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Abstract

Mechanical systems whose dynamical constraints are nonintegrable, thus, non-

holonomic show strong nonlinearity. Such systems are difficult to control since
lincarization methods, such as feedback lincarization, cannot be applied. Such
nonlinearity often originates from underactuatedness and shows chaotic complex-
ity and diversity. In this dissertation, nonlinear behaviors of such systems are to be
analyzed. Control methods utilizing the nonlinearity are to be constructed. The
fundamental motivation of thos work is a desire to define a new noulinear mech-
anism with unprecedented characteristics such as underactuatedness, complexity
and diversity.

There are two major classes of nonholonomic mechanisms under dynamical
constraints.  One is that of first-order nonholonomic systems whose dynamical
constraints have the first integrals. The issues of space robots are to be discussed
as problems of a first-order nonholonomic system. The rest of discussions in this
dissertation is on second-order nonholonomic systems whose constraints have no
integral. Analysis and control of free-joint manipulators are to be discussed as a
second-order nonholonomic system

T'he “spiral motion of space robots” is a method of motion planning which ap-

proximately re:

ize an infeasible desired trajectory under nonholonomic constraints

by a feasible spiral-like trajectory circulating around the desired trajectory. It sim-

plifics motion planning of space nonholonomic systems. The validity of spiral
motions is to be verified by computer simulations.
Fre

motor. The behaviors in response to a periodi

joint manipulators have a potentiality to steer many joints only by one
input vary from a family of closed

trajectories to chaotic motion depending upon the amplitude of the input. Meth-
ods of analysis and control of the systems are first heuristically investigated and
constructed from observations of computer simulations. They arce subsequently ap-
proximated and formulated by the averaging method for gencralization to higher
dimensional systems. The cffectiveness of the proposed control methods is verified

by simulations and experiments.




Chapter 1

Introduction

1.1 Motivation: Dynamical Nonlinearity and
Minimalism of Mechanisms

There are kinds of mastery performances such as juggling, stunts, acrobatics, and
50 on. Such motions cannot be performed by ordinary people but can be achieved
only by dexterous and experienced jugglers, acrobats and tumblers. What makes

of

the acrobatic motions so difficult? The major reasons are dynamic nonlincarity
motions and limitation of manipulation or actuation where the performer requires

to steer many objects or complex motions in a space of high dimensions. The

ical and

motions involve rotations in three-dimensional space which contain topolog
dynamical nonlincarity.

Topological nonlinecarity is due to non-Euclidean coordinate space of three-
dimensional rotations. It makes our insights of the motions difficult since we usu-
ally grasp natural phenomena in two dimensional Cartesian or Euclidean space on

a paper, screen or blackboard. However, topological nonlincarity does not origi-

nate from dynamics but from static geometry. The issues of topological nonlinear-

ity have been discussed by many rescarchers as kinematic nonholonomy. On the
other hand, dynamical nonlinearity arises from nonholonomy of dynamics in con-
junction with underactuatedness of mechanisms. Underactuatedness implies that
fewer actuators drive larger numbers of coordinates. Underactuatedness makes it
difficult to control motions but reduces the number of actuators and simplify the

mechanism. Namely, dynamical nonlinearity is closely connected to minimalism of

the mechanisms performing the motion. Dynamical nonlinearity is to be mainly

L1011,

focused on in this disserte
As the study of such nonlincarity,

y carchers have investigated nonholo-
nomic systems and underactuated mechanisms. Although many general theories

many I

and methods for nonholonomic systems were proposed and established by control
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inds of nonlinearities. We will

engineers, it is still difficult to deal with those
categorize the nonlinearities from a control viewpoint.

Holonomic robots are usually nonlinecar but can be transformed into control-
lable lincar systems by lincarization methods, for instance, feedback lincarization
Such a nonlincarity is exactly lincarizable. This can be considered a “weak non-
lincarity” since what appears as nonlincarity is essentially a lincar phenomenon.
First-order nonholonomic systems have a stronger nonlincarity which is not exactly
lincarizable but controllable. The controllability is theoretically proved from local
controllability conditions. They are not stabilizable by a smooth time-invariant
feedback control to an equilibrium point but are stabilizable by a discontinuous
or time-variant feedback control. The nonlincarity of second-order nonholonomic

systems is often much stronger since its controllability cannot be proved from local

controllability conditions, such as Sussmann’s conditions. They are neither s
bilizable by smooth static feedback control. However, the conditions which they
don’t satisty arc just sufficient conditions. They usnally have accessibility and arce
possible to be locally or globally controllable. In this sense, control theories and
methods are useful for well-structured problem, but are unfortunately powerless
for the systems with stronger nonlincarity. Dynamical nonlinear systems are often
second-order nonholonomic and have higher underactuatedness. This dissertation
aims to analyze the nonlinear behaviors of dynamical nonholonomic systems and to
propose some approaches to control such strongly nonlinear systems from a view-
point of nonlincar dynamics, and to define a minimal mechanism with potentiality
to control many dimensions by less actuators

The motivation of this research is triple-fold: The first is to device the analysis
of nonlinear dynamic motions of nonholonomic mechanical systems. Formulation
of variation of the satellite orientation with cyelic motions of the end-effector in
Chap.3 and behavioral analysis of free-joint manipulators in response to a periodic
input in Chaps.4, 5 and 6 arc shown as the exaniples of nonlincar dynamical analysis
in this dissertation. The sccond is to develop and formulate new methods to control
dynamic motions of nonholonomic mechanical systems. The “spiral motion™ in
Chap.3 and “amplitude modulation of a periodic input™ in Chaps.4, 5 and 6 arc
proposed as examples of the new control methods in this dissertation. The third
is to define and construct new mechanisms through deep insights of nonlincarity
in dynamics and control. Free-joint manipulators with only one motor in Chaps.5
and 6 arc proposed as examples of the new mechanisms in this dissertation.

The characteristic of this dissertation is to deal with nonlincar problems of

nonholonomy using various tools in nonlinear dynamics, kinematics and nonlinear

control, such as quaternion kinematics, differential forms in Chap.3. phase space
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analysis and Poincaré map analysis in Chap.4, averaging analysis and Hamiltonian

analysis in Chaps.5 and 6, ctc. are applied in this dissertation.

1.2 Chaos in Hamiltonian Systems

Chaos is attracting great interests of researchers in various fields. for instance
nonlincar dynamics, mathematics, neurophysiology, cconomics, and robotics. Es-
pecially, there were many researches on nonlinear dynamics and control of Hamilto-
nian conserved systems and perturbed systems [Tab89.1KS92, Wig90. Far94. OGY90.
SGOY93,LDG93, BKG* 95, CD93b. CD93a, HJ93]. Hamiltonian systems generally

include most of mechanical systems as an example of Hamiltonian conserved me:

chanical systems, motions of forced pendulums are often investigated. Free-joint
manipulators are similar to pendulums except existence of the potential term and
arc also proved to be Hamiltonian conserved systems as in Chaps.4, 5 and 6. We

take an advantage of the approaches and methods in nonlincar dynamics and chaos

since there are a few theories or methods for second-order nonholonomic systems
in the control literature. In Chaps.4. 5 and 6. the methods and theories in chaos
and nonlincar dynamics, e.g. analysis in the phase space and the Poincaré map,
averaging analysis and the Hamiltonian analysis, are applied. Furthermore. chaotic
behaviors of free-joint manipulators under a sufficiently large perturbation are pre-

sented in See.4.3.3. It is a typical example that a simple mechanical system shows a

complex behavior or, in other words. a nonholonomic mechanism becomes chaotic.

1.3 Goals of this Dissertation and the Composition

of Chapters

This dissertation aims to attain three goals. The first goal is to clarify intricate
and multifarious behaviors of simple nonlinear mechanical systems and to establish
methods to analyze these nonlinear behaviors. The second goal is to construct sim-
ple path-planning and control strategices for robots with nonholonomic constraints.
The final goal is to define a new advantageous mechanisms. The new mechanism
is defined and developed based on the dynamical and control standpoints. In order
to attain the purposes. various theories and methods in nonlinear dynamics and
chaos are applied.

The rest of this dissertation is composed by six chapters. In Chap.2, definition
of nonholonomy, history of nonholonomic rescarch, and important theorems for

nonholonomic systems are summarized.
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In Chap.3, motion planning of free-flying space robots is to be discussed. Free-
flying space robots are dynamical systems under first-order nonholonomic con
straints of the angular momentum conservation. An arbitrary path of the end-
cffector and base-orientation is infeasible only by arm motions due to nonholo-
nomic constraints. The spiral motion is the feasible motion which approximately

achieves it. It consists of a nominal motion and a cyclic motion. A nominal mo-

tion follows the given end-effector path without considering the basc-orientation
A cyclic motion compensates the deviation of base-orientation produced as a side
cffect of the nominal motion. The cyclic motion acts as a perturbation and can
restrict its magnitude within an arbitrary desired limit. The effect of a cyclic mo-
tion is formulated and computation algorithm to obtain an optimal spiral motion
is presented. Computer simulations verify the cffectiveness of the proposed meth-
ods. One of the merits of this strategy is that the resultant motion follows the
nominal motion with a given bound of approximation. The other merit is that
holonomic path-planning strategies can be applied to design the nominal motion
which makes nonholonomic path-planning simpler and casier

In Chap.4, nonlincar dynamical analysis of 2R free-joint manipulator (2R-FJM)
is to be investigated and its control strategy is to be developed. The 2R-FIM is

a simplest example of sccond-order nonholonomic systems. Its nonlincar behav-

ior with periodic input is investigated on the Poincaré map. Chaotic behavior i
revealed when being subjected by a sufficiently large input-amplitude. Control
methods of the 2R-FJM are discussed in the subsequent sections. After explain-
ing difficulty to prove its controllability and stabilizability by conventional control
theories, a control strategy of simultancous positioning of the both joints by peri-
odic perturbation to the first joint is proposed. The control method proposed in
the chapter is heuristically constructed from analysis of its nonlincar behavior. In
order to verify the effectiveness of the method, simulations and experiments are
carried out

Subsequently to Chap.4, mathematical analysis of 2R-FIM via the averaging
method is to be investigated in Chap.5. The averaging method is an analytical
approximation which guarantees the error boundedness by the order of input-
amplitude. The averaging analysis shows that the averaged system is confined
onto an invariant torus manifold in the phase space. The invariant manifold is
identified by a Hamiltonian and. thus, the averaged dynamics is shown to be a
conserved system. Two control methods to steer the system to a desired invariant
manifold using the Hamiltonian are developed. A termination control at the des-
tination are also developed from second-order averaging. The effectiveness of the

proposed control methods is verified by simulations and experiments.
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Figure 1.1: Categorization of systems by nonholonomy

In Chap.6. nonlincar behavior of 3R-FIM with one motor is to be analyzed via
the averaging method. The averaged behavior with a constant input-amplitude is
shown to be confined onto a two-dimensional torus invariant manifold and, then
the system has two conserved quantities. One is found to be a Hamiltonian defined

from the Lagrangian of the averaged system via similar consideration for 2R-FJIN

Although the other hasn't been found yet and the corresponding manifold to a
destination cannot be identified. the amplitude modulation control is applied to
stabilize the Hamiltonian to a desired value. When the Hamiltonian is stabilized
to a desired value, the input-amplitude becomes constant and the system is sta-
bilized onto a two-dimensional invariant manifold. Experiments for 3R-FJM are
also carried out to show the practical behavior and to verify the effectiveness of
the proposed method.

Chapter 7 concludes the whole discussions made in this dissertation and pro-
vides some remarks and prospects. Figure 1.1 illustrates the categorization of sys-
tems by nonholonomy, the relations to control properties, and the correspondences

with the chapters in this dissertation.




Chapter 2

Nonholonomic Systen

2.1 Underactuated Systems and Nonholonomic

Systems

Underactuated mechanisms have been attracting a great deal of rescarch interests
in robotics and control as a field with many new possibilities [BG96]. Underactu-
atedness means that a system is driven or steered by less number of actuators than
the dimension of configuration space of the system. Underactuatedness is strongly
related to nonholonomy

The constraints of a system are called holonomic [Gol80] if they can be repre-

sented by equations only of generalized coordinates™ and a time as:
h(q,t) =0 {2:1)

where g denote generalized coordinates.  The degree-of-freedom (DOF) is defined
as difference of the number of constraints and the number of generalized coor-
dinates, and denotes the number of independent or non-redundant actuators. If
a system is holonomic, we can climinate dependent coordinates and reduce the
number of generalized coordinates to the DOF. The number of reduced coordi-
nates implies the original sense of “degree of freedom™ when all the constraints
are holonomic. An “ordinary” robot which is fully-actuated without passivity and
redundancy is a holonomic system since its motors can be driven independently
and its constraints can be represented only by the joint coordinates.
Nonholonomy is defined as “no holonomy,” namely, the constraints of the sys-
tem cannot be represented by equations of generalized coordinates and a time.
However, in recent years especially in control and robotics [CLBWO1], nonholo-

nomic systems imply the systems with constraints represented by nonintegrable

and sufficient numbers of variables to represent the

*Generalized coordinates denate necess:
configuration of the system, i.e. positions, orientations. and joint angles etc.
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differential equations including time-differentials of generalized coordinates, i.c.

velocities and/or accelerations as:
h{q;q. a1 =0 (2.2)

The conventional control theories and methods cannot be applied to nonholonomic
systems in general.  Nevertheless, nonholonomic systems, ¢.g.  car-like mobile
robots, rolling contacts of disks, balls and plancs, and free-flying space robots,
ote. have been attracted great rescarch interests. The reason is that these systems
have the advantages that they do not require as many actuators as the general-
ized coordinates. We cannot reduce the number of generalized coordinates when
the constraints are nonintegrable, thus. nonholonomic. Hence, the configuration
space spans higher dimensional space than the DOF. Such systems which do not
require as many number of actuators as the number of generalized coordinates are

intrinsically completely underactuated systems.

2.2 History of Research on Nonholonomic Systems

In the first rescarches considering nonholonomic constraints in robotics, in 1987
Laumond [Laus7] discussed the kinematic constraints and path-planning of mobile
robots and Vafa [Vaf87] discussed orientational control of space robots supposing
unintegrability of the constraints in his dissertation. The term “nonholonomy™ was
not recognized as a keyword at that moment. Nakamura and Mukherjee [NM89]
studied path-planning of manipulators on free-flying space robot considered as the
first paper entitled with nonholonomy. Meanwhile, Salisbury [Sal82] and Kerr and
Roth [KR86] indicated that the rolling contacts of fingers and objects are non-
holonomic constraints, and Li, Canny and Heinzinger [LC90, LCH90] discussed the
problem as motion planning under nonholonomic constraints in 1989. Nakamura
and Mukherjee [NM90, NM91] proved that the angular momentum conservation of
space robots is nonholonomic and proposed a motion planning under nonholonomic
constraints using bi-directional approach

The above rescarch subjects are first-order nonholonomic systems which are
.3, and they are divided into two groups. One group consists of

defined in Sec
mobile robots and rolling contacts, and the other is the group of free-flying objects.
The former is denoted by nonholonomic systems under kinematic constraints and

the latter is denoted by nonholonomic systems under dynamical constraints.
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2.2.1 Nonholonomic systems under kinematic constraints

The largest group of nonholonomic resee
Lau91,LS590, LS93, KKMN90. KKMN91, SAA90,SAA9], Sam93]. From the stand-

point of robotics, the nonholonomic constraints is important and significant prob-

rches was for car-like mobile robots [Lau90

lem for path planning and tracking control of mobile robots. From the stand-
point of control. the nonholonomic constraints of mobile robots are the simplest
examples of nonholonomie problems. Consequently, most of rescarches on feed-
back stabilization of nonholonomic systems were developed for examples of mo-
bile robots such as tracking control [KKMN90. KKMN91]. exponential stabiliza-
tion by picce-wise continuous feedback [('vl\\'S{)?.\'('ri\\!lﬂ SDE93], time-varying
feedback stabilization [Sam91a. Sam91b, Sam93, Pom92, Cord2, IKY96a], discontin-
uous feedback stabilization [KRM94, KCAW95, KCAW96]. and time-state control
form [STIKK94, SKI95. SKIKS96]. Some similar systems were also studied: i.c. uni-

cycle [LAN9G], fire truck [MRI6] and trailers [Sor93]). Kinematic constraints of un-

derwater vehicles are also nonholonomic path-planning problems even in 3D space,
though the dynamics is extremely difficult by various forces in water. Nakamura
and Savant [NS91,NS92

trol and Sordalen [SDE93] proposed an exponentially convergent control law. Mur-

studied the constraints., controllability, and tracking con-

ray and Sastry [MS91] defined chained form and presented the sufficiency condition

to transform a symmetric affine system into chained form. The above systems can

be transformed into chained form and general control theorems are developed for

chained form [AS96.MS96.1KY96a]. From the studies for a mobile robot with »

trailers and chained form. Sordalen, kamura and Chung developed a new mech-
NC94.CNS95b, CNS95a, SNC95a] and

]. The nonholonomic manipulator is

anism called a nonholonomic manipulator |

studied its motion planning [CN96. SNC¢

one of the minimal forms of robot mechanisms which can control any number of
joints only by two motors

The other major subject in nonholonomic problems is the problem of rolling
contacts of balls, disks and planes [LC90,BS95]. The problem was discussed con-
nected with that of rolling contacts of fingers and objects [LCH90, MLS94a], and
595b, P96, MLF97]. Li, Canny
and Heinzinger [LC90, LCHI0] first discussed the motion planning of the rolling

some interesting mechanisms were developed [CN

contacts of fingers and objects under their nonholonomic constraints. Murray
ct.al. [MLS94a] studied the mathematical features of robotic manipulation by fin-
gers. Bicchi et.al. [BS95] proposed a manipulation strategy through rolling ob-

1 5b] developed a
nonholonomic manipulator using the control propertics of n-trailer system for the
control design as mentioned above and the nonholonomic constraints of ball-disk




Chap.2 Nonholonomic Systems 9

contacts for the mechanism. Its transmissions using nonholonomic ball-disk con-

r-ratio continuously changes

straints were called nonholonomic gears of which g
from 0 to 1. Peshkin ct.al. [P*96] applied a similar nonholonomic transmission

h can

to a haptic display. Luo [MLF97] developed a nonholonomic table wl
be positioned at any position and orientation on a 2D plane by two actuators
through rolling contacts of balls and the planc. These problems were based on
the assumption that the rolling contacts do not slip and, then, the constraints
arc naturally geometrical. Hence, it is not necessary to counsider their dynamics
but their kinematics. Manipulation of objects through sliding [LM95] or throw-
ing [ML93.Lyn96, LM96] is introduced in Sec.2.2.3 since the constraints are classi-

fied into second-order nonholonomic ones and the dynamics needs to be considered

2.2.2 Nonholonomic systems under dynamical constraints

At the same time when the nonholonomic systems under kinematic constraints
were studied, problems on orientational motions of free-flying space robots by
internal motions of their manipulators were recognized as one of nonholonomic
problems [Vaf87]. Such the problem of the free-flying system occurs from that
the angular momentum conservation is nonintegrable constraint including the an-
gular velocities. Such systems arce called nonholonomic systems under dynamical
constraints

Systems under angular momentum conservation are often referred as the falling

cat phenomenon [Mar94]. Kane and Scher [KS69] discussed the problem from a

dynamical standpoint and Yamafuji ct.al. [YKK92] developed a robotic falling
cat. Frohlich [Fro7e

or trampoline. Kane et.al. [KS70, KHY72] proposed an orientation control of an

| studied dynamical features of somersaults on a springboard

astronaut by his limb motion and proved it through experiments. In robotics field
Lapshin [Lap91] and Nakano and Tsuchiya [NT93] investigated orientation control
of a robot in jumping phase or midair. A major subject in dynamical nonholonomic
rescarches is orientation control of free-flying space robots by manipulator motions
Umetani and Yoshida [UY87,UY89] proposed a path control of manipulators while

the orientation of their base was diverging, and they introduced the generalized

Jacobian. Vafa introduced nonholonomic features of dynamics and control of space
robots with manipulators [Vaf87] and many researchers started to work with the
problem considering the nonholonomic constraints [VD90, Lon90. NM89, NM90,
NM91, Sre90,SMO91, AS93, Yam93,MZ94, Yam96, NM97] and these are introduced
in Chap.3. In Chap.3, a motion planning method of the end-effector of free-flying
space robots is proposed, which is called spiral motion.
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2.2.3 2nd-order nonholonomic systems

The above two groups of rescarches were focused on systems under constraints

represented by nonintegrable first-order differential equations including generalized
coordinates and velocities as

99
(2.3)

h(q.q.

