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Abstract

~!<'dH\nical s.yst('ms lI'hoSI' dynamical constraints arc nonintegrabl('. thus. non­

holonomic sho,," strong nonlinl'<lrity. Such systems arl' diHicult to control since

linearization methods. such as feedback linearization. cannot bl' applied. Such
nonlinearity oft('n originates from underactuatedlH'ss and sho,,"s chaotic complex­

ity <md di\·ersily. In this dissf'rtation. nonlinear bclHlyiors of such systems are to be

analyzed. Contl'Ol methods utilizing the nonlinearity are to be constructed. The
fUllChU1l('ntal motinttion of thos \wrk is a desire to define a ne\\' nonlinear mech­

allism ,,"ith unprecedented characteristics such ,tS underact u<ltedness. complexit.y
and diycrsity.

There arc t\\·o nmjor dasses of nonholonomil" mechanisms under dynmnical

constraints. Onl' is that of lirst-order nonholonomic systems \\'hose dynamical

constraints han' t.he first integrals. The issues of space robots arc to be discussed
a;; problems of a first-order nonholonomic system. TIl(' rest of discussions in this

dissertation is on second-order nonholonomic systems \yhose constraints ha\"{~ no

integral. .-\n,t1\·sis and control of free-joint manipulators arc to be discussed as a

sl'cond-order nonholonomic system.

The "spiralmolion of space robots" is a method of motion planning \\'hidl ap­

proximately realize an infeasible desired trajectory under nonholonomic constraints

by a feasible spiral-like trajectory circulating around the desired trajectory. It sim­

plifies motion planning of space nonholonomic systellls. The \·alidit.\· of spiral

motions is to be Y('rified by computer simulmions.

Free-joint manipulators haY(' a potentiality to steer many joints only by one

motor. The beIHt\'iors in response to a periodic input ntry from a family of closed

trajectories to chaotic motion depending upon the amplitude of the input. I\Ieth­

ods of analysis and control of the systems are first heuristically inYestigated and

constructed from observations of computer simulations. They are subsequcntly ap­

proxinmted ,md formulated by the axcraging method for generalization to higher

dimensional systems. Thc clfer-tiYencss of the proposed control methods is Yl'rified

by simulations and experiments.



Chapter 1

Introduction

1.1 Motivation: Dynamical Nonlinearity and

Minimalism of Mechanisms

There are kinds of mastery performances such as juggling, stunts. acrobatics. and

so on. Such motions cannot be performed by ordinary people but can be achieH'd

on I." by dexterous and experienced jugglers. acrobats and tumblers. \Yhat makes

the acrolMtic nlotions so difficult') The major reasons arc dynamic nonlinearity of

motions and limitation of manipulation or actuation Irhere the performer requires

to SH'er many objects or complex motions in a space of high dimensions. The

motious im'oh-e rotations in thn'('-dimensional space "'hich eontain topological and
dnHlIllical nonlinearity.

Topological nonlincarit~' is due to non-Euclidean coordinate spacc of three­

dimensional rotations. It m,tkes our insights of the motions difficult since Irc usu­

ally grasp natural phenomena in LII"O dimensional Cartesian or Euclidean space on

a paper. screen or blackboard. Ho",t'l'er. topological nonlinearity does not origi­

nate from dynamics bm from static geometIT. The issues of topological nonlinear­

ity hm'c been discussed by many researchers as kinematic nonholonomy, On the

othcr hand. dynamical nonlinearity arises from nonholonomy of dynamics in eon­

junnion "'ith underaetuatedness of mechanisms. Cnderactuatcdness implies that
fe"'cr actuators driw larger numbers of coordinates, l-nderactuatedness makes it

difficult to conLrol motions but reduces thc number of actuators and simplify the

mechanism. i\amcly. dynamical nonlinearity is closely connected to minimalism of

the mcchanisms performing the mot ion. Dynamical nonlinearity is to bc mainly

focuscd Oll in this dissertation.

As thc study of such nonlincarity, nHtny rcsearchers have illlTstigated nonholo­

nomic systems and underactua.ted mcchanisms. Although many gencral theorics

and methods for nonholonomic systems wcrc proposed and established by control
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enginccrs, it is still difficult to dcal ",ith those kinds of nonlinearities, \Yc ",ill

catcgorizc tlw nonlilwarities from a control vil'wpoint,

Holonomic robots arc nsually nonlinear but can be transformed into control­

lable lincar systcms by lincarization methods, for instancc, fccdback lincarizat ion

Snch a nonlincarity is l'xact Iy lilwarizable, This can bc considered a "weak non­

lincarity" since l\"Imt appcars a.', nonlinearity is csscntially a linear phenomcnon,

First-order nonholonomic s)'stems han' a stronger nonlinearity \I'hich is not "xaetly

linearizable but controll"blc The controllability is theoretically prowd from local

controllability conditions. Thc)' arc not st"bilizable by " smooth time-il1\'ariant

fecdback control to "n eqnilibrium point but arc stabilizable by a discontinuons

or time-I'ariant fe('dback control. Tlw nonlinl'arity of second-order nonholonomic

systems is often much stronger since its controllability cannot, be proyed from loud

controllability conditions. such a.'; Sussmann's conditions. They are neither sta­

bilizablc by smooth static fecd back control. Howel'l'r. t,hc conditions I\'hich the)

don't satis(y arc jnst sufhcicnt conditions, They usually han' accessibility ,wd arc

possible to be locally or globally controllable. In rhis scnse. control theories and

methods arc useful for well-structured problcm. but arc unfortunately powcrless

for thc systl'ms \I'ith strongcr nonlinearity. Dynamical nonlinear systems arc ofrcn

second-orckr nonholonomic and hmT higher underactuat,edness. This dissert"rion

aims to analyze the nonlinear behayiors of dyn"mical nonholonomic systems and to

propose some approadll's to control such srrongly nonlinear systems from a I'ie\l'­
point of nonlincar dynamics. and to define a nlinimal mechanism \I'ith potcntiality

to control many dimensions Iw less actuators.

The mot iYation of this rcsearch is triple-fold: The first is to dcyice the analysis

of nonlinear dynamic motions of nonholonomic mechanical systems. Formulation

of 1'<1l'iation of the s"te!lite oricntation with c,,,e1ic motions of the end-cft'ector in

Chap,3 and bchaxioral analysis of frce-joint manipulators in response to a periodic

input in Clmps..J, 5 and 6 arc sho\l'n as thc cxamples of nonlincar dynamical analysis

in this disscrt"tion. The second is to deyelop a,nd formulate new mcthods to control

dynamic motions of nonholonomic mcchanical systems. The "spiral motion" in

Chap3 and ""mplitude modulation of" periodic input" in Chaps..!, 5 a,nd 6 arc

proposed as ex"mples of thc new control mcthods in this dissert"tion. The third

is to define ,uld construct nel\, mechanisms through dcep insights of nonlinearity

in dynamics ,wd control. Free-joint manipulators with only one motor in Clmps.5

and 6 arc proposed a.'; examples of the new mechanisms in this dissert"tion

The characteristic of this dissertation is to de"l \rith nonlinear problems of

nonholonomy using various tools in nonlinear dynamics, kinematics and nonlinear

control, such a.'; quaternion kinem"tics, differential forms in Chap.3. phase space
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analysis and Puincare map analysis in Chap.~. awraging analysis ;U1d Hamiltonian

analysis in Clmps.5 and 6. ctc. arc appli('d in this dissertation.

1.2 Chaos in Hamiltonian Systems

Chaos is attracting gn'at inten'sts of researdwrs in "arious liPids. for instance.

nonlincar dynamics. mat hematics. neurophysiology. economics. and robotics. Es­

pecially. ther<' "'cn' many n'sl'arclll's on nonlinear dynamics and control of Hamilto­

nian conselT('(1 S"stt'IlIS and perturbed systems [T;Lb8!J.I~S92.\Yig!JO. Far9~.OGY90.

SGOY93. LOG!J3.13I~G+95.C093b. CO!J3a. H.J93]. Hamiltonian systems gencrally

includc most of nwchanical s.,·stems as an example of Hamiltonian conserYI'd mc­

chanical systems. motions of forced Iwndulums arc oftcn il1\"l'stigatcd. Frec-joint

manipulators an' similar to pendulUllls except existcnce of thc potcntial term and

arc' also pro\Td to 1)(' Hamiltonian conscnn! systcms as in Chaps.~. 5 and 6. ,Yc

takc an adqultagc of thc approadws and mcthods in nonlincar dnJalllics and chaos

since thnc arc a fcw thcorics or methods for sccond-oreler nonholonomic systcllls

in th(' control literature. In Chaps.~. 5 and G. the nH'thods and theorics in chaos

and nonlinear d.\"Ilamics. e.g. analysis in the plm,e space and the Poincarl' map.

an'raging analysis and Ilw Hanliltonian analysis. are applied. Furthermore. chaotic

1)('IH\"iors of fr<'e-joillt manipulators under a sufficicntly largc pl'rturbation are prc­

sl'nlc'd in Sc'c.~.3.3. It j" a 1.\"I)ical cxamplc that asimplc mechanical system sho"'s a

compkx belHl"ior or. in othcr ,,·ords. a nonholonomic mcchanism bccomcs chaotic.

1.3 Goals of this Dissertation and the Composition

of Chapters

This dissertation aims to altain threc goals. The first goal is to daril\" intricate

andmnltifarious IwIHl"iors of simple nonlincar mechanical systcms and to cstablish

nH'thods to ;lIJal\"Zc these nonlincar behm·iors. TIH' sccond goal is to construct sim­

ple path-plRnning and control strategies for robots "'ith nonholonomic constraints.

The final goal is to dcfinc a 11('''' adnlntagcous mechanisms. The ncw mechanism

is defined and dC"c!oped based on the dynamical and control standpoints. In ordcr

to attain the purposes. yarious theorics and mcthods in nonlincar dynamics and

chaos arc applicd.
The rest of this dissertation is composed by six chapters. In Chap.2, definition

of nonholonomy, history of nonholonomic rese;lJ"l'h. and important theorems for

nonholonomic systems arc summarized.
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In Chap.3, motion planning of fn'e-flying space robots is to be discussed. Free­

flying space robots are dynalllieal sy~t,'ms under first-order nonholonomic con­

straints of the angular Illolllentum eonselTation..-\n arbitrary path of the end­

em'etor and ba.se-ori"ntation is infeasible only b,' arm 1lI0tions due to nonholo­

nomic constraints. TIll' spiml motion is the fl'a.sibk Illotion "'hich approximatl'!y

achi"H's it. It consists of a nominal motion and a c"dic motion. :\ nominal mo­

tion follo"'s tIl<' giH'n e\Hl-efl'eClor path "'ithout considering thc' base-orientation.

:'I. eydic mot ion compensat"s the de"iat ion of base-ori"ntat ion produced ,1', a side

efl'"et of the nominal motion. TIll' cyclic motion acts as a perturbation and can

restrict its magnitude "'ithin an arbitrary desired limit. The efrect of a cyclic mo­

tion is formula(('d and computation algoritbm to obtain an optimal spiral motion

is presented. Computer sinlltlat ions H'rify the l'ffl'cti"elH'ss of the proposed meth­

ods. One of the merits of this strategy is that the resultant motion follU.'YS the

nominal motion "'ith a gi",'n bound of approximation. The other mcrit is that

holonomic path-planning strategies can be applicd to design the nominal motion

"'hicll milkcs nonholonomic path-plilnning simpler and easier.

In Chap.~. nonlineilr dynamical ilnah'sis of 211 frce-jointlllanipulator (211-F.DI)

is to 1)(' inH'stigiltcd and its control strategy is to bc dc,·eloped. The 2TI-f.J:\I is

a simplcst cxampl,' of second-ordcr nonho!onomic systems. Its nonlinear behay­

ior "'ith pcriodic input is im','stigal<'d on the Poincare map. Chilotic belut"ior is

n'y,'aled "'hen l)('ing subjc("lc'd by a sufficicntl,' large input-ilmplitude. Control

methods of the 211-f.Dl are diseussed in the subsequent stTtions. :\ftcr explain­

ing difficulty to proH' its controllabilit,' and stabilizability b,' conH'ntionill control

theories. a control strate~' of simultaneous positioning of the both joints by peri­

odic perturbation to the first joint is proposed. The control method proposed in

the chapter is heuristicillly construClcd from anah-sis of its nonlineilr bdHt,·ior. In

ordN to Y('riI",' thc rtreCli"cness of thc method. simulatious and experiments art'

carried out.

Subsequently to Chap.~. mathellliltical analysis of 2TI-f.J:o,I "ia the awraging

method is to be inwstigated iu Chilp.5. The awraging Illethod is an analytical

approximiltion ,Yhich guarantces the error bounded ness by the order of input­

amplitude. The m-craging analysis sho,,'s thilt thc a"eraged system is confined

onto an inYari,tnt torus manifold in thc pha;;c spacc. Thc innlriant milnifold is

identified by a H,uniltoniiln and. t.hus. the awraged dynamics is sho"'n to be a

conserved system. T,,'o control mcthods to steer thc system to ,t desircd im'ariant

l1lilnifold using the Hamiltonian ilre de,·eloped. A termination control at the des­

tination are also developed from sccond-order m-craging. The rtrcctiveness of the

proposed control methods is wrifjed by simulations and cxperimcnts.
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~~~~~ollabilltY accessibility
In this
dissertation

lst-order-

Figure 1.1: Categorizat,ion of systems by nonholonomy

In Clmp.6. nonlil1(';tr bt'l1aYior of 31\-[.1\1 \\·ith one 111otor is to be anaIyzed \·ia

the a\"Craging method. The a\"l'raged behm·ior \\·itii a constant input-ampliLude is

sholl·n to bt' confined onto a two-dimensional torus il1\·ari,ult manifold and. tlien.

the system has t\\"o consel"\w! qnantities. One is found to bl' a Hamiltonian defined

from the Lagrangian of the m-eragl'd system \·ia similar consideration for 21\-[,]\1

.-\Ithough the other hasn·t been found yet and the corresponding manifold to a

destination cannot be identified. the amplitude modulation control is applied to

stabilil.l' the Hamiltonian to a desired ntlue. \\"hell the Hamiltonian is stabilil.ed

to ;t desired ntille. the input-amplitude becollles constant alld the sy::;tem is ::;ta­

bilil.ed OlltO a tll"o-dimensional inntri,UH manifold. Experiments for 31\-F.1J1,I arc

also carried out to shOll" the practical belw\·ior and to \-erify the eH·cetil·ene::;s of

the proposed method

Chapter I coneludes the ,,"hole discussions made ill this disscrtation and pro­

Yides sOllle remarks and prospects. Figure 1.1 illustrate::; the categoril.ation of sys­

tems by nonholonomy, the relations to control propertic::;. and thc correspondences

\Iith the chapters in this dissertation



Chapter 2

N onholonomic Systems

2.1 Underactuated Systems and Nonholonomic

Systems

l"nderaetuated mechanisms han' been attmeting a gn'at deal of research interests

in ro!Joties and control a.'i "fidd with many ne,,· possibilities [BC"'96]. Undemrtu­

atrdness means that a system is drin'n or steered by less number of aetuators than

the dinl<'nsion of configuration space of the s~'stem. l"nderactuatedness is strongly

rdated to nonholonomy.

The tonst raints of a system are called holonomie [Gol 01 if they can be repre­

s<'IHl'd b.l· equations only of generalized coordinates and a time as:

h(q. t) = 0 (2.1)

IdH're q denote g<'neralizl'd coordinatl's. The degree-oj-freedom (DOF) is defined

as diH'erence of the number of constraints and til<' uumber of generalized toor­

dilHttes. and denotes the number of independent or non-reduudant aet uators, If
a system is holonomie, lye can eliminate dependent coordinates and reduce the

number of geueralized coordinates to the DOF. The number of reduced coordi­

nates implies the original sense of "degree of freedom" Il'hen all the constraints

arc holonomic. An "ordinary" robot lI'hich is fully-actuated Il'ithout pa.ssiYity and

redundancy is a holonomic system since its motors can be dril'en independeutly

and its constraints can be represented only by the joint coordinates.

Nonholonomy is defined as "no holonomy." namely. the constraints of the sys­

tem cannot be represented by equations of generalized coordinates and a time.

HOII'ever, in recent years especially in control and robotics [CLBW91). nonholo­

nom'ie systems imply the systems lI'ith constraints represented by nonintegmble

'Gf'!lNali7,pd coordinat.e's df'llot.f' IH'c('ssary and. slIAicif'lll. llnmbf'rs of nuiahlf's 10 reprf'sf>nt tlw
ronfigurariol1 of thr systt'm. i.f'. positions. orif'lltations. and joint. angles pte.
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difFl'I"ential equations including time-diffcrent.ials of generalized coordinates, i.e.

I'e!ocities and/or accelerations a.';:

h(q.q,q·· 1)=0 (2.2)

The conl'elltional cOlltrol t.heories and methods canllot be applied to llonholonomic

systems ill gelleml i'\e\"l'rtlwless. llonholonoll1ic s.l·stems. e.g. car-like mobil,'

robots. rolling contacts of disks. balls and planes. and free-Ilying spac<' robots.

etc. hal'e Iwcn attracted grcat research interests. The reason is that these systems

llave the ach'antag"s that Ihey do not require as many actuators as the gelwral­

ized coordinates. \\'e cannot reduce the number of genemlized coordillates "'hen

the constraillts are nonilltcgrable. thus. nonholonomic. Hence. the configuration

spac<' spans higher dimensional space than the DOF. Such systems "'hich do not

r<'quire as many numbl'I" of actuators as the number of generalized coordinates arc

illtrinsically completely undemrt'llated systems.

2.2 History of Research on Nonholonomic Systems

In tlw first researc:lll's considering nonholonoll1ic constraints in robotics. in 1987

Laumond [Lw87] discussed the kinematic constraints and path-planning of mobile

robots and \'afa [\"af87] discussed orielllational control of space robots supposing

unitltcgmbility of the const raints in his dissertation. The term "nonholonomy"' was

not recognized 'L'; a key"'ord at I.hat moment. [\almmum and i\lukherjee [[\i\1891

studied path-planning of manipulators on free-flying space robot considered as the

first papPI' entitled "'ith nonholonomy 'deanwhile, Salisbury [SaI82] and Kerr and

I"{ot.h [[,n861 indicated that the rolling contacts of fingers ,wd objects arc non­

holonomic constmints. and Li. Canny and Heinzinger [LC90. LCH90] discussed the

problem 'L'i motion planning under nonholollomic constmints in 1989. [\akalt1um

and illuklwrjee [,,"M90. i'\i\191] proved th<Lt the angular momentum consel"\'<Ltion of

space robots is nonholonomic and proposed a motion planning under nonholonomic

constraints using b'i-d'i7'ectional a]J]J1"Oach.

The abolT research subjects me ji7"St-oTde7' nonholonomic systems which arc

defined in Sec.2.2.3, and they ,Ire divided into t\1"O groups. One group consists of

mobile robots and rolling contacts, and the other is the group of free-Hying objects.

The former is denoted by nonholonomic systems 'llndeT kinematic constmints and

the latter is denoted by nonholonomic systems 'llndel' d:~namical constmints.
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2.2.1 Nonholonomic systems under kinematic constraints

The large~t group of nonholonomie n'seardll's IYa.S for car-like mobile robot~ [Lau90

Lau91. LS90. LS93. 1\:[\:),1:'\90. [\:[\:).1:,\91. S.-\.'I.90. S.-\.-\91. Sam93J. From til(' stand­

poilll of robotics. the nonholonolllic constraints is important and significalll prob­

I<'m for path planning and tracking control of mobil<' robots. from the stand­

point of contro!. till' nonholonomit tonstraiuts of mobile robots an' t he simplest

exampks of nonhoionolllit problems. Consequenth-. most of n'searthes on feed­

back stabilization of nonholonomit systems \\Tn' dewloped for examples of mo­

bile robots such ,~., tracking comrol [1\:1\:),1:'\90. [\:1\:),1:'\91]. <'xponetllial stabiliza­

tion b\' piel'('-II'ise tllntinuous feedback [Cd\\'S92.SCd\\·92.SDE93]. time-Yarying

/"('('dback stabilizat ion [Sam91a. Sam91 b. Sam93. Pom92. Cor92. l[\:Y96a]. discontin­

uous f'wlback stabilization [I\:IDI9~.I\:Cd\\·9-5,I\Cd\\·96]. and time-st,Ll<' coutrol

fortll [SIl\:K9-t, SI\:f93. SI\:I\S96]. Some similar s:"stems were also studied: i.e. uni­

c.ITIc [Ld:'\96]. fire truck [\Jn96] and trailers [S,n93]). I\:inematit constraints of un­

d('l"Iyater I'ehitks arc also nonholonomit p'Lth-planning problems ('n'n in 3D spate

though the dynamits is ('xtrenH'ly diflitult by "arious fortes in II"<1t('r. \"akamura

and SanL1lt [:'\S91. :'\S92] studied the constraints. colllrollabili!.I·. and tratking ton­

trol aud Sordalen [SDE93] proposed an exponentially conyergellt tontroll'l\1". ?llur­

ray and Sa~lry [).[S91] dl'fiIH'd chainl'd form and presented tIll' ,;uffici('nc.y condition

to transform a symnl('tric affine '.I·stem into chained form. TIll' abol"l' oYstems can

be transformed into chained form and general control theorems an' den'loped for

chained form 1.-\S96. \IS96.1I\:Y96a]. from the studie,; for a mobile robot II'ith II

trailers and chained form. Sordalen. :'\akamura and Chung den'loped a tH'IY mech­

anism tailed a nonholonoll11r manl/llllat01' [S:'\C9~.C:'\S93b. C:'\S93a. S:'\C9-5a) and

~tudied its motion planning [C.'\96. S:'\C95b]. The nonholonomic manipulator is

one of the minimal fortlls of robot mechanisms II'hith tan control all." number of

joints only by t\\"O motors.

The other major subject in nonholonomit probkms is the problem of rolling

contatL~ of balls. disks and planes [LC90. BS95]. The problem II',~> distussed con­

netted II'ith that of rolling contatts of fingers and objects [LCI-I90. ;-dLS9~a]. and

some interesting mechanisms II'ere deYc/oped [C:'\S95b. P+96. \JLf9T]. Li. Canny

and I-Ieinzinger [LC90. LCH90] first discussed the motion planning of the rolling

tontacts of fingers and objects under their nonholonomic constraints. l\lurray

et.a!. [)'[LS9~a] studied til(' mathematital features of robotic manipulation by fin­

gers. Bicchi et.a!. [8S951 proposed a nmnipulation strategy through rolling ob­

jetts with v,trious shapes. Chung. i\akamura and Sordalen [Ci\S95b] den'loped a

nonholonom'ic man-i]J'ttlatoT using the control properties of n-trailer system for the

control design a.~ mentioned above and the nonholonomie constraints of ball-disk
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wntacts fur the mechanism. Its transmissions using nonholonomic ball-disk wn­

straints I\"CIT ealll'd nonholonomic gears of lI'hieh gl'ar-rHlio eoutinuously changl's

from 0 to 1. P<'shkin l't.al. [P+96] appli('d a similar nonholonomic transmi",ion

to a haptic display. Luo [:-'ILF91] dl'I'elopl'd a nonholonomie table lI'hieh can

bl' position('d at any position and oril'ntation on a 20 planl' by tll'O actnators

Ihrough rolling eontaets of balls and thl' plane. Thes(' problems 1I'l'rl' bas('d on

th(' assumption that til<' rolling contacts do not slip and. thl'n. til<' eonstraints

arl' naturally gl'on1<'t rica I. H('nu'. it is not nl'cessary to eonsidl'r th('ir d~'IHlmies

but thl'ir kin('matics. :-'lanipnlation of obj<'ets throngh sliding IL~195] or throll'­

ing [:-'IL93. Lyn9G. L~[()6] is introducl'd in See,2.2.3 sinc(' th(' constraints arl' classi­

fil'd into s('wnd-order nonholonomic ones and th(' dnlamics needs to b(' consid('rl'd.

2.2.2 Nonholonomic systems under dynamical constraints

,·\t thl' samc timc whcn thl' nonholonomic systems unde?' kinematic constmints
\I'('rc studicd. problems on ori('l1t.ational motions of frl'l'·Hying spacl' robots by

intl'rnal mot ions of thcir manipulators 1I'l're reeognizl'd as one of nonholonomie

problems [\'af81]. Sneh thl' probll'm of thc frl'c-Hying system oceurs from that.

the angular moml'nt nm eOI1S('r"'ltion is nonintl'grabl(' wnstraint including thc an­

gular H'locitil's. Sueh systl'ms are called nonholonomie systous lIndel' dynamical

romtmints.

