FAME X

Criticalpoint -based Modeling for Smooth Surfaces

EOPBHECLLOBRACEIL T VS

%1 W X

Critical-point-based Modeling
for Smooth Surfaces

O s D 72 H D
A RICESSETY VT

SRR 8 4F 1 2 At (BY) HiEs

HRR S IE SRR R
R

ke B

Critical-point-based Modeling for Smooth Surfaces
BODNLME D/ DDEREIESSETY VY

by
Shigeo Takahashi
At

A Dissertation

Submitted to
the Graduate School of
the University of Tokyo
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Science

in Information Science

December, 1996

ABSTRACT

Recent advances in graphics hardware enable us to handle not only simple polyhedral
shapes but complicated smooth shapes in CAD systems. Since the CAD systems rep-
resent such smooth surfaces by extending conventional simplicial representation, therc
are several problems in handling the smooth surface shapes that have no intuitive poly
hedral approximations. The first problem is that the design of smooth surfaces requires

a large amount of user interactions because of the complexity of the shapes. Secondly
none of the design oper

tions characteristic of smooth surfaces are taken into account
in contemporary CAD systems. Furthermore, they cannot provide the users with any
efficient keys for shape databases due to the lack of information about smooth surface
features. To remedy such problems. hierarchical representations of smooth surfaces
based on the shape features are necessary.

[his thesis presents a new feature-based modeling method for smooth surfaces. Tr

p
shapes and shape features for smooth surfaces, i.e.. design by features and feature
extraction

icular. the aim of this thesis is to implement bidirectional operations between object

As the shape features, critical points such as peaks, pits, and passes are
used. The relations among the critical points are represented by the Reeb graph. which
is one of the critical point graphs (CPGs). Within a theoretical framework. the smooth
surfaces are assumed to be 2-dimensional C

lifferentiable manifolds. The features such
as critical points and CPGs work at the upper levels in the hierarchical representations
f smooth surfaces.

['lie shape design process begins with specifving the topological skeletons of an object
shape using the Reeb graph. The Reeb graph is constructed by pasting the entities called
cells that have one-to-one correspondences with the critical points of a height function.
[he iconic representation of the Reeb graph is used to visualize the embeddings of the
object in 3-dimensional (3D) space. Macro operations are also provided for attaching
a branch or a tube to an existing surface. The geometry of the smooth surface shape

is outlined by flow curves that run on the object surface. From these flow curves, the

svstem automatically creates a control network that encloses the object shape. Each

vertex of the control network has its own local patch and the patches are then glued
together using the manifold mappings in order to form the overall surface shape.

I'his thesis also introduces another hierarchical representation called multiresolution
surface design that enables us to handle the detailed geometry of the local patches. In
this design. the local patches are represented by endpoint-interpolating B-splines and
their corresponding wavelets. The shape of the local patch is determined by minimizing
the energy function subject to the deformation of the shape while preserving the given
constraints. Constraints at a low resolution level are converted to those at a high
resolution level using wavelet transforms in order to associate all the constraints with
the common basis functions. The constraints of multiresolution levels are then solved
recursively from low to high resolution levels.

1e feature extraction from the polygonal representation of a surface shape. on the

hand. is implemented and used to change the height axis of the designed surface

ape. Firstly, the critical points are extracted so that they satisfy the Euler formula

which represents a topological invariant of smooth surfaces. The surface network. which
is one of the CPGs, is then constructed by tracing ridge and ravine lines on the surface

An algorithm for converting the surface network to the Reeb graph is also presented
Using the obtained Reeb graph. the model of a control network is fit to the surface of
the designed object in order to change its height axis

This thesis also presents display examples generated in the system and describes th
differences from the conventional shape modeling methods.

EAEDFHRRPERED A F I m\ ARBGT S AT A THROIS BRI B N2 2 Tk G
ALY 8 R) 21N Y (A Ve u\7 UL Lahis, BEDOHBIRRIS AT AT
3. RO L AL 2 kLT 5 'tf LV ERBLL TWB 728, ¥t D H e i % i
HASHRDIHTRETEZLAHLL, W OPDMBESELTL 5, FTE—12. il
FIPAREHTH D5 720, R OMEERIKREL BB BT OND, B uzid. il
PR ERORGHREDR L2 ERI N TV ARV L HH S, X 5T, ¥ AT LHSHE
JBIRT =8 - R=2AD7-DDM RN ERRF — R TERVEEL 5B, bk, +
NTYAT LD MEOIPREE T B L A ¥ 2 BBV DIE L METH S, =
DIEE RS D 72121, IR ERIRERE & U TR IIE O 7= b DR E 481 % 1)
L2 BENH B

A X Tl 5RO 72 OISRz D B FY ¥V Fik: ERY. RIS
KD A E LT wwman/w:rzmmmuﬁmmw DE YGRS L B

il &I wa)mhmmm ERBTD Lk AT, RIS LTk, THE. B, Ik
& ORSHA H 5. TNLOEANOBBERTEDOE LT, ALY S 700 E>T
HBV—T - I3 T7 RS, MR {H‘Jn'nk' T. @O RHTHE 2 Kot C? %
u:ww»/sammté AR RPEANY 5 7 20 EOJARRIL. 15 22 i OB 8 %
BUZHB 1B BB O%E %45

A AR DB 1%, i’é‘ V=7 - 757 RTE JAU){\VHWJQ R ERETDS
EMBUED. V=T - U5 713 kL REN D RER R R 1)&7__ E
. ZolE, & BBICH T 2 i OB R A —3 :m‘c\a‘é L/ NOR:
ADHDIAS %)<j\—‘;'{7f D, V=T - T57D74AAVEKFEMD, AFEOKIKD

TAR ILIEABPREIRIGENT 22007 7 DRELRIT 2, o
TR, i E a2 £ HNMMERET 2 L TRIPLINE, YATA
SNE OFRAHIERD b VIR & B S B L HERICIEYD ET 5. SIEEOTN IZ

TNTNRFMHEZF>TOT, ThODORFFMESSHEBERICE VY b hTe
ROl i % KRk § %

AR TIE % ER f&euimhm.;f LIRENS I LR OMBARIELHAL, nLd)m'fr
M OHIPOCRITBRORF % LB T2, ZORBIHSBNT, Rl 2% B
\‘&6"11——71/'7 M:J:’sz\éiﬁéné R ORI, 4
WHRIEW L BN s, PROLIFOES % R TRV F— K& RMET 3
SEREOWEIND, (KARIREE L AV ORI HIKI V85 FRAREE L~V DRI v = —
Ly NEREHCD 2 L TEBEI N, T RTORTHFAIET DI BT £ > T X8
SND LS B, BEMGEE L A 107 ST AEHRREE L <L B iR
E L AoV E IS R NS

L)

Acknowledgements

I wish to express my sincere gratitude to Prof. Tosiyasu L. Kunii of the president of the
University of Aizu for his guidance in the early stage of this study. My sincere gratitude
is also extended to Prof. Yoshihisa Shinagawa. my thesis advisor, for his continnous
guidance and encouragement. The work in this thesis has its origin in his doctoral
thesis [107] and has been done in collaboration with him

I would like to thank Mr. Tetsuya Ikeda of Ricoh Co., Ltd. for his collaboration.
Dr. Satoshi
Saji of Shiznoka University for fruitful dis
my research colleague, for his valuable comments on this study.

shimura of the University of Aizu for his constructive advice, Dr. Hitoshi

sussions with him, and Mr. Masayuki Ohga.

My special thanks are due to Prof. Anatoly T. Fomenko of the Moscow State Univer-
sity. Prof. Bianca Falcidieno and Dr. Michela Spagnuolo of C.N.R., Prof. Hiroshi Imai
of the University of Tokyo. Prof. Issei Fujishiro of Ochanozimu University, Dr. Kenji
Shimada and Dr. Hiroshi Masuda of IBM Tokyo Research Lab.. Prof. Kenichi Kanatani
and Dr. Naoya Ohta of Guuma University for their helpful comments and advice on
this research. Mr. Yukio Sak
suggestions for improving its expository style. My thanks also go to all members of the

gawa kindly read the early version of this thesis and gave

Shinagawa Laboratory for their help and encouragement.
Finally. I would like to thank my parents for their consideration, patience and en-

couragement

Table of Contents

1 Introduction 1
1.1 Background o Do B R LI S IR R e R L 1
1152y, “Goal ol IPhis PHemE S N Sl 2% W o ol & 2 i
1.3 Conventional Representations of Polyhedral lelnw 5)

1.3.1 Classification of Shape Representations s 5

2 Data Representation in B-reps P 2 O SO Y 3

1323 Euler Operatora ™ e FUS AT kG e 9

1.4 Approximating Smooth Shapes by Polyhedral Surfaces ¢ 11

1.5 Hierarchical Representations of Polyhedral Objects Gt T2

1.6 New Feature-based Approach for Smooth Surfaces A 0,
1.7 B-reps and the Proposed Representation

-8 Orpanization. of Bhis Bhesis’ e e d o e o p B s 4 . 14

2 Designing the Topological Skeletons 16
2.1 Surface Coding Based on Morse Theory 2 16

2.1.1 Limits of the Theory - : 16

p ‘Phe Reeb* Graph. o 5i'e & o o onlls o s ar : 2 S 17

The Morse Operators i B S = & are L R

Macro Operations TIFTE L e TV ¥4 e 2R

2.2 Data Representation in the System . . . SE IS)
2.2.1 Representing the Reeb Graph and Its I 111]74(11]!1\“\ 23
Modifying the Object Data Using Morse Operators 25

23 Inn rface for Editing Icons S . 29
P30 PastineePrimilive BeOnS & L & 5 b e it e S b sl e e b s, 29

3.2 Handling Macro Operations R et o ol | 85

00 15617303 g et e ot B R e ot e il RS SRR 37

3 Designing Geometry Using Manifold Mappings 39
3.1 Generating Surfaces Using Manifold Mappings o i T
3.2 Constructing a Control Network ., Lw o B0

32 Plame@Gaines e o o 5 ahel SO0 e el AU, ' 10

2 Control Network 41

3.3 Constructing Manifold Mappitigs: . . « « e v v v ¢ 6 v o o o e 42
3.3.1 Definition of the Manifold ey . 43

3.3.2 Overlapping Local Patches

3.3.3 Designing Local Patches

3.34 Blending Local Patches
3.4 Other Geometric Operations
3.5 Results
3

3.6 Summary

Designing Curves and Surfaces Using Multiresolution Constraints
1.1 Need for Solving Multiresolution Constraints .
1.2 Endpoint-interpolating B-splines and Wavelets SR e N
£.2.1 Multiresolution Analysis 5
122 B-spline Wavelets
12,3 Wavelet Decomposition and Reconstruction
1.3 Designing Shapes by Variational Optimization
1:3.1) Energy FUnGHong: o, o0 ki U % w o higs ¥ doade aps
i
L
t.4 Designing Shapes Using Multiresolution Constraints
1.4.1 Converting Constraints at Different Resolution Levels
1.4.2 Solving Multiresolution Constraints
4.5 Resilts: . & . . L e e R e N S
4.6 SUMMATY . wos. e il a A R R SR

Attaching Geometric Constraints

Constrained Variational Optimization . . 5131 i e P IR o

Robust Algorithms for Extracting Critical Points and Critical Point

Graphs

5.1 Conventional Algorithms for Extracting Shape Features

5.2 l\rhunn“ Correct Critical Points . . . PRI

1 Critical Points and the Euler Fumml s SN

The Eight-neighbor Method :

3 New Criteria for Extracting Critic .xl I’mnl~

5.2.4 Handling Degenerate Critical Points

Algorithm for Extracting Critical Points

5.3 Constructing the Surface Network
5:8.1. The'Surface Network . v vwos v 5w an
5.3.2 Algorithm for Constructing the bmm > Network

5.4 Converting the Surface Network to the Reeb Graph st
54N "The REHIGTABR. *\ a5 G~ iriadr bhe o S50 Al i 2 o s
5.4.2 Relations Between the Surface Network and the Reeb Graph
5.4.3 Algorithm that Converts the Surface Network to the Reeb Graph
5.4.4 Correctness and Robustness of the Algorithm

5 Extracting Features from a Surface of Arbitrary Topological Type
5.5.1 Idea of the Extended Algorithm

5 ModificationstorAlgorithim 2 . o &« - ailb o 3 5 = o s b

Modifications'to Algorithm 3 v v w00

5.6 Changing the Height AFi8 . . o - v cumw o i o oo = os R Ly

86
36
39
90
91
92
94
95
98
98

98

.. 100
. 100
te

102
104

- 107
« 107

=
os]

C

D

=

Ie

5.6.1 Extracting the Object Embeddings
5.6.2 Fitting the Control Network . . .

.7 Results

5.8 Summary
Discussions

6.1 Differences from the Major Representations

6.2 Other Representations

Conclusions

7.1 Contributions

72 BPuture Work. =2 < as &

Morse Theory

Definition of the Reeb Graph
Endpoint-interpolating Cubic B-spline Wavelets
Singular Value Decomposition

Definition of the Surface Network

Notes on Continuities at Branches

Manifold-Based Multiple-Viewpoint CAD

A Case Study of Mountain Guide-Map Generation -
G.1 Assumptions on Mountain Guide-Map Generation

G.2 Multiple-Viewpoint Projection
68 Resullighi~., o ¥ 0 8 gy it

Bibliography

iii

List of Figures

1.1 Object shapes handled in computers 2
1 Features of a torus . ok 3
1 Bidirectional operations le\\wn uh]t(t \lmp(\ ,uul \lmlw im\lmsw e et
1.4 Classification of previous methods and the method of this thesis {
1.5 Primitives in CSG . g tliinn S
1.6 Boolean operations in CSG. Cp i g el e 6
1.7 The entities of B-reps PN AP NG PR 6
1.8 Data representation in B- u']»x\m‘m\ AR W SR NPT L A T
1.9 The winged-edge structure et wlet G
1.10 The Euler operators S G A St s B e e) 10
1,11 Creating a branch . -« . o5« o e Al
1.12 Relations between the entities of IK reps ,uul nf rhu lnnlmwrl representation 14
1,13 The Systemt OVEINIEW: « & « v oo s v ¢ nie o v w0 o 5o o
2.1 Examples of degenerate critical points. S i 17
2.2 Equivalent objects in the classical Morse rhmx\ - 18
2.3 The embedded Reeb graph of a double-layered torus 19
2.4 The Morse operators for constructing a torus —en

\ contour tree based on inclusion relations .
2.6 The effects of the six Morse operators .

Macro operations A

8 Data representation in the system

9 Iconic primitives used in the system .

10 Object data modified by an E2 operator

11 Object data modified by an EO operator

12 Object data modified by an E1IPC operator

13 Object data modified by an E1SI operator

14 Object data modified by an E1IN operator

Object data modified by an ELIOUT operator SO
16 The iconic H’])lt'\t'll\mik\l} of an existing surface and its bottom cross section
17 The results of candidate E2 operations

18 The results n[candidate EO operations -

19 The results of candidate EIPC operations in llu' hN step .

20 The results of candidate EIPC operations in the second step

.21 The results of candidate E1SI operations in the first step

NN DNNNND NN NN

o
223
294

5 o=

1.9
110
111

The results of candidate E1SI operations in the second step .
The results of the candidate E1IN operations in the first step
The results of candidate E1IN operations in the second step
The results of candidate EIOUT operations in the first step
The results of candidate EIOUT operations in the second step

7 Editing icons for a macro operation

Flow curves of a torus ,
A control network of a torus ,m(I vh(' regions mmmrl its vertices
Charts of a manifold 5
Varady's biquadratic parametrization of n-gons
Polar parametrization for peaks and pits e .
Mapping curve segments to the parametric rlnllmlm of vertex patc: lnw
Blending local patches
An example of the polynomial h e mlmﬂ hm\ tion
Surface continuity on the boundary
Generating a flat top :
Designing a torus with our system .
Designing a flow curve
Designing a torus]
Designing a torus with arms
Designing a monster-like shape
Designing a top dog
Designing characters 43
Designing an inner ear organ .
Checking illegal interferences .
Handling degenerate surfaces
\ double-layered spiral

Editing a curve using multiresolution levels of details
The multiresolution analysis

Endpoint-interpolating B-splines

I'he filter bank y e L Sl s
Converting constraints (lnm lr\\\ to hi“h resolution leve!

indicate the steps of converting constraints.

T'le case where the multiresolution constraints are ~n1\ml ¢1nm tly
Solving multiresolution constraints: The arrows indicate the steps of solv-
ing multiresolution constraints. : S B Ao <
The case where the multiresolution constraints are \ul\wl using the pro-
posed method s

Editing a curve using mnhmwnllm(m constraints .

Line drawings 3 &

A display example nl wlmuq a mountain- lxlw smtau‘ \\nh a crater using

multiresolution constraints

The arrows

19

60
61

62

62

65
66
67
69

.12 A display example of editing a surface with two peaks using multiresolu-
tion constraints .

1.13 A display example of wlnm‘,{ a t,u ml ~1M]u' X

{.14 Designing a sphere using multiresolution constraints .

.15

Extracting characteristic points and boundary curves from the designe

surface .

An example of sample data - 3
Topological changes of cross-sectional contours at critical sections
\ surface patch and a virtual pit on a sphere.

d

Eight neighbors in a he
The two diagonals of a square

A triangulation of a grid

\ degenerate pass .

5.8 A level region e T 5 3%

5.9 The neighbor list of a 411“,1*“11(“(' pass in extracting critical points

5.10 The surface network and contour lines 5

5.11 A mountain shape with its critical points and its Ru h ﬂl.mh .

5.12 Critical points in the Reeb graph

5.13 A correspondence between an edge of the \\umw nu\\ml\ ,mrl a ;».nh in
the Reeb graph i A e o

5.14 Ridge and ravine lines inc |r1rm to a pass ,mrl its mumlum«lm 11;nh~ in
the Reeb graph >

5.15 The steps of the conversion u[umnhm

5.16 Converting an edge of the surface network to llw wl"v nf vluv Iwuh ﬂmph

5.17 Cycles in the Reeb graph: (a) ravine lines in the Reeb graph and (b) tags

inserted to the cycle

The edge functions

T'he cross-sectional belt .

An illegal example of a cross-sec: 114‘11,\1 ler

Modifying the route of a ravine line

The effects of inserting pseudo critical points in ‘lu‘ Rm h graph

Classification criteria for passes

Mt. Fuji

Lake Ashinoko .

A monster-like shape

Fitting the model of a mmm] nm\\ml\ to a \Il”rl(l‘
Designing a cup .

F.1 Changes in cross-sectional contours in the neighborhood of a pass
F.2 The hyperbolas @ — y? = ¢ where ¢ < 0

A dental diagnosis drawing . Fi S
T'he difference between an 1IIH-11,mun (»t an nulm.n\ perspective picture

o

and an illustration of a mountain guide map

82
83

8
4

90

100
101

103
105
106

107
108
111

G.3
G

G.6

T\ pical drawing processes of a mountain guide map

The basic method of multiple-viewpoint projection

\ display example of view parameter setting with chart assignment
The image of perspective projection with one viewpoint and multiple

viewpoints

The image of 1n,n,¢1]«'l projection with one view direction and multiple

view directions Ay T o .
The basic image for |!u mountain ﬂnirlr‘ map around NMt. Fuji of ordinary
projection and multiple-viewpoint projection

List of Tables

The

The
The
The

The
The
The
The

evaluations
evaluations
evaluations
evaluations
evaluations
evaluations
evaluations
evaluations

of the expressive power .
of the validity .

of the unambiguity

of the uniqueness

of the description langn

of the conciseness .

of the closure of operations

of the computational ease

Chapter 1

Introduction

1.1 Background

Recent developments in computer hardware enable us to handle a large amount of
data within a short period of time. These developments have enabled us to handle
not only simple polyhedral objects such as mechanical parts and manufactured objects,
but complicated smooth objects such as terrains, human organs. and virtual objects
(Figure 1.1). In particular. designing virtual objects such as humans, animals, plants,
ete. has become important for computer graphics (CG) animation and virtual reality
(VR) applications. In this way, the need to handle smooth curved objects by computers
has been increasing

Contemporary CAD systems handle the smooth object shapes. however. by extend-
mg

-onventional polyvhedral representation. This leads to the polyhedral decomposition

of smooth object shapes that has no relations with the geometric features of the smooth
surfaces. In this situation. the contemporary CAD systems suffer from the following

problems.

1) Designing smooth object shapes requires a large amount of users’ interactions be-
cause of inappropriate polyhedral approximations of complicated smooth shapes.
2) Contemporary CAD systems do not take into account any of the design operations

characteristics of the smooth surfaces.

The CAD systems cannot provide the users with any efficient keys for shape
databases due to the lack of information about the features of smooth surfaces.

In order to remedy these problems, it is necessary to construct a model for smooth
surfaces based on shape features intrinsic to their smoothness.

1.2 Goal of This Thesis

The purpose of this study is to construct a hierarchical representation scheme for smooth

surfaces where their shape features serve as the upper level of the hierarchical represen-

v

o

Polyhedral objects Smooth objects

M
&l

Developments in computer hardware

Figure 1.1: Object shapes handled in computers

tation. As the shape features, critical points such as peaks. pits, and passes are used
in this study. In addition to the critical points, this study uses critical point graphs
(CPGs). which represents the critical points as its vertices and the relations among the
critical points as its edges. Figure 1.2 illustrates the critical points and CPGs of a torus
In particular. the goal of this study is to provide bidirectional operations between object
shapes and shape features, i.e.. design by features and feature extraction as illustrated in
Figure 1.3. These operations are helpful for avoiding the problems described in Section
L[4

Let us see the relations between previous methods and the method of this thesis.
Figure 1.4 illustrates the rough classification of previous modeling methods and this
method based on the object shapes and representation schemes. The leftmost column
corresponds to the modeling methods for polyhedral shapes and the rightmost column
corresponds to those for smooth surfaces. The middle column indicates the modeling
methods for the objects that contain both polyhedral and smooth surfaces. The bottom
row corresponds to the hierarchical representation schemes while the top row corre-
sponds to the representation schemes without explicit hierarchies. As described above.
conventional modeling methods cover the smooth objects by extending the polyhedral
representations. The CSG representation schemes are also extended to handle objects
with free-form surfaces [130, 56, 78]. On the other hand. hierarchical representation
schemes of polyhedral objects, such as constraint-based [37, 1, 99, 112] and feature-
based [105, 63, 74) modeling methods, have been developed. Conversely, the method

of this study directly handles the objects whose surfaces are smooth with hierarchical

height function

(a) (b)

Figure 1.2: Features of a torus: (a) critical points and (b) the critical point graph (the

Reeb graph)

Design by features |

Shape features

Smooth surface shape ‘ [
(Critical points and CPGs) |

Feature extraction

Figure 1.3: Bidirectional operations between object shapes and shape features

3 Polyhedral shapes “

Smooth shapes

Representations|
without
explicit

hierarchies

Hierarchical

representations

V% =

P, ,n.nn. tric

SEGES]mh 1
=
) i
Free-form surfaces
CSG based on
a
Bl oo

4
Constraint-based

()hjw ts with
flat Ihuts

Feature-based

Surface
recoustruction

helght tynction

Figure 1.4: Classification of previous methods and the method of this thesis

representations based on features'.

surface shapes reco

nstructed from cross-sectional date

The method also covers the three-dimensional (3D)
and extends its target objects

to smooth objects that contain flat surfaces partially as illustrated in Figure 1.4
It must be noted that the objects handled in this modeling method are slightly
different from those in the conventional modeling methods.

While the conventional

methods handle smooth objects indirectly by way of polyhedral approximation. this

method aims at har

1dling them directly.

Several CSG-based methods are presented for handling smooth surfaces [130, 56, 78]
[n particular. Menon and Guo presented a method of handling sculptured solids using

representing free-form surfaces by maintaining the connectivity of trimmed surfaces |

However

i boolean combinations [78

, and Krishnan and Manocha presented a method of

6]

. the methods cannot provide the operations based on the differential properties

of smooth surfaces hecause they do not have the features of smooth surfaces.

Among the hierarchical representation schemes in Figure 1

eling methods have been extensively studied recently [104].

Cavendish proposed a method of designing and deforming the free-form su

4, the feature-based mod-
In the methods, object

ces with their

features [14]. However, his method is limited to the surfaces represented by single-valued functions.

box cylinder cone ball

Figure 1.5: Primitives in CSG

features such as the slots and holes are used as the upper levels of their hierarchical
representations. What is important to note is that they provide bidirectional opera-
tions between object shapes and shape features, i.e.. the design by features and feature
extraction. Users can design object shapes by their shape features, and can also extract
features from existing objects. The goal of this study is to establish a smooth-surface
version of the feature-based modeling method using critical points and CPGs. This will
enable us to remedy the problems described in Section 1.1.

1.3 Conventional Representations of Polyhedral Shapes

1.3.1 Classification of Shape Representations

Let us review conventional representations of object shapes by following the classification
of Figure 1.4

onstructive solid geometry (CSG): CSG is a family of schemes for representing
gure 1
shows examples of such primitive objects. The CSG has various boolean operations

a solid object by boolean operations of simple primitive objects [98]. F

such as union. difference. intersection. etc. As shown in Figure 1.6. the CAD
svstem based on CSG has the shape data as a tree of boolean operations: its
terminal nodes are either primitives or transformation data for rigid-body motions
and its non-terminal nodes are either boolean operators or rigid-body motions that
operate on their two subnodes. Hence, the CSG tree (based on boolean operations)
is a candidate for an upper level of the hierarchical representation of an object.

Boundary representations (B-reps): B-reps hold the boundary data of a solid ob-
ject and partition it into pieces called entities such as faces, edges, and vertices.
In B-rep systems. boolean operations are used to design object shapes similarly
to those in CSG systems. Figure 1.7 shows the entities of the B-reps. The rep-
resentation is equivalent to the Hasse diagram [113]. which represents the partial s
ordered set where the partial ordering is defined on the inclusion relations among i
the entities. Consider the Hasse diagram on the right of Figure 1.8, for example.

Since the edge e; contains the vertex vy as shown in Figure 1.8, the partial order
between e, and vy can be written as vs < €1, where < indicates the partial order.
In this case. the nodes of ¢; and vy are connected by an edge as shown in the right

side of Figure 1.8. The partial order between a face and an edge can be defined in

Figure 1.6: Boolean operations in CSG

S 2
vertex edge face

Figure 1.7: The entities of B-reps

the same way. As shown in Figure 1.8, the topology of the entities is represented
by the Hasse diagram while the geometry is associated with the coordinates of the
vertices

The main advantage of the B-reps lies in easy access to the boundary data of a
solid object. namely faces. edges, vertices, and the relations among them. This is
important because it is necessary to generate line drawings and rendered images
in graphic displays. Furthermore, the B-reps are convenient for approximating
complex shapes such as smooth surfaces. Although the B-rep schemes require
more data storage than CSG, they are used extensively in current systems because

of the above advantages.

