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Chapter 1

Introduction to Quantum Hall Effect

1.1 QHE in Single-layer Systems

The two-dimensional interacting electron system is the one of the most. attractive problems in condensed
matter physics. The quanLum Hall effecl (QHE) is Lhe example of it [1, 2J. The QHE is
observed uneler the strong magnetic field perpendicular to plane of eled.rons. \Vhen we rnea':iure the
Hall resistivity Pxy with varying the external magnetic field, there appear plateaus around points of rational
Landau level fillings II, I and the value of Pxy is equal to (l/v)(h/e'2), where It is the Planck constant and
e is the elementary electric charge. On the other hand, the longitudinal PIX goes to zero around
these plateaus. Therefore, the Hall conductance a xy is quantized in units and the coefficient of it is
the Landau level filling fraction v, that is,

uxy = -v7; (1.1)

Astonishingly th€' Hall conduct.ance is independent of the detail of samples and has a universal value.
At first the quantum lIall effect was discovered at integer Landau level fillings[3]. It is called the integral

quantum Hall effect (lQHE). An improvement of samples in GaAs heterojunctiolls reveals this en"ect at
fracLional Landau level fillings [41. Il is called Lhe fractional quanLuIl1l1al1 effecL (FQIIE). The IQIIEoccurs
II'lih Lhe filled Landau levels and FQIIE occurs lI'iLh Lhe parLially filled Landau level.' The Lheory of IQIIE
usually neglects thc effect of interactions on the assumption that electrons in filled Landau levels are inert
and we focus on the iIJ1purity en"eCL. On the other hand, the interaction is considered to be essential ill F'QHE.
Up to now, we do not have the unified tlleory of IQIIE and f'QJ-IE. However, in real experimental situation,
the cnergy scale of Lhe Coulomb interaction and the cyclotron energy arc almost t.he same. Thcrefore, we can
not neglect the Coulomb interaction. In the following, we do not discuss IQIIE allY more and concentrate
on FQHE.

1.1.1 FQHE at 1/ = 11m (m = odd)

The rQII E is observed mostly at Landau level fillings with odd integer denominaLor Especially thc stales
at v = 1/171., where m is an odd are t.hc funclamental states of F'QIII~. The undcrstanding of thc
f'QjJ E at these filling fractions by Laughlin [5]. IIc obtaincd thc ground state wave function b)
a variational method and showcd that the ground stale is incompressible alld quasiparl.iclcs have fractional
charges. Thc groLllld slatc of F'Q"I~ is gi"Cll by

(U)

where::j = Xj + iYj is the coordinatc of the j-th electron confined in tile J;y-plane and Cn =~ is the'
magnefic IcngLh. Here the applied external maglletic fi{'ld is assumed to be -lJc: Wilh Cz, heing lhf' unit

1011 ("ouilling lhc j,8Ildalllc\'cl filling factor, it j" a....~lIll1cd lhat spillS ofclcclrOIl$ arc f,dl.\
2\Vhcn wc disCll.sS the filling of 1,8ndilll !l"'cl, we IJlIplicilly !\.sStl1l1C lhc c:.:islencc of Landau



1.1. QHE IN SINGLE-LA.lTRSYSTE.\lS
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Figure 1.1: The interchange of two composite particles (left figure) corresponds to that one composite particle
moves around another composite particle (right figure)

vedor of the =axis. The ground state described by this Laughlin wave function (1.2) is an incompressible
liquid, which is the most important nature of quantum Hall liquids. Excitations above the ground state
described by Eq.(1.2) are not usual ones. Quasiparticles have fractional charges and obey the fractional
statistics. These fractional charges are recently observed by the shot noise experiment in a quantum point
contact [6, 7J.

Next we discuss the effective theory of the fQHE. The key of it was found by Girvin and MacDonald
[8J. They showed that Laughlin wave function (1.2) has the off·diagonallong range order (ODLRO), which
characterizes phenomena such as 5uperfluidity and superconductivity. Bose fields which have this ODLRO
are composite bosons [8, 9, 10J. The basic idea of composite particles is the following. The fact that the
spatial dimension of the system is two make it possible t.o change the st.atist.ics of elect.rons by mapping t.hem
int.o part.icles aUached t.o fictitious fluxes. \Ve call t.hem composite part.icles. The direction of fluxes are
pcrpendicular lo the plane. \Vhen we interchange the position of two neighboring composite particles, they
obtain the Aharonov-Bohm phase caused by these fictit.ious fluxes. Let us consider the composite particle
aUached to moo fluxes with charge e, where 00 =ch/e is the flux quantum. The Aharonov-llohm phase at
interchanging the position of lWo composite particles are gi\'en by

~ r dr· a = rr x m.
fie Jc

(1.3)

The path C is shown in fig.1.I, and a is the Chern-Simons gauge field, which is the gauge field for fictitious
flux. The phases caused by interchanging two panicles are this Aharonov-Bohm phase and lhe statistics of
composite particles. As the original problem is the electronic problem, that is, fernlionic problem, the lotal
phase must be odd times :rr. Therefore, the problem is mapped into composite !.>osons (ferrnions) if choose
In as odd (even) integer

For fractional quantum lIall systems at II = I/m, where m is an odd integer, we map electron systems
into composite b05on5 wilh 111 fictitious fluxes. III that case, we have 111 fictilious fluxes and m external
fluxes per particle. \Vhen we choose the direction of fictitious fluxes as the inverse direction of thc cxtcrnal
magnetic field, the Chern-Simons gauge field completely cancel the external magnetic field at mean ficld
level. Therefore, wc have thc two-dimensional boson system ill the a!.>sence of the external magnetic field.
The ground state of this bose system is cxpccted to be the supcrconducling slate. III Fig.1.2, we show that
how we can understand thc quantum lIall eflcct by the superconductivit.y of compositc bosolls[iO]. 13ecause
of the fictit.ious f1uxcs of composite bosolls, the supercurrcllt of them induces t.he transverse vollage drop.
The F'QII E is understood as t.he result. of the cOlllhination of the supercurrcJlt and thc voltage drop. The
boson supercurrent is given by I = -c x dN/dl. The nux currcnt is given by Iflu, = (l/v) x .po x dN/dl.
Therefore, the voltage drop is givcn hy

As a result we obtain,

I I"
II = -~ X Inux = -;; x C2 I.

I II
nil = -;; x ~

(1.'1)

(1..;)



1.2. QHE 1:'1 BILA YER S\"STE.\fS

Figure 1.2: The quantum Hall effect caused by the 5llpercondueting current of composite bosans.

1.1.2 FQHE at v = m/(mp + 1) (p = even,m = integer)

The FQHE is also observed at olher odd denominator filling fraclions:

m
v=--,

mp+l
(16)

where m is an integer and p is an even integer. These stales are understood by Jain's composite fermion (CF)
scheme (11J. In his theory, we map a system of electrons into one of composite particles with even number of
fictitious fluxes. Even number of Ouxes do not change the statistics of particles because the Aharonov-Bohm
pha.'3c caused by them is 7r x(even integer). Therefore, the statistics of them corresponds to that. of electrons,
that is, fermion. ""hen we map the system of electrons into one of eFs by attaching 1J fluxes, t.he effective
magnetic field for ers is given by Beff = B - POoP, where P is the average of particle numbers. The effective
Landau level filling fraction of eFs is given by

(1.7)

Therefore, the FQIiE al v =lII/(mp+ I) corresponds to the IQli8 of crs with m filled Landau levels. The
effective theory of these states was constructed by Dlok and \\'en [12]. To get it, they performed two singular
gauge transformations. One is from electrons to CPs. Another is from eFs of 171 filled Landau levels to
composite bosons of 111 species. Here one flux are attached to each boson. As a result, the system of electron
is cast into the one of bosons. The attached fluxes cancel the effective external magnetic field of CPs. These
bose fields are expected to be the superconducting stales at mean field. Therefore, also at v =111/(711P+ 1),
the FQIJE is understood by the superconductivity of composite bosons.

Basically, the quantum lIali effect at odd denominator fillings is understood by the superconductivity of
composite bosons.

1.2 QHE in Bilayer Systems

The QHE is also observed in bilayer systcms [13]. The advantage to investigatc such a systcm is that we
have many parameters to conI rol it. In Pig.l.3, we show the setup of bilayer systcms. \\'(' have pararneters
to control the systcm: intcrlaycr separation d, interlayer tunneling t and Landau level indices for each layer
Furthermore, we call apply a different electric field for cach layer. In the following, we focus 011 thc casc of
VI =1/2'

The ground state wave function is well understood in bilayC'r systems. III the absence of all inlerlayC'r
tUllllcling and an appropriate interlayer separation, the ground st.atc of the system is wcll described by the
Halperin (nt, HI, n) wa\'c functions [ill}:

l.1/ 1Il1ll11 (:::~ ,:::J, . ,::: I~; ::: i ' :::J, ", =I~I)

= D(:,I - :J)'" D(:! - =J)'" IT(:! - :J)" ex" [- ~;iJ ~(I:J I' + I:J I')] . (18)



1.3..\!)·STERY OF II =5/2 STATE AND PAlRlNG P1CTURE OF FQHE
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Figure 1.3: The setup for the bilayer system Contrary to single layer systems, we have additional parameters
to control the system" the interlayer separation d, the interlayer tunneling l and the Landau level filling for
each layer

where r(l.) is the index for upper (lower) layer. The total Landau level filling is related to m and n by
II = 2/(m + n). Equation (1.8) is an extension of the Laughlin wave function (1.2). Yoshioka et a/.
calculated the overlap between the ground state wave function of a finite system and the Halperin (m, m, 11)
wave fUllction (1.8) with changing the interlayer separation d in the absence of the interlayer tunneling [15]
For II = 1/2, the ground stale of a finite system is well described by the Halperin (3,3,1) wave funcLion
around the region 1 < d/eB < 2. For II = J, the Halperin (1, I, I) wave function has good overlap with the
ground state of a finiLe system around 0::; d/eB ::; I.

Conlrary to single layer sysLems, the FQHE is observed al II = 1/2 [13J. However, it is understood by
extending the Laughlin wave function. In fact, as far as we concern the quantization of the Hall conductance,
we can deal with all of the bilayer systems by composite boson theory [16, 17, 18J.

1.3 Mystery of 1/ = 5/2 State and Pairing Picture of FQHE

As we have seen in Sec. I. I, FQII st.ates with odd denominator Landau level filling fract.ion arc well under­
stood. However, \I"illetl ef al. discovered the F'QHE at v = 5/2 in 19 7 [19}. ConLrary to the well-understood
F'QII states with odd denominator filling fraction, this state has even denorninator filling. The theory of the
FQII E in single layer systems, such as Laughlin wave [unction, the composite boson Chern-Simons gauge
field theory and Jain's CF theory failed to understand the FQHE at v = 5/2. From the view point of the
Chern-Simons gauge theory, we cannot cancel the external magnetic field by a flax attachment as far as
we adopt composite bosens. To cancel the external magnetic field at evell denominator fillings, we Ileed
composite particles wilh even number fluxes, that is, CFs.

In addition to the fact that the denominator is all c\"cn integer, we must take into accollnt thc effect of the
filled Landau levels to understand the II =5/2 state. The II =5/2 state has one filled Laudau level of spin
1 and that. of spin I because of lhe slllall g-factor in GaAs samples. Thereforc , it is thc sccond Landau level
which is partially filled. On the other hand, Lhe II = 1/2 state has no filled Laudau level and the II = 3/2
stalc has one filled Landau Icvcl. Howcver, t.he F'Q1I8 at f/ = 1/2 and /1 = 3/2 havc not be-cn observed
Therefore , Ihe theory of v = 5/2 Illllst be able to explain t hc rcason why wc do not obscrve the PQII Eat

v = 1/2 aud II =3/2 but do at 11=5/2.
To understand the II = 5/2 statc , we need 1-0 seek all alternative pict.urc of t.he quantulll IIall eITect.

Haldanc and Rezayi attacked the II = 5/2 problem [20]. The effect. of the second Landau levC'1 was taken into
account as the change of Ihe pseudo potential [21]. The pseudo potential of the second Landau I('\·cl fol' pairs
with zero relativc angular 1110Jl1elllllJll is rcduced from that. of the first Landau le"cl. For t.ll(lt rcasOIl, t.hey
proposed the hollow corc model for the II = 5/2 staLe and concluded that the ground slate of tltc SystClll is
the spin-singlet d-\\'iH'(' pairing of crs by a lllllllerical analysis,3

JThollgh then' arc sco1l1c wod.:s on the tllcol'y or t!le II = 5/2 slale, stich;\:> lIon-Abdian ('!lel'll-Simon ... gaugf' thf'ory {22] ilnd



1.3..I1YSTERY OF 1/ =5/2 STATE A.VD PA1RiNG P1CTURE OF FQHE

From the theoretical view point, the existence of the QHE caused by the pairing of CFs is seemed to be
the natural consequence. The relation between the QHE caused by composite bosons and the QHE by the
pairing of CFs is analogous to the one between the superfluidity of 'He system and that of 3He system [24].

