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Chapter 1

Introduction to Quantum Hall Effect

1.1 QHE in Single-layer Systems

The two-dimensional interacting electron system is the one of the most attractive problems in condensed
;s. The quantum Hall effect (QHE) is the representative example of it [1, 2]. The QHE is
ure the

matter physics
observed under the strong magnetic field perpendicular to the plane of electrons. When we me
Hall resistivity p., with varying the external magnetic field, there appear plateaus around points of rational
Landau level fillings v, * and the value of p., is equal to (1/v)(h/e?), where h is the Planck constant and
¢ electric charge. On the other hand, the longitudinal resistivity p.. goes to zero around
'herefore, the Hall conductance o, is quantized in units of e?/h and the coefficient of it is

e is the elementa

these plateaus.
the Landau level filling fraction v, that is X
o
Tay = =¥ (EEL)
Astonishingly the Hall conductance is independent of the detail of samples and has a universal value.

At first the quantum Hall effect was discovered at integer Landau level fillings[3]. It is called the integral
quantum Hall effect (IQHE). An improvement of samples in GaAs heterojunctions reveals this effect at
fractional Landau level fillings [4]. It is called the fractional quantum Hall effect (FQHE). The IQHE occurs
with the filled Landau levels and FQHE occurs with the partially filled Landau level.? The theory of IQHE
usually neglects the effect of interactions on the assumption that electrons in filled Landau levels are inert
and we focus on the impurity effect. On the other hand, the interaction is considered to be essential in FQHE.
Up to now, we do not. have the unified theory of IQHE and FQHE. However, in real experimental situation,
the energy scale of the Coulomb interaction and the cyclotron energy are almost the same. Therefore, we can
not neglect the Coulomb interaction. In the following, we do not discuss IQHE any more and concentrate
on FQHE

1.1.1 FQHE at v = 1/m (m = odd)

The FQHE is observed mostly at Landau level fillings with odd integer denominator. Especially the states
1/m, where m is an odd integer, are the fundamental states of FQHE. The understanding of the
5). He obtained the ground state wave function by

at v

FQHE at these filling fractions was achieved by Laughlin

ncompressible and quasiparticles have fractional

a variational method and showed that the ground state is
charges. The ground state of FQHE is given by

i<j

x; +iy; is the coordinate of the j-th electron confined in the xy-plane and £5 = \/ch/eB is the

magnetic length. Here the applied external magnetic field is assumed to be —Bé. with ¢ being the unit

where =;

! On counting the Landau level filling factor, it is assumed that spins of clectrons are fully polarized.
2When we discuss the filling of Landau level, we implicitly assume the existence of Landau levels of interacting electrons.
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Figure 1.1: The interchange of two composite particles (left figure) corresponds to that one composite particle
moves around another composite particle (right figure).

vector of the z axi
liquid, which is the most important nature of quantum Hall liquids. citations above the ground state
described by Eq.(1.2) are not usual ones. Quasiparticles have fractional charges and obey the fractional
atistics. These fractional charges are recently observed by the shot noise experiment in a quantum point
contact [6, 7].

Next we discuss the effective theory of the FQHE. The key of it was found by Girvin and MacDonald
(8]. They showed that Laughlin wave function (1.2) has the off-diagonal long range order (ODLRO), which
characterizes phenomena such as superfluidity and superconductivity. Bose fields which have this ODLRO
are composite bosons [8, 9, 10]. The basic idea of composite particles is the following. The fact that the
spatial dimension of the system is two make it possible to change the statistics of electrons by mapping them
attached to fictitious fluxes. We call them composite particles. The direction of fluxes are
they

The ground state described by this Laughlin wave function (1.2) is an incompressible

into particles
perpendicular to the plane. When we interchange the position of two neighboring composite particle
obtain the Aharonov-Bohm phase caused by these fictitious fluxes. Let us consider the composite particle
attached to méq flux ch/e is the flux quantum. The Aharonov-Bohm phase at
interchanging the position of two composite particles are given by

'/dra:vxm. (1.3)
fie Jc

The path C is shown in fig.1.1, and a is the Chern-Simons gauge field, which is the gauge field for fictitious
haronov-Bohm phase and the statistics of

s with charge e, where 6

flux. The phases caused by interchanging two particles are this /
composite particles. As the original problem is the electronic problem, that is, fermionic problem, the total
phase must be odd times 7. Therefore, the problem is mapped into composite bosons (fermions) if choose
m as odd (even) integer

For fractional quantum Hall
into composite bosons with m fictitious fluxes. In that case, we have m fictitious flux
per particle. When we choose the direction of fictitious fluxes as the inverse direction of the external
cancel the external magnetic field at mean field

ystems at v = 1/m, where m is an odd integer, we map electron systems

and m external

fluxes
magnetic field, the Chern-Simons gauge field completely
level. Therefore, we have the two-dimensional boson system in the absence of the external magnetic field
The ground state of this bose system is expected to be the superconducting state. In Fig.1.2, we show that
how we can understand the quantum Hall effect by the superconductivity of composite bosons[10]. Because
of the fictitious fluxes of composite bosons, the supercurrent of them induces the transverse voltage drop
The FQHE is understood as the result of the combination of the supercurrent and the voltage drop. The
boson supercurrent is given by I = —¢ x dN/dt. The flux current is given by Inu = (1/1) x o x dN/dt
Therefore, the voltage drop is given by

a result we obtain,
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Figure 1.2: The quantum Hall effect caused by the superconducting current of composite bosons.
1.1.2 FQHE at v = m/(mp+ 1) (p = even,m = integer)
The FQHE is also observed at other odd denominator filling fractions:
_ m (1.6)
Tmp+1 &

where m is an integer and p is an even integer. These states are understood by Jain's composite fermion (CF)

scheme [11]. In his theory, we map a system of electrons into one of composite particles with even number of

fictitious flux

s. Even number of fluxes do not change the statistics of particles because the Aharonov-Bohm
phase caused by
that is

them is 7 (even integer), Therefore, the statistics of them corresponds to that of electrons,
fermion. When we map the system of electrons into one of CFs by attaching p fluxes, the effective
magnetic field for CFs is given by Beg = B — péof, where 7 is the average of particle numbers. The effective
Landau level filling fraction of CFs is given by

2
VoF = ——— =m
= Berlbo | 47
Therefore, the FQHE at v = m/(mp+ 1) corresponds to the IQHE of CFs with m filled Landau levels. The
effective theory of these states was constructed by Blok and Wen [

2]. To get it, they performed two singular
sther is from CFs of m filled Landau levels to

gauge transformations. One is from electrons to C

composite bosons of m species. Here one flux are attached to each boson. As a result, the system of electron

is cast into the one of bosons. The attached fluxes cancel the effective external magnetic field of CFs. These
bose fields are expected to be the superconducting states at mean field. Therefore, also at v = m/(mp+ 1)
the FQHE

Basically, the quantum Hall effect at odd denominator fillings is understood by the superconductivity of
composite bosons.

is understood by the superconductivity of composite bosons

1.2 QHE in Bilayer Systems

The QHE

have many parameters to control it. In

also observed in bilayer systems [13]. The advantage to investigate such a system is that we

g.1.3, we show the setup of bilay

or systems. We have parameters

to control the system: interlayer separation d, interlayer tunneling ¢ and Landau level indices for each layer

Furthermore, we can apply a different electric field for each layer. In the following, we focus on the case of

vy = vs.
The ground state wave function is well understood in bilayer systems. In the absence of an interla
tunneling and an appropriate interlayer separation, the ground state of the

er

system is well described by the
Halperin (m,m, n) wave functions [14]

Wonmin (2

1
2N)
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Figure 1.3: The setup for the bilayer system. Contrary to single layer systems, we have additional parameters
to control the system: the interlayer separation d, the interlayer tunneling ¢ and the Landau level filling for

each layer

where 1(]) is the index for upper (lower) layer. The total Landau level filling is related to m and n by
v = 2/(m+n). Bquation (1.8) is an extension of the Laughlin wave function (1.2). Yoshioka e al.
tem and the Halperin (m, m, n)

calculated the overlap between the ground state wave function of a finite s;
wave function (1.8) with changing the interlayer separation d in the absence of the interlayer tunneling
For v = 1/2, the ground state of a finite system is well described by the Halperin (3,3, 1) wave function
around the region 1 < d/€g < 2. For v = 1, the Halperin (1,1, 1) wave function has good overlap with the
ground state of a finite system around 0 < d/fp < 1

Contrary to single layer systems, the FQHE is observed at » = 1/2 [13]. However, it is understood by
extending the Laughlin wave function. In fact, as far as we concern the quantization of the Hall conductance,

we can deal with all of the bilayer systems by composite boson theory [16, 17, 18]

1.3 Mystery of v = 5/2 State and Pairing Picture of FQHE

As we have seen in Sec.1.1, FQH states with odd denominator Landau level filling fraction are well under-
stood. However, Willett f al. discovered the FQHE at v = 5/2 in 1987 [19]. Contrary to the well-understood
FQH states with odd denominator filling fraction, this state has even denominator filling. The theory of the
FQHE in single layer systems, such as Laughlin wave function, the composite boson Chern-Simons gauge
field theory and Jain’s CF theory failed to understand the FQHE at v = 5/2. From the view point of the
Chern-Simons gauge theory, we cannot cancel the external magnetic field by a flax attachment as far as

we adopt composite bosons. To cancel the external magnetic field at even denominator fillings, we need
ces, that is, CFs.

composite particles with even number flu

In addition to the fact that the denominator is an even integer, we must take into account the effect of the
filled Landau levels to understand the v = 5/2 s tate has one filled Landau level of spin
{ and that of spin | because of the small g-factor in GaAs samples.
which is partially filled. On the other hand, the ¥ = 1/2 state has no filled Landau level and the v = 3/2
state has one filled Landau level. However, the FQHE at » = 1/2 and v = 3/2 have not been observed
must be able to explain the reason why we do not observe the FQHF

tate. The v = 5/2

rerefore, it is the second Landau level

Therefore, the theory of ¥ =

v=1/2 and v =3/2 but do at v =

To understand the v = 5/2 state, we need to seek an alternative picture of the quantum Hall effect

. The effect of the second Landau level was taken into

2 problem [2

Haldane and Rezayi attacked the v =
account as the change of the pseudo potential [21]. The pseudo potential of the second Landau level for pairs
with zero relative angular momentum is reduced from that of the first Landau level. For that reason, they
proposed the hollow core model for the v /2 state and concluded that the ground state of the system is
the spin-singlet d-wave pairing of CFs by a numerical analysis.’