S\'stl'n1> und('r angular monl<'ntum conselTation an' oftl'n rl'fl'!Tl'd a.S thl' falling

cat phcnonl<'non [:-'lar9-1). l(ane and Schl'r [I-':S691 discussl'd the problem from a

d.I"l1<lmical standpoint and Yamafuji et.al. [YI(J-':92] dl'H'lopl'd a robolic falling

cat. Frohlich [FroI9] studi('d dynamical featurcs of soml'rsaults on a springboard
or tnunpolinl'. [(anl' e1.<11. [I(S,O. KHY,2] proposl'd an oril'ntation wntrol of an

,t.,tronaut by his limb motion and prOl"t'C1 it through l'xpl'riml'nts, In robotics field.

Lapshin [Lap91] and \'akano and Tsuchiya [\'T93] inyestigaled oril'ntatioll eontrol

of a robot in jumping ph,t.se or midair. :\. major snbjl't! in dynamicalnonholonomic

rl'sl'arches is orientation control of flTl'·f1ying space robols by manipulator motions,

Cmctani and Yoshida [CY8'.l'Y 9] proposed a path wntrol of manipulators lI'hile

tlll' orientation of their base was diH'rging, ,lnd thl'y introduced the generalized

.]aeobian. "afa introduced nonholonomic features of dynamics ,wd control ofspaee

robots with manipulators [\'af81] and many researchers started t.o lI'ork \I'ith the

problem eonsidering the nonholonomic constraints [\'090. Lon90. i\M89, i\1I190.

i\M91, Sre90,SlvI091, AS93. Yam93,1IIZ9-1, Yam96,i\M91] and these ,tIT introduced

in Chap.3. In Chap.3, a motion planning method of the end·dfet!or of frl'e-Hying

space robots is proposed, which is called sp'iml motion.
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2.2.3 2nd-order nonholonomic systems

10

The above tll'O groups of ITSI'arcllC's II'Ne focused on systems under constraints

repn'sl'nted by nonintl'grabl<' first-order differentialeqU<uions including genNalizl'd

coordinates and n-Iocitil's as:

h(q.q.1) = 0 (2.3)

Such the constraints are called first·on!f'r nonholonomic. On the other hand. the

constraints lI'hich arise from till' d."nalllics and do not han' e\'en first integrals an'

l"l'presel1ll'd by nonint<'grab!l' second-ordc'r ones. mon'on-r. including accl'leralions.

a.s
h(q.q.ij.1) =0 (2.-1)

Such the constraints arc caliI'd second-ol'del' nonholonomic,

Cp to recent years, thl' term "nonholollomy" has been used to represent onl,' the

first-order Systl'1l1S or. ill other \\"ord, the symmetric affine driftless systems, The

rl'ason is that "nonholonon1\'" is equiy,t1ent to the property that "there is no smooth

static statl' feedback st,lbilizatioll to an equilibrium point" for first-order systems

from the famous Brockett's tlwor('m [Bro831, On the othl'r hand, Oriolo andt\aka­

mum [0:\91b] proposed that til(' constraints of nmnipulators with free joints arc

represented by generally nonintegmbk secund-order differentialequatiuns and the

system \\"('re calhl sf'COnd-01'drl' nonholonomic, Second-order nonholonomic sys­

tems are transformed into non-symnwtric affine systems in state equation form
and Brockett's tll('on'm is not powerful to shO\\' their stabilil.ability, For instance.

the ilwcrtcd pf'ndlllum is, in fact. second-order nonholonomic and its approximated

system around the equilibrium is stabilizable by a smooth static feedback, The

jrcf'-joinl manipulalO1' is sewnd-order nonholonomic and its controllability and

stabilil.ability cannot be sholl'n, \\"e han' had It'ss control theories and methods

to pru\'e the controllabilit,\' of some sorts of second-order nonholonomic systems,

The problems of controllability and stabilizability arc stated in Chap.-l and control

llll'thods of free-joint manipulators are proposed iu Chaps.-l, 5 and 6,

2.3 Controllability of Nonholonomic Systems

There arc sewral terms \\'hich imply the possibility of control. i,e, controllability,

reachability, accessibility, small-time local controliability(STLC). These terms arc

all equi\',L!el1t for holonomic and first-order nOllholonomic systems and proper def­

inition of controllability hasn't been known \'cry well. In fact, controllability of

linear time-inntriant systems arc defined and explained in their constant matrix

form ,wd cannot be applied to nonlinear systems, Small-time local contl'Ollabil,ity

(STLC) [Sus81] has been reg,trded ,15 contl'Ollability for first-order nonholonomic
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systems. Acccssibility, reachability. and attainability dcnote similar meaning and
arc not defined clearly. However a second-order nonholonomic system is accessi­
ble [RI'CISrvIKD6], its STLC can be proved only by sufticicnt conditions such as
Sussmann's conditions [SusS/] and 11](' condit.ions arc often not satisfied. Global
controllability of second-orcll'!' nonholonomic systems lnts bccn pro\'l'd only by con­
st.ruction ml'l.hocl as [L\-I95, .\raD6j. Tlwn. \\'(' need to distinguish t.hese conlrol
properties for sc'cond-order nonholonomic systems. In the follo\\·ings. definit ions
and t.heorcms for controllability arc summariz('d

Consider a conl.rol system ~ of I,he form as:

~ : x(t) = go(x(t)) + Lg;(x(t))II,(t). x E MeR" (2.5)
i=l

First. the S\'stem is i)lobally controllable if there exists some p('riod T> 0 and
input u(t):(O < I, < T) satis(ying x(O) = Xo· x(T) = x J for each t\\'o stat.es
xo.xJ E M [1\H1S90,ilILS9~b].

If thcre is a trajectory \\'hich starts from x(O) = Xo and reaches x(T) = xJ

in time T. xJ is reachable from Xo in Lime T [SusS/]. A set of xJ which is reach­
ablc from XQ in time T i:; called Tmchable set and represented as Reach(~. T xo).
Additionally.

Reach(~.::; TXJ) = U RC'<Lch(~.t.xu)·
O~/'5:T

(2.6)

If XQ itself is an int.erior point of n('ach(~.::; T xo) for all T 2': O. the system ~

is small-time local contl'ollability (STLC) from Xo [SusS/]. If the system is STLC
for all Xo E M. it is also globally cont.rollable unll':;s there is a special restriction on
t.he states or inputs. 1\ote that these are just. sufficient conditions for controllability
and tilt' system is globally controllabll' e\'en if it is not STLC.

If F is a family of Coc \'l'ctor fields on a manifold .\1. then L(F) denotes the
Lie algebra of \'l'ct.or fields generat.ed by t.he elelllents of F. rf L(F) is the whole
t'Ulgent space of M at xo. the family F is said to s<ltisfy the Lie alqebm mnk
condition (LARC) at. xo. In ot.her words, the following linear space extended by a
set of v('ctor space on x of the form (2.5):

c'>(x) = (go(x)··· ,g".(x)} (21)

is called the dist7"ib'lltion by go" .. ,g",. If the dimension of minimum-dimensional
il1\'olutivet distribution 6 including c'> is eCjuh'alent to 11, the system is said to
satis(y LARC. An F-tra.iectory is a curn' ,t(·) which is a finite concatenation of

tpick any two y('('!.or fif'ld~ 9i.9j from a distribution and prodll(,f' tht" Lir hrackf't. as: [9iogj] =

;~'9i -~gj The distribution is inYolulin." if tilr hrackpI Iwlongs to t!If' original distrihution
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integral arcs uf membcrs uf F. The family F haoS till' arccss-ibtlity pmpel-ty (AI')

from Xo if. fur en'ry T > O. the set uf puints that can be reached from Xo by F­
trajecturies in time :S T has a nunempty interiur. The fullUldng theurem is knu"'n

fur the accessibility [Sus ,I.
Proposition 1: Let F be a fam iI.'· uf ex Y('("lUr fil'lrls un a ex manifuld ,\I.

Then the LARC at Xo implil's the :\1' frum Xo· CunH'rsl'i.'"- the AI' frum Xo
implil's the L\RC at Xo if M is a rl'al-anah·tic manifuld and the members uf F
are real-analytic 0

Proposition 2: :\ system ~ uf til(' furm (2.5). \I'ith 9 = (go,··,. g",) real

analytic. cannut be STLC frum a point Xu unless 9 satisfies the LARC frum xo. 0

i\aml'iy. in gl'lH'ral. ,-\1' is indicat<'d by L.-\TIC and is a nl'ccssary cunditiun fUl

STLC. :'\ute that till' pruperty AP dues nut imply that thc s.ystelil is rear/wble to

sumc puint.

In gencral, first-urder nunhulunumic systems can be reprt'senl('d in thc statc

equatiun furm as:

x = L9,u,
j:;:::.l

(28)

\I'here X dcnutc the statc ntriahles. The Eq.(2.8) is uf the furm uf Eq.2.;) \I'ith

go == o. Such a furm is called a symmt'tric affinc systcm. Fur symmetric affinc

systl'ms, L.-\TIC aUlUmatically means STLC and, hence. are gluball~' cuntrollable in

genl'ral. Hcnce, L.-\I1C is alsu ("ailed thc controllability mnk rondition fur first-urdcr

nunhulunumic SYStCIIlS.
Sl'cund-urdl'r nunhulunumic :,ystems can be rcprcsenlt'd as affine systcnb Idth

drift in the state equatiun furm as Eq.2.5. Fur gencral affine systt'ms ,yith drift

(i.c. secund-urder nunhulunumic system), STLC is I'crified b~' SussnHllln's sufficicnt

cunditiun [Sus8'1·
Fur sume dcgrecs uf a Lic brackct B produccd by g,(i = 0.··· .111) in Eq.(2.5).

fur instancc. [g,. [g)" [gk' g,J]], definc /1,( B) ai; a dcgrec that g, un'urs in B. and

L:~o b,(B) aoS the degree uf B. A bracket B is bad if Do(B) is udd and b,(B)(i =

1.. ", m) arc all el'cn. Othelwise, B is good.

Theorem 1 (Sussmann's wnditiun) If the system (2.5) satisfies that

(1) (go.··· .g".) satisfies L:\I1C at Xo and

(2) every bad bracket is representcd by a eunncctiun of good brackets \I'hich

arc IOIYer dimensiunal than thc bad bracket (the bad bracket is then said tu be

nwtmlized) ,
then the systcm (2.5) is STLC frum xu. 0
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This theorem is all efncil'nt tool for H'rifying STLC of sOl11e of sl'colld-ordl'r non­

holonomic sYstems. Lynch [L\1!J3] applied the theorem to sho\l' the STLC of an

objl'ct forced on a frictionless horizontal plane. Le\\'is and \Iurray [L\19i] de­

fined conji.llumlion rontmllability for a largl' class of Lagrangian s.'·stl'ms including

second-order nonholollol11ic S~·stl'ms. and ckriH'd l"OlIditions for small-timc tocal

rO'l1]i.llumlioll I'ontrollability (STLCC) from Sussmann's conditions basl'd on math­

emat ical structures of mechanical systems. ,-\Ithough free-joillt manipulators in

Chaps.-l. 5 and Gsatisf\' L.-\I\C. they do not saLisfy Sussmann's conditions. Helice.

\I'C' hal"l' to proye controllability of such sl'cond-order nonholonomic s~'stems by the

other l11ethods. e.g. l"Onstructil"l' method as ill [Ara9G].

2.4 Feedback Stabilization of Nonholonomic Systems

Aot all l"Ontrollabk nonho]ollomic systems are stabilizable. The follO\,-ing Brock­

et t's theorem and remarks [Bro83] arc \I'ell-kno\l·n.

Theorem 2 (Brockett) Let:i.: = f(x. u) be giwn ,,-ith f(xQ. 0) = 0 ancl f( ,.. )

continuously diffl'rentiable in a neighborhood of (xQ. 0), A. Ill'cessar." condition

for the eXisll'nC'l' of a continuouslY differentiable control hl\l' ",hich make, (xQ,o)

asymptotically stable is that:

(i) the linearized system should hal"l' no uncontrollable modes associated \I'ith

eigennllues ",hose real pan is positi"e.

(ii) there exists a neighborhood N of (xQ. 0) such that for each ~ E N there

exists a control u~(-) defined on [0. x) such that this control steers the solu­

tion of:i: = f(x. ud from x = ~ at t = 0 to x = XQ at t = x.

(iii) the mapping

: R" x R'" -> R"

defined by"/ (x,u) >-> f(x,u) should be onto an open set conta.ining o.

o
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Remark 1: If the wntrol system is of the form

l~

x = 90(x) + L9,(X)1I, X(t)ENCR"

tlll'n cundition (iii) implies that the stabilization problem cannot haq' a solution if

th"n' is a smooth distribution ~ Idlich tontains 90(-).···.9'" ,,·ilh dim~ < II. 0

Remark 2: On,' funlwr sppcial casp: If In' haq'

X(t) ENe R"

,,·ith the I·cctor 9,(X) bping linearly independent <1l Xu then thpre ,'xisls a solution

to till' stabilization problem if and onl.y if 111 = II. 0

It is "TII-knoln1 that first-order nonholonomic systems cannot be stabilized

to an equilibrium point hy smooth static feedback lalYs for the' aboYl' Rcmark

2. Accordingly. many researchers proposed fcedhack cont rol met hods aYoiding

till' n'striction of Drocket(s th"orem as: a piecelyisc analyt ic feedback lalY by

Canudas de \Yit and Sordail'n. time-Y<lrying f"edback lalYs b\· Samson [Sam91a.

Sam91b. Sam93]. Poml'l [Pom92] anc! Coron [Cor92]. discontinuous f"edback Imys
by !\olmanO\·sky cud. [hll\19~] anc! 1\I1l'nnouf and Canuc"~s c!e "-it [hCcl\\-95_

I\Cd\\-96]. timl'-stat<' control form by Sampei eutl. [SI1\J\9~. 51\195. SI\I\596]. a

method in ,,-hich d"fects of distontinuous feedback In're suppkml'ntl'd by time­
l·alTing feec!back by Imum el.al. II/\Y96aj. etc.



Chapter 3

Spiral Motions of Free-Flying Space Robots

3.1 Nomenclature

a. b. c ; paranl('tl'rs of til(' closed-path motion

C : closed path in thl' l'nd-effector coordinates space

D : effl'ct of til(' c1osl'd-p<Lth motion

D'J E S3 ; (i.j) elenll'nt of D dl'fined by Eq.(3.15).

D'J" : k-th element of D'J (k = D.···. 3)
dO : difj"p1'cntial Jorm [\"ar8~] of 0
dx : 1-Jo1"771 [Sch8D]

d( dx) : 2-Jo1"771 [SchilD]

£ ; arl'a l'nclosed by .)1 and 02 or its yalul' such that dE '~ d81 1\ d82

f, : I"('ctor dl'fined b.l· Eq.'.8

H ,\,of DE 6 J b' f ,. . d' , II' . .= oq : ~ x . aco tan rom t l(' .JOint coor mates to t l(' satl' lIt' OrIelltation

in Eq.(3.1)

I ; identity matrix

J'~ ~ : 'x 6 Gcwmlizcd Jacobian [CY8'.i\7I191] from thl' joint coordinatl's

to the end-l'ffector coordinates in Eq.(3.2)

J ; augmented criterion defincd by Eq.(T.1D)

L ; "'eight for length in W, 1m]

n ; 'spiral pitch'

n E R 3
; unit "cctor which denotes rotation ,Lxis

Q ; criterion

q E R" ; joint coordin<Lt,es

qi ; i-th component of q, or the angle of i-th joint, [md]

S ; area enclosed by C
81,82 ; time pcriodic functions with the period 6t
u E R 3 X S3 ; end-effector coordin<Ltes (position and orienta.tion)

15
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v, : linear velocity of til(' end-efrcctor in Eq.(3.16)
W oI,'[. (1 1 1 ) .... .

= dmg V· V· V·1.1.1, 1 ; nOn-dl111enSlonallZlng matnx

X '~ ( ~ ) : 11 x I Jacobian from the joint wordinatps to the generalizpd

coordinates
X, E 53 X R'l X 53 ; i-th wlumn \Tctor of X

X" : matrix X \\'hen actuater! I)\" till' nomiual enr!-dfpctor motion u"

X '_0(u€) .: gf'npralizl'r! coorr!inates of til(' space robot

Y'~ HoJ: : -I x I Jacobian from the f'nd-eft'e("\or coordinates to the satellitl'

orientation

Y, E S1 : i-th column H'ctor of Y

~() : change of () in ~I

~t 'spiral period' [sec]

10 -1 ~~] Enlel paranH'ters or satellite orientation represented by Euler
- ('2

('3

paral1lf'IPrS

c' ,__1,'[ 1~;l ]~ : conjugal f' of f
-C2

-('3

~€r<I'~ .:'!.€d - ":-'10" : desired change of the satellite orientation for the dosed
path

o : rotat ion angle
A : Lagrange multiplier

~ : Gibbs \"('('tor

(J '~lIall1\" : 'spiral radius'

(Jd : upper limit of the spiral radius

o'~ ~ ; 'spiral frequency', or the angular frequency of the dosed-path mo­
.:'!.t

tion. [rad/sec]
0" ; spiral frequency for II pitches

()I : spiral frequency for a single-turn spiml motion

w E R 3 ; angular velocity (of the satellite)

w,> ; angular velocity of the end-effector in Eq.(3.16)

II ; exte7'io7' de7'ivative [Sch80]
IlalllV'~ vaTWa ; W-weighted norm of a
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Subscripts

: dosed-path motion l'!l'llll'nt

; desired ndue

: numinal motion l'!ement

: positional ekment

; for expn'ssion by joint coordimttes

; oriellLational element

: initial \',due

Superscripts

(i) ; i-th it"rated ",due
: pseudoinvprse nmtrix

3.2 Introduction

17

_-\ free-Hying space robot is subj"ct to the momentum and angular momentum

consetTation I,m's, It is \\"('11 kno\Ul that till' angular momentum cons,'rYation la\\"

is nonint"grabk and thus nonholonomic [:\~191], Since the momentum conser­

"at ion hm forms a set of holonomic constraints, til<' generalized coordinates of a

free-Hying space robot consist of those for the satellitp orientation and those fOt

tit<' lllanipulator configurations, Tlwrefore, a free-Hying space robot "'ith a six

DOt manipulator. for ,'x,ullple, has nine generalized coordinates, Generally, it is

impossible to folio,,' an arbitrary giwn uine dimensional trajectory of the gener­

alized coorclinat<'s only by tit" manipulator joints' actuation, if orient,ttion control

dl'\'ices such a.'> C:\IG an' not equipped on the satellite, Ho,,'e\-er. it \"'tS sho\"n

tltat a free-Hyiug spaCl' robot \dthout orientation control de\'jces is locally con­

trollable [:\:\[911, HmH'\"('r an arbitrary giwn 90 trajectory cannot be follo"Td,

tlH're can be found a feasibll' trajector,\' connecting an ,u'bitmry iuitial point and

arbitrary desired point in the 90 space only if the nonholonomie constmints arc

carefully considered in planning and control. :\lthough it is assumed from pure

technical point of \'ie"', there arc "arious possible adnllltages for the system "'ith­

out any special orientation control device:

(1) One may consider the case of malfunction or breakdmUl of the de\'ice,

(2) One may "'ish to minimize the use of the device, if it consists of thrusters

that use limited and expensive fuel.

(3) Even \"hen the device consists of wheels, one may find frequent or continuous

actuation of \\"heels takes too much electricity,
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(-I) The future designer of small space robot sen'ices may choose not to han'

such a lH'iwy and bulkY de\'ice if ,t robot can lin' \\'it hout it.

TIH' motion control of fn'e-H,'ing spac<' robots has t\\"O nlajor probil'nls I)('cause

of nonholonomic constraints. (1) Path planning. and (2) f"I'dback cont rol han' been

aln'ad.\· studi('d in (il'pth for the conn'ntional fixed-base manipulators. Ho\\"('n'r.

t hl'Y an' not as intuit in' for the fn,,'-Hying spact' robots as Ihosl' arc for the fiXl'd­

base manipulators.

For till' path planning of thl' fixI'd-base manipulators. only the en\'ironnH'ntal

constraillts \\'hich an' commonly holonomic and thus geonH'tric need to be consid­

('lTd. \dean\\·hilt'. the nonholonomic constraints need to 1)(' takc'n into account in

addition to the elwironnH'nwl onl's for thl' path pi<wning of til(' fn'r-f1Ying space

robots. This leads the fact that many intuitiH' path planning algorithms de\Tlopcd

for holonomic robots beconH' inapplicable. Yafa et.al. [Y090] proposcd a mcthod

10 nlinimizl' thr disturbancc of satellite orientation by cyclic motions of a manipu­

lator. '\akamura CUll. [1\\191] proposl'd a ml,thod of finding a solution by using a

Lyapuno\' function and callcd it a "bi-di1'cct-ional app7·oach.·' Srecnath [Src90] pro­

posl'd a shapc control ofspacl' multibody systems. Scndaet.al. [S\1091] obtaincd a

trajectory using a IH'ural nl't \\·ork. :\ kiyama et .al. [.-\S03] obtaincd an optimal tra­

jectOIT for planar 2-link robots and 3D 3-link robots using nonliIH',u' programming

nH'I hod. Yamada IYam03] nscd thl' Y<lriational nH'thod to find a closcd trajcc­

tory of manipulator joinls thai genl'ratcs an arbitrary change of satellite attitude.

\lukherjl'e and Zuro\\'ski I\IZO-l] introduced a pSl'udo-holonomic belHI\'ior of space

robots.

The feedback con rol of free-H\'ing space robots is difficult in particular since

tlH'Y fall in the class of a nonlilH'ar system that is nOI stabilizable \vith a smooth

static feedback law IBro 3]. Only a k\\' \\'orks han' been publbhed on this issue,

Sam!)('i eutl. IS 1\:195] proposed feedback stabilization of a simple frel'-HYing space

robot Yia the time-state control form. Yamada [Yam96] applied iteratin' cyclic

motion of manipulator joints to stabilize the satellite orientation.

In this chapter. a method to approximate an arbitrary 90 trajectory planned

rather intuitin'ly disregarding the nonholonomic constraints is proposed via intro­

ducing a spiral-like perturbation around the 90 trajectory. The perturbation is

dcLermined by c,lreful consideration of the nonholonomic constraints. One of the

ad\',mtages of this approach is that the already den'loped path planning algorithms

for the holonomic robots can be tied to ,I nooholonomic path-planning algorithm.

This \\'hat divides the large path-planning problem into t\VO subproblems. one of

\\'hich considers only the environmental constraints and the other takes care of the

nonholonomic constra.ints. The spiral-like perturbation is designed around the six

dimensional components that correspond to the end-eH'ector motion, such that it
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cau.,;es an appropriate change of the remaining three compollent'i of the 'iatl'lIite

orientation. It i'i a tlworetical feature that the method approximate'i an arbitrary

aD trajectory "'ith an arbitrary 'imall non-z('ro error. The method can be extended

to fn'l'-Hying 'ipau' robot'i "'ith a manipulator of higlwr d('grl'e of freedom and "'ith

multiple lnanipulator'i. in a straightfonl'ard n1<\nnl'r. The spiral motion n'storl''i the

configuration of tIll' 'iY'itl'm to the desired at each end of th(' period and limits the

rlcl'iation from till' dr'iilwl configuration I\"ithin an arbitrary de'iignatl'd margin

The margin need not be de'iign('d to be wry 'imall but 'imall jU'it enough to al'oid

obstacles or boundaril''i only in their lwighborhood. \\'hill' the spiral motion is

propo'il'd here a.'i a method of motion planning. iteratin' cyclic motion of the ma­

nipulator of a 'ipace robot can 1)(' applied to feedback stabilizatioll to a dl''iirl'd

configuration of the satellite orienLation and manipulator. "'hich In1'; propO'il'd by

Yamada [Yam96]

3.3 The Spiral Motion

3.3.1 The concept

The concept, of spiral motion i'i first stated rather intuitin'ly before describing the

detaiil'd discussion, Consider a satellite and a 6 OOF manipulator on it. Although

tlll're could 1)(' more till' (kgrl'l''i of freedom of the manipulator. the discussion

in this chaptn is focused on this minimum but common situation. \\'hen the

attitude control dl'I'ice of the satellite is not, u'ied. the "'hoil' system is reprl''il'ntl'd

by a generalized coordinates. (6 of the manipulator joint'i and 3 of the satl'llitl'

orient,uion) being driwn by 6 joint actuator'i.

