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Abstract

New satellite sensors are now providing a huge number· of time series of remotely

sensed images of the earth's surface. There is an increasing need for improved

techniques to extract information about the earth ecosystems from these remotely

sensed data, because remote sensing is the only comprehensive approach to monitor the

global environment. However, until recently, there have been few studies on the

techniques for monitoring complex natural ecosystems such as wetlands.

This thesis investigates new techniques for environmental monitoring using remotely

sensed images, with a special emphasis on wetland monitoring. There are 3 major

original contributions in this thesis: First is the development of new spectral indices,

such as PVI (Perpendicular Vegetation Index), WTI (Water Turbidity Index), and VSWI

(Vegetation-Soil-Water Index), that can be used to monitor the vegetation, water, and

soil conditions in wetland areas. These indices allow assessment of the states of

wetland environments and changes in them. Second is the development of a new

unmixing method called the subspace method. This new unmixing method is effective

for delineating continuous vegetation distribution using spectral image data. Third is the

development of a new classification method using gaussian process modeling. This new

method is eftlcient in classifying sensor fusion data. All these new methods are

theoretically formulated and then subjected to experiment using various time series,

spectral, and radar data.

The thesis is composed of 10 chapters:

In Chapter I, the fundamental relevance of wetland monitoring and remote sensing in

general is discussed, and brief descriptions are provided of spectral indices, unmixing,

classiEcation, and the Bayesian approach.

In Chapter 2, several multivariate analyses are conducted using multitemporal Landsat

TM image data to analyze the relationship between inundation by tlooding and the

response by vegetation.
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In Chapter 3, new spectral indices - Perpendicular Vegetation Index (PVI) and Water

Turbidity Index (WTI) - are developed for monitoring the degree of inundation and

vegetation change. The WTI along the turbid water line (TWL) and the PVl for paddy

rice, are defined. The relationships between flooding, water turbidity, and the

vegetation change of paddy rice are analyzed using these indices.

In Chapter 4, the PVI is funher developed to a Vegetation-Soil-Water Index (VSWI).

An algorithm that can automatically determine the end-member spectral points of

vegetation, soil, and water is developed. The VSWI is applied to wetland monitoring

using multi temporal Landsat TM data.

In Chapter 5, a new approach of unmixing by the subspace method is developed, and

applied to wetland vegetation unmixing using hyperspectral image data. Unmixing by

the subspace method is superior to conventional methods in numerical stability and

computational speed for hyperspectral imagery.

In Chapter 6, by applying feature-selection methods, effective band combinations for

classifying wetland vegetation types are investigated using airborne MSS data. Feature

selection is performed using a measure of separability, which is then cross-validated.

An effective band combination is selected and used to produce a wetland vegetation

map.

In Chapter 7, the method of wetland vegetation classification using multitemporal

remotely sensed data is established using mullitemporal Landsat TM data. Also, by

conducting biomass sampling and from spectral reflectance measurements, I establish

that wetland vegetation types have distinct temporal spectral patterns.

In Chapter 8, wetland vegetation classification is attempted using high-resolution

airborne spectral image data (CAS I), and the relationship between vegetation and

elevation is analyzed by overlaying a digital elevation model on the CASI image.

In Chapter 9, a new classification method for classifying wetland vegetation types using

Landsat TM, JERS I SAR, and ERS I SAR data based on the Gaussian process is

formulated and tested experimentally. The accuracy is assessed by comparison with

maximum likelihood and Bayesian neural network methods. The Gaussian process

method outperforms other methods, especially for sensor fusion data.
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In Chapter 10, the contributions of this thesis are summarized, and the possible

applications of newly developed advanced techniques for monitoring wetlands and

other complex ecosystems are discussed, and finally the remaining problems and

directions for future research are described.
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Chapter 1

Introduction

Our understanding of our planet is sadly deficient. True, we have grown
familiar with spacecraft photos of that lonely-looking globe hanging in the
void, covered with a life sustaining biosphere that makes our planet uniquely
beautiful and leaves it uniquely fragile. Yet we know next to nothing about the
workings of Eat·th's ecosystem. (Myers 1984, p.258.)

Environmental changes have been expanding from regional to global issues due to the

rapid growth of the world's population and to technology developments. Environmental

problems such as global warming are major issues for humankind in the next century

(Mintzer 1992). We have to make a start on the road toward sensible stewardship of our

planet. However, our understanding of the Earth's ecosystem is poor, as it is based on

limited research and insufficient observational data. For example, scientists do not even

agree, within an order of magnitude, on how much wetland there is on Earth (Mathews

1987, Aselmann and Crutzen 1989), crucially important as that is to global warming

modeling.

The use of remotely sensed data in the study of environmental changes is substantial.

Remotely sensed data like aerial photos are useful at the local scale, but at the global

scale they are vital. Global environmental problems require information at the global

scale. Earth observation from space offers unique opportunities to obtain that

information. More importantly, remotely sensed data can be used to parameterize

environmental models (Foody and CUlTan 1994).

Given remotely sensed data, there is an increasing need for improved techniques to

extract the environmental information from the data. Moreover, new satellite sensors

are now providing a huge amount of time series data for environmental monitoring.

However, conventional research programs are not well developed to use these high

dimensional data. Investigation has focused primarily on analyses of simple land cover
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types using scenes from remotely sensed images. Monitoring of complex natural

ecosystems such as wetlands using time series and spectral image data has been

neglected.

This thesis investigates new techniques for analyzing high dimensional, remotely

sensed data acquired by optical and radar sensors, specifically focusing on their

application to wetland monitoring. The research includes most imponant aspects of

remote sensing techniques, spectral indices, unmixing, and classification. Spectral

indices measure the condition of the earth surface, unmixing techniques decompose the

end-members from the mixed pixels (mixels) in the scene, while classification

techniques discriminate land cover types from the pixels.

The new methods that have been specifically developed in this thesis are as follows:

First, new spectral indices have been developed for wetland monitoling. They include a

Perpendicular Vegetation Index (PVI), a Water Turbidity Index (WTI), and a Vegetation,

Soil and Water Index (VSWI). Second, a new unmixing algorithm using the subspace

method (SM) has been devised to unmix effectively the high dimensional, spectral

imagery data. Third, multitemporal and hyperspectral remotely sensed image data have

been tested for classifying wetland vegetation types. Fourth, in order to select effective

band combinations, the feature selection method using cross-validation has been

employed for selecting effective bands for wetland classification. And finally, the latest

Bayesian approach, Bayesian neural networks (BNN), and the Gaussian process (GP)

have been tested for classification using multitemporal sensor fusion of optical and

microwave sensor data. In this thesis, all these new methodologies are theoretically

formulated and tested experimentally for their effectiveness.

This introductory chapter discusses the fundamental relevance of wetland monitoring

and remote sensing in general, and provides brief descliptions of conventional methods

for spectral indices, unmixing, and classification. Finally, the latest theoretical Bayesian

approach is briefly described. The basic knowledge described here is important for

understanding the main chapters of this thesis.

The structure of the chapter is as follows: the first section describes the importance of

global wetland monitoring, with the special emphasis on its connection with the global

warming problem. The second section explains remote sensing methodology in general,

as well as the principles and characteristics of the sensors used in the analyses. The
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third section describes briefly several conventional spectral indices. Thc fourth section

explains the basic idea of the unmixing approach. The fifth section describes supervised

classification. with special emphasis on the maximum likelihood method. Thc sixth

section explains the principles of the statistical feature selection method for

classification. And the final section describes the latest Bayesian approach. which is

employed as a new classification method in this thesis, with emphasis on the difference

between the Bayesian and conventional statistical approaches. This chapter concludes

with an overview of the structure of thc thesis.

1.1 Global Wetland Monitoring

Wetlands are an importaI1l componcnt of the earth geosphere-biosphere system.

Wetlands have existed on land throughout the history of the Earth. During the

Pleistocene, large climatic oscillations resulted in widely changing wetland pallerns,

which continued to a lesser exteI1l during the Holocene (Masing et al. 1990). At preseI1l,

wetlands are strongly influenced by man, and their distribution and exteI1l have been

largely changed by human activities over the last century. Many of the Earth's wetlands

lie within the permafrost areas at high latitude. The amount of wetlands in humid

climates and tropical zones is not known, nor has the size of the highly astatic wetlands

within arid regions been determined.

Methane is a trace gas in the atmosphere whose concentration has been increasing at

the rate of I % per year in the last decade. Methane is one .of the strongest green house

gases and its contribution to global warming is almost comparable to that of carbon

dioxide. Although major sources of methane have been identified, there exist large

uncertainties in the estimates of the source strengths. Several investigations have shown

that 10 - 40 % of total methane emission is from wetlands (Cicerone and Oremlund

1988). An imponant source of methane is anaerobic decomposition in wetlands and

inigated rice fields. It is also produced by eI1leric fermeI1lation in ruminants, biomass

burning, decomposition in landfills, and fossil fuel exploration, transport and

combustion.

The wide range of estimation of melhane emission in wetlands ariscs from large

uncertaiI1lies about wetlands themselves as well as about their emission characleristics.

The tOlal size of wetland areas has been estimated by several authors. However, lhere is

lillIe information about their geographic distributiun or ecological characterislics



(Mathews 1987). Estimates of global wetland areas range between 2 and 3.6x I0' km'.

Some of these estimates consider only swamps and marshes. whereas others include

peatJand. However, the area of peatland alone ranges from 2.3 10 4.0x I0' km:. These

numbers show that due to differelll classification, the distribution and the extelll of

wetlands are subject 10 rather high uncertainties. Data related 10 seasonality brought

about by flooding and freezing are especially importalll for estimating the methane

emission rate. Aselmann and Crutzen (1989) have included these data in estimating the

geographical distribution of wetlands by compiling published maps. They arrived at a

global wetland area of 5.7xI0· km'

Accurate estimation of global wetland distribution requires seasonal information at the

global scale, and remote sensing is the only methodology that can provide such

information. In addition, remotely sensed data can be used 10 parameterize models of

such wetland conditions as amount of vegetation biomass and degree of water

inundation.

1.2 Principles of Remote Sensing

Remote sensing can be defined as the science of observation from a distance. Thus, it is

cOlllrasted with in situ sensing, in which measuring devices are either immersed in or at

least touch the object of observation and measurement (Barret and Curtis 1992).

Remote sensing of the Earth's surface began with the use of aerial photography in the

early 19OOs. Aerial-mapping cameras and photo illlerpretation were the tools used until

the late 1960s, when the first multispectral scanner systems were flown on aircraft. In

the I960s, remote sensing became a distinct field of study. The launch of the first

LANDSAT satellite in 1972 was actually the real starting poi III of remote sensing

studies. Since the LANDSAT series of satellites, digital image processing and

classification have become increasingly importalll aspects of remote sensing

(Showengredt 1983).

Since 1983, NASA has been involved in a project on earth science, now called Earth

System Science. This project studies the earth as an integrated, dynamic whole. Remote

sensing has been a key technology in this project, and a new satellite platform for many

earth observation sensors. the Earth Observing System (EOS), has been designed

(Curran et a1. 1990).



J Introduction

Rcmotely sensed imagery data acquired from airbome and satellite scnsors are

available in digital formal. The imagery data are composed of discrcte picture clements

(pixels). The digital value of each pixel is radiometrically quantized inlO discrete

brightness levels. The great advantage of digital data is thal thcy can be processed by

computer, either for further processing or for analysis.

A most important characteristic of remotely sensed image data is the wavelength band.

Some sensors measure reflected solar radiation in the ultraviolet, visible, and near-lO­

middle infrared bands. In the microwave band, the sensors measure the relative return

from the Earth's surface of the energy actually transmitted from the satellite iLSelf.

Sensors of this type are referred to as active, because the energy source is provided by

the remote sensing platform. Sensors that depend on an external energy source, such as

the sun, are called passive.

The properties of the sensors are characterized by the number and location of their

specu·al bands, the ground resolution (pixel size), and the radiometric resolution

(dynamic range). Radiometric resolution means the range and number of discrete

brightness values (or SIN ratio). Frequenl1y, radiometric resolution is described by biLS

(8 biLS has 256 levels of brightness). For example, the Landsat Thematic Mapper has 7

wavelength bands with 8-bit radiomeu·ic resolution, 6 of which have 30-m spatial

resolution and a thermal band that has a spatial resolution of 120 m.

The purpose of remote sensing is to identify and quantify surface materials. Land cover

lype can be identified if the sensor has sufficielll wavelength bands. For example, if the

sensor has red and near-infrared bands, il should be easy lo discriminate between

vegetation, soil and water because vegetation is brighter in the near-infrared band and

dark in the red band, while soil appears bright in both bands and water is black in both

bands. If more than two bands are available more precise discrimination should be

possible, even with land cover types that are spectrally similar lo each other. Recenl1y,

the number of bands in sensors for remote sensing has been rapidly increasing.

A similar argument also applies to microwave image data. Several differelll

wavelengths can be used to idcntify land cover types based on the different scattcring

cross-section with wavelength. However, further information can be obtained using

microwave imaging, from the specific characteristic of the microwave band; that is the

polarization of the transmitted and scattered radiation. The polarization of an
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electromagnetic wave refers to the orientation of the propagated electric field. DUling

scattering by surface materials, some polarization changes occur and energy can be

received as horizontally and/or vertically polarized. The degree of polatization rotation

that occurs can also be a useful indicator of surface material.

1.3 Spectral Indices

Spectral indices have been one of the most actively studied subjects in remote sensing

during the last two decades. Vegetation indices in particular have been the focal point

of environmental monitoling.

The spectral reflectance of a plant canopy is a combination of the reflectance spectra of

plal1l and soil components, governed by the optical properties of these elements and

photon exchanges within the canopy. As the vegetation grows, the soil contribution

progressively decreases but may still remain significant, depending on plant density,

row effects, canopy geometry, wind effects, and so on.

The cells in plant leaves are very effective at scattering light because of the high

contrast in the index of refraction between the water-rich cell contents and the

intercellular air spaces. Vegetation is very dark in visible bands (400-700 nm) because

of the high absorption by pigments (mainly chlorophyll) in leaves. There is a slight

increase in reflectivity around 550 nm (visible green) because the pigments are least

absorptive there. In the spectral range of 700-1300 nm, plants are very bright. From

1300 nm to about 2500 nm, vegetation is relatively dark, primarily because of the

absorption by leaf water. Cellulose, lignin, and other plant materials also absorb

radiation in this spectral range.

Based on these spectral properties of vegetation reflectance, spectral indices have been

developed for monitoring. Most of them are indices for monitoring vegetation

parameters. The vegetation index is a number generated by some combination of

remote sensing bands and has some empirically tested relationship with the amount of

vegetation in a given image pixel. Most vegetation indices have been defined based on

combinations of visible and near-infrared reflectances, such as the normalized

difference vegetation index (NOV]) and simple ratio (SR), which have been used in

remote sensing studies. These indices are closely related to the vegetation biomass, but

arc also sensitive to factors such as sensor look-angle, and soil and atmospheric
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conditions. These factors complicatc interpretation of the targct reOcclancc. Scveral

new indices, such as SAVI (soil-adjusted vegetation index) and ARVI (atmospherically

resistant vegetation index) and combinations of both (SARVI), havc also been

dcveloped in an allempt to minimize these inOuences (Rondeaux et al. 1996).

A basic assumption for these vegetation indices is that all bare soil spectra in a remotely

sensed image form a line in spectral space. This is related to the concept of the soil line.

early all of the commonly used vegetation indices are only concerned with red and

near-infrared (Red-NlR) space, so a red-near-infrared line for bare soil is assumed. This

line is considered to be the line of zero vegetation. The soil line is a hypothetical line in

spectra] space that describes the variation in the spectrum of bare soil in the image. The

line is found by locating two or more patches of bare soil pixels in the image and

finding the line of best fit among them in spectral space.

Vegetation indices can be grouped into two types based on the iso-vegetation line in the

Red-NIR spectral space:

]) Iso-vegetation lines converge at a simple point: The indices that use this

assumption are the "ratio-based" indices, which measure the slope of the line

between the point of convergence and the pixel spectrum. NDVI, SAY!, and RVI

are of this type.

2) All iso-vegetation lines remain parallel to the soil line: These indices are typically

called "perpendicular"' indices and they measure the perpendicular distance from

the soil line to the pixel spectrum. PVl, WOVI, and OVI are of this type.

NOVI is sensitive to vegetation change and has the highest dynamic range among

vegetation indices. TOVI is moderately sensitive to the soil background and to

atmospheric effeclS. PVI has a smaller dynamic range and is also sensitive to

atmospheric effects. It is relatively easy to use but the soil line has to be determined

first. PVI works beller than NOV] when there is less vegetation cover. Many of the

indices based on the soil line are inadequate if no atmospheric cOTTection has been

performed, and all vegetation indices change as the look-angle from the sensor changes.

1.4 Unmixing
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Statistical unmixing has been intensively studied in recent decades and now it is a fairly

well established method in remote sensing studies. However, the methods used are

difficult to apply to unmixing using very high dimensional. remotely sensed data. In

this section, the basic principles and limitations of statistical unmixing, especially the

linear unmixing model. are briefly described.

In cases when ground resolution is almost the same as the ground cover units or much

larger, or we need to study regions of natural or semi-natural vegetation where ground

surface cover changes continuously, a suitable way of extracting information is to try to

estimate how the area of each ground pixel is divided up among the different cover

types. This approach is usually known as mixture modeling or unmixing. By unmixing,

we can produce quantitative maps of the concentration of different cover types across

the scene.

In unmixing, we need to estimate for each pixel in the image the proportions covered

by each ground category, given the spectrum of the pixel. The estimation should be

based on a model of the spectral mixture of the components. Ideally, we need to know

the exact function of the specu-aI mixture. The linear mixing model is the simplest

approach, although even here, the function cannot always be inverted unambiguously.

Ambiguous inversion happens when we have more ground cover components than

specu-aI bands. The mixture function depends on the reflectance spectra of the cover

types of which the scene is composed. However, inadequate calibration of an image and

atmosphelic effects often prevent the calibration of the data to the reflectance values;

hence, laboratory reflectances cannot be used for unmixing. A much more likely

situation is that we have detailed field knowledge of proportional ground cover for a

number of pixels; then, based on the number of pixels for which both the mixture

function and spectrum of each component are known, we can unmix the model by

statistical inference.

The basic physical assumption underlying the linear mixing model is that there is no

significant multiple scattering between the different cover lypes; each photon that

reaches the sensor has interacted with just one cover type. Under these conditions, the

received energy can be modeled as the simple sum of energies received for cover types

in that field and the coefficient uf thc model is proportional to the area covered. The

ground cover proportions are well defined and add up to unity.
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Pure component spectra of the land cover types are referred to as thc end-member

spectra, and the categories themselves as the end-members. The term end-member here

means the spectral response without noise. Each end-member spectrum is a point in

spectral space. Pixels that are mixtures of just two components will, in the absencc of

noise, lie in feature space along the line joining the points corresponding to thc two

end-member spectra. Similarly, mixtures of three end-member spectra with non­

negative proportions should lie inside a triangle. In higher dimensional space, mixed

pixels (mixels) lie in the hyperplane defined by the end-member spectra of the

components.

Let c be the number of the land cover types and 11 be the number of spectrum

dimensions. In the linear unmixing model, from the theory of linear equations, the

solution of the unmixing will be unique if C=I1+ 1, and if C>I1+ 1 there will be an infinity

of exact solutions. Finally, when C<I1+ 1 there may well be no exact solution. The

condition must be modified to n<c if we are relaxing the sum-to-unity constraint. The

number of dimensions of the spectra here is not really the number of spectral bands, but

rather the intrinsic dimensional number of the spectral data that can be known by

principal component analysis. In the case of the 6 bands of Landsat Thematic Mapper

data, if we find that the futh and sixth principal components of the data contain nothing

but noise, then the true dimensional number of the data is four. In this case we can

unmix only up to 5 components using these data (Settle and Drake 1993).

Ideally the end-member spectra should be detelmined by laboratory measurements of

the end-member components. However, there are sometimes substantial problems in

correcting satellite data sufficiently well for atmospheric effects to allow direct

comparison between laboratory data and remotely sensed image data. Thus, the end­

member spectra are often determined from pure pixel values sampled from the image

itself.

1.5 Classification

The most widely used method for cxtracting information on surfacc covcr from

remotely sensed data is image classification. With this technique, each image pixel is

allocated exclusively to one of a small number of known categories, producing an

image cOl1laining thematic information. The resulting thematic map can be used to



estimate the area of each category. if the numbers of boundary pixels or mixed pixels

are small.

In this thesis. classification studies using multi temporal and hyperspectral remotely

sensed data in Chapters 6 and 7, and also the feature selection study in Chapter 8, are

all conducted using the supervised maximum likelihood classification method. New

classification methods using the Bayesian approach developed in Chapter 8 are also

compared with the maximum likelihood method. Because the laller forms the

foundation of the statistical classification approach, it is important to be aware of the

details of this method in order to understand the studies in this thesis. In this chapter,

the basic principles of the supervised classification method and maximum likelihood

method are described following Richards (1986).
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1.5.1 Supervised Classification

Supervised classification is the most common technique for remote sensing image

analysis. It classifies the pixels in an image to one of the cover types, or classes. Many

algorithms have been developed for this. Some are based upon probability disliibution

models for the classes of interest; others panition the multispectral space into class

regions using optimally located surfaces. Irrespective of the particular method chosen,

the essential practical steps are:

I. Determine the set of ground cover types into which the image is to be segmented.

These are land cover classes, such as water, urban regions, cropland, and range

lands.

2. Choose representative or prototype pixels from each of the desired sets of classes.

These pixels are called training data. Training sets for each class can be established

using ground tIUth by site visits, maps, aerial photographs, or even photo

interpretation of color-composite productS formed from the image data. Often the

training pixels for a given class will lie in a common region enclosed in a border.

That region is then often called a training area.

3. Use the training data to estimate the parameters of the panicular classifier

algorithms to be used; these parameters will be the properties of the probability

model used or will be eyuations that deline partitions in the multispectral space.
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The set of parameters for a givcn class is sometimes called the signaturc of that

class.

4. Using the trained classifier, label or classify every pixel in the image into one of the

desired ground cover types. Here the whole image is classified.

5. Produce tabular summaries or thematic (class) maps which summarize the results

of the classification.

1.5.2 Maximum Likelihood Method

Maximum likelihood is the most common supervised classification method. When the

distributions of the spectra are normal, it can be shown theoretically that the maximum

likelihood method gives the best performance. In the following, the principles of the

maximum likelihood method are described.

