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ABSTRACT

[{('Celli ad\";\nces ill gmphics hardware cnahk US to handlc Ilot Old." simple polyh<'llrHI
shHpes hUI cOillplicated smooth shapcs in c..l,D systems, Sill('e the c..l,D systcms rep­
reSI'llt such smooth snrfHccs hy pxtending conwntionHI simplicial repr<'spntntion, Iher<'
Hre SI'I'('ral prohlellis ill hi\lldlillg the smooth surface s]u\Iws that 11<\I'e no intnitiw poll'­
hedrHI HpproximHt ions, Thp first prohlplll is that the desigu of slllooth surfaces r<'l/uirps
H larii,e anlounl of UscI' inlen\oiolH, bpcausc of thf' comp!exit~, of Ihe slH\Iws, SeCOn(!l",
1l01lt' of Ihp dt'sign operHlions charactcristic of smooth surfHces arc takpll illto Hcconnt
ill ('Onl<'lnporal'l" C,-\D S,ystellls, Furthermore. they cannot proyide the users lI'ith an."
dfit'ipllt kpI's for shHpe databasps dup to tlw lack of information Hbout smoolh surfac('
fl'i\! mes, To rI'nwd,' such prohkms, hierarchical rpprespntalions of smooth smfaces
haspd 011 the sllape feal mps arp neCeSSal'l",

This thesis presellts a Ilel\' featme-basPd modeling met hod for smooth smfaces, In
p'\r1indar. the Him of this tlwsi, is to impkment bidirectional operations bet,,'ecll object
sl1<II)('S Hnd shape features for smooth surfHces, j,p" design by fpal mes and featme
extractioll, .-\s Ilw shap{' feal mes, critical points snch as peaks, pits, and passes Ht'{'
nSI'(!. Thp r"'alions among the critical points arc rrpresented by the Reeb graph, lI'hich
is 011(' of Ihe nilicHI point graphs (epGs), \\'ithin a theoretical fmmell'ork, thf' smoolh
smfaces aI'{' assuilled (01)(' 2-dilllPllsional C 2-differelltiable manifolds, The fcat mes suc'h
HS nitical points and CPGs lI'ork at thc upp('\' lel'e!s in the hierarchical rcprespntations
of slnOOl h surfHces,

Thr shapr design procpss bpgins lI'it h specifying the topological skektons of an ohjeo
shapr usillg thl' RI'l'b graph, Tlw [{epb graph is constructed hy pasting thp entitics called
cplIs that han' Ollr-IO-onl' c'olTrspondences "'ith the critical points of a hright fUlloiOll,
The i('olli{, representation of the Rerb graph is uscd to yisualize thr pmbpddings of the
objl'ct ill 3-dillll'nsiollal (3D) space, :d"cro op('\'ations arr also proyidf'd for attachillg
a hrallch or a Illbr to all existing surfacc, Thr geomt'try of the smooth surfacr shape
is oUllilll'd by floll' cnl'l"es that run on thr object surface, From thpsr flo,,' cur."t's. tllf'
"'S1elll automalically {Teates H control nPtl\'ork that ene!osrs the objpC't shape, Each
I'erl('x of Iht, cont 1'01 Ilrlll'Ork has its OWIl local patch and thr Pi\te!WS are thcll glucd
10g"1 hcr IlSillg Ihe Illanifold mappings in ord('\' to form the ol'crall surfacc shapp,

This Ihpsis Hlso introduccs anot!wr hi('\'archical rpprpspntation ca!led multirpsolutiou
smfi\cr desigll Ih,\! cnabks us to handlc thp dNailed geomNry of the local palchcs, In
this d('sigll, Ihe 10cHI pMl'!lCS arc rrprrsrnted by cndpoint-interpolatillg B-splilles and
'heir {'OlT(';,poudillg lI'al'elNs, The shape of thc local patch is cl"trrmined bl' minimizing
th,' plIprg,I' fllllnioll sllhjrC'! to thc dcformation of thp shapr lI'hik prrse!'\'illg the gi,'rn
l'ou;,ln\illls, Conslraints at a 10\\' rrsollition !el'r! arr cOll\'rrtrc! to (hosr at a high
l'('solntion 1{,I'I'! IIsilll\ 1I'(\\'elet transforms ill ordrr to associatc all the constraillts lI'ith
'hI' I'onllllon basi;, fllllctions, Thc constraillts of mliltiresollition lrl'e]s arr thell solwd
rt'{'IlI';,i,'I'!1' frolll lOll' to high rrsolntion ICI'"ls,



Thp fpatllr(' pxtraction fwm t hI' pol.\'gonal reprl'sl'ntation of a surfa('p shapp. on 11]('
ollll'r hand. is implPml'ntl'd and ns('d to changl' til(' hl'ight axis of thl' d('signpd surfa('('
shapl'. Firsl1\-, the (Til i('al poinls ar(' ('xlractl'd so thaI tl1P.\' salisf\' thp Eukr forllluia
,,'hidl n'pn's('nts;\ topological in,-ariant of smooth surfac('s. Th(' surfa('(' npt"'ork. "'hich
is OIlP of th(' erGs. is t h(,11 ('onstl'llct('d b.\' tracing ridge alld rm'inl' lin('s on t h(' slll'fa('('.
,-\n algorilhm for ('oll\'l'rting Ih(' surfatl' Iwt,,'ork to the R(,l'b graph is also prps('!ltpcl.
l'sing Ihp obtain('d Rp('b graph. th(' mod('l of a control n('\\,-ork is fit to th(' sllrfa('(' of
IhI' Iksign('c! obj('ct in ard('r to ('hang(' its h('ight axis,

This thpsis also prps('nts display exampks genl'rated in thl' SySt(,1ll and d('s(Til)('s Ih('
diffl'I'('n('('s fwm th(' coll\'('ntional shape modeling methods.
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Chapter 1

Introduction

1.1 Background

nrcent d(',·rlopments in compnter harc!lnu-e enablr us to handle a large amonnt of
rial a ,,·ilhin a shon pNiod of time. TI10sr de,·r!opments hal"e enablrd us to handle
not onJ~· simplr polyhedral objrcts snch as mechanical parts andmanufanured objects.
IJIII complicated smooth objects such as terrains. human organs. and dnual objects
(Figure 1.1). In particnlar. designing ,·innal objects such as human .. animals. plants.
rtc. has hrconw important for computer graphics (CG) animation and ,·irtual reality
(\"n) applications. In this ,,"a~". the need to handle smooth eurYCd objects b.," computers
has br('n increasing"

ContemporalT C'.-\D s~"stems handle the smooth object shapes. ho,,"e'w" b.'" extend­
ing conl"C'ntional pol~"hedral representation" This leads to the polyhedral decomposition
of smoot h object shapes that has no relations 'dth the geomC'lric features of th(' smooth
'urface'" In this ,ituation. the contemporary C'.-\D systems suffer from lhr follo,dng
prohkm,.

(1) D",igning smooth object shapes requires a large amount of users· interactions be­
("onse of inappropriate polyhedral approximations of complicated smooth shapes.

(2) ContrmporalT CAD s.'"stems do not take into account anI" of the design operations
dHu;Klrristirs of the smooth surfaces.

(3) The CAD s,"stems cannot pro,"ide the users ,,"ith an~" efficient keys for shape
datab,l,es due to the lack of information about the features of smooth surfaces.

In ordn to renwd.1" these problems. it is necessary to construct a modr! for smooth
smfacC's based on shape features intrinsic to their smoothness.

1. 2 Goal of This Thesis

Th" pmposC' of this study is to constrnct 0 hierarchical representation schenle for smooth
surfacrs ,,"hNe their shape feat ures sen·e as I he upper leyr! of the hierarchical represrn-



Poldwdral objects Smooth objects

Dewlopnwnts in compnter hare!lmre

Figure 1.1: Object shapes handled in computers

tal iOIl. ,\s the shapr fratures. e-ritical points snch as peaks. pits. and passes are used
in this stndy. In addition to tbe e-ritical points. this study uses f1'itirat point graphs
(CPGs) , lI'hich represents thc critical points as its "crt ices and the relations among the
c-ritical points as its edgcs. Figurc 1.2 illustrates t he critical points and CPGs of a tOrtlS,
In particular. tbe goal of this stndy is to pro\'ide bidirectional opcrations betll'een object
,hapes and shapc features. i.c .. design b.,' [('aturcs and feature extrae-tion as illustratcd in
Fignre 1.3. Thcse opcrations are hclpful for a"oiding the problcms described in Section
1.1.

Lc't ns sec tl](' relations brtll'een pre,'ious methods and the method of this thesis,
Fignre 1.-1 illnstrates the rough classification of pre,'ious modeling methods and this
llIet hod bm,rd on thc object shapes and represrntation scbemes. Tbe leftmost column
corre,poncb 10 thc modeling methods for polyhedral shapes and the rightmost column
CO!Tc,ponds to thosc for slllooth surfaces. The middle column indicate, the modeling
nH'thods for the objccts that contain both pol.dledral and smooth surfaces. The bottom
roll' corresponds to the hierarchical representation schemes lI'hile the top ro\\' C01TC­

sponds to the reprcsentation schelnes 'dthout explic-it hierarchies. ,\s described abo"e.
cOll\'cntionallllodeling methods COWl' the smooth objects b,' extending the polyhedral
reprpsc'nt ations. The CSG representation schemes are also extended to hallClIe objects
"ilh frcc-fonn surfaces [130, ;)6. 781. On the other hane!' hierarchical representation
schellles of pol~'hedral objccts. such as constraint-based [37. 1. 99. 112] alit! feature­
based [10;). 63. 7-1] modeling methods, ha"e been de"eloped. COIl\-crsely. thc lllethod
of this stnd." dirccth' handles thc objects \\'hose surfaces are smooth lI'ith hicrarchiul!
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Figure 1.2: Fcaturcs of a torus: (a) critical points and (b) the critical point graph (thc
n('e!J graph)
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Figure 1.3: Bidirectional operations bet\\wn object shapes and shape features
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rpprrseutatious based on fratures!. The method also cowrs the three-dimrnsional (3D)
,urfarr shapes rpeonst ructrd from cross-sectional data. and extends its target objects
to smooth objrtts that contain flat surfacrs partially as illustrated in Figurr 1.-1.

It m1tst be noted that the objects handled in this modeling method are slightl\"
di!f('t"pnt from those iu the con\'entional modeling methods. \,"hile thp conwntionaJ
nwthods handle smooth objects indirectly b~' lI'a\" of polyhedral approximation. this
mrt hod aims at handling them direct Iy.

S('\'rral CSG-basedmethods are presentrd for handling smooth surfaces [130.36. 7 j.
In p'lrtirulilr. 'drnon and Guo prrsruted a method of handling sculptured solids 1tsing
CSG boulran combiuatious [78], and Krishnan and :-'Ianocha presented a method of
reprrsenting free-form surfaces by maintaining the connecti\'ity of trimmed surfacrs [361·
IlolI'r\'rr. t hr methods cannot prOl'ide the operations based on the differeutial proprrties
of Sillooth smfacrs brcause the.\" do not haw the features of sUlooth surfaces.

,-\Illong the hierarchical reprrsentation schrnH'S in Figure 1.-1, thr featme-basrd mod­
ding Illrthods haw beeu extellsi\'el~' studied recently [10-1]. In the mrthods. object

J C;.n"CllCli::.h proposed a ll1pthod of drsigning allel deforming the free-form surfac('s with their
f('atllrr~ [l-l] Rowen·r. his IIll'thod i!:. lilllitrcl to the surfaces represented by sillgle-ntlurc! fllllctiollS.



/L2J A /\
[Z:]/ l:::::J 1:::5 Q

box cylindpr cone ball

Figure 1.5: Primitil'ps in CSG

fe'llur('S swh 'lS the slots and holes are nsed as the IIpper I('ye]s of their hierarchical
n'pn'selltations. "'hat is imporlallt to note is that they prOl'ide bidirectional opera­
tiolls bet\\'een object shapes alld shape features. i.e .. the design b~' features alld feature
eXI raetioll. l"sers call design objeet shapes b~' their shape f('atures. and can also extract
fl'al lin's from l'xisting objects. The goal of this study is to establish a Slliool h-surface
l"('l.,ioll of Ihe feal ure-based modeling method using critical points and CPGs. This \\'ill
I'll able us to relllrtl\' the problrnls desnibed in Section 1.1.

1.3 Conventional Representations of Polyhedral Shapes

1.3.1 Classification of Shape Representations

LPl liS reyiell' cOlll'('ntional representations of object shapps by folloll'ing the classification
of Figure 1.-1 .

• C0118tmctil/( solid gcometry (CSC): CSG is a family of schemes for representing
a solid object b~' booleall operations of simple primitiw objects [981. Figure 1.5

sho\\'s examples ofsllcb primitil'e objects. Thp CSG has nuious boolean operations
such as union. diffprence. intersection. ete. .-\s shOll'll in Figure 1.6. the C'.-\D
s~'stem based on CSG has the shape data a a trpe of boolean operations: its
t rtllillal nodes are either primitiws or transformation data for rigid-bod~' motions
and its non-tprminalllodps are either boolean operators or rigid-bod~' motions that
operate on their 111'0 subnodes. Hence. the CSG tree (based on boolean operations)
is a calldidate for an upper len'l of thp biprarchical reprpsentation of an object.

• Boundary re]JJ'esentations (B-l'e]Js): B-reps hold tIl(' boundary data of a solid ob­
ject and partition it into pieces called entities such as faces. edges. and Yertiees.
In 13-rpp systems. boolean operations are used to design object shapes similarly
to Ihose ill CSG s.l·stems. Figure 1. 7 sholl's the entities of the B-reps. The rep­
reselltation is eqllinllent to the Hasse diagram [113]. \\'hich represents the partial
ordered set ,yhere the partial ordering is defined on the inclusion relations among
the elltities. Consider the Hasse diagram all the right of Figure 1.8, for example.
Sillce Il\e edge el cOlltaills the I'ertex 1'2 as shOll'll in Figure 1.8, the partial order
bel\\'eell 1'\ and 1'2 can be \\Titten as 1'2 -< e" lI'here -< indicates the partial order.
In this ease. the nodps of 1'1 and 1'2 arc eonnected b~' all pdge as shOll'll in the right
sick of Figure 1.8. The partial order bellwen a face and all edge call be ddinpd in



Figure 1.6: 1300lean operations in CSG
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n'rtex edge face

Figure 1. 7: The entities of B-reps

the same lI'al', ,-\s sholl'n in Figure 1.8, the topology of the entities is represented
bl' the Hasse diagram lI'hile the geometry is associated lI'ith the coordinates of the
H'rticps,

The main ach'antage of the B-reps lies in easy access to the boundar~' data of a
solid object. nanwl~' faces, edges, wrtices, and the relations among them, This is
importallt because it is necessary to generatE' line drall'ings and rendered images
in graphic displa~'s, Furthermore, the B-reps are conwnient for approximating
wmplex shapes such as smooth surfaces, .-\lthough thE' B-rep schemes require
more data storage than CSG, they are used extensiwly in currellt systems because
of the abol'e adY'llltages,

• Hybrid 'I'PIJ1'psenfations: H~'brid representations arE' the combination of CSG and
B-rC'ps [131. 11], One of thC' ach'antages of the h~'brid mockler is that thC' modeler
tries to pick the most suitabk representation for E'ach task. In gC'nC'ral. an object
shapC' is first kept as a CSG representation and is then conyertC'd to a boundar~'

rC'presC'ntation lI'hen it is necessary,

:- lost contemporary CAD systems are basC'd on either B-rC'ps or h~'brid rC'presen­
tat ions, lI'hich mC'ans that thC' 13-rE'ps playa fundamC'ntal role in contC'mpol'<uy CAD
S,I'stC'ms, Snch C'.-\D s~'stC'ms gC'nerally support the representation schemes basrd on thC'



Figure 1.8: Oat a representation in B-rep systems

pw('('dllr;rl operations called sll'eeping,

• SllIrr p 'rcpl'( srntations: SlI'eep representations are based on the nOI ion of mo\'illg
a 1-dimensiomd (10) CUITe or a 2-dimensional (20) surface along a path called a
trajectory [33, 22, 19, llDI, This representation scheme is simple to understand
and IIsed successfully for surface design in contemporary C.-'l.O s~'stems, The
domain of the representation scheme is. hOIl'e\'('1'. smaller than Ihose of CSG and
B-reps, In practice, sll'eepillg is used as one of the design operations and the
object sll<rpes designed using the s\\'eeping operations are usually cOl1\'erred to the
('oITe"ponding boundary representations,

.-'l.ccording to Requicha's surw~' [9T]. there are \'olul11e-based representation schemes
for solid objects as foil Oil'S ,

• Spatial occ/lpancy enmnemtion: The representation of spatial occupancy enumer­
at ion is a list of spatial cells occupied b~' a solid object. The cells are usually cubes
of fixpd size lying in a regular spatial grid and are called voxels, .-'l.lthough it is
easy to handle the representations of spatial occupallc~' enumeration. it requires
considerabl\' large and redundant data storage, To ayoid this ineffic-ienc\', the hi­
erarchical representations of the \'oxels called ourees are dewloped [II, 3,1. 101],

• Crll drcomposition: Cell decomposition is similar to spatial occupanc~' enumera­
tion in that a solid object is decomposed into simpler primitiws than the original
obj('ct. The primitiYCs are called cells, There are many \yays of decomposing the
solid object into cells: the selection of the lI'ay is dependent on the shape features
of the obj('ct. In general. a polyhedral shape such as a tetrahedron is used as a
cell (for example, as sholl'n in [65]),



,-\It hough thl'sl' Yoluml'-basl'd rrpr('sl'nt atious ar(' not popular iu contl'mponuT shapr
modt'ling s~'stl'lns. the~' \I'('I"r proyen to b(' efficient for sewral applications snch as
,cil'utifit, \'isualization. yolume reud('ring. Yirtual snrg(,IT simulation. Nc.

1.3.2 Data Representation in B-reps

,-\s SI'('U in thl' prl'\'ious subsection. B-rl'ps playa fundamental roll' in shapl' modl'l­
iup, s.'·stl'ms. TIl{' follo\l'ing t\\"o subsrctious drscribe thr data structlll"l'S aud design
opl'ratious in B-rl'p systems.

,-\s dl'snil){'d preyiously. the ('ntitics of B-reps arE' faces, edges. and \·erticrs. In
pranic,1i imp1l'lnl'ntations. thr B-reps hold the follO\dng six rntitirs.

• O!!jrr/s: ,-\u objet"! cousists of thl' follo\l'ing he primitiyes.

• S!lrlls: .-\ shell is au elltit.\, that coufines a space.

• Forrs: ,-\ face represeuts thr bouudary of au object. Faces that enclosr a space
coustitutr a shrll.

• Loo/is: A loop is a bouudar,\' of a face . .-\ face has at least one loop aud additional
loops if the face has holes in its interior.

• Etlqrs: ,-\n edge is an intcrsec-riou of the boundaries of t\\"o faces.

• Vn'tirrs: ,-\ wrtex is a point at \\'hich 5e.'"('ral edgrs meet.

Iu B-rrp s.\'stems, the combinatorial relations bel\l'eeu these six entities are called topol­

ogy. amI the metrit, data such as t"Oordinates of w'rtices is called geomrlry [-I]. The
to]Jolog~' is iU\"iu'iant under geom<'tric transformations \I'hile the geometlT is not. Siucr
the B-rep system has the boundary data of object shapes directl~'. it is easy to generate
graphic outputs on the display. HO\l'eyer, some care should be taken in building tllP
d,uH strne-tnrr of the B-reps because the number of edges that surround a face yaries
aU'ordiug to th(' shape of the face. Baumgart introduced the edge-oriented data struc­
I nrr callrd thr winged-edge stmctll1"e [5). \I'here each component has a fixed size. The
rfficil'uc.'· of this represeutatiou follo\l's from the fact that an edge has t\l'O conuected
\'rrticrs aud t\\"o touchiug faces \I'ithout exceptions a. sho\l'u in Figure 1.9. \\"hilc the
\\'iugrd-edgr structure is efficieut. it still suffers from the follo\l'ing problem: If au ob­
jrct shapr has some edge \\"hose rudpoints arc identical \dth each other likr a loop.
tht, s."strm caunot rrtrie\'r its CO!wC"t topolog~' from the \I'iuged-edge structnrr. The
!wlf-rdgr sl7·u.rllt1'r H\'oids this problrm b~' drcomposing au rdge into kft and right half
l'dgrs [133. iI). The efficiene~' in data acc ss using this data structure is discussed in
detail b,' \\'eil('r [133] aud \\"00 [138].

TIll' abo.'"(' discussions on the B-rrps arl' basl'd on the assumption that an object
shapr is iu t hr class of t.'\'o-mauifolds. A two-manifold is defined as an objrct bouuded
b~' '1 conlpact (closed) orientablr 2-dimeusional manifold surfacr. \I'herr thr neighbor­
hood of r'lch poiut of the surfacr is topologically rqui\'aleut to an opru disk. The objrcts
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Figure 1.9: Thr II-ingrd-edge strue-turr

;1;,slllllr(\ in Ihis thrsis arr <11s0 cOlltaillrd in this class. An object inclndrd in thr com­
plrnlr1ltar~- srt of tlw-manifolds is called a non-manifold. Cnfortunat('\~·. the e-Iass of
111'o-llianifolds is not closrd II-ith rrsprct to boolean operations sue-h as union. dif[nene-e.
illtrrst'ctioll. etc-. Rcquicha introdue-('(! the dass calledl'-sets [97. 126], II'hie-h arc dosed
lrith resl!rl't to the l'eglllm'/zed boolean opemhons <'xtended from the ordinar~' boolean
ol!rnltions. Extending the B-reps of tll'o-manifolds to those of r-sets II-as studied in
drlail b~- "-riler [13-1).

1.3.3 Euler Operators

Thf'rf' rxisls thr innuiance theorrm called thr Ellin f0177wla that pla~'s an important
rol<' in B-rrps. The ordinar~' formula is rxpressed by

#{l'ertices} - #{edge.s} + # {fae-e.s} = \. (1.1 )

lI'hf're #{ I'crtirc-s}. #{edges}. and # {faccs } represent the numbers of wrtices. edges,
and fac{'s. respf'e-til·('\y. In th{' aboYe formula. \ is a topological illl'ariant of pol~'hedral

shajJ<'s and is called the Elllel' c1wmctel'istic.
This formula is extended for Ihe use in B-reps. II'hich is IHilten as

#{I'C'I'llces} - #{edges} + #{faces} = 2(#{shells} - #{holes}) + #{rings}. (1.2)

The II·a.l· of f'xlrnding (1.1) to (1.2) is d{'snibed in [71].
Thr EII.I"1· opemtol's ,,'{'rr introdue-ed by Baumgart [6] as the m{'ans of preselTing

the abol'{' formula Iyhile modifyillg the shape data in B-reps2 Figur{' 1.10 lists the
basie- EIIIN operators [72]. The Euler operators hide the 1011'-leycl implementation of
thr dal a structure in B-r{'ps and prOl'idr an rffkient and also topologie-all,\' I'Crified II'a,\'
of handling the shape data.

'1 \\·iboll pl'oH'ld that thl? Euler operators can be applird not only to solid lIlode!t'l'b but to rhC'
\'·~1(,1l1!-' based 011 wirefral1lr rrprC'!:lC'lltatioll [136].
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Figure 1.11: Creating a branch

The Euler operators are extensi\'dy used iu contemporar~' solid modelers. ~Iant,da

den'loped the solid modeler Ceometrir Workbench (CWB) based on the Euler opera­
tors [I:W, The solid modeler DESICNBASE dewloped by Chiyokura et al. manipulates
;\11 shape modifications using a sequence of the extended Euler operators [111. The Euler
opemtors are also extended for the class of the r-sets [23. 28].

1.4 Approximating Smooth Shapes by Polyhedral Surfaces

Conlempomr~'shape modelers represent smooth shapes by extending couwntional poly­
hedml representation. In other \\·ords. smooth shapes are roughly approximated b,\' pol\'­
Ilf'dral surfaces and the faces of the pol~'hedralshapes are interpolated smoothly by para­
nl<'1 ric' patches such as Coons patches [21]. Bezier patches [8. 9]. \TRBS patches [123.
01]. and Gregor\' patches [1 . IGI. farin extensi\'el\' sUlTeyed the techniques for the
parametric patches in his book [301.

The problems mentioned in Section 1.1 arise from the fact that the polyhedral ap­
proximations do not take into account the dift'erential properties of smooth surface
shapes. Suppose that you try to create a branch by the conwntional polyjl('dral rep­
['(',,'nl at ion..-\s sho\\'n in figure 1.11. for example. a branch can be obtained as the
union of two c\·linders. Immediatd~' after the nnion operation is performed. the surface
around the branch has discontinuities. In order to make the surface smooth. it is often
Il<'cessar~' 10 reorganize the polyhedral decomposition of the shape. Ho\\·e\·er. the s.\·stem
cannot prm'ide the operations that automatieall~'generate the smooth surface since it
does not huld tlw information about the differential properties of smooth surfaces.

.-\nother problem of the pol~'hedral approximations is the difficulties in connecting
patches \\'hile presel'\'ing the continuity on the boundaries. It requires carefnl handling
to ;"'oid this problem because smooth surfaces are decomposed into pol~'hedral pieces
that ha\'e no relationships \\'ith the features of smooth surfaces. In this study. manifold­
hased patch hlending is employed in order to a\'oid this problem. which is described in
Chapter -I.

:l~Villl~'I~i alba propohed au inw'rsion a..lgOl'illllll that reduces the boundary of all object ~hapc to
a M'ql1l:'llC(' of the Euler operators [70].
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1.5 Hierarchical Representations of Polyhedral Objects

Sinn' the ent it ies of I3-reps su(·h as I·enices. edges. and faces are 101l'-lel"el represent a­
t ions. it is hard to find global shape features from snch representations. A.s illust rated in
Figme 1.-1. the hierarchieal represem ation schemes for polyhedral shapes haw been stud­
ied recently. There arc tll"O important categories for such hierarchical representations of
poll"hedral shapes: constraint-based representations and feature-based representations.

• Cons/min/-hased nprescnta/io1ls: Constraint-based representations [3,. 3-1. 99.
112] aI"<' effectil'e in that geometric constraints arc used as the npper lel'ds of the
hieran'hical representations. Here. the geometrie ('onstraints eontain the distance
1J('tll'e('ll tlH) I"ertiees. the angle betll'een faces. and so forth ..-\ designer prol'ides
the system Il"ith geonwtrie constraints as an input. and the system soll"es the giycn
const raints to find an appropriate solut ion. This approaeh. hOll"el'er, has ambiguitl"
in its I"<'presentation: an object shape has no unique sequence of constraints and
resu]tant object shapes are dependent on the order of the imposed constraints.

• F('(J'/ll1'r-hasrd 'I'epreSPnfations: Featme-based representations [27. '·L 128] nse ge­
ometric features. such as slots and holes. as the upper lewis of their hierarchical
representations. As mentioned earlier. these representations pro\"ide bidirectional
operations betll"een object shapes and shape features. In other lI·ords. the design
b,' featmes and featmC' extraetion arc integrated to prol'ide nsers lI'ith efficient
design methods. One of the problems of the feature-based approaeh is that the
featmes such as slots and holC's hal"e no mathematieal baekground lI'hile t hey are
easl' to usc.

In this stud~". bidireetional operations similar to those in the feature-based represen­
tations are implemented especiall~" for smooth surfaees. Furthermore. the features used
in this stnd.'" do not suffer from the abOl'e problems beeause they arC' deril"C'd from the
Inathelliatical properties of smooth surfaees.

1.6 ew Feature-based Approach for Smooth Surfaces

This thesis presents nell' feature-based modeling teehniques for smooth surfaces. In
panieular. the goal of this thesis is to implement bidirectional operations betll'een object
shapes and shape features. i.e .. design b~' features and feature extraetion..-\s the shape
feat mes. nitical points sueh as peaks. pits. and passes are used. The relations among the
critic'11 points arc represented b~' the Reeb graph [96]. lI"hich is one of the eritieal point
graplls (CrGs) (Figure 1.2). The smooth surfaces arc supposed to be a 2-dimensional
C2-diA'C!el1tiable nl<lllifold Il"ithin a theoretical framell·ork. The features snch as critical
points and CrGs lI'ork at the upper ]el'els in the hierarchical representations of smooth
surfaces.

First 11'. this thesis presents a method of designing the topologica] skeletons of an
object shape using the Reeb graph [108. 107]. The Reeb graph is constructed by pasting
thc' prinlitiYCs called eells that h""e one-to-one eorrespondences lI'ith the critical points
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of a hrighl fuucl iou. Thr Rrrb graph is rdilrd b~· thr MOTS( o]Hmto,·s that sprcif~· thr
,,·a,· of gluiug crlls. The iconic rrpresentation of thr Rreb graph is used to ,·isualizr
inclusion rdHtions of (TOSS s('ct ions at a hright nlur. Thr s~·stem also proyidrs macro
oprriltions for Httaching H branch or a tubr to thr constructrd surfacr using a pHir of
tIl(' \1cm.;l' opl'rators [1231.

S('wudh·. this th('sis proposes the gromrtric drsign mrthod basrd on thr abo\"('
topological dl'sign [123]. Thr grometry of the smooth surfacr shapr is outlined b~· f1oll·
OI1T('S thHI mn on thr objrCI surfacr. From thrsl' f10\\ CUlTrs. the s.'·strm automatically
(TrHtrs a COlli rol nl'tll·ork that l'neloses thr obje(·t shapr. Local patches are assii\ned
to rhl' n'rtic('s of thr control netll·ork and arr thrn glurd together to form thr lI·holr
"urfacr shapl' similarl.'- to thr manifold construction. Thr local patchl's are mapped to
til(' II-hole ;,urfHcr lI·ith on'rlaps II-here the patehrs arr interpolated smooth].'-.

Thirdly. this thesis illtroducrs a mrthod of drsigning thr local patches using Illul­
tire;,olutioll constraints [122]. The shapes arl' represented b.'- l'ndpoint-interpolating
B-spJilu's Hnd Ihrir corresponding 'Yay-('\ets. At each resolution Irwl, the shape is dNer­
millrd In- I1linilnizing thr el1('rgy fl1l1ction subject to the deformation of the shapr lI·hill'
pre;,('ITilll-\ Ihe gi,·('n cOllstraints. Constraints at a 10"- resolution lewl are conwr!ed to
those at a lligh resolutioll Irye! using '\<1\-elet transforms in ordrr to associatr all the
constraints II-ith t he common basis functions. Thr constraints at Illuitiresolution le,-e!s
are thrn solwd rrcursiyrly frolll 1011- to high resolution le'-els.

This thl'sis also describrs algorithms for extracting the shape features from the
polygonal rl'prl's<'lltation of a surface shape [1201. II-hich are used to change the height
axis of thl' drsignl'd objrct. The first tep is to extract the critical points that satisf~- t)1('
Euler formula (cf. Section 1./). The surfacl' netll-ol1. ,\hich is olle of the CPGs_ is then
con'Muctl'd by tracing ridge and ra,-ine linrs on the objeet surface. An algorithm for
cony-erting thl' surface network to thr Reeb graph is also presented. Csing the rxtrHctrd
Rerb graph. thr systelll fits the model of a cOlltrol netll-ork to the pol~·gonal snrfacr
shapl'.

1. 7 B-reps and the Proposed Representation

It is notl'd that critical points haY(' dose relations II-ith the entities of B-reps. Figure
1.12 illustn1tes the relations. The entities of B-reps are simplices. i.e .. faces. edges. and
I-en ice;,. \Iathrmatical throries tell us that the simplices ha,·e their surface-wrsions
callrd the ccll"J that are the entities of a smooth object in this study·'. Furthermore_
according to thr \[orse theOt-~- [ 01. the cell has a one-to-one corrl'spondence II-ith the
critical point of a height function of the object surface. Consequentl,·_ the entit ies of
B-reps corrl'spond to the features of smooth surf<\ces_ i.e., the critical points_

These relations enable us to appl,- the [nlmell-ot1 of l3-reps to this modeling method.
The first ,Hid the most important example is the Eille,- Jomwla that maintains the

I Thr ('('11:-. ,U(' not lIew to current shape modding techniquC's. SCYCl'aJ papers propose methods of
l'('pr('~('l1fillg nOll-manifold objects Hsing the topological propertic~ of the cells [76. 1..t2} Kote that
the wOl'd "('rlr' her(' il'> IIsed ill a different way from that of cell decomposition .

.) Thr dC'.,criptioll of the thcorie:, fan be found. for example. in 175].
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facrs rdges. and I'ertices

#(facrs) - #(edges)+

#(Iwtices) = \

Eulrr operators

the proposed representation

cells :\lors~lrc)r\" nitie'al points

peak>. passes. and pits

#(peaks) - #(passes)+

#(pits) = \

:\Iorse operators

Figure 1.12: Rrlations brtll"('('n the entities of B-reps and of the proposrd represent,)­
tion

I"<\lidit\" of object shapes in B-reps. From the abol'e relation, the Euler formula of a
poh'hedral shape (1.1) can be cOl1lwted to that of a smooth surface6 :

#{peaks} - #{pa.<;ses} + #{pits} = \. (1.3)

To lll,\intain the Euler formula in B-rrps. the Enler operators arc used. In the repre­
srntation of this thesis. ou the other hanel. a set of operators called the Morse opera­
tors [108. 101) arc used.

1.8 Organization of This Thesis

The OI'elTiell' of this stud~' is illustrated in Figure 1.13. This thesis is organiz('d along
lI'ith tl](' floll' chan of this OITITipI\". "-hile Chapter 2. 3. mId -I dpscTibe one of tlIP
hidirect ional operations: design b~' feature:;. Chapter.) describes the other opprat ion:
f('ature ext raC'tion.