The 6 g(,lll'ralizl'd coordim,tl's of the manipulator may be repl'l''iented by the

pO'iition and orientation of the end-effector except for the 'iingular casl''i. \\'hen

an arbitrary tntjectory is given for the 9 generalized coordinate'i to trace. it i'i

generally infeasible "'ith 6 joint actuators. Cmetani and Yoshida [LY87] propo'ied

to follol\" the end-effector trajectory disregarding the satellite orienta,tion, The

top tll'O pictures of the left haud 'iidl' of Fig,3.1 illu'itrate the mse. The satellite

lI'ili ha.l'e ..':>E" as a side-effect that depends on the nominal end-effector motion

1L,,(t). Yamada [Yam(3) computed an optimal c1o'ied path in the joint 'ipace that

yield'i the dl''iignated change of the 'iittellite orientation and minimizes the radiu'i

of the c1o'ied path. It "'ill also be pO'i'iiblc to find a c1o'ied path 1Lr (t) of the end­

effector which changes the 'iatellite orientatioll into the designated configurat,ion.

The bottom tll'O pieture'i of the left hand 'iide of Fig.3.1 'ihow 'iuch a trajectory.

The right l1<\nd side of Fig.3.1 'illOw'i the motion "'hen t,,·o paths 1L" and 1L"

are simply added. :\ simply addition of these paths 1L" + 1L" traces a'iingle-turn
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figure 3.1: Spiral motion planning

spiral-like path. TIl(' radius of u,. is referred to as the spiral radius of 'U" + u,.. The

corresponding satellit<' orient <tt ion change becomes nearly ~E" +c.E,. ,dthough this

simple addition is not exact due to nonlinearity. If u" is di\'ided into small parts and

a closed path of the end-efl'cctor for each of them is computed. the spiral becomes

mnlti-turn and the spiral radii get smaller. \\'hich is explained in the section 3.~"±.

In this II"~\'. a closed path such that the trajectory of the satellite orientation

approximately follo\\', an arbitrary gi\'t'n one can be found. The resultant motion

caused by the multi-turn spiral end-dl'l'ctor motion is considered an approximation

of the gi\'t'n 90 trajectory of u" and Ed \\'hich is ph~'sicall~' infea:;ible in general. It is
note\\'onhy that tl)(' snudler the di\'ision of the end-effector path becomes. the more

the spiral radii reduce and the better the approximation becomes. From this POilll

of \'ie\\'. it is possible to approximate a giH'n 90 trajectory lI'ith arbitrary specified

non-zero error. If the giH'n trajector~' includes temporal requirements. the length of

path to trace in the giH'n time becomes larger 'Uldlhe approximation lI'ith smaller

radii results in larger \'Clocity along the p,nh, This problem is mathematically

formulated in the follO\ying sections. :\ computational scheme of the minimal

spiral motion is ,dso de\'eloped \\'here the exact nonlinearity is to be taken into

consideration.

3.3.2 Generalized coordinates

Yamada [Yam93] took the manipulator joint coordinates q and the satellite orien­

tation E as generalized coordinates, and compu ted a dosed path of q that generates

the desired change of E after a cycle. This problem w,ts soh'ed as an optimization in

the Euclidean space R G of the joints. Since the trajectory control of ,lI1 end-effector
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is important in practicc. u is consid('red a pmt of the gcneralizcd coordinates in this

chapter instead of joint coordill<lles. The t\\·o choin's of generalized coordinates

arc phy,.;ically ('quivalcnt except for the singularity cascs.

The Etdr1' paramete1's arc adopted to rr'pn'sellt thn'('-dimensional orientation

TIl<' definition and propertie,.; of Ill<' Eule'r param('t('rs arc bri('t1y summariz('d in

A.ppendix A.1. 5iuce u is adOpl('d as generaliz('d coordinate,.; instead of q. the

propos('d trajectory planning proble'm do('s not Ii(' in an Euelidean span' R G but

in a non-Euelidean space R" x 5". as shOln] in Fig.3.2.

The satellite orientation I'l'!orit,' is express('d in t('rms of the joint augl(' I'elority

from the angulm- momentum consi'1"uation law as folloll's [:'\:-[!J I. Yam!J3]:

E= Hq (3.1)

On the other hancl. til<' relationship betwccn the cnd-effector \"Clodty and the joint

angie Yelocity satisfies the following equat ion [CY8,. [\!\W1]:

(3.2)

\\'IH'n the numl)('r of til<' manipulator joints is 6. u and q arc ditl'('omorphic except

for til<' singular points. The orientation in 3D space is represented b,' Euler pa­

ranwters ,yhirh has four <'!('mellls. l-Ioll"('ITr the minimum requin'd dimensions an.'

thn'('. the oriclllat ion spac(' is non-EUelidean and has sCITral singular points wit h

on I." three roordinatl's. The adYantage of the Euler panulleters is that it is the

most smooth rcpresentation of 3D rotation ,yithout any singular points iu its space.

Consequently. till' coordinates an' expr('ssed by more components thau required.

:'\amely. u ha" sewn l'!enH'uts and J is a , x 6 matrix. \\'hen the Jacobian J is

full-rank. the solution q for a physically consistcnt iL is obtained as folloll's:

q=J'iL (3.3)

.-\rlopting the diffe1-rntial fonn [5ch801· the equation of motion of the lI'hole system

is obtained from Eqs.(3.1) and (3.3) as follolvs:

dx = Xdu

3.4 Planning the spiral motion

(3.-1)

In the section 3.4.1, an approximate dosed trajectory for a s'ingle-t'lll"n spiml motion
connecting the start and end points of the desired tmjectory is yielded. Thcn, a

mcthod finding a locally optimal solution about the approximatc solution obta.incd

in 5ec.3.~.1 is described in 5ec.3.-1.2. In the section 3.-1.3, a method for searching the
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cxact 50lution of the 5piral motion i5 dC5cribcd. Finally. a method for computing

a mlLlti-turn spiml motion to obtain thc 50lution for the arbitrary gi\Tn non-zcro
allo\nll1cc of approximation is stated in thc scction 3.~.-l.

Y'U1l<lrht proposed a ntriat ional method to find an opt imal solution taking joint

coordinatl'5 as the span' for trajectory planning [Yam93]. In this chapter. the

n° x S° 5pan' of end-effcctor position and orientatiou is adopted as the space for

trajcctor.\· planning andcxprt'ssed \\"ith ., e!ellwnt5 using Eull'r panUllC'ter5. A,s thc

computational algorithm of optimization. til(' Yamada's mcthod is extcndrrl.

3.4.1 Single-turn spiral motion

TIl<' formula of dosed trajectory motion that re5ults in an arbitran· changl' of

satellitc orientation i5 dcriH'd by using thc differential fonn and Lip bmcl.;et. The

dC5in'd trajectory x" is generally infeasible. Let u,,(t)'~ u,,(t) denote thc nominal

motion of til<' cnd-etlector along the desircd trajl'ctory. Thc differencl' bct\\ccn u
and u" is expressed as u,.(t) '~ u(1) - u,,(t). \\"hcn u connccts tIl<' 5tart and l'nd

point5 of thl' desired trajector.'·, u,. bl'come5 a d05ed path.

:\ feasible trajectory of x connecting thc 5tan and cud points of thc dC5ircd
trajl'cton· i5 obtaincd from Eq.(3.~).

~x(l) = XQ + r' Xudt
)'0

TIl(' change of generalized coordinatl'5 by U" becomcs as follo\\·s:

~x,,(1) = XQ + r' X"u"dt
)'0

Let X r as

xr(l) ''!1 x(t) - x,,(t) = {'(Xu - X"u,,)dt
)'0

:\dopting thc differential form. Eq.(3.1) becomc5 as

dX r = Xdu - X"du"

Differenti,Uing Eq.(3.8), it i5 obtained from Eq.(3.4) as

(3.5)

(3.6)

(31)

(3. )

(3.9)

The first term of Eq.(3.9) implie5 the change of generalized coordinatc5 due to the

closed trajectory motion. The 5econd term meall5 the effect due to thc U". In the

case that the de5ired trajectory is 5ufficiently 5hort, u" can be con5idered small.

On the other hand. in the case that the 5piral trajectory i5 sufficiently ncar to the
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desired tra.ieetory. 10 nearly <'quais IOu. In both eases. th<' setond t<'rm in Eq.(3.9)
ean he Ilegl<'l'ted. In this se('lioll and the n<'xt the first term is only tonsidered and
the s<'eoml on(' is negl<'etl'd. :'\0"'. d(dE,.) becomes the function of only u,. -"'E, is

obtained from Stokrs thr07nn [S('h O. Yam!J3] and Eq.(3.!J) becomes a.'i foIlO\\'"

-"'x, = f. dx, = f d(dx,) = f.L f);l X,dll, .• 1\ dU'.l (3.10)
Jr' is Js I.) uX

The dosed tra.i<'ctor.'· u,. is l'xpr('ssed by l,,·o parametl'rs 0$1· 82 as:

(3.11 )

For simplicity and smoothness of the spiral tra.i('ctory. IN 8] and 82 be expressed
by sinusoidal functions as:

81 = toso(t - to) - 1

82 = sin ott - to)
(3.12)

Fig.3.·U sho"'s 8] and 82 \'ersns time. The dosed tra.ieetory u, betomes e1liptice.
The a and b d<'note t\\"o radii of the ellipse. From £q.(7.3). lOT 10 = 1 allnlys must be
satisfied. Considering the ease \,here 8] = 1 and 82 = 0 and other eases. Eqs.(3.11)
and (3.12) .'·ield the follo"'ing constraints for the orientationalelements (IO\H'r four
components) of a and b.

a;b,=a;cf=b;c,=O
a~rat = b;br

(3.13)

These arc the additional com.traims to he satisfied \\"hen the optimization in R 3 x
53 is carried out rather than in R G

•

.\dopting 8q.(3.11). Eq.(3.10) C,lll be altematin'l.'" represented b~' Lie bmcket
[\·ar~-I. Sch80].

~x, = 1-~ (a.bl D:Xl Xi - aA D:Xl X.) dE

= .La,b; h;[X•. Xl]dE
··l

= aTDb

"'here D denotes a T x 7 tellsor \,hose (i.j) clement is defined as

D.}'~ f [Xi,X}jdE
)F:

(3.1-1)

(315)

l\ote that the satellite orientation clmnge is expressed in terms of Lie brackets of
column vectors of X ,wd since the lower part of x is the input u itself, the 10"'er
parts of x,. and D i} is equivalently zero. It is rather simpler formulation of the

efrect than that of Yamada's.
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3.4.2 Computation of single-turn spiral motion

24

There are many solutions of the dosed traj.'ctory u r . •\n optimization method is

proposed in this section. The U r has t\yO unknU\\"I1 H'clors. a all(l b ,L~ s('en in

Eq.(3.11). The goal in this section is to find minimal a and b.

Let the criterion to minimize as Q = aTWa + bTWb. The cril<'rion can be

equi\'alently represented by

(3.16)

lI"ith the relation of Eq.(7.~). i\anwly. the criterion is interpreted ,L'; minimizing a

normalized end-cft"ectur \'e1oci ty.

The follo\\'ing optimization is carried out as if the probiPm \\'ould lie in R T ratlwr

than R 3 x 5"1. i\amdy, the constraints of Eq.(3.13) for 10\\"('1" four components of

U is disregarded. This simplification makes possible to usc Yamada's algorithm

m; it is...\ brief summarization is introduced in the appendix B. :\t the end of

this subsf'etion. it is sho\\'n that the optimal solution thus obtained automatically

satisfies the constraints of Eq.(3.13).

TIll'D in Eq.(3.l~) is a fairly comp!l'x function of a and b. The Yamad,'-s

algorithm assunll'S thai the integranc!s of Eqs.(3.6) and (3.15) are constant and

in\"<\riant to a and b. TIl(' error due to this assumption \\'ill be corrected at the

next section II"hen the exact solution is computed. Therefore. x(to + ::"1) can be

("('pIT"ented from Eqs.(3.6). (3.7) and (3.1~) ,L';

x(to +::"1) = x(lo) + ::"x" + a1'Db

\\'here ::"x" can be cakulated as

::"x" = X(u,,(to + ~t) - u,,(to))

and Eq.(3.15) is rell"ritten ,L';

(3.17)

(3.1 )

(3.19)

The partial derivatives in Eq.(3.19) are obtained by numerical dift"erentiation. This

needs some consideration since to arc the Euler parameters and arc constrained on a

unit 40 hypersphere. A method of numerical differentiation \\'ith Euler parameters

is proposed in Appendix A.2.

To snmnmrize the above procedure, a. single-turn spiral motion is cakulated as

follows:
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(1) Let u" = Ud(t), thencakulate ~E".

(2) Sol\"(' a closed trajettory motion U r (or equil"<lil'ntly a and b) lI'hith satisfie's

~E,. = ~Ed - ~E" at("Ording to the Yamada's algorithm in B.

(3) Letting U = U" + u,., tompute a single-turn spiral motion traj<'ttor~' tOU­

netting the start and e'nd points of til<' desired traj<'l'tOIT.

From Eq.(i.12). thl' optimal :,olutions of a and b obtained abo\"(' satbfy

aTWb = 0
T TIT

a Wa = b Wb = -2",). ~E"d
(3.20)

For any thoites of L in W. the' optimal solutiou thus obtained automatically

satisfil's the tonstraints of Eq.(3.13).

3.4.3 Searching for an exact solution

TIl<' preYious solution is no more than ,ill a.pproximate solution sinte' ~E" and

Dare ntltulated only by the initial tondition and the rH'ett of u" for Er is not

tonsidered. Searching for the exatt solution, the motion of the space robot using

the approximate solution and ~E arc eakulatl'd. Then an exact solution is searched
for b~' iteratin' takulation lI'ith Newton's method as

(3.21)

1I'l1('re the second term of the right side is cakulated using a(i-I). b(·-q

\'ote that though the approximate solution requires only the initial and filml

\',tlues of U" . ...'>E is takulated \\hill' searthing for the exatt solution by the follO\\"ing

intl'gration.

~E = ('f Y(u" + u,.)dt
)'0

Therefore, the exact solution folloll's the desired trajectory.

3.4.4 Multi-turn spiral motion

(322)

Previously, the single-turn spiral motion lI'hich connects the start a,nd end points

of an arbitrary 9D trajectory lI'as proposed. Ho\\'eYer. if the em'ironment of a

space robot is surrounded by obstacles, the space robot should avoid them. In this

SUbsection, the "multi-tum spiml motion" \\hith enables one to approximately

follow an arbitrary 90 trajettory with an arbitrary margin is proposed.
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From Eq.(3.20). (J implies the radius of tlosed trajectory. The spiral frequency

of single-turn spiral motion from 1 = 10 to 1 = 10 + ~I is 01 = ~ and E in
..).1

E ( ) I 01~1 .... .
~q. 3.19 )C'tumes E = -2- =". for multi-turn spiral motion \\'Ithm ~I. the

. I I' . II 2mI' I I f' E 0,,~1spira requcncy IS represell!C'( Jy 0" = nOI =::::t anc. I WI'(' 01'('. = -2- = I/IT.

Sine<' E is proportional to spiral pitch II ,~, abon'. D is proportional to 1/ from

Eq.(3.19). and (J2 is inn'rs"'y proportional to n from Eq.(3.1~) ..-\cturdingl~·. it is

ill\·ersd.'· proportional to o. :\amcly.

(323)

Therefore. the larger the spiral pitch (that is. faster till' spiral frequcncy) is, the

smallcr the spiral mdius is.

A method to soln' a multi-turn spiral motion is described by imposing U,J as:

(1) Set 1/(0) = 1.

(2) Calculatc ..).1 = IJ- 10 and o=~.
1/ ~I

(3) Soln' a singlc,-turn spiral motion \\'ith 0 in (2). Obtain the spiral radius (J.

(1) Compute 1/1") by rounding up 1/1"-11 X(:!..-)2 to tlw nearest \\'hole number.
U,J

(3) If 1/(1.) = nl'·-II. thcn the I/Ik) gin'S the m,L"imum single-turn spiral motion.

\\'ith the spiral limit U</. Olhel'\\'ise, return step (2).

(6) Compute thc next spiral starting from the end of the l)I'e\'ious spiral. Set
/lID) = I/Ik) - 1. Go to step (2).

_-\ multi-turn spiral trajettory approximating the desired trajectory \\'ithin the

spiral limit can be soh'ed by the abo\T procedure. The procedure is illustrated in

fig.3.-l.

Since the spiral perturbation is determined repeatedly at each cycle. it can be

designed to reduce the motion error generated or accumulated in tbe pre\'ious cy­

tics. This implies the method is suitable <to a feedback control method. if tumputed

in IT,ll-time with faster computers in the future.

3.5 Computer Simulation

The lengths, mass, and inertia matrices of tbe satellite ,wd each link of the

space robot arc assumed as given in Table 3.5, where the O-th link denotes the

base satellite. The arrangement of each link and joint is gi\'en in Fig.3.5. The
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Table 3.1: Link parameters

I Link II Length[m] I IvIass[kg] I Inertia[kg.1l11]

0 02 xl 500 100 100 100
1 0.2 10 0.1 01 0.1
2 10 30 3 02 3
3 0.5 20 05 02 0.5
-l 0.5 20 05 02 0.5
5 01 10 01 0.1 0.1
6 02 20 0.1 0.1 0.1

2,

satellite (link(O)) is a cylinder of which radius is 2[m] represented as 02 in Fig.3.5

and Table 3.5 and height is 1[m]. The positions of the center of gn\,·ity of each

link arc assumed at the geometric center of the link.

(
11 11 11 11 11 11)

The initial configuration of the space robot is q = 3· - 3· 3' -3 3· -3 [rad]

\\"ith the configuration of Fig.3.5 as the origin. The desired trajectory of the end­

effector is to Illo\·e it for 1 second at the constant speed 0.5[m/sl'c] in the positin'

x-axis direction and to maintain its uric'ntatiun. And that uf the satellite orientation

is to maintain t he satellite orientation. The initial configuration and the desired

trajectory are gin'n in Fig.3.6. ,,·here the broken line stretched frum end-effector

denotes the desired trajectory

Figure 3.7 sho"·s the satellite orientation '·ariation in response to the end­
effector desired trajectory \\"ithout spiral motion. The solid. broken and chain

line dc'note the 3 n'ctor elements of Euler parameters in tbe order. Figure 3.8

shows the same mution en'ry O.2[sec].
The results uf single-turn spiral mution are sho\\"n in Figs. 3.9 through 3.11 In

the figure 3.9, the solid line denotes the end-effector coordinate x variation. the

brokCll and the chain line denote y and z. The dotted lines denote each desired

trajectories. Figure 3.10 sho,,·s the satellite orientation variation. Figure 3.11

illustrates the mution every 0.2[sec]

The figures 3.12 through 314 correspond to the multi-turn spiral motion ,\"hen

tbe spiral radius limit (Jd sets O.1[m]. Figures 3.12 and 3.13, similarly to Figs.3.9

and 3.10, shuw the end-effector coordill<1te variation and the satellite orientatiun

variation. Figure 314 illustrates the motion. where only tbe trajectory of end­

effeetor position was plotted. The satellite with solid line denotes the final state

and that with broken line denotes the initial state. Note that the satellite makes

small fluctuation in Fig.3.13 while making multi-turn spiral motion.
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From Figs.3.t and 3.8. it is seen that the satellite orientation lI'ould be subject

to a great disturbante \\'Il<'n folloll'ing tlH' end-effector desired trajlTtory. \\"hen

the spiral motion is applied. a trajectory connecting the start and end points is

obtainl'd as in Figs.3.9 through 3.1-1. Espl'l"ialh·. the infea"ible (ksired trajl'ctor~' is

approximated lI'jth til<' dl'sired spiral radius by thl' multi-turI! spiral motion as in

Figs.3.12 through 3.1-1. If thl' spiral limit ad is chosen smaller. 01](' tan get a multi­

turI! spiral motion lI'ith bettl'r approxinmtion. Sinte 0 is ill\'ersd~' proportional to
ai. the motion I)l'tomes much faster in this case.

Table 3.2: Computational time

Com pu tat ional I"-_-.--:S,-,p=il_·a~l_m-,-ot~io.:...l~l~..,.-I
time [sec] none Single rdulti

I 20 30 X lOJ 5/ x 10:J

Direction I y 20 3/ X 10J
1"-~lI---,2"';0---+""':3-.0~X~I":"OJ...-I-~3~5-x-l~0--rlJ

Similar simulations are dOll<' for all threc mel'S of x. y and z and sholl'ed almost

similar results. Thl' computational time by Sun SPA.RC station 10 is shown in

Table 2 for each case of Iwnl'. single-turn. and multi-turn spiral motion.

3.6 Effects of Singularity

In the course of computcr simulations. it is found that for soml' desired trajectories

thl'I"(' arl' cases \d]('re the searthing conn'rgencc to the exact solution becomes \Try
slm\". It turned out that it happens \\'hen the system passes by the neighborhood

of a singular point in the trajectory, The relationship bet\\"t'en singularity and

conyergence of the solution is ill\"estigated \\'ith spiral radius in the cases of multi­

turn spiral motions in Figs. 3.12 through 3.1-1. The results arc sho\\'n in Fig. 3.15,

The (a) shOll'S nmgnitudes of the spiml mdius. normalized by the spiral period

Dot = tf - to \yhere the solid line and eml)t'· circles denote ~. The broken
n ' .1 JEi

line and crosses denote II~. The (b) sho\\s the number of iterations in each
v6t

period of single-turn spiral motion, normalized by the spiral period i>.t. The (c)
shows vlu'iations of the condition numbers, \"here the solid line and empty circles

denote the condition numbers of Y in the motion. and the broken line and crosses

denote the condition number of the generalized .Jacobian J.
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From Fig. 3.15. it can be seen that aftrr till' condition number becomes larger

Iwar I = O.ilsl and t = 0.9[s]. the spiral radius and the number of itl'r,nions becomes

largl'r suddenly near I = O.S[s] and I = 1.0[s). heratiYe cakulation shonlel cominue

unt il the ('lTor I)('comrs sufficiently small. HO\n'n'L in pranicl' Idll'n till' nnml)('r

of iterations becolll('s 100 large the iteration "·a.... terminated and it adnultl'd to tlll'

nl'xt spiral. .-\lthongh some error rI'nulined. the error is ('xpected to 1)(' resoil·ed

in the step afterlyard. Thl' conn'rgl'nce that actuall.'· ITsulted In~" InJrSl'. since a

larger orielltation l'ITor had to bl' resoil-ecl in the following Sll'ps. This Idun seems

the rea.';on that Ihe numl)('r of iterations tenrls to 1)(' large at the end of motion

after the neighborhood of singular points. The singularitil'S Irould abo reduce the

accuracy of the cakulat ion particularly for small spiral radii. TIll' resolution of this

probll'm belongs to thl' open problem. In a practical sensr. the spiral radii should

be nUL,imil.ed ,Yithin the designated margin

3.7 Conclusion

Space robots cannot realize an arbitrary motion of the m,Ulipulator and satellite

onlY by actuation of the manipulator joints. The followings arc macit' clear from
this stud,·:

(1) .-\ mel hod to approximate infea.,ible motions by spiral-like perturbations

around the desired trajectory of the end-effector ,,·itl} an arbitrary nOll-zero
nUL,imum allolnlIJce ".,~, proposed.

(~) Transitions of till' satdlii(' orientation ,,·ith the end-eft·ector motion IH're for­

mulated in the non-Euclicit'an spacr R;J x 53. The Yanutda·s ntriational

method InlS extended to obtain the optimal spiral motion.

(3) :-lulti-turll spiral motion Int.... proposed and a method to solw them Iras

constituted by imposing the upper limit of the spiml radius.

(-I) The etfectiwness of computation In~~ H'rified by computer simulation. In the

course of the simulation. the problem that coIl\·ergence becomes slO\I· after

passing through neighborhoods of singular points InlS pointed out. It would
be Olle of the open problems.

i\ote that the motions of space robots arc intrinsically geometric since the nonholo­

nomic constraints arc first-order without dynamics. Therefore, the planned motion

can be extended by time-scaling when the resultant motion would be extremely

rapid.
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z

y

closed trajectory•••.h •.•• \

desired trajectory

....

x

Figurc 3.2: Trajectory in non-Euclidean space:
The top indicates the lIIapping of the desired closed trajectory in R 3 x 8 3 into R 3 (end­
effector position), the bottonl shows the lIIapping of the salIle path into 8 3 (end-effector
orientation).
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t=t o
--+--------~~ 51

t=t 0 + 6. t

E

Figure 3.3: Path in the time parameter plane
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Single-turn spiral motion

>£cl
. I···

..·······1....... . .

