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Abstract

Electric field observations by using 1,000 km scale submarine cables have been performed

since early 1990’s. One of the main purposes of the observations is to obtain observational

constraints on the dynamics of Earth’s core such as the strength and the distribution

of the toroidal magnetic field and its variation at the core mantle boundary. Several

constraints have been obtained until present, but the electromagnetic plausibility of them

have not been examined.

In this paper, electromagnetic field variations generated by a simple spherical mean-

field kinematic dynamo within an electrically conducting mantle are discussed. The field

variations are assumed to be generated by perturbing a steady α2-dynamo with torsional

oscillation type zonal flows having period of 30 years. It is confirmed that the kinematic

dynamo can generate the observed amplitude of electric voltage variation (∼ 100mV)

naturally. The amplitude of voltage variation is controlled mainly by the energy state

of the dynamo, i.e., the magnetic Reynolds numbers, and the strength of the toroidal

field variation at the CMB is determined by the magnetic Reynolds numbers and the

conductance of the D′′ layer.

Potential obstacles for the detection of the 100mV signal in 1,000km scale submarine

cable voltages are the electric voltages induced by external magnetic field variations

(magnetotelluric induction) and that induced by the ocean flow (motional induction).

Although the magnetotelluric current with decadal time scales seems negligibly small,

the motionally induced electric field variation can be as much as 100mV for 1,000km

scale. It is necessary to know the time variation of ocean flux in order to discuss the

electric voltages generated in the deep interior of Earth correctly.
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1 Introduction

The geomagnetic field has been observed for more than a hundred years (e.g. Langel

(1987)). Obtained geomagnetic main field and its variation are often used to study deep

interior of Earth such as to find the flow at the surface of the core (e.g. Roberts and Scott

(1965)) and to constrain the electrical conductivity of the lower mantle (Alexandrescu et

al. (1999)). On the other hand, the geoelectric field has attracted much less attention

although it is pointed out that geoelectric field has potential to reveal the dynamics,

which cannot be acquired by geomagnetic or other observations, in Earth’s interior (e.g.

Runcorn (1954, 1964)), probably because only few global scale electric field data were

available.

Electric voltage measurements between distant locations more than 1,000km apart have

been performed by a joint US-Japan project since early 1990’s using long submarine cables

retired from telecommunications. The network of the submarine cables for geoelectrical

observations in the western Pacific is shown in Fig.1. Although it would be necessary to

expand the existing scientific cable network for a better understanding of the global-scale

geoelectric field, it is expected that these observations provide additional but unique

information to discuss about deep interior of Earth.

One of the main purposes of the global scale electric field observation is to detect the

strength and distribution of the toroidal magnetic field and their variation at the core

mantle boundary (CMB). Although theoretical estimates of the strength of the toroidal

magnetic field in the core considering magnetohydrodynamical balances in a rapidly ro-

tating fluid have been made, the dynamical balances may produce several dynamical
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states, and the strength of the toroidal field cannot be determined only by theory at

present (see, e.g., Roberts and Glatzmaier (2000)). It is well known that direct observa-

tion of the toroidal geomagnetic field is not possible at the surface of Earth. However, the

electric current that generates the toroidal field may leak into the mantle from the core

because the mantle has small but non-zero electrical conductivity. The electric current

should appear at the surface of Earth, in principle (see Runcorn (1954, 1964), Roberts

and Lowes (1961)). However, it was concluded by these pioneering workers that the elec-

tric field would be too weak to be detected by usual electric field measurements spanning

less than 1 km but might be detected only if long cables, such as those shown in Fig.1,

are used.

Several attempts to obtain the strength and distribution of the toroidal magnetic field

at the CMB using submarine cable voltage data had been made. Lanzerotti et al. (1985)

obtained approximate DC value of the electric field from the geoelectric field data of 4 to

85 days long and concluded that the strength of the toroidal field at the CMB is about

the same as that of the poloidal field there. However, it is very difficult to obtain the

correct DC value because of aliasing: the data length was not long enough compared with

the time scale of variation of the geoelectric field of deep internal origin. Moreover, the

chemical potential between the electrodes and the surrounding material may be non-zero

and it makes estimating the DC values even more difficult. Shimizu et al. (1998) utilized

time dependent part of the electric field to avoid the uncertainty involved in using DC

values and estimated the amplitude of the decadal variation of the toroidal field at the

CMB. It was necessary for them to make some crucial assumptions because the length
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of the time series of the submarine cable voltages was about four years, which is not

very long. For example, they assumed that the electric field variation is due entirely

to thirty-year variation of the geomagnetic main field; one of its signature is the dipole

field oscillation of about 50nT (or 0.15%, Yokoyama and Yukutake (1991)). Shimizu et

al.(1998) obtained 0.1mV/km as the amplitude of the electric field variation, and found

an approximate upper bound of the strength of the toroidal field variation as 1-10 times

larger than that of the poloidal field variation at the CMB depending on the mantle

conductivity.

Although Shimizu et al. (1998) obtained the observational constraint on the toroidal

field variations, it is not known that the constraint is consistent with the physical pro-

cesses in the core and mantle. In other words, it is not confirmed that the toroidal field

variation of the strength at the CMB can be produced by a self-exciting dynamo sur-

rounded by weakly conducting mantle. (Some theoretical discussions on the steady state

has been made by Levy and Pearce (1991).)

In this study, electromagnetic field variations generated by a kinematic dynamo sur-

rounded by electrically conducting mantle are calculated in order to test the physical

validity of the constraint. The problem is approached in two steps. First, the steady

state of the dynamo having conducting mantle is calculated. Then, the steady state is

perturbed by applying zonal oscillatory flows in the dynamo region to generate oscil-

lating electromagnetic field. An α2 dynamo is employed as the steady dynamo because

αω dynamo, which might be more appropriate as a model for the geodynamo, is very

easy to oscillate by itself and change its direction of the magnetic field by the effect of
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the dynamo wave (Parker (1955)). The zonal oscillatory flows are chosen to represent

the torsional oscillation in the core (Braginsky (1970)), and the period of the oscillation

is supposed to be 30 years. The applied oscillatory flows produce electromagnetic field

variation of supposed period though the actual causes of the decadal variations are not

really certain yet. It turns out that the kinematic dynamo can generate toroidal magnetic

field variation at the CMB naturally and the amplitude can be as large as that Shimizu

et al.(1998) obtained.