Let the land cover classes be represented by

W"i=I, ... ,M (1.1)

Where M is the totalnomber of classes. The method determines the class of a pixel at a

location x by conditional probabilities

p(wilx),i=I, ... ,M (1.2)

Here, x is a vector of brightness values for the pixel. The probability p(w,lx) gives

the likelihood that the correct class is W, for a pixel at position x. Then, classification

can be performed according to

XEW, if p(w,lx»p(wjlx) for all i*i (1.3)

The pixel at X belongs to class w, if p(w,lx) is highest. This intuitive dccision rule is

a special case of a more general rule in which decisions can be biascd according to

different degrees of significance bcing atLached to different inco'Teet classifications.

The general approach is called Baye's classification.
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However, the p(w,lx) values are generally unknown. If sufficient training data are

available for each land cover type, then these data can be used to estimate a probability

distribution p(xlw,) for a cover type thal describes the chance of finding a pixel from

class w, at the position x. There will be as many p(xlw,) as there are ground cover

classes. In other words, for a pixel at a position X in multispectral space, a set of

probabilities can be computed that give the relative likelihood that the pixel belongs to

each available class.

The desired p(w,lx) in (1.3) and the available p(xlw,) - estimated from training data ­

are related by Baye's theorem:

p(w,lx) = p(xlw,)p(w,) / p(x) (lA)

where pew,) is the probability thal class w, occurs in the image, and p(x) is the

probability of finding a pixel from any class at location x. Although p(x) itself is not

important for classification, it can be calculated as

p(x) = i>(xIWi)p(Wi )
;=1

(1.5)

The pew,) are called a prim; (or prior to analysis) probabilities, since they are the

probabilities with which class membership of a pixel could be guessed before

classification. By comparison the p(w,lx) are called a posteriori (or after the fact)

probabilities. Using (lA) it can be seen that the classification rule of (1.3) is

X E w, if p(xlw,)p(w,) > p(xlw)p(w) for all j"#- i (1.6)

where p(x) has been removed as a common factor. The rule of (1.6) is more acceptable

than that of (1.3) since the p(w,lx) are known from u'aining data, and it is conceivable

that the pew,) are also known or can be estimated from the analyst's knowledge of the

image. For mathematical convenience, if the definition

g,(x)= In{p(xlw,)p(w,)l = Inp(xlw,)+lnp(w,)

is used, where In is the natural logarithm, then (1.6) can be restated as

(1.7)
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( 1.8)

where g,(x) are referred to as discriminant functions. This is, with one modification to

follow, the decision rule used in maximum likelihood classification.

At this stage, it is assumed that the probability distributions for each class are of the

form of normal multivaliate models. This is an assumption, rather than a demonstrable

properly of natural spectral or information classes. However it leads to mathematical

simplification in the following.

In (1.7) therefore, it is now assumed for N bands that

-N12I" 1-112 I ,,,-Ip(xlw.)=(2n) 4-, exp{-2"(x-m.) 4-, (x-m,)} (1.9)

where m, and I, are the mean vector and covariance matrix of the data in class Wi'

respectively. The resulting term -~ln(2n) is common to all gi(X) and does not aid
2

discrimination. Consequently, it is ignored and the final form of the discriminant

function for maximum likelihood classification is

g.(x) = In p(w)-2.lnII 1-2.(x - m )' L~l(X -m)
, '2' 2 " ,

(1.10)

Often the analyst has no useful infOImation about the p(w.), in which case equal prior

probabilities are assumed; as a result In p(w.) can be removed from (1.10) since it is

the same for all i. In that case the 1/2 common factor can also be removed leaving, as

the discriminant function:

gi(X) = -lnII,I-(x - m,)' I~'(X-mi ) (1.11)

ImplemeI1lation of the maximum likelihood decision rule involves using either (1.10) or

(l.ll) in (1.8).

As a means for assessing the capabilities of the maximum likelihood decision rule, it is

useful to determine the shapes of the surface that separate one class from another in

multispectral space. These surfaces can be determined in the following manner.
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Spectral classes are defined by those regions in multispectral space where their

discriminant functions have the highest values.Clearly these regions are separated by

surfaces where the discriminant functions for adjoining spectral classes are equal. The

ith and jth spectral classes are separated therefore by the surface

(1.12)

This is refen'ed to as a decision surface, since if all the surfaces separating spectral

classes are known, decisions about class membership of an image pixel can be made on

the basis of the position relative to the complete set of surfaces.

The construction (x - my I~l (x -m,) in (l.J0) and (l.11) is a quadratic function of

x. Consequently, the decision surfaces implemented by maximum likelihood

classification are quadratic and thus take the form of parabolas, circles, and ellipses.

1.6 Feature Selection

As the number of features (bands) of remotely sensed data increases, theoretically the

accuracy of classification using these data should also increase. However, in real

situations, this is not the case. A decrease in classification accuracy often occurs when

the number of training samples is small. This is because when the number of features

increases, the number of parameters also increases, and more rapidly, such that the

number of training samples necessary for accurately estimating these parameters easily

becomes larger than the actual training data available for classification. Feature

election or feature reduction is necessary to compensate for this problem and to realize

higher classification accuracy using high dimensional remotely sensed data. In this

section, the basic methods of feature selection employed in this thesis are described

following Richards (1996).

1.6.1 Separability

As the number of fcaturcs or bands increases, the classification cost also increases in

any classification algorithm. In classifiers such as the minimum distancc mcthod, the

cost increases linearly with the number of features. However in maximum likclihood

classification, the cost increascs quadratically with number of featurcs. Thercfore, it is
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desirable to select only effective features to perform an effieiem classification. Features

that have low separability of spectral classes should be discarded not only to save

computational costs but also to avoid failure in estimating the parameters of the

classifier.

To perform feature selection, relative classification performance of a set of features has

LO be assessed quamitatively. A procedure commonly used is to determine the

mathematical separability of classes. If the separability is not lowered by the removal

of certain features, then those features are considered of lillie value in the classification

process.

There are several ways to measure the separation or overlap between a pair of

probability distributions of classification classes. Obviously the distance between

means is insufficient since overlap will also be influenced by the variance of the

distributions. Instead, a combination of both the distance between means and the

covariance of the class distribution is necessary for the evaluation. Such measures are

all refen'ed LO as separability. in which the separation of dislJibutions is evaluated by

statistical pattern classification.

1.6.2 Divergence

Divergence is a measure of the separability of a pair of probability distributions in their

degree of overlap. It is defined in tetms of the likelihood ratio

L,,(x) =p(xlw,)/ p(xlw) (1.13)

This gives the divergence between a pair of spectral classes that are normally

distributed. If there are more than two spectral classes, all pairwise divergences need LO

be checked LO see whether a particular feature subset has sufficient separation. Then.

the LOtal separability is evaluated by the average divergence.

However, there is a problem with divergence. As spectral classes become separated

from each other in multispectral space, the accuracy of classification approaches 1.0.

The divergence measure will increase quadratically with separation between spectral

classes. This rate of increase of divergence is quite misleading if divergence is used as

an indication of how successfully the pattern in the corresponding spectral classes can
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be classified. Moreover. if there are some outlying easily separable classes. they will

increase the average divergence in a misleading way. This will result in thc selection of

sob-optimal feature subsets at best. This problem makes divergence an unsuitable

indicator in some cases. However, the Jeffries-MalUsita distance described in the next

section does nOl suffer from this drawback.

1.6.3 Jeffries-Matusita (JM) Distance

The JM distance (Bhauacharrya distance) between a pair of probability distributions

(spectral classes) is defined as

J il =f{~p(xlw,)-~p(xIW)}'dx (l.l4)

which is seen to be a measure of the average distance between the two class density

functions. For normally distributed classes this becomes

in which

Jil =1000~2(1-e-a) (l.lS)

(l.l6)

lt is of illlerestto note that the first term in (1.16) is akin to the square of the normalized

distance between the class means. The presence of the exponelllial factor gives an

exponentially decreasing weight to increasing separations between spectral classes. The

function is asymptotic to 1414 so that a 1M distance of 1414 between spectral classes

would imply lOOO/O classification accuracy for those classes. This saturating behavior is

highly desirable since it does not suffer from the difficulty that affects the divergence

parameter.

1.7 Bayesian Learning



I Introduclion 17

The latesl Gaussian process is a Baycsian approach first dcveloped in regression and

function eSlimation studies based on Bayesian learning. Bayesian learning provides a

completely different inlerprelation of probability and modeling from the convenlional

statistical approach (frequelllist point of view). In lhis chapter, in order to make it easier

10 understand the later chapter using the Bayesian approach, the principles of Bayesian

learning are briefly described, with special emphasis on the difference between

Bayesian and frequentisl approaches, following Neal (1996).

1.7.1 Bayesian and Frequentist Approaches

Bayesian learning uses the term probability to include all forms of uncertainly as to the

degree of belief in various possibilities. Learning and inference are then performed by

simple applications of the probability distribution over all unknown quantities In

contrast, the conventional frequenlisl approach in statistics uses probabilities as long­

run frequencies of repeatable events. In frequentist learning, estimates are made of

unknown quantities to produce a good model.

To see the difference between Bayesian and frequentist learning, consider the case of

LOssing a coin. In Bayesian learning, there is an uncertainty about each LOSS: the coin

has a certain probability of landing heads or tails. Because we do not know the

probability of its landing heads, we will update this probability distribution using the

rule of probability theory after each lOSS. In the frequentist approach, such a probability

update is not necessary. Instead, we choose some estimator for the unknown probability

of heads according to some criterion using the frequency of heads in past LOSSeS.

1.7.2 Models and Likelihood

Consider a data series, x[1), x(2) , .... , generated by an independent random process

following a probability density P(x'i)18) with unknown model parameter 8. If this

density is Gaussian, we can write this with 8 = {/l,a} as:

P(x'''I/l,a) =exp(-C.,J') -/If / 2a')/.J2iia

Learning aboul 8 is possible after some observation of x") For both Baycsian and

frequentist learning, these observations can be assessed by the likelihood function
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L(O), which gives the probability of the observed data as a function of the unknown

model parameters

(1.17)

In the maximum likelihood method, the unknown parameters are estimated LO

maximize the likelihood L(O). In the case of tossing a coin, the maximum likelihood

estimate 8 is the frequency of heads among x(l', ... ,x("J. It is known that the

maximum likelihood estimates converge on the true value as the amoulll of

observational data increases.

In a real problem, we are interested in the prediction P(x'''+''18). not in the value of 0

itself. In a frequelllist approach, a prediction is based on an estimated O. However, by

using the Bayesian approach we can make a prediction that takes accoulll of the

remaining uncenaimy in 0

1.7.3 Bayesian Learning and Prediction

Bayesian learning gives a probability distribution over model parameters that expresses

our belief regarding the likelihood of the different parameter values. To stan the

process of Bayesian learning, we must define an a priori distribution, P(O), that

expresses our initial belief about 0 When we observe x(l', ... ,x(") we can update this a

priori distribution to an a posteriori distribution, using Baye's Rule:

P(x(I', j"'IO) ~ L(Olx(1) .. ,x(n,)p(o)
P(x(l', ,x("') ,

(1.18)

The a posteriori distribution combines the likelihood function, which cOlllains the

information about 0 derived from observation, with the a priori estimate, which

contains the information about 0 derived from our background knowledge.

In the coin tossing example, we might stan with a uniform a priori estimate for 0, the

probability of heads. As we see the result of several lOsses, the a posteriori distribution,

obtained by combining the a priori eStimatc with the likelihood function, will approach

the observed frequency of heads. To predict the value of an unknown quantity X
l
,,+l),
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Bayesian learning integrates the predictions of the model with thc a posteriori

distribution of the parametcrs as

P(x'''··)lx''' ..... x'''') = fP(x'''·1)18)P(8Ix'l) .... x'" )d8 (1.19)

This predictive distribution for x'''·1) given x(l), ... ,x''')· is the complete Bayesian

inference regarding X'''·I I , which can be used for many purposes.

In the coin tossing example, if we use a uniform a priori estimate for the probability of

heads, the Bayesian prediction for the result of toss n+ I, given the results of the fU'st n

tosses, is

P(X'''·I)IX''I, .. ,x'''»=(17+l)/(17+2) if x',,·1) =heads

(1 + I) / (17 + 2) if X,,,·I) = tails

where hand t are the numbers of head and tails in x(l), ... ,x''')

(120)

However, even in this simple problem, we can see the effect of prediction by

integration rather than maximization. If we have tossed the coin twice, and each time it

landed heads, na'lve application of maximum likelihood will lead us to conclude that

the coin is certain to land heads on the next toss, since e=1. The Bayesian prediction

with a uniform a priori estimate gives a more reasonable probability of 3/4 for heads.

The Bayesian procedure avoids jumping to conclusions by considering not just the

value of 8 that explains the data best, but also other values of 8 that explain the data

reasonably well, and hence also contribute to the integral of equation (1.19)

1.7.4 Learning Complicated Models

There is a principle for modeling studies called "Occam's Razor". It states that we

should select the simplest model for inference. However, in some complicated pattern­

recognition applications, we often cannot find any simple procedure for recognition.

There is no reason to suppose that there is always a limit to the complexity of a model

that will give good performance. Howcver, the complexity of models is often limited,

not just to save the computational time, but also to avoid overfitting of the training data.

But there is no need for concern ahollt overfilling in the Bayesian approach.
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The overfilling problem in a frequentist approach occurs because of a tradc-off bctween

the bias and the variancc of an estimator. The bias of an estimator mcasures any

systematic error of the prediction; the variance measures the degree to which the

estimate is sensitive to the randomness of the training data. One way of learning is to

minimize the sum of the squares bias and the variance. Since reducing bias often

increases variance, and vice versa, one way to compromise would be to minimize their

sum. A complicated model that is nexible enough to represel1l the true process can have

low bias, but may suffer from high variance, since its nexibility also Icts it fit the

random variation in the training data. A simple model will have high bias, unless the

true process is really that simple, but will have lower variance. There are also other

ways to trade off bias against variance, such as by use of a penalty function, but

adjusting the model complexity is perhaps the most common method.

This complexity adjustmem leads to a choice of model that varies with the amount of

training data available - the more data, the more complex the model used. In this way,

one can sometimes guaral1lee that the performance achieved will approach the optimum

as the size of the training set approaches infinity because the bias will go down with

increasing model complexity, while the variance will also go down due to the

increasing amount of data. Some information criteria can be used to determine the

optimal complexity of a model at a given training set size (Ripley 1996).

In a Bayesian approach, there is no necessity for restricting the complexity of the model

based on the amoul1l of available training data_ In order to perform Bayesian learning,

we need to select a model type, make an a priori guess, collect data, and then compute

the a posteriori values to make a prediction. There is no need to change the model or

the a pliori estimates depending on how much data is available. If the model and

estimates are correct for a thousand observations, they should be also con-ect for ten

observations. Thus, the Bayesian approach can employ a suitable model that is as

complex as we can afford complllationally, regardless of the size of the training set. In

other words, in a Bayesian approach we need not be concerned about Occam's Razor,

because it will be applied automatically in the Bayesian learning process_
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1.8 Outline of the Thesis

The main part of this thesis describes newly developed remote sensing techniques and

their application to wetland monitoring.

In Chapter 2, as an inu'oduction to the spectral index analysis of flooding presented in

Chapter 3, multivariate analyses are conducted using multi temporal image data. In this

study, Landsat TM images acquired immediately after a flood and one month after the

flood are used. The flood - rice damage relationship is analyzed by multivariate

analyses, including correlation analysis between the turbidity level of flooding water

and rice plant damage, multiple regression related to the decrease in rice yield, and

cluster analysis to discern the flood - rice damage relationship. Based on these analyses,

relationships between flooding condition and flood damage are delineated.

In Chapter 3, new spectral indices for vegetation in the inundated area are developed

and applied to the flooding analysis. A water turbidity index (WTI), analogous lO soil

brightness, and a perpendicular vegetation index (PVI) are devised and applied to the

analysis of flooding and its relationship with damage, using multitemporal Landsat TM

data. Rice yields are determined and related to the PVI calculated from the TM scenes,

while the WTI is used for monitoring the floodwater turbidity. The relationship between

floodwater turbidity and I;ce yield is investigated in two test sites.

In Chapter 4, a new spectral index, the Vegetation-Soil-Water Index (VSWI), is

developed and applied to wetland monitOI;ng. The VSWI is a natural extension of PVI

for monitoring not only vegetation conditions but also soil and water conditions. I also

develop an algorithm to lit a u;angle to the specu'al distributions to determine the end­

member points for vegetation, soil, and water. VSWI is tested for wetland monitoring

using 6 multitemporal Landsat TM scenes, which show seasonal vegetation changes

over 5 years.

In Chapter 5, a new unmixing approach by the subspace method is developed and an

experiment using hyperspectral imagery is conducted. In the subspace method,

unmixing is calculated as the projection of each unknown pixel vector on the subspace

of each class. The performance of this mcthod was tcstcd in an tmmixing experiment

using acquired, hypcrspeclraI. Compact Airborne Spcctral Imager (CASI) images.
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Unmixing by the subspace method is tested against the wetland vcgetation classes and

the result is compared with conventional mcthods by least s4uarcs. 4uadratic

programming, and orthogonal subspace projection. Finally, the resolts of the unmixing

experiment are evaloated with regard to wetland vegetation monitoring.

In Chapter 6, several feature selection methods are used to determine the effective

spectral bands for classifying the wetland vegetation types. Optimal band combinations

are selected using airborne MSS data. For feature selection, both the separability

measure (the Jeffries-Matusita (JM) distance) and the cross-validation method are used.

Then, the dependency of the selection on the classification method is checked by

maximum likelihood and minimum distance methods. The wetland vegetation is

classified using selected bands to show that the wetland vegetation type in a bog area

can be classified into several community-level classes using spectral information.

Chapter 7 shows that wetland vegetation types can be accurately classified using

multi temporal Landsat TM images. The growth patterns of wetland vegetation change

according to vegetation type, and we can use this feature in multi temporal images for

classifying the vegetation types. To clarify temporal growth patterns of wetland

vegetation types, biomass sampling experiments are conducted to measure vegetation

growth during the summer. Spectral reflectance measurements are conducted to see

the spectral differences between the vegetation types. In Chapter 8, wetland vegetation

classification is investigated using spectral image data. Wetland vegetation types in a

bog area are classified using the spectra] infOImation from CASI data. Detailed

elevation data are overlaid on the CASI data to see the relationship between vegetation

distribution and elevation differences in the wetland area. In the classification, the k­

means clustering (unsupervised learning) method is used to classify the CASI images.

]n Chapter 9, a new Bayesian classification method using a Gaussian process is

developed and tested using sensor fusion data from optical and radar sensors. This

Gaussian process has been developed from Bayesian neural networks with an infinite

number of nodes in the hidden layer. It is also a Bayesian model-avera'ging approach,

which iIllegrates the model's predictions with the a posteriori probability of the

parameters. The basic theory of the Gaussian process I'or classifying satellite remotc

sensing data is introduced and an experiment is made llsing multitemporal Landsat TM,

JERS 1. and ERS 1 SAR data. The accuracy of the classifications is comparcd with the

maximum likelihood and Bayesian neural network methods.
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In Chapter 10, I summarize the contributions of this thesis and discuss possible

applications of the advanced techniques developed herein to several complex ecosystem

studies. I describe specifically actual uses of the Perpendicular Vegetation Index, Water

Turbidity Index, Vegetation-Soil-Water Index, Unmixing by Subspace Method, and

Bayesian classification with a Gaussian process model for monitoring wetlands, forests,

and inland waters. Finally, I indicate possible directions for future research.



Chapter 2
Flooding Analysis using Multitemporal Image
Data

Rice fields. as artificial wetlands. have many common features with natural wetlands.

The most important such features are inundation and vegetation growth. Remote

sensing techniques that have been developed for monitoring these features in lice fields

are also applicable to wetlands. and vice versa. In this chapter. as an introduction to the

spectral index analysis in Chapter 3. multivariate analyses are conducted using

multi temporal image data. Landsat TM images acquired immediately after a flood and

one month after the flood are used. The flood - damage relationships are analyzed by

multivariate analyses. including correlation analysis between the turbidity of floodwater

and rice damage. a multiple regression model on the decrease of the rice yield. and

cluster analysis to see the flood - damage relationship. Based on these analyses.

relationships between degree of flooding and damage are delineated. This chapter is

based on Yamagata et al. (J988a).

2.1 Introduction

Once an agricultural disaster occurs. agricultural agencies need to assess the crop

damage before farmers harvest the crop. At present. the extent of such damage in a

region is estimated from sampling surveys. However, a more accurate estimation of the

damage cannot be obtained by ground-based methods only. Landsat and other earth

observation satellite data are expected to compensate for such shortcomings.

To analyze the extent of inundation and crop damage caused by a flood. three

approaches can be adopted using spectral reflectance data. First. the inundated area can

be delineated using images acquired immediately after the flood (Green ct al. 1983.

Ramamoorthi and Rao 1985, Imhoff et al. 1987); information on the condition of

flood water such as water turbidity can also be extracted (KholTam 1981, Lathrop and

Lillesand 1986). Second. the extent of crop damage can be estimated using images

showing crop conditions before harvest; in other words. the crop yield can be estimated
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using the spectral response of the crop (Tucker et al. 1980, Pinter et al 1981, Miller et al.

1983, Aase et al. 1984, Patel et al. 1985, Shibayama and Munakata 1985). Third. the

relationship between the extent of inundation and the crop damage caused can be

analyzed.

Although we have few clear days in the crop growing season in Japan, fortunately we

were able to acquire Landsat 5 TM (Thematic Mapper) images immediately after and

one month after a flood, which showed the condition of the flood inundation and the

rice crop damage before harvest, respectively. Using these multi temporal TM images,

we attempted to estimate the rice crop damage and analyze the flood - damage

relationships. The outline of the analyses follows.

I) We determined whether the crop damage could be estimated using image data that

were acquired before the harvest and immediately after the flood. In the physical

interpretation of the TM band reflectance, two notable relationships were already

known from several previous investigations. First, water turbidity has a positive

correlation with TM band 3 (red), because the mud in water has high reflectance in

this band (Khorram 1981, Lathrop and Lillesand 1986). Second, the rice crop yield

has a positive correlation with TM band 4 (near infrared); the near infrared

reflectance is con'elated with biomass, and biomass is linearly correlated with yield

(Miller et al. 1983, Patel et al. 1985). Further, it seemed that the floodwater was

more turbid where the flood sU'eam flowed fast, and this fast stream caused the

heavy rice damage. Based on these relationships, multiple regression models were

used to estimate the amount of regional damage.