~ .. . .

2 6

32

Single-turn spiral motion with the spiral limit (5 d

2 6 d

Multi-turn spiral motion with the spiral limit (5 d

····o~·····
(······l .....j-:.··.···----~····· 2 6 d

Figure 3.4: Ylulti-turn spiral motion planning
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vector from center 1.0 0.5 0.5 0.1 0.2
of satellite to joint 1 • II

[0.7 0

0.7 4 5 6
0.5

z

'Imll
~Y¢>2[m]

x

Figure 3.5: Structure of a space robot
(q; denotes the angle of the joint i [rad])
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x

Figure 3.6: Initial configuration of the space robot

y
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0.2

0.15
<f)

Q)

~
[ 0.1 e3 /

/

Q)
:;
w

0.05

0.90.80.7

/~-~~---
0~=:::C'-=--~----'---------'-_""::"::-'----_--'-__.L..-_--'--_-----'L-_-l
o 0.1 0.2 0.3 0.4 0.5 0.6

t[s)

Figure 3.7: Satellitc oril'ntation '·ariation
(~ur = O.5[mJ. ,,·ithout spiral Illotion)
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x

Figurc 3.8: i\!u'·cmcnts of the space robot
(Llll" = 0.5[m], ,,·ithout spiral motion)

y
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0.8,-------,------,----,------,--,-----,--,-----,-------,,-----,

0.6

0.4
x-des

I 0.2

y-des, z-des

-0.2

-0.4

0.90.80.70.60.5
1(s]

0.4030.201
-0.6'---------'---------'----'----------'----'---------'----"-----'---------'------'

o

Figure 3.9: End-effector coordinates v<uiation
(':>u r = 0.5[m]. single-turn spiral motion)

0.1,-------,------,--,---,--,-----,------,----,------,----,

0.05

-0.1 ~ ~e3

0.90.80.70.60.30.20.1
-0.15 '------'---------'---'------'----"-----'---------'---'------'------'

o

Figure 3.10: Sa.tellite orientation variation
(twx = 0.5[m], single-turn spiral motion)
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x

Figure 3.11: MOH'ments of the space robot
(~u" = 0.5[m], single-turn spiral motion)

y
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0.7 r---.--------.--.,-----r--~-_.--r__-__._-___,-_____,

0.6

0.5

0.4

I 0.3

0.1 0.2 0.3 0.4 0.5
t[s)

0.6 0.7 0.8 0.9

Figure 3.12: End-effector coordinates variation
(~u, = O.5[m]. multi-turn spiral motion)

0.1
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~ 0.04
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w

O.

-0.02

-0.04
0 0.1 0.2 0.3 0.4 0.5

t[s]
0.6 0.7 0.8 0.9

Figure 3.13: Satellite orientation variation
(L:>U,. = O.5[m], multi-turn spiral motion)
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x

Figurc 3.1-1: tl.1o\'cmcnts of thc spacc robot
(L:W,. = 0.5[m), multi-turn spiral motion)

y
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(a) Normalized magnitude of spiral radius

t[s]

(b) Number of iteration (normalized)
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(c) Condition number
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c
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o
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Figure 3.15: Effects of singular points
(6u r = 0.5[m], multi-turn spiral motion)



Chapter 4

Nonlinear Behavioral Analysis and Control of
2R Free-Joint Manipulators

4.1 Nomenclature

.-\ I 'g;[ InII"1 2 + /)/2112 + II ; diagonal l'l('mellt of inertia n1<ttrix corresponding
to lst link. [kg·m2J

.-\2 'g;[ 17l21"22 + 12 ; diagonal clement of in('rtia matrix corresponding to 2nd
link. [kg·m 2)

B ,~r /)/2111r2 : non-diagonal clement of in('rtia matrix. [kg.m2)
H : Hamiltonian
r, : inertia of i-th link. [kg·m2]

J - ( .]1 ) : gc'neralil.ed momenta. [kg.m2.rad/sec]- h

k l : feedback gain of input-amplitnde \\'ith signum. [rad/sec2J
k2 : feedback gain of elliptic radius for compensation> 0
I, : length of i-th link b('["een i-th and (i + 1loth joints. [mJ
I,., ; distance I;et,,'e('n i-th joint and cl'nter-of-ma:-;s of i-th link, [mJ
711, : ma:-;s of i-th link, [kg)
P"", ; Poincare map cut at 0 = 00

I'd 'g;[ IOu - 00'1 ; half-length of principal a"'is in O2 direction of desired elliptic
Imlllifold. [rad]

I'~ ; ratio of principal ,Lxis of elliptic manifold ill fh direction to that in O2
direction, [rad]

I'D ; intersection of O2 ,Lxis ,wd connected actual Poincare map, [rad)

x = x(t) 'g;[ ( ~~!~~ J ;trajectory of system (4.6)

h(t)

-12
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( ) oI,.f ( 02(o. ~) ) I fl· .
Xl O. ~ = ll( O. ~) ; P laSP state 0 ,econc .JOIn t

(\1 = (\1(01 . J I . j.,)'~ Bto,Ol· J 1 - (AI + BCO,Ol)h ; dynamic paramete'r. [rarl/'f'c]
- ~~1)

(\1 = (\1(01. J I . h) '~ Adl - (A2 + B to,Ol)h : dynamic parameter. [rad/s<'c]
2.(01 )

; amplitudl' of periodic input T. [kg·m2·rad/sec] , or 01. [rad/sec2]

"10 : nominal input-amplitude. [rad/sec2]

2. = ~(02 ) '~ A I A2 - B 2 cos2 O2 ; denominator elemelll of dynamic pammeteL

[kg2 m l
)

D,. : feedback error of squared elliptic mdius

1:02 ; bound of neighborhuod of de,tination in 01 mds. [rad]

~ ,~ -l, ; nondimensionalizecl amplitude of periodic input

() = C:~ ):generalized coordinates. or angle of i-th joint. [md]

0, ; C1'nter of elliptic manifold, [rad]

Ii ,~ !!- = 11I21~1'.2 : dynamic coefficient
.-\2 11121,2- + 12 "

~ ; neighborhood of d<'stination lI'her(' termination tontrol is applied de-

fined b." Eq.( -1.21)

~"" ; interst'ction in pha.'ie space

; gf'nemlizf'c1 force, [kg·m2 rad/sec2]

o ,~r wi : nondinwnsionalizpc! torus time toordinate, [md]

o old d02 lor . r d I· f .... = do =:';2 : nonc ImenslOlHllze angular "e ocHy 0 2nd.Joll1t

; angular fn'quency of periodic input. [rad/sec)

; awraged coordinates corresponding to *

Subscripts

d ; dpsired value

Super,cript,

(k) ; k-th entluation

4.2 Introduction

Manipulators with free joint, are typical examples of second-order nonholonomie

,y,tem, and undenLCtuated mechani,ms. Oriolo ,wd I\akamunt [01\91b] [01\91a]

clarified that the dynamical con,traint, of a manipulator with free joints ,He gen­

erally nonintegrable and. therefore. ,econd-order nonholonomic.
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On control of a manipulator ,,·ith frec joints. Arai and Tacbi [.\TD1] ;wd­

ied a path cont rol of a manipulator with e1ectromagnc!ic brakes at frec joints.

i\akamum and IwaltlOto [i\1931 discnssed a space multi-link structurc ,,·ith free

joints and its shape control. Scto and 13aillieul [SB9-1] disClISsl'd a controlt heory of

super-articulated nl('chanical systems. which had an cquilibrium stabilizable b~· the

fl'l'dback linearization approach. \richluud. Sordakn altd EgPland ["'SED.5] dis­

cussed t hc integrability and stabilizability of a cla.,'is of underattuated dyn,unical

systcms iuc!uding undl'rwatcr Yl'ssels. ;'\akamura, I"·'U110tO and Yoshimoto [:\lY95]

proposed a stabilization mcthod of a 211. frec-joint manipulator to a stablt' equilib­

rium. 11.l'centIY..\rai [.\raD6] pron'dthe controllability of a 3-link manipulator ,,·ith

a fn'c joint and t,,·o actuated joints b.l· constructin' method. Dc Luca. \lattolll' and

Oriolo [L\JOD6b) discnssed control propcrties of a class of unc!eractuatcd meclHL­

nisms and proposl'd a control mcthod of 2P1R redundant manipulator ,,·ith t,,·o

dimcnsional l'nd-efrcctor COl11mancls. Imum. l(obayashi and YoshiI;,I,,·a [IKY96bl

proposed an exponential stabilization of 2P1R frec'-joint manipulator with two ac­

tuators. Dc' Luca. \lattOll(' and Oriolo [L\109Ga] proposed a controlmcthod of 211.

frec-joint manipulator Yia nilpotent approximation.

Although frec-joint manipulators an' similar to pcndulums. all the configura­

tions l,-ith zero 1·P1ocity arc connccting equilibrium manifold ,,·ithout gral·itational

potential. FITl'-joint manipulawrs arc also diffcrellt from pendulums in controlla­

hility and stabilizability lYiWrt' pendulums arc stabilizablc to its equilibrium Yia

cxact linearization. Thc largest adnullage of free-joint manipulators is that thcy

han' a possibility to control largcr number of joints only by oue actuator. ,,·hile

first-order uonholonomic systems require tll"O or morc actuators.

In this chapter. the nonlincm bchayiors of a free-joint nUUlipulator arc inn's­

tigate'd ..-\ simple planar 2R manipulfuor ,,·ith the second joint free is adopted to

obtain mathematical insights of the nonlincarity. The anal.Ysis of nonlinear dynam­

ical belu\l·ior and tl1<' simultaneous positioning of both joints ,Ire the focus of this

chaptcr. ,\Ithough thc rcsult" deril·cd in this chapter me ticd ,,·ith thc particular

mcc!uUlism. the approachcs and tools of analysis dcwloped in this chapter will bc a

pmt thc basis of further rcsearch of free-joint manipulators ,,·ith higher complexity.

4.3 A Free-Joint Manipulator

4.3.1 DynaIIlics modeling

A planar 2R nHLnipulator in Fig.1 has thc first joint actuatcd and thc sccondjoint

frcc and stays in thc horizontal planc. This is thc simplcst model of nonholonomic

frcc-joint manipulators.
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•

~I

01 2,
[1 - ~ 12

Z );!
- ,l',/

Figure .1.1: A pl<U1<lf 2R ffee-joint manipulator

The Hamiltonian is represented by

H = .-I,J/ + .-I2(h - J!l2 + 2B cos O2 . h(h - J!l
2(.-1,.-1 2 - B2('OS202)

J arc obtained through the Hamilton's canonical transformation a5 follml's:

(41)

The dynamics of the manipulatof is obtained by

dO fJH
7ft fJJ

dJ fJH
ill - fJO

!\amcly,

(4.3)

ft [~~ J= [ -a,(e,2~~:iJ':'(;"J"J,) J (4.4)

h BSIl102·0',(02,J"h)·0'2(02,J"h)

(0,,02,J,.h) E T 2 x R 2
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4.3.2 Conserved motions

"'hen there is no external force, namcly, T = 0, the system has t"'o obl'ious

consC'nw! quantitiC's, One is till' g<'neralized mom('ntum of the lst joint. and the

other is till' Hamiltonian that is equi"'llent to the total energy, \al11e1y, "'ith

JI(O) = J IO and fI(O) = flo as initial conditions, the consl'ITations arC' repn'sented
by

JI(I) = J IO

(.-\1 +.-\2 + 2B cos(2)h2 + 2(_-\2 + B cos fh).Jloh + .-\2J102 - 2('-\1.-\2 - B 2cos2fh)flo = 0
(~5)

Hence, the possiblC' reachable space in the four-dimensional state space is a t"'o

dimensional manifold or less, Since Eq,(~,l) does not inelude (JI' the possible

reachable space is inl'ariant for (JJ, Figure 2 sho"'s the sections perpendicular to 01

axis for initial conditions of J IO = O,1[kg,m2,radjsec) and \'<trio us "'llues of flo, The

figure shows that till' motions follow ordered closed paths, l\ote that the upper

t"'o and 10"'C'r t,,'o curn's iu Fig,~,2 are also closed at (J2 = ±71 since the space of
(J2 is Sl,

The bcha,'iors of s,ystems "'ith strong nonlinC'mitY are dnllying much attention

in Yllrious research fields, Chaos is one such belHlyior. I t is kno"'n [Tab89] that.

for continuous systcms, chaos is obsl'ITed in a 3 dimensional manifold or higher.

The t,,'o COllsC'ITe<l quantiti,'s of Eq,(~,5) reduel' the dimension to two, and pro"ide
an ordelwl behayior as in Fig,-!.2,

4.3.3 onlinear behaviors with periodic inputs

"-hen the system is subject to time-periodic illput of .. = ') cos~t, the dynamics

is represented by

d [~~] _ [ -(tI((J2,~2~2\~I~~(~2,JI,h)
- J I - ,coso
dt h Bsin02,(t1(02,kh),(t2((J2,kh)

o w

(H)

l\ote that a ne,,' coordinate 0 is included in Eq,(-I,6) to make an autonomous

systcm, Although J I is not conserved any more, it is casily integrated and soh'cd

a.s
J I = J IO + ~ (sin r/J - sin 00) (-1,7)
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X 10-3

12.---'-=---~--~-~~--~---.-~-~--~--~

-1 0
Theta2 [rad]

-2-3
-6 L-_----'=",...."=--'-__--'-__--'---__--'-__----'----""""",,,==-_---l
-4

10

-4

rigul'(' -1.2: Pha:ie plalH' at .], = 0.l[kg·m2·radjsel']

\\'hil'h implies a ne\l' l'onsen·ation. Sinl'e there neither is the energy l'onselTation.
the dimension of the manifold on Idlil'h the system el'olw's is four.

Chaos is characterized by tll'O fund,'mental IHllures. namely, tlH' sensitiw de­
pendence on initial conditions (SDK') and the topological transitil'ity, Their brief
definitions is prol'ickd in appendix C. Figure -1,3 sho\l's trajectories starting from
four mutually close initi,d values for the case with ~I = 4[kg,m 2·radjsec2J ,md

w = 27r[radjsl'c] The solid line has (1,. h. {I" 1'h)I,=o = (0,0,0,0) <L'; the initial
condition. The other lines haw small differences in the initial nllue of {l2 as seen
in the figure, The figure illustrates that the diH'erence of trajectories dilwges as
time goes on. Il'hich implies the SOIC,
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Figure -/.3: Sensitiw dependl'nce on initial conditions

Thl' Poincarc map is all intersection of trajectories in the \I'hole pha:;e space
\\"ith a certain hyper-plane. It reduCl's the dimension and hl'ips La understand the
sYS(('Il1's beha.l'ior. Let _"0 be the intersection in the pha:;e space:

(-1.8)

TheIl. the Poincare map is represented by the mapping as

£'d>o : l:d>o ...... ~Oo, (x (60: 0
0

) . ( 0) ...... (x (60 - : + 211") .00 + 211") (-19)

or

x(00:00) ...... x(OO-~+211") (-/.10)

The fixed points of £';:'0 imply the periodic trajectories with the period 211" /Ul. and

the k-period points of £';;'0 imply the periodic trajectories that pm;s k times through
BOo before returning the initial state.
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Figurcs 4.4 through 4.6 sho'" the PoinUlrC' maps being cut at 0 = 0 and pro­

j('ct('(! onlO til<' OrI! plane. l\ote thai til<' OrJ[ planc "'as employ('d rather than

the 02-h plane. since til<' two arc ('C!uiyail'nt and the former prol'ides better phys­

ical insights for til(' curr('nt problems. TIl<' Iwhal'iors ill the' 02-h plan(' also sho'"

similarity. TIl(' initial tundilions and the' paranl<'t<'rs of inJlut are ehosen as

(0 1.0.]. J1 )1,:0 = (O[rad]. O[radJ. O[kg' 111
2

. rad/secj)

---
w = 2r. [md/secJ

w = 2r. [rad/sec]

w = 2r. [rad/sec]

-2 -1 0
Theta2 [rad]

., = 0.0-1 [kg·m 2 ·rad/sec2j.

., = 0.4 [kg·m2·rad/se(2).

i = 4 [kg·m2 ·rad/sec2J.

for Fig.·!.-!:

for Fig.4.5:

for Fig.4.6:

0.5

0.45

0.4

~al 0.35

~
~ 0.3

E
~0.25

>-
Ol

0.2Q)
c
W

~ 0.15
.....

0.1

0.05

0
-4 -3

Figure 4.·1: Poincare map Iyith ", = 0.04. w = 2r.

On!y "( was set at a different ntlue ,md w = 2r. was applied for each figure.

Yarious initial "alues of h IYl're chosen and their trajectories "we plotted in the

figures.
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Figurt, I.:;: Poillcart\ Illap ,,"it h - = U.~.~, = 2"

TIl(' COIlSI'I'\'I,d Illotioll of the .'YS[<'11l lI'ith ZI'ro input 101'</111' \,"ould 1)(' repJ'('­

selltl'd 1)\· a hurizolltal .'iImight linl' in thl' 1J2-J[ plane. lI'hich Ill('ans rotatiUIl uf

Ih Til I Ill' caSf' lI'ith aSlllall input-ilmplillldl'. lil(' mutiUIl is p('rturbed and shu\\'" a

diffl'J'('llcI'. In thl' PuiIH'aJ'(\ Illap. tbl' fre(jlll'Ill'y uf the rotatiull uf IJ
2

uriginated from

the consl'I'\'I'd 1ll0tiUll and the frequI'ney of lilll('-pl'riodil' illput mlltllalh· l'at"I' ,(

rl'sonan('('. TIl(' series uf ul\'itil's ur I'n' balls alullg lilles paralll'i to the IJ
2

iL"ds ill

Fig. ~. I shOll' t he harmonic l'l'sunantl' of dift'erellt ord!'I's.

The figures illust ral<' that Wi amplitude') bel'omes larger. the humoclillic t m­

jel'tories l'unlH'l'ting the saddle points in Fig. -U start l'ollapsed as seell in Fig.

L'i. \\'IH'1l the alllplit ude gro\\'s further in Fig. ~.6. til(' system sho\\'s complete

Lupologil'al transit.i,·itY. Thes!' results cOllclude that t.he frel'-joillt 2R mallipulator

dri\'l'1l by a tillle-periodil' input follO\\'s a cyclic trajectory in the IJ2-H plane lI'hen

the amplitude is small. lI'hilt, it. behan's chaotic lI'ith the large amplitudes.
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It is nOl!"wrthy that the !;l'lHlyior of such a simpit' deterministic ml'c1wnical

system ,·aries from cyclic one to chaotic one in respons(' to the gro"-th of input­

amplitude. In the s('ctions that follo"-s. ,q' propose to design a controller ba_'>l'd on

the c.\Tlic bt'iw,-ior for smaller input-alllpliwdt'. _-\lthough use of chaotic bl'hm·ior

n'mains in the scope of future research. it 'Yould be significant to establish control

for rapid and gross motions.

4.4 Nonlinear Control of 2R-FJM

Oriola and i\akamura [0,,91b) concluded that smooth feedback stabilization to a

singlt' equilibrium point is not possible. and dl'rin'd a control la,y for the asymptotic

stabilization to equilibrium manifold as
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In this section. positioning of both joints of the free-joint manipulator is discussed

iwd a controlla,,' that enables to go from an iLrbitrary initial point to an arbitrary

single "qnilibrium point is established. The control la'" nsl'S time-periodic inputs

"'ith amplit ndl' modulation and means neither feedback control nor stabilization
in the strict Sl'nSI'.

The basicstratl'gy of positioning is (1) (Ol.el) ..... (e'd' 0) and then (2) (e2.fh) .....
(02.1.0) "'ith a timl'-pl'riodic input of the first joint. The first subgoal can be

attained by simpll' ft'('(lback control of the first joint diSr£'garding the Illation of Ih
or by Oriolo and :'\akamura's asymptotic stabilization to an equilibrium manifold.

In \I'hat foIlO\\"s. control to meet the second subgoal is nlilinl,' focused on.

4.4.1 Controllability and stabilizability of 2R-FJM

First. cOlltrol and stabilization properties arc to be in\"('stigated in accordance

with the control theories as in tl](' chapter 2. In this section and the followings. the

follo\l'ing simpler r<'!)I"esentation of the dynamics is marl' suitable to discussions all

control than Eq.( ,1.6) in til(' pr('\"ious section on nonlinear dYlliunics:

(,Ill)

·J:i].l02

and II = &,. The abO\'e rl'presemation is in the form of Eq.(2.5) in the chapter 2
of general control theories and is a drift systl'lll with a single input.

4.4,1.1 Accessibility and STLC

First, se\"eral Lie brackets produced by go and g, arc obtained as:

(4.12)

(-U3)



(~.1~)
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g, = [g,.g21=( ~ J
_1/2 sin 202

:\nd the c1i~Mibution fornH'd by go· g,. g2' and g3 satisfies the Lie algebra rank
conditions a.s:

span {gO.g,.g2.g3) E R 1

I'xcept fur a fl'\\' sinp,ularity puiuts. Therefurr. the accessibility conditiun is proH'd.

JlOIH'H'r. the STLC cannot be pron~d from Sussmann's condition since the bad
brackrt g I = [g" [go· g,ll cannot 1)(' ncutralizi'd by 1001"{'r dimensional good brack.

l'tS. go· g,. and g2' !\eYl'rthl'less. the Sussnullln's condition is just a sufficient

condition of STLC and. furthermore. STLC is just a suHitient conditiun of global
controllability. Cunsl'quently. ther!' is currently no Il"ay to shOll" controllability of

the free·joint manipulator except to dewlop a control method as in the fullOll"ing
sections.

Stabili/ability of the free·joint lIlanipulator is illl'estigated by Remark 1 of

Brockett's theorem. The smooth distribution. ~ = {go' g,). i, ob"ioush' lu\\"Cr

than tl1l' dillll'nsion of the s~'s(('m and. then. there is no smooth static feedback

la\\' tu stabilize the s.'·slI'm to an equilibrium. :\dditiunally. configuration flatnrss
is to be illl'rstigated in the next paragraph.

4.4.1.2 Configuration Flatness of 2R-FJM

Let ml' illl'estigatl' configuration flatl1l'ss [R\J96] of 2R·F.J f. The Riemannian met­
ric 9 is repn'sented by:

(~.15)

(4.16)

If I ,hSSUIllI' the control I'ectur field I' as I' = span {dO,). the annihilator of I'

becomes annl' = {~) and, then. E= ik. Par the derivation in [RlI196],

Iisin02 { fJ fJ }
\1 a E= \1 a E= -,,-- -<>0 + (1 + /Lcos(2 )<>0

J8] ai;; ;-/L VI U2

Then,

D =span {Eo \1 *'E} =spiln { fJ~2 ' - fJ~, + (1 + It cos ( 2 )fJ~J (-1.1 7)

D = TQ for generic points on Q, for generic parameter villues (unless b or c equal

0, or sin 82 = 0) and hence the systems is not configuration flat regardless of the
potential energy function.
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4.4.2 Control with periodic inputs

The input torquc of the first joint is determined such that the acceleration of the

joint is timl'-p('riodic, namely. 0, = 1COSuit. lI'hich guarantees that (11,.0,) always

returns to (0,,,.0) aft('r each cyde. The dynamics of tlll' system ,dth till' input is

'Tpn'sented as:

(-118)

Integrating lI'ith initial nllu('s of &'0 = 0 and 00 = 0, II, and 0, can be elimi­
nated from Eq.(-I.18). i\ondimensiOimlizing Eq.(-I.! ) yields the folloll'ing simpler
equation:

(02 .0) E T' X R' (-1.19)

The nonlinear 1)('11<I"ior of Eq.(-I.19) is to be inH'stigated b,' using the Poincare

map as in subsection -1.3.3. "'ith large amplitudes of lhe input. it is obsen"CC1 in

fig,-I.I that tht' d~"Jamics sholl's chaotic beluLYior as seen in subsection -1.3.3

On the other hand, ,,,jth rather small amplitudes of 1, namely. of~. the system

sholl's well-ordered behm'ior as seen in (he Poincare 111<1p of Fig.-1.8, where the

cun'es ha"e their initi,Li "alues at (1I2 .'/.uI) = (0.6.-171) and nU'ious \"illues of 112 .