Chapter 2 dpscribes hOIl' to drsign the topological skeletons of smooth objrcts using
the ie'onic representation of the Heeb graph. Fundamental theorirs are also pxplained
in this (·haptPr. Chaptrr 3 prrsents til(' techniqurs for drsiguing geometric shapes Il'ith
coni rolnrlll'orks and manifold mappings. Chapter -I introducrs the method of designing
surfaces using multiresolution constraints. Contrar,I' to Chapters 2. 3. and -I. Chaptrr .)
proposes ali\orit hms for extracting crit ical points and CPGs from the polygonal repre­
sentat ion of ,\ surface shape. Chapter 6 discusses the difference brtll'een the proposed
nlodrling lIlethod and the cOlll'entional modeling methods. Chapter I concludes this
t!Iesis and refers to future Il'0rk,

() Thi:-. forllluia is also called the lllountainC'C'I"s eC(uarion. Thc desniption of the lI1oulltaillcer's
rquarioll call he found. for example, ill [39].
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Chapter 2

Designing the Topological Skeletons

This ch'lpter explains a mNhod of designing the topological skeletons of object shapes.
In order to design the topological skeletons. one of the CPGs called the Reeb graph is
nsed. In addition to the skeletons, the embeddings of the objects in three-dimensional
(3D) space are also specified nsing an iconic representation called the embedded Reeb
graph. The Reeb graph is edited using the ~Iorse operators that correspond to the criti­
c,ll points of thf' object surface. The s\"stem prm'ides macro operations that manipulate
IMirs of the ~Iorse operators 50 that users can attach a branch or a tube to an C'xisting
smfacf'. The data represC'ntations of the topological skeletons in thf' systelll and til('
interface for editing the iconic rC'prC'sentation of thC' Reeb graph arC' also prC'sented.

2.1 Surface Coding Based on Morse Theory

This smd.'· nses the surfacC' coding tC'chniques proposC'd by Shinaga\\"a ('t al [10"]. TIl('
coding tpchniC/nes dC'scTibC' the topological feature of an object shape b~' C'xtC'nding
til(' chw,ical :'l1orse theory. This section C'xplains til(' fundamental fnlmC'II'ork of these
tedllliqnC's.

2,1.1 Limits of the Theory

The dassical ~Iorse theol".'" assnlllC' that thC' objC'ct surface is a C2 smooth compact
dosed lll>\nifoid. \,"ith this assumption, the surfacC' can be dC'composed into piC'ces
called c!'lls 1)\' scanning the critical points of the object along a height dil"C'Ction. As
describcd in Ch'lpter 1. the cells and the critical points hal"(' one-ta-one COITC'spondC'ncC's.
In Hddition. the~' II'ork a, thC' entities in this representationSc!l('me. For eXHmplC'. a torus
('an be decolllposed inlo -! piC'ces because it has four criticHI points as shml'll in Figure
1.2.

~Iorse theQI',' is \"alid onl~' if none of the critical points of the objC'ct surface are
degenerate. ]-Jpre. the degenC'rale critical points contain a flat peak. a flat rim. Hnd
a Jnonk('.\" saddle as illustrflted in Figure 2.1. '\ote that the follo\\'ing descriptions are
basl'd on the assumption that none of thC' critical points are dC'generate. Such degellerate
critical points arC' handlC'd as exceptional cases. \\'hich is describC'd in detail in Section
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(II) (b) (c)

Figure 2.1: Exalllpks of drgrncratr nitielll poillts: (a) a flat pcak. (b) a flat rim. and
(e) a IIIOllk!'.l· s'lddk

3.~ for thc shapr drsign alld Scction 0.2 for thr critical-point rxtraetion. , ppendix
prm'idcs thc dctailrd dcscriptions of thc 'dorsc thC01'~' including thr defillitious of a

nil iC'11 poillt. ils drgcllrracy. al1(! so forth.
"'ltilc till' classical \lorsr throl".'" prol'idrs us \\'ith thr mralls of cffieirntly drscribillg

thr objt'et sltapcs. it eannol distillguislt betll'ccn their el1lbrddings ill sCI'rral easrs whilc
thrl' aI'(' dirrt'rrnt. For examplr. tlte thror.,' docs not code thr difference of eOllllreti,'it.I,
b('(\\'ecI' Iltr objeets of Figurc 2.2(a), knots bet\\'ern the objects of Figurr 2.2(b). and
hnh brl\\'C('1I tlte objects of Figure 2.2(c). For the difference of eOllneeti,'itl'. thr trch­
uiqucs of Sltinagall"<l et al. can recoguizr it using thr Reeb graph. Ho\\'cl'er. the othel
diffrrcners rcquirr thr mathrmatieal theorirs of knots and links. Iyhich arc still at the
stagc' of rapid drl'elopment.

2.1.2 The Reeb Graph

Thr Rcrb graph srl".'"es as a tool for represrnting the topologieal keletons of an object
shapc in this study. The Reeb graph [96] is defined as follo\\·s. Let f be a function of lin
objcct smfacr. Consider the cToss-sretiollal comours of the object surfaee. i.e .. f- I (h)
( h = COl1St ). By idelltif.\·ing the eonnected eompollellt of the object surface with a
poillt at e'H"h eross seetion. a srt of points can be obtained. The Reeb graph is then
t'onstrllctcd b.l· tracing thrse points at each (TOSS section from thr top to the bolt om of
thc objret. Figurc 1.2 ilillstratrs thr Rrrb graph of a hright function drfined on a torus.
Hcrc. t hc hcight function rrprrscnts thr points (.r. y. z) on the surfacr as the function
: = f(·1". .ll)· ,-\ppendix B deseribrs the mathematical definition of the Reeb graph [101] .

.-\s tHrntiolled earlier. the Recb graph is one of the CPGs and its I'el"(ex corrrspollds
10 'I (Tit iral poillt. From thc abol'e definition, the rdge of the Reeb graph reprcscnts a
tubc th'lI eonlll'cts t,yO critieal seetions. :\s can be seen in Figure 1.2. thr Rceb graph
rcpn'srnts thc topologieal skeletons of the objrct shape. Sinee this skrletal reprrsrllta­
t ion is inluit i,·c. the Rreb graph is usrd to design the topologicalskektons of the object
."hape iu this study

III adtlil ion to the topological skeletons. the embeddillgs of the object in 3D space arc
also specificd. For this purpose. this stud~' etuplo~'s the embedded Reeb graph proposed
by Shinagilll"<l ('( al [108]. The rmbeddrd Reeb graph is an iconic graph that represents
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Figure 2.2: Eqlliyalent objects in the dassie-al \lorse theory: differene-e in (a) ('onne('­
til·it.I·. (b) knots. and ((') links [108)
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height function

Figure 2.3: Thr e-mbedd('d [{reb graph of a double-Ia.wrrd torus

the oriplIlatiolls of thr surfaces and thr inclusion relations of cross-sectional surfllce
profiles. Fig1ll"e 2.3 illustrates the elllbrdded [{eeb graph of a double-laye-red torus. i.e ..
t\\"o tori \I'hrrr olle of \I'hich cOlltaills the other. If the outer torus is regarckd as a solid
ohje("t. t hr illllrr torus becomes a hollo\l' object. The solid and hollo\l' objects 11<\\'r
diffrre-llt smface orientations. In tlw samr II"ay as in [l08], the system distinguishes
bet\l"erll solid alld hollo\\" objects by black and \\"hite colors in the iconic representation.
The rlllhrddrd [{eeb graph SelyeS as an intrrface for designing the- topological skrletons
of object shapes in the- system.

:'\ote- that in this the-sis. the critical poillt are defined on a height function of the
obje-cr smface. The- scheme- for changing the height direction of designed objects is
drsnibed in Chapter 3.

2.1.3 The Morse Operators

In ordrr to ('dit the- Reeb graph. this stlldl' lIses the- MOI'se opemto7"s propose-d in [1081.
The- :-'lol"S(' op('rators specify hO\l" the- critical points are connected in the Re-rh graph.
\I'hich is rqllin1lent to hO\l' the- ce-lls arc glurd to form the- \I'hole object.

Thr Rrrb graph of a torus is construClrd \I"ith the :-'Iorse operators as follOll"s..-\s
illllstratrd in Figure 1.2. a torus contains. from top to boltom. four critical points: a
pe-ak. a pHSS. a pHSS. and a pit. This means that a torus is constructed from its top to
bottom \I'ith thr four :-'Iorse operators that correspond to the critical points of the torus
as illllstrHrrd in Figme 2.-1'. Firstly, the peak of the torus is created bl" putting a 2D
cell ('l i.r .. '1 topological cap (Figure- 2.~(a)). \,"ith this operation, a nell" c-ircle appears
at thr cross ."enion. Secondly. a ID c('lI el , i.e .. a topological ClUTe, is attached ill order
to split thr <Tuss-sectional circle (Figure 2.~(b)). Thircll~·. another ID cell e l is attached

1 Tlli~ cOll:,truetioll is depictNI ill detail ill [80]. and the algorithm animalion of this cOIl~lru('tioll

i~ j)1'C':-'C'lll('d in [.j8].
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20 cdl (peak) 10 crll (pass) 10 crll (pass) 00 cell (pit)
ob.Jpet cross ob.Je(·t cross o1).1 eet cross object <TOSS
sh<\pp spetion shape section shape section shape spction
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E2(#0) ElIN(#l, nil) ElSI(#l. #2) EO(#ll
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Figure 2.4: The ~Iorse operators for constructing a torus: (a) putting a 20 cell e2 , (b)
atliKhing a 10 cell el . (e) attaching a 10 cell el. and (d) attaching a 00 cell eO [1081

in order to merge the t,,·o di"idrd cross-srctional circlrs into onr. "'hich results in tIl('
hole of the torns (Figurr 2.-!(t)). Finally. thr surface of thr torus is dosrd by attaching
a 00 tell (0 i.e.. a point. to thr existing surfatr (Figurr 2.-!(d)). The thanges of the
emhedded [lpeb graph (thr iconic rrpresentation of the Reeb graph) are also illustrated
at the bottom ro,,· of Figure 2.-!.

In this ,,·a\'. the ~[orse operators destribe the changes of cross-sectional tontours at
tritieal sPclious. In tll(' implementatiou of this study. the system stores the indusion

#1

~6
#0

/\J\ #6

J\ #3

#4 #5

Figure 2.5: A. toutour tree based on indusion relations [1081
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for a ppak and a pit for a pa~~

thr npjH'r
sretion

thr 101l\'r
Sl'etlon 8

(a)

o
r E1IN(xj

EO 1 db
(b)

E1S1

ElOUTA r
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Figure 2.6: The effects of the six :'dor~e operators: (a) E2 and EO. (b) E11N and E1SI.
and (c) ElOUT aud E1PC

relations of cros~-sectioual contours as a trrr. lI'hich can be seen in Figure 2.0. Here.
thr coutOlll' #0. tIle \'irtual root of the contour tree. i~ introdnced for cOtl\'enienee.
Considrr thr rrlation bet\\'('en the contour~ #2 and #"'. for example. Siuer tIl(' contour
#2 eoutailb t he contour #"'. #2 is til(' parent of #'" in the contour tree.

Similar to the Euler operators in 13-rep~. the :-Iorse operators mainrain the \'alidity
of sUlooth objrct shapes. Here. the \'alidity of object shapes means that the.\· can be
embrddrd in 3D ~pace lI'ithout self-intersections. To maintain the nllidity of the object
shaprs. six t\'pes of operators are required as described in [1081. The chauges in (TOSS­
s('ctional wutoms b~' these six operators are sholl'n in Figure 2,6,

In Fil'mr 2,6(a), the dOlI'lI\I'ard a1'1'011' indicates the change of a peak, lI'hile the
npII'ard iltTOII' indicates that of a pit. In this thesis. the corresponding operators are
dpnotrd b~' E2 (I\'hich is named after e2) and EO (lI'hich is named after eO), respee-tiwly,
In the cas(' of a pass. there are fom operators as illustrated in Figure 2,6(b) and (c),
Thr c10Il'!11I',Hd atTOII' of Figure 2,6(b) indicates an operation of splitting Onr cross­
spetioual ('outom into tll'O. This oprrator is denoted h\' E11N (el-inside) because the
cross-sret iona] circle is split inside it. The re\'('t'se arro\\' of Figure 2,6(b) inditates
an operation of merging t\\'o different contour into one, Since the tll'O contours are
siblings in the contour tree (d, Figure 2.0). the corresponding operation is denoted
b.I' E1S1 ('I-siblings), TIl(' situation of Figure 2,6(c) is morp complitated than the
pn'I'ious onp, Thr c1o\\'ll\\'ard atTOII' of Figme 2.6(c) indicatps an operation of splitting
a cross-sectional contour into t\\'O. \"hilp this opprator is similar to E1IN. it differs
front E1IN. hOl\'ewr. in that the tll'O di\'ided contours haw a parpnt-child rC'iationship,
i,e .. our contour contains the other. The corresponding operator is denoted b~' E10UT
(el-outsic!r) brcanse the cross-sectional circle is split outside it. Thr rewrse arroll' of
Figlll'e 2.6( c) indicates an operation of merging tl\'O contours that 11<1I'e a parent-thild
r(>l11t iousllip ill the contom tree (cr. Figure 2.5). Hence, the corr(>sponcliug operator is
c!(>uoted bl' EIPC (el-parent-child).

The :-Ion;e operators proposrd b.I' Shinagmnl et al. also allol\' us to describe th(>
('nl!lNldings of the cross-sectional contours. In order to c!(>s(Tibe such rmbeddings, the

21



~Jor,e operator, take COlltour nnmlwrs or lists of wlltour nltmbers as their arp,ltments.
Thp det aib of each opNator are described as folloll·s.

• E2( #11 ): This operator puts a 2D c('11 ('2 in 3D spac(' in onkr to create a nell'
wntour in,ide the contour #11 at the cross section.

• EO( #11 ): This operator close, the existing contour #11 by gluing a OD cell ('0 at
t he cross sen ion.

• ElPC( #11. #/11 ): This operator merges thl' tll'O contours #11 and #m that IU1\'e
a p;m'IH-child relationship. It i, assumed that #11 is the pMeut of #111 and the
nH'rp,ed contour is denoted by #11. the parent contour number.

• ElSI( #11. #//1 ): This operator merges the tll'O contours #11 and #//1 that are
,iblinp" in the wntour tree. It is assumed that the merged contour is denoted b.\·
#11. I he first argument of th(' operator.

• ElIN( #11. (#0. #b.. .. ) ): This operator splits the contour #11 inside it in order to
(T(,,)te a nell' contour at the (TOSS section. The list of contour numbers (#a, #b, ... )
repn',ents the cont ours contained in the nell'ly creat('d contour after this operation.
If the list docs not contain any contours, it is denoted b.'· nil.

• ElOUT( #11. (#a. #b.... ) ): This operator splits the contour #11 outside it in
order to (Tpate a ne\\' contour at the cross section. Recall that the nell'l~' created
contour is eoIHained in #11 here. In the same lI'ay as for ElIN. the list of con­

tour numbers (#0. #b.... ) represents the contours contained in the ne\\'ly created
wntour after this operation.

,-\Ithough this notation is slightly different from the original ones proposed by Shinaga\\'a

rt al.. thl' operations are exactl~' th(' same as theirs. According to the abo\"(' notation of
the ~[orse operators. a torus is constructed by th(' sequence of the four ~[ors(' operators:

E2(#O). ElIN(#l. nil). ElSI(#l. #2). and EO(#l) as sho\Y11 at the bottom of Figure
2.~.

In the' impl('J]l('ntation of this thesis. th('se six operators are pro\'ided as fundamelltal
tools for editing the !leeb graph. Since the system holds the contour trees as illustrated

in Figure' 2.3. it alttomaticall\' rejects illegal ~[orse operators that result in generating
ill\'alid objen,2 This \\'ill be described in Section 2.2 in detail.

2,1.4 Macro Operations

\"ith thl' ~[ors(' operators. tlw user can edit the !leeb graph that represents the topolog­

ical skeletons of a smooth object. The order of these operations. ho\w'\w. must foil 0\\'

the height order of their corresponding critical points. This means that it is necessary
to des(Tibe the changes of cross-sectional contours from the top to the bottom of the

'1. Thi~ Illeans that this modd does Hot permit objects that cannot bC' embedded in 3D space.
TIll' J":h'ill bottles are examples of such im"alicl objects. The model extcnded for ~l1ch objects i~

described ill 11101.
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ohjr(·t "hapl' the Rl'rh graph

(a)

object shape

(b)

til(' Rl'rh graph

Figure 2.7: \Iacro oprrations: (a) an oprration for attaching a 1]('11' hranch. and (h)
an OIH'l'Htion for attaching a tWII' tuhe

ohjrct. Sincr this limitation is not intuiti"r to design a lI'holr ohjrct. it should hr
al'Oidrd,

This stnel." prOl'idrs macro oprrations for al'Oiding such limitations [123], Thr mar1'O
OIJll'lliiol/ insrrts a pair of nrll' critical points to an l'xisting objl'ct shapl' lI'hilr main­
taining thr topological ."alielit." of thr objrct shape, :'\ote that thr topological ,'alidit."
of thr ohject shapr can be examined also in this case because thr macro operation is
l'quinlll'nt to applying a pair of thl' \Iorsr operators. Figurl' 2.7 illustrates l'xampll's of
mano opl'ratiolls. Figure 2.7(a) shOll'S a macro operation for attac-hing a nell' hranch
to a topological sphere, This macro operation is equi"alent to appl,"ing the E2 and E1S1
opl'rations to thl' l'xisting surfacc. lI'hich mcans that a peak and a pass are insl'rted .
.-\s illustratl'd in Figure 2.I(a). thr Rreh graph is also modified lI'ith the macro oper­
;Ilions..-\nother rxample of attaching a nrll' tube to a topological sphere is shOlm ill
Fig\ll'l' 2.'(b). This mac-I'O operation amounts to applying the E11N and E1SI oprra­
tions to till' exi ting surface. :'\ote that the possible set of such macro operations is
E2-EO. E2-E1SI. E2-E1PC. ElIN-EO. ElIN-E1SI. ElIN-E1PC. ElOUT-EO. ElOUT-E1SI,
and E10UT-E1PC. \[ore complex operations can be implemented by combining these
macro oprrations. These mac-ro operations alloll' us to o\'('rcome the limitation due to
thr hrighl order of the \Iorse operations.

2.2 Data Representation in the System

Thr rrmindrr of this chapter desc-ril)('s the implementation of the systl'm for designing
thr topological skrletons of smooth ohjrc-ts.

2.2.1 Representing the Reeb Graph and Its Embeddings

This suhscction dl'scribes the represrntation of objec-t shapes in the systrm, As drscribl'd
l'arlirl'. thl' syslrm holds the Rerb graph for reprrsenting the critical points and their
COlllll'C'tions, alld the contour trrrs for rrprrsenting the inc-lusion rrlations among cross­
srctiolHll contours. In this thrsis. c-ross srctions that contain critic-a! points arr c-allrd
rl'ilir-nl sertions. and othrr sections are called !'egnlaT sections, \"hrn the c-ross sections
of thr ohjr('l shapes are scannrd from its top to bottom. the contour trre changes at
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Figure 2.8: DiHa representation in the s.'·stell1: (a) the object shape. (b) grapll data.
and (c) iconic representation

the c-ritiC"<tl sections. Therefore. it is necessalT and also sufficient to hold the contonl
trees at regular sections each of "'hich lies between a pair of adjacent critical sections.

Let us sec hmy the system holds the topological skeletons and its embeddings. Sup­
pose thpre is an object shape as ShO\\"ll in Figure 2.8(a). The representations of its
lOpologir'al skeletons and embeddings arc sho"'n in Figure 2.8(b). As seen in this figure.
the s.'·stem holds the topological skeletons of the object shape as a graph. In addition to
the topological skeletons. the system represents its embeddings as the contour trees at
regular sections bet,yeen adjaceut cTitical sections. The planes of Figure 2. represent
such regular sections. :\ote that the "irtual contour #0 is introduced for representing
the root of thp contour tree in the system.

Fnrthel"lnore. the sYstem maintains the topological consistenc~' of the object shape
"'ith this data structure. In order to implement this consistency. the s~'stem automat­
iC'allY const ructs the dosed surface b,' adding appropriate yirtual pits to the object
shape that is cnrrently designed. Since the ~lorse theory is based on the assumption
that the object consists of dosed snrfaces. this frame"'ork is cOIl\'enient for "erifying the
topological consistency of the object shape. In Figure 2.8(b). the 10""('1" parts ,yith the
light black color represent the yirtll<ll parts automatically added b~' the s.'·stem. "'hile
others represc'nt thc existing parts.

In the ilnplementation. each ,utex of the Reeb graph has its corresponding ~lorse

operator. This a1l0\\"s us to check "'hether the embeddings of the designed shape are
correct or not. To confirm the n1lid embeddings of the object shape. the s.'·stem npdates
the contour trees at regular sections b~' scanning the ~Iorse operators from the top to
the bol ronl of the object. If the ne,d~' designed object is not topologically correct. the
s~'stem rejects the latest operation. The contour trees at regular sections are updated
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Figure 2.9: Iconic primitil'es used in the system

II"hrnrl'rr thr object shapr is modified by usrrs.
Tllr graph data plays a fundamental role in representing object shaprs. :-\dditional

inforlll,\1 ion 'uch ,\5 geometr.'· of the object shapes I,.ill be also added to this graph data.
II"hich lI'ill he drseribed in Chapter 3. As seen in Section 2.1. the system uses the iconie
repre,ent;lI ion of the Reeb graph that I"isuaJizC5 the embeddings of objeet surfaces.
In particnlar. it is helpful for Yisualizing the indusion relations among cross-sectional
eOlllomS>1t rrgular sections. Figure 2.9 sholl's the primitiws of the ieonie representation
used in thr s~'stem [108J ..--\s deseribed in Section 2.1.2. the black icons represent solid
contoms and the white icons represent holloll' eontours.

The iconie outputs are generated b~' eonwrting the graph data using the mapping
defined in the s~·stem. For example. as sholl"n in Figure 2.. the ieonie representation
(Figul"(' 2.'(c)) of the object shape (Figure 2. (a)) is cOlll'erted from the graph data
(Figure· 2.6(b)).

2.2.2 Modifying the Object Data Using Morse Operators

Thr fnndanlPntal tools for modifying the graph data are the \Iorse opcrators deseribed
in Sect ion 2.1.3. Let us eonsider hOIl' the \Iorse operators eall be used to modify the
gnrph data in thr sl·stem. Sinee the macro operations eall be reduced to the sequenee of
till' \ [orsr 0lwrations. it is sufficient to sec hOIl" the six types of \Iorsc operators modif.l·
I he graph data in the sl·stem. In lI·hat folloll's, the six t.l·pes of the \Iorse operators lI"ill
he applied to the object shOlI"11 in Figure 2.8.
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Figure 2.10: Objrct data modified b,' an E2 operator: (a) the object shape. (b) graph
data. and (c) iconic reprrsentation

Applying an E2 operator

\Yhrn a 20 crll (2 is put inside thr contour #2. the object shape. graph data. and
iconic l"('prrsrnt at ion are modifird as shom] in Figurr 2.10. This amounts to applying
thr operator E2( #2)..-\n rdge of thr Rrrb graph is inserted in order to represrnt the
1]('11"1,' cwarrd contour # .... The system assigns the label of the :l1orsr oprrator E2(#2)
to t hr llPlwr rndpoinr of thr rdgr and the labrl of a \"irtual pit to its 100wr endpoint.
Thr s,'strm also scans from top to bottom the sequence of the :'Iorse operators and
llpdarrs (hr contom trees at regular sections.

Applying an EO operator

\\-hrn a 00 crll pO is attached to the contour #3. the object shape. graph data. and
iconic rC'prrsrntMion are modified as shOl\"l1 in Figure 2.11. This amounts to applying
tl)(' oprrator EO(#3). In this case. the s,'stem only changes the pit of the contour #3
from i] "irlnal pit to a real one.

Applying an E1PC operator

\Yhrn a 10 crll ('1 is attached to the contours #1 and #3. the object shape. graph
datil. and iconic reprrsentation are modified as shOlI"l1 in Figure 2.12. This amounts to
apph'ing thr operator E1PC(#1. #3). The S\'stem deletes the "irtual pit of thr contour
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(a) (b) (c)

Figure 2.11: Object data modified b,' an EO operator: (a) the object shape. (b) graph
data. aud (c) icouic representation

#3 aud Inerges the edges of the contours #1 and #3 b,' inserting a nell' branch wrtex
that has the operator EIPC(#1. #3).

Applying an E1SI operator

\\']H'n a 10 ccl! pi is attached to the wntours #1 and #2. the object shape. graph
data. aud iconic representation are modified as shOl.'n in Figure 2.12. This amounts to

appl.'·ing the operator EISI(#1. #2). The system deletes the .'irtual pit of the contour
#2 and merges the edges of #1 and #2 by inserting a lle.'.' branch .'·erlex that has the
operator E1SI(#1. #2).

Applying an EIIN operator

\YlH'1l a 10 cell (I that splits the contour #1 inside it is attached to #1. the objrct
shape. graph data. and iconic representation are modified as shOlm in Figure 2.1-1.
This allioullts to applying the operator EIIN( #1. nil). The system inserts the .'·ertex
of the operator EIIN(#1. nil) into the edge of the contour #1. creates a nell' edge
that COlTl'SPOlld, to thr contour #-1. and assigns the label of a .'irtual pit to the 101l'er
endpoillt of the edge of the wntour #-1 .

Applying an EI0UT operator

\Yht'll a 10 ('ell el that splits thc COil tour #1 outside it is attached to #1, the object
shapl'. graph data. and iconic representation are modified as shol.'1l ill Figure 2.15.
This anlQunts to appl.I·ing the operator EI0UT(#1. nil). The system inserts the wrtex
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(a) (b) (c)

Figure 2.12: Object data modified b.\' an E1PC operator: (a) the object shape. (b)
gmph data. and (e) iconic representation

I.
~----·III.
#2/ W

(a) (b) (c)

Figure 2.13: Object data modified by an E1SI operator: (a) the object shape. (b)
graph data. and (c) iconic representation
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Figure 2.14: Object data modified b~' an E11N operator: (a) the object shape. (b)
gl"<lIJh data. and (c) iconic representation

of the o!wl"<\tor E10UT(#1. nil) into the edge of the contour #1. (Teates a ne\\' edg('
that cOlTPsponds to the contour #-!. and assigns the label of a \'irtual pit to the 100\"er
('ndpoint of the edge of #-!.

2.3 Interface for Editing Icons

This s('(·tion explains hO\\" to implement an interface for designing the topological skele­
Ions of ubject shapes. As describe pre\·iousl~·. the topological skeletons arc edited \\'ith
the iwnic repres('ntation of the Reeb graph. First. the user selects the type of the next
:dors(' o!)('raror in his design. The user then picks up an icon that corresponds to the
desirr'd operator and specifies ho\\' to paste the icon \\"ith the interface. As described in
S('ct iOIl 2.2.2. the system can reject illegal operations because the system examines the
\"alidit.\· of the object shape \\'hene\'er the object shape is modified.

2.3.1 Pasting Primitive Icons

This snbs('ction describes ho\\' to paste the primiti\'e icons of Figure 2.9 I\'ith the inter­
fact'. It is noted that pasting the primiti\"e icons is equi\"alent to appl.\·ing the funda­
Ill('nlal :-Iurse operators. In the following. the primiti\"e icons are attached to the object
shape' shO\m in figure 2.16.
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(a) (b) (c)

Figure 2.15: Object data modified by an EIOUT operator: (a) the object shape. (b)
graph data. anel (e) iconic representation

Figure 2.16: The iconic representation of an existing surface and its bottom cross
s('ction
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Figure 2.17: The results of candidate E2 operations: (a) E2(#0). (b) E2(#2), (c)
E2(#3). >\nd (d) E2(#6).

Pasting an E2 icon

Let ns paste a solid E2 icon to the existing iC'Ons of Figure 2.16. A solid E2 icon n\ll

be pnt inside a hollOl\' contour. In the case of the object ShOI\'11 in Figure 2.16. t!w E2
iron can !)(' put inside #0. #2. #3. and #6 because they arc holloll' contours. The
cOtTI"ponding ~Iorse operators are E2(#0), E2(#2). E2(#3). and E2(#6). Figure 2.17
sIH)\\,s t he results of these candidate operations. The system ani\' permits acceptable
operations that result in topologically I'alid objects.

Pasting an EO icon

Lrt us paste a solid EO icon to the existing icons of Figure 2.16. :\ solid EO icon can
be pastpd to solid contours in order to close the contours: note that the contours II'I.1CI'('
EO icons arc pasted do not hal'e any child contours. In the case of the object sholl'n in
Figmp 2.16. the EO icon can be pasted to # ..... #7. or #8. The corresponding ~Iorse

Opl'l'iltors arp EO(# .... ). EO(#7). and EO(#8). Figure 2.1 sholl's the results of these
candidatp operations.

Pasting an ElPe icon

Thp procpss of pasting an Elpe icon consists of tl\'O steps: selecting the parent con­
tom >\lId sell'cling the child contour. Let us paste a solid Elpe icon to the existing
iwus of Figure 2.16. A solid Elpe icon merges a solid contour and a holloll' contom
tlJat arp siblings in the contour trees. In the case of the object sholl'l1 in Figure 2.16.
the candidates for the parent contour are #1 and #5 because they haw holloll' child
contoms. The corresponding 1\lorse operators arc ElPC(#l. #?) and EIPC(#5. #?).
\\'II('rp #') rppresents an undecided child contour. Figure 2.19 sholl's the results of these
candidate operations in the first step. As shol\'n in this figure. thc system automaticall,'
finds on(' of the candidates for the child contour by default, lI'hich can be modified in
tlw s('cond step. The candidates for the child contour in the second step are holloll'
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(c)
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Figure 2.18: The results of candidate EO operations: (a) EO(#-l). (b) EO(#7). and (c)
EO(#S)

(a) (b)

Figure 2.19: The results of candidate EIPC operations in the first step: (a) EIPC( #l.
#.') and (b) EIPC(#;). #"'l (#., represents an undecided contour.)

COlltours that arc the children of the contour selected in the fir t step. If #1 is selected
as the p;uellt tolltour in the first step. #2 or #3 can be selected a the child contour.
The correspoudiug :'Ilorse operators are EIPC(#l. #2) and EIPC(#l. #3). Figure 2.20
sho,,·, the ["('"nlh of these candidate operatious in the second step.

(a) (b)

Figure 2.20: The results of candidate EIPC operators in the secoud step: (a) EIPC( #l.
#2) aud (il) EIPC(#l. #3).
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Figure 2.21: The results of candidate E1SI operators in the first step: (a) E1SI(#3.
#"). (b)E1SI(#7. #''j. and (c)E1SI(#8. #"1) (#? represents an undecided contom.)

(a) (b)

Figme 2.22: The results of candidate E1SI operations in the second step: (a) E1SI(#5.
#7) and (b) E1SI(#3. #

Pasting an E1SI icon

Thp process of pasting an E1SI iwn consists of t,,·o steps: selecting the first and second
wntollr~ that arp siblings in the contour tree. Let us paste a solid E1SI icon to the ex­
isting icons of Figure 2.16..-\ solid E1SI icon mergps t,,·o solid sibling cant oms into one.
In thp casp of the objpet sholYll in Figurp 2.16. the candidates for the first contour arc
#3. #7. and #8 because they ha"e the common parent contour #3. The COlTesponding
\lorse operators are E1SI(#5. #?). E1SI(#7. #"1). and E1SI(#8. #?). ,,"here #? rep­
m,pnts an undecided second contour. Figure 2.21 sho""s the results of these candidate
operations in thp first step. As sho""n in this figure. the system automatically finds one
of thp candidarps for the second contour by default. ,,"hidl can be modified in thp second
step. The candidates for the sewnd contour arc the rest of the candidate contours in
the first stcp. If #3 is selected as the first contour, the candidates in the second step
arp #7 and # The cOlTesponding \lorse operators are E1SJ( #5. #7) and E1SI( #5.
# ). Figurp 2.22 sho\\"s the results of these candidate operations in the spcond step.
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Figure 2.23' The results of candidate E11N operations in the first step: (a)E1IN( #1.
W'))· (b)E1IN(#-1. (#'')). (c)E1IN(#3. (#')). (d)E1IN(#7. W')). and (e)E1IN(#8.
(#")) ((#") represents an undecided list of contours to be contained in the newly
(Traled contouL)

Pasting an E11N icon

Till' process of pasting an E11N icon ('onsists of tl"O steps: selecting the contour to be
split and assigning its child COlltours to the nell·l." created contour. Let us paste a solid
EliN icon to 1he existing icons of Figure 2.16. ,-\ solid EliN icon splits a solid Wlltour to

generate a nell' solid contour that becomes a sibling of the original one in the contour
11'('('. In the cas<' of the object shOll'll in Figure 2.16. the candidate contours to be split
are #1. #-1. #3. #7. and #8. The corresponding ~Iorse operators are E1IN(#1. (#")).
E1IN(#,1. (#")) E1IN(#3. (#")). E1IN(#7. (#'7)). and E1IN(# . (#")). lI'here (#?)
rt'presellts an undeC'ided list of COlltours to be contained in the nell'l" created contour.
Figurl' 2.23 sholl's the results of these candidate operations in the first step. ,-\s shOll'll
in this figure. the system automatically assigns the child contours by default. lI'hich can
be' modified in the secom] step. The candidate lists of wntours are equi"alent to the
possible subsets of the child contours. i.e .. the POIIW set of the child contours. If #1
is sl'iectpd as the contour to be split in the first step. the candidate lists are nil. (#2).
(#3). ami (#2. #3) because #2 and #3 are the child contours of #1. The corresponding
~IOlsl' operntOrs im ElIN( #1. nil). E1IN(#1. (#2)). E1IN( #1. (#3)). and E1IN( #1. (#2,
#3)). Figure 2.2-J sholl's the results of these candidate operations in the second step.

