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Chapter 1

Introduction

The electrical resistivity due to mutual Coulomb interaction between electrons is one of the most
difficult problems in the theory of quantum transport in solids. It is generally believed that the
electrical resistivity, Pdc(T), in metals at low temperature, T, is given by P,,, + AT2 , where P,,,
and A are the residual resistivity and the coefficient of T 2-term, respectively, and that T 2-term
is caused by Umklapp scattering associated with mutual Coulomb interaction resulting from the
existence of the crystal lattice. I)

Microscopic analysis of this problem has been carried out by Yamada and Yosida,2) who em­
phasized that any theory addressing to the present problem should yield a correct result of the
absence of resistivity in the limiting case of continuum in the absence of the impurity scattering.
(We will use the term"continuum" to refer to the absence of the crystal lattice.) Their studies are
based on the formulation of the Kubo formula3 ) developed by Eliashberg4 ) by use of the pertur­
bative treatment with the Feynman diagram. In the theoretical studies of the Kubo formula, the
current-current correlation function is expressed in terms of the one-particle Green's functions with
the self-energy corrections, {, and the vertex corrections to the current operator. There exists an
important relationship, the Ward-Takahashi identity,S-7) between the self-energy corrections and
the vertex corrections. Quite often, the resistivity, the inverse of the conductivity, is thought to be
determined basically by {. However, there are cases where the proportionality of the resistivity to
{ is not correct even at a qualitative level. The most typical case is the continuum in the absence
of the impurity scattering, as studied by Yamada and Yosida, where there is no resistivity even
though { is finite.

The absence of the resistivity in this limiting case is due to the current conservation through
the electron-electron scattering. The memory-function formalismS) based on the Mori formula9 • 10)

is, as well known, another formulation which yields a correct result of the absence of the resistivity
if the total current is conserved, and is powerful for the actual calculation of the resistivity of the
various systems in the lowest order of the scattering processes which do not conserve the total
current. This formalism, however, generally leads to non-zero resistivity if the total current is not
conserved e\'en though the total momentum is conserved, in contradiction to the general belief
that the resistivity of the system without any momentum dissipation mechanism should vanish.
An example which indicates the existence of the resistivity requires the momentum dissipation
mechanism has been studied by Yamada et 01.'1) who showed that T 2-term in the resistivity is
absent in the isotropic system composed of two kinds of electrons with the interaction between
them. In this model, the total current is not conserved since the electrons have different masses
but the total momentum is conserved. Hence, the memory-function formalism is not valid in such
a case. This failure is due to the high-frequency expansion of the electrical conductivity, a(w),
inherent to the memory-function formalism.

-
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In the presence of the crystal lattice which leads not only to the Umklapp scattering but
also to the band structure, the problem gets more involved and the interrelationship between the
conservation of total momentum of two scattering particles and the absence of the resistivity is
not clear. (We use the term "band structure" to refer to a general Fermi surface different from
sphere.) In this case, because of the effect of the band structure, the current is determined by the
group velocity, up = V'pEp, which is not proportional to the momentum, and therefore the total
current is not conserved even through the normal scattering processes which conserve the total
momentum. An example which automatically includes both effects of the Umklapp scattering and
the band structure, is the infinite dimensional (d = 00) Hubbard model since the d --+ 00 limit12, 13}

can only be formulated on the lattice. In this model, the vertex corrections to the current are seen
to vanish l4 ) and therefore the resistivity lS-17) is determined only by 'Y, in sharp contrast to the
limiting case of continuum. The quasiparticle's damping rate, " has contributions from normal
processes. The proportionality of the resistivity to 1 in d = 00 may imply that normal processes
can contribute to the resistivity.

In this thesis, we will investigate the resistivity due to mutual Coulomb interaction of a lattice
electron system in the presence of impurity or Umklapp scattering, with a special emphasis on
normal processes through which the crystal momentum is conserved but the group velocity is not
conserved. The previous theoretical studies on the Kubo formula is formulated in terms of the
memory function which is extended to the matrix form on the basis of the Fermi liquid theory. The
present theory yields a correct result of the absence of T 2-term in the resistivity in the absence of
both impurity and Umklapp scattering, in spite of the fact that the total current is not conserved.
It is found that the T 2-term in the resistivity due to mutual Coulomb interaction results even in
the absence of the Umklapp scattering processes once the impurity scattering is present. However,
the resistivity in this case saturates as the temperature gets high. This is a special case of the
breakdown of the Matthiessen's rule. As this fact may imply, we can show that, even if there exist
no impurities, the normal scattering processes generally contribute to the resistivity in the presence
of mklapp processes. Once one realizes this fact it is interesting to ask what is the effect of the
normal processes on the resistivity in the presence of Umklapp processes in two-dimensional systems
without impurities. In this case, it has been pointed out by Fujimoto et al. IS ) that the resistivity
is proportional to T 2 even though the damping rate of the quasi-particle, I, is proportional to
T 2 10gT, indicating the different temperature dependences between the two. They claimed that
this is because normal processes, which give the T 2 10g T contribution to " do not contribute to
the resistivity.

In the following we confine ourselves to the case of the d-dimensional lattice with d ~ 2 and
will not study the case of d = 1, since, though interesting, there exist some special features in this
case l !r2l) Throughout this thesis, we take units, h = kB = 1.

The structure of the thesis is as follows. In Chap. 2, we review Eliashberg's formulation of
the Kubo formula for a(w) on the basis of the Fermi liquid theory, and diagrammatical analysis of
T 2-term in the resistivity to respect the consistency between the selfenergy and vertex corrections
developed by Yamada and Yosida. This leads to the absence of the T 2-term in the limiting case of
continuum in the absence of the impurity scattering. We will even point out that, in this limiting
case, the generalized Ward-Takahashi identity reflecting the current conservation insures not only
the absence of the resistivity at finite temperature but also the absence of the renormalization of,
the Drude weight, the coefficient of 1/'-'-term in a(w). In Chap. 3, the electrical conductivity, a(w),
of the lattice system with short-range Coulomb interaction and the s-wave impurity scattering is
expressed by the memory function which is extended to the matrix form. The relationship between
our present formulation and the ordinary memory-function formalism is discussed. In Chap. 4, we
show that. even in the absence of Umklapp processes, normal processes associated with Coulomb

interaction can contribute to the resistivity once the impurity scattering is present, and then make
an explicit calculation of the resistivity in the three-dimensional system with low electron number
density. In Chap. 5 and Chap. 6, we investigate the coefficient of T2- term in the resistivity of
high-dimensional and two-dimensional lattice systems in the absence of the impurity scattering,
respectively. In Chap. 5, we obtain lid-corrections to the T2-term in the resistivity in the lowest
order of the short-range Coulomb interaction. In Chap. 6, we obtain the doping dependence of the
coefficient of T 2-term in the resistivity of the Hubbard model with the nearest-neighbor hopping
on a two-dimensional square lattice in the lowest order of the short-range Coulomb interaction.
Summary and conclusions are given in Chap. 7.



for an arbitrary operator O.

By introducing the single particle Green's function G(p, ifn ) and the three-point current vertex
functions A(p, ifn; iwm), respectively, defined by

Chapter 2

Electrical Conductivity of Fermi
Liquid we can obtain

X~v(O, iwm ) = -2T I: I: vp~G(p, ifn + iwm)G(p, ifn)Av(p, ifn; iwm).
n p

(2.8)

(2.9)

(2.10)

2.1 Eliashberg's Formulation of Kubo Formula
A(p, ifn; iwm) is related to the four-point vertex function r(p, ifn; pi, ifn'; iwm) as follows,

In this section, we first review the formulation of the electrical conductivity a(w) developed by
Eliashberg4

) on the basis of the Fermi liquid theory.
The Kubo formula for a~v(w) is given by

A~(p, ifn; iwm) = vp~ + T I: I: [(p, ifn; p', ifn'; iwm)G(p', ifn' + iWm)G(p', ifn')Vp'w (2.11)
n l p'

Here, [(p, ifn; pi, if~; iwm ) satisfies the following Bethe-Salpeter equation,

(2.1)

where the retarded current-current correlation function is defined by

[(p, ifn; pi, ifn.; iwm) = r(1)(p, ifn; p', ifn'; iwm) +TI: I: r(1)(p, ifn; p",ifn"; iwm)
n lf p"

(2.12)

(2.2)

Here, the Heisenberg operator ott) is defined as

where r(1)(p, ifn; p', if~; iwm ) is the proper four-point vertex part.
Performing the analytic continuation of eq. (2.10) with respect to the frequency on the real

axis, we obtain

for an arbitrary operator 0 and

is a current operator, where vR is group velocity and 4a is the creation operator for an electron with
momentum p and spin a. \"v(q,w) can be obtained by the analytic continuation of X~v(q, iwm)
with respect to the frequency as follows,

(2.14)

(2.15)

1 JOO df' 3 1_ I _ '+ 1_

Vp+ 2i~ -00 2,;" ~Jik(P+'P ;p+,p )gk(p ,p )Vp "

gl(P+,p-) == GR(p+)GR(p-),

g2(P+,p-) == GR(p+)GA(p-),

g3(P+, p-) == GA(p+)GA(p-).

X:v(O,w) = ~ ~1: ~vp~ [tanh (~) gl(p+f)A!v(p+,p-) + {tanh (&)
- tanh (~) } g2(P+, p-)A2v (p+, p-) - tanh (&)g3(P+, p-)A3v(P+, P-)] ,

(2.13)

where

Here, we have used the notation: p = (p, f), pi = (pi, f'), q = (O,w) and have put p± == P± q/2,
p'± == pi ± q/2.

(2.3)

(2.4)

(2.5)

(26)

(2.7)

riiT
.

\,<V(q, iwm} == Jo dT(TT{J_q~(T)Jqv(O)))e,wmT.

Here, the T-Heisenberg operator OtT) is defined as

OtT) == e(H-"N)TOe-(H-~N)T,

where



(2.18)

Following the conventional Fermi liquid theory,") the function J 2(i)(E, E';W) is expressed by 6, and
6 2 , which are the discontinuities of f(1)(z; z'; w) across the cuts Im(z - z') = 0 and Im(z + z' +
w) = 0, respectively, where z, z' and ware complex variables corresponding to ifnI ifni and iWm1
respectively, and by the continuous function f c across these cuts,

The functions Jik(E; E';W) (for i, k = 1,2,3) in eq. (2.14) related to the analytic continuation of
r(iEn ; iEn ,; iwm ), are given in ref. 4, where we have dropped the momentum subscripts since we are
interested in the analytic properties with respect to frequencies, and we have used the notation;

.Jik(P+ q, p' - q; p',p) == Jik(p,p'; q). Especially, the functions JS)(P+ ,p'-; p'+, p-) play important
roles below, which are expressed for i = 1,3 as follows,

(2.26)

(2.27)

(2.29)

(2.28)

(0) '. _ (1) I. 1 '\' joo d,1I '\' (I) II. II (0) II '.
J ik (p,p,q) - J;k (p,p,q)+2'~ 2 ~ .lit (1',1' ,q)9/(p ):ftk (1' ,p,q).

1. p" -00 11'" 1=1,3

where f == feE) == (e'IT + 1)-1 is the Fermi distribution function and

Retaining w-dependences only in 92 and Ji2 in the case w « T, we obtain the conductivity
from eqs. (2.1) and (2.13) as follows,

2 '\' joo dE ( Of) _ 27riu~c5(E - Ep) +_
a"v(w) = e ~ -00 ~ -a; vp" w+2i')'p A2v(p ,1' ),

_ _ 1 '\'jOO dE' '\' (0)( '.) (')
vp" = vp,,+ 2i~ _ 2; ~ J 2k 1',1',0 9k I' lip'",

p' 00 k=I,3

Only the function 92(1') depends strongly on w for small values of w,

and .lAO), the whole contributions from diagrams but without 92 defined by

Then, the Bethe-Salpeter equation, eq. (2.12), becomes

(2.16)(I) + ,_. '+ __ {(E+) (E-)} (1) + ,_. '+ _J i2 (p ,p ,p ,p ) - tanh 2T - tanh 2T f i2 (p ,p ,p ,p ).

