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Uniformization of Cyclic Quotients of Multiplicative

A-singularities

By Kenjiro SASAKI and Shigeru TAKAMURA

Abstract. This work is motivated by the canonical model of de-
generations of Riemann surfaces. For a quotient space Agz_1/T of
a ‘multiplicative’ A-singularity A4—; in C**! under a certain cyclic
group action I on Ag_1, we explicitly construct a small finite abelian
subgroup G of GL(n, C) such that A;_;/T" = C"/G. A resolution of
C™/G gives a decomposition of the monodromy (a higher-dimensional
fractional Dehn twist) of a degeneration Ay_1/I" — C into subtwists
along the exceptional set (it seems that T. Ashikaga’s work on resolu-
tions is related to this). Moreover: (1) We give a numerical criterion
for a certain subgroup of GL(n, C) to be small. (2) For a certain family
of subgroups of GL(n, C), we show that if one subgroup of this family
is small, then all subgroups of this family are small (equi-smallness
theorem).

1. Introduction

Let d be a positive integer and consider the following two complex vari-
eties:

V={(z1,29,. .., 20, t) €C" s 2 423+ 422 =14},
W = {(zl,ZQ,...,Zn,t) G(Cn_H : 2122-~-2n:td}.

We say that V' is an additive A-singularity and W is a multiplicative A-
singularity. If n = 2, they are isomorphic via (x1,x2) = (21 + iz, 21 —i22).
In contrast if n > 3, they are not isomorphic: The singular locus of V is
isolated, while that of W is not isolated — the former is the origin, while
the latter is the union of ,,Cy hyperplanes H;; = {2z = z; = t = 0},
1<i<ji<n.
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Now let f: V — C and g : W — C be projections f(x1,x2,...,2n,t) =
t, g(z1,22,...,2n,1) = t. A smooth fiber f=1(s) (resp. g~'(s)), as s — 0,
degenerates to the singular fiber f~1(0) (resp. ¢~1(0)). When n = 2, the
topological monodromy of f : V — C (and g : W — C) is a (—d)-Dehn
twist (Figure 1.1). When n > 3, the topological monodromy of f: V — C
is a generalized Dehn twist, and is described by using the double covering
method (see [AGV], p.6). The topological monodromy of g : W — C is
another generalization of a Dehn twist. In what follows, we exclusively
consider W, and write it as Ag_1.

(1) (2)
- g }dtimes
T
1) 1)

Fig. 1.1. (1) The topological monodromy of f: V — C. (2) It is a (—d)-Dehn twist.

We next introduce a fractional Dehn twist. Where a and m (0 < a <
m) and b and n (0 < b < n) are two pairs of relatively prime integers,

an (%, %) -fractional Dehn twist is a self-homeomorphism of an annulus

[0,1] x ST illustrated in Figure 1.2. It is explicitly given by (¢, )
(t eQﬂi{(lft)a/mftb/n}eiQ).

More generally, where k is an integer, an (%, %, n) -fractional Dehn

twist is defined as the composite map of a (4+£)-Dehn twist and an (%, %)—

fractional Dehn twist (Figure 1.3). If & + b 4> 0, the — < a b H)—

n mo
fractional Dehn twist appears as the topological monodromy of a degen-
eration: Set ¢ := ged(m,n), m' ;= m/e, n' := n/c and d = n'a +

m'b + m'n‘ck, or d = m/n'c (% +%+KZ>. Let T' be the cyclic group
acting on Agz_; generated by an automorphism v : (z,w,t) € Ag_1 —
(eQTria/mz, e2mib/ny, e27ri/m/"lct) € Ag_1. The induced map ® : Ay_;/T — C
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Fig. 1.2. An (%, %)—fractional Dehn twist.

} K times

Fig. 1.3. An (%, %, /i) -fractional Dehn twist.

by a I-invariant map ® : (z,w,t) € Ag_1 — tm'"'c ¢ C is a degeneration

whose topological monodromy is the — <%, %, /<c> -fractional Dehn twist.
We point out that ® : Ag_1/T' — C arises as a local model of a degener-
ation of Riemann surfaces; recall that a proper surjective holomorphic map
m: M — A from a smooth complex surface M to A :={s € C : |s| < 1}
is a degeneration of Riemann surfaces (of genus g) if 771(0) is singular and
7n1(s) for s # 0 is a Riemann surface (of genus g). Figure 1.4 (1) illus-
trates an example of a singular fiber, which consists of cores, branches and a
trunk. Contracting the branches and the trunk of this singular fiber yields
the canonical model @ : M’ — A of m : M — A; the branches and the
trunk become cyclic quotient singularities of M’ (because the contraction of
a chain of projective lines yields a cyclic quotient singularity). The singular
fiber (7/)71(0) is thus as illustrated in Figure 1.4 (2). Let p € 7~1(0) be



678 Kenjiro SASAKI and Shigeru TAKAMURA

Fig. 1.4. Intersections of irreducible components are transversal. The positive integer on
an irreducible component denotes the multiplicity of that component. The five bold
points on (7')7*(0) denote the cyclic quotient singularities of M.

the point resulting from the contraction of the trunk. A neighborhood of
p € M’ is then isomorphic to Ag_1/T (for a/m = 4/11, b/n = 3/5, k = 0).
Moreover the restriction 7’ |4, ,/p coincides with ®: Ay 1/T — C, and
the topological monodromy of 7’|, | T isa— (1_4I’ %, O)-fractional Dehn
twist.

More generally, for any trunk (see Figure 1.5), the same holds: A neigh-

borhood of its contraction is isomorphic to Aq_1/T (for some a/m, b/n,
e
twist, and Ag_1/T is a cyclic quotient singularity.

k), and the local topological monodromy is a — K ) -fractional Dehn

In the above, the contraction of a trunk yields A;_1/T", which is a cyclic
quotient singularity. In fact, for any I' (that is, for any a/m, b/n, k), the
quotient Ay_1/T is a cyclic quotient singularity, that is, A4_1/T' = C2/G for
some cyclic group G' = (g), where g is of the form (u,v) s (e2™/tu, ¢?m4/1y)
where [ and ¢ are some relatively prime positive integers. This is the starting
point of our present work — we generalize it to the higher-dimensional case
in order to apply it to degenerations of complex manifolds.

Let a; and m; (¢ = 1,2,...,n) be relatively prime integers such that
0 < ai < mj. Set ¢ := ged(mi,mo,...,my,) and m, := m;/c. Take an
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ko
=

trunk

Fig. 1.5. A trunk is a chain of projective lines connecting cores. (ko, k1,...,ks+1 are
multiplicities.)

integer/-ﬁsuchthat%—11+7%—22+---+%—2+/@>0, and set

n
d:= (g azmﬁm;m;) +mimb - -ml ck,
i=1
where 7, means the omission of m}. Or
a a a
(1.1) d:m’lm’z-um;c(—+——|—'~+—+/<a).
m

Now let v be an automorphism of C"*! given by

e @ sant) e (2, g i)
Then (1.1) ensures that 7 preserves Ay 1 := {(xl,acg,...,:vn,t) e Ccrtl .
T1To Ty = td}. Let I be the cyclic group generated by ~. Let & :
Ag—1 — C be a I'-invariant holomorphic map given by ®(z1,za, -+, Tpn,t) =
Fmima e and & denote the holomorphic map on Ag-1/T induced by ®.

The topological monodromy of ® : Ay 1/I" — C is called a — (7%—11, %, R

7%—7:2, H) -fractional Dehn twist. This will be described in [SaTa).

The present paper shows that the cyclic quotient Ay_1/T" is uniformized
by a small abelian group. Here a finite subgroup of GL(n, C) is small if it
contains no pseudo-reflections. The following was originally proved by the

second author:

(i) Uniformization theorem for dimension 2 There exists a small
cyclic group G C GL(2, C) such that Aq_1/T = C?/G (Theorem 2.1).
(This ensures that the minimal resolution of A4 1/T" is obtained by
the Hirzebruch-Jung resolution.)



680 Kenjiro SASAKI and Shigeru TAKAMURA

(ii) Moreover under this isomorphism, ® : Aq_1/T — C corresponds to
the map ¢ : C?/G — C induced by the G-invariant map ¢ : C*> — C,
d(u,v) = u"v™ (Lemma 2.4).

A1 0

This is generalized as follows (a diagonal matrix ( ) is denoted

0 A
by diag(A1, ..., An)):

MAIN THEOREM A. (i) There exists a small finite abelian group G C
GL(n, C) such that Ag_1/T" =2 C"/G (Theorem 6.3), where G is cyclic
/ ~ ! !/
My MMy yhere 1) means
lem(my, ..., M5, ...,my) g
the omission of m. Then l; is a positive integer (Remark 3.1) and G s
generated by the diagonal matrices Q, Ry, Ro, ..., Ro—1 given by
Q= diag(eQTrillal/cd e2milaz/ed — 2miln_1an—1/cd e27riln(an+mnn)/cd> and
R, = diag(l, o1, e2milimi/d e‘QWilnm’n/d), where e2™limi/d Jieg
in the ith place (Corollary 7.13).
(ii) Under the isomorphism in (i), ® : Ag_1/T — C corresponds to the map
¢ : C"/G — C induced by the G-invariant map ¢ : C" — C,
d(v1,v9, ... vp) = VFOR2 . vkn where Ky :=lem(m, ... W}, ... m)c (The-
orem 6.6 (2)).

only when n = 2. Next set [; :=

REMARK. A resolution of C"/G gives a decomposition of the mon-
odromy (a higher-dimensional fractional Dehn twist) of ® : Ay_1/T — C
into subtwists along the exceptional set. It seems that T. Ashikaga’s work
on resolutions [Ash], [Asls] is related to this.

The construction of G in Main Theorem A uses the following diagram
of coverings:

P
(1.2) - N

where p, ¢ and r are covering maps given by

e p(X1,X0,...,X,) = (X{ X4, XEX1Xy---X,) (note: p

Ag—1 — C™ is the universal covering of A4_1),



Uniformization of Cyclic Quotients 681

L Q(X17X27"'7Xn) - (Xinllu X;n/277X77’Ln/n)7

o r(ur,u,...,uy) = (ulf, ul;, ...,ul"), where I; is the positive integer

appearing in Main Theorem A.

We lift and descend T with respect to the diagram (1.2): Lift " to a
group I' (acting on Ay_1), and then descend T to a group H (acting on
C™), and next descend H to a group G (acting on C™). Then Ay4_1/T =
Aq_1/T 2 C"/H =2 C"/G and G C GL(n, C) is a small finite abelian group.
We remark that in the case n = 2, H is always small, so the descent with
respect to r is actually unnecessary. Even for n > 3, it may occur that H
is small. Indeed:

MAIN THEOREM B (Theorem 5.14 (2)). The finite abelian group H is
small if and only if ged(mj, m}) =1 for any i, j such that i # j.

Next let P be the pseudo-reflection subgroup of H, that is, P is gegerated
by all pseudo-reflections of H. Regard x as a ‘parameter’, and write I', H, P
as I'x, Hx, P;. Then the following holds:

MAIN THEOREM C (Lemma 6.7 and Theorem 6.8).

(1) The pseudo-reflection subgroup P, of Hy does not depend on k: Let kg
denote the least integer among k in the definition of d, then

Piy=Peys1=-=P,=--

(2) (Equi-smallness) If Hy, is small, then H, is small for any k, and if
H,, is not small, then Hy is not small for any k.

