem diameter at breast height). B(t,x) was defined as

B(t,x) = t'" l f(t,z)dz, (2.20)

where k is a positive constant,j{t,z) is the distribution density function of dbh

zat time t, and x
max

is the maximum dbh. Leaf area of an individual competing

tree of dbh z is assumed to be proportional to l in an allometric relationship.
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Therefore, B(t,x) is proportional to total leaf area of individual trees larger

than the tree of dbh x at time t. According to the pipe model theory (Shinozaki

et aI., 1964a, b), leaf area is proportional to basal area, i.e. k=2 in eqn (2.20),

which was also assumed in Kohyama's simulations (1989, 1991). Therefore,

Kohyama's B(t,x) is a simplified functional form but a good approximation of

the C(t,x) function given by eqn (2.16). Kohyama (1989,1991) empirically

assumed the Gompertz growth curve for a single isolated tree, which is also

supported by the theoretical result in this chapter (Fig. 2.2B). His assumption

of completely one-sided competition, however, will bring about overestimation

for growth of large-sized trees.

Benjamin (1988) proposed an emplrical single equation for weight growth

of individual plants in monocultures. Benjamin's model [his eqn (3)] can be

described in terms of the G(t, w) function as follows:

G(t,W) = rw{1 + Knln[;]}(I-;)(I-~J, (2.21)

where r, K, W (w<W) and Yare positive constants, n is density (=p(t» given

as eqn (2.2) in the model of this chapter, a time-invariant constant if mortality

is zero, W is the mean of w, and y is biomass per unit ground area (= nw < Y).

Let Bk(t,w)==B(t,w) to express the exponent k explicitly in eqn (2.20). Then

define the competition function, C(t,w), as

C(t, w) == In[B1(t, Wo)],
nw

(2.22)

where Wo is the minimum weight in the stand and B\(t,wo)/n represents the

mean plant weight, w, by definition. Then Benjamin's model, eqn (2.21), can
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be rewritten as

(2.23)

where dj=Kn and d2=nwr/Y. The fIrst term expresses the logistic growth equation

for a single isolated individual. The second and third terms express effects of

one-sided and symmetric two-sided competition, respectively.

The effects of one-sided and symmetric two-sided competition is

multiplicative in eqn (2.23), whilst those in the model of this chapter, eqn

(2.18), are additive. This is a major structural difference in these two models,

but both models can describe all the possible mode of competition. Which

model is appropriate and what is the best function form for C(t,x) are determined

only by the agreement between observed and predicted results. However,

there may be little difference between the additive and multiplicative

representations if reduction in growth are small: the cross-terms generated in

an expansion of the multiplicative form would be of second order in magnitude.

SignifIcant differences would only appear between the two representations if

two or more sources of limitation are simultaneously large in effect. The

function form of G(t,x) given by eqn (2.18), which is not an a priori function

but derived from the canopy-photosynthetic process, is realistic, although

simple, and Kohyama's B(t,x), eqn (2.19), can be used as a simple and good

approximation for the competition function C(t,x). Therefore, the G(t,x) function

given by eqn (2.18) can be used for further investigations of the dynamics of

growth and competition in plant populations.

The D(t,x) function in the diffusion model (Hara, 1984a) represents

variance in growth rate of individuals of size x at time t, and describes

environmental heterogeneity, genetical variation, variation in the

neighbourhood effects (i.e. spatial distribution of individuals), etc. The present
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model in this chapter cannot describe these effects on the growth dynamics,

because the present model is non-spatial and deals with only averaged size­

dependence of individual growth expressed by G(t,x) and D(t,x)=O. However,

assuming that egn (2.1) describes a local phenomenon, we can investigate the

effects of variation in terms of D(t,x) by integrating these local phenomena

with varying parameter values.

The present model assumes an a priori allometric relationship between

plant height and weight. But such a relationship should be also derived from a

basic model. To do so, the two-dimensional (plant height and stem diameter)

diffusion model (Hara et aI., 1990, 1991) should be employed. This will be

dealt with in Chapter 4.
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Chapter 3
Effects of physiological and environmental variations on size-structure

dynamics in plant populations

In Chapter 2, a dynamic canopy photosynthesis model was developed for the

growth of individual plants in a stand based on a continuity equation model

for investigating mechanisms of size-structure dynamics in relation to

allocation-growth patterns. The objective of this chapter is to evaluate, based

on the canopy photosynthesis and continuity equation models, the effects of

variation in physiological parameters on the size-structure dynamics in relation

to the degree of asymmetry in competition or the allocation-growth pattern.

Then effects of temporal and spatial variations of the environments on the

dynamics of plant communities are evaluated, and mechanisms of species

coexistence are discussed.

3.1 Simulation method

Details of the canopy photosynthesis and continuity equation models have

been given in Chapter 2. Here, two different forms of vertical distribution of

leaf area density of an individual of plant height h at height x from ground,

f~(t,x,h), are examined: a trianglular form as used in Chapter 2,

f~(t,x,h) = 8(h-x),
=0,

and a rectangular form,

f~(t,x,h) = 8h,
=0,

(p~(t,x,h)2: 0);
(p;(t,x,h) < 0);

(p~(t,x,h)2: 0);
(p~(t,x,h)< 0);

(3.1a)
(3.1b)

(3.2a)
(3.2b)

where () is a constant parameter which determines the shape of the crown and

p:(t,x,h) is daily net photosynthetic rate per unit leaf area at height x from
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ground for an individual of plant height h in the stand at day t, given as the

integral over a day of the instantaneous photosynthetic rate.

In Chapter 2, simulations of size-structure dynamics were conducted by

changing the value of the allometric exponent f3 in eqn (2.6) (from 2.0 to 3.5

in steps of 0.5) with fixed values of other physiological parameters. In this

chapter, simulations are conducted for two fixed values of f3, 2 and 3, and

changed other parameter values; photosynthetic parameters (a and b), respiration

rate per unit leaf area (r), maintenance respiration rate per unit weight (r
m

),

growth respiration rate per unit weight (r
g
), extinction coefficient of the canopy

(k), canopy shape parameter (8) and the other allometric parameter (a), for

initial stand densities of 200, 300, 400, 500 and 600 (m-2
) (Table 3.1). When

changing one parameter value, other parameter values were fixed at the 'standard

values' given in Table 3.1, which were also used in Chapter 2. A normal

distribution with a mean plant weight 1.0 g and a standard deviation 0.1 was

used as the initial size distribution of plant weight at t=O d for each simulation

set as in Chapter 2, and the simulations were conducted over the time interval

from 0 to 400 d.



Table 3.1. Parameter values used in simulations in Chapter 3
When changing one parameter out ofI-IX, other parameters are fixed at

the standard values given in bolds.

Conversion factor (fixed)

u=0.65 ( gdwlgc~,l

Irradiance incident on the canopy at midday (fixed)
1

0
=250 (Wm-2

)

Daylength (fixed)
T

d
=14 (hour)

Specific leaf area (fixed)
s=0.02 (m2g-')

I. Variation in photosynthetic parameter: a (W-'m2 )

for fixed 1>=0.050 (gco, W-'h-')

(bla in parentheses)
0.025 0.0 17 0.0 13 0.010 0.008 0.007 0.006
(2.0) (2.9) (3.8) (5.0) (6.3) (7.1) (8.3)

II. Variation in photosynthetic parameter: b (gco, W-'h-')

for fixed a~O.OIO (W-'m2 ) -

(bla in parentheses)
0.020 0.030 0.040 0.050 0.060 0.070 0.080
(2.0) (3.0) (4.0) (5.0) (6.0) (7.0) (8.0)

ITI. Variation in leaf respiration rate: r/(gco, m-2d-')

0.03 0.04 0.06 0.10 - 0.30 0.60 1.00

IV. Variation in maintenance respiration rate: rm(gg-'d-')
0.020 0.030 0.050 0.055 0.060 0.065

V. Variation in light extinction coefficient: k
0.4 0.6 0.7 0.8 0.9 La
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Vl. Variation in growth respiration rate: r (2:2:-')
0.10 0.20 0.25 0.30 g --0.35 0.40 0.50

VII. Variation in canopy shape parameter: f) (xI0"m2m-2
)

0.8 0.9 1.0 1.1 1.2

VIII. Variation in allometric parameter: a
3.2 4.0 4.2 4.4 5.2
~7 35 3~ 39 ~7

6.2 (xIOOgm-2 ) for {3=2.0
5.7 (xI0'gm-3 ) for {3=3.0

IX. Variation in initial stand density: p(O)
200 300 400 500 600 (m-2 )
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3.2 Simulation results

In Chapter 2, it was shown by simulation that asymmetry in competition

decreases as {3 increases (i.e. as the allocation-growth pattern shifts from

'height-growth' to 'diameter-growth'). In this chapter, I investigate by simulation

the effects of variation in the above parameters on the size-structure dynamics

for two cases: {3=2 ('height-growth' type, thus more asymmetric competition)

and {3=3 ('diameter-growth' type, thus less asymmetric competition). There

was little difference in the qualitative trends among initial stand densities and

also between the triangular and rectangular forms of f~ (t,x,h) [eqns (3.1)

and (3.2)]. Therefore, only the results for a stand density of 400 (m-~ and a

triangular form of f~ (t,x,h) [eqn (3.1)] are shown here.

Effects of variation in photosynthetic rate

Variations in a and b both gave almost the same results, and only the results

for variation in a with a constant b are shown (Fig. 3.1). The mean, coefficient

of variation (CV) and skewness of plant weight for different values of maximal

photosynthetic rate per unit leaf area at infmity light intensity, bla, eventually

converge with time for {3=2 (Fig. 3.IA, C, E), whilst those for {3=3 diverge

with time (Fig. 3.1B, D, F). Time lag in the convergence is only the difference

between the varied parameter values for {3 =2. These results indicate that

effects of variation in maximal photosynthetic rate per unit leaf area on the

size-structure dynamics become more apparent with an increasing {3.
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Fig. 3.1. Changes in: A, B, mean; C, D, coefficient of variation

(CY); and E, F, skewness of plant weight for variations in bla

[maximal photosynthetic rate per unit leaf area at infinity light

intensity in eqn (2.10)]. bla=2.0 (--), 2.9 (- -), 3.8 (- - -),
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[eqn (2.6)] {3=2; B, D, F, {3=3.
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Effects of variation in respiration rate

Effects of variation in respiration rate per unit leaf area, rJ' on the

size-structure dynamics in terms of mean, CV and skewness are relatively

small for f3=2 (Fig. 3.2A, C, E), whilst those for f3=3 are relatively large

(Fig. 3.2B, D, F). Similar results were obtained for variation in maintenance

respiration rate per unit weight, r
m

, (Fig. 3.3) and growth respiration rate per

unit weight, rg: i.e. the statistics of plant weight distributions converge for f3

=2 (Fig. 3.3A, C, E) and diverge for f3=3 (Fig. 3.3B, D, F) with time for

different values of rm , r g and rr Effects of variation in r
f

are relatively small

compared with those for r
m

and r
g
(Figs. 3.2 and 3.3).
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Fig. 3.2. Changes in: A, B, mean; C, D, coefficient of variation

(CV); and E, F, skewness of plant weight for variations in r
f

[respiration rate per unit leaf area in eqn (2.10)). r,=0.03 (--),

0.04 (- -),0.06 (-- -),0.1 (.------), 0.3 (----), 0.6 (----- ),

1.0 (--._.-). Fixed values of other parameters are given in Table

3.1. A, C, E, Allometric parameter [eqn (2.6)] f3=2; B, D, F, f3=3.
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Fig. 3.3. Changes in: A. B. mean; C, D. coefficient of variation

(CY); and E. F. skewness of plant weight for variations in r
m

[maintenance respiration rate in eqn (2.11)]. r m=0.02 (--). 0.03

(- -).0.05 (-- -).0.055 (·· .... ·).0.06 (----). 0.065 (---).