¥Though there are some works on the theory of the v = 5/2 state, such as non-Abelian Chern-Simons gauge theory [
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1.3. MYSTERY OF v =5/2 ¢

From the theoretical view point, the existence of the QHE caused by the pairing of CFs is seemed to be
the natural consequence. The relation between the QHE caused by composite bosons and the QHE by the
pairing of CFs is analogous to the one between the superfluidity of *He system and that of *He system [

The pairing picture of the quantum Hall effect was also developed [25] in bilayer quantum Hall systems at
v=1/2. In this ~(em as numerical works support [15, 26] the ground state of the system is well described
by the Halperin (3,3, 1) state [14] in the absence of an interlayer tunneling

e, (1.9)

1
z}) exp | ——-

40y

1 2
=2l (1.10)
B )

where zj =

N
Pi(My) = 3 (-1)P [] Mpo_y e LE
i

PEoay

) state and the Pfaffian state belong to the family of triplet p-wave pairing
. His second quantized wave function is given by

Ho showed that both the (3,
based on an ana

ysis of wave functions [25]

states of CF

[0), (1.12)

where y is the matrix for pseudo spins (layer indices) and [0) is the vacuum state. For the (3,3,1) state,

. : 5 V2 1/V2
e enibus|l o J B8 [P fran dCate e eiveniby l;‘/ RNt P e A

10 1/V2

limited to the ground state wave function and the origin of the pairing interaction was not discussed
With regard to the pairing interaction, Greiter, Wen, and Wilezek (GWW) derived such interaction for
spinless fermions, which leads to the p-wave pairing [28, 29]. However, GWW used an approximation that
the number of CF’s fluxes is small and they retained first order term for the Chern-Simons gauge filed and
neglected the quadratic term and the Coulomb interaction term. Therefore, how neglected terms affect the
pairing state was unclear and the condition of quantum Hall effect was not discussed. Bonesteel ef al. [30, 31]
field fluctuation. Though they

studied an interaction between CFs mediated by the Chern-Simons gaug
retained the quadratic term of the Chern-Simons gauge field, they used a random phase approximation to
obtain the effective interaction and the resulting one had a very complicated form. Therefore, they dis

only that there seemed to be some instability toward pairing of CFs. Up to now, there has been no suff
theoretical foundation to treat the pairing of CFs and the application of this picture to quantum Hall systems

has been limited

In this thesi
non-unitary transformation and derive the Hamiltonian
o

. we present the pairing theory of CI's. To begin with, we introduce extended CFs by a
We analyze this Hamiltonian by the pairing ap-
tems. Finally, we summarize

tems and bilay

or

proximation and discuss the pairing state in single-lay
the results

a seenario of condensation of Skyrmions [23], there are no conclusive work on the v = 5/2 problem




Chapter 2

Extended Composite Fermions

In this chapter, we introduce extended CF operators by a non-unitary transformation. To discuss general
systems, we consider n species of electrons. We set n = 1 for spin-polarized single-layer systems and set n = 2

stems or spin-unpolarized single-layer systems. The Hamiltonian for extended

for spin-polarized bilayer
CFs is derived in this chapter. We also present a classical picture of the attractive interaction between CFs

2.1 Rajaraman-Sondhi Transformation

The mapping from an electron system into an extended composite particle one in the second quantized form

is given by

#a () = e~eFy, (r),
(2.1)
Ta (r) = ¥f (r) e?=(®),
where i
Jo(r) = Z/\‘,4,4‘/11"1"/1411"]1mf:_ o= e mu". (2.2)
with z+iy, bg = \/ch[eB being the magnetic length and K being a n x n symmetric matr

Here we assume V x A = —B(B > 0) for an external magnetic field.! Operators ¢, (r) and 7, (r)

the following relations:

ba (¥) 75 (¢') + (=1)F22 75 (1) Ba (r) = 60p6™® (xr - 1),
ba (¥) 05 (x') + (—1)Ke265 (+') 64 (r) = 0, (2:3)
o (¥) 75 (v) + (—1)Ke2 75 (') 70 () = 0

From Egs.(2.3), we see that if we set the components of the matrix K as even integers, we have fermions
On the other hand, if we set them as odd integers, we have bosons.? To show these relations, we set

(24)
Differentiating I (A) with respect to the variable A, we obtain
A - .
S F(A) = —Koaglog(z — =) F(N), (25)
dx
where we have used
Jo (v), 98 ()| = Kapth (') log(z — ') (2.6)

Ul we have ¥ x A = +B, we must replace = with =
2In bilayer systems, it is possible that particles have
layer, and vice versa. This situation is possible, for instance at v = 2/3. However, we do not consider such cases

r—iy.

rmi statistics in the same layer and boson statistics in the opposite




2.2. HAMILTONIAN -

Taking into account the initial condition F(0) = ¥} (r'), we solve the differential equation (2.5). The solution

is given by
F(A) = ¥} (v') (s — ') K2 (2.7)

Therefore, we obtain,
) 1 ’ n=AKas
=9} () (===

=

(') eMa

Vs
Taking similar steps, we obtain

~AJa(T) 1) et
e Mall)y s (1) eMe

Using Eqs.(2.8), (2.9) and
Vo (), J5 (x")] =0, (2.10)

which is shown by using the relation [pq (r) , ps (+')] = 0, we obtain

e=9a®)y, (r) gl () 2(F)

ba(r) 75 () = 5

= Bapb(r—1') — eyl (') g, (r) e’s ()

= Sab(r—1') = (=1)K=2 15 (+') 94 (v) (2.11)

This proves the first equation of Egs.(2.3). Other two equations are proved by taking the similar steps
The case of n = 1 and Ky, being odd integer is analyzed by Rajaraman and Sondhi [32]. They obtained
When we use the usual Chern-Simons singular gauge

the Laughlin wave function within a mean field level
transformations, we must take into account a Gaussian fluctuation to obtain the Laughlin wave function[10]
The case of n = 2 and all components of K5 being even integers was considered by Rajaraman [33]. He
analyzed bilayer systems following the theory of Lopez and Fradkin [34], where the QHE is understood as
the IQHE of CFs.

In these works, the interaction term between CFs was not discussed. We derive it in the next section

2.2 Hamiltonian

Now we derive the Hamiltonian for the extended CFs. In this section, we focus on the kinetic energy term
y term for n species of electrons is

and neglect the Coulomb interaction. The second quantized kinetic ene:

— B AV A POl
=Y /flu,(x)( iV + A) Yo (1)
where m; is a band mass for electrons. Performing the extended CF transformations: Eqs.(2.1), we obtain
— 1 e

HO = i

S

Now we introduce the Chern-Simons gauge field by

a, () = iZ/\‘,,.-/,F. ps (+') Vimlog (= — =') (2.14)

given by

7o (1) (—ihV + SA =il (1)) da (1) (2.13)

Taking the rotation of aq (), we obtain

V X aq (1) = ¢o Y Kappp (v) (2.15)
This is the relation between the fictitious fluxes and the particle density. Using the field a,, we obtain

:

— MV (1) = 5 {(A+a,) +ié. x (A +aa)} (2.16)




2.2. HAMILTONIAN ‘

In deriving this equation, we have used Cauchy-Riemann relations. Furthermore, A +a, is transformed into

the following form

K ants =t Z K 1,,4/d"‘)"ﬁpg(l"]VlIx)log(: —2')
= (2.17)
Using the field 6a,, the Hamiltonian is given by
H® = HY&: + VH 4 VN, (2.18)
where
Hep = (2.19)
e = 250 g 5 b " 99
v = ZT/,,(- /d r7q (v) {—ihV, 62, } da (r) (2.20)
vNE = AN //'-'-w ) {=ihV, ié, x bag :
;2”,“_‘ drmy (v) {—ihV, ié. X 684} 6a (¥) (2.21)
Here, {A,B} = A-B + B . A. Note that when we introduce the current operator for CFs
h
I8 ) = g [ (6) Véa (v) = (Ve (1) 60 (0)], (2.22)
Egs.(2.20) and (2.21) become
(2.23)

vA=%"2 /d”r ba
cJ

Performing Fourier transformations:

1 -
baq (r) = —WZD"“M(,«,‘ (227)
R4

where Q is the area of the system, Eqs.(2.19), (2.20) and (2.21) become

h
0 g 4 9
Hp = Y o (2:28)

1
yH i - H - - o ¢
G T DL b w1 q"ka+q,07k, 5%k +q 0%k a0 (2:29)
B k, ka,q#0
; 1 e
NH et Ol n i
v = EZ Y. KW 4 ks hsfhisq%kaa 2.30)
b K,k q#0

where

H -,
)
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2

Vi b
ki k.q =

my

Finally, the Hamiltonian for extended CFs is given by

52 3

of k,; k2,q#0

Yk, ka.q "kt q .07k, 89K, 4q,5 %k, o

where

4 e H sNH 9 9
L4790 SO < s i (2:34)

Note that we do not apply any approximations to obtain this Hamiltonian. However, there is the non-
Hermitian term VN because we perform the non-unitrary transformation
In the next section, we explain the reason why we introduce the extended CFs.

2.3 Meaning of Extended Composite Fermions

To discuss the meaning of extended composite fermions, one important question must be considered: What
is the most fundamental motion in quantum Hall sy

It is a well-known fact that if we have a charged particle in the magnetic field B and electric field E
where B is perpendicular to E, it goes along the direction of E xB. Then, how about two charged electrons
interacting by the Coulomb interaction in the magnetic field? Let us consider a system of two electrons
ce field —Bé,. If we take into account the Coulomb

tems?

confined in the zy-plane and subjected to the magne
interaction between electrons, each electron feels electric field E caused by another electron. Therefore, each
electron moves around another electron (see Iig.2.1). This motion is the most fundamental one in quantum
Hall systems. In fact, the Laughlin wave function (1.2) is constructed of this correlation only. The Laughlin
wave function is of Jastrow type wave function and is only constructed of the two-body correlation of relative
angular momentum m, where m is related to the Landau level filling fraction by v = 1/m. Furthermore, in
this scheme the importance of the Coulomb interaction in quantum Hall effect is naturally understooc

The difficulty of the quantum Hall effect is caused by this correlation effect. Every pair of electrons has
strong correlation. The Chern-Simons gauge theory is a method to take into account such a correlation effect

e phases caused by above correlation effect are taken into account by replacing it with Aharonov-Bolim
phase caused by fictitious fluxes. After the Chern-Simons singular gauge transformation, the resulting

composite particles do not experience such a two-body correlation effect any more. However, the usual
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Chern-Simons gauge theory only takes into account the phase factor of the two-body correlation. Therefore
the Hamiltonian has unexpected terms caused by remaining factors. In fact, to discuss interactions between
CFs we are forced to adopt some approximations

If we perform a transformation which takes into account the two-body correlation effect perfect];
expect that we will have a simple form of the Hamiltonian. The transformation given by Eq.(2.1) is
a transformation. In the following, we explain that point. To simplify the discussion, we consider spinless
CF
)y is described by

Suppose a state for N particles and denote it as |[¥)y. If we use the field operators of electrons, the

Ll
TN

d

[¥)~ r1d7r - dPen W (ry, va, - - en )8 (00) 0 (r2) - 9T (e)[0)

,ry) is the first quantized wave function for electrons. On the other hand, if we use the
the [W)y is described by

where Wg(ry,rs
field operators of extended CF

w/)_\»:\L /d‘ﬁ-,d’v‘ru ey Ucp(ry,ra, - - ey )w(ry)a(re) - w(en)[0), (2.36)

where Wep(ry,rs, -, ry) is the first quantized wave function for extended CFs. Let us find the relation

between W (ry,ra, -, ry) and Wep(ry -,rn) [32, 33]. Using Eq.(2.8), we obtain
n(e)m(rs) - ow(en)|0) = l(ry)e’ VYl G )
- H(:.*:,)&',‘(!‘1)5“(1‘:) Yl(ey)e! @1)e(X2) . o0 )
i<j
= [l-2 %! (xn)[0)
i<i

