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Chapter 1

Introduction

The electrical resistivity due to mutual Coulomb interaction between electrons is one of the most
difficult problems in the theory of quantum transport in solids. It is generally believed that the
electrical resistivity, pac(T), in metals at low temperature, T, is given by p., + AT?, where py.,
and A are the residual resistivity and the coefficient of T2-term, respectively, and that T2-term
is caused by Umklapp scattering associated with mutual Coulomb interaction resulting from the
existence of the crystal lattice.!)

Microscopic analysis of this problem has been carried out by Yamada and Yosida,?) who em-
phasized that any theory addressing to the present problem should yield a correct result of the
absence of resistivity in the limiting case of continuum in the absence of the impurity scattering.
(We will use the term “continuum” to refer to the absence of the crystal lattice.) Their studies are
based on the formulation of the Kubo formula® developed by Elia.shberg‘) by use of the pertur-
bative treatment with the Feynman diagram. In the theoretical studies of the Kubo formula, the
current-current correlation function is expressed in terms of the one-particle Green’s functions with
the self-energy corrections, v, and the vertex corrections to the current operator. There exists an
important relationship, the Ward-Takahashi identity,”7) between the self-energy corrections and
the vertex corrections. Quite often, the resistivity, the inverse of the conductivity, is thought to be
determined basically by y. However, there are cases where the proportionality of the resistivity to
7 is not correct even at a qualitative level. The most typical case is the continuum in the absence
of the impurity scattering, as studied by Yamada and Yosida, where there is no resistivity even
though 7 is finite.

The absence of the resistivity in this limiting case is due to the current conservation through
the electron-electron scattering. The memory-function formalism®) based on the Mori formula® 10)
is, as well known, another formulation which yields a correct result of the absence of the resistivity
if the total current is conserved, and is powerful for the actual calculation of the resistivity of the
various systems in the lowest order of the scattering processes which do not conserve the total
current. This formalism, however, generally leads to non-zero resistivity if the total current is not
conserved even though the total momentum is conserved, in contradiction to the general belief
that the resistivity of the system without any momentum dissipation mechanism should vanish.
An example which indicates the existence of the resistivity requires the momentum dissipation
mechanism has been studied by Yamada et al.!!) who showed that T?-term in the resistivity is
absent in the isotropic system composed of two kinds of electrons with the interaction between
them. In this model, the total current is not conserved since the electrons have different masses
but the total momentum is conserved. Hence, the memory-function formalism is not valid in such
a case. This failure is due to the high-frequency expansion of the electrical conductivity, o(w),
inherent to the memory-function formalism.




In the presence of the crystal lattice which leads not only to the Umklapp scattering but
also to the band structure, the problem gets more involved and the interrelationship between the
conservation of total momentum of two scattering particles and the absence of the resistivity is
not clear. (We use the term “band structure” to refer to a general Fermi surface different from
sphere.) In this case, because of the effect of the band structure, the current is determined by the
group velocity, vp = Vpep, which is not proportional to the momentum, and therefore the total
current is not conserved even through the normal scattering processes which conserve the total
momentum. An example which automatically includes both effects of the Umklapp scattering and
the band structure, is the infinite dimensional (d = co) Hubbard model since the d — oo limit!2 13)
can only be formulated on the lattice. In this model, the vertex corrections to the current are seen
to vanish!¥) and therefore the resistivity!517) is determined only by 7, in sharp contrast to the
limiting case of continuum. The quasiparticle’s damping rate, v, has contributions from normal
processes. The proportionality of the resistivity to v in d = co may imply that normal processes
can contribute to the resistivity.

In this thesis, we will investigate the resistivity due to mutual Coulomb interaction of a lattice
electron system in the presence of impurity or Umklapp scattering , with a special emphasis on
normal processes through which the crystal momentum is conserved but the group velocity is not
conserved. The previous theoretical studies on the Kubo formula is formulated in terms of the
memory function which is extended to the matrix form on the basis of the Fermi liquid theory. The
present theory yields a correct result of the absence of T%-term in the resistivity in the absence of
both impurity and Umklapp scattering , in spite of the fact that the total current is not conserved.
It is found that the T?-term in the resistivity due to mutual Coulomb interaction results even in
the absence of the Umklapp scattering processes once the impurity scattering is present. However,
the resistivity in this case saturates as the temperature gets high. This is a special case of the
breakdown of the Matthiessen’s rule. As this fact may imply, we can show that, even if there exist
no impurities, the normal scattering processes generally contribute to the resistivity in the presence
of Umklapp processes. Once one realizes this fact it is interesting to ask what is the effect of the
normal processes on the resistivity in the presence of Umklapp processes in two-dimensional systems
without impurities. In this case, it has been pointed out by Fujimoto et al.!®) that the resistivity
is proportional to 7% even though the damping rate of the quasi-particle, 7, is proportional to
T?log T, indicating the different temperature dependences between the two. They claimed that
this is because normal processes, which give the T2 log T contribution to v, do not contribute to
the resistivity.

In the following we confine ourselves to the case of the d-dimensional lattice with d > 2 and
will not study the case of d = 1, since, though interesting, there exist some special features in this
case.!®2!) Throughout this thesis, we take units, & = kg = 1.

The structure of the thesis is as follows. In Chap. 2, we review E]iashberg's formulation of
the Kubo formula for ¢(w) on the basis of the Fermi liquid theory, and diagrammatical analysis of
T?-term in the resistivity to respect the consistency between the selfenergy and vertex corrections
developed by Yamada and Yosida. This leads to the absence of the 7-term in the limiting case of
continuum in the absence of the impurity scattering. We will even point out that, in this limiting
case, the generalized Ward-Takahashi identity reflecting the current conservation insures not only
the absence of the resistivity at finite temperature but also the absence of the renormalization of,
the Drude weight, the coefficient of 1/w-term in o(w). In Chap. 3, the electrical conductivity, o(w),
of the lattice system with short-range Coulomb interaction and the s-wave impurity scattering is
expressed by the memory function which is extended to the matrix form. The relationship between
our present formulation and the ordinary memory-function formalism is discussed. In Chap. 4, we
show that, even in the absence of Umklapp processes, normal processes associated with Coulomb

interaction can contribute to the resistivity once the impurity scattering is present, and then make
an explicit calculation of the resistivity in the three-dimensional system with low electron number
density. In Chap. 5 and Chap. 6, we investigate the coefficient of 7'2-term in the resistivity of
high-dimensional and two-dimensional lattice systems in the absence of the impurity scattering,
respectively. In Chap. 5, we obtain 1/d-corrections to the T-term in the resistivity in the lowest
order of the short-range Coulomb interaction. In Chap. 6, we obtain the doping dependence of the
coefficient of T?-term in the resistivity of the Hubbard model with the nearest-neighbor hopping
on a two-dimensional square lattice in the lowest order of the short-range Coulomb interaction.
Summary and conclusions are given in Chap. 7.




Chapter 2

Electrical Conductivity of Fermi
Liquid

2.1 Eliashberg’s Formulation of Kubo Formula

In this section, we first review the formulation of the electrical conductivity ¢(w) developed by
Eliashberg®) on the basis of the Fermi liquid theory.
The Kubo formula for 0y, (w) is given by

R R
19) = X (9,0
i el Xu (9 ~ Xuw(a ), (2.1)
q-0 w
where the retarded current-current correlation function is defined by
R = dte (] 29
X (@) fz ([-qu(t), Jqu (0)))- (22)
Here, the Heisenberg operator O(t) is defined as
O) = H-rMltg =iH=st)t, (23)
for an arbitrary operator O and
Jo= ZVPCL-H]/ZJCP"I/?G' (2:4)
pe

is a current operator, where VE is group velocity and c;,, is the creation operator for an electron with
momentum p and spin 0. X3, (q,«) can be obtained by the analytic continuation of Xuv (9 iwm)
with respect to the frequency as follows,

Xt (9,9) = (X (@ )iy pios (2.5)
where

{ T g
X la, i) = /0l AT (T - qu(7) Jqu (0)})™m . (2.6)

Here, the r-Heisenberg operator O(r) is defined as

O(r) = el H-2N)rQe~(H=-uN)r @7

for an arbitrary operator O.
By introducing the single particle Green’s function G(p, i€n) and the three-point current vertex
functions A(p, i€n;iwm), respectively, defined by

1T
Gl@iien) == [ an(T {epa(r)eh, OODe, (239)
A (P, in; iwm)G(P, ien + iwm)G(P, 1€n)6npmont
1T . % e S
= T/ drdndri(T-{Ju(r)eps (1) chy (7)) PeimTHienn—iewri (2.9)
0
we can obtain
Xuw (0, i0m) = =2 3 3" vp,G (P, ien + iwm)G(p, in) Ay (P i€n; i) (2.10)
n p

A(p, i€n; iwn) is related to the four-point vertex function T'(p, i€n; P’, i€n; i) as follows,

Au(pieniivm) = vpu + T Y 3 I(p, btn; Py ies; iwm) (D', ien + iwm)G (P, iew)vpys  (2:110)
ey

Here, T'(p, ien; P, i€,; iw) satisfies the following Bethe-Salpeter equation,

L(p, itn; P, iewiiwm) = TU(p,ien; P, iewsiwnm) +T Y 3 PO (p, ien; b, i€ iwm)
o
XG(p", ienn + iwm)G (P, i) T (", i€nn; P’y iew; Wm), (2.12)
where I'(1)(p, ie,; p/, i€); iwp) is the proper four-point vertex part.

Performing the analytic continuation of eq. (2.10) with respect to the frequency on the real
axis, we obtain

R (0,0 —iz/xd—"- R S VO v [
X (0,0) = %2 . 27 e |tanh { o5 | 1(PT, )AL (P, P anh | o

- +
— tanh (%;) } 92(p*,p7) A2, (p*,p7) — tanh (;—T> gx(p*»p‘ll\su(p",p')] ;
(2.13)
where
! © de & e g
Ai(pt,p7) = vp+ ;Z/’ Q—rz.h(zn*,p’;p*-p')yk(p*,p JVprs (2.14)
SEApr e L8 ey
a1(pt,p7) = GRpH)GR (),
92(p%,p7) = GR(pH)GA(p7), (2.15)
9a(p*,p")

Here, we have used the notation: p = (p,€), p' = (p',€), ¢ = (0,w) and have put p* = p+q/2,
PE=p'+g/2.




The functions Jix(¢; €';w) (for i,k = 1,2,3) in eq. (2.14) related to the analytic continuation of
[(i€n; i€ns; iwp), are given in ref. 4, where we have dropped the momentum subscripts since we are
interested in the analytic properties with respect to frequencies, and we have used the notation;
Tik(p+ 4.7 — ¢;:7',p) = Tix(p, 7'; q). Especially, the functions ],-gl)(pﬂp";p’*.p‘) play important
roles below, which are expressed for i = 1,3 as follows,

ISt it ) = {tanh (2T)—tanh (;—T)}F“’(p PP pT). (216)

Following the conventional Fermi liquid theory,2?) the function ‘72[21)((‘ €’;w) is expressed by A; and
Ag, which are the discontinuities of F“J(z;z’;w) across the cuts Im(z — 2') = 0 and Im(z + 2/ +
w) = 0, respectively, where z, z’ and w are complex variables corresponding to i€, i€, and iwp,
respectively, and by the continuous function T, across these cuts,

et = ¥ 5 = y 3
{Lanh <ﬁ) tanh <2T>}I'c(p+,p' it p7) +iT 0,00 ),

TR0 )

(2.17)
5 €—¢ et &=
A D o BTN € =
T S A 2{2coth( o ) tanh <2T> tanh<2T>} 1€ —¢)
1 ’ "+ =
+ 5{2coth ((Lc) — tanh (;_T) tanh (2:’,)} Ag(e+¢€).
(2.18)

The functions GR and G4 in eq. (2.15) are the retarded and advanced Green’s functions,
respectively, which are given by

i

RN — [GA(p\]* —
G™(p) =[G ()] 7m,

(2.19)

where g is the chemical potential and £7(p) is the selfenergy. When T is sufficiently low and T,
ep — p< T, they are well described by

GR(p) = [GA()] = e_“%’;p (220
where
[fp —n+ ReER(p)}':,i) . (2:21)
G = [1 = %REERQ})},:’ k (2.22)
T =—ap [Ims"(p)](:(i,. (2:23)

When w < T, we can assume that g, and g are independent of w,

(et p7) = [GRO) = a(p), (2.24)

a(*.p7) = [GAp)?

