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Chapter 1

Introduction

iv

Since its discovery by Kamerlingh Onnes[l]' superconductivity has been examined as one

of the most fascinating phenomena in solid state physics. The most famous and successful

theory of superconductivity was given by Bardeen, Cooper and Schrieffer [2] in 1957, the

theory now well known as the BCS theory. The BCS theory is based on the phonon

mediated attraction between electrons and explains most properties of superconductors

not only qualitatively but also quantitatively.

On the other hand, there is a history of the quest for mechanism due to repulsive inter

actions between electrons rather than the phonon mediated attractions. Indeed, there are

some widely noticed mechanisms with effective attractions mediated by bosonic collective

excitations, plasmons (charge Auctuations)[3]' anti-ferromagnetic spin Auctuations[4, 5],

and so on. The study of such electronic mechanisms received an impetus from the discov

ery of the high-Tc superconductor[6], which may require a mechanism other than BCS.

Although the high-Tc superconductor has among of such as the magnitude of the

transition temperature from com'entional superconductors, one of the most important

differences is the "anomalous" normal-state properties in the lightly-doped regime [71.

The unusual properties, which are not expected from conventional Fermi liquids, include

resistivity[S, 9, 10], optical conductivity[ll, 12, 13], Hall coefficient[9, 10, 14], and NMR

[15, 16, 17, IS). It is widely believed that understanding the unusual normal state prop

erties of the high-Tc cuprates will elucidate the superconducting mechanism. Recently,

the presence of a "spin-gap" in the normal state has been regarded as an important key

to understand the normal state properties, such as the magnetic properties (Fig.I.1), and

further the superconducting mechanism.

To understand the cuprates, both the Hubbard and the t - J models have been ex

tensively studied as effecti\'e Hamiltonians for the low-energy excitations on the two

dimensional (2D) CU02 plane, on which the carriers reside[19).



The single-band Hubbard model, which was proposed as an effective model for the

cuprate by Anderson[20], is described by the Hamiltonian,

H = -t L c1,ucj,u + U L nitni.l·
<i,j>u

(1.1)

T
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Here c1,u(c;,u) is the creation (annihilation) operator of an electron of spin (J at site i, t is

the transfer energy, U is the on-site interaction, niu = cluc;u and < i, j > denotes nearest

neighbor sites. Actually, the relation between the Hubbard model and the cuprates is

not clear, since the Hubbard model is an approximate model that roughly neglects the

oxygen sites in the cuprates. Initially, however, the Hubbard model has been widely

discussed since 1960's especially as a relevant model for the magnetism in the transition

metals[21]' and its ground state has also been widely discussed. Thus, the Hubbard model

is one of the prototypes for strongly-correlated-electron systems. Superconductivity in the

2D Hubbard model has been extensively discussed both analytically[22, 23, 24, 25, 26)

and numerically[27, 28, 29, 30, 31, 32, 33, 34]. Some analytical calculations support the

dominance of pairing correlations in the doped systems. However, the quantum Monte

Carlo (QMC) method, which enables us to obtain correlation functions for relatively large

systems, shows that there is no enhancement of the pairing correlation at any fillings[28,

29]. Thus the dominance of a pairing correlation in the 2D Hubbard model seems unlikely

in numerical calculations, as far as pairing correlation of the bare electrons are considered.

On the other hand, the t - J model is given by the Hamiltonian,

H = -t L c1.A,u + J L Si· Sj.
<i,j>u <i,j>

(1.2)

Figure 1.1: :-'Iagnetic phase diagram on the plane of doping 5 and temperature in cuprates;
T" the onset temperature of the suppression of the magnetic susceptibility, T R , the tem
perature where the :-';;"IR rate I/(T1T) takes maximum value, Te , the superconducting
transition temperature.

Here J is the super-exchange interaction via the oxygen atom and Ci,u = C;,u(1-ni,-u), etc.

The limit of small JIt corresponds to the large-U limit of the Hubbard model. :Ylean-field

theory based on the slave-boson approach [35, 36, 37] shows the occurrence of supercon

ductivity in the 2D t - J model. In the slave-boson approach, the onset temperature

of the singlet pairing of the spinon, which is the spin-fermion field of the decomposed

electron field, corresponds to the temperature at which the spin gap is created. The dom

inance of the pairing correlation in the t - J model is also confirmed for relatively large

JIt by numerical calculations [38, 39, 40, 41, 42, 43, 44). In relation to the formation

of the spin gap, extended t - J models such as the dimerized t - J (t - J model with

dimerized spin-spin coupling[45, 46]) or t - J - If (t - J model with nearest neighbor

repulsion[47, 48, 49]) models, have also been of great interest.

In an effort to understand strongly-correlated systems one dimensional (ID) systems

have also been studied extensively, although their connection to 2D systems has to be



worked out. It is now widely understood that the 10 systems are in general described not

as the Fermi liquid but as the Tomonaga-Luttinger liquid (the TL liquid) in low energy

regime[50, 51, 52). This was shown in the weak-coupling regime by the bosonization[51, 52J

combined with the renormalization group methods[50] in the 1970's. In 1982, Haldane

conjectured that the 10 electron systems are generally expressed as the TL liquids [53, 54,

55, 56). This conjecture has been recently confirmed by the conformal field theory[57, 581

combined with Bethe Ansatz method for both the Hubbard[59] and the super-symmetric

t - J models[60, 61, 62].

87, 88) studies on the undoped-ladder systems have supported this conjecture, especially

after the similar proposal by Rice et aI.[89] as mentioned below.

In real systems, for example, Srn-1Cun+lOZn has an n-leg-Iadder structure on CuOz

plane. Recent experiments on SrCuZ03 and SrZCu30S have confirmed the conjecture[83,

84, 85, 86, 87J. \lamely, the two-leg-ladder system SrCuZ03 shows a spin-liquid behavior

characteristic of a finite spin-correlation length, while the three-leg system SrZCu30s

shows an AF behavior (Figures 1.2 and 1.3). Furthermore the spin-ladder systems may

1.5~---------~
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Figure 1.2: Schematic ladder structures; (a) a two-leg ladder, (b) a three-leg ladder.

The TL liquid has important properties different from those for the Fermi liquid.

Abo"e all, the spin and the charge degrees of freedoms are completely decoupled in the

TL liquid. This is called the spin-charge separation. Another important difference is that

the TL liquid has no quasi-particle excitations and all of the excitations are collective

ones. !\ature of the ground state is characterized by the long-range part of the correlation

functions, which can be exactly calculated in the TL liquid. Generally speaking, strong

quantum fluctuations prevent the occurrence of true long-range order even at T = °in

10, so that correlation functions vanish at long distances, except for the special case

such as ferromagnetic long-range order in the ferromagnetic Heisenberg model, in which

the order parameter commutes with the Hamiltonian. However, we may consider that

the order which has the most slowly-decaying correlation function will be realized in real

systems which must have some three-dimensional (30) properties.

The ground state of the TL liquid which corresponds to the Hubbard model with

repulsive interactions or the t - J model with a small exchange coupling cannot exhibit

superconductivity[63], since the dominant correlation is that of the spin-density wave

(SO\\"). Physically, the reason why there is no dominating pairing correlation is that

there is no gapful spin mode in 10, since the only spin mode becomes gapless.

Over the past several years, the systems with quasi-l0 ladder structures have been

received much attention. Cuprate compounds containing such structures have been fab

ricated recently[641. The undoped system is a Mott insulator and can be considered as

an anti-ferromagnetic (AF) Heisenberg spin-ladder system. In 1986, Schulz[65] first con

jectured that an AF spin-ladder system with n-Iegs is very similar to a 10 AF 5 = N /2

spin-chain system (Haldane system)[65, 66, 67, 68J. i amely, even-numbered-Ieg ladders

which correspond to a 10 spin chain of integer spins should be a spin liquid with the spin

excitations being gapful, while odd-numbered leg ladders which correspond to half-odd

integer spins should be anti ferromagnetic with the spin excitations being gapless. Both

theoretical[70, 71, 72, 73, 74, 75, 76, 77, 78, 79,80] and experimental[81, 82, 83, 84, 85, 86,



H = -t L (c1.o,uC;+l,a,u + h.c.) + J L Si,o ·8i+I ,0

contain some clues for understanding the high-Tc cuprates, especially for the role of the

spin gap. In connection with the spin gap, the impurity effect which removes the spin

gap in the two-leg ladder is also of interest[90, 91].

For superconductivity we have to consider carrier-doped systems. Rice et al. gave

a conjecture similar to Schulz's for undoped systems and further have conjectured for

doped systems that an even-numbered ladder should exhibit dominance of the inter

ladder singlet-pairing correlation as expected from the persistent spin gap away from

half-filling[89J. The conjecture is partly based on the numerical exact-diagonalization

study for finite systems for the two-leg t - J ladder by Dagotto et a!.[70]. The two-leg

t - J ladder model is defined by the Hamiltonian,

i,o

-t.L L(cL,A,2,u + h.c.) + h L 8 i ,1 . 8 i ,2' (1.3)

00 100 200 300 400 500 500 700
T""""",att.re(K)

(b)

FilTure 1.3: Temperature dependence of the magnetic susceptibility of a two-leg ladder
(S;CU203, Fig.(a)) and a three-leg ladder (Sr2Cu30S, Fig.(b)) given in reL[84]. The
open circles are the experimental raw data, while the data afte~ subtractlOn of the
Curie component are shown as closed circles. The solId line In Flg.(a) represents the
calculated susceptibility assuming a spin gap of 420K In reL[84], uSing the equatlOn
X(T) ex T- 1/ 2exp(-t::,,/T) given in ref.[78] for the Heisenberg ladder. The data o.f SrCu203
is characteristic of thermal excitation from a non-magnetic ground state, whIle that of
Sr2Cu30S reflects a gapless spin-excitation spectrum.

Here cr(= 1,2) labels the two legs of the ladder, while t.L(h) is the interchain hopping

(exchange coupling) (Fig.1.4). Dagotto et al. considered the case of large h limit at

J,t
r---.

Figure LI: Two-leg t - J ladder model; t(t.L) and J(h) are the intrachain (interchain)
hopping and the intrachain (interchain) exchange coupling, respectively.

half-filling in the beginning. In this case, they showed that the ground state consists of

a set of spin singlets on each rung of the ladder. Naturally, there is a gap of order J.L in

the spin excitations which corresponds to creating a triplet on one of the rungs and the

system will be a spin liquid rather than AF.

When the system is hole doped, it is also energetically favorable to break as few singlet

pairs as possible. The resultant liquid of singlets is expected to retain a spin gap, where

the energy gained by putting the holes in pairs may be regarded as a hole-pair-binding



SrOACa13.6Cu2404184 under high pressure of 3 GPa and 4.5 GPa (Fig.1.6 and Fig.1.7). It is

an important advantage of the high pressure technique that it can change the parameters

of the system without increase of the randomness, although how the high pressure changes

the parameters is not so clear.

Theoretically, the Hubbard model on ladders have also been of interest, recently. The

Hubbard ladder model is defined by the Hamiltonian,

H = -t L (c!,<>,,,C;+I,<>,u + h.c.)

Here, t(t.L) is the intrachain(interchain) hopping and U is the on-site repulsion, respec

tively. (Fig.1.8). Since the Bethe Ansatz is not applicable to the Hubbard ladder with

two or larger numbers of legs, its treatment requires some kinds of approximations.