J(r1)pd(X3)

" [0). Substituting Eq.(2.2

where we have set K} = ¢ and used e

into Eq.(2.36), we obtain

Wep(ry,ra, -+, rN)

From Eq.(2.35) and Eq.(2.38), we obtain

Va(ry,ra,-- on) = [[ (2 = :,)’{T'ﬁz’ Bep(ry, ¥ o, ox) (2.39)
&5

Therefore, the non-unitary transformation (2.1) perfectly takes into account the two-body correlation effect
We can derive the Eq(2.39) in general cases [33]. In that case, we obtain

Vo ({=7, =

) = TITICE - ) ex -

ap i<j

2.4 Pairing Interaction

After taking into account the most fundamental two-body correlation effect, what is the remaining effect

between composite particles? The answer is that the fluctuation causes significant effects. In fact, as we sec

in the following composite particles feel an attractive interaction between them. Here we present a heuristic
explanation of the pairing interaction. To simplify the discussion, we focus on the case of one component

CFs. As we have seen in Sec.2.2, Eq. (2.23) has the form of the minimal coupling between charged particles
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and the gauge field. Therefore, V¥ causes an interaction like the Lorentz force. The equation of motion

derived from Eq.(2.23) is given by

= —evx(V x éa)

= —epodv X é;6p. 41)
Equation (2.41) shows that a CF passing by another CF in the counterclockwise direction from the view
point at positive z-axis feels the attractive force toward it because ép > 0 around the composite particles
On the other hand, if a CF passes by another CF in the clockwise direction, the repulsive interaction is
caused between them. For that reason, a pairing state with positive angular momentum is expected to
exist. Note that the angular momentum of this pairing state and that of the cyclotron motion is in the
is naturally understood as in the following. Around a CF, the cancellation between
ger than the former.

opposite direction. This
the external magnetic field and the fictitious fluxes is not complete and the latter is larg
Therefore, a CF which comes around another CF feels the magnetic field in the direction of the Chern-S
gauge field. However, V x a and V x A are in the opposite direction. Hence the cyclotron motion caused by
the applied external magnetic field and the cyclotron motion caused by the Chern-Simons gauge field are in

imor

the opposite direction
Note also that the attractive interaction is relevant only in the case of CFs. Because of the Fermi

statistics, we always have particles with nonzero velocity. However, in composite boson cases, this attractive

interaction is no more relevant when the bose condensation occurs

Let us examine the effect of V¥ by calculating the force caused by VNH. Of course it is not a real force
but an imaginary force. It is obtained by replacing éa with i¢, x 6a in Eq.(2.41). The resulting imaginary
force is given by

= —ie(v x &)(V - 6a)

aty =

2.17). Within a classical

We find that F,
analysis given here,

aginary is equal to zero because we obtain V - da = 0 from Eq
VNH

seems to have no effect to the system.




Chapter 3

Pairing States in Single-layer
Quantum Hall Systems

In this chapter, we discuss the possibility of the quantum Hall effect at » = 1/m, where m is an even integer
in single-layer system. Though the quantum Hall effect is not observed in this system(35], the possibility of
the quantum Hall effect in it is still a controversial problem[36]. Furthermore, this problem is closely related
to the v = 5/2 state since the difference between them is the e:

We analyze the Hamiltonian obtained in the last chapter by the pairing approximation and derive gap
equations for the pairing state. First, we consider the effect of the pairing potential V¥ . In that case, we
\'\'H

istence of filled Landau levels

find that the ground state is a p-wave pairing state of CFs. Next we take into account and discuss
that it is irrelevant for pairing states. The effect of the Coulomb interaction is considered and we derive
the condition of the pairing state. With regard to the real spin degrees of freedom, we show that the spin

polarized state has lower energy than the spin unpolarized pairing state

3.1 Hamiltonian

For spinless fermions, we set n = 1 in Eq.(2.33) and choose an even integer for Ay, = ¢ rm of the
Coulomb interaction between electrons are not changed by the mapping from an electron system to a CF
system. The interaction between CFs derived from the Coulomb interaction is given by
2! (3.1)
€l

where ¢ is a dielectric constant and dp(x) = ¢! (r)¥ (r)—p=7(r)d(x)— p.
To discuss the pairing state, we concentrate on the interaction for the pair with zero total momentum
Then we set q +k; + k2 = 0 in Eq.(2

3). The Hamiltonian is given by

H=Y &= Tk, Pk, 9 (32)
kizk,
where & = k?/2my and
v it i L NI 3
Vieks = ¢ Vi, ks ke ik, H9 1 &9
is the two-body interaction for zero total momentum pairs. Here,
l"l = (3.4)

with a = (¢/ely) fep and kpsly = /2]
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3.2 Pairing Approximation

To discuss the pairing states, we apply the pairing approximation to the Hamiltonian (3.2)

(35
1
Ap=— > Vi (0_1 1) (3.6)
)
= 1 . ;
Bp=-= Z Viek (T _1or i) (3.7)
F k)
Using these fields, Eq.(3.5) becomes
H o= S amed -5 3 (mem_k Ak + Byd_dy) + const
k “k
= Z/n"z‘kok + const (3.8)
k
where 73" denotes 3, ., and
o bk | (3.9)
oK = { k } (3.10)
Tk
[ dk} .
I (3.11)
A &

The next step is the diagonalization of the matrix £K. The eigenvalues of the matrix £K are given by £

By = /€2 + A Ay (3.12

This is the excitation energy for quasiparticles. The eigenvector for the eigenvalue E} is given by

where

1 -G - By :
{ = } (3.13)

u=
V2ER (Ey + &)

and the eigenvector for the cigenvalue — Ey is given by

(3.14)

The matrix £ is diagonalized by matrices UK and T7
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where

we obtain

The fields pj and g satisfy the qum\ul‘,‘, anti-commutation relations

{ {u P} =0
Gt = u
(P pie ) =

As an example we show the first equation of Eqs.(3.23)

mk'/,k)

In the same way, we obtain

(3.17)

(3-18)

(3.19)

(3.20)

(3.21)

(3.24)
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Substituting these equations into Eqs.(3.6) and (3.7), the gap equations are given by

tanh (_.)

(3:29)

(3.30)

Though we have derived the gap equations neglecting the strong coupling effect, we take into account it by
replacing the electron band mass mj with the CF’s effective mass M. The determination of it is very tough
7] superconductivity because we

problem. Apparently we cannot apply the strong coupling theory of BCS|
do not have any cutoff energy such as the Debye energy. We have no guarantee of applying the Migdal’s
theorem(38] and must take into account all order of diagrams to calculate M. Therefore, we take it as the
parameter of our theory. However, it is easy to estimate the effective mass M in an extremal situation, such
as the strong magnetic field limit or the weak magnetic field limit. As we will show later, we estimate it in
such cases.

Now we discuss the pairing state of the ground state. To solve the gap equations (3.29) and (3.30), we
set

A= Are~ ¥k,

< _ & .ite
Ay = BKee'k,
for the f-wave pairing state. Obviously this choice is not general one. However, as shown in Sec.2.4, the
chirality of the pairing state is fixed by the direction of the Chern-Simons gauge flux. In fact, we show
in the following, the attractive interaction is caused only in the case of £ > 0. Therefore, it is enough to

consider the pairing state by the form of Egs.(3.31) and (3.32). Substituting them into Eq.(3.29) and (3.30)

respectively, we obtain

e KAp . "
By i/ AR EBE [0 4 1) < IE (1K) (333)
0 =3

where X = (k? 4

20K =

35) and (3.36) in the cases of (i)¢ > 0, (ii)f = 0 and (iii)¢ < 0
z and we obtain

In the following, we estimate
(i)For £ > 0, we set e~
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where C denotes
in Eq.(3.38) is

we obtain

the path along the unit circle in the counterclockwise direction. The pole of the integrand
=X —VAT=1 = k¢ /ks where k¢ (k) is larger (smaller) value of k and k. T!

(3.39)
On the other hand, we obtain
¥Ry =
- H
(K'/k)" for k> K,
= (3.40)
—(k/E)E for k<
(ii)For £ = 0, Eq.(3.40) is also applicable in this case. With regard to I#()), we obtain
H 1 q
) = -=0 (3.41)
(iii)For £ < 0, we obtain
" sinf aae)”
2y = =t o
¢ —cosl
- (342)
NH s NH T NH o g
oy = (o) =P o (343)

Table 3.1 summarizes above results. The attractive interaction occurs for the case of £ > 0. This is consistent

with the discussion in S Before analyzing the gap equations and the pairing states, we calculate the

ground state energy for pairing states

3.3 Ground State Energy

Within the pairing approximation, the ground state energy of the system is given by

£ 1 5 y
(H) =" &u(m o) + = > % (3.44)
k k.zk.
Table 3.1: The summary of function If()) and I}N¥ (1))
>0 P=il £<0
1) (ke/ks) 0 — (ke /fks)"
1993 (k! /k)" for k> k' 1 for k> Kk (k' k)1 for k> k'
¢ — (kKN for k< Kt =1 for ko k! — (k /1) for: ki< R

s T e i b by 0 neN
lhenated { 0 L e S L [ e e T A e
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For the ground state, we obtain

(T oK)

Substituting these equations and Eq.(
(H) =~

o E-keks o0 (3.46)

For no-pairing states, Eq.(3.46) is calculated exactly and we obtain (H)x,_, = —MQek /dr

3.4 Pure Pairing State

To clarify the nature of the pairing state, we neglect the interaction V¥ and the Coulomb interaction for

a while. As we will see later, VN term and the Coulomb interaction term causes the pair-breaking effect

In next sections we take into account them and discuss the effect of the pair-breaking in detail
3.4.1 Gap Equation

In the absence of V¥ term and the Coulomb interaction term, the gap equation is given by

k ’ i\ £ 00 ’ t
KA [k 6 KA [k
//, ey (T) i y\/[ L (T)

In the absence of V¥ term, A} is the complex conjugate of Ay. Therefore, it is enough to concentrate
s of Eq.(3.47). The gap equation (3.47) was discussed by Greiter ef al[29] in detail. The

on the analy:
asymptotic form of the function Ay is found from Eq.(3.47)

A — Kk for k—+40, (3.48)
Ap — k™% for k— 4 (3.49)
Taking into account these asymptotic form, we approximate the gap function by

rA (k/kp)t  for k< kp,

= (3.50)
erA(kp/k)E  for k> kp
To determine the remaining parameter A, we consider the gap equation at k = kg. It is given by
,'.’H 1 x p1=2¢
= — + / G ) (351)
TEmrETE T L), e TG s

In Fig.3.1, we show the gap A dependence of Fy(A) in Eq.(3.51) for various £. The largest value of A is
obtained in the case of £ = 1. Although it is not shown in the figure, the gap for £ > 7 is lower than that of
Pable 3.2 summarizes the values of A for various ¢ and £. With any ¢, the largest gap A is obtained

when €= 1. Furthermore, the gap A grows up with increasing ¢
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Figure 3.1: The gap A dependence of Fy(A) in Eq.(3.51) for various £. The gap A is determined by the
point where curves cross the line given by 1/¢. The figure shows the case of ¢ = 2. The largest gap is given

when £ = 1, that is, the p-wave pairing case.