Flows at the core surface have been studied by using the geomagnetic main field and

its variation. Jault et al. (1988) showed almost complete angular momentum exchange

between the core and mantle for decadal time-scale via possible cylindrical zonal flow

using a time series of the flows (see also Jackson et al. (1993) and Bloxham (1998)).

However, there is non-uniqueness to determine the core surface flow only by using the ge-

omagnetic field (Backus (1968)) ; physical and/or mathematical hypotheses are necessary

to overcome the non-uniqueness. The global electric field at the surface of Earth has a

potential to constrain the flow in the Earth’s core if it is used with the geomagnetic field.

For example, if the electric and magnetic field is known at the CMB, the flow can be

determined completely. However, the toroidal field is not known yet and to find correct

electric field distribution at the CMB from surface data requires better information on

the electric conductivity distribution in the mantle. Nevertheless, some signature of the

core flow must be contained in the surface electric field. We will calculate the electric

potential distributions due to two zonal oscillatory type flows and examine if they can

be distinguished by geoelectric observations using submarine (or other long) cables.
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There are two possible sources of geoelectric variations of decadal time-scale other than

that due to the geodynamo, and it is not well understood which is dominant in the cable

voltages of decadal time-scale. The two possible sources are the magnetotelluric induction

in the solid Earth and the motional induction in the ocean. We will estimate the orders

of magnitude of global scale voltage induced by the two sources and will examine if it is

possible to detect the geodynamo electric field in practice.

Formulation of the kinematic dynamo problem is presented in the next section. The

results of the numerical calculations of the α2-dynamo and perturbed oscillatory dynamo

are presented in section 3. The variations of the electric voltage and electric potential

distributions are also shown in the section. Detectability of such a signal is discussed

in section 4 by quantifying the order of magnitude of the magnetotelluric and motional

inductions. Conclusions are given in section 5.

2 Formulation of the kinematic dynamo problem

2.1 Description of the model

The kinematic dynamo model we consider in this paper consists of three regions; the

core, where dynamo action operates, the D′′layer and the rest of the mantle (see Fig.2).

The boundaries of each region are supposed to be spherical, and the electrical conduc-

tivities of the regions are constant.

The radius of the core and mantle, rc and ra, are set to be 3,500 km and 6,300 km,

respectively. The electrical conductivity of the core (σC) is supposed as σC = 3×105 S/m

(Stacey (1992)), and that of the mantle as σM = 1 S/m (see Shankland et al. (1993)).
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The outer radius of the D′′layer is rD = rc + d, and the thickness d will be varied in

the numerical calculations. The electrical conductivity of the D ′′layer, σD, also will be

changed.

The magnetic field generated by self-exciting dynamo must be three dimensional. How-

ever, to make the kinematic problem simpler, we are going to take a mean field approach:

the large scale magnetic field is assumed to be axisymmetric, and small-scale dynamo

process having three dimensionality of magnetic field (and flow) is parameterized by the

α-effect (see Moffatt (1978), Krause and Rädler (1980)).

The kinematic dynamo problem is approached in two steps. First, the steady state

of the dynamo under the influence of the electrically conducting mantle is obtained. α2

dynamo is supposed as the steady state for simplicity. The steady state of the α2 dynamo,

magnetic field distribution and criticalRα (see equation (2.1)), are found as an eigenvalue

problem.

After the steady state of the α2 dynamo is obtained, the state is perturbed by applying

oscillatory flow. Zonal, axisymmetric torsional oscillation type flows (Braginsky (1970))

having thirty-year period are employed as the oscillating flow. Rα is kept at or a little

below the critical value not to produce rapid growth of the magnetic field. By linearity of

the induction equation (see equation (3.1)), thirty-year variation of electromagnetic field

is expected to be generated by the oscillating flow. The time variation of the magnetic

field due to the flow is calculated numerically by integrating the induction equation in

time.
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2.2 Governing equations in the core

The governing equations in the core (0 ≤ r ≤ rc) are the mean-field induction equation

and continuity equation,

∂B

∂t
= ∇× (v × B + αB) + ηc∇2B, ηc =

1

µ0σC
. (2.1)

∇ ·B = 0, ∇ · v = 0. (2.2)

where B is the magnetic field, v is the velocity of the flow, αB represents the α-effect with

coefficient α, ηc is the magnetic diffusivity of the core, and µ0 is the magnetic susceptivity

of vacuum.

Because B and v are solenoidal, they can be written with poloidal (BP , vP ) and toroidal

(BT , vT ) vectors as

B = BP + BT , v = vP + vT , (2.3)

where, because the field and velocity are assumed axisymmetric,

BP = ∇×∇× (S(r, θ)r̂) ,BT = ∇× (T (r, θ)r̂) , (2.4)

vP = U∇×∇× (s(r, θ)r̂) ,vT = U∇× (t(r, θ)r̂) , (2.5)

r is radius, θ is colatitude, r̂ is the unit vector in radial direction, and U is a typical size

of the velocity.

Usually, the poloidal and toroidal functions are expended with spherical harmonics

when equation (2.1) is solved. In this paper, because the problem is axisymmetric, the

functions are expanded with Legendre functions Pn(θ) as

S(r, θ, t) =
∑
n

Sn(r, t)Pn(θ), T (r, θ, t) =
∑
n

Tn(r, t)Pn(θ), (2.6)
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s(r, θ, t) =
∑
n

sn(r, t)Pn(θ), t(r, θ, t) =
∑
n

tn(r, t)Pj(θ). (2.7)

Note that the α-effect is expanded similarly using Legendre functions. The details of the

equations for S(r, θ) and T (r, θ) can be found in Roberts and Stix(1972).

2.3 Governing equations in the mantle

The governing equation in the mantle (rc < r ≤ ra) is also the induction equation but

without flow;

∂B

∂t
= −∇× (ηX∇× B) , ∇ ·B = 0, (2.8)

whereX is eitherD (D′′layer) orM (rest of the mantle), and ηX is the magnetic diffusivity

ηX =
1

µ0σX
. (2.9)

This equation is general and it is valid when the electrical conductivity has any spatial

distributions. However, only the case with constant σD and σM is considered in this

paper to make the problem simpler.

Another simplification can be made if the time-scale separation of the geomagnetic

secular variation and the magnetic diffusion time in the mantle is significant. Since

the former (decadal) is considered to be much longer than the latter (one year), the

electromagnetic field in the mantle, in effect, responds immediately to the forcing field at

the CMB to the first order. Therefore, the steady state solution of the electromagnetic

field in the mantle may be applied for the problem.

