Appendix D
Singular Value Decomposition

Singular value decomposition (SVD) is a powerful set of techniques for dealing with
sets of linear equations or matrices that are either singular or numerically very close
to singnlar. In many cases where Gaussian elimination and LU decomposition fail to

give satistactory results. this set of techniques diagnoses what the problem is. Whereas
the S\'D only diagnoses the problem in some cases. in most cases it provides a useful
numerical answer.

The SVD techniques are based on the following theorem of linear algebra [93]: Any
square matrix A can be written as the product of a square orthogonal matrix U, a
square diagonal matrix W with positive or zero elements, and the transpose of a square
orthogonal matrix V. In other words, any square matrix A can be decomposed as

follows

A = UWV"
uny
way
= V! D.1)
uy
where the matrices U and V' have the following properties.
U'u=1 (D.2)

ViV =1

Here. I represents an identity matrix.
The inverses of U. V.. and W are trivial to compute. Since U and V" are orthogonal,
their inverses are equal to their transposes. The inverse of the diagonal matrix W is the

diagonal matrix whose elements are the reciprocals of the elements wy (k =1




Thus. it follows from (D.1) that the inverse of A is
1/u
AT =V b (18 (D.4)
1/w,
Problems arise in (D.4) when one of the wy’s becomes zero or close to zero. In the case
of such problems. the matrix A becomes singular. Using (D.4). the SVD can diagnose
Low singular the matrix A is, first of all
Let us define a null space and nullity, which are important concepts for singular
matrices. Consider the following system of linear equations
| -
Az =b. (D.5)

where A is a square matrix, and

and b are vectors. If A is singular, the subspace of
@ satisfies Az = 0. This subspace is defined to be a null space of A and its dimension
is defined to be the nullity of A. There is also the subspace of b that can be mapped
outo by A. i.e.. there exists @ that is actually mapped to b by A. This subspace is
called the range of A and its dimension is called the rank of A.

Now we are ready to see that the SVD explicitly constructs the orthonormal bases
for the null space and range of a matrix. In particular, the columns of U whose cor-

responding wy’s are nonzero are an orthonormal set of bases that span the range and
the colummns of V' whose corresponding w;’s are zero are an orthonormal set of bases
for the null space.

If b = 0. (D.5) can be solved immediately: the solution is a linear sum of the
orthonormal bases for the null space.

If b # 0. the important question is whether b lies in the range of A or not. If it does,
the singular set of equations (D.5) does have a solution. Actually, it has more than one

solution because any vector in the null space of A can be added to the solution without
violating (D.5). From such solutions, we pick up the one that has the smallest length
|||. In order to obtain the solution, 1/w; is replaced by zero if wy is zero or close to

zero. and the following equation is then calculated:

1/w,

1/us
e (a2 U'b (D.6)

1/w,

|| where @' lies in the null space of A. Let

The proof is as follows: Consider || @ +
W " denote the modified inverse matrix of W with some elements zeroed as described
above. We obtaiu the following equation:
lz+a'| = | VWU b+ 2 ||
= | V(W 'UTb+ V") ||
| WU s+ VT |. (D.7)
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where the first equality comes from (D.6) and the second and third from the orthonor-
mality of V. Let us examine the two terms that make up the sum of the right-hand
side. The first term has nonzero A-th elements only where wy # 0. while the second one
has nonzero k-th elements only where w; = 0 because '
=10,

If b is not contained in the range of A, (D.5) has no solution. However, still in this
case. (D.6) can be used to construct the best solution

lies in the null space. Thus,

the minimum length is achieved when g

T'his means that among the
possible solutions. @ will be the closest in the least square sense, which amounts to

& which minimizes || Az —b | (D.8)

While the solution & does not satisfy (D.6) exactly. it serves as the best approximation
for the solution of (D.6). The proof is similar to (D.7). Let us modify @ by adding an
arbitrary vector @'. Az — b is then modified by adding &' (= Aa’). Note that b’ lies in
the range of A. We then have

| Az —b+b || = ||(UWVT VWU -b+V |
= [(UWW'UT -I)b+b'||
= |U(WW™ —DUTb+U"b] ||
| (WW— DU s+ U™ || (D.9)
(WW ! — I) is a diagonal matris
while U

Therefore the minimum is accomplished when b = 0.

that has nonzero A-th elements only for wy = 0.

1as nonzero k-th elements only for wy # 0 because b lies in the range of A.

In this wayv. the SVD serves as a powerful set of techniques that solve the singular
svstem of linear equations.




Appendix E

Definition of the Surface Network

The surface network is proposed for characterizing terrain surfaces [88, 89]. and is also
one of the critical point graphs (CPGs). First a ridge line and a ravine line are de-
fined [82. 83]. Let C'(t) denote the function (x(t). y(t)) of the parameter space (z. y).