Such the constraints are called first-order nonholonomic. On the other hand, the
constraints which arise from the dynamics and do not have even first integrals are
represented by nonintegrable second-order ones. morcover, including accelerations
as

h(q,q.G.t) =0 (2.4)

Such the constraints are called second-order nonholonomic.

Up to recent years, the term “nonholonomy™ has been used to represent only the
first-order systems or, in other word, the symmetric affine driftless systems. The
reason is that “nonholonomy™ is equivalent to the property that “there is no smooth
static state feedback stabilization to an equilibrium point™ for first-order systems
from the famous Brockett’s theorem [Bro83]. On the other hand, Oriolo and Naka-
mura [ON91b] proposed that the constraints of manipulators with free joints are

represented by generally nonintegrable second-order differential equations and the

system were called second-order nonholonomic. Second-order nonholonomic sys-
tems are transformed into non-symmetric affine systems in state equation form
and Brockett's theorem is not powerful to show their stabilizability. For instance
the inverted pendulum is, in fact, second-order nonholonomic and its approximated
system around the equilibrium is stabilizable by a smooth static feedback. The
free-joint manipulator is sccond-order nonholonomic and its controllability and
stabilizability cannot be shown. We have had less control theories and methods
to prove the controllability of some sorts of second-order nonholonomic systems.
The problems of controllability and stabilizability are stated in Chap.4 and control

methods of free-joint manipulators are proposed in Chaps.4, 5 and 6
2.3 Controllability of Nonholonomic Systems
There are several terms which imply the possibility of control, i.c. controllability,

reachability, accessibility, small-time local controllability(STLC). These terms are
all equivalent for holonomic and first-order nonholonomic systems and proper def-

inition of controllability hasn't been known very well. In fact, controllability of
linear time-invariant systems are defined and explained in their constant matrix
form and cannot be applied to nonlincar systems. Small-time local controllability

(STLC) [Sus87] has been regarded as controllability for first-order nonholonomic
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systems. Accessibility, reachability, and attainability denote similar meaning and
are not defined clearly. However a second-order nonholonomic system is aceessi-
ble [RvdSMK96], its STLC can be proved only by sufficient conditions such as
Sussmann’s conditions [Sus87] and the conditions are often not satisfied. Global
controllability of second-order nonholonomic systems has been proved only by con-

struction method as [LM95, Ara96]. Then, we need to distinguish these control

propertics for second-order nonholonomic systems. In the followings. definitions
and theorems for controllability are summarized
Consider a control system £ of the form as

() :g”\’.r(/J)+Zg,4m(ﬂ;u,\/; zeMCR" (2.5)

First, the system is globally controllable if there exists some period T' > 0 and

input u(t):(0 < t < T) satisfying (0) = xy, =(T') = z; for cach two states
zg,x; € M [NvdS90, MLS94b]
If there is a trajectory which starts from x(0) = g and reaches z(T) = x;

in time T'. @/ is reachable from @ in time 7 [Svm\T]. A set of @y which is reach-
able from @y in time T is called reachable set and represented as Reach(X, T, @)
Additionally.

Reach

< Tl U Reach(Z, ¢, zg) (2.6)
0<I<T

If @ itself is an interior point of Reach(E, < T, &) for all T > 0, the system &

is small-time local controllability (STLC) from @ [Sus87]. If the system is STLC

for all zg €

M . it is also globally controllable unless there is a special restriction on
the states or inputs. Note that these are just sufficient conditions for controllability,
and the system is globally controllable even if it is not STLC

If 7 is a family of C* vector fields on a manifold M, then L(F) denotes the
Lic algebra of vector ficlds generated by the clements of F. If L(F) is the whole

tangent space of M at @, the family F is said to sati the Lie algebra rank

condition (LARC) at xg. In other words, the following lincar space extended by a

set of vecetor space on @ of the form (2.5):
Az) = {go(@),- -, g,.(2)} (2.7)
is called the distribution by gy.---.g,,. If the dimension of minimum-dimensional

involutive! distribution A including A is equivalent to n, the system is said to
satisfy LARC. An F-trajectory is a curve x(-) which is a finite concatenation of

TDick any two vector fields g,.g; from a distribution and produce the Lie bracket as: [g,.9,] =
[é] 3] ks b x
%g, = 0l'~gj i selin ikt ci s fov el et ke briakel Dl A khe o ki Al Bt b oy
oz =
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integral arcs of members of . The family F has the accessibility property (AP)
from g if, for every T > 0, the set of points that can be reached from g by F-
trajectories in time <

T has a nonempty interior. The following theorem is known

for the accessibility [Sus87)

Proposition 1: Let F be a family of € vector fields on a €™ manifold A/,
Then the LARC at @y implies the AP from @,. Conversely. the AP from @
implies the LARC at @y if M is a rcal-analytic manifold and the members of F
are real-analytic a

Proposition 2: A system T of the form (2.5). with g (9g:- 18, real

analytic, cannot be STLC from a point @y unless g satisfics the LARC from xy. O

Namely, in general, AP is indicated by LARC and is a necessary condition for
STLC. Note that the property AP does not imply that the system is reachable to
some point

In general, first-order nonholonomic systems can be represented in the state
cquation form as:

;i:z_q,u, (2.8)

where @ denote the state variables. The Eq.(Z

8) is of the form of Ec with

gy = 0. Such a

rm is called a symmetric affine system. For symmetric affine
systems, LARC automatically means STLC and, hence, are globally controllable in
general. Hence, LARC

nonholonomic systems.

also called the controllability rank condition for first-order

Second-order nonholonomic systems can be represented as affine systems with

ft in the state equation form as

For general affine systems with dr

i.c. second-order nonholonomic system), STLC is verified by Sussmann'’s sufficient

condition [Sus87]

Ut

For some degrees of a Lic bracket B produced by g,(i = 0.---,m) in Eq.(Z
for instance. :’_4/ 4 [y (g g"i. define 6;(B) as a degree that g; occurs in B. and
Y, 0.B) as the degree of B. A bracket B is bad if 6o(B) is odd and &(B)(i =
1.---,m) are all even. Otherwise, B is good.

Theorem 1 (Sussmann’s condition) If the system (2.5) satisfies that

(1) (gg.- -+ .g,,) satisfies LARC at @y and

(2) every bad bracket is represented by a connection of good brackets which
are lower dimensional than the bad bracket (the bad bracket is then said to be
neutralized),

then the system (2 'LC from . [m}

b
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This theorem is an efficient tool for verifying STLC of some of second-order non-
holonomic systems. Lynch [LM95] applied the theorem to show the STLC of an
object forced on a frictionless horizontal planc. Lewis and Murray [LM97] de-
fined configuration controllability for a large class of Lagrangian systems including
second-order nonholonomic systems, and derived conditions for small-time local
configuration controllability (STLCC) from Sussmann’s conditions based on math-
cmatical structures of mechanical systems. Although free-joint manipulators in
Chaps.4, 5 and 6 satisfy LARC, they do not satisfy Sussmann’s conditions. Hence,
we have to prove controllability of such second-order nonholonomic systems by the

other methods, e.g. constructive method as in [Ara96).

2.4 Feedback Stabilization of Nonholonomic Systems

Not all controllable nonholonomic systems are stabilizable. The following Brock-

ett’s theorem and remarks [Bro83] are well-known

Theorem 2 (Brockett) Let & = f(x, ) be given with f(xg,0) = 0 and f(-.-)

continuously differentiable in a neighborhood of (zg.0). A necessary condition

for the existence of a continuously differentiable control law which makes (z.0

asymptotically stable is that:

(1) the linearized system should have no uncontrollable modes associated with
cigenvalues whose real part is positive
(ii) there exists a neighborhood N of (2. 0) such that for cach € € N there
exists a control ug(-) defined on [0, 5¢) such that this control steers the solu-
tion of € = f(x,ue) fromxz =§ at t =0 to ¢ =@ at t = o0.
(iii) the mapping
~: R"XR™ = R"

defined by 7 ,u) — f(x,u) should be onto an open set containing o
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Remark 1: If the control system is of the form
x = gylx)+ Z{/ (z)u; H x(t)

then condition (iii) implies that the stabilization problem cannot have a solution

there is a smooth distribution A which contai

5 go(-)s -9, with dimA <n. O
Remark 2:  One further special case: If we have

= Z‘q‘w.r)u,

with the vector g;(@) being lincarly independent at @ then there exists a solution

to the stabilization problem if and only if m = n. o
It is well-known that first-order nonholonomic systems cannot be stabilized

to an cquilibrium point by smooth static feedback laws for the above Remark

2. Accordingly, many rescarchers proposed feedback control methods avoiding
the restriction of Brockett’s theorem as: a piccewise analytic feedback law by
Canudas de Wit and Serdalen, time-varying feedback laws by Samson [Sam9la
Sam91b, Sam93], Pomet [Pom92] and Coron [Cor92], discontinuous feedback laws
by Kolmanovsky et.al. [KRM94] and Khennouf and Canudas de Wit [KCAW95,
KCdW96]. time-state control form by Sampei et.al. [SIKK94. SKI95, SKIKS96]. a
method in which defects of discontinuous feedback were supplemented by time-

et.al. [IKY96a]. etc

vary feedback by I




Chapter 3

Spiral Motions of Free-Flying Space Robots

3.1 Nomenclature

a,b.c ; parameters of the closed-path motion

c ; closed path in the end-effector coordinates space
D : offect of the closed-path motion

D;; € S* ; (i.j) clement of D defined by Eq.(3.15),

Dij ; k-th element of D;; (k=0,---,3

3)

di rential form [Var84] of ()
de  ; I-form [Sch80]
d(dz) : 2-form [Sch80]
E arca enclosed by s, and s, or its value such that dE < ds; A ds,
: - vector defined by Eq.7.8
def O€ oo . "
= 7 : 4 x 6 Jacobian from the joint coordinates to the satellite orientation
in Eq.(3.1
I ; identity matrix
JH ’::‘ : Tx 6 Generalized Jacobian [UYST,NM91] from the joint coordinates
¢
lrn the end-effector coordinates in Eq
i ; augmented criterion defined by Eq.(7.10)
L ; weight for length in W, [m]
n ; ‘spiral pitch’
n € R® ; unit veetor which denotes rotation axis
Q ; criterion
q € R® ; joint coordinates
qi ; i-th component of g, or the angle of i-th joint, [rad]
S ; arca enclosed by €'
s1,82 ; time periodic functions with the period At

u € R?x §? ; end-cffector coordinates (position and orientation)
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v, ; lincar velocity of the end-effector in Eq.(3.16

1
£ rl[;‘.g( . ;
L, 2

2= ( I ) ;11 x 7 Jacobian from the joint coordinates to the generalized
coordinates
X6 5% RPx S|

2. matrix X when actuated by the nominal end-effector motion u,

1.1.1, \) ; non-dimensionalizing matrix

; i-th column vector of X

adarf € ;
T ( ) : generalized coordinates of the space robot
u

Y " HyJ% ;4 x 7 Jacobian from the end-cffector coordinates to the satellite
oricntation

Y, € S? ; i-th column vector of Y’

A() : change of () in At

At : ‘spiral period’, [sec]
@
¢ ~ . -
€= ; Buler parameters or satellite orientation represented by Euler
2
¢

parameters

€ = ; conjugate of €
I s
Py

Ae€.q = Aey — A€, ; desired change of the satellite orientation for the closed

path
] rotation angle
A Lagrange multiplier
£ ; Gibbs vector
oY ||la|lw ; *spiral radius
04 ; upper limit of the spiral radius

def otk 5 S -
O = ; ‘spiral frequency’, or the angular frequency of the closed-path mo-

At
tion, [rad/sec]
On ; spiral frequency for n pitches
o ; spiral frequency for a single-turn spiral motion
w € R® ; angular velocity (of the satellite)
; angular velocity of the end-effector in Eq.(3.16) |

; exterior deriwative [Sch80]
[lallw ' /aTWa ; W-weighted norm of a
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Subscripts

¢ : closed-path motion clement

d ; desired value

n : nominal motion clement

P positional element

q ; for expression by joint coordinates
€ orientational element

0 ; initial value

(i) i-th iterated value

t ; pseudoinverse matrix

3.2 Introduction

A free-flying space robot is subject to the momentum and angular momentum
conservation laws. It is well known that the angular momentum conservation law
is nonintegrable and thus nonholonomic [NM91]. Since the momentum conser-

vation law forms a set of holonomic constraints, the gencralized coordinates of a

free-flying space robot consist of those for the satellite orientation and those for

the manipulator configurations. Therefore. a free-flying space robot with a six

DOF manipulator. for example, has nine generalized coordinates nerally, it is
impossible to follow an arbitrary given nine dimensional trajectory of the gener:

alized coordinates only by the manipulator joints™ actuation, if orientation control

levices such as CMG are not equipped on the satellite. However, it was shown
that a free-flying space robot without orientation control devices is locally con-
trollable [NM91]. However an arbitrary given 9D trajectory cannot be followed,

there can be found a feasible t

ctory connecting an arbitrary initial point and

arbitrary desired point in the 9D space only if the nonholonomic constraints are
carefully considered in planning and control. Although it is assumed from pure
technical point of view, there are various possible advantages for the system with-

out any special orientation control device:

(1) One may consider the case of malfunction or breakdown of the device

(

One may wish to minimize the use of the device, if it consists of thrusters
that use limited and expensive fuel.

(3) Even when the device consists of wheels, one may find frequent or continuous

actuation of wheels takes too much electricity.
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(4) The future designer of small space robot services may choose not to have

such a heavy and bulky device if a robot can live without it

lying space robots has two major problems because

I'he motion control of fre
of nonholonomic constraints. (1) Path planning, and (2) feedback control have been
rs. However

ying space robots as those are for the fixed-

already studied in depth for the conventional fixed-base manipulat

they are not as intuitive for the free

base manipulators.

For the path planning of the fixed-base manipulators, only the environmental
constraints which are commonly holonomic and thus geometric need to be consid-
cred. Meanwhile, the nonholonomic constraints need to be taken into account in
addition to the environmental ones for the path planning of the free-flying space
robots. This leads the fact that many intuitive path planning algorithms developed
for holonomic robots become inapplicable. Vafa et.al. [VD90] proposed a method
to minimize the disturbance of satellite orientation by cyelic motions of a manipu-

lator. Nakamura ct.al. [NM91] proposed a method of finding a solution by using a

Lyapunov function and called it a “bi-directional approach.” Srecnath [Sre90] pro-

posed a shape control of space multibody systems. Senda et.al. [SMO91] obtained a

trajectory using a neural network. Akiyama ct.al. [AS93] obtained an optimal tra-
jectory for planar 2

link robots and 3D 3-link robots using nonlincar programming
method. Yamada [Yam93] used the variational method to find a closed trajec-

cs an arbitrary change of satellite attitude

tory of manipulator joints that gener:

Mukherjee and Zurowski [MZ94] introduced a pscudo-holonomic behavior of space
robots
The feedback control of free-flying space robots is difficult in particular since

ey fall in the class of a nonlincar system that is not stabilizable with a smooth

t

static feedback law [Bro83]. Only a few works have been published on this issuc.
Sampei et.al. [SKI95] proposed feedback stabilization of a simple free-flying space
robot via the time-state control form. Yamada [Yam96] applied iterative eyclic
motion of manipulator joints to stabilize the satellite orientation

In this chapter, a method to approximate an arbitrary 9D trajectory planned
rather intuitively disregarding the nonholonomic constraints is proposed via intro-
ducing a spiral-like perturbation around the 9D trajectory. The perturbation is
determined by careful consideration of the nonholonomic constraints. One of the
advantages of this approach is that the already developed path planning algorithms
for the holonomic robots can be tied to a nonholonomic path-planning algorithm.
This what divides the large path-planning problem into two subproblems, one of
which considers ouly the environmental constraints and the other takes care of the

nonholonomic constraints. The spiral-like perturbation is designed around the six

dimensional components that correspond to the end-effector motion, such that it
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causes an appropriate change of the remaining three components of the satellite
orientation. It is a theoretical feature that the method approximates an arbitrary
9D trajectory with an arbitrary small non-zero error. The method can be extended

to free-flying space robots with a manipulator of higher degree of freedom and with

multiple manipulators, in a straightforward manner. The spiral motion restores the
configuration of the system to the desired at cach end of the period and limits the
deviation from the desired configuration within an arbitrary designated margin
The margin need not be designed to be very small but small just enough to avoid
obstacles or boundaries only in their neighborhood. While the spiral motion is
proposed here as a method of motion planning, iterative eyclic motion of the ma-
nipulator of a space robot can be applied to feedback stabilization to a desired
configuration of the satellite orientation and manipulator, which was proposed by
Yamada [Yam96].

3.3 The Spiral Motion

3.3.1 The concept

The concept of spiral motion is first stated rather intuitively before describing the
detailed discussion. Consider a satellite and a 6 DOF manipulator on it. Although
there could be more the degrees of freedom of the manipulator, the discussion
in this chapter is focused on this minimum but common situation. When the
attitude control device of the satellite is not used., the whole system is represented
by 9 generalized coordinates, (6 of the manipulator joints and 3 of the satellite
orientation) being driven by 6 joint actuators.

The 6 generalized coordinates of the manipulator may be represented by the
position and orientation of the end-effector except for the singular cases. When

an arbitrary trajectory is given for the 9 generalized coordinates to trace, it is

generally infeasible with 6 joint actuators. Umetani and Yoshida [UY87] proposed

to follow the end-effector trajectory disregarding the satellite orientation. The
top two pictures of the left hand side of Fig.3.1 illustrate the case. The satellite

will have Ae, as a side-effect that depends on the nominal end-effector motion
w,(t). Yamada [Yam93] computed an optimal closed path in the joint space that
yields the designated change of the satellite orientation and minimizes the radius
of the closed path. It will also be possible to find a closed path u.(t) of the end-
cffector which changes the satellite orientation into the designated configuration.
The bottom two pictures of the left hand side of Fig.3.1 show such a trajectory

The right hand side of Fig.3.1 shows the motion when two paths u, and .

are simply added. A simply addition of these paths w, + u, traces a single-turn
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: Spiral motion planning

spiral-like path. The radius of u, is referred to as the spiral radius of w, +u,. The
corresponding satellite orientation change becomes nearly Ae, 4+ Ae,. although this
simple addition is not exact due to nonlinearity. If u, is divided into small parts and
a closed path of the end-effector for cach of them is computed, the spiral becomes
multi-turn and the spiral radii get smaller, which is explained in the section 3.4.4.