For the steady state, the poloidal magnetic field becomes a potential field in the mantle,

which is the same as the poloidal field with insulating mantle. On the other hand, the
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toroidal field is different from the non-conducting case. The equation governing T (r, θ)

in the D′′layer and the rest of the mantle is written as

σX
∂

∂r

(
1

σX

∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
= 0. (2.10)

If σX is constant, the solution for this problem is written as, after expanding T with

Legendre functions (see equation (2.6)),

Tn(r) = anr
n+1 + bnr

−n, (2.11)

where an and bn are constant (Roberts and Lowes (1961)) which are determined by

boundary conditions.

Because the functional form of T (and S) are known in the mantle, we may take the

effect of the conducting mantle into account to the core dynamo problem as boundary

conditions at the CMB.

2.4 Boundary conditions for the core dynamo problem

It is necessary to consider not only the CMB, but also all the boundaries in the problem

to obtain the boundary conditions at the CMB for the dynamo problem. At the bound-

aries, r = rc, rD and ra, the magnetic field, horizontal electric field and radial electric

current are continuous. The conditions may be written using the poloidal and toroidal

functions S and T as

< S >= 0,

〈
∂

∂r

S

r

〉
= 0, (2.12)

< T >= 0,

〈
1

σ

∂T

∂r

〉
= 0, (2.13)

where < f > indicates the difference of f between the two sides of the boundaries.
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It can be confirmed that the poloidal field does not depend on the conductivity distri-

bution if it is potential because the boundary condition for S (equation (2.12)) does not

contain the electrical conductivity. Therefore, the boundary condition for S is, at all the

boundaries,

dSn

dr
+
n

r
Sn = 0. (2.14)

It needs some more considerations to obtain the boundary condition of T at r = rc. By

applying (2.13) at r = rc, rD and ra, the boundary condition at r = rc may be written as

Tn + Λn
∂Tn

∂r
= 0, (2.15)

where

Λn = −σD

σC

[rn+1
c ,−r−n

c ]An

[(n+ 1)rn
c , nr

−(n+1)
c ]An

(2.16)

and

An =
1

2n + 1




n

rn
a

(
1 −

(
ra

rD

)2n+1
)

+
σD

σM

1

rn
a

(
(n + 1) + n

(
ra

rD

)2n+1
)

(n+ 1)rn+1
a

(
1 −

(
rD

ra

)2n+1
)

+
σD

σM
rn+1
a

(
n+ (n + 1)

(
rD

ra

)2n+1
)

 .
(2.17)

See details of the derivation in Appendix A. Note here that although the boundary

condition for T at the surface of the Earth (r = ra) is

Tn = 0, (2.18)

the radial derivative of T at r = ra is not necessarily zero: non-zero horizontal electric

field due to the toroidal magnetic field appear at the surface of Earth.
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2.5 Electric potential at the surface of the Earth

The distribution of the electric potential at the surface of Earth is obtained using the

toroidal function in the present case. The electric field in the mantle is entirely due to

the toroidal magnetic field because induction effect in the mantle is neglected in this

approximation (see equation (2.10)). By Ampere’s law,

E =
1

µ0σ
∇× B, (2.19)

so that the electric field at the surface of Earth is written as, considering the axisymmetry,

E =
1

µ0σM

1

rc

∂2T

∂θ∂r
|r=ra θ̂, (2.20)

where θ̂ is a unit vector in the θ direction. Only θ component exist in this case and the

surface electric potential (≡ ψ), which depends only on θ, can be obtained by integrating

the θ component of the electric field by rdθ. Now, we have

ψ(θ, t) = −
∫
Eθrdθ = − 1

σMµ0

∂T

∂r
|r=ra (+const). (2.21)

The r derivative of T at the surface can be obtained directly from the T of equation

(2.11) after an and bn are determined by the boundary conditions.

2.6 Non-dimensional equations

Non-dimensionalized equations and boundary conditions will be used in the actual

numerical calculations. Let the length scale be rc, velocity scale be U , magnitude of the

α-effect be α0 and time scale be τ . Induction equation (2.1) may be scaled using the

scales above as

Rm

St

∂B

∂t
= Rm∇× (v × B) +Rα∇× (αB) + ∇2B, (2.22)
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where Rm is the magnetic Reynolds number, Rα is the α-effect magnetic Reynolds num-

ber, St is the Strouhal number;

Rm =
Urc

η
, Rα =

α0rc

η
, St =

Uτ

rc
. (2.23)

Note that non-dimensionalized boundary conditions are also employed for the numerical

calculations.

2.7 Form of the α effect and zonal oscillatory flows

The α-effect in the core is supposed as (see, e.g. Roberts (1972), Roberts and Stix

(1972)),

α(r, θ) =
729

16
r8(1 − r2)2 cos θ. (2.24)

This is taken because the form is simple and the magnetic field of dipole symmetry is

excited at critical Rα.

2.8 Form of the oscillating zonal shear flow

We employed two flows shown in the following to represent torsional oscillation type

flow;

Flow 1: vφ = 0.35∗ 15

2
s(1− s2)(1− r8)T (t), ω = 0.35∗ 15

2
(1− s2)(1− r8)T (t) (2.25)

Flow 2: vφ = 0.3 ∗ 15

2
s3(1 − r8)T (t), ω = 0.3 ∗ 15

2
s2(1 − r8)T (t) (2.26)

where vφ is the velocity of the φ component of the flow, ω is the angular velocity of

the flow, s = r sin θ is the distance from the Earth’s rotation axis, and T (t) represents

time-dependency of the flow. Sinusoidal function of thirty-year period will be assumed

for T (t). Fig.3 shows the angular velocity distributions of the two flows. The angular
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velocities within the main body of both flows do not change in the direction of the rotation

vector of Earth and the flows becomes zero quickly near the CMB. Both of the flows are

normalized such that the maximum of vφ are about 1. In Flow 1, a strong shear exists

in the polar region. On the contrary, the equatorial region has a strong shear in Flow 2.

Note that the flows can be expressed using only t1(r) and t3(r) in the expansion (2.7).