The most reliable analytical method is the perturbational renormalization-group method

[50, 103, 104), which takes the continuum limit of the system, linearizes the band structure

around the Fermi points, and treats the interaction with a perturbative renormalization

group. The method was established for treating the correlated 1D electron gas in the

1970's and is called 'g-ology'. It has been used for some two-band systems [105, 106, 107].

In the present case, the parameters (t, t.L, U) are taken as the initial parameters of cou

pling constants. As a point to notice in the weak-coupling theory, we should note that

the non-interacting system and the system in the weak-coupling limit U --+ +0 are quite

different, since for a finite U the relevant coupling constants, which correspond to the

relevant scattering processes, are renormalized to infinity and the initial value of U only

affects some couplings which are invariant in the renormalization flow, if the fixed point

of the renormalization is not changed. (The infinitely-large coupling constants mean the

existence of infinitely-large excitation gap and the absence of the correlation lengths. This

is not inconsistent with the lattice systems because there are infinite number of sites in

the continuum limit, so that an infinitely large excitation gap in a continuum system cor

responds to a finite excitation gap in lattice system.) As an example, we can remember

the 1D attractive(U :s 0) Hubbard model, in which a finite U(:S 0) is sufficient for a finite

spin gap to open, and the exponent of the singlet pairing correlation is discontinuously

reduced to unity, while the exponent is twice as large in the non-interacting case.

However, there is a serious problem for the weak-coupling theory. First, whether the

model in the continuous limit is equivalent to the lattice model is not obvious. More

serious is the problem that the perturbational renormalization group is guaranteed only

for an infinitesimally small interaction strengths in principle. Specifically, when there is a

energy so that the dominance of the pairing correlation is expected. The pairing operator

of superconductivity is an off-site one and represented as

6 i = C;ltCm - CillC;2t·

6 is represented in momentum space as

6 = Lku a(cOkuCo-k-u - C~kuC~-k-u)'

Namely, the pairing, in addition to being off-site, consists of both the bonding (0) and

the anti-bonding (IT) bands that interfere with opposite signs, so that the pairing may be

called d-wave-like pairing (Fig.1.5). This reminds us that the d-wave pairing is expected

Figure 1.5: Schematic picture for the interchain d-wave-like pairing (in the ellipse in the
figure) expected for the doped t - J or Hubbard ladder.

in high-Tc superconductors especially for the hole-doped case. The important problem

is both the spin gap and the pairing correlation for smaller h. Dagotto et al. found

that the spin gap is finite at least for hlJ > 0.4 (it is now expected that a finite J.L is

sufficient for the appearance of spin gaps[72]). They also found that the spin gap remains

in the hole-doped system resulting in the dominance of the pairing correlation at least for

large hiJ. Both analytical[92, 93, 941 and numerical[76, 95, 96, 97, 98, 99] works have

been devoted to the doped t - J ladder after the work of Dagotto et al. and supported

the dominant pairing correlation in a certain region. Generally speaking, the dominant

paring correlation appears at lower values of exchange couplings than in the case of a

single chain.

From an experimental point of view, it had been difficult to observe superconductivity

in two-leg ladder systems. In fact, Hiroi and Takano[100] reported that a ladder material

LaCu02.5 showed clear insulator-metal transition upon hole carrier doping by substitution

of Sr2+ for La3+ but no sign of superconductivity was observed. Localization of the carriers

due to strong random potential may disturb the superconducting transition as discussed

in the above report[100].

However, more recently, Uehara et al.[101] have observed superconductivity in

-t.L L(cL,uC;,2,u + h.c.) + U L ni,<>,tni,<>,j.·
I,U

(lA)
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Figure 1.7: Schematic diagram given in ref.[102) for the relation between the supercon
ducting transition temperature Tc and the pressure.
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Figure 1.8: Two-leg Hubbard ladder model; t(t.d and U are the intrachain(interchain)
hopping and the on-site interaction, respectively.
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Figure 1.6: Temperature dependence of the electrical resistivities p of SrO.4Ca13.6Cu24 0 41.84
under pressures of 0, 1.5, 2, 3, 4.5, 6 GPa given in ref.[101]. The electrical resistivities
disappear under pressures of 3, 4.5 GPa at low temperatures.



gap in the excitation, the renormalization flows into a strong-coupling regime, so that the

perturbation theory might break down even for small U. A way to check the reliability of

the weak-coupling theory is to treat finite-size systems with larger U with numerical cal

culations such as exact diagonalization, density-matrix renormalization group (DMRG),

and quantum :'vlonte Carlo (Qi\IC) methods. Numerical calculations, on the other hand,

have serious problems due to the finite size effects. Thus both the analytical and the

numerical calculations compensate each other.

i\"ow, we briefly summarize both the analytical and numerical results obtained so far

for the two-leg Hubbard ladder. The details are explained in Chapter 2.

The weak-coupling theory has been applied to the two-leg Hubbard ladder model

[108, 109, 1l0, lll). At half-filling, the system is reduced to a spin-liquid insulator with

both charge and spin gaps[108] leading to a finite SOW correlation length.

One might expect that the Hubbard ladder would not exhibit a sizeable spin gap

at half-filling unlike the t - J ladder, which is equivalent to the Heisenberg ladder at

half-filling by definition, with a large J. However, the spin gap for the Hubbard model

estimated in a DMRG study by Noack et al.[1l2, ll3] is as large as 0.13t(~ 400K for

t ~ 0.3eV) for U = 8t (with t = t1-, which is of interest as a model relevant to cuprates).

The magnitude of the spin gap is comparable with the spin gap (~ 400K) experimentally

estimated from the magnitude of susceptibility for SrCuZ03. Noack et al. showed that

the two-leg Hubbard ladder is also an spin liquid insulator for all U and t1- < 2t, while

the system is a band insulator for t1- > 2t.

When the carrier is doped, the weak-coupling theory supports the dominance of the

pairing correlation whose symmetry is the same as that of the t - J ladder. The relevant

scattering processes at the fixed point in the renormalization flow are the pair-tunneling

process across the bonding and the anti-bonding bands, and the backward-scattering

process within each band. The importance of the pair-tunneling across the two bands,

which exists in two or larger number of legs, for the dominant pairing correlation in the

two-leg Hubbard ladder is reminiscent of the Suhl-Kondo mechanism for superconductivity

in the transition metals with two (s- and d-like) bands[1l4, ll5]. There is also another

example of the pair-tunneling mechanism for superconductivity with purely repulsive

interactions. Muttalib and Emery[1l6] considered a two-band 1D electron gas with an

interband pair-tunneling and found that the model is exactly solvable at special points

and that pairing correlation can become dominant even if all the coupling constants are

positive.

The properties of the weak-coupling Hubbard ladder are similar to those of the t - J

12

ladder for the regime where the pairing correlation is dominant, since in addition to the

existence of the spin gap, the exponent for the pairing correlation should be reciprocal to

that for the subdominant 4kr CDW (duality relation[llO, Ill]) in both the weak-coupling

theory and the two-leg t - J ladder[96, 97, 99]. The reason may be that the form of the

excitation gaps in the bosonization description in the t-J ladder and that in the Hubbard

ladder are the same[llO]. i\"amely, the gapless mode is only one charge mode and no spin

modes are gapless in both systems ('ClSO' phase in terms of the weak-coupling theory).

However, the dominance of the pairing correlation is a subtle problem in numerical

calculations. Existing numerical results appear to be controversial [1l2, 125, ll3, ll7, ll8]

and some of them also seem to be inconsistent with the weak-coupling theory. The details

will be presented in the introduction of Chapter 2.

Apart from the above mentioned inconsistencies, most of the existing theories support

the dominance of the pairing correlation in the doped two-leg ladders. Then, an even

more important unresolved problem for superconductivity in the doped ladder systems

may be the 'even-odd' problem. One can naively expect an absence of dominating pairing

correlation for systems with odd numbers of legs, in which the spin gap is absent in

contrast to the case of even numbers of legs. The single chain, which is the simplest

example of odd number of legs, does not indeed exhibit a dominant pairing correlation.

However, no studies have looked into the pairing correlation functions for the three or

larger odd number of legs, although White et al.[1l9] study the cases in which two holes

are doped in the multi-leg t - J ladder at half-filling: two holes doped are bound in

even(two or four) legs, while they are not bound in odd (three or five) legs.

In the present thesis, we study the pairing correlation in ladder systems with even(two)

or odd (three) number of legs. \\'e take the Hubbard model as a model Hamiltonian.

In the beginning, we first study the two-leg Hubbard ladder model[120]. In order to

study the Hubbard ladder with intermediate interaction strengths, we have performed a

Q:VIC calculation for the system paying attention to the non-interacting (U = 0) single

particle energy levels in the finite systems. We have found that the pairing correlation

is enhanced for intermediate U in consistency with the weak-coupling theory. Further

we check the effects of the inter- and intra-band Umklapp-scattering processes, which

are expected from the weak-coupling theory[108) at the special band fillings where the

Umklapp processes may be relevant.

Secondly, we study an odd (three)-leg Hubbard ladder model (Fig.1.9) with the weak

coupling theory[12l] using the enumeration of gapless modes by Arrigoni[122]. The system

has one gapless spin mode and two gapful spin modes. Thus the gapful and the gapless

13
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Chapter 2

Quantum Monte Carlo study of the
pairing correlation in the two-leg
Hubbard ladder

Figure 1.9: Three-leg Hubbard ladder model; t(t1.) and U are the intrachain (interchain)
hopping and the on-site interaction, respectively.

spin modes coexist. The existence of the gapful modes is a result of the relevant interband

pair-tunneling process across the top and the bottom bands. As a result, we find the

dominance of the pairing correlation across the central and the edge chains reRecting the

gapful spin modes, which coexists with the subdominant but power-law decaying SDW

correlation reRecting the gapless spin mode. Thus the Suhl-Kondo-like mechanism for

superconductivity survives not only in even-leg systems but also in an odd(three)-leg

system, while the SDW correlation also survives as expected. Schulz[123] also found

similar results independently.

However the result is again confined within the weak-coupling theory. Thus, we finally

study the three-leg Hubbard ladder model by a Q::VIC calculation[124) as in the two-leg

case. The technique to detect the enhanced pairing correlation in the two-leg case is also

valid in the three-leg case. We found that the enhancement of the pairing correlation per

sists for the intermediate interaction strengths. We also study the effects of the Umklapp

processes at special band fillings as in the two-leg case.

The organization of the present thesis is as follows. The Q:VIC study for the two-leg

Hubbard ladder is gi"en in Chapter 2. In Chapter 3, we study the three-leg Hubbard

ladder within the weak-coupling theory. In Chapter 4, the Q::VIC study for the three

leg Hubbard ladder is given. Finally, the conclusions of the present thesis are given in

Chapter 5. Both the Q:\IC and the analytical calculations adopted in the present thesis

are described in Appendices.

14

In this chapter, an extensive quantum Monte Carlo calculation is performed for the two

leg Hubbard ladder model to clarify whether the singlet pairing correlation decays slowly,

which is predicted from the weak-coupling theory but controversial from numerical studies.

We pay attention to the non-interacting single particle energy levels in finite system. Our

result suggest that the discreteness of energy levels in finite systems affects the correlation

enormously, where the enhanced pairing correlation is indeed detected if we make the

energy levels of both the bonding and the anti-bonding bands aligned at the Fermi level

to mimic the thermodynamic limit. We also study the effects of the Umklapp processes

at special fillings as an effect of fillings.

2.1 Introduction

As stated in Chapter 1, strongly correlated electrons on ladders have received much at

tention both theoretically and experimentally [64J. Especially for the two-leg ladder, the

theoretical studies suggest the formation of a spin gap and the possible occurrence of

superconductivity in such systems [70, 89].