Fixed values of other parameters are given in Table 3.1. A, C. E.

Allometric parameter [eqn (2.11)] {3=2; B, D. F, {3=3.
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Effects of variation in extinction coefficient, canopy shape and allometric

parameter

Variation in the extinction coefficient of the canopy, k, brings about

only a small variation in the statistics of plant weight distributions for f3 =2

(Fig. 3.4A, C, E), but a large variation for f3=3 (Fig. 3.4B, D, F). Variations

in both the canopy shape, e, in eqn (3.1) (Fig. 3.5) and allometric parameter,

a, in eqn (2.6) (Fig. 3.6) bring about almost the same effects on the size-structure

dynamics as k and photosynthetic and respiration parameters (Figs. 3.1, 3.2,

3.3 and 3.4).
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Fig. 3.4. Changes in: A, B. mean; C. D. coefficient of variation

(CV); and E, F. skewness of plant weight for variations in k [light

ex' incLion coefficient in eqns (2.9) and (2.10»). k-0.4 (--). 0.6 (

).0.7 ( -).0.8 ( ).0.9 ( ), 1.0 ( ). Fixed

values of other parameters are given in Table 3.1. A, C. E. Allometric

parameter [eqn (2.6)] {3~2: B. D, F. {3-3.
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Fig. 3.5. Changes in: A, B, mean; C, D, coefficient of variation

(CV); and E, F, skewness of plant weight for variations in e [canopy

shape parameter in egns (3.1) and (3.2)]. 8=0.8 (--), 0.9 (

- -), 1.0 (- - -), 1.1 (-------), 1.2 (-- - -). Fixed values of

other parameters are given in Table 3.1. A, C, E, Allometric parameter

[egn (2.6)] f3=2; B, D, F, f3=3.
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Fig. 3.6. Changes in: A. B. mean; C. D. coefficient of variation

(CY); and E. F, skewness of plant weight for variations in a

[allometric parameter in eqns (2.6) and (2.11)]. A. C. E. a=3.2 (

--).4.0 (--). 4.2 (---). 4.4 ( ). 5.2 (_._.). 6.2 (

_.._.); B. D. F. a=2.7 (--). 3.5 (--). 3.7 (---). 3.9 (

........).4.7 (_._.). 5.7 (_.._ .. ). xl02 Fixed values of other

parameters are given in Table 3.1. A, C. E, Allometric parameter

[eqn (2.6)] {3=2; B. D. F. {3=3.
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Mode ofcompetition

The degree of asymmetry in competition, defined as c/cz in eqn (2.17),

was found to vary with physiological parameters: c/czincreases for both f3=2

and f3=3 as maximal photosynthetic rate (bla), light extinction coefficient (k),

and canopy shape parameter (8) are increased, but it decreases for f3 =3 with

increasing rm and allometric parameter a (Fig. 3.7A, C, D, E, F). There is

only a small response to leaf respiration rate (r
f
) for both f3=2 and f3=3 (Fig.

3.7B). It is worth noting that in all graphs in Fig. 3.7, asymmetry in competition

for f3 =3 is less than for f3 =2, as was found in Chapter 2.

For both f3=2 and {3=3, CV during the late growing stage (around

1=300 onward) was increased as the initial stand density increased. The effects

of density on CV were rather complicated during the early growing stage

(Fig. 3.8A, B).
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Fig. 3.7. Changes in the degree of asymmetry in competition defined

as c/c2 in eqn (2.17) with variations in: A, bla [maximal photosynthetic

rate per unit leaf area at infinity light intensity in eqn (2.10)]; B, r/

[respiration rate per unit leaf area in eqn (2.10)]; C, rm [maintenance

respiration rate in eqn (2.10)]; D, k [light extinction coefficient in eqns

(2.9) and (2.10)]; E, e [canopy shape parameter in eqn (3.1 )]; and F, a

[allometric parameter in eqns (2.6) and (2.11)]. c,lc2 is 0 for completely

symmetric two-sided competition and -too for completely asymmetric

one-sided competition. Fixed values of other parameters for each case

are given in Table 3.1. Allometric parameter [eqn (2.6)] f3=2 (--)

and {3=3 (--). F, a is xlOo for f3=2 and xlO2 for {3=3.
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3.3 Discussion

Stability and the mode ofcompetition

First of all, it should be noted that the degree of asymmetry in competition

was not given a priori in this model, and thus the mode of competition is a

consequence of the allocation and growth processes. In this study, variation in

the allometric parameter /3 in eqn (2.6) leads to various modes of competition.

Therefore, the discussion made in this chapter is primarily based on the allometry

and the allocation and growth processes, but not on the a priori mode of

competition per se.

The results in Figs. 3.1 - 3.5 and 3.6 show that size-structure dynamics

as t ---., = for /3 =2 (more asymmetric competition) are little affected by changing

physiological parameters, whilst size-structure dynamics for /3=3 (less

asymmetric competition) show a divergent response. Therefore, a plant

population undergoing strongly asymmetric competition is not so sensitive to

fluctuations in environmental conditions which generate variations in

physiological parameters, i.e. a stable system, whereas a plant population

undergoing symmetric competition is highly sensitive to those fluctuations.

Kohyama (1991) and Hara (1992) both showed that variation in recruitment

rate (number of seedlings which enter the population per unit time) at time t,

R(t), affects only a little the shape of the stationary size distribution under

one-sided competition (most asymmetric competition), whilst that under

symmetric two-sided competition is greatly affected. These results were

obtained by simulation (Kohyama ,1991) and theoretically (Hara, 1992), based

on the continuity equation model with empirical functions obtained from rain

forests (these empirical functions were also reproduced by the simulation

model of Chapter 2).

In summary, a single-species plant population undergoing one-sided or

strongly asymmetric competition, which is brought about by a small /3 around

2, is a stable system, little affected by variation in physiological parameters
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and in recruitment rate. A population undergoing symmetric competition,

which is brought about by a large f3 around 3, is an unstable system with

respect to variation in these parameters. It follows that growth and size-structure

dynamics should be similar among different species with different physiological

parameter values if these species have small f3 near 2 but that these should be

different among different species if these species have large f3 near 3.

It is difficult to interprete these simulation results theoretically based on

original model of Chapter 2. Based on approximate eqns (2. I 5), (2.16) and

(2.17), only an intuitive explanation of the difference in sensitivity between

one-sided competition and symmetric two-sided competition can be given by

employing the same logic used by Hara (1992). Because C(t,w) is a decreasing

function of w, the effect of c l (one-sided competition) on ~RGR in eqn (2.17)

diminishes as W increases, and vanishes at w=w max [i.e. cIC(t,wmaJ=O]. But the

effect of c
2

(symmetric two-sided competition) remains the same over the

whole range of W in eqn (2.17) (i.e. c2C(t,wO)=constant irrespective of w),

suggesting that the effect of symmetric two-sided competition is relatively

large as a whole compared with that of one-sided competition. Therefore,

because variation in physiological parameters changes C I and c2' symmetric

two-sided competition is more likely to affect ~RGR, then G(t,w) and hence

size-structure dynamics through a change in c2 than one-sided competition is

through a change in c
l
(Hara, 1992). The magnitude of the allometric parameter

f3 determines the way how variation in physiological parameters affects the

mode of competition and the size-structure dynamics. These processes are

as ociated with the balance between respiration and photosynthesis of an

individual. When f3 is large, cost due to maintenance respiration is relatively

large for large individuals, generating a linear or concave G(t,w) function

which is associated with symmetric two-sided competition. When f3 is small,

cost due to maintenance respiration is relatively small for large individuals,
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generating a convex G(t,w) function which is associated with asymmetric or

one-sided competition.

Nutrient conditions and the mode of competition

For a given species, nitrogen concentration per unit leaf area or leaf

weight, which depends on the nutrient level in the soil, is positively correlated

with the maximal photosynthetic rate per unit leaf area at infinity light intensity,

bla (e.g. Natr, 1975; Van Keulen and Seligman, 1987; Hirose and Werger,

1987). Therefore, by considering effects of variation in bla, some inferences

can be made on the effects of nutrient conditions in the soil on the mode of

competition although no direct root competition was incorporated in the model

but only a competition for light was dealt. In this model, variation of nutrient

conditions and root competition for nutrients in the soil are reflected in the

variation of bla. Because the degree of asymmetry in competition (for light)

decreases with decreasing bla for both f3 =2 and f3 =3 (Fig. 3.7A), the reduced

nutrient level, which leads to a decrease in bla, brings about less asymmetric

competition for light. Then, considering both competition for light and root

competition as a whole, competition becomes symmetric two-sided under

low-nutrient conditions because root competition is regarded as symmetric

two-sided in most cases (e.g. see Weiner and Thomas, 1986; Weiner, 1990).

This theoretical result conforms to the findings of Morris and Myerscough

(1991) that the reduced nutrient level in the soil brought about higher f3 and

more intense root competition (hence symmetric two-sided competition).

Hirose (1987, 1988a, b) proposed a model of plant growth as a function

of nitrogen concentration in each organ of an individual for a single 'average'

plant of a particular species. Therefore, dynamics at the population level were

not considered in his model. Using a growth model, Hirose et al. (1989)

showed that the relative growth rate (RGR) of two Carex species is more

sensitive to proportional changes in photosynthetic nitrogen use efficiency
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than to changes in respiration coefficients. This is consistent with the above

result that the effect of variation in leaf respiration rate on the size-structure

dynamics is relatvely small (Fig. 3.2) as compared with that due to variation

in photosynthetic parameters (Fig. 3.1).

Allometry and the mode ofcompetition

In these simulations, CV during the later growing stage increased as

initial stand density was increased for both [3=2 (strongly asymmetric

competition) and [3=3 (near-symmetric competition) (Fig. 3.8). This is in

accordance with the results of Bonan's (1991) spatial simulation model that

the increase in CV with density is not direct evidence for asymmetric one-sided

competition. But it should be noted that the canopy photosynthesis model in

this chapter generates neither completely asymmetric one-sided competition

nor completely symmetric two-sided competition (these two were assumed a

priori in Bonan's (1991) model). Competition here is always a combination of

the two extremes.
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Fig. 3.8. Changes in coefficient of variation (CY) over

time for different initial stand densities (m-2
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Allometric parameter [egn (2.6)] f3=2; B, f3=3. Fixed

values of other parameters are given in Table 3.1.