3 Electromagnetic field generated by the kinematic dynamo

Several grid spacings and truncation degrees are tested and ∆r = 1/100 and truncation

degree 8 are employed. This particular descretization gives eigenvalue of free decay

problem about 0.5 % lower than the analytical value. Some more discussion on the

convergence of the numerical calculations is given in Appendix B. (However, the authors

recommend readers to read the appendix after they go through section 3.2. The similarity

of the results of the oscillatory dynamos obtained using two different sets of grid are

employed to examine the convergence.)

Thickness (d) and electrical conductivity (σD) of the D′′ layer are changed for the

calculations to examine the influence of the conductivity (conductance) of the D ′′ layer

on the core dynamo problem. The values of the quantities used in the calculations are

summarized in Fig.4.

3.1 Steady α2-dynamo

Rm = 0 is supposed for this problem, i.e., only the α-effect is responsible to generate

the magnetic field. Because the problem is linear in magnetic field and α is steady, the
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time dependence of the solution is written as

B ∝ B0 exp(λt), (3.1)

and self exciting dynamo is possible if λ ≥ 0. Now, equation (2.22) becomes

λB0 = Rα∇× B0 + ∇2B0. (3.2)

It is possible to set λ = 0 and formulate the problem as an eigenvalue problem for Rα.

However, in this paper, we changed Rα and obtained maximum eigenvalue λ for each Rα

as has been done by Gubbins (1973). TheRα corresponding to λ = 0 is found and is called

the critical α-effect magnetic Reynolds number (Rαcr). Note that the eigenfunctions Sn(r)

and Tn(r) are normalized such that the maximum value in entire {Sn(r), Tn(r)} is 1.

Magnetic field of dipole symmetry is generated at the critical Rα. The first modes for

the poloidal and toroidal fields are S1 and T2, respectively, and their values at the CMB

are larger than other corresponding modes. The eigenfunctions for the two modes with

d = 200 km and σD = 102, 104 and 105 S/m are shown in Fig.5. It may be seen in

the figure that the change of the conductivity of the D′′layer has almost no effect on the

distribution of S1. On the other hand, the distribution of T2 near the CMB is influenced

by the conductivity. Especially, the deviation from zero with very high D ′′conductivity

is significant. (Note that σD = 105 S/m is too high for the actual D′′layer. The result is

shown to demonstrate the effect of the mantle conductivity on T2.)

The sizes of the steady state toroidal and poloidal field at the CMB can be obtained

from the eigenfunctions, i.e. Sn(r) and Tn(r) at Rαcr. Because normalized and non-
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dimensional system is used

|BP,n| = |∇ ×∇× (SnYn(θ, φ))| ∼ |Sn|, |BT,n| = |∇ × (TnYn(θ, φ))| ∼ |Tn|. (3.3)

Now, let’s consider the size of the toroidal field at the CMB. To represent the toroidal

field strength, we consider the ratio of T2 against S1 at the CMB. See Table 1 for the

values of T2/S1 at the CMB, and Fig.6 is its plot against the conductance of the D′′layer.

It is seen that the ratio is determined by the conductance of the D′′layer, and not by

the conductivity within it. Also, the toroidal field is much weaker than the poloidal field

at the CMB if the conductance is within the range of acceptable values (≤ O(108) S).

3.2 Oscillating dynamo by perturbed flow

The steady states found in the previous subsection are perturbed by applying the

oscillatory zonal shear flows (see equations (2.25), (2.26) and Fig.3). The period of

oscillation is set to 30 years. This period is employed because (i) the observational study

by Yokoyama and Yukutake (1991) suggested probable existence of the geomagnetic 30-

year variation, and (ii) the torsional oscillation will have period of several tens of years

if it exists in the Earth’s core. Also, the results find in this model can be compared with

the observational constraint obtained by Shimizu et al. (1998).

It is necessary to set the value of Rm/St in equation (2.22). It is possible to use rc to

evaluate the size of Rm/St. However, because the actual length-scale in which magnetic

field changes will be smaller than rc, especially with the zonal flow, we will take 1000 km

as the length-scale for Rm/St. Let τ = 30 years and L = 1000 km (see equation (2.23)),
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then Rm/St = L2/ηcτ = 1000/3. This value is used for all the calculations of oscillatory

dynamo in this paper.

Typical time-series of the poloidal and toroidal field variations at the CMB generated

by flow 2 when d = 200 km, σD=100 S/m and Rm = 1000 are shown in Fig.7. Thirty-

year oscillation is generated by the oscillating zonal shear flow. The amplitudes of the

oscillations are estimated by using least square fit to the 30 year sinusoidal variation with

small linear trend for all the time series we have obtained.

The oscillatory flow produces the ω-effect, and T2 component is mainly generated by

the flow and S1 component. Therefore, the oscillation amplitude of S1 and T2 at the

CMB, ∆S1 and ∆T2, respectively, are mainly examined.

Fig.8 shows the ratio of the amplitude of the oscillating dipole to the steady dipole,

∆S1/S1, at the CMB (and also at the surface of the Earth). It is about 0.05 % if

Rm = 1, 000 and will be about 0.15% if Rm = 3, 000.

The ratio of ∆T2 to ∆S1 when Rm = 1, 000 is shown in Table 2, and plotted against

conductance of the D′′layer in Fig.9. The steady α2 dynamo showed similar dependence,

but the ratio is about 104 times larger for the perturbed dynamo than for the steady α2.

This is caused by the shear flow that drives electric current in the radial direction and

that forces the electric current flow into the D′′layer efficiently.

Electric voltage variation between any two locations at the surface of Earth can be

calculated using the toroidal field variation in the mantle (see equation (2.21)). By using

the snapshot of the electric potential at the surface of the Earth ψ(θ, t), the voltage
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between at locations having colatitudes θ1 and θ2 with GND at θ2 is

V (θ1, θ2, t) = ψ(θ1, t)− ψ(θ2, t). (3.4)

Fig.10 shows the electric voltage variations, which would be measured using some of the

cables shown in Fig.1, generated by flow 2 when d = 200 km, σD = 100, and Rm=1000.

The time series of the voltage are dimensionalized supposing g0
1=−30,000nT at the surface

of Earth. The voltage variation between 55 and 35 degrees of latitude is also shown as

a reference. The peak-to-peak amplitudes are 5-15 mV for the cables for this case. The

calculated time series of the voltage or Ninomiya-Guam and 55deg-35deg cables show

that the amplitude of the variation may be different for the cables having similar extent

in north-south direction. This implies that there may be some locations more sensitive

to the voltage variations of the geodynamo origin.