It
<
20
=

Only the function g;(p) depends strongly on w for small values of w,

a0t p) ~ '27.'1'(1:,6(( — €p)/(w+ 2ivp).

(2.26)

Retaining w-dependences only in g and J;; in the case w < T', we obtain the conductivity

from eqgs. (2.1) and (2.13) as follows,

o0 d¢ _ 2mid? pd(e— &) 8
O (W) = 512/ = ( e ) l‘p“W/\z./(p ),

where f = f(e) = (e/T 4 1)~ is the Fermi distribution function and

e = vy + 212 e 2 T80, '50)06 ) s

and Ji(,:’), the whole contributions from diagrams but without g, defined by

2o el

IQwe) = D@0+ 5 Z/ 70 " 0" T W s 0)-
=13

,<27r

Then, the Bethe-Salpeter equation, eq. (2.12), becomes

[ 2#111[,45(( —I 5)

= 1 i ) + - = T
Aax(p*,p7) = Vpu+ E%,:/_N‘z Tay' B0 ) T A, p").

Introducing ®p, by

Sp= [A2(p*, 97

1w+2 g )

where the w-dependence is not shown explicitly, we obtain
. f
T (W) = ‘JZ UpuPpu (— a )
P €/ e=es,

We note @p, near the Fermi surface is given as follows,

a
Upu 2 Vpu + |:3P chn(p):l -
A e=e}
P
and then

de;,

LT

=~ apipy.

From eq. (2.30), ®p, is seen to satisfy the following integral equation,

- iw®p, = v, — 21pPpu + 5 Z“p[ UGV ) e=eg, O Pt

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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Figure 2.1:  Diagrams for selfenergy Y(p,i€,) and for proper four-point vertex part

P (p, dey; ', i€y; iw,,) giving rise to T2-term in resistivity. The thick solid line represents the
dressed Green's function.

Here, J( ) is given as follows up to the first order of w,

() 050 ), 7'(p,P) + 5 cosh™? (—) r*(p,p'), (2.36)
where

I (p, ') = Te(p, 250) + —Z/x (;r 7‘0’(71,r”;O)yk(r”)F‘")(l/ ,7;0). (2.37)

In eq. (2.36), 7'(p, p') and [*(p,p’) are those at € = =¢pand € = =&

The conductivity, eq. (2.32),is obtained by solving lhe integral equation, eq. (2.35), in principle.
For approximate calculations, the guiding principle has been given by Yamada and Yosida.?) In
their studies on 7%-term in the resistivity due only to mutual Coulomb interaction, they found that
the consistency between the selfenergy ¥ and the proper four-point vertex part I'!) is important in
order to implement the conservation law where the 7%-term automatically vanishes in the absence
of crystal lattice. The selfenergy ¥ and the proper four-point vertex part I'(!) giving rise to the
T?-term are shown in Fig. 2.1

Then, by expanding eq. (2.35) at w =0 up to €* and T2, 0,,,(0) is given by

; 0
7(0) = ¢ Y vp,, Bp, (~Q> " (2.38)
po e =€,
0="vp,+ > Bo(p, PP’ + k, P — K)[®p_ik, + Pprykp — Ppr — Ppul- (2.39)
p .k

Here Ay is defined by
Ao(p, P5 P’ +k, p — k) = mpp_1(0) pprsic(0)ppr (0)

R o 1
x [1 1P + K p =) + ST (p, 050 + k,p — )| (€ + (+T)7), (2.40)

where pp(€) is the spectral function,
ppl€) = p(p) = apd(e - &), (2.41)

and F?‘T is defined by

I£:(p1, P2i Pa. P4) = T4 (P1, P2i P, Pa) — T'4(P1, P2; P, Pa), (2.42)

and Tyor(P1, P2; P3, P4) is the full four-point vertex function evaluated at zero temperature and
zero frequencies. If @p can be obtained by solving the integral equation, eq. (2.39), we can get
T?-term in the resistivity by substituting ®p, into eq. (2.38). If there is no crystal lattice, the
second term in eq. (2.39) vanishes because ®p, can be put to be proportional to the momentum
p- Thus, in the limiting case of continuum in the absence of the impurity scattering, the 7-term
exactly vanishes.

2.2 Limiting Case of Continuum in the Absence of Impurity
Scattering

In this section, we point out that, in the limiting case of continuum in the absence of the impurity
scattering, the generalized Ward-Takahashi identity reflecting the current conservation insures not
only the absence of the resistivity at finite temperature but also the absence of the renormalization
of, the Drude weight, the coefficient of 1/w-term in o(w) in Eliashberg’s formulation.

When the total current is conserved, there exists an important relationship between the selfen-
ergy corrections and the vertex corrections given as follows, ")

[2(p, ien) — Z(p, itn + iwm)]vpy
=T 55 TU(p, ien; P, 6w iwm) [G(P', ien) — G(P'y i + ) pry  (2:43)
wp
which is the generalized Ward-Takahashi identity reflecting the current conservation.(See Appendix
A)

Applying the analytic continuation on both sides of eq. (2.43) and making suitable rearrange-
ment of variables, we get

=) - =R (") lvps

0 de
Z/ B 71(1”1’ PP P e () +
o
Bot.p; )gz(p P)w 2
+.713)(p P -

[“4(17 ) - =Rt )]lpu

Z/* de’

=

+72 Yot ¥ p’*.p )g z(p+
1 o
A VY

(2.45)
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Putting w = 0 in both sides of eq. (2.45), we get
- 2ImE(p)y, —12 wd’]’ ';0)p(p" =
Z(p)vpu = 5 L (2, 7'50)p(p')vpr = 0. (247)
il
Further, putting € = €5 in eq. (2.47), we obtain one of useful equations
1 ,
29pUpy — 5 Zapj'(p, P)aprvpr, = 0. (2.48)
=

Toyoda™ obtained, by the analytic continuation of eq. (2.43), the expression corresponding to
eq. (2.48) where I'1) is assumed to be a function of P' = P, i€y — i€y and iwy,. We note, however,
that this assumption is not valid in general and then we did not adopt this approximation in
obtaining eq. (2.48) as seen in eq. (2.18). In Appendix B, we mention that this difference is
important.

On the other hand, from w-linear terms of eq. (2.44) and eq. (2.46), we obtain

[ il L
[1 = ELR(P)] Upu = Uput ZZ/ > IR0 23 0) 9k () vy
i

o 2™ Ty
+ 33 [ derQm,#;0) 2 cosh? (L) o :
3 § e CE 1 (p, s )ﬁCOS 5T p(®)vpry, (2.49)
O T ii 2 e ©), .
[1 e (p)] Upu = vput 5%’:/_x ?kgsjak (2.7 0)9x(p ) vpry
1 ?! (0) 1 =e ’ =
+ 5;/;:4 ders (p,p’;O)ﬁcosh 2 (ﬁ) P(P)vpry- (2.50)

From w-linear terms of eq. (2.45), we also obtain

1 OR vR " 1 e / 1 “Sre
= FcRe (P)|vpe = vp“75§/;md([‘C(p.p:O)Tcosh (QT

T )I’(P/)Up'»
s i
& Qi;/,mﬂ

; , a , -
(Jz‘l"(p,p:omp;m 1= ER(y )J (251)
; " 0 vy
+75) (0,0 0)ga(2';0) |1 %‘J(MD Vpiys

where we have used the fact that the correction terms in w-expansion in J' are order of w?, which
is obvious from eq. (2.18). Substituting egs. (2.49) and (2.50) into eq. (2.51), we see

e

a 1 i 1
lisi~Res R S Ik B s P
e ReZ%(p) | vpy = Op, 3 pgl lmds T*(p, p’)TT cosh (TT) p(P)vpra- (2.52)
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Further, putting € = ¢}, in eq. (2.52), we obtain another useful equation,

= ; 9, &
Vpu = Up,+ Zapfk(p. p'ap: (‘(’T{) . Upw (2.53)
> =,
. by [ . :
vhu + D apl¥(p, p)apy (;5{) Yo (2-54)
b7 =y
where of
I“(p,p') =T*(p,p) + 3 T*(p, p")apn (_E) apeT*(p", P'). (2.55)
P =,

The last term in the right hand side of eq. (2.54) expresses the effect of back-flow, or the drag
effect. Eq. (2.54) is the finite-temperature version of the well-known relationships between the bare
and effective masses at absolute zero,??) and implies that the adiabatic insertion of interactions
does not change the value of total current flow of a noninteracting system in the limiting case of
continuum in the absence of the impurity scattering.

At sufficiently low temperature, we can ignore the energy dependence of effective mass m* and
therefore put vp, = pu/m”. Hence, corresponding to eqs. (2.48) and (2.53), we obtain

Pu k ’ Bf) m Py >
ol B Zi 2.5
o %:ﬂ (pvp)a< )5 L (2.56)
/
ple 2 Sare, palt =, (2.57)
where m is bare electron mass. Here, we put
y %
®p, = m—“_F. (2-58)
Then, inserting egs. (2.56) and (2.57) into eq. (2.35), we obtain
(2.59)
By eq. (2.32), we thus get
= 2
) X0 = UE (2.60)
m iw miw
where
X6 =D vpndlep)- (2.61)
po

Although G is renormalized by m/m*, 1/w-coefficient of o(w) recovers the value of noninteracting
system due to the drag effect mentioned above. The result of the absence of T%-term in the
resistivity in the limiting case of continuum in the absence of the impurity scattering has been
shown by Yamada and Yosida,?) as was seen in the last section. However, to the best of our
knowledge, this is the first to show the absence of the renormalizations of the coefficient of 1/w,
t.e. Drude weight, in the framework of the Fermi liquid theory.




Chapter 3

From Kubo Formula to Matrix
Formulation of Memory Function

In Sec. 2.2, we have seen that Eliashberg’s formulation of the Kubo formula for o(w) leads to a
correct result in the limiting case of continuum in the absence of the impurity scattering. On the
other hand, the memory-function formalism® based on the Mori formula® 1 is another formulation
which leads to a correct result in this limiting case. This formalism is powerful for actual calculations
of the resistivity of the various systems in the lowest order of the scattering processes which do not
conserve the total current. In the lattice system, which is of our present interest, the total current
is not conserved even when the total momentum is conserved because the current is determined
by the group velocity which is not proportional to the momentum. In this case, the memory-
function formalism leads to an incorrect result of non-zero resistivity as discussed in Chap. 1. As
it turns out, this failure is due to the fact that, in the ordinary memory-function formalism, only
the violation of the current conservation is considered but the momentum conservation is not taken
into account. This is due to the high-frequency expansion of o'(w) inherent to the memory-function
formalism.

In this chapter, it is shown that with the help of Eliashberg’s formulation of the Kubo formula
for o(w), which is valid at low-frequency, and of the diagrammatic analysis of T2-term in the
resistivity to respect the consistency between the selfenergy and the vertex corrections developed
by Yamada and Yosida,? the memory function is extended to the matrix form so that it yields a
correct result of the vanishing resistivity when the total momentum is conserved.

We consider the following Hamiltonian,

= t ; £ ok

H = Yoo +U 3 okt PACPT ¥ D PaCheqsCpos
L p.p' k#0 X

(3.1)

where U is the short-range Coulomb interaction and pq = X_; €797 where r; represents the position
of the impurity. Here, we also consider s-wave impurity scattering whose strength is v since the
effect of the violation of the current conservation through normal processes gets important once
the impurity scattering is present as will be seen in Chap. 4.

3.1 Generalization to Matrix Form of Memory Function

As was seen in Sec. 2.1, the conductivity, eq. (2.32), is obtained by solving the integral equation,
eq. (2.35). In this section, we investigate the kernel of the integral equation, eq. (2.35), up to w,
€? and T? where the effects of the periodic lattice which leads not only to the Umklapp scattering
but also to the band structure are fully taken into account. Then, an expression of ¢ (w, T) is given
in terms of memory function which is extended to the matrix form.