In 1992, Dagotto et al.[70], paid attention to the two-leg t - J ladder. Using exact

diagonalization method for finite systems, they showed that the spin gap at half-filling

remains finite and the pairing correlation is dominant when the carriers are doped in the

two-leg t - J ladder.

After the above pioneering study, a lot of works ha"e been presented for the doped

t - J ladder. Density-matrix renormalization group (DlIIRG) calculation by Hayward et

15



Figure 2.1: Relevant pair-tunneling processes; Fig.(a) (Fig.(b)) is the forward (backward)

type pair-tunneling process.

Here K
p

is the critical exponent for the total-charge-density mode. Since SOW and 2k F

COW correlations have to decay exponentially in the presence of a spin gap in a two-leg

ladder, the only phase competing with pairing correlation will be 4k F COW correlation,

which should decay as r- 2Kp . Hence the pairing correlation dominates over all the others

if K
p

> 1/2. The exponent for the pairing correlation should be reciprocal to that of the

aI.[96] also detects a pairing correlation decaying slightly slower than 1/r (r: real space

distance) and a COW correlation decaying faster than 1/r for an electron density of

n = 0.8 with Jlt = 1. Moreover, exact-diagonalization evaluation of the critical exponent

is in overall agreement with the OMRG results[95, 97, 99]. Thus we can consider that

the pairing correlation is dominant in the two-leg t - J ladder for sufficiently large J.

From an experimental point of view, the occurrence of superconductivity has indeed been

reported recently in a two-leg ladder cuprate SrO.4Ca13.6Cu24041.84 [101].

On the other hand, the pairing correlation has also been studied extensively for the

two-leg Hubbard ladder (Fig.1.8). From an analytical point of view, the weak-coupling

theory with the bosonization combined with the renormalization-group techniques [108,

109, 1l0, Ill] has indeed shown that the the two-leg Hubbard ladder has a spin gap

and that the singlet pairing correlation function decays as ~ r- 1
!(2K

p
) with K p = 1 in

the weak-coupling limit if the system is free from Umklapp processes, as a result of the

relevant pair-tunneling process (Fig.2.1). The importance of the pair-tunneling process is

reminiscent of the Suhl-Kondo mechanism for superconductivity in the two-band system.

4kF COW. This is called the duality relation[99, 1l01. It is interesting that the relation

still seems to hold in the t - J ladder at least approximately.[96, 99J

However, the weak-coupling theory is guaranteed to be valid for infinitesimally small

interaction strengths in principle. Furthermore the direct calculations for the correlation

functions at the fixed point of the renormalization are only possible in the case in which

the fermi velocities of both bands coincide. We have to have U « t.L « t for this condition

to be always fulfilled. Thus numerical calculations are needed to study the case of finite

U and t.L ~ t, which is relevant to real systems.

In numerical calculations, however, the dominance of the pairing correlation in the

Hubbard ladder appears to be a subtle problem. Namely, a OMRG study by Noack

et al. for the doped Hubbard ladder with n = 0.875, UIt = 8, and t.L = t (where t

and t.L are intra- and interchain hoppings, respectively) shows no enhancement of the

pairing correlation over the U = 0 result[1l2, ll3], while they do find an enhancement

at t.L = 1.5t[1l3, 125]. Asai performed a quantum Monte Carlo (QMC) calculation for

a 36-rung ladder with n = 0.833, UIt = 2 and t.L = 1.5t[1l8], in which no enhancement

of the pairing correlation was found. On the other hand, Yamaji et al. have found an

enhancement for the values of the parameters when the lowest anti-bonding band levels

for U = 0 approach the highest occupied bonding band levels, although their results have

not been conclusive due to the small system sizes (:::; 6 rungs)[1l7]. Thus, the existing

analytical and numerical results appear to be controversial in the two-leg Hubbard ladder.

In this chapter, we[120) perform an extensive QMC calculation for the Hubbard ladder

with t.L ~ t in order to clarify the origin of the discrepancies among the existing results.

We conclude that the discreteness of energy levels in finite systems affects the pairing

correlation enormously.

Another point is that the above results are obtained away from special fillings where

the Umklapp-scattering processes are irrelevant. Recently, Balents and Fisher[108] pro

posed a weak-coupling phase diagram (Fig.2.2) which displays the numbers of the gapless

spin and charge phases on the t.L - n plane (where n is the band filling). The effects of

the Umklapp processes are also discussed there. At half-filling the interband Umklapp

processes become relevant resulting in a spin-liquid insulator in which the pairing correla

tion decays exponentially. In addition, the intraband Umklapp process within the bonding

band becomes relevant resulting in a gap in one charge mode in a certain parameter region

where the bonding band is reduced to a half-filled band. This phase is called 'C1S2' phase

because there are one gapless and two gapfull charge modes, while the phase at half-filling

is called 'COSO· phase because there is no gapless phase. \\'e can expect that the pairing

£(k)

(b)

£(k)

(a)
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correlation decays exponentially or is at least suppressed reflecting the existence of the

charge gap, although the direct calculation of the pairing correlation has not been done.

Thus we also study the effects of the Umklapp processes in this chapter, keeping in mind

the above weak-coupling results.

2.2 Model and Calculation

CISI The Hamiltonian of the two-leg Hubbard ladder is given in standard notations as

where Q(= 1,2) specifies the chains.

In the weak-coupling theory, the amplitude of the pair hopping process across the

bonding and anti-bonding bands in momentum space flows into the strong-coupling regime

upon renormalization, resulting in the formation of gaps in the two spin modes and in

one of the charge modes when the Umklapp processes are irrelevant. This leaves one

charge mode massless, where the mode is characterized by a critical exponent K p, which

should be close to unity in the weak-coupling regime. Then the correlation function of an

interchain singlet pairing (Fig.1.5),

(2.1)

(2.2)

decays like r-
I
/(2Kp

). Here, we have applied the projector quantum :Vlonte Carlo method[28,

29,30,31,321 to look into the ground state correlation function P(r) == (Ol+rOi) for this

pairing. 'lYe assume the periodic boundary conditions along the chain direction, CN+l == CI,

where IV labels the rungs.

The details of the Q:\IC calculation are the following. We took the non-interacting

Fermi sea as the trial state. The projection imaginary time r was taken to be ~ 60/t.

We need such a large r to ensure the convergence of especially the long-range part of

the pairing correlation. This sharply contrasts with the situation for single chains, where

r ~ 20/t suffices for the same sample length as considered here. The large value of r,

along with a large on-site repulsion U, makes the negative-sign problem serious, so that

the calculation is feasible for U/t ::; 2. In the Trotter decomposition, the imaginary time

increment [r /(number of Trotter slices)] is taken to be ::; 0.1. We have concentrated on

band fillings for which the closed-shell condition (no degeneracy in the non-interacting

Fermi sea) is met. We set t = 1 hereafter.

tl
t

n

Figure 2.2: Phase diagram in the weak-coupling limit (U ---t 0) gi'·en in ref.[108]; the
numbers of the gapless charge and spin modes (x and y, respectively) are denoted a~

CxSy and n is the band filling. In the dark region both of the two bands cross the Fermi
level.
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The tractable strengths of the interaction U(:::: 2t) are considerably smaller than the

value (U ~ 12t)[126, 127] estimated from the cuprates if the Hubbard model is one of

the relevant models for the cuprates. However, it should be interesting to look at the

Hubbard ladder with a moderate U, since it is a highly non-trivial question whether the

properties of even the moderate coupling regime are connected continuously to those for

the weak-coupling regime.

2.3 Detection of the Enhanced Pairing Correlation

In the beginning we show in Fig.2.3 the result for P(r) for tl. = 0.98 and tl. = 1.03 with

U = 1 and the band filling n = 0.867 = 52 electrons/ (30 rungs x 2 legs).

The U = 0 result (dashed line) for these two values oftl. are identical because the Fermi

sea remains unchanged. However, if we turn on U, the 5% change in the t.L = 0.98 -t

1.03 is enough to cause a dramatic change in the pairing correlation: for tl. = 0.98 the

correlation has a large enhancement over the U = 0 result at large distances, while the

enhancement is not seen for tl. = 1.03.

In fact we have deliberately chosen these values to control the alignment of the discrete

energy levels at U = O. l\amely, when tl. = 0.98, the single-electron energy levels of the

bonding and anti-bonding bands for U = 0 lie close to each other around the Fermi level

with the level offset (6c: in the inset of Fig.2.3) being as small as 0.004, while they are

staggered for t.L = 1.03 with the level offset of 0.1. On the other hand, the size of the spin

gap is known to be around 0.05 for U = 8[125, 113], and is expected to be of the same

order of magnitude or smaller for smaller values of U. The present result then suggests

that if the level offset 6c: is too large compared to the spin gap (which should be 0(0.01)

for U ~ t[113j), the enhancement of the pairing correlation is smeared. By contrast, for

a small enough 6c:, by which an infinite system is mimicked, the enhancement is indeed

detected in agreement with the weak-coupling theory, in which the spin gap is assumed to

be infinitely large at the fixed point of the renormalization flow. In usual 3D systems, the

energy to be compared with 6E would be the BCS gap parameter, 6 BCS . However, if one

considers a purely 1D system, a BCS gap can be absent even when a pairing correlation

is dominant, since a gapless excitation can exist as in the present case. Thus the only

energy scale left is the spin gap. \\"e also comment on the situation when the inter-ladder

coupling is considered at the end of this chapter.

Our result is reminiscent of those obtained by Yamaji et al.[117], who found an en

hancement of the pairing correlation in a restricted parameter regime where the lowest

anti-bonding levels approach the highest occupied bonding levels. They conclude that the

20
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r
Figure 2.3: Pairing correlation function, P(r), plotted against the real-space distance r in
a 30-rung Hubbard ladder having 52 electrons for U = 1 with tl. = 0.98 (0) and tl. = 1.03
(0): The dashed line IS the non-interacting result for the same system size, while the
straight dashed l1l1e represents ex 1/r 2 The solid line is a fit to the U = 1 result with
tl. = 0.98 (see text). The inset shows a schematic image of the discrete energy levels of
both bonding (0) and anti-bonding (IT) bands for U = O.
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pairing correlation is dominant when the anti-bonding band 'slightly touches' the Fermi

level. However, our result in Fig.2.3 is obtained for the band filling for which no less than

seven out of 30 anti-bonding levels are occupied at U = O. Hence the enhancement of

the pairing correlation is seen to be not restricted to the situation where the anti-bonding

band edge touches the Fermi level.

Now, let us more closely look into the form of P(r) for tl- = 0.98. It is difficult to

determine the exponent from results for finite systems, but here we attempt to fit the

data by assuming a trial function expected from the weak-coupling theory. Namely, we

have fitted the data with the form,

P(r)

(2.3)

with the least-square fit. Because of the periodic boundary condition, we have to consider

contributions from both ways around, so there are two distances between the O-th and

the r-th rung, i.e, 1'+ = l' and 1'_ = N - r. The periods of the cosine terms are assumed

to be the non-interacting Fermi wave numbers of the bonding and the anti-bonding bands

in analogy with the single-chain case and the trial function at c = 0 is identical with the

non-interacting result.

The overall decay should be 1/1'2 as in the pure 1D case. We have assumed the form

clr 1/ 2 as the dominant part of the correlation at large distances because this is what is

expected in the weak-coupling theory. Here c is the only fitting parameter in the above

trial function. A finite U ~ 1 may give some correction, but the result (solid line in

Fig.2.3) fits to the numerical result surprisingly accurately with a best-fit c = 0.10. If

we least-square fit the exponent itself as lira, we have a < 0.7 with a similar accuracy.