Hybrid representations: Hybrid representations are the combination of CSG and
B-reps [131. 11]. One of the advantages of the hybrid modeler is that the modeler
tries to pick the most suitable representation for each task. In general, an object
shape is first kept as a CSG representation and is then converted to a boundary
representation when it is necessary.

Most contemporary CAD systems are based on either B-reps or hybrid represen-

tations. which means that the B-reps play a fundamental role in contemporary CAD
systems. Such CAD systems generally support the representation schemes based on the

faces /,

edges ¢, e

5 €3 e, es €q
V) \’3 V

vertices v,

(1915 20) (%2592, 22) (X3, V35 23) (X4, Y4 24)

Figure 1.8: Data representation in B-rep systems

procedural operations called sweeping.

o Sweep representations: Sweep representations are based on the notion of moving
a l-dimensional (1D) curve or a 2-dimensional (2D) surface along a path called a
trajectory [53. 22. 19, 119]. This representation scheme is simple to understand
and used successfully for surface design in contemporary CAD systems. The
domain of the representation scheme is, however. smaller than those of CSG and
B-reps. In practice, sweeping is used as one of the design operations and the
object shapes designed using the sweeping operations are usually converted to the
corresponding boundary representations.

According to Requicha’s survey [97]. there are volume-based representation schemes

for solid objects as follows.

e Spatial occupancy enumeration: The representation of spatial occupancy enumer-
ation is a list of spatial cells occupied by a solid object. The cells are usually cubes
of fixed size lying in a regular spatial grid and are called vozels. Although it is
easy to handle the representations of spatial occupancy enumeration. it requires
considerably large and redundant data storage. To avoid this inefficiency. the hi-

erarchical representations of the voxels called octrees are developed [77, 34. 101].

Cell decomposition: Cell decomposition is similar to spatial occupancy enumera-
tion in that a solid object is decomposed into simpler primitives than the original
object. The primitives are called cells. There are many ways of decomposing the
solid object into cells: the selection of the way is dependent on the shape features
of the object. In general, a polyhedral shape such as a tetrahedron is used as a

cell (for example, as shown in [63]).

Although these volume-based representations are not popular in contemporary shape
modeling systems. they were proven to be efficient for several applications such as
scientific visualization, volume rendering, virtual surgery simulation. et

1.3.2 Data Representation in B-reps

As seen in the previous subsection, B-reps play a fundamental role in shape model
ing systems. The following two subsections describe the data structures and design
operations in B-rep systems.

As described previously. the entities of B-reps are faces. edges. and vertices. In
practical implementations, the B-reps hold the following six entities

o Objects: An object consists of the following five primitives.
o Shells: A shell is an entity that confines a space.

e Faces: A face represents the boundary of an object. Faces that enclose a space
constitute a shell.

e Loops: A loop is a boundary of a face. A face has at least one loop and additional
loops if the face has holes in its interior.

e FEdges: An edge is an intersection of the boundaries of two faces.
o Vertices: A vertex is a point at which several edges meet.

In B-rep systems. the combinatorial relations between these six entities are called topol-
ogy. and the metric data such as coordinates of vertices is called geometry [4]. The
topology is invariant under geometric transformations while the geometry is not. Since
the B-rep system has the boundary data of object shapes directly, it is easy to generate
graphic outputs on the display. However. some care should be taken in building the
data structure of the B-reps because the number of edges that surround a face varies
according to the shape of the face. Baumgart introduced the edge-oriented data struc-

ture called the winged-edge structure [5], where each component has a fixed size. The
efficiency of this representation follows from the fact that an edge has two connected
vertices and two touching faces without exceptions as shown in Figure 1.9. While the
winged-edge structure is efficient, it still suffers from the following problem: If an ob-
ject shape has some edge whose endpoints are identical with each other like a loop.
the system caunot retrieve its correct topology from the winged-edge structure. The
half-edge structure avoids this problem by decomposing an edge into left and right half
edges [I.‘B‘ Tl]. The efficiency in data access using this data structure is discussed in
detail by Weiler [133] and Woo [138]

The above discussions on the B-reps are based on the assumption that an object

shape is in the class of two-manifolds. A two-manifold is defined as an object bounded
by a compact (closed) orientable 2-dimensional manifold surface, where the neighbor-
lLood of each point of the surface is topologically equivalent to an open disk. The objects

ccwel . cwe2

| cwel cwe2

| cewel | cewe2

fl f2 j

Y
cweil ccwe2

Figure 1.9: The winged-edge structure

assumed in this thesis are also contained in this class. An object included in the com-
plementary set of two-manifolds is called a non-manifold. Unfortunately, the class of
two-manifolds is not closed with respect to boolean operations such as union, difference,
intersection. ete. Requicha introduced the class called r-sets [97, 126], which are closed
with respect to the regularized boolean operations extended from the ordinary boolean
operations. Extending the B-reps of two-manifolds to those of r-sets was studied in
detail by Weiler [134]

1.3.3 Euler Operators

There exists the invariance theorem called the Euler formula that plays an important
role in B-reps. The ordinary formula is expressed by

#{vertices} — #{edges} + #{ faces} = \. (1.1)

where #{vertices}. #{edges}, and #{ faces} represent the numbers of vertices. edges.
and faces. respectively. In the above formula. \ is a topological invariant of polyhedral
shapes and is called the Euler characteristic

This formula is extended for the use in B-reps, which is written as

#{vertices) — #{edges} + #{ faces} = 2F#{shells} — #{holes}) + #{rings}. (1.2)
The way of extending (1.1) to (1.2) is described in [71].

The Euler operators were introduced by Baumgart [6] as the means of preserving
the above formula while modifying the shape data in B-reps®. Figure 1.10 lists the
basic Euler operators [72]. The Euler operators hide the low-level implementation of
the data structure in B-reps and provide an efficient and also topologically verified way

of handling the shape data.

? Wilson proved that the Euler operators can be applied not ouly to solid modelers but to the
systems based on wireframe representations [136].

Le+==.. New shell

mvfs <hew face,
——— : .
<empty model> B 5 &
kvfs new vertex

mev
—

new vertex

—_—
kev

new edge

m_ef> new edge

——
kef new face

ke_m'; new ring

kfmrh

mfkrh 6

| Euler Operator } Notation Euler Operator | Notation
mvfs [make vertex face shell | kvfs kill vertex face shell
mev make edge vertex kev kill edge vertex
mef make edge face kef kill edge face
kemr kill edge make ring mekr make edge kill ring
kfmrh kill face make ring hole | mfkrh make face kill ring hole

Figure 1.10: The Euler operators

Figure 1.11: Creating a branch

The Euler operators are extensively used in contemporary solid modelers. Mintyli
developed the solid modeler Geometric Workbench (GWB) based on the Euler opera-
tors [72]%. The solid modeler DESIGNBASE developed by Chiyokura et al. manipulates
all shape modifications using a sequence of the extended Euler operators [17]. The Euler
operators are also extended for the class of the r-sets [23. 28].

1.4 Approximating Smooth Shapes by Polyhedral Surfaces

Contemporary shape modelers represent smooth shapes by extending conventional poly-
hedral representation. In other words, smooth shapes are roughly approximated by poly-
hedral surfaces and the faces of the polyhedral shapes are interpolated smoothly by para-
metric patches such as Coons patches [21], Bézier patches [8, 9]. NURBS patches [125,
91]. and Gregory patches [18. 16]. Farin extensively surveyed the techniques for the
parametric patches in his book [30].

The problems mentioned in Section 1.1 arise from the fact that the polyhedral ap-

proximations do not take into account the differential properties of smooth surface
shapes. Suppose that you try to create a branch by the conventional polyhedral rep-
resentation. As shown in Figure 1.11, for example. a branch can be obtained as the
union of two cylinders. Immediately after the union operation is performed, the surface
around the branch has discontinuities. In order to make the surface smooth, it is often
necessary to reorganize the polyhedral decomposition of the shape. However, the system
caunot provide the operations that automatically generate the smooth surface since it
does not hold the information about the differential properties of smooth surfaces.
Another problem of the polyhedral approximations is the difficulties in connecting

pe
to avoid this problem because smooth surfaces are decomposed into polyhedral pieces

ches while preserving the continuity on the boundaries. It requires careful handling

that have no relationships with the features of smooth surfaces. In this study, manifold-
based patch blending is employed in order to avoid this problem, which is described in
Chapter 4.

* Mintyld also proposed an inversion algorithm that reduces the boundary of an object shape to

a sequence of the Euler operators [70].

1.5 Hierarchical Representations of Polyhedral Objects

Since the entities of B-reps such as vertices, edges, and faces are low-level representa-
tions, it is hard to find global shape features from such representations. As illustrated in

Figure 1.4. the hierarchical representation schemes for polyhedral shapes have been stud

ied recently. There are two important categories for such hierarchical representations of

polyhedral shapes: constraint-based representations and feature-based representations

o Constraint-based representations: Constraint-based representations [37, 54, 99,

112] are effective in that geometric constraints are used as the upper levels of the

hierarchical representations. Here, the geometric constraints contain the distance

between two vertices, the angle between faces, and so forth. A designer provides

the system with geometric constraints as an input, and the system solves the given

constraints to find an appropriate solution. This approach, however, has ambiguity

in its representation: an object shape has no unique sequence of constraints and
resultant object shapes are dependent on the order of the imposed constraints

Feature-based representations: Feature-based representations [27, 74, 128] use ge-
ometric features. such as slots and holes, as the upper levels of their hierarchical
representations. As mentioned earlier. these representations provide bidirectional
operations between object shapes and shape features. In other words. the design
by features and feature extraction are integrated to provide users with efficient
design methods. One of the problems of the feature-based approach is that the
features such as slots and holes have no mathematical background while they are
easy to use.

In this study. bidirectional operations similar to those in the feature-based represen-
tations are implemented especially for smooth surfaces. Furthermore. the features used
in this study do not suffer from the above problems because they are derived from the
mathematical properties of smooth surfaces.

1.6 New Feature-based Approach for Smooth Surfaces

This thesis presents new feature-based modeling techniques for smooth surfaces. In
particular. the goal of this thesis is to implement bidirectional operations between object
shapes and shape features, i.e., design by features and feature extraction. As the shape
features. critical points such as peaks, pits. and passes are used. The relations among the
critical points are represented by the Reeb graph [96], which is one of the critical point
graphs (CPGs) (Figure 1.2). The smooth surfaces are supposed to be a 2-dimensional
C?-differentiable manifold within a theoretical framework. The features such as critical
points and CPGs work at the upper levels in the hierarchical representations of smooth

surfaces.

Firstly. this thesis presents a method of designing the topological skeletons of an
object shape using the Reeb graph [108, 107]. The Reeb graph is constructed by pasting
the primitives called cells that have one-to-one correspondences with the critical points

12

of a height function. The Reeb graph is edited by the Morse operators that specify the
way of gluing cells. The iconic representation of the Reeb graph is used to visualize
inclusion relations of cross sections at a height value. The system also provides macro
operations for attaching a branch or a tube to the constructed surface using a pair of
the Morse operators [123].

Secondly. this thesis proposes the geometric design method based on the above
topological design [123]. The geometry of the smooth surface shape is outlined by flow
curves that run on the object surface. From these flow curves, the system auntomatically
creates a control network that encloses the object shape. Local patches are assigned

to the vertices of the control network and are then glued together to form the whole

surface shape similarly to the manifold construction. The local patches are mapped to
the whole surface with overlaps where the patches are interpolated smoothly.

Thirdly. this thesis introduces a method of designing the local patches using mul-
tiresolution constraints [122]. The shapes are represented by endpoint-interpolating
B-splines and their corresponding wavelets. At each resolution level, the shape is deter-
mined by minimizing the energy function subject to the deformation of the shape while
preserving the given constraints. Constraints at a low resolution level are converted to
those at a high resolution level using wavelet transforms in order to associate all the
constraints with the common basis functions. The constraints at multiresolution levels
are then solved recursively from low to high resolution levels.

This thesis also describes algorithms for extracting the shape features from the
polygonal representation of a surface shape [120], which are used to change the height
axis of the desi

ned object. The first step is to extract the critical points that satisfy the
Euler formula (¢f. Section 1.7). The surface network. which is one of the CPGs. is then
constructed by tracing ridge and ravine lines on the object surface. An algorithm for
converting the surface network to the Reeb graph is also presented. Using the extracted
Reeb graph. the system fits the model of a control network to the polygonal surface

shape.

1.7 B-reps and the Proposed Representation

It is noted that critical points have close relations with the entities of B-reps. Fi

1.12 illustrates the relations. The entities of B-reps are simplices, i.e.. faces. edges, and
vertices. Nathematical theories tell us that the simplices have their surface-versions
called the cells* that are the entities of a smooth object in this study®. Furthermore,
according to the Morse theory [80]
critical point of a height function of the object surface. Consequently, the entities of

the cell has a one-to-one correspondence with the

B-reps correspond to the features of smooth surfaces, i.e., the critical points.
These relations enable us to apply the framework of B-reps to this modeling method.
The first and the most important example is the Euler formula that maintains the

' opose methods of

Note that

The cells are not new to current shape modeling techniques. Several papers |
representing non-manifold objects using the topological properties of the cells 76, 1
the word “cell” here is used in a different way from that of cell decomposition.

The description of the theories can be found. for example, in [73].

13

B-reps the proposed representation

X 3 Morse theory |
entities simplices cells — critical points

£ R = Y =P

faces edges. and vertices peaks, passes. and pits

invariants #(faces) — #(edges)+ #(peaks) — #(passes)+

| #(vertices) = y #(pits) =

|
|
L”Iw“”“]\ Euler operators ‘ Morse operators

Figure 1.12: Relations between the entities of B-reps and of the proposed representa-

tion

validity of object shapes in B-reps. From the above relation, the Euler formula of a
polyhedral shape (1.1) can be converted to that of a smooth surfacef:

#{peaks} — #{passes} + #{pits} = \ (1.3)

To maintain the Euler formula in B-reps. the Euler operators are used. In the repre-
sentation of this thesis. on the other hand. a set of operators called the Morse opera-
tors [108. 107] are used

1.8 Organization of This Thesis

The overview of this study is illustrated in Figure 1.13. This thesis is organized along
with the flow chart of this overview. While Chapters 2. 3, and 4 describe one of the
bidirectional operations: design by features. Chapter 5 describes the other operation:
feature extraction.

Chapter 2 describes how to design the topological skeletons of smooth objects using
the iconic representation of the Reeb graph. Fundamental theories are also explained
in this chapter. Chapter 3 presents the techniques for designing geometric shapes with
control networks and manifold mappings. Chapter 4 introduces the method of designir
surfaces using multiresolution constraints. Contrary to Chapters 2, 3, and 4, Chapter 5
proposes algorithms for extracting critical points and CPGs from the pol;
sentation of a surface shape. Chapter 6 discusses the difference between the proposed

gonal repre-

modeling method and the conventional modeling methods. Chapter 7 concludes this
thesis and refers to future work.

% This formula is also called the mountaineer’s equation. The description of the mountaineer’s

equation can be found. for example. in [39].

14

Smooth
surface

0%

ion Manifold Flow
surface design i curves

<4———— Design by features
== Feature extraction

Iconic

I
| Shape

—p | features i

CPG extraction

Critical-point
extraction

Figure 1.13: The system overview

Chapter 2
Designing the Topological Skeletons

This chapter explains a method of designing the topological skeletons of object shapes.
In order to design the topological skeletons, one of the CPGs called the Reeb graph is
used. In addition to the skeletons, the embeddings of the objects in three-dimensional
(3D) space are also specified using an iconic representation called the embedded Reeb
graph. The Reeb graph is edited using the Morse operators that correspond to the criti-
cal points of the object surface. The system provides macro operations that manipulate
pairs of the Morse operators so that users can attach a branch or a tube to an existing
swrface. The data representations of the topological skeletons in the system and the
interface for editing the iconic representation of the Reeb graph are also presented.

2.1 Surface Coding Based on Morse Theory

This study uses the surface coding techniques proposed by Shinagawa et al [108]. The
coding techniques describe the topological features of an object shape by extending
the classical Morse theory. This section explains the fundamental framework of these
techniques.

2.1.1 Limits of the Theory

I'le classical Morse theory assumes that the object surface is a C* smooth compact
closed manifold. With this assumption. the surface can be decomposed into pieces
called cells by scanning the critical points of the object along a height direction. As
described in Chapter 1, the cells and the critical points have one-to-one correspondences.
In addition, they work as the entities in this representation scheme. For example, a torus
can be decomposed into 4 pieces because it has four critical points as shown in Figure
12

Morse theory is valid only if none of the critical points of the object surface are
degenerate. Here, the degenerate critical points contain a flat peak. a flat rim. and
Note that the following descriptions are

a monkey saddle as illustrated in Figure 2.1

ical points are degenerate. Such degenerate

based on the assumption that none of the cr
critical points are handled as exceptional cases. which is deseribed in detail in Section

16

Figure 2.1: Examples of degenerate critical points: (a) a flat peak, (b) a flat rim. and

¢) a monkey saddle

3.4 for the shape design and Section

for the critical-point extraction. Appendix
A provides the detailed descriptions of the Morse theory including the definitions of a
critical point. its degeneracy, and so forth.

While the classical Morse theory provides us with the means of efficiently describing
the object shapes. it cannot distinguish between their embeddings in several cases while
they are different. For example. the theory does not code the difference of connectivity
re 2.2(b), and

links between the objects of Figure 2.2(c). For the difference of counectivity, the tech-

between the objects of Figure 2.2(a), knots between the objects of F

niques of Shinagawa et al. can recognize it using the Reeb graph. However, the other
differences require the mathematical theories of knots and links. which are still at the
> of rapid development.

st

2.1.2 The Reeb Graph

The Reeb graph serves as a tool for representing the topological skeletons of an object
shape in this study. The Reeb graph [96] is defined as follows. Let f be a function of an
object surface. Consider the cross-sectional contours of the object surface. i.e.. f=(h
h = const). By identifying the connected component of the object surface with a
point at each cross section. a set of points can be obtained. The Reeb graph is then
constructed by tracing these points at each cross section from the top to the bottom of
the object. Figure 1.2 illustrates the Reeb graph of a height function defined on a torus.
Here, the height function represents the points (x,y.z) on the surface as the function
= f(a.y). Appendix B describes the mathematical definition of the Reeb graph [107].
As mentioned earlier, the Reeb graph is one of the CPGs and its vertex corresponds

to a critical point. From the above definition, the edge of the Reeb graph represents a
, the Reeb graph

tube that connects two critical sections. As can be seen in Figure 1.

represents the topological skeletons of the object shape. Since this skeletal representa-

tion is intuitive, the Reeb graph is used to design the topological skeletons of the object

shape in this study.

In addition to the topological skeletons, the embeddings of the object in 3D space are
also specified. For this purpose. this study employs the embedded Reeb graph proposed
by Shinagawa et al [108]. The embedded Reeb graph is an iconic graph that represents

17

(a)

(b)

Figure 2.2: Equivalent objects in the classical Morse theory: differences in (a) connec-
tivity. (b) knots. and (c) links [108]

height function

Figure 2.3: The embedded Reeb graph of a double-layered torus

the orientations of the surfaces and the inclusion relations of cross-sectional surface
profiles. Figure 2.3 illustrates the embedded Reeb graph of a double-layered torus, i.e..
two tori where one of which contains the other. If the outer torus is regarded as a solid
object. the inner torus becomes a hollow object. The solid and hollow objects have
different surface orientations. In the same way as in [108], the system distinguishes
between solid and hollow objects by black and white colors in the iconic representation.
I'he embedded Reeb graph serves as an interface for designing the topological skeletons
of object shapes in the system

Note that in this thesis, the critical points are defined on a height function of the
object surface. The scheme for changing the height direction of designed objects is

described in Chapter 5.

2.1.3 The Morse Operators

In order to edit the Reeb graph. this study uses the Morse operators proposed in [108].
The Morse operators specify how the critical points are connected in the Reeb graph.
which is equivalent to how the cells are glued to form the whole object.

The Reeb graph of a torus is constructed with the Morse operators as follows. As
illustrated in Figure 1.2, a torus contains. from top to bottom. four critical points: a
peak, a pass. a pass, and a pit. This means that a torus is constructed from its top to
bottom with the four Morse operators that correspond to the critical points of the torus
as illustrated in Figure 2.4'. Firstly, the peak of the torus is created by putting a 2D
cell ¢, i.e.. a topological cap (Figure 2.4(a)). With this operation, a new circle appears
at the cross section. Secondly, a 1D cell €', i.e., a topological curve, is attached in order
to split the cross-sectional circle (Figure 2.4(h)). Thirdly, another 1D cell ¢! is attached

This construction is depicted in detail in [80]. and the algorithm animation of this construction

is presented in [58].

2D cell (peak) 1D cell (pass) 1D cell (pass) | 0D cell (pit)
[object cross object — cross object cross object ¢ross
shape section shape section shape section shape section

T b DD % |
| ’ ! |
T 6 |8 |(p) o

E2(#0) ELIN(#1, nil) E1SI(#1, #2)
(a) (b) (c)

m
x,
. O

Figure 2.4: The Morse operators for constructing a torus: (a) putting a 2D cell €2, (b)

attaching a 1D cell €', (¢) attaching a 1D cell €', and (d) attaching a 0D cell ¢° [108]

in order to merge the two divided cross-sectional circles into one, which results in the
liole of the torus (Figure 2.4(¢)). Finally, the surface of the torus is closed by attaching
a 0D cell ¢”. ie.. a point, to the existing surface (Figure 2.4(d)). The changes of the
embedded Reeb graph (the iconic representation of the Reeb graph) are also illustrated
at the bottom row of Figure 2.4

In this way. the Morse operators describe the changes of cross-sectional contours at
critical sections. In the implementation of this study. the system stores the inclusion

©GDe 4

Figure 2.5: A contour tree based on inclusion relations [108]

20

for a peak and a pit ‘ for a pass
=

["the upper ‘
E2 }
f i

‘ IN: : l ELOUT|

= |

E0 i~~~ EsI =N E1pq
the lower
section | |

(a) (h) (c)

Figure 2.6: The effects of the six Morse operators: (a) E2 and EO. (b) E1IN and E1SI

and (¢) EIOUT and E1IPC

Here,
the contour #0. the virtual root of the contour tree. is introduced for convenience.

relations of cross-sectional contours as a tree, which can be seen in Figure

Consider the relation between the contours #2 and #4. for example. Since the contour
#2 contains the contour #4, #2 is the parent of #4 in the contour tree.

Similar to the Euler operators in B-reps, the Morse operators maintain the validity
of smooth object shapes. Here, the validity of object shapes means that they can be
embedded in 3D space without self-intersections. To maintain the validity of the object
shapes. six types of operators are required as described in [108]. The changes in cross-

sectional contonrs by these six operators are shown in Figure 2.6.

In Figure 2.6(a). the downward arrow indicates the change of a peak. while the
upward arrow indicates that of a pit. In this thesis, the corresponding operators are
denoted by E2 (which is named after ¢?) and EO (which is named after €°). respectively.
In the case of a pass, there are four operators as illustrated in Figure 2.6(b) and (c)
The downward arrow of Figure 2.6(b) indicates an operation of splitting one cross-

sectional contour into two. This operator is denoted by E1IN (e'-inside) because the
cross-sectional circle is split inside it. The reverse arrow of Figure 2.6(b) indicates
an operation of merging two different contours into one. Since the two contours are
siblings in the contour tree (cf. Figure 2.5). the corresponding operation is denoted

by E1SI (e'-siblings). The situation of Figure 2.6(c) is more complicated than the

previous one. The downward arrow of Figure 2.6(c) indicates an operation of splitting
a cross-sectional contour into two. While this operator is similar to E1IN, it differs
from E1IN. however, in that the two divided contours have a parent-child relationship.
i.e.. one contour contains the other. The corresponding operator is denoted by ELOUT
(e-outside) hecause the cross-sectional circle is split outside it. The reverse arrow of
Figure 2.6(¢) indicates an operation of merging two contours that have a parent-child
relationship in the contour tree (cf. Figure 2.5). Hence, the corresponding operator is
denoted by E1IPC (e!-parent-child).

The Morse operators proposed by Shinagawa et al. also allow us to describe the
embeddings of the cross-sectional contours. In order to describe such embeddings, the

21

Morse operators take contour numbers or lists of contour numbers as their arouments
The details of each operator are described as follows.

o E2(#n): This operator puts a 2D cell €? in 3D space in order to create a new

contour inside the contour #n at the cross section.

e EO(#n): This operator closes the existing contour #n by gluing a 0D cell ¢ at
the cross section

o EIPC(#n. #m): This operator merges the two contours #n and #m that have
a parent-child relationship. It is assumed that #n is the parent uf #m and the
merged contour is denoted by #n. the parent contour number

o EISI(#n. #m): This operator merges the two contours #n and #m that are
siblings in the contour tree. It is assumed that the merged contour is denoted by
#n. the first argument of the operator,

o ELIN(#n. (#a.4b....)): This operator splits the contour #n inside it in order to
create a new contour at the cross section. The list of contour numbers (#a. #b. . ..)
represents the contours contained in the newly created contour after this operation.
If the list does not contain any contours, it is denoted by nil

o EIOUT(#n. (#a.#b....)): This operator splits the contour #n outside it in

order to create a new contour at the cross section. Recall that the newly created
contour is contained in #n here. In the same way as for E1IN, the list of con-
tour numbers (#a. #b. . ..) represents the contours contained in the newly created
contour after this u]wr;mnn.

Although this notation is slightly different from the original ones proposed by Shinagawa
et al.. the operations are exactly the same as theirs. According to the above notation of
the Morse operators, a torus is constructed by the sequence of the four Morse operators:
E2(#0). E1IN(#1. nil). E1SI(#1. #2). and EO(#1) as shown at the bottom of Figure
24.

In the implementation of this thesis, these six operators are provided as fundamental

tools for editing the Reeb graph. Since the system holds the contour trees as illustrated

in Figure 2 1 Morse operators that result in generating

it automatically rejects illeg

ction

invalid objects®, This will be described in in detail.