The pairing picture of the quantum Hall effect was also developed [25J in bilayer quantum Hall systems at
1/ = 1/2. In this system, as numerical works support (15, 26J the ground state of the system is well described
by the Halperin (3,3,1) state [14] in the absence of an interlayer tunneling:

lJ1 331 (zl.::J . .. .,:~,;=;'=J, .",=A,)

=II<=1 - =})3 IT(=! - z})3 II<=1 - =})' exp [- 4:' L(I=JI' + I=JI')]. (1.9)
1<; l<} I,} B )

On the other hand, the Pfaflian state [27J is proposed in the strong tunneling limit (28, 29J:

WPfaffian{ZI,.!2, ",=N)

= Pf(~) IT(=, - =j)'exp (- e
l
, LI=,I') ,

-i -j i<i 4 B j

where ::j = ::J = z} and
N

Pf(M'j) = L (-I)P IT Mp"_"p,,.
PE1hN k;::;]

(110)

(1.11)

flo showed that both the (3,3, 1) state and the Pfaman state belong to the family of triplet p-wave pairing
states of CPs based on an analysis of wave functions [25). His second quantized wave function is given by

(1.12)

where \ is the matrix for pseuJo spins (layer indices) and 10) is the vacuulll slate. For the (3,3, I) Slate,

\ is given by [~ ~]. For the Pfaman state, \ is given by [:j~ :j~]. 1I0we"er, his analysis was

limited to the ground state wave function and the origin of the pairing interaction was not discussed.
\\Oith regard to the pairing interaction, Greiter, \\'CII, and \\'ilczek (G\\'\\') derived such interaction for

spinless fermions, which leads LO the p-wave pairing [28, 29}. However, G\\"\V used an approximation that
the number of CF's fluxes is small and they retained first order term for the Chern-Simons gauge filed and
neglected the quadratic term and the Coulomb interaction term_ Therefore, how neglected terms affect the
pairing state \\-as unclear and the condition of quantum lIall effect was not discussed. Bonesteel el al. [30,31)
studied an interaction between CFs mediated by the Chern-Simons gauge field fluctuation. Though they
retained the quadratic term of the Chem-Simolls gauge field, they used a random pha'5e approximation to
obtain the eOective interaction and the resulting one had a very complicated form. Therefore, they discussed
only that there seemed to be some instability toward pairing of CFs_ Up to 1I0W, there has been 110 sufficient
theoretical foundation to treat the pairing of ers alld the application of this picture to quantum lIall systems
has been limited

III this thesis, we present the pairing theory of CFs. To begin with, we introduce extended CFs by a
1I01l-unitary transformation and derive the lIamiltonian. \Ve analyze this Hamiltonian b.y the pairing ap­
proximation and discuss the pairing state in single-layer systems and bilayer systems. Filially, we sllllllllarize
theresull.s

a sccllario of COlldcllSiltioll of Sk.vl"llliol\s [23J, tll('I"C al-C 110 conclusive work OIl lllf' 1/ = S/2 prol,lclll



Chapter 2

Extended Composite Fermions

In this chapter, we introduce extended CF operators by a non-unitary transformation. To discuss general
systems, we consider n species of electrons. \\'e set 11 =1 for spin-polarized single-layer systems and set 11 := 2
for spin-polarized bilayer systems or spin-un polarized single-layer systems. The Hamiltonian for extended
CPs is derived in this chapter. \Ve also present a classical picture of the altractive interaction between crs

2.1 Rajaraman-Sondhi Transformation

The mapping from an electron system into all extended composite particle one in the second quantized fOfm
is given by

where

{

<1>0 (1') =e- 1.(1')';'0 (1'),

iTo (1') = "~ (1')e1.(I'),

Jo (1') = L I\'o~ Jd'1"p~ (1") log(: _ :') _ (\ 1:1',
~ 4 8

(21)

(2.2)

wilh ::: = J: + i y, f8 = .jChfei3 being the magnetic length and ]\" being a n x 11 symmetric matri.x[32, 33]
Here we assume" x A = -8(8 > 0) for an external magnetic field.' Operators 90 (r) and iTo (r) satisfy
the following relations:

(2.3)

From Eqs.(2.3), we see that if wc sct the components of the matrix 1\' as evcn integers, we have fermions.
On the other hand, if we set them as odd integers} we have I>OSOIlS.2 To show these relations , we set

Difrercnliatillg peA) with respect to the variablc A, wc ohlain

~ F(.\) = -Xop log(: - :')F(.\),

(VI)

(2.5)

whcl"C' w(' havc lIscd

(2.6)

I If we: have \7 x A _ +H, wc 1llllSI replacc : wilh :" =J' _ j

2 III Lilay<'r ~yslellls, it ;'i possilJlc r hal parI iclc~ havc f<'nni
laycr, i:llld "i,c versa, Tlri" situatjoll i~ pnssiLle, for illslanc(' ill

ill lhe "anl(' la)'('I" and boson slatislic~ in the OPPOSilC
Ilo\\"('\'cl", we do not ('oll"ider "u,ll CaSCS



2.2. HA.\fILTONl.4N

(2.7)F(A) = "'~ (r') (= _ =y>.K••.

Taking into account the initial condition F(O) = t;J~ (r'), we solve the differential equation (2.5). The solntion
is given by

Therefore, we obtain,
e->'l.(r)tJ~ (r')e>'l.(r) = rb~ (r') (= _ =,)->.K••.

Taking similar steps, we obtain

(2.8)

(29)

Using Eqs.(2.8), (2.9) and
[Ja(r),Jp(r')] = 0,

which is shown by using the relation [Pa (r), Pp (r')] = 0, we obtain

(2.10)

9a (r) "p (r') e -l.(r).pa (r) l1'~ (r') eJ .(r')

= oapo (,. - r') - e-l.(r)rf!~ (r') V'a (r) e1 ,(r')

= oapo(r-r')-(-1)K·'''p(r')9a(r) (2.11)

This proves the firs\, equation of Eqs.(2.3). Other two equations arc proved by taking the similar steps.
The case of n = 1 and 1'·11 being odd integer is analyzed by Rajaraman and Sondhi [321. They obtained

the Laughlin wave function within a mean field level. \\'hen we use the usual Chern-Simons singular gauge
transformations, we must take into account a Gaussian flucluation to obtain the Laughlin wave funclion[IO].
The case of 11 :;;: 2 and all components of /\"ofJ being even integers was considered by Rajaraman [33]. lie
analyzed bilayer systems following the theory of Lopez and Fradkin [34], where the QII E is understood as
the IQII E of CFs.

In these works, the interaction term between CFs was 1I0t discussed. \Ve derive it in the next section

2.2 Hamiltonian

Now we derive the Hamiltonian for the extended crs. In this section, we focus on t.he kinetic energy term
and neglect t.he Coulomb inleraction. The second quant.ized kinetic energy lerm for n species of electrons is
given by

" I J 'HO=L2 d'rt;J~(r)(-ill'\+=A)-t'a(r),
0;::1 l11b C

(2.12)

where mb is a band mass for elcctrons. Performing the extended cr transformalions' Eqs.(2.1)' we obtain

HO =L ~Jd'r"a(r) (-ih\1+ =A - ihJa(r))' 9a (r).
0' 2mb C

(2.13)

~ow wc introducc t.he Chern-Simons gaugc field by

) ell '" . J" (') I ( ,"a(r = -;- LJl\o~ d-r-pp r \1m og =- =).
~

(2.1~)

Takillg t.he rotation of <to' (r), \\'c obtain

'\ x "0 (r) = 1>0 L l'·a~Pp (r)
p

(2.15)

This is the r(-'lalioll betwecll the fictitious fluxes and the particle dCllsily. Using the field a 01 we obtain

~A-i"'\J,,(r)=~ {(A+",,)+ic,x(A+"a)}. (2.16)



2.2. HA.\lILTONIAN

In deriving this equation, we have used Cauchy-Riemann relations. Furthermore, A +ao is transformed into
the following form:

90 (r)

"'0 (r)

A+ao = ~ L!';oP Jd'r'6pp (r')vlmlog(z- l)
2". P

= oaO'

Using the field oaol the Hamiltonian is given by

HO=Hg.. +VH+VNH ,

where

;;Jd'r "'0 (r) (-2~,v') 90 (r),

L-2e Jd'r"'0(r){-il,V,6ao}90(r),
a l11.b C

L -2e Jd'no(r) {-ihv,ie, X 6ao}1>0(r).
Q nlb C

Here, {A, B} = A· B + B . A. Note that when we introduce the current operator for Cl's:

j;" (r) = 2,::,; ["'0 (r) v1>o (r) - (v"'o (r))';'o (r)J,

Eqs.(2.20) and (2.21) become

Performing Fourier t.ransformations:

~ L c,kr9ko '
k

~ Lc-ik-l''''ko'
vO k

~Leiqr6aqo,
.. q

where 0 is the arca of the system, Eqs.(2.19), (2.20) and (2.21) become

11 21.;2

L~;rko¢kol
ko

2h L L !';opV~~.k"q"'k,+q,0"'k,.p9k,+q,p9k,,0'
cr/3 k.,k::l,q;to

2h L L 1\·opVk.~k"q;rk,+q,0"'k',P1>k'+(I.p9k,.o'
uf3 kl,k~,q;to

where

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.2:3)

(2.2·1)

(2.25)

(2.26)

(2.27)

(228)

(2.29)

(2.30)

(2.31)



2.3. MEANING OF EXTENDED COMPOSITE FERMIONS
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Figure 2. J The most fundamental llIotion in quantum Hall systems

VNH k"k"q =_*. q. (k~,- k,).

Finally, the Hamiltonian for extended eFs is given b}

(2.32)

HCF = 71 2 k 2 ,L 2m.b irko lflkQ
k.

+~ 2::: 2::: 1'·.pVk"k"q"k,+c/.."k"p¢k'+ll,P'h"., (2.33)
.p k"k"qto

where

Vk"k"q =V'\"k,.q + VNllk"k"q (2.34)

Note that we do not apply any approximations to obtain this Hamiltonian. However, there is the 110n­

Hermitian term VNH because we perform the non-unitrary transformation
In the next section, we explain the reason why we introduce the extended eFs.

2.3 Meaning of Extended Composite Fermions

To discuss the meaning of extended composite rermions, OIlC important question must. be considered \\'hat
is the most fundamentalmotioll in quantum Hall syst.ems?

It is a well-known fact that. if we have a charged particle in the magnetic field B and electric field E
where B is perpendicular to E, it goes along t.he direction of E xB. Theil, how about two charged electrons
interacting by thc Coulomb int.eract.ion in l.he magnet.ic field? Let us consider a syst.em of t.wo electrons
confined in t.he xy-plane and subject.ed to the magnetice field -Be~. If we takc into account Lhe Coulomb
interaction between electrons, each clcct.ron feels electric field E caused by another electron. TlJereforc, each
electron moves around another electron (sec Fig.2.1). This motion is the most fundamental onc in quant.um
Hall In fact, the Laughlin wave funeLion (1.2) is const.rueLed of this correlation only. The Laughlin

is of JasLrow typc wa\'c function alld is only constructed of thc two-body correlation of relati\'c
anguli'll' momcntum HI, wherc m is relat.ed to the Landau IC\'cl filling fract.ion by 1/ = 1/111. Furthermorc, ill
t.his schcme t.he importance of t.he Coulomb interaction in quantum Hall effect is llnturally understood

The difficulty of the quant.um Halt efred is caused by this correlat.ion effect. I:":very pair of electrons has
strollg correlation. The Chern-Simons gauge theory is a method to take int.o account such a correlal ion efr(:ct.
The phases caused by above correlation efrcct are taken into account. by replacing it with AlJarollov-l1ol11ll
phase caused by fictitious fluxes. After I,he Chern-Simolls singular gauge Lral1sformat,ion, the resulting
cOlllposite particlcs do lIot experience sllch a t.wo-body correlat.ioll cflcct allY morc. Howevcr, the Ils\J<i]
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Chern-Simons gauge theory only takes into account the phase factor of the two-body correlation. Therefore,
the Hamiltonian has unexpected terms caused by remaining factors. In fact, to discuss interactions between
ers we are forced to adopt some approximations.