Thus a finite U may change a, but a > 1 may be excluded. To fit the short-range part of

the data, a non-oscillating (2 - c)IT2 term is required, which is not present in the weak

coupling theory. We believe that this is because the weak-coupling theory only concerns

with the asymptotic form of the correlation functions.

In Fig.2.4, we show a result for a larger system size (42 rungs) for a slightly different

electron density, n = 0.905 with 76 electrons and tl- = 0.99. We have again an excellent

fit with c = 0.07 this time.

In Fig.2.5, we display the result for a larger U = 2. We again have a long-ranged P(r)

at large distances, although P(r) is slightly reduced from the result for U = 1. This is

consistent with the weak-coupling theory, in which K p is a decreasing function of U so

22

that after the spin gap opens for U > 0, the pairing correlation decays faster for larger

values of U.

\ "I I 1 ~
I I 1..... ..1\'
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r

Figure 2.4: Similar plot as in Fig.2.3 for a 42-rung system having 76 electrons with
tl- = 0.99.

2.4 Effects of the Umklapp Processes

Next we explore the effects of the Umklapp processes. For that purpose we concentrate

on the filling dependence for a fixed interaction U = 2. We have tuned the value of tl- to

ensure that the level offset (6.0) at the Fermi level is as small as 0(0.01) for U = O. In
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this way, we can single out the effects of the Umklapp processes from those due to large

values of D.c:. If we first look at the half-filling (Fig.2.6), the decaying form is essentially

similar to the U = 0 result. At half-filling, the interband Umklapp processes emerge and,

according to the weak-coupling theory, open a charge gap, which results in an exponential

decay of the pairing correlation. (We should note that there are two kinds of charge gaps.
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Figure 2.5: Similar plot as in Fig.2.3 except U = 2 here.

Figure 2.6: Pairing correlation P(r) (0) against r for a 30-rung system for U = 2 with
t1. = 0.99 and 60 electrons (half-filled). The dashed line represents the non-interacting
result.
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Figure 2.7: Pairing correlation P(r) (0) against r for a 30-rung system for U = 2 with
ti = 1.01 and 40 electrons (half-filled bonding band). The dashed line represents the
non-interacting result.

The one, which is produced by the pair-tunneling processes, causes the long range order

of the Josephson phase resulting in the enhancement of the pairing correlation as in the

previous section, while the other, which is produced by the Umklapp processes, causes

the long range order of the phase of the COW resulting in the suppression of the pairing

correlation as in the present section.)

It is difficult to tell from our data whether P(r) decays exponentially. This is probably

due to the smallness of the charge gap. In fact, the OMRG study by Noack et al.[112, 113]

have detected an exponential decay for larger values of U, for which a larger charge gap

is expected.

When n is decreased down to 0.667 (Fig.2.7), we again observe an absence of enhance

ment in P(r). This is again consistent with the weak-coupling theory[108]: for this band

filling, the number of electrons in the bonding band coincides with N( = 30) at U = 0, i.e.,

the bonding band is half-filled. This will then give rise to intraband mklapp processes

within the bonding band resulting in the 'C1S2' phase as discussed in Section 2.1. The

spin gap is destroyed and the singlet-pair of electrons or holes are prevented from forming,

so that the pairing correlation will no longer decay slowly there. Noack et aI.[113] have

suggested that the suppression of the spin gap and the pairing correlation function around

t i = O.4t in ref.[125] may be due to the intraband Umklapp process.

2.5 Summary and Discussion

In this chapter, we haye detected the enhancement of the pairing correlation which is

consistent with the weak-coupling theory.

We haye also seen that there are three possible causes that reduce the pairing corre-

lation function in the Hubbard ladder:

(i) the discreteness of the energy levels,

(ii) reduction of J(p for large values of UIt, and

(iii) effect of intra- and interband Umklapp processes around specific band fillings.

The discreteness of the energy lewIs is a finite-size effect, while the others are present

in infinite systems as well. We can make a possible interpretation for the existing results in

terms of these effects. For 60 electrons on 36 rungs with ti = 1.5t in ref.[118], for instance,

the non-interacting energy levels ha'·e a significant offset ~ 0.15t between bonding and

anti-bonding lewis at the Fermi level, which may be the reason why the pairing correlation

is not enhanced for Ult = 2. For a large Ult(= 8) in ref.[112, 125, 113], (ii) andlor (iii)

in the above may possibly be important in making the pairing correlation for ti = t not

enhanced. The effect (iii) should be more serious for Ii = I than for Ii = 1.51 because the
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bonding band is closer to the half-filling in the former. On the other hand, the discreteness

of the energy levels might exert some effects as well, since the non-interacting energy levels

for a 32-rung ladder with 56 electrons (n = 0.875) in an open boundary condition have

an offset of 0.15t at the Fermi level for t.l = t while the offset is 0.03t for t.l = 1.5t.

In a real system, the inter-ladder couplings should exist, so that the system is 30. In

this case, we can indeed expect a finite superconducting transition temperature T e . For

example, Bogoliubov and Korepin[128) considered the effect of small inter-chain h~~;~~~~;

tin on the attractive Hubbard chains. As a result, Te is given by Te ~ .6.s (if.-) p

for tin « .6.s (.6. s is a spin gap).

On the other hand, not only the exponent but also the prefactor (i.e. c in eq.(2.3) of

the pairing correlation may possibly be a measure of the 10 equivalent to the 30 BCS

gap parameter, which is a future problem.
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Chapter 3

Weak-coupling study of correlation
functions in the three-leg Hubbard
ladder

In this chapter, we study the three-leg Hubbard ladder within the weak-coupling theory.

The correlation functions in the doped system are obtained with the bosonization at the

renormalization-group fixed point. The correlation of the singlet pairing across the central

and edge chains is found to be dominant, reflecting two gapful spin modes, while the intra

edge spin density wa,·e correlation, reflecting the gapless mode, is only subdominant. This

implies that a naive even-odd conjecture (i.e. even-legged ladders superconduct while odd

ones do not) is incorrect. To be more precise, when there are multiple spin modes, a

dominant pairing correlation can arise from the presence of some spin gap(s) despite the

coexistence of power-law decaying SOW correlation.

3.1 Introduction

As stated in Chapter 1, an increasing fascination toward ladder systems has been kicked

off by an 'even-odd' conjecture by Schulz[65] and independently by Rice et a1.[89], who

have proposed that the ladder, at half-filling, with even number of chains should be a spin

liquid reflecting the absence of gapless spin excitations, while odd-numbered chains should

be antiferromagnetic (AF) reflecting the presence of gapless spin excitations [70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80). This is reminiscent of Haldane's conjecture [65, 66, 67, 68J

for the 10 AF Heisenberg model for integer and half-odd-integer spins. Experimentally,

cuprates SrCu203 and Sr2Cu30S are investigated as prototypes of two- and three-leg

systems, respectively. The two-leg system (SrCu203) indeed shows a spin-liquid behavior

characteristic of a finite SOW length, while the three-leg system (Sr2Cu30S) sholVs an AF
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Figure 3.1: Phase diagram in the weak-coupling limit (U ~ 0) given in ref.[122]; where
the numbers of the gapless charge and spin modes (x and y, respectively) are denoted as
CxSy and p == 2 - n (n is the band filling). In the dark region all the three bands cross
the Fermi le\·el.
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behavior[83, 84, 85, 86, 87]. When the system is doped with carriers, it is usually supposed

that an even-numbered ladder should exhibit superconductivity with the interchain singlet

pairing as expected from the persistent spin gap, while an odd-numbered ladder should

have the usual 2kF SDW reflecting the gapless spin excitations. In the two-leg case,

intensive analytical and numerical studies have been performed as discussed in Chapter

1 and Chapter 2. If we give a summary of the results, the dominance of the pairing

correlation in the t - J ladder is confirmed in a certain parameter region wider than that

of the single chain case. Furthermore, the dominance of the pairing correlation in the

Hubbard ladder is also shown in the weak-coupling limit and the enhancement of the

pairing correlation is confirmed even for intermediate U as shown in Chapter 2.

Theoretically, however, whether the 'even-odd' conjecture continues to be valid for

triple chains remains an open question. There had been no results for the pairing corre

lation function in the three-leg t - J or Hubbard ladder (Fig.1.9).

On the other hand, Arrigoni has looked into a three-leg with weak Hubbard-type

interactions by the usual perturbational renormalization-group technique, which is quite

similar to that developed by Balents and Fisher for the two-leg case[108], to conclude that

gapless and gapful spin excitations coexist there[122].

i\amely, he has actually enumerated the numbers of gapless charge and spin modes

on the phase diagram spanned by the doping level and the interchain hopping. He found

that, at half-filling, one gapless spin mode exists for the interchain hopping comparable

with the intrachain hopping, in agreement with some experimental results and theoretical

expectations (Fig.3.1). Away from the half-filling, on the other hand, one gapless spin

mode is found to remain at the fixed point in the region where the fermi level intersects

all the three bands in the noninteracting case. From this, Arrigoni argues that the 2kF

SD'\" correia ion should decay as a power law as expected from experiments.

On the other hand, his result also indicates that two gapful spin modes exist in addi

tion. While a spin gap certainly favors a singlet superconducting (55) correlation when

there is only one spin mode, we are in fact faced here with an intriguing problem of

what happens when gapless and gapful spin modes coexist, since it may well be possible

that the presence of gap(s) in some out of multiple spin modes may be sufficient for the

dominance of a paring correlation. Furthermore, as discussed below, the gaps of two spin

modes emerge as an effect of the pair-tunneling process across the top and the bottom

bands (Fig.3.2). This is reminiscent of the two-leg case and of the Suhl-Kondo mechanism

[114, 115]. These have motivated us, in this chapter, to actually look at the correlation

functions using the bosonization method[51, 52] at the fixed point away from half-filling.
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Figure 3.2: Relevant pair-tunneling processes; Fig.(a) (Fig.(b)) is the forward (backward)
type pair-tunneling process.

Although in the three-leg case, we can consider the two boundary conditions across the

legs, i.e., open boundary condition (OBC) and periodic boundary condition (PBC), here

we concentrate on the open boundary condition (OBC) across the chains, where the cen

tral chain is inequivalent to the two edge chains. The reason is that we would like to

(i) study the realistic boundary condition corresponds to cuprates, and (ii) to avoid the

frustration introduced in the periodic three-legs.

We find that the interchain SS pairing across the central and edge chains is the dom

inant correlation, which is indeed realized due to the presence of the two gapful spin

modes. On the other hand, the SOW correlation, which has a slowly-decaying power law

for the intra-edge chain reflecting the gapless spin mode, coexists but is only subdominant

[121]. Recently Schulz[123] has independently shown similar results for a subdominant

2kF SOW and the interchain pairing correlations which are given in this chapter.

where t(t.tl is the intra-(inter-)chain hopping, i labels the rung while J1 = Ct,f3., labels

the leg (with f3 being the central one). In the momentum space we have

(3.2)

(3.1)

(3.3)

+u I: n~,tn~i.,
~.

H = I: (-2tcos(k) - ht.L) alkualku
ku

-2t I: cos(k)a~kua2ku
ku

+I: (-2tcos(k) + ht.L) a~kua3ku
ku

+UI:(terms of the form atataa).

(

1 1 I 1
( ~::: ) = *~ -~ (~~::).

