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Chapter 1 – Introduction 

 

 

1.1  Electrical energy storage 

Over the past decades, current manufacturing and transportation activities has been derived from the 

discovery and exploitation of primary fossil fuels, such as coals, oils and natural gases. The Energy 

Information Administration (EIA) recently reported that world’s energy consumption will increase 

by 56% between 2010 and 2040, from 524 quadrillion British thermal units (Btu) to 820 quadrillion 

Btu [1]. However, global warming, caused by CO2 emission of burning carbonaceous fuels, and 

exhaustion of resources have demanded alternative renewable energies like solar and wind power [2-

4]. The development of new renewable resources, such as wind and solar power, brought out the 

research of energy storage because they inherently fluctuate over time [5]. Moreover, new 

technologies for suppressing emission of CO2, offer a huge potential of commercializing plug-in-

hybrid electric vehicles (PHEV) and electric vehicles (EVs) as new transportation methods [6-8], 

together with energy storage system (ESS) [9]. Electrochemical energy storage in the form of batteries 

is fundamental in those energy systems and devices, used as not only national electric smart grids 

[10], but also the power source from portable devices to medical and aerospace applications. Batteries 

and electrochemical capacitors are representative of common electrical energy storages in meeting 

growing electricity demand in large scale market [11, 12]. Among them, the electrochemical 

capacitors, also known as ultracapacitors, with high specific power, long cycle stability and life time 
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can be a good choice for applications [13], but suffer from low specific energy [14, 15]. In contrast, 

batteries with high energy densities attract public attention of realizing a global electric transportation 

industry due to their great specific energy in spite of low specific power and cycle degradation issues 

[16, 17]. Therefore, improvement of energy and power densities of batteries for long cycles with low 

cost is needed for penetration into the global market. 

 

1.2  Rechargeable batteries 

A rechargeable battery, also called secondary battery, is a type of batteries, which consists of one or 

more electrochemical cells operating reversible electrochemical reactions. The first electrochemical 

cell was discovered by Alessandro Volta in 1800. He repeated and checked Galvani’s experiment 

using dead frogs’ legs [18], and demonstrated that electrical energy was derived from spontaneous 

redox reaction occurring on two different metals, zinc and copper, dipped in an acidic electrolyte. 

The discovery brought about innovation of development of rechargeable batteries, composed of lead-

acid with aqueous electrolytes in 1859, and nickel-cadmium in a potassium hydroxide solution, 

known as first alkaline battery, was invented by Waldemar Jungner in 1899, and further Thomas 

Edison patented nickel-iron battery design in 1903. He also tried to commercialize electric vehicles, 

but the era of electric car came to an end soon because of short battery life and appearance of 

inexpensive gasoline automobiles [19]. However, his achievements were followed about a century 

later by introducing first commercial hybrid-electric vehicle (HEV, Prius, Toyota, Aichi, Japan) in 

1989, which uses nickel-metal hydride batteries (NH-MH; nickel oxyhydroxide (NiOOH) as cathode 

and hydrogen-absorbing alloy (MH) as anode) [20]. Moreover, two sodium-base batteries, operated 

at high temperature, were developed for meeting higher voltage and energy densities in 1970s, but 

were at a risk of safety concern, and thus limited stationary energy storages [21, 22]. On the other 

hand, it was reported that the lithium metal would be theoretical ideal material for batteries due to the 
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highest specific capacity per weight and the highest oxidation electrochemical potential of all known 

elements, and rechargeable lithium batteries was firstly introduced by G.N. Lewis in 1912, followed 

by launching first generation Lithium ion batteries (LiBs) by Sony corporation (Tokyo, Japan) in 

1991[23]. Figure 1-1 shows that LiBs offer high energy and power densities among various batteries. 

LiBs have a good balance among the energy density, long cycle life, and stability, thus are promising 

cell for electric devices [24].  

 

 

Figure  1‐1  Comparison  of  the  different  type  of  batteries  in  terms  of  volumetric  and 
gravimetric energy density. Currently, the market share of Ni‐Cd, Ni‐MH and LiBs  is 23, 14 
and 63%, respectively *[24].  