2) In order to classify the relationship between degree of flooding and rice damage,

cluster analysis was employed (Townshend and Justice 1980). The cluster classes

were delineated from the transformed image, which showed the enhanced flood­

damage patterns. This transformation, prior to the clustering, was performed by

principal component analysis using the composite multitemporal scene (Singh and

Harrison 1985, IngebriLSen and Lyon 1985), which was already shown to be

effective in enhancing land cover discrimination and detecting land-use change

(Richards 1984, Townshend 1984). The objective of these studies was to delineate

the qualitative pattern of land cover change, while that of this analysis was to

classify the quantitative cause and effect relationship between the flood inundation

and the damage caused to the rice crop.
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2.2 Study area and image data

26

A typhoon which hit on August 4, 1986, brought about floods in several areas of the

Kanto district. Many rice fields in northern KanlO district were inundated and heavily

damaged. The rice fields along the Hinuma River, near the area where the river reaches

Hinuma Lake (approximately 100 km nolth of Tokyo), were selected as the test site for

our flood damage analyses.

Figure 2.I(a) is the color composite TM image using bands 3 (red), 4 (near infrared)

and 5 (mid infrared) acquired on 6 August. It shows the spread of floodwater over the

rice fields immediately after the flood (TM bands 3, 4, and 5 are shown in blue, green,

and red, respectively). In this image, the area inundated with the turbid flood water

appears blue, and the area inundated with clear water accumulated above the rice crop

vegetation appears black. When this image was acquired, the rice crop was at the

booting stage (approximately 10 days before the average heading day).

Figure 2.I(b) shows the same area one month after the flood (7 September) with the

same color assignment. In this image, the heavily damaged rice fields near the lake

appear red. This is because the damaged rice crop was mixed with the muddy

floodwaters, and the reflectance in the near-infrared decreased while the reflectance in

the mid-infrared band increased. The dark green area along the river and the light green

area correspond to the somewhat damaged rice fields and to the undamaged rice fields,

respectively. This scene was obtained almost 2 weeks before the rice crop was

harvested (ripening stage). In this area, as is shown later, there were vaJ;ous levels of

crop damage ranging from 100% lO 0% yield decrease.

2.3 Method

The configuration of our analyses is depicted in Figure 2.2. Prior to the flood - damage

analyses, several preprocessing steps were performed. First, the second scene was

registered onlO the first scene by Affine transformation. TM bands 2 (0.52-0.60 Jlm), 3

(0.63-0.69 11m), 4 (0.76-0.90 11m), and 5 (1.55-1.75 11m) of two registered scenes (250 x

240 pixels) were added to form multitemporal, 8-dimensional image data. Then, in

order to eXlract the rice field pixels, a supervised classification was caJTied out using

lhese multilemporal image data. Because the rice fields showed several different
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(al

(b)

Fig. 2.1. (a) TM image showing the inundated area on 6 August (immediately after the
flood). bands 3, 4 and 5 shown blue, green and red respectively. The area inundated with
turbid black. (b) TM image showing the flood damaged paddy fields on 7 September (1 month
after the flood). Bands 3, 4 and 5 shown blue, green and red respectively. Heavily damaged
paddy fields near the lake appear red and the dark green area along the river corresponds to the
slightly damaged paddy fields.
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Fig. 2.2. [mage analysis flow.

Table 2.1. Correlation coefficients between CCT counts of 1M scenes obtained on 6 August
(immediately after the flood) and 7 September (1 month after the flood).

Scene 6 August

Band

7 September
0·27Band 2 -0·34 -0-37 0·31

3 0·20 0·22 -0·06 -0·11
4 -0-72 -0-78 0·64 0·63

0-18 0·17 0-04 0-03
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spectral features in each image. such as inundated or damaged, the rice field area could

not be delineated directly from one scene. However, using the muititemporal features of

the riec field spectral responses. it was possible to identify the lice field pixels correctly.

After this classification, our analyses were limited to the rice fields.

Following these preprocessing steps, three kinds of flood-damage analyses were carried

out: (I) correlation analysis of registered multitemporal image data in rice fields; (2)

estimation of lice yield by multiple regression analyses using ground reference data and

image data at each date; and (3) classification of the flood - damage relationship by a

combined method of principal component analysis and cluster analysis.

2.4 Correlation analysis

It was expected that the TM band reflectance of the inundated area in the [u'st scene

was closely related to that of the damaged rice crop in the second scene. Correlation

analyses were carried out to determine to what extent the TM band digital values of

each scene were correlated statistically. Table 2.1 shows the correlation coefficients

between the TM band CCT COunts obtained on 6 August (immediately after the flood)

and those of 7 September (before harvest). The highest negative correlation was

observed between band 3 (red) on 6 August and band 4 (near infrared) on 7 September.

As these bands are known to be related to the turbidity level of floodwater and the rice

crop yield, respectively (Patel et aI. 1985, Lathrop and Lillesand J986), this negative

conelation indicates the positive correlation between the floodwater turbidity and rice

yield decrease. However it should be noted that since this correlation coefficient was

calculated using CCT COUIllS of all pixels in the rice fields. some fraction of the

correlation was not directly due to this turbidity - damage relationship, but due to the

spectral features of the non-inundated rice tields. The high positive correlation

observed between band 4 (near infrared) in the two scenes was mainly due to the high

near-infrared reflectance in the non-inundated rice fields. The detailed multitemporal

spectral features of the inundated and non-inundated areas are discussed in the flood ­

damage pattern analysis further below.
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2.5 Rice yield estimation

2.5.1 Data used

30

Rice yields were surveyed at seven test sites. The yields of 3 to 5 sampling plots (3.5

m') in each test site were measured on 25 Seplember. The average yield for each lest

site was used as the ground reference yield, while the CCT counts for each test site

were determined as the average of the corresponding 3x3 pixels.

2.5.2 Multiple regression analysis

Multiple regression models to estimate the decrease of rice yield were made using

these ground reference yields as objective variables and CCT counts as explanatory

variables.

Table 2.2 shows the results of a stepwise multiple regression analysis (Fin=Fout=2.0).

Band 2 (green) and band 3 (red) were selected as significant variables in the stepwise

regression analysis based on the scene obtained immediately after the flood, whereas

only band 4 (near infrared) was significant in the model based on the scene obtained

one month after the flood.

Considering the correlation of band 3 (red) with turbidity (Lathrop and Lillesand 1986),

and of band 4 (near infrared) with biomass and yield (Patel et aU 985), this regression

analysis shows the relationship between the floodwater turbidity and the rice crop

damage, as mentioned in the previous chapter.

Although the number of ground reference yields was small, we judged these models

reliable, for the range of measured yield data was sufficiently large and the models

were used essentially as an interpolation melhod in each estimation. The multiple

correlation for both models was greater than 0.95 and the standard estimation errors

were Jess lhan 0.5 t/ha.

Figure 2.3 shows the relationship between the measured yield in each test sile and the

yield eSlimation from TM data at bOlh dales.
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Ta ble 2.2. Regression analysis between yields (t/ha) and ccr counts of TM scenes obtained
on 6 August (immediately after the flood) and 7 September (1 month after the flood).

6 August 7 September

Band Coer. Coer.

2 0·598 2·7
3 -00414 -3·5t
4 0·093 83t
5

Const -3,595 -5,165

R 0·972 0·965
SE 00432 0-428

N=7 F=343 F=68'7

t Significant at 5 per cent level.

w 1

Measured yield (t Iha )

Fig. 2.3. Relationship between measured and estimated rice yield. Multiple regression
models (table 3) were used for the estimations on 6 August (immediately after the flood) and 7
September (1 month after the flood).
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2.5.3 Rice yield estimation map

Using these regression models, the rice yield was estimated pixel by pixel. Figures

2.4(a) and 2.4(b) show the distribution maps of the estimated rice yield using thc TM

data acquired on 6 August (immediately after the Oood) and 7 September (one month

after the Oood), respectively. The estimated yields were divided into 9 levels at 0.5 tlha

yield intervals. When the results in Figure 2.4(a) and 2.4(b) were compared, some

discrepancies were observed in the distribution of red pixels (I) which represent the

rice fields with a yield less than 1.0 tlha, and also in the disuibution of blue pixels (A)

which represcnt the fields with a yield of more than 4.5 tlha. However the distribution

of the medium-yield levels was similar in each map.

It seems that insufficient numbers of test sites with high and low yield levels, and

saturation of band 3 (red) reflectance for water turbidity were the causes of the

discrepancy obscrved. In addition, lodging of the rice crop which occurred after the

Oood in the non-inundatcd areas, might also be a cause of the discrepancy in the high

yield distribution.

Table 2.3 is a comparison of the estimated rice field area for each yield level at 1.0 tlha

intervals betwcen 6 August and 7 September. Estimated areas agreed well except for the

heavily damaged level. Using this kind of table, we can assess the extent of the IOtal

damage in a rcgion by multiplying yield decrease (tlha) by corresponding estimated

area (ha).

Although these estimation methods have several limitations in accuracy and cannot be

directly applied to other rcgions, we have shown that the crop damage caused by the

Oood could be estimated not only from the TM image acquired before the harvest but

also from the TM image immediately after the Oood.
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Fig. 2.4. (a) Distribution map of the rice yield, estimated by the multiple regression model
for the scene obtained on 6 August (immediately after the flood). Letters in coloured bars
represent yield levels. A > 4.5; B =4.0-4.5; C =3.5-4.0; D =3.0-3.5; ... ; H =1.0-1.5; I
< 1.0 t/ha. (b) Distribution map of rice yield, estimated by the multiple regression model for
the Scene obtained on 7 September (1 month after the flood). Letters in coloured bars represent
yield levels. A > 4.5; B =4.0-4.5; C =3.5-4.0; D =3.0-3.5; ... ; H =1.0-1.5; I < 1.0
t/ha.
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Table 2.3. Comparison of estimated paddy field areas for each yield level between 6 August
(immediately after the flood) and 7 September (1 month after the flood). Regression models'
were used to calculate the yield.

Area (ha)

Yield level (t/ha) 0- 1- 2- 3- 4- 5-

6 August 25 56 102 137 192 109
7 Scptcmber 51 25 III 158 179 99

Table 2.4. Standardized principal component analysis using the eight-dimensional
multitemporalTM images of paddy fields.

Eigcnveetor (6 August) Eigenvector (7 September)

Principal Band Band
Component 2 Eigenvaluc

0·36 0·3-1 0·33 0·33 0·37 0·37 0·37 0·37 7·2338
-0·28 -0-48 0·56 0·58 -0·09 -0'13 0·04 -0,12 0·6508

0·25 0·60 0·27 0·25 -0·)2 -023 -0-49 -022 007-11
0·19 0·12 0·14 -0'19 -0·06 -0·58 0·68 -0·29 0·0 I81
0·04 0·05 -0·69 066 -0·04 -024 0'13 0·09 0·015-1

-0'14 0·02 0·12 -0,13 -0'37 -035 000 0·83 0·0057
075 -0-49 000 005 0'19 -026 -0'29 0·11 0·0014

-033 018 0·05 -0·02 0·76 -0-46 -0·25 0·08 00006
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2.6 Flood - damage pattern classification

2.6.1 Principal component analysis
According to several studies, principal component transformation of multitcmporal,

multispectral satellite image data is effective in enhancing regions with localized

change (Richards 1984, Townshend 1984). To classify the flood - damage relationship,

we also applied this method to the multi temporal TM image data on the flood and the

crop damage.

Table 2.4 shows the eigenvectors and the eigenvalues of the standardized principal

component analysis using the 8-dimensional, multitemporaJ TM image of the rice fields

(CCT counts for non-rice pixels were set to zcro).

The first principal component was the so called brightness component, which had

almost the same positive coefficient for each band. The second component represented

a difference between the inundated and non-inundated areas. Both the third and the

fourth components also represented flood - damage relationships. However, their

eigenvalues were remarkably small compared with that of the second component.

Still higher components appeared to relate to subtle differences in the rice fields, such

as the effects of the rice varieties planted and of mixed pixels.

2.6.2 Clustering

In order to categorize the flood - damage pattern, cluster analyses were applied to the

image composed of principal components. After testing many kinds of initial cluster

and band selection, nine stable cluster classes were extracted from the 2,3,4 principal

components by the migrating means method.

2.6.3 Flood· damage relationships

The multitemporal spectral features of each cluster class are depicted in Figure 2.5. The

CCT counts for each class were determined as the average for all the pixels belonging

to that class, while the estimated rice yield for each cluster class was determined in the

same way. The results are shown in Figure 2.6.
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Fig. 2.5. The average ccr counts of TM bands 2, 3 and 4 obtained on 6 August
(immediately after the flood) and TM band 4 obtained on 7 September (1 month after the
flood) for each flood damage cluster class. Band 3 (6 August), band 4 (6 August) and band 4
(7 September) indicate the flood water turbidity, the rice vegetation above the flood water and
the rice yield, respectively.
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Fig. 2.6. Estimated average rice yield for each flood damage cluster class. Multiple
regression models (table 4) were used for the estimations on 6 August (immediately aftcr the
flood) and 7 September (1 month after the flood).
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To assist in interpreting these spectral features of the inundation and resulting crop

damage, nine types of reaction of the rice crop to the Ilood inundation were identified:

(A) not inundated, no damage; (B) slightly inundated with clear water. slightly

damaged; (C) slightly inundated with clear water, no damage; (D) mostly inundated

with clear water, slightly damaged; (E) mostly inundated with clear water, no damage;

(F) inundated with cleaT water, slightly damaged; (G) inundated with somewhat turbid

water, slightly damaged; (H) inundated with turbid water, damaged; (I) inundated

with turbid water, heavily damaged.

Owing to the adaptive nature of the rice crop, the inundation with clear water did not

necessatily result in heavy damage. It was shown that submergence of the rice crop

under the floodwater surface, which was indicated by low band 4 (near infrared) CCT

counts, and inundation with turbid water, which was indicated by high band 3 (red)

CCT counts, resulted in irreversible damage to the rice crop.

2.7 Conclusion

TM image data were subjected to several multivariate analyses in order to assess the

extent of nood damage and to analyze the relationship between the nood and the

damage. Through the relationship between noodwater turbidity and the actual rice yield

decrease, it was shown that the latter could be estimated not only from the TM image

data acquired before the harvest but also from the image acquired immediately after the

nood.

Although this result showed the possibility of early assessment of crop damage in a

region, it remains to be determined whether this method is applicable to other areas

where the geographical and agricultural conditions are different. The effect of the

inundation depends on the growth stage of the rice crop and the duration of the

inundation. Furthermore, the effect of the water turbidity is a function of the

geomorphological conditions of the river. Thus, at present, estimation of crop damage

from noodwater turbidity should be carried out using ground reference data.

The nood - damage relationship was defined by the clustering of the principal

components of the registered, multi temporal TM image data. The CCT counts for each

elass showed the relationships between the features of the inundation in the rice fields

and the resulting rice damage. Although this reaction pattern of the rice crop also
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depends on the stage of growth of the plalll when a Oood occurs. the results reveal lhe

adaptability of rice plallls to Oood inundation.



Chapter 3
Spectral Indices for Flooding Analysis

In this chapter, new spectral indices, the perpendicular vegetation index (PVI) and

water turbidity index (WTI), are developed for flood inundation monitoring and

vegetation change in wetland areas. These spectral indices are defined based on the

analysis of rice field flooding and consequent crop damage. In the analysis, TM rice

field images acquired dUling flooding and one month later were used to relate

inundation damage to rice yield. This was accomplished by using the turbid water

pixels to determine a turbid water line (TWL). The WTI along the TWL and PVI for

paddy rice were defined using this line. The relationship is determined between

floodwater turbidity at the rice booting stage, monitored using WTI, and the reduction

in yield, measured by PVI. This chapter is based on Yamagata et aI. (l988b).

3.1 Introduction

Landsat and other satellites have the capability to document conditions in individual

rice fields and to provide a thematic overview. Several workers have estimated crop

biomass and yield using satellite data (Barnell and Thompson 1982, Wiegand et aI.

1979, Wiegand and Richardson 1984).Vegetation indices derived from field

measurements of reflectance factors have been found to relate closely to leaf area index

(LAI), phytomass, and yield of many kinds of crops (Jackson 1983, Jackson et aI. 1983,

Gallo et aI. 1985, Wiegand and Richardson 1987). However, the indices derived from

ground observed reflectance factors cannot be applied directly to satellite calibration

(Price 1987).

As mentioned in Chapter 2, we were fortunate to acquire Landsat Thematic Mapper

(TM) scenes that recorded inundated rice fields one day after a typhoon that struck the

Kanto district on 4 and 5 August 1986. We also obtained images taken a month after the

typhoon, which documented the damage (Yamagata and Akiyama 1988). We convened

these data into reflectance factors using coefficients provided by Price (1987) and
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defined the TWL, WTI, and the PYI (Richardson and Wiegand 1977) for inundation­

damaged rice fields. TM bands 3 (630-690 nm: red) and 4 (760-900 nm: near-infrared

or NIR) were used. The objective was to relate noodwater turbidity to resulting damage

in terms of rice yield using WTI and PYI developed for two test sites. and to discuss

how such relationships can be used in rice crop damage estimation.

3.2 Study Area and Image Data

We analyzed two test sites (Figure 3.1) in nonhern Kanto district in Japan, where rice

crops were damaged by nooding from the typhoon. Both test sites were located along

rivers near their confluence with lakes.

Figure 3.2 displays TM Band 3 images showing the inundated paddy fields in the

Hinuma (a) and Ishioka (b) areas on 6 August 1986, immediately after the typhoon

abated. In these images the more turbid the floodwater, the brighter the images appear.

The image was acquired approximately IO days prior to heading and the inundation

continued for 1-5 days.

Figures 3.3(a) and (b) display the TM Band 4 (near-infrared) images, corresponding to

those in Fig. 3.2, obtained on 7 September 1986, one month after the inundation. In

these images, healthy rice appears bright and damaged rice appears dark. Heavily

damaged rice was dead and abandoned (not harvested). When this scene was acquired,

the rice crop was in the middle of the grain filling stage.
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Fig. 3.1. Test site location map.
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(a)

(b)

Fig. 3.2. TM image (band 3) on 6 August 1986, showing inundated paddies and
surroundings at Hinuma (a) and Ishioka (b) test sites.

(b)

(aJ

Fig. 3.3. TM image (band 4) on 7 September 1986, showing damaged paddies and
surroundings at Hinuma (a) and [shioka (b) test sites.
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In order to examine the correspondence between inundation and damage, the TM

scenes [or 6 August and 7 September werc overlaid. TM Bands 3 (630-690 nm) and 4

(760-900 nm) were selected for the analyses, because ergonomically important

parameters, such as LAI, can be measured by these red and near-infrared bands

(Wiegand et al. 1979). The two test sites selected, Hinuma and Ishioka, were 250200

and 250160 pixels in size, respectively. The two-channel data [or each test site [armed a

4-channel, multitemporal, multispectral data set [or each site.

To extract the pixels for the rice fields, a supervised classification was carried out using

these multitemporal image data. Within the rice field pixels, there were several

distinguishable spectral categories that ranged from undamaged (category A) to

abandoned (category G) that could not be distinguished without using the

multitemporal features. After this classification o[ damage categories, we subsampled

rice field pixels taking every fifth pixel on every fifth line to reduce the data volume [or

statistical analyses (pixels that were not classified as rice were skipped). Representative

pixels from the lice categories such as inundated or not inundated in the Hinuma scene

are identified by letters in Figures. 3.6, 3.8, and 3.9 which show the results.

As detailed in Chapter 2, the actual rice yield was determined at seven test sites in the

Hinuma area.. The average yield for each test site was used as the ground truth, while

the TM reflectance factors for each test site were determined from the average for the

3x3 array of pixels centered over those same sites.

In addition, the relationship between PYI (based on the TWL) and yield from the TM

and damage survey data was compared with the PYI and rice yield data from the

expelimental plots of lice grown under valiable fertilization in 1987. In the experiment,

spectral reflectances were measured at 660 and 840 nm with a 10 nm bandwidth using

the spectroradiometer described by Shibayama and Munakata (1986). Measurements

were conducted on six plots of the variety Koshihikari (the most common rice variety in

thc damaged area) dUling the middle of the grain filling stage, and the yield o[ each plot

was also determined. The spectral-agronomic relationships found in this experiment

have becn rcported elsewhere (Shibayama ct al. 1988).
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TM digital counts observcd at the outcr edgc of the aunosphere arc affcctcd by the

atmosphere itself, sun elevation, and sensor degradation. Thcrcforc, a spectral index

dcveloped using a given scene cannot be directly applied to another scene or to other

sensor systems without calibration to reflectance factors. We used the calibration

method and coefficients summarized by Price (1987) to conven Landsat-5 TM digital

counts into a spectral albedo, defined as the equivalent solar radiance calculated for

each channel. They are comparable to specu'al reflectance factors measured on the

ground for the same wavelengths. Hcreafter in this paper, we call them spectral

reflectance.

3.4 Results and Discussion

3.4.1 Scatter Diagram

Figure 3.4 displays the scatter in red and near-infrared reflectance space of inundated

rice field pixels in the test area on 6 August 1986, one day after the typhoon ended.

3.4.2 Thrbid water line

As is the case of the soil line (Richardson and Wiegand 1977), turbid water pixels fell

on a line. Using the 12 water pixels of various turbidity levels (sediment load), we

determined the equation of TWL (Fig. 3.5) by regression analysis. Almost all water

pixels are close to this TWL line, which passes through the origin. We needed to use

this TWL instead of the soil line because rice grows out of turbid water rather than soil.

We used the TWL as a base to define PVI and WTI.

3.4.3 WTI and PVI

A linear relation between waleI' turbidity and spectral radiance in the red band has been

reponed (Khorram 1981, Lathrop and Lillesand 1986). We defined WTI as the distance

from the origin along the TWL to measure the turbidity (sediment load) of the

floodwater. This WTI expressed in terms of spectral reflectance should hold universally,

if propcrly placed in TM 3 and 4 band spacc.
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Fig. 3.4. Scaner diagram of red band (TM3) and near-infrared band (TM4) of paddy field
pixels in Hinuma on 6 August 1986. Several ground-truthed paddies were identified with
leners as follows: (A, B, C) paddies not inundated but depth of water (clear) increases from A
to C; (D) canopy panially inundated with clear water; (E, F, G) paddy inundated with
increasingly rurbid water, respectively. The turbid water line (TWL) was determined using
categories E, F and G.

PVI=

-0.4 JREO'O. 91111 R

TWL

WT I =0.9 I REO+O. 4 Jill R

RED REFLECTAIICE

Fig. 3.5. lIIustration of the water rurbidity index (WTI) and perpendicular vegetation index
(PVI). Distance from 0 (origin) to b is the WTl and from b to a is PVI. Defming equations for
WT! and PVI are given.
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Richardson and Wiegand (1977) developcd the PYI in order to cxtract information

about vegetation independently of the soil background. Here PYI is the distance from

the TWL. The interrelationships among WTI, PYI, and TWL are given in Figure 3.5

along with their equations. Since the TWL passes through the origin, the coefficients in

the WTI (or brightness) and PYI (or greenness) equations are the same as yielded by

the n-space procedure of Jackson (1983). The WTI is equivalent to the soil line index

(SLI) defined for by Wiegand and Richardson (1982).