2. Uniformization Theorem for Dimension 2

Let a and m (0 < a < m) and b and n (0 < b < n) be two pairs of
relatively prime integers, and set ¢ := ged(m,n), m’ := %, n' = % (Note
that m’ and n’ are integers.) Take an integer x such that % + % +x >0,
and set d := an’ +bm’ +m/n’ck. Let v be the automorphism of C? given by
v: (zw,t) s (e2mia/my  2mib/ny, eQWi/m/"/ct). Then ~ preserves Ag_1 :=
{zw =t} in C3. Let T be the cyclic group generated by 7. Then:
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THEOREM 2.1 (Uniformization theorem [Tak]). There exists a small
cyclic group G C GL(2, C) such that Aq_1/T = C%/G. Here G is ex-
plicitly given as follows: Let a* (0 < a* < m) be the integer such that
aa* = 1modm, and let q (0 < q < cd) be the integer such that q =

* /
adT—/n mod cd (the right hand side is indeed an integer; see Remark
2.2 below). Then G is generated by the automorphism g of C* given by
qg: (u,v) — (eQWi/Cdu’ 627riq/cdv)'

REMARK 2.2.  Substituting d := an’+bm/+m/n’ck into ad—n

1n’—|—a*b+a*n’c&. Here since aa®* = 1 mod m, we may write aa*—1 =

yields

* /
Km (= Km/c), where K is an integer. Then adT—/n = Kn'c+a*b+a*n’ck.

PRrROOF. Note first that the universal covering p : Ay (=C?) — Ay,
of Ag_1 is a d-fold covering given by p(X,Y) = (X4, Y% XY). Next let
q: Ag_1 — C2 be an m/n/-fold covering given by ¢(X,Y) = (X™,Y™), and
consider the following diagram:

Ad 1 =C?
(2.1) / ~D
(C2

Adfl.

Let T be the lift of I with respect to p, and G be the descent of [ with
respect to . Then Ag_1 /T = Ay_1/T = C2/G.

We next show that G is generated by g. For j = 1,2,...,m/n/c and
k= 1,2,...,d, let 7, : gd,l — gd,l be the automorphism given by
%j,k . (X, Y) N (627ri(ja+km)/de’ eZﬂi{j(b-l-nm)—kn}/ndy% and gik C2 — 2
be the automorphism given by g;x : (u,v) > (e2miathkm)/edy
e2mi{j(btnr)=kn}/edyyy  Then for each j = 1,2,...,m/n’c, the set of all lifts
of 47 € T with respect to p is {Vjr + k=1,2,...,d}, and for any j, k, the
descent of 7; 5, with respect to ¢ is g;;. Hence T and G are explicitly given
by

f:{%‘,k cj=12,....m'nc, k=1,2,...,d},
G={gx:i=12. . mnck=12... d.
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Therefore G is generated by the following two automorphisms «, 3:

(u,v) — (627Tia/cdu’627ri(b+nn)/cdv)

a: ,
B: (u,v) RN (627rim’/du’e—27rin’/d,u).

Let [ (0 < I < cd) be the integer such that [ = 1_T(m* mod cd. Then by
Corollary 7.17,

" fl=g,  ¢=a  g"=5

Hence g € G and G is generated by g.

We next show that G is small. Recall that G is generated by g : (u,v) —
(e2mi/edy, ¢2mia/cdy)  Here q and cd are relatively prime (Lemma 2.3 (2)
below), so G is small. (]

Explicit form of A; /T = C2/G: Since T is the lift of ' with
respect to p, the map p induces an isomorphism p : del /f — Ag1/T,
and since G is the descent of I' with respect to ¢, the map ¢ induces an
isomorphism g : Ag_1/I — C2/G. The isomorphism Ay /T = C2/G
in the uniformization theorem (Theorem 2.1) is then given by ¥ := gGo

pl: Ay /T — 2 /G. We show that this map is explicitly given by
(22) U ([, y, 1)) = [, g™ /1],

where [z,y,t] € Ag—1/T and [:rm//d, y",/d] € C?/G denote the images of
(z,y,t) € Ag_1 and (:L’m//d, y“//d) € C? respectively. To see (2.2), first note
that since p(X,Y) = (X4, Y9 XY), we have ﬁ([X, Y]) = [Xd,Yd,XY}, SO
1_7_1([13, Y, t]) = [CEl/d, yl/d]. Next since ¢(X,Y) = (Xm,, Y”,), we have
q([z"/?, y" ) = [am/9, y¥'/9]. Hence gop~* ([, y,1]) = [2™/4, y'/7].

Supplement Let a* (0 < a* < m) be the integer such that aa* = 1 mod
* /
m, and let q (0 < q < ¢d) be the integer such that q = adT—/n mod cd,

where the right hand side is indeed an integer (Remark 2.2). Similarly let b*
(0 < b* < n) be the integer such that bb* =1 mod n, and let r (0 < r < ¢d)

/
be the integer such that r = b*d;/m mod cd, where the right hand side is

an integer as for q.
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LEMMA 2.3.
(1) qr = 1 mod cd, that is, r = q*.

(2) q and cd are relatively prime.

* AR RS /
PrOOF. (1): It suffices to show that ¢ Cfn_/ n b d; M = 1mod cd.
Here

m n

*d—n' b'd—m' -1 bb* — 1
a /n ,m :d<aa —b" + ; a*—i—a*b*cm) + 1.
m n

Write aa* — 1 = Km (= Km/c) and bb* — 1 = Ln (= Ln’c). Then
a*d —n' b*d —m/

- —— =cd(Kb* + La* + a*b*k) + 1
m n

= 1 mod cd.

(2): Since gr = 1 mod cd, qr = 1 4+ Mecd for some integer M. Then
qr — Med = 1. Here ged(q, ed) divides the left hand side, so divides 1, thus
ged(q,ed)=1. 0

Correspondence between functions Let ® : A; 1 — C be a holo-
morphic map given by ®(z,w,t) = tm'n'c. Then & is [-invariant, so induces
a holomorphic map ® : A;_1/T" — C. As explained in § Introduction, the

a b /i) -fractional Dehn twist.

topological monodromy of ® is a — (m, 7

Under the isomorphism W¥: Ay 1/T — 2 /G in the uniformization

theorem, the holomorphic map ® : A;_;/I" — C corresponds to a holomor-
phic map on C2/G. This map is explicitly given. First let ¢ : C2 — C
be a holomorphic map defined by ¢(u,v) = u"v™. Then ¢ is G-invariant.
To see this, recall that by Theorem 2.1, the cyclic group G is generated by
g (u,v) = (e2™/edy, e?ma/edy) where q (0 < q < cd) is the integer such
that q = a*dT—/n’ mod cd. Then

é og(u, U) _ (b(e%ri/cdu7 e27riq/cdv) _ e?wic(n’—i—m’q)/cdun,um

_ 627rica*d/cd n, m

u"v by n' +m/q = a*d mod cd

M.
— e?ma wo™ = yo™

= ¢(u,v).
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Thus ¢ is G-invariant, so induces a holomorphic map ¢ : C2/G — C.

LEMMA 2.4 ([Tak]). Under the isomorphism W : Ay /T —=C?/G
given by (2.2), ® corresponds to ¢, that is, ® = ¢ o V.

Proor. Note first that

G0 U([z,y.t]) = (2™ y"/4)

m’n/dyn’m/d _ ( m’n’c/d.

=z xy)

Here zy = t? (because (z,y,t) € Ag_1), so ¢ o ¥([z,y,t]) = ¢m'n'e. Thus
¢ oV ([z,y,t]) = D([z,y,t]). O

Wheret: R — Ay_1/T is the minimal resolution of A;_1/I", the compos-
ite map m := ®or: R — C is a degeneration. As we see immediately, thanks
to the uniformization theorem, the degeneration 7w : R — C is isomorphic
to a degeneration which is easy to describe.

Where v/ : ' — C?/@ is the minimal resolution of C?/G, the composite
map 7’ := ¢pot/ : R — C is a degeneration. Since A4 /T and C?/G
are isomorphic (Theorem 2.1), two minimal resolutions v : R — Agz_1/T
and v : R' — C2?/G are isomorphic, that is, there exists an isomorphism
U : R — R’ that makes the following diagram commute:

R v R
(2.3) v - |¥
AT — Y 2.

1

THEOREM 2.5. The following diagram commutes:

R 14

(24) W\S 4

Rl

Hence two degenerations 7 := ®ot: R — C and 7’ :== pot' : R\ — C are
isomorphic.



686 Kenjiro SASAKI and Shigeru TAKAMURA
PrRoOOF. By Lemma 2.4, the following diagram commutes:

U
Ag_1/T ~

C2/G

Combining the commutative diagrams (2.3) and (2.5) yields the commuta-
tive diagram (2.4). O

The degeneration 7’ := ¢ot’ : R’ — C may be described as follows: Since
G is cyclic, C?/G has a (unique) cyclic quotient singularity, which is resolved
by a chain of projective lines ( Hirzebruch-Jung resolution). Accordingly the
singular fiber (7/)71(0) of ' : R' — C is as illustrated in Figure 2.1 (see
also Remark 2.6).

REMARK 2.6. The multiplicities of the singular fiber (7')~!(0) in Fig-
ure 2.1 is explicitly determined from m, n, a, b, k. Let a* and b* (0 < a* <
m, 0 < b* < n) be the integers such that aa* = 1 mod m and bb* = 1 mod n.

Define then two sequences of integers mg > m; > --- > my = 1 and
- -(c D
singularity of C?/G
\ Resolve [[Dl
— \- c [~ E— (52
P
a C /G R :
'3 () pr
s¢ C o<
o L ) \' J
v
C ®
0

Fig. 2.1. The positive integers ko, k1, ..., ks+1 are multiplicities. They are explicitly
determined from I'; more specifically, from m, n, a, b, & (Remark 2.6).
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(1)k>0
N —~— _
(2) k=—-1

Fig. 2.2. The singular fibers for (1) x > 0 and (2) kK = —1. A circle stands for P* and a

hemicircle for C. (Each intersection is a node.)

ng >ny > --- > n, = 1 inductively by the division algorithm with negative

residues:
{ mo:=m, mi:=a",
m;—1 = 8;My; — M1 (0<mi+1 <mi), 1=1,2,...,A—1,
{ ng:=mn, n:= b,
ni—1 =tin; —nit1 (0 < njp1 < nyg), 1=1,2,...,v—1.
Then:

(i) If k > 0, then (7')~1(0) is as illustrated in (1) of Figure 2.2.

(ii) If Kk = —1, then there exists a unique pair of integers Ag and vy (0 <
Ao < A 0 < vy < v) such that my 41 + nyg+1 = My, = ny,, and
(')71(0) is as illustrated in (2) of Figure 2.2.

3. Lifting and Descent

3.1. Diagram of covering maps
We generalize the uniformization theorem for dimension 2 (Theorem

2.1) to an arbitrary dimension. First let a; and m; (i = 1,2,...,n) be
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relatively prime integers such that 0 < a; < m;. If k is an integer satisfying
is s F o+ g+ k> 0, then

(3.1) k> -n+1.

Indeed since 0 < a; < my, we have 0 < T%—ii <1 =12...,n), so

%—11+ﬁ1—22+~--+%—7;<n, thus %—11+ﬁ1—22+---+%—2+/1<n+n. Here the
left hand side is positive by assumption, so 0 < n + &, that is, —n + 1 < k.

Next set ¢ := ged(mqy, ma, ..., my), m, :=m;/c and
n
(3.2) d:= <Z agmy -l m;) +mimb - - ml ck,
i=1

where 77, means the omission of m). Note that d > 0, indeed

a a a
(3.3) d:m/lm'2~-mﬁlc(—1+—2+---+—n+/<)>0.
mi mo mpy
Rewrite the equation on the left hand side as
a a a d
_1 + _2 _.I_ .. _|_ —'I’L — 7 S 5 — K.
mip Mo My MMy -+ M, C

Then e27ilar/mitaz/mot+-+an/mn) — 2mid/mimymyc Here o~ 27K — 1, so

(34) e27ri(a1/m1+a2/m2+---+an/mn) _ 627rid/m’1m’2---m§lc.