First, we rewrite eq. (2.35) together with eq. (2.36) as

ivp, =Y Wipps + Kppl®pis, (32)

I

where Kppr = Kpp + iKpp and

. d
Ko = —wapl™(p, p')ap (— a—{,)!l—!. ] (3.3)
ety
. 1
Kpp = 8ppi27p — iapJ'(p, P)apr. (3.4)

We note that, if the total current is conserved, eq. (2.48), which is obtained from the analytic
continuation of the generalized Ward-Takahashi identity reflecting the current conservation, leads
to the fact that K7, has a zero eigenvalue for the eigenvector, vpy,, as follows,

PP’
> Kppvpy =0. (3.5)
=

This fact implies that the conservation laws are generally related to zero eigenvalues of Kgp,.
Actually, as has been indicated by Wolfle,?®) the vanishing resistivity of the lattice electron systems
in the absence of both Umklapp and impurity scattering is concluded from the existence of a zero
eigenvalue of K7, reflecting the conservation of the crystal momentum. This will be demonstrated
in the following, Sec. 3.3 and Sec. 3.4.

In the case of a general Fermi surface different from sphere, the total current is determined by
the group velocity, which is not necessarily proportional to the momentum. In this case, in order
to formulate ¢(w) unambiguously, we expand eq. (3.2) by the Fermi surface harmonics, {¢(p)},
which are the polynomials of the Cartesian components of the group velocity, vp,,, first introduced
by Allen.2%) 9y, (p)’s are listed in Table 3.1 up to the third order in the case of three dimensions.
Although the Fermi surface harmonics are different from the spherical harmonics, they essentially
correspond to those in the case of the limiting case of continuum, vy, o p,. The Fermi surface
harmonics satisfy the orthonormality relation

(Yrlvr) = der, (3.6)
where the inner product is defined as
(ulv) = (uv) = 3 upvpd(e — 5)/ 3 (e — €5).- (3.7)
P P
The bracket notation implies
(u)iZItp5(€-—£}'))/ZJ((—(;.,). (3-8)
P P
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Table 3.1: Fermi surface harmonics for cubic symmetry for polynomials up to the third order

Normalization factors are omit!ed for simplicity, which can be formally written down by use of the
inner product. We put v“f 2 + g 2+ u

Order of Irreducible Label of Ezplicit form for cubic symmetry

polynomial representation function ezcept for normalization factor

0 Iy Yo 1
1 s Uz Vb
Yy Uy
¥z 5,
2 Tas VpzUpy
UpyUp:
V2 Ups
T2 3L';,§, - v,‘,2
-2
Ty b vg? - (v°)
3 Ty Vrye UpzUpyUp:
s Ya(y2-22) R (053 ~ vp2)
and
2 similar
8] Vs ups — vp(va*)/{v3?)
and
2 similar
Iy Veigreany Ve (153 + 32 — v LN N G257 407
() (5) ~2(u)?) (02 (224024 03) () (v (v 4022)
(CL R = T om) )
and
2 similar

We will often write it as (u), in order to express e-dependence explicitly. We assume that @ and
Mpp can be expanded in Fermi surface harmonics

&, = Y 2r(velp), (3.9)
L

Kpp = Y Kiw(e€)or(p)vr (p)- (3.10)
LL

The inverse relations are easily obtained from eq. (3.6)

By (e 25(—6 Y p)%/Z&sﬂp (3.11)
’\w((.f)zzrs(f—f 5)3(¢ = €)Y (p) e (p) Kpp!
pp’

=1
X (Z (e — ep)d(e — [;,,)> . (3.12)
pp’

Then, from eq. (2.32), o(w) (along, say, z-axis) is given by
) s (3.13)

= EZZ/ deN*(¢)(v, -2)1/1(1) (€ )( ;)

and by eq. (3.2)

+/ dEN () K (6 )B() = i) 2%, (3.14)
where
B(e) =t (R2(€), Paa(€), Payza=2) (6, (3.15)
=51, 000,70, (3.16)
K, (€ €) K, (€, €) 1"r,x(y?+z2)(‘v")
a K. (€, €) Ky 43(€, €) K3 z(y2422) (€ €) -
K(6€)= | Kyppmele @) Kugrma(6€) Kegrim)aesa)(©e) (3.17)
Here N*( 26 € — €p). Note that it is enough to consider 9 (p) € I'is. If ®1(€) = Pa(e €) can

be obtained by so]vmg the integral equation, eq. (3.14), we can get o(w) by substituting @ (¢) into

1. (3.13). In the above, o(w) is exactly formulated at small w in the Fermi liquid theory.

Now, in the spirit of Yamada and Yosida mentioned in Sec. 2.1, we would like to obtain ®(¢)
by expanding K (¢, €) up to w, v2, € and T? in eq. (3.14). It is, however, noted that we consider
here impurity scattering as well and that we expand K T1(€€) up to v? with respect to impurity
scattering.

For that purpose, we first consider K7, (¢, €) up to v? and U?, where the processes shown in
Fig. 3.1 are taken into account in the proper four-point vertex part. The corresponding expression




P A3 Sy LB
i€, + i@y, i€, + IWy, i€, + 10y, g, + i,

I
I
! Pi Prhpe P
x i i€, + 1€, - 1€,
I
I
P /\ P P P
1€, i€, 1€, i€y
B P il I3
i€+ iy, 1€y + 10 1€p+ 10p T
n
P:*P p Pi p+p'-p Pi
€+ 1€y - 1€y i€, 1€, + 1€+ 1, 1€, i€,
p P p P
i€, i€, i€, 1€+ 100,

Figure 3.1: Second-order Feynman diagrams with respect to the mutual Coulomb interaction and
impurity scattering for proper four-point vertex part I‘“'(p. i€,; P’y 1€, twp,). The solid, wavy and
broken lines represent the dressed Green’s function, the bare Coulomb interaction and impurity
scattering, respectively.

for J' is given by

J'(p,p;0) = dmni?é(e—¢€) +4,¢UZ/ dsl[ Df(er+ e =€) f(€)

+i(@)fla +e=€)f(é)} p(pr)p(pr + p - P) = {f(e) fle+ € — &) F(€)
+(e)Fle+€ - e f(e )}p(m)p(p+p' - m), (3.18)

where we put p; = (p1, €1) and f(€) = 1 — f(e). The imaginary part of R is given from J’ by the
analytic continuation of the ordinary Ward-Takahashi identity reflecting the local conservation of
the electron number density?®) as

—2ImER(p) = %Z[:de’J’(p,p’;O)p(p’)

= 2mnN(d) + 207 z/ déde; {F(er)f(er + e~ €) (<)

P'p1
+f(e)fler + €= €)F(€)} p(p1)p(pr + p - P)p(P). (3.19)

Here, we put N (e Zapb' (€ = €p). Substituting eqs. (3.18) and (3.19) into eq. (3.12) together

p
with eq. (3.4), we obtain

Kip(e€) =

~5(e - ¢) 3 AmER () () (p)b (BN (N (€)
P

—%ZJ'(p,p’:O)p(mptp')mpwy( )N (ON(E)

= 20 N (8= O T AOIulp) )/ (V")

+27U%5(e - €) Z/ dé'de; {f(er) fler + € — €) f(€)

P.P'P:

+ fle)fle+e—€)f }ﬂﬂP
—2rU? Z dey {
P.p. I’l/

x p(p)p(p1)p(pr+ P~ P')p(2)¥L(p) YL (p') /N (N(€)
-27U% 3 / dey {F(e1) f(€) fler +e—€) + f(e) f(€) fler + € =€)}
P.P\p1
x p(p)p(PO)P(P)p(P1 + P - p’)b"L(p)wu(p’)/s\"(f)-\"(t')
12007 Y / der {f(€)F(€ + € — ) f(er) + F(€)F(€ + € — &) Fler)}
PP \P:
x p(p)p(P)p(p + P = p)p(P)YL(P) YL (P)) /N (N"(¢). (3.20)

By expanding the right hand side of eq. (3.20) up to v?, €? and T2, eq. (3.14) leads to

1p(p1+ p = P)p(p) 6 (p) YL (P)/(N*(6)*
fler+e—€)f(€) + fle) fler + e - €) F(€)}

[wi + M(gw))®(e) = i(v;2)} %, (3.21)
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where
M; - (6w) M, 3(6w) M, 2 (42 422) (W)
Maa o (€w) My o3 (6 w) Mz 22422 (€ w)

M(gw) = Me4a)2(690) Myapa)3(60) Moy o(2402)(6w)

(3.22)
Here, Mp(&;w) = My, (w) + iM{,(€) and M}, (e) is given by
Mip(e) = 2mnN(0) Y pp(0)¥(p) b (p)/N"(0)
P

s N o
+7(€+(@T)°) 30 UP(n(p¥) +vu(p’™) - vu(p™) — ¥r(p7))
pp'k
X ($u(P*) + vp(p") — Yo (P"™) - ¢r(p7))
X pp+ (0)pp-(0)ppys (0)py-(0)/N*(0), (3:23)
where p* = p £ k/2 and p'* = p’ + k/2. p
Next, we consider the higher order terms of K" (e, ¢') with respect to U but up to v2, €? and
T2, The higher order terms can be simply included by taking £ and I'() into account in order not
to violate the Ward-Takahashi identity. In a similar way to Yamada and Yosida?), we can obtain
terms proportional to €* and 7% in M"(e), by replacing U2 by
= ey, 4 e =
(et p'5pp7) + STH % P75, p0), (3.24)
in the second term in the right hand side of eq. (3.23). (See Fig. 2.1.) Here, I'y,/(p1, P2; P3, P1)
is the full four-point vertex function evaluated at zero temperature and zero frequencies in the
absence of the impurity scattering. An example of the higher order diagrams with respect to U
but up to v? for £ and ") are shown in Fig. 3.2. A diagram of Fig. 3.2(a) gives corrections
to 7p and diagrams of Fig. 3.2(b)~(f) give corrections to J'(p, p’) in eq. (3.4). Here, we note
that diagrams of the type Fig. 3.2(c)~(f) give the contributions to M” proportional to z2¢2 and
v*T? and thus these contributions are neglected. On the other hand, The corrections with respect
to U in diagrams of the type Fig. 3.2(2) and (b) are included in Ao(p, p) where Ag(p, p’) is the
full-three point vertex function evaluated at zero temperature and zero frequencies in the absence
of the impurity scattering. (See Fig. 3.3.) We thus obtain

Mpp(w) = —w 3 T*(p, p)pp(0)pp(0) e (p)br (p') /N*(0), (3:25)
p.p

Mip(e) = 7 30 (vAa(p, P)* (Yr(p) - (p")) (Yur(p) — br:(p"))
p.p’

X pp(0)pp(0)/N*(0)

d o 1 e
{T‘%(P*,p’ P, p7) + ST (e P i )

Pk
X (UL(pF) + $2(p") — vr(p™) - Y(p))
X (Yo (p™) + Yu(p') — vu(p') - v (p7))

X Pp+(0)pp-(0)pprt (0)ppy- (0) /N(0), (3.26)
up tow, v, € and T2, From eqs. (3.13) and (3.21), the electrical conductivity is given by
: of ) g 1
olw) =i S, (=L Jge | L | 3.27
r;( deg, ) 2o wl+M(epiw)] )

18

(a) /N (b)

© A © (f)
& N y 5
\.*\ .*\
Y \

Figure 3.2: An example of higher order Feynman diagrams with respect t(v) U l,)ut up to u" Fnr
(a) selfenergy (p, i) and for (b)~(f) proper four-point vertex part I'!)(p, i€, p', ien; wm): The
thick solid, wavy and broken lines represent the dressed Green’s function, the bare Coulomb inter-
action and impurity scattering, respectively.

X

Figure 3.3: Diagrams for selfenergy X(p,ie,) and for proper four-point vertex pfu’t
TO)(p, ien; Py i€ns iwm) giving rise to term proportional to v2 at 7' = 0 in M"(¢). The thick
solid and broken lines represent the dressed Green’s function and impurity scattering.
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In the above equation, we see that M (¢;w) corresponds to the memory function which is extended
to the matrix form. We call M (¢;w) the memory-function matrix.

3.2 Relationship to Ordinary Memory-Function Formalism

In this section, we would like to see the relationship between our expression of o(w,T), eq. (3.27),
and the ordinary memory-function formalism®) which corresponds to the high-frequency expansion
of a(w,T). Here and hereafter T-dependence of o(w) is explicitly shown as o(w, T).