Figures 3.6(a) and (b) relate WTI and PYI of rice fields in the Hinuma (a) and Ishioka

(b) areas on 6 August, the day after the typhoon abated. The turbid water line

determined for the Hinuma site was applied to the Ishioka test site. The turbid water

pixels in the Ishioka area were also on the TWL calculated from the Hinuma data. The

soil line has been found to apply globally, so thaI the analogous turbid water line for

grayish and brownish soils in the Hinuma data should also be applicable elsewhere.

3.4.4 PVI and Rice Yield

We applied the PYI equation based on the TWL for the 6 August scene to TM data

acquired on 7 September 1986, one month later, to see how much the lice was damaged.

We also related the PYI observations to yield. Data sets from the TM scenes and an on­

ground experiment (Shibayama et al. 1988) were pooled.

Figure 3.7 relates measured yield and PYI for rice fields using ground-truth data from

the TM scenes and from the on-ground experimenl. Yield in the inundated area

ranged from zero for abandoned (not harvested) fields to almost 5 tlha for those that

were not damaged. In the experimental plots, a range in PYI was achieved by varying

the amount of fertilizer (0, 2, 4, and 6 gnitrogen/m').

The two data sets were in good agreement with the principles of spectral components

analysis (SeA): (a) vegetation indices sense the photosynthetic size of canopies; (b)

stresses severe enough to affect yield affect the canopy; and (c) the photosynthetic size

of canopies during late vegetative development and early reproductive stages and yield

arc related (Wiegand and Richardson, 1984, 1987). Both data were used to determine

the regression equation given in the Figure (R=O.91, N=13).



3 Spectral Indices

(,1
48...,..------------------------,

HINUI1/\

30

47

20

~ 10

B' B,'

C CC ,:: ,,'

n' "u', ,
','D D , F'

"-> E, EE' 'fF' '-, 'f-'F '{G" {G'------------l

-10 -14--,---,----,-~12--r--"'Tl'S--r--2'T0--r---j24

~ T I

(bl

a0...,..------------------------,
ISH IOKA

30

20 ....
" ,

\0

-' -,' . -',
. ,_0' _ ....

-10 -1a--,..----,-----....,---\'2--r--\'S--,---2"0----,---i
2
'a

~ T I

Fig. 3.6. Water turbidity index (Wfl) vs, perpendicular vegetation index PVI for 6 August
1986, TM scene at [Wo test sites, Hinuma (a) and Ishioka (b), The turbid water line
determined for Hinuma site was applied to Ishioka test site, the categories were: (A, B, C)
paddies not inundated but depth of water (clear) increases from A to C; (D) canopy partially
inundated with clear water; (E, F, G) paddy inundated with increasingly turbid water
respectively,
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Fig. 3.7. Yield of brown rice vs. PYI for seven TM data sample sites (1') and six
experimental paddies (G). TM scene (7 September 1986) site yields ranged zero for
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Fig. 3.8. PYI (7 September) vs. PYI (6 August) of paddies not inundated (most of the
canopy was above water) in Hinuma area. The categories were (A, E, C) paddies not
lIlundated but depth of water (clear) increases from A to C.
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3.4.5 PVI in August and September
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Figure 3.8 shows the PYI change from August to September of rice fields in the

Hinuma area that were not inundated. From the I: I line given in the Figure, it is

apparent that normal rice fields (category A, not inundated) kept the same PYI value of

about 30. Rice fields with deeper background water (category C) had lower PYlon 6

August and recovered to an average PYI of approximately 25 by September. These

fields expeJienced a slight decrease in yield.

3.4.6 WTI in August and PVI in September

Through the yield estimation, we noticed that the yield decrease of inundated rice could

be related to the turbidity of the floodwater. Because damage to the rice plants was at

least partially due to mud sticking to the leaves and stems, it is reasonable that the more

turbid the floodwater, the heavier may be the damage. We monitored the floodwater

turbidity by WTI on 6 August and the yield by PYlon 7 September. Figure 3.9 shows

the relationship between WTI and PYI in the Hinuma (a) and Ishioka (b) areas with

regression lines. For the Hinuma area, PYI (yield) in September was unaffected until

the turbidity (WTI) in August exceeded 9, beyond which the PYI decreased linearly as

WTI increased. In contrast, data for the Ishioka area indicate a linear decrease in PYI in

September until the turbidity (WTI) reached 9-10, beyond which the relationship may

have split into two paths. A plausible explanation of the two paths is as follows: the

slope would be less for those lice fields that were inundated for only a shon time and

greater where the muddy water stayed longer and caused rOlling of leaf and other

tissues (i.e., increased damage). However, we lack direct observations to substantiate

these conjectures.

3.5 Conclusion

TM images of rice fields for 6 August 1986 (immediately after the typhoon of 4 and 5

August) and 7 September (3 weeks before harvest), were used to relate inundation

damage to rice yields. This was accomplished by using the turbid or sediment laden

water pixels to determine a turbid water line. The brightness or water turbidity index

(WTI) along the turbid water line and the perpendicular vegetation index (PYI) for the

rice were defined using this line. Rice yield data for undamaged and damaged lice

fields and in experimental rice fields were pooled and related to the PYI calculated
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Fig. 3.9. PVI (7 September) vs. WTI (6 August) for paddies inundated with clear or turbid
water in Hinuma (a) and Ishioka (b) areas. Regression lines for each test site are given. The
data show that the more turbid the flood water in the 6 August scene, the heavier the damage to
the inundated paddy rice. However the relation is not liner nor clearly determined. The
categories were; (D) canopy partially inundated with clear water; (E, F, G) paddy inundated
with increasingly turbid water, respectively.
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from the respective TM reflectance and ground-measured reflectance data. The ground

and TM data coincided well, so that yield of lice from ground and satellite views could

be estimated using the same equation. The floodwater turbidity at the rice booting stage

could be monitored using WTl and the reduction in yield could be measured by PVI.

This result shows the possibility of early assessment of rice damage due to flooding by

runoff waters from monsoon-, typhoon-. or hurricane-associated rainfall. The relation

between floodwater turbidity and rice damage is less clear than that between PYI

change and yield, and probably depends on the growth stage at the time of flooding,

and other factors including the geography and characteristics of the runoff areas.

However, the use of satellite data to assess crop damage in terms of spectral reflectance

changes of the canopies during the reproductive stage is well developed and has a

sound basis (Wiegand 1984; Wiegand and Richardson 1984, 1987).



Chapter 4
Spectral Indices for Vegetation, Soil and Water

In this Chapter, we propose a new index to monitor wetland conditions called the

Vegetation-Soil-Water Index (VSWI). The PVI is further developed to the VSWI; the

VSWI can monitor vegetation, soil, and water conditions at the same time. Algorithms

to determine automatically the end-member points for vegetation, soil. and water are

developed by titting a triangle to the scalier plot instead of finding the soil line. The

distances between the spectrum points and the triangle edges are used as the SWI. In

conventional unmixing approaches, end-member pointS are often determined manually

and arbitrarily from the image data or from scalier plotS of the data. A new algorithm

that can automatically determine the end-member pointS has been developed. The

VSWI is applied to wetland monitoring using muItitemporal Landsat TM image data,

and vegetation, soil, and water conditions and changes have been successfully

delineated. This chapter is based on Yamagata et aI. (1997a).

4.1 Introduction

Vegetation biomass is one of the most imponant parameters that can be estimated using

remotely sensed data. There have been many vegetation indices developed using the red

and near-infrared bands, such as the Ratio Vegetation Index (RVI). Normalized

Difference Vegetation Index (NOV!), and Perpendicular Vegetation Index (PVl). The

relationships between these indices and LAI and biomass have been clarified (Jackson

1983).

PVI is based on thc idea of the soil line in scatter plots. It is known that the scalier plotS

of soils with different moisture content in red-near axis lie on a line called the soil line.

Figure 4.1 shows the relationship between the soil line and PVI. On the soil line, the

spectra move as the soil dries. With increasing vegetation in the target, the spectra move

tOward the upper Icft. When there is lillie vegetation and the background soil is

appearing, the reflecting spectra move parallel to the soil line, reflecting the amount of

waler in the soil. This trajectory of the spectral is called the iso-vegetation line. PVI is
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an index designed to suppress the effect of background soil (soil noise) to estimate

consistently the amounts of vegetation by measuring the perpendicular distance of the

spectra from the soil line. Figure 4.1 shows PVI as this distance.

Some modifications of the PVI have already been developed. First, the Soil Adjusted

Vegetation Index (SAV!) was devised by Heute (InS) and included the nonlinear

interaction of soil and vegetation retlectance. The Transfolmed Soil Adjusted

Vegetation [ndex (TSAVI) was proposed by Baret and Guyot (1991), and the Moditied

Soil Adjusted Vegetation [ndex (MSAV!) by Qi et al. (1994). As described in Chapter 3,

PVI was extended by Yamagata et aI. (1988) to the monitoring of rice tields using the

WTL, which con'esponds to differences in suspended sediment in rice tield water.

These modified PVls were mainly developed for use in agricultural or forestry

monitoring. However, for monitOling natural ecosystems using remote sensing, we need

to monitor environmental variables as well as vegetation parameters. Particularly in

wetland monitoring, we need to monitor concurrently the vegetation, soil, and water,

which constitute complicated wetland ecosystems.

Unmixing is the most popular approach to estimate from spectral information the

factors that constitute land cover (lnamura 1987, flO and Fujimura 1987). [n general

unmixing, it is assumed that the mixel spectra can be described as linear combinations

of the constituent spectra (linear mixture model), and the proportions of the constituents

are estimated using statistical inference. In a case when the components in a pixel are

distributed separately, the proportions can be cOITectly estimated using this un mixing

method. However, the mixels obtained over a natural vegetation area often consist of

complicated mixtures of soil and vegetation that overlap. The basic assumption of the

linear unmixing approach does not always hold.

In this study, a a lirst step to quantitative monitoring of ground cover with complicated

vegetation, soil, and water mixtures, we funher develop the PVI into the VSWI, which

calculates the spectral index both for the soil and water and the vegetation. The

vegctation index in the PVI is used as a quantitative index related to the vegetation

parameters, while the soil and water index in the VSWI can be used as the quantitative

index for the soil and water parameters.
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In the unmixing approaches for complex land cover, selection of the end-member

spectra in space is important but difficult. The end-member spectra are often given or

selected arbiu'arily from the analysis. However, in this study, to avoid this uncertainty in

end-member selection, we have employed an approach lhat detennines end-member

spectra automatically using an algorithm from the spectral infolmation in a remotely

sensed image. The new algorithm uses an optimization method which can determine

the end-member points corresponding to Vegetation, Soil and Water (VSW).

In the following, the principles of calculating VSWI are described and the new

algolithm is explained. Finally, the VSWI is applied to muItitemporal, Landsat TM

image analysis and its efficiency for wetland monitoring is tested.

4.2 Principles of the VSWI

[f we make a scatter plot of the red and near-infrared (NlR) values for lhe pixels in an

image, they should form a triangle, which has fairly distinct boundaries in the scatter

plot. The straight line that best matches the lower right side of the scatter plot (red on

the x and NIR on lhe y axis) is the soil line. The distance between the spectral points

and the soil line is the PV1. In the VSWI, the vegetation, soil and water indices

correspond to the 3 end-member points of the uiangle. The principles of YSWI are

depicted in Figure 4.2. The procedure to determine the end-member points is described

below in Section 4.3.

In the Figure, the edge WS corresponds to the soil line, which tits the soil spectra at

different soil moisture contents. Similarly, if the vegetation cover increases over that of

the dry soil, the spectra move along the edge YS, while if the vegetation cover increases

over that of the water, the spectra move along the edge YW towards the vertex Y.

(Strictly speaking, the retlecting spectra from the complex of vegetation and water, and

especially from vegetation and soil, are not linear mixtures due to multiple scatterlng

between these components. The spectra move not along the edges of the u'iangle but

along curves. Here we assume that the indices approximate these curves.)

As the PYI is deli ned from the triangle as the length of PV, we detine the index values

for V, S, and W as the lengths of PY, PS, and PW, respectively. When the spectra are

located outside the triangle, some of the YSWI give negative values.
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4.3 Algorithm for End-member Points
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Ideally end-member spectra for calculating YSWI should be determined by spectral

measurements of pure targets beforehand. However, because the spectra observed by

the satellite sensors are easily changed due to radiation, and atmospheric and vegetation

conditions, etc., it is very difliculL to use measured end-member spectra for analysis 01"

remotely sensed image dara. Also, there is no pure vegetation spectrum as it changes

with species and season.

End-member spectra have often been detelmined manually from the image or scatter

plots of the spectral data. However, this selection process is arbitrary and has moch

ambiguity; there is no guarantee of its reproducibility and it is not suitable for

quantitative analysis.

4.3.1 Red-NIR Scatter Function

Let RED(i,j) and NIR(i,j) be the digital values of the red and near-infrared bands of the

image data, respectively. Here, i and j are the coordinates of the image and RED and

NIR take integer values between 0 and 255, because the TM image has an 8-bit

dynamic range.

If we make a scauer plot by putting RED on the x-axis and IR on the y-axis for pixels

in the image, the scatter plot becomes grid data containing frequency disuibutions for

each grid coordinate. We will call this distribution H(x,y), where x and y stand for red

and near-infrared intensity, respectively.

H(x,y) often has a triangular shape and most of the pixel values are inside tIDS triangle,

but some of the points lie outside it. We can eliminate these points by making a

threshold to eliminate low-frequency points. By increasing the threshold value

gradually, we can determine the a value that eliminates 5% of the pixels. If the

frequency is lower than this threshold value. the data at that point are eliminated.

Then we calculate the convcx structure of the distribution H(x,y), and set the value

inside the struclUre to I and outside to O. This new binary value distribution: C(x,y)

often has a triangular shape. In general, the structure is a polygon with a minimum edge

length that contains all points of interest.
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4.3.2 Estimation of Initial Values
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Considering the characteristics of red-NIR retlection of V, 5, and W. we can assume

thal the end-member points cOITesponding to these, Ev, Es. and Ew, have the following

properties:

a) Ev is located distant from the soil line in the upper left position.

b) Es is around the maximum value for red.

c) Ew is around the minimum value for 1 IR.

By checking the above conditions in the distribution of C(x.y). we can determine the

initial values for the end-member points.

4.3.3 End-member Point Determination

We consider another binary triangle distribution T(x,y) which has a value of I inside

and 0 outside the triangle determined by the estimated end-member points. To

determine the T(x.y) so as to approximate the C(x,y), we first define the areas 5 I and

52 as follows.

5 I = (area of C(x,y) == I and T(x,y) == 0)

52 = (area of C(x,y) == 0 and T(x,y) == I)

The 51 is the area inside the convex polygon distribution C(x,y) and outside the triangle

T(x,y), whereas 52 is the area outside C(x,y) and inside T(x,y). If the distributions

T(x,y) and C(x,y) coincide, both 5 I and 52 are zero. The amount and type of

discrepancies are known from values of 5 1 and 52. By integrating 51 and 52 as

F=51'+52'

we can assess the matching of the T(x,y) and C(x,y) by the value of F.

5ince F is a function of Ev. Es, and Ev, we can determine thc optimal location of the

end-member points by minimizing F. We lise a non-linear oplimization algorilhm (the

5implex method) to search for oplimal end-member points that minimize F. starting
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from the initial estimate points.

4.4 Application to Multitemporal Landsat TM Data

58

In order to test the effectiveness of VSWI, we applied this index to monitoring wetlands.

In the analysis, multi temporal Landsat TM scenes acquired on 3 dates in 1986 and 1991

over the Kushiro wetland were used.

4.4.1 Study Area and Image Data

The study site, the Kushiro wetland, is the largest in Japan with 18000 ha. Most of

the wetland is fen, covered with reeds and sedge grasses, while some parts are

sphagnum moss-covered bog areas.

The image data used for the analysis are from Landsat TM scenes acquired on 28 June,

9 September, and 27 October in 1986 and 26 June, 29 August, and 1 j ovember in 1991

as shown in Figure 4.3. All images in the tigure are displayed by assigning false colors

(red for the near-infrared band, green for the mid-infrared band, and blue for the red

band).

In this figure, red means vegetation, blue corresponds to bare land or urban areas, and

black represents water bodies. In June, the wetland vegetation was at the beginning of

its growing season: sedge was already growing but reeds were still brown; alder trees

were developing leaves. In August, the vegetation in the wetlands was at its maximum

growth: the reeds had grown to around 3m in height. In early November, most of the

vegetation except the sphagnum moss was dead.

The characteristics of the Landsat TM data are depicted in Table 4.1. The ground

resolution of the TM sensor is 30 m except the thermal band, which is considered to be

sufficient for monitoring wetland vegetation distribution and land use in the

surrounding region. The image analyzed has 1024 x 1024 pixels which includes almost

all the wetland area. The TM sensor has 7 bands, among which especially the near­

infrared (TM4) and the mid-infrared band (TM5,6) are known to be effective for

discriminating among wetland vegetation types (Yamagata et al. 1995).
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4.4.2 Assessment of YSW Index Color Composite
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The pixel values are plotted on the red- IR axes in Figure 4.4. The 6 seatter plOLS

correspond to the 6 TM scenes in Figure 4.3. Each seatter plot has the same scale, and

the density in the plOLS is depicted in log scale.

The VSW end-member points determined by the algorithm described are also shown in

Figure 4.4. The Figure shows that the end-member poinLS were consistently extracted

by this algorithm as the vertex poinLS of the l1;angle, irrespective of the seasonal

changes in the wetland area. However, the size of the l1'iangle changed in the autumn

scenes because the vegetation end-member point was not distinct.

The equations of the lines that correspond to the three edges of the triangle were

calculated and formulas were obtained for measuring distances between the spectra and

the lines; from these distances, the VSWls were calculated.

Calculated VSWls were scaled at 0- 255 (integer values) and form a color image for

each scene. Figure 4.5 shows the VSWI color maps. In this figure, V, S, and W indices

are displayed as green, red, and blue, respectively. The maximum values of the colors in

this tigure correspond to the values of the VSW Indices shown in Table 4.2. The index

is allowed take a negative value, but here all negative values were set to 0 for

convenience. By using this Table, we can read the value of the VSW indices of the

image pixels. From the VSWI color maps, the change in wetland condition can be seen.

4.5 Discussion on VSWI

One of the advantages of VSWI is that it allows easy interpretation of surface

conditions using a color composite. It is not easy for non-remote sensing researchers to

directly interpret raw false color TM scenes. We can actually see the seasonal difference

and 5-year change from the color composite of the VSWls (Figure 4.5).

However, VSWI is an index value just like the PVI. It has little meaning without being

calibrated against some physical parameters such as biomass, LAI, soil moisture, water

content, ctc., by on-ground measurements. VSWI can be used as a quantitative measure

for environmental monitoring. once these calibrations are conducted on a relleclance

basis.
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Table 4.1. Characteristics of Landsat 1M bands.
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BAND
1
2
3
4
5
7
6

(J1 m)
0.45-0.52
0.52-0.60
0.63-0.69
0.76-0.90
1.55-1.75
2.08-2.35
10.4-12.5

Green

Green
Red

Near IR
Mid IR
Mid IR

Thermal

IFOV(m)
30x30
30x30
30x30
30x30
30x30
30x30

120x120

Table 4.2. Minimum and maximum values of VSW indices for R, G, B level of Fig. 4.6.

Scene Vmax Smax Hmax

28/06/86
09/09/86
27/10/86
26/06/91
29/08/91
01/11/91

137.78
113.28

61.47
133.35

131.32
72.75

69.64
42.91
48.12
73.99
69.03
34.77

98.70
56.21
87.85

105.49
93.79
49.23
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LANDSAT TM IMAGES (R:G:B=TM4:5:3)
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1986/JUN/28

1986/0CT/27

1991/JUN/26

Fig. 4.3. Landsat 1M false color images of Kushiro wetland. (R, G, B = TM4, TMS, 1M3)
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LANDSAT TM Scatter Plol and VSW Triangle
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Fig. 4.4. Scatter graphs of TM images on Red-NIR space overlaid with the determined VSW
end-member points. The each scatter graph correspond to the scene in Fig. 4.3 respectively.
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Moreover. remotely sensed data are not free from atmospheric effects. sensor

degradation, etc. If we need to compare data acquired at different times, atmospheric

and radiometric corrections are vital. However, the data that are necessary for these

corrections are unfortunately not available in most cases. Many researchers have

slUdied ways to compensate for this problem by some empirical calibration method.

VSWI performs this function to some extent, because the end-member points are

automatically selected from the spectral signature distributions in the scenes. This

automatic end-member selection works as a kind of standardization process of the

observed pixel values. Although VSWI takes on another meaning when there are

completely different end-member points in a scene, even in scenes acquired in different

years the algorithm will tind the same end-member points and VSWI will have the

same meaning without any further calibration whenever most of the land cover remains

the same and only a limited part in the scene has changed. This is an another strong

advantage of VSWI in detection of environmental change.
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VSW INDEX IMAGES (R:G:B=HS:HV:HW)
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1986/JUN/28 1991/JUN/26

1991/AUG/29

Fig. 6 Distribution of VSW indices. (R, G, B=Soil, Vegetation, Water index)

Fig. 4.5. Distribution of VSW indices. (R, G, B = Soil, Vegetation, Water index)
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AlgOlithms to detennine automatically the end-member spectral points for vegetation,

soil, and water were developed by filling a lIiangle to the scaller plot instead of tinding

the soil line. The distances between the spectral points and the u·iangle edges were used

as the new index, VSWI. In conventional unmixing approaches, end-member points are

often determined manually and arbiu·arily from the image data or a scaller plot of the

data. The VSWI was applied to wetland monitoring using multitemporal, Landsat TM

image data, and the vegetation, soil, and water conditions and changes were

successfully delineated. Because the VSWI determines the end-member points

automatically, it also works as a standardization method for spectral data, which

facilitates use of VSWI for detection of environmental change.



Chapter 5
Unmixing Spectral Image Data

In this chapter, a new approach for spectral unmixing by the subspace method is

proposed and tested using hyperspectral image data. By the subspace method, unmixing

is calculated as the projection of each unknown pixel vector onto the subspace of each

class. This method is more stable against noise in the data than are conventional

methods and it works effectively as a feature-extraction and data-reduction procedure as

well. The performance of this method is tested by an unmixing experiment using a

hyperspectral Compact Airborne Spectral Imager (CAS!) image acquired over the

Kushiro wetland in NE Japan. Unmixing for 7 wetland vegetation classes is also

conducted by the least squares, quadratic programming, and orthogonal subspace

projection methods. Finally, the results of the unmixing experiment are compared and

evaluated with regard to wetland vegetation monitoring. This chapter is based on

Yamagata (1996c).