Now let v be an automorphism of C"*! given by

627ria1/m1 e?ﬂian/mn 627"i/m/1m/2'“m;10t).

Ly

v (z1,.. o, t) — T, e,

Then v preserves Ag_q1 := {(:rl,acg, T, t) € CMHL Lz, = td},
that is, ¥ maps A4_1 to itself. Namely if z1z - - - 2, = t%, then

(627ria1/m11,1)(627Tia2/m2:c2) . (627rian/mnl,n) _ (627ri/m’1m’2..vm’nct)d7

that is, 62”1(“1/m1+“2/m2+"'+a”/m")z1$2 Ty, = e2mid/mimy-micyd  Thig in-
deed holds by (3.4). Now let T" be the cyclic group generated by the auto-
morphism v of Ag_1.

The universal covering p : /Td—l (= C") — Ag_q of Ag_y is a d"!-fold
covering given by p: (X1, Xa,..., X,) — (X{, X¢, ..., X3 X1X5--- X,).
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Consider the following diagram of coverings:

p
(3.5) & N

where

/

o ¢ (X1, X, ..., Xp) > (X0, X2, XY s an mfmly - - -m,fold

covering,
o 7 (ug,u,...,Uy) (ulf, u?,...,uf{b) is an lils - - - l,-fold covering.
Here ) ) ,
m -.-mA.-.m .
lizzl } o A—— (i=1,2,...,n),
cm(my, ..., My, ...,my)

where ) means the omission of m}. Note that [; is a positive integer
(see Remark 3.1 below).

~ /! /

/
m .« .. m ... m . . .
REMARK 3.1. [; := 1 L ~ is a (positive) integer, be-
lem(my, ... My, ...,my)
cause from the definition of lem, the denominator lem(m/, ..., m},...,m})
divides the numerator mj ---m/---m],.

Now let T be the lift of T' with respect to the covering p, H be the descent
of T' with respect to the covering ¢, and G be the descent of H with respect
to the covering r. We will show that G is a small finite abelian group such
that Ag_1/T = C"/G (the uniformization theorem). We begin with some
preparation.

3.2. f, H and G are finite groups
We first show that I" is a group.

(i) 1e I': This is the trivial lift of 1 € T' (that is the identity map of
Ag-1).

(i) €€T = &L el If is alift of 49 € T, then &1 is a lift of v € T,

(i) &, & €D = £& € Tt If &, & are lifts of 47, 4F € T, then && is a
lift of 47 *F € T
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We next show that H is a group as follows (similarly we can show that
G is a group):

(i)’ 1 € H: This is the descent of 1 € T,

(i) h € H = h™! € H: If h is the descent of £ € T, then h~! is the
descent of ¢! €T

(ii))” h1, he € H = hihy € H: If hy, hy are the descents of &1, & € T, then
hiho is the descent of &€ € T,

The orders of I', H and G are determined as follows (below, [T, |H| and
|G| denote the orders):

Order of I': Since f~is the lift of I' with respect to the d" !-fold
covering p, we have |T| = d""'[T|. Here || = mimj---mjc, so
IT| = miml---mledL.

Order of H: Since H is the descent of I (or T is the lift of H) with

respect to the mjmy---mj-fold covering ¢, we have T =
miml---ml|H|. Here |T| = mimb---mhed® ! so |[H| = cd" 1.
Order of G: Since G is the descent of H (or H is the lift of G) with
respect to the lily - - -l,-fold covering r, we have |H| = lily---1,|G]|.
-1
Here |H| = cd™ !, so |G| = ledLl (This is indeed an integer. See
n
Remark 3.3 below.)

The results obtained in this section are summarized as follows:

PROPOSITION 3.2.  Let T be the lift of I' with respect to the covering p.
Let H be the descent of I' with respect to the covering q, and let G be the
descent of H with respect to the covering r. Then:

(1) The lift T of T is a finite group of order mimly---mled® 1. (In fact,
' is abelian. See Lemma 4.7.)

(2) The descent H of T isa finite group of order cd®'. (In fact, H is
abelian. See Lemma 4.8 (3).)

n—1
3) The descent G of H is a finite group of order ed" (1 fact, G
Iils -1
is abelian. See Lemma 6.1 (C).)
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REMARK 3.3. The fact that |G| = I ?d T is an integer is reconfirmed

as follows (we show this only for n=3): Usmg

d=mmhmic (7%11 - 7%22 + a3 - n) (see (3.3)),

Iy = mymy ly = mim Iy = myml
= Tom(m, ndy)” 2 Tem(nd, m) = Tem{ml, mp)’
2
rewrite |G| = lfglg as
2
Gl = e{ TTem(m}, m)) }e? (h + 2 + 5+ x)

7]

= ¢ I] lem(m, m>{< >+z(2azc“ T >+22“1%}

i#j ity MM

Here l;[ lem(mj, m}) = lem(my, my)lem(m}, mj)lem(my, mj3) is divisible
i#]
by m}, (m})?, m] im’;, so the last expression is indeed an integer.

4. Determination of H

We keep the notation concerning the diagram (3.5). Moreover we adopt

the following notation: For j =1,2,...,m\m}---m/c,

° Lift(j): The set of all lifts of v/ € I with respect to the covering map
p:Ag1 — Ag-a.

® (. (Lift(j)): The descent of Lift?) with respect to the covering map
q: A, — C™

® 7, 0(q, (Lift(j )): The descent of ¢, (Lift(j )) with respect to the covering
map r : C"* — C™.

Then

. mimyemie .
o I' = U Lift@) is the lift of I with respect to the covering map
j=1
p:Ag1 — Ag-a.



692 Kenjiro SASAKI and Shigeru TAKAMURA

mymy-my,c , ~
o H= U Qs (Lift(J )) is the descent of I with respect to the cov-
i=1
ering map q: Aq_1 — C™.

mllmémfnc .
o G = U  reoq (Lift(])) is the descent of H with respect to the
j=1
covering map r : C" — C".

/ / /
mimsy---myc

Actually, T' = U Lift") is a disjoint union. Namely, if j # k,
j=1
then Lift?) NLift*™ = §. On the other hand, H = U G« (Lift(])) and
j=1
G = U T4 O Qs (Lift(J)) are not disjoint unions. In fact, a descent of

7=1
an element of Lift") may coincide with that of an element of Lift(* ( Jj#k).
In this case, g, (Lift(])) N Qs (Llft(k)) # (), and moreover, 7, o ¢, (Llft(])) Nryo0
(Llft ) # 0.
_ _ mimbemle .
In what follows, we write I' as a disjoint union: I" = []  Lift@).
j=1

4.1. The lifts of each element of I'

We next determine the set Lift&) of all lifts of 7/ € T with respect to
the covering p. For j = 1,2,..., m\mb---m!,c, we first define a set AU) of
n-tuples of integers as follows:

(4.1) AW ::{(pl,pg,...,pn)EZ 0<p; <d, Z%E

LEMMA 4.1. The number of elements of AW s d"1.

PROOF. Setting = := {(p1,p2,-..,Pn_1) € Z" ! : 0 < p; < d}, con-
sider a map @ : A(J) — = given by (plap27"'7pn—lapn) — (p17p27"'7
pn_1). Here Z consists of d”~! elements, thus it suffices to show that ¢ is
bijective.
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Surjectivity: We show that for any (p1, pa, . .. ,pn_l) € =, the inverse im-

age ¢ 1 (p1,p2,...,Ppn_1) is not empty. Set N := jx — Z p; and let p, (0 <
i=1

pn < d) be the integer such that p, = N mod d. Then (p1,pa, ..., pn) € A,

Moreover Sp(phva v 7pn) = (p17p27 o 7pn—1)7 thus Soil(phpQu o 7pn—1) is
not empty.
Injectivity: We show that for any (p1, p2,...,pn—1) € Z, the inverse
image ¢~ '(p1,p2,...,Pn_1) is a single point. Note that (p1,pa,...,pn)
n

is contained in gail(pl,pm ...,Pn—1) precisely when p, satisfies ) % =
i=1

. n—1

% mod Z, that is, p, = jk— > p; mod d. Such an integer p, (0 < p, < d)
i=1

is unique, so ¢! (p1,p2,...,pn_1) is a single point. OJ

Let AY) be the set given by (4.1). For each (p1, p2, ..., pn) € AY), define
() 1 1

an automorphism Y, p,,...p, : Ad—1 — Agq—1 by

(X1, X2,..., Xyp) —
(627Ti(ja1+m1p1)/m1dX1’ 627ri(ja2+m2p2)/m2dX2’ e e27ri(jan+mnpn)/mnan) )

LEMMA 4.2.  For any (p1,pa,...,pn), (D), 0h,-..,0,) € AY), the fol-
lowing hold:

(1) Fori=1,2,...,n,

627ri(jai+m¢pi)/mid _ 627ri(jai+m¢p§)/m¢d627ri(pifp;-)/d‘

(2) If (p17p27"‘7pn) 75 (pllvp,27'-'7p;7,)7 say pi 75 p; fmn some i; then
e2mi(jai+mipi)/mid £ e2mi(jai+mip})/mid_

(3) If (p17p27 s ,pn) 7& (pllap/% s 7pn) then 7 7}71,?27 -Pn 75 7p’1,p2, oo

Proor. (1): From

. i+ map) , — Dl
145 ;:Lmzpl _ Ja ;;?Zlfhpl = Pi d i , We have
i

jai + mip;i Jm+mm+m P
m;d m;d d

, which yields the equation in assertion.
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(2): Since 0 < pi < dand 0 < p, < d, p; # p, implies p; # p; mod d,
accordingly 2 d pi—pi £ 0 mod Z. Hence e2™(Pi—ri)/d £ 1 in (1), implying that
e?m(]al+mzpz)/mld ?é e27r1 (jas+msp))/m;d )

(3): This follows from (2). O

We next show the following:

COROLLARY 4.3. The number of elements of {%ﬁm’wpn : (p1,p2y - -y
pn) € ADY s 4.

PrOOF. By (3) of Lemma 4.2, the number of elements in the set
{:y}(fl)m,__,pn : (p1,p2,...,0n) € A(j)} coincides with that of AU), and by

Lemma 4.1, it is "~ 1. O

Recall that d = mim/} - (Z Bi H) (see (3.3)), so
i _ d _

LEMMA 4.4. For any (p1,p2,...,pn) € AU,

JG; +Mipi _ J d7Z
Zmd = e M

PrROOF. Using (4.2), the left hand side is rewritten as

jai +mip; _ J _JK L~ P
S = e
n =
P o~ ()
Here Z— = EmodZ (because (p1,p2,...,pn) € AY)), so
i=
]az‘f‘mzpz_ J 7. [
B = s mod 2

COROLLARY 4.5. For each j, let Lift") be the set of all lifts of 77/ € T
with respect to the covering p : Aq_1 — Aq_1. Then the following hold:
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(1) The number of elements of Lift") is d"—!.
(2) For any (p1,p2,...,pn) € AU, 711(,31)]32 e Lift\).

(3) Lift®) = {35, bt (1,2, -, pn) € A},

PROOF. (1): Since the covering p is d"~!-fold, for each j, 4/ € I has
d" 1 lifts, so Lift) consists of d"~! elements.
(2): It suffices to show that the following diagram commutes:

~(5)

prl’P2:-~~7pn

Ay Ag
pl lp
’Yj
Ad-1 Ag-1-
For (X1,...,Xn) € Ag_1,
pe a](?jl‘),l)m---,pn (X17 s Xn)
= p(€2ﬂi(ja1+m1p1)/m1Xm’ e 62”i(jan+mnpn)/mnan)
— (627rijal/m1)(17 o ’627rijan/man, eZﬂ'iZ ?zl{(jaieripi)/mid}XlXQ o Xn)

Here 2™ % iz i(aitmapi)/mid} — o2mij/mymymic by Temma 4.4, thus

PO (X1, Xi)

_ (€2m]a1/m1X17 o 7627rijan/mnXm e27rij/m’1m’2~~~m;LcX1X2 o Xn)
On the other hand,

v op(X1,..., Xn)
_ (627rija1/m1 Xy, ... ’627rijan/man’ e271'ij/m’1m’2---m%c‘Xl‘Xv2 . Xn)

Hence p o ’Y](n),pg, 7pn = 'yJ op, conﬁrmlng the assertion.