Let us consider the ground state energy (3.46). Substituting Eq.(3.50) into Eq.(3.46), we obtain

2201 (22 = 1)2 4+ BAY — 2% + 1

MR ,— L
(H) = —S—GBA /'/.(
5 Jo Jer -1 e Baa (flar -1+ BAs 2t - 1
R T 2
J 20+ (2> =12+ BAz~2 —2? 1+ 1
o f g
: —1)24+AAz-2% (22 —1)2+ AAz~2 422 — |

ST S (\/u‘—’. 1)? + BAz —
2+ AAz2t

\/u‘—' — 1) + AAz2+ (

To discuss that whether the ground state is a pairing state or not, we consider the energy difference be
pairing state and the no-pairing state, that is, 6 E = (H)x, — (H)za—o For the no-pairing state, the ground

Table 3.2: The gap A for various 6 and £

P 3 A
2 1 3.128
2 3 791
2 5 i
2 i 330
1 1 9.903
1 3 2.029
1 5 L171
1 il 828
6 1 19.147

3 3.384
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Figure 3.2: The energy difference 6E between a pairing state and the no-pairing state. The value of § E
always has negative values. Therefore the ground state is the pairing state as long as AA # 0

3.2, we show the gap A dependence of 6E
s has negative values and is the monoton

state energy is equal to —M Q¢ /47 as mentioned above. In Fig

ly decreasing function

for various £. It is seen that £ alw;

with respect to A for any £. Therefore, any pairing state always has lower energy than the no-pairing
and the larger value of A gives the lower value of 6. Furthermore, the value of £ which gives the low
is £ = 1. From the discussion of

zap equations, we have found that the pairing state with the largest value
of gap A is £ = 1. Putting it all together, the ground state is the p-wave pairing state of CFs
3.4.2 Wave Function

Next we discuss the ground state wave function of the pairing state. Setting the ground state as the ket
|GS), it satisfies the following equations:

4|GS) =0, 7_1GS) =0 (3.33)

Substituting the expression of g and q_y by fields ¢ and =, which are given by Eqs.(3.20) and (3.21),

(3.54)

We can rvplarc S with the Grassmannian differentiation 0/dmy because ¢ and m satisfy anti-commutation

relations [3 Therefore, Eq.(3.54) is transformed into

= |GS) = A—k7>k\(.'.ﬁ') (3.56)
a Ey +&
The solution of Eq.(3.56) is given by
|GS) = const. x exp (i—k .'r’k) 0) (357)
Ey +&

where [0) is the vacuum state. Equation (3.57) also satisfies Eq.(3 Equation (3.54) and (3.55) hold for

any k. Therefore, the ground state of the system is given by

|GS) = exp Z/

The first quantized wave function of |G:S) for 2N CFs is given by
Yep(z1, = y2an) = (0|@ors(z2n)Pore(z

Pf @orn(z:

= A doralzt

Rk 0). (3.58)




A

2 ht

L2 (3.60)

Equation (3.59) is nothing but the real space wave function of the pairing state for 2V particles [40]
31) into Eq.(3.60), we obtain

o [P, kA
Bors(r) = — *'"r/ dk Jy(kr) (3.61)

+ &

Substituting Eq.(3

where we have used the formula: [ dfe® 5% cos @ = iz Jy(z) with Jy(z) being the Bessel function of the

first order. For the pure pairing state, we obtain

Iy (kr)

ke
Bors() = f.ﬂ"r[ dk
p

(3.62)

Equation (3.62) has a complicated form but when the condition A = 2 is satisfied and we take the limit
rkp o 1/lg — o0, we obtain the simple form of it

Gors(r) o < 5 (3.63)
In that case, the ground state wave function for CFs is given by
Ver(s ):Pf(i (3.64)
From Eq.(2.39), the ground state wave function for electrons is given by
o (3.65)
3.5 Effect of Imaginary Vector Potential
Let us take into account the anti-Hermitian term VN in the absence of the Coulomb interaction. Before

discussing the effect of it, we remark on the relevance between V¥ and the three-body interaction term in
the usual Chern-Simons gauge theory. When we perform the usual Chern-Simons gauge transformation, the

Hamiltonian is given by

my

2 1 ; ;
H= //1‘ra‘1r]( v)on-)w“-\-\ (3.66)

where VI is given by Eqs.(2.30) and (2.31) and V3 is the three-body potential term, which is given by

(3.67)

""") /,/'—'.w’m/‘—'x-,;v,in.m(_i — 20)ViImlog(zy — z3) ! (11)8p(r2)8p(ra)d

27

On the other hand, if we perform the Rajaraman-Sondhi’s non-unitary transformation discussed in chap.2,
the Hamiltonian is given by

1 ( 2 NI

==V (eSSt (3.68)

2my,
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where VN is given in Eqs.(2.30) and (2.32). Comparing Eq.(3.66) with Eq.(3.68), we see that the anti-
Hermitian term VY# corresponds to the three-body interaction term V3 in the Chern-Simons gauge theory

The three-body interaction term V2 was neglected in the analysis of Greiter ef al. [29] because it is
was assumed to be small

proportional to the square of the number of the Chern-Simons gauge fluxes, wh
in Ref.[29]. Of course the number of fluxes is larger than one. Therefore, we do not have any guarantee to
neglect it. For that reason, we must take into account the three-body interaction term V3, which is poorly

understood in condensed matter physics
However, as we have shown, the three-body interaction term V3 corresponds to the anti-Hermitian term

VNH . We can discuss the effect of the former through the latter. The advantages of using V¥ instead of

V3 is the following. First, the anti-Hermitian term VN# corresponds to an imaginary vector potential !

—ié, x ba, (3.69)

vector potential was discussed in the depinning

41]. Therefore, we can discuss

as we have seen in Sec.2.2. The effect of the imagina

phenomena of the vortex lines in the superconductivity with columnar defects
the effect of it qualitatively by comparing with the depinning phenomena of the vortex lines. Second, the
anti-Hermitian term VN s of the two-body potential form. We can take account of it into the gap equations i
without any approximations. On the other hand, in the Chern-Simons theory we do some approximations
to include the effect of V3 [42]

Applying the discussion about the nature of the imaginary vector potential in the localization-delocalization
phenomena [41] to the CF pairing theory, we understand that it causes a pair-breaking effect. Hatano and
Nelson discussed the Hamiltonian:
(3.70)

B
2m

where ih is an imaginary vector potential and V' (r) is a random potential. When we discuss the depinning
of the vortex lines in the superconductivity with columnar defects, the imaginary vector potential ih is
proportional to the transverse magnetic field H,. In the absence of the imaginary vector potential, it is
believed that all eigenstates are localized in two-dimensional noninteracting systems On the other hand,
inalarge H region we expect that flux lines are depinned from defects. They concluded that particles are
localized in the region [h| < hx, where # is the inverse localization length. On the other hand, particles are

delocalized in the region [b| > hx.
Now we apply these results to the problem of CF pairings. In the absence of
vector potential, we have the pairing state as we have seen in Sec.3.4. This pairing state corresponds (o a

f VNH or the imaginary

localized state if we take a pairing state as a bound state of particles. When we take into account the effect
ses some pair-breaking effect because the no-pairing state, or no bound state, i

of VA e expect that it cau
corresponds to a delocalized state. If we adopt the usual Chern-Simons singular gauge transformation, it
is difficult to capture this effect from V2. To deal with the effect of V'3, we need the propagator of the
Chern-Simons gauge field, which is derived from the diamagnetic part. However, to get it we approximate
the action by expanding it with respect to the Chern-Simons gauge field to the second order after the
integration of the CF fields and we use the approximated form of fermion propagators which is valid in
ir-breaking

the long-wave length and the low-energy limit. After that, we understand that it causes the pai
taking above approximations and concluded that VV* has the

effect [42]. Bonesteel discussed the effect of V'
pair-breaking effect[42]. His conclusion is similar to our results. However, the ¢ dependence was lost in his
analysis for the f-wave pairing state. Therefore, the effect of the short-range interaction was overestimated.
Apparently, the effect of the 6-function like repulsive interaction is weak for the p-wave pairing state. For i

A Sondhi’s non-unitary transformation is more straightforward than

of the Rajar
using V% in the usual Chern-Simons theory
Now we take account of V¥ in the gap equations. Contrary to the usual Chern-Simons gau

that reason, using man;

3

e theory,

. N y
we need not to adopt any approximations [30] because VN is of the two-body interaction form. We can
take it into account in the gap equations directly. Furthermore, as we will show below, we can solve the
8ap equations exactly. This is the most remarkable point of using the Rajaraman-Sondhi’s non-unitary

transformation. When we include V¥ in the gap cquations, they are given by

KA &
./A’ 7 <‘—> (371)
Jo o
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3.5.

These gap equations are solved exactly as following. To simplify the form of those equations, we introduce
dimensionless fields Ag = ep f(k/kp) and A = epg(k/kr), and we obtain

% f(y) ¥\* ;
(el =94 | dp——al (T4 (3
5 /L > (yl—l)wf(.vmw( )
» ¢
) X (3.74)

W) (:7

g(x) =26 dy
z (¥ -1

Setting F(z) = 2t f(2) and G(z) = g(x)/xt, we obtain

k4
F(e) =26 | dy———b ., (3.75)
0 (¥* =1+ F(y)G(y)
Glz)= zo/ e L (3.76)
Jx (¥ = 1) + F(y)G(y)
Differentiating F() and G(x) with respect to z, we obtain
(3.17)
(3.78)
(3.79)
That is, F(x)G(x) = C (constant). Substituting it into Bq.(3.77), we solve Eq.(3.77) and obtain
F(x) = const. x [ (3.80)
On the other hand, setting = = 0 in Eq.(3.75) we find F(0) = 0. Substituting it into Eq.(3.80), we find
C'=0. As a result, F(2) is given by
0 for z<l,
F(z)= (3.81)
const. X (2 = 1)?  for x> 1

On the other hand, G(2) = 0 for x > 1 because F(z)G(z) = 0. For x < 1, from Eq.(3.78) we obtain

dG(x) |
T

The solution of this equation is given by
G(z) = const. x (1 —2%)?. (3.83)

Finally, the functions f(x) and g(x) are given by
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Cyzt(1—z2)? for z<1,

0 for z>1

where C; and C, are constants. As mentioned above, f(2)g(z) = 0, or AgAg = 0 for any . That means this
state is a gapless state. However, each of A} and A; is not zero. Therefore, this state is still a pairing state
NH is a pair-breaking.

As we have discussed in the beginning of this section, we expect that the effect of V'
However, it has no ability to break pairings. The effect of it is to make the gap of pairing state go to zero
at most.