54

Growth form or allometry is closely associated with the mode of

competition in plant populations (Morris and Myerscough, 1985, 1987, 1991;

Ellison and Rabinowitz, 1989; Geber, 1989; Thomas and Weiner, 1989; Weiner,

Berntson and Thomas, 1990; Kohyama, Hara and Tadaki, 1990; Weiner and

Thomas, 1992). For isolated non-competing plants, intra-population allometry

at one point in time ('static allometry') is usually the same as the allometric

growth trajectory of each individual ('dynamic allometry'), whilst these two

differ in a crowded stand (Fig. 3.9A; e.g. for trees, Yamakura, 1985; Kohyama,

Hara and Tadaki, 1990; for annuals, Weiner and Thomas, 1992). Moreover, in

a crowded stand, a in eqn (2.6) generally changes with development of the

stand (Fig. 3.9A). This model with constant a and f3 in eqn (2.6) over the

stand development assumes that dynamic allometry is identical to static

allometry. This assumption seems unrealistic for the crowded stands in the

light of the above-mentioned literature. However, even as a changes over the

stand development, the qualitative trends of size-structure dynamics remain

the same (Fig. 3.6); time lag in the convergence is only the difference for f3

=2 (Fig. 3.6A), and the scale of statistics is the difference for f3 =3 (Fig.

3.6B).

Instead of a simple allometry given by eqn (2.6), curvilinear allometries

on a log-log scale are often found between stem diameter and plant height and

between plant height and plant weight in the crowded stands (Fig. 3.9B; e.g.

Ogawa and Kira, 1977; Hara, 1986a; Kohyama, Hara and Tadaki, 1990; Weiner

and Thomas, 1992). Roughly speaking, such a curvilinear allometry between

plant height and plant weight can be regarded as consisting of two simple

allometries: smaller a and larger f3 for larger individuals and larger a and

smaller f3 for smaller individuals [Fig. 3.9B; e.g. see Figs. 1, 2 and 4 of

Weiner and Thomas (1992)]. This suggests that such a plant stand may be

regarded as consisting of two subpopulations: less asymmetrically competing

large individuals and more asymmetrically competing small individuals.
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Fig. 3.9. A, If the allometric relationship between plant height, h,

and plant weight, W, is given by W = ah$ with constant parameters,

a and f3 [egn (2.6)], intra-population allometry at one point in time

('static allometry' at time I, or 12) is identical to the allometric growth

trajectory of each individual along the arrow ('dynamic allometry')

marked (a). If a changes with the stand development, static allometry

at each point in time (I, and (2) develops along the arrow marked (b)

and is different from the dynamic allometry. In both cases, each

plant grows in the direction of the arrow from time I, to 12. B,

curvilinear static allometry between hand W on a log-log scale is

often found in crowded plant stands, where allometry can be

approximated by two lines with different a and f3 values: (a) larger

a and smaller f3 for smaller individuals and (b) smaller a and

larger f3 for larger individuals.

55
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Morris and Myerscough (1984) described two types of competition:

'altered-form competition' as a lowering of the self-thinning line (biomass­

density trajectory on a log-log plot) in lower-nutrient stands (Furnas, 1981;

Morris and Myerscough, 1985) and 'altered-speed competition' as a trajectory

following substantially the same self-thinning line more slowly in lower-nutrient

stands (White and Harper, 1970; Bazzaz and Harper, 1974). In the former

case, as nutrient level is reduced, rootshoot ratio increases bringing about

more intense root competition and then 'altered-form competition' emerges

(Morris and Myerscough, 1985, 1991). It is very probable that 'altered-form

competition' is associated with transition from a lower to a higher f3 (i.e.

decrease in the degree of competitive asymmetry) and hence more variable

size-structure dynamics as nutrient level is reduced (Morris and Myerscough

(1991) found that f3 of Ocimum basilicum increased with reduced nutrient

level). In 'altered-speed competition', this transition from a lower to a higher

f3 may not occur when the nutrient level is reduced, and a rather stable

size-structure is realized at a lower f3 (even with a variable a) with the time

lag in the convergence being the only difference between variations in

physiological parameter values (see Figs. 3.1-3.6A, C, E).

Plant community dynamics and the mode ofcompetition

The parameter-sensitivity of the plant population in relation to the mode

of competition (degree of asymmetry) or allometry (allocation-growth pattern)

should be taken into account when we study the dynamics of multi-species

plant communities. In mean-value-based models, competitive ability is

asymmetrically hierarchical giving rise to transitive competition among species

(e.g. Keddy and Shipley 1989; Tilman 1990). On the other hand, there have

been arguments that competitive abilities of species are not strictly hierarchical,

especially in grasslands (i.e. competition among species is non-transitive; e.g.

Aarssen 1983, 1989; Wilson 1989; Taylor and Aarssen 1990; Glenn and
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Collins 1990; Herben and Krahulec 1990; Herben et al. 1990; Hara 1993).

An inference about the mode of inter-specific competition can be made,

although the model in this chapter dealt with only intra-specific competition:

non-transitive competition may be associated with plant species of symmetric

two-sided competition which are highly sensitive to change in physiological

parameters caused by environmental fluctuations.

Large effects of variation in physiological parameters under symmetric

two-sided competition implies large fluctuations in individual growth, which

give rise to the diffusion function term D(t,w) together with eqn (2.1):

(f(t,w) ;]2 [ ] a [ ]-ar- = awl D(t, w)f(t, w) - aw G(t, w)f(t, w) - M(t, w)f(t, w). (3.3)

Hara (1993) showed that inferior competitor species in terms of mean species

traits such as G(t,w), M(t,w) and R(t) functions can coexist with superior

competitor species, if the D(t,w) function of inferior competitor species is

greater than that of superior competitor species. Therefore, it is very likely

that the large D(t,w) function, high parameter-sensitivity in symmetric two-sided

competition, non-transitivity of competition among species, and species

diversity are all closely associated with each other. on-equilibrium theory

for community dynamics (e.g. Huston, 1979) may be explained in this context.
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Chapter 4
Foliage profile, size-structure and stem diameter - plant height

relationship in plant populations

In most of the theoretical models for plant growth (e.g. Shugart, 1984; Botkin,

1993), a relationship between stem diameter (D) and plant height (ll) has

been assumed a priori as a species-specific characteristic. Also in the previous

chapters, a simple allometry between plant weight and plant height was assumed.

In this chapter, such an a priori assumption is not made. Instead, D and H are

treated as two independent variables to investigate the effects on size structure,

competition and D-H relationship of the vertical foliage profile of an individual

plant and allocation pattern between D and H in crowded populations. The

simulation study in this chapter is based on an extended version of the canopy

photosynthesis model developed in Chapter 2 together with a two-dimensional

continuity equation model.

4.1 Model

Time development o! two-dimensional size distribution density

Letf(t,D,ll) be a distribution density of individuals of stem diameter D and

plant height H per unit area at time t. Hara et al. (1990) and Hara, Kimura and

Kikuzawa (1991) proposed a diffusion equation model to describe the dynamics

of fiJ,D,H). This was an extended version of Hara's diffusion model for size­

structured plant populations (Hara, 1984a, b) incorporating two kinds of size

measure at the same time.

Jj(t,D,H) _ I J2 [ ] J2 [ ]--Jt-- -2: JD2 DdCt,D,H)!(t,D,H) + JDJH Ddh(t,D,H)!(t,D,H)

1 J2 J ]+2: JH2 [Dh(t,D,H)!(t,D,H)]- JD[GdCt,D,H)!(t,D,H) ,

- ~[GhCt,D,H)!(t,D,H)]-MCt,D,H)!Ct,D,H) (4.1)
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The "diffusion" tenns [the fIrst, the second and the third tenns in the right-hand

side of eqn (4.1)] represent spatial heterogeneity and genetic variations in a

population. In this thesis, I consider an even-aged plant population which

grows in a homogeneous environment. where effects of the diffusion tenns

are assumed to be small. Moreover, for investigating biological meanings of

the relationship between competition process and size structure dynamics, I

focus mainly on the detenninistic processes in this chapter. In the last subsection

(pages 84-86). the effects of these diffusion tenns are discussed. Here. the

following two-dimensional continuity equation is adopted for the time

development of distribution density,j(t.D,H) as a basic equation:

a.!U,D.H) _ a [ ] a [ ]--iJt--- aD Gd(t.D,H)!(t.D,H) - aH Gh(t,D,H)!(t.D.H)

-M(t,D,H)!(t,D,H), (4.2)

where Git.D,H) is the mean stem diameter growth rate (instantaneous mean

of increments of stem diameter per unit time) of individuals of stem diameter

D and plant height H at time t, and Gh(t,D,H) is the mean height growth rate

(instantaneous mean of increments of plant height per unit time) of individuals

of stem diameter D and plant height H at time t. M(t,D,H) is the mean

mortality rate of individuals of stem diameter D and plant height H at time t

(Hara, 1984a, 1988). The density (number of individuals per unit ground area)

at time t, p(t). is given by

pet) = (mu J:mu !Ct.D.H)dDdH. (4.3)

where D max and H
max

are the maximal stem diameter and the maximal plant

height, respectively.

The function fonns of Git,D,H), Gh(t,D,H) and M(t.D,H) are determined
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by the processes of competition between individuals. Here, competition only

for light is considered assuming that nutrients and water in the soil are sufficient.

Leafarea density profile ofan individual incorporating plant height and stem

diameter

First, let consider an individual grown in isolation. Let d(z) be a profile

of stem diameter of an individual plant at height z above the ground. Here d(z)

is assumed to be given by the following function:

(4.4)

where D is the stem diameter at ground level (z=O) and H is the plant height.

This function can represent various shapes of profile of stem diameter as

illustrated in Fig.4.1A by changing the parameter 1] [Armstrong, 1990, 1993;

but in these references the profile of a canopy was given by eqn (4.4)]. From

the pipe model theory (Shinozaki et al. 1964a, b), the cross section of a stern

at any height above ground is proportional to the accumulated weight of

leaves existing above that height of a plant. Then there is a relationship

between the vertical distribution of leaf area density,f~(::.,D,H), and the profile

of stem diameter, d(z), as

{ }
2 fH, ,e d(z) = /LA(z ,D,H)dz, (4.5)

where e is a proportional constant. Differentiating both the sides of eqn (4.4)

with respect to z together with eqn (4.3), we can obtain the function form of
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(4.6)

The vertical distribution of leaf area density for several values of 1]

(hereafter 1] is called as canopy shape parameter) are shown in FigA.lB. For

1]=1, the vertical distribution of leaf area density presents a conic canopy

such as coniferous trees; for large value of 1], it gives such a shape as broad­

leaved trees (larger leaf mass in the upper layer than in the lower layer, and

1] -7 00 gives a flat-topped canopy). In the same way as in previous chapters,

it is further assumed that the foliage layer at height x from ground dies if the

daily total net photosynthetic rate per unit leaf area at that height of an

individual of stem diameter D and plant height H is negative because of

self-shading within the crown of a plant.
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Fig. 4.1. A, stem diameter profiles of an individual plant grown in

isolation of stem diameter at ground level D=5.0 em and plant

height H=5.0 m for several values of the parameter 1] in eqn (4.4).

E, vertical foliage profiles of an individual of D=5.0 em and H=5.0

m for several values of the parameter 1] in eqn (4.6).