3-J



l111tla~
~mm

(c) (d)

Figure 2.24: The re~ult~ of candidate E11N operations in the ~econd ~tep: (a) E1IN( #1.
nil). (b)E1IN(#1. (#2)). (c)E1IN(#1. (#3)). and (d)E1IN(#1. (#2. #3))

Pasting an E10UT icon

The process of pa~ting an E10UT icon con~i~t~ of t,\"o step~: ~cJecting t he contour to
be split ,md <1ssigning its sihling contours to the ne,\"I~' created contour. Let u~ pa~te

,1 solid E10UT icon to the ex.i~ting icon~ of Figure 2.16. :\ ~olid E10UT icon splits
a solid contom to generate a nell' holloll' contour that i~ a child of the original one
in the contour tree. In the ca~e of the object shOlm in Figure 2.16. the candidate
contours to Iw split arc #1. # ... #5. #1. and #8. The corre~ponding :-Jorse operator~

are ElOUT(#1. (#")). ElOUT(#... (#n). ElOUT(#3. (#?)). E10UT(#I. (#·n). and
E10UT( # . (#")). lI'here (#'n reprp~ents an undecided list of contours to be contained
in Ihe ne,\"h- ne<1ted contour. Figure 2.23 sholl's til(' rp~ult~ of these candidate operation~

in Ihe first slep..-\~ ~ho,Yn in this figurp. the s~' tem automaticall.,· as~igns til(' sibling
('ontour5 by defanlt. lI'hich can bp modified in thp second step. The candidate lists of
wnlours are equiyalent to the po~~iblp subsets of the sibling contour. i.e .. the pOII'pr
sPt of till' ~ihling contoms. If #1 is se!pctpd a~ the contour to bp plit in thp first step.
the candidatp lists ,up nil. (#3). (# ). and (#5. # ) becau~e #3 and # arp thp sibling
('Onloms of #1. The corresponding :-Jorse operator~ arp E10UT(#I. nil). E10UT(#I.
(#3)). ElOUT(#I. (# )). and ElOUT(#I. (#5. # )). Figurp 2.26 shOll'S the results of
thpse candidate opprations in thp ~pcond step.

2.3.2 Handling Macro Operations

Sinc(' the lll<1Cro operation is equi"alent to applying a pair of thp ~[orse operators. the
interface for pasting prillliti"e icons is easily extendpd to that for handling the macro
Ol)('rntions. In order to perform a mano operation. thp lI~er first specifips the posit ion
lI'here ,1 nell' nitical point will be inserted (Figure 2.27(a)). The system hides the
icons 10ll'pr than the specified critical section and accepts the uspr's inputs throngh the
interface (Figme 2.21(b)). The intNfacp is almo~t the same as those dpscribed in Section
2.3.1 becan~e thi~ step amounts to applying one of the six :-lorsp opNations. The lIspr
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Figme 2.25: The results of candidate E10UT operations in the first step: (a)
ElOUT(#l (#")). (b) ElOUT(#-i, (#'1)). (c) E10UT(#i.i. (#'1)). (d) E10UT(#T
(#")). and (e) E10UT(#8. (#'1») (#? represents an undecided list of contours to be
contained in the nell·I.'· (Teated contour.)

(a) (b)

~11U;;~ ~Il~
(c) (d)

Figure 2.26: The results of the candidate E10UT operations in the second step' (a)
ElOUT(#T. nil). (b) ElOUT(#T. (#5)), (c) E10UT(#T. (#8)). and (d) ElOUT(#T.
(#3. #8))
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(a)

(d)

(b)

(e)

(c)

Figure 2.27: Editing icons for a macro operation: (a) an original object. (h) inserting
the npper critical section. (c) going dOll"ll step by step. (d) inserting the 10\lw (Titical
section. and (l') an object aftl'r thl' opl'ration

then spl'cifies thl' position of til(' other (Titical points. Iyhich is 10ll"er than thC' prC'Yious
Olll' in hC'ight. Thl' system sho\l·s tlw hidden icons again step by step (Figure 2.2/(c))
till this spl'cifiC'd critical section. TIl(' same interface is pro\·ided also in this case C'xcppt
that t hC' s~·stl'm doC's not dpstroy thp topological skeletons of pre\·iously designed objects

(Fip,ure 2.27(d)). During this procl'ss. the system checks the sequences of (Titical points
from the lOP to the bottonl of thC' object shape in order to a\·oid any il1\·alid parts of

thC'shapC'. In this \yay. thC' macro opC'ration is completed (Figure 2.2/(C')).

2.4 Summary

Tlds chapter has described thl' method of (\('signing the topological skC'\('tons of object

Shilpes togNhC'r \I·ith its l'mbC'ddings in 3D space. To reprC'sC'nt the topological ske\('­
tons and C'lllbeddings. the iconic rl'prl'sl'ntation of thC' Reeb graph. Iyhich is call1'd thl'
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embedded fleeh graph. is used. The Reeb graph is edited using the ~rorse operators
Ihat de,crilw thl' ,,·a\· of connecting critical points. The macro operations are also in­
Iroduced for aH)iding the limitations of the height-ordered operations. This chapter has
abo presented the schemes for representing such topological skeletons and emheddings
ill the s~·stelll. The interface for editing the iconic representation of the Reeh graph has
be<'ll implemented and the examples \\"ere presented.
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Chapter 3

Designing Geometry Using Manifold

Mappings

Tlte prel'ious c-11;lpter described the methoel of desiglling the topological skclrtolls of
sillootli object IIsillg the TIeeh graph, This chapter presents techniqlles for e1rsigning
geOlllrtry of the objed shape based on tlw designrd topological skeletons [123],

3.1 Generating Surfaces Using Manifold Mappings

Gf'nerating smooth surfaces of arbitrary topological typr is a topic of interest in the
iil'ld of sh;,pp modeling, Since such topologically complicatrd surfaces n:qnire irregu];lr
decomposition of pol~'hedra, it is hard to form the lI'hole object surface b,l' pasting onl."
ren;\Ilglllar patehcs such as t(,llsor-product B-spline patches I , In order to OYE'tTom('
this difficult,l', srl"eral techniques ar(' proposed for generating smooth surfaces on multi­
sidf'd regions, Hosaka alld I-':imura [~31 proposed a method of g('nerating multi-sid('d
palches b." ex!('nding Bezicr palchcs: hOIl'el'cr. thcir method has sel'erc restrictions on
Iht' llulllI)('r of sides of the domain polygon, Loop and DeRose [68, 67] proposed a
nH'1 hod Ihat al"oids these rest rio ions using multinu-iate barycentric coordinates, lI'here
IhC' proposed patches arc ('all('d S-patches, \\'hereas the abOl'e 111'0 methods use the
nl'tll"Orks of straight lines that do nol lie on the object surface, the method proposed by
1-':1II'i,I'allla [60, 61] us('s a Clll'\"e Iletll'ork II"hos(' cun'e s('gments are fit to the object sur­
fat'C', His nlt'thod generates an II-sided smooth patch b,l' blending the sll'ept sllbsurfaces
of the II-bollllelal'\" cun'e segments,

Although the abol'e methods of generating IJ-sided patches are efficient. they suffer
frOIll thC' restrietiOlls 011 tl](' underl~'ing configuratioll of the nelll'ork, This Illeans that
Iht, 1l1elhoels cannot al"oid th(' rcslrictiolls on the shapes of IJ-sid('d patdws lI'hell it
is nt'('('ssar,I' to COIlIIl'O the patches seamlessly lI'ith the continuity 011 the boundaries

1 TIl'(Tlltl,'-' E('k and Hopp<, [23] has presented the method of cOllstructiug surfetc€.':-, of arbitral',\"
topological typC' onl,\" frolll rrctangn]ar patches such as teusor-proclucl D-spline pa.tdlf'~. Allhough.
'hpir lllC'thod anlolllaticaJly constructs the I'cctallgulal' decomposition of the surface from discrete
~alllpl{':-,. it tak~'s l1I\1ch ,(me 10 get the decomposition and the resultant dccomposition is Hot
illlllitin' 10 11..,(' for further applications.
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belll'('en adjacellt patchps, Thpse rpstrictions oftpn cause the non-intuiti\'e r!esil\n of
the patdlPs, "arady [129] a\"Oided these restrictions b\' introducing O\"('I'lapping patdH's
('ach of \\'hidl has its O\m local paralllNrization, In his tedllliquc', the owrJapping
parches are assigned to the Y('rtices of the net\\'ork that outlines thp ohjpcl shapp,
The adn\lltage of his Illethod is that it automaticall~' guarantpes C'-conlinnity on thp
hou,](hlr~' cnn'c's \yithout an~' special restrictions on thp shapps of local palchps, :\Olp
that his p,lral\l('\rizatiou lechniques can be regarded as a kind of manifold mapping
techniques, amI they ha\'e more Hexibilit\, in assembliug local patches Ihan the aboY('
techniques that connpcr Ihe patches seamk'ssly, The manifolr! mapping techniqucs are
,tlso applied to se\'pral researdH's on shape modeling [~O], 3D shapp rpco\w~' [100], anr!
illlage general ion [39, 121f,

This sludy uses the "arady"> technique to construct such manifold mappings, To
d('sign the geOlllpllT of the object shapes, the user designs flo\\' curYCs that run on
the objeci smface, from the gin'n limy CUITes, the systelll automatically constructs a
net\\"Ork of cun'e seglllcnts called a control network in order to support the IWlnifold
Ill,\ppings, .-\ local patch is assigned to each \'ertex of the control nrt\york 'Incl is called
a \"(,!'t('X patch. The shape of the \wtex patch is designed using nuiationaJ optimization
techniqu('s. which an' desnibed in Chaptrr~, Finall~', the s,\'stem blends the shapes of
\'('t'tcx patches in their O\'erlapping parametric domains to generate the \\'hole surface
of the smoolh ohject.

3.2 Constructing a Control Network

This se('1 ion descrihes hO\\' to design a control network that encloses an object shape,

3,2,1 Flow Curves

The first slep of the geomNric design is to specif~' the shapes of flow WI'lles thar run
on th(' ohjcct surfac(', figure 3,1 sholl's an exampl(' of the 110\\' cun'es that run on the
surfa('e of a torus, ,-\s illustrated in figure 3,1. the f10\\' curws arc assumed to go dO\\'Il
1ll0n(JI(Jnousl~' \yith rpspeet to the height \'alue in the implementation, The flo\y curw
nsed in the systelll is the CUITe that goes from one critical point to another in order
to outline the rough shape of the object. In particular. the flO\y curws can be used to
guide rhe cross-sectional shapes of t he object surface, for later cOI1\'pnicnce. '1 pass is
assulll('d to Itaw four ilH'ident flo\\' CtItTeS, t\\'O of \\'hich come to the pass from the upper
and 111'0 of \\'hidl go out of the pass to the lo\\'('r. :\ote that since the configuration of
fI()\\, C\\lTeS is b'lsed on those of the cTitical points of an object surface, the differential
properties of tlte surfaces around the critical points are reflected in the process of the

surface gencration,
Tile HO\\' curw is represcnted by an endpoint-interpolating cubic I3-spline CLlITe in

the ".\'steIu. This I3-spline CUITe is dcfiued on a knot scC/uence \\'here the knots are

'l Appendix. G d(':::,crib('~ a lIlC'thod of gencrating mulriple-\'jewpoilll image!' uJ,illg the manifold
Inappings.
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Figure 3.1: Flo\\" CUlTes of it torus

('<[uall\' spaced except for its ends. The examples of the endpoint-interpolating S­
spline functions arc shOlI"1l in Figure ,L3 (Chapler -I). As can be seen in this figure.
Ihe freedom of the B-spline CUtTe is C"Ontrolled b,' inserting and deleting the internal
knots of the knot sequene-e, The shape of the f1oll' curY<? is designed b~' imposing point­
pm,ition cOnsl raillls and tangent const ra.illls of the curY<? \\"hile presetTing the imposed
constraillts. the system determines the CU!Te shape by minimizing its deformation. This
can be implemented by using the techniques of \\'e!eh and \\'itkin [135] that optimize the
ener~' function subject to the deformation of the curYC. In determining the shape using
these techniques. the freedom of the curw can be adjusted in proportion to the degree
of the constraints and is also specified manuall~' by users lI'hen necessary, :\ote that the
endpoint-intprpo]ating B-splines are \\'ell suited to the multiresolution representations
of shapes \yilh spline \"a\'elels [20. 9-11. This scheme is also used for the design of local
patdlPs in the s.\'stem and desnibed in detail in Chapter -I.

3.2.2 Control etwork

In or<!pr to gpnenlte an objeo surface from the giwn flo\\' cun'es. the system automat­
icall.\' (wates a con/rol nefwo1'/.: that enclose the object shape. Thi. control net\york
is neated b,' adding appropriate cross-sectional curws to the gi\'en flo\\" curws, The
control n('lll'ork of a torus is sho\\'n in Figure 3.2. By default, the cross-sectional curws
arp added to I he c,'lindrical parts of the object that correspond to t he edges of the Repb
graph. Of toursP. such cross-sectional cun'es can bp modifipd by adding constraints
to the tUITes or l1l0ying conlrol points of the curycs in the system. As ('an be seen in
Figlll'e 3.2. the control npt\\'ork encloses the object and \\'ill sen'e as a basic frame for
conslructing the manifold mappings.

A. peak lIe.,./e3;. a pit verle:t. and a pass vel'lex are dpfined to be thp \'ertices of t hp
COtltro! IH't\\'ork that correspond to a peak, a pit. and a pass of the objPct surface, rpspec­
Ii\'<'i.\·. Other \'enicps of the control net\york are callpdl'egulm' lIertices. As illustrated in
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Figure 3,2: .-\ control nrlll"ork of a torus and thr regions aronnd its yertices

Figur(' 3.2. thf' control nrlll'ork drcomposes the object surface into regions surrounded
by its CU1Tf' srglllents. In the implf'mentation of this study. the decomposed facrs are
topologindl.'· f'<!ui\'alent to thrre-sidrd regions (i.e .. triangles). four-sided regions (i.e ..
qnadrilaterals). and fiw-sided rrgions (i.e .. pentagons). In particular. the faces around
a pf'ak \'f'rtex or a pit w'rtex are three-sidrd rrgions. thr faces around a pass \'ertrx
an' hp-sidf'd H'gions. and othrr faces are four-sidrd regions. The rulr of thr net\\wk
construction also implirs that thr regular \'ertiers and pass \'ertices ha\'e onl,\' four in­
eidrnt ClllTr s('glllents in the control n('(\\·ork. Since this surface decomposition takes
into at'couut the configuration of the critical points on the object surfacr. the surfacrs
around the critical points are made smooth \\'ithout any sprcial manipulations.

3.3 Constructing Manifold Mappings

This st'ction describes thr manifold mappings based on "arady's parametrization as­
signmf'tlt: thr nHlnifold mappings are used to form thr o\'erall surface of the objen
from local patches. In the implementation. the follO\\'ing procedures are carried ont for
designing the geometry of the object shapr. First. local patchrs arc assignrd to the \'rr­
tices of Ihe control net\\·ork. Thr local patches arr thrn designed using Ihr \'ariational
optimization techniques proposrd by \\'elch and \\'itkin [135]. \\'hich \\'ill be drscribed in
Cllapt ('r -I. III this Huiat ional optimization. the curw segments of the control net\\'ork
me uSf'd as grollletric constraints to determine the shapes of the loeal patches. Finally.
the local patches are glued together to form the O\wall surface of the sl1looth object so
tlw thf' adjacellt patches are blrnded in their o\'edapping parametric domains.

Ont' of the adH1l1tages of this franw\\'ork is the localit~· of the geometric design. In
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Figure 3.3: Charts of a manifold

other Il"(lrd,. til(' users can design the local patches Iyithout modif,'ing thr ol'erall shape
of tIl(' object. .-\nother ach'antage is the flexibility in assembling the local patches, This
mrans that it i, unnecessar,' to take care of the continuity in connecting the patches
I)('cau,r thr adjacent local patches l1>lI'r OI-crlaps where their shapes are blended ,yhile
prrsrl'l'ing thr c'ontinnity, In addition, this implementation enables us to introduce
multiresolution design of object surfaces using "'awlers, This ,yill be described in detail
in Chaptrr ~,

3.3.1 Definition of the Manifold

Lrl us ,e(' thr definition of a manifold [811, .-\n n-dimensional chal·t is a pair (C" y;),
\I'herr C i, an open set and yi is a mapping of C onto an open ser of R", .-\ pair of
dlMts (C, y;) and (l.;) , y)) is said to be C'-compatible if yj 0 yi- 1 and yi 0 y) -I are
C' on C, n C) "'hen C, n C) 'I 0, The mappings yj 0 yi -I and y, 0 y) -1 are called
rOOnlinflf( fmnsfornWfiOlls, .-\ C' n-dimensional manifold is then defined to be an 11­

climrnsional atlas {(C" y;)} ,yith the condition that el-pry pair of charts in the atlas is
("-compatiblr, Figlll'e 3,3 illustratrs the charts of a manifold, In the implrmentation,
th(' ,-I',trlll guarantees the ('I-continuity of the surface as described later in Section
3,3,~,

In this thrsis, tIl(' dimrnsion of the manifold 11 is set to 2, The open nrighborhood
is Ihr region around a Wl'lrx of the control net,york shOlI'l1 in Figure 3,2, and the
C01T('Spouding coordinate transformation is the mapping obtained from the "arad,,'s
paralllrl rization techniques,



3.3.2 Overlapping Local Patches

Thi' ,uh,rction dcscribcs hOIl' to rst ablish thc coordinate mapping" bctll'{'rn tl10 ohjctt
'IIrfac(' and thr' drcomposrd local patdl('s. In ord{'r to construct sut·h mappiugs. this
studl' u"cs til(' Yarad"',, paranwtrization tcchniques as desCTib{'d abm·e. FollolI'ing thc
\"1rad.I'·s 1I0tatioll, the' local patch i" called a vertex ]Jatch in this thcsis. :\tTording to
tht' \'arad,,'s tPdll1iqurs. each I'CrtCX patch has a wctor-yalued paramrtric form that
m'1]l' thr rp('fangular binuiatc paramrtrit· domain onto 3D space, On thc othrr hantl.
tlH' II-sitkd ]'('gioll decomposed by thc control nrtll'ork is defined on a rcgular /I-gon. i.c ..
on a rcglliar trianglp lI'h<'n 11 = 3. on a squar<' lI'hcn 11 = -1, and on a reglliar pClltagon
I"hcn II = :i. This implics that dcfining thc mapping bctl"ccn a surfacc r<'gion and a
I·('rtt'x parch amounts to dcfilling the mapping brtlyeen til(' COlT<'sponding paramPlric
domains. i.c .. the mapping bctll'rcn thc rcgular II-gon and the bi"arialc paranlctrir'
domain.

Till' s~'strm constru('fs such mapping using tIl(' paramrtrizatiou based 011 a plallar
biqlladn11 ic I3rzil'r patch [129]. Figure 3.-1 illnstratcs hOlY to map the binuialc paranwler
(11.1') 01110 an II-gonusing this parametrization techniqu{'. Due to Ihc cyelic \\,m II1C I1'''.

llir sanH' cOllsid('ration call be applied for other I'{'rtex patches and poll'goll sides thaI
arr obtaillcr! lI'ith thc rolation by ¥,-. Lct Tij denot{' the control point. of thr I3hi{'r
patch lI'hcre i. j = O. 1. and 2. Thc binuiate coordinates (11. L') can be mapped onto Ihe
coordinatcs in th{' poll'gon (p, v) using the folloll'ing ('quat ion:

(3.1)

Figme 3,-1(a) sho\\'s the bil'ariate parametrization in a r{'gular triangle (11 = 3), and
Figmc 3.-1(h) shOll'S that in a regular pentagon (/I = :i). In this paranwtrization. Too
lics at the base l'<'rtex (11 = 0.1' = 0), T02 and T20 lie at the wrtices adjacent to Too. and
1(11 and TIO lie at the midpoints of the edges l'manating from Too, Til lies at the cpnter
of thr rrgnlar pol~·gon. T2t and Tt2 lie at the midpoint of thl' edgl' nl'xt to the edge
emallating from thc basc point Too. T22 is gcneraIl~' put in the middle of thc polygon
boundatT bctll'een T21 and T12 ,

,\s can br srl'n in Figurl' 3,-1. thr control points of thl' abo\'(' planer Bezirr patch lie
at t hp col'llrr or the midpoint of the polygon side, SUPPOSl' that 11 denotl's the numbel
of pol,I'gon sidl's, 0" dl'notl's thr col'ller angle. and w" denotes the angle belll'cen Ill('
first COl'llrr and the positiw .r-axis. The follolying e"pressions proYide the coordinatcs of
IIIP corners (r'"k' c,.!.) (k = 1. .... /I) and thl' midpoints of thl' pol,I'gon sidrs (III,,!.. I/I,·d
(/;= 1. .... 11):
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Figure 3.4: '·aracl,l··s biqlladratic parametrization of /I-golls: (a) n = 3 and (b) 11 =
j [1291
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Figure 3.5: Polar parametrization for peaks and pits

Thp ill\·pr;,ion of the gi\·en biquadratic lIlap rewa!s another issue in this mapping
bccallsp it rcqllircs numcrieall~· cxpensi\·c calculations. One of the practical solutions is
to approximatc thc ill\·crse mapping b~· taking dense grid of the domain points ,,·jth thl'
(·otTp;,ponding paralllcter \·alnt's of tht' wrtex patches. and it ,,·oldd pro\·ide satisfactory
rl'snlls. TIll' s~·;,tem takes this practit'al solution because the system can obtain the
tablt' of pau\IIlNl'r mappings \\"ith only one calculation .

.-\s t!pscribt't! ill Section 3.2.2. the peak and pit n>rtices of a control nt't\\"Ork can
hal"(> lllore t han four incident CllITt' seglllents. For thesc cases. polar paramt'trization is
lIst't! instt'ad of the Yarady·s onc for thc pcak and pit wrtices as sholm in Figurt' 3.3.
This is IllClt!C possible becmlst' the Clln·e segments and adjacent faces around tht' pt'ak
(pit) constitlltl' a spidt'r·s ,,·eb in the controlnetl\"Ork.



3.3.3 Designing Local Patches

H,"'inf\ df'finrd t hr manifold mappingo lwt\l'rrn I hr objrCT ourfacr ami t hr \'rr\('x patchro.
thr npxt stl'l' io 10 drsign tbr \'rrtrx patchro appropriatrl~·. In thr implrmrntation. thr
ClllYI' spgmrnto of thr controlnrt\york arr used as thr geomrtric conotraints of thr \'rr­
II'X I'atdl('s. In addition to slIch conotraints. til(' shapr of thr pattll io cIPtrnuinrd so
dUll til(' pnrrg\' fnne-tion subjr("\ to thr drformation of thr patch rrachrs thp minimum.
Thi' is nlHdr posoiblp b.\· thr ntriational optimization techniqurs propooNI b.'· \\"t'kh and
\ritkin [13:'>1· \\·hidl io deocribrd in drtail in Chaptn 4. This sllbsrction droCTibrs hO\\·
to usp thr ClllTr oeglllrnts as thr grom('tric tOnstraints for drsigning thr o!1;)PPo of thr
,""rtex parchl's.

Th,' ClllYC' ol'gnll'nto arr consickrrd to run on the bOlludaries of Ihr poh'gon l"C'f\iono
in Ih,' panllll{'\ric domains. Csing thr \\'rlch-"'itkin trchniqurs. thr \'rrtrx patch is
dplrnllinrd 00 Ih,ll thr patch is alignrd to thr cUlyr segmrnts at thr cOlTrspolldillg
paranl<'ll'r \·alill's. Figure 3.6 illllstratrs the parametrization assignmrnt of thr \'rrtex
pat chc's \I'hen Ihc'.\· ,m' fit to thr Clilyr segments of tltr coutroln{'\\\·ork. In this figurr. t Itr
solid ,'urq's rrprrsrnt rhp param{'\ric paths of the ClilTe segnlents and rill' dottrd Clilyes
reprrsrnl tltr associatrd p<lranwtrization assignment of tltc \'rr(('x pate-h. Tltc bottom
ll>ft \'crtcx patch is tltr simplest casc lI'herr the standard bi\'ariatc paramrtrization is
aooif\nN! to a re("\angnlar rcgion. Thr top right Ycrtex patch has t\\O triangle rrgions
brcanse il contaills a peak on its boundarY. In tlte triangles. biyariate paramrtrization
is asoif\ned using t ltc' biquadratic BeziN patch as described in Section 3.3.2. Thr hot­
10m rigltt \'rrtI'X patclt Itas a pass at its cemer alld hrnce tOnsists of four prnlagons.
Also in this ("asr. thr biqlladratic Brzirr parametrization is used to assign thr bh·ariate
paramrlri/ation to tltr prntagon rpgions. As all exceptional case. Ihe \'ertrx p>\lch of a
pc'ak has a polar c-oordinalr system as shO\m at thr top left of the figurr.

In tltr illlplrnH'nlation. additional constraints such as point-position constraints can
br <1ttadlrd to tbr facrs of thr controln{'\\\·ork. The constraillts of a face are oharrd by
tltP \·prtcx patches that ha\"e cffects on tltc shape of the face.

In tltis \ya.'". the s.'"strm drtrrminrs the shapes of the \"enex patches by uoillg thr
ClllT,' orgnlrnts of tl](' conlrol nrt\\"ork as geometric constraints.

3.3.4 Blending Local Patches

Thl' nIHI! Stl'p of grnrrating thr o\"crall surfacr of the object is to assemblr thr \"crtrx
p'lIdn's lIsinf\ till' manifold mappings. Sincr allY point of an object surfacr is cO\wed
\,iill Inorr than onc' \"ntrx patclt. thr object surface can br grneratrd by blrnding tltr
wrtrx p'lIdll'S in thrir o\"rrlapping paramrtric domains.

Ll't liS caknlate thc ("oordinatrs of tlte point \\"hose paramrter \"cctor is x = (1I.t')

as sltO\m in Figurr 3.1. Here. x is eontaillrd in the domains of fi\"e \'erlex patcltes
bcnlnsl' x lirs insidr a fi\'r-sided region. :\ote that Figurr 3.1 illustrates onl~" t\yO of
Iltr fin' \"('rlpx patchps for simplicit~·. The parameter \"rctor x = (11, I') is mapped onto
the t,,·o p,uanIPlric' domains by 71"; and 7I"j. \yherr the mapped yectors are drnoted by
x, = (II;.C;) and Xj = (1I).I'j) as illustrated in Figure 3.1. It means that 7I";(u.l') =
(II,. c;) and 71")(11. c) = (II)" I'j). Sin("e thr shapes of the t\\"o yertex patchps haye been
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Figure 3.6: \Iapping CUITC s('gments 10 the paramrtric domains of I'('rt('x patches

d('l('rminpd. t hp coordinat('s of th(' patch('s that correspond to x, and x) can be obI ained
as s,(x,) = S,(II;. 1',) and Sj{x)) = S){II).I')). respectil·ely. For inlerpolating Ih(' I'ertex
palch('s. Ih(' s~'st(,1!l us('s a blending function B{x). The coordinates of the bl('nd('d
sttrfacp s{ x) arC' cakula! ed fronl

Hpn'. IhC' biPnding funcI ion B{ x) is a t('nsor product of pol~'nomial functions and is
arbitmril.'· spkct('d if it gllarantC'es the smoothness of the blended surfac('. For example.
th(' blC'lIdinl; function c'an be set to the function B(u.I') = b(u)· b(l') ( (1l.1') E [-1.11 x
[-1.1]) lI'hprp

(-1::; t::; 0)

(0::; t ::; 1)
(3.3)

Figttrp 3.8 sholl's this POI."1lOtllial function b(t). :'\ote that the coordinate map yA- for
tht' I'PrlPX patch SA- can bp expressed b~' yA- = S;:I (ef. Figure 3.3)

According to th(' \'mach"s paper [129]. GI-continuity of the surfac(' is gllarant('('d on
tht, CII1TP S('I;III('lIts of the control netll'ork. It m('ans that in th(' cont('xt of th(' manifold
mappings. CI-continuil.'· call b(' obtaill('d by selecting the appropriate reparanl('trization
arOllnd 1llc ('lIlTC segments. Lrt us examine thc surfacc continuitl' on th(' ClllTe s('gmcnts
in 1hc follulI·ing. Suppos(' t hat Ih bOllndar\' cun'e segments are cOI'el'('(l b.l· tll'O Iwt('X
pal dl('s: 1hp I'el'tex patch of PI and the l'('['t('X patch of P2 as shOlI'l1 in Figllr(' 3.9.
13('CaIl5C' of ,Il(' oY<'rlapping rule of Ih(' wrt('x patches. only tll'O I'('rl('x palches lI'ill be
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Figure 3.7: Blending local patches
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Figure 3.8: ;\n example of the polynomial blending function



Figure 3.9: Smface continuity on the bounrlar~'

ill <'I1'e("t at I h(' limit along the COlllmon boundary CUlTe segment. .-\s ShOIl'1l in this
fignr('. the "elH'x patclH's of ]11 and ]12 ha\"(' the bi\"ariate parametrization assignments
(11[.1',) ilia! (112.1'2). respec!i,·e!\". '\ote that this notation differs from the pre"ions one
in thai III and U2 represent the quasi-parallel coordinates along the common boundatT
lI'hil(' 1', and 1'2 the qnasi-orthogonal coordinates. Suppose that the wrtex patch of ]11

is l'('pr(,Sl'nl0C! by S,(UI.I',) and the "ertex patch of]J2 is represented b~' S2(lI2'/'2)' LN
us introdnc(' another global parametrization (lI.(') in such a lI'a~' that II = lI, = 1 -lI2
along t hI' COlllmon boundary.

If 1I,e surface shape is represented by S(lI.I'), it lI'ill be the blended sum of the tll'O
I'('rlex patdJl's SI (lil. 1',) and S2( 112.1'2) (on the common boundary) as

8(lIl.1I2) = L S,.(lIdll,I'),l'dll,t')),
,(:=1.2

(3.6)

,d,,'If' S, = bl . s,( u,. /'1) and S.) = b2 ' S2( lI2· ('2) Thus. the partial deri\"ati"es of
bl + b2 - bl + b2

s( II. I') lI'it h ['('spel't to II and /' are calculated as follo'\"s.

Sinn' III = 11.112 = 1 - II. and ('I = /'2 = a along the common bound,u~' cun·e.

(3.1)

(3.8)

Dill
""i);=l: 0112 = -1:

Oil
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(3,10)

(3,11)

,-\ccording to til(' \'arad<s paprr [129], thr suffieirut condition for obtaining thr G1­
cOlllillllit,\' i~ that thr follo\ying rquations arr satisfip(1.

UIII UII2

a;:- =-~
UPI UI'2a;:- = [);: = c(lI),

\I,hl'rr ('( 11) dl'llotrs a function of 11 at I' = 0 drfined b." thl' paramrtrizatioll, This
cOlldition holds in Ihl' casr of thl' \'arady's biquadratic Bezier paramrtrizatiou tPch­
niqul' IH'CilUS(' thl' t\yO patches in rft'rn ha\'e eoutinuous parametrization on thr common
bOnlld,lIT (cf, S('etion 3,3,2),

3.4 Other Geometric Operations

Thr prototyP\' 5\'st('m inlplelllentrd in this sludy also pro\'ides the follo\l'ing groll1etric
op('ratlOn~,

Interference checking

Thr sysl I'm pro\'idps oprrations I hat find the illrgal interferrnees among surfacr la~'('I's

in ordrr 10 main! ain the prrdrfinrd topologieal ske!rlons of the object.

Flat-surface generation

In order to ~npport flat surface gf'l1eration perpendicular to the height axis, the system
pro\'idC's 0IWrations that set the height of the surface patches along the height axis to
7Pl'O, This nu'ans that \I'r first drsign a smooth surfacr and then prrss it by srtting its
height to lrro as shO\\'ll in Figure 3,10, The basic ideas of these operations arr prrsrntrd
in [101],

Object embedding

ThC' s\'stl'lll also of[rrs operations that embed objects in 3D space, \"ith thr oprrations,
\I'r ('<In drsil\n multi-Im'('['rd objrcts as sho\\'n in Figurr 3,21 by designing the t\\'O objerts
srparatrl\' and thrn rmbrdding one insidr the other.

3.5 Results

This S('('I ion prc'srnts dC'sign rxamplrs grneratrd in thr prototype s~'strm, Tltr s~'strm

is inlpll'IIl\'lIlrd on IRIS \york5tations and its 50ft\l'arr is \nittrn in C++, using OprnGL
as Ihl' graphies libnllT and ~[otif for tltr usrr interface,
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Figure 3.10: Grnrrating a flat top

Design steps

[11 till' S\·sl('nl. thr lIspr sprcifirs Ihp topological skdetons of an obje(·t shapr lI'ilh tlw
irollit rp]lres('ntation of the R('eb graph. ami then designs its geOIl10tlT b.l· modif.l·ing
t1](' sll>l]leS of t he HOll' Clm'ps or th(' control netll'ork the s~'stelll offers by defaliit. Figure
3.11 sholl"s Ih(' steps of designing a torus ill the systelll. Firstl~·. the peak of the torus
i, trl'atl'd b,' past ing >111 E2 icon as shOlm in Figure 3.11(a). Secondly. thl' upper pass
of Ihp IOrl!S is crratcd b.l· attaching an EIIN icon as sholl'n in Figure 3.11(b). Il"hrrr thr
illitial sllapps of the floll' CUITrs arc also prol'ided by the s~·strm. Thirdl~·. the 101l'er pass
of thp torl!S is (w<\tpd b.l· attachillg an ElSI icon. Il"hich rrsults in thr holr of tl](' torus
'1S sholl"lI in Figure 3.11(c). Finall.I·. the torus is complNed by attaching an EO icon as
sholl'n ill figurr 3.11(d). "\'£ter thest' stt'ps of topological design. the user designs the
geometlT of the torus by modif~'ing thr floll' curws. figure 3.12 sholl"s a floll' CUITr
drsigtH'd ill the s~·strm. III this figure. tht' shape of til(' floll' ClnTe is controlled b.l· its
("(llirrol ]loillts or imposed constraints such as point-position and tangrnt constraints.