This conclusion that all of the pairing stat
natural one. In the absence of the Coulomb interaction, we do not have to take into account the two-body
correlation discussed in Sec.2.3. Therefore, we do not have the pairing interaction derived from it. Of course,
the Rajaraman-Sondhi transformation is the exact one, therefore, there is no reason to prevent to perform
such transformation. However, we cannot solve the problem exactly. It depends on the choice of the starting
point, that is, the Hamiltonian and the approximation to solve the problem whether we can capture the
point of the problem or not. In the absence of the Coulomb interaction, the Hamiltonian obtained by the
Rajaraman-Sondhi transformation is not a good starting point

In above discussion of gap equations, we do not consider the ground state energy. We must examine it
of

are gapless if we neglect the Coulomb interaction is the

to discuss the stability of the gapless pairing state. From Eq.(3.46), we find that the ground state energy
0. However, states with Aj Ap

gapless states is the same as that of no-pairing states because Ap Ay

are not stable. Considering the variation of (H) with respect to A Ay, we obtain

()7, apts(mear) = (H)mea, = 8 (BeAy) (3.56)

The coefficient R Ag/ (Bxdi +€2)Y°
relative maximum of (H). Hence states with A Ay = 0 are not stable. Any perturbation will change the
ground state of the system from the gapless pairing state to the gapful pairing state. If we take into account
the Coulomb interaction, this gapless pairing state is not to be the ground state any more. Therefore, we
expect that VN is irrelevant for pairing states.

The irrelevance of VN was shown in the bosonic Chern-Simons theory of FQHE at v = 1/m, where
m is an odd integer [44]. [t was shown in Ref.[44] that three body interaction term is irrelevant at zero
applying the renormalization group. We

is not lower than zero. Therefore, the function AgAx = 0 is the

temperature if we assume the condensation of composite bosons by
do not have the exact proof for the irrelevance of the three body interaction term with regard to the pairing
state of CI's. However, we expect that it is irrelevant because the pairing state of fermions is described by
the Ginzburg-Landau theory, and the order parameter of it has the role of bosons in the composite boson
Chern cussion in Ref.[44] in that case. In the following
disct is irrelevant and neglect it

imons theory. Therefore, we can apply the di

"

on, we assume that the anti-Hermitian term V'

3.6 Stability of Pairing State

Now we discuss the effect of the Coulomb interaction and the stability of the p-wave pairing state [45]. When
we take into account the Coulomb interaction and neglect the anti-Hermitian term V¥ the gap equation
is given by

g )

ke ' ’
P KA Tk

Ny = BT
b 20 /” Bk

where o’ = o x \/2/ and
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Figure 3.3: The parameter o dependence of the gap A at ¢ = 2, or v = 1/2. The gap has a finite value in

the region a < a., where a, ~ 7.5

ral of the first kind. We need not

with K(z) = [;'"d¢/\/1—2sin$ being the complete elliptic inte

conjugate of Ay in the absence of the anti-

consider the gap equation for A because it is the comple
Hermitian term VN . To obtain Eq.(3.87), we have substituted the formula:

, i , :
e T e
g i e k; 7 <
P = e (m)

“";k,(;('

same approximation in Sec.3.4. At k = kg

(3.89)

into Eq.(3.37)

To solve the gap equation, we adopt the the gap equation is

given by

32

!
/ ——— [1 = —( ‘()
) [2Z - 1) + A2 i

In Fig3.3, we show the parameter o dependence of the gap A, at ¢ = 2, which corresponds to the case of

of @ < a., where o, ~ 7.5, the gap has a finite value. Therefore, the

On the other hand, in the region of a > a.
The answer to the quv\lluu as to
which case must be applied to the real system depends on the value of ep. In Sec.lV of Ref. . Halperin,
Lee and Read estimated the effective mass of CFs by the dimensional analysis, which holds in 1hv limit of
aps of several fractional quantum Hall states. When the condition
Therefore, we obtain

v'=1/2. In the region ground state
of the system is the p-wave BCS pairing state in that region
the gap goes to zero. That is, the ground state is the no-pairing state

€lp, and numerically obtained g
hw. > e®[elp is satisfied, the energy scale of the system is e* /efp only.

n? (3.91)
= 3
M
where C' is a constant. On the other hand, in the CF theory the energy gap Ey”’ of FQH states at v =
P/(2p+ 1), where p is an integer, is given by
) — 92)
P = (3.92
In deriving Eq.(3.¢ we assume the simple particle-hole symmetry around at v = 1/ Substituting

Eq.(3.91) into Eq.(3.

2), we obtain

EW) = —— (3.93

v 2p+ 1| el )
is determined by fitting Bq.(3.93) with numerically obtained energy gaps
This value of a is lower than a,. Therefore, the p-wave pairing occurs

The parameter C From theit

analysis, o is estimated to ~ 6.7
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at v = 1/2 when the condition hw, > €?/elp is satisfied. The ratio of e®/elp to hw, is determined by
(¢?elp)/hw.: ~4.9 x 10% x (ms/m.)/(eV/B) where m, is the electron mass in the vacuum and the external
is possible in the sample

magnetic field is measured in units of tesla. Therefore, the pairing state of CF;
with a small band mass my and a large dielectric constant ¢ and under a strong magnetic field B. On the
other hand, in the weak magnetic field limit: hw, < e/elg, a has the following form

e?/el
AN—,/JM/VB, (3.94)
hw,
using the dimensional analysis. In that case, a diverges in the limit of B — 0. Therefore, the pairing state
is not stabilized in that limit

Let us remark on the relevance of our theory to the v /2 state. Contrary to the v = 1/2 case, we
have filled Landau levels at » = 5/2. What is the role of these filled Landau levels? One possible scenario
is that the Coulomb interaction for electrons in partially filled Landau level is screened by electrons in filled
Landau levels. If this is true, we can also apply the above discussion to the v = 5/2 state

3.7 Real Spin Effect and Zeeman Energy
Next we discuss an effect of the real spin degrees of freedom and the Zeeman energy. To begin with, we
discuss the former in the absence of the latter. The spin unpolarized pairing state is possible as in the
of the bilayer quantum Hall systems (see chap.4). In that case, the ground state is also the p-wave pairing
state. However, the expression of the ground state energy is (H) in Eq.(3.52) times 2 because of the spin
degrees of freedom (see Eq.(4.50)). Furthermore, the ground state energy contains the Fermi wave number
as the parameter and (H) is proportional to k#. It is understood from Eq.(3.52) because (H) is proportional
to ¢ o kf. In the spin unpolarized pairing case, the Fermi wave number kg is equal to &}./v/2, where

-

k2(= 1/€p) is the Fermi wave number of the spin polarized case. Putting it all together, the ground state
energy of the spin unpolarized pairing state is half of (H) estimated in the case of spin polarized case. Being
(H) < 0, the ground state energy of the spin polarized state is lower than that of the spin unpolarized pairing
ible then it is the spin-polarized pairing state. With regard

state. As a result, if the pairing of CFs is pos

to the effect of the Zeeman energy to the spinless CFs, it is nothing but shifting the chemical potential

3.8 Summary

In this chapter, we have discussed the possibility of the pairing of CFs at v = 1/m, where m is an even
integer. We have derived the gap equations for the CF pairing state by the pairing approximation. The

VH . The solution of the gap equations in the absence

pairing interaction is derived from the potential
of VMM and the Coulomb interaction indicates that the p-wave pairing state of CFs has the largest gap.
4

Furthermore, it has the lowest energy. Therefore, the ground state is the p-wave pairing state of CFs. F
that state, the ground state wave function has derived. The orbital function has the form: ~ 1/z. From
the phase dependence of it, we see that the angular momentum of it and the cyclotron motion are in the
opposite direction. This fact is consistent with the discussion in Sec.2.4

Ne H

an imaginary vector potential. The effect of the imaginary veclor potential is known as a delocalization

t we take into account the anti-Hermitian term V

The interaction term VN corresponds to

effect in the localization-delocalization phenomena[41]. The delocalization in that problem corresponds to
the no-pairing in the CF pairing theory. Therefore, V' is expected to have a pair-breaking effect. In fact
if we consider the gap equation taking into account VN# in the absence of the Coulomb interaction, the
\»\ H

solution is a gaples is not enough to cause pair-breaking but

s pairing state. However, the effect of

the gap of the pairing state goes to zero. Considering the ground state energy it is on an unstable point
Therefore, when we take into account the Coulomb interaction, the ground state changes from the gapless
pairing state to the gapful pairing state

Vv NH

On the other hand, the anti-Hermitian term corresponds to the three-body interaction term in the

Chern-Sinions gauge theory. In that case, if we assume the condensate of composite bosons, it is shown that
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the three-body term is irrelevant. Therefore, the anti-Hermitian term V¥ is expected to be irrelevant for
the pairing state

With regard to the effect of the Coulomb interaction, we examine the stability of the pairing state in
the presence of the Coulomb interaction. We consider the gap equation taking into account the Coulomb
interaction and neglecting VN . We estimate the region as the ratio of the Coulomb interaction to the Fermi
energy where the pairing state is realized. The pairing state is possible when the condition hw, > €?/elp
holds. This is realized in samples with a small band mass, a large dielectric constant and a strong magnetic
field.

In order to discuss the polarization of the real spin, we compare the ground state energy of spin polarized
ate energy of spin polarized pairing

pairing state with that of spin unpolarized pairing state. The ground s
state is lower than that of spin unpolarized pairing state. Therefore, if the pairing state of CF

is possible
then it is the spin-polarized pairing state
state, we must take into account the effect of filled Landau levels. The possible

To discuss the v = 5,
scenario is that the Coulomb interaction for electrons in partially filled Landau level is screened by electrons

in filled Landau levels.