2.1.4 Macro Operations

With the Morse operators, the nser can edit the Reeb graph that represents the topolog-
ical skeletons of a smooth object. The order of these operations, however, must follow
the height order of their corresponding critical points. This means that it is necessary
to describe the changes of cross-sectional contours from the top to the bottom of the

2 This means that this model does not permit objects that cannot be embedded in 3D space.
he Klein bottles are examples of such invalid objects. The model extended for such objects is
| ribed in [110].

b - L6 «-¢
object shape the Reeb graph object shape the Reeb graph
(a) (b)

Figure 2.7: Macro operations: (a) an operation for attaching a new branch. and (b
an operation for attaching a new tube

object. Since this limitation is not intuitive to design a whole obj it should be

avoided.
This study provides macro operations for avoiding such limitations |

]. The macro
operation inserts a pair of new critical points to an existing object shape while main-
taining the topological validity of the object shape. Note that the topological validity
of the object shape can be examined also in this case because the macro operation

equivalent to applying a pair of the Morse operators. Figure 2.7 illustrates examples of

(a) shows a macro operation for attaching a new branch

macro operations. Figure 2.7
to a topological sphere. This macro operation is equivalent to applying the E2 and E1S1

operations to the existing surface, which means that a peak and a pass are inserted
\s illustrated in Figure 2.7(a), the Reeb graph is also modified with the macro oper-
ations. Another example of attaching a new tube to a topological sphere is shown in
Figure 2.7(b). This macro operation amounts to applying the ELIN and E1SI opera-
tions to the existing surface. Note that the possible set of such macro operations is
E2-E0. E2-E1SI. E2-E1PC. E1IN-EO. E1IN-E1SI, E1IN-E1PC. EIOUT-EO, EIOUT-E1SI,
and EIOUT-E1PC. More complex operations can be implemented by combining these
macro operations. These macro operations allow us to overcome the limitation due to
the height order of the Morse operations.

2.2 Data Representation in the System

The reminder of this chapter describes the implementation of the system for designing

the topological skeletons of smooth objects.

2.2.1 Representing the Reeb Graph and Its Embeddings

This subsection describes the representation of object shapes in the system. As described
earlier, the system holds the Reeb graph for representing the critical points and their
connections, and the contour trees for representing the inclusion relations among cross-
cross sections that contain critical points are called
cctions. When the cross sections

sectional contours. In this thes
critical sections. and other sections are called regular s
of the object shapes are scanned from its top to bottom. the contour tree changes at

23

(a) (b) (c)

Figure 2.8: Data representation in the system: (a) the object shape, (b) graph data,

and (c¢) iconic representation

the critical sections. Therefore, it is necessary and also sufficient to hold the contour
trees at regular sections each of which lies between a pair of adjacent critical sections
ical skeletons and its embeddings. Sup-

Let us see how the system holds the topolo;
pose there is an object shape as shown in Figure 2.8(a). The representations of
topological skeletons and embeddings are shown in Figure 2.8(b). As seen in this figure.
the system holds the topological skeletons of the object shape as a graph. In addition to
| skeletons. the system represents its embeddings as the contour trees at

7

the topolc
regular sections between adjacent critical sections. The planes of Figure 2.8 represent
such regular sections. Note that the virtual contour #0 is introduced for representing
the root of the contour tree in the system.

Furthermore, the system maintains the topological consistency of the object shape
with this data structure. In order to implement this consistency, the system automat-
ically constructs the closed surface by adding appropriate virtual pits to the object
s is based on the assumption

shape that is currently designed. Since the Morse theor;
that the object consists of closed surfaces, this framework is convenient for verifying the
topological consistency of the object shape. In Figure 2.8(b). the lower parts with the
light black color represent the virtual parts automatically added by the system, while
others represent the existing parts.

In the implementation, each vertex of the Reeb graph has its corresponding Morse
operator. This allows us to check whether the embeddings of the designed shape are
correct or not. To confirm the valid embeddings of the object shape, the system updates
the contour trees at regular sections by scanning the Morse operators from the top to
the bottom of the object. If the newly designed object is not topologically correct, the

system rejects the latest operation. The contour trees at regular sections are updated

24

b
E2

v

E1IPC E1SI

A

E1IN E1OUT

Figure 2.9: Iconic primitives used in the system

whenever the object shape is modified by users.

The graph data plays a fundamental role in representing object shapes. Additional
information such as geometry of the object shapes will be also added to this graph data,
which will be described in Chapter 3. As seen in Section 2.1. the system uses the iconic
representation of the Reeb graph that visualizes the embeddings of object surfaces.
In particular, it is helpful for visualizing the inclusion relations among cross-sectional
contours at regular sections. Figure 2.9 shows the primitives of the iconic representation
used in the system [108]. As described in Section 2.1.2, the black icons represent solid
contours and the white icons represent hollow contours

The iconic outputs are generated by converting the g
defined in the system. For example, as shown in Figure
(Figure :

raph data using the mapping
8, the iconic representation
8(c¢)) of the object shape (Figure 2.8(a)) is converted from the graph data
(Figure 2.8(h)).

2.2.2 Modifying the Object Data Using Morse Operators

The fundamental tools for modifying the graph data are the Morse operators described
in Section 2.1.3. Let us consider how the Morse operators can be used to modify the
graph data in the system. Since the macro operations can be reduced to the sequence of
the Morse operations. it is sufficient to see how the six types of Morse operators modify
the graph data in the system. In what follows, the six types of the Morse operators will
be applied to the object shown in Figure 2.8.

(a) (b) (c)

Figure 2.10: Object data modified by an E2 operator: (a) the object shape, (b) graph
data. and (c¢) iconic representation

Applying an E2 operator

When a 2D cell €2 is put inside the contour #2, the object shape. graph data, and
iconic representation are modified as shown in Figure 2.10. This amounts to applying
the operator E2(#2). An edge of the Reeb graph is inserted in order to represent the
newly created contour #4. The system assigns the label of the Morse operator E2(#2)
to the upper endpoint of the edge and the label of a virtual pit to its lower endpoint.
The system also scans from top to bottom the sequence of the Morse operators and
updates the contour trees at regular sections.

Applying an EO operator

When a 0D cell €' is attached to the contour #3, the object shape, graph data, and
iconic representation are modified as shown in Figure 2.11. This amounts to applying
the operator EO(#3). In this case. the system only changes the pit of the contour #3
from a virtual pit to a real one.

Applying an E1PC operator

When a 1D cell ¢! is attached to the contours #1 and #3, the object shape, graph
data, and iconic representation are modified as shown in Figure 2.12. This amounts to
applying the operator EIPC(#1. #3). The system deletes the virtual pit of the contour

26

(a) (b) (¢)

Figure 2.11: Object data modified by an E0 operator: (a) the object shape, (b) graph
data. and (c¢) iconic representation

#3 and merges the edges of the contours #1 and #3 by inserting a new branch vertex

that has the operator EIPC(#1. #3).

Applying an E1SI| operator

When a 1D cell ¢! is attached to the contours #1 and #2, the object shape. graph
This amounts to

data. and iconic representation are modified as shown in Figure 2.
applving the operator E1SI(#1. #2). The system deletes the virtual pit of the contour
#2 and merges the edges of #1 and #2 by inserting a new branch vertex that has the
operator E1SI(#1. #2)

Applying an E1IN operator

When a 1D cell ¢! that splits the contour #1 inside it is attached to #1. the object
shape. graph data, and iconic representation are modified as shown in Figure 2.14
This amounts to applying the operator E1IN(#1. nil). The system inserts the vertex
of the operator ELIN(#1, nil) into the edge of the contour #1. creates a new edge
that corresponds to the contour #4. and assigns the label of a virtual pit to the lower

endpoint of the edge of the contour #4 .

Applying an EIOUT operator

When a 1D cell ' that splits the contour #1 outside it is attached to #1, the object
shape. graph data. and iconic representation are modified as shown in Figure 2.15.
This amounts to applying the operator ELOUT(#1. nil). The system inserts the vertex

(a) (b) (c)

Figure 2.12: Object data modified by an EIPC operator: (a) the object shape. (b)
graph data. and (c¢) iconic representation

(a) (b) (c)

Figure 2.13: Object data modified by an E1SI operator: (a) the object shape, (b)
graph data. and (c¢) iconic representation

(a) (b) (c)

Figure 2.14: Object data modified by an E1IN operator: (a) the object shape, (b)
graph data. and (c) iconic representation

of the operator EIOUT(#1. nil) into the edge of the contour #1, creates a new edge
that corresponds to the contour #4, and assigns the label of a virtual pit to the lower

endpoint of the edge of #4.

2.3 Interface for Editing Icons

This section explains how to implement an interface for designing the topological skele-

al skeletons are edited with

tons of object shapes. As describe previously, the topologic
the iconic representation of the Reeb graph. First, the user selects the type of the next
Morse operator in his design. The user then picks up an icon that corresponds to the
desired operator and specifies how to paste the icon with the interface. As described in
Section 2.2.2,

validity of the object shape whenever the object shape is modified.

the system can reject illegal operations because the system examines the

2.3.1 Pasting Primitive Icons

I'his subsection describes how to paste the primitive icons of Figure 2.9 with the inter-
face. It is noted that pasting the primitive icons is equivalent to applying the funda-

mental Morse operators. In the following, the primitive icons are attached to the object

shape shown in Figure 2.16.

(a) (b) (¢)

Figure 2.15: Object data modified by an EIOUT operator: (a) the object shape. (b)
graph dz

. and (¢) iconic representation

Figure 2.16: The iconic representation of an existing surface and its bottom cross

section

(¢) (d

Figure 2.17: The results of candidate E2 operations: (a) E2(#0). (b) E2(#2).
E2(#3). and (d) E2(#6).

Pasting an E2 icon

Let us paste a solid E2 icon to the existing icons of Figure 2.16. A solid E2 icon can
be put inside a hollow contour. In the case of the object shown in Figure 2.16, the E2
icon can be put inside #0. #2. #3, and #6 because they are hollow contours. The
corresponding Morse operators are E2(#0), E2(#2), E2(#3). and E2(#6). 2
shows the results of these candidate operations. The system only permits acceptable

ure

operations that result in topologically valid objects.

Pasting an EO icon

Let us paste a solid EO icon to the existing icons of Figure 2.16. A solid EO icon can
be pasted to solid contours in order to close the contours; note that the contours where
EO icons are pasted do not have any child contours. In the case of the object shown in
Figure 2.16. the EO icon can be pasted to #4. #7. or #8. The corresponding Morse
operators are EO(#4). EO(#7). and EO(#8). Figure 2.

candidate operations.

shows the results of these

Pasting an E1PC icon

The process of pasting an E1IPC icon consists of two steps: selecting the parent con-
tour and selecting the child contour. Let us paste a solid E1IPC icon to the existing
gure 2.16. A solid E1PC icon merges a solid contour and a hollow contour
that are siblings in the contour trees. In the case of the object shown in Figure 2.16,

icons of F

the candidates for the parent contour are #1 and #5 because they have hollow child
contowrs. The corresponding Morse operators are EIPC(#1. #7) and EIPC(#5. #7).
where #7 represents an undecided child contour. Figure 2.19 shows the results of these
1y
finds one of the candidates for the child contour by default, which can be modified in

candidate operations in the first step. As shown in this figure, the system automatic
the second step. The candidates for the child contour in the second step are hollow

31

Figure 2.18: The results of candidate EO operations: (a) EO(#4). (b) EO(#7). and (c

EHY L

(b)

EO(#8)

(a)

Figure 2.19: The results of candidate E1IPC operations in the first step: (a) ELIPC(#1,
and (b) EIPC(#5. #7?) (#7 represents an undecided contour

contours that are the children of the contour selected in the first step. If #1 is selected
as the parent contour in the first step. #2 or #3 can be selected as the child contour.
The corresponding Morse operators are EIPC(#1. #2) and E1PC(#1, #3). Figure 2.20

shows the results of these candidate operations in the second step.

1

(a)

Figure 2.20: The results of candidate E1IPC operators in the second step: (a) ELIPC(#1.
#2) and (b) EIPC(#1. #3).

Figure 2.21: The results of candidate E1SI operators in the first step: (a) E1SI(#5.
#7). (D)ELSI(#T. #7). and (c)ELSI(#8, #7) (#? represents an undecided contour)

(a) (b)

Figure 2.22: The results of candidate E1SI operations in the second step: (a) E1SI(#5,
#7) and (b) E1SI(#5. #8)

Pasting an E1S| icon

The process of pasting an E1SI icon consists of two steps: selecting the first and second
contours that are siblings in the contour tree. Let us paste a solid E1SI icon to the ex-
isting icons of Figure 2.16. A solid E1SI icon merges two solid sibling contours into one.
In the case of the object shown in Figure 2.16, the candidates for the first contour are
#5. #7. and #8 because they have the common parent contour #3. The corresponding
Morse operators are E1SI(#5, #7). EISI(#7. #7), and E1SI(#8, #7), where #? rep-
resents an undecided second contour. Figure 2.21 shows the results of these candidate
operations in the first step. As shown in this figure, the system automatically finds one
of the candidates for the second contour by default, which can be modified in the second
step. The candidates for the second contour are the rest of the candidate contours in
the first step. If #5 is selected as the first contour, the candidates in the second step
are #7 and #8. The corresponding Morse operators are E1SI(#5, #7) and E1SI(#5,

#8). Figure 2.22 shows the results of these candidate operations in the second step

Figure 2.23: The results of candidate E1IN operations in the first step: (a)ELIN(#1.
7). (D)ELIN(#4. (#7)). (c)ELIN(#5, (#7)). (A)ELIN(#7, (#7)), and (e)E1IN(#8.

7)) ((#7) represents an undecided list of contours to be contained in the newly

created contour.)

Pasting an E1IN icon

The process of pasting an ELIN icon consists of two steps: selecting the contour to be
split and assigning its child contours to the newly created contour. Let us paste a solid
E1IN icon to the existing icons of Figure 2.16. A solid E1IN icon splits a solid contour to
generate a new solid contour that becomes a sibling of the original one in the contour
tree. In the case of the object shown in Figure 2.16, the candidate contours to be split
are #4. #5. #7. and #8. The corresponding Morse operators are ELIN(#1. (#7)).
ELIN(#4. (#7)). ELIN(#5. (#7)). ELIN(#7. (#7)). and E1IN(#8. (#?)). where (#7?)

represents an undecided list of contours to be contained in the newly created contour

Figure 3 shows the results of these candidate operations in the first step. As shown

in this f
be modified in the second step. The candidate lists of contours are equivalent to the
possible subsets of the child contours, i.e.. the power set of the child contours. If #1
is selected as the contour to be split in the first step, the candidate lists are nil, (#2).
(#3). and (#2. #3) because #2 and #3 are the child contours of #1. The corresponding
Morse operators are ELIN(#1, nil), ELIN(#1, (#2)). ELIN(#1, (#3)). and ETIN(#1. (#2.

#3)). Figure 2.24 shows the results of these candidate operations in the second step.

gure, the system automatically assigns the child contours by default, which can

(c) (d)

Figure 2.24: The results of candidate E1IN operations in the second step: (a) E1IN(#1,
nil). (D)ELIN(#1. (#2)), (¢)ELIN(#1. (#3)), and (d)ELIN(#1, (#2. #3))

Pasting an EIOUT icon

e process of pasting an EIOUT icon consists of two steps: selecting the contour to

be split and assigning its sibling contours to the newly created contour. Let us paste
a solid E1IOUT icon to the existing icons of Figure 2.16. A solid EIOUT icon splits
a solid contour to generate a new hollow contour that is a child of the original one

in the contour tree. In the case of the object shown in Figure 2.16. the candidate
contours to be split are #1. #4. #5. #7. and #8. The corresponding Morse operators
are ELOUT(#1. (#7)). EIOUT(#4. (#7)). EIOUT(#5. (#7)). ELOUT(#7, (#7)). and
EIOQUT(#8. (#7)). where (#7) represents an undecided list of contours to be contained
in the newly created contour. Figure 2.

> shows the results of these candidate operations

in the first step. As shown in this figure, the system automatically assigns the sibling
contours by defaunlt. which can be modified in the second step. The candidate lists of
contours are equivalent to the possible subsets of the sibling contours
set of the sibling contours. If #7 i
the candidate lists are nil, (#5). (#8), and (#5. #8) because #5 and #8 are the sibling
contours of #7. The corresponding Morse operators are ELOUT(#7., nil), EIOUT(#7.
#5)). ELOUT(#7. (#8)). and EIOUT(#T7. (#5. #8)). Figure 2.26 shows the results of
these candidate operations in the second step.

i.e., the power

selected as the contour to be split in the first step.

2.3.2 Handling Macro Operations

Since the macro operation is equivalent to applying a pair of the Morse operators, the
interface for pasting primitive icons is easily extended to that for handling the macro
operations. In order to perform a macro operation. the user first specifies the position
where a new critical point will be inserted (Figure 2.27(a)). The system hides the
icons lower than the specified critical section and accepts the user’s inputs through the
interface (Figure 2.27(h)). The interface is almost the same as those described in Section

2.3.1 because this step amounts to applying one of the six Morse operations. The user

35

iii
rr“ 9 i

-y
N Woy¥

£2 .:

Figure 2. T'he results of candidate ElOUT operations in the first step: (a)
E1IOUT(#1. (#7)). (b) ElOUTr#l (#7)), (c) E1IOUT(#5. (#7)), (d) EIOUT(#7,
(#7)). and (e) ELOUT(#8. (#7)) (#7 represents an undecided list of contours to be
contained in the newly created contour.

Figure 2.26: The results of the candidate ELOUT operations in the second step: (a)
EIOUT(#7. nil). () ELOUT(#7, (#5)). (c) ELOUT(#7. (#8)). and (d) ELOUT(#7,
(#5. #8))

(a) (b) (c)

(d) (e)

Figure 2.27: Editing icons for a macro operation: (a) an original object. (b) inserting
the upper critical section. (¢) going down step by step. (d) inserting the lower critical
section. and (e) an object after the operation

then specifies the position of the other critical points. which is lower than the previ vious
one in height. The system shows the hidden icons a

in step by step (Figure :
till this specified critical section. The same interface is 1>m\ ided also in this case except
that the system does not destroy the topological skeletons of previously designed objects
Figure :

27(d)). During this process, the system checks the sequences of critical points
from the top to the bottom of the object shape in order to avoid any invalid parts of
the shape. In this way. the macro operation is completed (Figure 2.27(e)).

2.4 Summary

This chapter has described the method of designing the topological skeletons of object
shapes together with its embeddings in 3D space. To represent the topological skele-
tons and embeddings. the iconic representation of the Reeb graph, which is called the

embedded Reeb graph. is used. The Reeb graph is edited using the Morse operators
that describe the way of connecting critical points. The macro operations are also in-
troduced for avoiding the limitations of the height-ordered operations. This chapter has

also presented the schemes for representing such topological skeletons and embeddings
in the system. The interface for editing the iconic representation of the Reeb graph has
been implemented and the examples were presented

Chapter 3

Designing Geometry Using Manifold
Mappings

The previous chapter described the method of designing the topological skeletous of
smooth object using the Reeb graph. This chapter presents techniques for designing

geometry of the object shape based on the designed topological skeletons [123].

3.1 Generating Surfaces Using Manifold Mappings

Generating smooth surfaces of arbitrary topological type is a topic of interest in the
field of shape modeling. Since such topologically complicated surfaces require irregular
decomposition of polyhedra. it is hard to form the whole object surface by pasting only
rectangular patches such as tensor-product B-spline patches'. In order to overcome
this difficulty. several techniques are proposed for generating smooth surfaces on multi-
sided regions. Hosaka and Kimura [45] proposed a method of generating multi-sided
patches by extending Bézier patches; however, their method has severe restrictions on
the number of sides of the domain polygon. Loop and DeRose [68. 67] proposed a
method that avoids these restrictions using multivariate barycentric coordinates, where
the proposed patches are called S-patches. Whereas the above two methods use the

networks of straight lines that do not lie on the object surface, the method proposed by
ments are fit to the object sur-

Kuriyama [60. 61] uses a curve network whose curve s
face. His method generates an n-sided smooth patch by blending the swept subsurfaces
of the n-boundary curve segments.

Although the above methods of generating n-sided patches are efficient. they suffer
from the restrictions on the underlying configuration of the network. This means that
the methods cannot avoid the restrictions on the shapes of n-sided patches when it
is necessary to connect the patches seamlessly with the continuity on the boundaries

5] hias presented the method of constructing surfaces of arbitrary
angular patches such as tensor-product B-spline patches. Although,
from discrete

Recently. Eck and Hoppe
topological type only from r
their method antomatically constructs the rectangular decomposition of the surface
samples. it takes much time to get the decomposition and the resultant decomposition is not
intuitive to use for further applications.

hetween adjacent patches. These restrictions often cause the non-intuitive desion of
the patches. Varady [129] avoided these restrictions by introducing overlapping patches
each of which has its own local parametrization. In his technique. the overlapping
patches are assigned to the vertices of the network that outlines the object shape
The advantage of his method is that it automatically guarantees C'-continuity on the
houndary curves without any special restrictions on the shapes of local patches. Note
that his parametrization techniques can be regarded as a kind of manifold mapping
techniques. and they have more flexibility in assembling local patches than the above
techniques that connect the patches seamlessly. The manifold mapping techniques are
also applied to several researches on shape modeling [40]. 3D shape recovery [100]. and
image generation [59. 121]%.

This study uses the Varady's technique to construct such manifold mappings. To
design the geometry of the object shapes, the user designs flow curves that run on
the object surface. From the given flow curves, the system automatically constructs a
network of curve segments called a control network in order to support the manifold
mappings. A local patch is assigned to each vertex of the control network and is called
avertex patch. The shape of the verte

x patch is designed using variational optimization
techniques. which are described in Chapter 4. Finally. the system blends the shapes of
vertex patches in their overlapping parametric domains to generate the whole surface
of the smooth object

3.2 Constructing a Control Network

This section describes how to design a control network that encloses an object shape.

3.2.1 Flow Curves

The first step of the geometric design is to specify the shapes of flow curves that run

on the object surface. Figure 3.1 shows an example of the flow curves that run on the
surface of a torus. As illustrated in Figure 3.1, the flow curves are assumed to go down
monotonously with respect to the height value in the implementation. The flow curve
used in the system is the curve that goes from one critical point to another in order
to outline the rough shape of the object. In particular, the flow curves can be used to
guide the cross-sectional shapes of the object surface. For later convenience, a pass is
assumed to have four incident flow curves, two of which come to the pass from the upper
and two of which go out of the pass to the lower. Note that since the configuration of
1 points of an object surface, the differential

flow curves is based on those of the critica
properties of the surfaces around the critical points are reflected in the process of the
surface generation.

The flow curve is represented by an endpoint-interpolating cubic B-spline cury
the system. This B-spline curve is defined on a knot sequence where the knots are

in

Appendix G describes a method of generating multiple-viewpoint images using the manifold
mappings.

.1: Flow curves of a torus

equally spaced except for its ends. The examples of the endpoint-interpolating B-
spline functions are shown in Figure 4.3 (Chapter 4). As can be seen in this figure.
the freedom of the B-spline curve is controlled by inserting and deleting the internal
knots of the knot sequence. The shape of the flow curve is designed by imposing point-

position constraints and tangent constraints of the curve. While preserving the imposed

constraints. the system determines the curve shape by minimizing its deformation. This
can be implemented by using the techniques of Welch and Witkin [135] that optimize the

enel

gv function subject to the deformation of the curve. In determining the shape using
these techniques. the freedom of the curve can be adjusted in proportion to the degree
of the constraints and is also specified manually by users when necessary. Note that the
endpoint-interpolating B-splines are well suited to the multiresolution representations
of shapes with spline wavelets [20. 94]. This scheme is also used for the design of local
patches in the system and described in detail in Chapter 4.

3.2.2 Control Network

In order to generate an object surface from the given flow curves, the system automat-
ically creates a control network that enclose the object shape. This control network
is created by adding appropriate cross-sectional curves to the given flow curves. The
control network of a torus is shown in Figure 3.2. By default, the cross-sectional curves
are added to the cylindrical parts of the object that correspond to the edges of the Reeb
graph. Of course. such cross-sectional curves can be modified by adding constraints
to the curves or moving control points of the curves in the system. As can be seen in
Figure 3.2. the control network encloses the object and will serve as a basic frame for
constructing the manifold mappings

A peak vertez. a pit vertex, and a pass vertex are defined to be the vertices of the
control network that correspond to a peak, a pit, and a pass of the object surface, respec-
tively. Other vertices of the control network are called regular vertices. As illustrated in

41

regular
vertex

Figure 3.2: A control network of a torus and the regions around its vertices

2, the control network decomposes the object surface into regions surrounded

by its curve segments. In the implementation of this study, the decomposed faces are

Figure !

topologically equivalent to three-sided regions (i.e.. triangles). four-sided regions (i.e.,
quadrilaterals). and five-sided regions (i.e.. pentagons). In particular, the faces around
a peak vertex or a pit vertex are three-sided regions, the faces around a pass vertex
are five-sided regions, and other faces are four-sided regions. The rule of the network
construction also implies that the regular vertices and pass vertices have only four in-
cident curve segments in the control network. Since this surface decomposition takes
into account the configuration of the critical points on the object surface. the surfaces
around the critical points are made smooth without any special manipulations.

.3 Constructing Manifold Mappings

This section describes the manifold mappings based on Varady's parametrization as-
signment: the manifold mappings are used to form the overall surface of the object
from local patches. In the implementation, the following procedures are carried out for
designing the geometry of the object shape. First, local patches are assigned to the ver-
tices of the control network. The local patches are then designed using the variational
optimization techniques proposed by Welch and Witkin [135]. which will be described in
Chapter 4. In this variational optimization. the curve segments of the control network
are used as geometric constraints to determine the shapes of the local patches. Finally.
the local patches are glued together to form the overall surface of the smooth object so
that the adjacent patches are blended in their overlapping parametric domains

One of the advantages of this framework is the locality of the geometric design. In

42

R R’

@(uNY) G UNy;)

Figure 3.3: Charts of a manifold

other words. the users can design the local patches without modifying the overall shape

of the object. Another advantage is the flexibility in assembling the local patches. This

means that it is unnecessary to take care of the continuity in connecting the patches

because the adjacent local patches have overlaps where their shapes are blended while

preserving the continuity. In addition. this implementation enables us to introduce
multiresolution design of object surfaces using wavelets. This will be described in detail
in Chapter 4.

3.3.1 Definition of the Manifold

Let us see the definition of a manifold [81]. An n-dimensional chart is a pair (U;. ¢

where U7 is an open set and ,; is a mapping of U; onto an open set of R". A pair of
charts (U5, ;) and (Uj, ;) is said to be C"-compatible if ;0 ;™" and p; 0 ;=" are
C" on U; N U; when U; N U; # 0. The mappings ¢; o o; Uand p; 0 p;~! are called

coordinate transformations. A C" n-dimensional manifold is then defined to be an n-

dimensional atlas {(L;, »;)} with the condition that every pair of charts in the atlas is
1 vi §
'ts of a manifold. In the implementation,

C"-compatible. Figure 3.3 illustrates the cha
the system guarantees the C'-continuity of the surface as described later in Section
3.3.4,

In this thesis. the dimension of the manifold n is set to 2. The open neighborhood
is the region around a vertex of the control network shown in Figure 3.2, and the
corresponding coordinate transformation is the mapping obtained from the Varady's

parametrization li‘('ll]ll([lll‘.‘x

3.3.2 Overlapping Local Patches

This subsection describes how to establish the coordinate mappings between the object
surface and the decomposed local patches. In order to construct such mappings. this
study uses the Varady’s parametrization techniques as described above. Following the
Varady’s notation. the local patch is called a vertex patch in this thesis. According to
the Varady's techniques. each vertex patch has a vector-valued parametric form that
maps the rectangular bivariate parametric domain onto 3D space. On the other hand.
the n-sided region decomposed by the control network is defined on a regular n-gou. i.e..

on a regular triangle when n = 3, on a square when n = 4, and on a regular pentagon

when n This implies that defining the mapping between a surface region and a
vertex patch amounts to defining the mapping between the corresponding parametric
domains. i.e.. the mapping between the regular n-gon and the bivariate parametric
domain.