If we perform a transformation which takes into account the two-body correlation effect perfectlY1 we
expect that we will have a simple form of the Hamiltonian. The transformation given by Eq.(2.1) is such
a transformation. In the following, we explain that point. To simplify the discussion, we consider spinless
crs. Suppose a state for N particles and denote it as 1'lI}N. If we use the field operators of electrons, the
1'lI},v is described by

I'll}", = ~Jd'r,d'r, .. d'r,vwe,(r" r" .. ,r,v)v1(rtlw'(r,) .. ",t("N lIO}, (2.35)

where Wel(l'l, 1'2,"', rN) is the first quantized wave function for electrons. On the other hand, if we use the
field operators of extended crs, the Iw},v is described by

where wedr], l':h . ,l'N) is the first quantized wave function for extended eF's. Let us find the relation
between'lle,(rl,r" ',r,v) and Wed,.",.,,···,rN) [32, 33]. Using Eq.(2.8), we obtain

,pI (,., )eJ(r,)1b1 (r,)eJ(r,) ...",1 (rN )eJ(r,,) 10)

II(oi - OJ)-,,,t(rd,,,t(r,) .. ",1('·,v)eJ('·,)eJ(r,) .. eJ(r")IO}
i<i

II(oi - oj)Oe-<i;; L~=, 1',1'1/,I("d1b'(r,) . ",1(rN )IO}, (2.:37)
i<i

where we have set ],'11 = if> and used eJ''',)eJ!,.,) . eJ(r'~)IO} = e-~ L;~, I"I'IO}. Substituling Eq.(2.37)
into Eq.(2.36), we obtain

I\II}", = ~Jd,,.,d"" .. d'r.vII(oi-oj)Oe-~L~=,I',I'wedr",." ",rN)
i<i

(2.38)

From Eq.(2.35) and Eq.(2.38), we obtain

w.,(r, ,"" ",rN)= II(=i-oj).e-<i;;L~=,I',I'wer(r",." ",rN) (2.:39)
i<J

Thereforc, the non-unitary transformation (2.1) perfectly takes into account thc two-body correlation effcct.
We can derive the Eq(2.39) in general cases [33J. In that case, we obtain

2.4 Pairing Interaction

Aftcr taking into accollnt thc Illost fundalllf'ntal two-body correlation cffect" what is thc rcmaining effect
bctwecn compositc part.icles? Tllc answer is lhat t.he fluctuation causes significant eflecls. In focL. as wc sec
in the following compositc particlcs feci an atlraclive intcraction bctwecn tlICIll. lIerc wc prcsent a hcuristic

explanation of the pairing illlrractioll. To simplify the discussioll, we [OCIIS 011 the casc of olle COlllpollC'nt
eFs. As we havc seen ill Scc.2.2, Eq. (2.23) has the fOrlll of tile minimal coupling bct\\'cclI chargcd particles
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and the gauge field. Therefore, VII causes an interaction like the Lorentz force. The equation of motion
derived from Eq.(2.23) is given by

m.ftv = -ev x (v x oa)

= -eoo9v x <,op. (2.41)

Equation (2.41) shows that a CF passing by another CF in the counterclockwise direction from the view
point at positive .:-a.xis feels the attractive force toward it because fJp > 0 around the composite particles.
On the other hand, if a CF passes by another CF in the clockwise direction, the repulsive interaction is
caused between them. For that reasoll, a pairing state with positive angular momentum is expected to
exist. Xote that the angular momenturn of this pairing state and that of the cyclotron motion is in the
opposite direction. This is naturally understood as in the following. Around a CF, the cancellation between
the external magnetic field and the fictitious fluxes is not complete and the latter is larger than the former
Therefore, a CF which comes around another CF feels the magnetic field in the direction of the Chern-Simons
gauge field. However, \I x a and \I x A are in the opposite direction. Hence the cyclotron motion caused by
the applied external magnetic field and the cyclotron motion caused by the Chern-Simons gauge field are in
the opposite direction.

Note also that the attractive interaction is relevant only in the case of crs. Because of the Fermi
we always have particles with nonzero velocity. However, in composite boson cases, this attractive

is no more relevant, when the bose condensation occurs
Let us examine the effect of VNfI by calculating the force caused by VNH . or course it is not a real force

but an imaginary force. It is obtained by replacing 6a with ie z x 6a in Eq.(2.41). The resulting imaginary
force is given by

F;magoo",y = -ie(v x <,)(\7. oa). (2.42)

\Ve find that Fimagmary is equal to zero because we obtain \" 6a = 0 from Eq.(2.17). \Vithin a classical
analysis given here, V N /l seeillS to have no effect to the system.



Chapter 3

Pairing States In Single-layer
Quantum Hall Systems

In this chapter, we discuss the possibility of the quantum Hall effect at v = I/m t where 111 is an even integer,
in single-layer system. Though the quantum Hall effect is noL observed in this systcm(35]' "he possibility of
the quantulll Halt effect in it is still a controversial problem[36]. Furthermore, this problem is closely related
to the /I =5/2 state since the difference bel-ween them is the existence of filled Landau levels

\Ve analyze the Hamiltonian obtained in the last chapter by the pairing approximation and derive gap
equations for the pairing state. First, we consider the effect of the pairing potential V H . In thal case, we
find that the ground state is a p-wave pairing state of eFs. Next we t.ake int.o account VN

/I and discuss
t.hat it is irrelevant for pairing SLat.es. The effect of t.he Coulomb int.eraction is considered and we derive
the condition of the pairing state. \ Vith regard to the real spin degrees of freedom, we show that the spin
polarized state has lower energy than the spin un polarized pairing state.

3.1 Hamiltonian

For spinless fermions, we sel 11 = 1 ill Eq.(2.:33) and choose an even integer for [\"11 = <;> The form of lhe
Coulomb interaction between electrons are not. changed by the mapping from an electron system 1.O a CF'
system. The interaction between CFs derived from the Coulomb interaction is given by

V C = jd'rd'l.' ~6p(I')6p(r').
<II' - 1"1

(3.1)

where < is a dielectric collslallt and 6p(l') =Vi (I) 1/J (1') - P = "(1') 0 (I') - p.
To discuss the pairing state, we concentrate on the interaction for the pair with zero total momentum

Then we set q + k, + k, = 0 ill Eq.(2.33). The lIamiltonian is given by

11 = L<k"k<?k +~ L \'k,k,"k,"-k,<?-k,<?k"
k k,~k,

is the two-body interaction for zero total lllomentum pairs. Here,

12

(3.2)

(3.:3)

(3.-1)
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3.2 Pairing Approximation

To discuss lhe pairing slales, we apply lhe pairing approximation lo the Hamillonian (3.2):

H '" I:~,irk9k + ~ I: Vk,k, [(irk, ir_k.l¢_k,ok,
k k,#k,

+irk, ir_k, (9_k,9k,) - (irk, "-k,}(¢-k,¢k,)]·

Now we introduce the gap functions:

~k == -~ I: Ih,(¢_k,9k'),
k'(#k)

3"k == -~ I: Vk'k(ir_k,irk'}·
k'(#k)

Using lhese fields, Eq.(3.5) becomes

11 '" I:~k"k¢k-~I:("k"_k6k+3"k¢_k¢k)+consl
k k

I:' irk[k¢k + collsl.,

k

where Lk' denotes L.l:r>O,k y and

13

(3.5)

(36)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The next step is the diagonalization of the matrix £k. The eigclwalues of the matrix [.k arc given by ±Ek .
where

(312)

This is the excitation energy for quasiparticles. The eigenvector for the eigenvalue Ek is given by

(3.1:3)

and the eigenvector for the eigenvalue -Ek is given by

(3.1~)

The mat.rix r k is diagonalizcd by matrices Uk (lnd Uk:

(3.1.;)
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where,

Introducing the quasiparticle field operators:

we obtain

""" k [Ek 0 ] kIf", L-P 0 -Ek q +const.
k

The fields Pk and qk satisfy the following anti-commutation relations'

As all example we show the first equation of Eqs.(3.23):

{ (z:k 9
k

) I' ("k'Uk') I}
,,",~k k'{'k k'}'S' [. iiUjl OJ, irj

6k,k' LU~jUJ~
J

To find the gap equation, we calculate the value (¢_k 9 k):

III 111(' sam€' way, we ohtain

14

(3.17)

(3.18)

(3.19)

(320)

(3.21)

(3.22)

(3.2:3)

(3.24)

(:J26)

(3.26)
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Substituting these equations into Eqs.(3.6) and (3.7), the gap equations are given by

15

(327)

(328)

(3.29)

(3.30):Ik = -~ L Vk>k ~k' .
2 k'(~k) k'

Though we have derived the gap equations neglecting the strong coupling effect, we take into account it by
replacing the electron band ma;;s mb with the CF's effective mass ill. The determination of it is \'ery Lough
problem. Apparently we cannot apply the strong coupling theory of BCS[37) superconductivity because we
do not have any cutoff energy such as the Dcbye energy. 'Are have no guarantee of applying the Migdal's
theorcm[38] and must. take into accOLint all order of diagrams to calculate /\1. Therefore, we Lake it as the
parameter of our theory. However, it is easy to estimate the effective mass /II in an extremal situation, such
as the strong magnetic field limit. or the weak magnetic field limil. As we will show later, we estimate it in
such cases.

Now we discuss the pairing state of the ground state. To solve the gap equations (3.29) and (3.30), we
set

tlk =-"e-'''k (3.31)

:Ik =Ll,eilBk, (3.32)

for the i-wave pairing state. Obviously this choice is not general one !Iowc\'er, as shown ill Sec.2.4, the
chirality of the pairing statc is fixed by the direction of the Chern-Simons gauge flux. In fact. we show
ill the following, the attractive interaction is caused only in the case of e> O. Therefore, it is enough to
consider the pairing state by the form of Eqs.(3.31) and (3.32). Substituting I hem into Eq.(3.29) and (3.30)
respectively, we obtain

-" =!- roo dk'k'~" [I;' (A) + 1;""(,\) - If U.k')] ,
2M )0 E"

:I, = 29 roo dekE'~" [I:',(A) + I,,}'(,\) - I:, (k.k')] ,
M)o J"

where A= (k 2 + k'2)j2kk' and

(3.33)

(3.:J I)

If' (,\l (335)

(3.:36)

(3.:31)

III the following, wc

(i)l'or C > 0, we scI.
Eqs.(3.:J5) and (3.36) in I.he cases of (i)C > 0, (ii)t = 0 and (iii)C < 0
= .: and we obtain

I"(A)= 1 ~~='-I( Ie br; =' - 2,\= + I '
(3.:J8)
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where C denotes the path along the unit circle in the counterclockwise direction. The pole of the integrand
in Eq.(3.38l is =0 =A - JI2=1 =k</k> where k< (k» is larger (smaller) value of k and e. Therefore,
we obtain,

On the other hand, we obtain

- k22~k~'2 t ;J;; =2 _ 2~z + 1='

k
2

_ e
2

(k<)'
- k~ - k~ k;

{

(k'/k)' for k> e,

-(k/e)' for k < e

(ii)For (= 0, Eq.(3.40) is also applicable in this case With regard to 1r(A), we obtain

(iii)l'or ( < 0, we obtain

_( (' ~~e-il'I')'Jo 2/TL). - cosO

-(~)',

(339)

(340)

(3.41)

(342)

(3~3)

Table 3.1 sUlllmarizes above results. The atLractivc interaclion occurs for the case of l > O. This is consistent
with the discussion in Sec.2.4. Before analyzing the gap equations and the pairing Slates, we calculate the
ground slale energy for pairing states.

3.3 Ground State Energy

Within the pairing approximatioll, the ground stale energy of the system is given by

(If) '" L:~dlTk6k)+ 2h L: l'k,k,(lTk, IT_k)(6_k,ok,)'
k k,tk,

Table 3.1: The SUl1llllary of function I{' (Al and It''' (A).

(344)

(>0 « 0

1f'(A) U'</k>J' - (k</k»'

1[''' (A) { (k'/k)' for k> k' (k' /k)I'1 for k> k'

- (k/k')' for k < k' - (k/e)I<1 for k < k'

I{'(A) +1r"(A)
2{k'/k)' for k > k' 0 fOi k· > k'

0 fOi k < k' -2(k/e)' fOi k· < k-'
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For the ground state, we obtain

Substituting these equations and Eq.(3.29) into Eq.(3.44), we obtain

J7

(3.45)

(H)

(346)

For no-pairing states, Eq.(3.46) is calculated exactly and we obtain (H}-;;;,,=o = -A1'u}/4rr.

3.4 Pure Pairing State

To clarify the nature of the pairing state, we neglect the interaction V N 11 and the Coulomb interaction for
a while. As we will see later, VI\" /I term and the Coulomb interaction term causes the pair-breaking effect.
In next sections we take into account them and discuss the effect of the pair-breaking in detail.

3.4.1 Gap Equation

In the absence of V NII term and the Coulomb interaction terlll, the gap equation is given by

-'>k =~1k dk'k'-'>k' (~)' +~ r= dk'k'6. k, (~)'.
2.\f 0 Ek, k 2.\1 )k Ek, k'

(347)

In the absence of \'NJI term, '1"k is the complex conjugate of Ak- Therefore, it is enough to concentrate
on the analysis of Eq.(3.47). The gap equation (3.47) was discussed by Creiter eI a/.[29J in detail. The
asymptotic form of the function ..l,l: is found from Eq.(3.47)·

-'>k - k' for k - +0,

.:lk - k- I for k - +00.

Taking into account these asymptotic form, wc approximatc t.he gap funclion by

(34')

(349)

6.
k
={ (r-'>(klkr)'

(r-'> (krlk)'

for k < kr,

for k > k r

(3.50)

To deterllline the remaining paralllcLcr ..j" we cOllsider Lhc gap equation at k = k r . It is givcn by

~ =l' dx .,."+1 + /,= dx X'-21 '" F (-'> .
¢ 0 v(x' - J)' + -'>'x" , J(x' I)' + 6.'x- 2I ,)

(3 ..;1)

III Fig.:3.1, wc show the gap .6. dependel1cc of 1~(.6.) ill Eq.(3.51) for various r. Tile largest "altle of ....), is
obtained in the case of e= I. Although il i::> 1I0L showll in the figurc, the gap for f?: 7 is lower Lhan tlla{ of
C=: 5. Tahle 3.2 sUIl1J1lrHizcs thc values of ....), for variolls ¢ and e. \Vith allY 9, the largest gap .6. is ohtailll~d
whel1 f = I. FurthC'rlllol'c, t h(' gap .6. grows lip wit h increasing ¢
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Figure 3.1: The gap!;,. dependence of F,(!;") in Eq.(3.51) for various C. The gap J is determined by the
point where curves cross the line given by l/¢. The figure shows the case of if> = 2. The largest gap is given
when e= 1, that is, the p-wave pairing case.