C-,ku '2 -72 '2 a3ku

Here ajku annihilates an electron with lattice momentum k in the j-th band (j = 1,2,3),

where ajku is related to C~ku (the Fourier transform of C~iu) through a linear transforma

tion,

Hereafter we linearize the band structure around the fermi points as usual and neglect the

difference in the fermi velocities of three bands, as is done for calculating the correlation

functions directly in the weak-coupling theory for the two-leg case[109, Ill]' which will be

acceptable for the weak interchain hopping. These approximations enable us to calculate

the correlation functions. The difference in fermi velocities of three bands will not be

important qualitatively as long as we consider the case where three bands cross the fermi

energy, for which .-\rrigoni's result falls on the same strong coupling fixed point on the

plane of interchain hopping and filling. In the following, we focus on the case in which all

of three bands are away from half-filling.

The part of the Hamiltonian, H d , that can be diagonalized in the bosonization only

includes forward-scattering processes in the band picture, and has the form

(b)

£(k)

(a)

Here <Pi+ is the spin phase field of the i-th band, Xi+ is the diagonal charge phase field,

while <P,-(Xi-) is the field dual to <Pi+(Xi+), I<ui(J<pi) the correlation exponent for the

3.2 Model and the Calculation

The three-leg Hubbard model with OBC is defined by the following Hamiltonian,
Hspin

Hcharge

Hspin+Hchargel

I:~JdX[I<1 .(ox<Pi+)2 + J<u,(ox¢.SI,
i 41r Ut

I:~JdX[I<1 (oxX,+)2 + J<pi(oxx,-fJ.
i -!7i pi

(3.4)
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(3.5)

¢>(Xi) phase with vu.(Vpi) being their velocities. For the Hubbard-type interaction, we

have Vui = VF, Kui=l for all i's, while Vpl = VF, Vp2 =VF~, Vp3 = vF.)l - g2/4,

K pl = 1, K p2 = .)(1- 2g)/(1 + 2g), K p3 = .)(1 - g/2)/(1 + g/2), where 9 = U/21fVF is

the dimensionless coupling constant. The derivation of the above equation is given in the

Appendix.

The diagonalized charge field Xi± is linearly related to the initial charge field (}i± of

the i-th band as

( ~~: ) = (~ ~ -~) ( ~~: ) ,
{}3± -72 ~ ~ X3±

where both (}i± and 9± are related to the field operator for electrons 1/Ji+(-)u, which

annihilates an electron on the right-(left-) going branch in band i as

1/Ji+(-)U(X) = 7'/~+;t exp{±ikiFX

±i[(}i+(x) ± (}i_(X) + O'(¢>i+(x) ± ¢>i_(X))]}, (3.6)

Here the 7'/i'u'S are Haldane's U operators [55, 56J which ensure the anti-commutation

relations between electron operators through the relation, {7'/i'u, 7'/i"'u' }+ = 25ii'5",5uu' ,

1Jlru = TJiru'

There are still many scattering processes corresponding to both the backward and the

pair-tunneling scattering processes, which cannot be treated exactly. Arrigoni examined

the effect of such scattering processes by the perturbational renormalization-group tech

nique. He found that the backward-scattering interaction within the first or the third

band turn from positive to negative as the renormalization is performed and that the

pair-tunneling processes across the first and third bands also become relevant. As far as

the relevant scattering processes are concerned, the first (third) band plays the role of

the bonding (anti-bonding) band in the two-leg case. At the fixed point the Hamiltonian

density, H', then takes the form, in term of the phase variables,

(3.7)

where both gb(l) and gb(3) are negative large quantities, and g/l(l, 3) is a positive large

quantity.

This indicates that the phase fields 4>1+, ¢>3+, and Xl- are long-range ordered and fixed

at 1f/2, 1f/2, and 1f/.J2, respectively, which in turn implies that the correlation functions

3-1

that contain ¢>I_, ¢>3-, and XI+ fields decay exponentially. The renormalization procedure

will affect the velocities and the critical exponents for the gapless fields, X2±, X3±, and

¢>2±, so that we should end up with renormalized v"s and K"'s.

In principle, the numerical values of renormalized v"s and f{"s for finite 9 may be

obtained from the renormalization equations as has been attempted for a double chain

by Balents and Fisher [108), although it would be difficult in practice. However, at least

in the weak-coupling limit, 9 ---t 0, to which our treatment is meant to fall upon, we shall

certainly have V· ~ VF and f{' ~ 1 for gapless modes even after the renormalization

procedure.

3.3 Results for the Correlation Functions

1 ow we are in position to calculate the correlation functions, since the gapless fields

have already been diagonalized, while the remaining gapful fields have the respective

expectation values. The details of the calculation of the correlation functions are given

in the Appendix. The two-particle correlation functions which include the following two

particle operators in the band description are shown to have a power-law decay:

(1) operators constructed from two operators involving only the second band (since the

charge and the spin phases are both gapless, electrons in this band should have the usual

TL-liquid behavior),

(2) order parameters of singlet superconductivity within the first or third band, 1/J 1+tW1/JI-t(tj,

1/J3+tWW3-Ht)·

As a result, the order parameters that possess power-law decays should be the following,

(A) The correlations within each of the two edge (a and f) chains or across the two edge

chains:

(a) 2kF CDW,

Ointra2kFCDW = 1/J~b)+i1/Jab)-i; Ointe,CDW = 1/J~b)+t1/J~(Q)- ,

(b) 2kF SDW,

OintraSDW = 1/J~b)+t1/Jab)-t; Ointe,SDW = 1/J~bl+i1/J~(a)-t'
(c) singlet pairing (SS),

Oi""aSS = 1/Jab)+i1/Jab)-J-; Ointe,SS = 1/Jab)+i1/J~(a)-J-'

(d) triplet pairing (TS),

OintraTS = 1/Jabl+ 1,)ab)- ; OinwTS = 1/JQb)+t1/J~(a)-i'

(B) The 4k F CDW which is written with four electron operators,

04kFCDIV = 1/J~+i1/J~Hwv-i1/Jv-t (v = a, (3, f),
(C) The singlet pairing across the central chain ((3) and edge chains (Fig.3.3),
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(where we have put K; = 1 for the present spin-independent interaction.[123J) In addition,
the 4kF CD\\' correlation decays as

OCESS = L uo-(t;Ja+u + 'l/JHu)1/JiJ-.-u'
In the band picture we can rewright OCESS as comprising

(3.8)

'vVe cannot easily name the symmetry of the pairing, although we naively might call this

pairing d-wave-like in a similar sense as in the two-leg case, in which a pair is called

d-wave when the pairing, in addition to being off-site, consists of a bonding band and

an anti-bonding band pairs with opposite signs[108, 109, 110, 111, 1131. Thus the edge-

of whether the correlation is intra- or inter-edge:

(02k F CDW(X)OJk F CDW(0»

(OSDW(X)O£ow(O»

(Oss(x)O£s(O»

(OTS(X)O~s(O»

X- k(K;2+ 2K;3)-I
,

X-!<K;2+2K;J)-I,

x-$(~+~)-1,

-k<.,f;-+fr)-lx p2 p3

(3.9)

3.4 Summary

In this Chapter, we have studied correlation functions using the bosonization method

at the renormalization-group fixed point, which was obtained by Arrigoni, away from

half-filling in the region where the fermi level intersects all the three bands in the non

interacting case. One gapless spin mode is found to remain at the fixed point, while two

(3.10)

(3.11)

By contrast, if we look at the pairing OCESS(X) across the central chain and the edge

chains, this pairing, which circumvents the on-site repulsion and is linked by the res

onating valence bonding across the neighboring chains, is expected to be stronger than

other correlations as in the two-leg case. The correlation function for OCESS(X) is indeed
calculated to be

From the calculations given in the Appendix, we can see that the interchain pairing

exploits the charge gap and the spin gaps to reduce the exponent of the correlation

function, in contrast to the intra-leg pairing. In addition to that, we also find that the

roles of the first (third) band corresponds to those of the bonding (anti-bonding) band in

the two-leg case, as far as the dominant pairing correlation is concerned. If we consider

the weak-interaction limit (U -. +0) as in the two-leg case, all the J("s will tend to unity,

where the CESS correlation decays as X- I / 2 while those of other correlations decays as

x-
2

at long distances. Thus, at least in this limit, the CESS correlation dominates over

the others. The duality (which dictates that the pairing and density-wave exponents

are reciprocal of each other[110J) is similar to that in the two-chain case, in which the

interchain SS decays as X- 1/ 2 while that of the 4kF CD\\" decays as x-2

Figure 3.3: Schematic picture for the interchain (CESS) pairing in the doped three-leg
Hubbard ladder.

y

chain SDW correlation has a power-law decay, while the SDW correlation within the

central chain decays exponentially since it consists of the terms containing cPl- and/or

cP3- phases. Although we consider the case away from half-filling, the SD\\" correlation

should obviously be more enhanced at half-filling. The experiments at half-filling do

not contradict the present results, since the experiments should detect the total SDW

correlation of all the chains and the SDW correlation is more enhanced at half-filling.

Howewr the present theory corresponds only to the infinitesimally small interaction in

principle, although the actual cuprates have a strong interactions between electrons.

Intra- or inter-edge correlation functions have to involve forms bilinear in a2ku in

eq.(3.3). They are described in terms of the charge field Fh for the second band, which

does not contain Xl, a phase-fixed field (see eq.(3.5». Thus the edge-channel correlations

are completely determined by the character of the second band (the Luttinger-liquid

band), while the other phase fields, being gapful, are irrelevant. The final result for the

edge-channel correlations at large distances, up to 2kF oscillations, is as follows regardless
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gapless spin modes are also found. Thus the gapless and the gapful spin modes coexist in

this case. The existence of the gapless spin mode seems to ensure the power law decay of

the 2kF SD'vY as discussed by.-\rrigoni. On the other hand, the gaps on the two spin modes

and one charge modes are caused by the pair-tunneling process across the two bands. This

is reminiscent of the two-leg case, in which the pair-tunneling mechanism plays a central

role for the dominance of the pairing correlation at least in the weak-coupling regime.

We found in this Chapter that the interchain singlet pairing across the central chain

and either of the edge chains is the dominant correlation, while the SDW correlations

in two edge chains coexist but are subdominant. The power law decay of the SDW

correlation does not contradict with the even-odd conjecture at the half-filling, where

the Umklapp scattering playa important role resulting in an enhancement of the SDW

correlation. Schulz[123] has independently shown similar results for a subdominant SDW

and the dominant pairing correlations.

The renormalization study is valid only for infinitesimally small interaction strengths

and sufficiently small interchain hoppings in principle, while the actual cuprates have

strong interactions between electrons, so that the relevance of the present results to the

real materials is uncertain. However the present study suggests an important theoretical

message that the dominance of superconductivity only requires the existence of gap(s) in

some spin modes when there are multiple modes in multi-leg ladder systems no matter

whether the number of legs is odd or even.

38

Chapter 4

QMC study of the pairing
correlation in the three-leg Hubbard
ladder

In this chapter, we look into the pairing correlation in the three-leg Hubbard ladder with

the quantum Monte Carlo method similar to that used in the two-leg case in Chapter 2.

The enhanced correlation for the pairing across the central and edge chains, which has

been expected in the weak-coupling theory in Chapter 3 as an effect of the coexistence

of gapful and gapless spin modes, is here shown to persist for intermediate interaction

strengths. We also study the effects of the Umklapp processes at special fillings to probe
the dependence on the band fillings.