In this way. a closed path such that the trajectory of the satellite orientation

approximately follows an arbitrary given one can be found. The resultant motion

caused by the multi-turn spiral end-cffector motion is considered an approximation
of the given 9D trajectory of u,, and €, which is physically infeasible in general. It is
noteworthy that the smaller the division of the end-cffector path becomes. the morc
the spiral radii reduce and the better the approximation becomes. From this point
of view, it is possible to approximate a given 9D trajectory with arbitrary specified
non-zero error. If the given trajectory includes temporal requirements. the length of
path to trace in the given time becomes larger and the approximation with smaller
radii results in larger velocity along the path. This problem is mathematically

formulated in the following sections. A computational scheme of the minimal

spiral motion is also developed where the exact nonlinearity is to be taken into

consideration.

3.3.2 Generalized coordinates

Yamada [Yam93] took the manipulator joint coordinates g and the satellite orien-
tation € as generalized coordinates, and computed a closed path of g that generates
the desired change of € after a cycle. This problem was solved as an optimization in
the Euclidean space RC of the joints. Since the tra;

cctory control of an end-effector
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is important in practice, w is considered a part of the generalized coordinates in this
chapter instead of joint coordinates. The two choices of generalized coordinates
are physically equivalent except for the singularity cases.

The Euler parameters arc adopted to represent three-dimensional orientation
[he
Appendix A.1. Since u is adopted as gencralized coordinates instead of g, the

lefinition and properties of the Euler parameters are briefly summarized in

proposed trajectory planning problem does not lie in an Euclidean space R® but
in a non-Euclidean space R* x S, as shown in Fig.3.2
The satellite orientation velocity is expressed in terms of the joint angle velocity

from the angular momentum conservation law as follows [NM91, Yam93]
e=Hq (3.1)

On the other hand, the relationship between the end-effector velocity and the joint

angle velocity satisfies the following equation [UYS7,NM91J:
u=dJdq (3:2)

When the number of the manipulator joints is 6. w and g are diffcomorphic except

for the singular points. The orientation in 3D space is represented by Euler pa-

rameters which has four elements. However the minimum required dimensions are

three. the orientation space is non-Euclidean and has several singular points with

three coordinates. The advantage of the Euler parameters is that it is the
most smooth representation of 3D rotation without any singular points in its space.
Conscquently, the coordinates are expressed by more components than required
When the Jacobian J is

full-rank. the solution ¢ for a physically consistent 4 is obtained as follows:

Namecly, uw has seven clements and J is a 7 X 6 matr

q=J"

Adopting the differential form [Sch80]. the equation of motion of the whole system

is obtained from Eqs.(3.1) and (3.3) as follows:

dr = Xidu (3.4)

3.4 Planning the spiral motion

In the section 3.4.1, an approximate closed trajectory for a single-turn spiral motion
connecting the start and end points of the desired trajectory is yiclded. Then, a o
method finding a locally optimal solution about the approximate solution obtained i

in See.3.4.1 is described in See.3.4.2. In the section 3.4.3, a method for scarching the




N
X1

Chap.3 Spiral Motions of Free-Flying Space Robots

exact solution of the spiral motion is described. Finally, a method for computing
a multi-turn spiral motion to obtain the solution for the arbitrary given non-zero
allowance of approximation is stated in the seetion 3.4.4

Yamada proposed a variational method to find an optimal solution taking joint

coordinates as the space for trajectory planning [Yam93]. In this chapter. the

g : : A . :
R? x S? space of end-cffector position and orientation is adopted as the space for

trajectory planning and expressed with 7 elements using Euler parameters. As the

computational algorithm of optimization. the Yamada's method is extended

3.4.1 Single-turn spiral motion

The formula of closed trajectory motion that results in an arbitrary change of

satellite orientation is derived by using the differential form and Lie bracket. The
def

desired trajectory @, is generally infeasible. Let w,(t) wy(t) denote the nominal

motion of the end-effector along the desired trajectory. The difference between u
and u,, is expressed as w.(t) Aol (t) — w,(t). When w connects the start and end
points of the desired trajectory, u,. becomes a closed path.

\ feasible trajectory of @ connecting the start and end points of the desired
trajectory is obtained from Eq.(3.4)

Az(t) =iwy L / Xudt 3.5)
The change of generalized coordinates by w,, becomes as follows:
/¥ o xy + / X, u,dt (3.6)

Let z. as

z(t) = x(t) — =,

‘f'/=Xu—X,,u,,;v// (

pting the differential form, Eq.(3.7) becomes as

dz, = Xdu — X, du, (3.8)

Differentiating Eq.(3.8), it is obtained from Eq.(3.4) as
g Eq 1

Al = 2 b et (KX =5 ‘)X"x,,) du, A du, (3.9)
oz dx ox

The first term of Eq.(3.9) implies the change of generalized coordinates due to the

closed trajectory motion. The second term means the effect due to the w,. In the

case that the desired trajectory is sufficiently short, w, can be considered small.

On the other hand, in the case that the spiral trajectory is sufficiently near to the
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desired trajectory. € nearly cquals €,. In both cases, the second term in Eq.(3.9)
can be neglected. In this section and the next the first term is only considered and
the second one is neglected. Now, d(de,.) becomes the function of only u,.. Ae,. is

obtained from Stokes theorem [Sch80. Yam93] and Eq.(3.9) becomes as follows:

Az, / dz, = / d(dz.) = /Z O N (3.10

dx

T'he closed trajectory u, is expressed by two parameters s

S9 as

u. = as; + bsy (3.11)
For simplicity and smoothness of the spiral trajectory. let sy and so be expressed

by sinusoidal functions as

51 = coso(t —tg) — 1 (3.12
59 = sin é(t — to) ey

3.4.1 shows s; and s versus time. The closed trajectory w, becomes elliptice.
I'he @ and b denote two radii of the ellipse. From E €’e = 1 always must be

satisfied. Considering the case where s, = 1 and s» = 0 and other cases, Eqgs.(3.11)

and (3.12) yield the following constraints for the orientational clements (lower four
components) of @ and b

3.1:
a’a, = b'b, B

These are the ad

litional constraints to be satisfied when the optimization in R® x
S§3 is carried out rather than in R®

\dopting Eq.(3.11), Eq.(3.10) can be alternatively represented by Lie bracket
[Var84, Sch80].

Az,

E Xu,‘/[ /, [Xi, Xi]dE

ij

= a"Db (3.14)

where D denotes a 7 x 7 tensor whose (i, ) element is defined as

D; /, (X, X, dE (3.15)

Note that the satellite orientation change is expressed in terms of Lie brackets of
column veetors of X and since the lower part of @ is the input w itself, the lower
parts of z. and D;; is equivalently zero. It is rather simpler formulation of the
effect than that of Yamada's.
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3.4.2 Computation of single-turn spiral motion

There are many solutions of the closed trajectory w.. An optimization method is

proposed in this section. The u, has two unknown vectors, a and b as seen in
Eq.(3.11). The goal in this scetion is to find minimal a and b
Let the criterion to minimize as Q = a”Wa + b” Wb. The criterion can be

cquivalently represented by

.+ L’u},’u},) (3.16

with the relation of Eq.(7 Namely, the criterion is interpreted as minimizing a
normalized end-cffector velocity

The following optimization is carried out as if the problem would lic in R rather
than R* x 3. Namely, the constraints of Eq.(3.13) for lower four components of
u is disregarded. This simplification makes possible to use Yamada's algorithm
as it is. A brief summarization is introduced in the appendix B. At the end of
this subsection. it is shown that the optimal solution thus obtained automatically
13)
The D in Eq.(3.14) is a fairly complex function of a and b. The Yamada's

satisfies the constraints of Eq

algorithm assumes that the integrands of Egs.(3.6) and (3.15) arc constant and

invariant to @ and b. The ecrror due to this assumption will be corrected at the

next section when the exact solution is computed. Therefore, @(tg + At) can be

represented from Egs.(3.6). (3.7) and (3.14) as

2(tg + At) = z(to) + Az, + a" Db (&

~1

re Az, can be calculated as

Az, = X(u,(ty + At) — u,(tp)) (3.18)

>[" (3.19)

The partial derivatives in Eq.(3.19) arc obtained by numerical differentiation. This

and Eq.(3.15) is rewritten as

O 05 0

_ Y
du;

e e

o

needs some consideration since € are the Euler parameters and are constrained on a

unit 4D hypersphere. A method of numerical differentiation with Euler parameters
9.

is proposed in Appendix /
To summarize the above procedure, a single-turn spiral motion is calculated as
follows:
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(1) Let w, = uy(t), then caleulate Ae,
Solve a closed trajectory motion u,. (or equivalently @ and b) which satisfies

Ae. = A€y — Ae, according to the Yamada's algorithm in B

(3) Letting u u, + u., compute a single-turn spiral motion trajectory con-

necting the start and end points of the desired trajectory
From Eq.(7.12), the optimal solutions of @ and b obtained above satisfy

a"Wb=0
1yq (3.20)
a"Wa=b"Wb = - _7,\ Ae

ed

For any choices of L in W, the optimal solution thus obtained automatically

satisfies the constraints of Eq.(3.13)

3.4.3 Searching for an exact solution

The previous solution is no more than an approximate solution since Ae, and
D are calculated only by the initial condition and the effect of u, for €. is not
considered. Scarching for the exact solution, the motion of the space robot using
the approximate solution and Ae are calculated. Then an exact solution is scarched

for by iterative calculation with Newton's method as

a®\  (al-b Am:ﬂf)‘ .
- ) — ) (Ae—Aey) (3.21)
(b ) (h ) (Ju P e

where the second term of the right side is calculated using a 2
Note that though the approximate solution requires only the initial and final
values of u,,. Ae is caleulated while searching for the exact solution by the following

integration

Ae = / 'Yau, + au,)dt
Ji

Therefore, the exact solution follows the desired tr

jectory.

3.4.4 Multi-turn spiral motion

Previously, the single-turn spiral motion which connects the start and end points
of an arbitrary 9D trajectory was proposed. However, if the environment of a

space robot is surrounded by obstacles, the space robot should avoid them. In this

subsection, the “multi-turn spiral motion” which cnables one to approximately
follow an arbitrary 9D trajectory with an arbitrary margin is proposed.
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From Eq.(3.20), ¢ implics the radius of closed trajectory. The spiral frequency
o

of single-turn spiral motion from ¢ = tg to t = tg + At is 0, — and E in
At
¥ P
Eq.(3.19) becomes E = —— = 7. For multi-turn spiral motion within At, the
7 g oAt
spiral frequency is represented by o, and, therefore =——=nn
to n fron

Since E is proportional to spiral pitch n as above. D is proportiot
Eq.(3.19). and o? is inversely proportional to n from Eq.(3.14). Accordingly, it is
inversely proportional to ¢. Namely.

T 1
£ € (3.23)

rger the spiral piteh (that is, faster the spiral frequency) is, the

I'herefore. the
smaller the spiral radius is.
A method to solve a multi-turn spiral motion is described by imposing o, as:

(1) Set n® =1.

fo and o=—
n At

Calculate At =

Obtain the spiral radius o

(3) Solve a single-turn spiral motion with ¢ in

) to the nearest whole number.

(O
(4) Compute n'*) by rounding up n'*=" x (

i

n'*! =n'*=Y then the n'*! gives the maximum single-turn spiral motion.

with the spiral limit 4. Otherwise, return step (2)

Compute the next spiral starting from the end of the previous spiral. Set

0) k) >
n'®) = n'® — 1. Go to step (2)

A multi-turn spiral trajectory approximating the desired jectory within the

spiral limit can be solved by the above procedure. The procedure is illustrated in

Fig.3.4.

Since the spiral perturbation is determined repeatedly at cach cycle, it can be

designed to reduce the motion error generated or accumulated in the previous cy-
cles. This implies the method is suitable as a feedback control method, if computed

in real-time with faster computers in the future.

3.5 Computer Simulation

The lengths, mass, and inertia matrices of the satellite and each link of the
, where the 0-th link denotes the
3 The

space robot are assumed as given in Table 3.
base satellite. The arrangement of cach link and joint is given in Fig.
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Table 3.1: Link parameters

[ Link [ Lengthfm] [ Mass[kg] [ Incrtiafkg-m?] |
0 92 x 1 500 100 100 100
02 | 6E 01 0
o 30 | et
20

20

10
2|

satellite (link(0)) is a eylinder of which radius is 2[m] represented as 02 in Fig.3.5

and Table 3.5 and height is 1[m]. The positions of the center of gravity of cach
link are assumed at the geometrie center of the link.

: ! Y T T

I'he initial configuration of the space robot is ¢ = 3 R -3

with the configuration of Fig.3.5 as the origin. The desired trajectory of the end-

effector is to move it for 1 second at the constant speed 0.5[m/sec] in the positive
x-axis direction and to maintain its orientation. And that of the satellite orientation
is to maintain the satellite orientation. The initial configuration and the desired

trajectory are given in Fig.3.6, where the broken line stretched from end-effector

denotes the desired trajectory

Figure 3.7 shows the satellite orientation variation in response to the end-
cffector desired trajectory without spiral motion. The solid, broken and chain
line denote the 3 vector elements of Euler parameters in the order. Figure 3.8
shows the same motion every 0.2[sec].

The results of single-turn spiral motion are shown in Figs. 3.9 through 3.11. In
the figure 3.9, the solid line denotes the end-effector coordinate x variation, the
broken and the chain line denote y and z. The dotted lines denote each desired
trajectorics. Figure 3.10 shows the satellite orientation variation. Figure 3.11
illustrates the motion every 0.2[sec].

The figures 3.12 through 3.14 correspond to the multi-turn spiral motion when
the spiral radius limit o4 scts li.l[ln]. Figures 3.12 and 3.13, similarly to Figs.3.9
and 3.10, show the end-effector coordinate variation and the satellite orientation
variation. Figure 3.14 illustrates the motion, where only the trajectory of end-
cffector position was plotted. The satellite with solid line denotes the final state

and that with broken line denotes the initial state. Note that the satellite makes
small fluctuation in Fig.3.13 while making multi-turn spiral motion.
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From Figs.3.7 and 3.8. it is scen that the satellite orientation would be subject
to a great disturbance when following the end-cffector desired trajectory. When
the spiral motion is applied. a trajectory connecting the start and end points is
obtained as in Figs.3.9 through 3.14. Especially. the infeasible desired trajectory is
approximated with the desired spiral radius by the multi-turn spiral motion as in
Figs.3.12 through 3.14. If the spiral limit ¢, is chosen smaller, one can get a multi-
turn spiral motion with better approximation. Since ¢ is inversely proportional to

o4, the motion becomes much faster in this case.

>

Table 3.2: Computational time

Computational || Spiral motion
time [sec] [none [ Single | Multi
e 20 [3.0x10° [ 5.7 x 107
20 | 3.7 x 10 |

20 x 107 |

Direction

Similar simulations are done for all three axes of x, y and z and showed almost

similar results. The computational time by Sun SPARC station 10 is shown in

Table 2 for cach case of none, single-turn, and multi-turn spiral motion

3.6 Effects of Singularity

tories

In the course of computer simulations, it is found that for some desired trajec

there are cases where the searching convergence to the exact solution becomes very

slow. It turned out that it happens when the system passes by the neighborhood
of a singular point in the trajectory. The relationship between singularity and

convergence of the solution is investigated with spiral radius in the cases of multi-

turn spiral motions in Figs. 3.12 through 3.14. The results are shown in Fig. 3.15.

The (a) shows magnitudes of the spiral radius, normalized by the spiral period
5 i Al 4 llallw

At = —— where the solid line and empty cireles denote ol T'he broken

n VAt
bllw s . ’
H l . The (b) shows the number of iterations in each
1 period At. The (c¢)
shows variations of the condition numbers, where the solid line and empty circles
denote the condition numbers of Y in the motion, and the broken line and crosses

line and crosses denote

period of single-turn spiral motion, normalized by the spir

denote the condition number of the generalized Jacobian J.
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From Fig. 3.15, it can be scen that after the condition number becomes larger
near t = 0.7[s] and ¢t = 0.9[s], the spiral radius and the number of iterations becomes
wger suddenly near ¢t = 0.8[s] and ¢ = 1.0[s]. Itcrati

¢ calculation should continue

until the error becomes sufficiently small. However, in practice when the number
of iterations becomes too large the iteration was terminated and it advanced to the
next spiral.  Although some error remained. the error is expected to be resolved

in the step afterward. The convergence that actually resulted we

WOr:

since a
larger orientation crror had to be resolved in the following steps. This what scems

the reason that the number of iterations tends to be large at the end of motion

after the neighborhood of singular points. The singularities would also reduce the
accuracy of the calculation particularly for small spiral radii. The resolution of this
problem belongs to the open problem. In a practical sense, the spiral radii should

be maximized within the designated margin.

3.7 Conclusion

Space robots cannot realize an arbitrary motion of the manipulator and satellite
only by actuation of the manipulator joints. The followings are made clear from
this study

1) A method to approximate infe

sible motions by spiral-like perturbations
around the desired trajectory of the end-effector with an arbitrary non-zero

maximum allowance was proposed.

2) Transitions of the satellite orientation with the end-effector motion were for-
mulated in the non-Euclidean space R® x §%. The Yamada's variational
I
method was extended to obtain the optimal spiral motion
(3) Multi-turn spiral motion was proposed and a method to solve them was

constituted by imposing the upper limit of the spiral radius

The effectiveness of computation was verified by computer simulation. In the
course of the simulation, the problem that convergence becomes slow after
passing through nei

hborhoods of singular points was pointed out. It would
be one of the open problems.

Note that the motions of space robots are intrinsically geometrie since the nonholo-
nomic constraints are first-order without dynamics. Therefore, the planned motion
can be extended by time-scaling when the resultant motion would be extremely

rapid.
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R® *

y

closed trajectory

desired trajectory

Figure 3.2: Trajectory in non-Euclidean space
s the mapping of the desired closed tr tory in R x S into R® (end-
effector position), the bottom shows the mapping of the same path into S® (end-cffector
orientation).