Let us consider the ground state energy (3.46). Substituting Eq.(3.50) into Eq.(3.46J, we obtain

(H) =

(3.52)

To discuss that whether the ground slate is a pairing state or not, we consider the energy difference bet'\-ccn
pairing state and the no-pairing state, that is, 6£ == (H)"" - (H}:-;,,=o' For the no-pairing state, the ground

Table 3.2: The gap J for "arions ¢ and C.

J

3128
.791
'165
.330

9.90:3
2029
U71
.828

lU.I'17
:3384
1.928
1.:J,j8
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Figure 3.2: The energy difference 6E between a pairing st.ate and the no-pairing state. The value of 6E
always has negative values. Therefore the ground state is the pairing state as long as K.J. :j:. O.

state energy is equal to -AIOc}/4;r as mentioned above. In Fig.3.2, we show the gap .6. dependence of 6E
for various e. It is seen that 6E always has negative values and is the monotonically decreasing function
with respect to .6. for any e. Therefore, any pairing state always has lower energy than the no-pairing state
and the larger value of .1 gives the lower value of 8E. Furthermore, the value of ewhich gives the lowest 6E
is e::: I. From the discussion of gap equatiolls, we iJavc found that the pairing state with the largest value
of gap f:J. is f. = 1. Putting it all together, the ground state is the p-wave pairing state of CFs.

3.4.2 Wave Function

Next we discuss the ground state wave function of the pairing state. Setting the ground state as the ket
IGS) , it satisfies the following equations:

LkIGS) = O. (3.53)

Substituting the expression of qk and Lk by fields Ok and Ok, which are given by Eqs.(3.20) and (3.21),
weobtaill

((. + Ek ) oklGS) = -"k"_kIGS),

-"k"kIGS) =- ((. + Ek ) o_kIGS).

(3.5·1)

(3 ..;5)

We can replace 9k with the Grassmannian differentiation 8/iJTik because 9k and 'Tk satisfy anti-commutation
relations [39J. Therefore, Eq.(3.5·)) is transformed into

The solution of Eq.(3.56) is gi,·en by

(
-"k )IGS) = const. x exp -E,"k"-k 10),

Jk +,.

(3;6)

(357)

where 10) is the vacuum slale. I"qualion (3.57) also satisfies Eq.(3.55). Eqnation (3.5,1) and (3.55) hold for
any k. Therefore, the ground state of the system is given by

. [, Ilk ]IGS} =exp I: -,--"k"-k 10).
k Ek +(.

The first qllantized \\'avc fUIlCI.ioll of 1(,'5) for 2N CFs is given by

(3.58)

(010"·'( :2N )¢o,'(=2N- Jl. 00"( =, )IGS)
Pf q,0,·'(=2j-1 - ='j)

A 00,.,( =, - =, )00,·0( =3 - =.,) . Ou,d =,-" -I - =,s), (3 ..;9)
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where A is the operator for the antisymmetrization of functions and the orbital function 90rh (1') is given by

(3.60)

Equation (3.59) is nothing bnt the real space wave function of the pairing state for 2N particles [4 OJ
Substituting Eq.(3.31) into Eq.(3.60), we obtain

(3.61)

where we have used the formula: Jo
1t

dBeix cos 8 cosO = irrJ,(x) with ll(x) being the Bessel function of the
first order For the pure pairing slate, we obtain

0",(1') =

(3.62)

Equation (3.62) has a complicated form but when the condition Lj, = 2 is satisfied and we take the limit
1'kF ex: 1)en - co, we obtain the simple fOfm of it:

(363)

In that case, the ground state wave function for eFs is given by

(3.64)

From Eq.(2.39), the grollnd slate wave function for electrons is given by

3.5 Effect of Imaginary Vector Potential

Let tiS take into account the anti-Hermitian term \rNI/ in the absencc of the Coulomb intcraction. Before
discussing the effect of it, we remark 011 thc rclc\"ancc between V S /1 and the three-hody interaction term in
the usual Chefll-Simolls gauge theory. \\'hen we perform the usual Chern-Simons gauge transformation, the
Hamiltonian is givcn by

II =Jd01' ~t (r) (_~\70) 9(1") + VII + \13,
21T1b

(3.66)

where \,/1 is given by Eqs.(2.:30) alld (2.31) and \'3 is the Ihree·hody pOlential t('rlll, which is given b)

(36/)

On the oliler hand, if \\'{' perform the Hajaralllan·Solldhi's lloll-unit.ary trallSforll1atioll discussed ill chap.2,
the Il~\miltolliall is gi\'C'/1 by

11 = Jd'1" ;"(1") ( __? 1 \0) 0(1") + I,ll + 1""11,
_111&

(3.68)
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where yNII is given in Eqs.(2.30) and (2.32). Comparing Eq.(3.66) with Eq.(3.68), we see that the anti·
Hermitian term V NH corresponds to the three-body interaction term V 3 in the Chern-Simons gauge theory.

The t.hree-body interaction term V 3 was neglected in the analysis of Greiter et ai. [29] because it is
proportional to the square of the number of the Chern-Simons gauge fluxes l which was assumed to be small
in Ref.[29]. Of course the number of fluxes is larger than one. Therefore, we do not have any guarantee to
neglect it. For that reason, we must take into account the three-body interaction term V3 , which is poorly
understood in condensed matter physics

However, as we have shown, the three-body interaction term \13 corresponds to the anti-Hermitian term
Vl'lfl, \Ve can discuss the effect of the former through the latter. The advantages of using V NN instead of
V3 is the following. First, the anti-llermitian term V NH corresponds to an imaginary vector potential

(3.69)

as we have seen ill Sec,2.2, The effecl. of the imaginary vector potential was discussed in the depinning
phenomena of the vortex lines in the superconductivity \.... il.h columnar defects[41J, Therefore, we can discuss
the eO'ecl of it qualitatively by comparing with the depinning phenomena of the vortex lines. Second, the
anti-Hermitian term V NlI is of the two-body potential form. \Ve can take account of it into the gap equal.ions
without any approximations. On the other hand, in the Chern-Simons theory we do some approximations
to include the efrect or y3 [42J

Applying the discussion about the nature of tile imaginary vector potential in the localization-delocalization
phenomena [41] to the cr pairing theory, we understand that it causes a pair-breaking effect. Hatano and
Nelson discussed the Hamiltoniaw

JJ = ~(p+ ih)' + y(r),
2m.

(3.70)

where ih is an imaginary vector potential and \f (1') is a random potential \Vhen we discuss the depinning
of the vortex lines in the superconductivil.y with columnar defects, the imaginary vector potential ih is
proportional to the transverse 111agnetic field H.l' In l.he abscnce of the imaginary vector potential, it is
believed that all eigenstates are localized in two-dimensionalnouinteracting systems[43]. On the other hand,
in a large H.l region that flux lines arc depinned from defects. They concluded that particles arc
localized in the region Ihl < where Ii, is the inverse localization lengt.h, On the other hand, particles arc
delocalizcd in Lhe region Ihl >

Now we apply these results to the problem of CF' In the absence of VNII , or the imaginary
\'eetor potential, we have the state as we have seen Sec,3.4, This state corresponds to a
localized state if we take a as a bound st.ate \Vhen we into account the effect
of \lNII, we cxpect that it causes some pair-breaking effect the no-pairing st.ate, or no bound state,
corresponds to a delocalized stat.e, If we adopt the usual Chern-Simons singular gauge transformation, it
is difficult to capture this effect from V 3 . To deal with the effect of \/3, we need the propagator of the
Chern-Simons gauge field, which is derived from the diamagnetic part. lIowcver, to get it we approximatc
lite action by expanding it with respect to the Chcrn-Simons gauge ficld to the second order after the
llltegl'atioll of the Cf fields and we usc' the approximated form of fermion propagators which is valid in
the IOllg.wave length and t.he low-energy limit. After t.hat, we understand that it callses tile pair-breaking
effect [42]. Bonesteel discusscd the erred of V 3 taking above approximations and concluded that \13 has the
pair-breaking efrect[42]. His cOllclusion is similar to our results. However, the edependence wa~ lost in his
analysis for l he £-wave pairing state, Therefore, the effect of the short-range interaction was o\'erestimated.
Apparently, the drect. of tile 6-flJllcLion like repulsive interaction is weak for the p-wavc pairing state. Fot
that using lI NIl of the Rajaraman-Sondhi's l1on-unitary transformation is mOl"(" sll'aightforward lhan
llsing ill j he usual Chern-Simons t.heof\'.

No\\" we take account of V SII in the g~p equations, Contrary to the llsLJClI Chern-Simons gauge theory,
we need not 10 adopt <lny approximations [:30] because \'1\'1/ is or the t.wo-body interaction fOrlll. \Ve call
lake it into account in llI<.' gap equations directly. FllI'tltertllore', as we will show below, we catl soh'c the
g<lp <.'quatiollS exactly. '1'his is the' mosl remarkable poinl of Ilsing tile Rajaramall-SoJldlli's non-unitary
Iratl~fonllalioll \Vhell we include V NII ill the gap equalions, 111('y arc given by

Q 1k
I.'""k' (k')':'l.k=- dk'-.- - ,

.\1 0 10 k , I·
(:JII)
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- ¢ 100 k'D.., (k)'D..=- dk'---
i\l. E., k'

22

(3.72)

These gap equations are solved exacLly as following. To simplify the form of those equations, we introduce
dimensionless fields D.. = ,pJ(k/kp ) and D.. = 'pg(k/kP), and we obtain

J(x) = 21> rdy yJ(y) (1!.)',
)0 J(y2 - 1)2 + J(y)g(y) X

y(x) = 21> roo dy yy(y) (:.)' .
)x J(y2 - 1)' + J(y)g(y) y

Setting F(x) = x'J(x) and G(x) = g(x)/x', we obtain

F(x) =21> r dy yF(y) ,
)0 J(y2 - I)' + F(y)G(y)

G(x) = 2rjJ roo dy yG(y)
)x J(y2 - 1)2 + F(y)G(y)

Differentiating F(x) and G(x) with respect to x, we obtain

dF(x) .' xF(x)
~ = 21fJ J(x 2 _ 1)2 + F(x)G(x) '

dG(x) , xG'(x)
~ = -2rjJ J(x' - 1)' + F(x)G(x)'

From Cqs.(3.77) and (3.78), we obtain

fx [F(:r)G(x)] = 0

That is, F(x)G(x) =C (constant). SubSLituling it into Cq.(3.77), we solve Cq.(3.77) and obtain

F(x) = const. x [x 2 - 1+ J(x2 - I)' + Cr

(373)

(3.74)

(37-5)

(3.76)

(:3.77)

(3.78)

(3.79)

(3.80)

0" the other ha"d, x = 0 in Eq.(3.75) we find 1"(0) = 0 Substituting it into l'q.(3.80), we find
C = O. '\s a result, F(x) by

{

0
F(x) =

const. x (x' - J)9

for x < I,

for x> I
(:3.81 )

0" the other hand, G(x) = 0 fol' J: > 1 because F(x)C(J') = 0 For.c < J, frolll Cq.(3.78) lVe obtain

The solution of tltis equal ion is gin'l) by

C(x) =cousl x (I - x 2 )•.

Finally, the functiotls J(.r) and 9(x) are gi"Cll by

(;)82)

(3.8:))

fOI J' < I,

[01 r> I,



3.6. STABILITY OF PAIillNG STATE

{

Cgx'(1 - x')¢
g(x) =

o

for x < 1,

for x> 1,
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(3.85)

where C/ and Cg are constants. As mentioned above, f(x)g(x) = 0, or KkL'.k =0 for any x. That means this
slate is a gapless state. However, each of ~k and KA; is not zero. Therefore, this state is still a pairing state.
As we have discussed in the beginning of this section, we expect that. the effect of V NH is a pair-breaking.
However, it has no ability to break pairings. The effect of it is to make the gap of pairing state go to zero
at most.

This conclusion that all of the pairing staLes are gap less if we neglect the Coulomb interaction is the
natural one. In the absence of the Coulomb interaction, we do not have to take into account the two-body
correlation discussed in Sec.2.3. Therefore, we do not have the pairing interaction derived from it. Of course,
the Rajaraman-Sondhi transformation is the exact one, therefore, there is no reason to prevent to perform
such transformation. However, we cannot solve the problem exactly. It depends on the choice of t.he starting
point, that is, the Hamiltonian and the approximation to solve the problem whether we can capture the
point of the problem or not. In the absence of the Coulomb interadion, the Hamiltonian obtained by the
Rajaraman-Sondhi transformation is not a good starting point.

in above discussion of gap equations, we do not consider the ground state energy. \Ve lllust examine it
to discuss the stability of the gap less pairing state. From Eq.(3.46), we find that the ground state energy of
gap less states is the same as that of no-pairing states because Kk .6k == O. However, states with :;Ik.6k == 0

are not stable. Considering the variation of (H) with respect to Kk .6k' we obtain

The coefficient Xk .6/.;1 (XJ..:.6/.; +~n3/2 is not lower than zero. Therefore, the function K/.;.6k == 0 is the

relative maximum of (H). Hence states with KkL'.k == 0 are not stable. Any perturbation will change the
ground state of the system from the gapless pairing state to the gapful pairing state. If we take into account
the Coulomb interaction, this gapless pairing state is not to be the ground state any more. Therefore, we

that VNf! is irrelevant for pairing states
irrelevance of \,N/-I was shown in thc bosonic Chern-Simons theory of F'QIIE at 1/ = 11m, \\·here

III is an odd integer [44]. It was shown in Ref.[44] that threc body interaction term is irrelevant at zero
lempcraturc if we a'isume the condensation of composite bosons by applying the rellormali"ation group. \\'e
do Ilot have the exad proof for the irrelevance of the three body interaction term with to the pairing
state of CFs. However, we expect that it is irrclevant becausc the pairing sLate of is described by
the Ginzburg-Landau theory, and the ordcr parameter of it has the role of bosons ill the composite boson
Chern-Simons theory. Therefore, we call apply the discussion in Ref.[44J in that casco In the following
discussion, we assume that the anti-llermitian term VNl/ is irrelevant and neglect it.