From the figure. tlw Poincare; maps of the system with a small amplitude form

an ellipsl'-like dosed curY(', or '\"itl'ing cu'Ye lonlling upper or 10llu' of ellipses, in

the phase plane. A dosed curve in the phase plane denotes a periodic swing of

thc second joint, and an ,nLYing cu,yc ,,,hich is also clos('d denotes a reYo!ution,

1\ote that the second joint na\.urally swings directly by periodic actuation of the

first joint, ,,,hich is disregm'ded in the figures by taking Poincare maps, and these

sll'ing and reyolution occur ,1S side effects and IULYe much s!o\\'er frequency than

the frequency of the periodic input, Another interesting and useful feature II',LS

observed from the difference bctll'een Fig.-l,S ,md Fig.-l,9 '''ith a different inpnt­

amplitude 1 = S. Increasing and decre,1sing the amplitude tends to stretch and
shrink the elliptic manifolds in the vert,ie,>! direction of O2 as scen in the figures.

The feature is utilized to control the second joint to a manifold ,,,hich is formulated

in the next subsection,
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4.4.3 Feedback control to an elliptic manifold

In this subsenion. a feedback cant rolla,,' to an elliptic manifold that passes through

(112 , ih) = (112".0) is cksignt'd ..-\pproximate the manifold by an ellipse as

(·120)

The r N and Or depend on the input-amplitude and arc determined from simulation

results for a nominal input-amplitude. ~10.

Let ~r denote an amplitude of periodic input and change it at the beginning of

e\-cry c)'de depending upon the distance from the ellipse. This C<Ul be considered

the <Ul1plitude modulation of feedback error. The modulation is according to the

following la\\':

(-121)
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(-1.22)

Thc feedback gain /;[ hilS il cOllstant magnitude ilnd chilllges its signum depending

upon the arCil ill the phase plane a!; shOlm in Fig. -1.10. The nominal ilmplitude 10

should be chosen such thilt Eq.( -1.20) best approximates the corrcsponding Poincare

map. If (02 , 82 ) is Oil the desired ellipse. (02 .82 ) ilpproxinmtl'ly folloll"s it memard

lI'ith this 'Ul1plitude. \,"hen (02 .82 ) is oft' the desired ellipse. the feedback law

of Eqs.(4.21) 'Uld (-1.22) chooses another talle7"-and-na7Towe7" or Sh07"te7"-and-wide7"

ellipse th,Lt ,,,ill intersect with thc desired ellipsc afterw,u-cl. This feedback la,," 11',.5

designed on the ba!;is of thc obsclTation at the end of 4.4.2. This heuristic design of
feedback law ,,,ill be shown to make thc elliptic milnifold as an attractor of (02 . 82 )

by simulations and experiments in thc subscquent sections.
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Fi ·Ul"(' -l.9: Poincarr map \\·ith 1 = 8. w = -lrr

Stability analysis and the possibility of generalizat ion are major theoretical sub­
jects of the proposed heuristic feedback 1m\". Since it im·oh-es diseretization to get
the Poincare map and approximation to represent an ellipse. a rigorous analysis of
stability is not straightfonnlrd. The problem is as importill1t as analytical iden­
tification of parameters of elliptic manifolds. The discussions in the next chapter
pro,·ide iUHIlytical identification of innlriant manifolds of free-joint manipulators.
The generalization of proposed feedback 1m,· to higher dimensional systems ,Yith

more free joints is not ob,·ions as it is but is prm·ided in the next chapter Yia
averaging analysis. i\e\"Cl"thcless. the use of time-periodic inputs and the idea of
feedback control with amplitude modnlation ,Ire worth considered for generaliza­
tion since they can be developed, as indil'ilted in this chapter, with the Poincare
map known as a strong mathematical tool of nonlinear dynamics analysis.
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Figure 4.10: Amplitude modulation of the feedback error

Figure 4.11 shows one of the simulation results \\'ilh the initial condition (02 , fh) =

(0,0) and the desired position 02</ = ~[radJ. The constants used were 10 =
4

6[rad/sec2J and ..v = 41r[rad/sec). The dotted line in FigA.11 indicates the desired
ellipse. The solid line implies the whole trajectory of the system. The small circles
in the figure denote the Poincare maps of the trajectory. It is obsen'ed from the
figure that the desired ellipse attracted (02 , ( 2 ),

4.4.4 Stopping at the destination

Although the Poincare map follows the elliptic manifold by the feedback la\\" de­
veloped in subsection 4.4.3, it does not guarantee to terminate the system at the

destination (02 , fh) = (02<1,0) that the ellipse passes through. The motion ncar
the destination is enlarged from Eq.(4.1O) and shown in the left figure of Fig.4.13.
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2.5

The motion ,.. ill continue and folio"· the elliptic path. although in these figures the
computation "·as terminated when the Poincarc map passed the destination. The

system can stop at the destination only ,dll'n the Poincare map 'Try fortunately
makes its footprint (a small circle) exactly on the destination. In this subsec­
tion. determination of the input-amplitude in the neighborhood of tbe destination.
namely. the input of the last cyele before the destination. is proposed so as to make
the following footprint on the horizontal a.:xis (ih = 0) rather than to remain on
the ellipse with tbe fcedback la,,· of Eqs.(4.21) and (4.22). i\ote that this strat­
egy does not guarantee to reach the destination but does to stop the motion in

the neighborhood of the destination. The followings describe how to compute the
inpu t-ampli tude.
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\\'hc'n ;: is small. th' ,;)-(:I'olution of X2(O.;:) can be approximated by the Taylor
seric's expansion 'h<; folloll's:

[)X2(¢';:)1 1 2 [)2 X2 (O.C)! 3
X2(O,;:) = X2(l). 0) +;:~ ,=0 + 2";:~~=o + 0(;: )

The Poiucar6 map of X2(O,;:) is calculated using Eq.(4.19) as folloll's'

(
8~ ) >-+ ( 82 + 21T0 1+ ~1T2;:2/12 sin 282 0(;:3) J
L 0 + "2 E2/1Z sm28z + O(;:J)

In orc!c'r to make the footprint on the horizolltal 'L,is of ih = 0 after the cycle.
till' upper l'!enll'llt of Eq.(~.2~) suggests to determine the amplituck by

~(/ ::::::
20

(-1.2.5)

(~.28)

From Eq.(-1.2-1). we ]H\vC'

(
82 ) >-+ (8Z+1T0.+

3
0(;:,i!)) = (8z +0.(3;:}))

o 0(0" ) 0(0" ) (~.2G)

lI'hich implil'S tuat thl' l'rror of I'dority anc! 82 arc O(oi) and O(=:}) respc'ctil·dy.
The corrl'sponding amplitude of 01 is computed as -1,[ = 0"".;2.

In practiu'. the proposl'd tl'rminmion control is applied lI'hen (02 . Ih) l'ntl'rs lhe
folloll'ing regiot1"

~ ,~ {(02 . Oz) E T I
X R

I
10,[ < 00. 182 - 82d / < be2 } (n,)

From Eq.(-1.25). 0,( < 00 in Eq.(~.27) yil'!ds. I> -~1TuJ;:OZ'l2 sin 2fh : fOi sin 28z < 0
82 = wO f

< -2"1TuJ=:oz,,2sin282 : for sin 282 > 0

The concept of termination control is sholn1 in Fig.-1.12. Figure ~.13 compares

the simulation results of the strategies proposed in subsection ~.~.3 (left) and this

subsection (right). The right sholl's that (Iho 82) terminated ncar the destination.

i\ote that Eqs.(~.2-1) and (~.25) imply that the change oh'elocity by;: becomes I'ery
,\'1T

small in the neiguborhood of O2 = ±T' lI'hich is the singularity of the strategy,

A stabilization control at Oz = ±~ proposed by i\akamunL and lInlll10to [l\I93]

can be used in this case, lI'hile O2 = 0 and ±1T ,u'e saddle points as seen in Fig.-1.8
and can be reacued carefully following a stable manifold.

In the control strategy proposed in subsection 4.4.3 aJld this, the amplitude of
time-periodic input is deterInined at the beginning of every cycle. Therefore, the

control is open-loop within a cycle. although it is closed-loop betll'l'en cycles.



ChapA Nonlinear Behavioral Analysis and Control of 2R Free-Joint .\[illJip... 61

o

8, = - -2" w £~,u'sin20,

o e

0(£2)

~:
o e

desired ellipse

feedback control
to desired ellipse

termination control
at destination

0(£3)

destination

Figure 4.12: Stopping at the destination

4.4.5 Compensating the modeling error

An ellipse is employed to model the Poincare map of Fig. ·l.8. Howeycr, the mod­

eling error tends to become large for those passing ncar fh = 0, ±1r. This results in
the fact that the actual Poincare map docs not go through the desired position fhd'
even though the elliptic manifold is chosen so and the feedback 1",\· of Eqs.(4.21)
and (4.22) is designed based on the ellipse. In order to compensate this error, the
desired elliptic manifold is adaptin'ly modified in this subsection. "lamely, whcn­

ewr the actual Poincare map passes the 82 ~xis (cyery half rotation of the Poincare
map), the constant rd in Eq.(4.22) is modified according to the following rule:

(
(k»).(k+l) _ .(k) 1 + I. I'd - 1'0

1d - 1 d f\..2 . ---
1'0

(4.29)

The effect of this compensation was verified by simulation. Figure 4.14 shows
a result of simulation. The initial condition and the destination were (8

2
, ih) =

Ci, 0) and (82, ih) = (~, 0), respectively. The dotted line in the figure shows the
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original ellipse that got', through the destination. The actual connected Poincare
map i, represented by the solid line. All hough the destination is close to O2 = 0

lI·here the modeling error beromes large. the actual Poincare map reaclH'd the
destination after a fell" rotations.

4.4.6 Global attraction

The control strategy in section -1.·1.3 makes usc of t,,·o elliptic families as seen in
FigA.S. The family in the right half plane (0 :::; O2 :::; 7r) has the half plane as

the region of attraction and so docs the family in the left. Therefore. nothing
is promised for an initi,d state haying its destination in the opposite half plane.

In this subsection, it is shown that the global attraction can be guaranteed by a
simple modification.
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Figure -1.1-1: Simulation lI·iLh compensating the modeling gap

It is important LV note on Lhe Poincan' maps aboH' or belo\\" the elliptic families
in FigA.S. The Poincare' maps abOl·e the families HOI\" from tl](' left to the right

through ih 'Lxis. lI·hile thosc' Iwloll· the families flo\\" from the right to left. Therefon',

if the initial state is in fh < 0 and Ih > O. for example. the input-amplitnde ", is
determint'd such that the initial state HOII·s from the left plane LV the right plane.

A.ccordingly, the area of ih > 0 and Ih < 0 can be included in the region of
attraction of the elliptic fat11ily on the right half plane.

When Ih < 0 IUld ih ::; O. it is not possible to find a single constant of", that
take the initial state LV the right half plane. HOII·eyer. this can be attained by

sll·itching I 115 follo\\"s: First, the feedback control deycloped in subsection -1.-1.3

is applied. The state converges and folloll·s an elliptic manifold on the left half

plane. Then, when the state enters Ih < 0 and 82 > 0, the strateg)' in the previous
paragraph can be applied. Consequently with this switching, the whole state space

becomes the region of attraction of an ellipse passing 02</ in the right half plane.
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The similar discussions \\"ill be applied to make the elliptic family on the left Imlf
plane attractin' in the ,,·hole space

Figure ·1.l5 sho\\"s the result of simulation. The initi,d and desired positions

O 571"[ 371" [] .. . . .\\"ere 20 = -12 md) <wd O2<1 = "4 rael , l"l'SP('ctlwly. 1\ote that the smtchlng In
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Figure -1.15: Simulation \\ith global attraction

the left plane \\as done on the top of the ellipse. since it is preferable to hmT a

sufficient momentulll to tran'l from the left to the right passing through the O
2

a:,is.

4.5 Experiments

Experiments \\ere executed to verify the control strategy proposed in section
4.4. Figures 4.16 and 4.17 show the structure and the photograph of the 2DOF free­

joint manipulator used for the experiments. Tbe botb joint 'L.'les are vertical. The

first joint is actuated by a DC sen·o motor, ,,·bile the second joint is free to mon'.
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2nd joint
1st joint

Encoder
Figure -t.16: Structure of the free-joint manipulator

Table -i.I: Dynamic parameters
I link II 1 I -

length [m] 02-i0 0.2·10
grm·ity center (Ge) [m] 0.111 0.111
nm,;s [kg] 100 0.930
inertia about GC [kg·m 2] 0.012-t 0.0115

A low-friction type potentiometer is equipped at the second joint. The dynamic

parameters are summarized in Table -i. 1. A high-gain H'locity feedback control is
designed to driq: the first joint. The computed input. iii, is integrated and sent
to the Yelocity controller as a reference signal. The following I·alues Iycre used

as the control constants: "10 = 6.00[rad/se(2). w = -tr.[rad/see], Oc = ±153[radJ.
r~ = 0.300, k 1 = 15.0[rad/see2

]. and k2 = 0.500.

Figures -t.l and 4.19 shall· the results. Figure -t.18 is for the case lI·ith 0
20

=

O.O[rad] and 02d = -2.0[rad], and Fig. -i.19 is for the case with 020 = -2.0[rad] and
02d = -O.O[rad]. Due to the friction. the eenter point (02 , ih) = (0,.,0) becomes
a point of <tttraction. The eon vergence to elliptic manifold was not as smooth <1.5

that of Fig. 4.11 or 4.14, which is due to the effect of the point of attr<tction. In
spite of such diffieulty, thanks to the feedback control, the st<tte finally terminated
ncar the destinations. I\otc th<tt though the point of termination shmys <t sm<tll
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Figure -1.17: Photo of the fre('-joint manipulator

residual ,·C'locit.,· in Fig. -1.19. it ac(ually stoppcd in the cxperiment. It can be

cxplained that (1) thc l"l'sidual n~locity ,,"as damped out by thc friction or (2) thc'

l"l'sidual ,·doc-it.,· was due to discrctization error in computing ,·e1ocity from tlw

potentiome1('r signal. Th(, cxpt'riIllental l"l'snlts dc'arly sho"· eH·ccti\"encss of the
dc'w!oped positioning control stn\leg"\".

4.6 Conclusion

The nonlinear behm·ior of a planar 2n frce-joint manipulator and its positioning

control ,,-erc inYl'stigated. Choosing a time-pC'riodic input for the first joint "·'IS the
fundamental stratcgy. \\-hen the amplitude of periodic input remaincd small. the

Poincare map of the bchm·iar in the phase space formed an clliptic dosed manifold.

_-\s the amplitude grew. the Poincare map showed chaotic belHLYiors. :\ series of

positioning control strategy "·'IS proposed ,,·here the amplitude modulation of the

error signal was uscd for feedback control to a desired elliptic manifold and open­

loop termination control in the ncighborhood of the destination. The experiments

were carried out to verify thc developed positioning control stratcgy and clearly
shO\\"cd its cH·cctivencss.
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Figure -1.1 : Experiment 1: from O[rad] lo -2[rad]

l1igorous ;,lability analysis of the feedback l'Ontrol designed in this chapter from

heuristic obserY<ltions is ,U! important subject of future research. Extension to

higher dinH'nsional systems with more frce-joints also remains in the futurc gener­
alization.
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Chapter 5

Analysis and Control of Free-Joint

Manipulators via the Averaging Method

5.1 Nomenclature

c = c(B,a) : centripetal and Coriolis term
c, ,~r L c,)kO/h : i-th element of c

).k

old o.\!') IO.I!;.)
C,)k = c,)dB) = 7fo;: - 2ao:- ;(i.), k) element of coefficient tensor for c('n·

tripetal and Coriolis term

C".)k ''1 ( C(",~llJk J:coefficient n'ctor for centripetal and Coriolis term for

Cn;1.:

passi,'c joints

E = E(B". a,,; ,) ; eJlergy-like function to identify innlrianl manifold of an'r-
aged dynamics

Ek = EdB". iJ,,) : kinetic component of E
E

"
= E,,(B,,:,) : potential component of E

E,wm = E'IOI/!( () u· ¢u) ; normalized ('Berg)" on Clillplituclc-Ilonnalized phase plane

E,,,,,,..k = E""",.dB,,. <1>") : kinetic component of E""",
E"",,,.,. = E"o"q,(B,,) ; potential component of E"o",
E."d = E."d(B". a") ; energy for standard input-amplitude

!r(t).gT(t) ; periodic C2 function '''ith period T
h ; k-th column "ector of (M~~M"o)k

I,' ''1 2. rT
(J~(t))2 elt ; mean square of periodic function fT(t)T )0

k3 : gain for amplitude-modulation in Eq.(5.35)

L ; candidate of Lyapunov function

M E R"x" ; inertia matrix

lVIij ; (i,j) element of inertia matrix

69
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M 1HI E R/I'XW:M ufl E R(fI-Hl)Xm.M
lt1t

E R(II-III)x(II-m) ; partitioned incrtianla­

trice~ as M= (M"l M;,,,)
M,,,, M""

/11 ; number of actuated juints

: numl)('r uf .joinl~ or dimension of !\1'IH'ralized l'Oordinates
d"rO, _,. _ _ _

P, = -;: : phase n'lot'lty of I-lh .I0mt nonnahzed by ::

p" '!!1 ( P",+l ) : amplitude-normalized phase ,-e!ocities of passin' joint~
P"

: scaled time

: amplitude of periodic perturbation_ [radJ
="",,- : upper-limit of input-amplitude

=", '" : lo\\-er-limit of input-amplitude
::,,<1 : standard input-amplitude
() : generalized coordinates

()" E R'" , ()" E RI"-,,,) : partitioned generalized coordinates as

Ih,. = ±~ : CCllter of elliptic manifold

0, - i-th c!eme!1L of gmeralized coordinates or <mgle of i-th joint ()

( ()" )
()"

: input-torque to the 1st joi!1L

Ti : corresponding generalized force

TO'd., ; i-th joint torque or generalized force corre~ponding to the represent a­
t ion in re!ati '-e angles

Qi : standard plHlse "clocity l'Orresponding to Pi

¢" ,!;r ( 9",+1) ;standard phase '-elocilie~ of pa~sin' joints

9"

Subscripts

; initial value

: corresponding to actuated joints
d ; desired value

new ; rene\\'ed value in next period

rei ; corre~ponding to the representation in rc!ati,'e angles

lL ; corresponding to unactuated (passive) joints

Superscripts

; unperturbed solution
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(II) : courdina.tes aft!'r 1/ periuds
1 T

; an'raged functiun defined a.s f"(1') 'g;[ - r I(t,l'Jell
T Jo

.1'1 "wW of .","0'"'"'''"'" ",m of • ~ ( ',', ) U. J ~ 1, . "I

*' : derinltin' uf *
,,"ulatiuns uf the uth!'r variables and constants cunform to thos!' in chapter~,

5.2 Introduction

In the prel'iuus chapI!'r. a contrul method uf 2R free-joint manipulators tu position

the both juints by amplitudl' modulation of a p!'riodic input lI'as propUSI'd. ,-\1_

though the met hod I"'IS an effectil'l' method to control such a systl'm,. it 11',1, quitl'

I]('uristic and difficult tu generalize, In this chapter. the ,In'raging methud, lI'hich

is a suitable and pOII't'rful tool for the system I"ith periodic inputs, is ,Ipplied to

free-joint manipulators, The in\',uiant manifolds of the a\'l'raged motiuns uf 211
free-juint manipulators with unly onl' actuator arc identified, ..\ contrul methud tu

reaeh thl' desired im'ariant manifold I'ia modulatiun of the input amplitude is also
propused,

On control uf second-order mechanical systems. Bloch CULl. [BRl\192] fonnu­

lated cont rol and stabilizat ion methods of nonholonomic cl\'l1<lmic S,l'stems, Bail­

lieul IBai93] discussed the <IIwaging of the second-order mechanical systems such

as a cart with a pendulum and analyzed tl](' stability of its equilibrium points,

Baillil'ul also defined an energy of the an'raged systelll for assessing the asymp­

totic stability. The literature fundalllentally dealt lI'ith the control theorem of a

e1,1'S of nonlinear systellls to stabilize at an equilibrium point. A planar free-joint

m,wipnlator is a system difficult to control by the theorems in the litemture since

it 11<1, fell' stable equilibrium points ,wd its controllability usually cannot be ShOll'l1,

5.3 Formulating Manipulators with Free Joints

A multi-link system connected by free joints is an underatluated system lI'hose

dynamic constraints me not integrable, The dynamics is represented by

(5,1)(i = I,"',n):L i\fjjj +:L c;jkiJA = 7';
j j,k

!\ote that the above dynamics is I"ith ,w assumption that the system resides in

the horizontal plane. namely, there is no potential term in the dynamics, The
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assumption is not only for simplific"tion of formul"tion but "Iso for an important

property. \\'ith " potenti,,1 term. each joint has a solitary equilibrium \I'here the

potential becomes minimal or nHL,imal. naml'iy. the joint. directs perpendicularly

up or dOl\"l1. On the otlwr hand without t.1l(' potential. ewry joint can be s,'ttl,'d at

any configuration \\'hich ,'nlarges opt ions to position the undenlctuated manipula­

tor. \\'hen 0, is defined b.l· the rl'iatiw angle of the i-th joiu!. T, denotes the i-th

joint torque itsl'if. In tht, other case that \\'ith til(' absolut(, angle. T, is represent!'d
by T1 = Trd.1 - Trd.i+l.

Simply a:,sume that tl1(' first joint is only actuated and the other joints arc fn'e

joints. naml'iy IJI = 1. \\'hich ,'il'ids simplifi('ation as TI = T. T, = O(i ~ 2). Consider
the input to the first joint as a periodic J)('rturbation sucb a;;

0, 010 + ~h(t)

0, = ~fHt)

0, = ~fHt)
(5.2)

If th,' perturbed sysl<'m is periodic. a pOll"erful analytic "pproximating m!'thod

tlw (wrmging method. will be ab1l' (0 be appli('(1. The theorelll for aYl'raging of a

periodic system is quo(('d in the appendix 0.1. To apply the an'raging mcthod.
til<' system must be iu tlw st(l7ldaT'd JOT"7l! such as:

Otlwlwise. tl1(' follo\\'ing n-formulation in t he standard form [S\'S3] has to b!' eX('­
cuted:

Let a peT·tuT·bed system be in the jonn as:

(5.3)

with an initial condition x(lo) = xo. and its Imprl·t!a·bed pTOblem. namely that with
f = 0, as:

Assume that Eq.(5·4) C!ln be solved explicitly. The solution is T'egaT'ded as to depend
on the initial condition and is T'epresented as:

€ E R n

The above unpel'tm'bed solution can be l'egll1'ded as a tmnsjonnation as:

(5.5)

Then, the jollowing differential equation jor € is obtained jTOm Eqs. (5.3) and (5.4):

axo oxo d€
- + --,,----d = f°(t. xO) + ff(t. xo: f)at u€ t
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Since xO satisfies Eq. (5.4), the first tem!s of both sides a1'e canceled out. Assume
uxo
7i{ is nonsinqular. then we halle

(3.6)

The abour rquation Sllppl(7)tcntcd by the initial l'aluc of ~ will br mll'd a ../)( l·tl17·­

bation pmblcm in thr standard fonn. .. 0

:\luI'C' prccisl' discussion will be' found in [S\' 5).

!-IOIITWI". the transformation for thc underaetuated systl'm is not as cxplicit as
a!>ol't'. The' t'Onsid('lwl system is represcntl'd as:

8"
B" =

(5.7)

\\'ith partitioned ilwrtia matriccs corresponding to actuated joint:; and passil't'
joints. Transformation to the stanrlard form deril't'd from the' unperturbed so­
lution figured out diI'C'l'lly from the abo\'e form as

8~ 8~
B~ = -M-:;,: L C".jke/h

j.k?2

lI'ould not yield an appropriate standard form to lI'hith the an'raging theoI'C'm can
be applil'd. TheIl. it substitulion as

e,
p, =-;. i = 2.· (5.8)

should be ilHroduced and the follo\\"ing al't'raging proccdure of the system cannot

be dewloped lI'ithout the substitution. \\'ith this substitution. the system (5.1) is
transformed to a perturbed system as:

~p"

-M~~M""f~

-::M~,~ (C"'llf~2
+ L(C".lk + c".kdpd~(t) + L C,•.ikPiPk)

k?2 j,k?2

Then. the unperturbed problem of Eq.(5.9) is obtained as

()"

p" = -M~,~M".J~

(5.9)

(5.10)
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and the unpefturbed solution is as

0" = (J"o
p" = P"o - M~,:M""f~,(t)

"'hirh .'·il'irls til(' follo,,'inR transformation into t.he standarrl form:

0" 0"
p" = <P" - M~,~ M",Jr(t)

Then, Eq.(5.0) is rl'formlliated into the stanrlard form ,1.,:

0: (<p" - M~.~ M".J~)

=M-' ('" (~a.\h) a,\/,})
- "" L ') ae + ae. O}Ok

),1.:~2 - I J..