Designing objects with macro operations

figurp 3.13 shOlYS the shapr of the torus designed in thr systrm. III addition to thr abo,",,'
top-doll"n surfacr collstruction. thr s~'stem prol'ides the means of attaching another
surfatps to thr rxisting torus. i.r.. the maCTO operations described in Section 2.1.~.

figurrs 3.1~ alld 3.1::> shOll' such examples. figure 3.1~ sholl's a torus lI'ith tll"O arms.
Thp arms arc pasted to the torus using maCTO operations. Figure 3.15 sholl"s a monster­
likc objpC"[ obtainrd b,' attaching an additional branch to the bottom pit of the object
shOlm in figurr 3.1-1. In this lI·a~·. the macro operations prodde I'arious means of
dpsigning tlrP lopological skdetons of the object shapes. :\ote that Figure. 3.13. 3.1~.

and 3.1::> shOll' the floll' curws. control Mtll'orks. mesh samples. and rendelwl surfaces
of Ihr designpd objects.

Design examples

fignrrs 3.1G. 3.1 T. and 3.18 prrsrnt thr rxamples drsigned in thr protolYIW system
figlll"(' 3.1G sholl"s a tOY' dog. Figllre 3.1 T shOll'S the characters that arc pastcd togctlwr.
<1nd figurp 3.18 shOll'S an innN car organ that consists of a cochlea and threr srmieircular
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callills. In til(' same Imy as th(' prel'ious figures. each of these figures sholl"s thr f1oll'
("IIlT('S. control netll·ork. Illesh samplrs. and rrndered surface of the drsignrd object.
\0((' Ihat thrse objeos haw smooth shaprs around th('ir critical points. In this 11"<11'.

smfac('s of arbitralT topological t~'pe can br designed syst('maticall~' by Ilsing th(' critic:U
point, as thp shape features.

Checking illegal interferences

As dps(Til)('d in Srctioll 3.-1. thr system proyidrs th(' operations that find the illrgal
intprfpr('ntl's among smfacp la~·('rs. Figure 3.19 illustrates t,yo spherrs Il"h('re thr innrr
sph('n' go Ihrough the outer on('. In this figure, the illegal inters('oions an' indicatrd
b,' rrd sphprps in the s~·st('nl. These oprrations prol'ide th(' mrans of pres('ITing the
consiSI('n{".'" of 111(' pl"('{!t'fined lopological skel<'tons.

Generating flat surfaces

.-\s dpsnihed in Spnion 3.-1. the s~'st('m prol'ides the op('rations for dpsigning f1al sur.
f'lces. Figmr 3.20 illnstrates snch an exampl('. Figure 3.20(b) sholl's a dog lI'ith flat top
('ars Il"hil,' Figmr 3.20(a) sholl's its original non·deg('nerate surface.

Embedding objects

Fignn' 3.21 sholl's a multi-Iayerrd surface designcd in the system. This double·la~·ered

spiral objrct is {wat('d by designing tll"O spiral obj('cts separately and then embedding
on(' insidr IhI' ot h('r using the embedding operations d('scribed in Srction 3.-1.

3.6 Sunuuary

This t"llaptrr has presented tlw techniques for designing the geometry of thl' objet!
shapp w,ing Ill{' manifold mappings. The geometric design begins lI'ith sppcif~'ing th('
shapp" of thp f1oll' nllTes that run on the object surface betll'een th(' critical points.
From thp gil"{'n f1oll' CUITes th(' s~'stem automatically generates the control nelll'Oll that
('nt"los{'s the objPC"t. Each I'ertex of the controinelll'ork has its Oll"n local I'ertex patch
Ihal is lllappN! to thp local binuial(' parametric domain using a manifold mapping. The
shap('s of the' I'prtex pattll('S ar(' drtermined by using the curYr segments of thp control
n{'lImrk as thr geom('tric constraints. Finally. the system generatrs the ol'('rall surfac('
of Ih,' ohj"("t !J." p'lsting the I'('rt('x patches Il"ith th(' oyerlaps ,ylwr(' the I'ertex patch('s
an' iIlI ('rpolat('d SIllOOt IJ!~·.

One proh\('1ll of this g('olllelric d('sign is that the obj('ct surface on the CUIT(' s('glllents
ofthp control nelll'llrk has only Cl-continnity. lI'hi!t' ~Iors{' th('or.l- r('quires C2·cont iunity.
HOlI"l'I·('r. C 2.tOntinuit.\· (or G2-col1tinuit~·)'impos('s s('\'el"(' restrictions on the shape of
Ihp 10011 paltllps and th(' lI'ay of glning the patches. Besid('s this. sinc(' thl' surf,\Ce g('n­
cralpd in Ihe s~'st('m has \'isllall~' appealing smoothn('ss as sholl"ll in til(' abol'e figllr('s.
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till' CI-COlltillllit\- has 110 prohl('ms ill th(' practical design of smooth surfac('s_ C'OIlS('­
(j1l('11 r1.'-_ this stlld,\- tak('s tlw fl('xibility of th(' patch ass('mblillg \\-hil(' it discards th('
C1-cOllrinllir,- rh(' th('or,- r('qllir('s_

_-\ccortling to th(' rule of constructing a controln('t\york, th(' flo\\' curws incid('nt to
JiJ(' \'rrtrx of thr contro]nrt\\'ork constitlltr a crossing or a spidrr \\'rb in thr implrmrn­
ratioll, To pro\'idr the' oprration for rliminating less important CU!Tr srgments from
thr control Il('(\\-ork, it is desirable to int'1l1dr the T-col111ections of c'urw srgmrnts in
tlIP control Il('f\\'ork. This ,,-ill r('dllcr thr lIsrrs' interactions for designing thr geom('ttT
snc'h as t Iir flo\\' curws, and is onr of thr fllturr rxtensions of this stuch',

,-\s d('snih('d in 5rcl ion 3,~, illrgal intrrfrrC'ncC's among surfa('r layrrs shollid 1)(' rx­
amilH'd ill ordrr to prrsrIT(' thr topological \'alidit,' of the ohjrct shapr in lhr grom('tric
drsign, Pro\'idillg ('ffic-irnt op('ratiolls for ch('cking inlC'rferellc('s hased on thr plwl('fill('d
topological skekrons is also a topic for flltur(' r('search,

33



(c) (d)

Figure 3.11: De'igning a torll' with the oystern: (a) pasting an E2 icon, (b) pasting

an EllN icon, (c) pa,ting an E1SI icon, and (d) paoting an EO icon
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J
Figure 3.12: Designing a now curve
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(a)

(c)

(b)

(d)

Figure 3.13: De"iglling a 1.0rllS: (a) flow curves, (b) a control lIetwork, (c) Olesh
samples, and (d) all object slIrface
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(a)

(c)

(b)

(d)

Figure 3.14: Designing a torns with MnlS: (a) flow cnrves, (b) a control network, (c)
mesh salliples, and (d) an object surface
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(a)

(c)

(b)

(d)

Figure 3.15: Designing a JI.onster-like shape: (a) flow curves, (b) a control network,
(c) mesh sarJlples, and (d) all object surface
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(a)

(c)

(b)

(d)

Figure 3.16: Designing a toy dog: (a) rIow curves, (b) a control network, (c) Illesh
'am pies, alld (d) all object surface
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(a) (b)

(c) (d)

Figure 3.17: Designing characters: (a) rlow Cllrves, (b) a cOlllrol nelwork, (c) llIesh
sal1lples, alltl (tI) all object surface
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(a)

(c)

(b)

(d)

Figure 3.18: De:;;gnillg all inlier ear orgall: (a) flow curves, (b) a cOlltrollletwork, (c)
Illes" :;alliples, alld (d) all object slirrace
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Figure 3.19: Checking illegal interference" illegal inter'edion' are inuicateu by reu
spheres

(a) (b)

Figure 3.20: Handling degenerate ",,-faces: (a) an original non-degenerate objed and
(b) an objed with flat tops

(a) (b)

Figure 3.21: A dOllble-layereu ,piral: (a) ii' control network anu (b) it, inner st.rlldnl·e
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Chapter 4

Designing Curves and Surfaces Using

Multiresolution Constraints

[lcu'nt ,1(h'Hnces in lI"awlet theories enablC' hierarchical representations of ClllTCS and
sllrf,\cc,." ,-\lthongh thc \\";\wlet theories proyidc algorit hms for transforming complicated
shapl's at nnc and coarsc lCl'ds of rcsolution, there is no rescarch on dcsigning shapcs
by con\\'olling both fine and coarse lCl'cls at thc same time, This chaptcr prcscnts a
nCIY mcthod of dcsignillg CUITCS and surfaces b." soh'ing thc constraints imposed on
thc sh'1pcs at multircsolution Icwls [122), In this method, the curws and surfaces are
rl'pn'scmcd b,l' cndpoint-intrrpolating B-splines and their corresponding 1I"<\I'dcts, ,-\t
rach rcsolnl ion ICI'd, thc shapf' is detCl'lllince! b~' minimizing the encrgy function subjcct
to the dcfol'lnation of thc shapc lI'hilc presctTing the gil'en constraints, Constraints at
a 10\\' resolntion Icwl are cOlll'crted to those at a high resolution lel'el using \\'<\I'f'let
transforms in order to assoc-iatf' all the constraints Iyith the common basis functions,
11)(' constraillts at multiresolution lewis arc then soh'ed recursil'ely from lOll' to high
resolntion kl"f'ls, Design examples are also presented in this chaptcr. The proposed
llll'thod C'1I1 bc used to design the detailcd geomctry of the floll' cun'es and the local
p'1Il"hes deso-ibcd in Chapter 3,

4,1 Need for Solving Multiresolution Constraints

Ihe adl";1nCeS in the 1I";)I'elet theories allolY us to represent curws and surfaces at multiple
kyeh, of det ails, In other IYords, Iyal'elets serw as a mathematical tool for decomposing
a shape into 1hose at multiresolution lel'els, \\"hile lI'awlC'ts come from signal proccssing
and fnnction approximation, they hal'e bcen reccntly applied to computer graphics [ll-!,
11;), llG] inclnding hierarchical editing of ClllTes and surfaces [31. 36],

Finkdstl'in and Salcsin [31] proposed a n1riet~' of editing operations such as smooth­
ing ,t sh,\!w, editing an OI"('['all shape lI'hile presetTing its details, attaching details to
an ol"t'rall shape, and so forth, These operations effectivd,l' control the shapes of curws
ane! surfaces using thcir lel'els of details, i,e .. the shape resolution, \\"hilC' the operations
rnablc ns to modifl' the owrall shape II"hile preselTing its details, it is still difficult to
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prrforln till' rl'n'rsl' opl'nltions: modif\"ing tht· df'tails lI'hill' pH's('ITing its on'nll! shap('.
SuppOSI' tll('!"l' is a ClIr\'t' as sho\\"ll in FiglIrt· -I,l(a), TIl(' right-hand figlIr<' sholl', til('
CUIT(' at a finl' Il'wl of r('solution lI'hik th(' kft-hand figmE' sholl's til(' COlT('spouding
("lIlTI' at a lOll' rI'SOhllioll 1('\"('), '\otl' that in FigurE' -1,1 tIl(' solid alTOII'S indical(, thl'
IIlodifi("ltioIlS b\" nSl'rs and th(' dottE'd alTOII'S indicat(' thl' COlTI'sponding changt's in­
dlll'('d <It thl' oth('r H'solntiou 11'\,(,1. TIl(' Finkf'!stpin-Salf'sin oppr<ltions f'nablE' us to ('dil
Ih(' O\'I'l'illl shaJl(, \dthout modi(\"ing its d0tai!s as sholl'n in FiglIr(, -I,l(b), HO\\,I'\"('I', as
shO\I'lI in Figmp -1,1(1'), it is difficult to modify thE' cktailE'd shapr \\'ithont aff('cting tIl('
o\wall shape' of th(' CUITI', For snch o]wrations, FinkE'lst('in and 5'llrsin introdllcpd til('
rlll'N rlil/rod'l' lilu'(ll'Y lI'hich maintains thE' differpnce b('tll'('('n tllf' CUlTf'S at adjacpnt
rrsolntion 1('\'E'!s, ,-\lthongh this librar,\' is usrflli. it is not intniti\'p for nSE'rs becansE'
it holds thr shaJl(' data by thr cOE'ffi('i('nts of 1I'>\\'E'IE'ts, In addition, pxplicit op('rations
thilt ditwtl,\' CTf'<lte 11l(' data for th(' libralT arE' not wt a\"ailabl(',

,-\ctllall,\', it is itnpossiblp to fix th(' E'X,1('t shapE' of til(' ClllTr at th(' lOll' rrsoilltion
11'\'1'1 hc'calls(' thI' chang('s of the d('t ails in('\'it abl~' inft u('ncE' its coarsE' shap(' throllgh
thl' silloothilig op('rations nsing lI'a\'l'lf'ts, Onr of the best solutions to this is to imposr
('Ollslrilints 011 rll(' ('nlTI' at nlllltiplE' Ir\'(')s of resolution as shO\I'lI in FiglIrl' -I,l(d) in
ord!'r 10 fix s('\,rml w!'tic('s of th(' ClIr\'l'S at Ih(' coars(' 1('\'E'i, ThE' goal of this chapt('r is
to illlpl('lIwnt such d('sign op('rations,

,-\ fmthl'r 'HiI'antagE' of thE' constraints is that thE' shaprs can br d('signrd lI'ithont
l'xplicil h' handling thE'ir control points, Gortb and Cohen [361 prrsrntrd a l1l('thod for
slIl'h shapl' dl'sign IIsing th(' \'ariational optimization t('chniques propoSE'd by \\'(')ch and
\\'ilkill [13:;1, Th('ir m('thod, hOIl'e\'E'1'. fits thE' shapE' to th(' imposE'd constraints from
10\\' to high H'solution 1('\'E'b st('p by strp so that tIl(' shap(' at thE' high('st r('solution
Irn'IIll(,('(;, thr gi\'('n constrainls lI'ithin th(' spE'('ifi<'d tolerallce, '\0 op('ration that USE'S
thl' ('onstraillts imposE'd at l11ultiresollltion ]E'wls has been proposNI y<'t,

This chaptl'r prpsruts a nE'lI- l1l('lhod of designing ClIlTE'S and surfac('s by soh-illg
constraints imposN! on th(' shapes at l11ultiresolurion le\'l'ls, In this study, t'urws
alld smfacl's arr repr('s('nt('d by elldpoint-intE'rpolating B-spliuE's and the torrrsponding
\\'<I\'I'l('(;, [20, !J 1] in ordN to d('sign th(' shapE'S in a hiE'rarchical fashion, For d('signing
thf' shapl's 'll 1I1111tirrsolution 1('\'E'b, constraints arE' gi\'en to the shapE' at ('ach rrsolu­
lion 11'\'1'1. From IhI' gi\'('n con traints, til(' shape is d('l(,l'lninrd using th(' yariational
trclIniqll('s propos('d b,\' \\'c!ch and \\'itkin [13;)], To associatE' th~ lllultirC'solution con­
,traitHS lI'ith th(' ('OlllnlOn basis funnions, the constraints at a lOll' rE'solution 1('\'1'1 arr
cOll\"l'lwd to thos(' at a high rE'solution leyel using lI'a\'E'lE't transforms, Th(' lllultir('solu­
tion const raints ar(' t Il('n soh'('d !wursi\'('\," from lo\\' to high resolution IE'\'('\s b~' taking
into ,1('Counl th(' cliff('r('llc('s betll'eE'n th(' shapE'S at adjac('nt rE'solution )('\'('\s, 5E'\"('ral
rrsults al'(' also prcs('ntE'd to shOll' the capability of this n1<'thod,

This chapt('r is organi7,('d as foil 011'5: 5('ction -1,2 rE'\'iell-s E'ndpoint-interpolating B­
splil\('s ,md its CO\T('sponding lI'a\'c!('ts us('d as basis fnnctions for l'('pJ'('s('nting cnr\'('s
and smf<lccs, Thc \'<ll'iational t('chniqn('s for cksigning C\l1'\'('S and smfac(';; ar(' ('xplain('d
in SI'C'lion -1,3, Srnion -1,-1 pr('srnts a method of sO!\'ing multiresolulion constraints by
COll\wting tllc constraints at a 10\\' r('so!ution !c\'('] to those at a high r('solntion Ir\'el.
SCc-tiOlI -I,;) shOll'S r('snlts of lllultir('sointion ClllTC and surfacE' dE'sign, Finally, 5('l'tion
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Figure 4.1: Editing a eurw using l1lultiresolution lewis of details: (a) original curws
at coarsl' and finc rcsolution Ic,·cls. (b) editing the eoarse CU1Te (The o\"('ra11 shape of
the corresponding finc elilTC is changcd.) (e) editing the finc C\llTe (Thc shapc of the
coarsc e\llTe cannot bc fixed.) (d) editing both thc coarse and fine CUlTes (Thc shape
of the fi\lc curye can be changcd 'Yhile prescITiug the important "crticcs of the eoarsc
eUITe.)
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Figure 4.2: The lllultiresolution anal.\'sis

4.6 ;,ulIln);trizps this chapter and refers to futur~ \\'ork,

4.2 Endpoint-interpolating B-splines and Wavelets

Thi;, ;,pc-tion reyie\ys the endpoint-interpolating B-splines and its corresponding \\'a\'elrts
used a;, t hI' basis functions for repr~senting cUr\'es and surfac~s, R~fer to the papers 120,
a4]. tutorials Ill-I. 113]. and textbook [116] for lllor~ d~tails.

4.2.1 Multiresolution Analysis

~Iallat IGO] dewloped a lIlathelllatical fral1le\\'ork call~d 17lultiresolution analysis \\'h('r~

a shape funct ion is r('pr('sented hierarchicall~'. :\ccording to his study. \\.(' obtain a
\wtor spac(' \ '("I such that I ,(,,) can b(' d('composed into a chain of nested \'ector spil("es
\ '(01 C 1'1 11 C \ '121 C ... C \ ,(,,,- The basi functions of \ '(kl arc ("alled sraling junctions
at thp r(>solution k\"('1 k and denot('d b\' -;~,.) (i = 1. 2.... ) in this thesis. This lIleans

that til(' sc-aling fune-tion -;\,.) represents a finer lewl of details as the resolution I('wl k
iU(Tcasps.

Ll't us ,\Iso d('fin~ l\'lk l as the spacc thHt fills the diff('rencc bet\\'e~n I '(k+I' and \ '(q
i.e .. \ 'IHI, = I '(!-I-t-ll '1"1 \\'herc -t- indicates the direct sum. It follo\\'s from this ckfinition
that the \'Poor space j'("1 is decompos~d as foIIO\\'s: 1'('" = 11"1,,-11-t- ... -t-1I"1"-"'1-t­

\ '("-"'1 as sholl'n in Figure 4.2. The basis functions of Il"lkl are called the 'W(tvflets at
thp IT'solution lewl k and denoted b~' dk

) (i = 0,1 .... ) in this thesis.
Suppose thM ,\ function /1"'(.1') is represented by the lincHr Stun of the scaling
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M.~.
.~.~

(c) (d)

Figure 4.3: Endpoinl-inl('rpolating D-splin~s of th~ knot s~qu~nc~s (a) {a. a. a. a. 1.
I. 1. I} for tile resolution 1~\'01 a. (b) {a. a, a. a. ~. 1. 1. 1. I} for til(' r~solution 1~\"('I1.

(c) {a. a. a. a. ~. 4· t· 1. I, I, I} for th~ resolution Ir\-~I 2. and (d) {a. a. a. a, i. *. ~.
~.~. g. ~. 1. 1. 1. I} for the r~solutionlr\-013

fnnctions ;~")(.r). i.e .. fl"'(.1') E ,-1"1. Since ,'1'" = \'I,,-II-t-WI,,-I) fl")(.1') can bc dc­
("olllposr<1 into fl,,-II(E \ '1"-1)) allCl gI,,-I'(E WI,,-I)) as sho\\'n in Figure -1.2. l'1,,-II(.I')

selTes 'IS a high-pass filter \\'hc1'~as .,:>1"-1)(.1') selTes as a 10\\'-pass filter. In this \I·a.\'. the
de(,olllposil iou of jl")(.1') at su('c~ssi\'e resolntionle\'els produces gl"- 11(.1') gl,,-m)(.r).
and jI,,-m)(.I'). Con\'('rs0l.\'. f l")(.1') can be reconstructed from gl"-I)(.r) gl,,-m)(.r).
and jI,,-m,(.1').

4.2.2 B-spline Wavelets

It is desirabk that the space ll'lk' is orthogonal to ,-Ik) in tile Ilierarcllical representations
of CUITes ,HId surfaces. This is because t he changes of a function jlk) E \ '(1') ha\'e no
infhwn('{' on the corresponding function glk) E \l'lk) \\'hidl means that th~ functions
po and [p.) ran be {'dited independentl~'. Thc dass of \ya\'clets \I'ith this orthogonality
is ('alkd SI /IIi-orthogonal wal/elets .

.-\1l1ong the semi-orthogonal II·a\'clets. this study uses the spline \\'a\'e!ets de\'01oped
b~' Chui pt al [2a. 9-1]. The corresponding scaling functions are B-spline basis functions.
In p'lrtil·nl'lr. this studY emplo~'s the cubic cndpoint-interpolating B-spline functions
drfinl'd on a knot sequenrc that is uniforml~' spaccd e\'cry\yhcrc cxcept for its cnds. \I'here
its knols lla\'e the 1l1ultiplicity -1. Such ('Iass of B-spline functions is sho\\'n in Figure -1.3.
The l'('ason for using this class of D-splines is that it proyides thc means of decomposing
and l'('('onstrnrting 1l1ultiresolution shape functions using matrix rakulations. This is
rxplainl'd in detail iu Section -1.2.3.

Drrause the endpoint-interpolating B-spline functions and its corrcsponding \nl\'01ets
are dl'fined ill bounded domains, the shape function is represented by a sum of a finite
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lIluul)('r of basis fUllCtiolls. For exampll'. thl' fUllctiou jfq E ,'Ikl is rl'presl'lltl'd h\'

\rhf'rl' cpll·I(.r) is a W\\' matrix (.;\l·\.r), y~l'\.r).,.,.y~:i,,(.r)). c!kl is a columu matrix of

Ihl' C01TI"pouding col'fficients (r\q r~k), .. ,. ell?" f, and III lq is thl' diml'nsion of ,'Ik),

Hl'rl'. thl' ,uprrsnipt T stands for thl' transp'~se of a matrix or a \·l'ctor. The funoion
pl'(.r) has ils r-01Tespondiug function [F)(.r) E Trlkl \dlich is t'xpressl'd by

,/,·'(.r) = d\k lv\l\.r) + rt}\ ,~k\.r) + ... + d~.~:, v~.~!I(,r) = 'l/Jlkl(.r) . d ll'l (-1.2)

,rhcrI' 'l/JIl·'(.r) is a W\\' matrix (dq(.r). dk\.r), .... t':.~;}(.r)). d lq is a roillmn matrix of

thr corrrsponding coefficil'nts (d\k l .d~q .... d~,~L f. and I/Ikl is t hl' dimrnsion of 11'11'l
, s d('snilwd in Srctiou -1.2.1. the subspacl's ,'Ill are llrsted rec1lrsi\'rl~'. This leads

to thr [nct that for all k therr exists a matrix pll) such that

(-1.3)

It mrHllS that a scaliug function at thl' resolution lewl k - 1 can br leplrsented by a
lilH'HI slim of thr scaling fUHctious at the resolution le\,t'l k. \"otr that the matrix pili
is an /1111" x mil-II mntrix becausl' ,'II) and' 'II-I) haw dimensions /IIlq and mil-II

rrsproiq'I.\'. Sincr Wil-il is also containt'd in ,'Iq thrrr exists a matrix Qll) such that

whrrl' Qlk l is an 111 11'1 x /11 1'-1) matrix, \"ote that mlk-I) + nlk-I) = mil) hecause ,'II-II

;u1(III'll'-11 ;Ire orthogonal in \ 'II). The t'quations (-1.3) and (-1.-1) art' said to ht' twO·ScaiF
rdatiolls for cplk)(T) and 'l/Jlk) (.r). and the matrict's plkl and Qlkl are called synthesis

filtrrs. Thl' matricl's pili and Qlq are giyen ill ..\ppendix C.

4.2.3 Wavelet Decomposition and Reconstruction

,.\s drscribl'd ahoYr, tht' function fll') E ,'II') is rt'prt'st'ntt'd b~' cplklc!k), \"ote that

thr coefficil'1lt matrix elk) ean be rt'garded as tht' control points of jlq To (Teate 10\\'('['
rrsolnt ion cOl'ffieients C(l'-I) fwm ell') \\'ith a ft'\\'er numbt'r of eot'ffieit'nts m ll'- II (< m(k)),

the follo\\'ing calcnlation is performed:

(,!3)

whrrr AlII is ,ln mIl-II x mill matrix. Since mlk- I) < m(k), some dt'tails are lost in this
proerss. Thr details art' stored in d(l'-I) b.\' the follO\\'ing calculation:

(,!6)

whrlr Elk l is an 11 11'-1) x /l)lk) matrix. The process of obtaining the coefficirnts at a lo\\'er
rrSOlntion Iryel eik-II and d(l'-ll from c!") is callt'd tht' wavelet (Irco71lposition. and thl'
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d n- m

Figure 4.4: ThC' filter bank

nwtrice, A(I'1 and B'l') are called analysis filters. ('ol1\·prspl,·. e'kl can be rpcon,tructed
from the 100n'r re,olution coC'fficiC'nts c'1'-11 and d,k-11 as [oIlOll"s:

(-l.1)

:'\Ole Ihal tht' matrices p,l'j ane! Q'1-) are the same as those in (-l.3) ane! (-l.-l). This
proc'e,s of lwoYC'ring the original function from the 10"'er le\'el of rC'solution is callee!
Ihe (I}(I}/flel. ·/"ewnstmction. According to (Li). (-l.G). ane! (-l.I). the following rclation
belll'een A(l') B,k). pll') ane! QII') is deri\'ed:

(-l.8)

(

A,k) 1
Hpre. and ( plk) IQ(k1 ) are both square matrices.

B tll

(Li) and (-l.G) allo,,' us to reCllrsi,'ely decompose c'nl into d(n- O , .. d cn - nd and
c'n-ml a, ,ho\nt in Figl1re -l.-l. This recursiye process is called a filter bank, Since e'nl

can be tW'on,truetee! from d'n- O .. ,. d ln - nd and e,n-m) using (-l. I). this decomposed
sequence can bC' considered as a transform of the original coefficients e lnl and is knO\\"ll
as a (/1(11'( Ii I 1mnsform.

The aho\"(' formulation can be e!irC'ctl~' applied to the mnltiresolntion reprpsentations
of C11l"\"e, becausC' the scaling functions arC' 8-spline basis functions. In the case of
surfaces. thC' basis functions arC' usuall~' tensor-products of 8-spline functions. Let us
(kfine ,p\'('nll matrices using scaling functions .;\11 and the "'a"elets d k1 as foIlO\\'s:
<[>l l l(.I.Y) = (.;~"I(J)' .;jk1(y)) p~.ll(.r.y) = (dk)(.r) . .;jl\y)). p~l)(.r.y) = (.;\1 1(/").

l'j1-)(.y)), and p~~)(.r. y) = (dk)(.r) . l't1(y)). Here. thC' clement in the i-th 1'0'" and
j-Ih column of each matrix is reprC'sC'ntC'd. ThC' corresponding coefficiC'nt matricC's arC'
also definC'e! as follo\l"s: C'kl = (c\k l . cj1-)). D~k1 = (d~l) . cjll). D~11 = ((,~k). rljk»). and

D~.l!/ = (c\l') . djl')}. Suppose that .1lrow-majoc is the roll'-major represC'utation of thC'
matrix .11 = (lII;j). i.e., .1lrow-majoc = (11111.11112, .... 11121.11122 ... ). It is notC'd that the
surface 5(.1'. y} is rC'presented by 5(.1". y} = q;~~!"-majolr. y) (C~~!.'_majoc}T
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According 10 (-I.;')) and (-1.6). thr follo\\'ing rquations for thr 'I"<n'('1rt drcomposition
of surf,\crs arl' drri,·rd.

Cl"-II = A 1k)cl")(A(k1)T

D~"-I) = BI")C(k)(A("»)T

D~k-I) = A(k1 c(")(B{"»)T

D~~-I) = B{k1c{k)(BI"»)T

(-1.9)

(nO)

(-1.11)

(n2)

(n-l)

Iu thr ,amp '1"<\:" as for the cUt'ws. thl' follo\\'iug equation for t hl' \\'a,'('\('( rl'constrnction
of ,urfncps is drriwd.

CU'I = plkIClk-ll(plkl)'1 +Q(kID~k-I)(p(kl)T+plkID~k-II(Q(kl)T+Q(k)D~'";I-I)(Q{"))I'

(-1.13)

4.3 Designing Shapes by Variational Optimization

\\'rll'h and \\'itkin [13;')] proposrd "ariittional optimization terhniqurs thilt rffecti"rly
control oiJjrn shaprs Il'ith thr geomrtric constraints such as points. tangeuts. cUt'ves.
arrns. ric. III Ihrir mNhod. an objrct shapr is detrrmined b,' minimizing thr rnerg,,'
function subjrct to the drformatiou of the sImpI' \\'hile satisf,'ing the gi"rn constraints.

4.3.1 Energy Functions

The rnl'rg." fnllttions for drsigning CUITes and surfaces are defined so that t hr,' can
mrasUt'e IHl\\' much thI' CUITrs and surfacr are stretched and brnt by looking at thI'
diffl'rrlltials ilnd CUlTaturrs at eilch point of the cUI'I'es and surfaces.

Supposr a cUt'\'(' is reprrsented by we(.r) = <i'e(.1·)· Ce' \\'here <i'e(.1') represents a ro,y
mntrix of B-splinl' basis functions and C e represrnts a column matrix of its corrrsponding
corffirients. Here. C e indicatrs a ,'ector of control points in t'yo-diml'nsional (20) or
thrrr-dilnpnsional (3D) space. Th(' enrrgy function Ee(we) of the CUITe We is drfined
as

1. 'J J ') TEe(wc) = oe(Dwe)- + c(DDwe)- = Ce Hece.
w,

II'hl'l'l' DW r iudicatrs the drri"ati"e of the CUlTe we(.r) ,Yith rrspect to.r. Thr first and
srcond trrms of (-1.1-1) correspond to thr stretching and bending of the CUlTe. 'Yhich arr
controllrd b,' the "alues of (Ie and le' rrspecti,'ely. Because the abo,'e energy function
is thl' integl'Hlion I"ith respect to .1', the control ,'ector Ce can be brought outside the
intrgn1tion. and the integration is redncrd to thr matrix He.

Supposr a surfacr is rrprrsrntrd by ws(.r. y) = <i'.• (.r. y),cs. \\'here <i's(.r. y) represrnts
a rOIl'-lnajor matrix of the trusor-products of B-spline functions and C s represrnt a ro\\'­
n1<\jor matrix of the corresponding corffirirnts as described in Srctioll -1.2.3. Herr, C.'

rrprrsl'nts a ,wtor of control points in 3D spacr. Thr energy function E .• (w .• ) of the
surfacr w., is defined as

(-1.1;'))
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wlll'rr D!,w, indicatr~ thr partial drri\'ati\'e of the surface w.(.r. y) "'ith rr~pc'ct to k.
and t h,' \"i1Iur~ of (\, and J. control thr strrlching and brnding of t hr ~urfac·r. In t hr
,am!' ,,'a\' a~ for th!' CttrY('~. thr control \"ector c. can be brought outsidr tIl(' intrgration.
;Inrl tlw intrgration ,,-ith rr~p"ct to.r and y is rrdueed to thr matrix H,.

Thr abl)\"r rnergy function i~ based on thr thin-plate undrr t('llsion mockl [124.
1z>1. Although this modrl i~ aceuratr onl~' in thr neighborhood of the minimum. it
,till b<'iHl\'r~ \\011 a,,'a\" from thr minimum. "'hich is r!fectiw for designing eUlTrs and
'lIrfaer~. :'\otr that rach of thr toordinatr~such as.r. y. and: is trrated indrprndrntl~­

in the abo\"(' formlililtion~.

4,3.2 Attaching Geometric Constraints

1n ordrr to rrprr~rnt the C'IIlTrs and surfacrs b~- thr samr notations. the subscripts (' for
elllTr, aud ,s for surfac('s ,up omittrd ill thr notations such as CPc' cp" Ce , c.•. He. and
H, in \\"Ililt [(,lIo\\s, Thr geometric c'onstraints are points. tangrnts. Clln-rs. ar('as. ete .
.-\c("ordiug to th(' stud\" of "'rlch and "·itkin. thrs(' grometric eonst raints ar(' group('d
inlo ("'0 da~~r~: the fin-ite-r!-irnensi,onal constmints \I'hieh control the shaprs of C\UT('S
and ~lII"fac('s at disCTete poinls. and the Imnsfinite cons/mints "'hich eontrol the shapes
along ('lIn-"s or subareas. Both classes of con traints can be formulated as a s~'stem of
linear equations I\ith respect to the control wctor c.

Thr finite-dimensional constraints fix the shapes of curws and surfates at specified
]Joinls. Thr position and tangent at a point are the examplrs of such constraints. For
rxamplc'. the point-position tonstraint that fixes the shape of the parameter Xo at a
point Wo can br l\Tittrn as

Wo = W(Xo) = cp(xo)' c. (4.16)

IT is a linrar rquation \\it h respect to c. Ot her eonstraints sueh as tangrnts at points
can ~imilarl.l· br describrd.