Canopy photosynthetic process

As in previous chapters, it is assumed that plant foliage is homogeneously

reducing the intensity of radiation by absorption according to Beer-Lambert's

law and that radiation is vertically incident. This can only be an approximation

for discretely and homogeneously located leaves, with transmittance=O and

reflectance=O, for non-vertical sky irradiance and for direct sunlight in sunflecks.

In a crowded stand, the mean vertical leaf area density at height x from

ground on day t is given by



rDmu rHmu
<t>(t,x) = Jo Jo !/.A(x,D,H)!(t,D,H)dHdD,
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(4.7)

where Hmax and Dm", are the maximal plant height and the maximal stern

diameter in the stand, respectively. From the assumption of homogeneity of

the stand, light intensity at height x from ground at time of day t
d

on day t is

given as

(4.8)

where 10 is irradiance incident on the canopy at midday; k is light extinction

coefficient; Td is daylength. Then daily mean net photosynthetic rate per unit

leaf area at height x from ground in the stand on day t, p,,(t,x), is given as

(4.9)

In this case, the foliage layer at height x from ground is assumed to die if

p,,(t,x) is negative, although, of course, height of leaf death is different in the

crowded stand. Let !~(t,x,D,H) represent!u.(x,DJ/) in the crowded stand on

day t and let p~(t,x), which is calculated using !~(t,x,D,H), representp,,(t,x)

in the crowded stand. Daily net photosynthetic rate of an individual of stem

diameter D and plant height H in the stand on day t is obtained by

• 1 [if!. r 2 ]P,,(t,D,H)=-- u p,,(t,x)J/.A(t,x,D,H)d;r;-TmaD H ,
I +Tg 0

(4.10)
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where u, rg , rm , are conversion factor, growth respiration rate per unit weight,

maintenance respiration rate per unit weight for non-photosynthetic organs,

respectively. The first term in the parentheses of eqn (4.10) gives net

photosynthetic production per day by leaves of an individual of stem diameter

D and plant height H. The second term represents the weight loss by respiration

of non-photosynthetic organs assumed as aD2H.

Allocation process ofan individual

It is assumed that plants allocate net photosynthetic gain per unit time

to the growth of both stem diameter and plant height. The mechanisms of

allocation pattern may be quite different among species. Here, let consider

three types of relationship between the increment of stem diameter per unit

time, W, and the increment of plant height, t:J{,

size-independent allocation: ~ = {3;

H-dependent allocation: ~ = {3exp[-')H],

and

(4. 11 a)

(4.11b)

(4.11c)competition-dependent allocation: ~ = {3exp['}C(t,D,H)],

where {3 and y are positive parameters. Equation (4.11 a) stands for a size­

independent allocation pattern irrespective of individual size. Equation (4.11 b)

as H-dependent allocation pattern allows an individual to give more allocation

to height growth than to stem diameter growth if the individual has small

plant height. The competition function, C(t,D,H), in eqn (4.11c) is defmed as

in eqn (2.16)



fDmu 'fHmu '[r H" ,,]C(r,D,H)= D dD H dH Jo !v1(t,x,D ,H )dx .
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(4.12)

This gives the accumulated leaf area of individuals larger than stem diameter

D and plant height H at time t, and is a monotonically decreasing function of

D and H. Therefore, for eqn(4.11c) as competition-dependent allocation pattern,

a small suppressed individual gives more allocation to height growth than to

stem diameter growth through eqn (4.12).

Here it is assumed that the total plant weight of an individual of stem

diameter D and plant height H is given by

-aD2H L(t,D,H)
W total - +--s--' (4.13)

where L(t,D,H) is total leaf area on day t and s is specific leaf area of an

individual of D and H. L(t,D,H) is given as

H
L(r,D,H) = fo £,,(t,x,D,H)dx. (4.14)

The first and the second terms of eqn (4.13) give the weights of non­

photosynthetic organs and leaves, respectively. When stem diameter and plant

height increase by !'J) and W for an individual of stem diameter D and plant

height H per unit time, total plant weight WIOta] increase by L'lwtOlal ' which

corresponds to net photosynthetic rate given by eqn (4.10):
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where s is assumed to be time-independent. From eqns (4.10), (4.11), (4.13)­

(4.15), we can obtain the increments of stem diameter, W, and of plant

height, Mf, per unit time for individuals of D and H, which represent Git,D,H)

and G,,(t,D,H), respectively.

Monaliry process

As in previous chapters, it was assumed for simplicity that mortality

rate of an individual is set at unity only when the daily net photosynthetic rate

of an individual is negative. Then, the distribution density of the individuals

decays exponentially for fixed D and H with a time constant of one day.

Therefore, the function form ofM(t,D,H) is assumed as

M(t,D,H)=O,
=1,

(P;cr,D,H)?O);
(P';U,D,H)<O).

(4.16a)

(4.16b)

The lack of a diffusion term means that once a size class is eliminated it

cannot be restored.

Initial and boundary conditions

From the above formulations the dynamics of size structure of a plant

stand can be described based on eqn (4.2) together with initial and boundary

conditions given as:

initial condition,

[
( _)2 ( _)2]N D-D H-H

I(O,D,H)= 20 exp 0 0_ ;

(fiii) 0DOH 20D 20H

(4.17)
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boundary conditions,

j(t,O,H)=j(t,D,O)=O. (4.18)

Parameter No represents the initial density at t=O; SD and SH are the standard

deviations of stem diameter and plant height, respectively; D; and ~ are the

initial mean stem diameter and the initial mean plant height of the stand,

respectively.

Simulation methods

The two-dimensional Lax-Wendroff method was employed for

numerically solving the partial differential equation, eqn (4.2) (e.g. Smith,

1985). Integration involved in eqns (4.7) - (4.10), (4.12) and (4.14) was

performed by the spline integration method (e.g. Davis and Rabinowitz, 1984).

Intervals for discretization were 0.2 cm for stem diameter D, 0.2 m for plant

height H and one day for time t. Physiological parameters involved in eqns

(4.8) - (4.10) are presented in Table 4.1. Initial density No was 5.0 m·2
, and

initial mean stem diameter and initial plant height were 5.0 cm and 5.0 m,

respectively. The standard deviations of initial stem diameter and plant height

distributions were 1.5 cm and 1.5 m, respectively. These parameters were

fixed for each simulation set.
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Table 4.1. Paramerer values used for simularions in Chaprer 4

Parameter Unit Defmition

a=IO.O (gcm·2m·') Allometric parameter:

eqns (4.10), (4.13), (4.15)

8=0.03 (m 2cm''') Parameter for leaf area

distribution: eqns (4.5), (4.6)

u=0.65 (g gco;l) Conversion factor: eqn (4.10)

k=O.4 Light extinction coefficient:

eqns (4.8), (4.9)

a=O.OI (W· l m2
) Parameters for light-

b=0.05 (gco,W·1h· l
) photosynthetic rate curve:

eqn (4.9)

[0=250.0 (Wm·2
) Irradiance incident on the

canopy at midday: eqn (4.8)

Tr I4 .O (hour) Daylength: eqn (4.8)

r
f
=0.6 (gco,m·2d· l) Respiration rate of leaves:

eqn (4.9)

rm=O.OOI (gg.ld· l) Maintenance respiration

rate: eqn (4.10)

r.=0.3 (gg.l) Growth respiration rate:

eqn (4.10)

s=0.03 (m 2g. l) Specific leaf area:

eqns (4.13), (4.15)

Simulations were carried out by changing the canopy shape of an

individual, [i.e. the value of canopy shape parameter, T'J, in eqns (4.4) and

(4.6)] and the allocation ratio of the growth rate of stem diameter and plant

height of an individual [i.e. the parameter values of f3 and y in eqns

(4.11a)-(4.1Ic)] for each allocation pattern, size-dependent, H-dependent and

competition-dependent. Simulation set are summarized in Table 4.2.
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Table 4.2. Simulation cases in Chapter 4

Case Canopy type Allocation pattern Parameter values

case I broad-leaved ! [
size·independent

]
'1-S.0, {3-0.6

case 2 coniferous ~ ~={3 '1-1.0, {3-0.6

case 3 broad-leaved ! [
H-dependent

]
1)-S.O, {3-S.0, y-O.3

case 4 coniferous ! ~ =/iexp[-;.H] 1)-1.0, {3-S.0, y-O.3

case 5 broad-leaved ! [c::petition-depenctentJ
1)-S.O. f3-0.6, y-O.S

case 6 coniferous ! M5 = /lexp[)C(I,D,H») 1)-1.0, {3-0.6, y-O.S

4.2 Simulation results

For cases 1,3 and 5, the mean stem diameter - mean plant height trajectory

with time was curvilinear, while for cases 2, 4 and 6, it was approximately

linear (Fig, 4.2). This means that as the canopy shape parameter T] increases,

the mean D - mean H trajectory becomes curvilinear irrespective of allocation

pattern. All the time courses of the statistics of simulated distributions were

distinctly separated by the canopy shape parameter T], while only small

differences were found between allocation patterns (Fig. 4.3). Leaf area index

and population density of the stand for T]=S began to decrease at earlier time

than for T]=l due to severe self-thinning (Fig. 4.3A, B). For the value of T]=S,

coefficient of variation and skewness of weight increased in early stage and

then decreased as time passed (Fig. 4.3C, D).
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Fig. 4.2. The relationships between mean stem diameter and mean

plant height of the simulated stands. Case 1 (0) corresponds to

broad-leaved type plants with size-independent allocation pattern

for the value of f3=0.6 in eqn (4.11a); case 2 (e), to coniferous

type plants with size-independent allocation pattern for the value of

f3=0.6 in eqn (4.1Ia); case 3 (D), to broad-leaved type plants with

H-dependent allocation pattern for the values of f3=5.0, Y=0.3 in

eqn (4.11 b); case 4 (_), to coniferous type plants with H-dependent

allocation pattern for the values of f3=5.0, Y=0.3 in eqn (4.1Ib);

case 5 (to), to broad-leaved type plants with competition-function

dependent allocation pattern for the values of f3=0.6, y=0.5 in eqn

(4.llc); case 6 (&), to coniferous type plants with competition­

function dependent allocation pattern for the values of f3 =0.6, Y

=0.5 in eqn (4.llc).
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Fig. 4.3. Simulated changes over time in: A, leaf area index; B, density

of the stand; C, coefficient of variation of plant weight distribution; D,

skewness of plant weight distribution. Key as Fig. 4.2.

The contour maps of distribution density,f(t,D,H), for the three cases

of allocation pattern show that height distributions for 1]=5 were bimodal and

that those for 1]=1 were unimodal irrespective of allocation pattern (Figs 4.4,

4.5 and 4.6). On the other hand, diameter distributions were unimodal for all

the cases. The contour maps of distribution density of net photosynthetic rate,

Pn*(t,D,H), (Figs 4.7, 4.8 and 4.9) show that in the case of 1]=5 for all the

allocation patterns, there were maximum values in the net photosynthetic rate

of individuals of small height and large diameter (Fig. 4.7A, 4.8A and 4.9A)

giving rise to height bimodal distributions.
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20.0

10.0

I
0> 0.0
~

~
20.0

a:

10.0

Stem diameter (em)

Fig. 4.4. Contour maps of distribution density j(r, D, H) of individuals

of stem diameter D and plant height H per unit area at time I. The

quantity, j(r, D, H)dDdH, represents the number of individuals of

D e[D,D+M] and H e[H,H +Mi] per unit area (unit of j(I,D,H)

is [(number of plants) em>' mol m>2]). For case I, A, the distribution

density at time step I=300 days; B, at I=900 days; C, at I=1500 days.