The system constructs such mapping using the parametrization based on a planar
biquadratic Bézier patch [129]. Fi
(u.v) onto an n-gon using this parametrization technique. Due to the cyclic symmetry,

ure 3.4 illustrates how to map the bivariate parameter

the same consideration can be applied for other vertex patches and polygon sides that
are obtained with the rotation by Sanlietell s denote the control points of the Bézier
patch where 7. j = 0.1. and 2. The bivariate coordinates (u. v) can be mapped onto the
coordinates in the polygon (u.,) using the following equation:

Too T Too (1'=m)?
(// 1/):(:1—1/‘,3 Tao T Ty 2(l—v) |- (31)
Ty T T v?
Figure 3.4(a) shows the bivariate parametrization in a regular triangle (n . and
Figure 3.4(b) shows that in a regular pentagon (n = 3). In this parametrization. Ty

v2 and Ty lie at the vertices adjacent to Ty and

lies at the base vertex (u = 0.v =0),

o and Ty lie at the midpoints of the edges emanating from Tyo. Ty lies at the center
of the regular polygon. Ty and T, lie at the midpoint of the edge next to the edge
» is generally put in the middle of the polygon

emanating from the base point Typ.
boundary between T, and T

As can be seen in Figure 3.4, the control points of the above planer Bézier patch lie
at the corner or the midpoint of the polygon side. Suppose that n denotes the number
of polygon sides. o, denotes the corner angle, and w, denotes the angle between the
xis. The following expressions provide the coordinates of

first corner and the positive

the corners (¢up. o) (K =1,....n) and the midpoints of the polygon sides (1m k. m.)
(=l v enls
2 : / ;
(curs o) = du(cos(wn + (k= 1)=5), sinfwn + (k-1 (3:2)

(M, Mk}

1

cos(30,)

where d, =

(a) (b)

Figure 3.4: Varady's biquadratic parametrization of n-gons: (a) n = 3 and (b) n =
5 [129]

Figure 3.5: Polar parametrization for peaks and pits

The inversion of the given biquadratic map reveals another issue in this mapping
because it requires numerically expensive caleulations. One of the practical solutions is
to approximate the inverse mapping by taking dense grid of the domain points with the

corresponding parameter values of the vertex patches, and it would provide satisfactory
results. The system takes this practical solution because the system can obtain the
table of parameter mappings with only one calculation.

As described in Section 3.2.2, the peak and pit vertices of a control network can
have more than four incident curve segments. For these cases, polar parametrization is

used instead of the Varady's one for the peak and pit vertices as shown in Figure 3.1

This is made possible because the curve segments and adjacent faces around the peak
(pit) constitute a spider’s web in the control network.

3.3.3 Designing Local Patches

Having defined the manifold mappings between the object surface and the vertex patches,

the next step is to design the vertex patches appropriately. In the implementation. the

ve segments of the control network are used as the geometric constraints of the ver-
tex patches. In addition to such constraints, the shape of the patch is determined so
that the energy function subject to the deformation of the patch reaches the minimum
This is made possible by the variational optimization techniques proposed by Welch and
Witkin [133]. which is described in detail in Chapter 4. This subsection describes how
to use the curve segments as the geometric constraints for designing the shapes of the
vertex patches

The curve segments are considered to run on the boundaries of the polygon regions
in the parametric domains. Using the Welch-Witkin techniques, the vertex patch is
determined so that the patch is aligned to the curve segments at the corresponding
parameter values. Figure 3.6 illustrates the parametrization assignment of the vertex
patches when they are fit to the curve segments of the control network. In this figure, the
solid enrves represent the parametric paths of the curve segments and the dotted curves
represent the associated parametrization assignment of the vertex patch. The bottom
left vertex patch is the simplest case where the standard bivariate parametrization is
assigned to a rectangular region. The top right vertex patch has two triangle regions
because it contains a peak on its boundary. In the triangles, bivariate parametrization
is assigned using the biquadratic Bézier patch as described in Section 3.3.2. The bot-
tom right vertex patch has a pass at its center and hence consists of four pentagons.

Also in this case. the biquadratic Bézier parametrization is used to assign the bivariate
parametrization to the pentagon regions. As an exceptional case, the vertex patch of a
peak has a polar coordinate system as shown at the top left of the figure

In the implementation. additional constraints such as point-position constraints can
be attached to the faces of the control network. The constraints of a face are shared by
the vertex patches that have effects on the shape of the face.

In this way. the system determines the shapes of the vertex patches by using the
curve segments of the control network as geometric constraints.

3.3.4 Blending Local Patches

The final step of generating the overall surface of the object is to assemble the vertex
patches using the manifold mappings. Since any point of an object surface is covered
with more than one vertex patch, the object surface can be generated by blending the
vertex patches in their overlapping parametric domains.

Let us caleulate the coordinates of the point whose parameter vector is @ = (u,v)
as shown in Figure 3.7. Here, @ is contained in the domains of five vertex patches
ided region. Note that Figure 3.7 illustrates only two of

because @ lies inside a five
the five vertex patches for simplicity. The parameter vector @ = (u,v) is mapped onto

the two parametric domains by m; and 7;. where the mapped vectors are denoted by
@ = (uj. ;) and) as illustrated in Figure 3.7. It means that m(u.v) =
(i, v;) and 7;(u, v) Since the shapes of the two vertex patches have been

46

Figure 3.6: Mapping curve segments to the parametric domains of vertex patches

determined. the coordinates of the patches that correspond to @; and z; can be obtained

as s ui.v;) and s;(z;) = 8;(u). respectively. For interpolating the vertex

patches. the system uses a blending function B(x). The coordinates of the blended

surface s(ax) are calculated from

. Bz

(3.4)

Zi Bwr)

Here. the blending function B(x) is a tensor product of polynomial functions and is
arbitrarily selected if it guarantees the smoothness of the blended surface. For example,

the blending function can be set to the function B(u.v) = b(u)-b(v) ((u.v) € [-1.1] x
[=1.1]) where
24 (-1<t<0)
b(t) = 1 (3.3)
+ 0<t<1)

Figure 3.8 shows this polynomial function b(t). Note that the coordinate map . for
the vertex patch s;. can be expressed by i 7! (cf. Figure 3.3)

According to the Varady's paper [129], G'-continuity of the surface is guaranteed on
the curve segments of the control network. It means that in the context of the manifold
mappings. C'-continnity can be obtained by selecting the appropriate reparametrization
around the curve segments. Let us examine the surface continuity on the curve segments
in the following. Suppose that the boundary curve segments are covered by two vertex
patches: the vertex patch of p; and the vertex patch of py as shown in Figure 3.9.
Because of the overlapping rule of the vertex patches, only two vertex patches will be

47

Figure 3.7: Blending local patches

b
0.
T T ="
-1 0 1)

Figure 3.8: An example of the polynomial blending function

Figure 3.9: Surface continuity on the boundary

in effect at the limit along the common boundary curve segment. As shown in this
figure. the vertex patches of p; and p, have the bivariate parametrization assignments
uy.) and (us. v). vespectively. Note that this notation differs from the previous one
in that u; and uy represent the quasi-parallel coordinates along the common boundary
while vy and vy the quasi-orthogonal coordinates. Suppose that the vertex patch of p,
uy.vy) and the vertex patch of p, is represented by 8s(us, 15). Let

is represented by
us introduce another global parametrization (u,v) in such a way that u = u; =1 — u»
along the common boundary.

If the surface shape is represented by s(u.v). it will be the blended sum of the two
vertex patches sy(uy. vy) and 8o(us, v2) (on the common boundary) as

s(uy.us) = E Sr(up(u. v

3.6

) by - 8a(us

and Sy = =

01 2
lculated as follows.

where §; = Thus, the partial derivatives of

8(u.v) with respect to u and v are ¢

s 08y Qur OSk i (3.1)
— = (= (3.7
on 5, dui o v, Ou’
< Jup 08y Ov '
,);a . Z (4)Sk dur. . OSk (‘ k (3.8)
v S Oup Qv vy dv
Since wy = w.uy =1 — w. and v; = vo = 0 along the common boundary curve,
Ay Ay . vy . Ava gl (3.9)

du du

du

According to the Varady’s paper [129]. the sufficient condition for obtaining the G-
continuity is that the following equations are satisfied,

du duy

— = 3.10)

[é dv L

vy v

— = — =¢(u), (3.11)

o '
where ¢(u) denotes a function of u at v = 0 defined bv the parametrization. This

condition holds in the case of the Varady's biquadratic Bézier parametrization tech-
nique because the two patches in effect have continuous parametrization on the common
boundary (cf. Section 3.3.2)

3.4 Other Geometric Operations

The prototype system implemented in this study also provides the following geometric

operations.

Interference checking

The system provides operations that find the illegal interferences among surface layers
in order to maintain the predefined topological skeletons of the object.

Flat-surface generation

In order to support flat surface generation perpendicular to the height axis, the system
provides operations that set the height of the surface patches along the height axis to
zero. This means that we first design a smooth surface and then press it by setting its
lieight to zero as shown in Figure 3.10. The basic ideas of these operations are presented
in [107]

Object embedding

e system also offers operations that embed objects in 3D space. With the operations.
we can design multi-lavered objects as shown in Figure 3.21 by designing the two objects

separately and then embedding one inside the other.

3.5 Results

This section presents design examples generated in the prototype system. The system
is implemented on IRIS workstations and its software is written in C4++. using OpenGL

as the graphics library and Motif for the user interface.

Figure 3.10: Generating a flat top

Design steps

In the systenw. the user specifies the topological skeletons of an object shape with the
iconic representation of the Reeb graph. and then designs its geometry by modifying
the shapes of the flow curves or the control network the system offers by default. Figure

3.11 shows the steps of designing a torus in the system. Firstly, the peak of the torus
is created by pasting an E2 icon as shown in Figure 3.11(a). Secondly, the upper pass
of the torus is created by attaching an E1IN icon as shown in Figure 3.11(b). where the
initial shapes of the flow curves are also provided by the system. Thirdly. the lower pass
of the torns is created by attaching an E1SI icon. which results in the hole of the torus
as shown in Figure 3.11(c¢). Finally, the torus is completed by attaching an EO icon as
1 design, the user designs the

shown in Figure 3.11(d). After these steps of topologics

geometry of the torus by modifying the flow curves. Figure 3.12 shows a flow curve
des

control points or imposed constraints such as point-position and tangent constraints.

gned in the system. In this figure. the shape of the flow curve is controlled by its

Designing objects with macro operations

Figure 3.13 shows the shape of the torus designed in the system. In addition to the above
top-down surface construction. the system provides the means of attaching another
surfaces to the existing torus, i.e., the macro operations described in Section 2.1.4.
Figures 3.14 and 3.15 show such examples. Figure 3.14 shows a torus with two arms.

The arms are pasted to the torus using macro operations. Figure 3.15 shows a mounster-
like object obtained by attaching an additional branch to the bottom pit of the object
shown in Figure 3.14. In this way, the macro operations provide various means of

designing the topological skeletons of the object shapes. Note that Figures 3.13. 3.14,

and 3.15 show the flow curves, control networks, mesh samples, and rendered surfaces

of the designed objects.

Design examples

Figures 3.16. 3.17. and 3.18 present the examples designed in the prototype system.
Figure 3.16 shows a toy dog, Figure 3.17 shows the characters that are pasted together,
and Figure 3.18 shows an inner ear organ that consists of a cochlea and three semicircular

51

canals. In the same way as the previous figures, each of these figures shows the flow
curves. control network. mesh samples. and rendered surface of the designed object

Note that these objects have smooth shapes around their critical points. In this way.

surfaces of arbitrary topological type can be designed systematically by using the critical

points as the shape features

Checking illegal interferences

\s described in Section 3.4. the system provides the operations that find the illc

1
interferences among surface layers. Figure 3.19 illustrates two spheres where the inner
sphere go through the outer one. In this figure, the illegal intersections are indicated
by red spheres in the system. These operations provide the means of preserving the
consistency of the predefined topological skeletons.

Generating flat surfac

As described in Section 3.4, the system provides the operations for desig

ing flat sur-
)(b) shows a dog with flat top
inal non-degenerate surface.

faces. Fignre 3.20 illustrates such an example.

cars while Figure 3.20(a) shows its ori

Embedding objects

Figure 3.21 shows a multi-layered surface designed in the system. This double-layered

spiral object is created by designing two spiral objects sepa

tely and then embedding
one inside the other using the embedding operations described in Section 3.4.

3.6 Summary

This chapter has presented the techniques for designing the geometry of the object
shape using the manifold mappings. The geometric design begins with specifying the
shapes of the flow curves that run on the object surface between the critical points.
From the given flow curves the system automatically generates the control network that
encloses the object. Each vertex of the control network has its own local vertex patch
that is mapped to the local bivariate parametric domain using a manifold mapping. The
shapes of the vertex patches are determined by using the curve segments of the control
network as the geometric constraints. Finally, the system generates the overall surface
of the object by pasting the vertex patches with the overlaps where the vertex patches
are interpolated smoothly.

One problem of this geometric design is that the object surface on the curve segments
of the control network has only C''-continuity, while Morse theory requires C*-continuity.
‘ontinuity (or G2
the local patches and the way of gluing the patches. Besides this, since the surface gen-

However, (-ontinuity) imposes severe restrictions on the shape of

crated in the system has visually appealing smoothness as shown in the above figures,

the C''-continuity has no problems in the practical design of smooth surfaces. onse-
quently. this study takes the flexibility of the patch assembling while it discards the
C%continuity the theory requires

According to the rule of constructing a control network. the flow curves incident to

the vertex of the control network constitute a crossing or a spider web in the implemen-
tation. To provide the operation for eliminating less important curve segments from
the control network. it is desirable to include the T-connections of curve segments in
the control network. This will reduce the users’ interactions for designing the geometry
such as the flow curves. and is one of the future extensions of this study

As described in Section 3.4, illegal interferences among surface layers should be ex-
sometric

amined in order to preserve the topological validity of the object shape in the g
design. Providing efficient operations for checking interferences based on the predefined

topological skeletons is also a topic for future research.

A i
iy e i v o o

Figure 3.11: Designing a torus with the system: (a) pasting_ an E2 icon, (b) pasting
an E1IN icon, (c) pasting an E1SI icon, and (d) pasting an EQ icon

Figure 3.12: Designing a flow curve

(c) (d)

Figure 3.13: Designing a torus: (a) flow curves, (b) a control network, (¢) mesh
samples, and (d) an object surface

(c) (d)

Figure 3.14: Designing a torus with arms: (a) flow curves, (b) a control network, (c)
mesh samples, and (d) an object surface

Figure 3.15: Designing a monster-like shape: (a) flow curves, (b) a control network.,
(¢) mesh samples, and (d) an object surface

(c) (d)

Figure 3.16: Designing a toy dog: (a) flow curves, (b) a control network, (¢) mesh
samples, and (d) an object surface

(c) (d)

Figure 3.17: Designing characters: (a) flow curves, (b) a control network, (¢) mesh

samples, and (d) an object surface

(b)

(c) (d)

Figure 3.18: Designing an inner ear organ: (a) flow curves, (b) a control network, (¢)

mesh samples, and (d) an object surface

Figure 3.19: Checking illegal interferences: illegal intersections are indicated by red
spheres

(a) (b)

Figure 3.20: Handling degenerate surfaces: (a) an original non-degenerate object and
(b) an object with flat tops

(a) (b)
Figure 3.21: A double-layered spiral: (a) its control network and (b) its inner structure

62

Chapter 4

Designing Curves and Surfaces Using

Multiresolution Constraints

Recent advances in wavelet theories enable hierarchical representations of curves and
surfaces. Although the wavelet theories provide algorithms for transforming complicated
shapes at fine and coarse levels of resolution, there is no research on designing shapes
by controlling both fine and coarse levels at the same time. This chapter presents a
new method of designing curves and surfaces by solving the constraints imposed on

the shapes at multiresolution levels [122]. In this method. the curves and surfaces are
represented by endpoint-interpolating B-splines and their corresponding wavelets. At
each resolution level. the shape is determined by minimizing the energy function subject
to the deformation of the shape while preserving the given constraints. Constraints at
a low resolution level are converted to those at a high resolution level using wavelet
transforms in order to associate all the constraints with the common basis functions.
The constraints at multiresolution levels are then solved recursively from low to high
resolution levels. Design examples are also presented in this chapter. The proposed
method can be used to design the detailed geometry of the flow curves and the local
patches described in Chapter 3.

4.1 Need for Solving Multiresolution Constraints

The advances in the wavelet theories allow us to represent curves and surfaces at multiple
levels of details. In other words, wavelets serve as a mathematical tool for decomposing
ashape into those at multiresolution levels. While wavelets come from signal processing
and function approximation, they have been recently applied to computer graphics [114,
115, 116] including hierarchical editing of curves and surfaces [31, 36].

Finkelstein and Salesin [31] proposed a variety of editing operations such as smooth-
ng a shape. editing an overall shape while preserving its details, attaching details to
an overall shape. and so forth. These operations effectively control the shapes of curves
and surfaces using their levels of details. i.e., the shape resolution. While the operations
enable us to modify the overall shape while preserving its details, it is still difficult to

63

perform the reverse operations: modifying the details while preserving its overall shape
Suppose there is a curve as shown in Figure 4.1(a). The right-hand figure shows the
curve at a fine level of resolution while the left-hand figure shows the corresponding
curve at a low resolution level. Note that in Figure 4.1 the solid arrows indicate the
modifications by users and the dotted arrows indicate the corresponding changes in-
duced at the other resolution level. The Finkelstein-Salesin operations enable us to edit
the overall shape without modifying its details as shown in Figure 4.1(h). However. as
shown in Figure 4.1(c), it is difficult to modify the detailed shape without affecting the
overall shape of the curve. For such operations, Finkelstein and Salesin introduced the
curve character library which maintains the difference between the curves at adjacent
resolution levels. Although this library is useful. it is not intuitive for users because
it holds the shape data by the coefficients of wavelets. In addition. explicit operations
that directly create the data for the library are not vet available.

Actually. it is impossible to fix the exact shape of the curve at the low resolution
level hecause the changes of the details inevitably influence its coarse shape through
the smoothing operations using wavelets. One of the best solutions to this is to impose
constraints on the curve at multiple levels of resolution as shown in Figure 4.1(d) in
order to fix several vertices of the curves at the coarse level. The goal of this chapter is
to implement such design operations.

A further advantage of the constraints is that the shapes can be designed without
explicitly handling their control points. Gortler and Cohen [36] presented a method for
such shape design using the variational optimization techniques proposed by Welch and
Their method. however. fits the shape to the imposed constraints from

Witkin [133].
low to high resolution levels step by step so that the shape at the highest resolution
level meets the given constraints within the specified tolerance. No operation that uses
the constraints imposed at multiresolution levels has been proposed yet

T'his chapter presents a new method of designing curves and surfaces by solving
constraints imposed on the shapes at multiresolution levels. In this study, curves

and surfaces are represented by endpoint-interpolating B-splines and the corresponding

wavelets

20. 94] in order to design the shapes in a hierarchical fashion. For designing
the shapes at multiresolution levels, constraints are given to the shape at each resolu-

tion level. From the given constraints, the shape is determined using the variational

techniques proposed by Welch and Witkin [133]. To associate the multiresolution con-
raints at a low resolution level are

straints with the common basis functions. the const
converted to those at a high resolution level using wavelet transforms. The multiresolu-
tion constraints are then solved recursively from low to high resolution levels by taking
nto account the differences between the shapes at adjacent resolution levels. Several
results are also presented to show the capability of this method

This chapter is organized as follows: Section 4.2 reviews endpoint-interpolating B-
splines and its corresponding wavelets used as basis functions for representing curves
aud surfaces, The variational techniques for designing curves and surfaces are explained
n Section Section 4.4 presents a method of solving multiresolution constraints by
converting the constraints at a low resolution level to those at a high resolution level.

Section 4.5 shows results of multiresolution curve and surface design. Finally. Section

64

COArse fine coarse fine

(b) (c)

N

‘/\/\
|

coarse fine
(a)

coarse fine
(d)

Figure 4.1: Editing a curve using multiresolution levels of details: (a) original curves
at coarse and fine resolution levels, (b) editing the coarse curve (The overall shape of
the corresponding fine curve is changed.) (c¢) editing the fine curve (The shape of the
coarse curve cannot be fixed.) (d) editing both the coarse and fine curves (The shape
of the fine curve can be changed while preserving the important vertices of the coarse
curve.)

f(x) = f-(z) = f=2(r) =
@"(x)-c =g ‘ =2} ol
el € Vin=2
i e R
9" (x) = 9" () =
=Dz gl P=3(z) - d*=2
€ Win-1 € Wn-2

Figure 4.2: The multiresolution analysis

1.6 summarizes this chapter and refers to future work.

4.2 Endpoint-interpolating B-splines and Wavelets

T'his section reviews the endpoint-interpolating B-splines and its corresponding wavelets
used as the basis functions for representing curves and surfaces. Refer to the papers [20.
94]. tutorials [114. 115]. and textbook [116] for more details.

4.2.1 Multiresolution Analysis

Mallat [69] developed a mathematical framework called multiresolution analysis where
a shape function is represented hierarchically. According to his study, we obtain a
vector space 17" such that V") can be decomposed into a chain of nested vector spaces
Vv c v ... ¢ V), The basis functions of V*) are called scaling functions

at the resolution level & and denoted by ;" (i = 1

) in this thesis. This means

that the scaling function "’ represents a finer level of details as the resolution level &
increases.

Let us also define 117 as the space that fills the difference between V*+1 and V),
Le., VD = 170 L1k where + indicates the direct sum. It follows from this definition
that the vector space V" is decomposed as follows: V(" = W=D ... fyprln=m f
V=m) as shown in Figure 4.2. The basis functions of W®*) are called the wavelets at
the resolution level & and denoted by r*t“ (i=0,1,...) in this thesis.

Suppose that a function f")(x) is represented by the linear sum of the scaling

P e
ivces O oo

)
(c) (d

Figure 4.3: Endpoint-interpolating B-splines of the knot sequences (a) {0, 0, 0, 0. 1.
1. 1. 1} for the resolution level 0, (b) {0. 0, 0, 0, % 1,1, 1. 1} for the resolution level 1.
(c) {0, 0. 0. 0. 1. :‘ f; 1. 1, 1, 1} for the resolution level 2, and (d) {0, 0, 0, 0, &, 2. 2

S

. 1} for the resolution level 3

functions ;" (1), ie., f"(x) € V. Since V(") = V=D Ly n=b_ fm)(z) can be de-
composed into f"=Y(e V=) and g"-Y(e W) as shown in Figure 4.2. ¢"V(z)

serves as a high-pass filter whereas o("=!)(r) serves as a low-pass filter. In this way, the
decomposition of f"(r) at successive resolution levels produces ¢'"~"(x).....¢g"~™(2).
and f"=")(r). Conversely. f")(x) can be reconstructed from ¢"=V(x)....,¢g"~™)(x).

and f!" v

4.2.2 B-spline Wavelets

It is desirable that the space 1W(*) is orthogonal to V*) in the hierarchical representations

of curves and surfaces. This is because the changes of a function f*) € V*) have no

influence on the corresponding function) € W) which means that the functions
f* and ¢'*) can be edited independently. The class of wavelets with this orthogonality
is called semi-orthogonal wavelets.

Among the semi-orthogonal wavelets, this study uses the spline wavelets developed
by Chui et al [20. 94]. The corresponding scaling functions are B-spline basis functions.
In particular. this study employs the cubic endpoint-interpolating B-spline functions
defined on a knot sequence that is uniformly spaced everywhere except for its ends, where
its knots have the multiplicity 4. Such cla
The reason for using this class of B-splines is that it provides the means of decomposing

s of B-spline functions is shown in Figure 4.3.

and reconstructing multiresolution shape functions using matrix calculations. This is
explained in detail in Section 4.2.3.

Because the endpoint-interpolating B-spline functions and its corresponding wavelets
are defined in bounded domains, the shape function is represented by a sum of a finite

number of basis functions. For example, the function f* € V% is represented by

B =G (x) + 2 (1) = (a2 (4.1)
(k (k) A -
wher 15 a row matrix (2 (). @y (x)..... 9 o (x)). ¢ is a column matrix of
(k (k
the corresponding coefficients u‘ SO 10Ty)T, and m™) is the dimension of V"
Here. the superscript T stands for the Hfmxpuw ut a matrix or a vector. The function
() has its corresponding function ¢*)(x) € W®_ which is expressed by
(k k) (k) (k) (K k
g (X)) =dy ey () +dy vy (T) (x) (z)-d
(k)N 3 ; (k)) (k (k) .
where "' (1) is a row matrix (v (7)1 (Z)5 ..r'H‘;‘[J‘],(I is a column matrix of
o k) k) (k) | T & v pinir(
the corresponding coefficients (" dy”d"}))T, and n* is the dimension of T}

As described in Section 4.2.1, the subspaces V) are nested recursively. This leads
to the fact that for all & there exists a matrix P*) such that

e () = W (z) . PP, (4.3)

It means that a scaling function at the resolution level £ — 1 can be represented by a
linear sum of the scaling functions at the resolution level k. Note that the matrix P™*)
1) (k) apd V=D

is an m™) x m* =Y matrix because 1
respectively. Since T17*=1) is also contained in V(%) there exists a matrix Q™" such that

have dimensions m® and m*

D(z) = ®(z)- QW (4.4)
where @ is an m™*) x n'*~) matrix. Note that m*=1 4+ p*=1 = k) hecause Vk-1
and 11 are orthogonal in 17¥), The equations (4.3) and (4.4) are said to be two-scale

relations for ¢*)(x) and ¥'*(z), and the matrices P*) and Q¥ are called synthesis
filters. The matrices P*) and Q*) are given in Appendix C.