First, we define transport relaxation times in our formulation of o(w, T') by the memory-function
matrix. The imaginary part of the memory-function matrix, M"(€), can be rewritten as follows,

M"(e) = 77 ta+20N*(0)(€2 + (xT)))C, (3.28)
where
app = 5 Z Ao(p, P))? (L(p) — $1.(P")) (¥r:(p) — $1+(P")) (3.29)
PP

% pp(0)ppr(0)/ (N*(0))*

it ¥, [Fﬁ(p*,p";p’*,p')+ ll"?f(p*,p";p’*»p’)
e 2
X ($r(pt) + $r(p'") — vr(p™) — Yr(p7))
X (Yre(p) + ¢ (p'7) — Y (™) — Y1 (p7))

X pp+ (0)pp-(0)ppr+ (0)ppi-(0)/ (N7 (0)). (3.30)
Here, 7; is a transport relaxation time due to the impurity scattering defined by

! = 2mnaAN*(0). (3.31)

We see that @ is a positive definite matrix and that C is a positive semidefinite matrix. This insures
the non-negativity of the resistivity. Introducing a matrix, @, which is related to the real part of
the memory-function matrix, M’(w), as follows,

d

=1+ [07)1\;1’(@')] . (3.32)

w=0

we see that @ can be considered to be a positive definite matrix if the assumption of the convergence

" . . Al 0 . - B
of the perturbation is valid. Here and hereafter, we define Q7 to be a positive definite matrix which
satisfies (Q7)* = @ for an arbitrary positive definite matrix Q.

In terms of 7)(¢) and @ defined by the following eigenequation,

e dyes - -’
@M (a7l = 10 (9ald), el = 55, (3.33)
eq. (3.27) is expressed as follows,
i of s w2
o(w,T)=e*) (—, ) vpk |aw s (3.34)
o\ 04 He [ ] _,z:% zu+l/r(]](ef,)

where

5) = [t wo1)7 o, ()2 .
A o] Swd?=1, (3.35)
1 =0

Eq. (3.34) shows that T(J)( ), which is a positive quantity by definition, can be interpreted as
transport relaxation time. Here, we see that in the approximation taken in the last section the
transport relaxation rates, 7)™} (¢)’s, are correct up to 2, € and T2. Especially, the transport
relaxation times due to the electron-electron scattering, ) (€)’s, are defined by

el-el
Yr(6) = 2nN°(0)(€ + (+T))AYL, (3.36)
where
B e y & e
alCantagli= oal salliat) s (3.37)

Now, we see that, at high frequency which satisfies w > \Iax{ (-1 e)}, eq. (3.27) leads to
an expression derived from the ordinary memory-function formalism. In this case, we get

% [
[uk“/"l1\;!”(1rT/\/§)a.""l
W—“
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Assuming we can take the limit w — 0in eq. (3.38), we obtain for the resistivity ps.(7'), the inverse
of de-conductivity o4.(T) = 0(0,T), up to U? and v?,

n of
M [7rT/\/5)]“/e2§ (‘a?,) k. (3.39)

It can be easily checked that eq. (3.39) is also derived from the ordinary memory-function formalism.
In the absence of both Umklapp processes and the impurity scattering, the ordinary memory-
function formalism generally leads to an incorrect result of non-zero resistivity even in the lowest
order of U. On the other hand, in our formulation, since the memory function is extended to
the matrix form, we can obtain a correct result of the absence of resistivity, as will be explicitly
demonstrated in the following.

a(w, T) =~ ] 5 (3.38)

—iw +

paclT) = oz (1) =

3.3 Conservation of Crystal Momentum

In this section, we would like to see how the conservation of the crystal momentum through normal
processes associated with electron-electron scattering is taken into account in our formulation.
We consider the two-body electron-electron scattering process where two quasiparticles with
momenta p + k/2 and p’ — k/2 are scattered to states with momenta p — k/2 and p’ + k/2,
respectively. Introducing Sp, which is the Fermi surface in the extended zone, and Si, which is
the surface given by shifting So by Fk/2, we can express the condition that the initial and final
states of the scattering are on the Fermi surface as p € S; N S_, where p is in the first Brillouin
zone. Further, we define So[0] and So[G] as the Fermi surface whose centers are at the origin and
the reciprocal lattice vector G, respectively, and also define S1[0] and S+[G] in a similar way to
the above. Then, the normal scattering, which conserves momentum in the first Brillouin zone,
can be represented by p, p’ € S4[0]N S_[0]. On the other hand, the Umklapp scattering with the
reciprocal lattice vector G can be represented by p € S+[0]N S_[0] and p’ € S£[0]N Sz[G]. Thus,
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for given Fermi surface, the matrix C' defined by €q.(3.30), which represents two-body electron-
electron scattering processes in M”, can be always separated into two, Ciy and Cy, the former
coming from normal processes and the latter coming from Umklapp processes,

C=Cn+Cu. (3.40)

(In infinite-dimensional systems, this is not true as will be seen in Chap. 5.)

In the system whose Fermi surface is sufficiently small, Umklapp processes do not exist and then
Cy = O. (In our formulation, we neglected the N-body scattering processes (N > 2) associated
with Coqumb interaction, whose contributions to the relaxation rate are roughly estimated to be
proportional to 72(N=1).) On the other hand, normal processes always exist independently of the
size of the Fermi surface and generally Cy # O. (Two dimensions turned out to be special and
there exists the case of Ciy = O depending on the shape of the Fermi surface as will be seen in
Chap. 6.)

Reflecting the conservation of the crystal momentum through the normal scattering, we find
from eq. (3.30) that Cy always has a zero eigenvalue,

Cné=0, ¢L—25 P)pz/N*(0). (3.41)

This is in contrast to the ordinary memory-function formalism where the memory function is scalar
and thus the momentum conservation cannot be taken into account.

3.4 In the Absence of Momentum Dissipation Mechanism

In this section, we see, as a direct consequence of eq. (3.41), that, in the absence of both Umklapp
and impurity scattering (v = 0 and Cy = O), o(w, T) diverges as 1/w in the limit w — 0 even at
finite 7" in spite of the fact that the total current is not conserved. Then we examine the Drude
weight, the coefficient of 1/w.

We introduce T_,(\f'(t’)‘ the transport relaxation time due to normal processes associated with
electron-electron scattering, defined by

1/7{(e) = 2nN"(0) (2 + (+T)2)AY), (3.42)

where 0

A alie e )
@t eya ) = A0a, Ll 5 (3.43)
Here, we find that \(\D = 0 for u(\m = a“d;/( a“’é]z because the conservation of the crystal
momentum through the normal scattering is expressed by eq. (3.41) and that /\f,{',) >0forj>1

because there do not exist any conserved quantities with the symmetry of I'5 except the momentum.
From eq. (3.27), we then obtain

( 2 of N s 1
il = 8% (—. )i[ — ] 3.44
o 2\"5) | e ) + (7T))Cx ), o

0f> o | w(\,)2 = wi\}_b?
ves |a¥ . - 3.45
( e, [ ]u ( —iw J=Zx L 1/,](\4)(65) (3.45)

where

L o
w‘(\’,) = [a“ 7u“)] / [a""_]]:l, Zw%)z =1. (3.46)
j=0

In the bracket of eq. (3.45), the first term reflects the conservation of the crystal momentum as
mentioned above, while the existence of the second term is due to the fact that the current is
determined by the group velocity, which is not proportional to the momentum.

The existence of the first term leads to the absence of T?-term in the resistivity.

At T = 0, both the terms are proportional to 1/w while, at T > 0, only the first term is
proportional to 1/w since l/rl’)( )’s are proportional to €2 and T2 in the second term. Introducing
“Drude weights” D“ and DT respectively defined by

Y =7 lim li g R 2R 4
D = lim lim wimo(w,T) = ¢*X; [@ ]”, (3.47)
e A e =1 (0)2 ’
D' = rr}l_n'loil_r'no.ulma(u,T) =exg [a ] wy' (3.48)

we see the following inequalities,
D5 BES0, (3.49)

DT is explicitly given by

2
iy (Zé(e;ﬁ)vf,,pz)
i < o . (350)

=
gl;r (P 2)2p (0)ppr(0)p:2. (zw ) (ch(e;f)v;i)

The inequality, eq. (3.49) is in contrast to the equality of the above two limits in the limiting
case of continuum given by

;b

nne?

p¥=pT = (3.51)

m
The inequality, eq. (3.49), has a simple physical interpretation. To see this, we consider a linear
response of the current to the unit pulse of the electric field at t =0,

o .
D)= /_w & misto 7). (3.52)
Here j(t; T) is equal to jo = e?xo at t = +0, where
= et R s
Xo = lim x,,,(a,0), (3.53)

which corresponds to the fsum rule, and is expected to decrease monotonically for ¢ > 0 at any
temperature because the total current is not conserved. At sufficiently large t, j(t;T) approaches
t0 juo(T) which is given by j.(0) = D*/x at absolute zero and joo(T) =~ DT /7 at finite T. Since
the current is not conserved even through the normal processes in the electron-electron scattering,
the value of j.(T) at T # 0 is reduced from its value at 7' = 0. However, joo(T) cannot be zero
because of the momentum conservation. (Strictly speaking, joo(T') = 0 at t = oo since there exist
Umklapp processes in the N-body scattering (N > 2) as noted above. However, these processes
are ignored here.)




Chapter 4

Resistivity due to Mutual Coulomb
Interaction in the Presence of
Impurity Scattering

We will show in this chapter that, in the presence of the impurity scattering, there exists generally
a finite T%-term in the resistivity due to Coulomb interaction even in the absence of Umklapp
processes in the lattice systems. This is because the current is not conserved even through the
normal processes in the electron-electron scattering. This 72 contribution in the resistivity, however,
saturates as temperature gets higher because the momentum conservation processes through the
electron-electron scattering become dominant.

4.1 Presence of T?-term in the Absence of Umklapp Scattering
Processes

We consider three-dimensional and two-dimensional systems in the presence of the impurity scat-
tering. In this case, we can introduce F!(,}AL,(() by

1/7.(6) = 22 N*(0)(€ + («T))3G,, (1)
where
S_Las_ La() _ s() =0) s(7) (") ,
C i 2Ugleg = /\g-)gl "‘c‘i-elx l”ei-d ue1~e1 = djj1. (4.2)

= 3, PR Py . .
Here, we note that r(i’,l(() s are similar quantities to the transport relaxation times due to the

electron-electron scattering, r,',{)e,[i)'s. defined by eq. (3.36), except a difference of @ and @¥ in
their definitions.

At sufficiently low 7' where 77! > Max 1’5;"_’(7‘(17T/x/§)}. we obtain in a similar way to the
derivation of eq. (3.38)

&,

Sayid v (4.3)
L gr.,,v-(O)(wT)’[ul»(f_fl]”
™ ['1 ]11

Eq. (4.3) is correct whether or not Umklapp processes exist. However, our concern is to show
that normal processes contribute to the resistivity once the impurity scattering is present. We thus
consider the system with impurities but without Umklapp processes (C'= Cly) in the following.
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In a similar way to the derivation of eq. (3.45), we obtain

of \ .
- (‘fﬁa) =

2 Of \ w21 (02 | o ()2 1 14
= ¢ Z ~Fe | Y= [u ]“r, Wy +ZUN _ . (4.4)
P P

= 14m/m(e)

1
La + 27 N*(0) (g2 + (xr;l)(‘\-] 4

(€]

;\7' (¢) and wy’, respectively, and can be given by

Here, f}j’(() and Wy’ are similar quantities to r‘f\f‘

replacing a“ by @ in eq. (3.43) as follows,

1/7() = 2eN*(0)(€ + (xT)H)A), (4.5)

: 3 1 oo
&) = [&’%a‘,{,)] /[Ef’]l" : S e =1, (4.6)

1 =0

where "
aCya b = 3059, GO = 5. “.7)

Bspecially, we get "
2
BDPL 01 [(r‘} (4.8)
2 tdid 1’

where @ is defined by eq. (3.41).
At sufficiently low 7' where 77! *> Max 7"1(\;7)_1(#'1"/\/5)}, the resistivity pac(T), the inverse of
04.(T), is given by
Pac(T) = pres + AT?, (4.9)

where
Y

8 i g
= 4~‘N'(0)ZA%%};'Z/#M *‘]“ . (4.10)

3 i=1

o0
Here we note that eq. (4.9) is equivalent to eq. (4.3) since Z/\%)u’)%)z = [iz”(,’&’l]” / [if']
j=1

1
At sufficiently “high” temperature where 7; > Max (?}JJ(W'I'/\[})), the first term in the bracket

of eq. (4.4) gets dominant to a4.(T) if ;\(,\J,) > 0 for j > 1. Then, the resistivity p4.(7T') is seen by
eq. (4.4) to approach ps, given by

[l - (0)2
P = 1/ex [a 1]”7'!'"’5\/)

Presl B2 (4.11)

1]

We define & by peo = (14 a)pres.