For case 2, D, at I=300 days; E, at I=900 days; F at I=1500 days. For

case I, there is bimodality in height distributions (B and C), although

stem diameter distribution is unimodal. Numerals in the figures denote

the value of distribution density.
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Fig. 4.5. As in Fig. 4.4. A, Band C for case 3; D, E and F for case 4.

For case 3, there is bimodality in height distributions (B and C),

although stem diameter distribution is unimodal. umerals in the

figures denote the value of distribution density.
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Fig. 4.6. As in Fig. 4.4. A, 8 and C for case 5; D, E and F for case 6.

For case 5, there is bimodality in height distributions (8 and C),

although stem diameter distribution is unimodal. Numerals in the

figures denote the value of distribution density.
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Fig. 4.7. Contour maps of net photosynthetic rate distribution,

P:(t,D,fl) (g day·'). of an individual of stem diameter, D, and plant

height. H. For case I. A, the net photosynthetic rate distribution at

time step t~300 days: S, at t-900 days: C at t~1500 days. For case 2,

0, al 1-300 days; E. at 1=900 days: F at 1-= 1500 days. For case I, !.here

are maximum values in the net photosynthetic rate of individuals of

small height and large diameter (B and C). giving rise to height

bimodal distributions. I umerals in the figures denote the value of net

photosynthetic rate.
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Fig. 4.8. As in Fig. 4.7. A, Band C for case 3; D, E and F for case 4.

For case 3, there are maximum values in the net photosynthetic rate

of individuals of small height and large diameter (B and C), giving

rise to height bimodal distributions. Numerals in the figures denote

the value of net photosynthetic rate.
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Fig. 4.9. As in Fig.4.7. A, Band C for case 5; D, E and F for case 6.

For case 5, there are maximum values in the net photosynthetic rate

of individuals of small height and large diameter (B and C), giving

rise to height bimodal distributions. Numerals in the figures denote

the value of net photosynthetic rate.

tlRGR is defined as a difference between RGR (relative growth rate of

plant weight) in an isolated condition and RGR in a crowded condition for an

individual of plant height H and stem diameter D. The relationship between

the competition function, C(l,DJ[), [eqn (4.11)] and tlRGR at t ---7 00 as (Fig.

4.10) can be approximated by.

(4.19)

where Dmin and H mm are the minimal stem diameter and the minimal plant

height in the stand, respectively; c\ and c2 are constants. If c\=O and c2>0,
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competition is symmetric; if c1>O and c
2
=O, competition is one-sided; and if

c1>O and c2>O, competition is asymmetric and the degree of asymmetry increases

with c/cr Coefficient C 1 in the case of 1]=5 was greater than that in the case

of 1]=1 irrespective of allocation pattern. Specifically, in the vicinity of minimum

size [large C(t,D,H)], c1 for 1]=5 was much greater than that for 1]=1, indicating

more asymmetric competition for 1]=5 than for 1]=1.

I~---,---~_~LQ]
O'04CJa>e;bJase

,'"0.03

a:
(!J

~ 0.02 ,

0.01

o I 1 i

~GJ~
o 2 4 6 8 100 2 4 6 8 10

C(t,D,H)

Fig. 4.10. Relationships between the competition function,

C(I,D,H), and ~RGR. ~RGR is defmed by a difference between

RGR (relative growth rate of plant weight) in an isolated

condition and RGR in a crowded condition for an individual

of plant height H and stem diameter D.
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4.3 Discussion

The simulation model showed that the vertical foliage profile of an individual

plant grown in isolation (i.e. species-specific branching pattern and canopy

morphology) has a great effect on the growth dynamics and D-H relationship

of crowded populations (note that the actual canopy shape of an individual in

a crowded stand is produced by self-pruning from the canopy shape of an

isolated single plant, but for the results presented here, self-pruning did not

occur in the case of T/=5, while it occurred if initial density was high).

Broad-leaved type plants (large T/; more foliage mass in the upper layer than

in the lower layer of a canopy when grown in isolation; e.g. see Tadaki, 1977)

show curvilinear D-H relationship and bimodal H distribution, and undergo

more asymmetric competition than coniferous type plants (small T/; more

foliage mass in the lower layer than in the upper layer of a canopy when

grown in isolation; e.g. see Tadaki, 1977) under crowded conditions. Coniferous

type plants show almost linear D-H relationship (i.e. simple allometry) and

unimodal H distribution, and undergo more symmetric competition than broad­

leaved type plants under crowded conditions. In both the cases D distribution

is unimodal. The shape and sharpness of these distribution densities were

changed by taking into account stochastic effects as in eqn (4.1). This case

will be performed in the last subsection (pages 84-86). Nevertheless, bimodal

distribution appeared in the case of T/=5 if the diffusion terms were small,

although large diffusion terms extinguished the bimodality. The value of T/

for an individual plant [eqns (4.4), (4.6); foliage profile parameter of an

individual canopy representing a species-specific branching pattern and canopy

morphology when grown in isolation] governs size structure (bimodal or

unimodal), the mode of competition, D-H relationship and mean D - mean H

trajectory with time under crowded conditions. The allocation pattern between

D and H (size-independent, H-dependent, and competition-dependent) affects

these features only a little. If a change in canopy morphology occurs from one
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type to the other under crowded conditions, changes in growth dynamics, D-H

relationship and the mode of competition will also occur. Curvilinear D-H

relationship is associated with bimodal plant height distribution, whereas almost

linear D-H relationship is associated with unimodal height distribution. The

fom1er can be seen also in several annual forbs (Impatiens pallida, Tagetes

palula, Polygonum pensylvanicum, Kochia scoparia) presented by Weiner

and Thomas (1992) and Weiner and Fishman (1994). As in Kohyama et al.

(1990) for trees, Weiner and Thomas (1992) and Weiner and Fishman (1994)

also concluded that the curvilinear D-H relationship of these annual plants is

brought about by asymmetric competition for light.

These simulation results can explain many actual data. In a nearly

even-aged natural stand of Betula ermanii (a broad-leaved tree; Fig. 4.11;

Kikuzawa, 1988; Hara et aI., 1990), H distribution showed clear bimodality

and D distribution showed unimodality in the early growing stage and slight

bimodality only in the later growing stage (Fig. 4.11), which can be regarded

as a result of 3-5 year difference at the initial stage of invasion (Hara et al.

1990, 1991). In an even-aged plantation of Abies sachalinensis (a conifer;

Fig. 4.12; Hara, 1985), both D and H show unimodal distributions.
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Fig. 4.11. Frequency distributions of tree height and stem diameter at

breast height (DBH) in a Betula ermanii natural stand in 1983 (7-12

years old; A and C) and in 1987 (11-16 years old; B and D) [redrawn

from Kikuzawa (1988) and Hara et al. (1990)].
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Fig. 4.12. Frequency distributions of tree height and stem diameter at

breast height (DBH) in an Abies sachaiinensis plantation in 1948 (20

years old; A and C) and in 1978 (50 years old; B and D) [recalculated

and redrawn from Hara (1985)].

The equation, 1/ H = 1/ aDb + 11 H max , was applied to oak forests dominated

by Casranopsis cuspidata, Quercus acutissima etc. (Ogawa and Kira, 1977)

and to Abies veitchii and A. mariesii (conifers) stands (Kohyama et al., 1990).

However, the regression result of the former is much more curvilinear than

the results of the latter. Betula ermanii of Hara et al. (1990) also showed

significantly curvilinear D-H relationships. Ford (1975) and Ford and Diggle

(1981) argued that competition for light is asymmetric (or one-sided) and

brings about size bimodality as density increases. However, clear bimodality

was found only in plant heights of several annual forbs (Tagetes patula,

Tagetes erecta, Sinapis alba and Lycopersicon esculentum) in Ford (1975)
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and Ford and Diggle (1981). Cannell et aL (1984) found bimodal tree height

distributions in Picea sitchensis and Pinus contorta (conifers) only when dead

trees were included, and these species showed unimodal height distributions

for living trees. Huston (1986) showed, using a simple spatial simulation

model with an exponential growth function, that bimodality in mass can appear

even under symmetric competition at low densities if the spatial pattern of

individuals is random. In this case, the degree of bimodality decreased with

density, which conforms to the experimental results of Festuca paradoxa (a

prairie grass) of Rabinowitz (1979) but contrasts with the results of Ford

(1975) and Ford and Diggle (1981). Reviewing many studies in both animals

and plants, Huston and DeAngelis (1987) concluded that size bimodality due

only to competition is very rare in nature.

All of these results show (1) that both the mode of competition and size

structure (bimodal or unimodal) are determined by the type of canopy structure

and (2) that clear bimodality appears mostly in plant height of broad-leaved

species under crowded conditions, although log-transformed mass, but not

untransformed mass, showed bimodality in several cases (e.g. Ford, 1975).

These results can be explained by the theoretical model in this chapter. A

simple view of the competition-allometry relationship that competition

determines allometry should be reevaluated incorporating the foliage profile

of an individual.

The bimodal height distribution of broad-leaved type plants, irrespective

of allocation pattern between D and H, suggests a separation of vertical space

for upper and lower canopy layers (i.e. multi-layered canopy). It will be easy

for another species to occupy the middle sparse layer in broad-leaved type

plants. In coniferous type plants, however, it will be difficult for another

species to invade if competition is strongly asymmetric, because the canopy is

occupied by a single coniferous species as suggested by unimodal height

distribution (i.e. mono-layered canopy). Therefore, it is hypothesized that
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species coexistence in broad-leaved type plants is mainly by way of separation

of vertical space and that species coexistence in coniferous type plants is due

to symmetric competition in a single canopy layer (see Discussion of Chapter

3; Hara and Wyszomirski, 1994). The former represents niche separation

under strongly asymmetric competition (or one-sided competition) and

conforms to Kohyama's (1993) "forest architecture hypothesis" for a warm­

temperate rain forest. The latter is supported by the results of Hara et al.

(1994) for the coexistence of Abies veitchii and A. mariesii in a subalpine

coniferous forest. It should be noted that even in broad-leaved type plants,

species coexistence in the same vertical layer is possible if competition is

symmetric, although it is unstable.

Effects ofdiffusion terms

Here, it is showed that effects of diffusion terms on the distribution

density f(t,D,H) of individuals of stem diameter D and plant height H per unit

area at time t. The time development off(tJ],H) is governed by the equation

[the same as eqn (4.1) without cross-correlation term]:

iJ.f(t,D,H) _ 1 iJ2 [ ] 1 iJ2 [ ]
--ar---2iJD2 Dd(t,D,H)f(t,D,H) +2iJH2 Dh(t,D,H)f(t,D,H)

- ~[Gd(t,D,H)f(t,D,H)]- ~[Gh(t,D,H)f(t,D,H)]-M(t,D,H)f(t,D,H),
(4.19)

where D
d

and Dh are diffusion coefficients representing the variance of growth

rates (variance of increments per unit time) of stem diameter D and plant

height H at time t. Here, it is assumed that both the diffusion coefficients are

constant and the covariance of D and H is zero.