4.2.3 Wavelet Decomposition and Reconstruction

As described above, the function f* e V% jg represented by ¢*)¢!*). Note that
the coefficient matrix ¢*) can be regarded as the control points of f*). To create lower
(k=1)

resolution coefficients ¢*=1) from ¥ with a fewer number of coefficients m (<m®),
the following calculation is performed:
k=D = AWk (4.5)

where A% is an m*=1 x ;™ matrix. Since m*=1 < m*)_ some details are lost in this

process. The details are stored in d*~" by the following calculation:

A= = Bk ok (4.6)

where B is an n* =1 x m™ matrix.
resolution level ¢*=1 and d*~Y from ¢*) is called the wavelet decomposition. and the

The process of obtaining the coefficients at a lower

Figure 4.4: The filter bank

matrices A" and B'™ are called analysis filters. Conversely. ¢'*) can be reconstructed

from the lower resolution coefficients ¢*=1 and d*~" as follows:

) = pitiglk=1) 4 g0 gtk=1), (4.7)
x T, . —
Note that the matrices P*) and Q®) are the same as those in (4.3) and (4.4). This
process of recovering the original function from the lower level of resolution is called

the wavelet reconstruction. According to (4.5), (4.6), and (4.7), the following relation

between AX B P® and Q™ is derived:

AR
1
:(P“‘\Q“‘) " (4.8)
Bk
Alk
Here. and (PR Qt) are both square matrices
B
1.5) and (4.6) allow us to recursively decompose ¢™ into d"~", ..., ¢ and
e as shown in Figure 4.4. This recursive process is called a filter bank. Since '™
can be reconstructed from d"7. ..., d"™™ and ¢'"~™) using (4.7). this decomposed

nal coefficients ¢'"’ and is known

sequence can be considered as a transform of the orig
as a wavelet transform

The above formulation can be directly applied to the multiresolution representations
of curves because the scaling functions are B-spline basis functions. In the case of
surfaces. the basis functions are usually tensor-products of B-spline functions. Let us
define several matrices using scaling functions ;',“ and the wavelets 4'\,‘ as follows:
9 y) = (H(2) - $B @), TW(2,9) = @) - AP W), TW(@.y) = (@) -
"‘,/ (y)), and 'I"f,,'(r.y) = ("lHU)' 4'_‘,"(!/]) Here, the element in the i-th row and

J-th column of each matrix is represented. The corresponding coefficient matrices are

x : Y. itk 3 K (k) k
also defined as follows: C*) = (¢! &), DV = (¢ -), DX = (V. d¥). and
D’,l,,‘ = (r‘,/y . l,\/“]. Suppose that Mow—major 18 the row-major representation of the
matis M= (M), 1.8.; Meow=major = [M115MM18, o vy Mo, Moy . ..). It is noted that the

ST P] (0 R

row—major

surface S(x. y) is represented by S(z

According to (4.5) and (4.6), the following equations for the wavelet decomposition

1

of surfaces are deri

G i AR AT 19
DY = BRI R 40T (4.10
D‘”A D = ARk glknT 111)
DEN = gkt gk (4.12)

In the same way as for the curves, the following equation for the wavelet reconstruction

of surfaces is derived

= PWct=LptyTy o® plk=1)(pliyT 4 p®) pk=-l(gNT | @& plk-1)(QU]T
(4.13)

4.3 Designing Shapes by Variational Optimization

Welch and Witkin [135] proposed variational optimization techniques that effectively
control object shapes with the geometric constraints such as points, tangents, curves,
areas. ete. In their method. an object shape is determined by minimizing the energy
function subject to the deformation of the shape while satisfving the given constraints.

4.3.1 Energy Functions

The energy functions for designing curves and surfaces are defined so that they can
measure how much the curves and surfaces are stretched and bent by looking at the
differentials and curvatures at each point of the curves and surfaces.

Suppose a curve is represented by w.(r) = ¢ (x) - .. where ¢ () represents a row
matrix of B-spline basis functions and ¢, represents a column matrix of its corresponding
coefficients. Here. ¢, indicates a vector of control points in two-dimensional (2D) or
three-dimensional (3D) space. The energy function E.(w,) of the curve w, is defined

as

E,\uv,\:/ a(Dw,.)? + 3.(DDw,)?> = ¢,"H,c., (4.14)
w

where Dw, indicates the derivative of the curve w,.(r) with respect to x. The first and
second terms of (4.14) correspond to the stretching and bending of the curve, which are
controlled by the values of a. and 3., respectively. Because the above energy function
is the integration with respect to x, the control vector ¢. can be brought outside the
tegration. and the integration is reduced to the matrix H.,.

. where ¢, (. y) represents

Suppose a surface is represented by w.(x.y) = @, (v, y)-¢
arow-major matrix of the tensor-products of B-spline functions and ¢, represents a row-
tion 4.2.3. Here, ¢,
J(w,) of the

major matrix of the corresponding coefficients as described in
represents a vector of control points in 3D space. The energy function £

surface w, is defined as

['1'\):/ « Diw, Djw
(w Vi Z Qa w i

*ij=ay

+ 3.(D;Djw,)? = ¢! H,e,, (4.15)

70

where Dyw, indicates the partial derivative of the surface w,(x.y) with respect to k.
and the values of a, and J, control the stretching and bending of the surface. In the
same way as for the curves, the control vector e, can be brought outside the inteeration.
and the integration with respect to r and y is reduced to the matrix H.

The above energy function is based on the thin-plate under tension model [124
15). Although this model is accurate only in the neighborhood of the minimum. it
still behaves well away from the minimum, which is effective for designing curves and
surfaces. Note that each of the coordinates such as . y, and = is treated independently
in the above formulations.

4.3.2 Attaching Geometric Constraints

In order to represent the curves and surfaces by the same notations, the subscripts ¢ for
¢, H., and

H, in what follows. The geometric constraints are points, tangents, curves, areas, etc

curves and s for surfaces are omitted in the notations such as ¢, @, c,.
According to the study of Welch and Witkin, these geometric constraints are grouped
into two classes: the finite-dimensional constraints which control the shapes of curves
and surfaces at discrete points, and the transfinite constraints which control the shapes
along curves or subareas. Both classes of constraints can be formulated as a system of
linear equations with respect to the control vector c.

The finite-dimensional constraints fix the shapes of curves and surfaces at specified
points. The position and tangent at a point are the examples of such constraints. For
example. the point-position constraint that fixes the shape of the parameter x, at a

point wy can be written as
wy = w(xy) = p(zg) - C. (4.16

It is a linear equation with respect to e. Other constraints such as tangents at points
can similarly be described.

The transfinite constraints need more complicated formulations. Since the curves
and surfaces have only finite number of control points. they cannot exactly satisfy the
transfinite constraints in general. Therefore. such constraints are formulated as integrals
over the parametric domains of the constraints and the integrals are minimized in a
least-square sense. For example, consider a constraint curve whose parameters are
represented by I(#). This means that the constraint curve L can be represented by
L(t) = L(l(t)). The curve IN(t) on the object shape that corresponds to L(t) is written
t) = w(l(t)) = (l(t)) - ¢. The integ

obtained as follows:

al over the parametric range of ¢ can be

/l(N-L)". (4.17)

Welch and Witkin formulate the transfinite constraint so that (4.17) becomes minimum
by setting the derivative of (4.17) with respect to e to zero as

a "
el ST

L de /l()
ON

= _/I(N~ e

71

. I w(l))
A
feottre -z 2ede)

de

- |

l (4.18)

where @ denotes the tensor product. Note that the transfinite constraints are also
reduced to a system of linear equations with respect to e. Other constraints such as
areas are similarly described.

In this way, both classes of the constraints are finally written in the following form:

Mc=gq (4.19)

where each row of the matrix M represents a single linear constraint and the corre
sponding component of g represents its value

4.3.3 Constrained Variational Optimization

3.1 and 4.
and the equations of constraints. The next step is to find the coefficient vector ¢ by

As described in Sections 4 2, we have already obtained the energy function

minimizing the energy function while satisfying the given constraints. This can be

written as follows

. 1
min || =c¢"He

c is subject to Me=gq (4.20)

One of the general solutions to this problem is to reformulate (4.20) by adding a term

of Lagrange multipliers y = (y1. yo....)T and minimize

Hc+(Mc—q)"y | (4.21

Considering the differentiation of (4.21) with respect to ¢ and y. the object shape is
determined by solving the following system of equations:

H M’ (i 0

M 0 Y q

In this way. the coefficient vector ¢ that minimizes the energy function while satisfying
the given constraints is obtained. In calculating the solutions of (4.22). numerical errors
arise when the matrix is close to singular. For such cases, the techniques called singulas
value: decomposition [93], which are described in Appendix D in detail, is used. The
techniques described in this section allow us to design the shapes of curves and surfaces
at a single resolution level by attaching geometric constraints. Thus, the next step is to
design the object shape by solving constraints at multiresolution levels.

4.4 Designing Shapes Using Multiresolution Constraints

This section describes the main contribution of this chapter: a method of solving con
straints at multiresolution levels for the hierarchical curve and surface design

4.4.1 Converting Constraints at Different Resolution Levels

The problem of handling multiresolution constraints is that the constraints at each
resolution level are associated with the basis functions at its resolution level. In other
words. constraints at different resolution levels cannot be handled directly because they
have different basis functions. Therefore, it is necessary to associate the constraints at
multiresolution levels with the common basis functions. Fortunately, this is possible in
this framework since the constraints are reduced to a system of linear equations with
respect to the control points. This is the main idea of the method to be presented

Let M™et) = g™ he the equation of the constraints at the resolution level k.
Recall that the analysis filter provides the relation between the vectors ¢*=!) and ¢(*)
as shown in (4.5) (for curves) and (4.9) (for surfaces), which is described as

clk=1) — Fk) gk (4

It means that ¢/*~" can be represented by the linear sum of the elements of ¢*). In
particular, in the case of curves, F*) is equivalent to A*) as shown in (4.5). In the case
of surfaces, (4.9) is converted into the form of (4.23) using the row-major representation
(#=1) is also linear with respect to the elements of ¢*). Let us
K1) (k) is written as

of matrices because ¢

confirm this. According to (4.9). the relation between ¢! and ¢

k=D = AR ABNT, (4.24)

This is equivalent to the following equation:

mik m(k

(k=1 \

i = Z aip Z CpaBig)
p=1

) (k)
m*) m

=5 % oot

p=1 q=1

The row-major representation of the above equation is represented by

(k=1) (k)
) Ay o+ ApGy, Qpayy ccc Ay st
(k=1) (k)
Cyy Ay v @Gy G0yt Gl Ciy (4.25)
= 4.25
(k=1) (k))
Coy Qz1011 -0 A1)y A2 A1y Cyy
(k)
Wyy v A1y, A0y~ Gy (e

73

where gt = m'"* and v = m'*-

1.23

It is now possible to associate the constraints at different resolution levels with

In this way. (4.24) can be reduced to the form of

the basis functions at a single resolution level. Suppose that there are equations of
constraints {M'*e® = q'¥} at the resolution levels k = 0.1 n as shown in Figure
1.5. The first step is to associate the equation of constraints M®el0 q"" with

the basis functions at the resolution level 1. By substituting ¢'* for ') using
: the equation becomes M(F = (MYFY)c™M = ¢'9, which relates
the constraints at the resolution level 0 to the basis functions at the resolution level 1.

At the resolution level 1, there are two systems of equations: the original equation of
constraints M

= ¢q'". and the newly converted equation (M'YF)ch) = ¢(©

The two systems of equations can be merged into M ¢! = g'") as shown in Figure
| 8 5

1.5, because both systems are based on the same basis functions, i.e., the basis functions
at the resolution level 1. The merged equation is converted to those at higher resolution
levels in the same way. As shown in Figure 4.5. this process continues until all the
constraiuts of multiresolution levels are merged.

4.4.2 Solving Multiresolution Constraints

\s seen in Section 4.4.1, the framework of this study enables us to associate all the
constraints at different resolution levels with the basis functions at the highest resolution
level. Althongh the converted set of equations can be solved at the highest resolution
level. an nnexpected side effect will appear in this case. Figure 4.6 shows an example
where the object shape is tangled. The cause of this unexpected result lies in the fact
that the deformation is minimized only at the highest resolution level, although the
constraints are specified at each level of resolution.

To avoid such an unexpected side effect, this study applies the Welch-Witkin tech-
niques to the difference between object shapes at adjacent resolution levels. Here. the
difference is equivalent to the 3D vector between the points that have the same param-
eter values of the object shape at each resolution level. Note that the difference vector
is determined by handling 2-, y-, and z-coordinates independently. This approach is
similar to the Forsey-Wong method [33] for generating hierarchical B-spline surfaces in
that hoth methods use least squares to control the hierarchical representations of the
shapes.

The actnal process is performed recursively from low to high resolution levels. First,
we determine a temporary shape at the lowest resolution level directly using the Welch-
Witkin techniques. This means that the shape is determined by solving the equation of
constraints imposed only at this level. Note that the shape will be modified when we

determine the shapes at higher resolution leve

After determining a temporary shape at the lowest resolution level. we determine
the shapes at higher resolution levels step by step. Let us now assume that the object
shapes at resolution levels up to n — 1 have been determined as shown in Figure 4.7.
The next stage is to determine the object shape at the resolution level n. Suppose m',fm\
(0 <k < n—1)is the current shape of the object at the resolution level k and w!k)

new

74

‘ MU = g ‘
| resolution
[feieln Arie . ‘
M™M= gl e PRE
MV P
’ fi
|
i _ i
i | : :
[f
i Y 2y a2 -
B e < g0
‘ 1
‘ 1 (1)
)
resolution : [
level 1 | A -
Iv. Mie 1) = g1 o) (1) = 1
| MOFQ q"°
Te—_y T |
1 conversion (MO FD)elh) = g© |
| 1 |
|
resolution | Z:j |

level 0 ‘
' MO0 = g0

MO0 — g

Figure 4.5:

indicate the steps of converting constraints

Converting constraints from low to high resolution levels: The arrows

a) (b

Figure 4.6: The case where the multiresolution constraints are solved directly: The
fioure on the left shows a curve at a low resolution level and the figure on the right
shows its corresponding curve at a high-resolution level. Point-position constraints are
represented by gray disks

(0 < k < n) is the shape of the object to be obtained after this process at the resolution
level k. Note that the current shape at the resolution level & (0 < & < n— 1) will be
modified while satisfyi

1g the given constraints
The equation of constraints at the resolution level £ (0 < &k < n — 1) is obtained by
taking into account the difference between constraints and current object shape. For

example. a point-position constraint that fixes the shape of the parameter @, at the

point wy can be written as

(k)
T)) = Wy — Wy (T0). (4.26)

Other constraints such as curves and subareas can similarly be obtained. The equation

of constraints obtained here is denoted by M ¢l*) = as shown in Figure 4.7. At

the resolution level n, on the other hand. wy; ' is used instead of wgy; because we do

not have w,j; vet. This amounts to modifying the current shape at the resolution level
n—1 to find the next shape at the resolution level n. Using the techniques described
in Section 4.4.1, the equations of constraints {M ¢*) = g'®} are merged where &
ranges from 0 to n. By solving the merged constraints, we now obtain the difference

i A n—1) "
between the object shapes at the resolution levels n and n—1. —Wyy - W

n

e
; : s 3 (n—1) (n—1)
is now obtained by adding the resultant difference w{l) — wg ' to wy, . and then

propagate the changes by decomposing w)!

into those at the lower resolution levels as
illustrated in Figure 4.7.

Figure 4.8 shows the examples where the same constraints as those of Figure 4.6 are
solved using the method. In this way. the proposed method enables us to design curves
and surfaces with constraints at resolution levels that range from coarse to fine.

4.5 Results
This section shows several design examples generated using the prototype systen. In

the implementation. users attach constraints at multiple resolution levels as shown in
Figures 4.11 and 4.12.

resolution = | Dawe
‘ = M =g w!
level n ; | L,
i) L — it — find wi?
| | 1} merge } decompose
resolution & Lol b
| o e M (it w'
level n — 1 w!! - wiy
1t merge U decompose
1t merge | decompose
‘ resolution | P — 1)
. 3 M =g wib)
level 1 | .
| L“ur\' i “'uh‘
| 1 merge | decompose |
|
: ¢
resolution P {0 o ‘
. | = M0 — 50 w!%), [
level 0 i =
5(0 o= , ! |
w, W | | ‘

Figure 4.7: Solving multiresolution constraints: The arrows indicate the steps of solv-

ing multiresolution constraints.

(a)

0 i "

(b)

Figure 4.8: The case where the multiresolution constraints are solved using the pro-

posed method: The figure on the left shows a curve at a low resolution and the

ure

on the right shows its corresponding curve at a high-resolution level. Point-position

constraints are represented by gray disks.

coarse fine

(h)

Figure 4.9: Editing a curve using multiresolution constraints: (a) designing curves
using the proposed method and (h) attaching the details of (a) to another coarse shape

Designing curves
Figure 4.9 shows curves designed using multiresolution constraints. As seen in Figure
19(a). the system controls curves at multiresolution levels at the same time using the
multiresolution constraints. The method can also be used to design the details at
high resolution levels. which is equivalent to creating the data for the curve character
library [31] as described in Section 4.1. Figure 4.9(b) presents such an example where
the overall shape of the curve is designed and the details are then added.

Figure 4.10 shows line drawings of a young boy’s face: Figure 4.10(a) shows the face
at a low resolution level and Figure 4.10(b) shows its corresponding drawing at a high

resolution level.

Designing surface patches
Fi

The blue spheres represent point-position constraints and the yellow curves represent

re 4.11 shows a display example of editing a mountain-like surface with a crater.

curve constraints. After creating a large mountain at a low resolution level, the small
crater can be designed at a high resolution level. It can be seen in Figure 4.11 that
designing shapes at multiresolution levels requires smaller number of constraints than
designing shapes at a single resolution level. Figure 4.12 shows a display example of
editing a surface with two peaks. As shown in Figure 4.12, a pair of steep mountains
is created using multiresolution constraints. These two figures represent fundamental
patterns of designing surface shapes using multiresolution constraints, which can be
implemented as macro operations in the system. These fundamental operations allow
us to edit more complicated shapes such as a facial shape as shown in Figure 4.13.
where textures are mapped onto the surface. The figures at the top and bottom show

the coarse and fine resolution surfaces, respectively.

|

&9

(a) (b)

Figure 4.10: Line drawings: (a) a drawing at a low resolution level and (b) its corre-

igure at a high resolution level

sponding

Designing closed surfaces

Figure 4.14 shows a display example of editing a topological sphere using multiresolution
constraints in the system of Chapter 3. As shown in Figure 4.14(a). the multiresolution

red by surrounding vertex patches

constraints are imposed on the faces, which are she
Figures 4.14(h). 4.14(c). 4.14(d) show the surfaces at a low resolution level, an inter-
mediate resolution level. and a high resolution level. In this way, the proposed method
can be applied to surfaces of arbitrary topological type using the manifold mappings

described in Chapter 3

4.6 Summary

ing curves and surfaces using multire;

This chapter has presented the method of des
olution constraints. The curves and surfaces are represented in a hierarchical fashion

by scaling functions and wavelets, i.e., endpoint-interpolating B-spline functions and its
corresponding wavelets. The shapes of the curves and surfaces are determined by mini-
g the given

mizing the function subject to the deformations of the shapes while preservir
constraints. To associate the constraints at different resolution levels with the common
basis functions. the constraints are converted to those at the high resolution level by
the wavelet decomposition. The constraints at multiresolution levels are then solved
recursively from low to high resolution levels with respect to the differences between the
shapes at adjacent resolution levels.

As seen in Section 4.5, the proposed method can serve as a tool for developing the
curve character library [31]. which holds various kinds of fine details of the shape. Since
the operations in the methods have close relations with the properties of scale-space
theory [137, 66]. users are expected to know some about such properties. Therefore,

macro operations based on such properties are useful for both well-trained and novice

users. In this chapter. the method of designing curves and surfaces by geometric con-
straints is described. Implementing the reverse operations, i.e., operations for extracting

constraints from the surface data, is also an important research theme. Algorithms for

-ant constraints from the shape data are described in Chapter 5 [120].

extracting signif
and an example of such extracted constraints is shown in Figure 4.15. Figure 4.15(a
shows the constraints of characteristic points and boundaries extracted from the surface
data. and Figure 4.15(b) shows the surface determined at this resolution level from the

extracted constraints.

Figure 4.11: A display example of editing a mountain-like surface with a crater using

multiresolution constraints; the blue spheres represent point-position constraints and

3
the yellow curves represent curve constraints.

Figure 4.12: A display example of editing a surface with two peaks using multireso-
lution constraints; the blue spheres represent point-position constraints and the yellow
curves represent curve constraints.

I}

"
~

,, i

b} N
Il g_f’ \

L |

(b)

Figure 4.13: A display example of editing a facial shape: (a) the shape at a low

resolution level and (b) its corresponding shape at a high resolution level.

(c) (d)
Figure 4.14: Designing a sphere using multiresolution constraints: (a) editing con-
straints, (b) a surface at a low resolution level, (¢) a surface at an intermediate resolution

level, and (d) a surface al a high resolution level

(b)

Figure 4.15: Extracting characteristic points and boundary curves from the designed
and boundary curves (yel-

surface: (a) extracted characteristic points (blue sphere
low curves), and (b) a surface determined by the extracted characteristic points and

boundary curves at this resolution level

Chapter 5

Robust Algorithms for Extracting Critical
Points and Critical Point Graphs

Researchers in the fields of computer graphics, geographical information systems (GISs).
and shape modeling have extensively studied the methods of extracting shape features
stich as peaks. pits, passes, ridges. and ravines from discrete samples. The existing tech-
niques, however. do not guarantee the topological consistency of the extracted features
because of their heuristic operations. which results in spurious features. Furthermore.
there have heen no robust algorithms for constructing critical point graphs (CPGs) such
as the surface network and the Reeb graph from the extracted peaks, pits, and passes.
This chapter presents new algorithms for extracting features and constructing CPGs
from discrete samples. The algorithms enable us to extract correct shape features: i.e..
points that satisfy the Euler formula, which represents
the topological invariant of smooth surfaces. This chapter also provides an algorithm

the method extracts the critica
that converts the surface network to the Reeb graph for representing contour changes
with respect to the height. The robustness of the proposed algorithms is also discussed.
This chapter also describes the method of changing the height axis of object shapes
using the algorithms. Display examples are presented to show that algorithms extract

the features that appeal to our visual cognition.

5.1 Conventional Algorithms for Extracting Shape Features

The need to extract shape features from discrete samples has been increasing. for ex-
ample, in contemporary GISs and shape modeling systems. In particular, several tech-
niques are proposed for extracting the features of smooth surfaces such as the critical
points (peaks, pits. and passes) [87, 132]. ridge and ravine lines [102, 62]. and surface
curvatures [7, 29].

It follows from the theory of differential topology that critical points on a smooth
surface satisfy the topological consistency, i.e., the Euler formula. The Euler formula
represents a topological invariant of smooth surfaces. (Refer to Section 1.7 and Ap-
pendix A for more detailed definitions of these concepts.) While critical points are

86

the features of differential topology, the critical points extracted using the conventional
techniques do not satisfy the Euler formula. For example. let us see the critical points
detected by the eight-neighbor method [87] from discrete elevation samples on a re
grid (Figure 5.1). The Euler formula states that the number of peaks #{peaks}.
the number of passes #{passes}. and the number of pits #{pits} satisfy the relation
{peaks} —F#{passe sh+#{pits} =1 in this case. The eight-neighbor method extracts
the point (1.1) as a peak, the point (2.2) as a pit, and the points (3.2) and (3.3) as

passes This result. however, does not satisfy the relation because 1 —2 41 =0 # 1.
This inconsistency arises from the gaps between the discrete samples and the continuous
surface. The conventional techniques for extracting critical points are based on the as-
sumption that the critical points can be extracted from the discrete samples in the same
way as from the continuous one. If the sample data is dense enough. the techniques
allow us to extract correct eritical points. In practice, however, such data is not avail-
able because of restrictions such as the capacity of the data storage and the precision
of the measurements. As a result, the techniques produce spurious critical points. Such
spurious critical points also prevent us from tracing correct ridge and ravine lines for
further analysis

Topologically correct critical points enable us to analyze the geographical structures
such as ridge and ravine lines among the critical points and contour changes with respect
to the height. The critical point graphs (CPGs). which represent the relations among
the critical points. show such structures efficiently. The surface networks [88, 89], the
critical point configuration graphs ¢

2, 83], and the Reeb graphs [96] are examples of the
CPGs. The CPGs provide us with a means of handling the extracted features using an
abstract data structure. So far, however, there have been no algorithms that construct
the CPGs automatically from discrete sample data.

The robustness of the algorithms is also an important issue. If the

gorithms are
not robust enough. they will fail to finish their work when unexpected data is given.
The examples of such unexpected data are degenerate critical points such as flat tops
and monkey saddles. which is described in Section

1.1 and Appendix A. Previous
robust algorithms for other problems have been implemented by transforming the con-
tinous data to discrete one [38], avoiding numerical errors with finite-precision com-
putation [117]. and performing geometric computation while preserving the topological
consistency

). In this study. a method similar to symbolic perturbation [26] is used
to implement the robust algorithms. Note that the algorithms to be proposed consist
of only the comparisons between the heights of vertices based on finite precision. ma-
nipulations of graph data, and boolean operations on the sets of vertices; they do not
use divisions to avoid numerical errors'.

This chapter presents the algorithms for extracting critical points and constructing
CPGs from discrete surface data, The algorithms extract the critical point with the
topological consistency; i.e.. the critical points satisfy the Euler formula. The tools
for understanding the surface features are the two CPGs: the surface network [88. 89]
and the Reeb graph [96]. In addition, the algorithms are designed so that they are

1

\ method of extracting similar features numerically from the equation of an object surface is
presented in [33].

500 520 510 500 520
0,0, (0,1) J0,2) (0,3) (0,9)

540, _620__,590 580 530
(1,00 1,10 (1,2) 41,3) (1,4)

500 610__,500, 570 520
2,0 (@ 1><2‘2;><213) 2, 4)
490 590__,550__, 540__, 490

@0 @ 1V312><313)\(3, 49

470 500 520 510 500
40 @41 42 “3 @9

(a)

AS=0, Ni=10

=)

A =650, N: =0
(3,2): Ay =120

A_=180, N.=4
(3, 3): Ay =40

ASN=I00 TV, =4

(b) (c)

Figure 5.1: An example of sample data: The eight-neighbor method fails to extract
correct critical point from this example. (a) the height values of the sample data, (b) its
three-dimensional image, and (c¢) the values in the criteria of the eight-neighbor method
(explained in Section 5

gnaranteed to extract correct critical points and CPGs.