The peak-to-peak amplitude of the voltage variations due to the oscillating flow can be

estimated by using ψ(θ, t). Suppose that V (θ1, θ2, t) takes its maximum and minimum at

t = t1 and t2, respectively. The peak-to-peak amplitude of the voltage variation between

θ1 and θ2 may be written as

V (θ1, θ2, t1) − V (θ1, θ2, t2) = (ψ(θ1, t1) − ψ(θ2, t1)) − (ψ(θ1, t2) − ψ(θ2, t2)) (3.5)

= (ψ(θ1, t1) − ψ(θ1, t2)) − (ψ(θ2, t1) − ψ(θ2, t2))

= Φ(θ1) − Φ(θ2),

where we let

Φ(θ) = ψ(θ, t1) − ψ(θ, t2). (3.6)

Therefore, if we find Φ(θ) for each flow and parameter set, we can discuss how much
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amplitude of the voltage variation is expected due to the specific flow and parameter set.

Note that the sensitivity to the voltage difference at the location is large if |∂Φ(θ)/∂θ| is

large.

One of the most interesting feature of the electric potential variation might be the

difference of the Φ(θ) by flow 1 and 2. Distributions of Φ(θ) with d = 200km and

Rm = 1000 are shown in Fig.11. g0
1=−30,000nT is assumed in this case, too.

Fig.12 shows the σD and d dependencies of Φ(θ) with flow 2 and Rm = 1000. Not very

large differences can be seen in the distribution of Φ(θ).

Rm dependence of Φ(θ) with flow 2 at d = 200 km and σD = 100 S/m is shown in

Fig.13. As one might expect, Φ(θ) is proportional to Rm. The electric voltage amplitude

has the information of the flow speed in the core.

3.3 Discussions on the calculated results

It is demonstrated that the steady state toroidal magnetic field produced by the α2

dynamo is much smaller than the poloidal field at the CMB. On the contrary the toroidal

field variation amplitude may be 1-10 times of the poloidal field variation at the CMB.

However, it is still not known this is a general feature of dynamo. The oscillating flows

employed for the numerical experiment have strong shear near the CMB, and the shear

seems efficient to drive electric current, which produces the toroidal magnetic field, into

the D′′layer and mantle. If a steady-state dynamo has strong radial electric current

generation near the CMB, say by strong α-effect or steady shear just below the CMB,

the toroidal field at the CMB might be much larger than it is found (up to about 10−3

of the poloidal field) in this paper.
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The observational constraint on the strength of the toroidal field variation at the CMB

obtained by Shimizu et al. (1998), |∆BT | ∼ 1− 10|∆BP | depending on the conductivity

(conductance) of the D′′layer, is consistent with the present dynamo model, i.e. the

toroidal field variations of such strength can be generated naturally under the conditions

with physically plausible values of the conductance of the D′′-layer (see Fig.9 and Table

2).

It is interesting to see the distribution of Φ(θ) is not changed very much due to the

conductivity of the D′′layer (see Fig.12) but the size of the oscillating toroidal field is

changed as in Fig.9. This means that the dynamo produces almost the same amplitude

of electric field oscillation at the surface of Earth regardless of the conductance of the

D′′layer (of course it must be non-zero) if Rα and Rm (∼ energy level of the dynamo)

are the same. Therefore, if the state of the dynamo is decided in the core, the electric

potential variation at the surface is also decided, but the size of the toroidal magnetic

field variation at the CMB may be different due to the conductance of the D′′layer.

The amplitudes of dipole magnetic field variation depend linearly on Rm (Figs.8), and

Rm=3,000 is required to achieve the dipole field oscillation of ∆S1/S1=0.15%. The am-

plitude of the electric potential variation also depends linearly on Rm, and the perturbed

dynamo with Rm = 3, 000 may produce the electric voltage variation of 50-100 mV for

the cables of several thousands km.

The flow speed corresponding to Rm = 3, 000 is of order 10−3-10−2 m/s if L=1,000 ∼

3,000km and η=1∼3 m2/s. This estimate of flow speed seems too large for the oscillating

flow in the Earth’s core. However, the relationship between the dipole variation amplitude
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and Rm depends strongly on the dynamo model, i.e., the spatial distribution of the steady

state magnetic field and that of the zonal oscillating flow, and it is expected to have

dynamo models that produces 0.15% of the dipole field oscillation with slower flow speed.

(The discussion if such dynamo is suitable for the case of Earth still remains.) Other

possibilities are that the decadal variation is not generated entirely by zonal oscillating

flow and/or that the observational estimate of amplitude of geomagnetic dipole oscillation

made by Yokoyama and Yukutake(1991) is an overestimate.

Fig.11 shows that the distributions of Φ(θ) due to the two different flows are significantly

different from each other and the distributions may be interpreted considering the shear

distribution in the flows. Because flow 1 has strong shear at the polar region and almost

no shear in the equatorial region right beneath the CMB, Φ(θ) is steep between 40-85

degree in latitude and almost flat between ±30 degree latitude. On the other hand, Φ(θ)

by flow 2, which has strong shear at the equatorial region just below the CMB, has steep

and almost constant gradient throughout 5 to 60 degree latitude, but very small gradient

above 60 degree. The difference indicates the possibility to assess the location of strong

shear if such large-scale electric potentials are observed at the surface of Earth for a long

time. The present distribution of the cable networks (see Fig.1 for the one in the western

Pacific) cover lower to middle latitude (up to about 50 degree). It would be informative

if we can make geoelectric field observations at higher latitude, though it might be more

difficult to analyze such data because of larger disturbances by the external field.

Very simple one dimensional electrical conductivity in the mantle is considered in this

study. The conductivity of the D′′layer has a dominant effect on the toroidal field strength
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at the CMB, and the electric and magnetic fields are in the simple form in the kinematic

dynamo model because the conductivity in the D′′layer assumed constant. It is believed

that there is strong heterogeneity in the D′′layer, and the non-uniform conductivity will

cause mode conversion of the electromagnetic field (see Koyama et al. (2002)). It will be

interesting to consider how the dynamo similar to the one employed in this paper behave

under non-homogeneous conductivity of the D′′layer and how the magnetic and electric

field changes due to the inhomogeneity.