In Fig. 4.13, bimodality of height distribution appears for both the

cases of .,,=5.0 (broad-leaved type plants) as in the case without the diffusion
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tenns, although the absolute value of distribution densities decreases as the

diffusion tenns become large. When D
d
=D.=10-2

, distribution densities converge

to zero by t=900 days. The sharpness of distribution density decreases as the

diffusion tenns become large.

In Fig. 4.14, there is little change in the shape of distribution densities

for 1]=1.0 (coniferous type plants) even when the diffusion temls are added,

although it becomes gentler than without the diffusion tenns.

0.0 -p-......-T""'=--~---1

10.0 10.0

Stem diameter (em)

10.0 20.0

Fig. 4.13. Contour maps of distribution density f(t,D'!!) of individuals

of stem diameter D and plant height H per unit area at time I. Canopy

shape parameter is set at 1]=5, which corresponds to broad-leaved

type plants, and allocation pattern is assumed to be : =tlexp[-}H]

for the value of f3=5.0 and y=0.3. A, the distribution density at

1=300 days; B, at 1=900 days; C, at 1=1500 days for the value of

D
d
=D

h
=IO-3 D, at 1=300 days; E, at 1=900 days; Fat 1=1500 days for

the value of Dd=Dh=10-"-
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Fig. 4.14. As in Fig. 4.13. Canopy shape parameter is set at 1]=1,

which corresponds to coniferous type plants.
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Chapter 5
Crown architecture and species coexistence in plant communities with

special reference to subboreal conifer-hardwood mixed forest

The aim of this chapter is to investigate the effects of individual crown

architecture as vertical foliage profile on the coexistence between conifers

and hardwoods in mixed-species forests. Growth dynamics of the two species

with different crown architecture and the patterns of species coexistence are

simulated by changing initial mean size at the establishment stage and values

of several physiological parameters. The simulations made in the present

chapter correspond to either interspecific competition between saplings starting

from different sapling banks as initial conditions (Kubota and Hara, 1996) or

interspecific competition in single-cohort stands with little continual

establishment of the species until a stand-replacement disturbance (e.g. fire;

Youngblood, 1995). Therefore, recruitment processes are not incorporated in

the model of this chapter.

5.1 Model and simulation

Diffusion model and canopy photosynthesis model for a plant community

Consider a multi-species plant community where each individual is growing

under homogeneous environmental and competitive conditions. Let f;Ct,x)

denote the distribution density of the i-th species' individuals (i= I, 2,... , n) of

plant size x (mass, stem diameter or plant height) at time t in a community

with n species. With the inter- and/or intra-specific interactions, its distribution

density varies with time. For even-aged monocultures (n=I), in Chapter 2, the

general GjCt,x) function is derived based on a canopy photosynthesis model,

which was derived from the canopy photosynthetic processes of competing

individuals. Kohyama (1992) used the folowing model for a n-species plant

community:



iJ!;(/,X) _ 1 a2 [ a-ar- -"2 iJx2 D/I,x)f/t,x)]- a;.:-[Gj(/,X)j(t,x)]- M/I,x)j(t,x),

(i=l, 2,... , n).
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(5.l) .

Subscript i denotes each species i. The Dj(t,x), G/t,x) and Mj(t,x) functions

are the variance of absolute growth rate, the mean absolute growth rate and

the mortality rate of individuals of plant size x of species i at time t, respectively.

Let <!>/t,z) be an averaged vertical foliage density profile within the

stand at height z above ground of species i at time t:

<!>;(/,z) = fj'LA.j(t,z,x)j(t,x)dx, (5.2)

where f LA./t,z,x) is the vertical distribution density of leaf area of an individual

of size x at height z above ground for species i and j(t,x) is the distribution

density of individuals of size x of species i at time I. From the Beer-Lambert

law, light intensity at height z above ground at time of day td on day t is given

by

(5.3)

where 10 is the irradiance incident on the canopy at midday, k, is the light

extinction coefficient in the canopy of species i. In eqn (5.3), we assume that

the plant foliage reduces homogeneously the intensity of radiation without

reflectance or transmittance by leaves as in previous chapters. Then, the averaged

daily net photosynthetic rate per unit leaf area of species i at height z above

ground in the stand on day t, Pn.j(/,Z), is given by
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(5.4)

where ai and bi are parameters of the light-photosynthetic rate curve of species

i and r
f

is the respiration rate per unit leaf area (the same for every species in

the simulations). It is approximated that the light-photosynthetic rate curve by

a rectangular hyperbola, where bi and blai represent the slope at the origin and

the asymptotic value of the curve, respectively. Then, the averaged daily net

photosynthetic rate of an individual of size x of species i at time t, which is

equivalent to the Gi(r,x) function, is given by

where u is the conversion coefficient, rm is the respiration rate of non­

photosynthetic organs, rg is the growth respiration rate (these parameter values

were the same for every species in the simulations), w
non

is the mass of

non-photosynthetic organs. H(x) represents the plant height of an individual

of size x (mass, stern diameter or plant height). In the model, only light

competition is considered for intra- and inter-specific interactions between

individuals.

As in previous chapters, it is assumed for simplicity that the mortality

rate of an individual of size x of specie i at time t, Mj(t,x), is set at unity only

when the daily net photosynthetic rate of an individual of species i, Gj (r, x) , is

negative. The function form of M,(t,x) is then given by



M/t,x)=O,

=1,
(G/t,x)~O);

(G/t,x)<O).

90

(5.6)

Then, from eqn (5.1), the size distribution density of individuals of species i

decays exponentially with a time constant of one day.

Allometry and crown shape ofan isolated plant

As in Chapter 4, it is assumed that the stem diameter profile at height z

above the ground, d(z), of an individual of plant height H and stem diameter

D is given as (4.4). Moreover, it is assumed that plants allocate net

photosynthetic gain per unit time to the growth of both stem diameter and

plant height. The mechanisms of allocation patterns may be quite different

among species. However, in Chapter 4, it was shown theoretically that the

difference in the allocation patterns (constant, size-dependent or competition­

dependent) affects the size-structure dynamics of a population only a little.

Therefore, here, only the H-dependent relationship between the increment of

stem diameter per unit time, !'J), and the increment of plant height, t;J{, is

used, that is the same as eqn (4.11 b).

(5.7)

where f3 and y are positive constants. Eqn (5.7) allows an individual plant to

give more allocation to height growth than to stem diameter growth if the

individual has a small plant height under suppressed conditions. Integrating

eqn (5.7), we obtain the relationship between plant height, H, and stem diameter,

D,
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(5.8)

Equation (5.8) describes how tbe stem diameter, D, depends on plant height,

H in each individual plant. It should be noted that the growth rates of plant

height and stem diameter in the derivative form [eqn (4.11b), (5.7)] adopted

in Chapter 4 depends on time, while its integral form [egn (5.8)) is independent

of time. Therefore, the allometry of each individual is unchanged throughout

the time course of its growth. Then plant height, H. is taken as an independent

variable using the relationship between D and Has eqn (5.8).

The mass of non-photosynthetic organs, w~ in eqn (5.5). is thus given

as

(5.9)

where a is a positive constant.

Thus, the vertical distribution of leaf area density, !,... (z,H), of an

isolated individual having a stem diameter profile given by eqn (4.4) is derived

from the same theory as used in Chapter 4 (the pipe model theory):

(5.10)

where e is a positive constant. As in Chapter 4, for 7]= I, the vcnical distribution

of leaf area density presents a conic crown shape such as coniferous trees;

larger values of 7] give spheroidal crown shapes such as broad-leaved trees

(hardwood) having larger leaf mass in the upper layer than in the lower
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layer, and T/~ +00 gives a flat-topped crown (see Fig. 4.1 of Chapter 4). It is

further assumed that the foliage layer at any height above ground dies if the.

average daily net photosynthetic rate per unit leaf area at that height, eqn

(5.4), is negative because of shading within the stand. Then, the vertical

distribution of leaf area density can vary with development of the stand.

Therefore, we represent the vertical distribution of leaf area is explicitly

represented as f/.A(t,z,H).

Simulation method

In this chapter, the diffusion term [the first term in the right-hand side

of eqn (5.1)], which represents the effects of spatial heterogeneity and genetic

variations on the growth and size-structure dynamics of a population, is neglected

because it is considered that the population which grows in homogeneous

conditions, where effects of the diffusion terms are assumed to be small, and

only biological meanings of the relationship between competition processes

and community dynamics is investigated. The presence of the diffusion terms

makes the domain of species coexistence larger than the case of no diffusion

terms (Hara 1993; see also Chapter 4). Therefore, I use a continuity equation

for time development of a plant population of each species. Hereafter, I deal

with the system of a continuity equation model for two-species plant

communities [n=2 in eqn (5.1) with Di(t,x) = 0] together with the canopy

photosynthesis model, eqns (5.2)-(5.5), (plant height, H, is adopted as plant

size x)

d/;~H) =_ ~[G;Ct,H)f;Ct,H)]-Mj(t,H)f;Ct,H); U=I, 2), (5. ]])

where j,(t,H) denotes the distribution density of plant height H of species i at

time t. The lack of the diffusion terms means that once a size class is eliminated
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it cannot be restored.

The population density of species i at time t (the number of individuals

of species i per unit ground area in the stand) is given by

f
H mu

p;(r) = J;(t,H)dH; (i=l, 2),
H min

(5.12)

where H min and H max are the minimal and maximal plant height in the stand,

respectively.

As an initial condition, the following Gaussian function is used:

J;(O'H)=~exp[jH -Hi.S]; U=l, 2),
.J2iiO;,H 20;,H

and a boundary condition:

J;(t,O)=O; U=l, 2),

(5.13)

(5.14)

whereN;.o' Hi,o and 0i.H represent the initial population density, the initial

mean plant height and the standard deviation of plant height of species i,

respectively. Recruitment processes are not incorporated and the effects of

the growth dynamics of either saplings starting from different sapling banks

(initial conditions) or trees in single-cohort stands with little continual

establishment on the pattern of species coexistence are investigated.

The system of non-linear partial differential equations are solved

numerically by using the Lax-Wendroff scheme (e.g. Smith, 1985). Integrations

involved in eqns (5.2)-(5.4) were performed by the spline integration method



94

as the same as in previous chapters. Intervals for discretization were 0.2 m for

plant height H and one time unit (day) for time t. Simulations were carried out.

by changing the following parameter values for two fixed values of the crown

shape parameter, 1]=1.0 (conic crown shape) and 1]=5.0 (spheroidal crown

shape): extinction coefficient (k), slope of light-photosynthetic rate curve at

the origin (b) with the fixed value of the ratio b/aj=2, initial mean plant

height (Hi .O)' initial standard deviation (Oi,H)' When changing parameter values

for one species, those values of the other species were set at the 'standard

values' given in Table 5.1. Simulations were conducted over the time interval

from 0 to 500 time units (days).