The surface network represents the ridge and ravine lines of the surface shape. It
consists of the critical points (peaks. pits, and passes). and the ridge and ravine lines.
From a pass there are two paths called the ridge lines along which we can go up to

peaks and two paths called the ravine lines along which we can go down to pits. These

and ravine lines appear in turn when we go around the pass. In this thesis, the
surface network also serves as an intermediate representation for constructing the Reeb
graph. The Reeb graph represents the splitting and merging of equi-height contours
i.e.. the abstract representation of a topographic map. When there is a bifurcation in
he Reely graph. a contour is split. When two contours are merged. edges of the Reeb
graph are merged. It is important to extract the changes of the contours from discrete
sample data. and several techniques are proposed. In particular, the Reeb graph is a
mathematical generalization of the topographic change tree proposed in |

Ihe algorithms perform the following three processes. Firstly, critical points are
extracted that satisfy the Euler formula. Secondly. the surface network is constructed
by tracing ridge and ravine lines. Thirdly, the surface networ

s converted to the Reeh
graph. The critical points and CPGs are extracted from the given surface samples
automatically.

In the following. this chapter first describes the algorithms for surfaces that are
5.3, and 5.4. In this case. the Reeb
graph to be constructed will become a tree as described in Section 5.4. Algorithms

topologically equivalent to spheres in Sections :

for surfaces of other topological type, i.e., surfaces that are topologically equivalent to
connected sums of tori, are implemented by extending the above algorithms and will be
presented in Section 5.5

This chapter is mumn/ml as follows: Section 5.2 describes an algorithm for extracting
the critical points with the topological consistency. An algorithm for constructing the
surface network from the extracted critical points is explained in Section 5.3. Section
5.4 presents an algorithm for converting the surface network to the Reeb graph. While

Sections <

. and 5.4 describe the algorithms for a topological sphere. Section 5.5
presents .dnmulnm for surfaces of other topological type. Section 5.6 describes how to
change the height axis of the desi y

med object using the algorithms. Section 5.7 shows

results to demonstrate the capabilities of the algorithms, and Section 5.8 summarizes
this chapter and refers to future extensions.

5.2 Extracting Correct Critical Points

The surface handled in the following three sections is assumed to be a surface that is

topologically equivalent to a sphere. Note that a terrain surface can be regarded as

2

one of such examples when the virtual pit is attached to the surface (cf. Figure 5.3)
Image intensities can also be considered as the elevation data of a rectangular area. The
sample data to be used in the a

rithis is a set of points on the sur

@‘.:%E

Figure 5.2: Topological changes of cross-sectional contours at critical sections: (a) at

1t a pit, and (c) at a pass

a peak. (b)

5.2.1 Critical Points and the Euler Formula

This section explains how to extract the critical points from the discrete sample data
with the topological consistency. Before going into details, this subsection gives the
mathematical definitions of the critical points [80] and the Euler formula (75, ¢
detailed definitions of these concepts are provided in Appendix A.

Let = = f(r.y) be a height function which gives the height of each point on a
surface. A point p of the function f is called a critical point of f if gradf(p) = 0. i.e.,
:A =0 and ‘—';’ = 0. Note that the topology of the cross-sectional contours changes at p
while scanning the critical level f=!(f(p)) from its upper side to its lower side. Let us
consider the topological changes of the cross-sectional contours at the section of each

If a new contour appears at p. the critical point p is called

critical point (Figure
a peak (Figure 5.2(a)). If an existing contour disappears at p. the critical point p is
called a pit (Figure 5.2(b)). (A peak (pit) is higher (lower) than all other points in its
neighborhood.) If a contour is divided or two contours are merged at p, the critical
point p is called a pass (Figure 5.2(c)). The critical point p is called non-degenerate if
one and only one of the above topological changes occurs in the contour containing p.
If \ represents the Euler characteristic of the surface to be handled, the Euler formula

can be written as (cf. Section 1.7)
#{peaks) — #{passes} + #{pits} = \. (5.1)

If the surface is topologically equivalent to a patch such as a terrain surface, it can be
regarded as a part of a sphere as illustrated in Figure 5.3. The local minimum at the
bottom of the sphere is called a virtual pit in this chapter. When the surface is handled

with the virtual pit, the corresponding Euler formula becomes

(5.2)

#{peaks) — #{passes} + #{pits}

because \ = 2 for a sphere. The above formula is also called the mountaineer’s equation
in the case of terrain surfaces [39]. Note that the formula is consistent with the relation
shown in Section 5.1 when we consider the virtual pit. In the following. the virtual pit

is allowed for to estimate the Buler formula if the surface is topologically equivalent to

a patch.

errain surface

boundary

virtual pit

Figure 5.3: A surface patch and a virtual pit on a sphere.

5.2.2 The Eight-neighbor Method

Now let us see the eight-neighbor method [87] stated earlier. This method is proposed
for extracting terrain features from discrete samples. In this method, the sample points
are aligned on a regular grid of a terrain surface. The eight neighbors of the grid point P
are the points in the 3 x 3 squares surrounding p as shown in Figure 5.4. Each neighbor
pili = 1.2.....8) is scanned to see whether or not it satisfies the conditions of the
critical points. The notations listed below are used in the following (Figure 5.4).

n the number of the neighbors of p

A; the Leight difference between p; (i = 1.2,....n) and P

Ay the sum of all positive A, (i =

A the sum of all negative A; (i = 1,2,..., n)

N, the number of sign changes in the sequence Ay, Ay KA]

Notice that n = 8 in the eight-neighbor method?. The critical points are detected

according to the following criteria:

peak (A, |=0, |&-| % Tewp M=l
pit (A= A= T No=0
pass |AL|+ |A_] > Tpas, Ne=4

' The case where n = 4 is presented in [50].

Figure 5.4: Eight neighbors in a grid

Here. Tpeak. Tpir. and Ty are the thresholds in each case. Note that this method is
suitable for parallel processing because the result at a point is independent of those at
other points.

As shown in Figure 5.1(c), when Tpex = Thit = Tpass = 0. the critical points ex-
tracted using the eight-neighbor method do not satisfy the Euler formula. Furthermore,

the eight-neighbor method has ambiguities in choosing r]m thresholds Tpeak, Tpic. and
. the Euler formula becomes

[For example, when Tpek = Tpip = Tpass
#{peaks} — #{passes} + #{pits} =1 -1+2

sistency. When Tpee = Thie = Tpass = 9500, however. the Euler formula becomes
#{peaks} — #{passes} +#{pits} =1 —0+2 = 3(# 2). which violates the topological

A\ lur] keeps the topological con-

consistency,

5.2.3 New Criteria for Extracting Critical Points

To ensure that the extracted critical points satisfy the Euler formula, it is necessary to
determine the contour changes according to the height. This means that the surfaces
must be interpolated from the sample points. For this purpose, this study uses triangu-
lation that is a natural choice for interpolating discrete samples. Note that the contour
changes depend on the manner in which we triangulate the sample points. In order to
avoid defective thin triangles. it is desirable to use a method similar to the Delaunay
triangulation [41]. Suppose that the grid point is labeled with a pair of integer indices
as shown in Figure 5.1. We generate a square by connecting four pairs of grid |m|m\
(i j)y—(i+1,j), (i+1.5)—(i+1,5+1), (i+1,j+1)—(G+1,j), and (i + 1, (i.7)
as shown in Figure 5.5. Now the grid points and the edges form a pattern llL(‘ a chess-
board. Each square is then divided into two triangles with either of the two diagonals.
Here the diagonal is chosen so that the two divided triangles make a flatter surface. In
other words, we choose the diagonal that makes the smallest absolute angle between
the normals to the triangles divided by the diagonal. Note that it is not necessary to

confine ourselves to grid sample points: random sample points can also be handled by

92

(i+].j) (i+l.‘j+])

Figure 5.5: The two diagonals of a square

the ordinary Delaunay triangulation

Data dependent triangulation is a powerful means of triangulating the sample points
with smoothness. whatever the type of sample data is. Among several proposed meth-
ods. the edge-based method [24] that minimizes the total sum of angles of adjacent

triangles at ed

5. and the vertex-based method [12] that minimizes the total sum of
variances of surface normals at vertices are frequently used. Especially in the cases
of terrain samples and image intensities. these methods provide smoothly triangulated
surfaces.

Let us now see the new definition of the neighbor and the criteria of critical points.
Suppose that all critical points are non-degenerate. The neighbors of the point p are the

points that are adjacent to p in the triangulated sample points. In this implementation,
each point p has a circular list of neighbors in counter-clockwise (CCW) order around
p. When all the critical points are non-degenerate, the new criteria of the critical points

are as follows:

peak [Ay|=0, |A_|>0, N.
pit A | =0, |Agl=0; N.=0
pass Ayl +|AZ| >0, Ne=4.

In the above criteria, manually specified thresholds are eliminated, and hence the criteria

have no ambiguities. Note also that in the case of grid points. the influence of the
previous eight neighbors is reduced by choosing either of the two diagonals in each
square of the chessboard pattern. Let us return to the case of Figure 5.1. According

to the above criteria. only the point (3.2) is judged as a pass. and the Euler formula is
satisfied (Figure 5.6).

In the case of a topological patch, the boundary sample points and the corresponding
In this implementation, the virtual pit is assumed

virtual pit must be handled carefully.
to be a point at the height —>c. After triangulating the sample points, the virtual pit
is inserted to the circular lists of the boundary points so that the virtual pit and two
adjacent houndary points form a triangle. In this process. the patch and the virtual pit

are located as shown in Figure 5.3.

500 520 510 __ 500 __ 520

(0,0) (0,1) 0, 2) (0, 3), o, 4)
VAV

540 ,_620__,590 580 __ 530

, 0) 1 1) (1,2) Qa, 3) (1,4)
W

(goo) 610__, 500 570 520
0 (2 1@ 2) 2 3) (2 4)

490 590 550 540 490

(3 n) (3 1)‘/(312)’/(3 3) @, 4)

470 _s00 L BE20E 51o f. 5oo
@40 @1 42 @43 @9

Figure 5.6: A triangulation of a grid

5.2.4 Handling Degenerate Critical Points

Let us now consider the cases containing degenerate critical points. The degenerate
critical points are classified into two types: degenerate passes and level regions. A
degenerate pass is a point at which three or more equi-height contours are merged. A
degenerate pass and its neighbors including their height values are illustrated in Figure
5.7. where the shaded regions show the areas higher than the pass. In this case, it is
necessary to decompose the degenerate pass into non-degenerate ones, because three
contours are merged at the pass. While decomposing the degenerate pass, the number
of the decomposed passes is counted. The criteria of critical points are now modified as
follows to antomatically count the decomposed passes.

peak |A,[=0, [A_|>0, N, =10
pit [AL]=:0,, AN =0, N,=0
pass [&4] +[A] >0, N.=242m(m=1,2,...)

where m is the number of the decomposed passes

The number of decomposed non-degenerate passes m can be obtained by solving the
equation m = (N, —2)/2.

The second case contains level regions, i.e., regions where two or more adjacent points
are at the same height in the triangulated data. One remedy is to group the set of level
points together and to regard the group as one point. However, it is not efficient when
the region contains other critical points such as a pit or a peak in its interior as illustrated
in Figure 5.8(a). The solution used in this study is to introduce another ordering of
the sample points in addition to the height in order to discriminate between the points
at the same height. This means that the two points are compared using the second
ordering if they are at the same height. The algorithm uses the lexicographical ordering

94

Figure 5.7: A degenerate pass

(a) (b)

Figure 5.8: A level region: (a) a level region containing a pit, and (b) introduction of
the second order to the level region.

with respect to the (x,y)-coordinates as the second ordering. Introducing this ordering
is equivalent to inclining the height function slightly as illustrated in Figure 5.8(b). Note
that this ordering can be implemented using the indices assigned to the sample points
if the ordering of the indices coincides with the lexicographical ordering with respect to
5] in that
it avoids the degenerate cases by introducing the additional comparisons based on the

the (r.y)-coordinates. This strateg

is similar to the symbolic perturbation [2

symbols. In this way, the degenerate critical points can be reduced to non-degenerate
ones that can be handled within the unified framework.

5.2.5 Algorithm for Extracting Critical Points

The following is the algorithm for extracting critical points.

Algorithm 1 (For extracting critical point

Gy : a graph representing the triangulation of sample points
L. : alist of extracted critical points and their neighbors
begin

for each vertex p of G, do
begin
generate the CCW neighbor list of p
compute A . A_, and N, of p:
reduce the neighbor list of p; (See the following explanation.
if ((|]A4|=0)and (|]A_| > 0) and (N, = 0)) then
mark p as a peak and add p to L,:
else if ((|]A_| =0) and (|]A4| > 0) and (N, = 0)) then
mark p as a pit and add p to L.:
else if ((|]A4+| +|A-| > 0) and (N, =2
begin
m:= (N, —2)/2;
while (m > 0) do
begin
retrieve the last four elements from the neighbor list of p:
mark p as a pass and add p to L. with its four representative neighbors:
(See the following explanation.)
eliminate the last two elements from the neighbor list of p:
m:=m —1
end
end
end
end

+2m)) then

Let us see how the algorithm handles the degenerate pass p shown in Figure 5.9(a)
First. the algorithm generates {pi, ps. p3, pa. Ps. Ps. pr} as the CCW neighbor list of
p. After calculating A, A_, and N, of p. the algorithm reduces the neighbor list of
p as follows. While scanning the elements of the neighbor list, the algorithm defines
wer than p as an upper sequence. In this example, {p;}.

a sequence of neighbors hig
{ps. p1}. and {ps} are the upper sequences. A lower sequence is defined similarly. The
1est neighbor from each upper

algorithm reduces the neighbor list by choosing the 1
sequence and the lowest neighbor from each lower sequence, and by removing the rest
of the neighbors from the list. The neighbor list of this example is reduced to the
list {ps. ps. ps. ps. pr. p1} by removing py. because ps is higher than py in the upper
sequence {ps. ps} (Figure 5.9(b)). Here. the reduced list is assumed to begin with a
lower neighbor if the list has more than one neighbor. The reason for doing this is

to ensure that the four alternating upper and lower neighbors at the pass are selected
correctly in what follows.

Since three contours are merged at p, the number of non-degenerate passes m is equal
to 2. In the routine that handles a pass. the algorithm first selects the last four elements
{ps. ps. pr. 1} as the representative neighbors (Figure 5.9(c)). The same procedure is
then carried ont after the last two elements {p;. p1} are eliminated from the list (Figure
3.9(d)). As can be seen in Figures 5.9(c) and (d), the four alternating upper and lower
neighbors are selected correctly in each of the above steps. The list L, holds the critical
points extracted in the algorithm. The element of L, also holds the four representative
neighbors if its critical point is a pass. This list serves as the intermediate data stor

for constructing the surface network.

(c) (d)

Figure 5.9: The neighbor list of a degenerate pass in extracting critical points: The
lieight values of the points are indicated and the areas higher than the pass are shaded

(a) the original neighbor list, (b) the reduced neighbor list, (¢) the list in the first turn of
the loop in the algorithm. and (d) the list in the second turn of the loop in the algorithm

virtual
pit

virtual
pit

Figure 5.10: The surface network and contour lines

5.3 Constructing the Surface Network

Sections 5.3 and 5.4 present the algorithms for constructing the surface network [88, 89]
and the Reeb graph [96], respectively. For this construction. the critical points extracted
by Algorithm 1 are used because they are guaranteed to be topologically correct.

5.3.1 The Surface Network

\s mentioned in Section 1.2, a eritical point graph (CPG) is defined as a graph that
represents the relations among critical points. In other words, the vertex of the graph
represents a critical point, and the edge of the graph represents the relation between
its endpoints. The surface network is a CPG whose edge represents either a ridge or
adient. A
ravine line is a line from a pass to a pit with the steepest gradient. Appendix E provides

ravine line. A ridge line is a line from a pass to a peak with the steepest ¢

the detailed definitions of ridge and ravine lines and the surface network. Figure 5.10
illustrates the surface network of a terrain surface with the contours. Here, the symbol
A represents a peak. the symbol ¥ a pit, and the symbol B a pass, and the bold line a
contour. The direction of the thick arrow indicates a downslope. This notation is also
used in the following explanations. In this way, the surface network represents the ridge
and ravine lines of a surface shape efficiently.

5.3.2 Algorithm for Constructing the Surface Network

The algorithm for constructing the surface network is now presented. As described in
the explanation of Algorithm 1, each of the extracted passes is stored with its four
representative neighbors. two of which are higher than the pass and the other two of
which are lower than the pass. For each of the extracted passes. ridge lines are traced
from the two upper neighbors up to peaks, and the pass and the peaks are connected by

98

edges in the surface network. On the other hand. the ravine lines are traced from the
two lower neighbors down to pits, and the pass and the pits are connected by edges in
rface network. The ridge (ravine) line of the surface network is traced as follows

the s
in the algorithm. Suppose that we are now at a point p. Since the ridge (ravine) line
ooes in the steepest direction of the surface, we move to the highest (lowest) neighbor
of p. The tracing process is repeated until we reach a peak (pit)

I'his tracing process always ends by reaching a peak (pit) after finite steps. Let us
prove this. Suppose we cannot reach a peak (pit) with finite tracing steps. Since the
number of sample points is finite, there is a point p that is visited at least twice. This
means that p is higher than p, which is a contradiction to the comparisons based on the
4. Therefore. the algorithm finishes the

svmbolic perturbation described in Section
tracing steps by reaching a peak (pit).
Consequently. the algorithm for constructing the surface network is smmmarized as

follows:
Algorithm 2 (For constructing the surface network)

Gy ¢ a graph representing a triangulation of sample points
L. : the list of the critical points in Algorithm 1
G. : a graph representing the surface network to be constructed
(Initially, G is empty.)
begin
for each critical point p of L, do
add p to G
for each pass p of L. do
begin
retrieve the two upper neighbors of p from L.:
for each of the upper neighbors ¢ do
begin
trace the ridge lines from ¢ up to a peak r in Gy:
connect p and r with an edge in G
end
end
for each pass p of L. do
begin
retrieve the two lower neighbors of p from L
for each of the lower neighbors ¢ do
begin
trace the ravine lines from ¢ down to a pit r in G
connect p and r with an edge in
end
end
end

virtual pit
(a) (b)

Figure 5.11: (a) A mountain shape with its critical points and (b) its Reeb graph

5.4 Converting the Surface Network to the Reeb Graph

In this thesis. the Reeb graph is not constructed directly: the surface network is first
constructed and then it is converted to the Reeb graph. The reason for doing this is
the robustness of the algorithm. Of conrse, the Reeb graph can be constructed directly
by detecting the topological changes in the cross-sectional contours from the top to the
bottom of the surface. However, this is prone to error because it requires divisions
Another advantage is that the locality of the construction. The surface network can be
constructed using only local data access and without any divisions.

5.4.1 The Reeb Graph

The Reeb graph [96] represents the splitting and merging of equi-height contours, and is
one of the CPGs. Let f be a heig

the surface. The Reeb graph of the height function f is obtained by identifying p and

Lt function of a surface, and let p and ¢ be points on

¢ if the two points are contained in the same connected component on the cross section
at the height f(p)(= f(g)). This means that a cross-sectional contour corresponds to
a point of the edge of the Reeb graph (Figure 5.11). In particular, the vertex of the

Reeh graph represents the critical point of the height function f. Figure 5.11(a) shows

a mountain shape and its critical points, and Figure 5.11(b) shows the corresponding
Reeb graph [108. 109, 47). The correspondence between the cross-sectional contour
of the mountain shape and the point of the edge of the Reeb graph is also indicated
by a dotted line in this figure. In this way, the Reeb graph can be used to represent
the topological changes of equi-height contours with respect to the height. The formal
definition of the Reeb graph is described in Appendix B.

According to the definition of the Reeb graph, the following two properties are
derived.

Property 1 If all the critical points of the height function f are non-degenerate. the

100

peak

pass
or
pass peak pass pass
or
pit
pit

Figure 5.12: Critical points in the Reeb graph

vertices. i.c.. the critical points of the Reeb graph of f have the following properties
(Figure 5.12)

(1) A peak has only one edge whose opposite endpoint is a pass or a pit lower than
the peak.

(2) A pit has only one edge whose opposite endpoint is a pass or a peak higher than
the pit

(3) A pass has either (a) one (upward) edge whose opposite endpoint is an upper
critical point and two (downward) edges whose opposite endpoints are lower critical
points. or (b) one (downward) edge whose opposite endpoint is a lower critical point
and two (upward) edges whose opposite endpoints are upper critical points

This is trivially derived by considering the topological changes in the cross-sectional
contours at critical sections. u]

Property 2 If the object surface is topologically equivalent to a sphere. the Reeb graph
of the object becomes a tree.

Assume that the Reeb graph contains a cycle. According to the definition of the Reeb
graph. the surface contains a torus. This contradicts with the fact that the surface is
topologically equivalent to a sphere o

5.4.2 Relations Between the Surface Network and the Reeb Graph

As preliminaries, this subsection presents the relations between the surface network and
the Reeb graph.

Property 3 An edge with its endpoints in the
a path® between the corresponding critical points in the Reeb graph.

surface network corresponds uniquely to

% A path of a graph is an alternating sequence of vertices and edges which begins and ends with

vertices. in which each edge is incident with the two vertices immediately proceeding and following
it. and in which all the vertices are distinct [42].

101

([r
the surface network the Reeb graph

Figure 5.13: A correspondence between an edge of the surface network and a path in
the Reeb graph

Let ¢, denote an edge that corresponds to a ridge line. and let p, and ¢, denote the
peak and pit at the endpoints of the edge e,. Suppose the vertices of the Reely graph
pr and g, correspond to p, and g, respectively (Figure 5.13). Since e, represents a line

that ascends monotonously on the surface from ¢, to p,. there exists a path between g,
and p, that corresponds to e,. Since there are no cycles in the Reeb graph according to
Property 2.

the corresponding path in the Reeb graph can be identified uniquely. Now

the property has been derived for the case of ridge lines. The same procedure can be

carried out for the case of ravine lines. n]

In this thesis. a path in the Reeb graph is called a monotonously ascending (or
descending) path if it corresponds to a ridge (or ravine) line.

Property 4 For each edge incident to a pass in the Reeb graph. there exists either a
monotonously ascending path or a monotonously descending path which contains the
edge

Suppose that at the pass there is a “Y"-shaped branch in the Reeb graph as shown
in Figure 5.14. As can be seen in this figure, the ridge lines that go out of the pass
correspond to the upward edges of the pass in the Reeb graph. This is because there are
two cross-sectional contours at the upper cross section of the pass and each of the two

contours is traced by a ridge line. Therefore, there exists an edge in the surface network
that corresponds to either of the two upward edges of the pass in the Reeb graph. The
downward edge of the pass in the Reeb graph is also covered by the ravine lines that
g0 down from the pass. This derives the property for the case of a “Y"-shaped branch.
1aped branch. O

T'he same arguments are carried out for the case of a reversed “Y"

5.4.3 Algorithm that Converts the Surface Network to the Reeb Graph

This subsection provides an algorithm that converts the surface network to the Reeb
graph. The correctness and robustness of this algorithm are presented by deriving
several properties in the following subsection.

102

ravine lines

Figure 5.14: Ridge and ravine lines incident to a pass and its corresponding paths in
the Reeb graph

The basic idea is to convert the ridge and ravine lines of the surface network to the

ges of the Reeb graph. The conversion algorithm first determines the edges incident
to peaks and pits, and then changes a pass into a peak or a pit after two of its three
incident edges are determined in the Reeb graph. Here. note that a pass of the Reeb
graph has three incident edges as described in Property 1. These processes are repeated
until the Reeb graph is constructed completely.

Algorithm 3 (For constructing the Reeb graph)

G

: a graph constructed through Algorithm 2
(Initially. G is the surface network.)
: a graph representing the Reeb graph to be constructed
(Initially, G, is empty.)
begin
for each vertex p of G, do
add p to G,:

while (TRUE) do
begin
if G has only one peak and only one pit then
begin
join the two vertices with an edge in G,:
exit:

end
for each vertex p of G, do
begin
if p is a peak in G, then
begin

find the highest vertex po from the lower adjacent vertices of p:
add the edge ppy to G,
remove the edge ppy from G;
change the existing edge pp;(i

1,...,n) to popi in G

change p to a processed vertex: (See the following explanation.)
end
else if p is a pit in G, then
begin
find the lowest vertex po from the upper adjacent vertices of p:
add the edge ppy to G,:

remove the edge ppy from G.:

change the existing edge pp;(i = 1.....n) to pop; in G
change p to a processed vertex See the following explanation
end
end
if G, has no edges then
exit:

for each vertex g of G, do
if ¢ is a pass then
begin
if the vertex that corresponds to ¢ in G, has two edges in G, then
begin
if ¢ has only lower adjacent vertices then
change ¢ to a peak:
else if ¢ has only upper adjacent vertices then
change ¢ to a pit:
end
end
end
end

Fi
represent the graphs of Algorithm 3. As mentioned earlier. the symbols A, ¥, and B
. apit. and a pass respectively. The symbol O is also used to represent a
gure 5.15(a) shows the initial states of G and

ure 5.15 shows how the a

sorithm works with an example. Here, G, and G,

represent a pea

vertes
G,. The vertex 0 is the first peak to be handled in the routine that determines the edges
of the peaks in the Reeb graph. The algorithm finds the vertex 2 as the highest vertex
adjacent to the vertex 0. adds the edge 02 to G,. removes the corresponding edge from
G.. and changes the edge 03 to the edge 23 in G, (Figure 5.15(b)). Similar conversion
process is applied to the vertex 1 representing a peak (Figure 5.15(c)). Symmetrical

already processed in Algorithm 3. F

conversion processes are carried out for the pits, namely the vertices 4 and 5(virtual
pit). After all the peaks and pits are processed. the algorithm finds the passes that have
two edges already added to G,. Let us consider the edges incident to the pass in G,
If all the edges are downward edges, the algorithm changes the pass to a peak. If all
the edges are upward edges, the algorithm changes the pass to a pit. In this example.
the vertex 2 is changed to a peak and the vertex 3 is changed to a pit in G, (F
5.15(d)). These conversion processes are repeated until all the edges of the Reeb

are determined. Figure 5.15(e) is the final state of the conversion

5.4.4 Correctness and Robustness of the Algorithm

The correctness of the conversion algorithm is obtained from the following property.