5.1 Introduction

In wetland landscapes, various vegetation types are continuously distributed. Remotely

sensed spectral data over wetland areas are spectral mixtures of several vegetation types.

These images consist of mixels that have to be analyzed using spectral unmixing

procedures to estimate the state of each of the constituents (Settle and Drake 1993).

Conventional statistical unmixing methods such as least squares use a linear mixing

model. In this linear model, the mixed spectral vector is assumed to be a sum of the

class spectral vectors that constitute the mixel. By solving this linear mixing model

using predetermined class vectors, we can estimate the proportion of each class within

the pixel.

However, the computational complexity increases substantially as the number of image

channels increases. and the least squares solution becomes unstable due to the high
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autocorrelation between the channels. In conventional approaches. it is necessary to

reduce the number of spectral dimensions in the problem as a preprocessing step for

unmixing (Malinowski 1991).

Hyperspectral sensors are a recent development in remote sensing and have been used

for environmental monitoring (Kramer 1992). Hyperspecu'al imaging is recognized as

an effective means for estimating vegetation parameters (Gong et al. 1994). However. to

unmix the very large number of channels in hyperspectral imagery, an algorithm that

can unmix several spectral classes in a fast and stable manner must be established. A

number of unmixing methods. which incorporate modern signal processing and neural

network methodologies, have been explored recently (Harsanyi and Chang 1994,

Benediktsson et al. 1995).

Unmixing by the subspace method (Oja 1984) utilized in this paper is a new approach,

based on a fundamentally different principle for panern recognition. The subspace

method first assigns a specific subspace in the high-dimensional spectral space to each

vegetation class, instead of fining a mixel model with a predetermined number of

spectral dimensions. Unmixing is then performed by measuring the projection length of

the mixel vector onto the subspace of each class. In addition. the subspace method has

the remarkable characteristic that it unifies the process of feature extraction and

unmixing. which are usually separate processes in conventional methods.

In this Chapter. the principles of the new unmixing approach by the subspace method

are explained. along with experimental results derived from CASI data to compare this

new method with conventional approaches.

5.2 Unmixing by the Subspace Method

5.2.1 Statistical Unmixing Methods

Conventional statistical unmixing methods assume that the mixel spectral vector is a

weighted mean of the class spectral vectors that constitute the mixel. Within each mixel.

there are several mixed classes whose proportions correspond to the weights of the

model. These weights are estimated by the unmixing method. In a remotely sensed

image with p channels, K land cover classes exist in the image and the proportion of

class UJ, is f, . A linear mixel model assumes that the observed p dimensional vector
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r is expressed as

K

r=Mf+n= ~f.m,+n (5.1)
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Where M is a p x p matlix with class spectral vector m, as column vector, f is a vector

with f. as components, and n stands for the noise vector.

Statistical unmixing methods include unmixing by least squares, factor analysis and

singular value decomposition (Malinowski 1991, Settle and Drake 1993). Unmixing by

the subspace method does not assume a linear statistical model.

5.2.2 Principles of the Subspace Method

The basic idea behind the subspace method is that the class spectral vector lies mainly

in a small class-specific subspace instead of within the entire dimension of the specu'al

space. If the class subspace is determined from the training sample of each class, class

member values can be calculated by the projection of the mixel spectral vector onto the

class subspaces that is determined from training samples (Watanabe 1969, Kohonen

1977).

The 3 ways of calculating subspace by the subspace method are the algebraic, statistical,

and learning subspace methods (Oja 1984). In this paper, a statistical subspace method

called the CLAFIC (CLAss-Featuring Information Compression) algorithm is used.

This method is known to be fast and effective in cases where the volume of training

data is moderate.

5.2.3 Enhanced CLAFIC Method

The CLAFIC algorithm determines the class subspace in order to maximize the

projection of the class vector on the corresponding class subspace. However, by

maximizing the projections for all classes at the same time, the separation between

similar classes decreases.

In order to avoid this drawback, we have employed the enhanced CLAFIC algorithm,

which maximizes the projection on the class subspace to which the training vector

belongs and also minimizes projection on the other subspaces atlhe same time.
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[n the enhanced CLAFIC method, the class subspace L' which corresponds to land

cover classes ,.,,'" (i=l •... ,K) is determined so as to maximize the expected projection of

vector x that belongs to the classes I'll "'. It also minimizes the expected projection of

vector x that belongs to other classesl'llw (j=Fi). The problem here is to determine the

subspace L' to satisfy these conditions at the same time as formulating the next

minimization problem:

K

IE(x' P(,)xlx E u/'»)- E(x' P(')xlx E Oil)

(5.2)

where pUi is the projection matrix to the Li
.

The tirst term of equation (5.2) is the expected projection of sample vectors that do not

belong to class l'lI'i) and the second term is the expected projection of vectors that do

belong to class I'll "'. Using expression (5.2). we can determine the subspace Li that

minimizes the first term of (5.2) and maximizes the second term.

The projection matrix pi) is expressed using orthogonal normal bases u,") , ",Up(i) Ui of

subspace L' as

p(')

P<l} = IU~')uii)'

t;1 (5.3)

By substituting equation (5.3) into (5.2) and rewriting (5.2) using base vector

1I,"'(k=l, ...•p") ), we get

K p(') pl')

I I E«x'u;'»)'lx E w'")_ I E«X'U;i»)'lx E w'<»)
/ ... ,/;:'%\ ,1:"'1

,"I (5.4)

Calculating the expectation first, (5.4) becomes

(5.5)
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where Q'" is the correlation matrix of class (J) "'. which is defined as

Q'" = E(xx'ix E aJ''')

By combining (5.5) with the normal condition of bases u/" ....u",:" .

(5.6)

(5.7)
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Using the Lagrange multiplier method. minimization of (5.2) is transformed to the

minimization of the next term:

p(') K p(t)

L u;'" (L QW - Q'" )u;" - L (it~'u~'" U~" -1)
.l:""l ;"'-' x-I

1''''1 (5.8)

Taking the derivative of this term with respect to the base vectors u."'(k=J•...•P'" ). we

obtain the necessary condition for a minimizing solution:

(f,Q'i}-Q(i')U:"=it';'U:" • k=l •...• p'j'
jl'j
;:1 (5.9)

From equation (5.9). it is known that the solutions for the base vectors u,'" (k=J, ...P'" )

of L' are the eigenvectors of the next matrix:

Q =±Q'" _Q'"
,"
1'=1

In addition. by setting the ith eigenvalue of Q as A :". (5.8) becomes

(5.10)

pl'j p"
Iu~i)tQukj) = IA(~)U~j)lu~i)

k=1 k=l
= Lit~'

>=' (5.11)

So. in order to minimize (5.8). we can select the eigenvectors that correspond to the

minimum p'" eigenvalues as the onho-normal base of L'. Here. the dimension pf/l of the

subspace is the parameter used to adjust the mean projection length on the classes.
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Because the subspace L' is uniquely determined from the base vectOrs u.'" (k=J, ... ,p"').
the above procedure determines the subspaces which minimize the enhanced CLAFIC

criterion (5.2).

5.2.4 Unmixing by the Subspace Method

Once the class base vectOrs lI.'" (k=J, ... ,p"') are determined as the eigenvectors

corresponding to the eigenvalues of the correlation matrix, the projection matrix p(;' is

calculated from equation (5.3). The length of the projection of the observed mixel

spectral vector x on the class subspace L' is calculated as

(5.12)

This projection length expresses how much of the mixel vector belongs to the class (J) (i'.
By a natural extension of the membership values, we interpret this projection as a

measure of the class component contained in the mixel vector and define the unmixing

in each class as the projection on the class subspace calculated by (5.12).

5.3 Unmixing Experiment using CASI Data

In order to check whether un mixing by the subspace method works effectively for

hyperspectral images, we conducted an unmixing experiment using a 288-channel

CASI and compared the results with those of conventional statistical unmixing

methods.
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Table 5.1. Characteristics of CASI spectral mode and image acquisition condition.

Specifications of CASI sensor

Band wIdth 1.8 nm
number of bands 288 channels
Band range 410.3-923.7 nm
Image size 39 pixels, 489 lines
Dynamic range 12 bit

Image acquisition conditions
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Altitude
Velociry
Ground resolution

Date
Time
Weather

3000 m
200 kIn h- I

3.7 m (along swath)
12.6 m (along flight)

31 Aug 1993
11:25-11:30

Clear

Table 5.2. Base vectors of 7 subspaces which correspond to 7 c1asses_

CLASS PC EIGE:--i VALUE EIGEN VECTOR
4i8.5nm 549.5nm 620.;nm 692.4nm 764.5nm 36.8nm 909.2nm

YOSHI -129.52 -o.om 0.0408 -0.0053 -0.0256 -0.2552 -0.0381 -0.0236
·2.25 -0.0458 0.0249 0.0457 0.0010 0.0130 -0.0167 0.0501
-1.87 -0.1464 0.0076 -0.0140 00200 0.0235 -0.0437 -0.1009

HANNOKI -0.0464 0.0763 -0.0082 -0.0107 -0.1042 -0.0525 -0.0185
-0.0232 0.0450 -0.0110 0.0631 -0.0131 -0.0323 -0.0378
-0.02i8 -o.om 0.0466 -0.0402 0.0049 0.0233 0.0411

WZUGOKE -31.42 -0.0505 -0.0599 0.0166 0.0468 -0.0654 0.0206 0.0239
-2.72 -0.0846 0.0278 -0.0390 00552 0.0410 0.0267 0.0267
-2.11 0.013i 0.0181 0.0~97 0.0590 0.0366 0.0139 0.2041

ISOTSr.;TSliJI -6.98 0.10i5 -0.0568 -0.00i6 -0.04iO -00205 0.0005 0.0539
-174 0.0567 0.0022 0.010i 0.0081 0.072~ 0.1964 -0.1394
-1.30 0.1149 0.0396 -O.ono -0.ooi8 -0.0041 -0.0110 -0.0146

Sr.;GE -146.98 0.0~9 -0.1038 0.ooi6 0.0328 -0.1418 0.0094 0.0263
-3.00 -0.05iO -00223 0.0409 0.0101 -0.0545 0.0682 0.0515
-~.08 0.0419 0.0229 0.0808 0.0391 -0.0189 0.0644 -0.1118

WATER -604.14 0.0856 0.0215 -0.0516 -030621 -0.0015 -0.0108 0.0171
-i.J9 -0.0654 0.0132 0.0252 -0.0124 -0.0353 0.1R96 0.0416
-089 -0.0256 -0.0013 -0.0372 -0.0115 0.0527 -0.0566 -0.1631

ROAD -24656.21 0.0620 O.Oill 0.0939 0.0836 -0.0113 -0.0293 -0.0239
-4139 -00146 U.0529 0.0654 -0.1158 -00247 0.0633 -0.0073
-5.04 -0.0~15 '0.0564 0.0342 0.06i6 0.0031 -0.0031 0.U074
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The spectral image used for our analysis was a CAS! image acquired over the Kushiro

wetland. The CAS! spectral sensor can measure a spectrum from 470 to 920 nm with a

1.8 nm band width. The specification and the data acquisition conditions for the CAS!

sensor are shown in Table 5.!. The image was acquired at an altitude of 3000 m from a

Cessna 404 aircraft. The ground resolution was 12.6 m. Each pixel in the image

contains the mean spectral radiance of the ground target.

A selection of 7 bands from the original CAS! image (spaced every 40 channels) is

shown in Figure 5.1. The first 4 channels are in the visible spectrum and the others are

in the near infrared. In the center of Figure 5.l is Lake Akanuma and the artificial dike

across the area is clearly visible. There are various wetland plant species in this study

area. especially reeds, sedges, and sedum, overlapping and continuously distributed

over sphagnum moss.

Before the analysis, the CASI image was corrected for geometric distortion caused by

the roll of the aircraft and the digital numbers were converted to radiance values (Babey

and Soffer 1993).

5.3.2 Unmixing

The spectral characteristics of the 7 land cover classes used for unmixing are shown in

Figure 5.2. All the classes are wetland vegetation communities (except for the road and

water classes). The spectral differences between these vegetation classes are difficult to

discriminate using a common remotely sensed image with a small number of bands. So

far, wetland vegetation classification has not been intensively studied with respect to

overlapping and continuously changing vegetation distributions, due to the lack of

established methods (Yamagata 1995). However, from wetland ecosystem conservation

planning and the global warming model perspectives, wetland vegetation classification

has become an urgent research theme.
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Fig. 5.1. Selected 7 channel image of original CASI data.

14

74

12

~
10

'"
§

-Reed
-Alder
-Sphagnum
-Ledum
-Sedge
-Water
-Road

500 600 700 800 900

Wavelength (nm)

Fig. 5.2. Training spectra of? classes used for unmixing.
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5.3.3 Procedure of Unmixing
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The process of unmixing by the subspace method applied to CASI imagery was as

follows:

I) Nine pure pixels (end-member points) for each unmixing class were selected as the

training data based on knowledge from tield surveys.

2) Using training vectors, the class correlation mauix Q was calculated by equation

(5.6).

3) The eigenvalue problem using the class correlation matrix Q was solved to

determine the subspaces for each class.

4) The projection of pixel vectors of the CAST image on the class subspace was

calculated using equation (5.12).

5) The projection (component of unmixing) for each class was normalized to (0, 1)

and mapped to an image.

The calculated subspace (base vectors) is shown in Table 5.2. The base vectors consist

of 288 dimensions. However due to restriction of space, only those in the 7 channels

corresponding to Figure 5. I are shown in the Table.

5.3.4 Comparison of Methods

As mentioned above, 3 conventionalunmixing methods were used for compaIison with

the new method:

I) Least Squares Method: Assuming a linear mixing model, proportions of each class

in a mixel are determined by a least squares model using the training data.

2) Quadratic Programming: Adding a condition that the proportions add up to unity in

a linear mixing model, a least squares solution is obtained by the quadratic

programming method.
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SphJgnlim

Sedge

Fig. 5.3. Unrnixing by subspace method.

Sphagnum

Sedg.:

Fig. 5.4. Unmixing by least squares method.
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Silhagnum

••••~_.,~-_,..~,;..-O?".,,,":;~~
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,"",g.,..

Fig. 5.5. Unmixing by quadratic programming method.

Fig. 5.6. Unmixing by orthogonal subspace projection method.
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3) Orthogonal Subspace Projection Method: First, thc projection of thc mixel vector

onto the orthogonal complement space spanned by the class vectors of the other

classes is computed. The inner product of this projected vector and the class vector

are then calculated (Harsanyi and Chang 1994).

5.3.5 Results of Unmixing

The result of unmixing by the subspace method applied to the CAS! image of Kushiro

Mire is shown in Figure 5.3. The results of unmixing by conventional least squares,

quadratic programming, and orthogonal subspace projection methods are shown in

Figures 5.4, 5.5, and 5.6, respectively. Here the unmixed vegetation classes are Yoshi

(Phragmiles: Reed), Hannoki (Alnus: Alder), Mizugoke (Sphagnum: Sphagnum Moss),

]sotsutsuzi (Ledwn), Suge (Carex: Sedge).

We compared the accuracy of quantitative classification of unmixing by the subspace

method with that of the other methods, and investigated the correspondence between

them and the actual vegetation distribution from field surveys. The following results

were obtained:

I) The subspace method highlighted the reed area mixed with sedge as Sedge class

(Figure 5.3).

2) Comparison of Figures 5.3 and 5.5 shows that the subspace and quadratic

programming methods delineated accurately the ground pattern of the Sedge class.

3) Only quadratic programming (Figure 5.5) delineated the Moss and Ledum classes,

which are spectrally very similar (Figure 5.2). This result may be due to a

constraint of quadratic programming, i.e. it tries to enhance the subtle spectral

differences between classes to increase membership difference.

4) The Alder class was accurately delineated only by quadratic programming (Figure

5.5).

5) Water and Road classes were dclineated accurately by all methods.
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5.3.6 Evaluation of lJ-nmixing Methods
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Based on the results obtained above, the unmixing methods can be evaluated as follows:

I) Spectrally distinct classes such as Road. Water and Sedge (Figure 5.2) are well

unmixed by the subspace method (Figure 5.3).

2) Spectrally similar classes such as Ledum and Moss (Figure 5.2) are unmixed

sufficiently only by quadratic programming (Figure 5.5).

3) The results achieved by the orthogonal subspace projection method (Figure 5.6) are

exactly the same as those achieved by the least squares method (Figure 5.3).

4) Quadratic programming (Figure 5.5) provides the most accurate pattern of

unmixing across all classes. However, it is the most time-consuming to implement.

The subspace method uses a very fast algorithm and un mixing is performed

through a simple inner product calculation suitable for parallel processing.

5.4 Conclusion

A new approach for the spectral unmixing problem by the subspace method is proposed

and applied to wetland vegetation unmixing using hyperspectral imagery. For

hyperspectral imagery, unmixing by the subspace method is superior to that done by

conventional methods in numerical stability and computation speed. The results of the

unmixing experiment showed that unmixing by subspace is accurate except for classes

that are spectrally very similar. [n the near future, the number of sensor channels and

the size of the image area will rapidly increase. The fast and stable un mixing algOlithm

based on the subspace method will be most useful for such data. Further, we need to

improve the separability between the spectrally very similar classes by developing the

present approach further.



Chapter 6
Feature Selection for Classification

In this chapter, by applying feature-selection methods, effective spectral band combinations

for wetland vegetation classification were investigated using airborne MSS (Multi Spectral

Scanner) image data. By maximizing the Jeffries-Matusita distance and maximizing the

classification accuracy of the test data, near-infrared, mid-infrared, and the green bands

were selected. The maximum likelihood and minimum distance methods were used as the

classification algorithms. The highest classification accuracy when using 7 bands was

attained by the minimum distance method. Using this band combination, classification of

the whole MSS image was conducted. This chapter is based on Yamagata et al. (1995).

6.1 Introduction

Most of the remote sensing studies so far have focused on classification using remotely

sensed data. There are few studies on the selection of effective bands for classifying

wetland types. Moreover, most of the classification work has been done for marsh or

swamp areas. There are very few investigations in bog (Sphagnum moss-covered) areas. In

this study, effective spectral bands are selected by feature-selection methods for wetland

classification. Selection is conducted based on airborne MSS data acquired over a bog in

Kushiro Mire in Japan. Based on the selected bands, a vegetation classification map for the

bog area is produced for the first time.

For band selection, we used two criteria of selection: maximizing the Jeffries-Matusita

(lM) distance, which measures the separability between classes, and minimizing the error

rate of test data classification. The optimal combination of bands was selected by

evaluating all combinations by these cliteria. Although there are many types of separability

measures between spectral classes, the JM distance is superior to the other methods as an

indicator of classification accuracy.
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Band selection was also conducted using thc divergence measure. However, as the result

was almost samc as that with the JM distance, in this study we describe only the results

obtained by the JM distance.

We compared the results of band selection by changing the classification algorithm to

determine how classification accuracy affected the band selection. We tested the minimum

distance and maximum likelihood methods in selecting bands using as a criteria the

minimizing of test data classification errors.

Moreover, to decrease the dependence of the selected result on the training data, we used a

cross-validation method in which we changed the training and test data repeatedly with 20

different combinations. The selected bands were weighted for their effectiveness by

evaluating all the band selection results for the 20 cases. Finally, the whole airborne MSS

image was classified using the bands that showed the highest accuracy with the test data.

6.2 Data and Methods

6.2.1 Study Area and Wetland Classification

The Kushiro mire (Figure 6.1) is the largest wetland in Japan, located at the eastern part of

Hokkaido Island. The wetland was formed by peat accumulation during the last 4000 years.

The depth of the peat is 1-4 m. The average temperature is low (around 5.6 degrees Celsius),

and annual precipitation averages 1100 mm. [n the wetland, there are many endangered

species of plants and animals. Kushiro Mire was designated as a national park in 1987 and

registered as a Ramsar convention site; it is recognized as an important wetland for

migrating birds.

Most of the wetland belongs to the fen class of mires, covered with reeds and sedge grass,

while some parts belong to the bog class, covered with Sphagnum moss. Here, fens are

defined as peat-producing wetlands intluenced by soil nuu-ients from water flowing through

the system. Fens are found in boreal and tundra regions, including the area of permafrost in

the extreme north, while bogs are peat-producing wetlands in moist climates, where organic
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material has accumulated over long periods. Their main feature is ombrolrophy, which

means that waler and nuu·ient input into the system is entirely through precipilalion. There

is no mineral inpul through soil water to the syslem. During peat formation, the bog area

has risen above the land surface. Bogs are extremely acidic and nutrient deficient. Typically,

the major vegetation component is Sphagnum moss (Aselmann and Crutzen 1989).

6.2.2 Airborne MSS Data

The specifications of the airborne MSS dala used in the analysis are described in Table 6.1.

Channels I and 2 are blue bands; channel 3 is a green band; channels 4 and 5 are red bands;

channels 6,7, and 8 are near-infrared bands; and channels 9 and 10 are mid-infrared bands.

The chemical composition of leaves affects lheir spectral properties in the visible (400-700

nm) and shortwave infrared (700-2500 nm) regions. Absorption by photosynthetic

pigments (chlorophyll, xanthophyll, and carotene) dominates the visible wavelengths. Each

of the pigments has an absorption maximum in the 300-500 nm region. However, only

chlorophyll absorbs in the red wavelengths. Principal absorption peaks of extracted

chlorophyll-a occur at 430 and 660 nm and those of chlorophyll-b at 455 and 640 nm.

Vegetation exhibits high reflectance in the near infrared (700-1300 nm) and high

absorption in the middle infrared (1300-2500 nm). The near-IR wavelengths are greatly

influenced by cellular structure and refractive index discontinuities within the leaf. Minor

water absorption features near 960 and 1200 nm vary significantly in shape and depth and

may be related to both cellular arrangement within the leaf and hydration state. The mid­

infrared region is dominated by leaf water absorption and has been related to plant water

content. The region intermediate to the water absorption maxima at 1450 and 1940 nm may

be strongly influenced by cell structure, morphology, and tissue constituents. (Wessman

1994)
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Fig. 6.1. Location map of Kushiro mire and study area.
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Table 6.1. Spectral bands of airborne MSS ..
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Channel

1
2
3
4
5
6
7
8
9
10

Wavelength (nm)

425---439
499-519
570-592
654-669
688-708
723-740
762-782
820-900

1520-1720
2060-2450

Table 6.2. Data acquisition condition of airborne MSS.