3.6 Stability of Pairing State

Now we discuss the effect of the Coulomb interaction and thc stability of the p-wave pairing stat.e [45]. \Vhcll
we take into account the Coulomb interaction and neglcct. thc anti-Hermitian ternl Vl'.'II, the gap equation
is given by

w!lC'rco'=n x ~alld

L'.k = ¢ 1k
,k'L'.k' [k' ,,' kp (k')]- dk -.- - - --G -2M 0 Ek , k 4.. k k

¢ 1'" ,k'!;", [k 0' kF" .(1')]+- dk-- ----c -
21\1 k E~., /.;/ 'lir 1.:/ /';, '

(387)

(388)
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Figure 3.3: The parameter" dependence of the gap ~ at 1> = 2, or 1/ = 1/2. The gap has a finite value in
the region 0: < Qc. where O'c ::::: 7.5

with 1\( .. ) = fa'I' d9/ Jl - ..' sin 1> being the complete elliptic integral of the first kind. lYe need not

consider the gap equation for ~k because it is the complex conjugate of ....J.k in the absence of the anLi­

lIermitian term V NH . To obtain Eq.(3.87), we have substituted the formula:

(3.89)

iuto 8q.(3.37)
To solve the gap equation, we adopt the sallle approximation in Sec.3.4. At k = kF , the gap equation is

given by

1, x' [0'] j'" I [0'] 1d.. .. - -G(.. ) + d.. 1 - -G(.. ) =-
a J( ..'-l)'+~'x' 4" ,xJ(x'-I)'+~'/x' 4" 0

(3.90)

In Fig.3.3, we show the parameter 0: dependence of the gap ~, at ¢ = 2, which corresponds to the case of
LI = 1/2. In the region of 0: < Q .. , where Q" ::::: 7.5, the gap has a finite value. Therefore, the grollnd stale
of the system is the p-wa\'c BCS pairing state in t.hat region. On the other hand, in the region of a > Q c

the gap goes to zero. That is, the ground state is the no-pairing state. The answer to the question as to
which case must be applied to the real system depends on the value of (p. In Sec.IV of Ref.[4GJ. Halperin,
Lee and Read cstimated the effective mass of eFs by the dimensional analysis, which holds in the limit of
hoNe ~ c2Jdn , and numerically obtained gaps of several fractional quantum II all states. \\'hen the condition
h";e ~ e2Jcen is satisfied, the energy scale of the system is c"2 Jdn only. Therefore, we obtain

(391)

(3.9:l)

where C is a constanl. On the other hand, ill the CF' theory the energy gap E~II) of PQII states at v =
11/(2p+ I), where p is all integer, is given by

III dC'riving Cq.(3.92), we assullle' the Silllplc particle-hole sylllll1etry around a.t 1/ = 1/2. Substituting
8q.(:J.91) into Eq.(3.92). 11'( oblain

F("J __C_~
0g -12J1+ IldB

Th" paraillctcr C is delrl'lllillPd by fitting I':q.(3.93) with lllllllericalJy obtained energy gaps. I'rOlll tlll'ir
analysis, 0 is estimated \0 __ 6.7. This Y111up of ('I is lo\\"cr than 0c' Therefore, the P-W3VP pniring occurs
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at // = 1/2 when the condition hwc ~ e'2/dB is satisfied. The ratio of e'2 Ida to hwc is determined by
(e'/ds)/hw, - 4.9 x 10' x (m,/m,)/(,../B) where m, is the electron mass in the vacuum and the external
magnetic field is measured in units of tesla. Therefore, the pairing state of eFs is possible in the sample
with a small band mass mb and a large dielectric constant (. and under a strong magnetic field B. On the
other hand, in the weak magnetic field limit: hw, « e2 /ds, " has the following form'

(3.94)

using the dimensional In that case, Q' diverges in the limit of B - O. Therefore, the pairing state
is not stabilized in that

Let us remark on the relevance of OUf theory to the v = 5/2 state. Contrary to the 1/ = 1/2 case, we
have filled Landau levels at v =5/2. What is the role of these filled Landau levels? One possible scenario
is that the Coulomb in(,eraction for electrons in partially filled Landau level is screened by electrons in filled
Landau levels, If this is true, we can also apply the above discussion to the v =5/2 state,

3.7 Real Spin Effect and Zeeman Energy

Next wc discuss all eO'ect of the real spin degrees of freedom and the Zeeman energy. To begin with, we
discuss the former in the absence of the lat.ter. The spin unpolarized pairing state is possible as in the case
of the bilayer quantum Hall systems (see chapA). In that case, the ground stale is also the p-wave pairing
stale. However, the expression of the ground state energy is (H) in Eq.(3.52) times 2 because of the spin
degrees of freedom (see Eq.(4.50)). Furthermore, the ground state energy contains the Fermi wave number
as Lhe parameter and (If) is proportional LO k}. It is understood from Eq.(3.52) because (H) is proportional
to c}, 0:: 1.:1:.. In the spin ullpolarized pairing ca'5C, the Fermi wave number kp is equal to k~/J2, where
k~(= lien) is the Fermi wave number of the spin polarized case. PuUing it all together, the ground state
energy of the spin unpolarized pairing state is half of (H) estimated in the case of spin polarized case. Being
(H) < 0, the gl"Ounci state energy of the spin polarized state is lower than that of the spin unpolarized pairing
slate, As a result, if t.he pairing of CFs is possiblc then it. is thc spin-polarized pairing state. \\'ith regard
to the eflect of t.he Zeeman cnergy to the spinlcss CPs, it is nothing but shifting the chcmical potential

3.8 Summary

In this chaptcr, we have discussed thc possibility of the pairing of CFs at /.I = lim, wherc m is an c\'en
integer. \-Ve have derived the gap cquations for t.he CF pairing state by the pairing approximation. The
pairing intcraction is dcrived from t.hc pot.ential \Ill. Thc solution of thc gap equations in thc abscnce
of V NlI and the Coulomb interaction indicat.es that the p-wavc pairing state of CFs has tlte largest gap
Furthermore, it has the lowest cncrgy. Thercfore, the ground state is t.he p-wave pairing state of CF's. For
that state, the ground state wavc function has derived, The orbital function ha;; the form: ......, 1/:. From
the phase depcndencc of it" wc see that the angular momentum of it and the cyclot.ron motion are ill the
opposite direction. This fact is consistent with the discussion ill Scc.2.4

Next wc take into account thc anti-lIcrmitian term \l NlI . The interaction term \lNII corresponds to
an imaginary vedor potential. The cfrcct of tbe imagillCHy vedor potential is known as a dclocalization
effect ill Ihe locali;.:atioll-delocalil.ation phcI101llcna[41]. Thc delocalization in that problem ('orrespoJlds 10

~hc no-pairing ill the CF pairing theory. Therefore, \,Nlf is expected \.0 havc a pair-brcaking effect. In fa('l,
If we considcr thc gap equation taking into account V NIl ill the abscnce of the Coulomb int.eraction, the
solution is a gapless pairing state. 1I0\\'e\'cr, thc effect of \,NlI is Jlot enough to calise pair-brcaking but
thc gap of the pairing state goes to ;"cro. Considering t.he grotlnd slate cnergy it is Oll an uns!.<lhlc point.
Thcrefore, \vhen wc take into accOllnt tile COlJlomh interaction, thc ground statc changes from the gaplc5s
pairing state to t.he gapful pairing stalc

011 the olher hand, the anti-Hermitian tcrlll V NIl corresponds Lo t.he three-hody interaction tCrlll ill tILe
ChCfll-SillIOJl5 gaugC' thcory. III that casc, ir \\'c assulIlc the condC'nsalc of cOlnposiie hOSOIlS, il is showll that
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the three-body term is irrelevant. Therefore, the anti-Hermitian term V NH is expected to be irrelevant for
the pairing state.

'With regard to the effect of the Coulomb interaction, we examine the stability of the pairing state in
the presence of the Coulomb interaction. vVe consider the gap equation taking into account the Coulomb
interaction and neglecting V NH . "Ve estimate the region as the ratio of the Coulomb interaction to the Fermi
energy where the pairing state is realized. The pairing state is possible when the condition h.uc » e'2/dB

holds. This is realized in samples with a small band mass, a large dielectric constant and a strong magnetic
field

In order to discuss the polarization of the rea! spin, we compare the ground state energy of spin polarized
with that of spin un polarized The ground state of spin polarized pairing

lower than that of spin state. Therefore, if the state of eFs is possible
then it is the spin-polarized pairing state

To discuss the 1/ = 5/2 state, we must take into account the effect of filled Landau levels. The possible
scenario is that the Coulomb interaction for electrons in partially filted Landau level is screened by electrons
in filled Landau levels



Chapter 4

Pairing States In Bilayer Qunatum
Hall Systems

in this we discuss the pairing staLe of CFs in bilayer quantum Hall systems. Applying the pairing
apprOX1l11aLJ()Jl, we derive gap equat.ions for the CF pairing state. Contrary to single layer the
pseudo-spin degrees of freedom must be taken into account. Not only a pseudo-spin triplet state
but also a pseudo-spin singlet pairing state is possible. F'irst, we show that in the absence interlayer
tunneling the ground state is the p-wave pairing state at v = 11m, where 111 is an integer. \Vith
to all interlayer tunneling, we consider the case of v = 1/2 and the case of v = 1 The importance
interlayer Coulomb interaction in bilayer quantum Hall systems is also discussed.

4.1 Hamiltonian

In bilayer systems, to control the system we have many parameters, such as the separation, an
interlayer tunneling and a charge imbalance 75 1 -752 , Here we concentrate on the case of 75 1 = and 1/ = 11m,
where 111 is ..HI integel The Coulomb interaction for electrons is given by

\lC=~ :L Jd'rd'r'\lo~(r-r')IiPo(r)IiPP(r'), (41)
0,,8=1,1

where f( I) denotes the index of electrons in upper(lolVer) layer, lipo (r) = ,p~ (r),po (r) - Po lViLh Po being
the average particle density in the layer 0 and

with ( being tile dielectric constant and d being Lhe intcrlayer separaLion
The Hamiltonian for the interlayer tunneling for electrons is given by

f1~r =- Jd'r t H(r),p, (to) + ",1 (r) "'1 (r)]

(42)

(4:3)

Applying the Rajaram<ln-Sondhi transformaLion 1 we obtain the Hamilt.onian for t.he int("rlayer tunneling for
eFs. In that case, if c:D] '# ¢2 holds t.hcn we must add all extremal phC\sc factor. Howevcr, in the case of
¢1 = 92, the tunneling Ilamiltonian for CF's is given by

Ifb,. =- Jd'r 1[" (r) <P, (r) + 9, (r) ", (r)]

For the tUlIlleling Hamiltonian, wc adopt Eq.(4.4) and ncglt·ct t.hc phflse factor calls("c! by lllilpping frolll
clcctrol1S illto eFs ill the following

27
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(45)

After the extended CF transformations the form of VC is not changed because p (r) = 1»1 (r) 1/J (r) =
~(r) ¢ (r). Taking into account the Coulomb interaction (4.1) and the intedayer tunneling (4.4) in Eq.(2.33)
and setting all components of !\"cz/3 as even integers, the CF Hamiltonian for bilayer systems is given by

H = Z <~P~ko¢kp + 2h Z Z Vk';'k, "k,o"-k,p¢-k,p¢k,o'
kO/3 kdk 2 aft

where<f, = <h = k'/2mb, <K = <f, = -t and Vk';k, = [\opVk,,_k,,_k,+k, + V';;;k,_k, The interaction

Vk~k2 is the one for CF' pairs with zero total momentum. The matrix J{ is given by

[ . _ [¢1 ¢,]
\ - ¢, ¢1 '

where tPl and ¢2 are even integers

4.2 Pairing Approximation

To discuss the pairing state of CFs, we introduce the pairing approximation in Eq.(4.5). \Ve obtain

(4.6)

H", Z <~P"ko<hp + 2h Z Z Vk';k, {("k,o"-k,P}¢-k,P"k,o
kop k,,,k, op

+ "k,o"-k,p(¢-k,p¢k,al - ("k,o"-k,P)(¢-k,p6k,o}} (4.7)

Now we introduce the gap functions ~~.8 and K;,a
6.~p '" -~ Z Vk'k,(¢-k,p¢h) ,

kr"k')

K;p '" -~ Z Vk'.t("k'o"-k'P)
k("k')

(4.8)

(49)

Note that K;p is not necesariJly complex conjugate of .6.~p because (\Ike,)' =fi Vk',t ill the presence of

VNlf . Using these fields, the Hamiltonian becomes

where

H = Z'"k£k¢k + COliSt.,

k

(4.10)

(411)

(4.12)

(4.13)

Frolll E;qs.(4.8) and (4.9), it is sec II tliac

(--k) (-k).0. =- 6.
po of3

The IH'xL step is the diagonali'/,C\tiotl of the mart.ix [k. \Ve Illllst consider it hoth for the triplet, pairing case

and th(' singlet pairing rase hecHllsc of i h(' pscudo-spill dcgrC'('s of frcedolll
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4.2.1 Triplet Pairing

In the triplet pairing cases, .6,k and LS:
k

satisfy the following relations:

29

(4.15)

(4.16)

To simplify the discussion, we concentrate on the case of symmetric layers. That is,

(~k) II = (~k) II == ~k'

(~k)11 = (~k)11 ==~k

In this ca.'5C, [k has the following form"

[ (,
-I _~I

A' Jk -I ~k -~~ =~fk[, = -I -3·I 1 .
-~k -~k

-~k -~k 1 -~k

The eigenvalues of the matrix £k are given by ±Et and ±Ek, where

The cigcn vedors of [.k are given by

(417)

(4.18)

(419)

(420)

(4.21)

(4.22)

(4.23)

(424)
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The eigenvalues of Eqs.(4.22),(4.23), (4.24) and (4.25) are given by Et,Ek,-Et and -Ek, respectively.