Property 5 Algorithm 3 correctly converts the edges of the surface network to those of
the Reeb graph

Ao
Aq
(virual pit), \\ 2m
\ m3
i | 5
¢ e B (vmua pit) G v iy
s
a)
Oo
Vo/.z K Ay
5
(virtual pit) \ % 2
Y; 3
Gr (virtual pit) P 4 .
1A———’_"3-\>75 " glsrtual pit)
(b)
Oo
1
(vlrtual pit) \ 2
\ m3
G (virtual pit) 4 4)
10 Ay g rual pi
(c)
2 0o
5 A v‘
5
(virtual pit) i 2
o 3
G (virtual pit) G AA“
10 Y o " irtual pit
(d)
2 Oo
o o
irual it)
(virtual pif
04
G (virtual pit)
10 30 (e
(e)
Figure 5.15: The steps of the conversion algorithm: The left-hand figure shows G
(the surface network) and the right-hand figure shows G, (the Reeb graph)

| |
D . P
¥ P3 T My,

the surface network the Reeb graph

Figure 5.16: Converting an edge of the surface network to the edge of the Reeb graph

Let p be a peak and let pg. pi. ..., p, be the adjacent vertices of p in G, where py is
the highest of all the adjacent vertices. From Property 1. p has only one downward edge
in the Reeb graph. From Properties 3 and 4, we cannot go from any of the adjacent
cending paths
in the Reeb graph (Figure 5.16). In other words, py is contained in the monotonously

points py. pa. ... p, to p without passing through py by monotonously

ascending paths from any of these adjacent points. Therefore, the edges of the surface

network are correctly converted to those of the Reeb graph in Algorithm 3. The sym-

wetrical procedure can be applied to the edges incident to pits. o
The robustness of the conversion algorithm is obtained from the following property.
Property 6 Algorithm 3 takes finite steps to finish the conversion.

Let us show that the number of determined edges in G, increases monotonously. Con-

sider the Reeb graph that we are now constructing. Recall that the Reeb graph is a

tree from Property 2. In Algorithm 3, all the peaks and pits are processed first. This

means that the Reeb graph is determined from its extreme vertices and edges. Let us

cut off these extreme vertices and edges from the Reeb graph to be constructed. The

remainder of the Reeb graph. which represents its undecided part, is also a tree. Since
a tree has at least two endpoints [42], we can find at least two passes that have two

determined edges in G,. In this way, the remaining part of the Reeb graph can be

reduced by cutting off its extreme vertices and edges through the conversion processes.
In other words, we can find at least two passes that are converted to peaks or pits after
all the peaks and pits are processed in the algorithm. This leads to the fact that the
number of determined edges in G, increases monotonously. a

Note that Algorithms 1, 2
and graph manipulations. Therefore, the presented algorithms extract correct critical
points and CPGs without fail.

and 3 use only comparisons between the heights of vertice

W pass
r Cpseudo pass
Vpseudo pit

(a) (b)

Figure 5.17: Cycles in the Reeb graph: (a) ravine lines in the Reeb graph and (b) tags

inserted to the cyele

5.5 Extracting Features from a Surface of Arbitrary Topo-

logical Type

The previous sections have presented the algorithms for extracting critical points and
constructing CPGs from sample data of a topological sphere. The next step is to extend
the proposed algorithms for a surface of arbitrary topological type. i.e.. a surface that

is topologically equivalent to a connected sum of tori.

5.5.1 Idea of the Extended Algorithm

As described earlier, the proposed algorithms fail to extract the shape features if the

object surface is topologically equivalent to a connected sum of tori. This limitation

arises from the fact that the algorithms are based on the assumption that the Reeb
graph is a tree. If the Reeb graph is not a tree, Property 3 does not hold due to the lack

of Property 2. Let us see this with an example. Suppose there is a cycle in the Reeb
A PI

“igure 5.17(a). The two ravine lines incident from the

graph of an object as shown in F
pass p correspond to the paths indicated by the thick dotted arrows in the Reeb graph.
The problem is that the route of each path cannot be identified because of the cycle.
In order to overcome this limitation, it is necessary to add some information about
the routes of the ravine lines in the cycle. This is also sufficient because the proposed
algorithms can determine the Reeb graph except for its cycles.

I the implementation of this study. tags are inserted to the
5.17(h). Here, the inserted tag is an edge bounded by artificial critical points: a pass

rcle as shown in Figure

and a pit. In Figure 5.17(b). the edges ¢,q and r,r; are the tags. In the following,
the artificial critical points are called pseudo critical points. Furthermore, the artificial
passes such as ¢, and r, are called pseudo passes and the artificial pits such as ¢ and
rpare called pseudo pits. Note that as can be seen in Figure 5.17(b) the left ravine line
changes its route at the pseudo pass ¢, so that it goes down to the pseudo pit q. In
addition. new two ravine lines emanate from the pseudo pass g,: one ravine line goes

107

LNext(e¢) RPrev(e) DPrev(e) DNext(e)

Sym(e)

LPrev(e) RNext(e) ONext(e) OPreve)

Figure 5.18: The edge functions

to the pseudo pit ¢. and the other takes over the ravine line that comes to ¢, from
the upper side. The same can be applied to a pair of pseudo critical points: r, and r,
ion of the algorithms. Note that the inserted
ph is constructed.

This is the main idea of the extended ver

artificial critical points will be eliminated after the Reeb gr:

In what follows. the samples of the object surface are already triangulated*. In par-
ticular. it is assumed that the edge functions [41] of the triangulated surface are available
in the following processes. The edge functions provide us with algebraic operations that
igure 5.18 illustrates

retrieve the topological structures of edges in the triangulation.
such operations when we look at the closed surface from its outside. Assume that e.orig
represents the origin of the oriented edge e. and e.dest represents the destination of the
edge e. As shown in Figure 5.18, Sym(e) represents the same edge as e but with its
orientation reversed, ONext(e) represents the edge next to e in the CCW circular list of
edges incident to e.orig. OPrev(e) represents the edge next to e in the CW circular list
of edges incident to e.orig. and so forth.

The reminder of this section describes modifications to Algorithm 2 and Algorithm
ical type.

3. which are needed for surfaces of arbitrary topolo

5.5.2 Modifications to Algorithm 2

To extract the Reeb graph from the mesh samples of the surface of arbitrary topological
type. it is necessary to add supplemental information to the surface network when it
is extracted. For this purpose, two additional processes are inserted to Algorithm 2.
One is to insert the pseudo passes and pseudo pits and to extract their corresponding
cross-sectional belts, and the other is to modify the routes of ravine lines that pass
through the cross-sectional belts. The extended version of Algorithm 2 is listed below.

Algorithm 4 (For constructing the surface network (Extended version))

G+ a graph representing a triangulation of sample points
L, : the list of the critical points in Algorithm 1)

d Al techniques for constructing visually appealing triangulations of the object

)

There are se
surface [43. 106

108

G, : a graph representing the surface network to be constructed
Initially. G, is empty.)
Ly, : the list of cross-sectional belts and the corresponding pseudo passes and pits
L. : temporary list of vertices
u Tl'“l]l”lill\ vertex
begin
for each critical point p of L. do
add p to G:
for each pass p of L. do
begin
retrieve the two upper neighbors of p from L.
for each of the upper neighbors ¢ do
begin
trace the ridge lines from ¢ up to a peak r in G;:
obtain a cross-sectional belt from the edge pq:
insert a pseudo pass s and a pseudo pit ¢ to G:
insert the cross-sectional belt together with s and t to Ly;
connect s and r with an edge in G:
connect s and ¢ with an edge in G
end
end
for each pass p of L. do
begin
retrieve the two lower neighbors of p from L.;
for each of the lower neighbors ¢ do
begin
trace the ravine lines from ¢ down to a pit r in G;:

set L, to be empty:
for each of the belts of L, do
begin
find the union of the ridge line and the belt:
if the union is not empty then
insert the pseudo pass and pit associated with the belts into L,
end
sort L, by the heights of the pseudo passes in an descending order:
P
for each pair of a pass and a pit (s. t) of L, do
begin
connect u and t with an edge in
1=8;
end
connect u and ¢ with an edge in G:
end
end
end

u

In Algorithm 4. the part marked with z’s corresponds to the former process. and the
part marked with »'s corresponds to the latter process.

In the part marked with z's. the algorithm inserts a pseudo pass s and a pseudo pit
t after tracing the ridge line from a pass p. The pseudo pass and pseudo pit are st
so that they satisfy s >t > p in the height order using the technique of the symbolic
The cross-sectional belt is introduced to represent the

perturbation (cf. Section 5.
cross-sectional contour at the height of p. As shown in Figure 5.19(a). the cross-sectional
belt is bounded by the upper and lower cyclic lists of vertices. The reason why a belt
is used instead of a cross-sectional contour itself is that the algorithm can obtain the

helt by consultit

only the height order of vertices (via the technique of the symbolic
perturbation) and the topological structures of edges (via the edge functions) although
it is impossible to obtain a real cross-sectional contour without divisions.

The algorithm uses the cross-sectional belt to represent the cross-sectional contour
of the cylindrical part that corresponds to the upward edge of the pass p in the Reeb
graph. As shown in Algorithm 4, the algorithm first inserts a pseudo pass s and a
pseudo pit 7. and then finds its corresponding cross-sectional belt from the edge pqg.
where ¢ is one of the two upper representative neighbors of the pass p (cf. Algorithm
1). Algorithm 5 detects the cross-sectional belt from the edge pq.

Algorithm 5 (For extracting a cross-sectional belt)

ve of the pass p and its upper neighbor ¢
L, : the upper cyclic list of vertices

L, : the lower cyclic list of vertices

flag : either “lower” or “upper”

: edges

pq : the input ec

e.e,. e
begin
insert ¢ to L,:
insert p to L:

e=pq
while (TRUE) do

begin
e, = OPrev(e):

¢ = DNext(¢):
if ¢,.dest is higher than p then
begin

¢
flag
end iy
else if e;.orig is equal to or lower than p then
begin
e=¢

end

if ¢ is equivalent to pg then
exit:

if (flag = “upper”) then
insert e,.dest to L,:

else if (flag = “lowe
insert e.orig to L;:

) then

upper cyclic list

N
lowr cyclic list

(a) (b)

Figure 5.19: °
(b) its top view

‘he cross-sectional belt extracted from the edge pg: (a) its side view and

end
end

Algorithm 5 extracts the upper and lower cyclic lists of the cross-sectional belt by moving
the edge € z
cross section at the height of p is indicated by the dotted line. Note that during this
process the edge e is always intersected with the cross section. Therefore. the edge ¢

g on the surface. The process is illustrated in Figure 5.19(b). where the

goes along the cross-sectional contour and extracts the upper and lower cyclic lists of
vertices

The following property follows from the fact that the edge e has an intersecting point
with the cross section at the height of the pass p.

Property 7 The lower cyclic list of the cross sectional belt does not contain other
critical points that are higher than the pass p. The upper cyclic list of the cross sectional
belt does not contain other critical points that are lower than the pass p

This means that there are no illegal cases of cross-sectional belts as shown in Figure

0. Property 7 guarantees the cross-sectional belt corresponds to the edge of the Reeb
graph uniquely unless the surface samples are sparsely taken: such illegal cases do not
ocenr in general®. In the experiments of this study. no such cases are encountered.

The part marked with »’s modifies the routes of ravine lines that pass through the
extracted cross-sectional belts. In other words, if a ravine line passes through a cross-
sectional belt. it is divided into two at the pseudo pass associated with the belt. Here.
one of the two divided ravine lines goes to the corresponding pseudo pit and the other

21 there is a ravine

takes over the original ravine line. Suppose that as shown in Figure
line that goes from the pass p to the pit r and there are also cross-sectional belts whose
corresponding pseudo passes and pseudo pits are (sg.tx) (A = 1.2, If the ravine line
passes through the belt of (s;,¢,) first, the edge of the surface network pr is changed to
pty. and an edge s;r is newly inserted to take over the original ravine line. Note that

Such illegal cases occur, for example, when there exists a ravine line that do not corresponds to
the edge while intersected with both the corresponding upper and lower cyclic lists. for example.
in the cycle of a torus. Refer also to the explanation of the part marked with »'s.

111

Y
[y

r
the surface network

Figure 5.21: Modifying the route of a ravine line

the edge st; is also inserted in this process. If the ravine line passes through the belt
of (s3.12) next. the edge s,r is change to s;t

. and new edges sor and s»t are inserted.
The same procedure is carried out if the ravine line goes through other cross-sectional
belts.

This process is implemented in the part marked with »’s as follows. After tracing
the ravine line that goes from a pass p to a pit r, the algorithm finds the intersections
of the ravine line with the cross-sectional belts that are extracted previously. These
intersections can be obtained by calculating the union of the ravine vertices and the
cross-sectional vertices. If the ravine line has intersections with both of the upper and
lower cyclic lists of a belt. the algorithm inserts the corresponding pseudo pass and
pseudo pit into the list L,. After examining intersections with all the cross-sectional
belts. the algorithm sorts the elements of L, in a descending order by the heights of the
psendo passes. For each of the pair of L, the algorithm creates a branch to change the
(2.

route of the ravine line as shown in Figure &

5.5.3 Modifications to Algorithm 3

Since Algorithm 3 can determine the tree parts of the Reeb graph whatever the object
surface is. it is necessary to extend the algorithm so that it can also determine the
ceyele parts of the Reeb graph. If Algorithm 3 is used to extract the Reeb graph for

112

surfaces of arbitrary topological type. the parts that contain cycles remain undecided
In this situation, it is easy to see that the lowest vertex of the undecided parts is a
. the first and second lowest adjacent vertices of the

pass. According to Section 5
pass are its corresponding pseudo passes. Therefore. the edges between the pass and the
corresponding pseudo passes can be fixed in the Reeb graph. and one of the undecided
cycles is reduced to a tree where Algorithm 3 can be applied. The process can be applied
until the remaining parts contain no cycles. This is the main idea of the extended version
of the algorithm. In this way. the pseudo critical points effectively determine the cvele
parts of the Reeb graph.

Consequently. only simple modifications are needed in Algorithm 3 for converting
the surface network to the Reeb graph in the case of surfaces of arbitrary topological

tvpe. The extended version of the algorithm is listed as follows.

Algorithm 6 (For constructing the Reeb graph (Extended version))
G : a graph constructed through Algorithm 2

(Initially. G, is the surface network.)

a graph representing the Reeb graph to be constructed

(Initially. G, is empty.)

flag : either “true” or “false”
begin
for each vertex p of G, do
add p to G,:
while (TRUE) do
begin
if G has only one peak and only one pit then
begin
join the two vertices with an edge in G,:
exit:
end
for each vertex p of G, do
begin
s if p is a (psendo) peak in G, then
begin

find the highest vertex py from the lower adjacent vertices of p:
add the edge ppy to G:

remove the edge ppy from G.:

change the existing edge ppi(i =1.....
change p to a processed vertex:

n) to pop; in Gg:

end
else if p is a (pseudo) pit in G, then

begin
find the lowest vertex py from the upper adjacent vertices of p:
add the edge ppy to G
remove the edge ppy from G:
change the existing edge ppi(i =1,...,
change p to a processed vertex:

end

. end
if G, has no edges then

exit:

n) to pop;i in G

flag = “false”
for each vertex ¢ of G, do
if ¢ is a (pseudo) pass then

begin
if the vertex that corresponds to ¢ in G, has two edges in G, then
begin
if ¢ has only lower adjacent vertices then
begin
change ¢ to a peak:
t flag = “true”

end
else if ¢ has only upper adjacent vertices then

begin
change ¢ to a pit:
flag = “true™:

g = “false”) then
i begin
T find the lowest pass p of all the vertices in G.:
i find the lowest vertex p, from the upper adjacent vertices of p;
t add the edge ppa to G,
| remove the edge pp, from G:
f find the lowest vertex pp from the upper adjacent vertices of p:
add the edge ppp to G,:
f remove the edge ppp from G:
T remove the existing edge pp; (i = 1,....n) from G:
i end
end
end

In Algorithm 6. the parts marked with ='s show that it is not necessary to distinguish
between pseudo critical points and ordinary critical points. The parts marked with {s
perform the newly inserted process described above.

The correctness of Algorithm 6 can be obtained from the following property.

Property 8 The pseudo critical points inserted in Algorithm 4 do not prevent Algo-
rithm 6 from determining the tree parts of the Reeb graph

It is sufficient to confirm the two types of passes: a “Y"-shaped pass and a reversed
shaped pass (Figure 5.22). Recall that the pseudo passes are set to the vertices
next higher than the corresponding ordinary pass using the technique of the symbolic

perturbation.

haped pass: the pass has two upward

Figure 5.22(a) illustrates the case of a “Y
edges and one downward edge. While the left side shows the Reeb graph to be deter-
mined using only ordinary critical points, the right side shows the Reeb graph also using
pseudo critical points. The ridge and ravine lines are indicated by the arrows in the
figure. In this case, only a pair of pseudo critical points is inserted into each of the two
upward edges. It follows from Figure (a) that this part can be determined using

114

ridge line
2 -

ravine line
—_—

(a)
W pass
[pseudo pass
Vpseudo pit
(b)
Figure 5.22: The effects of inserting pseudo critical points in the Reeb graph: (a) a

shaped pass and (b) a reversed 1aped pass

Algorithm 3 if the part is not contained in a cycle of the Reeb graph. Of course, if the
part is contained in a cycle of the Reeb graph. it will work effectively in Algorithm 6 as
described above.

Figure

2(h) illustrates the case of a reversed “Y"-shaped pass: the pass has two
downward

lges and one upward edge. While the left side shows the Reeb graph to be

determined using only ordinary critical points. the right side shows the Reeb graph also

using pseudo critical points. In this case, two pairs of pseudo critical points are inserted

to the upward edge. As shown in the right side of F 5.22(b). the pseudo passes take
the first and second lowest vertices in the upper adjacent vertices of the corresponding
pass. This is made possible by using the technique of the symbolic perturbation. Thus.

this part can be also determined using Algorithm 3. o

The pseudo critical points of the Reeb graph that is constructed by Algorithm 6 can
be eliminated by cutting off the edges bounded by the pseudo critical points.

5.6 Changing the Height Axis

The extended algorithms allow us to extract the Reeb graph from the discrete triangu-
lated samples of a surface of arbitrary topological type. This section describes how to
change the height axis of the object. For this purpose, the model of the control network
is constrneted. and the model is then fit to the object surface.

Operator EIPCW

Branch type Y

E1SI E1IN E10UT

Orientation of neighbors

|
|
projected onto (. y)-plane | === ‘ <A (e s ‘

Figure 5.23: Classification criteria for passes

5.6.1 Extracting the Object Embeddings

The extended algorithms enable us to obtain the topological skeletons of the object
surface. To construet the model of the control network, the embeddings of the object
1 3D space should be extracted in addition to the topological skeletons. This amounts
to extracting the sequence of the Morse operators together with their arguments (cf.
Section 2.1.3).
Among the Morse operators, E2 (for a peak) and EO (for a pit) can easily be identified.
For other types of the Morse operators (i.e.. for passes). one can determine the types by
considering the surface orientations around the corresponding critical points®. Suppose
that the surface samples are dense enough to represent the neighborhoods around the
critical points as a single-valued function z = f(x.y): there are no overhangs in the

neighborhoods. In this case, the surface orientation at a critical point can be retrieved

by examining the orientation of the circular list of its corresponding neighbors projected
onto the (.r.y)-plane. If the circular list of neighbors is arranged in CCW order when
looking at lln m from the outside of the surface. the I\])I‘\ of the Morse operators for

31

In addition to the type of the Morse operators, their («nuwpnmlnw arguments should

passes are identified using the criteria as shown in Figure 5

be retrieved. This is achieved by examining the inclusion relations among the cross-
sectional contours at regular sections.

In this way. the sequence of the Morse operators are extracted from the triangulated
samples. This sequence makes it possible to construct the model of the control network.

5.6.2 Fitting the Control Network

The process of fitting the constructed model of the control network to the object surface
consists of the following steps.

6

A method of determining the types of branches in the case of terrain surfaces is presented in [46]

1) The first step is to obtain the representative contours at regular sections from the
sample data’. Here, each of the cross-sectional contours corresponds to the edge
of the Reeb graph of the object surface.

2) The second step is to extract characteristic points, i.e., points of maximum and
minimum curvature on the extracted cross-sectional contour. Note that the points
of maximum and minimum curvature have close relationships with the planar

skeletons of the contour obtained by the 2D medial axis transform (MAT) [10, 57]

The third step is to assign the curve segments of the control network to the object

surface so that the curve segments are fit to the characteristic points of the cross-
sectional contours. This means that the model of the control network will try to
capture the cross-sectional planar skeletons of the object surface.

The fonrth step is to fit the vertical curve segments of the control network to
the object by tracing the object surface. This fitting is accomplished using the
variational optimization techniques described in Chapter 4,

(5) The final step is to fit the horizontal, i.e., cross-sectional curve segments of the
control network to the object. This fitting process is also performed using the
variational optimization techniques described in Chapter 4.

In this way. the height axis of the object shape is changed by fitting the model to
the object surface. The results are shown in Section 5.7

5.7 Results

This section provides results obtained using the proposed algorithms.

Ter

in samples

Since it is possible that small undulations hide large undulations in the case of steep
mountain regions. the wavelet transforms (cf. Chapter 4) are used to eliminate such
detailed features. While grid sample data is used in these examples. random sample

data can be handled using the proposed algorithm as explained in Section 5

Features are extracted from !lw terrain samples around Mt. Fuji. which is the highest
Figure 5.24). {(a) shows a rendered image of the terrain
surface around Mt. Fuji. The top view of the cr
in Figure 5.24(h). The critical points are extracted using Algorithm 1. The red point
represents a peak, the green point a pass, and the light blue point a pit. Figure 5.24(c)
shows the ridge and ravine lines obtained using Algorithm 2. The yellow line indicates
a ridge line and the purple line indicates a ravine line. Figure 5.24(d) is the surface
The side view of the Reeb graph obtained

mountain in Japan (

ical points with contour lines is shown

network constructed using Algorithm
24(e) and its enlarged image is shown in Figure

using Algorithm 3 is shown in Figure

T Of course. this requires divisions.

24(f). The edges incident to the virtual pit are omitted in Figures 5.24(d). (e). and

f). These results show that the proposed algorithms efficiently extract shape features

such as ridge and ravine lines from the terrain samples. Both the surface network and

the Reeb graph are constructed correctly
Another example to be presented is the 1

n around Lake Ashinoko, which is a

25). Figure

famous crater lake in Japan (Figure

a) shows a rendered image of the
terrain surface around Lake Ashinoko. The top view of the critical points with contour

lines is shown in Figure :
1. Figure 5

The critical points are extracted using Algorithm
5(c) shows the ridge and ravine lines obtained using Algorithm 2. Figure

(dl) is the surface network constructed using Algorithm

The side view of the Reeb
graph extracted from the surface network using Algorithm 3 and its enlarged image are

shown in Figures 5.25(e) and (f). The outer rim of the crater is efficiently detected

as ridge lines. and Route No. 1. which is famous for the course of the Hakone

“kiden
race. is detected as a ravine line. The geographical structures of the terrain surface are
extracted by constructing the surface network and the Reeb graph.

These obtained results demonstrate the capabilities of the proposed algorithms.

Samples of the surface of arbitrary topological type

The extended algorithms can extract critical points and CPGs from the sample data
of a surface even when the surface is topologically equivalent to a connected sum of
tori. Figure 5.26 shows the results extracted from a monster-like object. The rendered

surface of the object is shown in Figure 5.26(a). The extracted critical points together

with the contour lines are shown in Figure 5.26(b). Note that the contour lines were

not used in this extraction: they are shown only for clarity of the results. Figure 5

shows the surface network of the object, which is constructed using Algorithm 4
5.26(d) shows the Reeb graph of the object, which is extracted from the surface network
using Algorithm 6. The torus part of the object is successfully extracted. The extended
algorithms will serve as the fundamental tools for changing the height axis of the object

Changing the height axis

The model of the control network is fit to the object surface in order to change the

lLeight axis of the designed object. Figure 5.27 shows the difference between the object
designed in the system and the object reconstructed from the polygonal surface by fitting

5.27(a) and (b) show the control network and

the model of a control network. Figures
the object surface designed in the system, respectively. From the designed surface. the
system obtains the polygonal representations of the object shape. Figures 5.27(c¢) and
(d) show the control network and the object surface reconstructed by fitting the model
of the control network based on the extracted Reeb graph. While there are differences
between the two objects, the reconstructed shape effectively simulates the original object
shape.

Figure 5.28 shows a cup designed using this operation. First, the handle of a cup
is designed (Figure 5.28(a)). The height axis of the handle is then changed (Figure

5.28(b)) in order to combine the handle with a cup (Figure (c)) that is designed

separately. The resultant cup with the handle is shown in Figure 5.28(d)

5.8 Summary

This chapter has presented the algorithms for extracting critical points and CPGs from

the surface samples with the correctness and robustness. Critical points are extracted so

that they satisfy the Euler formula. The surface network is constructed by tracing the

ridge and ravine lines from the extracted critical points. This chapter also presented the
algorithm for converting the surface network to the Reeb graph. The correctness and
robustness of the proposed algorithms were described by deriving several properties
The issue of changing the height axis of the object was addressed. Examples were
presented to demonstrate the capabilities of the algorithms.

The proposed algorithms play a fundamental role for further applications. It is
important to integrate the smoothing operations such as wavelet transforms [69] with the

algorithms hecause the smoothing operations provide us a powerful means of extracting

large nundulations from the noisy data. The issues of taking sample points and generating
a triangle mesh from a smooth surface representation also remain to be addressed. The
algorithms are also useful for designing smooth surfaces using geometric constraints
because they provide the means of extracting characteristic points for the constraints
rithms is

(¢f. Section 4.6). Coding the time-varying surfaces using the proposed &
also an important research theme. Furthermore, there are other definitions of ridge and
ravine lines [3. 2] that have a close relationship with the definition in this study. and it
is interesting to use these definitions for the problems discussed in this chapter.

il
(a)
y s o
4 | v,
N\
g 2
g L
- o
2./ [
In »
” [] b £ >
(c)

(d)

(e)

Figure 5.24: Mt. Fuji: (a) a surface, (b) critical points and contour lines, (¢) ridge

and ravine lines, (d) the surface network, (e) the Reeb graph, and () its enlarged image

120

(c) (d)

- %

(e) (N

Figure 5.25: Lake Ashinoko: (a) a surface, (b) critical points and contour lines, (c)
ridge and ravine lines, (d) the surface network, (e) the Reeb graph, and (f) its enlarged

image

(c) (d)

Figure 5.26: A monster-like shape: (a) a surface, (b) critical points and contour lines,

(¢) the surface network, and (d) the Reeb graph

\ <1
\ ® /£
\ |
L G-
N
(a)
\
4
\® 2
(c) (d)

Figure 5.27: Fitting the model of a control network to a surface: (a) the control
network and (b) the surface of the object designed in the system; (c) the control network
and (d) the surface of the object reconstructed by fitting the model of a control network

(c) (d)

e e of
Figure 5.28: Designing a cup: (a) designing a handle, (b) changing Hn; he lﬁ]ﬂldxr\”“
igure 5.28: Designing ; ha fo) oo e gy e
Ihfh ndle, (c) 41('\?6"’”\0 a container, (d) combining a container and a hanc
andle, signing

a cup

(it

(1)

o

Chapter 6

Discussions

This chapter discusses the differences between the proposed method and the conven-
tional methods.