J}~)(p+, p'-; p'+ ,p-) = {tanh (~) - tanh (ff)}fc(p+, p'-; p'+, p-) + iJ'(p+, p'-; p'+,p-),

(2.17)

J'(p+,p'-;p'+,p-) H2coth C'2; E) - tanh (~) - tanh (ff)} 6,(/ - E)

+ H2coth C:/) - tanh (~) - tanh (ff)} 6 2(d E').

The functions C R and C A in eq. (2.15) are the retarded and advanced Green's functions,
respectively, which are given by

+ _ _ 1 '\'joo dE' (0) + 1_ '+ _ 27ria~,c5((' - (p') ,+ 1_

A2(p,p)=vp"+-2'~ -2.122 (1',1';1' ,1') +2' A 2(p ,I')·
't p' -00 1f W lTP'

(2.30)

(2.19)

where IJ. is the chemical potential and ER(p) is the selfenergy. When T is sufficiently low and E;:;:,T,
(p - IJ.;:;:,T, they are well described by

Introducing <P p by

<PP==~2[A 2 (p+,In),=,o,
-.w+ ')'p p

where the w-dependence is not shown explicitly, we obtain

(2.31)

CR(p) = [CArp))" =__~_p_._,
E - Ep +'')'p

(2.20) (2.32)

where We note vp" near the Fermi surface is given as follows,

Ep= [Ep - IJ. + ReER(p)] .'
f:;;;'p

up' = [1- fReER(p)] ,
€ ':;;;(p

')'p = -up [ImER(p)L-,..
-p

\Vhen w «T, we can assume that 9, and 93 are independent of w,

(2.21)

(2.22)

(2.23)

and then
• OEp _

V P1L == 8pp. ~ apvp/l.'

From eq. (2.30), <P p is seen to satisfy the following integral equation,

(233)

(2.34)

91(P+,P-) [C R(p)]2 == 9,(1'),

93(P+. p-) '" [CArp)]' == 93(1').
(2.24)

(2.25)
. iT. _. 2 '" 1 '\' [:J.(O)( + 1-. '+ -)) •.

-tW'*'PI1.- Vpl-J.- ')'p,*,pJ.I.+2iL-;ap 22 P ,p ,p ,P t:=cp,t:'=cj>,(LP/(l:'p1w
p

(2.35)

--- --



where pp(f) is the spectral function,

(2.41)

and r qq' (PI, P2; P3, P.) is the full four-point vertex function evaluated at zero temperature and
zero frequencies. If 9?p can be obtained by solving the integral equation, eq. (2.39), we can get
T 2-term in the resistivity by substituting 9?p into eq. (2.38). If there is no crystal lattice, the
second term in eq. (2.39) vanishes because 9?p can be put to be proportional to the momentum
p. Thus, in the limiting case of continuum in the absence of the impurity scattering, the T 2-term
exactly vanishes.

o~a a~. a~"

" . ~ ~
o 0 0 cr' 0 0'

and r~ is defined by

r~(PI' P2; P3, P.) = rn(pt, P2; P3, P.) - rn(pt, P2; P., P3), (2.42)

2.2 Limiting Case of Continuum in the Absence of Impurity
Scattering

Pigure 2.1: Diagrams for selfenergy E(p, ifn) and for proper four-point vertex part
r{l)(p, ifni pi, ifn'; iwm) giving rise to T2-term in resistivity. The thick solid line represents the
dre ed Creen's function.

lIere, .J2(~) is given as follows up to the first order of w,

(0) + 1-. '+ _ _." w _2 (fp,) k ,[.122 (II ,]' ,]I ,]1 )]'='p"'='j" - '.1 (p, p) + 2T cosh 2T I' (p, p), (2.36)

In this section, we point out that, in the limiting case of continuum in the absence of the impurity
scattering, the generalized Ward-Takahashi identity reflecting the current conservation insures not
only the absence of the resistivity at finite temperature but also the absence of the renormalization
of, the Drude weight, the coefficient of l/w-term in o'(w) in Eliashberg's formulation.

When the total current is conserved, there exists an important relationship between the selfen­
ergy COrrections and the vertex corrections given as follows,B,7)

lIere ~o is defi ned by

I:'>o(p, p'; pi + k, p - k) == 1fPp_k(O)Pp'+k(OjpP'(O)

x [ri~(p, pi; pi + k, p - k) + ~r#(p, p'; pi + k, p _ k)] (,2 + (1fT)2), (2.40)

which is the generalized Ward-Takahashi identity reflecting the current conservation.(See Appendix
A.)

Applying the analytic continuation on both sides of eq. (2.43) and making suitable rearrange­
ment of variables, we get

[E(p, ifn) - E(p, ifn + iWm)]vp~

= T I: I: r(1)(p, ifni pi, ifn'; iwm)[G(p', i'n') - G(p', ifn' + iWm)]vp'~' (2.43)
nl pi

(2.39)

(2.38)

(2.37),k ,_ '. 1 100 df" (0) II. "(0),, I.I (]I,p) = r c (]),p,O)+2iI: _ ~ I: .J2k (p,p ,O)gk(p )rk2 (p ,p,O).
pll 00 k=I,3

In eq. (2.36), .J1(p, pi) and rk(p, p') are those at f = fpand f' = fp"
The conductivity, eq. (2.32), is obtained by solving the integral equation, eq. (2.35), in principle.

For approximate calculations, the guiding principle has been given by Yamada and Yosida.2) In
their studies ou T2-term in the resistivity due only to mutual Coulomb interaction, they found that
the consistency between the selfenergy E and the proper four-point vertex part r{l) is important in
order to implement the conservation law where the T 2-term automatically vanishes in the absence
of crystal lattice. The selfenergy E and the proper four-point vertex part 1'(1) giving rise to the
T2-term arc 'hown iu Fig. 2.1.

Then, by expanding eq. (2.35) at w = 0 up to f2 and T 2 , O'~v(O) is given by

0',,,,(0) = e
2 vp~<I>pv (-~8f) ,

pO" € <=(p

0= tip" + I: I:'>o(p, p'; p' + k, p - k)[<I>p_k~ + <l>p'+k~ - <l>p'~ - <l>p~].
p',k

where



(2.53)

(2.54)

(2.55)

(2.57)

(2.56)

(2.58)

(2.59)

(2.60)

(2.61)Xo == L Vp~O(Ep).
po

a(w) =_~~ = _ ne
2

,
m ~w m2W

& - Lark(p,p')a (_?1) ~ = ~&,
m* pi 8E' (I=t:pl m'" m'" m*

2,& - -2
1 LaJ'(p,p')a~ = 0,

m'" pi m*

where

Further, putting E = Ep in eq. (2.52), we obtain another useful equation,

where m is bare electron mass. Here, we put

The last term in the right hand side of eq. (2.54) expresses the effect of back-flow, or the drag
effect. Eq. (2.54) is the finite-temperature version of the well-known relationships between the bare
and effective masses at absolute zero,22) and implies that the adiabatic insertion of interactions
does not change the value of total current flow of a noninteracting system in the limiting case of
continuum in the absence of the impurity scattering.

At sufficiently low temperature, we can ignore the energy dependence of effective mass m" and
therefore put vp~ = p~/m". Hence, corresponding to eqs. (2.48) and (2.53), we obtain

Byeq. (2.32), we thus get

where

<Pp~ = ~F.

Then, inserting eqs. (2.56) and (2.57) into eq. (2.35), we obtain

Although AD is renormalized by m/m-, 1/w-coefficient of a(w) recovers the value of noninteracting
system due to the drag effect mentioned above. The result of the absence of T 2·term in the
resistivity in the limiting case of continuum in the absence of the impurity scattering has been
shown by Yamada and Yosida,2) as was seen in the last section. However, to the best of our
knowledge, this is the first to show the absence of the renormalizations of the coefficient of 1/w,
i. e. Drude weight, in the framework of the Fermi liquid theory.

(2.47)

(2.48)

(2.49)

(2.50)

Putting w = 0 in both sides of eq. (2.45), we get

- 2ImE(p)vp~ - ~ ~1: d€'J'(p,p';O)p(p')Vp'~ = o.
p

Further, putting E = Ep in eq. (2.47), we obtain one of useful equations

2,pvp~ - ~ L ap.1'(p, p')ap'vp'~ = O.
p'

Toyoda
7

) obtained, by the analytic continuation of eq. (2.43), the expression corresponding to
eq. (2.48) where r(1) is assumed to be a function of p' - p, iEn ' - iEn and iwm . We note, however,
that this assumption is not valid in general and then we did not adopt this approximation in
obtaining eq. (2.48) as seen in eq. (2.18). In Appendix B, we mention that this difference is
important.

On the other hand, from w-linear terms of eq. (2.44) and eq. (2.46), we obtain

1 '" roo dE' '" (0), ,
Vp~ + 2i 'i;;' 1-

00
2; k::'3 .1Ik (p, P ; O)gk(p )Vp'~

+ ~ ~1: d€'r\~)(p,p';0)~COSh-2 (~) p(p')Vp'~'
P

. ~ '" roo dE' '" (Ol( ,.) ')
vp~ + 2i 'i;;' J-

oo
2; k::'3 .13k p, p, 0 gk(p vp'~

1 L roo d 'r(O\ ' ) 1 -2 ( E') ('+ 2
p
,1-

00
E 32P'P;02:fcosh 2:f PP)vp'w

From w-linear terms of eq. (2.45), we also obtain

[1- f.Re~R(p)] vp~ vp,. + ~ ~1: d€'rc(p,p';0)~COSh-2 (~) p(p')Vp'~
P

+ ~ ~1:~ (.12(;)(p,p';O)gM; 0) [1- ~~R(p')] (2.51)

p +.1l;)(p, p'; 0)g3(p'; 0) [1 - ~EA(p')]) vp'~'

where we hese used the fact that the correction terms in w-expansion in .1' are order of w 2 , which
is ob"ious from eq. (2.18). Substituting eqs. (2.49) and (2.50) into eq. (2.51), we see

(2.52)

10 11



3.1 Generalization to Matrix Form of Memory Function

Chapter 3

As was seen in Sec. 2.1, the conductivity, eq. (2.32), is obtained by solving the integral equation,
eq. (2.35). In this section, we investigate the kernel of the integral equation, eq. (2.35), up to w,
i 2 and T 2 where the effects of the periodic lattice which leads not only to the Umklapp scattering
but also to the band structure are fully taken into account. Then, an expression of a(w, T) is given
in terms of memory function which is extended to the matrix form.

First, we rewrite eq. (2.35) together with eq. (2.36) as

We note that, if the total current is conserved, eq. (2.48), which is obtained from the analytic
continuation of the generalized Ward-Takahashi identity reflecting the current conservation, leads
to the fact that J(~p, has a zero eigenvalue for the eigenvector, vp'~' as follows,

This fact implies that the conservation laws are generally related to zero eigenvalues of J(~p"

Actually, as has been indicated by Wiilfle,23) the vanishing resistivity of the lattice electron systems
in the absence of both Umklapp and impurity scattering is concluded from the existence of a zero
eigenvalue of J(~p, reflecting the conservation of the crystal momentum. This will be demonstrated
in the following, Sec. 3.3 and Sec. 3.4.