The top indica
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Figure 3.3: Path in the time parameter plane
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Single-turn spiral motion

20

U

Single-turn spiral motion with the spiral limit cd

Multi-turn spiral motion with the spiral limit 0 d

26d

Figure 3.4: Multi-turn spiral motion planning
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vector from center 1.0 05 05 01 02
of satellite to joint 1 2
0.7 Q <> e I
g-;.’ 0.2[m]I 388 40 8 5 6
joint 1 r
1[m]
Satellite
y
¢ 2[m]
X

3

Figure 3.5: Structure of a space robot
(g; denotes the angle of the joint 7 [rad])
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Figure 3.6: Initial configuration of the space robot
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Figure 3.7: Satellite orientation variation

(Au, = 0.5[m], without spiral motion)




Chap.3 Spiral Motions of Free-Flying Space Robots 36

Figure 3.8: Movements of the space robot
(Au, = 0.5[m], without spiral motion)
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Figure 3.9: End-effector coordinates variation
(Au, = 0.5[m], single-turn spiral motion)
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Figure 3.10: Satellite orientation variation
(Au, = 0.5[m)], single-turn spiral motion)
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Figure 3.11: Movements of the space robot
(Au, = 0.5[m], single-turn spiral motion)
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Figurce 3.12: End-effector coordinates variation
(Au, = 0.5[m], multi-turn spiral motion)
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Figure 3.13: Satellite orientation variation
(Au, = 0.5[m], multi-turn spiral motion)
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Figure 3.14: Movements of the space robot
(Au, = 0.5[m], multi-turn spiral motion)
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Figure 3.15: Effects of singular points
(Au, = 0.5[m], multi-turn spiral motion)
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Chapter 4

Nonlinear Behavioral Analysis and Control of
2R Free-Joint Manipulators

4.1 Nomenclature

Al

myla® +moly® + 1) ; diagonal element of inertia matrix corresponding
to 1st link, [kg-m?]
def ]
L = molas"+ 6

link, [ke

diagonal clement of inertia matrix corresponding to 2nd

B = mulyl,s ; non-diagonal element of inertia matrix [kg-m?)
H : Hamiltonian
I, : inertia of i-th link, [kg-m?)
J y -
J ( I ) generalized momenta, [kg-m?-rad/sec]
k feedback gain of input-amplitude with signum [rad/scc?)
ko i feedback gain of elliptic radius for compensation > 0
l; length of i-th link between i-th and (i + 1)-th joints. [m]
e distance between i-th joint and center-of-mass of i-th link. [m]
m; : mass of i-th link, [kg]
s Poincaré map cut at ¢ = @

T4 et |#20 — 0| ; half-length of principal axis in 6 direction of desired elliptic
manifold, [rad]
Tes ; ratio of principal axis of elliptic manifold in 6, dircction to that in 6,
direction, [rad)
o ; intersection of 6 axis and connected actual Poincaré map, [rad]
01(¢)
der | 0(t)
; b ) L)
Jo(t)

; trajectory of system (4.6)
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Q(09,¢)

; det [ Oa2(0,2) : 2
x5(0,2) ; phase state of second joint

et Beosty - Jy — (A + Bceosth) s

: dynamic parameter, [rad/scc]

“A(6:)
s = a0y, Jy, Jp) i—“/‘ — (4 'ﬁ"“\”’y;'h dynamic parameter, [rad/scc|
A(fs)
3 ; amplitude of periodic input 7, [kg-m®-rad/sce] , or 6y, [rad/sec?]
Yo : nominal input-amplitude, [rad/scc?]
A =A(6) et 1,4, — B?cos® 0, ; denominator element of dynamic parameter
[kg?-m"]
é, feedback error of squared elliptic radius
0y ; bound of neighborhood of destination in #; axis, [rad]
def

— : nondimensionalized amplitude of periodic input

0,
0= ( " generalized coordinates, or angle of i-th joint, [rad]

0, ; center of elliptic manifold, [rad]

e, Myl .

s _ = ; dynamic coefficient
A mlsl+ D

b3 neighborhood of destination where termination control is applied de-
fined by Eq.(4.27

2 ; interseetion in phase space

7 ; generalized force, [kg-m?®rad /see?]

= wt : nondimensionalized torus time coordinate, [rad)
der A6 1 5 =
= — = —#, : nondimensionalized angular velocity of 2nd joint

w ; angular frequency of periodic input, [rad/sec]

; averaged coordinates corresponding to *
Subscripts

d ; desired value
Superseripts

(k) ; k-th evaluation

4.2 Introduction

Manipulators with free joints are typical examples of second-order nonholonomic
systems and underactuated mechanisms. Oriolo and Nakamura [ON91b] [ON91a]
clarified that the dynamical constraints of a manipulator with free joints

¢ gen-
crally nonintegrable and, therefore, second-order nonholonomic.
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On control of a manipulator with free joints, Arai and Tachi [AT91] stud-
icd a path control of a manipulator with electromagnetic brakes at free joints.
Nakamura and Iwamoto [NI93] discussed a space multi-link structure with free
joints and its shape control. Seto and Baillicul [SB94] discussed a control theory of
super-articulated mechanical systems, which had an equilibrium stabilizable by the
feedback lincarization approach. Wichlund, Sordalen and Egeland [WSE95] dis-
cussed the integrability and stabilizability of a class of underactuated dynamical
systems including underwater vesscls. Nakamura, Iwamoto and Yoshimoto [.\'l\'i).'r]

proposed a stabilization method of a 2R free-joint manipulator to a stable equilib-

rium. Recently, Arai [Ara96] proved the controllability of a 3-link manipulator with
a free joint and two actuated joints by constructive method. De Luca, Mattone and
Oriolo [LMO96b] discussed control properties of a class of underactuated mecha-
nisms and proposed a control method of 2P1R redundant manipulator with two
dimensional end-cffector commands. Imura, Kobayashi and Yoshikawa [IKY96b]
proposed an exponential stabilization of 2P1R free-joint manipulator with two ac-
tuators. De Luca. Mattone and Oriolo [LMO96a] proposed a control method of 2R

free-joint manipulator via nilpotent approximation.
Although free

tions with zero veloeity are connecting equilibrium manifold without gravitational

joint manipulators are similar to pendulums, all the configura-

potential. Free-joint manipulators are also different from pendulums in controlla-
bility and stabilizability where pendulums are stabilizable to its equilibrium via

exact lincarization. The largest advantage of free-joint manipulators is that they

ave a possibility to control larger number of joints only by one actuator, whilc
first-order nonholonomic systems require two or more actuators

In this chapter, the nonlinear behaviors of a free-joint manipulator are inves-
tigated. A simple planar 2R manipulator with the second joint free is adopted to
obtain mathematical insights of the nonlinearity. The analysis of nonlinear dynam-
ical behavior and the simultancous positioning of both joints are the focus of this
chapter. Although the results derived in this chapter are tied with the particular
mechanism, the approaches and tools of analysis developed in this chapter will be a

part the basis of further rescarch of free-joint manipulators with higher complexity.

4.3 A Free-Joint Manipulator

4.3.1 Dynamics modeling

A planar 2R manipulator in Fig.1 has the first joint actuated and the second joint
free and stays in the horizontal plane. This is the simplest model of nonholonomic
free-joint manipulators.
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b

Figurc 4.1: A planar 2R free-joint manipulator

The Hamiltonian is represented by

1,1o° + As(Jo — Ji)2 + 2B cosbs - Jo( Ty

H="—" ———

— —— (4.1)
2(A, A, — B2cos20,)
J are obtained through the Hamilton’s canonical transformation as follows:
7 (A + A2+ 2B cosba)0 + (A; + B cos )6, ey
= (A + Bcos o), + Ayfs -
The dynamics of the manipulator is obtained by
a6  OH
dat — aJ
(4.3)
dJ OH
at — 96
Namely,
0, as(bs, Jy, Jy)
(7[ 6, = —ay(ba, Jy, Jo) — ao(8, Jy, Jo) (4.4)
dt Ji it
Jo Bsinty - a0y, 1, o) - as(fs,

(61,05, J1,.J5) € T? x R?
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4.3.2 Conserved motions
When there is no external force, namely, 7 = 0. the system has two obvious

conserved quantitics. One is the generalized momentum of the 1st joint. and th

other is the Hamiltonian that is equivalent to the total cner
J1(0) = Jyp and H(0) =

by

Jit) =Ty
(A} + Ay + 2B cos b,

Namely, with

Hj as initial conditions, the conservations are represented

+2(Ay + Bcosba)JigJo + AsJig? — 2(A, Ay — B2 cos? 0,
(4.5)

Hence, the possible reachable space in the four-dimensional state space is a two

dimensional manifold or less. Since Eq.(4.1) does not include 6y, the possible

reachable space is invariant for #;. Figure 2 shows the sections perpendicular to 6,

axis for initial conditions of .J;y 11,1[1{g-m
figure shows that the motions follow ordered closed paths.
two and lower two curves in Fig.

fyis S

-rad /sec] and various values of Hy. The
Note that the upper

are also closed at 6

T since the space of

(he behaviors of systems with strong nonlinearity are drawing much attention

in various rescarch fields. Chaos is one such behavior. It is known [Tab89) that,

for continuons systems, chaos is observed in a 3 dimensional manifold or higher

The two conserved quantitics of Eq.(4.5) reduce the dimension to two, and provide

an ordered behavior as in F

4.3.3 Nonlinear behaviors with periodic inputs

When the system is subject to time-periodic input of 7 = 4

is represented by

b,
0

;| o
|’
S
Q

coswt, the dynamics

as(fy, Jy, J3)
—ay(02, Jy, Jo) — as(bs, ]y, J5)
7Y COS @

Bsinbs - (0, Jy, J5) - as(bs,

(61,02, J1,J2,0) € T2 x R? x T (4.6)

Note that a new coordinate ¢ is included in Eq.(4.6) to make an autonomous

system. Although J; is not conserved any more, it is casily integrated and solved

as

Jy=Ji + Yv (sin ¢ — sin ¢y) (4.7)




Chap.4 Nonlincar Behavioral Analysis and Control of 2R Free-Joint Manip.

Momentum of Theta2 [kgm~2rad/sec]

0
Theta2 [rad]

Figure 4.2: Phase planc at J; = 0.1[kg-m*-rad/sec]

which implies a new conservation. Since there neither is the energy conservation.,
the dimension of the manifold on which the system evolves is four

Chaos is ¢l ‘terized by two fundamental natures, namely, the sensitive de-
pendence on initial conditions (SDIC) and the topological transitivity. Their brief
definitions is provided in appendix C. Figure 4.3 shows trajectories starting from
four mutually close initial values for the case with v = 4[kg-m?-rad/sec?] and
w = 2xfrad/se¢]. The solid line has (Jy.J5,6),65)|1=9 = (0,0,0,0) as the initial
condition. The other lines have small differences in the initial value of #, as scen
in the figure. The figure illustrates that the difference of trajectories diverges as
time goes on, which implies the SDIC
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Initial value
of Theta2
= "Ofrad]

— = =~ 0.0001[rad]

0.001[rad]
- 0.01[rad] [
g e T . -
-100 -50 0 50 100 150 200 250 300 350

Theta2 [rad]
Figure 4.3: Sensitive dependence on initial conditions
The Poincaré map is an intersection of trajectories in the whole phase space

with a certain hyper-plane. It reduces the dimension and helps to understand the
system’s behavior. Let £ be the intersection in the phase space:

néo & {i-l?.u} ET’XR*xT'|¢= 1,!“} (4.8)

Then, the Poincaré map is represented by the mapping as

B0 — o G0 — 6o+ 27

Pr s 5% s 55%, <.u ( ——— |, | o |2 [ —————
%0 — %o Gg— &

T |- = [ ——

The fixed points of Py, imply the periodic trajectories with the period 27 Jw, and
the k-period points of P, imply the periodic trajectories that pass k times through
% before returning the initial state.

%)

or
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Figures 4.4 through 4.6 show the Poincaré maps being cut at ¢ = 0 and pro-
jeeted onto the #y-H plane. Note that the #o-H plane was employed rather than
the #5-J, plane, since the two are cquivalent and the former provides better phys
ical insights for the current problems. The behaviors in the f5-J5 plane also show

similarity. The initial conditions and the parameters of input are chosen as

(6.0, J,)| =0 = (0O[rad]. O[rad], O[kg - m* - rad /scc])
for Fig.4.4: 5 =0.04 [kg-m?rad/sec?], w = 27 [rad/sec]
for Fig.4.5: 5 =04 [kgm?rad/sec?], w= [rad/sec]
for Fig.4.6: 5 =4 [kg-m?-rad/sc w = 2m [rad/sec]

0.5

Lo 2
@ o IS
S o

o
w

9
)

Total Energy [kgm/~2rad’2/sec’2]
o o
— N
o 5

=}

0.05

=4 -3 -1 0
Theta?2 [rad]

Figure 4.4: Poincaré map with v = 0.04,w = 27

Only v was set at a different value and w = 27 was applied for cach figure
Various initial values of J, were chosen and their trajectories were plotted in the

figures.
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[he conserved motion of the system with zero input torque would be repre-
sented by a horizontal straight line in the @y-H planc. which means rotation of
B> In the case with a small input-amplitude. the motion is perturbed
difference. In the Poincaré map, the frequency of the rotation of 6, originatec
the conserved motion and the frequency of time-periodic input mutually ¢
resonance. The series of cavities or eye balls alone lines paral
Fig. 4.4 show the harmonic resonance of different orders

The figures illustrate that as amy
jectorics connecting the saddle points in Fig. 4.4 start collapsed as seen in Fig
L.5. When the amplitude grows further in Fig
topological transitivity. These results conclude that the free-joint 2R manipul

driven by a time-periodic input follows a cyclic trajectory in the #o-H plane

the amplitude is small, while it behaves chaotic with the large amplitudes.

7

(‘~_

<.,

Theta2 [rad]

Figure

Poincaré map with 7 = 0.4, 2

of

and shows a

from
‘ause a

lel to the € axis in

litude 5 becomes larger, the homoclinic tra-

g. 4.6, the system shows complete
ator

when
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Total Energy [kgm/2radn2/sec2]

Theta2 [rad]

Figurce 4.6: Poincaré map with 7 =4,w =

It is noteworthy that the behavior of such a simple deterministic mechanical
system varies from cyelic one to chaotic one in response to the growth of input-
amplitude. In the sections that follows. we propose to design a controller based on

the eyelic behavior for smaller input-amplitude. Although use of chaotic behavior

remains in the scope of future rescarch, it would be significant to establish control

for rapid and gross motions.

4.4 Nonlinear Control of 2R-FJM

Oriolo and Nakamura [ON91b] concluded that smooth feedback stabilization to a
single equilibrium point is not possible, and derived a control law for the asymptotic
stabilization to equilibrium manifold as

M = {(0,.05.6,.65) | ) = 6,4.0, =0, =0}
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In this section, positioning of both joints of the free-joint manipulator is discussed

and a control law that enables to go from an arbitrary initial point to an arbitrary
single equilibrium point is established. The control law uses time-periodic inputs
with amplitude modulation and means neither feedback control nor stabilization
in the strict sense.

The basic strategy of positioning is (1) (6,,6,) — (f14.0) and then (2) (65, 6) —
(624.0) with a time-periodic input of the first joint. The first subgoal can be
attained by simple feedback control of the first joint disregarding the motion of
or by Oriolo and Nakamura’s asy mptotic stabilization to an equilibrium manifold

In what follows, control to meet the second subgoal is mainly focused on

4.4.1 Controllability and stabilizability of 2R-FJM

First, control and stabilization properties are to be investigated in accordance

with the control theories as in the chapter 2. In this section and the followings, the

following simpler representation of the dynamics is more suitable to discussions on

control than Eq.(4.6) in the previous section on nonlinear dynamics:

T =gylz)+g,(z)u (4.11)
where
0, 0, 0
0, o 0y ; 0
= D= =
T p 9ol 0 9 1
A — b sin 6 —(1 4 pecosby)

and u = ;. The above representation is in the form of Eq

) in the chapter 2
of general control theories and is a drift system with a single input

4.4.1.1 Accessibility and STLC

First, several Lic brackets produced by g and g, are obtained as:

|
Jg, Jg 1+ jcos by -
9 = [90.91] =790~ m:”g] = A (4.12)
1(260, + 6,) sin 6,
0
—2u(6, +f)g)siuﬂ_y
93 = [90:9.) = 0 (4.13)

10y + 65)% cos 0y +

cos 20,
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0
0

gy = = (4.14

—p? sin 26,
And the distribution formed by 90 91- 95, and gy satisfics the Lie algebra rank
conditions as:
span {g.91.9,.95} € R’

except for a few singularity points. Therefore, the accossibility condition is proved
However, the STLC cannot be proved from Sussmann’s condition since the bad
bracket g, = [g,, [gy,9,]] cannot be neutralized by lower dimensional good brack-
ots, gg, g;. and g,. Nevertheless, the Sussmann’s condition is just a sufficient
condition of STLC and, furthermore, STLC is Jjust a sufficient condition of global
controllability. Consequently, there is currently no way to show controllability of
the free-joint manipulator except to develop a control method as in the following
sections

Stabilizability of the free-joint manipulator is investigated by Remark 1 of
Brockett's theorem. The smooth distribution, A = {90.9,}. is obviously lower
than the dimension of the system and, then, there is no smooth static feedback
law to stabilize the system to an equilibrium. Additionally configuration flatness

is to be investigated in the next par: aph

4.4.1.2 Configuration Flatness of 2R-FJM

Let me investigate configuration flatness [RM96] of 2R-FJM. The Riemannian met-
ric g is represented by

(4.15)

_ [ Ay +2Bcosts + 4y Beosts+ Ay
g Beoss + Ay A;

If T assume the control vector field P as P = span{df,}, the annihilator of P
becomes ann P’ = {'—/'"7—’} and, then, £ = 2. Par the derivation in [RM96],

96,
Jesin a 2 3
e u( A By i — 5o+ (14 pcos o) = A
N Lk R { ag, T peostr)zg L
Then,
: { i } F) O+<1+ 9,)-2 (4.17)
= sp4 ,V s =span{ —, —— “0502) 2= '
spen 1€,V £.€1 = span 7o, ~ ity '

D =TQ for generic points on @, for generic parameter values (unless b or ¢ equal
0, or sinf#, = 0) and hence the systems is not configuration flat regardless of the
potential energy function
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4.4.2 Control with periodic inputs

The input torque of the first joint is determined such that the acceleration of the
joint is time-periodic, namely, 6, =

coswt, which guarantees that (6;,6,) always
returns to (14.0) after each eycle. The dynamics of the system with the input is
represented as:

9, ]

1| o 0,

= = 7 oS O
0, —pb? sin By — (1 + pcosby)y cos o
o

(6y,605,6,.05,0) € T> x R x (4.18)

Integrating with initial values of 6, = 0 and ¢y = 0, ¢, and 6, can be climi-

nated from Eq.(4.18). Nondimensionalizing Eq.(4.18) yields the following simpler

cquation:
d ( By { Q
do \ Q ) —p2sin By sin® ¢ — (1 4 pucosby)= cos o

(62,9) € T' x R! (4.19)

T'he nonlinear behavior of Eq.(4.19) is to be investigated by using the Poincaré
map as in subscction 4.3.3. With large amplitudes of the input, it is observed in
Fig.4.7 that the dynamics shows chaotic behavior as seen in subsection 4.3.3

On the other hand, with rather small amplitudes of 7, namely, of =, the system
shows well-ordered behavior as seen in the Poincaré map of Fig.4.8, where the
curves have their initial values at (62,v,w) = (0.6,47) and various values of 6;.
From the figure, the Poincaré maps of the system with a small amplitude form
an cllipse-like closed curve, or waving curve locating upper or lower of cllipses. in
the phase planc. A closed curve in the phase plane denotes a periodic swing of
the second joint, and an waving curve which is also closed denotes a revolution.
Note that the second joint naturally swings directly by periodic actuation of the
first joint, which is disregarded in the figures by taking Poincaré maps, and these
swi

g and revolution occur as side effects and have much slower frequency than
the frequency of the periodic input. Another interesting and useful feature was
observed from the difference between Fig.4.8 and Fig

9 with a different input-
amplitude v = 8. Increasing and decreasing the amplitude tends to stretch and
shrink the elliptic manifolds in the verti

1l direction of #; as seen in the figures
The feature is utilized to control the second joint to a manifold which is formulated
in the next subsection.
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Figure 4.7: Poincaré map with vy = 60,w = 47

4.4.3 Feedback control to an elliptic manifold

In this subsection. a feedback control law to an elliptic manifold that passes through
(02.05) = (024.0) is designed. Approximate the manifold by an cllipse as

) + (02 — 0,)°

The r,, and 6, depend on the input-amplitude and are determined from simulation
results for a nominal input-amplitude, vo.