Definition E.1 (Ridge and Ravine) Suppose that a smooth surface is represented by
a height function = = f(x.y). Let C(t) denote the function (C.(t),Cy(t)). An ascending
slope line from the point Cy is a curve in R defined by C(t). where C(t) is a trajectory
of the autonomous initial value problem

Wy il of

=({=(C(t)), ==(C(¥)
dt ox dy

), C(0)=Cy, and 0<t<oc.

A descending slope line from the point Cy is a curve in R defined by C(t). where C(t)
is a trajectory of the autonomous initial value problem

dcC af . >

—(t) = —‘—\("m.,—/‘(‘;m‘\. C0)=Cy. and 0L<t<

dt da Ay
Let P be a pass and let Q be a point in a neighborhood of P such that the descending
slope line from Q reaches P. The slope line through Q is then called a ridge line. Let
P be a pass and let Q be a point in a neighborhood of P such that the ascending slope
line from Q reaches P. The slope line through Q is then called a ravine line

Note that the ridge (ravine) lines cross every contour at right angles, and they go in the
steepest direction through any point. In the following. a set of connec ted ridge (ravine)
lines is also called a ridge (ravine) line.
The following is the definition of the surface network [88. 89].

Definition E.2 (Surface Network) A surface network is a graph that satisfies the
following conditions

(1) The vertex of the graph represents a critical point.

(2) The edge of the graph represents a ridge line from a pass to a pe ak or a ravine line

from a pass to a pit.

Figure 5.10 illustrates the surface network with contours.
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Appendix F
Notes on Continuities at Branches

Sweepit 19. 119] is a powerful technique for designing smooth cylindrical ob-

jects. In general. a closed curve to be swept and its trajectory is represented by B-spline

functions. In this appendix, it is assumed that the control points of the closed curve

move along the trajectories whose parameters are height values. This representation

can be regarded as a kind of skinning [125, 139, 140], which is similar to the sweeping.
One problem that arises from this representation is that the representation suffers
from the discontinuities with respect to the height value at branches. The discontinuities
cause the difficulty in generating smooth surfaces around the branches.
From Morse lemma (cf. Appendix A), there exists a coordinate system that has the

following quadratic representation in the neighborhood of a critical point after certain

regular transformations.
—r2 =y for a peak
:=flz.y) =1« Frity> forapass
+a% 4 y* for a pit

Now suppose that the surface has the following equation in the neighborhood of the

pass.

c

Il

-y

Here. C' represents the height value. Figure F.1 shows the changes in cross-sectional
contours when we go down along the height axis from €' =+ to C' = —<, where = is a
small positive real number. As can be seen in Figure F.1. the contours around the pass

are two hyperbolas when | €' [> 0 and two straight lines when C' = 0.
ier curves [90. 64, 9

The hyperbolas can be represented by quadratic rational Be

Let pg. py. and p, denote three control points of the quadratic rational Bézier curve,

and let wy. wy. and wy denote the weights associated with the control points. By setting

w : (1)




Figure F.1: Changes in cross-sectional contours in the neighborhood of a pass

| the rational Bézier curve is expressed by

(1 —t)%py + 2(1 — t)twp, + t2p,
Bl Py B R, (F

2
(1 —1)24+2(1 — t)tw + 12 )

where # is a parameter value. The Bézier curve p(t) can be classified by w as follows [64].

w=0 straight line
0<w<l1 ellipse

! w=1 parabola
w>1 hyperbola

l When t = 1/2. (F.2) becomes

1 py,+ps w -
=p(1/2)= —— =+ ——p;. (F.3)
‘ g 14w 2 1+u’
| Let m be the midpoint of the segment pyp,. Hence the above equation becomes
‘ qg=(1l-s)m+sp,. (F4)
where
e (F.5)
1+w

T'hus. the following equation can be obtained.

= Am=dl (F.6)
lg—pi
Let us consider the case when ¢ = = > 0. If py. p; and p, have the coordinates

(1. =/T=2), (0. 0), and (1, /T—¢) respectively as illustrated in Figure F.2, the
following equation is obtained.

:——l_f

| w
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Figure F.2:

he hyperbolas 22 — 3? = = where = < 0

As the value = approaches 0. the value w approaches sc. This means that it is impos-
sible to describe the changes of cross-sectional contours at the pass with the parametric
curves, i.e.. the quadratic Bézier curves.

I'his study solves this problem by introducing the local coordinates of the pass using
the techniques of manifold mappings.




Appendix G

Manifold-Based Multiple-Viewpoint CAD
— A Case Study of Mountain Guide-Map
Generation —

There are kinds of pictures that are drawn with multiple viewpoints. Mountain quide

maps . cubism pictures and medical diagnosis drawings are e

amples of such pictures.
So far. however. they have been drawn intuitively by hand. Implementing a CAD system
for such pictures requires clear modeling of their drawing processes. As a case study, this
appendix presents mountain quide-map modeling using manifolds and implementation
of multiple-viewpoint CAD based on the model. Projecting a land surface as seen from
multiple viewpoints is conducted interactively using the CAD system. Finally, basic
images for mountain guide maps are generated automatically.