The matrix [k is diagonalized by matrices Uk and Uk

where,

(4.26)

(4.27)

(4.28)

(4.29)

(430)

(4.31)

'We introduce the quasiparl,icle field operators qk and pk

k _ [ ~~: ] _ -k .k
'I - P-kl =U 9 ,

P-kl

p
k = [Pkl Pkl 'I_kl 'Lkt] == ;rkUk

Tile fields Pkcr and qko satisfy the following anti-comrnutation relations

Using these fields, the Hamiltonian becomes

(4.32)

(4.33)

(4:34)

11 '" I='luk
[kUkl + coilsi

k

[ E'
0 0

" i
k

I=' k 0
Rk 0 o k

P 0 0 -/;t o 'I + cOllsl (·1.35)

k
0 0 0 -Ek



4.2. P.4.IRlNG APPROXIMATION 31

I\'ow we calculate ("-kpoPko) in the right hand side of Eq.(4.8) As an example, we show the detailed

calculation of (oP_kroPkj):

((luk
), ( uk l)2)

t(pfU;3U0qf)
j=l

tU;U0(pfqf)
j=l

1

L (un, (un, (Pfqf)
j=l

L'.' +£:;' £:;' -£:;'
- ~E+ k J(EtJ + ~E- k J(Ek)

k k
L'.' +L'.' L'.' -£:;,

+ ~E+ k J(-Et) - ~E- k J(-Ek)
k k

£:;ic + £:;1.: tanh Et _ L'.ic - L'.I.: tanh Ek (4.36)
4Et 2kIJT 4Et 2kIJ T

Here the funelion J(E) = l/(exp(E/kIJT)+I) is the fermion distribution funtion. Other values of (oP_kp1>ko)

is given by (oP_kloPkl) = (oP_kIQkl) and

The values of (il"kaiT-k,a} are given by replacing ~~.B wiLh K:.o in these equations Substituting these formula
inlo £'15.(4.8) and (4.9), we obtain

-k' 1 L II [6~; + 6~; Et, 6~; - 6~1' Ek, ]
£:;11 =-40 k'(#k) Vk'k~ lanh 2knT +~ lanh 2kIJT '

-k' 1 [:Ik
' + 6 k

' E+ £:;k' _ £:;k' E- ]
L'. =-- LVii _11__11 tanh-----1.:--_II__I_llanh-----1.:-

II 412 k'l#k) k'k t.:t, 2k nT Ek, 2knT

At zero tempera.ture, these equations has tile following forms

(438)

(439)

(4.41 )

(~.42)
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L'.k' =_~ I: v.11 [L'.f; + L'.f; _ L'.f; - L'.f;]
11 40. k'(;tk) kk' E~, Ek,'

Kk ' __~ I: v. 11 [K~; + K~; K~; -K~;]
11 - 40. k'(;tk) k-k E~, + Ek, '

Kk' =_~ I: v. 11 [K~; +K~; _L'.f; - L'.f:]
11 40. k'(;tk) k'k E~, Ek,

On the other hand, the ground state energy of the system is given by

32

(443)

(444)

(445)

(H}::: I:'~~p(;rkoq)kp) +~ I: I: Vk";k, (;rk,."_k,p}(q}_k,pq)k,.) (446)
kap k1tk, er{J

At zero temperature, we obtain

(4.47)

(4.48)

Substituting these formula and gap equations (442) and (443) into Eq.(446), we obtain

(H) :::

(4.49)

In the absence of the interlayer tunneling, l~q.(4.49) becomes

(450)

Note that Eq.(4.50) is twice of Eq.(346) because of the pseudo-spin degrees of freedom

4.2.2 Singlet Pairing

In the singlet pairing cases, .6. k and ~k satisfys the following relaitotls

(--k) (-k).6. =.6. 1

ap 0(3

(.6k)P. =_(.6k),p'

(Kk
) po = - (Kk).p

(4.51)

(4.52)

Therefore, we can set. ilk and 3:"k ('IS
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- [0 -K
O
k]Ilk = K

k

The matrix £k is given by

The eigenvalues of £k are given by ±Ek + t and ±Ek - t, where

The eigenvectors of £k are given by

33

(4.54)

(4.55)

(4.56)

Uk = [ uk Uk Uk Uk ) , (4.61 )

Uk ='[ lit uk Uk Uk ], (462)

where ,

[ -K, ]TIl = I Ek I (4.63)
k J4Ek(Ek-~d Ek-~k

Ek - ~k

[-E,-(, ]-, 1 -Ek - ~k
(4.64)

Uk = J 4Ek(Ek +~d -Ilk '
Ilk

[ E, -(, Iil3 = I E k -~k , (460)
k J4Jok (l0k - ~d -Ilk

Ilk
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(4.66)

4.3. PURE P.4.JRJNG STATE

ut = J4Ek(~k H,) [ -t~~, j.
-Ek -~,

As in the triplet pairing case, we introduce quasiparticle fields by Eq.(4.32) and Eq.(4.33) Anti-commutation
relation (4.34) also holds in the singlet pairiug cases. Using these quasiparticle fields, we obtain

[

Ek +tOO 0]
, k 0 Ek - tOO k

H = 2;= p 0 0 - E
k

- t 0 q + canst.

k 0 0 0 -Ek + t

(4.67)

To obtain the gap equations, we calculate values of (¢-kr¢kJ) and (;rkr;r-kr)' They are given by

Llk [ Ek + t Ek - t]
(¢-kr¢kl) = 4Ek tanh 2koT + tanh 2k

B
T '

11k [ Ek + t Ek - t]
(;rkl ;r_kr) = 4Ek tanh 2k

B
T + tanh 2k

o
T .

Substituting (.hese equations into Eqs.(4.8) and (4.9), we obtain

(4.68)

(469)

(4.70)

(4.7J)

At zero temperature, these equatiolls become

(4.72)

I __~ " (II 11k ,
D.k- 20. L Ikk'E'

- k'(tk),Ek ,>< k'

On the other hand, the grollnd slate energy is given by

(473)

In the absence of the interlayer tunneling, Eq.(4.74) corresponds to Eq.(4.50)

4.3 Pure Pairing State

Now we discuss the groLlnd state properties ill the absence of the inlerlaycl' tUlllleling and the Coulomb
interaction. In that. case, t.he discussion is almost. the Sellne as in the single-layer system

The difference is t.hat we have pseudo-spin degrees of freedom in bilayer systems and must lake into
accoullt the possibility of various triplct pairings and sillglc~ pairings. As wc havc dOlle ill singte-taYC'1"

we replace I he ciCCI ronic baud mass 11/1J with t.he effectivc mass J\1 implicilly ill t he gap equations
to takc account I he rCllormali;"aLioll cffecL J\I is a parametcr in our theory. Furt.hcrlllon~, \\'c ncglect.
VNII

term. \\'hcll \\'e t.Dke il1~o accolllIl l'NII and neglect the Coulomb inlC'ractioll and the illlC'r1ayC']
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tunneling, the gap equations are solved exactly and the resulting state is the gapless pairing stale. However,
this gapless pairing state is not. stabilized because the state with 3"k~k == 0 is the relative ma.ximum of
(H), which is shown from the analysis of the ground state energy (4.50) (see 5ec.3.5). Applying the same
discussion in Sec.3.5, V"'H is irrelevant for the pairing states of CFs. \Ve discuss the gap equation in the
absence of V NH In that case the gap:lk is the complex conjugate of ~k' Therefore, we only consider the
gap equation for ~k'

First, we discuss the gap equation for the triplet pairing state. \\'e assume that each component of ~k
has the same angular Ok dependence (Ok denotes the direction of k). This assumption is introduced for
convenience and the result about. the pairing of the ground slate given below holds without it. In that case,

the gap 6 k is gi \"en by

k (a b)6 = 6k b a '

where a and b are complex numbers satisfying la]2 + Ibl 2 = 1. Furthermore, we set

(4.75)

(4.76)

for the i-wave pairing state. As we will see later, the pairing state with (a,b) = (0,1) corresponds to
the Halperin (171,171,11) staLe, which is, in the absence of the interlayer tunneling, numerically shown to
be the ground state of bilayer systems with an appropriate interlaycr separation d [15, 26]. lienee we set
(a,b) = (0,1).

The gap cquations are almost the same as in the single-layer systems. In fact, the gap equation is given
by

6, = ¢2 r' dk' k' ""k' (!:-) I + "2 r~ dk' k' ""k' (l'-) I
2.\1 )0 Sk' k 2M ), S" k'

(4.77)

Note that this equation is obt.ained by replacing <p in Eq.(3.47) with 92
For the singlet pairing cases with e~ 2, the gap equation is given by the same equation (4.77) if we

assumc Eq.(4.76). The s-wave pairing is not possible in bilayer systems because of the following rea'5on. As
discussed in Sec.3.2, we do IlOt have attractivc interaction from \ .. J! becausc Jf~o(.>") =: O. Therefore, the
possibility of an attractive interaction is caused by \"NH. In that case, we must take into account the gap
equation of 3"k' and the gap equations are gi\'cn by

~,=.2:!.- [r' dk'k'6" _ r~ dk'k'~"] .
2.11)0 Ek'), Ek'

Jk = .2:!.- [_ rt

dk'k'6 k
' + r dk'k''''''']

2M )0 Sk')t Sk'

(478)

(479)

Taking similar steps in 5ec.3.5, we can sol\"e Eqs.(4.78) and (4.79) exaclly and obtain ~, == 0 and :lk == 0
Therefore, the s-wavc pairing is not possible in bilayer systems. This fact is understood intuitively because
the atLract.ivc interaction between eFs is caused by the Lorentz force of Chern-Simons gauge field (see
5ec.2.1).

To solve the gap equation (4.77), we introduce the samc approximation Eq.(3.50) for ~k. \Vith this
approximation, thc gap equal,ion has the same form as in tile ca.se of the single-layer case and is givcn by

~ = t dx ,."+1 +;'~ dx x'-21 == F(6
¢>, )0 J(x'-I)2+J'x" I J(x 2 -1)'+",,2x " I)

(4.80)

both for singlet- and triplct.-pairillgs. 111 rigA. I, wc show the rUllCLioll Fl(ti.) ror variolls t and th" hori.wlllal
linc cOl'J'cspollds to I/¢'!. = 0.5. Alt.hough the form or the gap equation is thc samc as ill thc singlc-Iaycr
case, wc mllst take into account th" possibility of the singlet pairing casc~. lIowrvcr, the gap of the singlet
pairing sli"ltes has lower \',l!uc than that or the triplet p-wave pairing stat,C'. '],hc!'C'rore, the pairillg: statc with
the largrst. gap is thc p-W<ive pairing state.
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Figure 4.1: The gap dependence of the right hand side of Eq.(4.80).

Figure 4.2: The energy difference between the pairing state and the no-pairing state.
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On the other hand, the energy difference between the pairing state and the no-pairing SLale is shown ill

Fig.4.2, where 5£ is given by 5E = (H)"kAk - (1I)"k Ak=o with (H) being given by Eq.(4.50). The value

of 6E has always negat.i,"c value and the ground state is the pairing st.ate as long as =S-J :f O. Furthermore,
the value of ewhich gives the lowest. 6E is e= I. From the discussion of the gap equations, we have found
that the pairing slate with the largest gap ~ is e= 1. Putting it all together, the ground st.ate is the triplet
p-wave pairing state of eFs.

4.4 Effect of Interlayer Tunneling

Let us discuss the en"cd of an interlayer tunneling. Though we can apply the discussion below LO general
cases, we concentrate on thc case of v = 1/2 and II = 1. As wc havc seen in lhc prcvious section, anLi­
Hermitian term \It'll' is irrelevant for pairing stales of eFs. Therefore, we neglect it. Furthermore. we
neglect the Coulomb interaction. The effect of the Coulomb interaction is discllssed later.