Sensor
Altitude
rFOV
Number of pixels
Dynamic range
Date
Time

J-SCAN-AT-18M
2500 m
6.25 m
512x512
8 bit
23 June 1992
17:00-17:06
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Data acquisition conditions for the airborne MSS are described in Table 6.2. The data were

acquired by the optical scanner sensor with an IFOV of 6.25 m can'ied in a Cessna 404

aircraft at an altitude of 2500 m on 23 June 1992. The image obtained was corrected for the

radiance increase along the swath and for geometrical distortion. We then discarded 35% of

the pixels on both sides to avoid the influence of the look-angle effect. Data of 512 pixels

in the center area were used for the analysis.

When the data were acquired, the wetland vegetation was at the beginning of the growing

stage, the Sphagnum moss was already active, but most of the vegetation above it was still

moribund. There was no rainfall in the previous days and the surface of the vegetation was

dry. The all-channel image of the MSS data is shown in Figure 6.2. Because the image was

acquired at 5 p.m., the radiance was rather low in channels 6 and 7 and some sensor noise

was also observed in these channels. We judged that it was not a problem to include these

channels when selecting bands for classification.

6.2.3 Band Selection by JM Distance

An effective band combination for classifying wetland vegetation types can be selected by

maximizing the mean Jeffries-Matusita (JM) distance between the classes. Considering the

band combination with the maximum separability between classes as the best combination

for classification, the optimal combination is found by exhausting all combinations and

calculating the mean JM distance each time. In order to check the effect of the training data

on the results, 20 different combinations of training data were used to select the band

combinations. The selected 20 optimal combinations were then evaluated by weighting the

bands with the number of times each was selected.

Here, the JM distance between two classes i and j is defined as the probabilistic distance

between two distributions as described in Chapter 1.6.3. The minimum value for JM is 0

and the maximum value is 1414. The smaller the JM distance, the more difficult it is to

separate the classes, while a JM distance of 1414 means perfect separation between the

classes.
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Fig. 6.2. lmagcs of all airborne MSS channels.



6 Feature Selcction

The procedure used to selectn effective bands using the 1M distance is as follows:

I) Select 6 areas (5x5 pixels) for each class.

2) Assign 3 areas to training areas and the other 3 to test areas. (There are 20 different

combinations of assignmem)

3) List all combinations of the chosen bands out of the 10 available bands.

4) Calculate JM distances for all band combinations and all class pairs and average over

the class pairs. From this we obtain the mean JM distance for all band combinations.

5) Select the band combination that gives the highest mean JM distance.

6) To evaluate the total effectiveness of a band for classification, the band receives a score

(weight) according to the number of times it is selected during the selection process

from n=1 to n=lO. Thus, if a band is selected first and continues to be selected, it

receives a weight of 10.

7) Weights of the bands are summed over all 20 combination of training and test data,

from which the bands are ranked.

6.2.4 Band Selection by Accuracy of Test Data

In band selection using JM distance, the probabilistic separability between the classes is

used. In classifying the whole MSS image, the same classifier is used for data which might

have differem spectral propenies from those of the training data. Thus, there is no

guaramee that a selected band using training data also gives the optimal combination for

classifying real images. To compensate for this problem, we must use the test data, which

were untouched previously, for assessing the real classification accuracy.
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Therefore. we conducted band sclcction by using as a criteria tothe maximization of test

data classification accuracy. Then, in order to check the dependency of the selection results

on the classifier. we compared band selection using the maximum likelihood and minimum

distance methods.

The band selection procedure for maximizing the classification accuracy was conducted in

the same way as that for the JM distance method: band selection against the 20

combinations of training and test data was performed. weighted according to the number of

times selected. and ranked according to effectiveness.

6.3 Results of Band Selection

6.3.1 Spectral Characteristics of Vegetation

The 6 training and test regions, each consisting of 5 x 5 pixels were selected for each

vegetation class in the bog area. The regions were determined based on a field survey,

aerial photographs, and the color composite image of MSS data. The mean spectra of the

vegetation classes are shown in Figure 6.3.

From lhis figure. it is obvious that the spectral pattern changes considerably in the visible

bands (1.2,3,4. and 5), near-infrared bands (6,7, and 8) and mid-infrared bands (9 and 10).

The high reflectance in the near-infrared bands is due to growth of the sedges in the area.

while the high ret1ectance in the mid-infrared bands is due to dead reeds.

To detect spectral distribution differences between the vegetation classes, pixel values in

each region for each vegetation class were plotted using near-infrared channel 8 as the x­

axis and the mid-infrared channel 9 as the y-axis (Figure 6.4). The near-infrared and mid­

infrared bands are known to be related to the biomass of the vegetation and the water

content of the surface, respectively. From this scauer plot, it is seen that the major

vegetation classes such as Alder (Hannoki), Sedge (Suge), Reed (Yoshi) and Sphagnum

moss (Mizugoke) are spectrally separable along these 2 axes. However, the distributions of

vegetation types in the bog area such as Sphagnum (Mizugoke), Ledum (IsotutUlji), and

pools (Titou) overlap.
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Fig. 6.3. Spectral characteristics of vegetation classes.
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The optimal band combination for the wetland vegetation classification was selected by the

twO criteria procedures described above. The results of selection by the IM distance are

shown in Table 6.3a, and the result by classification accuracy is shown in Table 6.3b,

respectively. [n these tables, the selected bands are displayed against the training data used,

in order of selection from left to light. In the Table, a minus sign means that the band was

selected once but was not selected at the next selection point with additional channels.

It is shown in these Tables that as the number of bands increases, the order of selection of a

band is more stable in the case of selection by IM distance than by test data accuracy. This

is due to the fact that the JM distance is determined only from the statistical distribution of

the training data, while the test data classification accuracy is dependent on both u'aining

and test data; hence, the lalter selection is more susceptible to statistical fluctuation.

6.3.3 Assessment of Band Selection

When we need to classify all the pixels in the image, the selected band combination using

training data does not necessarily give the best classification accuracy. The optimal band

combination is expected to be closer to that selected by classification accuracy using test

data. In order to find the band combination that does not depend on training data and that

can work well for the whole image, we assessed the band selection results by averaging

them over the test data range. Each band was weighted and ranked for its effectiveness

following the procedure desclibed above. The procedure was repeated by changing the

classification method to check the dependency of the selection on the classification method.

The results of band selection by IM distance (IM), by test data classification accuracy using

maximum likelihood (ML), and by classification accuracy using minimum distance (MD)

are shown in Figure 6.5.
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Table 6.3a) Selected bands by maximizing mean 1M distance.
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Training Data Selected Channel (from left)

-3 S 10 1 3 6 4 2 7
2 10 6 1 5 4 7
2 10 1 -2 5 2 6 4 7
2 10 4 1 6 3 7
10 1 5 ·10 10 6 4 2 7

9 3 10 2 6 5 4 1 7
10 3 9 ·10 10 6 1 5 4 2 7
3 9 5 6 2 ·5 10 5 1 4 7
3 9 5 10 1 6 4 7 2
3 9 2 10 6 1 4 5 7
3 9 4 2 ·4 6 10 1 4 5 7
10 3 9 ·10 10 2 5 6 1 4 7
3 9 5 6 1 10 2 4 7
10 3 9 ·10 2 10 6 1 5 4 7
10 3 9 ·10 2 ·3 10 3 6 5 1 4 7
9 3 5 10 1 6 2 4 7
3 9 5 6 2 10 1 7 4
9 3 10 1 6 5 4 2 7
4 3 ·4 9 4 10 2 5 6 7 1
3 9 2 6 1 10 4 5 7

Table 6.3b) Selected bands by maximizing classification accuracy aftest data.

Training Data Selecled Channel (from leil)

4 -4 5 6 4 -5 10 2 -4 5 -6 a -2 4 6 3
853 -5 9 56-8 10 8 7 4 1 2 -7 7
853 -5 9 675110 -1241

I 10 3 8 ·10 9 6 7 10 4 5 2 1
I 8 3 5 -$ 9 10 7 4 1 2 -3 .4 5 6 4.7
3 6 3 -6 8 9 7 2 -J 5 6 -7 1 -2 10 -, 2 4 1
I 1038916 -8·1475 -68126
3 1058 -10 934101 -J 6 7 2 3-4
I a 3 9 5 2 6 4 -6 10 1 7 6
3 8 9 3 ·3 5 6 2 1 -2 3 10 2 4 ·10 10 7

-\ 6 3 -5 9 5 10 4 -6 8 2 6 ·10 10 7 1
2 8 31·J 5 7 -1236 -710 -2 4 71
I 8 3562 -2 4102·-1714
2 4 8 3 -3 4 6 5 1 3 -6 10 7 2 6 -10 10
I 4 836 -8 -68961074521
2 3 1038 -10 946510721
I 4; 893 -9 1069 -10 71021 -45·747

2 J 6 4 J .4 ·6 8 9 4 2 -4 7 -2 5 10 4 6 -7 1 2 -4 4 7
I 5 8 10 3 -5 6 5 9 ·to 1 10 2 7 4

3 8 3 -9 105642 -2 7 912 -7 7
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The first 3 bands selected were common to all 3 methods (JM,ML.MD), that is near

infrared (820-900 nm), mid infrared (1520-1720 nm) and green (570-590 nm) in that order.

The near-infrared band, which is sensitive to biomass of vegetation, has been used in many

vegetation applications. The mid-infrared bands are related to surface water coment; in the

prescnt case, it seems that the difference was betwcen the water content of live sedges and

that of dead reeds. The green band is not commonly used for vegetation monitoring, but in

the present case, the ret1ectance of green vegetation at its early growth stage seems distinct

in this band.

After the third band, different bands were selected by the three methods. Among them,

another mid-infrared band (2060-2450 nm) has a high score. This band is also sensitive to

surface water content, and is often combined with other mid-infrared bands to delineate

mineral components. However, these mid-infrared bands also vary in sensitivity to the 3­

dimensional structure and chemical components of vegetation. It seems that this mid­

infrared band was selected for its ability to discriminate the Sphagnum moss class, which

has a completely different structure from other vegetation types.

6.3.4 Relationship with Classification Accuracy

To see how classification accuracy increases with the number of bands used, the

classification accuracy obtained for all the bands was averaged over the training data

selections. The resulting relationship between the mean JM distance and the number of

bands, and the relationship between the classification accuracy of the test data using ML

and MD are shown in Figure 6.6. Classification accuracy increased rapidly up to 3 bands

for all JM, ML, and MD. These bands were the same as the first 3 bands selected above.

This result also supports 3 bands superiority with respect to accuracy.

The relationship with JM distance follows from its definition: the additional bands

contribute to increasing JM distance. For ML and MD, accuracy peaked at 5 bands and 7

bands, respectively. This saturation of accuracy clearly shows that the use of additional

bands evaluated only with training data is not effective for classifying vegetation types for

test data or whole image data. The existence of the optimal number of bands also shows the

importance of cross-validation for selecting the optimal feature set for classification.
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WETLAND VEGETATION

Class Name-s

_ T1TOU

_ MllUGOKE

SUGE

_ HANNOKI

ISOTUTUJI

YOSHI
_ WATER

_ ROAD

Fig. 6.7. Wetland vegetation classification map produced from airborne MSS.
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Moreover, the results show that as the number of bands increases, the accuracy of MD is

superior to that of ML. This means that ML is not always the optimal classification method

when the distribution of vegetation is not normal. MD is simpler but more robust than the

more rigid ML, especially when there are not enough training data to estimate the

parameters of the classifier.

6.4 Vegetation Classification Map

The 7-band combination (2,3,4,5,8,9, and 10) that showed the highest classification

accuracy with MD was used with the data of the whole MSS image to produce a wetland

vegetation map of the bog area (Figure 6.7). Here, the 6 classified classes are the small

pools (Titou) in Sphagnum moss-dominated areas, the Sphagnum moss-dominated areas

(Migugoke), the sedge-dominated areas (Suge), the alder u'ee forest (Hannoki), the areas of

Ledum bushes (Isotutuji) over the Sphagnum moss, and the reed-dominated areas (Yoshi).

Finally, classification of the MSS image was conducted using the consistently selected 3

bands (3,8, and 9). There were not many differences between the results of this 3-band

classification and those using 7 bands. However, the proportion of Sphagnum moss area in

the classification based on 3 bands decreased from 28% to 21 %, while those of sedge and

Ledulll. were somewhat increased. These differences are probably due to the absence of

mid-infrared band (10), which is effective in discriminating the Sphagnum moss-covered

areas.

6.5 Conclusion

As an application of feature-selection methods, an effective spectral band combination for

classifying wetland vegetation was determined based on airborne MSS image data. We

uscd as criteria of maximizing the JeffJies-Matusita distance and maximizing the

classification accuracy of the test data. Three bands were consistently selected: near

infrared (820-900 mm), mid-infrared (1520-1720 mm), and green (570-590 mm), in that

order. As the classification algorithm, the maximum likelihood and the minimum distance

methods were used, and the same 3 bands were selected using both methods. The

classification accuracy of the test data also increased up to the same 3 bands. The highest
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classification accuracy was attained when using 7 bands by the minimum distance method.

Using the 7-band combination, the whole MSS image was classified inLO 6 wetland

vegetation classes.

A conventional vegetation map in the wetland was produced from interpretation of aerial

phoLOgraphs. It was very difficult to discriminate among the complicated vegetation types

in the bog area from these phoLOgraphs. However, the above analysis it is showed that

classification of wetland vegetation is possible using the spectral signatures of the

vegetation types, especially in the near-infrared and mid-infrared regions. The MSS image

data used in this study were acquired in the early growing stage of the vegetation.

Completion of the wetland vegetation classification using these image data only is difficult.

Combination of these data with images acquired in the middle of the growing stage to

obtain more accurate classification results is necessary (Oguma and Yamagata 1986).



Chapter 7
Classification using Multitemporal Image Data

In this Chapter, a multitemporal approach for classification is investigated from several

aspects to establish a methodology for wetland vegetation classification. The seasonal

changes in wetland vegetation happen so quickly that it is difficult to classify the vegetation

using only a scene acquired on a single date. In the experiment described here, we use

multi temporal Landsat TM data acquired in June, August, and November, to classify the

major vegetation types, such as reeds, sedges, alder trees, and Sphagnum moss, in the

Kushiro wetland. From the sampling measurements of biomass and spectral reflectance of

several vegetation types, it is clarified that each wetland vegetation type has a distinct

growth pattern and temporal spectral signature. Using this temporal information, it is

possible to classify the vegetation types with high accuracy. An accurate, wetland

vegetation classification map is produced as the result of supervised classification using

multitemporal Landsat TM images This chapter is based on Yamagata et al. (1996b).

7.1 Introduction

In the wetland area, there are many valuable species of plants and animals. Wetlands have

been recognized as one of the most important ecosystems in· terms of species diversity and

its conservation. In order to conserve wetland ecosystems, accurate monitoring of the state

of wetlands, especially vegetation, is vital. However, it is difficult to study wetland

vegetation due to water inundation. There has not been enough research on the spatial

distribution of wetland vegetation. Remotely sensed images from satellites or airborne

platforms seem to be the only sources for monitoring wetland vegetation distribution.

Several studies on mapping wetland vegetation have been already conducted using aerial

photographs in the Kushiro wetland. However, this approach has several limitations: I) The
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vegetation types are not distinct in color photographs. 2) Seasonal changes of vegetation

prevent accurate mapping using aerial photographs acquired on a single date. 3)

Geometrical distortion caused by the lens and aircraft motion, and radiometric distortion

from atmospheric effects are too difficult to correct, making it difficult to produce a

continuous mosaic of aerial photographs. It is also ditlicult to produce a classification map

using a single classifier. Classification is often conducted manually, but depends too much

on human interpretation, such that assessment of accuracy is difficult.

In this study, multitemporal Landsat TM data are used to produce an accurate wetland

vegetation classification map. There are several advantages to this approach: I) We can

make use of spectral signatures, especially in the near-infrared and red bands. 2) By using

multitemporal image data, seasonal growth patterns that depend on the vegetation type can

be used for classification. 3) Since the whole wetland (in the case of the Kushiro wetland)

fits in one Landsat image, there in no need to make a mosaic of several scenes.

7.2 Study Area

The study area was the Kushiro wetland, described earlier. Because of the rapid

development in the sun'ounding agricultural areas, nuuient rich water has been flowing into

the wetland and has dramatically changed the vegetation distribution. Among other changes,

alder trees have increased dramatically in number dUling the last 50 years.

Wetland vegetation classification so far has been conducted using spectral signature

differences observed in remotely sensed image data. However, the seasonal changes of the

vegetation occur rapidly, and the growing season varies from species to species. The

spectral signature differences between seasons are much greater than those between

vegetation types.

7.3 Seasonality of Wetland Vegetation

By knowing how the wetland vegetation changes seasonally, we can determine the optimal

period for image acquisition using remote sensors. We conducted sampling measurements

during the growing season for the most typical vegetation types in the Kushiro mire: sedge
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and reeds. These types have nevertheless not been successfully discriminated in

conventional classification maps. We conducted measurements in the test area of the

above-ground biomass for these types, 8 times from May until September. Sampling

measurements were conducted in two 1 x I m areas at each site of sedges and reeds (Figure

7.1). It can be seen from the Figure that the sedges begin 1O grow in late May and reach

maximum size around early August, after which they begin to wither. The reeds begin 1O

grow in late June, reach their maximum size around late August, and then wither. Thus,

there is a distinct difference in the temporal pattern of growth between sedges and reeds

In both test sites, there were several other plant species. Vegetation types are often

specified by the dominant species, such as reeds or sedges. Therefore, it is necessary 1O

classify the wetland vegetation types using the growth pattern of the dominant species.

From the results of our seasonality survey, the following are relevant 1O timing image

acquisition. l) In late June, we can see the difference between growing sedges and dead

reeds. 2) In late August or early September, the vegetation difference between sedges and

reeds is difficult 1O distinguish in terms of biomass. 3) The combination of the early season

(from late May until early June) and late season (from late August until early September) is

effective to discriminate the growth pattern differences between sedges and reeds.

7.4 Seasonality of the Spectral Signature

When we combine multi temporal remotely sensed data, we can use both the seasonal

growth information and the spectral signature. For this purpose, we lOok spectral

measurements of several wetland vegetation types using a spectral radiometer, in order to

see how the spectral signatures change temporally. The measured vegetation types were

Sphagnum moss, reeds and sedges. The spectral measurements were conducted in the early

growing stage (23 July 1992), and in the late growing stage (31 August 1992).
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Table 7.1. Characteristics of Landsat TM sensor.

Channel Wavelength Band Resolution
(!lm) (m)

1 0.45-0.52 Blue 30 x 30
2 0.52-0.60 Green 30 x 30
3 0.63-0.69 Red 30 x 30
4 0.76-0.90 Near IR 30 x 30
5 1.55-1.75 MidIR 30 x 30
6 2.08-2.35 MidIR 30 x 30
7 10.4-12.5 Thermal 120 x 120

1993

Fig. 7.1. Seasonal changes in above ground biomass of reed and sedge test site.

100
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A spectral radiometer (Opt-research MSR-7000) was used to meaSure spectral retlectance

in the wavelengths of 400-2500 nm. The meaSurements were made from 1.5 m vertically

above the canopy. The measured spectral radiance was convened to retlectance divided by

the spectral radiance of a standard white board, measured at the same time. Because the

data were noisy at wavelengths around 1400 nm and longer than 1800 nm, we eliminated

data in these regions, and the all data were smoothed using a median filter of 15 om width.

The measured spectral retlectances for vegetation types at the 2 dates are shown in Figure

7.2. In June, the reeds were still dead and their spectral pattern was tlat. In August, when

the reeds reached maximum size, strong absorption by chlorophyll in leaves was observed

in the red band, as well as strong retlection in the near-infrared band. Growth of sedges had

begun by June, although there were still dead plants visible. The difference of the spectral

pattern for sedges between the June and August was not as ·Iarge as that of the reeds. The

spectral change of sphagnum moss during this period was minimal. We found that the

spectral retlectance of this moss had a special pattern at wavelengths of around 970 and

1180 nm. AJthough we could not measure the spectral reflectance for the alder trees, we

expected that their spectral signature would be very distinct because they are actively

growing in both June and August.

7.5 Classification using MuItitemporal Image Data

By using the temporal pattern of spectral signatures of these wetland vegetation types, we

were able to conduct a wetland vegetation classification.

7.5.1 Analyzed Images

The remotely sensed image data analyzed were Landsat TM scenes acquired on 26 July

1991, 29 August 1991, and I 1 ovember 1991. The characteristics of the Landsat TM

images are shown in Table 7.1. The TM sensor has a ground resolution of 30 m, which is

considered sufficient for delineating the spatial distribution of the main land cover types in

this region. The whole region of the Kushiro wetland is imaged in 1024 x 1024 pixels. The

TM has 7 bands, in which the near-infrared (band 4) and mid-infrared (band 5) are the most

effcctive bands for discriminating among wetland vegetation types (Yamagata et al. 1995).
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Fig. 7.2. Spectral reflectance characteristics of 3 wetland vegetation types in June and
August.
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7.5.2 Registration of Image Data

103

The 3 Landsat TM scenes were geometrically cOITected using a I:50000-scale topographic

map onto the 20-m grid cell data. Registration was performed using first-order Affine

transformation, and the r.m.s error of the correction was within one pixel. Three bands from

each scene (bands 3,4, and 5) that are known to be effective for wetland vegetation

classification were selected and composed as an image with 9 channels. Here, the red bands

are related to absorption by chlorophyll; the near-infrared band is related to biomass of the

vegetation; and the mid-infrared band is related to surface water content. The 3 TM scenes

are shown in Figure 7.3 (a), (b), and (c). In each Figure, the red color shows band 4, the

green color shows band 5, and the blue color shows band 3.

7.5.3 Training Data Selection

The wetland vegetation classes used for the analysis were Sphagnum moss, which is

uniformly distributed in the bog area, sedges and reeds, which grow mainly along the rivers

in the central fen area, and alder trees that are invading the wetland area.

Other classes--water, forest, agricultural fields, and urban areas--were also used for the

classification. Training pixels (25-100 pixels) were selected for subclasses (see below) and

used for the classification.

7.5.4 Maximum Likelihood Classification

First, the parameters of the multi temporal, spectral distribution function for each class were

estimated using training data. Several subclasses are assumed to belong to each class. For

example, in aglicultural fields there is grassland, bare land, upland fields, etc. For each

wetland vegetation type, subclasses were defined according to differences in growth

patterns, water conditions, etc. The estimated subclass distribution functions were used to

classify the pixels of the image. These classifications were allocated among 7 classes.