4 Submarine cable voltage variations of non-geodynamo ori-
gin

It is shown in the previous sections that the submarine cable voltage variations due

to the variations of the toroidal field at the CMB may have amplitudes large enough to

be detected by using present-day observations. However, there are two other sources of

electric field variations which deserve some attention. The one is the electric field variation

induced by the geomagnetic external field variations and the other is that generated by the

motional induction due to the ocean flow. These variations possibly have decadal time-

scales and may have to be separated properly to obtain the geoelectric field variations of

the geodynamo origin. We will estimate the order of magnitude of the submarine cable

voltage variations by the two sources in this section.

4.1 Induction due to external geomagnetic field variation

The external geomagnetic field variations have various time-scales: daily variation due

to the rotation of the Earth, six-month and one-year variation due to the orbital motion
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of the Earth, and 11-year variation due to the solar cycle (see e.g., Courtillot and LeMouël

(1988)). Although our concern is the decadal time-scale, we will estimate the order of

magnitude of the submarine cable voltage variations for all the time-scales listed above.

Faraday’s and Ampere’s laws may be written as

∇× E = −∂B
∂t

= iωB, (4.1)

and

1

µ0
∇× B = σE. (4.2)

Here, B ∝ exp(iωt) is assumed and Ohm’s law j = σE is used. The electric field induced

in vacuum (insulator) may be estimated by using Faraday’s law. If the characteristic

magnitude of the magnetic field variation is |∆B| and characteristic length-scale of the

oscillating magnetic field is L, then the amplitude of induced electric field variation,

|∆EF |, may be expressed as

|∆EF | ≈ ωL|∆B|. (4.3)

On the other hand, the induced electric field in conducting material may be written with

magnetotelluric relationship (e.g. Parkinson and Hutton (1989)) which can be obtained

by combining equations (4.1) and (4.2) and can be written as

|∆EMT | =

√
ωµ0

σM
|∆B|. (4.4)

Both |∆EF | and |∆EMT | are estimated and the values of them are shown in Table 3.

σM = 1 S/m is employed as in the previous sections. Expected values of the voltage

variations measured using 1000km cable, V F and VMT , are also listed in Table 3.
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The daily variation of V F and VMT are estimated as about 20V and 0.48V, respectively,

which is very large compared with that of the geodynamo origin. The daily variation can

be seen in actual submarine cable data, and it is one of the main source of variations.

Six-month and one-year variations might have the magnitude of voltage variation (∼20-

50mV) as large as that of the geodynamo origin. Although they are in comparable

magnitude, the time-scales of the variations are known exactly and it is much shorter

than the time-scale of our interest. The variations may be filtered out from long time

series when the decadal scale variations are discussed. The 11-year variation might not

be filtered out from the time-series of electric voltage for decades, but its amplitude is

expected to be much smaller than the voltages due to the geodynamo. Therefore, the

submarine cable voltages originated from the external magnetic field variations will not

cause much trouble for the detection of the decadal geoelectric field variations from the

outer core.

4.2 Motional induction due to ocean current

The sea water is a relatively good conductor having electrical conductivity about 3S/m.

The ocean current induces electric field during its movements in the geomagnetic field.

Submarine cable voltages are sometimes used to monitor ocean flux by using relation-

ships between the fluxes and voltages (e.g. Larsen (1992), Flosadóttir et al. (1997)).

The motionally induced voltage variations might mask the electric field variations of

the geodynamo origin if the variation of motionally induced voltage has large enough

amplitude.

The motionally induced electric field is a potential field if the time variation of the field
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and current is not very rapid (e.g. Chave and Luther (1990)). By Ohm’s law,

j = σS(−∇φ+ v × B), (4.5)

where j is the electric current density, σS is the electric conductivity of the sea water

and φ is the electric potential (E = −∇φ). By taking divergence of equation (4.5) and

applying ∇ · j = 0, the equation governing φ is written as

∇2φ = ∇ · (v × B) (4.6)

for the ocean having constant electrical conductivity. We may find φ by solving equation

(4.6) if v, B, and appropriate boundary conditions, which contain the information of the

electrical conductivity of the sea-bed, are specified.

Here, we are going to find the distribution of depth average of φ (≡ φ̄) due to model

flow of a global-scale gyre in a simplified ocean. Then, we will estimate the order of

magnitude of the cable voltage variation due to decadal variation of the geomagnetic

field or that of the ocean flow.

The model ocean we consider is a rectangular ocean surrounded by a rigid wall made

of electric insulator. The size of the ocean is supposed as 10,000km×6,300km in [East-

West]×[North-South], and the depth is assumed to be 4km. Southern edge of the ocean

corresponds to the equator. The two-dimensional global circulation model, which can re-

produce strong flow at the western boundary of the ocean, by Stommel(1948) is employed

as the global-scale gyre (Fig.14). The distribution of the magnetic field is assumed to be

of dipole type and the intensity is set as g0
1=−30,000nT. We consider only the vertical

component of the magnetic field in the calculation.
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Fig.15 shows the distribution of φ̄ due to the Stommel’s flow and axial dipole field. φ̄

is set zero at the western boundary and 3,150km north from the equator(bottom). The

asymmetry in the north-south direction is due to the change of the strength of Bz over

the area. It is seen that the steady-state motionally-induced voltage can be about 0.3V

for a 1,000km cables, and, generally, it will be smaller for longer cables if one end is at

or close to the western boundary of the ocean. The steady state electric voltage is large

enough to be measured by the present observations.

As mentioned earlier, the motionally induced cable voltages vary with decadal time-

scale if the geomagnetic field and/or the ocean current vary with the time-scale.

By (4.6), the electric field is proportional to the magnetic field strength. If the strength

of the magnetic field is changed by 0.15%, the contribution due to geomagnetic field

variation on the motionally induced voltage is also 0.15%, i.e. as much as 1mV, which is

negligibly small compared with the voltage variation of the geodynamo origin.

The decadal variation of the ocean flux is not very well known yet. However, some

studies on Kuroshio in the Western Pacific revealed that the amount of decadal variation

of the Kuroshio flux is about 30-40% of its steady value (Hibiya, personal communication).

By supposing that the flow pattern is approximately the same but the intensity of the flow

changes, then the maximum of expected decadal variation of motionally induced voltage

will be 0.3V×[30-40%]∼ 0.1V for 1,000km-scale cables. This value is considered as an

upper bound of the maximum value because of the physical set-up of the calculation:

the medium outside of bottom and side boundary is perfect insulator in the calculation

and no leakage currents into the Earth were allowed. The electric potential gradient
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is expected to be smaller if non-zero conductivity of the Earth is taken into account.