'" (aJllk a,\/". '" (a,\l}k aJ/'k) ) /"+L --+---L --+-- J} O!. T
k~2 ao, ae, j~2 DO, De; .

(
1 D,\/, , '" D.\/'k J 1 '" D'\/}k ) J12)+ --- - L --. k + - L --J}h T
2 DO, k'~2 fJB, 2 },k~2 DO,

(5.11)

(512)

ThC' standard form implil's til(' Poi ncar(' map of t.1ll' nOIHl\'C'raged system ,,'ilh

the period of the inpnl [\\'igOO]. ,·\pproximat.C'd rlnlamics of the system (5.12) is
obtailH'd b.\· an'raging <1.'-):

o:¢"
_ -I ('" (ID'\h) D,\l,}) --
oM"" L 2"a-e + -De O}Ok

J,J.:?:.2 I I.:

]' (1 D.\],II '" D·\hl J 1'" D,\h) / J))+ \ ---- L--'k+- L --'} k·
2 De, k~2 ae, 2 j.k~2 De,

(5.13)

The aH'ragl'd system "'ill be simplified by the transformation of the time scale,
S = 0:1. a!i

(5.14)

The equation represents ,Ul autonomous system ,,'ithout the perturbation ampli­

tude::. This implies that the feature of the belH1\'ior \I'ith a small perturbation

is determined by the m'eraged dynamics independently of::. Since it is necessary

to discuss the characteristic of the solution trajectory of the averaged dynamics

concretely. control problems of 2Il free-joint manipulators are presented in the
following sections.
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5.4 Analysis of 2R Free-Joint Manipulators via
the Averaging Method

5.4.1 Averaged dynamics of 2R free-joint manipulators

The dynamics of 2fi ffee-joint numipu!ators a.~ shOll'll in Chap. -I to be analyzed is

(
01 J ( 0

1

Jd O2 O2 (5.15)dt 01 = 0
1

O2 -(1+/1COS02)OI -lIsin02·(OJl2

\\'here 0, is defined <~., a rdati\'t' angle of the i-th joint.

\\'iill the periodic input and the substitution as in the pre'\'ious section. the

system is represented by the follo\\'ing equation only for the second joint.

O2 = o!J2

1}2 = -(1+/1cos(h)n(t)-olisin02'(f!r(t))2
(0.1G)

Sincr its unpl'rturbed solution is

O2 = 020
P'l = P20 - (1 + II COS020)J~(t).

the transformation is gi\'t'n b\'

02 = P2 + (1 + Ilcos02)f~(t) (5.11)

The standard form is obtained from Eqs.(5.1S) and (5.11) as

O2 ;:(92 - (1 + 11COS02)}'7·(t))

02 = ;:(-'l')2Sin02'f~(t)+~sin202.(j'7.(t))2)

The awragl'd system is obtained from Eq.(5.18) as

(5.18)

;:62

;: !';12sin 202
(519)

(5.20)

(0 < Ii: < 1)

(Ii: > 1)

(k = 1)

The solution of Eq.(5.19) is completely dcsnibed by the Jacobian elliptic Junctions
[SV85]. am(u,li:) and sn(u.k). <~5

1

<un(at+C2,k)-~

- (1 ( 1)) 11O2 = sin- 1 -sn -kat - kC2 , - - -
Ii: Ii: 2

sin-I (tanh (at + C2)) - ~
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-Wll lU"+f d- (;£,
lI'hl'rc a = -In . C2 = - - . k = --C- and C 1 = cm;2fJ2o +

. ? v2k 0 Vl-k2sin2 : 1 I

(2~120) -. and 0 = am( II, k) is called tl](' amplitude junc/ion definl'd as an implicit

function by:

(5.21)

and f;n(u. k) ,~;f .',in(<lIll(lI. k)) Although one might think tl](' ahol'e solution trajec­

tory is complicated and difficult to describe. the solution simply folloll's a tra.iector~·

on the planl' of il2 and 02 as

(.:i. 22)

The abow equation implies that t he trajectory is on a tim('-illl'ariam manifold

uniquely dl'tnmined hy the initial configuration independelltly of~. Since the

I'elocity of the secolld joint is denoted 1).1' il2 = ~02' the traje('lory in the phih,e

planl' of the second ,.joint is stretdH'd and shrunken proportionally to ~ in the

I'('rtical dire('liOll of O2 . In Chap. 4. it is obserwd that the Poincarl' map of the

s\,;,tem follOll's an orderc'd dosed trajl'ctory like ellipse in the ('ase 1I'}]('re the inpllt

amplitude is ;,mall. and that till' elliptic trajectory is strc'tdll'd and shrunken hy

modulating till' input amplitudl'. The abol'(' discussion and Fig. 5.2 iuutInicalh'

explains the obselTation ohtained from computer simulations and experinH'nts.

Figures 5.1 and 5.2 sholl' thl' simulated behaviors of the 211 free-joint manip­

ulator and till' behavior of its iII'('raged dynamics. reslx'ctil·ely. The figures are

represeIlted by the Poincarl' map [\\'ig90] of the trajecton' lI'ith the period T for

the cases that the periodic input is J'r(t) = 1 - cos..;/ Il'ith ~ = 0.0-1. uJ = 4" and

I'<lrious I'<llu(';, of (fJ2· il2) as the initial configuration;,. 111l'iu'iability of manifolds of

the al'eragl'd dynamics on the pha.s(' plane is discussed from a \'iell'point of energy
in the next subsection.

5.4.2 Conservation of the averaged dynamics

Considering Eq.(5.19), the averaged system has tll'O center equilibrium points,

(02'~) = (±~.o). itnd tll'O saddle points. (02'¢.l) = (0,0).(",0). For itnothel'

eitch destination such thitt 02 = 0, there is a corresponding inl'<lriitnt lTIitnifold.

lI'hich is represented by Eq.(5.22), itnd it pihSses through the point and turns <V'ound
one of the center points,

Considl'ring the equation (5.22), an energy-like function Citn be defined ih5

. d"II'2 1 2 - 2 2
E(fJ2,fJ2;E) = '2fJ2 + '2~ J\{l cos fJ2 (5.23)
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II'hich denotes an identifier of the ill\'ariant manifold represented by Eq,(5,22), For

a constant \'alue of ::, £ is consenwl for the an'raged system. The energy £
, f ' , ' .1.,1' 1",('onslsts 0 tll'O components. namely, a kll1<'tlC component. £k = £d(2) = 20:;,

I 'I £(0 d.{ I? '? "0 I' Iant a potentia component. £" = " 2:::) = 2::-j\lrCOS- 2, t IS natura to

regard £k and £,. as a kind of kill('tic energy and potential energy and to regard

£ as a kind of Hamiltonian as £ = £k + £", Tllen, it can bl' concludcd that the
r1l'eragl'd system (5,19) is a kind of Hamiltonian consel,\,('d system 1'01' a constant
\'alul' of::,

13aillieul [I3ai93] ekfined the avrmgcd liotential and al'{'mgrd rnrl'g,lj in his dis­
cussion of an'raging second-order nwchanical systems in ordrr to sho\\' til(' stability

of the motion, Baillieul's i!\waged energy fur our 211 F.J:-'I is represented as

(5.2~)

Although onl\' the diffen'nce betll'l'en Baillieul's r\\waged energy and our Hamil­

tonian is in til(' signum of the second term in the right side, it is a pretty great

diH'l'n'I1('e, TIl(' abo\'(' Baillieul's an'raged energy is naturally the awragl' of kinetic

('nerl\.", and newr cons('rn'd \,ith periodic forcing, Baillieul also noticed that the

second t('rlll can be regard I'd as a potential quantity, HO\\'('\'(,r. since his system has

a natural potelllial energy, he jnst merged the potent ial-likl' tcrm into the natural

potential in his avcmgrd potcntial. On the otl1<'r hane!. our free-joint manipulator

has no natural potential and the abon' a\uaged kinetic energy ran Iw regarded

as a Lagrangian of the an'raged s,\'Stem and, then, the second term can be re­

gardl'd ,1, the negatin' of a potential energy £", Consequently. our Hamiltonian

can be regarckd as a lIamiltonian corresponding to Baillieul's averaged energy ,1,
a Lagrangian \\'ith a potential energy £",

The energy £ ha" another important and useful property that the ntlue of £"
or £ can be altered by modulation of the input-amplitude:: at same point (02 ,82 ),

Control Illethods of the both t\\'O joints using thl'5e properties arc formulated in
tIl(' followiug su bsections,

5.5 Control of 2R Free-Joint Manipulators via
A veraging Method

In ChapA, a control strategy to position the botb joints of 211 F.JM \\'as proposed

3.,; (1) ContTOl the actuated fil'st joint to the des'iTed position l'Egal'dless oj the
passive second joint, (2) Steel' the second jO'int to the desil'ed position by periodic
actuation oj the fiTst joint. The second subgoal is realized by dividing tbe control
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inw the fullowing t\\·o phases; (2-1) Stabilize the second joint onto an inua7"iant

manifold on the phase plane which passes through thl' destination. (2-2) Tenninate

the second joint at the destination when it enters the neighbol'hood of the destina­

tIOn. Each wntrol \\·a.S realized by modulation of the input-amplitude in Chap.-I.

HO\\"('I·c'r. I he proposed method Il"as heuristically wnstrunc'd from obsc'rnLtions of

simulmions lI'ithout nIathematical proof and diffieult to gl'n!'ralizl'. In this seclion.

n'formulation of tl](' control method of (2-1) is dC'I'l'!opc'd using tl](' enc'rgy of the
lll"l'ragcd c!.YIHtmics proposed in the prl'\'ious section

5.5.1 Control by amplitude-normalized energy

The system folloll's an in\"ariant manifold of Eq.(5.22) and conserws lhl' energy

of Eq.(5.23) for a conSlant input-amplitude. and thc manifold and cnergy can he

modulated by modulation of lhc input-amplitude. The energy £ can be reIlTitl,'n

in the 2nd joint's pha.sl' plane of tl](' non-mwaged :systcm. (112 .112 ), as

(5.25)

I .1,.( O2 C '1' IE' f .II' Jere P2 = --;. onSI( !'I'lng t Hit IS represented as a unctIOn of 112 and 1).1.

normalized en'ergy can be redefi (]('d as

(526)

dt,r 1 OJ rld 1 ~ ? 2 ... .
lI'here E""",,k = '2P2' and E""",./, = '2!lt,'(cos02 ) dcnote Its kllletic and potential

wmponents. respecti\'t'ly. i\ote that the normalized energy is defined on a planc

of O2 and Ih· Then. P2 is termed an amplitude, normalized uelocity of the sl'wnd

joint and the plane (1I2 ,P2) is called an amptttrule-no1'1nalizl'd phase plane. On

lhl' amplitude-normalized plms!' plane. the shapes of the manifolds of a\'t'raged

dynamics and E""", are maintained independently of;:. Though. since P2 is defined

as ~. the value of P2 and E,,,,,,, can be modulated into ,uJothl'r \',une by amplitnde

modulation as

( ih) (0)
]J2 ~ ]J-l"cUJ = £,,('w = =I/fW ]J2 (5.2/)

and

(5.28)
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The modulation of the input amplitude modifies only the kinetic eomponl'llt,

\I'here,l, the potential component is in\'<lriant for o. The modulation algorithm
is obtained from Eq,(5.2 ) ,l'i

£,,,,,,,.1..' - Ello1lt,J.:.,1

EIIOfll./xl-E"OIll./1
(5.29)

(5.,30)

\\'hen the \'alu(' in the' square root isn't negati\'(' or zero and 0,,, '" has a I'eal \·,due.
the normalized ('nergy ('an be obtaiued ,l,

1 ( 02</ ) 2 1 _ 2 .2
E""", =;- :-- + ;-J\ll cos 02d

2 ="",. 2

The position on the amplitude-normalized phase plane (02 , J3) jumps immediatl'iy

to (il2 :!h ) on an in\'<triant manifold \I'hich p,lsses through the destination. Th('
~ /lItH

modulation is executl'd only \1'IH'n the value iu the square root is positil'l' or zero

Since fh, is usually set at zero for positioniug. the cast' implies that E" < E/
H
,.

lHundy. lil2 - 02rl < lil2d - 02rl \I'here Or = ±~ dt'notes tl](' CCllLcr of the elliptic
in\'<ll'iant manifolds.

5.5.2 Lyapunov control to a manifold

S,'t a standard input-amplitud(' O.,'d and rcdefine the energy for the standard am­
plitude as:

. ,1..( 1'2 1_ 2 - 2 .2
E.,A02. 02) = '202 + '2=."d J\II cos O2 (5.31)

The ('nergy is eonsl'rl'l'd \I'hen th(' input-amplitucll' settles at 0,,,/. If the input­
amplitud,' is not at O.ld. the energy E. 'd is ne\'('r consern'd as:

£."d = ~J\-I?(=2 - =."i) sin 202 . fh (5.32)

Dcfine a candidate of Lyapuno\' function as

1 2
L = '2(E"d - Ed) (5.33)

\I'here Ed = E.,'d(02d. fhIl· Its deri\'atil'e is obtained from Eq.(5,32) as:

. 1 _ 2 _2 _ 2 ..'
L= '2 J\ll (= -~.,'d )(E."d-E,Ils1l12B2 ·02 (5.34)

A modulation algorithm is designed as:

- { =.,'d' VI - IdE"d - E,tl sin 202 , O2 , k3(E."d - Ed) sin 202 , fh < 1
t ...... =,,,,,,, = 0 , k3(E."d - E,tl sin 202 , fh ~ 1

(5.35)
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\"ith this amplitud"-modulat ion. the time-derivati\'(' of the Lyapunov candidate is
Ill'gati\'e semi-definite as:

Kot" that L turns into zero for tl1<' cas"s that O2 =0 O. ±~. ±71 or ih =0 O. In tll<'se

cases. til<' algorithm sets the input-amplitud" as 0 =0 O"d and. thell. <U1I' sta\('s

eX('('pt for the ('<Lses at (02 , ih) =0 (0. 0). (±~. 0) . (±71. 0) arc Yariant and the L.'·a­

puno\' mndidate sta.\·s ,Lsymptotically staiJlt'. The statl'S (lh ih) =0 (0. 0). (±71. 0)
arc saddle points and each of them has unstable heteroclinic manifolds and. then.

the system practically lIe\'('r stays at thes,' points. The states (Oz. ilz) =0 (±~. 0)

arc cell tel' points and can b,' altratti\'e by I\\'amoto's method [:\1\'95] or friction as

mentioned brIo\\·. Tllese points are actually difficult to be left but can be m'oided

to dra\\' n,'Hr by pres"ITing the energy E.. ,d enough largf'. Consequently. til<' pro­

posed Lyapunov candid at" is prO\'ed to 1)(' asymptotically stable almost globally

except for the point (02.ih) =0 (±~.o).

The amplitude' modulation (5.35) is executed just at each elld of the period of

the first joint since th" ",tim's of O2 and il2 in the amplitude modulation arc based

on tl1<' an'rage'd olle's alld nOIHlv"raged OIl"S extremely din'rge from them in the
middle of the I)('riod. If the input-amplit ude' is modulated within the period. the

motion of til(' first joint is no longer periodic \\'hich is the indispensable assumption

and. then. the abon' discussion turns into meaningless. HO\\'{'\'er this restriction

for ampliwd" modulation makes the control method discontinuous. the stride of

the Poincar(- map is enough small for an appropriate O.,'d and the actuation of

the first joint is continuous alld. then. the ntriation of the energy and Lyapuno\'

candidate can be approximated as uE"'d '" E"dT and uL '" (E."" - Ed)E.""T.
and the proposed algorithm is st ill ",tlid..-\dditionally. ° is practically limited to

be less than or equal to Om",' to gumantee the approxinmtion of a\'eraging and the
treatmen t occurs uo problem.

Although the amplitude-modulation proposed in this subsection and the pre­

\'ious seems to be a kind of energy feed bad control. there is difference that the

control is discontinuous 'Uld the energy is imagill<lry v,tlue. From a vie\ypoint to

modify the manifold of the system by modulation of a par<Ulleter o. the control

method is related to the famous OGY method [OGY(0) in control of chaos. How­

ever, tbere is also difference that the destination has no stable manifold and the

manifold is a center manifold, wbile the OGY method carried the system onto a

stable manifold converging to the desired equilibrium which is usually a saddle
point.
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:\bout the subsequent procedure to the wnwrgf'nce to the desired manifold.

that is. tf'rmination at the destination, the method Il"as aln'ady prOI'ided in Chap.-I

and is reformnlated by averaging analyses in tl1(' follo\\·inp;s. In the next subsection,

sl'wnd-order an'raging analysis is de\'c'loped to approximalr' the Poincare map I)('t­

ter. and a Lc'rmination control is reformnlated basc'd on the sewnd-ordl'r an'raging
sn bsequc'n t 'y.

5.5.3 Better approximation by second-order averaging

.\lthough the precedent first-order an'raging analysis is suflieient to obtain d~'nam­

ical comprehension of nonlinear bel1<l\'iors of tl1(' system. its order of approximation

is 0: and is not enough accuratl' as seen in Fig. 5.1 <U1d ;:'.2. [t influences control

design. especially termination wntrol at the destination subsequently del'eloped.

Then. sc'cond-order an'raging is introduced to improw the approximation. The­

orem for second-order an'raging is quoted in the appendix D.2. Thl' standard

form of Eq.(5.18) is approximated by second-order an'raging a..s tl1(' follo\\·ings. Let
f-r = 1- ws..:l. IH' haH'

(5.37)

(538)

- ~1~:2 cos O2 ws --vI - T02 cos ~,22:~1 2..:t

--02(2 - ws202 )S1ll2w'l + --I-ws20Acoswt - cos3....:t)
p:t2 _ 1,3w2 _

32(ws02 + (cos302 )coswt - 32(;) cos O2 + 3cos302 )cos3wt

Since the averages of I' (x, t) are fila = 0 and f~o = O. namely. 1'''(.1') == o. sewnd­

order a\-craged dynamics is obt<lined simil<lrly to Eq.(5.19) with slight difference
in transformation to the origilml dynamics as:

iJ2 + £(1 + /-L cos iJ2 ) coswt + 0(£2)
- -. _ 112W_

!/J2 + £/1!/J2s1n02coswt - £Ssin202 sin2wt + 0(£2)
(5.39)
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The stale every after period is obtained as:

02(nT) = (J2 + 0(1 + {iCosiJ2) + 0(02)

Ih(nT) = &2 + 0/t&2 sin iJ2+ 0(.=3)
(5.40)

It shows that the ('ITOr of Eq.(5.19) is not only first ord('r of .= but also can be
s('conel order of .= in tlH' second-order a\·eraging.

5.5.4 Termination control via second-order averaging

In this sn!Js('nion. formulation of a termination control at the destination is deH'I­

oped ba."ed upon tlH' aboH' an-raging analysis. OeriYation of the ,tpproximating
equation is llluch easier in an'raging context than that in -1.4.4. The fesults in tlll'

pre\'ious subsection sho\\s t,hat the ,weraged dynamics in Eq.(5.19) approximates
.2

the motion in an order Of,,2 Expansion of the ,weraged dynamics with !\' = ~

O2 = .=2<~2 sin 2iJ2

arounel a poim after 1/ periods

is obtained as:

O2 = .=211:",,2 sin 2iJ~") + .=2/
t
:",,2 cos2iJ~") . .:-:.iJ2+ 0(,,2.:-:.iJ/) (5.41)

,-\ssullle tlHtt O2 is sufficiently small to be O2 = 0(.=2). it is considefed that

.:-:.iJ2 = 10' 02dl = 0(02
)

Integrating Eq.(5.41) from t = nT to (n + l)T yields:

(5.42)

(5.43)

Considering Eq.(5.~0), the approximation error is concluded to be 0(03 ). Thefe­

fore, the state (iJ2,iJ2) after a period \\'hen iJ2 is sufficiently small is estimated as

iJ~"+I) = iJ~") + iJ;")T + 02/
t2W2

sIll2iJ~") ~22 + 0(03 ) = iJ~") + 0(,,2)
4

0"(,,+1) _ 0"(") _2 7f /
t2W .. 2iJ(") 0(:3)

2 - 2 +, -2- SIll 2 + -



Chap..) Analysis and Cuntrol uf Free-Juint .\lanipu/aturs "ia the .4. veraging.. 85

and considering Eq.(5.~0) it is obtained that

I)~"+l) = iJ~"+l) + =-( 1 + It cos iJ~"+II) + 0(02 )

O~"+I) = e~"+11 + OIIO~"+l) sin iJ~"+11 + 0(03) = e~"+ II + 0(03)
(5.~~)

ConSl'qucntly. the dl'sitwl inpnt-amplitudl' 0,[ so <\.'; to makc' O~"+l) = 0 is obtained

=tl :::::
Tl11 2,,; sin 21)~")

The abon' agrccs \I'ith the result in -i..l.~.

5.5.5 Global attraction

(5.-15)

Combination of thl' abol'l' control to an il1l'ariant manifold and termination con­

trol rcalizes a positioning the second joint by periodic actuation of the first joint

HO\l"l'I"l'L a pair of diffe'rent inqtriant manifolds di"ided by the ,L,is 1)2 = 0 han' a

same ntlm' of energy of Eq.(5.23) etc. as seen in fig. 5.2. Then. a destination in.

for instance. 1)2 > 0 can be positioned only from an initial point in the s<Ul1e half of

the pha.,l' plane Idth the combined control. 0"amely. the control is still insuflkient

to position it from any initial point to any dl'stination. In this subsl'ction. global
attraction for any dl'stination to be positioned is enabil'd.

The fol!o\l'ing is an algorithm for global attraction by the control methods to a
manifold (5.29) or (5.35). Thl' case Il"ith the destination in 1)2 > 0 is considered in

the algorithm and the other case \I'ith that in 1)2 < 0 is represented in parentheses.

(i) If till' state ["('sides in the half 1)2> 0 (1)2 < 0). an inl"ariant, manifold passing

through the destinat,ion is adopted as a destination to be stabilized.

iii) If the state residl's in the second quadrant 1)2 < 0 and O2 > 0 (the fourth

quadrant 1)2 > 0 and O2 < 0). a manifold passing through (1)2. O2 ) = to. ±t',,)
is adopted as a destination to be stabilized.

(iii) If the state resides in the third quadrant 1)2 < 0 and O2 < 0 (the first quadrant

1)2 > 0 and O2 > 0). a manifold passing through (1)2. O2) = (±q". 0) is adopted
,1, a destination to be stabilized.

The algorithm produces a floll': the third quadnult -> (±q",O) -> the second

quadrant -> (0, ±u".) -> the half O2 > 0 -> the destination. from the property that

the manifold circulates around O2 = ±7t'. It enables to control to any destination
from any initial point on the phase plane except for a few cases. All the points

on the ,L,is 02 = 0 except for the singular points 1)2 = 0, ±7t' ,U1d 1)2 = ±~ are

I'ibrated \I'ith a periodic perturbation and moved to another point with a certain
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Figure 5.3: FlolI"chart of control by amplit ude-normalized energy

"dodty /021 > O. Furtlwrmore from the ;,econd-order a,""raging ana.lysis, ;,ince

Ih = O2+:-(1+11 co;, O2) frOIl1 Eq.(5.~-I), the singular points in the <\"eraged dynamics

Ih = O. ±7i. ±~ shift;, in the original dyuamics by I"<lriation of::. HOII"l""l'l". the faet

that the stable point Ih = 0 shifts simultaneously implies that the borders of the

hall"l's allers and the destination quite near to O2 = 0 might be difficult to control
since the half to Iyuich it belongs "aries lI'ith ::.