(3 From ( {'thm, on © (P1,D2, . pn) €AV C Lift"). Here “C”
is “=" because the numbers of elements of both sets are equal, indeed they
con51st of d"~! elements ((1) and Corollary 4.3). OJ
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The following will be used in later discussion:

COROLLARY 4.6. %()Z),p%wpn descends to /. Moreover if WI()QPQ,,,,’% is
of the form (X1,..., Xi, ..., Xp) — (Xyq,...,emGactmp)/midx, -0 Xy
then it descends to v7 of the form

2mijai/mi ..

iy T 627r1(]ai+mipi)/midt)'

(T1y. .oy Xn,t) — (z1,...,€

PROOF. The first statement follows from Corollary 4.5 (3). The second
one is restated as p o 5;{?p27.._7pn =~/ o p, which is confirmed as follows:

pe fyéjl)p% ,pn(le cee 7Xia o 7Xn)
= p(Xl’ L ’627ri(j(li-|—'mipi)/'mid)(i7 o ,Xn)
= (Xfl, - 7627rijai/mz‘Xid’ o ,Xfll, 627ri(jai+mipi)/miXmX2 o Xn)

=y op(Xy,..., Xiy ..., Xp). O

By Corollary 4.5 (3), LiftV {'yphm’ on ¢ (P1,D2, .. D0) € A(j)}.
~ mymhemge ,
Since I' = [I  Lift") (disjoint union), we have
i=1

/ / /
mimyg:my,c

f = H {a](?jll)am,.._’pn : (pl,pz, .. 7pn) c A(])}
=1

Or
[ = {:y"]gjll),pzy_”,pn (p1,p2, - pn) €AY G =12, mhmb-- m%c}
We thus obtain:

LEMMA 4.7. The lift r of T' consists of the automorphisms 7;(,1)7[,2, P
Ad 1— Ad 1 given by

(X1,..., Xn) — (eFriGavtmipn)/midy, - e2miljantmapn)/mndy )

where (p1,p2,...,Pn) € AY) and j =1,2,.. .mimb---m}c. (In particular,

n
any two elements of I' commute, so I' is abelian.)
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4.2. Determination of H
. mymhyemge . .
Recall that ' = [I  Lift"), where Lift) denotes the set of all
j=1
lifts of ¥4 € I' with respect to the covering p : Ag_1 — Ag_1. Accordingly

/ / /
mimy--mpc

H = U Qs (Lift(j)), where ¢, (Lift(j)) is the descent of Lift") with
j=1

respect to the covering ¢ : Ag_1 — C". We determine ¢, (Lift(j)). To that

end, for j = 1,2,...,mym}---mlc and (p1, p2, ...,pn) € AY), define an

automorphism h](;l),p% pn - C" —= C" by

2mi(jar+m cd 2mwi(jan+m cd
(us...,un) — (e Gartmap)/edy, - g2mi(Gantmapn)/ Up).

LEMMA 4.8.

(1) ffLé,jR,pg,.,,@n 1s the descent of fv}(ﬂp%,,pn with respect to the covering q :
Ad—l — C",

(2) qx (Llft(*?)) = {hé‘?ﬁ”%mapn : (p17p27 ce 7pn) S A(])}

(3) H = {hparcpn s (192, p0) €AY, j = 1,2, mlmby - mie .

(Thus any two elements of H commute, that is, H is abelian.)

PrOOF. (1): Indeed since (e2mi(7aitmipi)/mid)™s — 2mi(jaitmipi)/ed the
following diagram commutes:

~()

~ Vp1,p2, P ~
Ag—1 A
q ) q
J, B) l
(Cn P1,P25---,Pn Cn

(2): By Corollary 4.5 (3), Lift\ {%1,,,2, pm (D12, pn) € ADY,
accordingly by (1), q*(Llft ) {hlf,]l)pz o (P1,D2, - D) € A(j)}_

mm2 T)’LC

(3): This follows from H =  {J  ¢.(Lift¥)) and (2). O
j=1
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5. The Pseudo-Reflection Subgroup of H

5.1. Cyclic subgroups I'; of I' and fz of T
Let v: Ag_1 — Ag_1 be the automorphism given by

(5.1) v (T, .y Xy, t)

(627r1a1/m11,1’ o e27r1an/mn

Y B R
7 T, e27r1/m1m2 mnct).

(The order of 7 is mjm), - - -m/},c.) Consider the cyclic group I" generated by
Y- .

F={y:j=12,...,mim5---mc}.
Let T'; (¢ =1,2,...,n) be the subgroup of I' consisting of automorphisms
of the form

627rijai/m7; 627rij/m’1m’2---mﬁlct)’

(-’.Ul,-.-,.fL'Z',.--,ZL'n,t)'—>(l'1,.-., Liy ooy Tn,

that is,
()  eFw/mk =1 (k=1,2,...,i,...,n).

LEMMA 5.1. ForjeZ,

v €T < j is a multiple of lem(m/,...,m},...,mh)c.

PROOF. =: If 49 € I, then from (}), jay is divisible by my (k =
1,2,..., 4,...,n). Here a; and my are relatively prime, so j is divisible
by my (k=1,2,...,4,...,n). In particular, j is a multiple of lem(my,...,
Miy ... My) = lem(my, ..., m5,...m))c.

<=: If j is a multiple of lcm(m'l, o.Mk, ..ml)e, then j is divisible
by my (k= 1,2,...,4,...,n), so % is an integer. Thus e2™kar/me — 1

(k=1,2,...,4,...,n),s0 ) €T;. O
From Lemma 5.1, the following holds:

/ ~ ! /
lem(mf,...,/m},...,mp, )c

COROLLARY 5.2. T is generated by v; := .
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This element is explicitly given by

Vit (T, Tiyeney Ty, t) —

s ’ <1 ’ /
(331, o eZﬂlazlcm(ml,...,mz,...,mn)/mzxi7 e Ty

p2milem(my ..o ....mf,) /m’lm’2~~~m’nt) ‘

Here eZﬂ'ilcm(m/l7v..,ﬁL;,...7m%)/m’1m’2...m; _ eQWi/m;li’ because
/ ~ / / / -/ ’
lem(my, ... 1w, ...,my) 1 lem(my,...,m,...,my,) 1
'm! / - / / </ 7 - 7T -
mimey -+ My, m; my Mg -my, mllz
Thus
Yit (1, Ty, Ty, T)
ia: / i/ ’ / . 7.
— (xI, o ’62mazlcm(m1,...,mi,-..,mn)/mixi, T, €2m/millt)_

Set L; :=lem(m/,...,m.,...,m}), then

ey o
Vi (:Ul’ wreodns t) — (J;l? SR ezﬂ'lalLl/mixia <y Tp, 627n/millt).

For k € Z,
’)/lk : ({El, N o R ,l‘n,t) — (xh . ,eQﬂiaiLik/m;xi7 ey Ty, €2ﬂ'ik/m;lit>.
In particular,

~F = id if and only if e2milik/mi — 1 and e2mik/mili = 1.

Here:

(A) e2miailik/mi — 1 if and only if ﬁff is an integer (because a; and m/
(2

are relatively prime).

(B) e2mk/mili — 1 if and only if k_isan integer.

!/
We restate (A). First write % as L}, where L, and m! are relatively prime
i i
ce . L; m’
t t L= —=— and m! = ——%—). Th
positive 1,n egers (or, L acd(Li. ) and m; gcd(Li,mg)) en
% <:i;,lf> is an integer if and only if m! divides k. Thus (A) is restated

(2 (2

as:
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/

(A) e2miailik/mi — 1 if and only if m! divides k.
From (A)’ and (B),

vk =id if and only if k is a common multiple of m/ and m/l;.

Here m, is a multiple of m/ (because m! := . Thus any common

(mi I) )
ged(L;, m;
multiple of m! and m/l; is necessarily a multiple of m/l;. Therefore:

LEMMA 5.3. ’yf =id if and only if k is a multiple of mll;. In particular,
the order of ~y; is m}l;.

We summarize the above results (Corollary 5.2 and Lemma 5.3) as fol-
lows:

COROLLARY 5.4. For each i =1,2,...,n, let I'; be the subgroup of T’
consisting of automorphisms of the form

e27rij/m’1m’2~~~m’nct)'

2mija; /m;
(T1ye oy Ty v oy Ty t) — (21, ..., € Mg X,

Then T'; is a cyclic group of order m}l; generated by the automorphism

. 2mia; L; /m/, 2mwi/m’l;
’yz-.(a:l,...,:z:i,...,:rn,t)i—>(a:l,...,e Ll i, €™ ”t),
m, .-om/.-o-m/
where L; :=lem(m/,...,m},....,m}) and l; := —L LZ? n,

Let p: Agq (= C™) — Ay_1 be the covering of Az given by
p(X1, Xo, .., Xn) = (XE, X4, X3 X1 Xy X,),

and T be the lift of I with respect to p. Next let & : ﬁd_l — /Td_l be the
automorphism given by

(52) &Gt (X1, Xiy. o Xp) — (X, @mmlXG LX),
Then:

LEMMA 5.5.

(1) The order of & is m}l;. (The order of v; is also m}l; by Lemma 5.3.)
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(2) & € L. In fact, & is a lift of v; € T; (C I'), that is, the following
diagram commutes:

~ 13 -

Ag—1 Ag—1
pl lp

Ag gL Ag_q.

PROOF. (1) is clear. We show (2). It suffices to show that po&; = ~;0p.
Note first that

pofi(le" ')X’ia' .. 7Xn)
= (X{,... ermdmilixd  xd 2m/milix X X).

On the other hand,

’yiOp(Xl,...,Xi,...,Xn)
= (X ... Prali/mixd o xd 2mi/mili o xo LX),

Thus to show that po & = ~; o p, it suffices to show that e2mid/mili —
eQWiaiLi/m/i, that is,

d ;L
(5.3) — = di ~ mod Z
/ ~ /
Slnced:m'lmém;lc(%_ll+%_22++%_r;+ﬁ) andli: mq TZZ mn’
the left hand side of (5.3) is
d a1L; asl; anL;
= 1/7,+ 2/z+'”+ n/Z+C/£Li
mil; my mg n
L; L, L;
= Q2 920 I ed Z.
my mgy n
Here L; := lem(mj,...,m},...,m}) is divisible by m) (k = 1,2,...,
iy...,n), SO ak%i € Z, that is, ak%"' =0modZ (k=1,2,...,1,...,n),
my my,
hence L,E ailji mod Z, confirming (5.3). O
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As we saw in the paragraph above Lemma 4.7,

I'= {%31‘)7]027”'7% : (p1,p2y---y0n) € AD) G =12, ... T MY - - -m;c},

. n . H
where AU) = {(pl,pg,...,pn) ezr :0<p<d S Li=1 modZ} and

&’,ﬁ{{m,,,_m : Ag_1 — Aq_y is the automorphism given by

X1,y Xy) s (eFmUatmip)/midyx, o 2mi(Gantmapn) fmad x ),

Here Corollary 4.6 states that (i) %(,jll),p%,,pn descends to 4/ and (ii) moreover

if Ay’[(,{?m?m,pn is of the form (X1,...,X,) — (Xu,...,e2m0aitmipi)/midx,

.., X,), then it descends to 7/ of the form
(X1, oy Ty t) — (21,.. ., e/ mig. g eQWi(ja#mip"')/midt).
Note the following:

LEMMA 5.6. In the case of (ii), there exists an integer s; such that
eQTrijai/mi _ 627riaiLisi/m§ and eQﬂ'i(jai—Q—mipi)/mid _ eQTrisi/mgli

PROOF. Since the 47 in (ii) is an element of I';, and I'; is generated by
7 (Corollary 5.4), there exists an integer s; such that 4/ = ;. Here

{fyj . (ﬂ: , , T ,t) — (:r17 ,627“‘70'/ ‘T, , T 7627r1(]a1+mzp1)/mzdt)’

Y (T, 2, t) (xl, ... e2mailisifmig g e%isl’/m;lit),
SO e27rijai/mi — 627riaiLisi/m2 and 627ri(ja,-+mipi)/mid — e27risi/m2li‘ 0
Let & : Ag_1 — Aq_1 be the automorphism given by
Gt (Xiyoo o X, X)) — (Xq, ..., e2™milix, LX),

Then & € I' (Lemma 5.5 (2)). In fact, & € TNE;, where Z; (i = 1,2,...,n)
is the multiplicative group of agtomorphisms consisting of scalar multipli-
cation of the ith coordinate of A4_; (= C"):

=, = {(Xl,...,Xi,...,Xn) s (X1, A X Xy )\GCX}.
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Setting [, =INE Ei, we claim that & in fact generates FZ, that is, any
element of T'; is a power of &;. To see this, note that I'; consists of '7p1?p2, Pn
of the form
) ot (Xiye o Xy, X
— (Xy,...,exm0atmip)/mid x. X,
Here for each *yz(,jl)p% pn € T;, there exists an integer s; such that
e2mijaitmaps)/mid — o2misi/mili (Lemma 5.6). Then

?}()]14)71)27“.71)” : (X17 s 7Xi7 s 7XTL) L (Xla ey €2W18i/miliXi7 ) 7Xn)7
SO fngi?p% P = ff ¢ confirming that &; generates r ;- Here the order of &; is

m;l; (Lemma 5.5 (1)), so the order of the cyclic group I'; is m/l;.
We formalize the above result as follows:

PROPOSITION 5.7. For eachi=1,2,...,n, let fl be the subgroup off
consisting of ;715]1)7102,,,% of the form

(X1, Xiy oo X)) — (Xq,..., e2mGatmip)/midx, Xy
Then T; is a cyclic group of order m}l; generated by the automorphism

fi . (Xl,...,Xi,...,Xn) — (Xl,...,GQWi/mgliXi,...,Xn),

where [; :=

5.2. Cyclic subgroups H; of H

We have described cyclic subgroups T (i=1,2,...,n) of I. We next
describe subgroups of H corresponding to them. Here H is the descent of
T with respect to the covering map ¢ : Ag_; (=C") — C" given by

0(X1, Xy, Xp) = (X0, X2, X,
Explicitly H is given by (Lemma 4.8 (3)):

i = {héi),pz, Pn (pl’p27""19n)6A(j)7j=1,2,...,m/1m/2...m;10}7
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where h](gj %pz,,,,J,R : C" — C" is the automorphism given by

e27ri(ja1+m1p1)/cdul 627ri(jan+mnpn)/cdun).

(U, un) — ey

Now let H; (i = 1,2,...,n) be the subgroup of H consisting of hz(,ji),pz,,,,,pn
of the form

e2milioctmp)/edy, o

(5.4) (Ulye ooy Uiy ey Up) — (Ul,. ..,
Let h; : C* — C" be the automorphism given by
(5.5) his (Ui, iy ) — (ug,... e2m/lig, yUp,).

Then h; € H. In fact, h; is the descent of §; € L, (C f), that is, the following
diagram commutes:

- & -
Ag A
ql lq
h;
cn Cc™.

Since fz is a cyclic group generated by &; (Proposition 5.7) and h; is the
descent of & with respect to ¢, the descent of I'; is a cyclic group generated
by h;. As we show subsequently, this cyclic group coincides with H;.

To show this, it suffices to show that for any hé]l),pQ,...,pn € H;, there
exists an element of I'; that descends to hj(gjl),p%,,,,pn. Here

() . it fed
{ hyypasepn - (ul, e ,un) — (Ul, ...,e Ti(ja;+mip;)/c Ui, ... 7un)’

g: (X1, Xa,.., X)) — (X0 XD X0,
Thus an automorphism ( : del — del given by
(5.6)  C:(X1,...,Xp) — (Xq,..., e Gatmp)/midt x. 0 0x

descends to hz(,];),p%_,,,pn. We show that in fact ¢ € r (then from the form of
¢, C €Ty, s0Cis a lift of hz(jj%p2,__,7pn).

Step 1. Since q(Xl,Xg,...,Xn):(XInll,X;lIQ,...,X,T;"), the set of all

lifts of hg)’pz,,,”pn S (g, un) = (U, ..., e2mGatmap) fedyy oy ) with
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respect to the covering ¢ consists of automorphisms

(X1,...,Xn)
i ’ i S 1 e . . / i /
(R X (k) i) ikl
where ki, ko, ..., k, are integers.

Step 2. Since %j),pzy_,’pn e T is a lift of hj(gj),p%,,,pn with respect to ¢

(Lemma 4.8 (1)), 3. ps,...pn coincides with one of the automorphisms in
Step 1. Namely for some integers ki, ko, ..., kn,

~]()j),p2,...,pn (X, Xy, X)) —
<e27rik1/'m/1)(17 o e27ri{(jai—&—mipi)/mid—kki/mg}Xi7 o e27rik"/m;LXn).
Next for each kK =1,2,...,n, take the automorphism

Gt (X1, 0, X)) = (X, .., 2o X X)),

The composite automorphism 71(,{)7p27,,,,pn§1_ llkl&; laka &tk s then given
by

(X1, Xy X)) — (X4, e2mtGaitmap)/midt x. 0 x Y
This coincides with the automorphism ¢ given by (5.6), thus

~(i —l1k1 =12k —lnkn
=AW, kg R g tnkn

Step 3. Since %{%m,m,pn celand & €T (k= 1,2,...,n), we have

N}()j),p%,,pnfl_llkl52_12k2 ...& b e T, Hence ¢ € T, confirming the assertion.

We thus obtained the following:

LEMMA 5.8. For each h,(f;),m,.__,pn € H;, there exists an element of T;

that descends to it (with~7’espect to the covering q). In fact, the automor-
phism ¢ : Ag_1 — Ag_1 given by ( : (X~1,...,Xn) — (X1,

2 {Gaitmips)/midt x. XY is an element of Ty that descends to
hg)’m’_“’pn C(ug, . up) = (u, .., e2mGatmap) fedy o,
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COROLLARY 5.9. H; is the descent of T, with respect to the covering

The descent of I'; with respect to the covering ¢ is a cyclic group gen-
erated by h; in (5.5). On the other hand, this descent coincides with H;
(Corollary 5.9). Thus:

LEMMA 5.10. H; s a cyclic group generated by the automorphism h; :
(Ui, ... up) — (ug,...,e2™ by . u,). Thus the order of H; is l;.

5.3. The pseudo-reflection subgroup of H N
We retain the notation above. Let H be the descent of I with respect
to the covering q : A4y — C". Let H; (i = 1,2,...,n) be the subgroup of
(7)

H consisting of hy, p,...p, of the form

(5.7) hQ) (U, Uy U)o

P1,P2,---sPn
2ri(ja;+m;ip;)/cd
(ug,...,e (Gaitmip:)/ Ugy oo vy Up).

In fact, H; is a cyclic group of order [; generated by h; (Lemma 5.10). Note
that if ¢ # j, then H; N H; = {1}. In particular,

(58) H1H2-~Hn:H1><H2X”'><Hn.

n

Note also that the set of all pseudo-reflections in H is given by (U HZ> \
i=1

{1}

Here a pseudo-refiection is a diagonalizable matrix such that one of its
eigenvalues is a root of unity (distinct from 1) and all other eigenvalues are
1. Note that the identity matrix is not a pseudo-reflection.

Now let P be the pseudo-reflection subgroup of H that is the subgroup

generated by all pseudo-reflections in H, that is, by <U H,L) \ {1}. Here
i=1

H; (1 =1,2,...,n) is a cyclic group generated by h;, so P is generated by

hl, hg,...,hn, thus P = H1H2~--Hn = H1 X H2 X o+ X Hn (See (58))

Since the order of H; is l;, the order of P is lily---1,. This confirms the
following;:

ProposITION 5.11. Where H; (i = 1,2,...,n) is a cyclic subgroup
of H generated by the automorphism h; : (u1,...,u,) — (ug,.. L e2m/liy,
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., Up), the pseudo-reflection subgroup P of H is the direct product P =
Hy x Hy x -+ x Hy, and the order of P is lyly - - 1,.

In particular, P = {1} if and only if [ = ly = --- =1, = 1. Thus:
COROLLARY 5.12. H s small if and only if 1 =lo=--- =1, = 1.

Now let GG be the descent of H with respect to the l1ls - - - I,,-fold covering

r: C" — C" given by r(ui,ug,...,u,) = (ulf, ulf, coouln). Then Iy = Iy =

- =1, = 1 if and only if r is the identity map, or equivalently H = G.
This, combined with Corollary 5.12, gives the following:

LEMMA 5.13.

Hissmall <— l1=1lyg=---=1[,=1
<= 71 is the identily map
— H=0G.

The following arithmetic results are proved later (Corollary 5.19):
(1) If n=2, then l; =1y = 1.

(2) If n >3, then [y = lp = --- = l, = 1 if and only if ged(m], m}) = 1
for any j # k.

This, combined with Lemma 5.13, yields the following:

THEOREM 5.14 (Numerical criterion of smallness).
(1) If n =2, then H is always small.

(2) Ifn >3, then H is small if and only if ged(m;, m};) =1 for any i, j
such that i # j.

Example 5.15. If n=3,a1=as=a3=1,m; =2, me=4,m3=26
and k = 0, then ¢ = ged(my,me, m3) =2, m) =1, m) =2, mst =3 and d =
24346 = 11. In this case, I is generated by the automorphism v of A;_1 (=
Aqp) given by vy(x1,xe, x3,t) — (62”1/%1, 2™/, e2m/6pg 62”1/1275). Let T
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be the lift of I" with respect to the covering p : Zw — Ajg, p(X1, X2, X3) =
(X X3 X3 X1 X5 X3), and let H be the descent of I with respect to
the covering ¢ : Ay — C3, q(X1, X2, X3) = (X1, X3, X3). Then, since
ged(mf,mh) = 1, ged(m),ms) = 1 and ged(mb, mb) = 1, Theorem 5.14
ensures that H is small.

5.4. Supplement: Arithmetic result
This section is devoted to proving an arithmetic result used in §5.3.
Let A1, A2, ..., A, be positive integers such that ged(A1, Aa,..., Ay) =1,
L AN A
where n > 2. Set [; := lcm()\b”w}\i’”'?)\n)
of A\;. Note that [; is a positive integer (cf. Remark 3.1). We show that if
n >3, then l; =y = --- =1, =1 if and only if ged(Aj, \y) = 1 for any
J# k.

, where \; means the omission

REMARK 5.16. If n = 2, this equivalence is vacuous, because I; = Iy =

1 always holds)\(and ged(A, A2) = 1 by assumption). In fact i} = gcci\(l)\l) =
— 2 _
1 and Iy = scd(ha) ~ 1.

We begin with some preparation:

LEMMA 5.17. For any 1,5,k such that i,j and k are distinct, l[; >
ng()\j,)\k).