Chapter 4

Pairing States in Bilayer Qunatum
Hall Systems

In this chapter, we discuss the pairing state of CFs in bilayer quantum Hall systems. Applying the pairing
approximation, we derive gap equations for the CF pairing state. Contrary to single layer systems, the
pseudo-spin degrees of freedom must be taken into account. Not only a pseudo-spin triplet pairing state
udo-spin singlet pairing state is possible. First, we show that in the absence of an interlayer

but also a f
tunneling the ground state is the p-wave pairing state at v = 1/m, where m is an integer. With respect
to an interlayer tunneling, we consider the case of ¥ = 1/2 and the case of v = 1. The importance of the

interlayer Coulomb interaction in bilayer quantum Hall systems is also discussed

4.1 Hamiltonian

In bilayer systems, to control the system we have many parameters, such as the interlayer separation, an
Here we concentrate on the case of 5, = 7, and v = 1/m,

interlayer tunneling and a charge imbalance 7, —

where m is an integer. The Coulomb interaction for electrons is given by
= Z /:l"'rrlnr’l’,fj(r— ') 6pa (r) 6pg ('), (4.1)
“apf=1,1

where [(|) denotes the index of electrons in upper(lower) layer, 6pa (¥) = ¥ () tha (r) — po With j. being
the average particle density in the layer o and

o j
v (x) (12)
with € being the dielectric constant and d being the interlayer separation
The Hamilionian for the interlayer tunneling for electrons is given by
(9 081 @)+ 0] () 0 ()] (43)

ondhi transformation, we obtain the Hamiltonian for the interlayer tunneling for

Applying the Rajaramar
CFs

¢ =

In that case, if ¢, # ¢4 holds then we must add an extremal phase factor. However, in the case of

the tunneling Hamiltonian for CFs is given by

= /rljl' t[m () @) (v) + &) (v) mp (v)] (4.4)

For the tunneling Hamiltonian, we adopt Eq.(4.4) and neglect the phase factor caused by mapping from

clectrons into CFs in the following
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t(r) ¥ (r)

After the extended CF transformations the form of V¢ is not changed because p(r) = ¢ =
7 (r) ¢ (r). Taking into account the Coulomb interaction (4.1) and the interlayer tunneling (4.4) in Eq.(2.33)

and setting all components of K5 as even integers, the CF Hamiltonian for bilayer systems is given by

8 (s ! o8 Bl i .
H=3 etk T 55 2 2 Vier ks kia™—kip®kpPhias (4)
kap kizk, of
where € = € = £2/2my, € = € = —t and Y2 = KapVic, _k, —k,4k, + Vi, k- The interaction
2 s the one for CF pairs with zero total momentum. The matrix K is given by
= ([
/\_{O2 O]}, (4.6)
where ¢ and @5 are even integers.
4.2 Pairing Approximation
To discuss the pairing state of CFs, we introduce the pairing approximation in Eq.(4.5). We obtain
o 1 o L
He Y 8miatis + 55 20 30 i d Mk ol fiee
kas <k, af
% ACI N B BRI (47
. oo el
Now we introduce the gap functions AK; and y5:
1 :
-5 2 il ksfkia) (48)
k(zk")
o 1 .
B Do e e ) (4.9)
k(#k)

‘kl\ in the presence of

(5e)

gk | const., (4.10)

ke :
Note that a5 is not necesarilly complex conjugate of AK, because

VM Using these fields, the Hamiltonian becomes

H=Y"r
K

where
.
= | %k
= : (.11)
Ty
gy
Ty Ok bk ] (112)

Ak
Lok
3

From Eqs.(4.8) and (4.9), it is seen that

(A,}\>;0:,,(Ak)”4‘ (3*"’)}0:_@*)“4 (4.14)

The next step is the diagonalization of the martix £X. We must consider it both for the triplet pairing casc

in degrees of freedom

and the singlet pairing case because of the pseudo-
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4.2.1 Triplet Pairing

; : SR - g :
In the triplet pairing cases, AK and & satisfy the following relations:

(a8 =- (a9, (&%), = (a¥),.
L e N Ly

To simplify the discussion, we concentrate on the case of symmetric layers. That is

The eigenvectors of €K are given by

29

(4.19)
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The cigenvalues of Eqs.(4.22),(4.23), (4.24) and (4.25) are given by Bf

The matrix £X is diagonalized by matrices UX and T
g

vk = [w uf uwf wuj],

S A -
where,
1
4B (BL + 6 - 1)

»1[?12([}( + & +1)

We introduce the quasiparticle field operators X and pK

ey
k Ik

=k,

pi= [Pk PRy 0k 9k | =

The fields py, and gi, satisfy the following anti-commutation relations:
Tka'Pkep § = k6ot
ko ki f = 0
pkn,pk,ﬁ} =0

Using these fields, the Hamiltonian becomes

e I
f’l‘l'l‘ql‘ + const

o 0 Kk
L P 0 i g ¢~ + const..

. respectively

30

(4.30)

(4.31)

(4.33)
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Now we calculate (¢_k,@k,) in the right hand side of Eq.(4.8). As an example, we show the detailed
calculation of (¢_k9k)

(¢ k9ky) =

(4.36)

Here the function f(E) = 1/(exp(E/kpT)+1) is the fermion distribution funtion. Other values of (¢_j ;ék,)
is given by (O,kyok[) = (O,kyo};ﬂ and

(611 6k;) = (ke 1)) = tanh (4.37)

The values of (mjc, 7_1,) are given by replacing AK; with
into Egs.(4.8) and (4.9), we obtain

ap 0 these equations. Substituting these formula

1 tanh -
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1
_\‘H i

On the other hand, the ground state energy of the system is given by

7 et 2 y
(H) =~ I\Z Eha{Tkadis) + 55 Y e T Tk )Pk Pcsa)
ko kizk, o8

At zero temperature, we obtain

(k) = (i) =
(Mo 0k)) = (T 91y) =

Substituting these formula and gap equations (4.42) and (4.43) into Eq.(4.46), we obtain

—%k —k e
(A:r +~3n> (A]x(x ‘LA;L\)

Ef

k

<Il>:%& (1—

Note that Eq.(4.50) is twice of Eq.(3.46) because of the pseudo-spin degrees of freedom

4.2.2  Singlet Pairing

. el il
In the singlet pairing cases, AK and 3 satisfys the following relaitons

(9,= (9, (9,,=-(Y),,,
I e DR i

Therefore, we can set. Ay and 3, as

M s
Aki["'ik ‘JJ

<Kl!(! ’Sh) (‘\I{(T i -\h)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)
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’jk (4.54)
The matrix €K is given by
& -t 0 -4
s (4.55)

0 B & ¢
7Ak 0 t ]

The eigenvalues of £X are given by £Ey + t and £} — 1, where

By =/ + A Ay (4.56)

The eigenvectors of €K are given by

(4.59)

4

up (4.60)

/IBy By + &)
The eigenvalues of Eqs.(4.57),(4.58), (4.59) and (4.60) are By +1, By —t, — By —t and —Ej +1 , respectively
The matrix £K is diagonalized by matrices UK and T
ui‘( u'?( uﬂ I (4.61)

ﬁl‘( Ik (4.62)
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Sy J

Yk = am By T &)

Asin the triplet pairing case, we introduce quasiparticle fields by Eq.(4.32) and Bq.(4.33). Anti-commutation
relation (4.34) also holds in the singlet pairing cases. Using these quasiparticle fields, we obtain

(4.66)

B+t 0 0 0

S ale 0 By~ 0 0 k o

H= Z P 0 : Sl L 0 ¢ + const. (4.67)
s 0 0 0 —Ep i

To obtain the gap equations, we calculate values of (¢_j; é) and (mj,,7_1). They are given by

Ay By +1 By —t
o1 @ =—=1t <o +tanh———r
(thnkl) 1Ey {anlv HaT + tanh KT

=

\/Wkgﬂkl) = ﬁ [lanh )

Substituting these equations into Egs.(4.8) and (4.9), we obtain

(4.70)
(4.71)
(4.72)
T e 473
Sl 9 (4.73)
kr[:k)z:k,w
On the other hand, the ground state energy is given by
1 &k 1 &k i ApA -
<H>:;Lm-u(l—f‘>+; 5 (fk+t)<l~;,—‘>—_- kk (4.74)
K 2 Tk 2 By
k By >t k.l_‘k>r

In the absence of the interlayer tunneling, Eq.(4.74) corresponds to Bq.(4.50).

4.3 Pure Pairing State

Now we discuss the ground state properties in the absence of the inter ayer tunneling and the Coulomb
interaction. In that case, the discussion is almost the same as in the single-layer systeni.
The difference is that we have pseudo-spin degrees of freedom in bilayer systems and must take into

As we have done in single-layer

account the possibility of various triplet pairings and singlet pairin
systems, we replace the electronic band mass my with the effective mass M implicitly in the gap equations
to take into account the renormalization cffect. M is a parameter in our theory. Furthermore, we neglect
! and neglect the Coulomb interaction and the interlayer

VAH term. When we take into account VN7
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tunneling, the gap equations are solved exactly and the resulting state is the gapless pairing state. However,
zed because the state with Ay Ay = 0 is the relative maximum of
5). Applying the same

this gapless pairing state is not stabil
(H), which is shown from the analysis of the ground state energy (4.50) (see Sec
s irrelevant for the pairing states of CFs. We discuss the g

discussion in Sec.3.5, VNH p equation in the
absence of VNH  In that case the gap A} is the complex conjugate of Ay Therefore, we only consider the

gap equation for Ay.

First, we discuss the gap equation for the triplet pairing state. We assume that each component of Ak
has the same angular #) dependence (6} denotes the direction of k). This assumption is introduced for
convenience and the result about the pairing of the ground state given below holds without it. In that case,

the gap AX is given by

where a and b are complex numbers satisfying |
-ito .
Ap = kA, (4.76)

we will s

e later, the pairing state with (a,b) = (0,1) corresponds to

in the absence of the interlayer tunneling, numerically shown to

for the f-wave pairing state

the Halperin (m,m, n) state, which is
be the ground state of bilayer systems with an appropriate interlayer separation d [15, 26]. Hence we set
(a,b) = (0,1).

The gap equations are almost the same as in the single-layer systems. In fact, the gap equation is given

k ] AN 0o / £
i KA (K B KA [k Xl

) : 4 A
e~ (J iz [ (k> (477)

Note that this equation is obtained by replacing ¢ in Eq.(3.47) with ¢,

by

For the singlet pairing cases with £ > 2, the gap equation is given by the same equation (4.77) if we

assume Bq.(4.76). The s-wave pairing is not possible in bilayer systems because of the following reason. A

discussed in Sec.3.2, we do not have attractive interaction from V# because I/Z () = 0. Therefore, the
sNH

y V!

possibility of an attractive interaction is caused L In that case, we must take into account the gap

equation of Ay, and the gap equations are given by

(4.79)

Taking similar steps in Sec.d 0
Therefore, the s-wave pairing is not possible in bilayer systems. This fact is understood intuitively because
the attractive interaction between CFs is caused by the Lorentz force of Chern-Simons gauge field (see
Sec.2.4).

To solve the gap equation (4
ximation, the gap equation has the same form as in the case of the single

. . o oo p1-2
= / e, +/ e e = PAY (4.80)
é2 1)+ A% )y -1+ A2

both for singlet- and triplet-pairings. In Fig.4.1, we show the function #;(A) for various £ and the horizontal
line corresponds to 1/¢2 = 0.5. Although the form of the gap equation is the same as in the single-layer
ibility of the singlet pairing cases. However, the gap of the singlet

0) for Ar. With this

wyer case and is given by

we introduce the same approximation Eq

appre

case, we must take into account the po:
pairing states has lower value than that of the triplel p-wave pairing state. Therefore, the pairing state with

the largest gap is the p-wave pairing state.
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Figure 4.1: The gap dependence of the right hand side of Eq.(4.80)

= T —

S

& =17 .
k27

S 1=37//

5 1=4 7/

- - 125

Figure 4.2: The energy difference between the pairing state and the no-pairing state

On the other hand, the energy difference between the pairing state and the no-pairing state is shown in

Fig4.2, where 8 s given by 6F = (H)z, ) = ()5, a) =0 With (H) being given by Eq.(4.50). The value
of 6 has always negative value and the ground state is the pairing state as long as AA # 0. Furthermore,
the value of £ which gives the lowest §E is £ = 1. From the discussion of the gap equations, we have found

that the pairing state with the largest gap A is £ = 1. Putting it all together, the ground state is the triplet

p-wave pairing state of C

4.4 Effect of Interlayer Tunneling

Let us discuss the effect of an interlayer tunneling. Though we can apply the discussion below to general
cases, we concentrate on the case of » = 1/2 and ¥ = 1. As we have seen in the previous section, anti-
Hermitian term VN is irrelevant for pairing states of CFs. Therefore, we neglect it. Furthermore, we
neglect the Coulomb interaction. The effect of the Coulomb interaction is discussed later

In that case, the gap equations are given by

[} 2
= 50 (4.81)
k(zk)
ak = 5 (4.82)

k(zk)

, is the complex conjugate of AK, because we neglect the anti-Hermitian tern V¥4

The gap function X,




b

44.