Differences from the Major Representations

This section compares the proposed representation schemes with the conventional major
schemes with respect to the following properties

Expressive power: What objects can be covered by the representation scheme?
How is the precision of the representation scheme?

Validity: Do all admissible representations correspond to valid objects?
Unambigunity: Do all valid representations designate one object?
Uniqueness: Do some objects have more than one valid representation?

Description language: ~ What kinds of description languages can be supported in
the system based on the representation scheme?

Conciseness: How large do representations of practically interesting smooth
objects become? (This property is often in contradiction with the precision of the
representation.)

Closure of operations: Do object description and manipulation operations pre-
serve the validity of object representations?

Computational ease: What kinds of computational complexity are involved in

the representation scheme?

These properties of representation schemes are derived from [71]. The major representa-
tion schemes to be compared with the proposed one are the octree, cell decomposition.
CSG. and B-reps. Note that the first three representations are contained in the cat-
egory of volumetric enumeration models while the proposed model and B-reps try to
represent an object through the representation of its bounding surface. Therefore, the

proposed model and B-reps share advantages and disadvantages for some of the above
properties. Tables 6.1-6.8 show the evaluations of the representation schemes based on

lable 6.1: The evaluations of the expressive power

Representation Evaluation

Ottice Approximate representation

Controls the depths of octrees for expressive precision
Represents general shapes using the cells with curved

Cell decomposition -
surfaces

CSG Difficult to represent complex smooth surfaces
| B-reps Holds a general domain (in particular for polyhedral ob- |
| jects) [
Holds a genere ain (in particular
The proposed model iltl: y‘l‘\ 1 general domain (in particular for smooth ob-
Sots

the above described properties. Let us consider each of the properties in more detail in

what

Expre:

follows.

ve power

The expressive power of the representation scheme means the domain of objects covered

by the scheme. This property also represents the precision of the object representations.

The properties of the major conventional representation schemes and the proposed one

are described as follows.

Octree: The octrees are approximate representations. While the arbitrary pre-
cision can be achieved by controlling the depths of the octrees, it requires the cost
of high storage use.

Cell decomposition: — The expressive domain of the cell decomposition is larger
than that of the octree, because the cell decomposition can represent more general
shape using the cells with curved surfaces.

CSG: The expressive power of the CSG depends on the number of available
primitives. The CSG cannot cover complex smooth surfaces because the expressive
domain is limited to combinations of simple primitives in general.

B-reps The scheme of the B-reps has a more general domain than that of the
CSG. While the scheme of the B-reps is suited for polyhedral objects. its expressive
v objects if many kinds

power is large enough to represent the shapes of arbitra
of surfaces are supported.

The proposed model: ~ The proposed scheme also has a general domain of object
shapes. Although this scheme is suitable for smooth objects. its expressive power

is as much as that of the B-reps.

Validity

The

validity of the representation scheme indicates whether or not an acceptable rep-

resentation in the scheme certainly designates a valid object.

126

Table 6.2: The evaluations of the validity

Representation | Evaluation

|
T - = o]
[Octree Valid if connectivity is not required |

Cell decomposition Hard to establish because of the lack of the structural
information of cells

CSG Valid if the CSG tree is correct

—

| B-reps Difficult to establish the geometric correctness |

|
Easy to establish the geometric correctness by chiecking

T'he proposed model | : : 5 S
proj illegal interferences among surface layers

o Octree: All the octrees are valid if no special connectivity requirements are
imposed.
o Cell decomposition: — While the validity of the octree is assured by its structural

properties. that of the cell decomposition is hard to establish because a general
cell decomposition is just an unordered set of cells.

o CSG: Every object represented by the CSG tree is guaranteed to be valid.

o B-reps: The validity of the B-reps is quite difficult to establish. While it is
easy to preserve the topological validity (i.e.. topological relations among the
entities), it is hard to enforce geometric correctness because the boundaries are
not gnaranteed to be closed.

o The proposed model: Since the proposed model holds the object data as closed
surfaces. it is easier to enforce the geometric correctness than the B-reps. It is
still necessary to detect the illegal interferences among the surface layers, the
geomietric correctness can be achieved because the system holds the embeddings
of the object in 3D space together with its topological skeletons.

Unambiguity

The unambiguity of the representation scheme guarantees that the valid representation
determines exactly one object.

o Octree: Up to the limits of resolution, all the octrees define exactly one object.
o Cell decomposition: A valid cell decomposition represents a valid object.

o CSG: Every CSG tree completely determines an object.

e B-reps: Valid boundary representations are unambiguous.

o The proposed model: The valid representation of the proposed model unam-

biguously determines an object.

Table 6.3: The evaluations of the unambiguity

T
Representation E

raluation

Octree Unambiguous up to the limits of resolution

Cell decomposition | Unambiguouns

CSG Unambiguons

B-reps Unambiguous

EERER N

T'he proposed model | Unambiguous

Table 6.4: The evaluations of the uniqueness

Representation Evaluation

Octree Unique if the resolution is fixed

Cell decomposition | Not unique

CSG Not unique

B-reps Not unique

The proposed model | Not unique also with different height axes

Uniqueness

The

Corre

uniqueness of the representation scheme guarantees that an object has only one

ssponding valid representation.
Octree: The representation of the octree is unique if the resolution is fixed.
Cell decomposition: ~ The representation of the cell decomposition is not unique.

CSG: The representation of the CSG is not unique

B-reps: The representation of the B-reps is not unique.

The proposed model: ~ The representation of the proposed model is not unique.
Since the proposed model is dependent on the height direction, it is also not unique

under the changes of the height direction.

Description languages

The

repre

direc

from

description languages are the languages supported in the system based on the
ssentation scheme. It is important to see whether the description languages are
tly based on the representation scheme or the object representations are converted

other representation schemes.

Table 6.5: The evaluations of the description language

Representation Evaluation |
B -
[e N]
Octree Converted from other representation schemes |
Cell decomposition | Converted from other representation schemes
CSG Textural languages and graphical interface
| B-rens Tedious to manipulate directly
1 Converted from other representation schemes
e Bithoka, Haz Textural Tanguages for the topological skeletons
PIOL Graphical interface for the geometric details
o Octree: The octrees are usually formed by the conversion from other represen-
tation schemes.
o Cell decomposition: It is very hard to directly manipulate the cell decomposi-

tions of interesting objects. The cell decomposition is generally converted from
other representation schemes.

o (SG:
possible to include a graphical interface into the system.

The objects in the CSG can be described by textual languages. It is also

e B-reps The B-reps are tedious to describe directly. While the Euler opera-
tors are provided as the means of manipulating the boundary data. they are still
low level operators that are tedious for users. In B-rep systems, the objects are
usually designed by sweeping operations or CSG-like boolean operations and then
converted to boundary representations.

e The proposed model: ~ The topological skeletons of an object can be described
by textual langnages such as the Morse operators. The geometric details of the
object are controlled with a graphical interface.

Conciseness

The conciseness shows how large the object representation becomes in terms of storage.
Note that this property is often in contradiction with the precision of the representation

e Octree: The number of the nodes in the octree is proportional to the surface
area of the object. The octree representation takes a large amount of storage for
complex smooth surfaces in general.

o Cell decomposition: Although the cell decomposition is relatively concise for
simple objects. it requires a fair amount of storage for complex smooth surfaces.

o (SG: Although the CSG trees are in principle concise for simple objects, its
expressive power has limitations when complex smooth surfaces are handled.

e B-reps: The boundary representation will achieve precise representation of the
smooth objects with a small amount of storage, because it holds only the boundary
data of the object.

129

Table 6.6: The evaluations of the conciseness

5 T
Representations Evaluation |
|
Octree | Takes a large amount of storage 1
I e |
| Cell decomposition | Takes a fair amount of storage
== SG | Takes a small amount of storage but limited expressive
| | power
| | . . 1
| B-reps | Takes a small amount of storage |
[fiox .
| The proposed model | Takes a small amount of storage
| il s |
o The proposed model: ~ While this model holds the data of the smooth surface

in a hierarchical fashion. the final representation of the smooth surface becomes
almost the same as that of B-reps. Note that the overhead of the upper levels in
the hierarchical representation is relatively small.

Closure of operations

The closure of operations indicates whether the supported operations preserve the va-
lidity of object representations. It is necessary to take into account the generality of the
supported operations

o Octree The octree scheme supports closed operations for problems such as
translation. rotation. and boolean operations.

o Cell decomposition: ~ No closed operations are supported in the cell decomposi-
tion.

e CSG: Boolean operations are algebraically closed for the CSG trees.

e B-reps: B-reps are usually not closed under boolean operations.

o The proposed model: ~ The proposed model is closed under the Morse operations
and their extensions. However, it will not be closed if boolean operations are

introduced.

Computational ease

The computational ease means the computational complexity involved in the represen-

tation scheme.

e Octree: Many algorithms for the octrees consist of relatively simple operations.

o Cell decomposition: ~ There are no explicit operations of manipulating the cell
decompositions.

o CSC The computational power of important CSG algorithms (such as boundary
evaluation) is poor. However, many of their basic steps are very simple.

130

Table 6.7: The evaluations of the closure of operations

Representation Evaluation

Closed under translation, rotation, and boolean opera-
tions —— i

Octree

Cell decomposition | Has no closed operations

| CSG Algebraically closed under boolean operations

| B-reps Not closed under boolean operations
Closed under the Morse operations i

The proposed model | \- =
s Not closed under boolean operations

Table 6.8: The evaluations of the computational ease

Representation Evaluation
L

Octree mple algorithms

Cell decomposition | Has no explicit operations

CSG | Has a poor set of algorithms while they are simple

B-reps Requires computational expensive operations for com-
| | plex smooth objects

Requires computational expensive operations for com-
plex smooth objects

‘ The proposed model

generating graphical output, because they
ng a graphical display. Algorithms based

e B-reps: The B-reps are useful for
readily include the data needed for dri
ou the B-reps become quite difficult if the objects become more complex.

o The proposed model: In addition to the problems in B-reps. this model contains

some computationally expensive calculations such as variational optimizations

6.2 Other Representations

This section describes other representations: sweeping and 3D MAT.

Sweep representations

Sweeping techniques are widely used to generate cylindrical objects. Contemporary
CAD systems contain the sweeping operations as the fundamental techniques of ma-
nipulating boundary data of the object shape. Since the Reeb graph is well suited for
the notion of sweeping. the model that associates the sweeping representation with the
Reely graph is a potential technique for designing complex smooth surfaces.

131

This study uses the techniques of manifold-like patch assembling instead of the

sweeping because of the following two reasons. The first 1

ason is that the sweeping is
not convenient for representing the smooth surfaces around the branches as described in

Appendix F. The second reason comes from the fact that this study tries to implement

multiresolution surface design based on the patch gluing. Tai succeeded in incorporating
the sweeping techniques with the Reeb graph in her study [118]
3D MAT representations

\nother potential representation scheme for smooth surfaces is 3D medial axis transform

3D MAT) representation. Recently, Gelston and Dutta have presented an effective
implementation of a surface modeler based on 3D MAT [35]. On the other hand, Reddy
and Turkivyah have presented a technique for extracting the 3D medial axis from the
]. Although the 3D MAT is

independent of the coordinates of the space where the objects are embedded, the shape

object surface using a generalized Delaunay triangulation

modelers based on 3D MAT are still inconvenient for describing surfaces of complex
topological type. On the other hand, the proposed modeling method suffers from the
fact that the Reeb graph is variable under the rotational transformations of the objects.
Therefore, it is interesting to find the connection between the 3D medial axis and the
Reeb graph in order to overcome the limitations of both representation schemes.

Chapter 7

Conclusions

7.1 Contributions

This thesis has presented a new feature-based modeling method for smooth surfaces. As
the shape features. critical points such as peaks, pits. and passes are used. In particular.
the Reeb grapli, which is one of the CPGs, is used to design the topological skeletons
of the object shape. The critical points and CPGs work at the upper levels in the
hierarchical representations of the smooth objects.

[lie implementations of the bidirectional operations between the object shapes and

shape features. i.e.. design by features and feature extraction were presented.

The design by features begins with specifying the topological skeletons of the object
shape using the Reeb graph. As a design interface. the iconic representation of the
Reeb graph called the embedded Reeb graph is used. which represents the embeddings

of the object shape in 3D space. The Reeb graph is manipulated by the Morse operators

that describe the way of connecti;

g the critical points. The macro operations were also
introduced to avoid the luml,num\ due to the height order of the Morse operators. The

heme for representing the topological skeletons and the implementation of the iconic
interface were also presented.

The geometry of the object shape is designed by specifying the flow curves that run
on the object surface. From the flow curves, the system automatically constructs the
control network that encloses the object. Each vertex of the control network has its
own local patch that is designed by using the curve segments of the control network as
the geometric constraints. The local patches are then glued together using the manifold
mappings in order to form the overall surface of the object.

This thesis Las introduced the multiresolution surface design method for describ-
ing the detailed geometry of the local patches. The local patches are represented by
endpoint-interpolating B-splines and their corresponding wavelets. The shape of the
local pateh is determined by optimizing the energy function subject to its deformation
while preserving the imposed constraints. The multiresolution constraints are solved by
converting the constraints at a low resolution level to those at a high resolution level.

The feature extraction, one of the bidirectional operations, has also been imple-
al points are extracted so that they satisfy the Euler

mented in this study. The ¢

133

formula. The surface network. one of the CPGs, is constructed by tracing ridge and
ravine lines ou the surface. This thesis has presented an algorithm that converts the
surface network to the Reeb graph. Using the extracted Reeb graph, the model of the
control network is fit to the object surface, which allows us to change the height axis of
the object shape.

7.2 Future Work

The future extensions of the proposed modeling method can be grouped into four cat-
egories: (1) introducing more detailed features to the hierarchical representations. (2)
providing operations that make better use of the features of smooth surfaces, (3) al-
lowing more flexibility and ease in the surface design, and (4) extending the proposed
model to other applications.

Introducing more detailed features to the hierarchical representations

o Distingnishing between the differences of knots and links

Integrating the theory of spatial graphs [51. 141] with this model is an interesting
rescarch theme.

Extending the model for non-orientable surfaces such as Klein bottles

The framework based on the atom-molecule graphs [110] is a candidate for such
an extension

Creating more sophisticated model of degeneracy

While the presented model is well suited for designing smooth surfaces. it is prefer-
able to extend the model to handle flat surfaces. This needs a more sophisticated

model of degeneracy

Extracting the critical point configuration graph (CPCG) [82. 83] from discrete
samples

There is a close relationship between the CPCG and the surface network because

both of them represent ridge and ravine lines by their edges. While the edge of
the surface network indicates a set of connected ridge or ravine lines. that of the
CPCG indicates exactly one ridge or ravine line (See Appendix E). Constructing

the CPCG from its corresponding surface network is a topic for future research

Operations that make better use of the features

o Taking visnally-appealing mesh samples based on the shape features

Since the shape features are already obtained in this implementation, a mesh based
4] based

on such features should be generated. Hierarchical mesh generation [1
on these features is also a potential application of this study.

134

o Assigning texture mappings based on the shape features
The shape features can also be used for defining mappings for textures. Interactive
texture assignment [85] based on these features are also an interesting topic for
futnre research.

Finding relationships between the Reeb graph and the 3D medial axis

Since the Reeb graph is defined under the specific height function, it is variable un-
der rotational transformations. Finding relationships with the 3D medial axis [10]
will overcome this limitation because the 3D medial axis is invariant under rota
tional transformations

Allowing more flexibility and ease in the surface design

o Allowing conventional operations in this model

Allowing the conventional operations such as boolean operations should be consid-
ered. Since this thesis has presented the algorithms for extracting shape features
from polygonal surfaces, it is possible to perform the boolean operations if the
polygonal representation of the resultant surface is available in the system.

o Allowing additional flexibilities in the configuration of the control network
The configuration of the control network used in the system is still restricted to a
regular one that contains only intersections like crossings. It is desirable to allow
more flexible configurations such as those containing “T"-shaped intersections.

e Providing intuitive operations in multiresolution shape design
\lthough the proposed method of designing multiresolution shapes is efficient. the
users require prior knowledge on scale-space theory [137. 66] in order to make full
use of the method. The operations that take into account the properties of the
scale-space theory are useful for both well-trained and novice users.

o Providing operations for controlling the tolerance of features
Specifying constraints such as dimensions and tolerances is an important issue in
feature-based modeling techniques. In this implementation. geometric constraints
can be attached in order to control the shape of the features to meet the specified
dimensions. Allowing variations in size such as tolerances is left as future work.

Extending the proposed model to other applications

o Applying the feature extraction algorithms in order to describe time-varying sur-
faces
The feature extraction algorithms will be useful also for coding time-varying sur-
face shapes. In particular, the appearance and disappearance of critical points
can be effectively described using the algorithms. Describing time-varying shapes

will be important for animation techniques.

135

e Extending the model for artistic des

The proposed model is a kind of functional approaches for smooth surfaces because

it tries to implement systematic design schemes based on shape features. In order

to extend the model for artistic design of smooth surfaces, it is important to

incorporate the model with surface curvatures. For example, a network of lines of

curvature [73] can be used to control the surface curvatures

Appendix A
Morse Theory

This appendix provides mathematical prerequisites for Morse theory. Refer to the text-
hooks [30. 32] for more details.

First. let us define critical points of a smooth surface. Let f denote a smooth real-
valued funetion on a smooth manifold M of dimension n. Note that in this thesis,

Definition A.1 (Critical Point) The point p € M s called a critical point of the
function f if gradf(p) = 0. The value f(p) is called a critical value of f.

[he matrix of the second partial derivatives of f is defined as

af
H(i, j)=5—— (A1)
W D)= i, il

which is called the Hessian matrix of f.

Definition A.2 (Non-degenerate Critical Point) The critical point p of f is called
non-degenerate if the Hessian matriz is reqular at p

Definition A.3 (Index) The index of the critical point p of f is the number of negative

cigenvalues of the Hessian matriz at p

Since the dimension of the manifold is 2 in this thesis. the indices of the eritical points
range from 0 to 2. The critical point of the index 2 is called a peak, the critical point

of the index 1 is called a pass, and the critical point of the index 0 is called a pit.

Definition A.4 (Morse Function) The smooth function f on M is called a Morse
function if none of its critical points are degenerate

A Morse function exists on any smooth compact manifold [80]. Note that in this thesis
a Leight function is used as the Morse function.

Lemma A.5 (Morse Lemma) Let f be a smooth function on M and let p be a non-
degenerate critical point. In the open neighborhood of p. there cxist local reqular coordi-
nates 1. ... v such that the function f is expressed by

fe g =P T TP T A2
where A is the index of the critical point p

Morse lemma is used for investigating the surface behavior around the critical points.
When n = 2. the lemma can be written as follows.

—a2 —y? for a peak

flx.y) = 24+ y? for a pass (A.3)
224y for a pit

Before going into the details of Morse Theory, let us define cells and CW-complexes
as follows [49].

Definition A.6 (n-Cell) A topological space ¢" is called an n-cell if it is homeomorphic
to an n-dimensional disk D".

Definition A.7 (CW-Complex) Let X be a Hausdorff space. We call the partition
of X' cell decomposition € if X is a set of pairwise disjoint cells. Suppose that the pair
X.€) consists of a Hausdorff space X and a cell decomposition € of X. (X.E) is called

a CW-complex if the following three conditions are satisfied.
(1) (Characteristic Maps) For each n-cell e € E there is a continuous map ®, :
D" — X taking D" (interior of D") homeomorphically onto the cell e and S"

into the union of the cells of dimension at most n — 1

(2) (Closure Finiteness) The closure & of each cell e € £ intersects only a finite

number of other cells.

(3) (Weak Topology) A C X is closed if and only if every ANE is closed

The following theorem is proven by applying the homology theory to CW-complexes i

Theorem A.8 (Euler Characteristic) Let K be a finite CW-complex. The Euler
characteristic satisfies the following equation:

W(K) = S (=1)"#(e") (A4)

where #(e") represents the number of n-cells.

138

In the case of 2-dimensional manifolds. the above equation is reduced to the following

equation.

\.3) is called the Euler formula in this thesis. The Euler characteristic is a topological
invariant and is used for verifying the consistency of object data
Morse theory is explained as follows

Theorem A.9 (Morse Theory) Let f be a Morse function on the smooth compact
closed connected manifold M. M is then homotopy equivalent to a finite CW-complex
which is a set of cells whose dimensions correspond to the indices of its critical point

respectively. In other words.
M are™ e e . e, (A.6)
where ry. ra. and ry. are the indices of the critical points of M

From the theories of algebraic topology, compact 2-dimensional manifolds can be clas-

sified into any compact surfaces that are homeomorphic to either [103, 7.

e spheres
e connected sums of tori, or
e connected sums of projective planes.

Morse theory adds the information about surface embeddings to the above topological

classification

Appendix B

Definition of the Reeb Graph

I'he mathematical definition of the Reeb graph is described as follows. Note that this
definition is derived from [107]. Let f: M — R be a real valued function on a compact
mauifold M. The Reeb graph of f is the quotient space of the graph of f in M x R by
the equivalence relation given below:

(X1 f(X)) ~ (X, f(X2)) (B.1)

holds if and only if f(X}) = f(X3) and X} and X, are in the same connected component
of f7H(f(X That is. the two points on the graph (X;. f(X;)) and (X5. f(X)) are
represented as the same connected component of the inverse image of f(.X) (or f(X3)).
All points that belong to the same equivalent class of the original space are represented

as a node in the quotient space such as the Reeb graph. Figure 1.2 illustrates the Reeb
graph of a torus.

Appendix C

Endpoint-interpolating Cubic B-spline
Wavelets

The synthesis matrices P*) and Q' for endpoint-interpolating cubic B-spline wavelets
are given below [94. 115, 116]

) 1
1 -2
P‘:% 11 QY =v7| 3 ()
y 11 =)
2 1
16 1368
8 8 —2064 —240
12 4 gl =i 1793 691
po -1 310 3 Q2= vﬁ ~1053 —1033 | (C.2)

4 12 691 1793

8 8 —240 —2064

g% =

6.311454
—9.189342
7.334627
—3.514553
1.271268
—0.259914
0.019190
—0.000155

|
T
8
212 2
8 8
2 12
8
2

—1.543996
4.226722
—5.585477
6.059557
—4.367454
1.903267
—0.473604

0.087556

0.087556
—0.473604
1.903267
—4.367454

6.059557

—5.58547T
4.226722

—1.543996

9
8
11 3
4 12
8 3
16

—0.000155
0.019190
—0.259914

1.271268

3.514553
7.334627
—9.189342
6.311454

(C.3)

(C4)

25931.200710

—=37755.271723 —6369.305

30135.003012 17429.266054 385.797044
—14439.869635 —23004.252368 —2086.545605 -1
3.125428 24848.487871 8349.373420 124
—1067.879425 —17678.884301 —18743.473059 —1677
78.842887 24291.795239 7904
—0.635830 —1561.868558 —18420.997597 —18482
115.466347 7866.732006 24264
—0.931180 —1668.615872 —18482

123.378671 7904
—0.094989 1677

124
—1

—1
124
—1677
7904
—18482 —1
24264 124
—18482. —1677 —0.994989 (C.5)
7904 - 7904 123.378671
—1677 - —18482 —1668.615872 —0.931180
124 24264 7866.732009 115.466347
=] —18482 —18420.997597 —1561.86

7904 24291.795239 7394.685374
—1677 —18743.473059 —17678.884301
124 24848.487871
—1 —2086.545605 —23004.252368 —14439.869635
385.797044 17429.266054 30135.003012
—6369.305453 —37755.271723

25931.200710

	325057_0001
	325057_0002
	325057_0003
	325057_0004
	325057_0005
	325057_0006
	325057_0007
	325057_0008
	325057_0009
	325057_0010
	325057_0011
	325057_0012
	325057_0013
	325057_0014
	325057_0015
	325057_0016
	325057_0017
	325057_0018
	325057_0019
	325057_0020
	325057_0021
	325057_0022
	325057_0023
	325057_0024
	325057_0025
	325057_0026
	325057_0027
	325057_0028
	325057_0029
	325057_0030
	325057_0031
	325057_0032
	325057_0033
	325057_0034
	325057_0035
	325057_0036
	325057_0037
	325057_0038
	325057_0039
	325057_0040
	325057_0041
	325057_0042
	325057_0043
	325057_0044
	325057_0045
	325057_0046
	325057_0047
	325057_0048
	325057_0049
	325057_0050
	325057_0051
	325057_0052
	325057_0053
	325057_0054
	325057_0055
	325057_0056
	325057_0057
	325057_0058
	325057_0059
	325057_0060
	325057_0061
	325057_0062
	325057_0063
	325057_0064
	325057_0065
	325057_0066
	325057_0067
	325057_0068
	325057_0069
	325057_0070
	325057_0071
	325057_0072
	325057_0073
	325057_0074
	325057_0075
	325057_0076
	325057_0077
	325057_0078
	325057_0079
	325057_0080
	325057_0081
	325057_0082
	325057_0083
	325057_0084
	325057_0085
	325057_0086
	325057_0087
	325057_0088
	325057_0089
	325057_0090
	325057_0091
	325057_0092
	325057_0093
	325057_0094
	325057_0095
	325057_0096
	325057_0097
	325057_0098
	325057_0099
	325057_0100
	325057_0101
	325057_0102
	325057_0103
	325057_0104
	325057_0105
	325057_0106
	325057_0107
	325057_0108
	325057_0109
	325057_0110
	325057_0111
	325057_0112
	325057_0113
	325057_0114
	325057_0115
	325057_0116
	325057_0117
	325057_0118
	325057_0119
	325057_0120
	325057_0121
	325057_0122
	325057_0123
	325057_0124
	325057_0125
	325057_0126
	325057_0127
	325057_0128
	325057_0129
	325057_0130
	325057_0131
	325057_0132
	325057_0133
	325057_0134
	325057_0135
	325057_0136
	325057_0137
	325057_0138
	325057_0139
	325057_0140
	325057_0141
	325057_0142
	325057_0143
	325057_0144
	325057_0145
	325057_0146
	325057_0147
	325057_0148
	325057_0149
	325057_0150
	325057_0151
	325057_0152
	325057_0153
	325057_0154
	325057_0155
	325057_0156
	325057_0157
	325057_0158
	325057_0159
	325057_0160
	325057_0161
	325057_0162
	325057_0163
	325057_0164
	325057_0165
	325057_0166
	325057_0167
	325057_0168
	325057_0169
	325057_0170
	325057_0171
	325057_0172
	325057_0173
	325057_0174
	325057_0175
	325057_0176
	325057_0177
	325057_0178
	325057_0179
	325057_0180
	325057_0181
	325057_0182
	325057_0183
	325057_0184
	325057_0185
	325057_0186
	325057_0187
	325057_0188