Thr tram,finite constraints nerd morr complicated formulations. Since thr curws
and ~lII"fac('s ha\-r onl\" finitr l111mber of control poims. they cannot exactly satisf\" the
tran~finitP c'onstraints in general. Therefore. such constraints are formulated as integrals
OIW thr j1ilrametric domain, of the constraints and the integrals arr minimizrd in a
I"a,t-squ,ll'(' ~ensr. For example. cOl1sidrr a constraint tUlTe ,,-hose parametrrs arr
rrpn'seutrd b~- l(t). This means that the tonstraint CUlTe L can be represented by
£(1) = L(l(I))_ The tun-r N(t) on thr objett shape that corresponds to L(t) is l\Tittrn
as N(t) = w(l(t)) = cp(l(t))· c. The integral 01"('1" the paramrtrit range of t tan be
obtained ,lS folloll's:

(4.17)

\\"plc-h and "'itkin formulate the transfinite constraint so that (4.11) bec-omes minimum
by SCI t ing Ihe deril'al il'e of (4.17) II'ith respect to c to zero as

~{(N-Lfoc it
{(N_L)oN
il oc



f(w(l) _ L(I))D(w(I))
il Dc

f(cp(l)e _ L(l)) D(cp(l)e)
il Dc

e lcp(I)@cp(I)-lL(I)cp(l). (-1.1 )

lI'here @ <Ienotes thC' tC'Ilsor product. :\otC' that the transfinitC' constraints are also
rednced to a s~'stem of linC'ar eqnations \\'ith rC'spC'ct to e. Other wnstraints snch as
areas <H(' similarly dC'scribC'd.

In this \\·a\". both elasses of til(' constraints arC' finaIl~- \\TittC'n in til(' follo\\'ing form:

Me=q. (-U9)

where each row of thC' matrix M rC'presents a single linear constraint and tIl(' C01']'('­

sponding cOIllponent of q rC'presents its \·alue.

4.3.3 Constrained Variational Optimization

.-\.s c!t'scrilwd in SC'ctions -1.3.1 and -1.3.2. \\"C' ha\-e alrC'ady obtainC'd the C'nC'rgy function
and the C'quat ions of constraints. The next stC'p is to find tl1(' coefficient \'C'Oor e by
minimi7.ing the C'nNg\- function \\'hilC' satisfying the gi\"en constraints_ This can be
IITitlen as foIlO\\·s.

I T
min II 2e He II e is subject to Me = q (-1.20)

One of the general solutions to this problC'm is to reformulatC' (-1_20) by adding a tNm
of Lagrangf' lIlultipliers y = (YI . .lJ2. .. .)T and minimize

(-121)

ConsiclC'ring the dif[C'rC'ntiation of (-1.21) \\"ith respect to e and y. the object shape is
detc'rminf'd b~' soh-ing thC' follO\\"ing systC'm of equations:

(-1.22)

In this \\',n-. the coC'fficient \"C'ctor e that minimizC's thC' energy function while satisf~'ing

til(' gin'n C"Onstraints is obtained. In calcnlating the solutions of (-1.22). numerical C'tTors
arise \\'hen the matrix is dosC' to singular. For such cases. the techniques called singnlo:I'
(Iolar' !lpr01l1position [93]. \\'hich are c!C'scribC'd in .-\.ppC'ndix D in detail. is usC'd. ThC'
tec-hniquc's described in this section allo\\" us to dC'sign the shapC's of curn'S and surfac-es
at a single rC'solution le\-('] by attaching geometric constraints_ Thus. the nC'xt step is to
design the objec-t shapC' by sol\"ing constraints at Illultireso!ution lC'w!s.
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4.4 Designing Shapes Using Multiresolution Constraints

This se(,tion describes the main contribution of this chapter: a method of soh'ing COll­
straints at multiresolntion Icycls for the hierarchical CUlTC and surfacc dcsign.

4.4,1 Converting Constraints at Different Resolution Levels

The problem of handling multiresolution constraillts is that the constraints at cach
resolntion le\·cI arc associated lI'ith the basis functions at its resolution lew\. In other
I,"ords. constraints at different rcsolution le\·cls cannot be handled direct 1.\' because the~'

hal'r diffrrent basis functions, Therefore. it is necessary to associate the constraints at
nlllltiresolution le\'els \yith the common basis functions. Fortunateh'. this is possible in
this fn11llelyork since the constraints are reduced to a system of linear equations Idth
respee! to the control points. This is the main idea of the method to be presented.

Let Mll·lelk) = ql!) be the equation of the coustraints at the rcsolution !C'\'el k.
Recall that the anah'sis filter pro\·ides the rclation bet\wen the \-ectors elk-II and e lkl

,1S sholl"l1 in (Li) (for eun'es) and (-1.9) (for surfaces). \\'hieh is described as

(,123)

It nleans that elk-I) can be represented bl' the linear sum of the clements of elk). In
particular. in the case of CIllTes. Flk) is equi\'alent to A Ik) as shown in (-1.5). In the case
of surf,H·es. (-1.9) is cOl1\wted into the form of (-1.23) using the rOIl'-major representation
of matrices because elk-I) is also linear with respcct to the elements of elk). Let us
("Cnfirln this, Au'ording to (-1.9), the relation betll'C'E~n e(,·-II and elk) is written as

(-1.2-1)

This is equi\'alcnt to the follo\\'ing equation:

m1k) m(ll

C~~-I) = L O,p( L CpqOjq)
1'=1 q=1

mlk) w llr )

= L L ClipOjqC,"I
p=1 q=!

TIl(' roll'-major representation of tl1(' abOl'e equation is represented b~'

Il·-I)
012 0 11

Ikl
(·11 °1[°11 01101/1 aI/lallA CII

Ik-II Ik)
C'IIJ °11 0 ,,1 (LllCl u11 °12 0 v] al//O UII Clp

11--11 Il·)
(':ll 02[01 [ {(21({1/1 (/22(111 a2,/al/1 C21

('~J~',-I ) °vl((//l O,J!(fVjI Cl v2Qvl QVII(LVJI t~j~}
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l\'hNP I' = 11/1 1" and v = /l1'lo-II, In this Inly, (4,24) can lw rpducpd to Ilw form of
(423),

It is nOli' pm,sih!f' 10 associatp thp constraints at different rp"olution Ip\'pls lI'ith
Ihe ba~is funrlions at a singlr rrsolution lew!. Suppose that therr arr pquations of
constnlinls {MIl"dlo) = qlki} at Ihp rpsolution lryds k = 0,1." ,/I as shOlm in Fignrp
-I"j, Thr firsl Sipp is to associatr thr ('quation of coustraints MIOldul = qllJ) \yith
Ihr IJ<lsis fnunions at tlw r('so}ution 1<'\'d 1. By substituting CIUI for FI('clll using
(4.23), til(' equation bp("Qnlrs MIU)(FIl)c(ll) = (MIIJIFIII)cl(1 = qlUI, lI'hich rrlat('s

Ihe conslr;\ints at the resolution le\'d 0 to th(' basis functions at thr rrsolntion 1(,\'1'11.
,-\1 thr rrsolution 11'\'('\ 1. thrrr arr 111'0 s\'stems of equations: thp original rquation of
constraints Milldil = q(ll, and thr nr\d,I' conwrted rquation (MIIJIFIII)d l ) = qllJr

Thr tll'O 5\'SII'nIS of rquations can be merged into Ni'llcl ll = qll) as ShOll'll in Figurp
4,3, hrcausp bot h s."stems are basrd on the samr basis functions, i,e" the basis functions
at Ihl' resolution le\'('\ 1. The mergrd rquation is couwrted to those at highN resolution
kl'('\s in thI' sanle Inl,', :\s sholl'n in Figurr 4,3, this process continues until all the
constraints of nlllitiresolut ion k'I'('\s are mNgrd,

4.4.2 Solving Multiresolution Constraints

,-\s ,el'n in Sprlion 4.4,1. the framell'ork of this study enables us to associate all the
wnstraints at different resolutionle\'('\s lI'ith the basis functions at thr highrst rpsolution
IpI'pl. .-\Ithough thp conyprtpd sN of equations can Iw solwd at the highest resolution
lel'el. ;\II unpxprctrd side effeci lI'ill appear in this case, Figure -l,G shOll'S an example
Il'hprr t hI' objrcI shape is tangled, Th(' cause of this unexpected result lies in the fact
Ihat thr deformalion is minimized only at the highest resolution len'!. although the
com,tr;\illts arr sjwcified at rath 11'\'('1 of resolution,

To al'oid such an unpxpe('\rd side effet!. this study applies the \\"elch-\\'itkin tech­
niqurs to thr difference betlyeen objPct shapes at adjacent resolution }pwls, Hpre, the
diffprpncp is pquiY111<'nt to the 3D \'rctor brlll'ern the points that ha\'e the same param­
PIN \'alurs of thr ohjrct shap(' at rach resolution le\'e!. \'ote that the diff('rence n'ctor
is dplennined b.\' handling ,1'-, y-, and ~-toordinates independently, Thi approach is
similar 10 Ihr Forsl'y-\\'ong method [331 for generating hierarchical B-spline surfaces in
Ihat hoth m<'thods use Irast squarrs to control Ihe hierarchical represeutations of the
shapps,

The ;Irlual prOtess is performed rettJrsi,'('I." from lOll' to high resolution leyels, Firs!.
Ire dptenninr a temporar,' shape at the 10ll'est resolution leyel direttly using the \\"elch­
\I'it kin techniques, This means that the shape is drtennined by soh'ing the equation of
constraints impos('d onl,' at this \('\'('\. \'ote that the shape ,yill be 1I10difi('d 1I'1]('n II'('
c!('lcrlllinr thr shapes at higher resolution !c\'ds,

,-\fll'r clrtrnnining a telllponu,' shape at the 100\'est resolution le\'e!. lI'e determine
til(' shiljlrs at higher r('solution lewIs step b,' step, Let us nOli' aSSUllle that the objrct
shaprs at rrsolutioll !c\'('\s up to n - 1 Ita\'e been determined as shOIl'! I in Figure -l.I,
Ihe next stagr is to determine the object shape at the r('solution !cl'd /1. Suppose w~1J
(0:5 k :5 /I - 1) is the current shape of the object at the resolution !c\'d k and w~,~~,.
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Figure 4.5: ('om·crting constraints from ImY to high resolution le\·els: The arro\ys
inclic;\tc tIl(' stpps of cOI1\·erting constraints.
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(a) (b)

Figure 4.6: The casr \\'Iwre the multirrsolutiou constraints arr soh'ed dirr("tl~': The
figure on the kft shm\"s a CUlTr at a 10\\' rrsolution lewl and the figmr 011 t he right
,hows its corr{'spollding CunT at a high-resolution Ir,"rl. Point-position const raillts arr
reprrsented b\" gra~" disks.

(0 :::: k :::: 1/) is the s!Iape of t he object to be obtained after this process at the resolntion
bd k. \"Ole Ihat thr current sh,tpe at the resolution le"d k (0 :::: k :::: 11 - 1) \\'ill br
modified \\"hik satisf~'ing the gi'"en constraints.

The eqmtl ion of constraints at Ihe resolution le"el k (0 :::: k :::: 11 - 1) is obtainrd !w
taking into accoullt the difl"rrrIlcr between constraints and cmrent objrct shape. For
cxample. a point-position constraint that fixes the shape of the paramNrr XI) at the
point WI) ("<)n be \\Titten as

(-l.26)

Other constraints snch as CUlTes and snbareas can similarly br obtainrd. The rquation

of constraints obtained !Ierr is drnoted b~" Jiiik1cl'·t = q{kt as sho'\"ll in Figure -l./. At
the resoltttion le"d 11. on thr othrr hancl. W~;:III is used instead of w~'J because \\"e do

not ha\"e w~',1 ,"N. This amounts to modifying the current shape at t he resolution lewl
11- 1 to find thr next. hape at the resolution le,"d 11. l"sing the techniques described

in Seetion -l.-1.1. the equations of constraints (M{kj e(k) = qtkt} are merged \\'here k
ranges from 0 to 11. By sol\"ing t!Ie merged constraints. \\"e no\\" obtain the difference
be[\\"een the object shapes at the resolution le"ds 11 and 11-1. i.e .. w~:~~, - w~:ln w~~~,.

is nOI'" obtained bl" adding the resnltant difference w~:~~, - W~:It) to W~;:II). and then
propagate the changes b\" decomposing W~,'~~" into those at t!Ie 1011"er resolution kwls as
illustrated in Figure -1./.

Figm{' -l.8 shol\"s the examples II'here the same constraints as those of Figure -l.6 arc
soh'ednsing til(' method. In this In1Y" the proposrd method enables us to design CUITes
and surfacps \\"ith constraints at resolution le'"els that range from coar. I' to fine.

4.5 Results

This section ShOlI'S se,"era] drsign pxampl s generated using the prototype s~·stem. In
the ilnplpmentation. users attach constraints at multiple resolution lc\"els as shml"11 in
Figlll"(,s -l.ll and -l.12.
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Figure 4.7: Sol\'ing muitiresolution constraints: The arro\\'s indicate the steps of soh'­
ing mnltiresolution eonstraints.

(a) (b)

Figure 4.8: The case \yh0l'0 the multiresolntion constraints are soh'ed using the pro­
posrd mrthod: The figllre on the left shows a curw at a ImY resolution and the figllre
on th(' right sho\\'s its corresponding CU1,\,(' at a high-resolution ]('\'('1. Point-position
constraints are r('presented by gra," disks,
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Figure 4.9: Editing a CUITe using lI1ultiresolution constraints: (a) designing curyes
using the pl'Oposedll1ethod and (b) atlaching the drtails of (a) to another coarse shape

Designing curves

Figme -UJ sho\\'s CUITes designed using 1I111ltiresollltion constraints, As seen in Figure
-I.9(a). the s~'stem controls Clll'yes at II1nltiresolution lewis at the same time using the
nlllltil'C'solnt ion constraints. The method can also be used to design the details at
high resolution lewis, \\'hich is equil'alent to creating the data for the ClllTe charac'ter
lilm1t'~' [31] as desnibecl in Section -1,1. Figure -1.9(b) presents such an example Il'here
the olwall shape of the cUI'\'e is designed and the details are then added,

Figlll'e -1,10 shOll'S lilH' drall'ings of a ~'olmg bOl"s face: Figure -1.10(a) sho\\'s the face
at a 10\\' 1'C"olution lewl and Figure -1,10(b) sho\\'s its corresponding drawing at a high
resolution Icl'el.

Designing surface patches

FiguI'C- -1,11 sho\\'s a displa~' example of ecliting a mountain-like surface Iyith a crater.
The hill!' ,phcrps represent point-position constraints and the ,1'ellOl\' ClIlTes I'cpresrnt
ClIITe C'Onstrainls, After crcating a large mountain at a lOll' resolution lewl. the small
naler can 1)(' clcsigned at a high resolution ICI'r!, It can be seen in Figure -1,11 that
dpsigning shapes at multiresolulion kl'els requires smaller number of cOllstraints thall
dc'signing s!I;1pes at a single resolution le\'('1. Figure ,1.12 sl1o\\'s a display example of
editing a slll'f;1('e \\'ith t\\'O peaks, ,.l,s shOll'll in Figure -1,12, a pair of steep monntains
is (Teated using lI1ultiresolution constraints, These t\\-O figures represent fundamental
p;Hterns of dpsigning surface shapes using mu!tiresolution constraints, \\'hich can be
implenleulpd as marTO operations in the s,'stem, These funelamrntal operations allo\\'
liS to Nlit lllore complicated shapes such as a facial shape as shOlI'l1 in Figlll'P -1,13,
l\'h0l'P Ipxtures are mapped onto the surface. The figures at the top anel bottom sholl'

the coarsp and finp resolution surfaces. respec-til'c!,',



(a) (b)

Figure 4.10: Lin(' dnm'ings: (a) a dnlll'ing at a 10'" resolution I('wl and (b) its COlTe­
,ponding figu1"(- ,)( a high resolution I(,I'C'!

Designing closed surfaces

Figur<' ,Ll-l sholl's a displa,' ('xalllp1C' of editing a topological sp!Jer(' using multiresolution
constraints iu the s,'stem of Chapter 3, As shown in Figure -I,l-1(a). the multiresolution
constraints are imposed on th(' fac('s, "'hich are shared b." surrounding wrtex patches,
Fignres -I,ll(b). -I,l-1(c). -I,l-l(d) shOll' the surfaces at a 1m\' resolution le\'el. an inter­
mrdiatr rrsolution lel'C'!, and a high resolution le\'el. In this "'ay, the proposed method
can be applied to surfac('s of arbitrary topological type using the manifold mappings
drsnih('cl in Chapt('r 3,

4.6 Summary

This chapter has presented th(' method of designing curws and surfaees using multir('s­
olution ('(lI\straints, Th(' curws and surfaces are represented in a hierarchical fashion
h,' sc"liug fuunions and ,,'a,'(']('ts, i.e .. ('ndpoint-inrerpolating B-splin(' functions and its
cOIT('"poncling ,,'a,'C'!('ts, Th(' shapes of til(' curws and surfaces are determined by mini­
mizing th(' funOion subj('e-t to the d('fonnlltions of the shapes while presen'ing the giwn
constraiuts, To assoc-iate the constraints at different resolution!ew!s "'ith the common
h"sis functions, the constraints are conwrted to those at the high resolution 1C'\'C'! by
thr "'a\'rl('t d('composition, Th(' constraints at multireso]ution lewis are then so!l'('(1
rrcl\l'sil'('!I' from 10'" to high r('solution I(','e!s "'ith respect to the differences bet,,'een the
,hap('s at adjacent resolution lcyC'!s,

,-\s s('rn in S('ction -1,0, the proposed method can sen'e as a tool fOl' d(','C'!oping the
CUIW ch'lractrr librar,' [311. I\'!lich holds ,'arious kinds of fine c1C'tails of til(' shape, Since
the operations in the llIC't!lods ha"e close relations with the properties of scale-space
theon' [137. G6]. users are expected to knOll' some about such properties, Therefore.
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1I1ano opl'rat ions basC'd on s\lch propC'niC's arC' \ls('ful for both "'('ll-trainrd and noyicr
usNS. In rhis chapt('l'. thC' lllrthod of drsigning C\llTrS and surfacC's b\· gC'omrtric tOn­
sIraints is r!rsnil)('c!. IlI1plC'm('nting thC' rC'\"('rsC' opC'rations. i.(' .. operations for ('xtracting

coustraints from thr surface data. is also an important research themC'. ,-\Igorithms for
C'xtracting significant constraints from thC' shape data are describC'd in ChaptC'r 5 [120],
alld an rXilmplC' of s\lch l'xtractC'd constraints is sllo\\'l1 in Figur(' -1,15, Figurl' -1,15(a)
sho"'s thl' l'onstraints of chara('(C'ristic points and bO\lndari('s ('xtractrd from thl' slll'facC'

clala. and Figlll'r -1.15(b) sho"'s thC' surfacr drt('rmined at this resol\ltion \C'\'('I from thl'
extract l'd const rain ts,



Level No2 Level No3

Figure 4.11: A display exaillple or editing a mountain-like snrra,ce wit.h a crater nsing

nlult.ire'ol"t.ion const.raint.s; t.he hlne spheres represent. point-posit.ion const.raint.s and

th" yellow cnrves represent curve constraint.s.
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Figure 4.12: A displa.y eXall'1,!e or editillg a ollrraCe with two peaks using 1111111 ireoo­

Jlltioll cOllstraillts; the blue ophere, repre,ent point.-positioll constrainb a.nd t.he yellow

curvelj represent curve constraints.
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(a)

(b)

Figure 4.13: A display exalllpl" of "diting a facial shape: (a) !.h" ,hap" at a low
resolution level and (b) its corresponding shape at a high r"",lution level.



(a)

(e)

(b)

(0)

Figure 4.14: Designing a sphere using Illtdtiresolution constraints: (a) eoiting con­
straint.s, (b) a snrrace a,t a low resolntion level, (c) a surrace at an int.errnediat.e resolut.iou
level, and (d) a surrace at a high resolut.ion level
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(a)

(b)

Figure 4.15: Extracting characteristic poi'd,' anu bOllndary cnrve, frorn l!,e de,igneu
~nrface: (a) extracted charaderi,tic points (blue sphere,) and boundary cnrve, (yel­
low clll'ves), and (b) a snrface uetenllined by the extradeu characteristic point, and

bounuary cnrves at this resolution level
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Chapter 5

Robust Algorithms for Extracting Critical

Points and Critical Point Graphs

l1esearchrrs in the fidds of computer graphics, geographical information systems (GISs),
and shape lllodding h,we extensil'eIl' studied the methods of extracting shape features
snch as peaks. pits. passes. ridges. and ral'ines from discrete samples. The existing tech­
niques. hO\\·PI·rr. do not glJ<1rantee the topological consistency of the extracted features
because of their heuristic operations. I\'hich resnlts in spurious features. Furthermore.
thm' hm'e I)('en no robust algorithms for constructing critical point graphs (CPGs) such
as till' slII'fa('(' nrt\\'ork and the Reeb graph from the extracted peaks. pits. and passf's.
This chaptPr presents nell' ;\Igorit hms for extracting ff'atures and constructing CPGs
from disnete samples. ThE' i1lgorithms E'nilble us to E'xtract correct shapE' features: i.e..
the method extrilcts the criti('al points thilt satisfy the Euler formula. \\'hich rf'presents
the topolop,ical inyariant of smoot h surfaces. This chapter also proYides an algorithm
that cOIl\'erts the surface nel\\'ork to thE' Reeb graph for representing contour changE'S
Irith 1'('sl)('('( to the height. The robustnE'ss of the proposed algorithms is i1lso discussed.
Thi" chaplrr also describes the mel hod of ('hanging the height axis of object shapes
usiug the algorithms. Display examples arc presented to shOll' that algorithms extract
the f(',Hures that appeal to our I'isual cognition.

5.1 Conventional Algorithms for Extracting Shape Features

The need 10 extract shape features from discrete samples has bE'en increasing. fur ex­
ample. in contemporan' GISs and shape modding systems. In particular. sel'eral t("ch­
niques al'(' proposed for extra('(ing Illl" features of smooth surfaces such as the nit ical
poinl' (peaks. pits. and passes) [87. 132]. ridge and ral'ine lillI'S [102. 62]. and surface
ClllTat ures [7. 2G],

II follulI's from the theOl'.I· of differential topolog,' that critical points on a smooth
smfac(" SHlisf\· the topological consistenc,l', i.("" the Euler formula. The Euler formula
represents ,) topological jll\'ariant of smooth surfacE'S. (Refer to Section 1.7 and Ap­
pendix :\ fOi more detailed definitions of th("se concepts.) \Yhile critical points arE'
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the frat urI';' of diff('relltial topo!og,·. the critic-al points extracted using the c-onyelltiOll<11
techniqul';' do nO! satisfy the Euler formula. For example. Irt us see the critic-al point;,
dPtened b.\· t hl' l'ight-nrighbor mrt hod [87] from disc-rrte e!ryation samp!rs on a reg­
ular grid (Figurl' 3.1). The Eulrr formula states that the uumber of prah #(pcok,\).
the numb('l' of passrs # {p08.\c.s}. and the number of pits #{pit.\} satisfy the rdation
#lJ)( lib} - # {po'\'\f.$ } + #{pll.\} = 1 in this c-ase. The eight-neighbor nll'thod extracts
Ihr point (1.1) as a prak. till' point (2.2) as a pit. and the points (3.2) and (3.3) as
passl". This result. hO\\'rwr. does not satisf,' the relation becausl' 1 - 2 + 1 = 0 # 1.
This incon,istelH',' arisrs from the gaps brt\\'rrn the discrrte samples and the continuous
surfacr. Th!' I'on\'('ntioual techuiques for extmcting critical points are based on till' as­
sumpl iou that I hI' nit ical points can be !'xtral'ted from the discr!'te sampl!'s in th!' same
\\'a,' as from thr continuous one. If the sample data is dense enough. thr tec-hniqul's
allo\\' us to rxtran l'Orrrct nitic-al points. In practice. ho\\'e\'Cr. suc-h data is not H\'ail­
ab!l' Ill'causr of rrstrinions such as the capacity of the data storage and the precision
of the nll'asureml'nts. ,-\s a result. the teehniqurs produce spurious c-ritical points. Such
spurious nit ical points also Ill'l'\'l'nt us from tracing correct ridge and nl\'ine lines for
fllrtlll'l' Hual,\·sis.

Topologic,ll1,' c-orrl'n nitical points l'nabll' us to analyze thl' geographical structures
sllch ,IS ridgl' and ra\'ine lines among thr nitical points and contour changl's with rl'spect
to thr heigh I , The nitical point graphs (CPGs). \\'hich represent the rdations among
Ihe critical points. ;,hmy such structures efficient I,'. The surface net\\'Orks [88. 89]. thl'
critical point c-onfignration graphs [82. 83]. and the Reeb graphs [96] are examples of the
C'PGs. The CPGs pro\'ide us \\'ith a mrans of handling the extracted features using an
ahstn\('( dilta structul'('. So far. ho\\,e\'('r. there hm'e been no algorithms that construct
the CPGs automaticall,· from discrete ;,ample data.

The robustness of the algorithms is also an important issue. If the algorithms are
1101 robust enough. they ,\'ill fail to finish their \\'ork \\'IlCn unexpened data is giwn.
Thl' examples of such unexpected data are degenerate critical points such as flat tops
alld monkl'\' saddles. \\'hich is described in Section 2.1.1 and Appendix A.. Pre\'ious
robu;,t alF,orit hms for ot !}('r problems IHl\'e been implemented by transforming the ton­
linuous data to discrete oue [381. a\'oiding numerical errors \\'ith finite-precision rom­
pUlation [1171. and performing geomrtric computation \\'hile presetTing the topological
l'OlI,istl'nc,' ['-II. Iu this study. a method similar to s,'mbolic perturbation [26] is used
to impll'nlent the robm,t algorithms. :'\ote that the algorithms to be proposed consist
of onl,' tl,l' cOlnparisons brt\\'een the heights of \'l'rtices based on finite pre('ision. ma­
lIipulatious of F,raph data. aud boolean operations on the sets of \'ertices: the." do not
lise dil'isious to ayoid uU111l'ric,,1 errors l .

This chapt er presents the algorit hms for extracting critical points and coustructiug
C'rGs fro111 discrete surface data. The algorithms extract the critical point Il'ith the
lopologicH! consi,teuc.'·: i.e .. thc critical points satisf.\· the Euler fOl'lnula. The tools
for 1I1lderst Hnding the surface features are the t\I'O CPGs: the smf,Ke net \\'ork [88. 89]
and the Reeb gnlph [96]. In addition, the algorithms are designed so that thl'\' <He

I ._\ llll'thod of l'xtracting ~illlilal' f('al\lI'C'~ tlumerically from the' equation of all objrct l:lurfac(' j!-J

))n'''C'lllrd ill !.j.j].
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Figure 5.1: .-\11 example of sample data: The eight-neighbor method fails to extract
correct nitical poillt from this example. (a) the height "alues of the sample data. (b) its
thrrr-dimrllsional image. and (c) the "alues in the criteria of the eight-neighbor method
(rxplained ill Section 5.2.2).



rruarautc'cd 10 c'xtraet correct critic'al points and CPG~.

" Thc' surfac'c nCI \I"ork rcprcsrnt~ the ridgc and ra\'inc lincs of thr surface ~hapr, It
('()nsi,ts of thf' erilical points (pcak~. pit~. and passrs). and the ridgc and ray-inc lines.
From a pa,s t hcrr arc t\\'O paths callrd the ridgr lines along \\'hich \\'C can go np to
pcab and t\\'O palhs called thc ray-inc lincs along \\'hid} \\'e can go dO\\'n to pil~. Thl'sc
ridgc' and ra\'ill(' line~ appear in tnrn \\'he'n \\'e' go around the pa~~. In thi~ the'sis. tl]('

,urfacr nl't In)rk also ~e'tTe'S as an intrrml'diate' repre~rntation for const ructing the' Rcc\)
graph. Thr Rer\) graph rl'prrscnts thr splitting and nl('rging of equi-he'ight contours.
i.c.. thl' ah'lran rrprrsrntation of a topographic map, \"hen the're is a hifmTation in
thc RI'rh graph. a eontolll' is split. \\'hcn t\\'O contolll's are mcrgcd. rdgcs of thc Rer\)
graph are nlergrd. It is important to e'xtract thr changes of the eon tours from disn('lc'
,ample' data. and scy-cral techniqnr~ arc propospd. In particular. the Re'c\) graph is a
mathematieal g('Ilrralization of the topographic change trre proposed in [62).

Thl' algorit hms perform the follo\\'ing three' processes. Fir~tl,·. critical points arp

extractl'd that s,ltisf,' the' Eule'r formula. Secondly. the surface net\\'ork is eonstructed

h.\· tn\cing ridge' a11(1 l'i\\'iue liues. Thirdly. the surface net\y-ork is conwrted to the' Reeb
gr,wh. Thl' crit in\1 points and CPG~ me' extractpd from the gi\'('n surface ~ample~

automat icalh·.
111 t hI' follo\\·ing. this chapter first de~CTibes t he algorithms for surfaces that arc

topologieill1\' rCjuin,lent to sphere~ in Section~ 3.2.3,3. and 5.~. In this casp. thr Ree'b
graph to 1)(' eonstructed "'ill be'eome a tree as de~cribed in Section 5.~. ..... Igorithms
for slll'fae(', of other topological t,·pe'. i.e' .. surfaces that arc topologically equi\'alent to

tonnl'('\ed sums of tori. arc implemented \)y extending the abo\'(' algorithm~ and \\'ill \)e

preSl'nlc'd in SrC'tion 5.3.
This dlaptrr is organized as follo\\'s: Section 5.2 descri\)es an algorithm for extracting

the nitical points \I"ith the' topological consistency......n algorithm for constructing the

5urfac'c nl't\\'ork from thp extracted critical point~ is explained in Section 3.3. Section
3A pre'spnts an algorithm for conl"'C,rting the surface net\\'ork to til(' Reeb graph. \\'hile

rC'1 ions 3.2. 3.3. and 5..! describp the algorithms for a topological ~phere'. Section 3.3
pl'l'Sl'IItS algorithms for surfacps of otl]('r topological type. Section 5.6 descril)('s ho\\' to

thangr tIll' hl'ight axis of thp dpsigned o\)ject using the algorithms. Section 5.1 sho\\'s

results to d('monstrate thc capabilitic~ of the' algorithms. and Scction 5.8 summarizcs

this thaptl'r and rcfers to futurc extensions.

5,2 Extracting Correct Critical Points

Thc slll'f;\('I' handled in thc follo\\'ing three sections is assumed to be a surface that is
topologicalh' eCjuil"alent to a ~phe'rc. :\ote that a terrain surface tan \)1' regardcd as

ouc' of such example'S \I"he'n the \'irtual pit is attached to the surfacp (cf. Figure 5.3).
rUlngr intrnsitips can also be considcred as thp rlcY-ation data of a rectangular area. TIl('
,amplr tI<\t;) to ill' used in thr algorithm~ is a set of point~ on the slll'face.
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(a) (b) (c)

Figure 5.2: Topological changrs of noss-srctional contours at nitical srctions: (a) at
a prak. (b) at a pit. and (c) at a pass

5.2.1 Critical Points and the Euler Formula

This sl'nion pxpl,lins h011' to rxtract til(' critical points from thr discr('lr samplr data
\\'ith tllC' topological consistrncl'. Brforr going into details, this subsrction gil'es til('
lIlalhC'IllHlinll dC'finitions of Ihr nitical points [80] and the Euler formula [70. 391. TIl('
detailed ddinilions of thrsr concrpts arr prol'ided in Appendix A.

Lpi : = f(.r. y) be a height function lI'hich gil'es the height of each point on a
sllI'faep..-\ point p of the function f is callrd a cl·itical point of f if gradf(p) = O. i.e ..
~ = D ,md *' = D. \"ote that the topology of the cross-sectional contours changes at p

Irllilp sUlIming the criticallel'el f-I(f(p)) from its upper side to its 1011'('1' sidr. Let us
!'Om,idl'r thl' topological changrs of the cross-srctional contours at the section of each
critil'al point (Figmr .5.2). If a nell' contour appears at p. the nitical point p is called
a I)('ak (Figmp 0.2(a)). If an existing contour disappears at p. the critical point pis
caliI'd H pit (Figlll'e 0.2(b)). (.-\ peak (pit) is higher (loll'er) than all other points in its
lIeighborhoorl.) If a contour is dil'ided or tll'O contours arc merged at p. the nitical
point pis eallrd a pass (Figure 0.2(c)). Thr critical point p is called non-degenerate if
onp Hnd onl~' one of thl:' abol'p topological changl:'s occur in thl:' contour containing p.

If \ rpprl:'spnts the Eull:'r charactrristic of thr surface to be handll:'d. til(' Eulrr formula
can bp IITittpn as (ef. Srction 1.7)

#{pcoks} - # {pas.ses} + #{pits} = \. (3.1)

If thC' smf,\('(' is topologicall~' rCjuinllellt to a patch such as a terrain surfaer. it can bl:'
rpgHrdpd m, a part of a sph('J'r as illustratrd in Figurl:' 0.3. The locallllinilllum at thp
bottOin of t hI' sphere is cHlled a virtltal pit in this chapter. \\'hen thp smfacp is handkd
with thp I'irtnal pit. thp corresponding [ulpr formula becomes

#{peaks} - #{passes} +#{pits} = 2. (5.2)

l)0causp \ = 2 for a sphpre. Thp abol'p formula is also called the rnolmtainee1"s eqllation
in IiiI' casp of t('['rain slll'facps [391. \"ote that the formula is consistent witli thp rrlation
shown in Spniou 0.1 Il'hen lI'e considpr the I'irtual pit. In the folloll·ing. thp I'irtnal pit
is allOIl'pd for to pstimatp tlip Euler formula if the slll'facp is topologically pCjuil'alpnt to
a patch.
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Figure 5.3: :\ surface patch and a Yirtual pit on a sphere.