OF INTERLAYER TUNNELING

First, we consider the case of ¢; = ¢, = ¢. In this case, the total Landau level filling fraction is given by
v =1/¢. It includes the case of v = 1/2,1/4, Taking the same steps in the last section, we obtain

. 1
/ dr 7 =2 (4.83)
o 27—
for a+b# 0 and
1 2L 1
/ dz—— = (4.84)
Jo (@ —1+7)+]AC 6

for a —b # 0. Here 7 = t/ep, Ay = (a+ b)A, and A_ = (a— b)A. To observe the change of the ground
state properties, we introduce an angular 6 by

o=tan' 3 (4.85)

The gap for the ground state is defined by

A= \/ (4.86)
Solving Eqs.(4.83) and (4.84) numerically, we obtain [A4| and [A_|. The 0 is calculated by
; 4
0= g,m" (\A-v (4.87)

On the other hand, from Eqs.(4.49), (4.75), (4.76) and (3.50), the ground state energy of the triplet pairing
state is given by

(Hy =

(@2=1—7P2+A Atz -2t 147
— 1)+ A Ate \/(I?*I*T)EifTA*.L EL B
1 22+ [(z2—14+7)24+A A2 -2+ 1—7

+/ dz .
i \/(J-'-’ — 1472 +A Az (@2 1+7)2+ A A2 422+ 17
o a2t (22— 1+7)2+A A-z-2
+[
! (@2—1+7)2+A A~z \/(

—2t41

-2l

(4.88)

I+7)2+A A-a= 2422 — 1471

Hereafter we concentrate on the case of the p-wave pairing case and set £ = 1 because we have shown in
the last section that the ground state is the p-wave pairing state in the absence of an interlayer tunneling
In Fig.4.3, we show the tunneling dependence of 8 at v = 1/2 (¢ = 2). We see that the (3,3,1) state, which
is the p-wave pairing state with (a,) = (0,1) (6 = 0), evolves toward the Pfaffian state, which is the p-wave
pairing state with (a,0) = (1/v2,1/v/2) (0 = 7/4). In the region 7 > 2, we do not have the solution of
Eq.(4.84). Therefore, a = b. As a result, the ground state is the Pfaffian state in the region 7 > 2

Now we discuss whether the (3,3, 1) state and the Pfaffian state belong to the different phases or not

Ho addressed that the (3,3,1) state and the Pfaffian state are continuously connected cach other In
Pigd.4, we show the tunneling dependence of the gap A. As shown in Fig4.4, there is a cusp al 7 = 2
There is also a cusp in the ground state energy. In Fig.4.5, we show the 7 dependence of the energy £ = (1)

which is calculated from Lq.(4.88). We see that there is a cusp at 7 = 2. This is an indication that the
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Figure 4.3: The tunneling dependence of § at v = 1/2.
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Figure 4.4: The tunneling dependence of the gap A at v = 1/2

(3,3,1) state and the Pfaffian state are different phases. In Ref.[47], the ground state degeneracy on a Torus
of the (3,3, 1) state and the Pfaffian state was discussed. It was shown that the ground state degeneracy of
the 1) state and that of the Pfaffian state are different. Therefore, the (3,3, 1) state and the Pfaffian

state are different phases

Let us turn to the case of ¢; = 0 and ¢ # 0, that is, » = 1. In this case, (a, b) is uniquely determined
as (0,1) because ¢; = 0 and the ground state is uniquely given by the state continuously connected with the

(1,1,1) state. Then, the gap equation is given by

22+1

@ —1+1)2+ A%zt

(4.89)

(1= t)z2 — 1) + A2g2tra

In Fig4.6, we show the tunneling dependence of the gap A for the p-wave pairing state. We do not have
any cusp. Therefore, the ground state is continuously connected with the (1,1, 1) state
4.5 Wave Function

Now we discuss the ground state wave function. When we set the ground state wave function as [GS), the
ket |GS) sat

fy the following equations:
i [GS) = 0, i, 1GS) =0, (4.90)

1_,1GS) =0, 11 1GS) =0 (4.91)
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Figure 4.5

From Eqs.(4.32) and (4

(), o + (i),
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Figure 4.6: The tunneling dependence of the gap A at v = 1
, these equations are described by
: ) +(E) « 3S5) = Sl 1 (4.92
+ () ; (uk>‘ ~k1}‘( }=0, for j=1 (4.92)
i (u'k) bkt (utk)_‘qli | for 4 (4.93)

Frlsy i i
i(“k), At ("k)
Grassmannian operator

Hence Egs.(4
variables my and 7_y_

IGS) =

and ¢ satisfy the anti-commutation relation by replacing ¢ . with
x ka 3 > 8 Pka

are the differential equations with respect to the Grassmannian

) and (¢

Solving these differential equations, we obtain

k k
' AR +A
i il
exp | {< — - Tk
: Bl +6&—t )

Ak galk Ak
B s 1 P (4.94)

o

Sors(2])IGS)

Gors(=D)bors(205)

=

N
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(4.95)

7
rs(2)

where the orbital wave functions: 42

(4.96)

(4.97)

Performing the Fourier transformation and substituting Eqs.(4.96) and (4.97) into Eq.(4.94), we obtain

|GS) = exp /dﬁr‘dﬂ 7o (1) (xa) | 10) (4.98)

For 2N particles, we obtain

|GS)an =
N ¥ 2
= /H{F;]‘ &2 [ = h* TIH - =h* TTe - &
i=1 i<j i<j ij
N
3 I DI HACE k)| o) (4.99)
=1 |ap

In the absence of the interlayer tunneling,

The orbital wave function ¢25(z) is calculated as in Sec.3.4
L(z) = 6ti(2) ~ 1/z and @11, (= !

we obtain ¢, Ji o
function is the (¢

0. Therefore, in that case the ground state wave

(4.100)

This equation is shown by using the Cauchy identity

4.6 Stability of Pairing States

Next we discuss the Coulomb interaction effect in the absence of the interlayer tunneling. As was pointed
out by Haldane and Rezayi [20] and Ho [25], the p-wave fermion BCS pairing state with (a,b) = (0,1)
is equivalent to the (1,1,—1) state. Therefore, the p-wave pairing state of CF’s with (¢, ¢2) corresponds
to the Halperin (¢ + 1,01 + 1,82 — 1) state. It is supported numerically (15, 26] that this state is the
ground state of the bilayer quantum Hall systems in the absence of the interlayer tunneling and with an
appropriate inter layer separation d. Hence in order to discuss whether the pairing state is stabilized with
respect to the Coulomb interaction or not, we examine the stability of the Halperin (m,m,n) state. Since
the Halperin (m,m,n) wave function is of Jastrow-type, we can get deep physical insight from it. As in
the *He system, this Jastrow-factors are factorized into two parts: a short-range component and a long

range component, [

g . The former is determined by the two-body problem and the latter by the phonon

effect. However, phonon modes are pushed up to high energy modes because of the incompressible nature

of quantum Hall systems. Hence the Jastrow factor is completely determined from the consideration of the
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4.6

Figure 4.7: We assume that the relative angular momentum for each pair of electrons in the same layer is
m and the relative angular momentum for each pair of electrons in the opposite layer is n

two-body problem. In that sense, the index m(n) is identified as the relative angular momentum of pair of

electrons in the same(opposite)-layer. Therefore, to understand the effect of the Coulomb interaction, we

focus on the short-range two-body correlation

The appropriate basis for the two-body electron correlation is given by

= (12122

e Bz )
[qm+1p2m+4
+1gimtag

This is the lowest Landau level wave function for an electron pair with the relative

(21,2 (4.101)

angular momentum m

and the angular momentum of the central motion being zero. Suppose N electrons in each layer. We assume

the relative angular momentum m for each pair of electrons in the same layer and the relative angular

momentum n for each pair of electrons in opposite layer (see Fig.4.7). The total Coulomb energy ES(m,n)
estimated by the first order perturbation is given by
22 (m,n) = Sl Cd VY e(m,d=0)x 2+ N2 x ¢(n,d) (4.102)
where
(m,d) =
= (4.103)
with A = d/20p. Taking the thermodynamic limit N — oo in Eq.(4.102), we obtain
(m,n)/N* = e(m,d = 0) + €(n,d). (4.104)

It is our purpose to find the pair (m,n), which gives the lowest E&)(m,n). However, we cannot choose
arbitrary pair of (m,n). There is a constraint for the choice of m and n. It is shown that the angular
momentum of the electron at the edge of the sample is equal to (N — 1) x m + N x n(= M) from the

Halperin (m,m,n) wave function. Since the wave function of this electron is proportional to = e="/4f%

R). Of course 7R? is the area of the system. Taking

the density of it has its maximum at r = V2M{y
the thermodynamic limit N — o0, we obtain

(4.105)

703 x N x (m+n)

Substituting N/Q = p/2 and v = p/(B/dy) into Bq.(4.105), we obtain

m+n=2/v (4.106)
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Figure 4.8: The energy EG(m,n) for (m,n) = (4,0),(3,1), and (2,2) in units
0.789 < d/2€p < 1.480, the choice of (m,n) = (3,1) has the lowest energy. Ther
state is stabilized in this region. In other regions, the pairing states are not stab

Now we seek the (m,n) which gives the lowest

m,n) under the condition (4.106). The analytical
e=0%" = =1/26aXErfe(z)

form of the function ¢(m, d) is

iven by differentiating the function [;° dz

with respect to a and setting a = 1. Here the function Efre(z) = [I”dt e™* is the error function. The

explicit forms of function ¢(m, d) for various m are given by

e(m=0,d)/(e2/etp) = e Erfc()), (4.107)
e(m=1,d)/(*fetp) = ]E [(1 — 22%)eX Erfe(A) + A] ) (4.108)
e(m=2,d)/(e*/elg) = % [(:c — 472 + 43NN Erfe(X) + (34 — 20%)] | (4.109)
e(m = 3,d)/(e*[elp) = 1Is :(1.3 — 1802 + 120 — 8A%)e* Erfe()) + (154 — 8X® + L\")‘i (4.110)

384l
+(105A = 50% + 20A° — 8AT)] (4.111)

e(m = 4,d)/(e*/elp) (105 — 12042 + 72)% — 32° + 16A%)e*” Erfe(X)

The function ¢(m,d) has the simple form at d = 0

_Im+d _ (2m)

e(m,d = 0)/(e*/elp) = VT (4.112)

2m! mn!