PrOOF. We only show the assertion for ¢ = 1, j = 2 and k = 3
(the assertion for other cases are similarly shown). Note first that Ao =
ged(Ag, Az) - lem(Ag, A\3). Multiplying A4 - - - A\, to this yields:

XAy -+ A = ged(Ag, A3) - lem(Ag, Ag)Aq -+ Mg
Here, since lem(Ag, Ag)Ag -+ Ay > lem(Ao, A3, Ay, ooy A,
A2AgAg - Ay > ged(Ag, Az) - lem(A2, Ag, Ady ooy Ap).
Dividing this by lem(A2, A3, A\g, ..., A\n),

A2A3Ag - Ay
lcm()\g, )\3, )\4 te >\n)

Z ng()\g, )\3).
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Since the left hand side is 1, we have 1 > gcd(A2, A3). (Note: If n = 3,

then the equality holds. In fact, {; = m — gcd(Ma, Ag).) O

We next show that:

LEMMmA 5.18. For eacht=1,2,...,n,

li =1 <= gcd(\j, A\p) = 1 for any j # k (distinct from 7).

PrROOF. =: By Lemma 5.17, for any ¢, j, k such that 7,5 and k are
distinct, [; > ged(Aj, Ag). In particular if [; = 1, then ged(Aj, Ag) = 1.

—: If gcd()\], Ai) =1 for any j # k such that j and k distinct from 4,
then lem(A1, ..., Ay .oy An) = A1 Ai--- A, and thus I; = 1. O

From Lemma 5.18, [; = ly = --- = [,, = 1 if and only if ged(A;, \) =1
for any j # k. (Actually if n = 2, then I} = lo = 1 always holds (Remark
5.16).)

Now let mj, ma,..., m, be positive integers. Set ¢ := ged(mq,mao,...,
my) and m) = % (1t = 1,2,...,n). Then mj,mb,...,m) are positive
integers such that ged(mf, m), ..., m}) = 1. So we may apply the above to

obtain the following:

COROLLARY 5.19. Let mq,ms,...,my, be posz’tive integers. Set ¢ :=
~/ /
m -m. .. -m

ged(my, ma,...,my), m} = ﬂgl and l; 1 L n ok where
" lem(m), .. m, .

) means the omission of m. (Note that [; is a positive integer (cf Remark
3.1).) Then the following hold.

(1) If n=2, thenly =1ls = 1.

(2) Ifn >3, thenly =lp = -+ =1, = 1 if and only if ged(m},m;) = 1
for any j # k.
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6. Uniformization Theorem for Arbitrary Dimension

6.1. Determination of G

Recall the diagram (3.5) for the covering maps p, ¢, 7:

q Ay =C" »
e
(6.1) _c \Ad—l-
r-
Cn
Then
~ mymyemge .
o I'= []  Lift¥) (disjoint union) is the lift of I' with respect to p,

j=1
where Lift") is the set of all lifts of 7 eT.

mymlymle . ~
o H= U G (Lift(j )) is the descent of I" with respect to ¢, where
j=1

Qx (Lift(j )) is the descent of Lift").

e G = U T4 O Gy (Lift(J)) is the descent of H with respect to r,
j=1

where r, o ¢, (Lift(j)) is the descent of g, (Lift(j)).

Here Lift() = {%(7]1‘),102,...,10” : (p1,p2,-.-,Dn) € A(j)} (Corollary 4.5 (3))
and q*(Lift(j)) = {hl()jl%p27.._7pn : (p1,p2,...,Dn) € A(j)} (Lemma 4.8 (2)).
We next determine 7, o g (Lift(j)). For j = 1,2,...,m{m,---m/c and

(p1, P2, - - pn) € AU, define an automorphism gj(ojl),p%,,pn :C" — C" by

(V1. 0n) — (627ril1(jal—Hm;m)/cdvl7 . 7627riln(jan+mnpn)/6dvn).
Then as for Lemma 4.8, we can show the following;:

LEMMA 6.1.

(A) g;,(){)’m,,_,pn is the descent of hz(,{),p%_n,pn with respect to the covering r :
Cr — C™.

(B) T'x © Qx (Llft(J)) = {gz(oji),pz,.--,pn : (pl’p27 cee )pn) € A(J)}
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!/

(C) G = {g}gjl')yp%---,pn : (p17p27 v 7pn> € A(J)v ] = 17 27 s 7m/1m/2 o 'mnc}'

(In particular, any two elements of G commute, so G is abelian.)

6.2. Uniformization theorem

Let H be the descent of I' with respect to the m/m - - - m!,-fold covering
q: C* — C™ and P be the pseudo-reflection subgroup of H, that is, P is
generated by all pseudo-reflections in H. The descent G of H with respect
to the l1ls - - - l,-fold covering r : C" — C" is regarded as the quotient group
H/P. Indeed the kernel of the surjective homomorphism 7, : H — G (given
by r«(h) := descent of h) is P, so G = H/P. Thus G is obtained from H
by collapsing the pseudo-reflections in H, consequently:

PROPOSITION 6.2. G contains no pseudo-reflections, that is, is a small
group.

Now Aq_1/T = Ay_y/T = C*/H = C"/G. Here G is a finite abelian
group (Proposition 3.2 (3)) and small (Proposition 6.2). The following is
thus established:

THEOREM 6.3 (Uniformization theorem). Let T’ be the cyclic group
generated by the automorphism v : Ag_1 — Agq_1 given by

2mia1 /m1 2mian /mn 27ri/m’1m’2--~m’nct)‘

v (X1, X, t) — (e T1,...,€ Ty, €

Then there exists a small finite abelian group G C GL(n, C) such that
Ag—1/T=C"/G.

We explicitly give the isomorphism Ay 1 /T"' = C"/G in the uniformiza-
tion theorem. The covering maps p, ¢ and r appearing in the diagram (6.1)
induce isomorphisms 7 : Ad 1/F — Ay1/T and 7 : Ad 1/F — C"/H and
7:C"/H — C"/G. The isomorphism A;_1/I' = C"/G in the uniformiza-
tion theorem (Theorem 6.3) is then given by

(6.2) U=

ﬁl

ogop': A4, /T —= C"/G.
Explicitly:

LEMMA 6.4. U([z1,...,2,,t]) = [xan’lh/d’.”?xgilln/d]?
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where [z1,...,2n,t] € Ag_1/T and [z} v ll/d . } C"/G denote
the images of (x1,..., oy, t) € Ag_1 and ( mlll/d, L aintn/d ) € C" respec-
tively.

PROOF. Since p(X1, Xo,...,X,) = (X§, X4,..., X4 X1 X+ X,,), we
have p([X1, Xo, ..., X,]) = [X{, X4, ..., XL, X1 Xs -+ X,,], s0

P (21,30, s w0, 1)) = [2)/% 2/, L 2l

Next since q(X1, Xa,...,Xn) = (X7, X0, ..., X" and r(ug,us, ...,
Up) = (ulll,ul22,...,ul"), we have ﬁ([Xl,Xg,...,Xn]) = [inl,X;nQ,...,

n

X;Ln;l] and r([uhug, .. ,unD [Ulll,’u,lf, o 7u'lr?:|7 .
roa(iey/,a/”....at/ ) = (a3 )
[ m 1/d mgl2/d7.”’x;n;1ln/d}.

Hence ¥ :=Fogop ! is explicitly given by

\I]([J}l,l'g, c. ,xn,t]) = [lelll/d’ x;nlzh/d? o ’x?/nl”/d]' ]

6.3. Correspondence between functions

We use the notation in §6.2. Besides, let ® : A;_ 1 — C be a holomor-
phic map given by ®(z1,z2,...,Tp, 1) = #mimamne - Then @ is [-invariant,
so induces a holomorphic map ® : A4 1/I' — C. As we explained in § In-

troduction, the topological monodromy of ® is a — (7%—11, %, e %—Z, n) -
fractional Dehn twist: If n = 2, then the topological monodromy of ® is the

- (7%—11, %—22, /Q)-fractional Dehn twist.

Under the isomorphism ¥ : Ay_;/T —=C"/G in (6.2), ®: Ag_,/T —
C corresponds to a holomorphic map on C"/G. We describe this map. To
that end, we need the following:

LEMMA 6.5. For an element g € G given by

(Ul, o 7Un) (627r1l1(ja1+m1p1)/cdvl’ o 627r1ln(]an+mnpn)/cdvn)’
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write n; = e*mkilatmip)fed (; — 1.9 n). Next fori = 1,2,...,n, set
ki :=lem(m}, ... ,m;, ..., m})c, where m) means the omission of m}. Then

77
k1, k
7711?722 o nan = ]'

/
PrOOF. Since [; = D we have k;l; =
Z’-..

/.-.
i

k1, k2 kn
mne” T

mfy .-l mle, so
— 627Tik1l1(ja1+m1p1)/cd627rik2l2(ja2+m2p2)/cd .
. e27‘(‘il€nln(jan+mnpn)/cd

_ 627rim'1m’2~~~mﬁlcz?:1(jai/mi+pi)/d'

n .
Here > p;/d = jr/d (because (p1,pa,...pn) € AY)), so

=1

627rim’1m’2--~milcz iz (Jai/mi+pi)/d _ 627rijm'lm’2~~-mﬁlc( PN ai/mi—&-/@) /d

= ™ by (3.3).

Hence 77]1“7752 coemkn = 2™ = 1.0

We next show the following (this generalizes Lemma 2.4):

THEOREM 6.6. Let ¢ : C* — C be a holomorphic map given by

k1 k
d(v1,v2,...0,) = V) V5% - fln,

Then:

where k; = lem(m),...,m},...,m))c.

)] i n

(1) ¢ is G-invariant. In particular, this induces a holomorphic map ¢ :
Cc"/G — C.

(2) Under the isomorphism W : Ay /T —=C"/G in (6.2), ® corre-
sponds to ¢, that is, ® = ¢ o V.

Proor. (1): For (v1,v2,...,v,) € C™ and an element g € G given by

g: (U17U27 o ,’Un) = (7711)17772”2, cee 777nvn)>

¢Og(vl,02, s 7'Un) = ¢(771U17 202, . .. 777711)71)

ki k kny, k1, K kn
= (m'my” - vy vyt vy

ki k En
:77117722”'7771 ¢(U1,02,...,Un)

= ¢(v1,v2,...,0Up) by Lemma 6.5.
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Thus ¢ o g = ¢, confirming the assertion.
(2): Note first that

¢oU([z1,22,...,2Tn, 1))

—/r.mhli/d  mbla/d " 1n/d
= ¢([aq VT, @y 2T, e / ]) (Lemma 6.4)
_ w;nllllkl/dxgnéb’@/d o l,;n’nlnkn/d‘

Here since k;l; = mj ---m}---mlc, we have mil;k; = mjm}---m]c. Thus
the last expression is rewritten as

m;llkl/dmmélzkz/d . m’ lnkn

[
ml 2 ..xnn /d:(x1x2...1;n)mlm2 mnc/d

/S )
— MMy My C because 2173 - - -z, = t°.

Hence ¢ o \If([xl,mg, . ,xn,t]) = 5([:101,3:2, . ,:Un,t]). O

6.4. Equi-smallness theorem
Let T" be the cyclic group generated by the automorphism ~ : Ag_ 1 —
Ag4_1 given by

i i o ! /
7 : (:Ul; s 7':Un7 t) > (627r1a1/m1x17 e 7€2F1an/mnxn, €2F1/m1m2 mnct)7
n
i / </ / ’o ! / . .
where d := ) apmf ---1m) ---m; + mimy---myck. Here x is an integer
k=1

satisfyin§ (%) T%—ll + 7%—22 +-+ ;,L,L—’;L + K> 0. Theanﬁ > —n+1 (see (3.1)).

Let I" be the lift of I' and H is the descent of I'. The pseudo-reflection
subgroup P of H is generated by the automorphisms h; : C* — C" (i =
1,2,...,n) given by hy : (ug,... U .. ) — (u1,...,e2 b, uy,)

t—n —— does not depend on

(Proposition 5.11). Here [; = Tom(m! )

k. Thus:

LEMMA 6.7. The pseudo-reflection subgroup P of H does not depend
on k.