4.1 Introduction

In the previous chapter, we have discussed the correlation functions in the three-leg Hub

bard ladder within the weak-coupling theory. A key point in the previous chapter is that

gapless and gapful spin excitations coexist in a three-leg ladder and the modes give rise to

a peculiar situation where a specific pairing across the central and edge chains (that may

be roughly a d-wave pairing) is dominant, while the 2kF SDW on the edge chains simul

taneously shows a subdominant but still long-tailed (power-law) decay associated with

the gapless spin mode. In other words, the dominant pairing correlation only requires the

existence of gap(s) in not all but some of the spin modes when there are multiple of them.

This result serves as a counter-example of a naive even-odd conjecture that in the doped

system, 'the pairing correlation becomes dominant in even-leg ladders with the persistent

spin gap while the 2kF SDW is dominant in odd-leg ladders without a spin gap'. As for

the SDW, the power-law decay of the 2kF SDW in doped systems suggests that the SDW
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correlation will decay even more slowly at half-filling where Umklapp processes should

enhance the SO\r. This does not contradict the experiments [83,8-1,85,86,87). in which

an AF correlation is detected at half-filling.

However, there is a serious question about these weak-coupling results as discussed

in the two-leg case in Chapter 2. First, only for infinitesimally small interactions and

sufficiently small hoppings are the results in Chapter 3 guaranteed to be valid in principle.

Furthermore, when there is a gap in the excitation, the renormalization Aows into a strong

coupling regime, so that the weak-coupling theory might break down even for small U.

Hence it is imperative to study the problem from an independent numerical method for an

intermediate strength of the Hubbard U ~ t and an interchain hopping tl. ~ t. Although

such a comparison of the numerical result for U ~ t with the weak-coupling theory has

been done for the two-leg system in Chapter 2, this does not necessarily serve to enlighten

the situation in the three-leg case, where gapless and gapful modes coexist. This is exactly

our motivation for the present study, which describes an extensive Q:-'IC calculation for

the three-leg Hubbard ladder. In this chapter, it is shown that the QMC result indeed

turns out to exhibit an enhancement of the pairing correlation even for finite coupling

constants, UIt = 1 ~ 2[1241.

In addition, we also study the effects of various Umklapp processes at special fillings

as in the two-leg case keeping in mind the above Arrigoni's work[122] which also studied

the effects of some Umklapp processes with the weak-coupling theory.

Throughout this chapter, we concentrate on the case in which all three bands cross

the Fermi surface to explore the properties of a three-band system.

4.2 Detection of the Enhanced Pairing Correlation

In the beginning we recapitulate the weak-coupling theory in Chapter 3. [121, 123, 122],

The pair-tunneling process (alta; a3La3t+h.c.) across the first and the third bands and

the backward-scattering process within the first or the third band are relevant scattering

processes. As a result, both two spin and one charge mode become gapful. This leaves

one spin mode and two charge modes gapless, where the modes are characterized by

the critical exponents, K;2(= 1 for the spin independent interaction) and K;2' K;3'

respectively[121]. \\'e can recognize that the first (third) band is analogous to the bonding

(anti-bonding) band in the two-leg ladder, while the second band is analogous to the

single-band (Luttinger-liquid like) system.

The correlation of the intraband singlet pairing within the first or the third band,

Lu <7(alku a l-k-u -a3kua3-k-u). decays like r-(I/K;,+l/2K;3l/3 at large distances. This pair,
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when expressed in real space via the inverse-Fourier transform, is an interchain singlet pair

across the central and edge chains, 0; = (Caiu+e..,iu )C/li-u- (Cai-u+e..,.-u)C/liu. All the K;'s
should tend to unity in the weak-interaction limit (U --t +0), where the interchain pairing

correlation decays as r- 1
/
2

, while those of subdominant density-wave correlations decay

as r- 2 [121, 123]. Thus the pairing correlation is identified as the most dominant. In the

weak-coupling renormalization, however, we have to make a reasoning: 'the pair-tunneling

and the backward-scattering processes Aow, in the weak-coupling renormalization, into

the strong-coupling regime upon our integrating out the high-energy modes, which results

in the formation of gaps.' Thus the validity of the weak-coupling scheme has to be tested

especially when gapful and gapless modes coexist as stressed above.

Here we employ the projector Monte Carlo method [28, 29, 30, 31, 321 to look into

the ground-state pairing correlation function ?(r) =(OJOj+r)' We assume the periodic

boundary condition along the chain direction, CN+l =Cl, where N is the number of rungs.

We only consider here the case where the intra- and the inter-band Umklapp processes are

irrelevant because that is where the above-mentioned weak-coupling theory is valid. The

details of the Q~IC calculation are similar to those for our QMC study for the two-leg

case.[120] Specifically, the negative-sign problem makes the QMC calculation feasible for

U ~ 2t. We set t = 1 hereafter.

In the two-leg case with a finite U, we have found an interesting property for finite

systems: the pairing correlation is enhanced in agreement with the weak-coupling theory

only when the single-electron energy levels of the bonding and the anti-bonding bands lie

close to each other around the Fermi level (which is certainly the case with an infinite

system).[120) When the levels are misaligned (for which a 5% change in tl. is enough),

the enhancement of the pairing correlation dramatically vanishes. In the weak-coupling

theory, the ratio of the spin gap to the level offset is assumed to be infinitely large at the

fixed point of the renormalization Aow, so that the spin gap should naturally be detectable

in finite systems only when the level offset is smaller than the gap.

We have found that this applies to the three-leg ladder as well. i.e., the pairing corre

lation is enhanced when the single-electron levels of the first and third bands lie close to

each other. Hence we concentrate on such cases hereafter.

In the beginning we show in Fig.4.1 the result for ?(r) for tl. = 0.92 with U = 1 with

the band filling n = 0.843 = 86 electrons/(34 rungsx 3 sites). For this choice of tl. the

levels in the first and the third bands lie close to each other around the Fermi level within

0.01. \re can see that a large enhancement over the U = 0 result at large distances indeed

exists. This is the key result of this chapter.
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Although it is difficult to determine the decay exponent of P(r), we can fit the data

by supposing a trial function as expected from the weak-coupling theory as we did in the

two-leg case [120],

(4.1)

~ :L [cr,j1/2 + {(2 - c) - cos(2kFlrd) - cos(2kFJrd)}rd"2]
1r d=±
1 00

+ ;2 d~~{2 - cos(2kFlrd) - cos(2kFJrd)}(rd + iN)-2

P(r)

Here kFl(kFJ ) is the non-interacting Fermi wave number of the first (third) band, while

a constant c, which should vanish for U = 0, is here least-square fit (by taking logarithm

of the data) as c = 0.05. As in the two-leg case, since we assume the periodic boundary

condition, we have to consider contributions from both ways around, so there are two

distances between the O-th and the r-th rung, i.e., r + = rand r _ = N - r. The overall

decay should be 1/r2 as in the single-chain case, while the term c/r 1/2, the dominant

correlation at large distances, is borrowed from the weak-coupling result.[121, 1231 The

QYIC result for a finite U = 1 fits to the trial form (solid line in Fig.4.1) surprisingly

accurately. A finite U may give some corrections to these functional forms, but even

when we best-fit the exponent itself as c/ro in place of c/r l/2 , we obtain Q < 0.7 with a

similar accuracy.

In FigA.2, we show the result for a larger interaction U = 2. The result again shows

an enhanced pairing correlation at large distances. However, the enhancement is slightly

reduced than that in the U = 1 case. This is consistent with the weak-coupling theory,

in which I(;'s should decrease with U.

Furthermore, we study if the presence of the second band around E F can be detri

mental to superconductivity. In FigA.3, we make the single-electron energy levels of all

the three bands lie close to each other around the Fermi level. This is accomplished here

for t.L = 0.685 and the band filling n = 0.719 = 82 electrons/(38 rungs x 3 sites). The

highest occupied level of the second band then lies between that of the first band and the

lowest unoccupied level of the third band (lying above the highest occupied level of the

first band by as small as 0.01, inset of FigA.3).

The result in FigA.3 for U = 1 shows that the pairing correlation is enhanced as well.

Thus we may consider that the second band does not hinder the enhancement of the

pairing correlation in other bands. This is also consistent with the weak-coupling theory,

in which all of the scattering processes connecterl with the second band are irrelevant.

The fit of the correlation function to the trial one is again excellent with c = 0.03.

r
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Figure 4.1: Qi\IC result for the pairing correlation function, P(r)(D), plotted against the
real space distance r in a three-leg Hubbard ladder with 3-1-rung having 86 electrons for
U = 1 with t.L = 0.92. The dashed line is the non-interacting result for the same system
size, while the straight dashed line represents ~ r- 2 The solid line is a fit to a trial
function (see text).
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Figure 4.2: Similar plot as in Fig.4.1 except for U = 2.
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Figure 4.3: Similar plot as in Fig.4.1 for a 38-rung system having 82 electrons for U = 1
with t.l = 0.685. The inset schematically depicts the positions of energy levels for the
non-interacting case.
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4.3 Effects of the U mklapp Processes

In this section, we discuss the effects of the Umklapp processes at special fillings to clarify

the doping dependence. In the three-leg Hubbard model, the Umklapp processes can play

an important role at specific band fillings.

Arrigoni[122] also studied the effect of Umklapp processes within the weak-coupling

theory, although he did not calculate the correlation functions directly (see Fig.3.1). He

studied two cases that have the relevant mklapp processes.

(i) the half-filled case.

(ii) the case when the bottom band is half-filled, in which the intraband Umklapp

process may become relevant within the first band.

In both cases, the Umklapp processes become relevant. In the former case, the system

has a gapless spin excitation suggesting a power-law decaying AF correlation, as discussed

by Arrigoni, for t1- ~ t, a region of interest. The phase is called a 'C1S1' regime, since

there is one gapless mode in charge or spin mode. Although the existence of a gapless

charge mode suggests that the system is not an insulator, a full charge gap is expected to

appear for sufficiently large U. Then, the pairing correlation will be suppressed, although

the direct calculation has not been done. (As discussed in Chapter 2, there are two kinds

of charge gaps. The one, which is produced by the pair-tunneling processes, favors the

pairing correlation as in the pre\'ious section, while the other, which is produced by the

mklapp processes, suppress the pairing correlation as in the present section.)

In the latter case, the 'mklapp process also becomes releYant resulting in a 'C2S3'

phase with the two gapless charge modes and three gapless spin modes and the singlet-pair

of holes or electrons is prevented from binding. Thus the pairing correlation will be not

enhanced because of the absence of gapful spin mode(s). This situation is reminiscent of

the two-leg case, in which the spin gap is destroyed when the bonding band is half-filled.

The Umklapp process within the first band in the present case is identified with that

in the bonding band in the two-leg case, since the first (third) band corresponds to the

bonding (anti-bonding) band as far as the pairing correlation is concerned as discussed in

Chapter 3.

Given this situation, our moti\'ation here is to look at the pairing correlation and, in

addition, to explore in which case the Umklapp scattering does or does not affect the

pairing correlation. \\"e study the above two cases and also study the case in which the

second band is half-filled. :\amely, we wish to see whether both the first and the third

bands, which involve the pairing order parameter, are afrected by an indirect efrect of the

Umklapp process in the second band. Such a situation emerges in ladder systems with
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three or larger number of legs.