In the case of a general Fermi surface different from sphere, the total current is determined by
the group velocity, which is not necessarily proportional to the momentum. In this case, in order
to formulate a(w) unambiguously, we expand eq. (3.2) by the Fermi surface harmonics, {Vtdp)} ,
which are the polynomials of the Cartesian components of the group velocity, vp~, first introduced

by Allen 24 ) Vtdp)'s are listed in Table 3.1 up to the third order in the case of three dimensions.
Although the Fermi surface harmonics are different from the spherical harmonics, they essentially
correspond to those in the case of the limiting case of continuum, vp~ <X p". The Fermi surface
harmonics satisfy the orthonormality relation

(3.3)

(3.4)

(3.2)

(3.5)

(3.6)

L J(~p,vp,~ = o.
p'

J(~p, = -waprk(p, p')ap' (-~) ,
€ (I::;;;;:(pl

J(~p, = opp,2l'p - ~apJ'(p, p')ap"

ivp~ = L [wopp' + J(pp'lil>p'~'
p'

where J(pp' = I(~p' + iJ(~p' and

(3.1)

From Kubo Formula to Matrix
Formulation of Memory Function

In Sec. 2.2, we have seen that Eliashberg's formulation of the Kubo formula for a(w) leads to a
correct result in the limiting case of continuum in the absence of the impurity scattering. On the
other hand, the memory-function formalism 8 ) based on the Mori formula9• 10) is another formulation
which leads to a correct result in this limiting case. This formalism is powerful for actual calculations
of the resistivity of the various systems in the lowest order of the scattering processes which do not
conserve the total current. In the lattice system, which is of our present interest, the total current
is not conserved even when the total momentum is conserved because the current is determined
by the group velocity which is not proportional to the momentum. In this case, the memory­
function formalism leads to an incorrect result of non-zero resistivity as discussed in Chap. 1. As
it turns out, this failure is due to the fact that, in the ordinary memory-function formalism, only
the violation of the current conservation is considered but the momentum conservation is not taken
into account. This is due to the high-frequency expansion of a(w) inherent to the memory-function
formalism.

In this chapter, it is shown that with the help of Eliashberg's formulation of the Kubo formula
for a(w), which is valid at low-frequency, and of the diagrammatic analysis of T 2-term in the
resistivity to respect the consistency between the selfenergy and the vertex corrections developed
by Yamada and Yosida,2) the memory function is extended to the matrix form so that it yields a
correct result of the vanishing resistivity when the total momentum is conserved.

We consider the following Hamiltonian,

where U is the short-range Coulomb interaction and Pq = L; e- iq.r, where f; represents the position
of the impurity. Here, we also consider s-wave impurity scattering whose strength is v since the
effect of the violation of the current conservation through normal processes gets important once
the impurity scattering is present as will be seen in Chap. 4.

where the inner product is defined as

(ulv) == (uv) == L UpVpO(i - i p)/ L O(i - i p)'
P P

The bracket notation implies

(3.7)

(u) = L UpO(i - i p)/ L 0(( - (p)
p p

(3.8)
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We will often write it as (u), in order to express E-dependence explicitly. We assume that <P p and
Mpp' can be expanded in Fermi surface harmonics

Table 3.1: Fermi surface harmonics for cubic symmetry for polynomials up to the third order.
Normalization factors are omitted for simplicity, which can be formally written down by use of the
inner product. We put vpz== vp;' +vp; + vp~' J(pp'

-z= <PL(E)1/>L(p),
L

-z= [(W(E, E')1/>L(p)1/>u(p')·
LU

(3.9)

(3.10)

Order of Irreducible Label of Explicit form for cubic symmetry

polynomial representation function except for normalization factor

1'0 1/>0

1'15 1/>x Vpx
1/>y VPY

1/>z Vpz
r Z5' 1/>xy VpxVpy

1/>yz VpyVpz:
1/>zx VpzVpx

1'12 tP3x2 _r2 3vp;' - VpZ

1/>y'_" Up; - Vp~

1'0 1/>r' VpZ_ (v*Z)

rz, 'f/,'xy: VpxVpyUp;:
1'25 ¢x(y'-") vp.{vp; - vp~)

and

2 similar

1'15 Wx3 Vp~ - Vpx(V;4)/(v;2)

and

2 similar

The inverse relations are easily obtained from eq. (3.6)

<PL(E) = -Z=<5(E - E~)1/>L(p)<pp/ -z= <5(E - E~),
P P

J(w(r, E') = -z= <5(E - Ep)<5(r' - Ep,)1/>L(p)1/>u(p')Kpp,
pp'

x (-Z=<5(E-EP)<5(E'-EP,))-I.
pp'

Then, from eq. (2.32),0"(w) (along, say, x-axis) is given by

and by eq. (3.2)

where

Kx,x(y'+z,)(r,r')
«x3 ,x(y'+z,)(r,r')

f(x(Y'+z'),x(Y'+z')(E, E')
... J...

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

and

2 similar

14

Here N*(E) = -Z=<5(E - E~). Note that it is enough to consider 1/>L(p) E 1'15' If <l>1(r) == <I>x(r) can
p

be obtained by solving the integral equation, eq. (3.14), we can get O"(w) by substituting <PI (E) into
eq. (3.13). In the above, O"(w) is exactly formulated at small w in the Fermi liquid theory. _

ow, in the spirit of Yamada and Yosida mentioned in Sec. 2.1, we would like to obtain <I>(E)
by expanding K(E, E') up to W, v2 , E2 and T 2 in eq. (3.14). It is, however, noted that we consider
here impurity scattering as well and that we expand f(LU(E, E') up to v2 with respect to impurity

scattering.
For that purpose, we first consider f(LU(E, E') up to v2 and U2, where the processes shown in

Fig. 3.1 are taken into account in the proper four-point vertex part. The corresponding expression
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Figure 3.l: Second-order Feynman diagrams with respect to the mutual Coulomb interaction and
impurity scattering for proper four-point vertex part r(1)(p, iln ; p', iln '; iwm ). The solid, wavy and
broken lines represent the dressed Green's function, the bare Coulomb interaction and impurity
scattering, respectively.

(3.19)

~ ~I: dl'J'(p,p';O)p(p')
p

2;rn;v2 N(l) +2rrU2 L: 100

dl'dl l (f(ldf(ll + l - l)f(l)
pl,PI -00

+ f(ld1(ll + l -l)J(l')} p(PdP(PI + P - p')p(p').

.1'(p,p'; 0) = 4;rn;v26(l - l') +4rrU2L: roo dll [2 (f(ldf(ll + l - l)f(l')
PI )-00

+ f(ld1( l l + l - l)1(l)} p(PdP(PI + P - p') - (f(ldf(l + l - ld1(l)

+J(ld1(l + l- ldf(l')} P(Pl)P(P+ P' - pd], (3.18)

I<ZU(l, l) = -6(l -l) L: 2ImER(p)p(p),pL(p)TjJu(p)jN"(l)N*(l)
p

-~ L: .J'(p,p';O)p(p)p(P')TjJL(p)TjJu(p')jN*(l)N"(l)
p,p'

2rrn;v2 N(l)6(l - l) L:p(p),pL(p),pu(p)j(N"(l))2
p

+2rrU26(l -l) 2;= I: dl'dl l (f(ldf(ll + l -l)f(l')
p.p .P,

+ f(ld1(ll + l - l)1(l')} p(P)P(PI)P(PI +P - p')p(p')TjJL(p)1/Ju(p)j(N*(l))2

-2;rU2 2;= I: dll (f(ldf(ll + l -l)f(l) + f(ld1( l l + l - l)1(l)}
P.P .PI

X p(p)p(PdP(PI + P - p')p(p')TjJL(p)TjJu(p')jN"(l)N"(l')

-2rrU2 2;= I: dll (f(ldf(l')f(ll + l - l') + f(etl1(l')1( l l + l - l))
p,p .1'1

X p(p)p(pdp(P')P(PI +P - p')TjJL(p)TjJu(p')jN"(e)N"(e')

+2rrU2 2;= I: del (f(l)f(l + l - l,)f(ltl + f(l')1(l' + l - e,)1(l,)}
p.p ,P,

X p(p)p(p')p(p' + P - ptlp(Pl)TjJdp)TjJu(p')jN' (l)N"(e'). (3.20)

for .1' is given by

Here, we put N(l) = L:ap6(l- lp)' Substituting eqs. (3.18) and (3.19) into eq. (3.12) together
p

with eq. (3.4), we obtain

where we put PI = (PI, ld and 1(l) = 1- f(l). The imaginary part of ER is given from .1' by the
analytic continuation of the ordinary Ward-Takahashi identity reflecting the local conservation of
the electron number density25) as

PI+ P - p'
iEnl + i£a - iEn'

P

I
I

~

iE"~W"~,/,:~;•• "".~P'
p,'pp p, :.p.p, p,".

iE",+ iE,,- iE,,' iE", IE" + IE" + lWm-IE", lEn,

P P' P P
i£a ien,+ if4n

By expanding the right hand side or eq. (3.20) up to v 2 , (2 and T 2 , eq. (3.14) leads to

(3.21)
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where

(

M%,%(E;W) M%,r'(E;W) M%,%(y,+,')(E;W)'"' J
M(E;w) = Mr',%(E;W) Mr',r'(E;W) Mr',%(y,+,')(E;W) ...

M%(y,+,;),%(E;W) M%(Y'+"),r'(E;W) M%(y'+"),%(y'+") (E;W) (3.22)

Here, MW(E;W) = MLu(w) + iMLU(E) and MLU(E) is given by

MLU(E) = 211"n;v2 N(O) LPp(O)1/>L(p)1/>u(p)/N*(O)
p

+~(E2 + (11"1')2) L U2(1/>L(p+) + 1/>L( p/-) - 1/>L(p/+) - 1/>dp-))
p,p',k

x (1/>u(P+) +1/>u(p'-) - 1/>u(P'+) - 1/>u(p-))

X Pp+ (O)pp-(O)pp,+ (O)pp'_ (O)/N"(O), (3.23)

where p± == P ± k/2 and p'± == p' ± k/2.

Next, we consider the higher order terms of k"(E, E') with respect to U but up to v 2 , E2 and
1'2. The higher order terms can be simply included by taking E and r(l) into account in order not
to violate the Ward-Takahashi ident~ty. In a similar way to Yamada and Yosida2), we can obtain
terms proportional to E2 and 1'2 in M"(E), by replacing U2 by

qt(P+, p'-; p/+, p-) + ~r1¥(p+, p'-; p/+, p-), (3.24)

in the second term in the right hand side of eq. (3.23). (See Fig. 2.1.) Here, r qq' (PI, P2; P3, P4)
is the full four-point vertex function evaluated at zero temperature and zero frequencies in the
absence of the impurity scattering. An example of the higher order diagrams with respect to U
but up to v

2 for E and r(l) are shown in Fig. 3.2. A diagram of Fig. 3.2(a) gives corrections
to ,,/p and diagrams of Fig. 3.2(b)~(f) give corrections to JI(p, p') in eq. (3.4). Here, we note

that diagrams of the type Fig. 3.2(c)~(f) give the contributions to Mil proportional to V 2 E2 and
v21'2

and. thus these contributions are neglected. On the other hand, The corrections with respect
to U In dIagrams of the type Fig. 3.2(a) and (b) are included in Ao(p, p') where Ao(p, p') is the
full-three point \'ertex function evaluated at zero temperature and zero frequencies in the absence
of the impurity scattering. (See Fig. 3.3.) We thus obtain

·\ILu(,;) -w L rk(p, p')pp(O)PP,(O)1/>L(P)Tbu(P')/N*(O), (3.25)
p.p'

·\ILU(E) ".n, L (vAo(p, pW (1/>L(p) - 1/>dp')) (1/>u(p) - 1/>u( p/))
p.p'

x pp(O)pp,(O)/N*(O)

+~(c2 + (".T)2) L [qt(P+, p'-; p'+, p-) + ~rf{(p+, p/-; p/+, p-)]
p.p',k

x (0dp+) + 1/>dp/-) - 1/>dp'+) - 1/>dp·))

X (,pu(p+) + ,pu(p'.) - 1/>u(P'+) - 1/>u(p-))

X Pp+ (O)pp- (O)pp,+ (O)pp'_ (Ol/N"(O), (3.26)

up to.;, v
2

, c
2

and T 2 From eqs. (3.13) and (3.21), the electrical conductivity is given by

a(.;) = ie2 L (-~) v· 2
[ 1 ]

p .• !hp P% wi+A'[(Ep;W) II' (3.27)

18

*I

8
(c) / /'X... " (d) (e) (f)

I I TITI
Figure 3.2: An example of higher order Feynman diagrams with respect to U but up to v2 for
(a) selfenergy E(p, iEn ) and for (b)~(f) proper four-point vertex part r(l)(p, icn ; p', icn ,; iwm ). The
thick solid, wavy and broken lines represent the dressed Green's function, the bare Coulomb inter­
action and impurity scattering, respectively.

