Appendix A

Note on the Damping Term

A.1 Abstract

A rigorous equation of polar motion is presented on the assumption of familiar “Newtonian”
damping. As long as the Q-value is independent of frequency and as high as O(100) or
less as estimated in previous works [t*.u.. Wilson and Vicente, 1990; Furuya and Chao,
1996, the difference between the conventional and present equation of motion would be
insignificant.

Key words: polar motion, wobble, equation of motion, damping.

A.2 Motivation

The conventionally employed equation of the Earth’s wobble is the following;

-
e 2 (A1)

aew dt
where the m represents wobble, and is defined as m; + im, when the variable angular
velocity vector is set to be Q(my,my, 1 4 mg); the subscript 1 and 2 denote the Greenwich
meridian and 90 deg. east longitude, respectively. The RHS of eq. (A.1), X, represents

the excitation, which is defined as x; + ix» [e.g., Munk and MacDonald, 1960; Lambeck,
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1980; Eubanks, 1993]. Note that the eq. (A.1) allows for a 2-dimensional damped linear
oscillator with its resonant frequency, 6oy, which is defined in terms of Chandler period,
T. and Q-value:

ocw =

In view of the eqs. (A.1) and (A.2), the i in m; + im, as well as in x; + ix» is obviously
for a numerical convenience in expressing a 2-D quantity. On the other hand, the 7 in
Fcw has been connected to the imaginary part of the complex Love number [e.g., Lambeck,
1980]. It is true that the complex Love number itself is allowable for some linear rheologies
[ Lambeck, 1980], but it is defined not in time domain but in frequency domain; it would not
be legitimate to meet the two different i in one equation. Rather, despite that the explicit
form of damping term had not yet been confirmed, it appears that the real eigenfrequency
was simply replaced with the complex eigenfrequency in ad hoc manner in the previous

works.

A.3 Formulation and Result

In the conventional derivation of eq. (A.1), the feed back term with complex coefficient is
added to the Euler equation for rigid spheroid, which allows for both the elastic yielding of
the mantle by the real part and the phase lag associated with dissipation by the imaginary
part [e.g., Lambeck, 1980]; at this time, the two 2 are errorneously mixed together. The
Q-value has often been related with the imaginary part of Love number, and this has been
the basis for arguments on mantle anelasticity. However, if we regard that the 7 in eq. (A.1)
is just for numerical convenience, what kind of term is invoked as the dissipative torque?
Decomposing the eq. (A.1) into real and imaginary part, one arrives at the damping term

as the second term in the LHS of eq. (A.3) below:

Real dmy 1 dm, o
R b Cing g

A.3. FORMULATION AND RESULT

Udums & diiling
Imag ( - ~)+my = 0, (A.3b)

HE T g Y
where o* is defined as oy (1 + 1/4Q%). Tt is certain that this equation allows the free

damped oscillation of eq. (A.4):

my = exp(—t/2QT)cos(2nt/T), (Ada)

my = exp(—t/2QT)sin(27t/T). (A.4b)

However, we should note that the damping term is not a familiar “Newtonian” damping;

Munk and MacDonald [1960] states that the torque above corresponds to the frictional
torque acting in a direction opposite to the motion of the shell shifting in response to the
wobble. It turns out that the Q-value in eq. (A.1) defined as (A.2) originates in the above
frictional torque. This type of torque has been considered to work as the dissipation in the
core [ Munk and MacDonald, 1960; Lambeck, 1980].

As shown in Munk and MacDonald [1960], there is another choice for the damping term.
We add the well-known ‘Newtonian’ damping into the original equation for rigid body.
How will be the conventional eq. (A.1) altered? The ‘Newtonian’ damping is the third
term of LHS of eq. (A.5) below,

dm,
dt
dms

dt

where C' and A are the principal moments of inertia around the polar and equatorial axis,
respectively, and L;(j = 1,2) is the torque around the axis denoted as j; A,, represents
the equatorial principal moment of inertia for only the mantle. Unlike the conventional
derivation, the wobble Love number, I;;"A is not a complex but a real value. Combining
eqs. (A.5a) and (A.5b) in terms of ¢ and based on the eq. (A.2), we arrive at the following

equation:
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with oew = - 3 (A.6b)

(A.6c)

Here, we attached the asterisk in both the excitation and Q in order to distinguish them in
eq. (A.3). The fundamental difference from the above derivation is that the 7 in eq. (A.6a)
is used just for the purpose of numerical convenience. The real and imaginary part of

eq. (A.6a) are the following:

1 dmy
¥

aow dt

which obviously yield the eigen solution of eq. (A.4).

A.4 Discussion

We re-examined the polar motion equation from the standpoint that two distinct ¢ should
not be used in one equation of motion. As long as we assume the simple linear damped
oscillation of eqs. (A.4), and allow for only the i used just for numerical convenience, there
are two kinds of strictly permissible damping terms, i.e., the second terms in eqs. (A.3)
and the third terms in eqs. (A.7). Thus, both egs. (A.3) and (A.3) can be the polar
motion equation, while eqs. (A.3) have been traditionally employed. When we resort to
he ‘Newtonian’ damping as in egs. (A.7), the eq. (A.6a) have to be employed in place of
eq. (A.1).