III that case, the gap equations are given by

(4.81)

Thl~ gap function ~:p is lhc cOlnplex COIJjIlgalc of D.~p because wc neglect tll(, anti·llermiti<I11 lcrlll \lb'J(
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First, we consider the case of ¢1 = ¢2 =9. In this ease, the total Landau level filling fraction is given by
v =I/¢. It includes the case of v =1/2,1/4", Taking the same steps in the last section, we obtain

t x2l+1 (eo x l - 2l

)0 dx J(x' _ I _ T)' + 11'>+I'x2l +), dX-J'F,(x"""=_=;I=_=T=;')':;=+~I.6.=+'"'I'=x=;rr

for a + b oF 0 and

t x2l+1 r:xJ X I - 2l

)0 dx J(x' _ I + T)' + 1.6._I'x2l +), dX-Jr,(x"""=_=;I=+~T=;),;=+=;I=;=I'>=;_I;;;='x=.~

I

¢'

I

¢'

(483)

(4.84)

for a - b oF O. Here T == tifF, 1'>+ == (a + b) I'> , and .6._ == (a - b)1'> To observe the change of the ground
staLe properties, we introduce an angular () by

(4.85)

The gap for the ground state is defined by

('186)

Solving Eqs.(4.83) and (4.84) numerically, we obtain 1.6.+1 and 11'>_1 The 0 is calculated by

(487)

On the other hand, from Eqs.(4.49), (4.75), (4.76) and (3.50), the ground state energy of the triplet pairing
state is given by

(H) = j\[\) ,- [1' x2l+' J(x'-I-T)'+z+.6.+x2l -x'+l+T
--<,,-"'.6. dx ----r======== -'-r=======~---

4rr 0 J(X'-I-T)2+E+.6.+x" J(x2-1-T)'+z+.6.+,C"+X'+I+T

1= x-2l+' J(x' - 1- T)' + z+ .6.+x- 2l - x' + 1 + T
+ dx ----r======== 7=======~---

, J(x 2 - I - T)' + z+ 1'>+x-" J(x2 - 1- T)' + z+ l'>+x- 2l + x2 - I - T

1, x"+' J(x 2 -1+T)'+1'> I'>-x"-X'+I-T
+ dx r========

o J(x2 - I + T)' + I'> .6.-x" J(x' - 1+ T)' +.6. I'>.-x" + x' + I - T

1= x-2l+' J(x2 - 1+ T)' + I'>. - .6.-x-" - x' + I - T]
+ dx (4.88)

, J(.l" - 1+ T)' +.6. l'>-x- 2l J(x' - 1+ T)' + I'>. .6.-x- 2l + x' - 1 + T

Hereafter we concentrate on the case of the p-wave pairing case and set e= 1 because we have shown ill
the last section that the ground state is tile p-wavc pairing st.ate in the ausence of an tunneling
In Fig.4.3, we sllow the tunneling dependence of 0 at 1/ = 1/2 (4) = 2). \Ve see thaL the (3,3, state, which

is the p-wave pairing state with (alb) = (0, I) (0::::: OL c\"olves toward t.he Pfafrian which the p-wavc
pairing slale ",ilh (n,b) = (1/V2, 1/V2) (0 = rr/4). In the region T 2: 2, we do not the solution of
Eq.(4.84). Therefore, a == b. As a result, the ground state is t.he PfaHiall state in tlte regioll T 2: 2

Now we discu:::s whether Lhe (3,3,1) stat.e and the pfaHian state he long to the diITerellL phasE'S or not..
Ho addressed that. the (3,3, I) st.al.c and the PfaHian state arc continuously connected each other [25]. In

Fig.4,1I, we show t.he tUllJleling dependence of the gap D.. As shown ill Fig/lA, there is a CllSP at T = 2
Therl' is al::;o a CIISP in the grolllld Strltc energy. In Fig.4.5, we show the' T depcndcnce of the encrgy f:,' = {II},
\\'hirll is calculated froln Eq.(4,88). \\"c s('c that t.here i:-; <l cusp a.t T = L. This is <ttl indication I hal. t h('
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Figure 4.3: The tunneling dependence of 0 at v = 1/2.

Figure 4.4: The tunneling dependence of the gap:' at ,,= 1/2.

3'

(3,3, I) state and the Pfaflian state are different phases. In llef.(47J, the ground state degeneracy on a Torus
of the (3,3, I) state and the Pfaffian state was discussed. It was shown that the ground slate degeneracy of
the (3,3, 1) state and that of the Pfaman state are different. Therefore, the (3,3, I) state and the Pfaflian
state are different phases.

Let us turn to the case of 4>, =°and 9, =2 # 0, that is, v = 1. In this case, (a, b) is uniquely determined
as (0, 1) because 9, = 0 and the ground state is uniquely given by the state continuously connected with the
(I, I, I) state. Then, the gap equation is given by

(' [x:?l+l x2l+1

Jo d;; (;;' _ I - if + :,';;2l + (;;2 - I + If + 6';;2l

x:?l-l x2l-1]

--./r;';((;:=I=+=Ct)C=x~'-==;';1)""'=+=:6""';;"""",/+",,< + )((1 _ I)x' _ If + 6 2 x2l+< = 1.
(489)

In rigA.G, we show the tunneling dependence of the gap 6. for the p-wavc pairing slate. \Ve do not have
allY CIISp. Thcrdore, the ground slate is continllously cOllllected with the (I, I, I) state.

4.5 Wave Function

Now we discuss the ground slale wave function \VhCll we set the ground state wave fUllction as IGS), the

krt IGS) satisfy the following equatiolls:

'IkrIGS} = 0,

'I_kl IGS} = 0,

'Ikl IG.')} = 0,

'I_kl IGS} =O.

(HO)

(1.91)
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Figure 4.5' The tunneling dependence of E at v =1/2. There is a cusp at T =2.

Figure 4.6: The tunneling dependence of the gap 6. at v = I.
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From Eqs.(4.32) and (4.33), Lhese equations are described by

[(u"\ ok, + (uk), I'kl + (uk) 3 "-kr + (uk), "_kt]ICS) =0, for j =1,2 (4.92)

[(uk) I "k, + (uk), "k, + (uk) 3 "'-kr + (uk), I'_kl] ICS} =° for j =3,4 (493)

The Grassmannian operator ;Tko and 9ko satisfy the anti-commutation relation by replacing 9ko with
8/8"ko' lienee Eqs.(4.92) and (4.93) arc the differential equations with respect to the Grassmannian
variables irko and 1i_ko' Solving these differential equations, we obtain

ICS) =

From Eq.(4.94), t.he first qurl.lltizcd \Vi\\'C' fUllction of I(8) for 2N eF's in each layer is given by



4.6. STABILITY OF PAIR!J"G STATES

IT Pf ¢~~. (=2i-1 - =gi) ,
a,p=1.1

where the orbital wave functions: C::6(:) are given by

40

(4.9.;)

(4.96)

(4.97)

Performing the Fourier transformation and substituting Eqs.(4.96) and (4.97) into Eq.(4.94), lVe obtain

(4.98)

For 2N particles, we obtain

IGS)"v = in d'oJd'=j n[L>~~'(=J' - zfj;ra (;n;rp(of l] 10)
j=l j=l 00

in d'=J d'zj ITt=! - oJ)," ITtol- ;j)'" IT(zl- =J)·'e-«1;' L:;:,(I';I'+I';I')
1=1 I<j t<} i,l

X n[L>~;:'(ZJ' - ;f).p~(=j),p1(=f)] 10}. (4.99)
J=l o;J

The orbital wave function ¢~:b(=) is calculated a'i in Sec.:J.4.2. III the absence of the inlerlayer tunneling,

we obtain ¢~~.(=) =,,~!.(=) - 1/; and 9~~.(=) =9~!.(=) =O. Therefore, in that ca,e the ground stale w'a\,e
function is the (91 + 1,01 + 1,02 - I) stale because

Pf (~) =- ITt:! -:J)' ITt:! - :j)1 IT(:! - :j)-'. (4.100)
-2j-1 -'!.j i<i t<j t.}

This equation is shown by using the Cauchy identity[25].

4.6 Stability of Pairing States

Next we discuss the Coulomb inicract.iol1 en'ccL ill the absence of the intcrlaycr tunneling. As was pointed
out by lIaldane and Rezayi [20J and 110 [25], the p-wave fermion BCS pairing state with (a, u) = (0,1)
is equivalent. to the (1, I, -1) stat.e. Tllerefore, t.he p-wavc pairing st.ate of cr's with (<PI, 02) corresponds
to lhe Halperil1 (91 + 1,"'1 + 1,9, - I) state. It is supportod l1ulllerically [15, 261 that this stale is the
ground st.al.e of t.he bilayer quant.ulll Hall syst.ellls ill the absence of t.he intcrlaycr t.ullneling and wit.h all
<lI>propriate int.er layer separat.ion d. lIence ill order to discuss whet.her t.he pairing st.ate is stabilized willi
respect to t.he Coulomb interaction or Hot. wc examine t.1l<- stability of t.he J1rllperin (111,111,1/) state. Since
t.he Halperin (111,111,11) wave fUllct iOll is of Jast.row-type, wc call get deep physical insight from it. As ill
the ·1 lie systelll, this Jrlstrow-faetors arc factorized illto two parts: a short-rallgl~ cOlilponent alld a long­
rallg(' componcllt [48]. The fonner is determilled by the two-body pl'oblclll and thc lat ter hy tlie phOllOll
effect. lIow('vC'r, phonon modes arc pushed lip \0 high energy modes because of the illcolllprf'ssibl(' nat lire
of qualltlllll lIall spitf'ms. IIcncc the .Jastrow factor is completely determincd froll1 the consideration of the
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Figure 4.7: \\'e assume that the relative angular momentum for each pair of electrons in the same layer is
m and the relative angular momentum for each pair of electrons in the opposite layer is n.

twcrbody problem. In that sense, the index m(n) is identified as the relative angular momentum of pair of
electrons in the s3me(opposite)-layer. Therefore, to understand the effect of the Coulomb interaction.
focus on the short-range two-body correlaLion.

The appropriate basis for the two-body electron correlation is given by

(4.101)

This is the lowest Landau level wave function for an electron pair with the relative angular momentum 111

and the angular momentum of the central IllOtion being zero. Suppose.V electrons in each layer. \Ve assume
the relative angular momentum 111 for each pair of electrons in the same layer and the relative angular

momentUJ1111 for each pair of elect.rons in opposite layer (see F'igA.7). The total Coulomb energy E~)(m. 11)
estimated by the first order perturbation is given by

where

Efl(m,lI) = .\'(.\~- I) x «m,d =0) x 2 + N' x «II,d) ('Ll02)

«m,d) (1\.. I<J"~'+ <F Iv",)

~ x ~ fo::J dx X
2m

+
1

e-.r:l

d lJ m!Jo Jx'.!.+ ..V
(4.103)

with ..\ =d/2CIJ . Taking the t.hermodynamic limit N - 00 ill Eq.(4.102), we obtain

E;;\m,n)/N' =«m,d = 0) + «n,d) (4.10-1)

It is our purpose to find the pair (m,n), which gives thc lowest Eg)(m , Il). Howevcr, wc cannot, choose
arbitrary pair of (111 , 1/). ThNe is a constraint for the choicc of 111 and II. It is shown that the angular
1ll0mcntUIll of thc electron at the edge of t.he' sample is equal 10 (N - 1) x 111 + N x 11(= !\l) from the
Halperin (111

1
111 1 H) wave functiol!. Since the wave function of this electroll is proportional to ;·\fr-r:l/4l;J ,

the dcnsity of it has its lIlaxilllulll at l' = JTAT f o(:=' Il). Of course iT Ir~ is the area of the system Taking
the thermodynamic limit N - 00, wc obtain

2rrC;) x N x (111 + II) = I!

SlIhstilnlilig N/I! = fI/2 and" = fI/(IJ/¢ul iliLO Eq.('I.I05), II"C obtain

111 + 1/ =2/1/.

('LID.;)

(-Ll06)
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Figure 4.S: The energy Ef)(m,n) for (m,ll) = (4,0),(3,1), and (2,2) in units of e'/dB. In the region
0.7S9 < d/2lB < 1.4S0, the choice of (m, 11) = (3, I) has the lowest energy. Therefore, the Halperin (3,3, I)
stale is stabilized in this region. In other regions, the pairing states are not stabilized.

Now we seek the (m,ll) which gives the lowest Ef\m,n) under the condition (4.106). The analytical

form of the function [(171, d) is given by differentiating the function fooo dx ~e-OJ;':I = o-I/2eoAErfc(J;)

with respect. to 0' and setting a = 1. lIere the funCl.ion Efl'c(x) = 1.x00 dt e-t::Z is the error function. The
explicit forms of [uneLion [(m,d) for various m are given by

<em = 0, d)/(e' /dB)

«111 = l,d)/(e'/dB )

«m = 2,d)/(e'/dB)

«m = 3, d)/(e' /dB)

«111 =4, d)/(e' /dB)

e"Crfc(,I),

~ [(1- 2,1')e"Crfc(,I) +,1],

~ [(3 - 4,1' + 4,14)e"Crfc(,I) + (3,1 - 2,13)] ,

~ [(1.; - IS,I' + 12,\" - S,I6)e"Crfc(,\) + (15,1 - S,I3 + 4,15)] ,

3k [(105 - 120,1' + 72,1" - 32,16 + 16,16)e"Crfc(,\)

+(105,1 - 50,13 + 20,1' - S,I')]

(4.107)

(4.IOS)

(4109)

(4110)

(4.111)

The function (m,d) has the simple [or III at d = 0:

«m,d= O)/(e'/dB) = 1'(1."+ ~) = (;11I)'.,fir.
2m! 2-rn m!