A ·v·
/ " */ "- I

A A A

Figure 3.3: Diagrams for selfenergy E(p, icn ) and for proper four-point vertex part
r(l)(p, iEn ; p', iEn '; iwm ) giving rise to term proportional to v2 at T = 0 in M"(c). The thick
solid and broken lines represent the dressed Green's function and impurity scattering.
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In the above equation, we see that Ai(€;w) corresponds to the memory function which is extended
to the matrix form. We call M(€;w) the memory-function matrix. fwlp2=1.

i=o
(3.35)

3.2 Relationship to Ordinary Memory-Function Formalism

In this section, we would like to see the relationship between our expression of a(w, T), eq. (3.27),
and the ordinary memory-function formalismsl which corresponds to the high-frequency expansion
of a(w, 7'). lIere and hereafter T-dependence of a(w) is explicitly shown as a(w, T).

First, we define transport relaxation times in our formulatio~lof a(w, T) by the memory-function
matrix. The imaginary part of the memory-function matrix, MI/(€), can be rewritten as follows,

Eq. (3.34) shows that rH)(€), which is a positive quantity by definition, can be interpreted as
transport relaxation time. Here, we see that in the approximation taken in the last section the
transport relaxation rates, ri!l-l(f)'S, are correct up to /12, f2 and T2. Especially, the transport

relaxation times due to the electron-electron scattering, r!t}e/(€)'s, are defined by

(3.36)

Assuming we can take the limit w -t 0 in eq. (3.38), we obtain for the resistivity pdc(T), the inverse
of dc-conductivity adc(T) == a(O, T), up to U2 and /12,

aw-~6aw-tu~;!e/= A~;!e/u~f!e/' tu~f!e/ii~f21 =Oji" (3.37)

Now, we see that, at high frequency which satisfies w ~ Max {r,Vl-'(f)}, eq. (3.27) leads to
an expression derived from the ordinary memory-function formalism. In this case, we get

(3.38)

(3.39)

where

(3.29)

(3.28)

(3.30)

aw = ~ L (Ao(p, p'))2 (,pdp) - ,pdp')) (,pu(p) - ,pU(p/))
p,p'

X pp(O)pp,(O)/ (N'(0))2

C 1 '\' [1,2 (+ 1- '+ -) 1 rA2 ( + '-. '+ -)]L,U ="8 L- H p ,p ; p , p + 2 tt p , p , p , P
p,p',k

X (,pdp+) + ,pdp'-) - ,pL,(p/+) - ,pdp-))

X (,pu(p+) + ,pU(p/-) - ,pu(p/+) - ,pu(p-))

X Pp+ (O)pp-(O)pp,+ (O)pp,-(O)/(N"(OW

lIere, r, is a transport relaxation time due to the impurity scattering defined by

where

We ee that it is a positive definite matrix and that 6 is a positive semidefinite matrix. This insures
the non-negativity of the resistivity. Introducing a matrix, aw, which is related to the real part of
the memory-function matrix, A1'(w), as follows,

we sec that aW can be considered to be a positive definite ma.t;ix if the assumption of the convergence
of the perturbation is valid. lIere and hereafter, we define Q'i to be a positive definite matrix which
satisfies (Q~)2 = Q for an arbitrary positive definite matrix Q.

In terms of r,Vl(f) and u~:) defined by the following eigenequation,

3.3 Conservation of Crystal Momentum

It can be easily checked that eq. (3.39) is also derived from the ordinary memory-function formalism.
In the absence of both Umklapp processes and the impurity scattering, the ordinary memory­
function formalism generally leads to an incorrect result of non-zero resistivity even in the lowest
order of U. On the other hand, in our formulation, since the memory function is extended to
the matrix form, we can obtain a correct result of the absence of resistivity, as will be explicitly
demonstrated in the following.

In this section, we would like to see how the conservation of the crystal momentum through normal
processes associated with electron-electron scattering is taken into account in our formulation.

We consider the two-body electron-electron scattering process where two quasi particles with
momenta p + k/2 and p' - k/2 are scattered to states with momenta p - k/2 and p' + k/2,
respecti\·ely. Introducing So, which is the Fermi surface in the extended zone, and 5±, which is
the surface given by shifting So by =t=k/2, we can express the condition that the initial and final
states of the scattering are on the Fermi surface as p E 5+ n 5_, where p is in the first Brillouin
zone. Further, we define 5 0 [0] and 5 0 [G] as the Fermi surface whose centers are at the origin and
the reciprocal lattice vector G, respectively, and also define 5±[O] and 5±[G] in a similar way to
the above. Then, the normal scattering, which conserves momentum in the first Brillouin zone,
can be represented by p, p' E 5+[0] n 5_[0]. On the other hand, the Umklapp scattering with the
reciprocal lattice vector G can be represented by p E 5+[0]n5_[0] and p' E 5±[O]n5,,[G]. Thus,

(3.34)

(3.33)

(3.32)

(3.31)

. . [a., ]aW :=l+ -M(w) ,
Ow w=O

_ 2 (Of) ,2 [w- I ] 00 wi:. l2a(w,T)_e L -0;; V px a IlL. (j) • '
p,e p j=O -'w + l/r'r (fp )

where

eq. (3.27) is expressed as follows,
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for given Fermi surface, the matrix C defined by eq.(3.30), which represents two-body electron­
electron scattering processes in Mil, can be always separated into two, CN and Cu, the former
coming from normal processes and the latter coming from Umklapp processes,

f>~)2=1.
i=O

(3.46)

3.4 In the Absence of Momentum Dissipation Mechanism

This is in contrast to the ordinary memory-function formalism where the memory function is scalar
and thus the momentum conservation cannot be taken into account.

(3.51)

(3.49)

(3.47)

(3.48)

DW == IT ~i.'J'o.j.i~wIma(w, T) = e2xo [a-w-1L,

DT == IT .j.i~o~i-TowIma(w,T) = e2xo [aw-1L W~)2,

we see the following inequalities,

DT is explicitly given by

2 • (L O(€j,2)vj,xPX) 2

DT = e Xo p . (3.50)

1 _ ~, rk(p, p')pp(O)pp,(O)Pxp~ (L O(€j,2)p;) (L O(€j,2)Vj,~)
LO(€j,2)p; P P

P

The inequality, eq. (3.49) is in contrast to the equality of the above two limits in the limiting
case of continuum given by

In the bracket of eq. (3.45), the first term reflects the conservation of the crystal momentum as
mentioned above, while the existence of the second term is due to the fact that the current is
determined by the group velocity, which is not proportional to the momentum.

The existence of the first term leads to the absence of T2-term in the resistivity.
At T = 0, both the terms are proportional to 1/w while, at T > 0, only the first term is

proportional to 1/w since 1/rUl (€),s are proportional to €2 and T 2 in the second term. Introducing
"Drude weights" DW and DT respectively defined by

(3.40)

(3.41)¢>L = L o(€j,),pL{p)Px/N*(O).
p

(In infinite-dimensional systems, this is not true as will be seen in Chap. 5.)
In the system whose Fermi surface is sufficiently small, Umklapp processes do not exist and then

Cu = 6. (In our formulation, we neglected the N-body scattering processes (N > 2) associated
with Coulomb interaction, whose contributions to the relaxation rate are roughly estimated to be
proportional to T2(N- 1l.) On the other hand, normal processes always exist independently of the
size of the Fermi surface and generally CN i- 6. (Two dimensions turned out to be special and
there exists the case of CN = 6 depending on the shape of the Fermi surface as will be seen in
Chap. 6.)

Reflecting the conservation of the crystal momentum through the normal scattering, we find
from eq. (3.30) that CN always has a zero eigenvalue,

In this section, we see, as a direct consequence of eq. (3.41), that, in the absence of both Umklapp
and impurity scattering (11= 0 and Cu = 6), a(w, T) diverges as 1/w in the limit w -t 0 even at
finite T in spite of the fact that the total current is not conserved. Then we examine the Drude
weight, the coefficient of 1/w.

We introduce T,V)(€), the transport relaxation time due to normal processes associated with
electron-electron scattering, defined by

where

aW-~C'Naw-~uW= ,\WuW, lU~)U~P = 0ii" (3.43)

Here, we find that ,\~) = 0 for u~l = aw~¢,/(t¢aW¢,)~ because the conservation of the crystal

momentum through the normal scattering is expressed by eq. (3.~1) and that ,\W > 0 for j ~ 1
because there do not exist any conserved quantities with the symmetry of r 15 except the momentum.
From eq. (3.21), we then obtain

The inequality, eq. (3.49), has a simple physical interpretation. To see this, we consider a linear
response of the current to the unit pulse of the electric field at t = 0,

(3.53)

(3.52).( T) JOO dw -'wI ( T)J t; = -2e a w, .
-co II

Here j(t; T) is equal to jo = e2 xo at t = +0, where

XO == ~~o X~" (q, 0).

which corresponds to the J-sum rule, and is expected to decrease monotonically for t > 0 at any
temperature because the total current is not conserved. At sufficiently large t, j(t; T) approaches
to joo(T) which is given by joo(O) = D~ IT. at absolute zero and joo(T) '" DT IT. at finite T. Since
the current is not consen'ed even through the normal processes in the electron-electron scattering,
the "alue of joo(T) at T i- 0 is reduced from its value at T = O. However, joo(T) cannot be zero
because of the momentum consen·ation. (Strictly speaking, joo(T) = 0 at t = 00 since there exist
Umklapp processes in the .V-body scattering (N > 2) as noted above. Howe"er, these processes
are ignored here.)

(3.42)

(3.44)

(3.45)

a(,"""T) =

where
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In a similar way to the derivation of eq. (3.45), we obtain

Here, f~fl(€) and wW are similar quantities to rM)(€) and wW, respectively, and can be given by
replacing aw by a in eq. (3.43) as follows,

Chapter 4

Resistivity due to Mutual Coulomb
Interaction in the Presence of
Impurity Scattering

(4.4)

(4.5)

(4.6)

where ~ is defined byeq. (3.41).

At sufficiently low T where r i-
1 » Max {fMl-1 (rrT/V3) }, the resistivity pdc(T) , the inverse of

<7dc(T), is given by

We will show in this chapter that, in the presence of the impurity scattering, there exists generally
a finite T 2-term in the resistivity due to Coulomb interaction even in the absence of Umklapp
processes in the lattice systems. This is because the current is not conserved even through the
normal processes in the electron-electron scattering. This T 2 contribution in the resistivity, however,
saturates as temperature gets higher because the momentum conservation processes through the
electron-electron scattering become dominant.

4.1 Presence of T 2-term in the Absence of Umklapp Scattering
Processes

where

Especially, we get

W(O)2 = ~i ./ [a-I]
N ''''a''' II'

(4.7)

(4.8)

(4.9)

(4.3)

We define a by Poo = (1 +a)Pm.
We see that W~)2 < 1 because the group velocity, vp,,, is not proportional to the momentum,

P~, in the lattice systems and that >.W :;, 0 for j :::: 1 unless GN = 6 because there do not exist
any conserved quantities with the symmetry of r ,5 except the momentum in normal processes

Here we note that eq. (4.9) is equivalent to eq. (4.3) since f: >'Ww~)2 = [a-IGa-'j, 1/ [a-'j, I'
j=l

At sufficiently "high" temperature where ri » Max (fM) (rrT/V3)) , the first term in the bracket

of eq. (4.4) gets dominant to <7dc(T) if >.W > 0 for j :::: 1. Then, the resistivity Pdc(T) is seen by
eq. (4.4) to approach Poo given by

Pm = l/e2xo [a-'Ll ri,

A = ~rr3N*(0) f: >.WWW2 / e2xo [a-I]" .
j=1

(4.10)

(4.11)

1/e2xo [a-'Ll riw~)2

Pm/W~)2.

Poo

whereWe consider three-dimensional and two-dimensional systems in the presence of the impurity scat.
tering. In this case, we can introduce fH}d(€) by

l/fH.)d(€) == 2rrN*(O)(€2 + (rrT)2)>'~1ld' (4.1)
where

e2xo [0.-1]11
<7dc(T) = ----~~T_'_-:-:----,.,-

~ + ~rrN*(O)(rrT)2_[a_-_lG_a_-_l]_ll .
r, 3 [a-ILl

Eq. (~.3) is correct whether or not Umklapp processes exist. However, our concern is to show
that normal processes contribute to the resistivity once the impurity scattering is present. We thus
consider the system with impurities but without Umklapp processes (G = GN) in the following.

a-tea-t~~1!d = >'~1!d~~1!d' t~~1!d~~121 = J)) (4.2)

Here, we note that f~t_)d(€)'S are similar quantities to the transport relaxation times due to the

electron-electron scattering, rH}d(€j"S, defined by eq. (3.36), except a difference of a and aw in
their definitions.