Table 5.1. Standard values o/parameters used/or simulations o/Chapter 5.
When changing parameter values 0/one species, those 0/ the other species are

fixed at the values listed below

Parameter unit Definition

a=5.0 (gcm'2m") Allometric parameter: eqn (5.9)

(J=0.04 (m 2cm·2
) Parameter for leaf area

distribution: eqns (5.10)

u=0.65 (g geo;') Conversion factor: eqn (5.5)

k=0.6 Lght extinction coefficient in the

canopy: eqns (5.3), (5.4), (5.5)

a=0.075 (W·lm2
) Parameters for light-photosynthetic

b=0.15 (gco,W·1h· l) rate curve: eqns (5.4), (5.5)

10=250.0 (Wm·2
) Irradiance incident on the canopy

at midday: eqn (5.3)

T
d
=14.0 (hour) Daylength: eqn (5.3)

r
f
=0.6 (gco,m·2d· l) Respiration rate of leaves: eqns (5.4),

(5.5)

rrn=O.OOI (gg.ld· ') Maintenance respiration

rate: eqn (5.5)

rg=0.3 (gg.l) Growth respiration rate: eqn (5.5)
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5.2 Simulation results

For investigating the coexistence between the two species, it is defined that

the 'state' of species i as follows: species i survives if p;Ct = 500) ~ 0.1 x N j •o;

othenvise, species i is excluded by interspecific competition, where

p;Ct = 500) is the population density of species i at t=500 time units (days)

and N j •o is the initial population density of species i at t=O. In the present

study, recruitment processes were not incorporated. Thus the two species will

die out eventually as time tends to infinity (t=ca. 1000 time units in these

simulations). To assess the outcome of interspecific competition (survive or

excluded), the results of the state of the two species at t=500 time units is

given (almost the same results were obtained also at t=ca. 800 time units).

The species with conic and spheroidal crowns in the model were assumed to

be a conifer and a hardwood, respectively. Hereafter the species with a conic

crown is called as a conifer and the one with a spheroidal crown as a hardwood.

Figures 5.1 and 5.2 show phase diagrams for species coexistence between

conifers and hardwoods at t=500 time units. In Fig. 5.1, the parameter values

of hardwoods were changed with those of a conifer kept at the standard values

(Table 5.1). There was a domain of coexistence for the lower values of the

extinction coefficient (k) and the slope of light-photosynthetic rate curve at

the origin (b), and the domain area of coexistence decreased with an increasing

initial mean plant height of hardwoods. For the other parameter sets, only the

hardwoods survived and the conifer was excluded. In Fig. 5.2, the parameter

values of conifers were changed with those of a hardwood kept at the standard

values (Table 5.1). There is a domain of coexistence for the higher values of

the extinction coefficient and the slope of light-photosynthetic rate curve at

the origin for conifers. For lower initial mean plant heights (i.e. hardwoods in

the upper canopy layer and a conifer in the lower canopy layer) and higher

initial mean plant heights (i.e. a conifer in the upper canopy layer and hardwoods



in the lower canopy layer), the domain area of coexistence became large.
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Fig. 5.1. Phase diagram of coexistence between species with a

spheroidal crown (hardwoods) and those with a conic crown

(conifers). The parameter values of hardwoods were changed,

while those of a conifer were fixed at the standard values given

in Table 5.1. 0, only hardwoods survived; ., hardwoods

coexisted with a conifer.
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Fig. 5.2. As in Fig. 5.1. The parameter values of conifers were

changed, while those of a hardwood were fixed at the standard

values given in Table 5.1. 0, only a hardwood survived: .,

conifers coexisted with a hardwood.
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Figure 5.3 shows the time courses of population density for each species.

The results for the initial mean height of 5.0 m for both the hardwoods and.

conifers are given. In cases A and B, the two species coexisted at 1=500 time

units. In cases C and D. the two species did not coexist and the conifers were

excluded earlier than the hardwoods. For all the cases, the population density

of conifers began to decrease earlier than that of hardwoods.

)CJ···~=···············g~ ~ .
i It It.8 It '00 200 JOC CXI :.00 em It 100 100 .. 40ll $01;

IJ ~I~=
,-----"-----&00 It ,(1(1 '00 800

lime unn {oayj

Fig. 5.3. Simulated time courses of the population density of

each species. . hardwoods: . conifers. A. b,~.15

(slope of light-photosynthetic rate curve at the origin) and k,=OA

(light extinction coefficient in the canopy) for a hardwood in

Fig. 5.2C with the parameter values of a conifer fixed at the

standard values given in Table 5.1: B. b,=O.2 and krO.8 for a

conifer in Fig. 5.3C with the parameter values of a hardwood

fIxed at the standard values: C. b,..(j.25 and k,-1.0 for a hardwood

in Fig. 5.2C with the paroilleter values of a conifer fixed at the

standard values: D. b,-o.l and k,,.QA for a conifer in Fig. 5.3C

with the parameter values of a hardwood fixed at the standard

values.
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For the case of coexistence, size structures are shown for each species

in Figs 5.4 and 5.5. In Fig. 5.4, size distribution of hardwoods became positively.

skewed, and the vertical layers of conifers and hardwoods were separated

with an increasing difference in the initial mean size. However, in Fig. 5.5,

size distribution of conifers was positively skewed, and the vertical layer was

not separated in all the cases. In Fig. 5.4, a bimodal size distribution of a

conifer appeared only in the case where the initial mean plant height of the

conifer was 5.0 m and that of the hardwood was 7.0 m (Fig. 5.5D). On the

other hand, in Fig. 5.5, bimodal size distributions of hardwoods appeared in

the case where the initial mean plant heights of hardwoods were 1.0 m and

3.0 m and that of the conifer was 5.0 m (Fig. 5.5A, B).
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Fig. 5.4. Simulated plant height distribution densities for the

coexisting species at 1=500 time units (days) where the initial mean

plant height of hardwoods was changed (-- ) with that of conifers

(-------- ) kept at 5.0 m. For the hardwoods, b,=0.15 and k,=O.4; the

parameter values of the conifers were fixed at the standard values

given in Table 5.1. The initial mean plant height of hardwoods was

set at: A, 1.0 m; B, 3.0 m; C, 5.0 m; D, 7.0 m; E, 9.0 m; F, 11.0 m.
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Fig. 5.5. As in Fig. 5.4. In this case, the initial mean plant height

of conifers ( -------- ) was changed with that of hardwoods (--)

kept at 5.0 m. For the conifers, b,=0.2 and k,=0,8; the parameter

values of hardwoods were fixed at the standard values given in

Table 5,1, The initial mean plant height of conifers was set at: A,

] ,0 m; B, 3.0 m; C, 5.0 m; D, 7.0 m; E, 9.0 m; F, 1].0 m.
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5.3 Discussion

If the initial mean size differs between the two species, it is assumed that a .

species of larger initial mean size established first/rapidly after a stand­

replacement disturbance (e.g. fire; Youngblood, 1995) and occupies the upper

canopy layer of the stand (hardwoods of initial mean height=7, 9, II m in Fig.

S.ID, E, F and conifers of initial mean height=7, 9, II m in Fig. S.2D, E, F),

while the other species of smaller initial mean size established later/slowly

and occupies the lower canopy layer (hardwoods of initial mean height=l, 3

m in Fig. S.IA, B and conifers of initial mean height=l, 3 m in Fig. S.2A, B).

If the initial mean size is identical, the two species established concurrently

and occupy the same canopy layer (Fig. S.1C and Fig. S.2C).



Coexistence paNem between hardwoods and conifers

case~ ~

case 2 '.9 .9
case~ ~

~fI!~ ~
I tme development

.,com'e, ~'ha'dwood

Fig. 5.6. Schematic diagrams for the coexistence between two species

having conic (conifer) and spheroidal (hardwood) crown shapes. Case I.

hardwoods with various physiological parameter values can establish

later/slowly in the lower canopy layer even if a conifer with the fixed

parameter values established first/rapidly and overtops the hardwoods;

case 2, a conifer with the fixed physiological parameter values can rarely

establish later/slowly in the lower canopy layer if hardwoods with various

physiological parameter values established first/rapidly and overtop the

conifer; case 3. smallest-sized conifers with various physiological parameter

values can persist well in the lowermost layer even if a hardwood with

the fixed physiological parameter values established first/rapidly and

overtops the conifers; case 4, a hardwood with the fixed physiological

parameter values can establish later/slowly in the lower canopy layer

even if conifers with various physiological parameter values established

first/rapidly and overtop the hardwood.

103
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In the simulations of Fig. 5.1, conifer's parameter values were fixed,

while those of hardwoods were changed, in order to investigate how many .

hardwoods having distinct physiological parameter values can coexist with

the conifer in the upper (case 1 in Fig. 5.6; Fig. 5.lA, B where hardwood's

iriltial size < conifer's initial size) or lower (case 2 in Fig. 5.6; Fig. 5.lD, E, F

where conifer's initial size < hardwood's initial size) canopy layer. The domain

of coexistence between the two species in case 1 was larger than that in case

2, indicating that various hardwoods can establish later/slowly even if they

are overtopped by a corilfer which established first/rapidly. This suggests that

the species diversity of hardwoods can be high even in the lower canopy layer

overtopped by a conifer. The result that the coexistence domain in case 2 was

smaller than that in case 1 indicates that the species diversity of hardwoods in

the upper canopy layer, which can coexist with a conifer in the lower canopy

layer, is limited. As the contrapositive proposition, if various hardwoods

established first/rapidly and occupy the upper canopy layer, a conifer can

rarely establish later/slowly in the lower canopy layer, namely, if the species

diversity of hardwoods is high in the upper canopy layer, that of conifers is

low in the lower canopy layer.

In the simulations of Fig. 5.2, hardwood's parameter values were fixed,

while those of conifers were changed, to investigate how many conifers having

distinct physiological parameter values can coexist with the hardwood in the

upper (case 3 in Fig. 5.6; Fig. 5.2A, B where conifer's initial size < hardwood's

initial size) or lower (case 4 in Fig. 5.6; Fig. 5.2D, E, F where hardwood's

initial size < conifer's initial size) canopy layers. In case 3, the coexistence

domain became larger with a decreased initial mean size of the conifer. This

indicates that the smallest-sized conifers can persist well in the lowermost

canopy layer when overtopped by a hardwood. This suggests a waiting strategy

of conifers in the understorey of a crowded stand, which was found by Kubota,

Konno and Hiura (1994) in a sub-boreal conifer-hardwood mixed-species

forest in Hokkaido, northern Japan. In case 4, a larger coexistence domain
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was realized with an increase in the conifer's initial size. This suggests that

even if various conifers established first/rapidly and occupy the upper canopy

layer, a hardwood can establish later/slowly in the lower canopy layer.

Case 2 predicts that the species diversity of harwoods which established

first/rapidly and occupy the upper canopy layer limits the number of conifer

species which can establish later/slowly. In contrast, case 4 predicts that the

species diversity of conifers which established firs' rapidly and occupy the

upper canopy layer doe not affect the number of hardwood species which

can establish later/slowly. Youngblood (1995) found two types of community

dynamics after stand-replacement disturbance in single-cohort conifer­

hardwood mixed-species forests at the intermediate-successional stage in

interior Alaska, although no discernible difference in associated vegetation or

site characteristics was detected between the stands of these two types: in

stands of type I, hardwoods and conifers establish concurrently or conifers

establish first/rapidly followed by hardwoods; in stands of type 2, hardwoods

establish first/rapidly followed by conifers. In stands of type I, little suppression

in height growth was found for both the conifer (Picea glauca) and hardwoods

(Betula papyrijera and Populus cremuloides). On the contrary, in stands of

type 2, height growth of the conifer was suppressed by the hardwoods.