We see that u‘r;gn < 1 because the group velocity, Upyy 18 not proportional to the momentum,

Pu, in the lattice systems and that A > 0 for j > 1 unless Ciy = O because there do not exist
any conserved quantities with the symmetry of I'y5 except the momentum in normal processes
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Figure 4.1: Schematic representation of the temperature dependence of pa.(T') in three-dimensional
systems in the absence of Umklapp processes.

associated with two-body electron-electron scattering. Then, we get A > 0 and « > 0. In contrast
| belief, there exists a finite 72-term in the resistivity even in the absence of the
Umklapp scattering processes once the impurity scattering is present. However, this temperature

to the gene

dependence saturates as the temperature gets high. This is very different from the case with the
Umklapp scattering.

In three-dimensional systems, C'N is not equal to zero as a matrix. Then the temperature
dependence of pg.(T) is schematically shown in Fig. 4.1. This is a special case of the breakdown
of the Matthiessen’s rule.

In two-dimensional systems, there exists, however, a special case of Cn = O in dependence on
the shape of the Fermi surface. Then, we have classified cases depending on the shape of the Fermi
surface by an integer Z, where Z is the maximum number of the common points of two Fermi
surfaces relatively shifted by the transferred momentum k and tangent to each other. Examples of

= 1 and Z = 2 are shown in Fig. 4.2. As will be shown in Chap. 6, in the case of the Fermi
surface with Z = 1, Cy = O and, in the case of the Fermi surface with Z = 2 Cly is not equal
to zero as a matrix and does not have a logarithmic singularity which exists in the coefficient of
T%term in the damping rate of quasiparticle y. Therefore, we see by eq. (4.4) that , in the case of
, T?-term in the resistivity results and this T-dependence saturates as temperature gets high
in a similar way to the case of three dimensions. On the other hand, in the case of Z = 1, there do
xist such T-dependences even in the presence of the impurity scattering. The situation of the
case of the small Fermi surface with Z > 3 is not certain at present and will be left to the future
problem, though the realization of this case in actual system will be rare.

(a) ky (b) ky

n n

=

Figure 4.2: Fermi surfaces in two dimensions. (a)Z = 1 (b)Z =2

4.2 Three-Dimensional System at Low Electron Number Den-
sity

In the last section, we have seen that, in three-dimensional systems with impurities but without
Umklapp processes, the resistivity, p4.(T), is given by pres + AT? at sufficiently low temperature,
and pgc(T) approaches po, = (14 a)p,.s as temperature gets high. In this section, we would like
to make an explicit calculation of A and a in the lowest order of U for a three-dimensional system
at the low electron number density in the absence of Umklapp processes. We will also touch upon
the case of two dimensions.

We consider the second-order processes with respect to v and U shown in Fig. 3.1 in the proper
four-point vertex part. In this case, the imaginary part of the memory-function matrix, M"(c), is
given as follows,

M"(€) = 77 'a + 2xN*(0)(? + (v T)})C, (4.12)
where
1 i
apr = 5 Y pp(0)pp(0) ¥ (p)dr(p)/(N*(0))%, (4.13)
% PP’
Cry :% > UAn(et) + vu(p') - vu(p™) — vu(p7))
p.pk
x (Yo (ph) + Yr(p'7) — Y (p'h) — Yre(p7))
% pp+ (0)pp-(0)ppr+ (0)ppr- (0) /(N7(0))%. (4.14)

Since @' is given by

[ ;5(«;,)w,,m)w,,(p)ﬂ,;'/Nm,, (4.15)




we obtain

> p(0)
=

y
e Y rp(0)5p
e

2, Ry, TR 3 u
A=3n® 32 UP(ips + p- = s — 0p) p(@H)p (070 )p(p)
p.p .k

-2
X (eZp,,(O)ﬂf,) i (4.17)
P

(prm)pf) (pr(ﬂ)ﬁf,x>
- P P )

2
(Z /'p(‘])f’prl’r)
P

(4.16)

=10 (4.18)

Here, we noted oy = ul’,‘n;‘,.
The important point to note is the existence of a small but finite deviation of the Fermi surface

from a spherical surface, ¢, = = |p|?/2m*. Then, we consider a special model where i, can be
approximated by
2
S P 2u\? Pu
B = ot (m) = (4.19)
where 7 is a small parameter and po is a scale of the Fermi momentum. We thus get
. : : % Lk T
Upty + Opr=y — Tprty — Tp- 5 1)3 et (4.20)
Here, we define the following coordinates,
k = ke, (4.21)
P = pi(cospey; +sinpe 2) +pey, (4.22)
P’ = pi(cosgles; +singlers) + ey (4.23)
where
€| = (sinfcosg¢,sinfsin ¢,cosb), (4.24)
e;; = (cosfcosg,cosfsin ¢, —sinb), (4.25)
ez = (—sing,cosg,0). (4.26)

Since the right hand side of eq. (4.20) is already proportional to 7, by eq. (4.17), we obtain A in
the second order of U and in the leading order of 7 as follows,

HpldtE - N N 5
7(.)”)9 @ (Up+, + Tpry — Dprz — Op-2)

x U ((Ip*[* = pg)/2m™)5((I'|* = pB)/2m)8((Ip"* 2 - pB)/2m")8((1p* — p3)/2m")

2\ -2
x (2c (‘2’ Esas (ol - )2 () )

N et

i
3 (2m)8 n2e?

/m/ ] i Gdkdﬁdgb/ / / pld]udwlp”/m /“ / pLdp, di'dp
0 - Ty
X (37]%(059311\29 ((Fl cosp — J(‘00.5) (Illu cos¢’ — imtﬁ) ))
k ne) 2 (R
U <m_z R-(5)) s (h -yn-(3) ) sons (,,'l S

s

= ?(2”) _a(m™ ”) 7?U?
2 ne?
o dk [k \? il R 2 2
x/“ St (E) [17 (21—«]) /U d0sin® B cos 9/0 /U dipdepl(cosip — cos? )
8 (n\% ,(m*a)! o
N ;(ﬁ) 2 He2 s’ $.27)

where n = p3/3x%. This result will be interpreted from Fig. 4.3 where Sy is the Fermi surface
and Sy is the surface given by shifting So by Fk/2. Here, the condition that the initial and final
states are on Sp in the process of two-body scattering can be simply represented by the condition
that p and p’ are on the intersection of S} and S_, as already mentioned in Sec. 3.3. Since the
intersection is a closed loop, we introduce angle variables ¢ and ¢', 0 < @, ¢’ < 27, to parameterize
this loop. Then, @ is conserved in special processes of normal scattering corresponding to ¢' = ¢ or
¢’ =+, but not conserved in general processes, and therefore a finite 7%-term in the resistivity
results.

We note that, if the same problem is considered in two dimensions, all processes corresponds
to either ¢’ = ¢ or ¢’ = g+ 7 because of the restriction of the phase space. In this case, therefore,
T2-term in the resistivity does not result as mentioned in Sec. 4.1.

On the other hand, from eq. (4.18), a is given by

(o ) (o om)) - (o0 (o 2)2)

(% np(owp,m)

Introducing the quantities, P("), defined by

d’p [Pl pB) [\ =
/2”)3 6( > (I’—U) (4.29)

(4.28)

pn)
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2(2n+ 1)7:2””’ i)




= — Pz/m”a is already proportional to 7, we obtain up to the leading order in 7,

a = n!(ptl)pta),P(m)/p(m (4.31)
2
A
= 84(—) . 32
(35) (&22)

Figure 4.3: Normal scattering process in three dimensions. The left figure represents the condition
that the initial and final states in the process are on the Fermi surface. The right figure represents
one of the possible processes. The black and white circles correspond to the initial and final states,
respectively.




Chapter 5

High-Dimensional Systems

In this chapter and next, we consider the resistivity due only to mutual Coulomb interaction in the
absence of the impurity scattering.

It is well known that the resistivity of the infinite dimensional system!517) is determined only by
the damping of quasiparticle, v, because the vertex corrections for the current operator vanish and
therefore there exists only the self-energy corrections.!) On the other hand, as seen in Chap. 3, the
consistency between the selfenergy and vertex corrections is indispensable in order to implement
conservation of crystal momentum. This insures that the resistivity vanishes in the absence of
Umklapp processes. In this chapter, we investigate the resistivity of high-dimensional systems by
our formulation in terms of the memory-function matrix which respects the consistency between
the selfenergy and vertex corrections.

We consider the model with the nearest-neighbor hopping on the d-dimensional hypercubic
lattice whose kinetic energy is given by (the band center is taken as the origin of energy)

d
p = —Qthosp“, (5.1)
p=1

where we put 2dt? = t*? and regard ¢* as a quantity of the order of 1 in high-dimensions (d — c0).
In the case of d = oo, we can consider that the Fermi surface does not change by U since the
selfenergy is independent of momentum.'®) Then, one can expect Umklapp scattering processes
when the absolute value of the chemical potential of the noninteracting system, po, is smaller than

that of the band energy at the momentum, p = (x/2,0,--+,0),
(d-1)
vd
Hence, in the limit of d — oo, the Umklapp processes always exist.1”) The proportionality of the
resistivity to 4 in d = oo may imply that normal processes generally contribute to the resistivity
once Umklapp scattering processes are present. This is because ¥ results not only from Umklapp
scattering processes but also from normal scattering processes, although the separation into normal

ol < 2t(d - 1) = V2t (5.2)

processes and Umklapp processes is no longer visible in d — co. This is another aspect of the
breakdown of the Matthissen’s rule.

The vertex corrections are considered to partially recover the momentum conservation and their
contributions turns out to be proportional to 1/d, which will be evaluated in the lowest order of U.
Here, the de-conductivity is rescaled as 64¢(T) = doge(T) and is given from eq. (3.27) as follows,

9 [T d? é ’
ae(l) = 'Zrlt'/ - ( Jf)‘>
Y 5/ 2N e

where X5 = dxg and we have evaluated € in the denominator as (r7)2/3. Then the matrix C can
be separated up to U? as follows,

dpy qdp, 4d
Cur = g5 [ CEERCEERG (5 4 vu(o:) - 109 - vulpa)
X (Yr(p1) + Y1 (P2) = Y (P3) = $r:(P4)) ppy (0)2ps (0) s (0)pp, (0)
x ei(PH’Pl-PJ-PA)'W/(N'(O))Z (5.5)

1 ~(0) dép
= iUZ(J\ ZZ (pi;(0 (/ (QT)de( )lI?‘L(PW’L‘(P)COS(P‘l‘:j))
3 e i * g
VO X 650 (/ ﬁpp(owp)smw-r.j])
* gd
X ( ‘8 Taryafe 0w (p)sin (p- n,)) : (5.6)
Here, we used ¥y(p) = —%1(—p) and pi;(e) is the spectral function in the site space defined by

roqd .
pij(€) = /ﬁ (‘;T’)Zﬂ(p)e‘p"”. (5.7)

d
whose leading term in the 1/d-expansion is proportional to d~%3/2 where T Z |n,| for rj; =

Ti—r; = (ny,ng, -+, My, -+, ng), as given in Appendix C. The second term in eq. ) 6) corresponds
to the vertex corrections and is the negative definite matrix. This leads to the fact that the vertex
corrections decrease T?-term in the resistivity.