G.1 Assumptions on Mountain Guide-Map Generation
Many ancient and medieval paintings were drawn having multiple viewpoints . describ-

ing objects to illustrate their points of interest. After the Renaissance time when the
perspective view became dominant as an exact and hence scientific way of drawing,

multiple-viewpoint pictures have been declining, and have survived only in limited cases
such as mountain guide maps. diagnosis drawings of medical doctors (Figure G.1). and
in some schools of art. for example cubism.

In our human memory, we remember scenes of our homelands as seen from various
viewpoints. When we try to understand how machines are confi sured. we draw them
viewpoint pictures are

as seen from different sides. In human visual cognition, multiple-
natural and there is no reason for them to be rejected. One illustrative example is our
visual memory. Everybody remembers their homeland as they see it when they travel
around its different locations.

This research is a step toward the science of multiple-viewpoint pictures. A case
study was conducted to prove a hypothesis that there is a way to model multiple-

viewpoint pictures wctly” (“exact” in a scene that we can define them without ambi-
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dental caries amalgam filling

first molar
second molar v

partial eruption of wisdom teeth

Figure G.1: A dental diagnosis drawing: the region containing the wisdom teeth has
a different viewpoint from the others so that a doctor can see its dental caries.

guity and hence can antomatically generate them). A popular case of mountain guide
maps was studied

In a mountain guide map. mountain tops. mountain passes, and lakes are extracted
to characterize land undulations. To represent such land features clearly, mountain guide
maps are drawn with multiple viewpoints. For example. let us consider the difference
between an ordinary perspective picture and a mountain guide map as illustrated in
Figure G.2. Figure G.2(a) shows an

xample of an ordinary perspective picture. The
lake is partially hidden by surrounding mountains while the mountain skyline is seen
clearly. Figure C

of the area containing the lake is changed so that we can see the whole scene of the lake

b) shows an example of a mountain guide map where the viewpoint

from a height as well as the mountain skyline as seen from the foot of the mountain
In this way. a mountain guide map can extract as much information as possible when
projecting a 3-dimensional land surface onto a 2-dimensional plane.

So far. commercially available mountain guide maps have been drawn without appro-
priate modeling and hence they include various ambiguous representations. The model-
ing of the drawing processes requires a clear understanding of the mountain guide-map
generation processes. The typical drawing processes of a mountain guide map are as
follows:

(1) Select an area that includes one mountain top, mountain pass, or lake

The areas are pasted together to construct the overall land surface.

(3) Each area is projected as seen from a viewpoint, usually a vista point of the area
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(a) (b)

Figure G.2: The difference between (a) an illustration of an ordinary perspective
picture and (b) an illustration of a mountain guide map

In this thesis. a mountain top. a mountain pass and a lake are called characteristic
points. and the area including one characteristic point is called a characteristic area.
Figure G.3 illustrates the above processes. In fact. the processes can be modeled as the
creation of a manifold. In the following, it is assumed that mountain guide maps are

constructed through these processes

9] and its
implementation [121]. The method of projecting a land surface as seen from multiple

This appendix presents mountain guide-map modeling using manifolds |

viewpoints is realized using a family of blending functions. A mountain guide-map
CAD system is implemented, and multiple-viewpoint images for mountain guide maps

are generated.

G.2 Multiple-Viewpoint Projection

A\ mountain guide map is not an ordinary perspective image but an image with multiple
viewpoints. For example, mountains are projected as seen from the foot of the mountain
to show the mountain skyline clearly. Lakes are projected as seen from a height so that
we can see the whole scenes of the lakes. Because of these considerations. it is necessary
to implement a method of projecting a land surface as seen from multiple viewpoints.

There are several researches on perspective projection techniques. Ordinary perspec-
tive projection is explained in [13] and [86]. Non-linear perspective projection is dis-
cussed in [79] and [48]. Viewpoint analysis of multiple-viewpoint pictures is proposed
in [111].

This section is devoted to the explanation of projecting a land surface from mul-
tiple viewpoints. When the viewpoint of each characteristic area is given, the system
automatically generates the rendered image of a land surface with multiple viewpoints.
For this purpose. smooth viewpoint interpolation, which we call viewpoint blending . is

154




e -

Mountain top Mountain pass Lake

(a)

7<

(c)

Figure G.3: Typical drawing processes of a mountain guide map




Figure G.4: The basic method of multiple-viewpoint projection

ing into details. the basic method of multiple-viewpoint projection

required. Before ¢
is explained. Here. the land surface is represented as a manifold constructed from a set
of charts {(Uy. 2¢)} as explained in Chapter 3.