We have tuned the value of t1- to ensure that the level ofrset (.Q.e:) between the first

and the third bands at the Fermi level is as small as 0(0.01) for U = 0 to single out the

effect of Umklapp processes from those due to large values of Cle:. Ideally, we should make

the single electron energy levels of all the three bands lie close to each other around the

Fermi level but that is impossible within the tractable system sizes. However, when the

Umklapp process is relevant within the first or the third band, the aligned levels of the

bands should favor the pairing, so that if the pairing correlation is suppressed, we can

infer that the suppression is not an artifact. On the other hand, when the level of the

second band is misaligned from E F , one may naively think that the efrect of the Umklapp

process within the band becomes obscured. However, the effect of the Umklapp processes

should in fact be enhanced when the highest occupied level derivate from E F, since the

Umklapp processes become well-defined if the highest occupied level is doubly occupied.

In the beginning we look at the half-filling (Fig.4.4). Indeed, no enhancement of the

pairing correlation is found and the over all decaying form is similar to the U = 0 result

as in the two-leg case at half-filling.

When n is decreased to make the second band half-filled, the enhanced pairing correla

tion is found (Fig.4.5). Possibilities are either the Umklapp process is not relevant, or it is

relevant but does not affect the other bands. In the latter case, a density-wave correlation

might be dominant due to a charge gap opening by the Umklapp scattering. However,

at least in the sense of the weak-coupling theory, the charge gap in the second band only

enhances the density-wave correlation at long distances from r- 2 to r- 1 (unity, the value

of the exponent, comes from the gapless spin mode and it should be independent to U)

in the weak-coupling limit and thus the pairing correlation may still remain dominant for

small U.

Although we cannot decide which of the above two possibilities applies, we do have a

unique situation where the pairing correlation is enhanced despite the Umklapp processes

being possible. This interesting situation does not appear in the two-leg ladder.

Lastly, we study the case so that the first band is half-filled when n is further decreased

and t1- is also decreased (Fig.4.6). In this case, we again observe no enhancement in P(r),

as expected from the weak-coupling theory and the above discussion.

4.4 Summary

In this chapter, we have shown with the projector quantum :'donte Carlo method that the

enhancement of the pairing correlation expected from the result in the previous chapter
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Figure 4.4: Pairing correlation P(T) (0) against T for a 38-rung system for U = 2 with
t1. = 0.955 and 114 electrons (half-filling). The dashed line represents the non-interacting

result.
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Figure 4.5: Pairing correlation P(T) (0) against T for a 38-rung system for U = 2 with
t1. = 0.87 and 110 electrons (the half-filled second band). The dashed line represents the

non-interacting result.
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Figure 4.6: Pairing correlation P(r) (0) against T for a 38-rung system for U = 2 with
t.L = 0.725 and 74 electrons (the half-filled first band). The dashed line represents the
non-interacting result.
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is indeed found even for the intermediate interaction strengths(U ~ 2t) and the interchain

hoppings(t.L ~ t). The features of the enhancement is similar to that in the two-leg case.

We have also studied the cases where the Umklapp processes can be relevant. Espe

cially, we found that the enhancement of the pairing correlation is not affected by the

intraband Umklapp process within the second band.
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Chapter 5

Summary

In the present thesis, we have studied the pairing correlation in the Hubbard ladder

model with an even(two) or an odd(three) number of legs. This has been motivated from

a conjecture due to Rice et al. that an even-numbered ladder should exhibit dominance

of the interchain singlet pairing correlation as expected from the persistent spin gap

away from half-filling. Naively, one can then expect that an odd-numbered ladder should

not exhibit dominance of the pairing correlation reflecting the presence of gapless spin

excitations.

Two-leg ladder with a QMC method

We have considered the two-leg Hubbard ladder model. In the weak-coupling the

ory, in which the interactions are treated with the perturbative renormalization-group

method, a d-wave like pairing correlation becomes dominant reflecting a spin gap in the

two-leg Hubbard ladder. The relevant scattering processes are the pair-tunneling pro

cess across the bonding and the anti-bonding bands and the backward-scattering process

within each band. The pair-tunneling process is reminiscent of the Suhl-Kondo mecha

nism for superconductivity in the transition metals with a two-band structure. However,

the weak-coupling theory is correct only for infinitesimally small interactions in principle.

Thus the calculation for finite interaction U is needed, but existing numerical calculations

for finite U ha'·e been contro'·ersial.

In Chapter 2, we have applied the projector ~-.Ionte Carlo method to look into the pair

ing correlation function in the ground state for finite U. We conclude that the discreteness

of energy levels in finite systems affects the pairing correlation enormously, where the en

harlCed pairing correlation is indeed detected for intermediate interaction strengths if we

tune the parameters so as to align the discrete energy levels of bonding and anti-bonding
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bands at the Fermi level in order to mimic the thermodynamic limit. The enhancement

of the pairing correlation in the U = 2t case is smaller than that in the U = t case. This

is consistent with the weak-coupling theory in which the pairing correlation decays as

r- 1!(2Kp ) (Kp is the critical exponent of the gapless charge mode) at long distances and

K p is a decreasing function of U.

In the cases where interband or intraband Umklapp process is possible, the pairing

correlation is not enhanced. This result is also consistent with the weak-coupling theory.

Three-leg ladder with the the weak-coupling theory

We then moved onto the correlation functions in the three-leg Hubbard ladder model

in Chapter 3. Whether the above 'even-odd' conjecture holds for the simplest-odd ladder

(i.e. the three-leg ladder) with a plural number of charge and spin modes is an important

problem. This has remained an open question, since there had been no results for the

pairing correlation function in the three-leg t - J or Hubbard ladder models.

A key is the coexistence of gapless and gapful spin excitations in the doped three-leg

Hubbard ladder. This has been analytically shown from the correlation functions starting

from the phase diagram obtained by Arrigoni[122], who enumerated the numbers of the

gapless charge and spin modes with the perturbative renormalization-group technique

in the weak-coupling limit. If we turn to the correlation functions, we ha\'e found that

the coexisting gapful and gapless modes give rise to a peculiar situation where a specific

pairing across the central and edge chains (roughly a d-wave pairing) is dominant, while

the 2kF SO\V on the edge chains simultaneously shows a subdominant but still long

tailed (power-law) decay associated with the gapless spin mode. The rele\'ant scattering

processes are the pair-tunneling process between the top and the bottom bands and the

backward-scattering process within the top and the bottom bands. The situation is rather

similar to the two leg case where the pair-tunneling processes play an important role for

the enhanced pairing correlation. Schulz has independently obtained results for both the

SOW and the pairing correlations which are similar to those gi\'en in Chapter 3 recently.

Three-leg ladder with a QMC method

However, as discussed in the two-leg case, it is not clear whether the weak-coupling

results might be applicable only to infinitesimally small interaction strengths. In Chapter

4, we have thus checked the pairing correlation in the three-leg Hubbard ladder with
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the QMC method tuning the parameters so as to align the discrete energy levels of the

first and third bands at the Fermi level as in the two-leg case. The enhanced pairing

correlation is indeed detected even for intermediate interaction strengths in the three-leg

ladder. The enhancement of the pairing correlation in the U = 2t case is smaller than

that in the U = t case as in the two-leg case in Chapter 2. This result is consistent with

the weak-coupling theory in Chapter 3 in a similar reason with that in the two-leg case.

Namely, the exponent of the pairing correlation is a decreasing function of Kp's which

should decrease with U.

Various effects of the Umklapp processes have also been discussed.

Concluding remarks and future problems

The key message obtained in the present thesis, is that the dominance of the pairing

correlation only requires the existence of gapes) in not all but some of the spin modes.

This is independent to whether the number of legs is even(two) or odd(three).

There are still important open questions. One is how the Hubbard model can possibly

be related to real systems such as the cuprates. Specifically, One should study the two

leg and/or three-leg Hubbard ladder for larger U, where the dominance of the pairing

correlation might be lost. Furthermore, the three-leg t - J model should be studied to

be compared with the Hubbard ladder. It would also be interesting to further look into

ladder systems with larger numbers of legs.
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Appendix A

Quantum Monte Carlo Method for
the Ground State

After the work by Hirsh[130], who first applied the QMC method to the Hubbard model,

some developments[30, 31, 32, 131] in the method enable us to study the ground state or

the low temperature property of the Hubbard model[28, 29, 30,31,321 As we have seen in

the present thesis, we can calculate the correlation functions in the system with relatively

large numbers of sites by the Qf'dC method. Here, we briefly describe the QMC method

for ground states in the present thesis.

First we divide the Hamiltonian into the non-interacting and the on-site interaction

parts,

i,l/,a-

(A.l)

(A.2)

(A.3)p({3)

Hin U L ni,v,rni,v,.j.·

The notations arc standard and 1/ labels the legs. The ground state energy of the system

can be generally written as

where l'Pt) is the trial state, which must not be orthogonal to the ground state. By taking

the limit {3 -+ 00, we can project out the ground state. In this sense the QMC method

used in the present thesis is called the 'projector' quantum Monte Carlo method. To

calculate p({3), we decompose exp( -{3H) by the Trotter formula as

exp(-,6H) = [exp(-t.rH)]L (t.r = ,6/L), (A.4)
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exp( -6.rHo/2)exp( -D.rHin)exp( -D.rHo/2)

+ O((6.rt)3(U/t)),

(A.5) P(· . " Siv(l) = 1,' .. ; fJ)
P(·. ',Siv(l) = 1,· ·;fJ) + PC· ',Siv(l) = -1,·· ·;fJ)'

IWC· ',Siv(l) = 1,· ·;fJ)1

(A.Il)

where a is defined as tanh(a) == Jtanh(U/4)). As a result, exp(-D.rHin ) is rewritten as

exp[-D.rUn•.v,tni,v,J,]
1 U

= 2 L exp[2asiv(ni,v.t - ni,v,J,) - '2 (ni,v,t + ni.v,J,)], (A.6)
su.. =±l

where we assume t1- ~ t. Here, L should be taken sufficiently large so that D.r is small.

The error from the decomposition also increases with the interaction U. Thus we should

take larger L for larger U. :\ext, we introduce the Stratonovich-Hubbard transformation

of the Ising type to eliminate the non-bilinear term in each Trotter slice as

IWC . " Siv(l) = 1,· .. ; fJ)1 + IIV(· ", Siv(l) = -1,· .. ; fJ)I'

which may be obtained without calculating L:'ou(l) IW({Siv(l)};fJ)1 directly. Thus we can

evaluate the ground-state energy using eq.(A.2). Other quantities such as the correlation

functions can also be evaluated in the formalism.

Finally, we should give some comments on actual calculations. For large fJ which

is necessary for the ground-state calculation, the number of matrix multiplications to

obtain (cptIX({Siv(l)};fJ)llOt) becomes large and makes the calculation unstable. The

orthogonalization procedure by Sorella et al.[30) may be used to circumvent the difficulty

by orthonormalizing the resulting matrix once per several multiplications.

For large fJ, U, and system sizes, other difficulties also arise. One may easily see

that the number of the Stratonovich variables increases linearly with that of the Trotter

slices L, which should increase with fJ, U, and the system sizes: we have taken L 2:
5fJU in the present study. Computation time required for one Monte Carlo step, which

contains the update of all the Stratonovich variables, increases linearly with the number

of the variables. Furthermore, for large numbers of Stratonovich \'ariables, many Monte

Carlo steps are needed for sufficient convergence of the simulation, resulting in a long

computation time needed. Thus the tractable strength of U and the system sizes are

restricted, since large fJ is necessary for the ground-state calculation.