5.2.2 The Eight-neighbor Method

,,"OJ\" IN ns sre the eight-neighbor method [87] stated earlier. This method is proposed
for rxtracting trrrain features from discrete samples. In this method. the sample points
arr alignrd on a regular grid of a terrain surface. The eight neighbors of the grid point p
are thr points in the 3 x 3 squares surrollnding pas shO\\'I1 in Figure 5.4. Each neighbot
p,(i = 1. 2. ..8) is scanned to sec \\'hrther or lIOt it satisfies the conditions of the
critical points. Thr notations listed brlo\\' are used in the follo\\'ing (Figure 5A).

the nnll1ber of the neighbors of p

.:., t hr height difference bet\\'een Pi (i = 1. 2.. .. n) and P

.:.+ till' slim of all positiye':"i (i = 1. 2....• 1'1)

.:.- the sum of allnegatin' ':"i (i = 1.2..... 11)

,\', the nunlber of sign changes in the sequence ~I. ~2.... , ~,,, ':"1

,,"alice that /I = 8 in thr eight-neighbor method 2 . The critical points are detrrted
according to the follO\\"ing criteria:

peak 1-"'+1 = o. I~_I > T peak . .\'c = 0

pit 1-"'_1 = 0, 1-"'+1> T pit ,\', = 0

pass 1-"'+1 + 1-"'-1> T pass • .\'c =..j

2 Till" case ,,-11('1'(' /I = 4 is presentrc! ill [50).
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Figure 5.4: Eight neighbors in a grid

H('re. T,,;,. and T",,, are the thresholds in each case. \'ote th'lt this method is
snitahl(' parallel processing because the result at a point is independent of those at
othrr points .

.-\s sholl'n in Figure 3.1(c). lI'hen Tp.,k = T pi , = T pas, = O. the critical points ('x­
tracl('d w,ing tlw eight-neighbor mPlhod do not satisfy the Euler formula. Furthennore.
the eight-nrighbor m€'thod has ambiguities in ehoosing the thresholds T p<'ak. T p;,. and
11"'" For rxample. I\'hen T".,k = T p;, = T pass = 230. the Euler formula becomes
#{jI{ok.\} - #{jlosses} + #{pits} = 1-1 + 2 = 2. I\'hich keeps til(' topological con­
sislrnn·. \\'hen T p•ak = T,,;, = T I"." = 300. ho\\'el'('r. the Euler formula l)('con1('s
# {jI(ok.\ } - #{posses} + #{jlils} = 1 - 0 + 2 = 3 (# 2), \\'hich I'iolates the topological
wnsi,renc.".

5.2.3 New Criteria for Extracting Critical Points

10 ('nsnre that the extracted (-ritical points satisfy the Euler formula. it is nec'essary to
detl'nllinr the contour changes according to the height. This means that the surfaces
lllU" be illlC'rpolated from the sample points. For this purpose. this stud." uses triangu­
lation Ihat is a natural choice for interpolating discrete samples. \'ote that the contour
changes depend Oll t he manner in lI'hich I\'e triangulate the sample points, In order to
al'oid def(,clil'e thin triangles. it is desirable to use a method similar to the Delaunay
triangulation [~11. Suppose that the grid point is labeled Il'itll a pair of integer indices
as shOll'll iu Fignre 3.1. \\'e generate a square b~' connecting four pairs of grid points:
(i.)) (i+1.)).(i+1.j) (i+1.)+I),(i+l,j+l)-(i+1.)). alld (i+1.)) (i.))
as shOll'll in Figure 3,3. \'011' the grid points and the edges form a patteru like a chess­
board. Each square is then (!il'ide I into tl\'O trianglrs I\'ith either of the tl\'O diagonals,
Here the diagonal is chosen so that the tll'O dil'ided triangles make a flatter snrface. In
othrr IIwds. I\'e choose the diagonal that makes the smallest absolute augle betll'een
the normals to the triangles dil'ided by the diagonal. \'ote that it is not neCeSS>1!T to
confine ourse!l'es to grid sample points: random sample points can also be handled bl'
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Figure 5.5: The t",o diagonals of a square

thl' ordinHl'," Drlanna," triangulation,
Data d"lJrndent triangulation is a powl'rfnlmeans of triangulating the sample points

\Iith ,nlOothness, "'hate"er the type of sampk data is, Among sel'eral proposed meth­
ods, Ihe edgr-based mNhod [2-!] that minimizes the total sum of angles of adjacent
triangll" al edges, and the wnex-based method [12] that minimizes thl' total Silln of
nuiancI', of surf'H'e normals at wrtices are frequl'ntly usl'd, Especialh' in thl' cases
of II'rrain samples and image intensities. these mNhods prm'ide smoothl." triangnlatrd
surfan's.

LN 'I' no'" sec Ihe nell' definilion of the neighbor and the criteria of critical points.
Supposr that all (-ritical points are non-degenerate. The neighbors of the point ]J arc the
poinls Ih'\1 arc' adjacent to jJ in the triangulated sample points. In this implementation.
each point J! has a circnlar list of neighbors in counter-dockrl'ise (CC\\") order around
p. \\"hl'n ,til the critical points are non-degenerate. the nell' criteria of the critical points
arr as folio"',:

peak

pit

pass

1..\+1 = o. 1..\-1> o.
1..\_1 = o. 1..\+1> o.
1..\+1 + 1..\-1> o.

.Yc = 0

.Yr = 0

.Yc =-!·

In Ihe abo"r c-riteria, manuall~' specified thresholds are eliminated. and hence the criteria
hal'e no ambiguities. \'ote also that in the case of grid points. the influence of the
plnious right nrighbors is reduced by choosing either of the t,,'o diagonals in each
sqnan' of thl' chessboard pattern. Let us return to the case of Figure 3.1. .-\cc-ordiug
to Ihr abOl'e c-riteria. only the point (3.2) is judged as a pass. and the Euler formula is
s;Hisfird (Figlll'e 3.G).

In Ihe ntse of a topological patch. the boundar,l' sample points and the corresponding
"irln'll pit mnst be handlrd carefully, In this implementation. the I'inual pit is assumed
to be a poinl <1t the height -:)C. After triangulating the sample points, the I'irlnal pit
is inserted to the circular lists of the boundary points so that the Yirtual pit and two
adjacent bonndan' points form a triangle, In this process. the patch ami the "irtual pit
are lon1ted as sho'\'I1 in Figure 3,3,
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Figure 5.6: A triangulation of a grid

5,2.4 Handling Degenerate Critical Points

Lrt ns noll' consider the eases eontaining degenerate CTitical points, The degenerate
(Tit ical point s arc classified into t\l'O t~'I)Cs: dfgene7'Ote passes and lfvel regions, :\
degelH'rate pass is a point at \I'hieh three or more equi-height contolll's arc merged, A
degeneratP pass and its neighbors including their height ,'alues arc illustrated in Figure
;j,t, \I'here the shaded regions sho\l' the areas higher than the pass. In this case, it is
l1e('e''''\I'.'' to deC'Ompose the degenerate pass into non-degenerate ones. because three
contours ,He mt'rged at the pass, \"hile deeomposing the degenerate pass. tile number
of the decomposed passes is connted, The criteria of critical points arc nO\l' modified as
follo\l's to antomatieall." count the deeomposed passes,

peak 1---"+1 = 0, 1---"-1> 0,

pit 1---"_1 = 0, 1---"+1 > 0,

pas 1---"+1 + 1---"-1> 0,

-"r=O

-"e=O

.Ye = 2 +2m (m = 1. 2", ,)

\I'here 111 is the lllllllber of the decomposed passes

TIl<' nnmber of decomposed non-degenerate passes m can be obtained by soh-ing the
eqnation III = (-"r - 2)/2,

Tht, s('contl case contains !c"d regions, i.e __ regions Il'here tll'O or more adjacent points
are'li the sam(' height in the triangnlated data, One remedy is to group the sci of !cl'cl
points togethrr and to regard the group as one point. HO\l'ewr, it is not efficient \I'hen
thr r('gion contains other CTitical points such as a pit or a peak in its interior as illustrated
in f'iglll'e 0,8(a). The solution nsed in this study is to introduce another ordering of
the satnplr points in addition to the height in order to discriminate bet\l'een the points
at t he same height. This means that the t\l'O points are compared nsing the second
ordrring if thel' arc at the same height. The algorithm uses the lexicographical ordering
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Figure 5.7: ,-\ degenerate pass

~c=;;~ ~.........: ~~

(a) (b)

Figme 5.8: ,-\ k\'('1 region: (a) a le\'('1 region containing a pit. and (b) introduction of
the M'cond order to thr le\'('l region.

,,,ith respect to the (.1'. y)-coordinates as the second ordering. Introducing this ordering
is equil'alrnt to indining the height function slightly as illustrated in Figure 3. (b), :'\ote
that this or(\rring can be implemented using the indices assigned to the sample points
if the ordering of the indices coincides \I'ith the lexicographical ordering ,l'ith respect to
thr (.r. .Ill-coordinates. This strategy is similar to the symbolic perturbation [26] in that
it <1l'oids I he degenerate cases by introducing the additional comparisons based on the
symbols. In this 1I'<1Y. the degenerate critical points can be reduced to Ilon-drgellrratr
ollrs that ('<In br handled Il'ithin the unifird framell'ork.

5.2.5 Algorithm for Extracting Critical Points

Thr follo\l'ing is the algorithm for extracting critical points.

Algorithm 1 (For extracting critical points)

G, : a graph representing the triangulation of sample points
L,. : a list of extracted critical points and their neighbors
begin
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for C'ach \'C'rt('x p of G, do
begin

!\C'nC'nuC' tllf' CC\\' n('ighhor list of p:
("omjHItC' -"+. -,,_. and 'Yr of p:
['('clncC' tIl{' nC'ighbor list of p: (See the follo\\'ing rxplanation.)
if ((1-"+1 = 0) and (1-"_1 > 0) and (Sr = 0)) then

mark P as a peak amI add p to Lr :

else if ((1-"_1 = 0) and (1-"+1 > 0) and (.Yr = 0)) then
mark p as a pit and add P to Lr :

else if {(I-"+I + 1-"-1> 0) and (.Yr = 2 + 2111)) then
begin

III := ('Yr - 2)/2:
while (m > 0) do

begin
rNrir\'C' t hr last four ('\('ments from the neighbor list of p:
mark p as a pass and acid p to L e \\'ith its fonr representatiw nrighbors:

(Ser the follo\\'ing explanation.)
elilninat(' the last t\\·o el('ments from the neighbor list of p:
111:= /1/-1:

end
end

end
end

Lrt II' S('(' ho\\' the algorithm handles the degenerate pass P sho\yn in Figure 3.9(a).

firsl. th(' algoritilln generates {PI' Pl' P3' P4· Po· PG· p,} as the CC\\' neighbor list of
p. .-\ftrr caltnlating -".,.. -"_, and Sr of p. the algorithm reduces the neighbor list of
pas follO\ys. \Yhil(' scanning th(' elen1('nts of the neighbor list. the algorithm defines
a s('\lu('nc(' of n('ighbors higher than P as an uppel' sequence. In this example. {pd·
Vi:l. lid. ,111(1 {PG} are the upper s('\lnences. A lower sequence is defined similarl,\'. The
algorithm r('duces the Ileighbor list by choosing the highest neighbor from each upper
sr\lnencl' and the 10\\'est neighbor from each 10\\'('1' sequence. and b~' remo\'ing the rest
of Illl' nl'ighhors from the list. The neighbor list of this example is rednced to the

list {p'!' P,I. p',. PG· p,. PI} by rrmoYing PI, because P3 is highrr than PI ill the upper
sr\lnrn('(' {P:I. pd (Fignr(' 3.9(b)). H('re. the reduced list is assumed to begin \\'ith a
10\\'('1' n('ighbor if the list has mor(' than one neighbor. The reason for doing this is
10 ('nslll'(, that th(' four alternating npper and 10\\'er neighbors at the pass are s('!ected
COlT('CII~' in \yhat follo\\·s.

Sinc(' thr('(' contours are mrrg('d at p. th(' number of non-degenerate passes IJ) is ('qual
to 2. In Ih(' routin(' that handles a pass, the algorithm first selects the last four elements

{p;. lif;. p,. PI} as the l'cprpsentatille neighbol'S (Figure 5.9(c)). The same procedure is
Ihen carri('d Ollt after the last t\\·o ('\ements {p,. pt} are eliminated from tIl(' list (Figure
:',9(cI)), .-\s ("an be seen in Figures :',9(c) and (d). the four alternating upper and 10\\'('J'
nrighbors art' s('\('cIl'd cOtT('cII.\· ill ('adl of the abo\'e steps. The list L r holds the critical
points rXlra('ll'd in the algorithlli. The ('\en1('nt of L e also holds the four r('prrsentati\'e
neighbors if its nitical point is a pass. ThL list sen'es as the intern1('diat(' data storag('
for COliS Il'\lt'l illg the slll'face n('t\york.
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(a)

(e)

(b)

(d)

Figure 5.9: ThC' neighbor list of a dC'gellC'ratC' pass in extracting critieal points: TIH'
hC'ight nlhlC's of thC' points are indieatC'd and thC' areas higher than thC' pass arC' shadC'd.
(a) thp originalllPighbor list. (b) the reducC'd ueighbor list. (c) the list in the first turn of
the loop iu thC' algorithm. alld (d) the list in the seeond turn of the loop iu thC' algorithm
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Figure 5.10: The surface nrtll-ork and contour lines

5.3 Constructing the Surface Network

Scctions 3.3 and 3.-1 present the algorithms for constructing the surface Iwtll'ork [88. 89]
and the Reeb graph [96]. respecti\·cly. For this construction. the critical points extracted
b,' .-\lgorithlll 1 are used bccause the.\· are g\wranteed to be topologicall\' correct.

5.3.1 The Surface etwork

,-\s mentioned in Section 1.2, a critical point gmph (CPG) is defined as a graph that
repre't'nn, the relations among cTitic<11 points, In other lI'ords. the \'Crtex of the gTaph
repre,pllts a nitical point. and the edge of the graph represents the relation betll'een
its endpoints, The slt1face nefw07'/; is a ePG lI'hose edge represents either a ridge or
ra\"illl'line. ,-\ ridge line is a line froll1 a pass to a peak \\'ith the steepest gradient. ,-\
radlll' line is a line from a pass to a pit \\"ith the steepest gradient. Appendix E pro\"ides
the dt'tailed definitions of ridge and radne lines and the surface net\\"ork. Figure 0.10
il!nsln1tc', til<' 'mface net\\'ork of a tenain surface lI'ith the contours. Here. the s,'mbol
... reprpsents a peak. the s,'mbol T a pit. and the s,'mbol • a pass. and the bold line a
con10nr. The direc-rion of the thick ano\\" indicates a dO\nJslope. This notation is also
nsed in tht' fo!loll'ing explanations. In this I\"a,', the surface netl\"ork represents the ridge
and n\\"ine lines of a surface shape efficiently.

5.3.2 Algorithm for Constructing the Surface Network

Thr <rlgoritlllll for cOnStruCling the surface netll'ork is nOlI' presented. As desnibed in
the exp!<llli\tion of ,-\Igorithm 1. each of the extracted passes is stored with its four
rrpresrntatil'e neigllbors. t\\'O of \\"hich arr higher than the pass and tile other tll'O of
Il"hich arc ICl\\'Cr than the pass. For each of the extracted passes. ridge lines arc traced
from the tll'O npper neighbors up to peaks. and the pass and the peaks arc' conneC"tC'd by
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edge, in Ihe "urface nel\mrk. On tlH' other hancl. the ra\-ine Iinl's arl' tracer! from the
1"'0 lo,,-er neighbors do\\'l! to pits. and thl' pass and til(' pits arc c'onnrcter! by rdges in
till' ,urfa('r nN\nJrk. Thl' ridge (nwine) line of the surfacl' nrt\\'Ork is tracer! as follo,,-,
in Ill!' illgorithul. Suppose that \w arc no,,- at a point p. Sincl' the ridgl' (ra\-inr) Iiur
goes iu thr Slc'c'pest direction of thl' surfacl'. ,,-e mO\'l' to til(' highrst (lo,,-rst) neighbor
of J!. Thr Iraring prOcl'ss is rl'pratl'd unt il "'r rl'ach a peak (pit).

Thi, InKing process ahYays ends by reaching a peak (pit) aftl'r finitr strps. Lrt us
pro\'(' Ihi,. SUPPOSl' \"e cannot rl'ach a prak (pit) \\'ith finite tracing strps. Since thr
nnlulwr of samplr points is finitl'. there is a point p that is "isitrd at Irast t,,-icr. This
IIlran" thilt Jl is highl'r than p. "'hidl is a contradiction to thl' comparisons basl'r! on the
s,'IIlbolic' perturbation dl'scrilwd in Srction 3.2.-1. Tll('rl'fore. the algorithm finislws thr
nac'ing str'p' b" ['('aching a prak (pit).

Consc'Ciuc'nlh·. thr algorithm for constructing thl' surfacl' nrt"'ork is summarizl'd as
folio"',,

Algorithm 2 (For constructing the surface network)

G, : a p;raph rl'prrsenting a triangulation of sample points
Le : the list of thE' nitical points in Algorithm 1
G.• : a graph represeuting thr surface urt\\'ork to be constructed

(lnitiall.\-. G, is empt,-.)
begin

for rach nitical poiut p of L e do
add p to G.:

for each pass Ji of Le do
begin

rrtrir\'(' til(' t,,·o uppl'r nl'ighbors of p from Le :

for each of thl' upper nl'ighbors q do
begin

trac'e the ridge Iinl's from q up to a peak,. in G,:
conne{'\ p and,. "'ith an edge in G,:

end
end

for eath pass p of Le do
begin

ret rip\'(' t hl' t\"O 10"'l'r neighbors of p from Le :

for each of thl' 10\"l'r neighbors q do
begin

tra('r the ra\'inr Iinrs from q dO\\'l1 to a pit,. in G,:
connr('t p and l' ,,-ith an l'dge in G,:

end
end

end
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Figure 5.11: (a) ,-\ mountain shape lI'ith its critical points and (b) its Reeb graph

5.4 Converting the Surface Network to the Reeb Graph

In this thl'sis. tIlE' Reeb graph is not constructed directl:-': the surface nrtwork is first
C01I1,tI'\IC1e<\ and then it is can\' rted to the Reeb graph, The reason for doing this is
the robnst ness of the algorithm, Of course, the Reeb graph can be construC'led directl:-'
h.\' <\('recting the topological changes in the (Toss-sectional comours from the top to the
hot toni of the surface. HO\\'e\'Cr. this is prone to etTor because it requires diYisions,
,-\norht'l' ad\'illltage is that the localit:-, of the construction, The surface nE'lIl'ork can be
('onstru('fl'd using onl:-' local data access and lI'ithout any di\'isions,

5.4.1 The Reeb Graph

Th(> flu Ii groph [96] represents the splitting and merging of equi-height contours. and is
one of the ePGs. Let f be a height fnnction of a surface. and Ie! p and q be points on
the surface, The Reeb graph of the height fnnction f is obtained b:-' identifying p and
'J if t h(' t\\'O points are contained in the same connected component on the cross section
at the height f(p) (= f(q)), This means that a cross-sectional contour corresponds to
a poim of th(' edge of the Reeb graph (Figure 3.11), In partie-nlar. the \'('rt('x of th('
Reei> grapll represents the critical point of the height function f- Figur(' 3,l1(a) shOll'S
,\ nlO\lnr ain shape and its critical points. and Figure 5,l1(b) shO\\'s the corresponding
ne('b graph [108, 109, .j I], Th(' correspondenc(' be!\\'een the cross-sectional contour
of tlH' mO\lntain shape and the point of the edge of the Reeb graph is also indicated
hy a <\otlc'd line in this figure. In this \\'<1y, the Reeb graph can be used to represent
11ll' topological changes of eq\li-height contours \\'ith respect to the height. Th(' formal
drfinirion of thl' Rp('b graph is described in ,-\ppendix B.

,-\ccording to the definition of the Reeb graph. the follO\l'ing tll'O properties ar('
dcrin'Od.

Property 1 If all the c1'itical points of the height function f a1'e non-degrnemtr. the
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Figure 5.12: Critical points in the Reel> graph

1'I1'lirls. i.e .. tht rritiral points of the Rel'i) gmph of f halll till' following propC7-til's

(FilJl/l"! :;.12).

(J) A l)('ak lias only one edgl' 'IIIliosl' opposite endpoint is a pass 01' a pit 10WI'T than

Ihl' prok

(2) A pit lJas only one edge whosl' opposite endpoint is a pass OT (I peak higher than

Ihr pit.

(.J) A pass lias ei/hel' (a) one (up wan/') I'dge whose opposite endpoint is an uppel'
rrdiral point and two (downw(!1"(I) I'dgl's whose opposite endpoints aTI' 10WI'I' cTdiral

li11iuts. o'r(b) onl' (downwanl) edgl' whosl' opposite endpoint is a lowel' n'diral point

IIl/d tU/1) (ujlwlIl'd) edgl's whose opposite endpoints a7'e uppel' critiral points.

Thi' is tri"iall\' deriwd b,' considering the topological changes in the (Toss-sectional
('ontonrs at niti('al sections. 0

Property 2 If til( objert sm/arc is topologimlly equillalent to a sphere. tlie Rel'b gmph

of tlie obj((·t beromes a tree.

.-\SSllllJP thM thl' Rl'l'b graph contains a cyele. According to the definition of the Reeb
graph. the surfacl' contains a torus. This contradicts "'ith the fact that the surface is

topolop,icall," l'ctui\'a1ent to a sphere. 0

5.4.2 Relations Between the Surface Network and the Reeb Graph

.-\s prC'lillJinaries. this subsection prl'Sl'nts the relations bet"'een the surface net,York and

the nl'C'\) graph.

Property 3 An edge with its endpoints 'in the sm/ace network rorresponds 'Imiqu,l'ly to

a pal/i' b"l,wppn the co',"responci'ing r'I'itical points in the Reeb gmph.

I :\ path of a graph is an altel'llating sequC'lIce of ,-ertices ,wel edges which !>egills and (,lld~ with
'"<.'1'1 ic('i'l. ill which each edge is incident with the two yertices immediately pW(,(,f'dillg allel following
It. alld ill \\-hirh all the '-ertices are distinct [42).
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the surface network
~q,

the Reeb graph

Figure 5.13: .-\ correspondeuce brtll'een an edge of the surface nrtll'ork and a path in
the flN'b gmph

Let (. deuote an edge that correspouds to a ridge line, and kt p, aud q,. denote the
peak alld pil at the endpoints of the edge e" Suppose the yertices of the Reeb graph
p" '\1ld q,. correspond to p, and q." respecth'cl,l' (Figure 3,13), Sillce e, represents it liue
that ",CCIlC!;, Illono10u0\1sl,' ou the surface from q.• to p" there exists a path brtll'eell q"
and I),· that corresponds to e.• , Siuce there are no c,'c!es in the Reeb graph according to
Propc'rt." 2, the corresponding path in the Reeb graph cau be identifieduuiqucl.,', \'011'
the propen.I' has been deri."ecl for the case of ridge lines, The same procedure can be
carried out for the case of 1'<1yine liues, 0

III this thpsis, a path in the [{eeb graph is called a monotonously ascpnding (or

r!,,,cnulillg) pafh ifit correspouds to a ridge (or l'<1\'ine) line,

Property 4 For each edgc incid'llt to a pass in the Heeb graph, there n:ist8 cilhcr a

111011010110/(81.'/ ascending path 01' a monotonously de cending path which contains the

,r!r" ,

Supposp thilt at the pass there is a "y"-shaped branch in the Reeb graph as sholl'n
in Figure 3,1~, ,-\s can be seeu iu this figure, the ridge lines that go out of the pass
wrrespoud to the upII'ard edges of the pass iu the Reeb graph, This is because therr are
111'0 (Toss-sectional contours at the upper (TOSS section of the pass and each of the tll'O
wut01ll'S is traced by a ridge line, Therefore, there exists an edge in thr surface u('\ll'Ork
th'lt (,OITe,pouds to either of thr tll'O upll'ard edges of the pass iu the Reeb graph, The
c1oll'nmud f'dp,e of the pass in the Reeb graph is also cowred by the ral'ine lines that
go doll'u from the pass, This deril'es the properly for the case of a "Y'-shaped branch,
The "llue argumeuts are carried out for the case of a re."ersed ..y" -shaped bmnch, 0

5.4.3 Algorithm that Converts the Surface Network to the Reeb Graph

This subsectiou prO."ides an algorithm that COll\wts the surfaee Iletll'ork to the [{reb
graph. The correctness and robustness of this algorithm arc preseuted by deril'ing
srlwal properties in 1he follO.'l'iug subsection.
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Figure 5.14: nidge and rayinr Iinrs ineidrnt to a pass and its eorrrsponding paths in
thr nrcob graph

Tllr basie idra is to eUIlI'ert thco ridge ami radnr lines of the smfac(' ne(l\"ork to thr
edgr, of t hr flrrb graph. Thr cUllwrsion algorithm first detrrminrs thr edgrs ineidrnt
to peaks ,1lld pits. and thrn changes a pass into a prak or a pit aftrr t,,"O of its thrre
incidcont rdg("'s arr d('!rrminrd in thco neeb graph. Hrrr. note that a pass of thr nerb
graph hns t hrrr ineidrnt edges as described in Property 1. These proersses arr rrpr<1!ed
IIlItil tIle Re(,]) gnlph is constructed completrl.'·'

Algorithm 3 (For constructing the Reeb graph)

G, : a graph cOllstructed through Algorithm 2
(Initial"". G, is the surfaee n('(,,·ork.)

G,. : a graph representing the neeb graph to be construeted
(InitiallY" G,. is empty.)

begin
for rach YNtex P of G. do

add p to G,.:
while (TRl"E) do

begin
if G.• IHIS only one peak and only one pit then

begin
join the (lyO '"ertiees ,Yith an edge in G,:
exit:

end
for rach wrtex P of G.• do

begin
if P is a peak in G, then

begin
find the highest wrtex Po from the lo,,"er adjacent wrtices of p:
add the edge PPo to G,.:
remoY(' the edge PPO from G,:
change the existing edge pp,(i = 1. .... ))) to PoP, in G,:
change p to a processed ,"ertex: (See the follo'Ying explanation.)

end
else if P is a pit in G, then

begin
find the 10"'est ,"ertex Po from the upper adjacent '"ertiees of p:
add the eclge PPo to G,:
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n'mO\'p tllf' rdgp PPo from G,:
changr thr pxisting rdgr pp,(i = 1." "II) to PoP, in G.:
changr p to a procrssrd yprtpx: (Spr tllP folloll'ing rxplanation,)

end
end

if G, has no rdgt's then
pxit:

for rach \wtrx q of G. do
if q is a pass then

begin
if tht' \'t't"lex that ('orrrsponds to q in G, has t\YO t'dgt's in G, then

begin
if q has onl~' 10llw adjacpnt yrrticps then

change q to a prak:
else if q has onl,\' \lpprr adjacrnt wrtices then

changt' q to a pit:
end

end
end

end

figmp :>,Li shOll'S hOll' thr algorithm \\'Orks \dth an exampit', Hrrr, G,. and G,
rrprpSpltl thp graplls of :\Igorithm 3, , S mpntiont'd t'arlier. tht' symbols .. , T, and.
rrprpspllt a prak, a pit, and a pass rt'sprC'ti\'rl,\', Thr s,\'I11bol 0 is also usrd to represent a
\wtrx alt'(';l(I~' procrssrc! in ,-\lgorithm 3, figurr :>,I:>(a) shO\ys the initial statrs of G,. and
G,.. Thp \'pl'tl'X 0 is tlJ(' first peak to br handled in the routine that dett'rmint's tlJ(' rdgt's
of Ih(' praks in tht' nrrb graph, Thr algorithm finds the \'('nex 2 as tIl(' highrst \'('t'tex
,tdj,\('('nt to Ihr \'prtrx 0, adds the rdgr 02 to G" remows the corrrsponding edgr from
G., and changps tht' rdge 03 to til(' edge 23 in G,. (figurr :>,I:>(b)), Similar cOl1\'rrsion
proc('SS is 'Ipplit'c! to the \'t'rtrx 1 rrpresenting a peak (Figure 3,13(c)), S~'mmetrical

('otl\'('t'sion pro('pSSpS are carried out for the pits, namely the wrtices 4 and 5(\'irtual
pit), ,-\ftrr all thr peaks and pits are procrssed, the algorithm finds the passt's that ha\'e
1\1'0 pdgps alrpad\' added to G" Let us considrr the edges incident to the pass in G"
If all 1he ('dgps are dO\\'l]\\'ard t'dges, the algorit hm changes the pass to a peak, If all
thr pdgps arr \lplI'ard rdges, til(' algorithm changes the pass to a pit. In this rxamplr,
thp \'pr!rx 2 is changed to a lwak and tht' \wtex 3 is changed to a pit in G, (Figurt'
,3.1:>(d)), Thpsp cOtl\'ersion processes are rrprated until all the edgl's of tl1r Rerb graph
arl' dptprtllinpd, Figme 3,13(t') is the final state of the com'ersion,

5.4.4 Correctness and Robustness of the Algorithm

Thp COITpCI nrss of tht' conwrsion algorithm is obtained from the folloll'ing propprt,Y,

Property 5 A1[j01'dhm S t'01Tf'Ctly r01!Ve1'ts the edges of the sUl/aCf' netwo1'A: fo those of
the Herb gl'Oph,
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Figure 5.15: Thc stcps of thc eOl1\'crsiou algorithm: The left-hand figl1l'c sholl's G.•
(tIIf' smf,)("(' ul'tll"ork) aud tIl(' right-haud figurc ShOlI'S Gc (thc Rccb graph).
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Figure 5.16: Com'erting an edge of the surface IH'tl\'Ork to til(' edge of the Reeb graph

Let jJ 1)(' a peak and let Po, PI. ." P" be the adjacent I'ertices of pin G" II'here Po is
Ihl' highest of all the adjacent ,'crt icc's, From Property 1. jJ has only one dOII'Il\I'ard edge
in tIll' nel'b graph. From Properties 3 and -I. Il'e ('annot go from am' of the adja('ent

poinTS JII' Pl' , II" to P ,dthout passing through Po by monotonously ascending paths
in the' Rcel> graph (Fignre 0,16), In other II-ords, Po is contained in the monotonously

ascending paths from am' of these adjacent points. Therefore. the edges of the surface
nelll'ork are corrcctl.I' conwrted to thosc of the Recb graph in ,-\lgorithm 3. The s~'m­

metrical procedure can be applied to the edges incident to pits, 0

The robustness of thc conwrsion algorithm is obtaincd from thc follo\l'ing property,

Property 6 A'.rJoTithrn .'] takes finite StFPS to finish the conllel'sion,

Lcr us sho\l' thaT the number of dctcrmined edges in G r incrcascs monotonousl,', Con­
sider the neeb graph that II'C arc nO\l' constructing, Recall that thc Rccb graph is a
tree from Propert~' 2, In ,-\lgorithm 3, all the peaks and pits are proces. cd fir. l. This

meal]', Ihat Ihe Rceb graph is determined from its extreme wrtices and edges, Let us

cut off t he'se cxtrenl(' wrtices and edges from the Reeb graph to bc constructecL Thc
remaindcr of the Reeb graph, II'hich represcnts its undecided part, is also a tree, Since

a ow' has at least tll'O endpoints [-121, \I'e can find at least tlYO passes that ha"e t,I'O

detrnnin<'d edges in G,.. In this lI'ay. the remaining part of the Reeb graph can be
reduced b,' ('utting off its extreme wrtices and edges through the conwrsion pro('esses.
In 01 her II'ords. Il'e can find at least tll'O passes that are conwrted to peaks or pits after
all the peaks aud pits are processed in the algorithm, This leads to the fact that the

numl><'r of d<'lennined edges in G" inCT<'ases monotonoush', 0

'\ote that ,-\Igorit hms 1.. 2, and 3 use onl~' conlparisons hetll'een the heights of I'ertices

and p,rapll manipnlations. Therefore, the presented algorithms extract correo nitic'al

points aud ePGs Iyithout fail.
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(b)

• pass
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'Vpseudo pit

Figure 5.17: (',Yell'S in thr Reeb graph: (a) ral'ine lines in thr Rerb graph and (b) tags
ill.srrlrd 10 Ihr c"elr

5.5 Extracting Features from a Surface of Arbitrary Topo­

logical Type

Thr pl"l,,'iolls "ecl ions lun'e presented the algorithms for extracting critical points and
('OIlSt I'lIct illg ePGs from sample data of a topological sphere. The next .-tep is to extend
rhr proposed '11gorithms for a surface of arbitnu-~' topological type. i.e .. a surface that
i" I opologicall." rqlli,'a!ent to a cOllnected sum of tori.

5.5.1 Idea of the Extended Algorithm

.-\s dr,nil)('d ('arlipl'. the proposed algorithms fail to extract the shape features if the
objp('t "urfacr i" topologically equi\'illent to a connected sum of tori. This limitation
arisr" frol1l thr fact that th(' algorithllls are based on the assumption that the Reeb
graph is '111'('1'. If Ilw Repb graph is not a tree. Property 3 does not hold due to Ihr lack
of Proprrt'· 2. Lrl liS sre this "'ith all rxample. Suppose there is a c~'elr in the Rerb
graph of 'III objet'l as sho,,'n in Figurr j.l 7(a). Thr n"o rm'ine lines intidrnt frol1l thr
p'lSS jJ t'olTr"pOlld to the paths indicated by thr thick dotted alTO"'s in thr R eb graph.
Thr problt'lll is that the route of each path cannot be identified because of the c.,·cle.
In ordrr to o"rl'('ome this limitation. it is necessar~' to add some information abollt
Ihr rolltrs of 'hp rm'inr lillrs in thr ('~·tle. This is also sufficient because the proposrd
Higorithill" call drlC'rl1line the Rrrb graph rxcept for its c~·c-lrs.