At sufficiently low T where r,-I» Max {fH}ei'(rrT/V3)}, we obtain in a similar way to the
derivation of eq. (3.38)
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Figure 4.2: Fermi surfaces in two dimensions. (a)Z = 1 (b)Z = 2

Figure 4.1: Schematic representation of the temperature dependence of Pdc(T) in three-dimensional
systems in the absence of Urn klapp processes.

4.2 Three-Dimensional System at Low Electron Number Den­
sity

where

(4.12)

(4l.5)[a-tu = L8(~)1/JL(p)1/Ju(p)a;;'/N(O),
p

aLU = ~ L pp(O)pp,(O)1/JL(p)1/Ju(p)/(N"(O))2, (4.J3)
p,p'

ew = ~ L U2 (1/JL(p+) +1/JL(p'-) - 1/JL(p'+) - 1/JL(p-))
p,p',k

X (1/Ju(p+) +1/Ju(p'-) - 1/Ju(p'+) - 1/Ju(p-))

X Pp+(O)pp_(O)pp,+(O)pp,_(O)/(N"(O))2 (4.14)

Since a-I is given by

In the last section, we have seen that, in three-dimensional systems with impurities but without
Umklapp processes, the resistivity, pdc(T), is given by Pre. + AT2 at sufficiently low temperature,
and Pdc(T) approaches Poo = (1 +a)p". as temperature gets high. In this section, we would like
to make an explicit calculation of A and a in the lowest order of U for a three-dimensional system
at the low electron number density in the absence of Umklapp processes. We will also touch upon
the case of two dimensions.

We consider the second-order processes with re pect to v and U shown in rig. 3.1 in the proper
four-point vertex part. In this case, the imaginary part of the memory-function matrix, A;'''(c), is
given as follows,

associated with two-body electron-electron scattering. Then, we get A > 0 and a> O. In contrast
to the general belief, there exists a finite T 2-term in the resistivity even in the absence of the
Umklapp scattering processes once the impurity scattering is present. However, this temperature
dependence saturates as the temperature gets high. This is very different from the case with the
Umklapp scattering.

In three-dimensional systems, CN is not equal to zero as a matrix. Then the temperature
dependence of Pdc(T) is schematically shown in Fig. 4.1. This is a special case of the breakdown
of the Matthiessen's rule.

in two-dimensional systems, there exists, however, a special case of CN = 6 in dependence on
the shape of the rermi surface. Then, we have classified cases depending on the shape of the Fermi
surface by an integer Z, where Z is the maximum number of the common points of two Fermi
surfaces relatively shifted by the transferred momentum k and tangent to each other. Examples of
Z = 1 and Z = 2 "re shown in Fig. 4.2. As will be shown in Chap. 6, in the case of the Fermi
surface with Z = L, CN = 6 and, in the case of the Fermi surface with Z = 2, CN is not equal
to zero as a matrix and does not have a logarithmic singularity which exists in the coefficient of
T 2-term in the damping rate of quasiparticle [. Therefore, we see byeq. (4.4) that, in the case of
Z = 2, T 2-term in the resistivity results and this T-dependence saturates as temperature gets high
in a similar way to the case of three dimensions. On the other hand, in the case of Z = 1, there do
not exist such T-dependences even in the presence of the impurity scattering. The situation of. the
case of the small rermi surface with Z ~ 3 is not certain at present and will be left to the future
problem, though the realization of this case in actual system will be rare.
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we obtain

Here, we noted tip = np1vp.
The important point to note is the existence of a small but finite deviation of the Fermi surface

from a spherical surface, <p = IpI 2/2m". Then, we consider a special model where vp " can be
approximated by

2 I:pp(O)
7rniV P,o-

Pm = ---;:z I: pp(O)V~ ,
P,U

A = ~rr3 I: U2 (vp+ + Vp '_ - Vp '+ - Vp_)2 p(p+)p(p-)p(p'+)p(pl
-)

3 p,p',k

X (e I:PP(O)V~) -2 ,
p,u

(~Pp(O)p;) (~PP(O)V~X)
1> O.

(~ pp(O)VpxPx) 2

(4.16)

(4.17)

(4.18)

V _~+17(~)2~
PI-' - m*a Po m"'a'

where I) is a small parameter and Po is a scale of the Fermi momentum. We thus get

_ _ _ _ k" p~ - p;?
vp +/£ + UP'-It - Vpl+ Jt - vP-IJ. = 317m"'a ----pro

lIere, we d"fine the following coordinates,

k = kell'

p p.c(COS<pe.ll + sin 'l'e.l2) + pllell,

p' p~(cos'l"e.ll+sin'l"e.l2)+pllell'

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

where n = IJU3rr2. This result will be interpreted from Fig. 4.3 where So is the Fermi surface
and 5± is the surface given by shifting So by 'fk/2. Here, the condition that the initial and final
states are on So in the process of two-body scattering can be simply represented by the condition
that p and p' are on the intersection of 5+ and 5_, as already mentioned in Sec. 3.3. Since the
intersection is a closed loop, we introduce angle variables 'I' and '1", 0 :<:: '1', '1" < 2rr, to parameterize
this loop. Then, vp is conserved in special processes of normal scallering corresponding to '1" = 'I' or
'1" = '1'+ rr, but not conserved in general processes, and therefore a finite T 2-term in the resistivity
results.

We note that, if the same problem is considered in two dimensions, all processes corresponds
to either '1" = 'I' or '1" = 'I' + rr because of the restriction of the phase space. In this case, therefore,
T2-term in the resistivity does not result as mentioned in Sec. 4.1.

On the other hand, from eq. (4.18), c> is given by

where

Since the right hand side of cq. (4.20) is already proportional to I), by eq. (4.17), we obtain A in
the second order of U and in the leading order of I) as follows,

2 3 Jd
3

pd
3

p'd
3
k 4 - - - - 2

A = 3'rr ~a (Up+, +up,-, - up,+, - up_,)

X U2
J((Ip+1

2
- p6)/2m')J((lp'-12 - p6)/2m*)J((Ip/+1 2 - p6)/2m")J((lp-12 - p6)/2m")

Introducing the quantities, p(n), defined by

(4.30)

(4.29)J~aJ (lIT. _~) (!2)2n
(2rr)3 2 2 Po

1
2(2n+ 1)rr2po ,

p(n)

(4.24)

(4.25)

(4.26)

(sin 0cos <P, sin 0 sin <p, cosO),

(cos 0cos <p, cosO sin <p, - sin 0),

(- sin <p, cos<p, 0).

28

29



since vp, - p,/m"a is already proportional to 11, we obtain up to the leading order in 11,

112 (p(l)p(3) _ p(2)2) /p(1)2

84 (31t
(4.31)

(4.32)

Figure 4.3: ormal scattering process in three dimensions. The left figure represents the condition
that the initial and final states in the process are on the Fermi surface. The right figure represents
one of the possible processes. The black and white circles correspond to the initial and final states,
respectively.
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(5.4)

where Xo = dXo and we have evaluated €p2 in the denominator as (11:T)2/3. Then the matrix e can
be separated up to U2 as follows,

(5.7)

(5.8)

(5.9)

(5.10)

C' =L: e(L.,) =C·(O) + C·(I) +.
L"

e (O)
LL'

d
whose leading term in the lid-expansion is proportional to d-L.,!2 where Lij = L Invl for rij ==

v=l
ri - rj == (nt, n2, .. " n v , •. " nd), as given in Appendix C. The second term in eq. (5.6) corresponds
to the vertex corrections and is the negative definite matrix. This leads to the fact that the vertex
corrections decrease T 2-term in the resistivity.

We can neglect all effects of renormalizations since we consider the T 2-term in the lowest order
of U. Then, we note

Here, we used ,pdp) = -lh(-p) and Pij(€) is the spectral function in the site space defined by

Since Pij(€) C< d- L.,!2, it is convenient to perform the site sum in eq. (5.6) as the sum over Lij as

Then, we obtain

Note that C'(O) has no contribution from the second term in eq. (.5.6). This corresponds to the
absence of the vertex corrections in d = 00. Here, N(d)(€) is the density of stales for given spin in

(5.1)

(5.3)

d

€p = -2t L: cosp~,
?I;l

Hence, in the limit of d -+ ,the Umklapp processes always exist.!') The proportionality of the
resistivity to -r in d = may imply that normal processes generally contribute to the resistivity
once Umklapp scattering processes are present. This is because -r results not only from Umklapp
scattering processes but also from normal scattering processes, although the separation into normal
process sand L'mklapp processes is no longer visible in d -+ 00. This is another aspect of the
breakdown of the :-Iatthissen's rule.

The \'ertex corrections are considered to partially recover the momentum conservation and their
contributions turns out to be proportional to lid, which will be e\'aluated in the lowest order of U.
Here, the r1c-condUCli\'ilY is rescaled as odc(T) = dOdc(T) and is given from eq. (3.27) as follows,

Chapter 5

High-Dimensional Systems

where we put 2dt2 = t- 2 and regard t- as a quantity of the order of I in high-dimensions (d -+ (0).
In the case of d = ,we can consider that the Fermi surface does not change by U since the
selfenergy is independent of momentum l3) Then, one can expect Umklapp scattering processes
when the absolute \'alue of the chemical potential of the non interacting system, Po, is smaller than
that of the band eneray at the momentum, p = (11:12,0, .. ,,0),

11101 < 2t(d - I) = Jk (d ~l). (5.2)
- vd

In this chapter and next, we consider the resistivity due only to mutual Coulomb interaction in the
absence of the impurity scattering.

It is well known that the resistivity of the infinite dimensional system 15-17) is determined only by
the damping of quasiparticle, I, because the vertex corrections for the current operator vanish and
therefore there exists only the self-energy corrections. 14) On the other hand, as seen in Chap. 3, the
consistency between the selfenergy and vertex corrections is indispensable in order to implement
conservation of crystal momentum. This insures that the resistivity vanishes in the absence of
Umklapp processes. In this chapter, we investigate the resistivity of high-dimensional systems by
our formulation in terms of the memory-function matrix which respects the consistency between
the selfenergy and vertex corrections.

We consider the model with the nearest-neighbor hopping on the d-dimensional hypercubic
lattice whose kinetic energy is given by (the band center is taken as the origin of energy)
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(5.11)

(5.12)

d-dimensional system given by

Pii(f)

j
~ ddp
_~ (2r.)d O(f + J-Lo - fp)

_1 ex (_~ (:..±..!!:£)2 _~ (3-6 (f+J-LO)2 +(f+J-LO)4) +0 (.!:-)).
~ p 2 t' 16d t' t' d2

(5.13)

ext, we have

ci~, = ~U2 (P<i,j> (0))3 (N(d)(o)r (1: (~:~dO(fP - J-Lo),pL(p),pu(p)2t cosp~)

_~U2 (P<i,j> (0))2 (N(d)(O)r 2t (1: (~:~dO(fP - J-Lo),pL(p) sinp~)

x (1: (~:~dO(fP - J-Lo),pu(p) sin p~)

~U2 (-!!f) (P<i,j> (0))3 (N(d)(o)t Ow

_~U2 (P<i,j> (0))2 (N(d)(0)f
1
X~d)t"-20L10W' (5.14)

where we have used eqs. (5.1) and (5.8) for the second equality and the orthogonality relation of
the Fermi surface harmonics. Here, < i, j > means the nearest neighbors and we get

A = ~r.3N(d)(0)Cll/e2X~d) + 0 (~)

= ~ (r.U)2 exp [_ (!!:£)2 _~ (~+ ~ (!!:£)2 _~ (!!:£)4) +0 (.!:-)]. (5.20)
3 et'2 t' d 8 2 t' 8 t' d2

P(i.j)(O) = - ~N(CO)(O) +0(d-3/2).