On the other hand, the so-called negative-sign problem also arises for large fJ and/or

U. :\amely, the sample awrage of signlV({siv};fJ) tends to zero for large fJ and/or U.

Since signll'({siv};,B) is in the denominator in the right hand side of eq.(A.I0), we have

to e\'aluate 0/0, which is numerically unstable. The difficulty also affects other physical

quantities. \\'e can relieve the difficulty by adopting the closed shell condition, in which

there is no degeneracy in the single-particle state for non-interacting Fermi sea. Especially

the negative-sign problem does not occur in the single chain case and/or at half-filling.

HO\\'e\'er, the problem is often serious in multi-leg systems e\'en in ID because of the

transfer bet\\'een the chains.

(A.7)

(A.8)

(A.lO)
L:{s,"(I)) (CPtlX({Siv(l)}; fJ + c5fJ)lcpt)

L:(sou(l)) (cpM ({ Siv(l)} ;B) Icpt)

L:{s,"(I)} P( {Siv(l)}; fJ) '\U({:~~)(~~~~f)

L:{s,"(I» P( {8iv(l)}; fJ)sign II'( {Siv(l)}; fJ) .

p(fJ + c5J)
Pfjj)

exp(-6rHin ) = L V(SIl'" ',SIN," ',Snl," ·,SnN).
Is,")

Since V(s) is written in terms of exp[linear combination of {ni,v,~}], we can rewrite p(fJ)

as

p(fJ) = (IOtle- I1H !lOt) = L (IOtlX({Siv(l)};fJ)!lOt),
{s,"(I))

where I denotes the Trotter slice. Here X is written as exp[linear combination of {ni,v,~}].

X and IlOt) are represented by matrices using the single-particle basis and thus we can

calculate (cpt!);'({siv(l)};fJ)lcpt) by taking the determinant of the corresponding matrix.

Next we consider the physical quantities such as the ground-state energy. In the

beginning we define the probability function,

P({Sw(l)};fJ) = 11V({s;v(I)};fJ)1 , (A.9)
Lou(l) !W({Siv(l)};fJ)!

where II' is defined as ll'({siv(l)}; 3) = (cptlX({siv(I)}; B)lcpt). The ground-state energy

£9 in eq.(.-\.2) can be represented by the probability function as

In order to generate the configurations of the Stratonovich variables, we flip the variable

according to the probability,
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Appendix B

Calculation Method In Chapter 3

B.1 Derivation of eq.(3.4)

Here we derive eq.(3.4) in the standard bosonization method. The intra- and the inter

band forward-scattering terms, which can be diagonally treated in the phase Hamiltonian

as we will see in the following, are produced from the intrachain forward-scattering terms

using eq.(3.3) as follows:

21fVF9 L L t t
-L- kl,k'l,q J£,17,cr' Cp ,+,k l ,qC/l,-,k2,Q,Cp ,-,k2+Q,qICJj,-,kl-q,cr

== Hr + pair-tunneling terms,

= 7fV;9 L L[3aL+,k"aaL-,k2,a,al,-,k2+Q,a,al,-,k,-q,a
k 1 ,k2,qu,U'

+4at+,kl,uat_,k2,qla2,-,k2+Q,qla2,_,kl_Q,u + 3a1,+,kl,Qa;'_,k2,afa3.-,k2+Q,ala3,-,kl-Q,a

+2{aL+,kl,aat-,k2.qla2,-.k2+Q,0'Ial.-,kl-Q,CT + at+.k1,aa~,_,k2,0',a2,-,k2+q,0'Ia3,-,kl_q,q

+a~,+,kl ,aa1,-.k2,Ulal,-,k2+Q,Q,a2,-.kl-Q,(7 + a~,+,kl.(Jat-,kz,(J,a3,-.k2+q,q/a2,-,kl-q.l7)

+3(aL+,k' ,aat_,k2,a,a3.-,k2+Q,a,al,-,k'-Q,a + at+,k' ,aaL_,k2,a,al,-,k2+Q,a'a3,-,k'-Q,a)l
+pair-tunneling terms. (B.1)

Here Hr consists of the fomard-scattering processes in the band description and the

electron operator with index +(-) belongs to the right-(left-) going branch. We prepare

the following bosonic operators as in the usual single-chain case.
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Qi,k = {

J3"k = {

(IT) 1/2 Li,p,a al,+,p_k,aa,,+,p,a

(rifL) 1/2 Li,p,a a1._,p+lkl,aai,-.p,a

(IT) 1/2 Li,p,a aa!.+,p_k,aa ..+,p,a

(rifL) 1/2 Li,p,a aa1._.p+lkl,aai,-,p,a
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for k > 0,

for k < 0,

for /,; > 0,

for /,; < O.

(B.2)

(B.3)



O<i,k(IJi,k) corresponds to the charge(spin)-density excitation in band i. Note that, O<i,k and

IJi,k obey the boson commutation relation:

Thus H d is separated to both the spin-part H spin and the charge-part Hcharge' Hcharge

is also diagonalized by using eq.(3.5), while H spin is already diagonalized. As a result,

eq.(3A) is easily obtained.

(BA) B.2 Calculation of Correlation Functions

Now we introduce the phase variables as in the single chain case by the following equations:

(B.ll)

(B.13)

!/JJ+j1/JLJ.!/JiH!/Ji-r + h.c.

11i+j7)i-J.7)iH7)i-rexp[-2irPi+] + h.c.,

-2cos(2rPi+)'

!/JJ+r1/JLJ.!/Jt-J.!/J1+r + !/JJH!/JLr!/Jl-r!/JIH

+ !/JJH 1/JLr!/J1+r!/JI-J. + !/JJ+j!/JLJ.!/J1+J.!/Jt-r + h.c.

ex 7)3+r7)3-J.17t-J.7)t+jexp[i(lIt- - 113- + rPI+ - rP3+)]

+ 7)3+J.7)3-r7)l-r7)IHexp[i(lIl- -113- - rPI+ + rP3+)] (B.12)

+ 1JJH7)3-r7)I+j7)I-J.exp[i(lIl- - 113- + rPI+ + 4>3+)]

+ 7)3+j7)3-t7)IH7)I-rexp[i(lIt- - 113- - 91+ - rP3+)) + h.c.,

2exp[i(1I1_ -1I3_)][cos(rPl+ - rP3+) - cos(rP1+ + 4>3+)] + h.c.,

8cos( V2Xl- )sin(rPI+)sin( rP3+)'

Here we explain the method to derive the correlation functions. As examples, we here

calculate the correlation functions of the intrachain singlet pairing in the edge chains and

of the singlet pairing across the central and the edge chains. As stated in the text, the

relevant scattering processes, are the pair-tunneling process between the first and the

third bands and the backward-scattering process within the first or the third band.

The pair-tunneling process is expressed in terms of the phase variables as follows:

Here we have defined the product of the U operators[55, 56) as 7)i+ 7)i-J. = 7)iH1/;-r, but

this convention does not affect the correlation functions as in the two-leg case[109, IllJ.
The backward-scattering process within band i is also expressed in terms of the phase

variables through eq.(3.6) as

This and eq.(B.12) giw the eq.(3.7) in the text. In the beginning we calculate the corre

lation function of the intrachain pairing in an edge chain (0< chain). The order parameter

is expressed in the band description as

(B.6)

(B.8)

(B.7)

Ho = VF L Ip!O<!.pO<i,P + VF L IpIIJ!.pIJi,P·
&,P I,p

Furthermore we can rewrite the non-interacting part of the Hamiltonian H o as

Hd H spin + HchargCt

Hspin 2(*Jdx[(O,rPi+)2 + (O,9iS], (B.9)

Hcharge *JdX[(1 + ~g)(8xIIIS + (1- ~g)(O,III_)2]

+ *JdX[(l+ 9) (o,lI2+f + (1 - 9) (o,1I2-f]

+ *JdX[(l+ ~g)(O,II3+)2+ (1- ~g)(O,1I3_)2] (B.lO)

+ v:.: Jdx[(o,III+)(o,II2+) - (0,111-)(0,112-) + (0,113+)(0,112+) - (0,113-)(0,112-)]

+ 3~:9 Jdx[(o,III+)(o"II3+) - (0,11 1-)(0,113-)],

Hr is expressed in terms of only O<i,k as

Hr v:g L k[3(0<1.ko<1._k + o<1.ko<1.-k + O<t,kO<I,_k + 0<3,k0<3,-d + 4(o<tko<t_k + 0<2,k0<2,-k)
k>O

+ 2(0<1.ko<t-k + 0<1,k0<2,-k + o<1.ko<t-k + 0<3,k0<2,-k + o<1.- ko<tk + 0<1,-k0<2,k

+ o<1.-ko<tk + 0<3,-k0<2,k) + 3(0<1.ko<t_k + 0<1,k0<3,-k + o<1.ko<i.-k + 0<3,kO<I,-k)]. (B.5)

Here the phase variable 9i+(lIi+) can be regarded as the phase of the spin(charge)-density

wave, while rPi-(lI i-) is the field dual to rPi+(lI i+).

From (B.7) and (B.8), we can write the diagonal part of the Hamiltonian, Hd =

Ho + Hr, in terms of the phase \'ariables as
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where we have picked up only the two-particle operators whose correlations show power

law decay at long distances. The correlations of the other two-particle operators correla

tion decay exponentially due to the gapful field(s). We can rewrite the above equation in

the phase variables as

Here we have fixed ¢l+ = ¢3+ = 1r/2 and Xl- = 1r / J2 as discussed in the text and the

terms containing the gapful fields are canceled out. Now we can calculate the correlation

function:

(OinteaSS (x) Ointr.SS (0»

ex (exp[i((;I2_(X) - 92+(x»]exp[i((;I2_(0) - 92+(0»]),

eXP[-~{(((;I2_(X)- (;12_(0»2) + ((92+(X) - ¢2+(0»2)}].

21r 1 2 e-Ak

eXP[-3I( I<;2 + I<;3 + 3)ET(1- coskx)], (B.16)

1 1 2 x 2

eXP[-6(I<;2 + I<;3 +3)log(1+V-)],

x-H~+~)-l.

I\ext we calculate the correlation function of the singlet pairing across the central and the

edge chains. The order parameter is expressed as

ex 7)1+f71l-Lexp[i((;Il_ + ¢l+)]- 7)3+ 7)3-Lexp[i((;I3- + cP3+)]

-7)lH7)I-fexp[i((;Il- - ¢l+)] + 7)3H7)3-fexp[i((;I3- - 93+)],
. . 1 1r 1 1 1r

t[exp[t{(J2J2+ v'3 X2 -+ y'6XJ-)+ 2"}]

-exp[i{(-~~ + ~X2- + ~X3-) + ~}l (B.18)
J2J2 v'3 y'6 2

-exp[i{(~~ + ~X2-~XJ-) - ~}]
J2 J2 v'3 y'6 2

1 1r 1 1 1r

+exp[i{( - J2 J2 + v'3 X2- + y'6X3-) - 2"}],

. . 1 1
-4texp[t(v'3X2- + y'6X3-)].

Calculation of the interchain pairing correlation function is quite similar to that of the

intrachain pairing correlation.

(B.19)

From above calculations, we can see that the interchain pairing exploits the charge gap

and the spin gaps to reduce the exponent of the correlation function, in contrast to the

intrachain pairing.

OCESS (VO+T + tJ1+T )WIH. - (1/JoH + "l/J1H)"0;J- ,

Wp-fWI-L -W3+T"l/J3-L - ("l/JlH"l/Jl-f - W3H"l/J3-f)· (B.17)

Here again we pick up only the two-particle operators whose correlations show power-law

decay. In terms of the phase variables, the order parameter can be rewritten as
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