However, the subclasses were used in the classification, since several land cover subclasses

(or land conditions) cOITespond to the each major land cover class, and also to avoid a

distribution function that is skewed rather than normal..
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Fig. 7.3(a) Landsat 1M scene in June 26th. (RGB = 453 with histogram equalization)

Fig. 7.3(b) Landsat 1M scene in August 29th. (RGB = 453 with histogram equalization)
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Fig. 7.3 (el Landsat TM scene in November 1st. (RGB = 453 with histogram equalization)
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Moreover, in selecting training areas. we carefully chose positions such that the training

sites were scattered around the whole image scene. We also repeated the process of

selecting (deleting and adding) the training data and classifying them so that any

misclassification arising from interference among them was minimized. This process was

repeated until there was no further increase in classification accuracy. The resulting

classification map of the Kushiro weLland is shown in Figure 7.4.

7.5.5 Assessment of the Classification Results

Based on the vegetation classification based on ground truth, we made the following

assessment:

Because the conventional vegetation classification map of the Kushiro wetland was

produced from a mosaic of aerial photographs, the sedges and reeds were misclassified in

the areas surrounding the bog. In the present study, these were correctly classified in this

region. However, part of the inundated area in the wetland was misclassified as dark forest.

Nevertheless, several wetland-related researchers who evaluated the satellite data-derived

map felt it was accurate enough for actual use in wetland management.

7.6 Conclusion

Because the seasonal changes in wetland vegetation happen quickly, it is difficult to

classify wetland vegetation using a scene obtained on a single date. We have expelimented

to established a way of classifying wetland vegetation types using multi temporal remotely

sensed image data. In the experiment, we used multitemporal Landsat TM data acquired

over the Kushiro wetland in June, August, and ovember, to classify the major vegetation

types, including reeds, sedges, alder trees, and Sphagnum moss. Evaluation of a biomass

sampling measurement and spectral reflectances of several vegetation typcs demonstrated

that the welland vegetation types have distinct temporal growth patterns both in biomass

and spectral signature. With this temporal information, we were able to classify the

vegetation types with a high accuracy. We produced a vegetation classification map of the

Kushiro wetland accurate enough to be used for welland management purposes.
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Sphagnum
Sedge
Reed
Alder
Water
Forest
Urban

Scale

Fig. 7.4. Vegetation classification map of the Kushiro mire using mullilemporal LandsalTM
data.
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[n the TM scene in August, the central pan of the wetland, where sedges usually grow, was

totally inundated by 1100dwater. Because of the high percentage of cloud cover in the

wetland area, satellite images can often only be obtained after heavy rain or a typhoon. So,

there is a bias in the data in that 1100ding observed in the remotely sensed image is greater

than that in normal wetland conditions, especially for scenes acquired in the middle of

summer.

[t has been shown that wetland vegetation types such as reeds, sedges, alder trees, and

Sphagnum moss can be successfully delineated using Landsat TM data. However, the

detailed vegetation types in the bog area are difficult to discl'iminate among due to the lack

of both ground resolution and spectral resolution. To classify these vegetation types, we

need to use a sensor with higher ground resolution and with more spectral bands. In

Chapter 8, we show an example of such vegetation classification using hyperspectral image

data.



Chapter 8
Classification using Spectral Image Data

In this chapter, wetland vegetation classification is conducted using a high-resolution

spectral image, registered on a digital elevation model produced from ground

measurements to analyze the relationship between vegetation and elevation. Compact

Airborne Spectral Imager (CAS!) data were acquired over a Sphagnum moss-covered bog.

Vegetation classification is performed with an unsupervised classification (k-means)

method, and then validated by a vegetation survey. Because the ground resolution was high

enough to detect spatial changes in the bog vegetation types, we could discriminate even

the Sphagnum moss class, which had never before been delineated using satellite sensors

sllch as those on the Landsat TM. The results show the good performance of wetland

vegetation classification in the bog area using high-resolution remotely sensed image data.

This chapter is based on Yamagata et al. (l996a).

8.1 Introduction

Because wetland vegetation has a complex structure, it is not easy to discriminate among

vegetation types using only a few spectral bands. As mentioned in Chapter 7, there are

limitations on the usefulness of aerial photographs for making a vegetation map, and it is

difficult to classify wetland vegetation types even using satellite sensors such as those on

the Landsat TM. In this study, to monitor detailed wetland vegetation types, we tested the

classification of vegetation using CASI data over the Akai wetland.

CASI sensors can obtain a spectral image in the visible and near- infrared wavelength

region (400-900 nm). In supervised classification, it is possible to discriminate among

vegetation types by selecting the training data of each class for input into the classifier.
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However, as the number of channels increases, the number of the training samples

necessary to estimate the parameters of the classifier increases rapidly. For hyperspectral

data, such as from CASI, the number of channels often exceeds 100. However, it is difficult

to obtain sufficient good training data, say 10000 observations for each class. Particularly

for complex wetland vegetation types, the classes that can be classified are often not clear

at the beginning of the analysis. In this analysis, we conducted a clustering (unsupervised

classification), and the clusters were assigned to vegetation classes based on ground-truth

information to produce a vegetation classification map.

The water flow in a wetland area is often determined by the difference between its

elevation and that of the surrounding land. An elevation inclination inside the bog area is

formed by the dome-shaped growth of Sphagn.um moss, and these subtle elevation

differences are related to water content and vegetation distribution in the wetland. In this

analysis, by overlaying elevation data, the CASI image is displayed in 3-dimensional space,

and the correspondence between vegetation and elevation is studied.

8.2 Data Analyzed

The data used for the analysis were from the CASI image acquired over the Akai wetland

on 2 June 1993. The conditions of data acquisition are shown in Table 8.1. At the time of

acquisition, the weather was fine. Most of the vegetation in the wetland was at the

beginning of the growth stage, and plants were low in height. The image data have ground

resolution of 2 m, appropriate for the nature of wetland vegetation change in the area

Before the analysis, geometric correction and calibration of the radiance data were

conducted (Babey and Soffer 1992).

The spectral bands used for observation are shown in Table 8.2. Channell is the blue band,

channels 4 and 5 are red bands, channels 6 and 7 are between the red and near-infrared

bands, and channels 8 and 9 are in the near-infrared band. The spectral signature of each

vegetation type is shown in Figure 8.1. The spectral radiance features shown in this image

were obtained from spectral-mode observation by the CASI sensor. Details of the

vegetation types will be described later.



8 Classification using Spectral Image

Table 8.1. The condition of CASI image acquisition

III

Sensor
Altitude
IFOV

Ground resolution
Image size
Dynamic range
Acquisition date
Acquisition time

CCD (CAS I)
7,000 ft (1,600 m above ground)
0.0690· (along track)
35.40· (swath)
1.9 x 2.2 m
512 x 512 pixel
12 bit
2 June 1994
11:00 a.m.

Table 8.2. Spectral Channels of CASI

Channel
1
2
3
4
5
6
7
8
9
10

Spectral bands (run)
460-470
550-560
595-605
635-645
655-665
675-685
695-705
715-725
745-755
825-835
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Fig. 8.1. Spectral radiance of each vegetation class.
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The spectral rellectance from the vegetation has a steep rise between the red and the near­

infrared band and has high value in the near-infrared region. This is due to chlorophyll

absorption of the red light, while the near-infrared light is strongly (50%) rellected by plant

leaves. Moreover, plant leaves are transparent (50%) to the near-infrared light. Actually we

observe multiple scattering from the vegetation canopy. Because this scattering property of

light is dependent on the vegetation type (chemical and physical structure of the plant), we

can discriminate among vegetation types by their spectral reflectance.

8.3 Three-Dimensional Display of the Wetland

The Akai wetland is at the western side of Inawashiro Lake. The wetland has a round shape

with a diameter of around I km. The sU1Tounding area consists of mountains and lice fields.

The center of the wetland is a little higher than the edges because of the dome formed by

the sphagnum moss. This elevation difference with the sUlTounding area is the major factor

controlling the movement of water in the wetland area. Drainage between the lice fields is

drying the wetland, and has allowed many pine trees to invade its southern part.

To map the subtle elevation differences between the inside and outside of the wetland area,

we used a total station (measure the exact distance using laser to) measure the elevation at

50-m glid points. The glid data were then interpolated with fifth-order polynomials, and

were resampled to provide 2-m glid elevation data. The CASI image was also

geometrically corrected for these elevation data for use in the analysis.

Figure 8.2 shows the CASI data displayed in 3-dimensional space using the elevation data.

This is a bird's eye view from the south in which the elevation difference is enhanced 5

times. The image is displayed in false colors: red is assigned to the near-infrared band 10,

green is assigned to the red band 7, and blue is assigned to green band 3. The image clearly

shows the trees invading the southern pan of the wetland.

Figure 8.3 shows a CAS! image inside the wetland area, overlaid with the detailed

elevation con LOur lines and their measured values. The center part of the wetland is seen to

be around 2 m higher than the edges, with a slope to the southeast. The blue color

corresponds to the inundated area.
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Fig. 8.2.3-0 view of CASI false color image using detailed OEM.
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Fig. 8.3. False color CASI image of Akai mire with detailed OEM.



g Classification using Spectral Image

8.4 Wetland Vegetation Classification

116

The CASI image was clustered into spectral classes by unsupervised classification using

the k-means method as follows. I) The k-means method was repeated until the cluster

means converged into 20 clusters. 2) Based on ground truth from the vegetation survey at

SO-m grid points and interpretation of aetial photographs, the cluster classes were assigned

to several vegetation species. 3) The cluster classes were then recoded into a stable

community of 8 vegetation classes. The results are shown in Figure 8.4.

The delineated vegetation classes were I) Ibomizugoke: small reed grasses growing over

Sphagnum moss (Ibomizugoke), 2) Harimizugoke: Sphagnum moss (Harimizugoke)

growing in the inundated area, 3) Murasakimizugoke: small bushes (Haiinutuge) growing

over Sphagnum moss (Murasakimizugoke), 4) Haiinutuge: bushes (Haiinutuge) unifOlmly

distributed over the Sphagnum moss (lbomizugoke), 5) Chimakizasa: several grasses

(Chimakizasa) mixed with bushes (Haiinutuge), 6) Mizugoke: inundated area covered with

Sphagnum moss, 7) AkamalU (low): small red pine u·ees with some alder trees, and 8)

Akamatu (high): large red pine trees.

These vegetation classes are the result of classification using spectral signatures that might

change according to the growth stage of the vegetation. For example, although Sphagnum

moss could be observed in this image because the other vegetation was still very small, the

classification of Sphagnum moss type would become difficult with the growth of the other

grasses. To perfonn more accurate classification, which considers this seasonal change, we

need to use multitemporal remotely sensed image data as desclibed in Chapter 7.

8.5 Relationship between Vegetation and Elevation

From the compmison of the contour lines and the vegetation classification results, we can

investigate the relationship between vegetation and elevation. Along the slope from the

center to the southeast, it is seen that the vegetation type changes from Murasakimizugoke

to Ibomizugoke, while in the lower northern part, Harimizugoke is dominant. This is

because Harimizugoke is adaptcd to inundation in that area. Near the center of the wetland,
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8 Classification using Spectral Image liS

the slightly higher elevation keeps the surface dry and several shrubs and grasses are seen

to grow there. In the southern part, although the elevation is lower, the area is dry because

of drainage between the rice fields. This dryness is why many red pine trees are invading

this area.

8.6 Conclusion

[n this study, we have allempted vegetation classification in a wetland bog using high­

resolution CAS! data, overlaid with a digital elevation model produced from ground

measurements.

The CASI data were acquired at the beginning of the Akai growing season. Classification

was performed through unsupervised classification by the k-means method, validated by a

vegetation survey. Because the ground resolution was high enough to detect the spatial

changes of the bog vegetation lypes, we could discriminate among even the Sphagnum

moss types, which has never been classified using satellite data. The result shows the high

performance of wetland vegetation classification in the bog area using high-resolution

image data.

The analysis of elevation effects shows the close relationships between vegetation types

and the small elevation differences within the wetland. It was shown that the invading trees,

the Sphagnum moss type, and the growth of the grasses in the central part of the wetland

were strongly influenced by water inundation level, which is determined by elevation.



Chapter 9
Classification using the Gaussian Process

The Gaussian process is developed from Bayesian neural networks with an infinite

number of nodes in the hidden layer. It is also a Bayesian model-averaging approach

that integrates a model's predictions with the a posteriori probabilities of the parameters.

In this Chapter, the basic theory of the Gaussian process for classifying satellite remote

sensing data is introduced and tested using multitemporal LANDSAT TM, JERS I, and

ERS I SAR data. The accuracy of the classifications is compared with the maximum

likelihood and Bayesian neural network methods; the Gaussian process outperforms the

other methods for classifying LANDSATrrM, JERS lISAR, and ERS 1ISAR data, and

especially performs well with sensor fusion data. This chapter is based on Yamagata

(l997c).

9.1 Introduction

Recent rapid developments in remote sensing techniques have made it possible to use

time selies of remotely sensed image data acquired by various satellite sensors for

environmental monitoring. However, when it comes to classifying the remOlely sensed

image data of natural environments such as wetlands, the number of training samples

that are available for classification is often limited due. to difficulty in conducting

ground surveys (Yamagata and Yasuoka 1996). When we try to classify a high­

dimensional image that contains much information, the classification accuracy often

decreases because the training data for constructing the classifier is not sufficient

(Hoffbeck and Landgrebe 1996). Therefore, it is becoming more imp0rlantto develop a

classilication method that can perform better than conventional methods even with a

limited amount of training data.

In order to perform accurate classitication using fewer training data, feature-selection

and feature-reduction methods have often been used as a preprocessing step in the

classilication (Young and Fu 1986, Fujimura and Kiyasu 1996, Koller and Sahami

1996). Feature reduction transforms the variable space to new feature variables that are
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considered to be effective by some evaluation function, while in feature selection, only

the subset of features that are effective for the classification is selected. In both cases.

the reduction in the number of parameters contributes to increasing the accuracy of the

parameter estimation. Also. elimination of redundanl information helps to increase

classification accuracy.

In feature selection, classification accuracy for the feature subset is necessary. Cross­

validation and probabilistic distance are often used as evaluation methods (Michie et aI.

1994). In the cross-validation method, the training data are partitioned inlo several

random subsets; each subset is classified by the classitier learned from the other

subsets; and the accuracy of these classifications is then averaged to assess the accuracy

of the model. In the probabilistic distance method, instead of actually assessing the

classification accuracy, probabilistic distance between the classes such as the Jeffries­

Matusita (JM) distance is used to measure the separability of classes. In both cases, the

effective feature combination is found by exhausting the combinations of the feature

subsets, by forward, backward, or stepwise selection methods.

In leaming a classifier with few training data, there is the problem of overfitting.

Overfitting occurs in the learrting of a classifier with many parameters. When

overfilling occurs, the classifier model overtiLS the training data, and loses

applicability to other data. In order to avoid overfilling, we need to employ cross­

validation to determine the model parameters by their performance against training data.

There are other ways to avoid overfilling by using evaluation functions for model

selection. These include information criteria such as AlC (Akaike Information Criteria)

and NlC ( etwork Information Criteria) which have a penalty term that linearly

increases with the number of model parameters (Akaike 1974). These information

criteria are often used to avoid overfilling in selecting features and in determining the

number of hidden layers in neural networks (Ripley 1996).

To some extent, it is possible to avoid degradation of classification accuracy when using

high-dimensional remotely sensed images by feature selection and feature reduction. In

these methods, only one model is selected and used later for classification of the real

data. However, the result of model selection depends on the training data used. Since

the training data are only a sample of the whole distribution, therc is uncertainly in the

model selection process. There is no guarantee that the selected model gives the best

c1assilication for the whole dataset. To account for this uncertainty, we need to employ
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the Bayesian approach to model selection to achieve more consistently high

classilication accuracy.

[n the Bayesian approach, model prediction is performed by il1legrating model

estimations with the a posteriori probability of the model as the weight, when the a

priori estimates by the model and the training data are given. In general, this calculation

is very difficult both analytically and numerically. The a posteriori probability of a

model is often calculated by some approximation method. The Bayesian approach

using approximation can be divided into Bayesian model selection and Bayesian model

averaging.

In Bayesian model selection, the a posteriori probability from a model is approximated

by the Laplace method. Bayesian Information Criteria (BIC) are used to select the

model. If the uncertainty of the training data is not considered in the model selection

process, more complex models are prefetTed. However, using the BIC, which have

larger penalties for increasing model complexity, can compensate for this drawback

(Raftery 1995).

In Bayesian model averaging, Bayes factor, the likelihood of the validity of the training

data, is calculated for the candidate models, which are selected by Bayesian model

selection. Then, the model predictions are il1legrated using the Bayes factor as a weight

to obtain the prediction of the Bayesian model (Madigan and Raftery 1994).

Bayesian model selection is applied to such problems as determining the graphical

structure of the causality between variables (Bun tine 1996), and opLimizing the nodes

of neural networks (Ripley 1996). Bayesian model averaging is used e.g. for

probabilistic inference using Bayesian networks (Heckerman 1995). Several studies of

Bayesian model averaging have been conducted using weight-decay parameters in the

learning process of neural networks (Ripley 1995).

Bayesian neural networks developed by Neal (l996) constitute a genuine Bayesian

approach that does not use approximation in calculating a posteriori probability. When

the weights between the inputs, hidden layers, and outputs are given together with the a

priori estimations, and the training data are available, integration using the a posteriori

probability is calculated using the Markov-Chain Monte Carlo method. [n Bayesian

neural networks, Bayesian model averaging is conducted over the el1lire parameter
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space. Because no model selection is included in the process, there is no danger of

overlining or underlining, which arise from inappropriate model complexity. In this

approach, there is also no need for early stopping of the learning process, or weight­

decay to avoid overtitting. Therefore. for the learning process in Bayesian neural

networks. there is also no need to partition the training data into test dataselS for cross­

validation. We can make use of all the u'aining data for the learning process of the

classitier.

The Gaussian process was developed from the Bayesian neural network approach. [t is

known that a neural network can approximate any function. if the number of nodes in

the network increases. Unfortunately. such neural networks have so many parameters to

estimate that it is impossible to learn these models with a limited number of training

data points. However. such neural networks. with an infinite number of hidden layers.

have been shown to converge to the Gaussian process with only a few parameters (Neal

1995. 1996).

[n the Gaussian process, the model can be determined by the parameters on the

covariance function of the output variables. It is possible to estimate these parameters

with fewer training data than in neural networks. Moreover. the functional form of the

Gaussian process is much clearer than that of neural networks. so it is easy to give them

the appropliate a pliori probabilities according to the problem. We can consider the

Gaussian process as the successor to Bayesian neural networks. that can make use of

training data information ( eal 1997).

In this study. we theoretically formulate a new classification approach using the

Gaussian process and test this approach expelimentally. [n the classification experiment.

wetland vegetation types are classified using remotely sensed images such as Landsat

TM, JERS I SAR. and ERS 1 SAR data. We tested the new classification approach using

the Gaussian process by comparing ilS accuracy with that of conventional methods.

such as Bayesian neural networks and the maximum likelihood method.

9.2 Classification Method using the Gaussian Process

We assume thatlhere are 11 samples of training data [rom K classes; the training data are

expressed in pairs of p-dimensional feature vectors and the class label as

(X(1),I(11 ),(X(2) ,r(2))•...• (x('" j"') l. where Xli) E R P • I(i) E (0.... , K -I); the variable
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Xl" is normalized beforehand to mean 0 with valiance l. The objective of the classilier

is to label the class of a newly observed sample vector, that is to predict 1",.,) against
the x(n+I).

However, it is difficult to directly model the classification process using the Gaussian

process. First we employ the multiple logistic model, which is the same as the Softmax

method often used in neural networks, to convert the classification problem to a

regression problem (Ripley 1996).

Thus, we introduce latent variables Yb", ... ,Yk~, to model the probability that the ith

training sample belongs to the class k in the following equation:

K-I

P(lli l =k) =exp(-yp)/ I,exp(-yi il
)

1==0

(9.1)

Then, assuming that the latent vmiable yiil follows the stochastic process which has a

covariance function:

COV[Ail,yiil] = 11; exp(-tPk~(X~il-x~Jl)')+8iJ
u=1

(9.2)

where, 11 k , P"" is the hyperparameter, 8ii is a delta function that is I only when i = j

and otherwise is 0, and J is the Jitter term that cOITesponds to the observational noise

and has the effect of stabilizing the matrix calculations for estimation of parameters. We

also assume that the arbitrary number of samples in this stochastic process follows a

multiple Gaussian distribution.

Then, it can be shown from multivariate statistical inference theory (Giri 1977) that the

K latent variables yin+I'(k =0, .... , K -I) of the 11+1Lh sample independently follow the

Gaussian distribution which has mean E and vm'iance Va,.:

(9.3)

(9.4)
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where, C. is the covariance matrix of training data given by (9.2), y k = [yi'),··· ,Yk")]'

is the set of latent variables of training data, k. is the covariance vector between

y.'n+ll and y,(i),i = I, ... ,n, while v.=Cov[y.(n+I',y.'n+I)j, respectively.

Then, using this probability distribution function, we can estimate the latent variable for

each class. Moreover, using (9.1), we can estimate the probability that the unknown

sample belong to each class.

Here, if we use the conventional statistical approach, the parameters in (9.2) can be

estimated by the maximum likelihood method; then by calculating the inverse of the

covariance matrix of each class, we can determine the classifier. However, in the

Bayesian approach, the prediction is performed by integrating the model estimation

with the a posteliori probability as weight for all parameter space:

P(yk"+l)lx(n+l l , (X(I), yk'l), ... ,<x<nl ,yk"»))

=fp(Ykn+lllx(,,+I),IJ)P(IJI(x(I),Yk'I), ... ,(x(nl,Yknl))dIJ (9.5)

where P(Yk"+'llx("+I) ,IJ) is the probability distribution of Yi"+II, calculated using (9.3)

and (9.4) for the specific parameter IJ.

Then the a posteriori probability P(IJI(x(l),ykl)), ... ,(x(n),yknl )) of IJ is proportional to

the product of the a priori probability P(IJ) and the likelihood L by Bayes' theorem as,

L«x(l),Yil)),···,(x(nl,Yi"))IIJ) = IT p(yi'llx(iI,IJ)
;=1

(9.6)

where p(Yii1Ix(iI,IJ) is the probabilistic distribution of Yk i
), calculated using (9.2), (9.3),

and (9.4) for specific IJ and Xl'>'

Therefore, in order to calculate the integral (9.5), it is necessary to integrate the latent

vatiable Ykil over all IJ, by repeatedly calculating the likelihood L using training data.

At each repetition, we need to calculate the inverse of the covariance function. This

integral calculation is not possible analytically or numerically using conventional

methods. Here, we employed the Markov-Chain Monte Carlo method to approximate

this integral.
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In Markov-Chain Monte Carlo method, the integral calculation is approximated by

summation of the sampling poinLS of parameter eU),i=I, ... ,N, generated for the

Markov-Chain process, and which has a posteriori probability p(elD) as the stationary

distribution of the process. The integral is calculated as

(9.7)

For rapid convergence of the light hand side of (9.7), it is bener to use only the search

points

e(i),i=l, .. ,N that give high P((}ID), rather than a take random walk in parameter

space. Thus, we use a hybrid Monte Carlo method to determine the search poinLS.