We can neglect all effects of renormalizations since we consider the T?-term in the lowest order
of U. Then, we note

¥1(p) =Sinpu/ ([_ (d4

T[))dsln i (e // 7;10))2, (5.8)

1

Since pj;(€) o d=Lu/2, it is convenient to perform the site sum in eq. (5.6) as the sum over L;; as

G Yool = o s b (5.9)
L‘)

Then, we obtain
1§ et ® ddp |
¢ = U (N9) (/ il ~uo)¢-L(p)u-Lr(pJ)
1
SU? (NO0)’ 810, (5.10)

Note that C() has no contribution from the second term in eq. (5.6). This corresponds to the
absence of the vertex corrections in d = co. Here, N(9)(¢) is the density of states for given spin in

33




d-dimensional system given by
pii(€)
* ddp
= /:1» Wfs(( + Ho — €p)

4 1 ) Efetpg\e o 1 (f+uo> <£+uu>“ (L
= e_\p(—‘2 (*—[_ ) T6d (3 6 = == +0 z) |-
5

Next, we have

N =

«(1)
Cip =

3V (cis> O (VO (0) (/ 2 step

=1

4
— ko) ¥L(P)¥r(p)2 Z cosp“>

— po)¥L(p) sinpu)

= o) ¥rs(p) sinpy

(2r
3[«2 (.1) g
~SU (pei (0))* (N g
_
3 (/ et )
= 37 (-2) s> O (NVO) " 6120
=202 (s O (NO0) ™ 000110, (5:14)

where we have used eqgs. (5.1) and (5.8) for the second equality and the orthogonality relation of
the Fermi surface harmonics. Here, < ¢, j > means the nearest neighbors and we get

P (0) = = 2= NE(0) + O(d=/). (5.15)
In eq. (5.14), \:g’ is defined by
v * gl
{E,” = / T “ 4t*2sin® p,8(ep — p0) (5.16)
= 2Ny (14 L (1‘0)2 o (L) (5.17)
= 9] ) +4d — +0(5))- 5.17

Since C() is proportional to 1/d?, we conclude that the off-diagonal elements of Cpy: are of the
order of 1/d*. On the other hand, the diagonal elements of Cpz: has terms of the order of 1/d in
addition to that of the order of 1. Thus, by substituting eqs. (5.10) and (5.14) into eq. (5.9), we

obtain
4 2
v [{r+32 (%) +2 ()" 1) b
}TO).@L:("ILWLO (,Tlg)]

and (5.18) into eq. (5

(5.18)

Inserting egs. (5.17) .4), we get T2-term in the resistivity given as follows

(5.19)

8 5o 4 1
= 57N fd)(())cl,/el\{, )+0 («72)
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Chapter 6

Two-Dimensional Systems

In two-dimensional systems without impurities, it has been pointed out by Fujimoto et al'®) that
the resistivity is proportional to 72 even though the damping rate of the quasi-particle, v, is
proportional to T%log T, indicating the different temperature dependences between the two. They
claimed that this is because normal processes, which give the 72 log T' contribution to the damping
rate of quasiparticle v, do not contribute to the resistivity. In the previous chapter, however,
we observed that, in the case of a general Fermi surface different from sphere, normal processes
generally contribute to the resistivity in the presence of Umklapp processes. Once one realizes this
fact it is interesting to ask what is the effect of normal processes on the resistivity of two-dimensional
systems in the presence of Umklapp processes.

6.1 Damping Rate of Quasiparticle and Transport Relaxation
Rates

First, we investigate two-body scattering processes which give T?log T' contribution to v. Here, we
expand 7, which is defined by the average of the damping rate of quasiparticle, vp, over the Fermi
surface, up to T? as follows,

Zp:( 0() = "’/Z(
// pdzld‘\ [Fz(pp iptp)+ 2 I“”(ppvp P)]

xap;ap.,apuupfé((;,,)ﬁ(e;,, )6(. /61'\ (0)

g3 15 ud®
= (:T)‘/'/ -
Qp+ Gpi-Aprt Gp—

ARG bl el & — /s,\"(o). (6.1)
“v*r Py = UpmsUpry |V Upimy = Vpimsprs |

where we note that p and p’, which are common points of Sy in the first Brillouin zone, are the
vector functions of Llu transferred momentum k. Here, we see that the normal scattering can be
represented by p,p’ € S4[0]N S_[0] and that the Umklapp scattering with the reciprocal lattice
vector G can be rs-pruonml by p € S4[0]N S_[0] and p’ € S+[0] N S£[G]. The definitions Sx,
S+[0] and S+[G] have been already given in Sec. 3.3.

[}
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A | ks ks
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In eq. (6.1), |“;;u";r,, — Vp-,Up+,| and ]lp,” By ),V\ are Jacobians of §-functions
which represent the fact that the initial and final states in twrr{)ud\ scattering are on the Fermi
surface. These Jacobians are equal to the areas of the parallelograms set up by the vectors, v7
and vp , and the vectors, va and Vs respectively, and thus are equal to 0 in the rullo\\mg
cases: (1)Sy and S_ coincide with each other, that is, k = 0; (2)S and S_ are tangent to each
other at p = pg and p’ = p}, for k = k. We can consider that the integrand in eq. (6.1) does not
have other singularities except the contributions from 1hese Jacobians, by the Assumpnon of the
Fermi liquid. Let us examine the behaviors of |v7 and [v

v,

pt2Uhy = Up-zUpty| DrteVhrmy ~ U=z Uty |
around their zero points in the above cases(1) and (2), respectively. The former c orresponds to the
normal scattering processes with small momentum transfer and the latter belongs to the scattering
with large momentum transfer including both Umklapp processes and normal processes.

For small momentum transfer, we consider the vicinity of singularity of the integrand in eq. (6.1).
Here, we assume .Sy can be approximated by the circle of some finite curvature around p, which

satisfies the condition that vp, is perpendicular to k. Then, we can evaluate for small transferred

momentum k as
[Vp+aYn=y — Up-gUpyl 0 3/ K2 + K2 (6.2)

In a similar way, we can also evaluate

|0prt 2Vpi—y — Upr=gVprty | o \/R2 + k2. (6.3)

Thus, we find that this region of the integral gives a logarithmic singularity to v as follows,

/ / dk,dk, ol
5 i
K2 +k2 <2 k24 k2

Here A is momentum cut-off. This leads to T2 log T-term in 7.

For large momentum transfer, we consider the vicinity of singularity of the integrand in eq. (6. 1).
Here, we assume S and S_ can be approximated around pg by the circles with different curvatures
in general. Then, we can evaluate for small k = k — ko as

[V +29p-y = Vp-oVpty| o \/cos Ok + sin Ok, (6.5)

where @ is the angle of the vector which turns from center of curvature in the side of S_ to that
in the side of Sy, and which is parallel to Vbotko/2" (See Fig. 6.1) In a similar way, we can also

evaluate
[ux'wrv;,,,y = Upi—pVpity| < \/cO8 0k + sin 'k, (6.6)

Thus, we can evaluate the contributions to y from the vicinity of this singularity of the integrand,

d,dk »
/] T . (67)
9 /(cos O +sin Ok,) (cos &'k, + sin 0'F,)

where Q is the region which satisfies —7 — ko, < k. < 7 = ko, ~m — koy < /i'., < m— koy,
0 < cos Ok, + sin Gk < A.and 0 < cos @'k, + sin 0’k < A Here, we can classify normal processes
or Umklapp processes by the condition that tan Btan 6" > 0 or tan f tan #’ < 0, respectively. Thus,
Umklapp processes do not give a logarithmic singularity to y. But normal processes with large
momentum transfer with 6 = ¢’ give a logarithmic singularity to v as follows,

//’ dk, dk (6.8)
o cos Ok, + sin 9/c
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(a)

(b)

Figure 6.1:

Sxamples of scattering processes with large momentum transfer which give divergent
contributions to integrand in eq. (6.1). (a) Umklapp processes. (b) normal processes.
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This leads to T2 log T-term in 7.

Next, we investigate l/rr(,{),,(nl'/ﬁ), the transport relaxation rate due to electron-electron
scattering defined by eq. (3.36). If the matrix elements of C' have no logarithmic singularity,
l/T[])I 7T/v/3)’s are proportional to T2 even in two dimensions where the quasiparticle’s damping,
v, has Izlog T-dependence. In this case, the resistivity is proportional to 72. Thus, we investigate
the matrix C. From eq. (3. 30), we obtain

s d”f y e .
Crrl. = 8/ 4 (p*,p"7ip,p )+§11‘f(p*vp Ay )
pp'g%ﬂﬁ

Xap+api-apiap— (N*(0) 72
WL(eh) +¥1(p"7) - W( "’) = w’fL(P’))(z/'L'( )+ $u(p) — (™) — pu(p7))

[

R e |

(6.9)

The important fact to note is the existence of the factors, 1/71,( ) +pL(p'™) — vr(p't) = vr(p7)’s,
in this oxprewon which does not exist in eq. (6.1). For Cu, we take the summation with respect
to p, p’ and G which satisfy p (orp') € S+[0]ﬂ S_[0] and p’ (or p ) € S4[0] N S¢[G]. For Cy,
we take the summation with respect to p and p’ which satisfy p,p’ € 5;(0] N S_[0]. From the
above examination of 1, it is obvious that Cy; does not have the logarithmic singularity. We shall
thus confine our attention to Cy. Here, we classify the Fermi surface by an integer Z which is the
maximum number of the common points of S;[0] and S_[0] when each is tangent to the other for
=m < kg, ky < 7, as mentioned in Sec. 4.1. We show examples of the Fermi surfaces with Z = 1
and Z = 2 in Fig. 6.2(a) and (b), respectively.

In the case of the Fermi surface with Z = 1 which corresponds to the closed Fermi surface
without inflexion points, the number of the intersections is necessarily equal to two when 5;[0]
and S_[0] intersect each other, as shown in Fig. 6.2(a). Then, there exist only the processes of
normal scattering with p’ = %p, since the inversion symmetry of the Fermi surface & =¢€p=0.
We thus obtain ¥7(p*) + %1 (p'~) — ¥1(p*) — ¥r.(p~) = 0 for all present processes in the normal
scattering in eq. (6.9). This leads to an interesting result that Cy is equal to zero as a matrix. The
model with dispersion €, = —2t(cosp, + cosp,) belongs to this type. We will actually calculate
T?-term in the resistivity of this model in the whole region of the electron number density in Sec.

In the case of the Fermi surface with Z > 2, C'y is not equal to zero as a matrix since there
exist the normal scattering processes with p’ # +p, an example of which is shown in Fig. 6.2(b).
It is enough to consider the case of small momentum transfer and the case of large momentum
transfer with 6 = 6 which lead to logarithmic singularity of -.

For small momentum transfer k, we get

Yr(ph) + 4u(p") = vr(P™) - Yr(p7) =~ (Vu(p) — VL (p) -k
o ([k24k2 (6.10)

Thus, Cy does always have singular contributions from the small transferred momentum, indepen-
dently of the shape of the Fermi surface.

For large momentum transfer with 6 = @', if 9y, (po + ko/2)+1, (ph — ko/2)— 1, (Ph + ko/2) —
YL (Po — ko/2) # 0, Cy has logarithmically singular contributions as follows,
// dk dk‘ ©.11)
@ cos Ok, + sin Gk
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(a)

Figure 6.2: Normal scattering processes in two dimensions.
p’ = +p. (b) An example of the process with p’ # +p.

(a) There exist only the processes with

But as far as the case of the Fermi surface with Z = 2 is concerned, the singularity can be removed
as will be seen below.

In the case of Z = 2, as seen Fig. 6.1(b), pj = +po necessarily holds although ¢’ = 6. It is
enough to discuss the case of pj = py because of the inversion symmetry of the Fermi surface. We
then obtain for small p — p’

br(p*) + ¥ (p"™) — ¥i(p') - Yr(p7)
o (Vu‘-[, (p+§> - Vi (P'*%))'(P—P’)- (6.12)

On the other hand, by approximating Sy and S_ around Po again by the circles of curvature, we

obtain
lp-p|x y/cosﬂk,+sin9}}y. (6.13)

Therefore, the logarithmic singularity is removed and thus we find that Cy does not have the
logarithmic singularity.

Finally, we give summary of this section. Cyy does not have a logarithmic singularity indepen-
dently of the shape of the Fermi surface. The case of the Fermi surface with Z = 1 is special in the
sense that Cy = O. In the case of the Fermi surface with Z = 2, Ciy does not have a logarithmic
singularity and Ciy # O. Thus, we conclude that, in the case of the Fermi surface with Z = 1
or Z = 2, the transport relaxation rates, l/rg({,)d(wT/\/g)'s are all proportional to 72. On the
other hand, in the case of the Fermi surface with Z > 3, l/re(,’_)l,(n’l‘/\/g) may have a logarithmic
singularity. However, even in this case, the resistivity is proportional to T? at sufficiently low 7',
as will be seen in the next section.

6.2 Resistivity
In this section, we consider two-dimensional and three-dimensional systems in the presence of

Umklapp processes and neglect the impurity potentials. We then obtain in a similar way to eq.
(4.4) since Cy is a positive definite matrix,

. of . 1
(T) = € —=— v 1 - -
il ;( f?fa) e [%s\“(oxqﬁ(wT)?)(C.wqu .