In what follows, regarding x as a ‘parameter’, write f, H, P as fn, H,,
P,;. These are subgroups of GL(n, C). From Lemma 6.7,

(6-3) PK/O: I‘€0+1:'.':PK/:"'7
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where kg denotes the least integer in the set S of integers k satlsfylng (%).
If H,.CO is small, then P,, = {1} and by (6.3), Pxy, = Peg+1 = -+ = Py =
= {1}. Thus Hj is small for any x € S. This conﬁrms the followmg

THEOREM 6.8 (Equi—smallness). Let S be the set of integers k satisfy-
ing m a1 + a2 + -+ ,%—2 + k>0, and let ko denote the least integer in S.
Then H,gO 18 small <= H, is small for any k € S. (In other words, H,, is
not small <= Hy, is not small for any k € S.)

Ezample 6.9. (i): Whenn =3, a1 = a2 =a3 =1, m; =2, mg =14
and mgz = 6, ¢ = ged(my, mg,m3) =2, mj =1, m2 = 2 and m4 = 3. Then
ﬁl—ll—i-ﬂal—é—i-% —%—1-14—%— %%,andthus 12+/€>0 Hence ko = 0.
Here by Example 5.15, Hy, is small. Thus by Theorem 6.8, H, is small for
any integer x such that x > 0.

(ii): When n = 3, a1 = 1, ag = 2, a3 = 3, m; = 2, mg = 3 and
mg = 4, ¢ = ged(my, ma,mg) = 1, m) = 2, m2 = 3 and m4 = 4. Then
a4 Gy 4 a3 1, 2,3 2 and thus 23 + x > 0. Hence ko = —1
my " mg T mg 2T 3T 4 12 12 0=
Here since ged(m, m4) = 2, Theorem 5.14 ensures that H,, is not small.
Thus by Theorem 6.8, H, is not small for any integer s such that x > —1.

7. Generators of f, H and G

Let T be the lift of I' with respect to the covering p. Let H be the
descent of I' with respect to the covering ¢, and G be the descent of H with

respect to the covering r. Then G is a small finite abelian group such that
Ag_1/T =2 C"/G. We explicitly give generators of ', H, G.

7.1. Generators of I
Recall that (see the paragraph above Lemma 4.7)

I'= {%1(;]1'),1)2,...,1)” : (p17p27 s )pn) € A(J)v ] = 1727 s 7m/1m/2 o 'm;c}7

where AU) = {(pl,pg,...,pn) ez : 0<p <d, >, % = % modZ} and
i=1

%jl),p% P : Ag_1 — Aq_1 is an automorphism given by

(Xl, o aXn) — (€2ﬂi(ja1+m1p1)/mldX17 e eQTri(janernpn)/mnan) )
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Recall that I' is generated by the automorphism ~: Ag_1 — Ag_1 given by
Yt @1y t) s (2SI | O g 2 ) )
The automorphism 6 : gd—l — gd—l given by
(X1, Xo,..., Xpn)

(6271'ial/mld)(17 ezﬂ'iag/deX27 e e?wi(an+mnn)/mnan)

is a lift of v € I' with respect to the covering p : Zd,l — Ag—1. Hence 6 € T.
The automorphism 7; : Ag—1 — Ag—1 (i =1,2,...,n — 1) given by

(Xl,XQ, e ,Xn) > (Xl, N ,Xifl, ezﬂi/dXi,XiJrl, ey 6_27ri/an)

is a lift of the identity 1 € I'" with respect to the covering p. Hence n; € r
(i=1,2,....,n—1).

LEMMA 7.1. Any element off is expressed by O, n1, N2, ..., Mph—1 € r.

In fact, 71571),,,2, pn € T s expressed as 71(,1)7],27 o = I Pt
Proor. It suffices to show that ?Z(;{),I,Q,__.,pné_jnfpln em, Pt is the

identity. For brevity, express ﬁg)’p%_n,pn (@) = AZ, 6(Z) = BZ and n;(¥) =
C;T, where

A= diag(ezm(jal+mlpl)/mld7 e2ri(aztmapa)/mad  e2mi(jantmapn)/mad)

B = diag(eQﬂim/mld e2miag/mod  2mian_1/mp-1d 627ri(an+mn;<;)/mnd)

C; = diag(l, o1 emd e_QWi/d), where €2™/¢ Jies in the ith
place. Then %(,Jl)pz, 7pn6_jn_p177 S P NE) = ABTICTPT O

CPr='7. Tt thus suffices to show that the matrix D :== AB=IC[ "' C, "2 - -
C,. p 17! is the identity matrix. Since A, B, C; are diagonal, D is also di-
agonal, so it suffices to show that any of its diagonal entries is 1. This is
confirmed as follows:

e Fori=1,2,...,n—1, the (i,7) entry of D is

eQwi(jai-i—mipi)/mid(e27riai/mid)—j(627ri/d)—pi —1.

e The (n,n) entry of D is
e?ﬂi(jan+mnpn)/mnd(627ri(an+mnn)/mnd)—j (627ri/d)p1+~~+pn_1

— 2mi(prttpn—jr)/d
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) n
Here since (p1,p2,....pn) € AU, we have Z % = ]H mod Z, and

thus e2mi(P1t-+re=jr)/d — 1 ]

Lemma 7.1 implies that:

COROLLARY 7.2. T is generated by 8, N1,M2, ..., Nn—1, OT as a subgroup
of GL(n, C), generated by the matrices B, Cy, Cs,...,Cy_1 appearing in the
proof of Lemma 7.1.

7.2. Relations among generators of r

Recall that I is a finite abelian group of order m/}m - - - m!,cd™1 (Propo-
sition 3.2 (1)) and is generated by 6, n1, n2, ..., Mn—1 (Corollary 7.2). These
generators are generally not independent. In fact, the following holds (the
proof is the same as that of Lemma 7.1):

/ e/ alm'm'~~~m’ an’ m’---m’
I EMMA 73 5m1m2 m,c 771 27"3 ’n,,'7 17"3 n
’ ’

!
Ap—1M7 My, oMy,

n—1

If the order of ¢ is m)mb ---m/,c, then this relation is actually vacuous.
To see this, we need the following:

LEMMA 7.4.

(1) Ezpress 6(Z) = BZ, where B is the matriz appearing in the proof of
Lemma 7.1. Then det B = e2m/mimamac,

(2) If 6% = 1, then k is a multiple of mmb---m/c. In particular, the
order of 6 is a multiple of m\ml---m/c.

(3) lem(my,mb,...,ml)ed is a multiple of mimb---mlec, and
5lcm(m’1,m’2,.,.,m%)cd -1

(4) Write lem(m),mb, ..., m))ed = Nmiml - --m] c where N is a positive
integer. Then the order of § is Imiml ---m! c for some positive integer
I (1<1<N).
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PROOF. We show the assertions only for n = 3 (the proof is the same

for any n).
627ria1/m1d 0 0
(1): Since B = 0 e2miaz/mad 0 , we have
0 0 627ri(a3+m3/4)/m3d

det B = 627ria1/m1d€27ria2/m2d€27ri(a3+m3f-e)/mgd — e27ri(a1/m1+a2/m2+a3/m3+n)/d.
Here (ai/mi + az/mo + az/ms + k)/d = 1/mimbmbe (because d :=
mymbhmbe(ar /my + ag/ma + az/ms + k)), confirming the assertion.

(2): If 6% = 1, then B¥ = I (the identity matrix), so det(B*) = 1. Then
e2mik/mimymse — 1 by (1), Thus k is a multiple of m/mhmje.

(3): We first show that lem(m/, mb, m4)ed is a multiple of m)mbmje, for
lem(m’, mb, mj)ed

mimhmie

which it is sufficient to demonstrate that is an integer.

i =m/mimhe ( QL 4 92 4 43 T
Using d := mimgymsc (ml + g T g T H>, we rewrite:

lem(m}, mb, mf)ed

a a a
= lem(m/, mb, mj)ec (m—l 24+ 2 Ii)
1

mimbymie mo Mg

lem(m/, m5, mb)e lem(m/,, m,, mh)e lem(m!, mb, mh)e
_ lem(mh b e Tem{mi,mp,mb)e | lem(m mh, mi)e
my ma m3

/ / /
+ lem(m7, my, my)ck.
. _ I . .
Since m; = m;c, the last expression is equal to

lem(my, my, mg) | lem(miy, my,mg)  lem(my, m5, mg)

a3
", - e,

+ lem(m’, mb, m4)ck.

This is an integer, because

lem (ol ) em (o mb, ) lem( b )
) )

my my my

are integers.

. lem(m, mf, m4)ed
mymbymie

/ / / .
We next show that §'em(mi:m2ms)ed — 1 For an integer k, the automor-

phism &% : gd_l — Ed_l is given by

Thu is an integer, confirming the assertion.

(Xl X, XS) (627ria1 k/mlXm e?rriagk/mgcl)(2 627ri(a3+m3n)k:/m3dX3)
) ) ) ) *
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Here if k = lem(m/, mb, mj)cd, then

k/mid = lem(m}, mh, ms)/m}, k/mad = lem(mf, mh, mf)/mb,

k/mad = lem(m), mb, ) /i

hence k/mid, k/mad, k/msd are integers, consequently lem(my,my,mz)ed .

(X1, X2, X3) — (X1, X2, X3), so slemmimama)ed = 1,
(4): This follows from (2) and (3). O

Since 7; : Zd—l — Zd_l (1=1,2,...,n—1) is given by
(X1, Xo, .., X)) — (X1, X1, ™K Xy, e VX)),

the order of n; is d.

LEMMA 7.5.
(1) There 18 no nontrivial relation among N1y N2y e v eyt If 771 772
k
nn 1 =1, thenn =1y =" —nn 1 =1

(2) Let k be an integer such that 6% # 1. If 6% is expressed by ni,m2, ...,
N1, that is, 6F = nlllnl;- -77;"_*11 for some integers li,la, ... lh—1,
then k is a multiple of miml---m/ c.

(3) If an integer k is not a multiple of m\mly---ml.c, then ¥ # 1. More-
over 6F cannot be expressed by M, M2, ..., Mn—1.

(4) Let (6) and (n1,m2,...,Mn—1) denote the subgroups of GL(n,C) gener-
ated by 6 and ni1,n2,...,Mn_1 respectively. If the order of 6 is
mimb---mlc, then (8) N (N1, m2, ..., 1) = {1}.

PrOOF. We show this for n = 3 (the proof is the same for any n).

(1):  The automorphism 771 7]2 . Ay, — Ay, is given by
(Xl,XQ,Xg) N ( 27r1k1/dX 1 27r1k2/dX 9 e—27ri(k:1+k2)/an)_ If n]fln]2<72 =1,
then e2mik1/d — 1, e2mike/d 1, e—2mi(k1+ke)/d
752 =1 hold.

(2): Suppose that 6F = nilnlf Here since 6 € Disaliftof yel, 6 e
is a lift of 4% € T" and since 7,79 € T are lifts of 1 € r, nilnl; clisa hft
of 1 € I'. The relation §¥ = nllln? thus implies that §* is a lift of both v*

= 1. Accordingly n’fl =1 and
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and 1, so v* = 1. Since the order of 7 is m/m}ymje, this implies that k is a
multiple of mim4m/e.

(3): Since the order of é is a multiple of m)m4jmfc (Lemma 7.4 (2)),
if an integer k is not a multiple of m|mbmje, then 6% # 1. The rest is a
restatement of (2).