Youngblood (1995) thus predicted that the stands of type I would be eventually

dominated by P. glauca as described for late-successional P. glauca stands in

boreal forest (Van Cleve and Viereck, 1981) and that in the stands of type 2

P. glauca would never be dominant without reaching up to the top canopy.

Therefore, the community dynamics of type 2 stands in Youngblood (1995) is

explained by our theoretical prediction, case 2 or case 3, and that of type I by

case I or case 4.

In the present chapter, the species with conic and spheroidal crowns

were assumed to be a conifer and a hardwood in a boreal or sub-boreal

mixed-species forest, respectively. It is showed that the size-structure dynamics
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of individuals of conifers and hardwoods changed with both initial mean size

(height) and physiological parameters (Figs. 5.4, 5.5). The initial size

distribution assumed in the model corresponds to the structural attributes of

seedling or sapling banks after natural disturbances such as fire and wind, and

the differences in physiological parameter values represent the functional

diversity of species. Investigating the effects of initial mean size and

physiological traits of the two species on community dynamics, it is derived

that the four predictions for the coexistence pattern between conifers and

hardwoods either at the sapling stage or in single-cohort stands without continual

establishment of the species (Fig. 5.6). The combination of initial sizes at the

establishment stage of the two species with different crown architecture affected

the segregation of vertical positions in the canopy between the two species.

The species coexistence pattern of conifer-hardwood forests is governed by

functional relationships between species-specific crown architecture,

physiological traits and establishment timing (in terms of initial size in the

model).

In the sub-boreal conifer-hardwood mixed-species forest of Kubota and

Hara (1995, 1996), the upper canopy layer [layer I and II in Kubota and Hara

(1995)] was occupied by three conifers (Picea glehnii, P. yezoensis and Abies

sachalinensis) and one hardwood (Betula ermanii) and the lower canopy layer

[layer III and IV in Kubota and Hara (1996)] was occupied by the same three

conifers and three hardwoods (B. ermanii, Sorbus commixta and Acer

ukurunduense). The community structure of this sub-boreal forest is explained

by our theoretical predictions that the species diversity of hardwoods in the

lower canopy layer can be high even if the species diversity of conifers in the

upper canopy layer is high and that the low species diversity of hardwoods in

the upper canopy layer supports the high species diversity of conifers in the

lower canopy layer.

Many studies have investigated mainly species-specific physiological
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traits (shade tolerance, maximum size, photosynthetic rate, etc.) for species

coexistence focusing on the trade-offs between the species. The present study

showed that not only the species-specific physiological traits but also the

crown architecture is important for the pattern of species coexistence. Even

for the same combination of physiological parameter values, the pattern of

species coexistence differs depending on the crown architecture. Therefore,

the crown architecture should be included for the study of species coexistence,

especially in conifer-hardwood mixed-species forests.
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Chapter 6
Conclusion

First, I summarize the results of the preceding chapters and address the

applications and further investigations using the models in this thesis.

In Chapter 2, a dynamic model for growth and mortality of individual

plants in a stand was developed, based on the process of canopy photosynthesis,

and assuming an allometric relationship between plant height and weight, i.e.

allocation-growth pattern of plant height and stem diameter. Functions G(t,x),

for the mean growth rate of individuals of size x at time l, and M(t,x), for the

mortality rate of individuals of size x at time t, were developed from this

model and used in simulations. The dynamics of size structure were simulated,

combining the continuity equation model, a simple version of the diffusion

model, with these functions. Simulations reproduced several well-documented

phenomena: (1) size variability in terms of coefficient of variation and skewness

of plant weight increases at first with stand development and then stabilises or

decreases with an onset of intensive self-thinning; (2) during the course of

self-thinning, there is a power relationship between density and biomass per

unit ground area, irrespective of the initial density and of the allocation-growth

pattern in terms of the allometric parameter relating plant height and weight.

The following were further shown by simulation: (i) competition between

individuals in a crowded stand is never completely one-sided but always

asymmetrically two-sided, even though competition is only for light; (ii) plants

of 'height-growth' type exhibit a greater asymmetry in competition than plants

of 'diameter-growth' type; (iii) the effect of competition on the growth of

individuals in a crowded stand converges to a stationary state, even when the

stand structure still changes greatly. All of these theoretical results can explain

recent empirical results obtained from several natural plant communities.

Finally, a new, general functional form for G(t,x) in a crowded stand was

proposed based on these theoretical results, instead of a priori or empirical
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growth and competition functions.

In Chapter 3, sensitivity analysis was conducted, based on the canopy

photosynthesis and continuity equation models which were developed in

Chapter 2, to investigate effects of variation in physiological parameters

(maximal photosynthetic rate per unit leaf area, respiration rate per unit leaf

area, maintenance respiration rate per unit weight, growth respiration rate per

unit weight, light extinction coefficient of the canopy, etc.) on the size-structure

dynamics in plant populations. As the degree of asymmetry in competition

between individuals increased, effects of variation in physiological parameters

diminished. Therefore, a population undergoing one-sided competition (the

most asymmetric competition) is a stable system, little affected by temporal

and spatial variations in the environmental conditions which lead to variation

in physiological parameters, whereas a population undergoing symmetric two­

sided competition is sensitive to these fluctuations. It was also shown by

simulation that the degree of asymmetry in competition decreases (through

effects on canopy photosynthesis) as nutrient level in the soil is reduced. It

was suggested that symmetric two-sided competition is associated with non­

transitivity of competition between species (i.e. frequent reversals of rank

order of species), and hence with species diversity. Several other ecological

phenomena were discussed in relation to allometry (i.e. allocation-growth

pattern) and the degree of asymmetry in competition.

In Chapter 4, the relationships between vertical foliage profile of an

individual plant, competition between individuals, size structure and allocation

pattern between stem diameter (D) and plant height (H) were investigated

using canopy photosynthesis and two-dimensional continuity equation models

induding D and H as two independent variables. Broad-leaved type plants

(more foliage mass in the upper layer than in the lower layer of the canopy of

an individual when grown in isolation) showed curvilinear D-H relationship

and bimodal H distribution, and underwent more asymmetric competition
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than coniferous type plants (more foliage mass in the lower layer than in the

upper layer of the canopy of an individual when grown in isolation) under

crowded conditions. Coniferous type plants showed almost linear D-H

relationship (i.e. simple allometry) and unimodal H distribution, and underwent

more symmetric competition than broad-leaved type plants under crowded

conditions. However, in both the cases D distributions were unimodal.

Allocation patterns between D and H affected these features only a little.

These simulation results can explain many actual data already published. The

value of 17 for an individual plant (foliage profile parameter of an individual

canopy representing a species-specific branching pattern and canopy

morphology when grown in isolation) governed size structure (bimodal or

unimodal), the mode of competition, D-H relationship and mean D - mean H

trajectory with time under crowded conditions. Therefore, a simple view of

the competition-allometry relationship that competition determines allometry

should be reevaluated incorporating the foliage profile of an individual. These

theoretical results should also be important when studying species coexistence.

The canopy tends to be multi-layered in broad-leaved type plants and mono­

layered in coniferous type plants. Therefore, it was hypothesized that species

coexistence in the former is mainly by way of separation of vertical space

(i.e. niche separation under strongly asymmetric competition) and that species

coexistence in the latter is due to nearly symmetric competition in a single

canopy layer.

In Chapter 5, the relationships between crown architecture and species

coexistence were studied using the continuity equation model and the canopy

photosynthesis model for multi-species plant communities. The model in this

chapter dealt with two species having different crown shapes (conic and

spheroidal), for various initial mean sizes at the establishment stage and

physiological parameter values (photosynthetic rate, etc.). The species with

conic and spheroidal crowns in the model were assumed to be conifers and
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hardwoods in boreal or sub-boreal forests, respectively. Recruitment processes

were not incorporated in the model, and thus simulations were made for the

effects on the pattern of species coexistence of either sapling competition

starting from different sapling banks or competition in single-cohort stands

with little continual establishment of the species until a stand-replacement

disturbance. The following predictions were derived: (1) hardwoods can

establish later/slowly in the lower canopy layer even if they are overtopped

by a conifer which established first/rapidly; (2) if hardwoods established

first/rapidly and occupy the upper canopy layer, a conifer can rarely establish

later/slowly in the lower canopy layer; (3) smallest-sized conifers can persist

well in the lowermost canopy layer overtopped by a hardwood, suggesting a

waiting strategy of conifers, saplings in the understorey of a crowded stand;

(4) even if conifers established first/rapidly and occupy the upper canopy

layer, a hardwood can establish later/slowly in the lower canopy layer.

Therefore, the species diversity of hardwoods which established first/rapidly

and occupy the upper canopy layer limits the number of conifer species which

can establish later/slowly. In contrast, the species diversity of conifers which

established fust/rapidly and occupy the upper canopy layer does not affect the

number of hardwood species which can establish later/slowly. The combination

of initial sizes of a conifer and a hardwood at the establishment stage (i.e.

establishment timing) affects the segregation of vertical positions in the canopy

between the two species with different crown shape, and not only species­

specific physiological traits but also crown architecture greatly affects the

coexistence pattern between conifers and hardwoods. The theoretical

predictions obtained here can explain several phenomena found in single-cohort

conifer-hardwood mixed-species forests, pointing to the significance of crown

architecture for species coexistence.

Applications of the models and further investigations

The dynamic size-structured models (i.e. dynamic canopy photosynthesis
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models together with continuity equation) developed in this thesis simulated

various behaviours of plant communities, i.e. self-thinning, competition and

species coexistence, etc. The models are not empirical but mechanistic

incorporating several physiological processes, i.e. canopy architecture, light­

photosynthesis response, leaf respiration, and growth respiration, etc. With

the models, effects of physiological variations brought about by environmental

changes (e.g. global climate change, etc.) on size structure and species

coexistence will be predicted theoretically.

From the results of simulations in this study, I proposed a general

growth equation in a crowded stand, eqn (2.18). This equation has a simple

structure and the competition function C(t,x) [in eqn (2.18)] is easily determined

from actual data. This equation has been extended to multi-species plant

communities and clonal plants to investigate size-structure dynamics,

competition modes and species coexistence conditions in natural plant

communities. Using this equation, Hara, ishimura and Yamamoto (1995)

and Kubota and Hara (1995) investigated the mechanisms of species coexistence

in a cool-temperate forest and in a subboreal forest, respectively; Suzuki

(1994) investigated shoot competition processes of the clonal plant, Polygonum

cuspidatum, in Mt. Fuji; Kikuzawa and Umeki (1996) investigated the

relationship between competition mode and foliage structure in artificial

populations of the two useful species for forestry, Betula ermanii and Picea

abies.

I showed that canopy architecture is especially important for the dynamics

of plant communities under light competition. Therefore, further investigations

concerning canopy architecture are needed from the viewpoint of genetic

character, evolution and development of individuals for ecological processes

in natural plant communities. Moreover, direct implementation of not only

aboveground competition processes but underground competition processes to

the models is also needed in the future.
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