In eq. (5.14), \~d) is defined by

(d) j~ dd p ,2. 2
\0 _. (2r.)d 4t Sin p~O(fp - J-Lo)

2t"
2
N(d)(0) (1+ ~ (1- (~r) +0(~)).

(5.15)

(5.16)

(5.17)

ince C'(2) is proportional to I/d2, we conclude that the off-diagonal elements of CLL' are of the
order of 1/d2 On the other hand, the diagonal elements of C'LL' has terms of the order of lid in
addition to that of the order of 1. Thus, by substituting eqs. (5.10) and (5.14) into eq. (5.9), we
obtain

Inserting eqs. (.5.17) and (.5.1 ) into eq. (.5.·1), we get T 2-term in the resistivity given as follows

(5.19)
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.In eq. (6.1). Ivp+xvp. y - vp.xvp+yl and Iv' '+xvp•. y - vP'.xv·.+ I are Jacobians of <i-functions
which represent the fact that the initial and Inal states in two-boly scattering are on the Fermi
surface. These Jacobians are equal to the areas of the parallelograms set up by the vectors, Y' +
and Y p., and the vectors, Y p'+ and Y p,., respectively, and thus are equal to 0 in the followi;'g
cases: (1)5+ and 5. coincide with each other, that is, k = 0; (2)5+ and . are tangent to each
other at p = Po and pi = pb for k = ko· We can consider that the integrand in eq. (6.1) does not
have other singularities except the contributions from these Jacobians, by the assumption of the
Fermi Iiqllj~. Let us .exal~ine the behaviors of Ivp+xvp-y - VP-xVptyl and Ivp'+xtJpl-y - Vpl-xVpltyl
around their zero POllltS III the above cases(l) and (2), respectively. The former corresponds to the
normal scattering processes with small momentum transfer and the latter belongs to the scattering
with large momentum transfer including both Umklapp processes and normal processes.

For small momentum transfer, we consider the vicinity of singularity of the integrand in eq. (6.1).
lIere, we assume 50 can be approximated by the circle of some finite curvature around p, which
satisfies the condition that Y~ is perpendicular to k. Then, we can evaluate for small transferred
momentum k as

Chapter 6

Two-Dimensional Systems

In two-dimensional systems without impurities, it has been pointed out by Fujimoto et a/.tB) that
the resistivity is proportional to T2 even though the damping rate of the quasi-particle, /, is
proportional to T 2 10g T, indicating the different temperature dependences between the two. They
claimed that this is because normal processes, which give the T 2 10g T contribution to the damping
rate of quasiparticle /, do not contribute to the resistivity. In the previous chapter, however,
we observed that, in the case of a general Fermi surface different from sphere, normal processes
generally contribute to the resistivity in the presence of Umklapp processes. Once one realizes this
fact it is interesting to ask what is the effect of normal processes on the resistivity of two-dimensional
systems in the presence of Umklapp processes.

Ivp+xvp- y - vp·xvp+yl ex Jk; + k~.
In a simila.r way, we can also evaluate

Ivp'+xvp,-y - vP'-xvp'+yl ex Jk; + k~.

T'hus, we find that this region of the integral gives a logarithmic singularity to / as follows,

(6.2)

(6.3)

6.1 Damping Rate of Quasiparticle and Transport Relaxation
Rates

First, we investigate two-body scattering processes which give T 2 10gT contribution to /. Here, we
expand /, which is defined by the average of the damping rate of quasiparticle, /P' over the Fermi
surface, up to T 2 as follows,

(6.1)

lIere Ac is momentum cut-orr. This leads to T 2 10g T-term in /.
For large momentum transfer, we consider the vicinity of singularity of the integrand in eq. (6.1).

lIere, we assume 5+ and 5_ can be approximated around Po by the circles with different curvatures
in general. Then, we can evaluate for small k = k - ko as

where !1}s the re.!'ion which satisfies -_rr - kox ~ kx $ rr - kox , -rr - koy < ky $ rr - koy,
o< cos (Jkx + sin (Jk y < Ac and 0 < cos (J' kx +sin (J' ky < Ac. Ilere, we can classify normal processes
or Umklapp processes by the condition that tan (J tan (J' > 0 or tan (J tan (J' < 0, respectively. Thus,
Umklapp processes do not give a logarithmic singularity to /. But normal processes with large
momentum transfer with (J = (J' give a logarithmic singularity to / as follows,

(6.5)

(6.7)

(6.8)

where (J is the angle of the vector which turns from center of curvature in the side of 5_ to that
in the side of 5+, and which is parallel to ypo±ko/z.(See Fig. 6.1) In a similar way, we can also
evaluate

Ivp'+xvp'-y - vP'-xvp'+yl ex Jcos(Jlkx +sin (Jlky. (6.6)

Thus, we can evaluate the contributions to / from the vicinity of this singularity of the integrand,

36

where we note that p and pi, which are common points of 5± in the first Brillouin zone, are the
vector functions of the transferred momentum k. Here, we see that the normal scattering can be
represented by p, pi E 5+[0) n 5_[0] and that the Umklapp scattering with the reciprocal lattice
vector G can be represented by p E +[0] n 5_[OJ and pi E 5±[O) n 5,dG]. The definitions 5±,
5±[0] and 5±[G] ha\'e been already given in Sec. 3.3.
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This leads to T 2 10gT-term in /.

ext, we investigate 1/T~f!el(1I"T/V3), the transport relaxation rate du to electron-electron
scattering defined by eq. (3.36). If the matrix elements of C have no logarithmic singularity,

1/T~!e1(1I"T/V3)'s are proportional to T 2 even in two dimensions where the quasiparticle's damping,
/, has T 2 10gT-dependence. In this case, the resistivity is proportional to T 2 • Thus, we investigate
the matrix C. From eq. (3.30), we obtain

eLL' = 1 j" d
2
k L [1'2 (+ '-. '+ -) 1 rA2 ( + '-. '+ -)]8 _" (211")6 P,P'ESt

nS
_ t! I' ,I' ,I' ,I' + 2" tt I' ,I' ,I' ,I'

xaptap,-ap,tap- (N·(0))-2

('¢dp+) + '¢dp'-) - '¢dp'+) - '¢dp-))(,¢U(p+) + ,¢u(p'-) - '¢u(p'+) - ,¢U(p-ll

x Iv;+xv~_y - V;-xv~+!lllv;'+XV~/-y - V~I-XV~I+yl .

(6.9)

The important fact to note is the existence of the factors, '¢dp+) + '¢dp'-) - '¢dp'+) - '¢dp-),s,
in this expression which does not exist in eq. (6.1). For Cu, we take the summation with respect
to 1', P' and G which satisfy p ( or p' ) E 5+[0] n 5_[OJ and 1" (or P ) E 5±[oJ n 5",[G]. For CN,
we take the summation with respect to I' and p' which satisfy p,p' E 5+[0] n 5_[0]. From the
above examination of /, it is obvious that Cu does not have the logarithmi' singularity. We shall
thus confine our attention to CN. Here, we classify the Fermi surface by an integer Z which is the
maximum number of the common points of 5+[OJ and 5_[0] when each is tangent to the other for
-11" < kx , k y :s:: 11", as mentioned in Sec. 4.1. We show examples of the Fermi surfaces with Z = 1
and Z = 2 in Fig. 6.2(a) and (b), respectively.

In the case of the Fermi surface with Z = 1 which corresponds to the closed Fermi surface
without inflexion points, the number of the intersections is necessarily equal to two when 5+[oJ
and 5_[OJ intersect each other, as shown in Fig. 6.2(a). Then, there exist only the processes of
normal scattering with 1" = ±p, since the inversion symmetry of the Fermi surface (p = c:.p = O.
We thus obtain '¢dp+) + '¢dp'-) - '¢dp'+) - '¢dp-) = 0 for all present processes in the normal
scattering in eq. (6.9). This leads to an interesting result that CN is equal to zero as a matrix. The
model with dispersion (p = -2t(cospx + cos/Jy) belongs to this type. We will actually calculate
T2-term in the resistivity of this model in the whole region of the electron number density in Sec.
7.2.

In the case of the Fermi surface with Z 2: 2, CN is not equal to zero as a matrix since there
exist the normal scattering processes with 1" -I ±p, an example of which is shown in Fig. 6.2(b).
It is enough to consider the case of small momentum transfer and the case of large momentum
transfer with 0 = 0' which lead to logarithmic singularity of /.

For small momentum transfer k, we get

(b)

Figure 6.1: Examples of scattering processes with large momentum transfer which give divergent
contributions to integrand in eq. (6.1). (a) Umklapp processes. (b) normal processes. '¢dp+) + '¢dp'-) - '¢dp'+) - '¢dp-) (V',¢dp) - V''¢dp')) . k

ex: Jk';+k~ (6.10)

Thus, CN does always have singular contributions from the small transferred momentum, indepen­
dently of the shape of the Fermi surface.

For large momentum transfer with 0 = 0', if '¢L (Po + ko/2)+'¢L (Po - ko/2)-1/JL (Po +ko/2)­
'¢L (po - ko/2) -I 0, CN has logarithmically singular contributions as follows,
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But as far as the case of the Fermi surface with Z = 2 is concerned, the singularity can be removed
as will be seen below.

In the case of Z = 2, as seen Fig. 6.1{b), pb = ±po necessarily holds although 0' = O. It is
enough to discuss the case of pb = Po because of the inversion symmetry of the Fermi surface. We
then obtain for small p - p'

(a)
"'L{p+) + "'L{p'-) - "'L{p'+) - "'L{P-)

~ ('7"'L (p+~) - '7"'L (p'- ~)). (p-p'). (6,12)

6.2 Resistivity

On the other hand, by approximating 5+ and 5_ around Po again by the circles of curvature, we
obtain

In this section, we consider two-dimensional and three-dimensional systems in the presence of
Umklapp processes and neglect the impurity potentials. We then obtain in a similar way to eg.
(4.4) since Cu is a positive definite matrix,

(6.13)Ip - p/l ex: JcosOk. + sin oky.

2 I: ( Of) .2 [ 1 ]
e P.' -o'p Vp. 2rrN'(0)('p2+(rrT)2)(CN+Cu) 11

e
2 (-~) V

p; [C- I ] (w(O)2 + ~wU)2_1_. ) 6.14I: oe 2T.".V-(0)(,·2 + (rrT)2) U 11 N,U LJ N,U 1 >.U) ( )
P.' P P )~I + N,U

O'dc{T) =

Therefore, the logarithmic singularity is removed and thus we find that CN does not have the
logarithmic singularity.

Finally, we give summary of this section. Cu does not have a logarithmic singularity indepen­
dently of the shape of the Fermi surface. The case of the Fermi surface with Z = 1 is special in the
sense that C'N = 6. In the case of the Fermi surface with Z = 2, CN does not have a logarithmic
singularity and CN # 6. Thus, we conclude that, in the case of the Fermi surface with Z = 1

or Z = 2, the transport relaxation rates, l/rHl,tl"rrT/V3)'s are all proportional to T2. On the

other hand, in the case of the Fermi surface with Z ~ 3, l/rHl,/{rrT/V3) may have a logarithmic
singularity. However, even in this case, the resistivity is proportional to T 2 at sufficiently low T,
as will be seen in the next section.