1 202 s~ oG 1 :
]“ (“A\"L: S “A\’,L'1 Ty ;\(\f"u>(6-“)

where

() () 20)
= APy iny,

(6.15)

(6.16)

Here, we note that if\q‘)lv =10,
by




We easily see from eq.(6.14) that, in the presence of Umklapp processes, normal processes contribute
to the resistivity unless Cy = O, since w(oJz < 1and )\“)U > 0 for j > 1. Here, Umklapp processes
play a similar role of impurities which are necessary to the the finite 7-term in the resistivity
resulting from normal processes as was seen in Chap. 4. This is another aspect of the breakdown
of the Matthiessen’s rule.

In two-dimensional systems, it depends on the shape of the Fermi surface whether or not normal
processes contribute to the resistivity in the presence of Umklapp processes. In the case of Z =1,
only Umklapp processes contribute to a finite 72-term in the resistivity since Cyn = O. However, in
the case of Z = 2, all z\(,\’,'u 's(j > 1) in eq. (6.14) are finite since Cy has no logarithmic singularity.
Then, normal processes, which are known to give the 72 log T’ contribution to v, do not change the
fact that the resistivity is proportional to 72 but they give a finite contribution to the T?-term in
the resistivity.

In the case of the Fermi surface with Z > 3, although /\f{v?y's(j > 1) in the denominator of the

| second term in eq. (6.14) may have logarithmic singularities, the resistivity is proportional to T?
at sufficiently low T since the first term in eq. (6.14) is dominant to o4c(T).

6.3 Hubbard Model with Nearest-Neighbor Hopping

The resistivity of the two-dimensional Hubbard model with the nearest-neighbor hoppings (ep =
—2t(cos p; + cospy)) has the contributions only from the Umklapp scattering processes in the
absence of the impurity scattering as mentioned in the previous sections. In this case, the ordinary
memory-function formalism, which corresponds to an approximation truncating C up to the first-
order polynomials in the lowest order of U/, leads to a correct result of the vanishing 7'>-term in the
resistivity in the absence of Umklapp processes. Thus, we calculate T?-term in the resistivity by
using the ordinary memory-function formalism. We consider here the case of less than half-filling.
There are two kinds of Umklapp scattering processes depending on the direction of reciprocal lattice
vector involved in the scattering processes; G = (£27,0) and G = (0,£27). We call the former
(the latter) as the Umklapp scattering processes along the z-axis (y-axis). We note that in the
present approximation, the resistivity is given by the simple sum of the contributions from these
two kinds of the Umklapp scattering processes.

Then, we get the coefficient of 7%-term in the resistivity, 4, (along, say, the z-axis) as follows,

(Vptz + Vpr-z = Vprtz = Up-2)°
[vp+2¥p=y = Up=zVptyl|Upavpimy — Vprmztpryl | P= pf' 1)

L e - - fon . e} 8
pli) = (p pli)) i given by the set of solution of the following simultaneous equations,

(6.19)

cos(pz + kz/2) +cos(p,,+ky/‘2 =
cos(p: — kz/2) + cos(py — ky/2) = u.

We have used u = |p|/2t for —4t < p < 0. Further, p'r') > 0 and p‘y” > 0 are introduced by
P8 = 45l and P E) = Fsgn(k.k,)p", respectively. Then, we get

suig B k.
sin? 71 + wcos i

koo gk g
iaE sin? —X + wcos & —1ucos
2 2 2 | (6.20)

(cos p‘rﬂ , €08 11(y*)] =2

; 3 ' 3 3
. oks . i .
sin? = —sin? X sin? £ — gin? =
2 b 2

i 2
(w + ucos ?1 cos %) —u?

Uptalp—y = Up-alpty| i, = 2(2t)%w e (6.21)
p=p! ( FE e ky)
B =
2 2
where
w = w(k;u)
ek ko ok
- \/(sm2 ?’ — sin? 7”) + u?sin? ?Tsin2 5 (6.22)
p(+#) exist only when k € 2 where the region g is given by
k. k.
Qp : cos ?’ + cos Ty > u. (6.23)

On the other hand, p(—#) exist only when k € UL where the regions ) and Q are respec-
tively given by

k. k,

 : cos ?I +u < cos ?y, (6.24)
ky kz

Ry : cos o +u < cos X (6.25)

The regions Q, ) and Q, are shown in Fig. 6.3. Note that if 0 < u < 1, the regions €y,
@ and Q all exist and the condition QUL C Qo is always satisfied. On the other hand, if
1 < u < 2, only the region g exists. We can further check the following three facts: (1) If k € Qq,
a particle with momentum p(+9) +k/2 is scattered to a state with p(*+9)  k/2 always within the
zone-boundaries; (2) If k € €, a particle with momentum p(~7) £ k/2 is scattered to a state with
p(—) Fk/2 always across the zone-boundaries pr = xm; (3) If k € Q, a particle with momentum
p(—9) + k/2 is scattered to a state with p(—9) 3 k/2 always across the zone-boundaries p, = 4.
Since ouly the Umklapp scattering processes, which correspond to the processes with p = p(*4)
and p’ = p(F4'), contribute to A, the above facts show that A is non-zero only when 0 < u < 1,
that is, =2t < p < 0.

We separate A into A and A which is the contributions from the Umklapp scattering processes
along the z-axis and the y-axis, respectively, as follows,

A= A”+AL, (6.26)
// d2k (vpts + Uprmz — Vprts — Vp-,)° T
77”72‘(0 ke (27)? [ |vp+atp—y = Vp—zUptyllUprstpi—y — Upi—ptpity || p= peel Alo])
p'=p{-)
L=y // = [oytaih oo oty (6.28)
3re?x3 J Jxen, (27)? |[vpss Up—y = Up—zUp+y||Uprtztpi—y — Vpi—zVprty | p= p(t A
p'=p!
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(a) ky (b) k€Q,
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etk

P2 Pk /2

(c) k€Q

\\ /A pen-k 2

------- cos(kx/2) + cos(ky/2) = u | per-k 2| \\ POk 2
e cos(kx/2) = cos(ky/2) = u
—--— = cos(k/2) + cos(ky/2) = u Pk 12

Figure 6.3: (a)The region where p(*) exists and the corresponding Umklapp scattering processes.
The colored region represents Qo which includes € and Q. Two possible Umklapp scattering
processes are shown for (b) k in € and (c) k in Q,, where the solid closed lines represent the

Fermi surface.

From egs (6.20)-(6.21), we get

q U? 2cos™! u ™
/ = — 1k. v
I 3m3e22x3 /n o J2c0s~1 (cos B2 —u) 4y

k.
2
CcOos’
(=3
i U? 2cos™! u ™
Al s / dk, dk
3m3e2t2xd Jo © Jrcos(contgon) ¥
s
sin? = cos? =L
< 2

ke e 3 ko k)2
—= = 082 —& 2 Y
9 cos’ B) ) (( 08’ 9 COs’ 9 )

Note that we always have A > AL. We change the integration variables from k, and ky to k, and
ki, as follows,

(6.30)

K.
= V1-u?sin-=%, (6.31)

2

k2 k;, ;
= ilicos TR u) cos " (6.32)

Then, we obtain

BTV e / / dkLdK,

A

3,,x5212 3m3e2ig
K. =
SCOS?’ 1— (s —u)?cos® X
i Lo (6.33)
s* — (s — w)” cos? (S+")2"(Sfu)2¢'us'17y
A= Ve 1k, dk,
ST f212 ik / / C¥a
¥ "
~1(1 - s%) (s - u)%os;’cos2 7;

; & !
(s — u)? cos’ 7}) \/(1 — (s — u)2cos? Ii;) ((s +u)? — (s — u)?cos?

where
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Figure 6.4: 5-dependences of A, A1 and A. The inset shows a log-log plot near half-filling.

Finally, let us examine the limiting behavior of A and A, for 4 — —2t and p — 0. From
eqs. (6.33)-(6.34), we get for p — -2t

1
i Il * 6.36
4 m(l—z) 3 (6.36)
i oAl M)% (6.37)
s et o) -
This implies that far away from half-filling, A has main contributions from A). We also get for
pn—0
U2 =2 y
S W, 6.38)
A AL~ T ul’ (
2
SR (6.39)
€214 96 |

As our system approaches the half-filling(u — 0), A diverges because of the flatness of the Fermi
surface. The doping rate & is related to pu by § o (|u|/t) log(|p|/t) near the half—ﬁllir?g where
the logarithmic factor reflects the Van Hove singularity. Therefore, 4, Ay and»A &{lverge as
[1og(1/8)]~" when & — 0. This limiting behavior for § — 0 is not due to the approximation of Lh'e
memory-function formalism since the singularity arises from the Jacobians in eq. (6.18) which is

always present in the contributions of the order of U?. The overall §-dependence of Ay, AL and A

are shown in Fig.
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Chapter 7

Summary and Conclusions

Electrical conductivity, o(w) due to mutual Coulomb interaction of a lattice electron system has
been studied on the basis of the Fermi liquid theory. Based on the Kubo formula to respect the
consistency between the selfenergy and the vertex corrections, a formulation is given in terms of
the memory function M(c;w) which is extended to the matrix form, and then a general expression
of M (€;w) for the d-dimensional systems (d > 2) with the short-range Coulomb interaction, U, and
s-wave impurity scattering, v, at finite temperature, T, is given up to w, v2, € and T2. In our
formulation, the effects of the periodic lattice which leads not only to the Umklapp scattering but
also to the band structure are fully taken into account.

Because of the latter effects, the total current is not conserved even in the absence of momen-
tum dissipation mechanism. In spite of this fact, it is shown that, in the absence of momentum
dissipation mechanism, the present theory yields a correct result of the absence of T?-term in the
resistivity since M”(e), the imaginary part of M, has a zero eigenvalue reflecting the conserva-
tion of crystal momentum. This is in contrast to the ordinary memory-function formalism which
corresponds to the high-frequency expansion of o(w) and leads to an incorrect result of non-zero
resistivity.

On the other hand, the effects of the band structure lead to the fact that the Drude weights
D“ and D7, which are limits of mwlmo(w) in the absence of momentum dissipation mechanism in
@ =0, T/w—0and in T — 0, w/T — 0, respectively, are not equivalent. This is in contrast to
the equivalence of the above two limits in the limiting case of continuum where the total current is
conserved.

In the presence of momentum dissipation mechanism through impurity or Umklapp scattering,
normal processes generally contribute to the resistivity as another aspect of the effects of the band
structure. This can be considered as a special case of breakdown of the Matthiessen’s rule.

In three-dimensional systems in the absence of the Umklapp scattering but in the presence of
the impurity scattering, the resistivity ps.(T) is shown to be given by pr., + AT? at sufficiently
low temperature. A is finite due to the violation of the current conservation. We have therefore
concluded that, in contrast to the general belief, a finite T2-term in the resistivity results even in
the absence of the Umklapp scattering processes once the impurity scattering is present. However,
this temperature dependence due to Coulomb interaction saturates as temperature gets higher and
approaches po, = (1 + @)p,.s due to the conservation of crystal momentum. The quantity « is due
to the difference of the shape of the Fermi surface from sphere. In the case of low electron number
density in three dimensions, we have explicitly calculated A and a in the lowest order of U,

Two-dimensional systems in the absence of the Umklapp scattering but in the presence of the
impurity scattering turned out to be special in the sense that it depends on the shape of the
Fermi surface whether or not the T2-term in the resistivity results. Then, we have classified cases
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depending on the shape of the Fermi surface by an integer Z, where Z is the maximum number Z=1
of the common points of two Fermi surfaces relatively shifted by the transferred momentum k and
tangent to each other. In the case of the Fermi surface with Z = 2, the resistivity has similar
T-dependences to the case of three dimensions. But, in the case of the Fermi surface with Z =1,
which corresponds to a closed Fermi surface without inflexion points, the resistivity does not have
such temperature dependences because normal processes do not contribute to the resistivity.

Schematic representation of the temperature dependence of the resistivity in the absence of the
Umklapp scattering but in the presence of the impurity scattering is summarized in Fig. 7.1.

Next, we investigated systems in the presence of the Umklapp scattering but in the absence of
the impurity scattering.