Therefore, amplitude of motionally induced voltages is at most comparable with the

voltage variation due to the decadal variation of the geodynamo. This means that the

decadal variation of the ocean current should be properly estimated and removed from

the cable voltages for the discussion of the electric field originated by the geodynamo. In

principle, this can be done because the ocean current can be observed by a lot of other

methods.

5 Conclusions

It has been demonstrated using a simple kinematic dynamo model that the torsional

oscillation type flows having period of 30 years can generate toroidal field variation as

large as or larger than the poloidal field variation at the CMB. The corresponding electric

voltages for 1,000km scale at the surface of Earth generated by the kinematic dynamo

model is of the same order of magnitude as that Shimizu et al.(1998) obtained observa-

tionally in case that the amplitude of dipole oscillation generated by the dynamo is as

large as that found by Yokoyama and Yukutake (1991).

The calculated distributions of the electric potential at the surface of Earth due to two

torsional oscillation type flows are significantly different. Main features are originated

from the locations of strong shear that distorts the poloidal field to generate the toroidal

field. It might be possible to constrain the locations if more observations efficiently

covering the surface of Earth are made. Global scale electric field observations at higher

latitude will be very informative for the purpose.
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Some estimate of decadal variation of submarine cable voltages due to non-geodynamo

origin is performed. It is unlikely that the cable voltage variations originated from the

geodynamo is masked by the magnetotelluric induction due to the external geomagnetic

field variations. However, the voltage variation due to the motional induction in the ocean

may be as large as that generated by the geodynamo. The motionally induced electric

potential variation estimated in this paper is considered to be an upper-bound because

no electric current is allowed to leak into the solid Earth from the ocean: the actual

variation of the potential is expacted to be smaller. It is desireble to study the motional

induction in the ocean with more realistic global ocean current, its time variation, and

electric conductivity distribution of the sea bed to understand how large the electric

potential variations are. (This may be done using global ocean circulation models.) If it

turns out that the potential variations are large, the calculated results should be used to

correct the submarine cable voltage data in order to detect the electric signals from the

Earth’s core. Note that observations using cables laid along the streamline of the ocean

current or those laid on the continents can avoid the effect of the motional induction.

28



Reference

Alexandrescu, M.M., D. Gibert, J.-L. Le Mouël, G. Hulot, and G. Saracco, 1999. An
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Appendix A. Boundary condition of T at the CMB

Let’s use the solutions of Tn in the mantle (see equation (2.11)) to find the boundary

condition for Tn in the core at the CMB. Let TM
n is Tn for rD ≤ r ≤ ra, T

D
n for rc < r < rD,

and TC
n for the core. The TM

n that satisfies the boundary condition at r = ra is

TM
n = Λ0(r

−n
a rn+1 − rn+1

a r−n), (A.1)

where Λ0 is a constant. Using this, we can calculate

1

σM

dTM
n

dr
=

Λ0

σM

[
(n + 1)

(
r

ra

)n

+ n
(
ra

r

)n+1
]
. (A.2)

This may be written as


 TM

n

1

σM

dTM

dr


 = Λ0




r
(
r

ra

)n

− ra

(
ra

r

)n

1

σM

{
(n + 1)

(
r

ra

)n

+ n
(
ra

r

)n+1
}

 ≡ Λ0an(r). (A.3)

For rc ≤ r ≤ rD,


 TD

n

1

σD

dTD
n

dr


 =


 rn+1 −r−n

n+ 1

σD
rn n

σD
r−(n+1)




 Λ1

Λ2


 ≡ D(r)


 Λ1

Λ2


 , (A.4)

where Λ1 and Λ2 are constants. At r = rD, the boundary conditions require


 TM

n

1

σM

dTM
n

dr


 =


 TD

n

1

σD

dTD
n

dr


 , (A.5)

then 
 Λ1

Λ2


 = Λ0D

−1
n (rD)an(rD) ≡ Λ0An, (A.6)

where

An = D−1
n (rD)an(rD). (A.7)

At r = rc, the boundary conditions imply


 TD

n

1

σD

dTD
n

dr


 =


 TC

n

1

σC

dTC
n

dr


 , (A.8)

and hence 
 TC

n

1

σC

dTC
n

dr


 = Λ0D(rc)An. (A.9)
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By eliminating Λ0 from the expressions of TC and dTC/dr, we have the boundary condition

for TC at the CMB. We can write

TC
n (rc) = Λ0[r

n+1
c , −r−n

c ]An, (A.10)

1

σC

dTC
n

dr
=

Λ0

σD
[(n+ 1)rn

c , nr−(n+1)
c ]An. (A.11)

By eliminating Λ0 from above two equations,

TC
n (rc)

σD
[(n+ 1)rn

c , nr−(n+1)
c ]An =

1

σc

dTC
n

dr
[rn+1

c , −r−n
c ]An, (A.12)

Hence

σD

σc

dTC
n

dr
[rn+1

c , −r−n
c ]An − T C

n (rc)[(n+ 1)rn
c , nr−(n+1)

c ]An = 0. (A.13)

This relationship may be written as

TC
n + Λn

∂T C
n

∂r
= 0, (A.14)

where

Λn = −σD

σC

[rn+1
c ,−r−n

c ]An

[(n+ 1)rn
c , nr

−(n+1)
c ]An

(A.15)

and

An =
1

2n + 1
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n
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Appendix B. Demonstration of the convergence of the numerical solutions of

the oscillatory dynamo

Convergence of the numerical solutions for the steady kinematic dynamos may be shown

by using eigenvalues and eigenfunctions (eigenvectors) arising in the eigenvalue problem.

However, eigenvalues cannot be used for the purpose for the oscillatory dynamo problem

considered in this paper. We are going to demonstrate the convergence of the solutions

by showing the amplitude ratios of the magnetic field variations and Φ (see eq.(3.6)) of

oscillatory dynamos obtained by using two different sets of grid.

The two sets of grid employed for the convergence test are (1)∆r = 1/100 and trunca-

tion degree 8 (which is used throughout in the main body of the paper, and will name

the grid as G8.100) and (2) ∆r = 1/200 and truncation degree 12 (grid G12.200). The

electrical conductivity and the thickness of the D ′′-layer are set as 100S/m and 200km,

respectively. Both flows (flow 1 and 2 in Figure 3) are tested, and the magnetic Reynolds

numbers used in the test are 1,000 and 3,000.