111 1111' illljllrlllrnlation of this study. tHgS are insertrd to the eycle as sho"'n in Figure
0.17(h). Hrrr. thr inserted tag is an rdge bounded b,' artificial critical points: a pass
Hnd a pit. III Figurr 3.1I(b). thr rc!grs q"q/ and '-,,'-1 arr the tags. In the follOl"ing.
the artifici'11 tTitieal points arr called pse'udo c1·itical po·ints. Furthermore. thr artificial
p'lssrs sndl 'lS q" and 1'" arr callrc! pse'udo passes and the artificial pits such as ql and
1'1'11'(' ('allrc! pselldo p-its. \'otc that as can br sren in Figurr 3.1I(b) thr lrft ra"inr lillr
dlallgrs its routr at the pseudo pass q" so that it gors dOI"n to the psrlldo pit ql. III
addilioll. 111'''' tll'O rm'inr lines rlllanate from the pseudo pass q": one rm'ine line goes
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Figure 5.18: The edge functions

10 Ilw p;"('IIdo pit (/I. and the other tak('s 0\"Cl" the ral"ine line that comes to (j" from
the IIpp('r ,idl'. The same can br applil'd to a pair of pseudo critical points: 1"" anc! 1"/.

This is Iht' Inain idea of the rxtendrd \'rrsion of the algorithms. '\ote that lhr insrrtrc!
artificial nitical points "'ill be eliminated after the Rerb graph is constructrc!.

III "'hM follo,,·s. thr samples of thr objet"t surfacr arr ah·ead.\' trianglliated i . In par­
ticlllar. it is assumed that thr edge fnnrtions [-II] of the triangulated surfacl' arr a\'ailablr
ill tht, follo"'ing proeesses. The edge fUllctions prol"ide us \I"ith algebraic oprrations that
rl'trir\'r Ihl' topological structures of edgrs in the triangulation. Figure ,U8 illustrates
sueh oprrarious \I"hen "'e look at the closec! surface from its outside...l.ssume that e.orig
rrprr;.,rnts thr origin of the oriented rdgr e. aud e.dest represents the destination of tllP
rd,!\r r. ..1.;., shOlm in Figurr :d8. Sym(r) represrl1ts thr same ec!ge as e but "'ith its
mit'ntatioll rr\·rrsrd. ONext(r) rrpresents the edge next to e in the CC\\" circular list of
edgrs ineidt'nt to e.orig. OPrev(e) reprrscnts thr edge next to e in the C\\" cire-ular list
of l'c!gl's incidl'nt to e.orig. and so forth.

Thr remindrr of this settion destribes modifie-ations to Algorithm 2 and ..l.lgorithm
3. "'hieh an' IIrrc!ec! for surfaces of arbitrary topological type.

5.5.2 Modifications to Algorithm 2

To l'xtrae-t thr Rrrb graph from the mrsh samples of the surface of arbitrary topologie-al
1.1'1)('. it is nrerss'1r~' to add supplemental information to the surface nC!\l"ork ,,"hen it
is rxtn1Clrd. For this purpose. t,,·o additional processes are inserted to Algorithm 2.
Ollr is to illsrrt the pseudo passrs and pseudo pits and to extract their corresponding
tTOss-st'nional brlts. and thr other is to modify tbe routes of n'l"ine Iinrs that pass
Ihrough 11)(' eross-srttional belts. The rxtended \'ersion of _.l.lgorithm 2 is listec!lwlo"-.

Algorithm 4 (For constructing the surface network (Extended version))

(;, : a graph representing a triangulation of sample points
Lr : t hr list of the critical points in Algorithm 1

I Thrn' arC' s('\"("ntl (('('hniques for COllhtl'UctiIlg \"isuall~' appealing tl'ianguhllions of t!lr object
""'faco [.13. lOG..;21·
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G. : a graph r{'pr{'s{'nting th{' surfac{' n{'lIl"Ork to be construo{'d
(Initially. G.• is empt,·.)

Lb: the li,t of CToss-s{'oional b{'lts and the CO!T{'sponding pseudo paSf,{', and pits
L,. : t{'mporary Ii,t of wrtiC"{'s
If : l('lllpOrar,\- H?rtpx

begin
for (';wh critical point jJ of L e do

add jJ to G,.:
for {'aeh pass jJ of Le do

begin
retri{'\'{' th{' 111"0 UppN n{'ighbors of p from Le :

for each of th{' UP]JN n{'ighbors q do
begin

trac{' the ridge lin{'s from q up to a peak r in G,:
obtain a cross-seOional bdt from th{' edge pq:
iw;{'rt a pseudo pass s and a pseudo pit t to G.• :
in,('rt the cross-sectional brlt together \\ith sand t to Lb:

conn{'ct 8 and r "'ith an {'dg{' in G,:
conn{'ct 8 and t "'ith an {'dg{' in G,.:

end
end

for each pass p of Le do
begin

retri{'\'{' the t"'o lo,,'{'r n{'ighbors of p from L e :

for {'ach of th{' lmyer neighbors q do
begin

trace th{' ra\'ine lines from q dmm to a pit r in G,:
set L,. to be empty:
for {'aeh of the b{'lts of Lb do

begin
find th{' union of th{' ridg{' lin{' and the belt:
if the union is not {,Illpty then

insert th{' ps{'udo pas.'; and pit associated "'ith the brlts into L,. :
end

sort L,. by the heights of th{' pseudo pa es in an desc{'nding onl<'r:
1I=p:
for each pair of a pass and a pit (8, t) of Lt· do

begin
C"Onn{'ct II and t \\ith an edg{' in G,:
1I = s:

end
connect 1I and q "'ith an edge in G,:

end
end

end
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In ..\Ji\orithll1 -1. the part marked \\'ith :'s tolTespoll(ls to the former process. and the
part Inarked \\'ith )'s corresponds to the latter process.

In rhe part m>\l'ked \dth :·s. the algorithm inserts a pspudo pass 8 and a pseudo pit
I aftl'r tracing the ridge line from a pass p. The pseudo pass and pseudo pit are set
"0 that thl'.\· s<1tisf~' s > t > p in the height order using the tpthnique of the s\'lnbolit
perturbation (cL Settion 3.2). The cl'oss-serlional belt is introduted to represent tl]('
('I'OS~-~Pl·t ioual tontom at the height of p. :\.05 shO\m in Figure 5.19( a). the (Toss-sectional
helt is bounded b\· the upper and lo\\w t~'dic lists of wrticps. Thp reason \\'h,' a belt
i" u~pd in~tead of a cross-se{'tional {'ontour itself is that thp algorithm tan obtain the
helt In' consulting on I." the height order of \'ertites (yia the tedlllique of the s~'mbolic

pert urbat ion) and the topological structures of edges (Yia thp edge functions) alt hough
it i" in1pos~ibJc' to ohtain a real IToss-sectional {'ontour \\'ithout diYisions.

The ali\orit hm uses the IToss-sect ional belt to reprpsent the cross-sectional tOn tour
of thl' c."lindrical part that tOlTesponds to the up\\'ard edgp of the pass p in the Rel'h
graph ...\s SIIO\I'II in ..\Igorithlll -I. the algorithm first inserts a pseudo pass 8 and a
pscndo pit I. and then finds its {'orresponding IToss-settional belt from the edge jJl].

\"here I] is one of thl' t\\'O upper representati\'c llPighbors of thp pass jJ (ef. Algorithm
1). ,'\Igorithm 3 detects the cross-sectional belt from the pdge pg.

Algorithm 5 (For extracting a cross-sectional belt)

prj : the input edgp of thc pass p and its uppcr neighbor g
L" : rhe npper cydit list of \'ert ices
L, : the lo\\'er t~'dic list of \'crtices
fj,\g : either "Io\\'er" or "uppcr"
(.(".(',: edges
begin

insert (/ to L,,:
insert p to LI :
( = prj
while ( TReE) do

begin
c" = OPrev{ P ):

rl = DNext{ P ):

if ( ".dest is higher than p then
begin

(' = ell:
f1>\g = "upper"

end
else if el.orig is equal to or lo\\'er than p then

begin
( = PI'
flag = "IO\\,cr"

end
if P is equintlent to pg then

exit:
if ( flag = "npper" ) then

iusert P" .dest to L,,:
else if ( flag = "Io\\w" ) then

insert P/.orig to L(
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(a)

/~
(b)

Figure 5.19: The cross-sectional belt extracted from the edge pq: (a) its sidl' yiell' and
(b) ith top l'ielY

end
end

.'\Igorit hln 3 ('xtnlcts the upper and 1011'('1' c,n-lic lists of the cross-sectional brlt b,l' mOI'ing
the edge c zigzag on the surface. The process is illustrated in Figure 3.19(bJ, Iyhere the
(TOhS s('ction at tIle hright of p is indicated b~' the dotted line, \'ote that during this
procehh thl' edge I' is allnlYs interseeted lI'ith the cross section. Therefore. the edge I'

goeh along thl' <Toss-sectional contour and extracts the upper and 1011'('1' cyclic lists of
1'('1'1 ices.

Th(' folloll'ing propertl' folloll's from tl10 fact that the edge I' bas an inter, ecting point
Iyith the noss section at the height of tlw pass p.

Property 7 Thc lowel' cyclic list of Ihe C7'OSS sectional belt does not contain othel'
crifital poinls Ihol m'e higher than Ihl' pas p. The lIppel' cyclic lisl of the C7'OSS seclional
hI II dOl8 7/01 conlain othcr criliral points thai are lowel' than the pass p.

This means that there are no illegal cases of (Toss-sectional belts as shOll'll in Figure
3.20. Property I guarantees the (Toss-sectional belt corresponds 10 the edge of the Reeb
graph uniquel.I' unless the surfacc samples are sparsely takcn: such illegal cases do not
O(Tur in generaJ'i. In the experiments of this study. no such cases are encountered.

Th(' part marked lI'ith )'s modifies the routes of rm'ine lines that pass through the
('XI racted (Toss-seetional belts. In other lI'ords, if a rayine line passes through a CTOSS­
sectional hrlt. it is dil'ided into tll'O at the pseudo pass associated lI'ith thc belt. Here.
one of Ihc' tlYO dil'ided rayine lines goC's to the corresponding pseudo pit and the other
takps O\'pr Ihe originall'ill'ine liue. Suppose that as shOll'll in Figure 3.21 therC' is a n1l'inC'
lint' Illar gal's from the pass p to the pit I' and there are also cross-sectional belts lI'hose
cOITPhpouding pspudo passes and pscudo pits are (sk.l,.J (k = 1. 2.... ). If the ral'ine line
P,W,('S Ihrongh the brlt of(sl.I,) first. Ihe edge of the surface nrtll'orkpr is chaugedlo
pll' and an edge sir is nelyly insertcd to take ol'er thc original ravinc line. \'OIC that

OJ Such illegal ca~('s OCCUI'. for eXi:Ullplc. wla'lI there ex.ists a rayine 1iIlC that do Hot CO!TC'spOll(b to
tllr cdgC' ,,"hile intersected with both the cO!Tesponding upper and lower <,ydic list~. for rX(ll11pl('.
ill tilt' ('ycle' of a torus. Refer also to the explanation of the part marked with )·s.
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Figure 5.20: An illegal rxample of a (Toss-sectional brlt

(SJ,IJ'I-l.•••• ...

I'SI
"'~tr
the surface network

Figure 5.21: ;,fodifying the route of a ra"ine line

the t'dgf' "111 is also inserted in this process. If the ra,-ine> line passes through the belt
of ("2, '2) nf'XI. the> edge> ';11' is change to "112' and lle'\' e>dges 521' and 52/2 are inserted.
Thr sanlt' prot'rdnre> is earried out if thr ra\'ine> line> goes through other (Toss-sectional
IJl'lts.

This proeess is implemented in the part marked "ith 7'S as follo\l·s. After traeing
thr rH\'iuf' liue that goes from a pass p to a pit 1'. the algorithm finds the intersections
of til(' m,-iue> hue "ith the cross-sectioual be>lts that are extraeted preYiously. These
intersettious eau be obtained b,' cakulating the union of the ra,-ine \'Crt ices and the
eross-sect ioua! ,-ertices. If the ra\'ine line has interse>ctions ,\'ith both of the upper and
IO\l-cr e\'(' lit· lists of a belt. the algorithm inserts the correspondiug pseudo pass and
pseudo pit info t he list L,.. .-\fter cxamiuing intersections \I'ith all the> (Toss-sec-tional
belts. fht' algorithm sorts the clements of L,. in a descending order by the heights of the>
pseudo pa,"l's. For each of the pair of L,.. the algorithm creates a branch to ehange thl'
route of th" [';\yiue line> as sho,Yn in Figure 5.21.

5.5.3 Modifications to Algorithm 3

Sin('e' .-\lgorillun 3 cau determine the tree parts of the Recb graph \I-hateYer I he objret
snrf,(("1' is. it is ueeessary to ext cud the algorithm so that it cau also determine the
(,,\'(.]1' paris or thl' Reeb graph. If Algorithm 3 is used to extraet the Reeb gmph for
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,nrfac('s of arbitrary topological t.\'pe. Ihe parts that contain cytles remain uudecided.
In this situation. it is easy to sep that tIl(' lo\\'est wrtex of the undecidpd parts is a
P,),,· ,-\c('ording to Section 3,3.2, tIl(' first and second 10\\Pst adjacpnt yen ices of the
pa" are it' cOIT('sponding pseudo passes, Therefore. the edges bet\\'een the pass and the
corr<"poudiug pseudo passes can be fixed in the Reeb graph. and one of the undpeided
c."C,les i, r<'dIlCpdlo a tree \\'here .-\Igorithm 3 can be applied, The process can be applied
unlill hp 1'l'IlIainiug parts contaillno c~'tlps, This is the main idea of thp extelldpd \'Prsion
of tIl(' al1\orit hm, In this way, the pselldo critical points effectiYelY determine the cytle
part' of thI' Reeb graph.

C'OU'Pl/IIPut h'. onl.\' simple modificatious are needed ill ,-\Igorithm 3 for cOll\'prting
Ill(' 'lII'fa('(' IIl't\\'(lrk to the Reeb graph iu thp case of surfaces of arbitn1l'~' topological
1.\'jH'. Thl' pX!PIIded wrsiou of thp algorithm is listed as follo\\'s.

Algorithm 6 (For constructing the Reeb graph (Extended version»

C.. : a graph l'Onstructed through Algorithm 2
(luit i'llh', G, is the surface u('(\\'Ork,)

G, : a graph rppresenting the Reeb graph 10 be coustructl'd
(Initiall\', G,. is empty.)

nil!!. : pit hc'r "trill''' Or "false"
begin

for pach ycrtpx p of G, do
;HId J! to G,.:

while (TRCE) do
begin

if G .• has onlY one peak and oul.\' one pit then
begin

join the t\\O wrtices \yith an edge in G,:
exit:

end
for each \'erlex P of G. do

begin
if J! is a (pseudo) peak in G, then

begin
find the highest YC'l'tex Po from the 100\er adjacent \'ertit'es of p:
add the edge PPo to G,.:
remo\'e the edge PPo from G,:
change the existing edge pp,(i = I.", ,11) to PoP, in G.• :
change p to a processed \'ertex:

end
else if )J is a (pseudo) pit in G.• then

begin
find the lo\yest wrtex Po from the npper adjaceut YC'l'tices of p:
add the edge PPo to G,.:
remo\'e the edge PPo from G,:
change the existing edge PPi(i = 1,.",11) to POPi in G.• :
change P to a processed vertex:

end
end

if G, has no edges then
('xit:
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flag = "falsc":
for ('ach "crtex q of G.• do

if q is a (pseudo) pass then
begin

if the wrtcx that corresponds 10 q in G, has t,,·o edges in G, then
begin

if q has onl~' lo,,'cr adjacent "ertices then
begin

change q to a peak:
flag = ..true":

end
else if q has oul.,· upper adjacent "ertices then

begin
change q to a pit:
flag = ··t rue":

end
end

end
if ( f1'lg = "falsc" ) then

begin
find the lo\\"('st pass j! of all thc "ertices in G.:
find the 10"'est ,utex j!,\ from the LIpper adjacent "ertices of p:
add thc edge tW.\ to G,.:
relllow the edge PP.\ frolll G.• :
find the 10"'est "ertex PH frDIn the upper adjacent "('rtices of p:
add the edge PPll to G,.:
rpmoye the edge PP13 frolll G .• :
1"('llIoye the cxisting edge PP, (i = 1. .... 11) from G,:

end
end

end

In .-\lgorilhm 6. the parts marked ,Yith *'s sho'y that it is not necessar~' to distinguish
hel"'e('n pscudo critical points and ordinary critical points. The parts marked ,\ith rs
pprform thp nc,dy inserted process described abow.

The COlTPCt1lPSS of .-\lgorithm 6 can he obtained from the follO\\ing propert~·.

Property 8 TII(' pselldo cl'itical points inse1"ted in Algol-ith1/! 4 do not p1"('I'e17t Algo­
rilll171 6 from r!r tn'mining the t1"ee pa1"ts of the Heeb graph.

It is suffit-ipllt to confirm the t,\O t~'pes of passes: a .. 't... -shaped pass and a rC"ersed
'y'-sha)wd pass (Figure 3.22). Recall that the pseudo passes are set to the yertices
I]('XI higl]('r than the corresponding ordinary pass using the technique of the symbolic
p<'rlmh'lIion.

Figme 3.22(a) illustrates the case of a "Y'-shaped pass: the pass has t\\'o up"'ard
edges and 01](' dO"'lI\Yard edge. \\'hile the left side shO\\s the lIeeb graph to be drler­
mined using onl~' ordinar'~' critical points. the right side sho"'s the lIeeb graph also using
pseudo critical points. The ridge and n1"ine lines are indicated b~' the anOI\S in the
figme. In I his case. only a pair of pseudo critical points is inserted into cach of the t\\'o
up"'ard edgcs. It follo,,'s from Figure 3.22(a) that this part can be determined using

ll-l



r.i~.~~ .I~~e

ravine line-

1
(a)

(b)

.pass

D pseudo pass
'Vpseudo pit

Figure 5.22' The effects of inserting pseudo critical points in the Reeb graph: (a) it

"Y"-;,haped pass and (b) a re\'ersed "y"-shaped pass

.-\Igorithlll 3 if the part is not contained in a cyde of the Reeb gnph. Of course. if the
part is contained in a c~'cle of the Reeb graph. it \\"ill work effecti\'ely in .-\lgorithm 6 as
<Iescribed abm'e.

figlll'e 3,22(b) illustrates the case of a re\'ersed "Y"-shaped pass: the pass has t\\'o
dO\\'Il\\,;ud l'<Ip,es and one uplnud edge. "'hile the left side sho\\'s the Reeb graph to be
determined u,ing onl.'· ordinar~' c-ritical points. the right side ho\\'s the Reeb graph also
using p,euclo c-ritical points. In this case. t\\·o pairs of pseudo critical points are inserted
to the up\\'ard edge..-\s sho\\'n in the right side of figure 3.22(b). the pseudo pas. es take
the fir,t ami ,ecoml 10\\'est \'ertices in the upper adjacent I'E'rtices of the corresponding
pass. Tid;, is llIade possible b~' using the technique of the symbolic perturbation. Thus.
thi, jl>lrt can be al,o determined using Algorithm 3. 0

Thl' p;,c'ndo critical points of the Reeb graph that is constructed by .-\Igorithm Gcall
hI' eliminal l'd hI' CIIl ting off the edges bouuded by the pseudo critical points.

5.6 Changing the Height Axis

The extendl'd alp,orithms allo\\' us to extract the Reeb graph from the discrete triallgu­
latl'<I s;llllples of ;, surface of arbit rary topological type, This sectioll desc-ribes hOlI' to
change the height axis of the object, for this purpose, the model of the control nenl'ork
is C01ISI rnctl'd. and the model is then fit to the object surface.
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Operator Elpe ElSI EIIN ElOUT

Branch 1.\'1)('

Ori('nl al ion of nrighbors
projr('t('<1 onto (.1'. y)-planr

Figure 5.23: Classifitation criteria for passes

5.6.1 Extracting the Object Embeddings

Tl1r ('XI<'II<I,'d algorilhms enablr us 10 obtain the topological skeletons of thr object
'mf,\cr. To consll'11c1 the model of the control nelll·ork. the embeddings of thr object
ill 3D SP,\c(' should be extractrd in addition to the topological skeletons. This amounts
10 rxtral'ling tl10 srquencr of the :-Iorse operators tog('lher \I'ith their arguments (cf.
Srction 2.1.3) .

.-\lllong III(' :-Ior,e operators. E2 (for a peak) and EO (for a pit) can easil\' be idrntifird.
for oth('r I,'P('S of thr :-Iorse operators (i.e .. for passes). one can determine the t,'I)('s by
consid('riug th(' smface orientations around the corresponding critical pointsH Suppos('
that t hr smfac(' samples are dense enough to represent t he neighborhoods around the
nitical poinh as a single-\'alned function: = f(.r. y): there are no O\'erhangs in the
nrighborho()(b, In this case. the surface orientation at a critical point can be r('lrir\'ed
b,' examining thr orientation of the circular list of its corresponding neighbors projroed
Onto the (.1'. y)-planr. If the circular list of neighbors is arranged in CC\\' order lI'hen
looking at t h('m from the outside of the surfaee. the t,'pes of the :-[orse operators for
1><1',(', arr id('ntifiedusing the cTiteria as shOlI'l1 in Figure 5.23.

In addition to thc t,'pe of the :-Iorse operators. their corresponding arguments should
br rctric\·('d. This is achie\'ed b,' cxamining the inclusion relations among the cross­
srnional contolll's at rcgular sections.

In this lI'a.'·. thr scqucncc of the :-Iorse operators are extracted from thr triangulated
sampl('s. This sequence makes it possible to construct the model of the control ne1\\'Ork.

5.6.2 Fitting the Control Network

Thr procrss of fit ling the constl'1lcted model of the control net\\ork to the objeC't surfaee
consisl s of 1hl' follOll'ing steps.

(} A llH'lltod of dr!Crllliniug the types of branches ill thr ca'5e of terrain surfa('('s is Pl'(':"!cllted ill [46]
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(1) TIl<' first step is to obtain tl10 representati"e eontours at regular seetions from the
samplC' data'. Here. each of the eross-sectional contours eorresponds to the edgC'
of tIl(' RC'C'b gmph of the object surfaee.

(2) Th(' spcond stpp i" to ('xtratt chanKteristie points. i.e .. points of maximum and
nlininnllll CU1Tature on the extrar-ted (Toss-sectional e-ontour. :\ote that thC' points
of maximum and minimum e-IIlTature han' close relationships lI'ith thC' planar
skf'i(,ton, ofthC' contour obtained b~' the 2D medial a,xis trans/onn (MAT) [10.51].

(3) Th(' third step is to assign the emTe segments of til(' controln01ll"ork to the ohjeel
surface so thai til(' eUITe segments are fit to the characteristic points of the eross­
S('("tion'11 contours. This means that the lllodel of the eontrol netll"Ork lI"ill tIT to
caplure Ihe cross-sP("tional planar skeletons of the objee-t surface.

(~) Th,' fonrth stpp is to fit the "ertical curye segments of the control netll"ork to
thC' objp("t b," tracing the objPct surfa(·e. This fitting is accomplishpd using the
"'Irial ional optimization techniques described in Chapter ~.

(:J) TII(' final step is to fit the horizontal. i.e .. e-ross-sectional CUITe segments of the
coni 1'01 Ill'tllmk to the obje('t, This fitting process is also performed using the
\',uii1tiomll optimization techniques deseribpd in Chapter ~.

In this lI·a~·. the height axis of the objee-! shape is changed by fitting the model to
t110 objpct surfacp. The results arp sholl'n in Section 5. I.

5.7 Results

This sC('fion proyides results obtained using the proposed algorithms.

Terrain samples

Siner it is !Hh,ible that slllall nndulations hide large undulations in the ease of steep
mountain rC'gions. the lI'awlet transforms (cf. Chapter ") are used to eliminate sue-h
det'lilf'd f,'at nn's. \\'hile grid sample data is used in these examples. random sample
data can 1)(' handled nsing the proposed algorithm as explained in See-tion 5.2.

Fpatun's are extracted from the terrain samples around :\It. Fuji. lI'hieh is the highest
monnt ain in .J'lpan (Figure 5.2~). Figure 5.2~(a) sholl's a rendered image of the terrain
snrfan' arolllid :\[1. Fnji. The top \'iell' of til(' critical points lI'ith contour lines is shOl\'ll
in Figurf' 3.2"(b). The critical points are extraeted using Algorithm 1. The red point
represcnls a p("lk. the green poi III a pass, and the light blue point a pit. Figure 3.2-1(c)
,holl's the ridg" and n1\'ine lines obtained nsing ..... lgorithm 2. The .\·ello\\· line indicates
a ridgl' Iii 1(' and the purple line indicates a rayine line. Figure 5.2"(d) is the surface
n0l\\'ork ('on,tructed using Algorithnl 2. TIl(' side yie\y of thc Reeb gmph obtained
nsing .-\Igorithnl 3 is shOl\'ll in Figure 3.2"(e) and its cnlarged image is sho\\'l1 ill Figure

j Of ('Olll":-P. lhi"! l'cquirc[o, dh-isions.
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;).2~(f). TIl(' t'dgr's incident to the \'inual pit art' omitted in Figures 3.2~(d). (e). and
(f). TIH'SI' resnlts sho\\' that thr proposed algorithms efficientl~' extract shapr features
surh as rid)!,r and rayinr lines from the terrain samples. Doth thr snrfacr n('tll'ork and
thr Rl'rb )!,raph arr constructer! rorrrnl.\·.

.\not IIPr rxamplr to be prrsrnter! is thr region around Lake .-\shinoko. \\'hich is a
f,unous natN lake in .Japan (Figure 3.23). Figurr 3.23(a) shQ\YS a rell(lPrrd imagr of thp
H'rrain smfarr around Lake :\shinoko. The top yipII' of the (-ritical points lI'ith contonr
linps is shO\m iu Figure 3.23(h). TIl(' critical points are extracted using Algorithm
1. Fip,mp ,i.::!3(') shO\ys the ridgr and !'<\\'ine linps obtaill('d using .-\lgorithm 2. Figmr
:i.~3(d) is thr surface nrtll'ork ronstructrd using .-\lgorithm 2. The sidr \'iell' of the Rrrb
graph extractrr! from the sl1l'facr nrtmJl'k using Algorithm 3 and its enlarged image are
shO\m in Figl1l'rs 3.23(e) and (f), TIl(' outrr rim of the natrr is efficiently d('tectrd
as ridgr liurs, 'Inr! Route '\0. 1. \\'hich is famous for the course of the Hakone Ekidrn
I'ar('. is I!r-IPCI(,d as a ra\'ine line, The grographical structl1l'es of the trrrain smface arr
('xtnH'trd h,\' constructing the snrface nrt\\'ork and the Rrrb graph.

Thesr obtainer! rrsults drlllonstrate the capabilitirs of the proposrd algorithms.

Samples of the surface of arbitrary topological type

Thp t'xtl'ndl'd ,11gorithms ran ('xtract nitital points aud ePGs from the sample data
of a surfal'p r\'rn lI'hrn thr surfacr is topologically equi\'aJent to a connected SIUll of
tori. Figurt' 3.~G shOll'S the results extracted from a monster-like object. The rendered
snrf'H'I' of Ihp objrct is shQ\\'ll in Figure 3.2G(a). The extracted tritical points togethrr
lI'ith thr rontol1l' lines are shO\\'ll in Figurr :i.26(b). '\ote that thr contour lines lI'('I'e
IlOt usrd iUlhis ('xtraction: they are shO\m onl." for darit~, of the results, Figure 3,26(c)
sholl's t hp smfare uet\\'ork of thr objrct, lI'hidl is constructed llsing ,-\lgorithm~. Figure
j,~G(r!) sholl's the Reeb graph of the object. lI'hidl is extracted from the surface nrmark
m,ing Algorithm G, TIH' torus part of the object is successfully extracted. ThE'rxtrnded
algoril hms lI'ill srrw as the fundamrntal tools for changing the height axis of thE' objrct,

Changing the height axis

Thr modl'i of the control nrtll'ork is fit to the object surface in order to ('hange thr
hl'ight axis of thr designed objrct. Figl1l'e 3.27 shQ\YS the difference brtll'ern thr object
r!l'sip,nrd in Ihr s~'stem and thE' object rl'constructE'd from thE' polygonal surfacE' by fitting
Ihr U10tll'i of a control nrt\\'ork, Figures 3.27(a) and (b) sho\\' the controlnrt\\'ork and
thl' objpcl smface drsigned in thr s."stem, rE'spectiw!y. From the drsignrd surface, the
s."',lrm olll ains thr pol."gonal representations of the object shape, Fignres 3.27( c) and
(d) shOll' Ihp rontroln('t\\'ork and the object surface reconstructed b.\' fitting thr nlodrl
of Ill(' control nPI\\'ork based on Ihe ('xtraC'ted Reeb graph. \,"hilE' there are diffrrrnces
brl \\"('('n Ihr t\\'o objects, thr reconstructed shapr effecti\'ely simulates thf' original objr('(
shapp,

Fip,ul'l' 3.28 sho\\'s a cup designed using this oprration, First. the handle of a cup
is drsigurd (Figurr 3,28(a)). The height axis of the handle is then changed (Figure
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,),2'(h)) in onlcr to comhinc thc handlr lI'ith a cnp (Figurr 3,2 (e)) that is drsignrd
srparntch', Th(' n'snltalll cnp I"ith thr handlr is shOlm in Figurr 5,2 (d),

5.8 S urnmary

This chapll'r has prrs(,llted thr algorithms for ('xtracting nitical points and erGs from
thr surfac(' sampl('s Idth the correctness and robnslIwss, Critical POilllS ar(' extractcd so
Ihal Ihp,I' sHtisf,,, thr Eulrr formula, Thr surfacr netll'ork is constructrd hy traring thr
ridgl' and ra"inr lines from tlw extractrd <Titical points, This chaptrr also prrsrntrd thr
algorithm for c011l'rrting thr surfacr nr(l"ork to Ihe Rerb graph, TIl(' COlTl'('(nrss and
robnstnrss of Ihl' proposrd algoril hms lI'rrr drs<Tibrd b,' dnil'ing srl'cral proprrl irs,
TIl(' is.slt<' of l'iwnging thr Iwight 'L\:is of thr obj('('( lI'as addrcssrd, Examplrs I"rre
prcSl'lltrd 10 dcmonstratr thr capabilitirs of th(' algorithms,

Thl' proposl'd algorithms plal' a fnndamental role for further applications, It is
imporlanl to inll'gra(r thr smoothing operations snch as l"aYclet transforms [69] lI'ith the
algoril hms hl'causl' thr smoothing oprrations prol'ide us a pOII'crfulmcallS of rxtracting
largr nndnlntions from the nois,\' data, Thr issucs of taking sample points and grncrating
a trianglc nll'sh from n smooth surfacl' rcpres('ntation also remain to be addressed. Thr
algorit liins arr 'I Iso useful for designing smooth surfaces using geOl11Nric constraints
br('<lllsl' tlH'\' pro\'idr the means of extracting characteristic points for the constraints
(cl'. Sr('(ion -l,6), Coding thr til11e-"arying surfacrs using the proposrd algorithms is
also 'III important research thel11e, Fnrthennore, thrre are other definitions of ridge and
ral'inr lincs [3, 21 that ha\'e a dose relationship \I'ith the definition in Ihis stuch', and it
is inleresting 10 nse these drfinitions for thr problrms discusscd in this chaplr!'.
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(a)

(c)

~J: r.
.e J

(e)

(h)

(d)

(1")

Figure 5.24: Mt. Fuji: (a) a surface, (h) critical points ano contour lines, (c) ridge
and ravine lines, (0) the surface uetwork, (e) the Reeb graph, ano (1") its enlargeo image
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(a)

(e)

(e)

(b)

(d)

(f)

Figure 5.25: Lake Ashilloko: (a) a ,".-fa,ee, (b) critical poinb alld colltour lilies, (c)
ridge alld raville lines, (d) the surface lIetwork, (e) ti,e Re",b graph, alld (f) its elllarged
image
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(a)

(c)

(b)

(d)

Figure 5.26: A IllollHter-like Hhape: (a) a "Irface, (h) critical poinLH and cOlltonr lineH,

(c) the Hnrface network, and (dl the Reeb graph
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(a)

(c)

(b)

(tI)

Figure 5.27: Fitting the model of a cont.rol network to a surface: (a) the control

net.work and (b) t.he surface of tl,e object designed in the syst.elTl; (c) the control network
and (d) tl,e snrface of tl,e ohject rceconst.rucl.etl by fit.ting t.he 1lI0del of a control network
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(a)

(c)

(b)

(d)

Figure 5.28: De'igning a Clip: (a) designing a handle, (b) changing t.he height. axis of

t.he handle, (c) de'igning a cont.ainer, (d) combining a cont.ainer and a handle t.o foml

a cup
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Chapter 6

Discussions

This c-liapt0l' disc-ussrs tlir diffrrrncrs brt\\"rrtl thr proposrd mrthod aud thr conn'tI­
tioual tllrt Iiods.