5.6 Simulations

5.6.1 Control by amplitude-normalized energy
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Figure 5.3 illustrates the !iO\IThan of composition of the ('ontrol to a desired

manifold by amplitude-normalized en('rgy proposed in SI'('.5.5.1 and the terJni­

nation control in S('('.5.5.-1. \Yhen the ('ontrol to a manifold or the terminalion

('ontrol ('annot be applil'd. the input-amplitude is se'l at the stanchU'd amplitude

f",/ its ShOll"ll in Fig. 5.3. Th(' ('ase II"hen L!l(' ('ontrol to a manifold cannot 1)(' applil'd

denotes that 102 - 02rl > 102,/ - O2,.1 ,ts nl('ntioned abo\"(' in SI'c.5.5.1. Therefore. the
control "'ill be difficult ,yhen the dl'stination is \"Cry near to tIl(' center as slioll'n

beloll" sill('(' the Poill('an; map steps its footprints discrt'tdy and. accordingly. til('

chance to modulate tIl(' amplitude ,\"ill be fe,,·. The case II"hl'n the termination

control cannot be applied denotes that the second joint on'lTan the ,Lxis £h = O.
In this case. the second joint has to turn around once again to approach to the
neighborliood of the destination.

Figures 5.-1 through 5.7 illustrate the trajectory of the m"Craged 211. free-joint

manipulator. that on the amplitude-normalized phase plane. transition of the

amplitudl'-normalized l'll('rgy of the trajecton·. and transition of the inpu t-amplitude

under tIl(' abo"e compos('(! control. The pmanl('ters of the periodic inputs are

..J = -Iii and the mm,imum. minimum and standard value of ~ ,m' set as :'""", = 0.2.

:'",,,, = 0.05 and :",,/ = 0.1. n'SI)('ctil"('ly. The initial and desired configurations an'

(02 . ( 2 ) = (0.0) t--. (-130°.0) = (-2.269[radJ. 0). In Figs. 5.-1 and 5.5. the solid line

and empty cin·It's denote the trajectory and its Poincarl' map. The chained lilll'

in Fig. 5.5 deno«'s thl' desired elliptic manifold cOITesponding to the destination.

Since t he normalized ('nergy is defined on the amplit ude-normalized phase plane.

the l'iliptic manifold is conselTed onlv on the plane. In Fig. 5.6. the' solid line

denotes the energy transition and the dotted line denotes transition of the desired

dliptic manifold corresponding to the de'stination. The energy lI",lS once stabilized

to the desired "alue and it finally made slight difference by the termination control.

In Fig. 5.7. the solid line denotes the transition of til(' input-amplit.ude. It. is seen

from tlie figure tliat the input-amplitude lI'as modulated four times. t = 5.5.7.7.5

and 12.5[sec). The first and third modulations of the input-amplitude correspond

t.o the control to a desired manifold and the final modulation coITesponds the

termination control. The second modulation at t = 7[see] implies that the input­

amplitude 1I',lS set at ",,<1 since O2 1I',lS "ery dose to 02</ and the termination control
cannot. be applied.

Since the a\"Craged dynamics completely folloll's an illl'ariant manifold for a

constant input-atnplituck the modulation of Eq.(5.29) is carried out just a fell'

times as shown in Fig. 5.7. The non-m'eraged original dynamics di"erges from the

invariant nl1tnifold after a period Iyith ,ill error order of ~2 unless" is sufficiently

small. Therefore, the control method tends to stabilize the system where the

"elodty error is sufficiently small, since:, is figured out ,tS a small ndue from
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Figure 5.5: Trajectory of a'waged 2R-FJ',l on <U11p-normalized phase plane
Control by amp-nornmlized energy: fh = 0° >--> -130°
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Figure 5./: Input-amplitude transition for the averaged 2R-FJM
Control by ~U11p-normalized energy: (h = 0° >-> -130°
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Eq.(5.29). Practically, it is nc'cess,u'y to set an upper limit for the input-amplitude

in ord('r to m"intain the "pproximation well and to set" lo\\"er limit so as not to

almost stop the motion. In thc' case th"t the ,",due in the square root of Eq(5.29)

is nl'gati\'c', the system is actua.tl'd by a standard input-amplituc!l' =.• ''/ until it tUl"IlS

into positi\"('. The tre"tnl('nt implies I hat til(' modulation is exccuted only \\"hen

102 -lh·1 < 102,/ - th·1 as mc'ntiOlH'd aboye.

Figures 5." through 5.11 illustrate the corrc' 'pondences \I'ith Figs. 5.-l through

5./ for the non-a\"('raged original dynamics. \I'hich \yas controll('d under the sam('

condition as the simulation for the a\"('rag('d system. Both the ayeraged systt'm

and the nOlHL\'eragl'd syst(,m con\"('rged to the manifolds passing through the des­

tination \'i" the amplitude modul"tion. although the input-amplitudes \I'hen the

syslC'm \I'as stabilized onto the desired elliptic manifold \\'ere diH'erent each oth('r.

that is. for the first destination = conyerged to 0.1158 for the "\'eraged system

"nd to 0.1018 for the non-an'r"ged. ]\ote that the ,",duc's of energ)" arc computed

fronl phasc' yalues for thc' second-order averaged system by the following equat ions
obtain"d from Eq.(5.-I-I):

{J2 = {82 I Ih = {J2 + =(1 + fl tos (J2) }

O,=~
- 1 + =sin£!2

(5.-l6)

\I'hel"(' the upper equation is soh'ed numericall,' and. therefore. the ,",uue of desired

energy \'aries a little depending on modulation of the input-amplitude. In "ddition.

the initial wnfiguration for the a\"('raged system \\"as not exattly at (0.0) but

at (-O.Ol[radJ. 0). since the configuration is singular saddle point and. theil, the

an' raged system cannot din'rg(' from the configuration. ]\e\"('rthe!ess, it doesn't

m"tter at all practically since t.he singular point shifts according to Eq.(5A6) by
modulat ion of t II(' input-amplitude

Figures 5.12 through 5.19 arc torrcspondencl's \\"ith Figs. 5.-1 through 5.1l.

:\lthough the only difference is th"t the desired ton figuration is at (-80°.0) =
(-l.396[rad]. 0). the control required much time to conn.'rge the second joint onto

the desired manifold. The re,",;on is because the input-<Ullplitude is modulated only

\\"hen 1{J2 - (l2rl < l{Ju - (l2rl and the desired ellipse in this case is \-cry small as

shown in Fig. 5.13. Furthermore. the input-amplitude to be modulated is limited

up to the ma.,ima] amplitude =""n' = 0.2 and then, 1110re amplitude modulations
arc required to attain the desired ellipse.
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Figure 5. : Trajectory of simulated 2R-FJ:\! on 211djoint 's phase pl'U1e
Control by amp-nornmlized energy: O2 = 0° >-+ -130°
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COIltrol by amp-normalizcd eIlcrgy: (h = 0° ...... -130°
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Figure 5.10: .-\mp-normalizedellf'rg.-r transition of simulated 2R-FHI
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Figure 5.11: Inpnt-amplitude transition for tbe simulated 2R-FJlIl
Control by amp-normalized energy: Ih = 0° ..., -130°
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Figure 5.13: Trajectory of al'eraged 2R-FJ\1 on amp-normalized phase plane
Control by amp-normalized energy: 82 = 0° ...... _ 0°
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Figure 5.15: Input-amplitude transition for the a'-eraged 211-FJl\.1
Control by amp-normalized energ·y: ()2 = 00

...... -800
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Figure 5.16: Trajectory of simulatcd 2R-F.J\J on 2nd joint's phase plane
Control by amp-normalized energy: (h == 00
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Figure 5.17: Trajectory of simulated 2R-FJ\l on amp-normalized phase plane
Control by <lmp-norInalized energy: O2 = 00 .... _ 00
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Figure 5.18: .-\mp-normalized energy transition of simulated 2!\-F.J:.I
Control b.l· amp-normalized energy: Ih = 0° >--+ _ 0°

IIme[s]

Figure 5.19: Input-amplitude transition for the simulated 2Il-FJM
Control by amp-normalized energy: Ih = 0° >--+ -80°
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Figul"l' 5.20: Flo\\Thart of Lyapuuo\" control

5.6.2 LyapunoY Control

Figure 5.20 illustrates the flOln·hart of composition of the control to a desired

manifold by energy for a standard amplit nde propos('d in 5e('.5.5.2 and the ter­

mimttion control in 5ec.5.5.-I. \\"hen the termination control cannot be applied.

the control to a manifold is applied. When the control to a manifold cannot be

applied. the second joint is released ,\"ithout control since the mse implies that ih
is enough large.

Figures 5.21 through 5.26 illustrate the correspondences under the second amplitude­

modulation coutrol proposed in 5e('.5.5.2 \\·ith Figs. 5.4 through 5.11 except Figs. 5.5

and 5.9 plotted on the amplitude-normalized plH15e plane. The conditions for

simulations are same as in the above simulations for the control by amplitude­

normalized energy. The gain for the amplitude modulation in Eq.(5.35) is set at

k3 = 50.0. The second Inethod is a little more efficient than the first method
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Figure 5.21: Trajectory of a\'C1'aged 2R-F.J1\! on 2nd joint', phase plaue
Lyapuno\' cuntro\: O2 = 0° ...... -130°
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Figure 5.22: Energy transition of an'raged 2n-FJ"I
Lyapuno\' control: O2 = 0° ....... -130°
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Figure 5.23' Input-amplitude transition for the aye raged 2n-FJM
LyapunOl' control: O2 = 0° ....... -130°
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Figure 5.24. Trajectory of simulated 21\-FJ1I1 on 2nd joint"s phasc planc
Lyapulloy control. O2 = 0° >-t -130°
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Figurl' 5.25: Energy transition of simulated 2fl-F.Jill
Lyapunoy control: Ih = 0° >--> -130°
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Figure 5.26: Input-amplitude transition for the simulated 2fl-F.J
Lyapunov control: 1J2 = 0° >--> -130°
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since it. uses ·'no eont.rol" phase Idlen the second joint has enough mOIllI'ntum

to drift toward the clesin'd ellipse. :\ greater adl·'Ultage of the mt't.hod is that

t.1ll' amplit.ude is modulat.ed to st.abilize 1he energy t.u a constant desin'd nllue

dcfinf'd for t.he standard inJ}ut.-amplit.udl' as sholn! in Fig. 5.22 and 5.25. There­

fore. it. "·on·t 1)(' stagnant as in till' case of Figs. 5.12
7f

through5.15. ][o"Tw'r. til<'

cOIllTrgenCl' rat<' becomes W'IT simI· around fh = ±2. since L is proportional 10

E."" - £". namely. cos2 fh - cos2 Old. and sin 202 and the magnit udes beconll' zero

at O2 = ±~. Tlwrefon'. the coll\Trgence to till' destination ncar to O2 = ±~
InlS n'r~· cnfficult. as in Figs. 5.30 t.hrough 5.32 in till' n~"e with the destinatioll

Ou = -80
0 = -1.396[rad]. '\elwtheless. the difficulty to conw'rge to the (ll'igh­

borhood of the c('nter point dOI'sn·t mat ter practically as sholm in the section 5./.3

sill(·(' friction dissipates the energ:,· and reducI's the radius of the elliptic manifold.

The simI· colllTrgence rate will be clissoln'cl if the LyapunOl· candidate is taken as:

L' = ~ (E."." _ 1)2
2 E"

(5-11)

The deriYatiw' of L' yields

1.' = ((~)2 -1) (E."" -1) sin202 (j.,
"_,,, £" COS202" -

Though. there ,,·ill occur a larger problem in the case for Ou = ±~..-\s O2 gets

. sin 20·,
closer to O2,,. L' becomes ahnost infinity since COS20,~ gets dose to 2 tan Ou.

5.7 Experiments

5.7.1 Experimental system

end I
Table 5.1: Dynamic parameters

I link

length [m] 0.200 0.200 0.200
gnwity center (GC) [m) 0016 0.100 0.100
mass [kg] 2.500(3.3-15) 2.310 1.,00
inertia about GC [kg. me] 0.02-13 0.0230 00132
inertia about joint [kg·m2] 0.0309(00312) 00461 00302

An experimental free-joint manipulator system was neldy developed to I·erify

the Yalidity of the proposed methods. Figures 5.33 and 5.3-1 arc the plan and
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Figure 5.21: Trajeelory of aYeraged 2R-FDI on 2nd joint's phase plalle
LyapunOl' (,()lltrol: 82 = 00
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Figur<' 5.28: Energ.\· transition of an'rag('d 2Il-FJ\'
LyapunO\· control: 82 = 00 f-4 -800
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Figure 5.29: Input-amplitud(' transition for the averaged 2Il-FJM
LyapunoY control: 82 = 00 f-4 -800
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Figure 5.30: Trajectory of simulated 2R-F.Ji'vl on 2ndjoint·s phase plane
Lyapunov control: O2 = 00 f-+ -800
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figure 5.31: Energy I ransition of simulated 2R-FJ~1

LnlpUnO\' l'olltrol: O2 = 00 t-+ -800
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Figure 5.32: Input-amplitude transition for the simulated 2R-f.lid
Lyapunov control: O2 = 00 t-+ -800
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Figure 5.33: Plan of the free-joint manipulator
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figure 3,3~: Photo of til(' frt't'·joinl mHnipulator



Clwp.5 Anal.Ysis and Comrul of Free-Joint Manipulators "hi the Averaging ... 113

photograph of the manipulator established as a 3R free-joint manipulator, respec­

til"l'ly. All the joints of the manipulator arc planar and reyolute. The first joint
is only actuated ,wd the other joints are free to move. The actuator is composed
of a YASKA.\V.-\ AC se1"\·o motor SGrd-08A31-1 and a SCrdITOi'vIO transmission

FA25 \,-ith the gear ratio 1:59. Pictures of the actuator component arc sho\\"n in
Fig. 5.35.

The links arc mack of aluminum \\·ith black wating and the a.:xes are made of
stainless. The size of the manipulator is approximately 85 cm long x -15 cm \\·ide

x 5i cm tall including a. cast iron platform. The first link is approximately 3!J.0
Clll long x 8.0 cm \vide x 3.5 cm thick. and the middle ,md end links arc 28.0 un

long x .0 cm \\·ide x 5.0 cm thick. The other important dynamic pm·ameters of
the manipulator arc sho\\·n in Table 5.1. In the table. the parameters of the first

link arc those only of the link itself. The parameters in parentheses for the mass
and inertia about joint denote the nllues \\·hen those of the first axis a.re induckd.
Each of the free joints other than the first joint is equipped \vith a speci,l! coupling

part \\·ith four cuts on the side from eH'IT direction ,ll right angles each other a.';
sho\\"n in Fig. 5.36. Tightening or loosening three in six bolts in the picture bends
the cuts a little and can precisl'iy adjust the perpendicular of the a:xes.

Till' manipulator is controlled by an lI3,,[-PCj.-\T compatible PC. G_-\TE\rA.\'

2000 P5-166 \\-itb a Pt'IItium 166 "!Hz chip. The motor ha.~ its O\vn selTopack_
Y,-\SKA\YA SGO-08.-\S. lts po\\-er supply is AC200\' and ha.'i a rated Po\\"Cr of
i50"'. a m,L'~imum LOrque of i,lIK'm]. and a maximum speed of -1500 rpm. The

motor is controlled by H'locity feedback and t he n~locity is spccified by analog
\'oltage commands in the ±10 " range, scnt from a O/A board. CO:\TEC 0,-\12­
8L in the PC. ,-\n incrcmental cncoder \\"ith 20-18 P /R is equipped to the motor
allCl it feeds back 120832 pulses per a revolution of the first joint. Each of the

free joints hm; an inlTemental ('ncoder with 3600 P /R. Ol\lnOi\ E6h-CWZ3E. Thl'
sensor data is obtained to the PC by a counter board, CO:\TEC Ci\T2-1--I(PC),
\\-ith four channels for encoders. Ekctrical setup for control of the motor is sho\\·n
in Fig.5.3i.

This experimental manipulator bas a \-cry simple mecbanism. Although the
free-joint p,uts arc a little complex and he,wy, it \vill be simpler ,mdligbter in tbe
case \\'ithout gravity, e.g, space manipul<ltors.

5.7.2 Preliminary experiments
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Fig,ur(' 5.3.:;: Picture' of actuHtor COlUPOll<'UI
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Figurc 3.36: Pict lire of frcC'-joint part
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AC200V~

Figure 5.37: Electrical setup for motor
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Figure :>.30: ExperinH'lltill :211 fn'l'-joint milnipulator
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The experiment,l! manipulator system I,",IS set up in experiments for 2R free­

joint manipulators as shown in Fig. 5.3 . The dynamical constants in till' cast'
arc:

A) = 1111812 + 1112/1 2 + 11 = 3.36 x 1O-2[kg·m2]

.42 = 1112822 +h = 1Jl2822 +12 = 3.02 x 1O-2[kg·m2J

n = 1112/182 = 3.~0 x 1O-2[kg·m2]

B
and. thcn. I' = ::h = 1.125 . :\ot<' that nU1';S ,md inertia constants of the second

link agn'I' Idth th-ose of the end link in Table 5.1. First. bdl<lI'iors of the manip­

ulator under a sinusoidal actuation of thl' first joint ,yith a constant amplitude

lI'l'r!' inITstigat<'d. TIl(' resnlt with Ihe initial setting is sholl'n in Fig, 3.39 Thc

behm'ior is r!'IHTsl'utcd in the second joint phasl' planc. The solid linc in Fig.5.39

rcprescnts a connccted Poincare map of the \\'hole trajectory of the sl'cond joint

The parametcrs of the sinusoidal input are: w = ~7i'[rad/sccl and E: = 0.1 [radl .

.-\lthough friction cxists and dissipates thc mOlllentum of thc second joint. the in­

f1UI'IH'I' of t hc friction is I'nough small and the phasc trajcctory doesn't stop and

follows a slI'irl-likc rrajeuOI'y. HO\\'('I'l'r thcy lI'ere constructed npon a conscl'\'atiyc

system \yithout dis:iipation. the proposl'd control methods can be ,tpplil'd to such

systems \\'it h small enough hict ion and can stabilizl' thcm to an clliptic manifold.

Tn addition. appropriate "'tlul's of input parametcrs arc determined as w = -l7i' and
,. = 0.1 from prdiminar,Y expcrinl('nts.

1'I1I're I\'('re sl'H'ral othl'r probll'lIl:i preccdl'nt to the experiments. Olll' is difti­

cully to take fiuer Poincare map from distTl,tl' data of joint angles and I·dorities.

A.llhough thc sampling time to m(',1';Ure the counts of encoclers W,1'; set at l[mscc]

by timer interruption. Ihe sampling tin1l' of program loop is estimated at 12 to

1'[lIlsec] chiefly to \\Tit<' data to ,t fill'. Since the ITlorities arc computed from

difren'nces of the counts of l'ncoders. thc errors in the I'elorities too largc to be ig­

nored and those for the Poincare sections become further large. Consequcntly. the

computed energy of thc dliptic manifold osrillates cxtremdy lI'hich is represented

by a solid line in Fig. 5.~0. Another reason can be considered that the I'elocity 82
is dissipated by friction "'hen it is compamtil'Cly large to £,,, Tt explains periodical

reduction of the energy in Fig. 5.40. HO\\'eyer there is some oscillation, there call be

seen the tendency of exponential-like conl'Crgence in the figure. Then, the ellerg)'

was determined to compute ,IS an average of the current value and the value in

the previous period. The broken line denotes the transition of the avera.ged energy
and is smoother variation of the energy.

5,7,3 Experiments of positioning the 2R-FJM



Chap.5 Analysis <l1ld Control of Free-Joint .\Ianipulators I,ia the A n'raging '" 119

-1

-0.5-1-1.5
theta2 [tad]

-2-2.5

-1.5L----.L-----L- ..L... -'- ...L.. __

-3

Figure 5.39: Poincarr map under constant input-amplitude
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Figure 5AO: Standard energy under constant input-amplitude
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Figure 5.-11: Experimclltal trajectory Oil 2nd-joillt·s phasc planc
COIHrol by amp-Ilormalizcd ellcrgy: 82 = 0° ...... -130°
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Figure 5.-12: Experimental trajectory on amp-normalized phase plane
Control by amp-normalized energy: fh = 0° ...... -130°



C'llilp.5 Analysis ilnd C'ontrul of Free-Joint .\Ianiplllators "ia tbe A H'U1.ging .. , 123

40

20

solid line
dotted line

10

o'-------'----'------'----'--------'-__-'---__-'--_~'_____
o 8 10 12 14 16 18

time [sec]
: energy transition
: desired energy

Figure 5.43: Experimental amp-normalized energy transitiou
Control by amp-normalized energy: (h == 0° t-> -130°
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Figure 5A~: Experimemal input-amplitude transition
Control by amp-normalized energy: B2 = 0° I-> -130°
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Figures 5.-11 through 5.4-1 show an experimental result under thc control by

amplitude-normalized e!wrgy proposed in Sec.3.3.1. The figures COITt'Spone! to

Figs. 5.8 through 5.11. The initial configuration ane! dest.ination arc (lh,ih) =

(0.0) ane! (-130[deg). 0) = (-2.268!J[rae!). 0). The accuracy of positioning is sct.

at 102 - Iht! < 20[deg] = 0.03-19[rae!] ane! 1021< -1.0[e!eg/sec] = 0.0698[rad/secJ.
The positioning sll{Tceckd within 10[sec). It is much bettcr than those by the

heurist.ic cont rol nll'1 hod developed in Chap.-1. Figures 5.-15 through 3.-18 art' the

experimental result for the destination (-80[ckgj. 0) = (-1.3!JG[rad]. 0). It took

about ,6[sec] to position 10 the ckstination. _.\, one can sec from the figun's. the

convergellt·c ,,-a:; ought almost entirely to the friction ane! the amplitue!e modulation

Il"as carried out only in the final stage.

Figures 5.-19 through 5.51 sho"· ,Ul experimental result une!I'!" the LyapunUl­

control proposee! in SI'c-.5.5.2. The figun's correspond to Figs. 5.2-1 through 5.26.

The conditions are similar to the simulations 'Uld experiments of Figs. 5.2-1 and
3.-11. etc. The positioning succeeckd approximatelv ,,·ithin 16[sec]. _-\dditionally.

Figs. 5.52 through 3.5-1 illustrate the result in the ca.';e for the destination ()2d =

- 0°. II lOok about 31 [sec) before conwrgcllce. The cot1\wgence was faster than

that b.'· the control by amplitudc-normalized encrgy in Figs. 5.-15 through 5.-18.

Hencc. \H' mn conclude t hat the LyapunUl· control is more efficient and global

than the control by amplituck-normalized energy.

:\lthough it is simpkr and smoother algorithm. the problem of using tbe nor-
c2

malizee! l'ncrgy turncd out as follows: The numcrator IJ 2 in the squarc-root in

Eq.(5.2!J) bccomcs ITIY small in regard 10 the denominator £,Hl - £" ,,-hen the

moml'ntum ".,~,; e!issipatcd by the friction. Therefore. the amplitude modulation

algorithm of Eq.(3.29) makes the input-amplitudl' small and. then. the system falls

into stagnation.

Similar problems may happen to the second control method by the standard

cnergy as mentioncd in Sec. 5.6. The second method can deal Idth the similar

problem to son1(' extent by choosing the feedback gain /':3. :\nother disadvantage

is tlmt thc algorithm with "no-control" phase makes the input efficient in encrgy

but results in steep acceleration at ,,-hen swit.ching the control phase.

5.8 Conclusion

The results in this chapter arc as follUlvs:

1. First-order periodic alwaging ,,-a:; applied to analyze the behaviors of ma­

nipulators with one actuator and sel-eraJ free joints in response to a periodic
input. The ,weraged motion ,,·a.'; determined independently of the input­

mnplitude.