=1 (4.20)

Let 7 denote an amplitude of periodic input and change it at the beginning of
every cycle depending upon the distance from the ellipse. This can be considered
the amplitude modulation of feedback error. The modulation is according to the
following law:

¥ = 7+ ké, (4.21)
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0.5

0.4

0.3

0.2F

Velocity of Theta2 [rad/sec]

Figure 4.8: Poincaré map with v = 6,w = 47

") (05 —10.)?

PR S Sy (4.22)

The feedback gain k& has a constant magnitude and changes its signum depending
upon the arca in the phase planc as shown in F

4.10. The nominal amplitude 7
should be chosen such that Eq.(4.20) best approximates the corresponding Poincaré
map. If (65,6,) is on the desired ellipse, (6, 65) approximately follows it afterward
with this amplitude. When (65.605) is off the desired ecllipse, the feedback law
of Eqs.(4.21) and (4.22) chooses another taller-and-narrower or shorter-and-wider
cllipse that will intersect with the desired ellipse afterward. This feedback law was
designed on the basis of the observation at the end of 4.4

2. This heuristic design of

feedback law will be shown to make the elliptic manifold as an attractor of (6s. ;)

by simulations and experiments in the subsequent sections.
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Figure 4.9: Poincaré map with v = 8, w

Stability analysis and the possibility of generalization are major theoretical sub-
jects of the proposed heuristic feedback law. Since it involves diseretization to get
the Poir

stability is not straightforward. The problem is as important as analytical iden-
tification of parameters of clliptic manifolds. The discussions in the next chapter
provide analytical identification of invariant manifolds of free-joint manipulators
The generalization of proposed feedback law to higher dimensional systems with

more free joints is not obvious as it is but is provided in the next chapter via

ing analysis. Nevertheless, the use of time-periodic inputs and the idea of
feedback control with amplitude modulation arc worth considered for generaliza-
tion since they can be developed, as indicated in this chapter, with the Poincaré

map known as a strong mathematical tool of nonlinear dynamics analysis.

saré map and approximation to represent an ellipse, a rigorous analysis of
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desired point

Figure 4.10: Amplitude modulation of the feedback error

Figure 4.11 shows one of the simulation results with the initial condition (65, 605) =
3

(0,0) and the desired position sy = rad]. The constants used were v =

6[rad/sec?] and w = 4n[rad/sec]. The (lut{lwl line in Fig.4.11 indicates the desired
ellipse. The solid line implies the whole trajectory of the system. The small circles
in the figure denote the Poincaré maps of the trajectory. It is observed from the
figure that the desired cllipse attracted \’()-3.()-3),

4.4.4 Stopping at the destination

Although the Poincaré map follows the elliptic manifold by the feedback law de-
veloped in subsection 4.4.3, it does not guarantee to terminate the system at the

destination (fy,6,) = (624,0) that the ellipse passes through. The motion near
the destination is enlarged from Eq.(4.10) and shown in the left figure of Fig.4.13.
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Theta2 [rad]
solid line whole trajectory
dotted line  : desired ellipse
o Poincaré map

3w
Figure 4.11: Simulation : control from 0 to TZI';HI]

The motion will continue and follow the clliptic path, although in these figures the
computation was terminated when the Poincaré map passed the destination. The
system can stop at the destination only when the Poincaré map very fortunately
makes its footprint (a small circle) exactly on the destination. In this subsce-
tion, determination of the input-amplitude in the neighborhood of the destination,
namely, the input of the last cycle before the destination. is proposed so as to make
the following footprint on the horizontal axis (6, = 0) rather than to remain on
the ellipse with the feedback law of Egs.(4.21) and (4.22). Note that this strat-
egy does not guarantee to reach the destination but does to stop the motion in
the neighborhood of the destination. The followings describe how to compute the
input-amplitude.
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When = is small, the ¢-evolution of 25(¢, ) can be approximated by the Taylor

series expansion as follows:

(4.24

In order to make the footprint on the horizontal axis of s = 0 after the cycle,

the upper element of Eq.(4.24) suggests to determine the amplitude by

(4.25)

From Eq.(4.24), we have

B Oy + 7+ O(z,3) Oy + O(z4 1
= ] = 2 (4.26)
0 O(z4°) 0(z4%)

3

which implies that the error of velocity and 6, are O(z

) and O(=

respectively

The corresponding amplitude of 4, is computed as 7

In practice. the proposed termination control is applied when (6. 6,) enters the
following region

byt {w,,/u: ET %R | su<en, |05 — 0 < N)»} (4.27)
From Eq.(4.25), =4 < 25 in Eq.(4.27) yiclds
> —sawso’u®sin 20, : for sin26y < 0
6y =wQ ? (4.28)
4 7;)7;4:”"/1"‘\‘11120_; : for sin26, >0

The concept of termination control is shown in Fig.4.12. Figure 4.13 compares
the simulation results of the strategics proposed in subsection 4.4.3 (left) and this
subsection (right). The right shows that (0.,//1‘: terminated near the destination.
Note that Egs.(4.24) and (4.

5) imply that the change of velocity by = becomes very

3 N
small in the neighborhood of 6, = £—-, which is the singularity of the strategy.

A stabilization control at #; = +— proposed by Nakamura and Iwamoto [N193]

can be used in this case, while 0, =

) and £7 arc saddle points as seen in Fig.4.8
and can be reached carefully following a stable manifold.

In the control strategy proposed in subsection 4.4.3 and this, the amplitude of
time-periodic input is determined at the beginning of every cycle. Therefore, the
control is open-loop within a cycle, although it is closed-loop between cycles.
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Figure 4.12: Stopping at the destination

4.4.5 Compensating the modeling error

An cllipse is employed to model the Poincaré map of Fig. 4.8. However, the mod-
cling error tends to become large for those passing near 6, = 0, +7. This results in

the fact that the actual Poincaré map does not go through the desired position 6y,

even though the elliptic manifold is chosen so and the feedback law of Eqs.(4.21)
and (4.22) is designed based on the cllipse. In order to compensate this error, the
desired elliptic manifold is adaptively modified in this subsection. Namely, when-
ever the actual Poincaré map passes the 6, axis (every half rotation of the Poincaré
map), the constant r; in Eq.(4.22) is modified according to the following rule:

(k+1) k Ty —To )
Tk Ty S g e =t (4.29)
To
The cffect of this compensation was verified by simulation. Figure 4.14 shows
a result of simulation. The initial condition and the destination wore (62,05) =

(g,()) and (6,6,) = % 0). respectively. The dotted line in the figure shows the
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solid line whole trajectory
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Figure 4.13: Simulation : stopping at

original ellipse that goes through the destination. The actual connected Poincaré
map is represented by the solid line. Although the destination is close to s = 0
where the modeling error becomes large, the actual Poincaré map reached the
destination after a few rotations

4.4.6 Global attraction

The control strategy in section 4.4.3 makes use of two elliptic families as seen in
Fig.4.8. The family in the right half plane (0 < 6, < 7) has the half plane as
the region of attraction and so does the family in the left. Therefore, nothing
is promised for an initial state having its destination in the opposite half plane.
In this subsection, it is shown that the global attraction can be guaranteed by a
simple modification.
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Figure 4.14: Simulation with compensating the modeling gap
It is important to note on the Poincaré maps above or below the clliptic families
in Fig.4.8. The Poincaré maps above the families flow from the left to the right
through ¢, axis, while those below the families flow from the right to left. Therefore,
if the initial state is in 62 < 0 and 65 > 0, for example, the input-amplitude 7 is
determined such that the initial state flows from the loft plane to the right planc.
Accordingly, the area of #, > 0 and 6y < 0 can be included in the region of
attraction of the elliptic family on the right half planc
When 6, < 0 and 6, < 0, it is not possible to find a single constant of y that
take the initial state to the right half plane. However, this can be attained by
switching 7 as follows: First, the feedback control developed in subsection 4.4.3
is applied. The state converges and follows an elliptic manifold on the left half
plane. Then, when the state enters 6, < 0 and 05 > 0, the strategy in the previous
paragraph can be applied. Consequently with this switching, the whole state space
becomes the region of attraction of an ellipse passing 6, in the right half plane.
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The similar discussions will be applied to make the clliptic family on the left half
plane attractive in the whole space.
Figure 4.15 shows the result of simulation. The initial and desired positions

were fyg

0.1

Velocity of Theta2 [rad/sec]

-0.1
l

-0.2

st SRS T R TSR S
-3 ; ] 1

0
Theta2 [rad]
Figure 4.15: Simulation with global attraction

the left plane was done on the top of the cllipse, since it is preferable to have a
sufficient momentum to travel from the left to the right passing through the 6,

axis.

4.5 Experiments

Experiments were executed to verify the control strategy proposed in section
4.4. Figures 4.16 and 4.17 show the structure and the photograph of the 2DOF free-
joint manipulator used for the experiments. The both joint axes are vertical. The
first joint is actuated by a DC servo motor, while the second joint is free to move
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Figure 4.16: Structure of the free-joint manipulator
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A low-friction type potentiometer is equipped at the second joint. The dynamic
parameters are summarized in Table 4.1. A high-gain velocity feedback control is
designed to drive the first joint. The computed input. 6, is integrated and sent
to the velocity controller as a reference signal. The following values were used
as the control constants: yp = 6.00[rad/sec?], w = 4rfrad/sec], 6, = +1.53[rad]
7, = 0.300, ky = 15.0[rad/sec?], and k> = 0.500.

Figures 4.18 and 4.19 show the results. Figure 4.18 is for the case with 02 =
0.0[rad] and 6oy = —2.0[rad], and Fig. 4.19 is for the case with B0 = —2.0[rad] and
4 = —0.0[rad]. Due to the friction, the center point (62,605) = (6.,0) becomes
a point of attraction. The convergence to elliptic manifold was not as smooth as
that of Fig. 4.11 or 4.14, which is due to the effect of the point of attraction. In
spite of such difficulty, thanks to the feedback control, the state finally terminated

near the destinations. Note that though the point of termination shows a small
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Figure 4.17: Photo of the free-joint manipulator

residual velocity in Fig. 4.19, it actually stopped in the experiment. It can be
explained that (1) the residual velocity was damped out by the friction or (2) the
residual velocity was due to discretization crror in computing velocity from the
potentiometer signal. The experimental results clearly show effectiveness of the

developed positioning control strategy.

4.6 Conclusion

The nonlinear behavior of a planar 2R free-joint manipulator and its positioning
control were investigated. Choosing a time-periodic input for the first joint was the
fundamental strategy. When the amplitude of periodic input remained small, the
Poincaré map of the behavior in the phase space formed an clliptic closed manifold.
As the amplitude grew, the Poincaré map showed chaotic behaviors. A series of
positioning control strategy was proposed where the amplitude modulation of the
error signal was used for feedback control to a desired elliptic manifold and open-
loop termination control in the neighborhood of the destination. The experiments
were carried out to verify the developed positioning control strategy and clearly

showed its effectiveness.
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Figure 4.18: Experiment 1: from 0frad] to —2[rad]

higher dimensional systems with more free-joints also remains in the futury

67

Rigorous stability analysis of the feedback control designed in this chapter from
heuristic observations is an important subject of future rescarch. Extension to

¢ gener-



Chap.4 Nonlincar Behavioral Analysis and Control of 2R Free-Joint Manip. 63

06— —
|
0.4+
= 02}
o
¢ ’V
o
-]
g
o g
S
@
=
=
K<} 1
2‘_0 2‘
[5 |
o
2
-0.4f
-0.6f of
Ol L S B R S J
-3.5 -3 =25 -2 -1.5 -1 -0.5 0
Theta2 [rad]
o : desired point
* : initial point
X : final point
solid line  : experimental Poincaré map

dotted line : computed ellipse

Figure 4.19: Experiment 2: from —2[rad] to Ofrad]




Chapter 5

Analysis and Control of Free-Joint
Manipulators via the Averaging Method

c=¢(0,0) ; centripetal and Coriolis term
= Z”M”//* 1 i-th clement of e

ok
o OMy;  19Mi; . x
Ciik = Ci;i(0) = —L = ; (2. J,k) element of coefficient tensor for cen-
= d0, 2 94
tripetal and Coriolis term
c
(T : coefficient vector for centripetal and Coriolis term for

Cnjk
passive joints

E =E(6,.6,;<) ;: cnergy-like function to identify invariant manifold of aver-
aged dynamics

Ey = E(0,.6,) ; kinctic component of E

E,(6,;=) ; potential component of E

= Epon (0, ¢,) ; normalized energy on amplitude-normalized phase plane
womk(6u. @,) ; kinetic component of E
» = Enomp(0.) ; potential component of E,
Eyi= Evi(.,0.) ; energy for standard input-amplitude
fr(t).gr(t) ; periodic C? function with period T

Jye ; k-th column vector of (1‘{;“‘ 1\/13,4,)“

Y T (f7 (/J)!«II ; mean square of periodic function f.(t)
Jo

k3 ; gain for amplitude-modulation in Eq.(5.35)

L ; candidate of Lyapunov function
M € R"™" ; inertia matrix
M;; ; (4,7) element of inertia matrix
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M,, € R™™ M,, € RO-™X™ M, € R"=mx(-m) - Loieioned inertia ma-
77
trices as M = ( M, M, >

M. M,,
m : number of actuated joints
n : number of joints or dimension of generalized coordinates
der 0i : -
P ~ ; phase velocity of i-th joint normalized by
Din
D= : + amplitude-normalized phase velocitics of passive joints
j
5 1 scaled time

: amplitude of periodic perturbation, [rad]

i ; upper-limit of input-amplitude
Snew 3 lower-limit of input-amplitude
Eatd i standard input-amplitude
6 ; generalized coordinates

6.€ R" ,0,€ R"™™ ; partitioned generalized coordinates as

: center of elliptic manifold

; i-th clement of gencralized coordinates or angle of i-th joint 8 =
6

7 input-torque to the 1st joint

corresponding gencralized force

Trelii -th joint torque or gencralized force corresponding to the representa-
tion in relative angles

o, : standard phase velocity corresponding to p;
Omt

b, o : i standard phase velocities of passive joints

On
Subscripts

0 ; initial value

a : corresponding to actuated joints

d ; desired value

new ; renewed value in next period

rel ; corresponding to the representation in relative angles

u ; corresponding to unactuated (passive) joints

Superseripts

0 ; unperturbed solution
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(n) : coordinates after n periods
: ; ; der 1
o i averaged function defined as f2(x) 5 T / f(t, z)dt
0
%[ i veetor of second-order term of « as | s, | (i,j=1,---n)
€ derivative of *

Notations of the other variables and constants conform to those in chapter 4.

5.2 Introduction

In the previous chapter, a control method of 2R free-joint manipulators to position
the both joints by amplitude modulation of a periodic input was proposed. Al-
though the method was an effective method to control such a system, it was quite
heuristic and difficult to generalize. In this chapter, the averaging method, which
is a suitable and powerful tool for the system with periodic inputs, is applicd to
free-joint manipulators. The invariant manifolds of the averaged motions of 2R
free-joint manipulators with only one actuator are identified. A control method to
reach the desirc

I invariant manifold via modulation of the input amplitude is also
proposed

On control of second-order mechanical systems, Bloch et.al. [BRM92] formu-
lated control and stabilization methods of nonholonomic dynamic systems Bail-
licul [Bai93] discussed the averaging of the second-order mechanical systems such
as a cart with a pendulum and analyzed the stability of its equilibrium points.
Baillicul also defined an energy of the averaged system for assessing the asymp-
totic stability. The litcrature fundamentally dealt with the control theorem of a
class of nonlincar systems to stabi

¢ at an cquilibrium point. A planar free-joint

manipulator is a system difficult to control by the theorems in the literature since

it has few stable equilibrium points and its controllability usually cannot be shown.
5.3 Formulating Manipulators with Free Joints

A multi-link system connected by free joints is an underactuated system whose

dynamic constraints are not integrable. The dynamics is represented by
Y Myl +Y cibibe=7  (i=1,---,n) (5.1)
o ik

Note that the above dynamics is with an assumption that the system resides in
the horizontal plane, namely, there is no potential term in the dynamics. The
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assumption is not only for simplification of formulation but also for an important
property. With a potential term, cach joint has a solitary equilibrium where the
potential becomes minimal or maximal, namely, the joint dircets perpendicularly
up or down. On the other hand without the potential, every joint can be settled at
any configuration which enlarges options to position the underactuated manipula-
tor. When 6, is defined by the relative angle of the i-th joint. 7; denotes the i-th

joint torque itself. In the other c:

se that with the absolute angle, 7; is represented

bY Ti = Toeti — Toetiin -
Simply assume that the first joint is only actuated and the other joints are free
Joints, namely m = 1. which yiclds simplification as n = 7.7 = 0(i > 2). Consider

the input to the first joint as a periodic perturbation such as

8 = O +efr(t)
0 = efp(t) (5.2)
Bl= e i)

If the perturbed system is periodic, a powerful analytic approximating method
the averaging method, will be able to be applied. The theorem for averaging of a
periodic system is quoted in the appendix D.1. To apply the averaging method.

the system must be in the standard form such as
& =cf(t.x)+ €g(t,x:¢)

Otherwise. the following reformulation in the standard form [SV85] has to be exe-
cuted

Let a perturbed system be in the form as:

@ = 1%, z)+ ef(t.x;e)

with an initial condition x(ty) = a2y, and its unperturbed problem, namely that with
=0, as

2% = ¢, 2% 4)

Assume that Eq.(5.4) can be solved explicitly. The solution is re qgarded as to depend

on the initial condition and is represented as:
0 n
=V =2%% ¢, 20, 8) =¢, EeER
The above unperturbed solution can be regarded as a transformation as:

z = z(t, &)

Then, the following differential equation for € is obtained from Egs.(5.3) and (5.4):

0 Al
do S = Ut 2%) + ef (1. 2%¢)

5 T of @
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Since x° satisfies Eq.(5.4), the first terms of both sides are canceled out. Assum

axt
73

is nonsingular, then we have

0 1
-0 g

The above equation supplemented by the initial value of € will be called a “pertur-

bation problem in the standard form o

(5.6)

More precise discussion will be found in [SV85]

However, the transformation for the underactuated system is not as explicit as

above. The considered system is represented as:
6, (-
0, = —-M_ M z5ff

-M,) ConE fo i Do(Cutk + cup )i fr(t) + L k0t
k>2 Jk>2

with partitioned inertia matrices corresponding to actuated joints and passivc

joints. Transformation to the standard form derived from the unperturbed so-
lution figured out dircctly from the above form as

6. = 8,

0,

would not yield an appropriate standard form to which the averaging theorem can
be applied. Then. a substitution as

n (5.8)

should be introduced and the following averaging procedure of the system cannot
be developed without the substitution. With this substitution, the system (5.1) is
transformed to a perturbed system as:

6, = =p
P, = —-MM,,f

—=M eunn £’ + S (Cutk + Cusr )DRfr(t) + 2 CuikDib
k>2 2

>2 Jok

Then, the unperturbed problem of Eq.(5.9) is obtained as

9, = 0

5.10)
P = —MIM.f} (310
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and the unperturbed solution is as

0., = 6y
Pu = P~ M M.[(t)

which yields the following transformation into the standard form

6., = 4, Lo,
P. = ¢.— M7 M, fit)
Then, Eq.(5.9) is reformulated into the standard form as
0 (¢, — M, M,.f3)
o = 18V . OM
@, = M) s+t | 650
i w | 2 (2 %, * o6, )""
Jik22
My | My (OMy . OMiy . (5.12)
: — - i J; | &
*;( a6, " o, L o0; " om, ) i) Pt

10Miy M, | 1 — OMy -
- ' My, AN
(;’ 2 L BERTEE s Z 2, ‘) /'>

The standard fort

1 implies the Poincaré map of the non-averaged system with

the pe f the

put [Wig90]. Approximated dynamics of the system (5.12) is

obtained by avers

r as

10M,; | 9N

;, (2 o6, " a0,
(1OMy M . 1 — OM,

-+ s —Ji+ = L J;.
: ( ), a5 13 ; a8, i

OO

J

(5.13)

The averaged system will be simplified by the transformation of the time scale.