6.1 Differences from the Major Representations

Iliis src-tion c-omparrs the proposed rrpresentation schemes "'ith the conwntionalmajor
schrlllrs "'ith ll'sprct to the follo"'ing properties:

(1) Exprrssi\'r pOl\'er: \ \Ohat objects can be cO\'ered by the representation schenw"
Ho\\' is thp precision of the representation scheme')

(2) \Oaliclit,o: Do all admissible representations correspond to yalid objects"?

(3) l"tlallihiguit~·: Do all \Oalid representations designate one objecf)

(~) l°tliqllrurss: Do some object haye 1110re than Ol1e \'alid representation">

(.j) Drsniptiou lang1rage: \\"hat kinds of description languages can be supportrd in
thr S\'stPI11 based on the representation schel11ro,

(6) CotlC"isrnrss: Ho\y largl' do reprrsentations of practically intl'resting smooth
objrc-Is become" (This proprrt~· is often in contradiction \yith the precision of the
rrprp,elltation. )

(i) Closl1rr of operations: Do object description and manipulation operatious pre-
srlTP tl10 "'llidity of object reprrsentations')

( ) COl11putational ease: \\Ohat kiuds of computational complexity arr iuyohwl in
thr rpprespntation schemr')

Thrsr propPrtirs of rrprrsentation schemes are deriwd from [i1]. The major representa­
tion sc-lirllll'S to hI' col11parrd "'ith the proposed one are the o('trrr. crll drcOIllposition.
esc. and D-rpps. "ote that the first three representations are contail1l'd in tlir cat­
('gOlT of \Ooluul('tric rnumeration models \drik the proposed modrl and B-rrps try to
rl'preSrnl ,IU ohjrn througli the rrpresentation of its bounding surfacr. Therrforr. the
proposrd ulodd and B-reps share adn1ntages and disach'antagrs for some of the abo\Oe
proprrti(',. I,lblps 6.1-6.8 shO\\ the e\Oaluations of the representation schemes basrd on
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Table 6.1: The e\'<\luations of the expressi\'e pOlYCr

Ouree

CSG

I3-n'ps

TIl(' IHOposcd IlIode!

E\'aluation

.-\pproxllllate representatlon
Controls the d(1)ths of oc'lrees for eX1)ressi\,e nretision
~~I;,~'~~~nts geueral shapes using the cells \I'ith cUITed

Difficult to represent complex smooth surfaces

Holds a general domain (in particul,li' for poh'hedral ob-
jects) .
Holds a general domain (ill particular for sIllooth ob­
jects)

the aIH)\'e <1esnibed properties. Let US consider each of thp properties in more detail in
\I'hat follOll's.

Expressive power

Thr ('xpressi\'(' PO\l'Cr of the representation scheme means the domain of objects cO\'('I'ed
b~' thr Sr!H'IIJr. This propert\' also represents the precision of the object reprrsentations.
The propl'nil's of the major com'elltional representation schemes and the proposed one
arr dpsnil)('<! as foIl0\\'5.

• Oor('r: The octrres arc approximate representations. \\'hile the <\l'bitrar~' pre-
cision can br achiewd b~' controlling the depths of the octrees. it requires the cost
of high storage use.

• Crll decomposition: The expressi\'e domain of the cell decomposition is larger
than that of the oOree. because the cell decomposition can represent more general
shapr using the cells \I'ith clllTed surfaces.

• CSG: The expressi\'e pO\l'er of the C G depends on the number of a\'<1ilable
prilllit i\'('s. The CSG cannot co\'er complex smooth surfaces because the expressi\'e

domain is limited to combinations of simple primitiYCs in general.

• I3-reps: The scheme of the B-reps has a more genera! domain than that of the
CSG. \\'Ilile the scheme of the I3-reps is suited for polyhedral objects. its ('xpressiw
PO\lW is large enough to represent the shapes of arbitrary objeos if many kinds

of smfaces Me supported.

• The proposed model' The proposed scheme also has a general domain of object
shapes. Although this seheme is suitable for smooth objects. its expressi\'e pO\l'er

is as lllll('h as that of the B-reps.

Validity

The \'<\li<1it.\· of the representation scheme indicates \I'hether or not an accrptable rep­

resent ation ill the seheme certainl,' designates a \'alid object.
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Table 6.2: The p\'aluations of the yalidity

Reprrsrut ation Eyaluation

()etrre Yalid if comJrC"tiyit~, is not required

Cdl decomposition ~~~~IIl~~'i~~~~~;~~\t~rcauseof the lack of the structmal

CSG \'alid if the CSG trer is corrrct

l3-rrps Difficult to rstablish thr gromrtric corrrcturss

• Oetrre: ,-\11 the octrrrs arr \'alid if no sprc-ial connec!i\'ity rrquirements arr
inlposrcl.

• Cdl c\eeOlnpositiou: \\'hilr thr Yalidit~' of the oenee is assurrc\ by its structural
proprrl ips, I hal of thr cPlI decomposition is hard to establish brcausr a geurral
cell dreomposition is just an unordered set of crlls,

• CSG: EYer~' objeCl represented b\' the eSG tree is guanulteed to be mlid,

• l3-rrps: The \"<llidity of thr B-reps is quite difficult to establish, \\'hile it is
r>\sy to prrsrlTr the topological \'>\lidity (i,e" topological relations among thr
rntit irs), it is hard to enforcr geonwtric correctness because the boundaries arp
not g1l<1n1Bterd to be closed,

• Thp proposrdmodel: Since the proposed model holds the object data as dosed
smfaers, it is easier to enforer the geomf'tric correctness tl11UJ the B-reps, It is
still nrcrSsatT to detet! the ilk'gal iuterferences among the surface la~'f'rs, thr
gronH'tric C'O!TeClneSS can br achiewd because the system holds the embeddings
of the objrct in 3D space together \\'ith its topological skeletons,

Unarl.1biguity

Thr uU'lInbiguit,\' of tlw reprrsrntation scheme guarantees that the \'alid rrpreselltation
drtrrmines rxaet 1,\' one object.

• C)c-trr'r: l'p to the limits of resolution, all the octrees definr exactl\' one object.

• Crll decomposition: :\ \'alid cell decomposition represents a yalid objrct.

• CSG: EYer~' eSG tree complrtPl~' determines an object.

• l3-r<'ps: Yalid bouudar~' rrpreseut at ions are unambiguous,

• TIl<' proposrd model: The \'alid representation of the proposrd modd unall1-
biguousl~' determiues an object,
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Table 6.3: The cya!uations of thc uIHlmbiguit~,

Rpprrselllation E\'aluation

Octr('e Cnambiguous up to the limits of resolution

Cell d('composition Cnambiguous

CSG Cnambiguous

B-reps Cllambiguous

Thp proposed modd l'nambiguous

Table 6.4: The e\'a!uations of the uniqucness

Ocl rPl' l-Ilique if the resolution is fixed

CPlI dl'("()lllposition :\ot ullique

CSG :\ot uniquc

l3-n'ps :\ot uniquc

The proposl'd model :\ot ullique also "'ith c1iffcrcnt height aws

Uniqueness

The ulliquelless of the rcprcscntation sc-heme guarantccs that an objec-t has on!~' onc
rorrespollding \'alid rcprcscntation,

• Octree: The rcprrscntation of the oc-trcc is uniquc if thc rcsolutioll is fixed,

• Cell dec-ompositioll: The reprcsentation of thc ('cU decomposition is not uniquE',

• CSG: Thf' reprcsentation of the CSG is not uniquE',

• l3-rrps: The rcprcsentation of the B-reps is not uniquc,

• The proposed model: The representation of the proposed model is not unique,
Sinc(' the proposed model is dependellt on the height direction, it is also not unique

uuder the eh'lnges of the height c1irec-tioll,

Description languages

The r!esniptioll !'lnguagE's me thf' languages supported in the s~'stem basf'd on the
l'('prpsrul HI iou ,dlCmc, It is important to sef' "'hethcr thc description languagcs are
dirrcth' bas('(1 on thc representation, cheme or the object representations arc conwrted

from other represcntation schemes,
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Table 6.5: The pnllnations of tIl(' description langnagp

[{ppre'spnt ation

Cklrpp

Cf'll r!c'colnposition

CSG

[J-re'ps

Thp propospr! model

Eyalnation

Conwrtpd from otll('r r('prpsentation schp11Ips

Conw'rtpd from other representation sC'lH'nH'S

Text ural langnagps and graphic-al ilHprfacp
l('{llons to malllpniate dIrectlY
COI1\,('rtpd from other representation schpmps
lextural langnages tor the topologIcal skpl(,lOns
Granhical intprface for the ge011letric details

• O('(['('p: Th(' octrpps ,up usn ally formed by the cOll\"('I"sion from other r('prpsen-
till ion s("\I('lnpS,

• Cf'll r!('c-onljlosition: It is ,'pr." hard 10 dirpctly manipnlalp til(' cdl dpcolnposi­
tions of int('I'psting objects, Tll(' cell decomposition is genera II," c-ol1\"('I"l('d from
01 hp!' rppre'sentation sch(,11Ies,

• CSG: The objects in the CSG can be described by textnallanguages. It is also
po,,,i1>le 10 in("\nde a graphical interface into the system,

• B-reps: The B-!'pps are t('dions to describe directly, \"hile the Enler opera-
tors arp pro,'id('d as the means of manipulating tb(' boundar" data, tlwy are still
10\\' le"f'l operators that are tedious for nsers, In B-rep systems, the obj('cts are
usnallY' d('signed b~' s,,'e('ping operations or CSG-like boolean operations and then
conyelwd to 1>oundar~' r('pres('ntatioIlS,

• The propospd mod('l: Th(' topological skelptons of an object can be describpd
1>Y' tpxtnal languages snch as the :-Iorsp operators, The geomNric details of the
obj('(,t arp ('olltrollpd "'ith a graphical intprface,

Conciselless

Th(' c-onc-is('npss sho"'s ho\\' large thp object r('pr('s('ntation becomes in terms of storag(',
:\otl'lh'H Ihis prop('rty is oftpn in contradioion \\'ith the precision of the representation,

• (ktr('(': The nnmber of th(' nO(\(>s in the octree is proportional to the surfacp
arpa of thp object. Th(' octrpe repr('sentation takes a larg(' amoullt of storage for
comp1Px SIllOOt h surfaces in g('neraJ.

• Cf'll (\(>composition: :\lthough the cell (\(>composition is relatiyd~' t'Onc'ise fOi
sinlpll' objrets, it rrqnirps a fair amount of storage for complex smooth surfaces,

• CSG: ,-,-Ithough thp eSG trp('s are in principle concise for simple objpcts. its
('xpre'ssiYp PO\\w has limitations \\'hen comp\(>x smooth surfac('s are handled,

• B-re'ps: The bonndar~' repr('spntation 'Yill achieye precise rqJl'es('ntat ion of thp
smoot h obj('cts \\'jth a small amonnt of storage, because it holds only th(' bonndary
dat,) of the object.
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Table 6.6: TI10 cnlluatiollS of the concisrncs~

CSG

l3-rrps

Takes a largc amount of storage

Takr~ a fair amount of ~torage

laKcs a small amount 01 storage IJut InllItecl rxprr~~I\"('

pOII'cr

Takr~ a ~mall amount of ~torage

Takrs a small amount of storagr

• The propo~cd modcl: \\"hile this model holds thc data of the ~mooth surfacr
in a hierarchical fa~hion. the final representation of t he smooth surface become~

almo,t thr S'1n10 as thM of l3-rrps. );ote that the Q\'rrhead of the upprr lel'rls in
the hierarcllical represcntation is relatil'dy small.

Clo ure of operations

TI10 doslll'c' of operations indicat rs Il"hether the supported operations preSrlye the 1"<1­

liclit.l· of ohjrcl rpprrsrutations. It is necessary to take into account the gcncralitl' of the
'tlpport I'd opc'nlTions.

• C)c-trrr: The octrer scheme supports doscd operations for problems such as
tnulslarion. roration. and boolcan opcrations.

• Cell clPcomposition: :\0 dosed operations are supported in the cell decomposi-
lion.

• CSG: 1300leau operations are algebraicaill' closed for thc CSG trees.

• l3-rrps: l3-reps are usuaill' not dosed under boolean operations.

• Thr propo~rd modrl: The proposed model is dosed under the :--Iorse operations
and I h('ir ('xrrnsions. HOII·clw. it II'ill not be dosed if boolcan operations are
inrroducrd.

Computational ease

Thr ("()IllJllltatioual rasr mcans the computational complexit.l· ill\'ol\"Cd in the represen­
tal ion schrnl(,.

• Ottrer: :--Ian\' algorithms for the oetrees consist of relatil'eh- simplr opcrations.

• Cdl drcomposition: Thcrc are no cxplicit operations of manipulating the cell
d(,c01nposi t ions.

• CSG: The computational POl\-er of important CSG algorithms (such as boundan'
e\'alualion) is poor. HOlw\·er. many of their basic steps arc \"Cry simplP.
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Table 6.7: The e"aluations of the dosure of operations

eSG

B-r"lJS

Thl' proposed modd

S'~~~rd undrr translation, rotation, and boo\('an opl'ra-

Has no dosed opl'rat ions

,-\Igebraicall" dosed under boolean operations

:\ot dosed under boolean oprrations
Closed undl'r tllr \forse oprratlons
:\ot dosrd undl'r booll'an oJ)erations

Table 6.8: Thr rnl1uatio!1f; of the computational ease

Rl'prrsl'nt ation E\'aluation

Ocow Simple algorithms

Crll dl'l'OnljJosil ion Has no explicit oprrations

eSG Has a poor set of algorithms \\-hilr thr." are simplr

• B-r<'p" Thr B-reps arr useful for gem'rating graphical output. because thr~'

rpadil," inchllk tIl(' data needed for dri"ing a graphical display, Algorithms based
on th" B-rrps brcome quite difficult if the objrcts brcome more complrx,

• TIl(' proposrd modrl: In addition to thr problrms in B-rrps. this modd contains
SOllll' cOlllputationalh' rxpmsi,'e calculations such as \'ariational optimizations,

6.2 Other Representations

This sr('tion describes other rrprrsrntations: s\\'rrping and 3D :\L-\T.

Sweep representations

S'\'('rping tr('hniqurs arr \\'idrl," usrd to grnemte cylindrical objeCts, eontemporar~'

CAD S,"SI('111S contain the s\\'eeping operations as the fundamental techniques of ma­
nipulating boundal'\' data of the object shape, Since the Rreb graph is \\'ell suited for
thr notiou of s\\eeping. the modd that associates the s,\'reping representation \\ith thr
Rrel> graph is a poteutial technique for designing complex smooth surfaces.

131



This study uses the tl'c-hniqul's of manifold-lik(' patc-h assembling iust('ad of the
",'(,ppiug 1)('(";1usP of th(' follOll"ing t,yO rrasons, Thr first reason is that thr sll"rrpiug is
not conl"l'llipUI for rrprrsPllting thr smooth surfacrs around thr branchrs as drscribrd in
,\PIll'lldix F, Thr s('c-ond rl'ason comrs from thr fal"! that this study trirs to implrm('nt
lI1nltirpsohlliou surfate design basrd on thr patch gluing, Tai succrrdrd in incorporating
Ihp "1"C'rping Irc!ll1icpl(,s lI'ith thr Rrrb graph in l.J('r stUd," [11 "J,

3D MAT representations

,-\1101 h('r jlOI ('Ill ial rpprl'sC'lItatioll sthrml' for smoot h surfaces is 3D m('dial axis transform
(3D \L\T) rpprrsl'ntation, Retentl,', Ge!ston and Outta ha"r presl'llted an rffrniyr
illlp!('UH'll1atioll of ,1 smfacr modclN basrd 011 3D \[:\T [33J, all the oth('t' hall(!. nrd(I,I'
alld Turkiyyah ha"r prrsrntl'd a trthlliqur for rxtrac-ting the 3D medial axis from thr
ohj<'c! s111'facl' IIsing a grnrralized Oclallllay triangulation [93], ,-\lthough tl10 3D \I.-\T is
illdp!H'lldrlll of Ihe coordinatrs of thr space II"h('t'e the objects are rnlbrddrd, Ihr shapr
1l10c!('\P!'., bm,('r! on 3D \l.-\T are still inc-om'enirllt for desc-ribing surfac-es of cOllljllrx
topological n'pl', 011 tlH' othrr ham!' the proposed modeling method SUffNS from the
fatt t h<1t t h!' nr('b graph is ,'ariablr undrr the rotational transformations of thr objerts,
Thrrpfol'{', it is intrrrsting to find the tonllection between thr 3D medial axis and the
nrrb graph in order to OI'erC0111e t he limitations of both represelltatioll sthemes,
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Chapter 7

ConcIusions

7.1 Contributions

This th('sis hns pr('sented a ne\l' feature-basedmodrling method for smooth smfaces, As
Ih,' shnpe feMmes, (-ritical points such as peaks, pits, and passes arc used. In particular.
Ih" Heeb graph, \I'hich is one of the CPGs, is used to design the topological skeJptons
of ill(' object shape. The critical points and CPGs \I'ork at Ihe upper le\'ds in Ihe
hi"rarchical representations of the smooth objects,

The ilnpl('mentations of the bidirectional operations betll'een the object shapes and
shap(' f(,ilt n['('s. i.e .. design by feat ures and feat ure extraction \I'ere presented.

Th(' d(',ign h.\' featmes b('gius \I'ith specif\'ing the topological skeletons of th(' objet!
,hap" usiug the Heeb graph, :\s a design interfaee. the ieonie repres('ntation of the
R('"b p,mph called the embedded Reeb graph is used, \I'hieh represents the emlwddings
of tlw object shape in 3D space, The Reeb graph is manipulated by the :\10rse operators
that d('s<Tibe the \I'ay of conneeting the eritical points, The maero operations \I'ere also
inl roduced to a\'oid t he limitations due to the height order of the \Iorsp operators, TIl('
s<'ill'nle for representing the topologieal skeletons and the implementation of the ieonic
int('rfaee \\'ere also presented,

TIl(' p,"OmrTtT of the objeet shape is designed b~' specifying the flo\\' eUlTes that rim
011 IIII' ohj('ct surface, From the flo\\' eurws, the system automatically eonstrutts til('
control n('1 \\'CHk that encloses the object. Each \,ertex of the control net\\'ork has its
o\\'n local patch thm is designed b~' using the curw segmcuts of the control netll'ork as
Ih,' g,'onl('t ric conslmints, The local patches are then glued together using the manifold
nlappings in order to form the owrall surface of the object.

This thesis hns introdnced the multiresolution smface design method for desnib­
ing Ihe d(,1 niled geomrTr\' of the loeal patches, The local patches arc represented b,\'
,'ndpoint-int('rpolating B-splines and their eorresponding mt\'rlrrs. The shape of the
local pat<'h i;, determined by optimizing the energy function subjeet to its deformation
II'hil(' preselTing the imposed eonstraints. The multiresolution eonstraints arc soh'ed b\'
con\'erling 1111' constraints at a loll' resolution le\'rl to those at a high resolution le\'('l.

TIle f(,atme extraction, one of the bidirectional operations, has also be('l} il1lpJr­
nll'nl('d in Ihis stnd\'. The eritieal points are extracted so that the\' sntisf~' the Euler
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formul;l. Th(' ~nrf;\('(' n<'t\york. onr of th(' CPGs. is construct I'd b~' InKing ridgr and
ra\'inl' lin('~ on thr snrfau'. This thrsis has presrnlrd an algorithm thilt conn'rlS thr
"lrfac(' nC'twork to the Rrrb graph. L"sing th(' extractrd R('eb graph. thr modrl of th('
cont!oIIH't"'urk i~ fit to the ubjrct surfacr. which allo,,'s us to changr the l10ight axi~ of
thI' obj('ct ~hapC'.

7.2 Future Work

ThC' fut m(' ('xt('n~ions of thr propo~rd modrling method can be grouprd into four cat­
egori('~: (1) introdncing morr detailrd featmrs to thr hierarchical represrnl;Hions. (2)
pro\'ieling 0IH'rat iOllS that makr betl('r usr of tlw features of smooth surfacrs. (3) al­
lo,,-ing more' fl('xibility and rase in the surfacr drsign, and (4) extrnding thr proposed
mueld to ot h('r applications.

Introducing more detailed features to the hierarchical representations

• Distinguishing brt"'een the differenc('s of knots and links

Integrating th(' theOl'~' of spatial graphs [31. 141] "'jth this model is an intrrrsting
res('arch I hrme.

• EXII'neling the morkl for non-orirntable surfaces such as J\lein bottles

Th(' fra111('\\'(Jrk bas('d on til(' atom-mol('cule graphs [llO) is a candidate for such
(\11 rXl('llf--ioll.

• Crrat ing marl' sophistiCaled mod('1 of degeneracy

\ \'llik till' prrs('ntedmod('1 is "'('11 suit('d for designing smooth surfac('s. it is pr('f('r­
ablr to ('xtrnel thr modrl to hand II' flat surfaces. This needs a more sophisticated
modd of drgenerac.\·.

• Extrac·ting thr critical point configuration graph (CPCG) [ 2. 831 from discrete
~amples

Tl1I'rr is a dose relationship brt"'een the CPCG and the surfacr net\mrk because
bOlh of them r('prrsent ridge and rayin(' lines by their edges. \\'hil(' the edge of
th(' ~mfa('(' n('t"'ork indicatrs a set of connected ridge or rayine liMs. that of thr
CPCG indicatrs exacth' one ridge or r<lyine line (See .-\ppmdix E). Constnrcting
thr CrCG from its CO!TPsponding surface net"'ork is a topic for future rrs('arch.

Operations that make better use of the features

• Taking \'isualh'-aplwaling nl('sh sanlpl('s bas('d on the shap(' f(';\tur('s

Sin('r thr shap(' f('atur('s are already obtained in this implementation. a nl('sh bas('d
on such feal ur('s should be g('nerated. Hi('rarchicalmesh gpneration [127.44] baspd
on thrsr fralur('s is also a potential application of this stndy.
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• ,\ssi!\ning I('xture mappings based on the shape features

Thl' shape features can also be used for defining mappings for textures, Interacth'l'
lexturp assi~nnwnt [83) based on these features are also an interesting topic for
flll urP research,

• Finding rplationships bf't lI'pen the Repb graph and thl' 3D nwdial axis

Sincc' the Repb graph is definpdllnder the specific height flln(,tion, it is nuiable nn­
rlPr rot at iOtHll transformations, Finding rl'lationships Iyith the 3D medial ,\xis [10)
lI'ill OI"('tTonw this limitatioll becallse the 3D medial axis is innui,)1lt lInder rota­
t ional transformations,

Allowing more flexibility and ease in the surface design

• ,\llO\yill~ COlll'entional operations in this model

,\ lloll'ing Ihl' conwntiollal opemtions slleh as boolPan operations should be consid­
('I'('(\. Sincp this Ihesis has preseuted the algorithms for extraeting shape features
froln pol,I"I:\'mal surfaces, it is possiblp to perform the boolean operations if the
pol,I'gonal representation of the rpsultant surface is <1\'ailable in the s,'stenl.

• AllolI'ing additional ftexibilitips in the coufiguration of the control network

The configuration of the eontrolnelll'ork nsed in thl' system is still rl'strietl'd to a
regular Olll' that colltains onl,' intersections like crossings, It is desirablP to alloll'
more fkxibll' configurations sueh as those containing 'T'-shaped intersections,

• Proyiding intuilil'e openHions in mllitiresolution shape desigll

,\It hOllgh tlIP proposed mel hod of designing multiresolntion shapes is efficient, thl'
users require prior knO\dedge on scale- pace theor,' [137, 66] in order to make full
I"P of the method, The operations that take into account the properties of the
"ealP-,pace thpor,' arl' nseful for both lI'ell-trained and no\'ice users,

• PrOl'iding operations for eontrolling the tolerance of features

Speeif~I'ing t'Onstraints such as dimensions and toleranees is an important issue in
[('ature-based modeling techniqnes, In this implementation, geonwtrie eonstraints
ean 1)(' attadled iu order to t'Ontrol til(' shape of the features to meet the specified
dinll'n"ion", ,\llO\l'ing nuiations in size such as tolerances is left as future IYork,

Extending the proposed model to other applications

• ,\ppl\'ing the feature extraetion algorithms in order to describe til1le-I'ar,'ing Sur­

facr's

The fe<\turp extraction algorithms will be useful also for coding time-I'ar,'ing sur­
fill'e shapes, In particular. the appearance and disappearance of critic-al points
can 1)(' drectil'eJy described using the algorithms, Describing time-nuying shapes

l\'ill be important for animation techniques,
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• Exlc'!ll!iUg thr moclrl for artistic clrsign

Thr propo,rd model is a kind of functional approaches for smooth surfa('(>s brcausr
it trirs to implrment systematic clrsign schemrs based on shape [('aturrs, In orciN
to rxtrnd thr modE'! for artistic design of smooth surfacrs, it is important to
incorporatE' the model "'ith surfacr ClllTaturrs, For examplr, a nN\york of linrs of
ClIrnltlll'p [,3] can br uSNl to control tIl(' surfacE' CUITatllrE'S,
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Appendix A

Morse Theory

This aplH'llllix prm'ides m<lthcmMical prcrcquisitcs for ~Iors(' th('ory. ncfcr to tl1(' tcxt­
hooks [SO. 32] for luore details.

First. l('t us drfiuc critical points of a smooth surface. Let j d(,llotr a smooth r('al­
";\IIl('d fllnctioll 011 a smooth manifold -'I of dimcllsioll II. :'\ote that ill this th('sis.
II = 2.

Definition A,I (Critical Point) Thr point p E -'I is called (I criliral point of t,hr
flilldi(!1I f (f p,nldj(p) = O. Thr lIallir j(p) is called a cI'iticalvallie oj f.

TIll' matrix of I hr scC'Ond part ial deri"ati"es of j is defillecl as

H(i.j)=~.
D.r,D.r)

(A.1)

Definition A,2 (Non-degenerate Critical Point) The critical point p of j is rallrd
11011-r/(!J( II( rolr if fllr Hrssian matrix is ngulm' at p.

Definition A.3 (Index) The inde.( of the critical point p of f is the numb(r ofn(gatioc
(II}I IINt/III.< of 1/11 Hcssinn matri.r at p.

iner t h(' dinll'llsion of the mallifold is 2 in this thesis. the indiccs of the critical points
rang!' frolll 0 10 2. Thc critical poillt of the illdex 2 is called a peak. thc (-ritical point
of I h(' indl'x 1 is calkd a pass. alld thc critical point of the index a is called a pil.

Definition A.4 (Morse Function) Thr smooth junction j 011 .\1 is rallrd (I Mo.,.sr
jllildioll if III/III' vj its n"it,irnl points al'e degenemte.

.\ ~I()rse fllllction ('xists 011 any smooth compact manifold [80]. :'\otc that ill this thesis
;\ h('ight fllllctioll is uscd as thc ~Jorsc function.
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Lemma A.5 (Morse Lemma) Lft f be a smooth flLncfion on.\I and I, t P b' a nOll­
d, rt' IH mtt "I'itiral point. In tlu opcn 1lt ighbol'hood of p. thel'e crist 10call'ff/lLlal' coo1'(ll-
I/alr., .1', 1'" sarh that the flLlIrtio17 f is t.E/n·essrd by

(.-\.2)

/l'h' f'( ,\ is thr indr.I" of th, rritical point p.

\101"<' IPlllllla is IIsed for ill\'('stigating the surface beha\-ior around the eritical poinTs.
\rhr'll II = 2. th<' 1<'lllllla call be \\Tittrn as follo\\-s.

1
_,1'2 - y2 fora prak

f(·I"· y) = _.1'2 + y2 for a pass

.1'2 + y2 for a pit

l--\.3)

l3('fol'r going into thr details of \lol'sr Theon-. let us c!efille cells anc! C\\--colllp!cxes
,\S follo\\-s [~D].

Definition A.6 (II-CeIl) A topological spaee e" 'is called an n-cdl if it is homeo17wlphic
fo an l/-dilllrllsi01/O,1 disk D".

Definition A.7 (CW-Complex) Let X ue a Haltsd01fj spare. We roll the p(t1·tition
of.\ ('( II dfl'olllposition E if X is a set of painuise disjoint cells. 5ILppose thnt tllP pair
(X.E) rOl/si.,'s of a Hrtltsd01fjspaceX and a cell decomposifionE of X. (X.E) is called
a ('11--"0111/1/(.1' if the following thme conditiolls W'e satisfied.

(1) (Characteristic Maps) FOI' each II-cell e E EtheTe is a continaolLs map <I>< :

D" - X laking D" (intel'iol' of D") home017Wl]Jhically onto the cell e and 5,,-1

mto the ILnioll of the cells of dimension at most n - L

(.1) (Closure Finiteness) The rloslLre e of each cell e E E intel'sects only a finite

/IIIIIJ!H I' of othel' rells.

(.I) (Weak Topology) --' C X is rlosed if and only if elJel'!J --' n e is closed.

TIl(' foIlO\\'ing thron'lll is pl'oyell b.\· appl.\·ing the homology theol'y to C\\--complexrs [(3).

Theorem A.8 (Euler Characteristic) Let 1\- ue a fin'ite GW-c01Jlple.I". The Ettlel'
charartcristir .~alisfies the following equation:

\(1\") = I)-l)"#(e")

IIIh,1'(' #(,") 1'( wesents the nltmUel' of 1/ -cells.
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Iu till' C<1'" of 2-dilllt'usiou<11 manifolds. the abO\'e eqU<1tiOll is reduced to the follo"'iug
"qu'lliou.

(.-\.3)

(.\ ..j) is c<1IiP<llhe £lI/fr f017l1ltlo iu this thesis. The Euler dwmcteristic is <1 topological
iunlrianr aud is used for \'erifyiug the tOusisteucy of obj('et d<1r<1.

:\ lor~r t henry is expl<1iued as follo,,·s.

Theorem A.9 (Morse Theory) Lo f be a Morsc function on the smooth compact
dOSld c01l171d({! manifold .11 . .11 is then homotopy equillnlent to a finite CW-rolllplc.r
wllitll is a SI I of crUs whose dimensions c07Tespond to the indices of its rritiml]Joint
tls!lIdi(lr!!J. I'll otlln' wonls.

.\1 '" 1"'] n 1"" n ... n 1''''.

wll,/·t r\. /'2' .... a.nd rk m'e the 'ind'ires of the rritical po'ints of .\1.

(A.6)

Frou\ the t hroril's of <1lg('braic topolog~·. eompaet 2-dimcnsional manifolds cau be das­
,ined into am' compacr smfact's that ar(' homeomorphic to t'itllt'r [103. 73]

• eouul'et I'd SIlins of tori, or

• eOIllH'CtN! slims of proj('cti\'e plan('s.

:\[or,e rheolT adds rh(' information about smfart' ('mbt'ddillgs to the abo\'e topological

r1'hsinr;\tiou.
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Appendix B

Definition of the Reeb Graph

Thl' mathemalical definition of the lIpf'l} yTaph is descrihed as folloll"s. ,,"ote that this
d('finilion is dl'ril"C'd from [107]. Let 1 :.\! -. R be a real yalued function on a compact
11l>\nifold .\!. TIle TIe('h graph of I is the quotient spac<.' of the graph of I in .\f x R by
thi' equin11ence relation gil·en helo,,·:

(n.l)

holds if <1Ild onlY if 1(.\1) = 1(.\2) and .\1 and .\2 arc in the iiame connccted componcnt
of 1-1(/(.\])). That iii. the t,,·o points on the graph (.\I·/(.\tl) and (.\2./(.\2)) arc
l"I'pr(';,I'nt('d as the iiame connccted component of the im·erse image of 1(.\1) (or 1(.\2)) .
.-\11 points that belong to the same equil·alcnt class of the original iipace arc rcprf'sented
,1S a node ill the qnotient iipace snch as thc Reeh graph. Figure 1.2 illuiitrates the Reeb
graph of a torns.

1-10



Appendix C

Endpoint-interpolating Cubic B-spline

Wavelets

Tilc S\'lIlilcsis lllal riccs plkl and Qil'! for Cllc!point-intcrpo]ating cnbic D-splillc \\'(lyclcts
<11'(' gil'cll 1)('10\\' [9-1., 113, 116].

1 1 -2

pill = ~ 1 1 Q11! = .J7 (C,I)
2

1 1 -2

16 136

-206-1. -2-1.0

12 -1. 1193 691

pul = ~ Q(2)= 315
-1033 -1033 (C2)

16
10

3119628
12 691 1193

-2-1.0 -206-1.

16 1368

1-1.1



l-i2



0·2'

67022166-1

20931.200710

-3//03.271723 -6369.303-133

30130.003012 17-129.26600-1 383.7970-1-1

-1-1-139. 69633 -2300-1.202368 -20 6.3-10603 -1

3223.123-128 2-1 -18.487871 83-19.373-120 12-1

-1067.879-123 -1767 .88-1301 -1 7-13.-1730;)9 -16//

7 .8-128 7 739-1.6 337-1 2-1291.793239 790-1

-0.633830 -1361.868338 -1 -120.997397 -18-1b2

113.-1663-17 7866.732006 2-126-1

-0.931180 -1668.610 72 -18-182

123.3786/1 790-1

-0.99-1989 -16//

12-1

-1
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-1

12-1

-16"

790-1

-18-182

2426-1

-18-182

,90-1

-1611

12-1

-1

-1

12-1

-1611 -0.99-1989

790-1 123.3,8671

-18-182 -1668613872 -0931180

2-126-1 7866732009 115.-1663-17

-18-182 -18-120.997597 -1561.868558 -0.633830

790-1 2-1291. 795239 ,39-1.68537-1 78.8-12887

-1677 -187-13473059 -1,6,8.88-1301 -106,879-123

12-1 83-19373-120 2-18-18-1878,1 5223123-128

-1 -2086.545605 -2300-1.252368 -1-l-l39869633

3857970-1-1 17-129.26603-1 30133.003012

-6369.303-153 -37155.271723

25931.200710

1-1-1
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