(4.112)

Let. LIS estimate Eg)(m,l1) for the case of 1/ = 1/2 and 1/ = L For lhe case of v = 1/2, the constraint
(4.106) is m + n = 4. Therefore, the possible choice for (m, n) is, (4,0), (3, I) and (2,2). The pair with

111 < 11 always has larger energy than that with Tn 2: n. In Fig.4.8, we show the energy E~)(m, l1)/N"2 for
(111,11) = (4,0),(3, I), and (2,2). The region where tile clloice of (m,l1) = (3, I) gives Lhe lowesL energy

Ef)(m,lI) is 0.7S9 < d/2Co < 1.4S0. The Halperin (3,3,1) state is stabili7.ed in this region. In oLher
regions, the pairing states are 1I0t stabilized. \\'hen wc start with CFs with (91, ¢~d = (2,2), the p-wa\"c
pairing occurs in l.he region 0.789 < d/2Cn < 1.480. Ilowc\'cr, the pairing stale dose lIot occur in I hc region
d/2Co < 0.789 and d/2Co > I,4S0 and Lhe ground SLate is a compressible sLate. '

For the case of" = I, the consLraint (4.106) is m +I! = 2. Therefore, the possible choice for (m, I!) is (2,0)

and (I, I). In FigA.g, we show the energy £2;'(111,11 )/N' for (2,0) and (I, I). The region where the c1lOire

of (m, 11) =(1, I) gives Ihe lowest. energy E~')(m, 11) is 0 < d/2Co < 0.703(= do)' The lIalperil! (1,1. I) sLale
is slabili;l,cd ill this region. In allot.her region I the pairing slates arc not stabilized. The Halperin (1,1, I)

11'lIc choil,;(' or (r:.1,C>2) = (2.2) is 1101. apPl'Opri1l1C ill tile
by CF pl\i ..ing theory, it is Ilaturallo choose (OI,O:!l = (4,0)
cOI'l-e"pollds 10 the Ilalperill (3.3, I) !'olalt-' or nolo

d/2f n > 1.'180. Ir \l"e dCill widl tl1(' Sli\rC ill lhis regioll
il is ullclear wiletlu'l' lite pairillg slate or such CFs
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Figure 4.9: The energy E!i)(m,ll) for (m,ll) = (2,0), and (1,1) ill ullils of .'/dB. In lhe region 0 <
d/2eB < 0.703, the choice of (m,ll) = (1,1) has the lowest ellergy. Therefore, the Halperin (1, I, I) state is
stabilized in this region. In another region, the pairing states are not. stabilized.

state corresponds to lhe p-wave pairing state of CFs with (<PI,h) = (0,2). Though the abo'·e estimation is
crude, the critical value de for /.I = I is close to 2eB which was obtained by l\lurphy el ai. experimentally

[491·
In general, the estimation of E!i)(711,n) shows that the pair (m,n) giving the lowest E~'I{m,n) is (2/v,0)

for d » (B. With decreasing d, it changes as (2/v,0) - (2/v - I, I) _. - (l/v, I/v). In this sequence,
there appear the regions where (m,n) = (even,cven). In these regions, t.he p-W3VC pairing state is not
stabilized. The Jastrow-facLor with (m,l1) = (even,c\'cn) must be multiplied by some wave function of a
no-pairing state of eFs instead of the p-wa\'c pairing stale of CPs. On the other hand, in the region of d
with (m, n) = (odd,odd), the ground slate is the p-wave pairing state, that is, the quantum lIall state.

4.7 Summary

In this chapter. we have considered the pairing state of CFs in bilayer systems In gencral conditions we
have derived the gap equations at the total Landau level filling v = lim, wherc In is an integer.

In bilayer systems, we must take into account not only the possibilit.y of thc triplet pairing states but
also the possibility of the singlet pairing states. However, they are higher energy sLate than the p-wave
pairing state. Furthermore, the possibility of the s-wave pairing state has been excluded. In tile absence of
the interlayer tUllneling, we have shown that the ground state is the p-wave pairing stale of CFs. Therefore,
the p-wave pairing state is possible not only at 1/ = 1/2 but also at morc general filling 1/ = l/r11, where 111

is an integer
\\'ith regard to the erred of the inlerlayer t.unneling, we consider the 1/ = 1/2 case and the v = I case.

At 1/ = 1/2, the ground state evolves from the Halperin (3,3,1) st.ale toward ihc Pfaffiall st.ate. However,
there is a cusp at the transition poillt.. It indicates that the (3,3,1) Slate and the Pfaffian state are different
phase. On the other hand, at v = I thc ground state is uniquely determined independent of the strength of
an interlayer tUllneling. The ground state is continuously connected with the (I, I, I) state.

Thc effect of the Coulomb illleraction and the stability of the pairing state are also discussed. The ))-wa\·c
pairing stalc ofeFs corresponds to the IIalpcrin (1U, HI, n) state. The w(wc function of the Iialperin (In, m, 11)
st.atc i~ of .Ja.:)trow type. lIowc\"er, because of the incompressihle nature of quanlum lIall liquids only thc
short range correlation effcct is relevant. The most fundamental short. range correlation ill the quantum
lIall systcll\s is the motion or pair with non-i:ero relative angular momcntum. \\'ith regard to thc two-body
corrclation, we have calculaled t.he total energy of the Coulomh interaction by the first order perturbation
and eSlimated tile region of thc intcrlaycr separat.ion eI, where the pairing stall' is stahilized.

---------



Chapter 5

Concluding Remarks

5.1 Conclusions

In conclusion, we have discussed the pairing staLe of CFs in t.he single-layer systems at v = l/m, where m
is an even integer, and in the bilayer systems at II = lin, where n is an integer.

The Hamiltonian which correctly describe the pairing state has been derived by performing a IlOIl­

unitary transformation, which is an extended version of the Chern-Simons gauge transformation. By this
transformation, we have two two-body potentials. One is an Hermitian term and another is an anti-Hermitian
term. An altractive interaction between ers is caused by the Hermitian term, which have the form of the
minimal coupling between the CF current and the Chern-Sirnons gauge field. Therefore, it has a form of
the Lorentz force. The pairing motion of CF pairs are derived by this attractive interaction. Thc angular
momentum of it and that. of the cyclotron motion are in the opposite direction. On the other hand, the
anti-Hermitian term has no classical meaning

First, we have discussed the possibility of the pairing state in the single-layer systems. Applying the
pairing approximation, the gap equations have been derived at 1/ = l/m, where In is an even integcr. In the
absencc of the Coulomb interaction and the anti-Hermitian term, we have shown that the ground statc of
the systcm is thc p-W3ve pairing slate of CPs. \Vith regard to the anti-Hermitian term, we ha\·c discussed
that it has a pair-breaking effect. The anti-Hermit.ian term corresponds to an imaginary vector potential.
The effect. of all imaginary vect.or potential was considered in the localization-delocalization phenomena [41]
The role of it is the delocalization effect, which corresponds t.o t.hc pair-breaking effect in thc CF pairing
theory. To cxamine this point, we have taken it into account in Lhe gap equations and solvc them cxactly.
The solution is the gapless pairing state. However, this stat.e is 011 an ullstable point. If we take into account
the Coulomb interactioll, the ground st.ate of the system changes from the gapless pairing statc to thc gapful
pairing state.

011 thc othcr hand. the anti-I-IermiLian term corresponds to the threc-body term in the Chern-Simons
gauge theory and it was shown that it is irrelevant in the bosonic Chern-Simons gauge theory [44]. Thc irrcl­
c\·ance of it is also shown by laking the same steps in Ref.[l l4] because we can deal wiLh the superconducting
state of fermions as the superconducLing state of bosons by Lhc Ginzburg-Landau theory. Thereforc, we can
neglect it ill thc discussion of the pairing states of CFs.

\\"hclI wc solvc the gap equation laking into account lhe Coulomb intNaclion, the gap decreases wilh
increasing Lhc ratio of Coulomb intcraction to the Fcrmi cncrgy of CFs. Howcvcr, we have' shown that thc
gap still ha\·e a finite valuc if the systcm is in the strong magnctic ficld limit. Hencc thc pairing slatc, which
results in thc quantum Hall effect, is possible ill thal situatioll. \\'c havc also discussed tile cfrcct of the
rcal spin dcgrees of freedom and the Zeeman encrgy. From thc analysis of thc ground stalc energy, wc havc
sho\\'11 that the ground st<lLC cnergy of thc spill ullpolarized pairing slatc is highcr than that. of thc spin
polarized pairing state. lIence thc pairing statc is the spill polarized pairing stalc. Thc effect of the Zeeman
Pllergy to it is l10thing bul shifting tlte chcmical potential of CFs

Second, wc haw' discussed the pairing statc of CFs in the bilayer systcms at 1/ = 1/111, \\'hcrl~ 111 is an
intcger \\·c have derived the gap equations for both the triplel pairing states <llld the singlet pairing stales.
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In the absence of the Coulomb interaction and the interlayer tunneling, the ground state of the system is the
p-wave pairing state. Hence not only at v = 1/2 but also at other filling fractions v = 11m the ground slate
of the system is the p-wave pairing state of CFs. \Vjih regard to the interlayer tunneling, we have discussed
the v = 1/2 case and the v = 1 case. At v = 1/2, the ground state evolves from the (3,3,1) state toward the
Pfaffian state. However, at the transition point there is a cusp. It indicates that the (3,3,1) state and the
Pfaffian state are the different phases. On the other hand, at v = 1, the ground state is uniquely determined
and independent of the interlayer tunneling. The ground stale is continuously connected with the (1, 1\ 1)
state.

In the absence of the interlayer tunneling, the pairing state of eFs corresponds to the Halperin (m, m, n)
state. \Ve have discussed the stability of the pairing state with regard to the Coulomb interaction by using
this fact. The Halperin (m,1n, n) function is of Jastrow type wa\'e function, and is completely determined by
the two-body correlation effect because of the incompressible nature of the quantum Hall liquids. Calculating
the Coulomb interaction for two-body correlations by the first order perturbation, we have estimated the
regions where the pairing state is stabilized.

5.2 Open problems

This thesis offers a starting point of the composite fermion pairing theory in the quantum lIall systems. The
possible extensions of it are listed below.

• How we can detect the p-wave pail'ing statc?
The pairing picture of the quantum lIall systems has no experimental foundation. \Ve must invent
an experiment to investigate the p-wave pairing state. This problem is related to thc nature of the
quasipartic1es in CF pairing liquids and/or the edge states.

• What is the nature of quasiparticlcs?
It is well-known that quasiparticles in quantum Hall systems at /I = lim, where m is an odd integer,
have fractional charges and obey a fractional statistics. How about the quasiparticles of CF' pairing
states? To discuss the nature of qua'iipartic1es, we need the Ginzburg-Landau (G L) theory of the
pairing state of CPs. Contrary to the usual BCS pairing ca<;e, we do not have a cUloff in momentum
space. This complicates the derivation of the GL theory

• What is the relevance to the composite boson theory in hilayer systcms'?
In the composite boson theory, the existence of an bulk gapless mode was predictcd at 1/ = I [16]. "Ve
must examine it by the CF pairing theory. Furthermore, we do noL know the relation between llleron
excitations in the composite boson theory [18] and quasipanicles ill the CF pairing theory

• Edge states?
Edge states in the fractional quantum lIall systems arc believed lo be the chiral Luttinger liquid [50].
1I0w about edge states of the CF pairing SLate? From edge states, we can expect Lo cxtract some
important information about the naturc of the bulk state.

• What is the effect of the impurity?
To discuss the stability of the quantum "all effect by CF pairings, we have to take into accounL the
effect of impurities. Impurities cause some pair-breaking effect in th(> CF pairing state. The important
question that why the FQII Eat e\'ell denominator is fragil(> has something to do with it.

• How call we get tIle phase diagram ill bil<-tyer systems?
Experilllentally the phase diagram at II = 1 in bilayer systems was obtaincd by l\lurphy l'I al [49],
Though we have prescnted thc condition for the illtcrlayC"l' separation in SecA,G, the whole condition
which includes also the inierlayel' tunneling has 1101 obtaincd. lIowcver, wc Ila\'c drrived the grolilid
stale' wavc fU1Jctions. If \\"e calctJlate the grollnd staLe energy then thc phasc diagram will bc obtained

Ikrent Iy, t he II =5/2 stat.c has bcrn recollsidcred ill Ilefs,[j I, f>2, 53]. AII these' lllJlllcrical works concludcd
that tht' II = 5/2 ::;liltc is nOl a singlet d-\\'ave' pairing hut il p-\\',wc pairing state. Tllc j>-W(\\'(' pairing slalC
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discussed in chap.3 is related to this problem. If the effect of the filled Landau levels and that of the tilted
magnetic field [54] are understood and we take account of them in our theory. the long standing mystery of
the II =5/2 will be solved.

- ~~~~--
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