§ =¢t, as
d (o, P, 5.14
A = : r (5.14)
ds \ ¢, f(6.)¢, + Kg(6,)
The equation represents an autonomous system without the perturbation ampli-
tude . This implies that the feature of the behavior with a small perturbation

is determined by the averaged dynamics independently of =. Since it is necessary

to discuss the characteristic of the solution trajectory of the averaged dynamics

concretely, control problems of 2R free-joint manipulators are presented in the
following sections.
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o
>N

Analysis of 2R Free-Joint Manipulators via
the Averaging Method

5.4.1 Averaged dynamics of 2R free-joint manipulators

The dynamics of 2R free-joint manipulators as shown in Chap. 4 to be analyzed is

as

] 0,
d 65 ty =
— | =2 7 (5.15
dt | 6 b,

0 —(1+ pcosby)f, — pusinb, - (6,)°

where #; is defined as a relative angle of the i-th joint
With the periodic input and the substitution as in the previous section, the

system is represented by the following equation only for the second joint.

O = =zpo &
. oS (5.16)
P2 = —(1+4 pcosty)fr(t) — zusinbs - (f1(t))
Since its unperturbed solution is
B = B
P2 P20 — (1 + pcosba) f1:(t
the transformation is given by
©2 = pa+ (14 pcosts) fr(t) (5.17)
The standard form is obtained from Eqs.(5.16) and (5.17) as
O = =2(do— (14 pcosbs) fi(t))
) 9
: 4e . ) 5.18)
6o = = (—poasindy - fr(t) + £ .\111‘](/,(/,\“)‘) 2
[he averaged system is obtained from Eq.(5.18) as
0y = c¢,
K (5.19)
0 = e—— sin 26,

The solution of Eq.(5.19) is completely described by the Jacobian elliptic functions
[SV:

am(u, k) and sn(u, k), as

am (at + Ca, k) — = (i<k<l)

~ 1} 1 T
0, = { sin~* (;su (~1\'(Lf — kCy, Z)) = (k=10 (5.20)
sin~! (tanh (at + Cs)) —
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k= |[—— and C; = c05205 +
\illki \]‘ i “

7> s and 0 = am(u, k) is called the amplitude function defined as an implicit

function by

/" dz
- — u
40 V1= FK2sin® 2

I .
and sn(u. k) = sin(am(u. k)). Although one might think the above solution trajec-

tory is complicated and difficult to describe, the solution simply follows a trajectory

on the plane of 8, and @y as

const (5

G5+ Ky (cos b

The above equation implics that the trajectory is on a time-invariant manifold

uniquely determined by the initial configuration independently of Since the
velocity of the second joint is denoted by 6y = 20, the trajectory in the phase

plane of the second joint is stretched and shrunken proportionally to = in the

vertical direction of . In Chap. 4, it is observed that the Poincaré map of the

system follows an ordered closed trajectory like cllipse in the case where the input
amplitude is small, and that the elliptic trajectory is stretched and shrunken by

analytically

modulating the input amplitude. The above discussion and T ig

explains the observation obtained from computer simulations and experiments

Figures 5.1 and 5.2 show the simulated behaviors of the 2R free-joint manip-
ulator and the behavior of its averaged dynamics, respectively. The figures are
represented by the Poincaré map [Wig90] of the trajectory with the period T for
the cases that the periodic input is fr(t) = 1 — coswt with = = 0.04, w = 47 and
various values of (#. ;) as the initial configurations. Invariability of manifolds of
the averaged dynamics on the phase plane is discussed from a viewpoint of energy

in the next subsection

5.4.2 Conservation of the averaged dynamics

Considering Eq.(5.19), the averaged system has two center equilibrium points,

(02.09) = (£= U) and two saddle points, (63, 32) = (0,0),(w,0). For another

cach destination such that ¢, = 0, there is a corresponding invariant manifold.

which is represented by Eq.( ), and it passes through the point and turns around
one of the center points.

Considering the equation (5.22), an energy-like function can be defined as

2

K12 cos® 0,
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Figure 5.1: Simulated trajectories of the 2R-FJM
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/
[
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Figure 5.2: Averaged motions of the 2R-FJM
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which denotes an identifier of the invariant manifold represented by Eq.(5.22). For
a constant value of =, E is conserved for the averaged system. The cnergy F

X ) def
consists of two components. namely, a kinetic component, Ey = Ei(fh) = -6,

. dof 1o 5 4
and a potential component, E, = E,(03;¢) 4 55 Wp”cos™ 0. It is natural to
dl

regard Ey and E, as a kind of kinetic energy and potential energy and to regard

E as a kind of Hamiltonian as E = E, + E,. Then, it can be concluded that the
averaged system (5.19) is a kind of Hamiltonian conserved system for a constant
value of
Baillicul [Bai93] defined the averaged potential and averaged energy in his dis-
cussion of averaging second-order mechanical systems in order to show the stability
of the motion. Baillicul’s averaged energy for our 2R FJIM is represented as
E = E(6s,6,) = %0;’ = _'7,'!/\’,,—’«(,\’0, (5

Although only the difference between Baillieul's averaged energy and our Hamil
tonian is in the signum of the second term in the right side, it is a pretty great

difference. The above Baillicul's averaged energy is naturally the avers ge of kinetic

energy, and never conserved with periodic forcing. Baillicul also noticed that the

second term can be regarded as a potential quantity. However. since his system |

a natural potential energy, he just merged the potential-like term into the natural
potential in his averaged potential. On the other hand. our free-joint manipulator

has no natural potential and the above averaged kinotic enc

gy can be regarded
as a Lagrangian of the averaged system and, then, the second term can be ro-

garded as the negative of a potential energy

E,. Conscquently, our Hamiltonian

can be regarded as a Hamiltonian corresponding to Baillicul’s averaged energy as
a Lagrangian with a potential energy E,.

The energy E has another important and useful property that the value of /539
or E can be altered by modulation of the input-amplitude = at same point (65, 6,).
Control methods of the both two joints using these propertics are formulated in

the following subsections

5.5 Control of 2R Free-Joint Manipulators via
Averaging Method

In Chap.4, a control strategy to position the both joints of 2R FIM was proposed
as; (1) Control the actuated first joint to the desired position regardless of the
passive second joint, (2) Steer the second joint to the desired position by periodic
actuation of the first joint. The second subgoal is realized by dividing the control
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into the following two phases; (2-1) Stabilize the second joint onto an invariant
manifold on the phase plane which passes through the destination, (2-2) Terminate
the second joint at the destination when it enters the neighborhood of the destina-
tion. E

ch control was realized by modulation of the input-amplitude in Chap.4
However. the proposed method was heuristically constructed from observations of
simulations without mathematical proof and difficult to generalize. In this section.
reformulation of the control method of (2-1) is developed using the energy of the

averaged dynamics proposed in the previous section.

5.5.1 Control by amplitude-normalized energy

The system follows an invariant manifold of Eq.(5.22) and conserves the energy
of Eq.(5.23) for a constant input-amplitude, and the manifold and enc rey can be
modulated by modulation of the input-amplitude. The energy E can be rewritten

in the 2nd joint’s phase plane of the non-averaged systeni, (6, /)_.\ as

1

E(63,05:2) = == (p2 + Kpi*(cos 62)°) (¢

0

der U2 : :
where py —. Considering that £ is represented as a fur

tion of #, and p. a
normalized energy can be redefined as

Erom(62,p2)

Zrviomsk - From (5.26)

I 5 de
where E,om L P and E, fef

i ) :
myp = 5N (cos )" denote its kinetic and potential

components, respectively. Note that the normalized energy is defined on a plane
of # and po. Then, p, is termed an amplitude-normalized ve locity of the second
joint and the plane (6,.p,) is called an amplitude-normalized phase plane. On

the amplitude-normalized phase plane, the shapes of the manifolds of averaged

dynamics and E,,, are maintained independently of =, T hough, since ps is defined

0y o . .
as —, the value of py and E,,, can be modulated into another value by amplitude

P2 Pryew = <L> = (*)1‘

>

0\~ ) >
E e Bp= ( —) + Kp*(cosbs)?

modulation as

and

“neu
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The modulation of the input amplitude modifies only the kinetic component,
whereas the potential component is invariant for <. The modulation algorithm
is obtained from Eq.(

(5.29

When the value in the square root isn’t negative or zero and z,,,, has a real value,
the normalized energy can be obtained as

AT AT >
B = (— : ) + S K pPcos®y, (5.30)

The position on the amplitude-normalized phase plane (6,, p) jumps immediately
25 i .
to | by, — on an invariant manifold which passes through the destination. The

modulation is executed only when the value in the square root is positive or zero

Since b,y is usually set at zero for positioning. the case implies that B &8 B
namely, [0y — 0| < |fau — 6] where 6, = +% denotes the center of the elliptic

invariant manifolds

5.5.2 Lyapunov control to a manifold

Set a standard input-amplitude =, and redefine the cnergy for the standard am-
plitude as:

N e g -2 » L
E 1403, 6) & 503 + i""’jl"" cos? 6, (5.31)
The energy is conserved when the input-amplitude settles at If the input-

amplitude is not at =, the energy E,,; is never conserved as:

1558, e .
Ea= 5K = 244%) sin 265 - 0, (5.32)

Define a candidate of Lyapunov function as
1 )
L= 5(Euad — Ea)* (5.33)

where Ey = E (04, 024). Its derivative is obtained from Eq.(5.32) as:

L= ZKpX

1 2 > e
5 “—zud )(Esta — Eq) sin 205 - 6 (5.34)

A modulation algorithm is designed as:

suid - Y1 — kol Boia — Bo)sin 205 -0y 5 ka(Eua — Eu)sin 20 6y <1
0 o ks(Bya = Eq)sin 20y - 6y > 1
(5.35)

€ Eney =
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With this amplitude-modulation, the time-derivative of the Lyapunov candidate is
negative semi-definite as:

1 2 . 3 §2
L = —SkyK ey (Byq — Eg)?sin® 20, - 63 < 0 (5.36)
Note that L turns into zero for the cases that 6, = H,:{; t7 or # = 0. In these
cases, the algorithm sets the input-amplitude as = = =, and. then. any states
except for the cases at (62.65) = (0.0) <A ) (l) .(£7.0) are variant and the Lya-

punov candidate stays asymptotically stable. The states (65,6,) = (0.0). (£7.0)
are saddle points and each of them has unstable heteroclinic manifolds and, then.

the system practically never stays at these points. The states (6, b)) = (%

arc center points and can be attractive by Iwamoto’s method [NIY95] or friction as
mentioned below. These points are actually difficult to be left but can be avoided
to draw near by preserving the energy E, enough large. Consequently, the pro-
posed Lyapunov candidate is proved to be asymptotically stable almost globally

except for the point (6y. 6,) = (*_—,H)

%
3

The amplitude modulation (5.35) is executed just at cach end of the period of

the first joint since the values of #5 and 65 in the amplitude modulation are based

on the averaged ones and non-averaged ones extremely dive from them in the

middle of the period. If the input-amplitude is modulated within the period, the
motion of the first joint is no longer periodic which is the indispensable assumption
and, then, the above discussion turns into meaningless. However this restriction
for amplitude modulation makes the control method discontinuous, the stride of
the Poincaré map is cnough small for an appropriate =, and the actuation of
the first joint is continuous and. then, the variation of the cnergy and Lyapunoy
and AL ~ (Eyy — Ey)Eu4T,

and the proposed algorithm is still valid. Additionally, = is practically limited to

candidate can be approximated as AEy ~ E,.

be less than or equal to z,,,, to guarantee the approximation of averaging and the
treatment occurs no problem.

Although the amplitude-modulation proposed in this subsection and the pre-
vious scems to be a kind of energy feedback control, there is difference that the
control is discontinuous and the energy is imaginary value. From a viewpoint to
modify the manifold of the system by modulation of a parameter £, the control
method is related to the famous OGY method [OGY90] in control of chaos. How-
ever, there is also difference that the destination has no stable manifold and the
manifold is a center manifold, while the OGY method carried the system onto a
stable manifold converging to the desired equilibrium which is usually a saddle
point.
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About the subsequent procedure to the convergence to the desired manifold,
that is, termination at the destination, the method was alrcady provided in Chap. 4
and is reformulated by averaging analyses in the followings. In the next subsection,
second-order averaging analysis is developed to approximate the Poincaré map bot-
ter, and a termination control is reformulated based on the second-order averaging
subsequently

5.5.3 Better approximation by second-order averaging

Although the precedent first-order averaging analysis is sufficient to obtain dynam-

ical comprehension of nonlincar behe

iors of the system, its order of approximation
is £ and is not cnough accurate as seen in Fig. 5.1 and

2. It influences control
design, especially termination control at the destination subsequently developed
Then, second-order averaging is introduced to improve the approximation. The-
orem for second-order averaging is quoted in the appendix D.

The standard
nated by second-order averaging as the follow ings. Lot

form of Eq.(5.18) is approx

fr =1— coswt, we have

(1 + pcos bs) coswt

Y= (5.37
(5.38
wher
in 26, sin 2wt
cos 265(cos wt — cos
132
(cos by + T cos 36,) coswt — f: ~(5 cosfa + 3 cos 36, ) cos 3wt

Since the averages of f!(z,t) are f!* = 0 and f3* = 0, namely, f'°(z) = o, sccond-
order averaged dynamics is obtained similarly to Eq.(5.19) with slight difference

in transformation to the original dynamics as:

0 = 0y +c(1 + pcosbs)coswt + 0(g?)
= (5.39)

G2 = o+ cudysinbs coswt — = L,w sin 265 sin 2wt + 0(?)

8
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The state every after period is obtained as:

Oo(nT') = 05 + =(1 + pcosby) + O(=2)

; 5.40)
02(nT) = B + by sin By + O(=3) 2

It shows that the crror of Eq.(5.19) is not only first order of = but also can be

second order of = in the second-order averaging

5.5.4 Termination control via second-order averaging

In this subsection, formulation of a termination control at the destination is devel
oped based upon the above averaging analysis. Derivation of the approximating
equation is much easier in averaging context than that in 4.4.4. The results in the
previous subsection shows that the averaged dynamics in Eq.(5.19) approximates

the motion in an order of =2, Expansion of the averaged dynamics with A =

B = 22 6in 26,
> ; 8

sin 264" 4 =2 c0s 205" - Aby + O(2A8,%) (5.41)

Assume that ¢ is sufficiently small to be 6, = O(=2), it is considered that
{ 9
Aby :/ Godt = O(=2)
0

Integrating Eq.(5.41) from ¢ = nT to (n + 1)T yields:

i n) oM
sin 265" . T 4 £2*

O = 0, +¢

cos 205" - O(£2) + O(=°)

!

2
(n) ) 42w

Tsm‘zz}g”ﬂlx()[-'\, (5.42

= 85

Considering Eq.(5.40), the approximation error is concluded to be O(£3). There-
fore, the state (6, 6,) after a period when 0, is sufficiently small is estimated as

>

oy =

(n+1)
)

5 =

) £

, (n) 2 o : p
05" + 8, T + »"'—lsm 28+ O(H =8 + 0

225 “sin 208 + O(=%)
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and considering Eq.(5.40) it is obtained that

5 = B 4 e(1 4 peosB5HY) + O(=2)

(n+1) (n+1) (n+1) (n+1
65"t = g,

: ) (5.44)
uhy sindd"V +0(3) =6,  +0(=3)

Consequently, the desired input-amplitude =, so as to make 65" = 0 is obtained

as

The above agrees with the result in 4.4.4.

5.5.5 Global attraction

Combination of the above control to an invariant manifold and termination con-
trol realizes a positioning the second joint by periodie actuation of the first joint.
However, a pair of different invariant manifolds divided by the axis #, = 0 have a
same value of energy of Eq.(5

23) etc. as seen in Fi

Then, a destination in,
for instance. f, > 0 can be positioned only from an initial point in the same half of

the phase plane with the combined control. Namely, the control is still insufficient
to position it from any initial point to any destination. In this subsection global

attraction for any destination to be positioned is enabled

The following is an ¢

gorithm for global attraction by the control methods to a

manifold (5.29) or (5.35). The case with the destination in 0 > 0 is considered in

the algorithm and the other case with that in 8, < 0 is represented in parentheses.

(i) If the state resides in the half 8, > 0 (#2 < 0), an invariant manifold passing
through the destination is adopted as a destination to be stabilized.
(ii) If the state resides in the second quadrant 6y < 0 and #5 > 0 (the fourth

quadrant ¢ > 0 and 6, < 0), a manifold passing through (82, 6,) = (0, %v,.)

is adopted as a destination to be stabilized

(iii) If the state resides in the third quadrant 6, < 0 and 0> < 0 (the first quadrant
0> > 0 and #, > 0), a manifold passing through U‘JJAI)‘,‘) = (£Ge=, 0) is adopted
as a destination to be stabilized.

The algorithm produces a flow: the third quadrant — (£¢c»,0) — the second
quadrant — (0, +v,,) — the half #, > 0 — the destination, from the property that
the manifold circulates around 6, = +m. It enables to control to any destination
from any initial point on the phase plane except for a few cases. All the points
on the axis 6, = 0 except for the singular points 6, = 0,47 and 6y = :t% are

vibrated with a periodic perturbation and moved to another point with a certain
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Termination centrol Stabilization to manifold

8

Figurc

5.3: Flowchart of control by amplitude-normalized energy

velocity 6] > 0. Furthermore from the second-order averaging analysis, since
05 = fp+
6, =0

+pcos fy) from Eq.(5.44), the singular points in the averaged dynamics

1ifts in the original dynamics by variation of =. However, the fact

that the stable point 6, = 0 shifts simultancously implies that the borders of the
halves alters and the destination quite near to #; = 0 might be difficult to control

since the half to which it belongs varies with =

5.6 Simulations

5.6.1 Control by amplitude-normalized energy
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Figure 5.3 illustrates the flowchart of composition of the control to a desired
manifold by amplitude-normalized encrgy proposed in Sec.5.5.1 and the termi-
nation control in Sec.

5.4, When the control to a manifold or the termination
control cannot be applied, the input-amplitude is set at the standard amplitude
€44 as shown in Fig

5.3. The case when the control to a manifold cannot e applied
denotes that |0y — s, > |fay — 65,] as mentioned above in See.5.5.1. T herefore, the
control will be difficult when the destination is very near to the center as shown

below since the Poincaré map steps its footprints discretely and. accordinely. the
chance to modulate the amplitude will be few. The case when the termination
control cannot be applied denotes that the second joint overran the axis fy = 0
In this case, the second joint has to turn around once again to approach to the
neighborhood of the destination.