Table B1 shows the amplitudes of the dipole field oscillation (∆S1/S1), and Table B2

lists the amplitude ratios ∆T2/∆S1 at the CMB for all the combinations of grids, flows

and Rm’s. The differences of the values of the ratios due to different grids are at most a

few per cent for each combination of the flow and Rm. Figures B1 and B2 show the Φ’s

with Rm = 1, 000 and 3,000, respectively. Slight difference may be seen in the Φ with flow

1, but corresponding distributions have common features representing characteristics of

Φ generated by the flows. Therefore, we concluded that the numerical results shown in

main body of the paper are convergent (at least within the accuracy of the discussions

in this paper).
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Tables

Table 1. The ratio of the principle toroidal to poloidal magnetic field at the CMB.

d (km) σD (S/m) Conductance (S) T2/S1 at the CMB

200 5 × 10 1 × 107 1.44 × 10−4

200 1 × 102 2 × 107 2.69 × 10−4

200 1 × 103 2 × 108 2.51 × 10−3

200 1 × 104 2 × 109 2.48 × 10−2

200 1 × 105 2 × 1010 2.32 × 10−1

100 1 × 102 1 × 107 1.45 × 10−4

500 1 × 102 5 × 107 6.23 × 10−4

Table 2. Ratio of the amplitude of oscillation of toroidal to poloidal magnetic field at the

CMB (∆T2/∆S1). Oscillation period and Rm are set to 30 years and 1,000, respectively.

d (km) σD (S/m) Conductance (S) flow1 flow2

200 5 × 10 1 × 107 0.72 0.58

200 1 × 102 2 × 107 1.36 1.09

200 1 × 103 2 × 108 12.62 10.08

200 1 × 104 2 × 109 118.31 94.62

100 1 × 102 1 × 107 0.73 0.58

500 1 × 102 5 × 107 3.14 2.51

Table 3. Induced electric field by external field variations

period ∆B (nT) Length scale (km) ∆EF (mV/km) V F ∆EMT (mV/km) V MT

1 day 50 5000 1.8 × 101
18V 4.8 × 10−1

0.48V

6 months 10 10000 4.0 × 10−2
40mV 7.1 × 10−3

7.1mV
1 year 10 10000 2.0 × 10−2

20mV 5.0 × 10−3
5.0mV

11 years 10 10000 1.8 × 10−3
1.8mV 1.5 × 10−3

1.5mV

Table B1. Relative amplitude of the dipole field oscillation (∆S1/S1).

flow1 flow2

Rm = 1, 000 Rm = 3, 000 Rm = 1, 000 Rm = 3, 000

G8.100 4.63 × 10−4 1.43 × 10−3 5.74 × 10−4 1.58 × 10−3

G12.200 4.53 × 10−4 1.31 × 10−3 5.77 × 10−4 1.62 × 10−3
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Table B2. The amplitude ratio of the principle toroidal to poloidal magnetic field variations

at the CMB obtained using two sets of grids.

flow1 flow2

Rm = 1, 000 Rm = 3, 000 Rm = 1, 000 Rm = 3, 000

G8.100 1.36 1.38 1.09 1.17

G12.200 1.32 1.33 1.10 1.19
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Figure Captions

Figure 1. Network of the submarine cables for geoelectric observations in the western
Pacific.

Figure 2. The kinematic dynamo model. The mantle is two-layered and electrically
conducting.

Figure 3. Angular velocity distributions, relative to the CMB, of the applied zonal
oscillatory flows (eq.(2.25) and (2.26)). Flow 1 has stronger shear beneath the polar
region and Flow 2 has one blew the equator.

Figure 4. Thickness and electrical conductivity of the D ′′layer, d and σD, respectively,
used in the calculations.

Figure 5. Eigenfunctions of T2 and S1 of the steady α2 dynamo with σD = 102, 104,
and 105 S/m. d = 200 km in all cases. Almost no differences may be seen in S1’s.
T2’s are not 0 at the CMB (r = 1), but the value is significant only if the electrical
conductivity of the D′′-layer is very high (as high as 105 S/m, which is not plausible
for the D′′-layer).

Figure 6. The relationship between the ratio of the lowest mode of the toroidal and
poloidal magnetic field at the CMB generated by the steady α2 dynamo and the
conductance of the D′′layer. The ratio is determined by the conductance, not by the
conductivity, of the D′′-layer.

Figure 7. Time series of the first few modes of the magnetic field at the CMB generated
by the perturbed dynamo. The zonal oscillatory flow used for the calculation is flow
2 (see Fig.3). Rα = Rαcr, d = 200km, σD = 100 S/m, Rm = 1000.

Figure 8. The relationship between Rm and the amplitude of the dipole oscillation,
∆S1/S1, generated by the two flows.

Figure 9. The relationship between the ratio ∆T2/∆S1 and the conductance of the
D′′layer. The ratio is determined by the conductance, not by the conductivity, of
the D′′-layer.

Figure 10. Expected voltage variation produced by flow 2 and measured by existing
cable network and a fictitious cable between 55-35 degree latitude. Rα = Rαcr,
d = 200km, σD = 100 S/m, Rm = 1000.
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Figure 11. Φ by the two oscillating flows. The locations of high gradients in Φ are
very different due to the difference of the locations of strong shear in flow 1 and 2.
Rα = Rαcr, d = 200km, σD = 100 S/m, Rm = 1000.

Figure 12. Change of Φ distribution due to different conductivity in the D′′layer. Flow
2 and Rm = 1000 are used for the calculation.

Figure 13. Change of Φ distribution due to Rm. Flow 2, d = 200 km, σD = 100 S/m
are used for the calculation.

Figure 14. Streamline of the ocean circulation in a flat rectangular model ocean based
on Stommel(1948). Contour interval is 10sv (1sv=106m3/s).

Figure 15. Distribution of the electric potential induced by the model ocean current in
Fig.14 and axial dipole geomagnetic field (g0

1=-30,000nT). Electric potential is set
zero at 3150km on the western (left) boundary. Contour interval is 0.05V.

Figure B1. Comparison of Φ calculated using different sets of grid (G8.100 and G12.200)
with Rm = 1, 000. (Rα = Rαcr, d = 200km, σD = 100 S/m.)

Figure B2. Comparison of Φ calculated using different sets of grid (G8.100 and G12.200)
with Rm = 3, 000. (Rα = Rαcr, d = 200km, σD = 100 S/m.)
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