O
·-kl2

P •+kl2 p'

O'

SO P p~12
p -kl2

S~P'_kl2
p'

• p +kl2
o

P •+kl2 P

P -kl2

S

(b)

where

Figure 6.2: 'ormal scattering processes in two dimensions. (a) There exist only the processes with
p' = ±p. (b) An example of the process with p' # ±p. Lfr~~~Ufr~:t = 6)).,

fww~= 1.
)=0

(61.5)

(6.16)

Here, we note that >'~)t; = 0, fr~~u = ctJ,/(t¢Cu¢)~, and >.Wu > 0 for j ~ 1. Thus, w~~3 is given
by

ti·(~)2 = .~; .j [C'-I] .
.\.U t9CU9 U 11

(6.17)
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where

On the other hand, p(-,±) exist only when k E nil Un.l where the regions nil and n.l are respec­
tively given by

The regions no, nil and n.l are shown in Fig. 6.3. Note that if 0 :s u :s I, the regions no,
nil and n.l all exist and the condition nil Un.l c no is always satisfied. On the other hand, if
1 :s u :s 2, only the region no exists. We can further check the following three facts: (l) If kEno,
a particle with momentum pl+,J) ± k/2 is scattered to a state with pl+,j) Of k/2 always within the
zone-boundaries; (2) If k E nil, a particle with momentum phj) ± k/2 is scattered to a state with

p(-,j) Of k/2 always across the zone-boundaries pz = ±7r; (3) If k E n.l, a particle with momentum
pl-,J) ± k/2 is scattered to a state with phj) Of k/2 always across the zone-boundaries 1'y = ±7r.
Since only the Umklapp scattering processes, which correspond to the processes with p = p(±,j)
and pi = pI'!',)'), contribute to A, the above facts show that A is non-zero only when 0 < u < 1,
that is, -2t < 11 < O.

We separate A into All and A.l which is the contributions from the Umklapp scattering processes
along the x-axis and the y-axis, respectively, as follows,

We easily see from eq.(6.14) that, in the presence ofUmklapp processes, normal processes contribute

to the resistivity unless CN = 6, since w~~~ < 1 and >,Wu > 0 for j ~ 1. Here, Umklapp processes

playa similar role of impurities which are necessary to the the finite T 2-term in the resistivity
resulting from normal processes as was seen in Chap. 4. This is another aspect of the breakdown
of the Matthiessen's rule.

In two-dimensional systems, it depends on the shape of the Fermi surface whether or not normal
processes contribute to the resistivity in the presence of Umklapp processes. In the case of Z = 1,
only Umklapp processes contribute to a finite T2-term in the resistivity since CN = 6. However, in

the case of Z = 2, all >.Wu's(j ~ 1) in eq. (6.14) are finite since CN has no logarithmic singularity.
Then, normal processes, 'which are known to give the T 2 10g T contribution to "'I, do not change the
fact that the resistivity is proportional to T2 but they give a finite contribution to the T 2-term in
the resistivity.

In the case of the Fermi surface with Z ~ 3, although >,Wu's(j ~ 1) in the denominator of the

second term in eq. (6.14) may have logarithmic singularities, the resistivity is proportional to T 2

at sufficiently low T since the first term in eq. (6.14) is dominant to O'dc(T).

6.3 Hubbard Model with Nearest-Neighbor Hopping

The resistivity of the two-dimensional Hubbard model with the nearest-neighbor hoppings (Ep =
-2t(cospz + COSPy)) has the contributions only from the Umklapp scattering processes in the
absence of the impurity scattering as mentioned in the previous sections. In this case, the ordinary
memory-function formalism, which corresponds to an approximation truncating C up to the first­
order polynomials in the lowest order of U, leads to a correct result of the vanishing T 2-term in the
resistivity in the absence of Umklapp processes. Thus, we calculate T 2-term in the resistivity by
using the ordinary memory-function formalism. We consider here the case of less than half-filling.
There are two kinds of Umklapp scattering processes depending on the direction of reciprocal lattice
vector involved in the scattering processes; G = (±27r,0) and G = (0, ±27r). We call the former
(the latter) as the Umklapp scattering processes along the x-axis (y-axis). We note that in the
present approximation, the resistivity is given by the simple sum of the contributions from these
two kinds of the Umklapp scattering processes.

Then, we get the coefficient of T2-term in the resistivity, A, (along, say, the x-axis) as follows,

(6.1 )

p('.J) = (p~'J), p~"J») is given by the set of solution of the following simultaneous equations,

w(k;u)

(
. 2 kz • 2 ky ) 2 2 2 kz 2 ky

Sill 2" - Sin 2" + u sin 2" sin 2'

p(+'±) exist only when kEno where the region no is given by

kz ky
no : cos 2 + cos 2 > u.

cos~ + u < cos~,
2 2

cos~ + u < cos~.
2 2

(6.22)

(6.23)

(6.24)

(6.25)

lYe ha\'e used u = 11'1/2t for -41 :s I' :s O. Further, p~) ~ 0 and pVI > 0 are introduced by
p~,.±) == ±p~) and p~'.±1 == Ofsgn(k,ky)p~'l respectively. Then, we get -

{
cos(1', +k,/2) + cos(Py + ky /2) = u
cos (1', - k,/2) + cos(Py - ky /2) = u.

(6.19)
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From eqs (6.20)-(6.21), we get

Note that we always have All > Al.. We change the integration variables rrom kx and ky to k~ and
k~ as rollows,

(6.29)

(630)

(6.31)

(6.32)

k'
~sinfl

(
kx ) k~

cosT- u COST'

. kx
SIn -

2
k

cos-f

(cos
2f -cos

2~) (cos2f -cos2~) 2 - 2u2 (cos2f + cos2~ ) + u4 .

3~2 2 2 r2CO
'-' U dkx r dky

311" e t Xo )0 J2cos- 1(cos !:t-u )

sin 2'2 cos2 '!i
2 2

Al.

p(-'+)- k i2

p(+'+)- k i2

o

(b) kEQI
p(-,-) - k i2

(c) k H21

cos(kx/2) + cos(ky/2) = u

cos(kx/2) - cos(ky/2) = u

- cos(kx/2) + cos(ky/2) = U p(+,-)+k i2
l--__-----'

Then, we obtain

Pigure 6.3: (a)The region where p(',i) exists and the corresponding Umklapp scattering processes.
The colored region represents no which includes nil and nl.. Two possible Umklapp scattering
processes are shown ror (b) k in nil and (c) k in lll., where the solid closed lines represent the
Permi surrace.

3
3~2t2 2~ r r~ dk~dk~

IT e Xo i o i o
k' r-------k~'-

scosT 1- (s-u)2cos2-f

k' k' , (6.33)
s2 - (s - U)2 cos2 -f (s +u)2 - (s - u)2 cos2 -f

3
3~2t2 2~ r r dk~dk~

IT e Xo i o i o

k' k'
S-1 (1 - S2)(s - u)2 cos Tcos2 -f

(S2 - (S-u)2cOS2 ~) (1- (S-U)2coS2 ~) ((s+ u)2 - (s -U)2COS2~)'

(6.34)

where

s = s(k~;u) = (6.35)
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Figure 6.4: a-dependences of All, A,L and A. The inset shows a log-log plot near half-filling.

This implies that far away from half-filling, A has main contributions from All' We also get for

il -+ 0

Chapter 7

Electrical conductivity, a(w) due to mutual Coulomb interaction of a lattice electron system has
been studied on the basis of the Fermi liquid theory. Based on the Kubo formula to respect the
consistency between the selfenergy and the vertex corrections, a formulation is given in terms of
the memory function M(E;w) which is extended to the matrix form, and then a general expression
of NI(EjW) for the d-dimensional systems (d ~ 2) with the short-range Coulomb interaction, U, and
s-wave impurity scattering, v, at finite temperature, T, is given up to w, v2 , E2 and T 2 . In our
formulation, the effects of the periodic lattice which leads not only to the Umklapp scattering but
also to the band structure are fully taken into account.

Because of the latter effects, the total current is not conserved even in the absence of momen­
tum dissipation mechanism. In spite of this fact, it is shown that, in the absence of momentum
dissipation mechanism, the present theory yields a correct result of the absence of T 2-term in the
resistivity since M"(E), the imaginary part of 1\:1, has a zero eigenvalue reflecting the conserva­
tion of crystal momentum. This is in contrast to the ordinary memory-function formalism which
corresponds to the high-frequency expansion of a(w) and leads to an incorrect result of non-zero
resistivity.

On the other hand, the effects of the band structure lead to the fact that the Drude weights
Dw and DT

, which are limits of 1I'wlma(w) in the absence of momentum dissipation mechanism in
w -+ 0, T /w -+ 0 and in T -+ 0, wiT -+ 0, respectively, are not equivalent. This is in contrast to
the equivalence of the above two limits in the limiting case of continuum where the total current is
conserved.

In the presence of momentum dissipation mechanism through impurity or Umklapp scattering,
normal processes generally contribute to the resistivity as another aspect of the effects of the band
structure. This can be considered as a special case of breakdown of the :-latthiessen's rule.

In three-dimensional systems in the absence of the Umklapp scattering but in the presence of
the impurity scattering, the resistivity Pdc(T) is shown to be given by Pm + AT2 at sufficiently
low temperature. A is finite due to the violation of the current conservation. We have therefore
concluded that, in contrast to the general belief, a finite T 2-term in the resistivity results even in
the absence of the Umklapp scattering processes once the impurity scattering is present. However,
this temperature dependence due to Coulomb interaction saturates as temperature gets higher and
approaches Poo = (1 +Q)p,,, due to the conservation of crystal momentum. The quantity Q is due
to the difference of the shape of the fermi surface from sphere. In the case of low electron number
density in three dimensions, lVe have explicitly calculated A and Q in the lowest order of U.

Two-dimensional systems in the absence of the Umklapp scattering but in the presence of the
impurity scattering turned out to be special in the sense that it depends on the shape of the
Fermi surface whether or not the T 2-term in the resistivity results. Then, we have classified cases

Summary and Conclusions

from

(6.38)

(6.39)

0.60.50.40.3

doping rate 5

All ex ~(1-!cl)~ (6.36)
e2 t4 2t'

A,L ex ~(l_!cl)I (6.37)
e2t4 2t

0.20.1

I

\

\

\
\

"

~Tll TTT[d'T'IA,r~

\ 100~ \ - - -All

\ \ ---Ai
, \

\
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\
\
\

\ ,

a
a

0.2

0.8

'-

:~ 06

U2 11'2 t
All ~ A,L ~ e2t4 192 i/tI'

U2 11'2 t
A ~ e2 t4 96'i/tI.

As our system approaches the half-filling(il -+ 0), A diverges because of the lIatness of the Fermi
surface. The doping rate a is related to II by a ex (li'l/t) 10g(Ii'I/t) near the half-fillll1g where
the logarithmic factor reflects the Van 1I0ve singularity. Therefore, All' A,L and. A (hverge as
[alog(l/a)]-1 when a-+ O. This limiling behavior for a-+ 0 is not due to the approxllnatlOn of. the
memory-function formalism since the singularity arises from the Ja.cobians in eq. (6.18) WlllCh IS

always present in the contributions of the order of U2 The overall a-dependence of All' A,L and A
arc shown in Fig. 6.4.

finally, let liS examine the limiting behavior of All and A,L for i' -+ -2t and il -+ O.
eqs. (6.33)-(6.34), we get for I' -+ -2t
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depending on the shape of the Fermi surface by an integer Z, where Z is the maximum number
of the common points of two Fermi surfaces relatively shifted by the transferred momentum k and
tangent to each other. In the case of the Fermi surface with Z = 2, the resistivity has similar
T-dependences to the case of three dimensions. But, in the case of the Fermi surface with Z = 1,
which corresponds to a closed Fermi surface without inflexion points, the resistivity does not have
such temperature dependences because normal processes do not contribute to the resistivity.

Schematic representation of the temperature dependence of the resistivity in the absence of the
Umklapp scattering but in the presence of the impurity scattering is summarized in Fig. 7.l.

Next, we investigated systems in the presence of the Umklapp scattering but in the absence of
the impurity scattering.

We indicated that the resistivity of the d = 00 Hubbard model, which is determined by the
damping rate of quasiparticle, 1, can be naturalIy understood by the fact that there exist Umklapp
processes for any electron number density and thus the normal processes contribute to the resistivity
as well. The lid-correction to the resistivity has been also calculated in the second order of U.