Figures 5.4 through 5.7 illustrate the trajectory of the averaged 2R free-joint

manipulator, that on the amplitude-normalized phase plane. transition of the
amplitude-normalized energy of the trajectory, and transition of the input-amplitude

under the above composed control. The parameters of the periodic inputs are

w =47 and the maximum, minimum and standard value of = are sot as et =02
Zmin = 0.05 and =, = 0.1, respectively. The initial and desired configurations are
(62.62) = (0,0) = (=130°,0) = (—2.269[rad], 0). In Figs. 5.4 and 5.5, the solid line

and empty cireles denote the trajectory and its Poincaré map. The chained line

in Fig. 5.5 denotes the desired elliptic manifold corresponding to the dest

ition
Since the normalized encrgy is defined on the amplitude-normalized phase planc.

he elliptic manifold is conserved only on the planc. In Fig. 5.6. the solid line

denotes the energy transition and the dotted line denotes transition of the desired
elliptic manifold corresponding to the destination. The energy was once stabilized
to the desired value and it finally made slight difference by the termination control.
In Fig. . the solid line denotes the transition of the input-amplitude. It is scen
from the figure that the input-amplitude was modulated four times. t — 55,7,

and 12.5[scc]. The first and third modulations of the input-amplitude correspond
to the control to a desired manifold and the final modulation corresponds the
termination control. The second modulation at ¢ = 7[se¢] implies that the input-
amplitude was set at £,,4 since 8 was very close to 054 and the termination control
cannot be applied

Since the averaged dynamics completely follows an invariant manifold for a
constant input-amplitude, the modulation of

1.(5.29) is carried out just a fow

The non-averaged original dynamics diverges from the
g g 3 8

invariant manifold after a period with an error order of

times as shown in Fig. 5

unless =
small. Therefore, the control method tends to stabilize the

sufficiently

ystem where the
velocity error is sufficiently small, since = is figured out as a small value from
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dotted line  : whole trajectory of averaged system
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Figure 5.4: Trajectory of averaged 2R-FJIM on 2nd joint’s phase plane

Control by amp-normalized energy:

0> =0° — —130°




Chap.5 Analysis and Control of Free-Joint Manipulators via the Averaging 89

-8t |
|
2 N (O A W . :
-2.5 -2 =1.5 =1 -0.5 0
theta2 [rad]
solid line @ connected Poincard map
dotted line  : whole trajectory of averaged system
chained line  : desired elliptic manifold
o : Poincaré map
5 : desired point

Figure 5.5: Trajectory of averaged 2R-FJM on amp-normalized phase plane
Control by amp-normalized energy: 6, = 0° — —130
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Figure 5.6: Amp-normalized energy transition of averaged 2R-FJIM
Control by amp-normalized energy: » = 0° — —130

time [s]

Figure 5.7:

Input-amplitude transition for the averaged 2R-FJM
0° — —130°

Control by amp-normalized energy: 6y
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Eq.(5

29). Practically, it is nccessary to set an upper limit for the input-amplitude
in order to maintain the approximation well and to set a lower limit so as not to
almost stop the motion. In the case that the value in the square root of Eq.(5.29)

is negative, the system is actuated by a standard input-amplitude =, until it turns

into positive. The treatment implies that the modulation is executed only when
|85 =05,

< |fay — B,| as mentioned above.

Figures 5.8 through 5.11 illustrate the correspondences with Figs. 5.4 through
5.7 for the non-averaged original dynamics, which was controlled under the samc
condition as the simulation for the averaged system. Both the averaged system
and the non-averaged system converged to the manifolds passing through the des-
tination via the amplitude modulation, although the input-amplitudes when the
system was stabilized onto the desired elliptic manifold were different cach other,
that is, for the first destination = converged to 0.1158 for the averaged system
and to 0.1018 for the non-averaged. Note that the values of energy are computed
from phase values for the second-order averaged system by the following cquations
obtained from Eq.(5.44):

Oy = {0 | =8> +=(1 + picoshy }

(5.46)

where the upper equation is solved numerically and, therefore, the value of desired
cnergy varies a little depending on modulation of the input-amplitude. In addition
the initial configuration for the averaged system was not exactly at (0,0) but
at (=0.01[rad],0). since the configuration is singular saddle point and, then, the
averaged system cannot diverge from the configuration. Nevertheless, it docsn’t

matter at all practically since the singular point shifts according to Eq.(5.46) by

modulation of the input-amplitude

Figures 5.12 through 5.19 are correspondences with Figs. 5.4 through 5.11.
Although the only difference is that the desired configuration is at (—80°,0) =
(—=1.396[rad], 0), the control required much time to converge the second joint onto
the desired manifold. The reason is because the input-amplitude is modulated only
when |0, — 65,

shown in Fig,

< |faa — Oa| and the desired ellipse in this case is very small as
-13. Furthermore, the input-amplitude to be modulated is limited
up to the maximal amplitude =,,,. = 0.2 and then, more amplitude modulations
are required to attain the desired ellipse
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Figure 5.8: Trajectory of simulated 2R-FJM on 2nd joint’s phase plane

Control by amp-normalized energy: 65 = 0° — —130°




Chap.5 Analysis and Control of Free-Joint Manipulators via the Averaging 93

I e e —

20+

2.5 -2 -1.5 -1 -0.5 0
X theta2 [rad] ;
solid line : connected Poincaré map
dotted line whole simulated trajectory
chained line  : desired elliptic manifold
) : Poincaré map
X desired point

Figure 5.9: Trajectory of simulated 2R-FJM on amp-normalized phase plane
Control by amp-normalized energy: 65 = 0° — —130
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Figure 5.10: Amp-normalized energy transition of simulated 2R-FJM
Control by amp-normalized energy: 6 = 0° — —130

6
time [s]

Figure 5.11: Input-amplitude transition for the simulated 2R-FJM
Control by amp-normalized energy: f, = 0° — —130°
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Figure 5.12: Trajectory of averaged 2R-FJM on 2nd joint’s phase plane
Control by amp-normalized energy: 6, = 0° — —80°




Figure 5.13: Trajectory of averaged 2R-FJM on amp-normalized phase plane
Control by amp-normalized energy: # = 0° — —8(°
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Figure 5.14: Amp-normalized cnergy transition of averaged 2R-FJM
Control by amp-normalized encrgy: 6, = 0° — —80
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Figure 5.15: Input-amplitude transition for the averaged 2R-FJM
Control by amp-normalized ener
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Figure 5.16: Trajectory of simulated 2R-FJM on 2nd joint’s phase plane
Control by amp-normalized cnergy: 6, = 0° — —80°
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Figure 5.17: Trajectory of simulated 2R-FJIM on amp-normalized phase plane
Control by amp-normalized energy: 6, = 0° — —80
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Figure 5.18: Amp-normalized encrgy transition of simulated 2R-FJM
Control by amp-normalized cnergy: 6, = 0° — —80°
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Figure 5.19: Input-amplitude transition for the simulated 2R-FJIM
Control by amp-normalized energy: 6, = 0° — —80°
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Figure 5.20: Flowchart of Lyapunov control
5.6.2 Lyapunov Control

Figure 5.20 illustrates the flowchart of composition of the control to a desired

manifold by encrgy for a standard amplitude proposed in Sec.

2 and the ter-
mination control in Sec.5.5.4. When the termination control cannot be applied,
the control to a manifold is applicd. When the control to a manifold cannot be
applied, the second joint is released without control since the case implies that 6,
is enough lar,

ge.

Figures 5.21 through 5.26 illustrate the correspondences under the second amplitude-

modulation control proposed in Sec.

.2 with Figs. ;

% -4 through 5.11 except Figs. 5.5
and 5.9 plotted on the amplitude-normalized phase plane. The conditions for
simulations are same as in the above simulations for the control by amplitude-
normalized energy. The gain for the amplitude modulation in Eq.(5.35) is set at
k3 = 50.0. The second method is a little more efficient than the first method
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Figure 5.21: Trajectory of averaged 2R-FJIM on 2nd joint’s phase plane

Lyapunov control: 6 = 0° — —130°
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Figure 5.22: Energy transition of averaged 2R-FJM
Lyapunov control: #y = 0° — —130
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3: Input-amplitude transition for the averaged 2R-FJIM
Lyapunov control: fy = 0° — —130°
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Figure 5.24: Trajectory of simulated 2R-FJM on 2nd joint’s phase plane
Lyapunov control: #5 = 0° — —130°




Chap.5 Analysis and Control of Free-Joint Manipulators via the Averaging ... 105

= T — =
04 5 ]
%03
5
0.1+
[ 1
|
0 L [ e
] 1 2 3 4 5 6 ; 8 9
Y time [s] oy
solid line energy transition
dotted line  : desired energy
Figure 5.25: Energy transition of simulated 2R-FJIM
Lyapunov control: #y = 0° — —130
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Figure 5.26: Input-amplitude transition for the simulated 2R-FJM

Lyapunov control: 6, = 0° — —130°
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since it uses “no control” phase when the second joint has enough momentum
to drift toward the desired cllipse. A greater advantage of the method is that
the amplitude is modulated to stabilize the energy to a constant desired value
and 5.25. There
fore, it won't be stagnant as in the case of F igs. 5.12 through 5.15. However, the

defined for the standard input-amplitude as shown in Fig. 5.22

convergence rate becomes very slow around 6y =

5+ since L is proportional to

Eqa — Eq. namely. cos? 6y — c0s? fa4, and sin 26, and the magnitudes become 7e10
at 0y 3

Therefore, the convergence to the destination near to fy = +—
was very difficult as in Figs. 5.30 through 5.32 in the case with the destination
Oy -80 —1.396[rad]. Nevertheless, the difficulty to converge to the neigh-
borhood of the center point doesn’t matter practically as shown in the section 5.7.3
since friction dissipates the energy and reduces the radius of the clliptic manifold

The slow convergence rate will be dissolved if the Lyapunov candidate is taken as:

: 1 (Eqa a i
& -g(/i; -1) Ay,

The derivative of L' yiclds

’ i C Eya ) sin 26,
=|(= - — —1) —=46,
: (( ) I) ( E, ; 0820, 02

Though, there will occur a larger problem in the case for O3q =

As 6, gets

' et o sin 26,
closer to . L' becomes almost infinity since —-—2 gets close to 2 tan By,

cos20,
5.7 Experiments

5.7.1 Experimental system

Table 5.1: Dynamic parameters

| mid end
0 0.200 | 0.200
0.016 0.100 | 0.100 |

500(3.345) 310 | 1.700
0.0243 0.0230 | 0.0132

0.0 0.0461 | 0.0302

An experimental free-joint manipulator system was newly developed to verify
the validity of the proposed methods. Figures 5.33 and 5.34 are the plan and
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Figure 5.28: Energy transition of averaged 2R-FJM
Lyapunov control: 6, = 0° — —80
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: Input-amplitude transition for the averaged 2R-FIM
Lyapunov control: #, = 0° — —80°
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Figure 5.30: Trajectory of simulated 2R-FJM on 2nd joint’s phase plance
Lyapunov control: #y = 0° — —80°
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Figure 5.31: Energy transition of simulated 2R-FJM
Lyapunov control: # = 0° —380°
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Figure 5.32: Input-amplitude transition for the simulated 2R-FJIM
Lyapunov control: 6y = 0° — —80°
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Figure 5.33: Plan of the free-joint manipulator
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Figure 5.34: Photo of the free-joint manipulator
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photograph of the manipulator established as a 3R free-joint manipulator, respec-
tively. All the joints of the manipulator arc planar and revolute. The first joint
is only actuated and the other joints are free to move. The actuator is composed
of a Y/ AWA AC servo motor SGM-08A314 and a SUMITOMO transmission

FA25 with the gear ratio 1:59. Pictures of the actuator component are shown in

The links are made of aluminum with black coating and the axes are made of
stainless. The size of the manipulator is approximately 85 ¢m long x 45 ¢m wide
X 57 em tall including a cast iron platform. The first link is approximately 39.0
em long x 8.0 em wide x 3.5 em thick, and the middle and end links are 28.0 ¢m
long x 8.0 ¢cm wide x 5.0 em thick. The other important dynamic parameters of
the manipulator are shown in Table 5.1. In the table, the parameters of the first
link arc those only of the link itself. The parameters in parentheses for the mass
and incrtia about joint denote the values when those of the first axis are included.
Each of the free joints other than the first joint is equipped with a special coupling
part with four cuts on the side from every direction at right angles cach other as

shown in Fig. 5.36. Tightening or loosening three in six bolts in the picture bends

the cuts a little and can precisely adjust the perpendicular of the axes.

The manipulator is controlled by an IBM-PC/AT compatible PC, GATEWAY
2000 P5-166 with a Pentium 166 MHz chip. The motor has its own servopack,
YASKAWA SGD-08AS. Its power supply is AC200V and has a rated power of
750W, a maximum torque of 7.1[N-m], and a maximum speed of 4500 rpm. The
motor is controlled by velocity feedback and the velocity is specified by analog
voltage commands in the 10 V range, sent from a D/A board, CONTEC DA12-
8L in the PC. An incremental encoder with 2048 P/R is equipped to the motor

and it feeds back 120832 pulses per a revolution of the first joint. Each of the
free joints has an incremental encoder with 3600 P/R, OMRON E6h-CWZ3E. The
sensor data is obtained to the PC by a counter board, CONTEC CNT24- 4(PC),
with four channels for encoders. Electrical setup for control of the motor is shown
in Fig.5.37.

This experimental manipulator has a very simple mechanism. Although the
free-joint parts are a little complex and heavy, it will be simpler and lighter in the
case without gravity, e.g. space manipulators.

5.7.2 Preliminary experiments
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Picture of actuator component
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Figure 5.36: Picture of free-joint part
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Figure 5.37: Electrical setup for motor
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Figure 5.38: Experimental 2R free-joint manipulator
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The experimental manipulator system was set up in experiments for 2R free-
joint manipulators as shown in Fig. 5.38. The dynamical constants in the case
are:

2 41 x 107 2[kg-m?]
Ay = masy® + I = masy® + Ir = 3.02 x 10~2[kg-m?]
B = mylys3 = 340 x 10~?[kg-m?]

=my5:2 + mol

and, then, u =

i 58. Note that mass and inertia constants of the second
link agree with those of the end link in Table 5.1. First, behaviors of the manip-
ulator under a sinusoidal actuation of the first joint with a constant .mmlnnxl«

39. The
behavior is represented in the second joint phase plane. The solid line in Fig.5.39

were investigated. The result with the initial setting is shown in Fig. 5

represents a connected Poincaré map of the whole trajectory of the second joint
The parameters of the sinusoidal input are: w = ir[rad/sec] and = 0.1[rad]
Although friction exists and dissipates the momentum of the second joint, the in-
fluence of the friction is enough small and the phase trajectory doesn't stop and
follows a swirl-like trajectory. However they were constructed upon a conservative
system without dissipation, the proposed control methods can be applied to such
systems with small enough friction and can stabilize them to an clliptic manifold.
In addition, appropriate values of input parameters are determined as w = 47 and

= 0.1 from prel

T'here were several otl

linary experiments

problems precedent to the experiments. One is diffi-

culty to take finer Poincaré map from discrete data of joint angles and velocitics

Although the sampling time to measure the counts of encoders was set at 1[msec]
by timer interruption, the sampling time of program loop is estimated at 12 to
17[msec] chiefly to write data to a file. Since the velocitics are computed from

differences of the counts of encoders, the errors in the velocities too large to be i

nored and those

the Poincaré sections become further lar Conscquently, the

computed energy of the elliptic manifold oscillates extremely which is represented

by a solid line in Fig. 5.40. Another reason can be considered that the velocity 6
is dissipated by friction when it is comparatively large to E,,. It explains periodical
reduction of the energy in Fig. 5.40. However there is some oscillation, there can be
scen the tendency of exponential-like convergence in the figure. Then, the encrgy
was determined to compute as an average of the current value and the value in
the previous period. The broken line denotes the transition of the averaged energ
and is smoother variation of the energ

5.7.3 Experiments of positioning the 2R-FJM
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Figure 5.39: Poincaré map under constant input-amplitude
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Figure 5.40: Standard energy under constant input-amplitude
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Figure 5.41: Experimental trajectory on 2nd-joint’s phase plane
Control by amp-normalized energy: 6, = 0° +— —130
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Figure 5.42: Experimental trajectory on amp-normalized phase plane
Control by amp-normalized cnergy: 6 = 0° — —130°
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Figure 5.43: Experimental amp-normalized energy transition
Control by amp-normalized energy: 6, = 0° — —130°
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Figure 5.44: Experimental input-amplitude transition
0y = 0° — —130

Control by amp-normalized energy:
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Figures 5.41 through 5.44 show an experimental result under the control by

amplitude-normalized energy proposed in Sec.

.1. The figures correspond to
Figs. 5.8 thro

gh 5.11. The initial configuration and destination arc (6y,6,) =
(0,0) and (—130[deg],0) = (—2.2689[rad],0). The accuracy of positioning is sct
at |0 — O] < 2.0[deg] = 0.0349[rad] and |62 < 4.0[deg/sec] = 0.0698]

ad /sec]
The positioning succeeded within 10[sec]. It is much better than those by the
heuristic control method developed in Chap.4.  Figures 5.45 through 5.48 are the
experimental result for the destination (—80[deg].0) = (—1.396[rad].0). It took
about 76[sce] to position to the destination. As one can sce from the figures. the
convergence was ought almost entircely to the friction and the amplitude modulation
was carried out only in the final stage.

Figures 5.49 through 5.51 show an experimental result under the Lyapunov

The

The conditions are similar to the simulations and experiments of Figs

control proposed in Sec.5.5 urcs correspond to Figs. 5.24 through 5

26.
1 and
541, ete. The positioning succeeded approximately within 16[se¢]. Additionally,

Figs 2 through 5.54 illustrate the result in the case for the destination 6y =
—80°. It took about 51 [sec] before convergence. The convergence was faster than
that by the control by amplitude-normalized encrgy in Figs. 5.45 through 5.48
Hence, we can conclude that the Lyapunov control is more cfficient and global
than the control by amplitude-normalized energy.

Although it is simpler and smoother algorithm, the problem of using the nor-
malized energy turned out as follows: The numerator 6, in the square-root in
Eq.(5.29) becomes very small in regard to the denominator E,q — E, when the
1. Therefore. the amplitude modulation

algorithm of Eq.(5.29) makes the input-amplitude small and. then, the system falls

momentum was dissipated by the fric

into stagnation

Similar problems may happen to the second control method by the standard
cnergy as mentioned in Sec. 5.6. The second method can deal with the similar
problem to some extent by choosing the feedback gain k3. Another disadvantage
is that the algorithm with “no-control” phase makes the input efficient in energy
but results in steep acceleration at when switching the control phase.

5.8 Conclusion

The results in this chapter are as follows:

1. First-order periodic averaging was applied to analyze the behaviors of ma-
nipulators with one actuator and several free joints in response to a periodic
input. The averaged motion was determined independently of the input-
amplitude.
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Figure 5.45: Experimental trajectory on 2nd-joint’s phase plane
Control by amp-normalized energy: 6, = 0° — —80°
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Figure 5.46: Experimental trajectory on amp-normalized phase planc
Control by amp-normalized energy: 6y = 0° — —80°
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Figure 5.47: Experimental amp-normalized energy transition
Control by amp-normalized energy: 6, = 0° — —80°
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Figure 5.48: Experimental input-amplitude transition
Control by amp-normalized energy: 6, = 0° — —80°
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Figure 5.49: Experimental trajectory on 2nd-joint’s phase plane
Lyapunov control: # = 0° — —130°




Chap.5 Analysis and Control of Free-Joint Manipulators via the Averaging ... 131
05——mM - —
=
[ =
0.451 L ~
| W
04l e ]
0.35 1
L
0.3 i
854 |
o |
@ 0. 25’» = i 4
=
o
[ ‘ Iy
0.2 =, el gk lox e J
| ;
0.15+ -
0.1
0.05 4
piaed ool AT DL N |
0 5 10 15 20 25
. time [sec]
solid linc : energy transition
dotted line  : desired energy
Figure 5.50: Experimental energy transition
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Figure 5.51: Experimental input-amplitude transition
Lyapunov control: s = 0° — —130°
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Figure 5.54: Experimental input-amplitude transition
Lyapunov control: 6y = 0° — —80°
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The invariant manifolds of 2R free-joint manipulators were shown and their

conservation was formulated by use of a Hamiltonian.