Let us estimate
(4.106) is m + n
m < n always ha
(m,n) = (4,0),(3,1), and (2,2). The region where the choice of (m,n) = (3,1) gives the lowest energy
ES(m,n) is 0.789 < d/2fp < 1.480. The Halperin (3,3,1) state is stabilized in this region. In other
regions, the pairing states are not stabilized. When we start with CFs with (¢, ¢a) = (2
pairing occurs in the region 0.789 < d/2(p < 1.480. However, the pairing state dose not occur in the region
d/2lp < 0.789 and d/2(p > 1.480 and the ground state is a compressible state. '

For the case of » = 1, the constraint (4.106) is m+n =
and (1,1). In Fig P (m,n)/N? for (2,0) and (1,1). The region where the choice
of (myn) = (1,1) g m,n)is 0 < d/20p < 0.70 ). The Halperin (1,1,1) state i
is stabilized in this region. In another region, the pairing states are not stabilized. The Halperin (1,1,1)

?)(1m, n) for the case of ¥ = 1/2 and v = 1. For the case of » = 1/2, the constraint

Therefore, the possible choice for (m,n) is, (4,0), (3,1) and (2,2). The pair with
£.E 0 (2 e

larger energy than that with m > n. In Fig.4.8, we show the energy £5’(m,n)/N? for

), the p-wave

Therefore, the possible choice for (m, ) is (2, 0) |

), we show the energy

es the lowest energy [

"The choice of (¢
by CF pairing theos

#3) = (2.2) is not appropriate in the region d/2(p > 1.480. If we deal with the state in this re
(4,0). However, it is unclear whether the pairing state of such CFs

it is natural to choose (é1,62) =

corresponds to the Halperin (3,3,1) state or not y
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Figure 4.9: The energy ES)(m,n) for (m,n) = (2,0), and (1,1) in units of e2/efg. In the region 0 <
d/2Lp < 0.703, the choice of (m,n) = (1,1) has the lowest energy. Therefore, the Halperin (1,1,1) state is
stabilized in this region. In another region, the pairing states are not stabilized

state corresponds to the p-wave pairing state of CFs with (61, ¢2) = (0,2). Though the above estimation is
crude, the critical value d, for v = 1 is close to 2(5 which was obtained by Murphy et al. experimentally
[49].

In general, the estimation of £ (m, n) shows that the pair (m,n) giving the lowest G (m, n) is (2/v,0)
for d > 5. With decreasing d, it changes as (2/1,0) — (2/v — 1,1) — --- — (1/v,1/v). In this sequence,
there appear the regions where (m,n) = (even,even). In these regions, the p-wave pairing state is not

(2)

stabilized. The Jastrow-factor with (m,n) = (even,even) must be multiplied by some wave function of a
vave pairing state of CFs. On the other hand, in the region of d

no-pairing state of CFs instead of the p-
with (m,n) = (odd,odd), the ground state is the p-wave pairing state, that is, the quantum Hall state

4.7 Summary
In this chapter, we have considered the pairing state of CFs in bilayer systems. In general conditions we

have derived the gap equations at the total Landau level filling v = 1/m, where m is an integer
In bilayer systems, we must take into account not only the possibility of the triplet pairing states but

also the possibility of the singlet pairing states. However, they are higher energy state than the p-wave
pairing state. Furthermore, the possibility of the s-wave pairing state has been excluded. In the absence of
the interlayer tunneling, we have shown that the ground state is the p-wave pairing state of CFs. Therefore,
the p-wave pairing state is possible not only at v = 1/2 but also at more general filling v = 1/m, where m
is an integer.

With regard to the effect of the interlayer tunneling, we consider the v = 1/2 ca
At v = 1/2, the ground state evolves from the Halperin (3,3, 1) state toward the Pfaffian state. However,
there is a cusp at the transition point. It indicates that the (3,3, 1) state and the Pfaffian state are different

and the v = 1 case

phase. On the other hand, at » = 1 the ground state is uniquely determined independent of the strength of
an interlayer tunneling. The ground state is continuously connected with the (1,1,1) state

The effect of the Coulomb interaction and the stability of the pairing state are also discussed. The p-wave
pairing state of CFs corresponds to the Halperin (m, m, n) state. The wave function of the Halperin (m,m, n)
state is of Jastrow type. However, because of the incompressible nature of quantum Hall liquids only the
short range correlation effect is relevant. The most fundamental short range correlation in the quantum
Hall systems is the motion of pair with non-zero relative angular momentum. With regard to the two-body

correlation, we have calculated the total energy of the Coulomb interaction by the first order perturbation

and estimated the region of the interlayer separation d, where the pairing state is stabilized




Chapter 5

Concluding Remarks

5.1 Conclusions

In conclusion, we have discussed the pairing state of CFs in the sing
is an even integer, and in the bilayer systems at v

layer systems at v = 1/m, where m
1/n, where n is an integer

The Hamiltonian which correctly describe the pairing state has been derived by performing a non-
unitary transformation, which is an extended version of the Chern-Simons gauge transformation. By this
transformation, we have two two-body potentials. One is an Hermitian term and another is an anti-Hermitian
term. An attractive interaction between CFs is

aused by the Hermitian term, which have the form of the
minimal coupling between the CF current and the Chern-Simons gaug

field. Therefore, it has a form of
the Lorentz force. The pairing motion of CF pairs are derived by this attractive interaction. The angular
momentum of it and that of the cyclotron motion are in the opposite direction. On the other hand, the
anti-Hermitian term has no classical meaning

First, we have discussed the possibility of the pairing state in the single-layer systems. Applying the

pairing approximation, the gap equations have been derived at v = 1/m, where m is an even integer. In the
absence of the Coulomb interaction and the anti-Hermitian term, we have shown that the ground state of
the ve pairing state of CF
that it has a pair-breaking effe

tem is the p-w

With regard to the anti-Hermitian term, we have discussed

ct. The anti-Hermitian term corresponds to an imaginary vector potential.
The effect of an imaginary vector potential was considered in the localization-delocalization phenomena [41].
The role of it is the delocalization effect, which corresponds to the pair-breaking effect in the CF pairing
theory. To examine this point, we have taken it into a
The solution is the gapless pairing state. However, this
the Coulomb interaction, the ground state of the
pairing state

ccount in the gap equations and solve them exactly.

state is on an unstable point. If we take into account
stem changes from the gapless pairing state to the gapful

On the other hand, the anti-Hermitian term corresponds to the three-body term in the Chern-Simons
gauge theory and it was shown that it is irrelevant in the bosonic Chern-Simons gauge theory [44]. The irrel-
evance of it is also shown by taking the same steps in Ref.[44] because we can deal with the superconducting
state of fermions as the superconducting state of bosons by the Ginzburg-Landau theory. Therefore, we can
neglect it in the discussion of the pairing states of CF's

When we solve the gap equation taking into account the Coulomb interaction, the gap decreases with
increasing the ratio of Coulomb interaction to the Fermi energy of CFs. However, we have shown that the

gap still have a finite value if the system is in the strong magnetic field limit. Hence the pairing state, which

results in the quantum Hall effect, is possible in that situation. We have also discussed the effect of the

real spin degrees of freedom and the Zeeman energy. From the analysis of the ground state energy, we have

shown that the ground state energy of the spin unpolarized pairing state is higher than that of the spin
polarized pairing state. Hence the pairing state is the spin polarized pairing state. The eflect of the Zeeman
energy to it is nothing but shifting the chemical potential of CF's.

Second, we have discussed the pairing state of CFs in the bilayer systems at v = 1/m, where m is an
integer. We have derived the gap equations for both the triplet pairing states and the singlet pairing states

44



OPEN PROBLEMS

In the absence of the Coulomb interaction and the interlayer tunneling, the ground state of the system is the
p-wave pairing state. Hence not only at ¥ = 1/2 but also at other filling fractions » = 1/m the ground state
of the system is the p-wave pairing state of CFs. With regard to the interlayer tunneling, we have discussed
the v = 1/2 case and the v = 1 case. At v = 1/2, the ground state evolves from the (3,3, 1) state toward the
Pfaffian state. However, at the transition point there is a cusp. It indicates that the (3,3,1) state and the
Pfaffian state are the different phases. On the other hand, at v
and independent of the interlayer tunneling. The ground state

1, the ground state is uniquely determined

continuously connected with the (1,1,1)
state.

In the absence of the interlayer tunneling, the pairing state of CFs corresponds to the Halperin (m,m, n)
state. We have discussed the stability of the pairing state with regard to the Coulomb interaction by using
this fact. The Halperin (m, m,n) function is of Jastrow type wave function, and is completely determined by
the two-body correlation effect because of the incompressible nature of the quantum Hall liquids. Calculating
the Coulomb interaction for two-body correlations by the first order perturbation, we have estimated the

regions where the pairing state is stabilized

5.2 Open problems

This thesis offers a starting point of the composite fermion pairing theory in the quantum Hall systems. The
possible extensions of it are listed below

o How we can detect the p-wave pairing state?
stems has no experimental foundation. We must invent
an experiment to investigate the p-wave pairing state. This problem is related to the nature of the

The pairing picture of the quantum Hall s

quasiparticles in CF pairing liquids and/or the edge states

t is the nature of quasiparticles?
s well-known that quas
have fractional charges and obey a fractional statistics. How about the quasiparticles of CF pairing

particles in quantum Hall systems at v = 1/m, where m is an odd integer,

states? To discuss the nature of quasiparticles, we need the Ginzburg-Landau (GL) theory of the
pairing state of CFs. Contrary to the usual BCS pairing case, we do not have a cutofl in momentum
space. This complicates the derivation of the GL theory

o What is the relevance to the composite boson theo: system:
In the composite boson theory, the existence of an bulk gapless mode was predicted at v = 1 [16]. We
must examine it by the CF pairing theory. Furthermore, we do not know the relation between meron
excitations in the composite boson theory [18] and quasiparticles in the CF pairing theory

« Edge states
Edge states in the fractional quantum Hall systems are believed to be the chiral Luttinger liquid [50]
How about edge states of the CF pairing state? From edge states, we can expect to extract some
important information about the nature of the bulk state

e What is the effect of the impurity?
To discuss the stability of the quantum Hall effect by CF pairings, we have to take into account the
effect of impurities. Impurities cause some pair-breaking effect in the CF pairing state. The important
question that why the FQHE at even denominator is fragile has something to do with it

« How can we get the phase diagram in bilayer systems?

Experimentally the phase diagram at » = 1 in bilayer systems was obtained by Murphy et al. [49]
Though we have presented the condition for the interlayer separation in Sec.4.6, the whole condition
which includes also the interlayer tunneling has not obtained. However, we have derived the ground

state wave functions. 1f we calculate the ground state energy then the phase diagram will be obtained

Recently, the v =

2 state has been reconsidered in Refs.[51,

2.53]. All these numerical works concluded

that the » = 5/2 state is not a singlet d-wave pairing but a p-wave pairing state. The p-wave pairing state
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discussed in chap.3 is related to this problem. If the effect of the filled Landau levels and that of the tilted
magnetic field [54] are understood and we take account of them in our theory, the long standing mystery of

2 will be solved
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