We indicated that the resistivity of the d = co Hubbard model, which is determined by the
damping rate of quasiparticle, v, can be naturally understood by the fact that there exist Umklapp
processes for any electron number density and thus the normal processes contribute to the resistivity d
as well. The 1/d-correction to the resistivity has been also calculated in the second order of U.

In two-dimensions, in the case of Z = 1, only the Umklapp scattering leads to T'?-term in the
resistivity while, in the case of Z = 2, the normal scattering has a finite contribution. However,
\ in both cases, the transport relaxation rates, the inverse of the transport relaxation times, and
! therefore the resistivity are proportional to 72 in contrast to 7, which is proportional to 72log T'.
i We have also found that, in the case of Z > 3, the resistivity is proportional to T2 at sufficiently
low temperature even if there exists the transport relaxation rate which has a logarithmic singu-
larity. Especially, the model with nearest-neighbor hopping which belongs to the case of Z =1 is
investigated in detail in the second order of U with a special emphasis on the flatness of the Fermi
surface at the half-filling. It is found that T%-coefficient of the resistivity diverges as [6log(1/6)]~!
when the doping rate, 4, approaches zero.

Il
o

a
Il
w

Figure 7.1: Schematic representation of the temperature dependence of the resistivity in the absence
of the Umklapp scattering but in the presence of the impurity scattering for two-dimen:
su

onal Fermi
es with Z = 1 and Z = 2 and for arbitrary three-dimensional Fermi surface different from
sphere.




Appendices

A Generalized Ward-Takahashi Identity

Following Toyoda,® we will derive in this Appendix the generalized Ward-Takahashi identity re-
flecting equation of motion for the current

AJ, (1
i‘)—i) = [H,J,(1)]. (A1)
We first remark the following operator identity,
i
i;jlr{Ju(T]fpn(ﬁ)"}w("{)) = —To{lepa (1), Ju(r)leh (11)}8(r = 1)
~Tr{epa (1) leh (1), Ju(r)}3(r — 1)
aJ, 5
41 {220 )b (a2
Inserting into eq. (A.2) the simultaneous commutation relations
[epos Ju] = UpuCpos (A3)
lehor T = = Upucho, (A4)
and eq. (A.1), we get
d ’ n
ST pa()eho(T)} = ~Te{epa(r)eha () ups (6(r = 1) = 6(r = 7))
+1; {[H, Ju(r)]epo (1) eha () } - (A5)

Taking the thermal average and performing the Fourier transformation, we obtain

T ; ;
s i f drdmydr{ (T {J,(7)epa(r1)chy ()} etmTHien T —ew T
0

YT ) ;
_1/T5"+m7",/ d(m — 1"')(T,{c‘-,‘,(rl)(‘},(,(‘r,’)})uplA (e'(t"+w".)(n—r,l a 'u..ln»v,))
o
yr 5 : '
+/ drdrdr{(T{[H, Ju(r)]epo () ey () PeiemHiomm=iewi, (A6)
o

where we have performed the partial integration in the left hand side of eq. (A.6). Introducing
A j(p, i€n; iwy) defined by

A ju(Py 6n; 1win )G (P, ien + 1wm) G (P, 1€n) Sngm—n'

YT /
/(1 drdndr{ (T {[H, Ju(r)lepo (1) ch, ()} etm7Henm=iowmi, (A7)

eq. (A.6) is rewritten as

= 1WmAu(P, t€n; iwm) = vpu[G (P, i€n) — G™Y(p, itn + iwm)] + A, (pyien; iwm). (A8)
We thus get

[E(p, i€n) — Z(p, in + iwm)]vpy
= iwnT Y- 3 (P ien; P, iews iwm) G (P, i€ + iwm) G (D, ien)vpry + A (Pyien; iwm).
o

(A9)

'lnserting eq. (2.12) into eq. (A.9), we obtain the expression of the identity in terms of I1) which
is the kernel of the Bethe-Salpeter equation for A,

[E(p, ien) — Z(p, i€n + iwm)]vpyu
= o T Y S T (p, den; P, ens; i) G(P', s + i) G (P, ien)Upry + A g, (P i} iwm)
n p’

+ T3 3 TN (p, ien; P, ient; iwm)G (', ien + i) G (D i€nt)
=

7 {i.‘;mT Z Z L(p', ien; D", i i) G (D", i€ + iwm)G(p", ienn) Vpiy
priey

A, (0 i)}

(A.10)
=T 3 Y TO(p,ien; 'y itns; i) [G(P', iew) — G(P', iew + iwm)Jopr + A, (P i€ni i)
o

+T Y3 T(p, ien: P’y its; itom ) G(P', s + i) G (D', Em)
Nl pr
x {iw-mT 2 Do T(P s iewsi P, ;i) G (", ienn + iwm ) G(p", i€nn) Vpa
o
+ A, (P i€ iwm) — [E(p', , ient) — Z(p', i€ + iw-m)]up,“}, (A.11)

\\_‘here the function Xj (p,i€s;iwy) is the proper part of A, (P, i€n;iwn). As the last term in the
right hand side of eq. (A.11) vanishes, we get

[2(p, ien) — Z(py itn + iwm)lopu = T D > TO(p, ien; P, itr; iwm) [G(D', em)

o o
=G(p', iew + iwm)lupry = Aj, (P, i€n; iwm). (A.12)
If the total current operator commutes with the Hamiltonian, we have Aj, = 0and eq. (A.12)

leads to eq. (2.43).
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B Conserving Approximation

We will show in this Appendix that the generalized Ward-Takahashi identity reflecting equation of
motion for the current, which is given by eq. (A.12), always holds for an arbitrary skeleton diagram
contributing to L from which the skeleton diagrams contributing to I'!) are constructed by cutting
the internal G line in all possible ways.

We consider X, which represents an arbitrary skeleton diagram labeled by 7 contributing to X.
E,(p, i€n), containing ! bare interaction lines and 2/ — 1 internal G lines, is schematically given by

(T; Zs+1 I)FZ/d‘*pIZ/dpz Z/dﬂzlx

€i-1

XV(P; Pisi Pigs Pis)V (i Pisi Pis: Pir) - -V (Piyu_1ys Pisuorys13 Pisgiory 320 P)
xG(p1)G(p2) - - G(pa-1), (B.13)

where V is related to the bare electron-electron interaction V as follows,

V(P12 p3,P4) = V(P1 = P4)8(P1 + P2 — P3 — P4)dey teg—e5—ear (B.14)

and F is the number of closed Fermion loops, s represents spin and p = (p, i€,). In eq. (B.13),
the sequence (i1, 12, -, iy(3—1)) denotes a certain permutation of the sequence (1,1,2,2,--,2l —
1,2l — 1) which specifies the diagram.

Then, I‘w(p 1€n; P, 167/ 1wy ), Which contributes to the proper four-point vertex part and is
constructed by cutting the r-th internal G line(r = 1,2, - -+, 2/ — 1) from X, (p, i€,), is schematically
given by

(1) o i) d 4
e e = (—I)W(HI /dm /dP2 /dpr-—l
-1
XZ/dpr+xZ/dpr+2 Z/dpzlx
ot ) o

XV(Pigs Piyi Pins Pia)V (Pigs Pis Pigs Pi) * * *V (Pigns Pri Pigasas Pigsys) =
XVABignr Pigurg s Pr+ @ Pigeay ) - VAP Piagronyan Pigronyas Piag—yss)
XG(p1)G(p2) -G (pr-1)G(Pr41) - - G(P2i-1), (B.15)

where piy = p+¢, Piyy_yy4s =Py Pr =P and we put g = (0, iw).
Here, we note

V(p1—q.p2ip3,pa) = V(p1,p2ip3, pa+9), (B.16)
V(P1,p2~ ¢ip3,ps) = V(p1,p2ipa+q,pa)- (B.17)

We also note
V(p1,P2ips + ¢,p4) = V(p1, p2; p3, s + 4), (B.18)

since ¢ has zero momentum. We therefore obtain

[54(p) = S (p+ Qlopu = T Z/ = )d O, 05 9G0) - GO + )lvprs

@s+1)F(-1) Z/dmz/ddp; Z/d]]zll

Q-1

= (-1)!
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X [(Upu + Upi, i = Upiu — Vi) V(Pioy Piy; Pias Pi + )
X V(Pigs Pis; Pigs Pir) **V(Pisgioys Piggisysn Pisgiry 422 Piagioyss)

+ V(Pios Piri Pias Pis) * - -V (Piagumsy  Pisguosy 13 Pisguosy 120 Pisguonya)
X (vp_“, il T Up.‘,,”u)v(l’imPiu+,§P-<ku<Piun +4q)

X V(pi41k+lb'p’4(k¢ll+l;p’.t(kﬂlu'p’.ﬂﬂlhs) G “’(Pfqm) s Piggranyr Pisgenyaar Piagonyes)

+ V(Pios Pisi Pias Pis) == V(Piy_ay» Piaroay 13 Piagizyszs Piagionyas)

* (”P-“, yet vp-«,‘,,“u 0 gas vpu)v(pim,nquu—nn:puu_nuvpuu-m; i q)]
X G(p1)G(p2) - G(pai-1). (B.19)

The right hand side of eq. (B.19) is equal to the contributions of order / to Aj, corresponding to
Zy and it is easily seen to vanish in the limiting case of continuum where vpy is proportional to
the momentum of each electron.

If we choose the three second order skeleton diagrams shown in Fig. 3.1 as Ff,ll (r=1,2,3), we
see that not only the particle-hole diagrams, which are functions of p, p/, i€, — i€n and iwp, but
also the particle-particle diagram, which is a function of p, p’, f€, + i€, and iwy,, are indispensable
for eq. (B.19) to hold. This is the reason why we did not adopt in Chap. 2 the assumption that
'™ is a function only of p’ — p, i€y — i€, and iwy,.

C 1/d-Expansion
First, let us assume the p-dependence of 7(p) as follows,
=R (p) = £'(9 + 3 25(9), (c20)

up to the leading correction with respect to 1/d. We see later this expression is self-consistent.
Then, we get

p — i+ ReZ(p,0) ZCOSP“ - i, (C.21)

where
t = t"+d'ReZ”(0), (C.22)
i = p—ReX(0). (C.23)

Then,

” d
pij(0) = /_ (f%”&([p — ji+ ReX(p, 0)) P

d
7 exp (is ( Z cosp, — u) +i Z p,,n,,)

v=1

iy, (288/V3d), (C24)




where J,,(2) is the n-th order Bessel function given by

x
dp .
= %e‘“””cosnp

—r 2m

& (=1)lmtd

T SRt
and
rij = Ti—Xj

= (nyn2,v 3 7m0y a)-

Here, we introduce L;; given by

d o
Lij=Y In| = ), mNm,

v=1 m=0

(C.26)

(c21)

where N, is the number of directions whose coordinate, |n, |, is equal to m. We consider the case
o

of Z Ny ~ O(1). Then, we obtain the leading term of p;;(0) with respect to the 1/d-expansion

m=1
as follows,

2o0) = /_i ;L:e_”"‘ I ((-imamtesiyvad)™

m=0

= /x ds iz (1_ (ff)z)d_.nz:fvm ﬁ ((—isf{n\!ﬁ—d)’")‘\-m

m=1

; L,
S A B 9N reids
~ ex I log(m!)) (m%) /_m Pl
N,

; mlog(m!)) Hy, (3D

o (-2 )
2

Ul SRt o o
mexp ~om ) (C.28)

where Hp (z)’s are Hermite polynomials. In a similar way, we can also estimate the Green’s function

Gijy

Gl = [ aetuld

S T

~ O ().

(C.29)

Eq. (C.29) leads to the following two facts: (1)Z”(p) is independent of momentum for d = oo
because the self-energy in the real space, R, vanishes if i # j. (2)The momentum dependence of

iy

R

d
the leading correction to £%(p) in the 1/d-expansion is d=3/2 Z cosp, because it originates from

5

v=1
_:5 where i-th and j-th sites are nearest neighbors and there are at least three particle lines which

connect i-th and j-th sites in the Feynman diagrams of £&. By (1) and (2), we can check the
self-consistency of the assumption, eq. (C.20).

i

Especially, since we can evaluate f and /i by their values at d = oo, respectively, = ¢* and
/i = po as far as the leading term in p;;(0) is concerned, we obtain

y
) = ——_21”_7 e <72’:—°2) +0(d™Y), (C30)
pia(0) = =~ Aspi(0) + 0, (c31)

where (i, j) expresses that i-th and j-th sites are nearest neighbors.
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