Figure G.4 illustrates the basic method of multiple-viewpoint projection. Let ¥ be
a land surface and let IT be a view plane. It is assumed that the reference point q is
on the land surface €. The viewpoint p depends on the position of the reference point
q. Let us call the line I connecting p and g a view line. The projection mapping Proj :
¥ — II is the mapping such that Proj(q) = r € II. where 7 is the intersection point of
the view plane IT and the view line [

To determine the view line, the viewpoint that corresponds to the coordinates of the
reference point is calculated using a family of blending functions. The reference point
is then projected onto the view plane using the mapping Proj explained above. In the

following. we consider how to calculate the blended viewpoint in the case of perspective
projection and parallel projection

l irst we consider the case of perspective projection. Let us assign a set of charts
)} to the characteristic areas, each of which has the viewpoint p;. We can then
'mr[ a b les mh d viewpoint using a family of blending functions as presented in Chapter

3. The smooth blended viewpoint p of the reference point g(u.v. f(u.v)) is calculated

as follows

(. v) = 2k Bk V) - Pi (1)
e ok B(ug, i)

Here. we use the notations of Chapter 3.

We can also assign weight parameters to the viewpoints of the charts. Let
the weight parameter of the chart (Uy. ) of the perspective projection. The equation
of the blended viewpoint is modified as
Siwy - Blug, vg) - Pe (G2)

Yrwy - Blug,vx)

In the case of parallel projection, the mapping Proj can be determined if the view
direction m is given. The view line [ is then expressed as tm+q where 7 is a parameter

wy' be

plu.v) =
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value. Assume that the chart (Uy. py) has its own view direction my. which is expressed

v the unit vector my = (cos Oy cos @y, sin O, cos By, sin ®;) with two parameters O
and ®;. Here Oy is an angle of rotation and ®y is an angle of elevation
We can now find the smooth blended view direction m of the reference point

qlu.v. f(u.v)) using a family of blending functions as.

m(u.v) (cos © cos @, sin © cos D, sin ). G.3)
where
Y Blug, v
O(uv) = bk and 4)
2k Blug, vr)
Blug,vg) - @,
®(u,v) = M (G.5)

r Blur, ve)

Let wy” be the weight parameter of the chart (U, ) of the parallel projection. The
angles © and ® are represented with the weight parameters as,

i wi” - Blug, vg) - O
B =R =
Sk wi" Blug, vg)
sallly i)
D(u.v) = M (G.7)
e we” - Blug. vg)

and (G.6)

We can thus find the smooth viewpoint or direction blended among the charts, and
the land surface is projected with multiple viewpoints or directions.

G.3 Results

\ prototype system of a mountain guide-map CAD is implemented based on the pre-
sented model. With the system, multiple-viewpoint images can be generated. This
section provides examples of the basic images' for mountain guide maps.

Using the prototype system. the view parameters of the charts such as viewpoints or
view directions are specified. View parameter setting with chart assignment is shown in
Figure G.5. With these given parameters, the prototype system automatically generates

a basic image for a mountain guide map. Modification of these parameters is also

conducted easily and interactively using the CAD system.

The following images are generated in the prototype CAD system. Figure G.6 and
Figure G.7 are the basic images for the mountain guide maps around Lake Ashinoko.
which is a famous tourist area with a scenic crater lake in Japan. Here, we see the
influences on the images when the viewpoint or view direction of the area including
the lake is changed. Figure G.6(a) is the image of the perspective projection with one
viewpoint. This is the same as that of ordinary perspective projection. Figure G.6(h)
is the image of the perspective projection with multiple viewpoints. The viewpoint of

| Here. a map without land marks such as stations, bus stops, and hotels is called a basic image
for a mountain guide map.




the area including the lake is changed to one from a height to avoid the surrounding

mountains. Figure G.7(a) is the image of the parallel projection with one view direction
This is the same as that of ordinary parallel projection Figure G.7(b) is the image of

the parallel projection with multiple view directions. The whole scene of the lake can be

seen because the area including the lake is as seen from a different view direction from
the others. Figure G.8 is a pair of basic images for the mountain guide map around
Mt. Fuji. which is the highest mountain in Japan. Figure G.8(b) is designed using
the prototype system so that the scenic features of the area can be seen better in this
figure than in Figure G.8(a). These results demonstrate the capability of the prototype

svstem.




Figure G.5: A display example of view parameter setting with chart assignment




Figure G.6: The image of perspective projection with (a) one viewpoint and (b)
multiple viewpoints




Figure G.7: The image of parallel projection with (a) one view direction and (b)

multiple view directions




Figure G.8: The basic image for the mountain guide map around Mt. Fuji of (a)
ordinary projection and (b) multiple-viewpoint projection
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