Finally, we can use (9.1) and the estimated latent values yi"+IJ from this integral

calculation to obtain the probabilities thal the unknown sample belongs to each class.

Then we can determine the class label for the unknown sample by choosing the class

that gives the maximum probability.

9.3 Experiments and Assessment of Accuracy

In order to evaluate the classitication accuracy using high-dimensional remotely sensed

image data by the Gaussian process, we conducted a classification experiment. In the

experiment, we used Landsat TM, JERS I SAR, and ERS I SAR data for classifying

wetland vegetation types. The test site was again the Kushiro wetland. The image

acquisition conditions and the characteristics of the sensors are listed in Table 9.1.

Landsat TM is an optical sensor. As mentioned earlier, past investigations have shown

that the near-infrared band 4 is related to vegetation biomass and the mid-infrared

bands 5 and 7 are related to surface water content. In this study, all band data, except

those from thermal band 7, which has different ground resolution and is susceptible to

environmental fluctuations, were used for the analysis.
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Table 9.1. Sensor specification of satellite sensors used for the experiments.
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LANDSAT/TM
Channel Wavelength Band

1 0045 -0.521-' m Blue
2 0.52 -0.60 I-' m Green
3 0.63 -0.69 I-' m Red
4 0.76 -0.90 I-' m Near Infra Red
5 1.55 -1.751-' m Mid Infra Red
6 lOA -12.51-' m Thermal
7 2.08 - 2.35/1 m Mid Infra Red

Resolution
30m
30m
30m
30m
30m
120m
30m

Wavelength
Polarization
Resolution
Frequency

Band
Incident Angle
Swath

ERSlISAR JERS1/SAR
5.66 em 23.5 em

VV HH
30 x 30 m 18 x 18m
5.3 GHz 1.275 GHz

C L
23· 38.5·

100km 75 km
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The JERS I SAR and the ERS I SAR are Synthetic Apenure Radar (SAR) sensors that

measure rctlection from a sUiface of microwaves emitted from the satellite platform

itself. Thus, they are called active microwave radar sensors. The JERS I SAR uses a

microwave band of 24 cm. In this band, most of the microwaves are scattered by rough

surface features and tree trunks, while the ERS I SAR uses the 6-cm band. which is

scattered and retlected by leaves and small branches of trees in wetlands.

Using this spectral signature of wetland vegetation, it is possible to discriminate among

the vegetation types from the remotely sensed image data. The seasonal change in these

characteristics during vegetation growth is another valuable tool for classification as

described in chapter 7.

In this study. using various remotely sensed datasets produced by changing the

combinations of sensors. and using multitemporal data and speckle noise filters to

process the SAR image data, the accuracy of the classification methods was assessed.

All the image data used in this analysis were geometrically cOlTected to 20-m grid data

before the u'aining data were selected, using topographic maps overlaid on each other.

The wetland vegetation classes used for classification were Hannoki (alder trees).

HannokilYoshi (mixture of alder trees and reeds), Titou (small pools in the Sphagnum

moss area). Mitugasiwa (Menyanrhes lrifolima), Yoshi (reeds), YoshilSuge (mixture of

reeds and sedges), and Suge (sedges). These 7 vegetation classes are all named after the

dominant species in each class. Unlike agricultural fields, there are no distinct

boundaries between the classes. In selecting u'aining data and test data, the aggregated

area for a class was selected from image data based on ground truth observations in the

field and interpretation of aerial photographs. We selected LOa pixels as training data

and LOa pixels as test data for each class. The training data were fixed during the

analysis, and the same test data were used to assess the classification methods.

In the following section, we describe the results of the classification experiments

separately for 3 cases according to the type of sensors used. The classification methods

used were common to all cases: maximum likelihood (ML). Bayesian neural networks

(BNN), and the Gaussian Process (GP). In ML. all features are used for the

classilication; the covariance matrix for each class is estimated using the training data,

which are also classitied by ML. In classification using Bayesian neural networks and
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the Gaussian process model. we employed the algorithms of Neal (1997).

9.3.1 Classification using Landsat TM scenes
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Classification was conducted using 13 Landsat TM scenes separately, and their

classification accuracy was compared. Figure 9.1 shows this comparison. In this Figure,

the horizontal line shows the season of data acquisition, while the vertical line shows

the classification accuracy as % misclassiflcation.

For the results of the Bayesian neural network and the Gaussian process, the standard

elTor of the accuracy is also depicted as bars. The accuracy of the Gaussian process was

signiiicantly higher than that of the ML in 9 out of 13 cases--more than 5% higher in 6

cases-- and was also higher than the Bayesian neural network in 7 cases.

While the Bayesian neural network was less accurate than ML in 4 cases, the Gaussian

process was less accurate in only one case. Thus, the Gaussian process consistently

outperformed the other methods used here to classify Landsat TM scenes.

9.3.2 Classification using JERS1 and ERS1 SAR

Using 4 multitemporal scenes of JERS I SAR and ERS I SAR, with 4 different kinds of

speckle noise filters, classification accuracy was assessed for the 3 above methods. The

acquisition dates for the SAR data were, JERS I SAR: 3 April 1993. 21 May 1993, 30

June 1993. and 13 August 1993; and ERS 1 SAR: 29 April 1993, 3 June 1993, 12

August 1993, and 21 October 1993. The speckle noise filters applied were: original

image without tilter (ORG). frost filter (FRS), lee ftlter (LEE), maximum posterior

filter (MAP). and median tilter (MED). Moreover, for the MAP and MED ftlters. which

showed the highest classification accuracy, we also conducted classification

experiments using an image composed of both JERS I and ERS I SAR data.
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Fig. 9.1. Classification accuracy comparison for each LANDSATfTM data.
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Fig. 9.2. Classification accuracy comparison for JERS l/SAR and
ERS l/SAR data with speckle noise filters.
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The comparison of the c1assilication results obtained for these datasets is shown in

Figure 9.2. The Gaussian process was signilicantly more accurate than the ML in 6 out

of to cases. The Bayesian neural networks were signilicanily less accurate than the ML

in 6 out of LO cases. The Gaussian process showed lower classilication accuracy than

that of ML in only one case. However, all the differences in classilication accuracy

were less than 3 %, which is much smaller than the accuracy differences in the case of

the Landsat TM.

In the fusion image of JERS I and ERS 1 SAR data, both the Gaussian process and the

Bayesian neural network were more than to % more accurate than ML. Considering the

relatively high accuracy of ML (70 %), an increase of 10 % means an outstanding

performance of the Bayesian approach for the classitication of the SAR data.

9.3.3 Classification using TM and SAR

The classification accuracy of the same 3 methods was compared for several

combinations of Landsat TM, JERS 1 SAR, and ERS 1 SAR data. Figure 9.3 shows the

comparison of results obtained for 3 combination cases as described in the following.

(a) The 3 results on the left in Figure 9.3 (TM06, TM06_08, and TM06_08_11) show

the change of classification accuracy as the Landsat TM images are overlaid one by

one. Although the accuracy of the Gaussian process was even lower than those of

the other methods for classifying one scene (TM06), its accuracy was significantly

(around 5%) higher than the other methods as the number of scenes increased.

(b) Using 13 Landsat TM scenes, NDVI ( ormalized Difference Vegetation Index)

detined as NDVI =(TM4 - TM3)/ (TM4+ TM3) was calculated for each scene and

the calculated NDVI values were composed into an image with 13 channels. The

results of the classilication using these image data are shown in the middle of

Figure 9.3 (t DVI). The image was further overlaid with a combination of JERS I

and ERS I SAR images liltered with MAP. The result using this sensor fusion

image is also shown in the Figure (NDVCJEMAP).
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(c) Although the SAR sensors can monitor the earth's sUitace through clouds,

observation using optical sensors such as that on thc Landsat TM is often prevented

by cloud cover. Thus, the combination of a Landsat TM image with multi temporal

JERS I SAR and ERS I SAR images is a very promising approach. Here, we

combined a Landsat TM scene acquired in August 1992, which showed the highest

classification accuracy as one scene, with the JERS I and ERS I SAR data. The

classification accuracy obtained for the combinations of these data is shown in the

right side of the Figure. Classilication accuracy was significantly increased by

adding JERS I SAR data to the Landsat TM data ilTespective of the classification

method. Among the latter, the Gaussian process attained the highest classification

accuracy in all cases (96 %), more than 5% higher than those by the other methods.

The Bayesian neural network showed higher classification accuracy than ML in I

out of 4 cases. Thus, the Gaussian process outperformed the other methods in

classifying sensor fusion data in which the SAR data is overlaid onto Landsat TM

data.

9.4 Conclusions

Recently, huge amounts of remotely sensed image data' have become available for

environmental monitoring due to the rapid development of sensors. However, in order

to make use of these data, it is important to develop classification methods that peri'orm

better than the conventional methods and with fewer training data. In this study, a new

classilication method using the Gaussian process was formulated and tested

experimentally for classifying wetland vegetation types with Landsat TM, JERS I SAR,

and ERS I SAR data. The classification accuracy was compared with that of other

methods, the ML and the Bayesian neural network.

The Gaussian process was developed from Bayesian neural networks as the limiting

case when the number of hidden layers becomes infinite. By transforming the

classilication problem into a regression problem using the Softmax method with latent

variables, the Gaussian process could be used for modeling the latent variables. Then,

to predict thc class label from the data, it was lirst necessary to predicate the

distribution of the latent variables by integrating the model predictions with the a

posteriori probability of the parameters as weights. The integral calculations were

performcd with the Markov-Chain Monte Carlo method.
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The experiments using Landsat TM scenes showed that the Bayesian neural network

and the Gaussian proccss methods oUlperform ML. Classilicalion accuracy was

increascd by around 5 %. Classificalion results using the JERS I SAR and the ERS I

SAR showed that the Gaussian process performed better than the other methods, but the

accuracy increase was less than 3 %. Using the combination of Landsal TM and JERS I

SAR data, the Gaussian process outperformed the olher methods and attained the best

classitication accuracy of aJl. From lhis result, we can conclude thal the Gaussian

process works well for sensor fusion data, especially for a combination of opticaJ and

radar sensors.

In general, the Bayesian approach integrates model predictions with the a posteriori

probability as weighl. It uses no model selection process, but is free from overfitting

and underfitting problems; it can make use of the information in the lraining data for

classification. The Gaussian process is a flexible Bayesian approach that can take many

funclional fonTIs with fewer parameters to perform classification. However, at lhe

moment, the biggest drawback of the Gaussian process is computation time. In lhe

process of integrating the model space, the present aJgorithms need to invert the

covariance matrix, which requires computationaJ time paraJlel to the third order of lhe

number of samples at aJl model space points. To caJculate the Gaussian process with

several hundred training data points, it takes 10 times the computationaJ time required

by the Bayesian neuraJ network.



Chapter 10
Concluding Remarks and Future Directions

The preceding 9 chapters have described new remote sensing techniques and their

application to wetland monitoring. Here, I review what has been accomplished in this

thesis and describe the implications of the new techniques for monitoring wetlands and

other complex ecosystems. Finally, I discuss future work that might be developed from

these results.

10.1 Major Contributions of this Thesis

There are three major original contributions in this thesis. The first is the development

of new spectral indices--PVI, WTI and VSWI--that are specifically designed for

wetland monitoring. Second is the development of a new unmixing procedure using the

subspace method. This new method is useful in unmixing high-dimensional remotely

sensed data, for which it has better performance than conventional unmixing techniques.

Third is the formulation of the Gaussian process modeling approach as a classification

method; the good perfolmance of the new method has been verified by experiments

using optical and radar sensor fusion data.

In addition to these contributions, several extensive empirical studies on the

classification of wetland vegetation have also been conducted, using multitemporal

remotely sensed data. Through these results, I have established remote sensing

techniques for wetland monitoring.

The conclusions of each chapter can be summarized as follows:

In Chapter 2, water inundation in rice fields, which are artificial wetlands, was analyzed

to delineate the relationship between flooding and the influence of inundation on the

vegetation. More specifically, TM images were subjected to several multivariate

analyses in order to assess the extent of flood damage to the lice and to analyze the

relationship between the !lood and the damage. Owing to the relationship that we found
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between tloodwater turbidity and the actual decrease in rice yield. it was shown that the

rice yield decrease could be estimated not only from the TM image data acquired

shortly before the harvest, but also from the image acquired immediately after the

tlood.

In Chapter 3, the new spectral indices, PVI and WTI, were developed for flood

inundation monitoring and vegetation change in wetland areas. These spectral indices

were based on rice field flood - damage analysis. In the analysis, TM rice-field images

acquired during flooding and one month later were used to relate inundation damage to

lice yield. This was accomplished by using the turbid water pixels to determine a turbid

water line. The WTI along the turbid water line and the PVI for paddy rice were

defined using this line. The relationship was delineated between floodwater turbidity at

the rice booting stage, which could be monitored using WTI, and the reduction in yield,

which could be measured by PVI.

In Chapter 4, the PVI was further developed to the VSWI that can monitor vegetation,

soil and water at the same time. An algorithm to detelmine automatically the end­

member spectral points for vegetation, soil and water was developed by fitting a

triangle to the scatter plot instead of finding the soil line. The distances between the

spectrum point and the tliangle edges were used as the new index. In conventional

unmixing approaches, end-member points are often determined manually and

arbitralily from the image data or from a scatter plot of the data. The new algolithm

automatically determines the end-member points. The VSWI was applied to wetland

monitoring using multitemporal Landsat TM image data. Vegetation, soil, and water

conditions and changes were successfully delineated.

In Chapter 5, a new approach to the un mixing problem, the subspace method, was

developed and applied to wetland vegetation using hyperspecu'al image data. Unmixing

by the subspace method was superior to conventional methods for hyperspectral

imagery in numelical stability and computational speed. The results of an unmixing

application showed that unmixing by subspace is accurate except for classes that are

spectrally very similar.

In Chapter 6, by applying feature-selection methods, an effective spectral band

combination for wetland vegetation classification was determined, based on airborne

MSS image data. By using as standards the maximizing of the leffries-Matusita
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distance and maximizing the classification accuracy of the test data, the near-infrared,

infrared, and green bands were selected. The maximum likelihood and minimum

distance methods were used as the c1assilication algorithms. The best classification

accuracy was attained using 7 bands by the minimum distance method. Using this 7­

band combination, the whole MSS image data was classified.

In Chapter 7, we established a way to classify wetland vegetation types using

multitemporal remotely sensed image data. Because seasonal changes in the wetland

vegetation happen rapidly, it is difficult to classify using a scene obtained on a single

date. In an experiment, we used multitemporal Landsat TM data acquired over the

Kushiro wetland in June, August, and November, to classify the major vegetation types­

-reeds, sedges, alder trees, and Sphagnum moss. Distinct temporal growth patterns of

wetland vegetation both in biomass and spectral signatures were apparent from

measurements of biomass and spectral reflectance of several vegetation types. By using

this temporal information for the vegetation types, it was possible to classify them with

a high degree of accuracy.

In Chapter 8, vegetation classification was conducted in a wetland bog using high­

resolution CASI data. The image was overlaid with a digital elevation model

produced from ground measurements. CASI data were acquired at the beginning of the

growing season over the Akai wetland using spectral bands known to be effective for

wetland vegetation classification. The classification was performed using unsupervised

classification by the k-means method, and then validated by a vegetation survey.

Because the ground resolution was high enough to detect spatial change in the bog

vegetation types, we could discriminate among even the Sphagnum moss types that had

never before been delineated using satellite sensors such as Landsat TM. The results

showed the possibility of wetland vegetation classification in bog areas using high­

resolution remotely sensed image data.

In Chapter 9, a new classification method to classify wetland vegetation types using

Landsat TM, JERS I SAR, and ERS I SAR data based on the Gaussian process was

formulated and tested experimentally. The classification accuracy was compared with

those of two other methods, maximum likelihood and Bayesian neural networks. The

Bayesian neural networks and the Gaussian process method outperformed the

maximum likelihood method in experiments using Landsat TM scenes. Classification

accuracy was increased by around 5 %. The classification results using the JERS I SAR
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and the ERS I SAR data showed that the Gaussian process method performed better

than the other methods, but the accuracy increase was less than 3 %. Classification

results using a combination of Landsat TM and JERSI SAR data showed that the

Gaussian process method outperformed other methods and attained the best

classification accuracy overall. We conclude that the Gaussian process method works

well for sensor fusion data, especially for combination of optical and radar sensor data.

10.2 Applications for Wetland Monitoring

The advanced remote sensing techniques developed in this thesis can be applied to

actual wetland monitoring in several ways:

I) The Perpendicular Vegetation Index (PVI) is useful for monitoring vegetation

biomass over inundated wetland areas. Firstly, because the vegetation biomass in

paddy rice is directly related to yield (as shown in Chapter 2), the PVI can be used

to estimate rice yield. This rice yield estimation is possible not only in the case of

flood damage but also under normal growth conditions. As rice is the major grain

feeding most of Asia, this estimation will be very important for global food supply

prediction. Secondly, measurements of aboveground biomass of wetland vegetation

are important for estimating rates of carbon accumulation in wetlands. It has

recently become known that vegetation biomass in wetlands, including paddy fields,

is related to rates of methane emission. These estimations of the accumulation and

emission of greenhouse gasses (carbon dioxide and methane) will, in the future,

provide very important parameters for modeling global warming. And thirdly,

changes in vegetation growth rate in wetland areas are often caused by human

disturbance, such as agricultural development in sUITounding areas or tOlllism. The

monitoring of vegetation biomass in wetlands make it possible to determine the

extent of disturbance. Knowledge of vegetation changes in wetland areas is vital for

planning appropriate wetland management.

2) The Water Turbidity Index (WTI) is useful for delineating the distribution of water

turbidity or suspended sediments in flood waters. Because nutrients in a wetland are

contained in the soils that are transported by nooding, the distribution of suspended

sediment provides information on how the nutrients are distributed in the wetland.

As the spatial distribution of nutrients in wetland areas has never been monitored

using other methods, this approach using WTI will be very challenging and may
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make possible analysis of the relationships between nuuient distributions and

vegetation changes in wetland areas.

3) The Vegetation-Soil-Water Index (VSWl) is useful for monitoring wetland

complexes using satellite-borne optical sensors. Because wetland areas are

composed of vegetation, soil (or sediment), and water, this three-component index

is the most natural one for evaluating the state of a wetland. This index is applicable

not only to high resolution sensors, such as those on Landsat, but also to global

coverage images, such as that prepared by NOAA. Although the Normalized

Difference Vegetation Index (NDVI) has been used universally as the spectral index

of choice for NOAA data, VSWI will be an alternative index that is more suitable

for imaging wetland areas. Once the VSWI is calculated, we can proceed to

quantitative studies like vegetation biomass estimation or to classification of the

image using VSWI as a new signature space.

4) Unmixing using hyperspectral data is a promising approach for monitoring wetland

areas. Because wetlands are among the most complex ecosystems in the world,

extracting information on each wetland constituent is the ideal approach to study

them. Particularly in bog areas, wetland ecosystems are very sensitive to

environmental change. Even a subtle vegetational difference, which reflects the

water flows beneath, might be an ecologically important factor for managing an

area. Moreover the extracted spatial disuibution of each vegetation type tells of the

history of the vegetational succession in the past.

10.3 Implications for Monitoring Complex Ecosystems

The methods developed in this thesis can be further applied to monitoring of other

complex ecosystems, such as forests, inland waters, etc. Of course, spectral indices are

basically designed for specilic targets of observation; the model structure as well as the

parameters must be adjusted according to the application. However, the basic ideas of

unmixing and classification are directly applicable to other fields by changing the end­

member spectral points and the training classes according to the objective of the study.

The monitOling of complex natural ecosystems is possible for several specific

parameters:
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I) The VSWI is applicable to forest monitoring. In this case, the vegetation end­

member corresponds to the most densely vegetated area, the soil end-member

corresponds to the background dry soil and the water end-member corresponds to

the background humid soil rather than water. Because the VSWI is valid only when

an unobstructed view of the background soil is apparent in some places in a scene,

forest monitoring using VSWI will be appropriate in the sparsely vegetated semi-arid

and northern tundra regions. However, there appear to be many different problems in

applying this index to forests due to the different environmental conditions found in

them, such as the effects of slope, the look-angle of the sensors, shadows, etc.

2) Unmixing of spectral classes using hyperspectral data is a promising approach in

forest and water quality monitoring. Because the spectral signatures of forest species

and algae in inland waters are different because of differing chemical components, it

is, in principle, possible to discriminate yuantitatively among these vegetation types

with unmixing. Forest species unmixing is rather difficult because of the three

dimensional structure of forests and the different spectral signatures of the

components of trees such as trunks, branchs, and leaves, whereas the unmixing of

algal type in water is more feasible. Moreover, if the spectral signature is observed in

the mid-infrared bands, it will be possible to delineate from the spectral information

even the chemical components of the target (lignin, etc.). This approach will cause

a revolutionary change in the use of remote sensing in ecosystem monitoring. The

unmixing method developed in this thesis may play an important role in the handling

of hyperspectral data coveting bands from the visible to the mid-infrared.

3) Advanced classification algorithms, such as the Gaussian process, are expected to be

used extensively in classifying complex ecosystems using all sorts of remotely

sensed data ranging from airborne images to global coverage imagery. Collecting

ground truth data in complex ecosystems such as wetlands is difficult, which limits

the availability of u·aining samples. The Bayesian model is a promising approach to

compensate for the uncertainty of limited training data and still achieve highly

accurate classification. Although band selection will continue to be an important

criterion for the design of future satellite sensors, present band selection algorithms

are inadequate to handle the combinatorial explosion in calculations when hundreds

of bands are needed for classification. The Bayesian approach, especially when

combined with the Gaussian process, would be a prominent candidate for future

classification algorithms for complex ecosystems.
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10.4 Directions for Future Research

l4l

The performance of the methods inevitably depends on the application tield as well as

the remotely sensed data used. In order to obtain good performance in the specific

application, we must search for optimal methods for each type of remotely sensed data;

this thesis is a contribution to this search. However, the studies conducted in this thesis

are not sufficient. We still need to investigate other remotesensing techniques for other

types of sensors.

In the near future, huge amounts of new types of remotely sensed data will become

available with the launching of the Japanese ADEOS II platform and the American

EOS platform. These new data will provide us with global coverage as well as high­

dimensional optical and radar band information. The potential of the new techniques

from this thesis will be challenged by these data. Furthermore, more evaluations, on

more datasets, and comparison with the best alternative methods, will be required

before any conclusions can be drawn for global monitoring of the complex ecosystems.
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