In the previous literature on the excitation of Earth’s wobble, the deconvolution of ob-
served wobble into its excitation has been carried out in terms of eq. (A.1) by assuming
the Chandler period and Q-value le.g., Wilson and Haubrich, 1976; Wahr, 1983; Wilson,
1985]. If one employes eq. (A.Ga), what difference would be seen in the inferred excita-

tion? Comparing the Y in eq. (A.1) with the x* in eq. (A.6a), the following relation can

A.4. DISCUSSION

e retained if both @ and @Q* are numerically the same with each other:

e 1
X \‘1"/@‘- (A.8)

If the Q-value is independe Eifve 1
J-value is independent of frequency and as high as O(100) or less as estimated in

previous works [e.g., Wilson and Vicente, 1990; Furuya and Chao, 1996], the difference

oy TS e S £ 3 :
ould be insignificant in spite of the considerable difference in the appearance between

eqs. (A.3) and (A.7)
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Appendix B

Note on the Bias for Chandler

Frequency Estimate

B.1 Abstract

Based on the recent understanding that the atmospheric angular momentum (AAM) fluc-
tuation is partially responsible for the excitation of Chandler wobble, a few groups have
tried to estimate the Chandler frequecy by minimizing the difference between AAM and
inferred excitation | Furuya and Chao, 1996]. The purpose of this note' is to show that
the Chandler frequency estimate tends to be biased toward higher value than the true

frequency

B.2 Formulation and Result

Polar motion is thought to follow the basic equation of polar motion, eq. (B.1):

'This appendix has been arranged for Furuya and Chao [1996]
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where the m represents wobble, and is defined as m; + im, when the variable angular
velocity vector is set to be Q(m;, my, 14 mj3); the subscript 1 and 2 denote the Greenwich
meridian and 90 deg. east longitude, respectively. The Y represents its excitation, which is
defined as x; +ixa [e.g., Munk and MacDonald, 1960; Lambeck, 1980: Eubanks, 1993]. Note
that the eq. (B.1) allows for a 2-dimensional damped linear oscillator with its resonant

frequency, ey, which is defined in terms of Chandler period, T', and Q-value:

1
Gow = TU*"E)- (B-2)

We can infer the excitaion by prescribing the complex Chandler frequency as d,; the
Wilson’s filter is used here [ Wilson, 1985].

When the prescribed , differs from the true Gew (which would be probably always the
case!), how different is the inferred excitation y, from the true y? After a simple algebra,
the Y, can be written as follows:

\l,mf@[{u)—mm]ﬂhm. (B.3)

Ta

which obviously illustrates that we cannot know the true y until the @, coinsides with the
ow-

Suppose that the ¥ consists of both Y44 and other unknown xy,
X = Xaam + Xn- (B.4)

In order to estimate the optimum Chandler frequency, we minimize the residual between

Yo and Yaaar. With the use of eq. (B.3), we see that the difference is the following:

< = aow -
Xa = Xaam = — (Xaam + Xy — M) + M — Xaanm
5 ~ acw 2
= [\H\I’l“*’\\“?’)’(\\ﬂl m),

which can be viewed in both time and frequency domain.

B.2. FORMULATION AND RESUL1

At some specfied frequency o, the residual power r(a;) is

. e [ ~ -~ 12,9CW 3

(o:) [Raane — @+ g2 (2E)2
&=

acw

—2[Xaan — M|[Xaan — |+ Xy )

+[Xaan — m]. (B.6)

Now, let us consider a statistical properties of r(c;). If the following equality is assumed

to hold, i.e.,
E[(Xaan —m) - Xn] =0,
the eq. (B.6) will lead into the following,

Elr(o)] = [Raan —m+ xy]?(—X)?
T,

—2[Yaan — 1) n(,—”\

E

+[X442 —m]”

where R; and N; are defined as follows, respectively;

[Xaan —m]%, (B.10)

N = (B.11)

Here, the assumption of eq. (B.7) will be legitimate as long as the non-AAM excitation

X~ has no coherence with the AAM. Moreover, the dot-product, m - Yy, corresponding to
their convolution in time domain will be small in its expectation value.

The minimum residual power of is achieved when the prescribed frequency is

R+ N; _
Oy = — - OCw.

a R
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B.3 Conclusion

If one employs wide frequency band and minimizes the residual power, the minimum is
achieved when the prescribed frequency is

_SRA4T
Y

Fows (B.13)

El5)

where the summation is performed over the frequencies taken into account. Thus, we are
led to conclude that the Chandler frequency tends to be estimated higher than the true

frequency.
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Afterword

This the

is concerned with the classical geophysical problem, to examine the excitation

source(s) of the Earth’s wobble. Some people will consider the term, classic, as “old
fashioned”, but I am using the term as having a high quality that is recognized and un
questioned®. My impression is that the earnest work has just begun over the past decade,
partly because the space-geodetic technique can provide a good quality data set and parly
because the global atmospheric analysis data have proven to be useful for studying the

variable Earth rotation. Indeed, all the results shown in later Chapters are my original

results which, to my knowledge, have never appeared in previous literature.

In the near future, the time span of space-geodetic observation will be extended. More
over, the global data assimilation technique will involve not only the atmosphere but also
the ocean and hydrosphere on the land. Hopefully, this book would serve as one step for

the future research in this area.

20xford Advanced Lerner’s Dictionary of Current English. 4th edition
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