Chi/p.,) Annl.rsis nnd Control of Free-Joint .\Ii/Ilipulntors I'in the Averaging ... 126

0.8r-----.----,-------,----,- --,- -,

0.6

0.4

0.2

-0.4

-0.6

-0.8

-1 L---_"-- -L- -'-__--=---'---- ...L- _

-3 -2.5 -2 -1.5 -1 -0.5
theta2 [rad]

solid linc : ronnected Poinrare n1<1p
dotted line : \I'bole experimental trajertory

: Poinrme map
: desired point
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Control by ,u11p-normalized energy: 82 = 00 ,..... -800
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The in\"ariant manifulds of 2R free-joint manipulators were shoml 'Illd their
cunservatiun ,,-as formulated by usc of a Hamiltunian

3_ TII-u \"Ontrol methods to an invariant manifuld uf t]1(' Hamiltonian lI"erl' pru­
pused \"ia mudulation of the input amplitude_

Secund-uukr an-raging analysis lI"as developed to ubtain a bl't.tl'r approxi­
mation_

A methud to terminate <11 a destination "-CIT d("-elopcd

6__-\ nl'lI-ly desigIH'd experimental system "-Wi dewlopl'd and experiments lI"ere
executed to \"('rify the \"alidity uf the propused control methods_



Chapter 6

Analysis and Control of 3R Free-Joint
Manipulators with One Motor

6.1 Nomenclature

.'\1 ,~ 11 + 1n 11"1
2 + 111 211

2 + /7/3112 ; dynamical coefficient

.-\2 ,~;f 12 + 11121..22 + 711 312
2

; dynamical coefficient

.-\3 ,~ 13 + 1n31,./ ; dynamical coefficient

.42 '~ .42 / E 32 ; normalized dynamical coefficient

"\3 ,~ .-\3/En ; normalized dynamiak coefficient

E 21 '~11I31112 /Il2111r2; dynamical coefficient

B31 '~17l31,1,'3 ; dynamical coefficient

En ,~ /Il3121r3 ; dynamical coefficient

c), ,~ cos(lIj - II,) ; abbre\'iation for cosine

f), ,~ B),c)./B32 ; normalized cosine

.5), '~ sin(O) - II,) ; abbre\"ialion for sine

5), '~ B),s)./E32 ; normalized sine

~ ,~ .42...\3 - C32
2

; determinant of reduced inertia m'ttrix

i\olations of the other ntriables and constants conform to those in Chaps. ~ and
5.

6.2 3R Free-Joint Manipulators with Only One
Motor

6.2.1 Averaging the manipulator

137
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joint 3
link 2

joint 2

Figure 6.1: 3Il. free-joint manipulator

Consider a 3Il. free-joint manipulator whose first joint is only actuated and
others are free as sholl'n in Fig. 6.1. Assume that the manipulator resides in the
horiwntal plane. The dylliullics is gin'n by

where 0, is dE-fined as the absolute angle for simplification of the equation. \\'ith
the periodic input to the first joint such as OJ = Ow + c:!T(I) and the substitution
as (82,83) = (0])2, C:P3), Eq.(6.1) yields

( P2 ) = ~ (.4.3 -~32). ( -C2J!~ + c: (S32P3
2

- S2J f:f) ) (6.2)
PJ 6 -e32 .'1.2 -C3J f~ - c: (S32P22 + S3J!:f)

The standard form for Eq.(6.2) is given by

(6.3)
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where
(2 (2(1I2.lh) 1 ( A3 -~32 ) (21 )(3 (3(112,113) =~ -C32 '-\2 1'31

.rJ2 .rJ2(1I2·03) = ( (S32(3 + .5:1 )(2

.rJ3 (13(02.113) -(S32(2 - S3!l(3

Theil the an'raged systcm is obtained as

6.2.2 Invariant manifold of 3R-FJM

The phase space of the 3R free-joint manipulator is six-dimensional and its Poincar6

map being cut at tlw period of the first joint is four-dimensional. that is. (112.113, 1h.1I3).

Figures 6,2 through 6A illustrate the behavior of the 3R free-joint manipulator in

J"('sponse to a periodic input, !r = 1 - cosuJt \I'ith the amplitude ~ = 0.01 and the

frequency uJ = 2". The dynamic parameters of the manipulator for simulations

I . I . 1 'Jl\"l'r<' ceterm111l'C symmetrically as 111, = 1.0. I, = 0.2. I,., = 0.1 and J, = 1211l,1,-.
Tlw initial configuration is giH'n by (112,113) = (1.0.1.0)[radj, Figures 6.2 through

6.~ arc L1w Poincar6 map projected onto the 3-dinwnsional space of (112 ,113, &3), the

phase plane of the third joint. and the plane of the second and third joints. respec­

tiw'I.\". The dots denote Poincar6 sections \I'ith the period T. The empty circles

denote the 'second' Poincar6 sections of the 'first" Poincar<; map cut at 112 = O. In

Fig. 6.2, tlw projection of the first Poincar6 map onto the 3D space of (112.113.113)

formed a dosed surface \I'ith a hole in the cenler. In Fig. 6.3. the projection onto

the 3rd joint's phase plane became an ellipse-like shape. In Fig. 6A. the projection

onto the 2nd and 3rd joints' plane took a shape like a rectangle.

Although it is diflieult to sec the shape in the whole ~-dimensional phase space of

(112 .113, &2, &3), it can be concluded from the figures that it forms an t\l'a-dimensional

inl'ariant manifold like a t\l'o-dimensiOlHlI torus in the ~D phase space. The rea­

son \I'hy the manifold is tll"O dimensional is as follo\l's: The second Poincmc map

forms a pair of dosed curves. as seen from Figs. 6.2 and 6.3. The curves arc only

one dimensional, since their projections were one-dimensional in each figure. The

curves intersected the plane of &2 = &3 = 0 at four points, The points located in

the corners of the rectangle in the plane of (112.113) in Fig, 6.~, Since a point is

zero-dimensional, the invariant manifold is two-dimensional at the most.



Chilp.6 Anillysis ilnd Cuntrol of 3R Frcc-Juint ,\Jilnipulilturs with One .\Jutur 1-10

0.08

0.06

004

~ 0.02

!
o

1:l

'"'"~ -0.02

-0.04

-0.06

-0.08
2.5

0.5 0.5
1.5

2.5

theta3 [rad] theta2 [rad]

figure 6.2: Poincare map projected onto 3D space (fh.fhfh)



Chap.6 Analysis lWei Control of 3R Frcc-Joint .\[<lIJipulators with Onc .\fotur 1-11

0.08,------.----,----,-----,------,---.--_--,-__.-_---.-__

0.06

0.04

-0.04

-0.06

-0.08L---L------'----'-------'---'L-_--'---_-----'-__-'-----_-L_-'
0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6

theta3 [rad]

Figurc 6.3: Poincare lllap projected onto 3rd joiut·s phasc planc



Chap.6 Analysis and Cuntrul uf 3R Frcc-Juint Manipulators with Onc ,\Jutor 1~2

1.6
lhela2 [radl

1.8 2.2

Figure 6.~: Bl'ha\·iur of 3R-FJ~1 in 2nd and 3rd juints· plane



Clwp.!i Analysis anel Control of 3R Free-Joint _\[anipu/awrs lI'jtll Onl' _\Jowr 143

6.2.3 Conserved quantities of 3R-FJM

.\s in the prl"'ious subs('uion .. a consl'lTl'd energy-like quantity can be found for

the an'ragl'd 3R-F.J:--1. Th(' cousl'rnltion rl'stritts the trajectory \I'ithin a subspace

\I'ith a reduced dil1ll'nsion. IHlmel~·. three or less. One of consl'nTd quantitil's can

be obtailwd from the an'ragl'd Lagrangian similarl~- to the discussion in Sl'c5.4.2.

Th(' consc'n-l'd (,11l'rgy-likl' quantity is rl'pr('sented by

(6_5)

\I'hen' £k and £" denote tlw kilwtic and poteutial components. r('spl'ctiH'ly. as

Ed (}. ¢) = .-\20~ + .~ho~ + 2C326203

£,,( ¢) = 1\ (C21 (2 + C31(3)

Fr01l1 Eq.(6.-l). the time dl'rinl(,i\"I' of the kinetic component £k ,-il'lds £k =
2oJ\(.'}202 + .17303) for the a,"('raged systc'm and that of the potential component

£" yil'lds £" = -20 1\(q202 + .1730:!) and. therefore. £ = a and £ is proyed to be

a wnsl'ITed qUilutit~· for the m-I'raged dynamics. The quantit~- is a Hamiltonian

for the a,-('ragl'd dynamics and \I-e simply call it the '-el1l'rgy" for 3R free-joint

manipulators in t Iw fullmyings. The aboH' simulation maintained t)w nllue of £

at 1D.i568[racI2/sIT2]. _\lthough the consermtion is neH'r prm'ed for the origi­

nal non-awraged d.\"I\amics of the 3fl-F_J:--1. the elwrg" can be conrluded to be

approximatel.,- WUSI'IT('d for the nOIHl\"('ragl'd dYlHunic, from the fan that the

approximation is guarantl'I'd b~' the m-eraging theorems.

_\s stated abon'o each iunlriant manifold intersects the Ydocity-zl'ro plane at

four isolated points_ :\aml'I~'_ thl' system stabilized onto the t'yo-diml'nsional in­

nlriant manifold can be tnl1linatl'd ,tt onl' of the four points \I-hen the '-elocitil's

exauly become zero at thl' Poincar{> map_ It implies that positioning the 3fl frel'­

joint manipulator can be di,-ided into t\l'O pha"l's. namely. control to an il1\-ariant

manifold ,md termination at the desired point. Then. the former control to the

ill\"ariant nmnifold is den'lopl'd using the consen'ed quantity_ i'\ote that the aboH'

conselTation is nothing but one-dimensional constraints in the four-dimensional

pha"l' space, while the simulations imply that the manifold is t\l-o-dimensional

and, therefore, it must hm-e another consl'rycd quantity. HmYl'H'r there are several

methods to find the other conserved quantity in Hamiltonian analysis in nonlinear

dynamics, the 3R free-joint manipulator ha.s no cyclic coordinates in its aycraged

dynamics and is not a sep,uabll' system. If the other consen-ed quantity is identi­

fied, the t\l-O consen'l'd quantities can be l'Ontrolled by modulation of the amplitude

and the frequency of the input. The modulation of the input frequency alters the

second-order moment 1\ in Eq_(6_4) independently of the input amplitude 0_ Al­

though the other cOl1serycd quantity has not been found yet. a control that restricts
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Figure 6.5: Puinrarr trajertory of the m·eraged 3R-F.J:\! uncler the rontrol

to at must three-dimensiunal spare ran be applied and. subsequently. a feed bark

Imr thaL restrirts tu t he desired manifold ,,·ill be de\"l'luped by the uther ronser­

Yatiun. ..\ feedbark rontrol by the runsel"\wl qual1tit~· is proposed in the next
su bsertion.

6.2.4 Feedback control by the conserved quantity

The isolated \"l'lority-zeru points of the innlriant manifold ran be moyed by mud­

ulation of the input amplitude sinre they arc determined by </J = ~ and not by

q. Therefore. the proposed method of Eq.(5.29) \\cre applied tu the·311 free-joint
I11<Ulipulator.

Figure 6.5 sho,,·s a simulation result uf the averaged 3R free-juint manipula­

tor under the propused control methud. The figure is represented by a cunnected

Puincare map projected ontu a 3-dimensionaJ phase plane of (0 2 . 03 , 03 ). The initial
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Figure 6.7: Poincare trajectory after t = 300[sec]
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and desired configurations arc (il2 . il3 , ih03)=(0.5[raelj. 0.5[md]. O[rad/secl, O[rael/sec])
and (1.0,1.0, O. 0). lTspl'rtin'ly. Figure 6.6 sholl's the transitions of the energy E.

Figun' 6.1 sholl's the' Poincare t.rajectory from t = 300[secl to t = lDOO[sec], II'hid]

is a part of Fig. 6.5. Thanks to the proposed control method, the energy conn'rges

10 the ",tlUl' corresponding "'ilh til(' desin'd configuration. The trajectory is on

an in"'lriant manifold. The syslem Iyas not stabilized exar-tll' onto til(' manifold

indudini!; the dl'stinat.ioll but stabiliz('d onto a manifold Idll're the energy became

til(' same "'llue as that. at the rkstinat.ion. The stabilized traje<.;torl' in the phase

span' forms a tll'O dinll'nsional dos('d surfate. sinte the input amplitude is settled

in a constant "'llul' Idll'n the energy is consl,ult. Tll('n. the proposed amplitude

modulmion control stabilizes the system onto a t.1I·o-dimensional illYariant manifold

corresponding to a desiLwl energy. If the other conscrn'd quantity is found, the

stabilized manifold is identified and the system tan be stabilized onto a manifold

Iyhich passes through a desired point. Tn addition, simulatiolls Iyere carried out

for the exact nOlH\ITraged system Iyhich sho\\'ed similar results as those fUl the

an'raged system.

6.3 Experiments

6.3.1 Simulations for experimental 3R-FJM

The simulations in Sec. 6.2.2 In're execu(,('d for a prm'isional modd in order to

dari(y the beh<ll'iors of 31\ free-joilllmanipulators. Thus. simulations for the model

based on th(' experimelllal 3R fn'l'-joint manipulator should be eXI'cuted. Figun's
6. through 6.lD illustrate a simulation result of the behal'iors of the al'eraged

31\·FJi\.1 for the expnimentalmodd in response t.o a periodic input, TIl(' dynamic

parametl'rs conform to the ",tlues in Table 5.1. The periodic input is a5: ill =

illO+::(l-tos-.:t) Idth:: = O.l[rad) and w = h[rad/sec]. The initial tonfiguration

is as: (il20 • iI:Jo ) = (1.0[rad]. 1.0[radj). TIl(' figure's correspond to Figs. 6.2 through

6.·1. respectil'ely. Although the shape of t.he manifold in Fig. 6.8 looks different

from that in Fig. 6.2 and IH15 a tldsted form. the manifold still formed a 1.\\'0­

dimensional torus-like dosed surfate Idth a hall in the tenter. It ta.n be said that

these torus-like manifold is topologically equivalent. The second and third Poincare

maps tut at 02 = 0 ,wd 02 = 03 = 0 ,m' also one-dimensional dosed CUITe and

isolated points. respectin'ly. similarly to those in Figs, 6.2 through 6A.
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Figurc 6.8: Poincare map projectcd unto 3D SP&·c (1:12 .1:13 . ih)
Simulatiun for expcrimental 3R-F.J1I1: (lho, 1:130 ) = (l.O[rad).l.O[rad))
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Figure 6.9: Poincare map projccted onto 3rd joint's phase planc
Simulation for cxpcrimcnt,Ll 3R-FJill: (rho, {/30) = (l.O[rad]. l.O[radj)
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Figurc 6.10: Bchm'ior of 3R-F.J:I[ in 2nd and 3rd joints' planc
Simulation for cxperimental 3R-F.JlII: (020 .030 ) = (l.O[rad]. l.O[radJ)
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Figure' G.11· Experimental trajectory in 3D phase space
Behm'ior for a constant input amplitude 0 = 0.1: (820 .830 ) = (0.0)

6.3.2 Control experiments of the 3R-FJM

Figures 6.11 and 6.12 illu:;trate an experimental result of the 311 free-joint manip­

ulator in rc:;ponse to a periodic actuation \\'ith a con:;tant input-amplitude'. The

periodic input i:; as: 81 = 810 + 0(1- cosw!) w'ith [ = O.l[rad] and w = 471'[rad/:;ec].

The initial configuration is 82 = 83 = O[md]. Figure 6.11 represents the trajectory

in 3D phasc space of 82 ,83 and fh, Solid line in the figure denotes a connected

CUI'\'e of PoinULre map, and ,ll) empty circle and an asterisk denotes the init.ial

point and the final point, respectively. Figure 6.12 represents the transition of the

energy E. The system show'ed a swirl-like trajectory dmwn into the center point

(82 ,83 ) = (~,~). Kote that since 8; was defined as a absolute angle, the third

joint becomes straight relatively to the second link at the center point. The energ.-,.

fluctuated and converged to zero similarly to that of the 211 free-joint manipulator.
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Figure 6.12: Experimental energy transition
BclHL\'ior for a constant input amplitude E = 0.1: (tho, 030) = (0,0)
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Figure 6.13 Experiment.al t.rajectory in 3D phase space
Bl'iHl\'ior for a constant. input amplitude ~ = 0.05: (tho. 1130 ) = (0.0)

The COl1\Trgence t.o the center point \\'as l:Omparatin'ly sloll"l'r for ~ = 0.1 than t.he
case for ~ = 0.05 ,1,; sholn] in Figs. 6.13 and 6.14.

Figures 6.15 through 6.1, illustrat.e an experimental result. of st.abilization of

t.he energy by t.he amplitude modulation. The init.ial point was about (112 .113 ) '"

(30[deg], 0) and t.he desired energy correspondrd wit.h (112 ,113 ) = (60[deg].0). :\1_
though t.he cont.rol failed as a result. from a viewpoint of positioning, it made efforts

to st.abilize the energy which can be seen in Fig. 6.17 compared to Fig. 6.12 and the

system IHIS converged not. to the center point but. to a. small manifold. :\lthough of

course frictional term IHiS quite large t.o disturb the stabilizat.ion of the energy, it.

should be not.ed the periodical errors of the energy by inaccuracy to take Poincare

map. If t.he error of PoineMc map is fixed in future researches, t.he control might
show better results.
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Figure 6.1~: Experimental energy transition
BclHLI·ior for a constant input amplitude E: = 0.05: (1120 .1130 ) = (0,0)
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Figure 6.15: Exp.5-5: Trajectory in 3D pha~e space
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Figure 6.16: Exp.5-3: Tn~jectory in phase plane of the third joint
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Figure 6.17: Exp.5-5: Energy transitiun
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6.4 Conclusion

The results in this chapter aI"(' as foIIO\I·s:

I. For 3Il free-joint manipulators. illl·ariant manifolds of the ,tH'raged dynamics

liTre shO\m to be tll·o-dimensional torus-like closed surface from simulations.

IdH're identification of the manifold requires tll·O conselTed quantities.

2. A consen·ed quantity IV,1<; ickntified as a Hamiltonian from consideration of
tl](' cncrgy of the ,nwaged dynamics.

3. A. feedback control of the cons('t"wd quantity via amplitude' modulation Ivas

proposed. The control stabilized the 3Il free-joint manipulator onto a tll"O­
dimensional invariant manifold corresponding to a desired ,",Llue of t he con­
served quantity.

.1. Experiments lI·ere carried out to illl·estig,tte the behaviors of the 3Il free-joint
manipulator and to I"t'rify the validity of the proposed control nH'thod.



Chapter 7

Conclusion

7.1 Contributions

This thesis discussed dynamical features of nonholonumic mechanical systems and

cont rul uf underal'tuatl'd systems. Thl' main results an' summarized as follo\\'s:

1. In Chap.3. a mution planning uf free-flying space robots \\'aii discussed as a

first-order nunhulonomic problem undl'r dynamical cunstraints.

(a) :"unhulunumie mutions uf space rubuts \\'ere furmul,ued with Euler pa­

raml'ters. The '"<uiat,ion uf satellite urientatiuns was represented by Lie

brackets fur a cyclic motion and cun,tant cuefficient l·eCLors. The cun­

stant coefficient I'('('(ors imply the radius uf cyclic mution.

(b) :\. mution planning methud for space robots waii propused. The method

simplifies path planning b)' dividing it into t\\·u steps:

i. Hulunumic planning uf a numinalmutiun disrl'garding the nunhulu­

numic cunstraints.

ii. Cumputatiun uf a fe,"siblc mution appruximating the infe,~5iblenum­

inal motion by spiral-like motion around it.

This strategy enables to apply m,1I1y tonyentional path-planning meth­

ods deyelopl'd for hulonomic robots to nonholonumic motion planning.

2. In ChapA, nonline,lr bclHlI'iors of free-joint nHLnipulator, \\'ere analyzed and

its control \\'as discussed as a second-order nonholonomic problem.

(a) i\onlineaI' bdHu'iors of 2R free-joint manipulators with a periodic in­

put \\'ere inyestigated by computer simulations. For a sufficiently small

input-amplitude, the Poincare map of the trajectory forms an ellipse­

like c!o,ed cUrl'e in the phase ,pace. Chaotic behaviors of 2R free-joint

manipulators for a, larger input amplitude \\we clarified.

15
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(b) A control strategy of free-joint manipulators ,,·ith a periodic input "·'1~

proposed. The control strategy \\-,1~ composed of two subgoa!s:

i. Simple positioning of the actuated joint to its destination regardless

of frel' joints. \\hich can be e,1~ily achie\"('d.

ii. Control of the fn'(' joints by periodic actuation of the a("[uMed joint.

Control to an inY<\rial1l manifold passing through the destination and

termination control at the dl'stination \\·"re proposed to meN the serond

snbgoal. Composition of thl'se t\\·o rontro!s \\·'1~ heuristically established

for 2[\ manipu[;,tors with one motor and a free joint.

3. In Chap.5. the <l\-eraging method \nls applied to formulate a theoretical in­

\-estigation of the beIHl\·iors of 2R free-joint manipulators. Control methods

\\-ere c!eycloped \·ia an'raging analyses.

(a) The an'raged dynamics of 2R free-joint manipnlators "·as found to form

an inYariant manifold. The innu·iant manifold was characterized by a

Hamiltonian conserY<ltion.

(b) Coutrolmethods to a desired ill\-ariant manifold using the Hamiltonian

\·ia amplitude modulation \\-ere proposed.

(c) Second-order an'raging analysis lIas in\"('stigated to obtain a better ap­

proximation and to dl'\·dop ,l control to terminate at the destination.

(d) Experiments \H're carried out to \erify the drccti\·eness of the proposed

rontrol nwthoc!s.

~. In Chap.5. the an'raging analysis adopted in Chap.5 lIas I'xtended to 3R

free-joint manipulators.

(a) The <l\·eraged dynamics of 31\ free-joint manipulators ,,-,1S found to form

a t,,·o dimensional torus-like innlriant manifold in the four dimensional

phase space. \\·hid] implies the existence of t\\"O consen·ed quantities.

One of consen-ed quantities \\-as found to be a Hmlliltonian of the ,l\"er­

aged dynamics.

(b) A control \-ia amplitude modulation was applied to 3R free-joint ma­

nipulators to stabilize its 'energy.· The control stabilized it to a t\\"O

dimensional manifold corresponding the energy.

(c) Experiments were executed to shO\\ the nonlinear behaviors of 3R free­

joint manipula.tors ,1I1d verify the proposed control.
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This research sholl·ed general nonlinear features of robot dynamics and its po­

tl'nti,Liity to minimize robot mechanisms in exchange for diflicnlty to coni rolunder

nonholonomy. l'\ell· ad\"illltageous minimal mechanisms II·(·!"C' proposed as free-joint

manipulators lI·ith onl~· one motor through the abo\"t' studies on control of non­

holonomic robots. Alt hough sen'ral systems IITIT propos('d a.'i minimal sysl\'ms

by oth('l" !"C's('ardwrs [.-\HLlI!95. Lyn96. BG+96]. they utilized other cirtlllnstantial

forn's of a conn-yor. friction. or gntl·ity as extra actuators or g('omeLric constraints.

The nll'chanisms proposed here lI·ithout circumstantial fon·(·s arc definitl'ly discrim­

inatr'd from those in the existence of such extra forces.

Sel·(·ral analysis and control concepts introduced in this dissertation can be gen­

('ralized to other nonholonomic systems. e.g. highrr-dinwnsional or more complex

systems. Espl'cially. theoril's and metho(b for chaotic systems l\"t're found to be

pOlyerful and useful tool to analyze dnlamical nonlinear mechanisms.

7.2 Prospects

There arc left lots of open problems:

1. Stability of fn·l'-.joint manipulators lI·as ne\"t'r sholl"n in a strict sens(·.

2. rositioning control method lI"as del·doped only for 211 free-joint manipula­

tors.

3. Characterization of manifolds of high('r dimensional systems is still difficult.

~. Input parametl'rs to be nlOdulated are only the amplitude and the frequency.

lI·here higher dinH'nsional systems lI"ill require more parameters to be con­

trolled.

The an'raging analysis lI"as ba;ied on friction-free systems, lI·here there is ITry

fell· practical systems lI·ith no friction in a slrict sense.

Although exact proof of controllabiIiL.'· of free-joint manipulators 11·,1.5 nen'r

presented. composition of global attraction to a manifold and termination at a

destination on the manifold possibly implies a constructiye Iyay to find a tmjectory

connecting any initi,Li point to any destination via a manifold. The problems

m·e that the control methods proposed in this dissertation liTre b,1sed upon ,lll

approximation ,wd that the stabilizability is still quite difficult to be sholl·n.

When friction is taken into account. the system will be not consen-cd as in

Chap.5 but dissipative. DYI1i1mical analysis ,wd modeling of the manifold will be

difficult since the dynamical structure turns into quite different. HOlI"el"Cr. appro­

priate control may aliolY to deal Iyith a system as friction-less as in the experiments
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in Sec.5. t. The "·urks on lOntrol of free-joint manipulators with fritt ion ha.<; cur­
rently been clone.
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