In two-dimensions, in the case of Z = 1, only the Umklapp scattering leads to T2-term in the
resistivity while, in the case of Z = 2, the normal scattering has a finite contribution. However,
in both cases, the transport relaxation rates, the inverse of the transport relaxation times, and
therefore the resistivity are proportional to T2 in contrast to 1, which is proportional to T 210g T.
We have also found that, in the case of Z :::: 3, the resistivity is proportional to T 2 at sufficiently
low temperature even if there exists the transport relaxation rate which has a logarithmic singu­
larity. EspecialIy, the model with nearest-neighbor hopping which belongs to the case of Z = 1 is
investigated in detail in the second order of U with a special emphasis on the flatness of the Fermi
surface at the half-filling. It is found that T 2-coefficient of the resistivity diverges as [810g(1/8)t'
when the doping rate, 8, approaches zero.

d= 2

d= 3

Z= 1

t!
i----------~~-----j------l. ., ., .. .
J !
l 0 KI2 ~ II: b

: :
L J

p.~t------------

,L-----------..T

'----------->-T

Pigure 7.1: Schematic representation of the temperature dependence of the resistivity in the absence
of the Umklapp scattering but in the presence of the impurity scattering for two-dimensional Fermi
surfaces with Z = 1 and Z = 2 and for arbitrary three-dimensional Fermi surface different from
sphere.
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eq. (A.6) is rewritten as

Appendices

A Generalized Ward-Takahashi Identity

- iWmA~(p, ifn; iwm) = vp~[G-'(p, ifn) - G-1(p, ifn + iwm)] + Aj~(p, ifni iwm). (A.8)

We thus get

[E(p, ifn) - E(p, ifn + iWm)]vp~

= iWmTL L r(p, ifni p', ifn'; iwm)G(p', ifn' + iwm)G(p', ifn')vp'~+ Aj~(p, ifni iwm).
n' pi

(A.9)

Following Toyoda,6) we will derive in this Appendix the generalized Ward-Takahashi identity re­
Oecting equation of motion for the current

Inserting eq. (2.12) into eq. (A.9), we obtain the expression of the identity in terms of r(l) which
is the kernel of the Bethe-Salpeter equation for A,

x {iWmTL L r(p', ifn'; p", ifn,,;iwm)G(p", ifn" + iwm)G(p", ifn")Vp"~
nil p"

+ Aj~(p', ifn'; iwm) - [E(p'" ifn') - E(p', ifn' + iwm)Jup,,,}, (A.11)

x {iWmTL L r(p', ifn'; p", ifn"; iwm)G(p", ifn" + iwm)G(p", ifn")vp""
nil p"

+ Aj~(p', icn,; iwm)}

+TL L r(1)(p, ifn; p', ifn'; iwm)G(p', ifn' + iwm)G(p', ifn')
n' pi

[E(p, if,,) - E(p,if" + iWm)]vp~ - l' LL r(1)(p, ifn; p', if",; iwm)[G(p', if",)
n' pi

-G(p', if", + iwm))vp'" = Aj,,(p, ifni iwm). (A.12)

(A.10)

= TL L r(1)(p, ifni p', ifn'; iwm)[G(p', ifn') - G(p', ifn' + iwm)Jvp'" + Aj~(p, ifni iwm)
n' pi

+TL L r(1)(p, ifni p', ifn'; iwm)G(p', ifn' + iwm)G(p', ifn')
n' pi

(E(p, ifn) - E(p, ifn + iWm)Jvp~

= iwmTL Lr(1)(p, ifn; p', ifn'; iwm)G(p', ifn' + iwm)G(p', ifn')vp'~ + Aj~(p, ifn; iwm)
n' pi

where the function Aj,,(p, ifni iwm) is the proper part of Aj~(p, if,,; iwm). As the last term in the
right hand side of eq. (A.ll) vanishes, we get

If the total current operator commutes with the Hamiltonian, we have Aj" = 0 and eq. (A.12)
leads to eq. (2.'13).

(A.7)

(A.5)

(A.3)

(A.4)

(A.2)

(A.l)

- iWm 10'/1' drdr,dr; (T,.{J~(r)cpo(rd4o(rD})eiwm"+i,",.,-i'"'''!

-1/1'0 {'IT d( _ ')(1' { ()et (r')})v (ei('n+wm)(",-";) _ ei,nh-,.!))
n+m-n' Jo Tl Tt 'T Cpo Tl pO' 1 PJl

+ 10'/1' drdrldr; (T,.{[H, J~(r)]cpo(rd4o(rD})eiw","+i'n",-i'n''':, (A.6)

where we have performed the partial integration in the left hand side of eq. (A.6). Introducing
Aj(p, if,,; i.wm) defined by

Aj~(p, ic,,; iwm)G(p, if" + iwm)G(p, if,,)o,,+m_,,'

== 1'10'11' drdr,dr; (T,.{[H, J~(r)]cpo(rd4o(rD})eiw","+i'n",-i'",,.;,

[ep.,J,,] =

[4o,J~] = -

Inserting into eq. (A.2) the simultaneous commutation relations

and eq. (A. 1), we get

-fr-T,.{J~(r)epo(r,)cho(rD} = -T,.{epo(rd4o(rD}vp~ (o(r - rd - o(r - r{)}

+1',. {[H, J~(r)]epo(rdcho(rD}.

Taking the thermal average and performing the Fourier transformation, we obtain

8J,.(r) = [Ti, J,.(r)J.
8r

We first remark the following operator identity,

50 51



where V is related to the bare electron-electron interaction V as follows,

B Conserving Approximation

(C.20)

(C.21)

(C.22)

(C.23)

r + d-lReEI/(O),

J1- - ReE'(O).

21 d
'p - I' + ReE(p, 0) = - "f2d~ cospv - ji.,

x [(vp~ + Vp,,~ - Vp'2~ - vp.,~)V(Pio,Pi.;Pi"Pi, + q)

X V(Pi4 1Pis ; Pi!>, Pi7)'" V(Pi'l{I_ljl Pi,,(I_I)+l j Pi4(I_t)+2,Pi4(1_1)+3)

+.
+ V(PiOl Pi l ; Pi, I Pi3 ) ... V(Pi4(Jr_I) I Pi"(k_l)+l; Pi4(k-1)+21 Pi4(k_l)+3)

X (Vp,4k J.l + V p '-tk+l Jl - VP •4k+2 J.l - Vp'4k+3J.l)V(Pi.u:1Pi4k+l i Pi-tk+21 Pi4k+J + q)

X V(Pi<l(k+l) I Pi<l(k+I)+1 ; Pi<l(k+l)+21 Pi<l(k+l)+3) ... V(Pi<l(I_I) ' Pi<l(f-I)+I; Pi<l(t_I)+21 Pi4(t_I)+3)

+..
+ V(PiOl Pit; Pi2 , Pi3 ) ... V(Pi<l(1_2) I Pi<l(1-2)+t; Pi4(1-2)+21 Pi<l(1_2)+J)

X (Vp'<l{I_t)1l + Vp'<l(I_I)+11l - VP'<l{t_tJ+21l - VPIl)V(Pi<l(l_I) I Pi4(t_I)+I; Pi4(1-1)+21 Pi4(1-1J+3 + q)]
X G(pdG(pz)·· ·G(pZI-tl· (B.19)

C lid-Expansion

The right hand side of eq. (B.19) is equal to the contributions of order 1 to >'j~ corresponding to
E~ and it is easily seen to vanish in the limiting case of continuum where vp~ is proportional to
the momentum of each electron.

If we choose the three second order skeleton diagrams shown in Fig. 3.1 as r~~! (r = 1,2,3), we
see that not only the particle-hole diagrams, which are functions of p, pi, ifn ' - 'if n and iwm, but
also the particle-particle diagram, which is a function ofp, pi, ifn' +ifn and iwm , are indispensable
for eq. (B.19) to hold. This is the reason why we did not adopt in Chap. 2 the assumption that
r(l) is a function only of pi - p, ifn' - ifn and iwm .

First, let us assume the p-dependence of ER(p) as follows,

where

up to the leading correction with respect to lid. We see later this expression is self-consistent.
Then, we get

Then,

(B.16)

(B.17)

V(Pl, pz; P3, P. +q),

V(Pl' pz; P3 + q, P.)·

I T(I-I) F F"1 d "1 d 1 d
(-1) (21l")d(I_I)(2s+1) (-1) '2 d PI 7,' d PZ"'.~ d P,-l

xL1ddp'+1 L 1ddp,+z'" L 1dd pZI_1
(r+1 c,.t2 (21-1

xV(P10I Pit; PI11 Pi3)V(Pi'l1 Pis iPi6 1 PiT)'" V(Pi<4k1 Pri Pi4k+2 1 Pi4k+3 )

XV(Pi4.lr:/· Pi"k'+l; Pr + q, PiH:'+3) ... V(Pi4 (1_1) I Pi"U_I)+I; Pi4(1-1)+2,Pi4(I_t)+3)

xG(p.)G(Pzl·· ·G(p,-dG(p,+d·· ·G(Pzl-d, (B.15)

We will show in this Appendix that the generalized Ward-Takahashi identity reflecting equation of
motion for the current, which is given byeq. (A.12), always holds for an arbitrary skeleton diagram
contributing to E from which the skeleton diagrams contributing to r(1) are constructed by cutting
the internal G line in all possible ways.

We consider E~ which represents an arbitrary skeleton diagram labeled by I contributing to E.
E~(p, ifn ), containing 1 bare interaction lines and 21- 1 internal G lines, is schematically given by

E~(p) = (_1)' (2~;dl(2S+ I)F(_I)F~1ddp1~1ddpz ··· .E.1dd pZI_1

xV(p, Pi,; Pi" pi,)V(pi" Pi,; Pi" pi,) ... V(Pi'(I_I) ' Pi. lf _ I)+!; Pi'lf_I)+2' p)
xG(pdG(pz)" ·G(Pzl-d, (B.13)

V(PI - q,Pz;P3,P.)

V(Pl' pz - q; P3, P.)

where Plo :::: P+ 9, PI4(f-I)+3 == p, Pr == p' and we put q = (0, iwm).
Here, we note

We also note

and F is the number of closed Fermion loops, s represents spin and P = (p, ifn ). In eq. (B.13),
the sequence (ii, iz,' " iz(zl-1)) denotes a certain permutation of the sequence (1,1,2,2,···,21­
1,21 - 1) which specifies the diagram.

Then, r~~~(p, ifni pi, ifn'; iwm ), which contributes to the proper four-point vertex part and is
constructed by cutting the r-th internal G line(r = 1,2"",21-1) from E~(p, ifn), is schematically
given by

since q has zero momentum. We therefore obtain

(B.18)

(C.2~)
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where In(z) is the n-th order Bessel function given by
Especially, since we can evaluate i and i< by their values at d = 00, respectively, i = t- and

i< = P.o as far as the leading term in P;j(O) is concerned, we obtain

(C.25)

Pii(O)

P(i,j) (0)

(C.30)

(C.3l)

and

Here, we introduce Lij given by

rj - rj

(nl,n2' ·',nIl1··'lnd)·

d 00
Lij = L= Invl = L= mNm ,

v=l m=O

(C.26)

(C.27)

where (i, j) expresses that i-th and j-th sites are nearest neighbors.

where Nm is the number of directions whose coordinate, Invl, is equal to m. We consider the case

of f= Nm ~ 0(1). Then, we obtain the leading term of Pij(O) with respect to the lid-expansion
m=l

as follows,

JOO ¥e- i
," IT ((-i)mJm(2Si/V2d)t

m

-00 7f m=O

JOO ~e-;'" (1- (Si)2)d- fl N
m IT ((_isi/~)m)Nm

-00 2" 2d m=l m.

(
00 )( i u)L"jOOdS ((Si)2 )exp - 2: Nm log(m!) --=- -exp -- - isi<

m=l ,J2d up. -00 2" 2

( 1) L'J (00 ) _ 1 (i<2 )
- MJ exp - L= Nmlog(m!) HL (p./i) ;;;-::;exp -~ ,

v2d m=l 'J v2"t2 2t
(C.28)

where H dx)'s are Hermite polynomials. In a similar way, we can also estimate the Green's function

G,;,

G,;(=)

(C.29)

Eq. (C.29) leads to the following two facts: (l)ER(p) is independent of momentum for d = 00

because the self-energy in the real space. ~~, vanishes if i of j. (2)The momentum dependence of
d

the leading correction to ~Il(p) in the lid-expansion is d-3/2 L= cospv because it originates from
11=1

~~ where i-th and j-th sites arc nearest neighbors and there are at least three particle lines which

connect i-th and j-th sites in the Peynman diagrams of E~. By (1) and (2), we can check the
self-consistency of the assumption, eq. (C.20).
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