(4): This can be shown by contradiction. If (§) N (n1,n2) # {1}, then
there exist elements 6 # 1 of (§) and 77%177%2 # 1 of (my, n2) such that
&% = nl'yl2. Then (2) implies that k is a multiple of m)|mjmbe. But
smimamse — 1 by assumption, accordingly ¢ = 1. This contradicts that
oF£1.0

By (4) of Lemma 7.4, the order of 6 is Im)m/, ---m/,c for some positive

/ !/ /
integer [ (1 <1 < N), where N = lcm(m},n;LQ,...,lmn)cd
m1m2 A mnc
holds:

. The following

COROLLARY 7.6.

(1) If the order of 6 is mimb---mlc, then the relation in Lemma 7.3

! ! i
m'mb--m/c _ armyoMmg My _
oMM n = 7

is wvacuous, that 1is, 1 = ... =

an_1m}--ml _oml,
77n_11 ! 2 =1,
(2) If the order of 6 is miml---m]c, then [ is isomorphic to the product
of cyclic groups (6) x (n1) X (n2) X -+ X (Np—1), where (8) and (n;)
denote the cyclic groups generated by 6 and 7; respectively.

PrROOF. We show this for n = 3 (the proof is the same for other cases).

(1): If the order of & is mimhmhe, then §™™Ma™3¢ = 1,

n?lmémg”n?mamg = 1 by Lemma 7.3. Consequently n?lmémg = nSlelmg =1
by Lemma 7.5 (1), confirming the assertion.

(2): By Lemma 7.5 (4), if the order of 6 is mymymje, then (6)N(n1, n2) =
{1}. Since T is generated by 6,11,712 (Corollary 7.2), we obtain I' = (§) x
(m1,m2). Here (n1,m2) = (m) X (n2) because there is no nontrivial relation
between 71 and 7 (Lemma 7.5 (1)). Hence T’ 22 (8) x (1) x (2), confirming
the assertion. [

SO

REMARK 7.7. If the order of ¢ is greater than m)m} ---m/ ¢, then Tis
not isomorphic to (§) X (1) x (n2) X - - - X (n,—1), because there is a nontrivial
relation among 6, 11, 12, ...,Mp—1 (Lemma 7.3).
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7.3. Generators of H and relations among them
Recall that (see Lemma 4.8 (3))

{hl(gl)ypm Pn (p17p27 e 7pn) S A(j)> J=12... 7m,1m/2 o 'm;lc}?

()

where hp/p,...p, : C* — C" is an automorphism given by

(Ul un) — (627r1(Ja1+m1p1)/cdu1’ o 7627r1(3an+mnpn)/6dun)'

Recall that I is generated by 8, n1, m2,...,Mn—1 (Corollary 7.2), where

o (Xl,XQ,. .. ,Xn)
— (627ria1/m1dX1’ e?friag/mgd)(27 s €2Wi(a"+mnﬂ)/m”an),

;i : (XI,XQ, e ,Xn) [ — (Xl, e ,Xi,1,€27ri/dXi,Xi+1, ceey 6_27Ti/an).

Let o, 5; (i =1,2,...,n — 1) be automorphisms of C" given by
o (Ula us, . . . 7un) — (627ria1/cdul’ eZTriag/cdu% o e27ri(obn+mnn)/cdun)7

.y , SRS
2mim; /d e 27r1mn/dun).

Bi: (ur,ug,...,un) — (u1,...,ui-1,e Uy Uit1, - -

They are respectively the descents of 6, 7; € r (with respect to the covering
q:Az_1 — C"), hence o, 3; € H.

LEMMA 7.8. Any element of H is expressed by o, B1, B2, ..., Bn_1. In

Pn—1

(9) - ( i AP1 QP2
fa0t7 hp1,p27---,pn € H 15 expressed as hp1,P27---7pn = aj/Bl /82 T Mp—1

Proor. Since a, §; € H are the descents of 8, »; Ef respectively,
al g h2 ... gt € H is the descent of §7n}tnh? - - b 11 € I'. On the other

hand, h;{),p27,,_,pn € H is the descent of %(,jl)m, pn € I' (Lemma 4.8 (1)).

The relation %()1),112, o = OItmh? - pPmt (in Lemma 7.1) then implies

hg),pz,mmn =By ey - gy O

Lemma 7.8 implies that H is generated by «, 81, Bo,...,8n—1. Here
and f3; are expressed by the following diagonal matrices:
S = diag(e27ria1/cd e2miag/ed  2mian_1/mp1d e?ﬂ'i(an—i—mnﬁ)/cd) and
T, = diag(l, o1, e2mmi/d g e_%im/n/d), where ¢2™™:/4 Jies in the
1th place. Thus:
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COROLLARY 7.9. H is generated by «, (1, B2,...,8n—1, Or as a sub-
group of GL(n, C), generated by the matrices S, Th, Ta, ..., Ty—1.

Here «, 81, B2, . . ., Bn—1 are actually not independent. In fact, there are
relations among them:

LEMMA 7.10. The generators «, B1, Bo, ..., Bn—1 of H satisfy the fol-
lowing relations:

/ / ’ / / / / /
mimbm! ¢ _ pA1MMg My, g Ha21M Mg, 4 An—1M My My, o
(a)al 27 M1 = 3 62 ...ﬂn_l
(b) Fori=1,2,...,n—1,
m!leml e Q1ML emy, (a;m}---ml---m] —d)/m/
a™ i nC — 1 2 . /BZ T [
ap—1m}-ml-ml _,m},
. IIBn—l ,
where note that (a;m} - -1} ---m), —d)/m} is an integer.

REMARK 7.11. The existence of nontrivial relations among «, 31, Go,
..y Bn—1 implies that H = («, B1, B2,...,0n—1) is not isomorphic to the
product of cyclic groups (a) x (81) x (B2) X + -+ X (Bp-1)-

7.4. Generators of G and relations among them
Recall that (see Lemma 6.1 (C))

G= {g;,(,j)’m’_“’pn c (pLyp2s o) €AV G =1,2. . mim)- --mlnc},

where gz(;{)’pQ,,__,pn : C" — C" is an automorphism given by

(Ul, o ,’Un) — (627r1l1(]al-l-m1;01)/Cd,ul7 o 7627r1ln(Jan+mnpn)/Cdvn).

Recall that H is generated by «, (1, B2, ..., Bn—1 (Corollary 7.9), where

. 2miaq /cd 2mias /cd 2mi(an+mnk)/cd
a: (ug,ug,...,uy) — (e vfedy,, e2mazfedy, o p2mi(antmns)/ Un),

sl o i)
627r1mi/d e Qﬂlm”/dun).

ﬂi : (Ul,UQ,. "7un) — (Ul,... y Ui—1, Ujy Uit1y - -5

Let f,g; (i =1,2,...,n—1) be automorphisms of C" given by

627r1l1a1 /cd,U1 ’ e27r1l2 as /cdv2

P

627r1ln (an+mnk) /cdvn) ,

fi (v,v2,. .. 0,) — (

oot 9. ’
2milyml /d e 27r1lnmn/dvn)_

gi: (U17U2>" '7Un) — (Ulv' -5 Ui—1,¢€ Uiy Vit1,y .-+,
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They are respectively the descents of o, 5; € H (with respect to the covering
r: C" — C™), hence f,g; € G. As for Lemma 7.8, we can show the following:

LEMMA 7.12.  Any element of G is expressed by f, g1, 92, .., 9n—1- In

]) - (] ] Pn—
fact, g0, o € G is cxpressed as g5 py. pn = FIgP g2 -+ g7

Lemma 7.12 implies that:

COROLLARY 7.13. G is generated by f, 91,92, ..., 9n—1, where f and g;

are expressed by the diagonal matrices
Q — diag(627ril1al/cd7 e?ﬂ'ilgag/cd7 o ’€2ﬂiln,1an,1/cd7 eQﬂiln(anern/{)/cd) and

R, = diag(l, o1, e2milimi/d e_QWiI"m;l/d), where e2mlimi/d Jieg
in the ith place.

Here f,g1,92,...,9n_1 are actually not independent. In fact, there are
relations among them:

LEMMA 7.14. The generators f, g1, g2,---,9n—1 of G satisfy the fol-
lowing ralations:

(a) flcm(m’l,m’z,,..,m’n_l)c _ g(llllv:m(m/l7m/2a~..7m{nfl)/m/1 .
an—tilem(mfy,mb,...m! _)/m! _,
n—1 ’
where note that aglem(m’,my, ... ,m)_)/m) (k=1,2,...,n—1) is
an integer (because my. divides lem(m/, mb,...,m} _;)).
(b) Fori=1,2,...,n—1,
flcm(m{l7"'7m;:7""m'lfL)c
(2
an—1lem(my,.... i}, my,) /my,
e gTL—l ,
where note that (a;m} - --m}---m), —d)/lym} is an integer and for k =
L,2,...,0,...,n, aplem(m),...,m},...,m})/m] is an integer (because
/ - / ~ ! /
my, divides lem(m/,...,m;,...,m;)).

REMARK 7.15. The existence of nontrivial relations among f, g1, g2,
..y gn—1 implies that G = (f, g1, g2,...,9n—1) is not isomorphic to the
product of cyclic groups (f) x (g1) X {(g2) X -+ X {gn—1).
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CasE n = 2. Let af (0 < aj < my) be the integer such that a1a} =
1 mod m;. If n =2, then G is a cyclic group generated by ¢ : (u1,us) —
(e2mi/edyyy | e2ma/cdy;y)  where q (0 < q < cd) is the integer such that q =
ajd —mb aid —mb . .
—1———2 mod ¢d (Theorem 2.1). Note that — o Is an integer (cf.

1 1
Lemma 2.3 (1)). Here the automorphism g is expressed by the matrix

e2mi/cd 0
P = ( 0 J2ia/ed ), and as a subgroup of GL(2, C), G is generated

by P. On the other hand by Corollary 7.13, GG is generated by two matrices

e2mia/cd 6271'im’/d
Q = ( 0 e2mi(b+nk)/cd > and Ry = ( 0 e—2min’/d ) Note

that Iy = o = 1, thus G = H, f = a, g1 = #1. We describe the relations
among P and @, R;.
For simplicity, write m1, ma, a1, a2, aj, /1, R1 as m, n, a, b, a*, 3, R,
and set ¢ := ged(m,n), m’ ;= n':= % and d := an’ +bm’ + m'n/ck.
PROPOSITION 7.16. The matrices P, Q, R € GL(2, C) expressing the
automorphisms g, o, 8 are related as follows:

(1) P*=Q, P" =R.

(2) Noting that 1 —nga* is an integer (because aa* = 1 mod m), let [
(0 < I < cd) be the integer such that | = % mod cd. Then
Q"R =P.

* !/
PrOOF. (1): We first show P® = (). Since aq = W =

/
d_T?nEb—i—n/imodcd,

e2mia/cd 0 e2mia/cd 0
P = < 0 e271’iaq/cd > = ( 0 e27ri(b+n/<)/cd > =Q.

* _ /
We next show P™ = R. Since mq = w = a*cd — cn' = —cn’ mod

m
cd,

- e2mim/cd 0 e27rim’/d 0
P™ = ( 0 627rimq/cd > = ( 0 6—27rin’/d > =R.
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(2): We first show P *™ = P Since | = 1—Tcm* mod cd and aa* +

%
m1 aa

. — = 1, we have aa™ + ml = 1 mod cd. Hence

eZﬂ'i(aa +ml)/cd _ 627ri/cd’ e27ri(aa +ml)q/cd _ 627riq/cd‘

Accordingly, P *™ = P. Then (P*)* (P™)! = P. Here since P* = Q
and P™ = R hold by (1), Q¥ R' = P. The assertion is thus confirmed. (J

COROLLARY 7.17. The automorphisms g, o, 3 : C> — C? are related
as follows:

*
(2) Noting that 1_% is an integer (because aa® = 1 modm), let [

(0 < 1 < cd) be the integer such that | = 1_% mod cd. Then
a® fl=g.
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