3. Two control methods to an invariant manifold of the Hamiltonian were pro
posed via modulation of the input amplitude

L. Second-order averaging analysis was developed to obtain a better approxi-
mation

5. A method to terminate at a destination were developed.

6. A newly designed experimental system was developed and experiments were

executed to verify the validity of the proposed control methods




e
Chapter 6
Analysis and Control of 3R Free-Joint
Manipulators with One Motor
6.1 Nomenclature
A I+ myla® + mol,® + maly? ; dynamical coefficient
4, % I+ molia® +mals? : dynamical coefficient
Az o I3y +msla® ; dynamical coefficient
As def As/Bss ; normalized dynamical coefficient
A3 Y 44/Bs3, ; normalized dynamiale coefficient
Boy L mslyls + molils ; dynamical cocfficient
Bs ! mylyl.3 ; dynamical cocfficient
Bss Y mylsl,s ¢ dynamical coefficient
! cos(f; — #6;) ; abbreviation for cosine
¢ Bjicji/ B3 : normalized cosine
Sji 4L i #; — 6:) ; abbreviation for sine
et Bj;sji/ By, : normalized sine

Ay Az — 3% ; determinant of reduced inertia matrix

Notations of the other variables and constants conform to those in Chaps. 4 and

5

‘ 6.2 3R Free-Joint Manipulators with Only One
‘ Motor

6.2.1 Averaging the manipulator
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actuated

free joint

Figure 6.1: 3R free-joint manipulator

Consider a 3R free-joint manipulator whose first joint is only actuated and
others are free as shown in Fig. 6.1. Assume that the manipulator resides in the
horizontal plane. The dynamics is given by

4 Baiear Byiey /’\ —13-:\‘\219‘3 — By *'3("/’1 T
Baiear Ay Baeyp b |+| Basubi — Bisyb3 = Ji+0 (6.1)
Bjicsi Bapcyy A 03 Bi153107 + Bapspbl; 0

where 6; is defined as the absolute angle for simplification of the equation. With
the periodic input to the first joint such as 6; = 6, + e fr(t) and the substitution
as (02,03) = (epa. eps), Eq.(6.1) yields

i ( oy i (62)
D3 A\ —cpp A —C31 f1 — = (S32p2% +

The standard form for Eq.(6.2) is given by
0>
03
b
@3

o
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G\ . [ Glsbs) ) _ 1 Ay —cp ) ( a1
('\x) <~x"”: ”N>71( 15 3 )

92 92(62.03) (532G3 + 521)C2
('/;)7('/‘\’/L“;1> (*\w’v*wuw)

Then the averaged system is obtained as

where

0,
Ll E = (6.4)
dt | o 1 Ay —cp $3203 + K ga(0a. 03) L
&3 l(-ﬂl A, >< 7~;;(:,+[\v/ul/./); )

6.2.2 Invariant manifold of 3R-FJM

The phase space of the 3R free-joint manipulator is six-dimensional and its Poincaré
map being cut at the period of the first joint is four-dimensional, that is, (62, 03, 05, 03).
Figures 6.2 through 6.4 illustrate the behavior of the 3R free-joint manipulator in

response to a periodic input, fr = 1 — coswt with the amplitude = = 0.01 and the
frequency w = 2

The dynamic parameters of the manipulator for simulations

were determined symmetrically as m; = 1.0, [; = 0.2, [, = 0.1 and [, = ,f,,,:["
(1.0.1.0)[rad]. Figures 6.2 through
6.4 are the Poincaré map projected onto the 3-dimensional space of (6. 63, 63). the

The initial configuration is given by (6, 63)

phase plane of the third joint. and the plane of the second and third joints, respec-

tively. The dots denote P

sincaré sections with the period 7. The empty circles
denote the ‘second’ Poincaré sections of the ‘first” Poincaré map cut at 6, =0. In
Fig. 6.2, the projection of the first Poincaré map onto the 3D space of (65,03, 63)
formed a closed surface with a hole in the center. In Fig. 6.3, the projection onto

the 3rd joint’s phase plane became an ellipse-like shape. In Fi

. 6.4, the projection
onto the 2nd and 3rd joints™ planc took a shape like a rectangle.

Although it is difficult to sce the shape in the whole 4-dimensional phase space of
(05.03,05,03), it can be concluded from the figures that it forms an two-dimensional
invariant manifold like a two-dimensional torus in the 4D phase space. The rea-
son why the manifold is two dimensional is as follows: The second Poincaré map
forms a pair of closed curves, as scen from Figs. 6.2 and 6.3. The curves are only
one dimensional, since their projections were one-dimensional in each figure. The
cur’ intersected the plane of 65 = 3 = 0 at four points. The points located in
the corners of the rectangle in the plane of (6,63) in Fig. 6.4. Since a point is
zero-dimensional, the invariant manifold is two-dimensional at the most.
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theta3dot [rad/sec]
o
=

theta3 [rad] theta2 [rad]

Figure 6.2: Poincaré map projected onto 3D space (6, 03, 65)



Chap.6 Analysis and Control of 3R Free-Joint Manipulators with One Motor 141
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Figure 6.3: Poincar¢ map projected onto 3rd joint’s phase plane
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Figure 6.4: Behavior of 3R-FJM in 2nd and 3rd joints' plane
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6.2.3 Conserved quantities of 3R-FJM

As in the previous subsection, a conserved energy-like quantity can be found for
the

weraged 3R-FJIM. The conservation restricts the trajectory within a subspace

with a reduced dimension, namely, three or less. One of conserved quantities can

be obtained from the averaged Lagrangian similarly to the discussion in Sec.5.4.2
The conserved energy-like quantity is represented by
E(8,¢) = Ex(6,9)+ E,(0 (6.5)

2, denote the kinetic and potential components, respectively, as

where Ey and

E(6.9)

+ AgB2 + 20300203

(@) = K (621G + ¢31(3)

From Eq.(6.4). the time derivative of the kinetic component E; yiclds Ej

2:K(ga02 + gsog) for the averaged system and that of the potential component

E, viclds F

i » = —2:N (9o + g303) and, therefore, E = 0 and E is proved to be

a conserved quantity for the

veraged dynamics. The quantity is a Hamiltonian

for the averaged dynamics and we simply call it the “energy” for 3R free-joint
manipulators in the followings. The above simulation maintained the value of E

at 19.7568[rad®/sce?].  Although the conservation is never proved for the origi

nal non-averaged dynamics of the 3R-FJM, the energy can be concluded to be

conserved

approximatc for the non-averaged dynamics from the fact that the

approximation is guaranteed by the averaging theorems

As stated above, cach invariant manifold interseets the velocity-zero plane at
four isolated points. Namely. the system stabilized onto the two-dimensional in-
variant manifold can be terminated at one of the four points when the veloeities
exactly become zero at the Poincaré map. It implies that positioning the 3R free-
joint manipulator can be divided into two phases, namely, control to an invariant
manifold and termination at the desired point. Then, the former control to the
Note that the above
conservation is nothing but one-dimensional constraints in the four-dimensional

invariant manifold is developed using the conserved quantity

phase space, while the simulations imply that the manifold is two-dimensional
and, therefore, it must have another conserved quantity. However there are several
methods to find the other conserved quantity in Hamiltonian analysis in nonlinear
dynamics, the 3R free-joint manipulator has no cyclic coordinates in its averaged
dynamics and is not a separable system. If the other conserved quantity is identi-
fied, the two conserved quantities can be controlled by modulation of the amplitude
and the frequency of the input. The modulation of the input frequency alters the
second-order moment K in Eq.(6.4) independently of the input amplitude =. Al-

though the other conserved quantity has not been found yet, a control that restricts
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Figure 6.5: Poincaré trajectory of the averaged 3R-FJM under the control

to at most three-dimensional space can be applied and, subsequently, a feedback
law that restricts to the desired manifold will be developed by the other conser-
vation. A feedback control by the conserved quantity is proposed in the next

subsection.

6.2.4 Feedback control by the conserved quantity

The isolated velocity-zero points of the invariant manifold can be moved by mod-
ulation of the input amplitude since they are determined by ¢ = 2 and not by
q. Therefore, the proposed method of Eq.(5.29) were applied to the 3R free-joint
manipulator.

Figure 6.5 shows a simulation result of the averaged 3R free-joint manipula-
tor under the proposed control method. The figure is represented by a connected
Poincaré map projected onto a 3-dimensional phase planc of (6,03, 65). The initial
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and desired configurations arc (6., f3. 6, 63) =(0.5[rad]. 0.5[rad]. 0[rad /sec], O[rad /sec
y E.
Figure 6.7 shows the Poincaré trajectory from ¢ = 300[sec] to t = 1000[sec], which
is a part of

and (1.0,1.0,0,0), respectively. Figure 6.6 shows the transitions of the enc

g. 6.5. Thanks to the proposed control method, the energy converges
to the value corresponding with the desired configuration. The trajectory is on
an invariant manifold. The system was not stabilized exactly onto the manifold
including the destination but stabilized onto a manifold where the energy became
the same value as that at the destination. The stabilized trajectory in the phase
space forms a two dimensional closed surface, since the input amplitude is settled
in a constant value when the energy is constant. Then, the proposed amplitude
modulation control stabilizes the system onto a two-dimensional invariant manifold

corresponding to a desired energy. If the other conserved quantity is found. the

stabilized manifold is identified and the system can be stabilized onto a manifold

which passes through a desired point. In addition, simulations were carried out
for the exact non-averaged system which showed similar results as those for the

averaged system

6.3 Experiments

6.3.1 Simulations for experimental 3R-FJM

I'he simulations in See. 6.2.2 were executed for a provisional model in order to
clarify the behaviors of 3R free-joint manipulators. Thus, simulations for the model
based on the experimental 3R free-joint manipulator should be exccuted.  Figures
6.8 through 6.10 illustrate a simulation result of the behaviors of the averaged
3R-FJM for the experimental model in response to a periodic input. The dynamic
parameters conform to the values in Table 5.1. The periodic input is as: 6, =
Br0+e

—coswt) with £ = 0.1[rad] and w [rad/sec]. The initial configuration
is as: (B9, 030) = (1.0[rad], 1.0[rad]). The figurcs correspond to Figs. 6.2 through
6.4, respectively.  Although the shape of the manifold in Fig. 6.8 looks different

from that in Fig. 6.2 and has a twisted form, the manifold still formed a two-

dimensional torus-like closed surface with a hall in the center. It can be said that
these torus-like manifold is topologically equivalent. The second and third Poincaré
maps cut at o = 0 and ¢ = 03 = 0 are also one-dimensional closed curve and

isolated points, respectively, similarly to those in Figs. 6.2 through 6.4.
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Figure 6.8: Poincaré map projected onto 3D space (6. 03, 65)
Simulation for experimental 3R-FIM: (a9, 659) = (1.0[rad], 1.0[rad])
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Figure 6.9: Poincaré map projected onto 3rd joint’s phase plane
Simulation for experimental 3R-FJM: (65, 630) = (1.0[rad], 1.0[rad])
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Figure 6.10: Behavior of 3R-FJM in 2nd and 3rd joints’ planc
Simulation for experimental 3R-FIM: (6, f39) = ( 1.0[rad]. 1.0[rad])
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Figure 6.11: Experimental trajectory in 3D phase space
Behavior for a constant input amplitude = = 0.1: (9. 030) = (0.0)

6.3.2 Control experiments of the 3R-FJM

Figures 6.11 and 6.12 illustrate an experimental result of the 3R free-joint manip-
ulator in response to a periodic actuation with a constant input-amplitude. The
periodic input is as: ) = 6y9+2(1 - coswt) with £ = 0.1[rad] and w = 4m[rad/sec].
The initial configuration is 6 = ¢ = Ofrad]. Figure 6.11 represents the trajectory
in 3D phase space of 6,63 and 6. Solid line in the figure denotes a connected
curve of Poincaré map, and an empty circle and an asterisk denotes the initial
point and the final point, respectively. Figure 6.12 represents the transition of the
energy E. The system showed a swirl-like trajectory drawn into the center point
(02,63) = (

joint becomes str

Note that since #; was defined as a absolute angle, the third

aight relatively to the second link at the center point. The energy
fluctuated and converged to zero similarly to that of the 2R free-joint manipulator.
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‘xperimental energy transition
Behavior for a constant input amplitude = = 0.1: (629, 030) = (0,0)
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Figure 6.13: Experimental trajectory in 3D phase space

Behavior for a constant input amplitude = = 0.05: (620, 030) = (0,0)
The convergence to the center point was comparatively slower for £ = 0.1 than the
case for = = 0.05 as shown in Figs. 6.13 and 6.14.

Figures 6.15 through 6.17 illustrate an experimental result of stabilization of
the energy by the amplitude modulation. The initial point was about (65, 03) ~
(30[deg], 0) and the desired energy corresponded with (62,63) = (60[deg],0). Al
though the control failed as a result from a viewpoint of positioning, it made cfforts
to stabilize the energy which can be scen in Fig. 6.17 compared to Fig. 6.12 and the
system was converged not to the center point but to a small manifold. Although of
course frictional term was quite large to disturb the stabilization of the cnergy, it

should be noted the periodical errors of the energy by inaccuracy to take Poincaré
map. If the error of Poincaré map is fixed in future researches, the control might
show better results.
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Figure 6.14: Experimental energy transition
Behavior for a constant input amplitude = = 0.05: (6, 639) = (0,0)
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Figure 6.15: Exp.5-5: Trajectory in 3D phase space
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Figure 6.16: Exp.5-5: Trajectory in phase plane of the third joint
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6.4 Conclusion
The results in this chapter are as follows

L. For 3R free-joint manipulators, invariant manifolds of the averaged dynamics

were shown to be two-dimensional torus-like closed surface from simulations.

where identification of the manifold requires two conserved quantitics

s a Han

A conserved quantity was identified iltonian from consideration of

the energy of the averaged dynamics

A feedback control of the conserved quantity via amplitude modulation was
proposed. The control stabilized the 3R free-joint manipulator onto a two-
dimensional invariant manifold corresponding to a desired value of the con-
served quantity.

. E

manipulator and to verify the validity of the proposed control method

xperiments were carried out to investigate the behaviors of the 3R free-joint




Chapter 7

Conclusion

7.1 Contributions

This thesis discussed dynamical features of nonholonomic mechanical systems and

control of underactuated systems. The main results are summarized as follows

1. In Chap.3. a motion planning of free-flying space robots was discussed as a

first-order nonholonomic problem under dynamical constraints

(a) Nonholonomic motions of space robots were formulated with Euler pa-
rameters. The variation of satellite orientations was represented by Lie
brackets for a cyclic motion and constant coefficient veetors. The con-
stant cocfficient vectors imply the radius of ¢

ic motion

(b) A motion planning method for space robots was proposed. The method
simplifics path planning by dividing it into two steps
i. Holonomie planning of a nominal motion disregarding the nonholo-
nomic constraints
ii. Computation of a feasible motion approximating the infeasible nom-
inal motion by spiral-like motion around it

This strate,

v cnables to apply many conventional path-planning meth-
ods developed for holonomic robots to nonholonomic motion planning.

In Chap.4, nonlincar behaviors of free-joint manipulators were analyzed and

its control was discussed as a second-order nonholonomic problem

(a) Nonlinear behaviors of 2R free-joint manipulators with a periodic in-
put were investigated by computer simulations. For a sufficiently small
input-amplitude, the Poincaré map of the trajectory forms an ellipse-
like closed curve in the phase space. Chaotic behaviors of 2R frec

manipulators for a larger input amplitude were clarified
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(b) A control strategy of free-joint manipulators with a periodic input was
proposed. The control strategy was composed of two subgoals:
i. Simple positioning of the actuated joint to its destination regardless
of free joints, which can be casily achieved
ii. Control of the free joints by periodic actuation of the actuated joint

Control to an invariant manifold passing through the destination and
termination control at the destination were proposed to meet the second
subgoal. Composition of these two controls was heuristically established
for 2R manipulators with one motor and a free joint.

In Chap.5, the averaging method was applied to formulate a theoretical in

vesti

ation of the behaviors of 2R free-joint manipulators. Control methods

were developed via averaging analyses.

(a) The averaged dynamics of 2R free-joint manipulators was found to form
an invariant manifold. The invariant manifold was characterized by a
Hamiltonian conservation

(b) Control methods to a desired invariant manifold using the Hamiltonian
via amplitude modulation were proposed

¢) Second-order averaging analysis was investigated to obtain a better ap-
proximation and to develop a control to terminate at the destination

(d

Jxperiments were carried out to verify the effectiveness of the proposed

control methods

In Chap.6, the averaging analysis adopted in Chap.5 was extended to 3R
free-joint manipulators

(a) The averaged dynamics of 3R free-joint manipulators was found to form
a two dimensional torus-like invariant manifold in the four dimensional
phase space, which implies the existence of two conserved quantities.
One of conserved quantities was found to be a Hamiltonian of the aver-
aged dynamics.

(b) A control via amplitude modulation was applied to 3R free-joint ma-
nipulators to stabilize its ‘cnergy.” The control stabilized it to a two

dimensional manifold corresponding the energy.

(¢) Experiments were exccuted to show the nonlinecar behaviors of 3R free-
joint manipulators and verify the proposed control.
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This rescarch showed general nonlinear features of robot dynamics and its po-
tentiality to minimize robot mechanisms in exchange for difficulty to control under
nonholonomy. New advantageous minimal mechanisms were proposed as free-joint
manipulators with only one motor through the above studies on control of non
holonomic robots. Although several systems were proposed as minimal systems
oy other rescarchers [AHLM95, Lyn96. BG*96], they utilized other circumstantial

forces of a conveyor, friction, or gravity as extra actuators or geometric constraints
I'he mechanisms proposed here without circumstantial forces are definitely discrim
inated from those in the existence of such extra forces.

Severa

analysis and control concepts introduced in this dissertation can be gen-
cralized to other nonholonomic systems, e.g. higher-dimensional or more complex
systems.  Especially, theories and methods for chaotic systems were found to be

powerful and useful tool to analyze dynamical nonlincar mechanisms

7.2 Prospects
There are left lots of open problems

1. Stability of free-joint manipulators was never shown in a strict sense

Positioni

g control method was developed only for 2R free-joint manipula-

tors
3. Characterization of manifolds of higher dimensional systems is still difficult
1. Input parameters to be modulated are only the amplitude and the frequency.,

where

gher dimensional systems will require more parameters to be con-
trolled

The averaging analysis was based on friction-free systems, where there is very
few practical systems with no friction in a strict sense

Although exact proof of controllability of free-joint manipulators was never
presented, composition of global attraction to a manifold and termination at a
destination on the manifold possibly implies a constructive way to find a trajectory
connecting any initial point to any destination via a manifold. The problems
are that the control methods proposed in this dissertation were based upon an
approximation and that the stabilizability is still quite difficult to be shown.

When friction is taken into account, the system will be not conserved as in

Chap.

but dissipative. Dynamical analysis and modeling of the manifold will be
difficult since the dynamical structure turns into quite different. However, appro-

priate control may allow to deal with a system as friction-less as in the experiments
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in Sc

5.7. The works on control of free-joint manipulators with friction has cur-

rently been done.
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