* Reprinted from Nature, 414, M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium 
batteries, 2001, Copyright (2001), with permission from Nature Publishing Group (see Appendix). 
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1.3  Lithium ion batteries (LiBs) 

1.3.1  Fundamentals of LiBs 

Lithium ion batteries (LiBs) are one of the rechargeable batteries, base in redox reaction including 

the intercalation of lithium ions between the cathode and anode as shown in Figure 1-2 [25]. The 

performance of LiBs can be determined by energy storage density, lithium ion diffusion rate and 

cycle ability. Energy storage density of LiBs, E, is proportional to the lithium ion storage capacity, C 

and the difference of electrochemical potential, V, as below [26]; 

E = (1-1)      ܸܥ׬ 

 

Figure 1‐2 Schematic illustration of charge/discharge reaction mechanisms in a conventional 
lithium ion battery between lithium metal oxide as cathode and graphite as anode. Electron 
and Li+ transport during charge/discharge was stated by blue and red arrows, respectively. 
The electrons travel through the external circuit *[25]. 

* Reprinted from Energy & Environmental Science, 2, B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and 
R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, 2009, Copyright (2009), with permission from Royal 
Society of Chemistry (see Appendix) 
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From the equation (1-1), it is clear that high energy storage density can be achieved by either 

increasing storage capacity or electrochemical potential difference of electrodes, which demands 

developing next generation electrode materials. Electrochemical potential as a function of storage 

capacities of Li-base cells is plotted in Figure 1-3 [25]. The anode materials have been explored 

having a wide range of theoretical capacities depending on materials from conventional Li+ 

intercalated graphite LiC6 of ~372 mAh g−1 to silicon of ~4200 mAh g−1, while the highest capacity 

of oxides cathode materials is below 500 mAh g−1. Therefore, new generation LiBs with enhanced 

energy density demand more research effort of the cathode compounds mixture as well as practical 

use of anode materials with high theoretical capacities.  Rate capability of LiBs can also be achieved 

 

Figure 1‐3 Schematic illustration of electrochemical potentials of conventional cathode (blue) 
and anode (red) as a function of storage capacities presently used for under consideration of 
Li‐based cells *[25]. 

* Reprinted from Energy & Environmental Science, 2, B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and 
R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, 2009, Copyright (2009), with permission from Royal 
Society of Chemistry (see Appendix).
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by increasing lithium ion diffusion rate to electrode during intercalation process, corresponding with 

conductivity and structure of electrodes [27, 28]. And cycle ability is also highly connected with the 

structure of electrode material because lithium intercalation process accompanies with a huge volume 

change, which motivated researchers to study various micro- and nano-structures for electrodes.  

 

1.3.2  Current status of LiBs 

The breakthrough in lithium ion battery technology is that lithium metal with safety concern as an 

anode was substituted by graphite, which accommodates one lithium per three C6 hexagons, and 

formed LiC6 without forming dendrite. The discovery of LiCoO2 [29, 30] as a cathode and stable 

liquid organic carbonate solvent enabled the reversible operation at high voltage of ~4.2 V by Sony 

corporation in 1991 [23]. More recently, several cathode materials, such as LiNiO2, LiMnO2 [31], 

spinel LiMn2O4 [32] and LiFePO4 [33], have been investigated, but even though individual 

advantages, such as improved safety, reduced cost, and enhanced power density, the energy density 

has not been improved compared with LiCoO2 yet. The chemical reaction of typical LiCoO2 cathodes 

is described as below; 

 LiCoO2 ↔ Li1-x CoO2 + xLi+ + xe- (1-2) 

In case of the anode material, the various carbonaceous materials with a low potential versus lithium 

were introduced, and graphite, carbon fibers and mesocarbon microbeads (MCMB) were a 

commercial success in LiBs market [34]. Graphite provides several advantages in the view point of 

cost, abundance, non-toxicity and structural stability for repeated cycles [35]. In addition, lithium 

intercalation to graphite causes small volume change (9–10%), with the typical reaction expressed as; 

  6C + xLi+ + xe- ↔ Lix C6   (x  1)       (1-3) 
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However, graphite anodes possess the disadvantages of low capacity (~375 mAh g−1) with a 

maximum configuration of one lithium atom to every six carbon atoms of LiC6 and safety issues 

related to Li deposition [36, 37], which has limited its feasibility meeting with the growing demand 

in high power technology for electric vehicles (EVs) or hybrid electric vehicles (HEVs).  Moreover, 

a low operating voltage around 100 mV (vs. Li+/Li) causes the reaction of graphite with electrolyte, 

resulting in reducing battery performances as well as serious safety concerns such as thermal runaway.  

Carbonaceous materials have been extensively researched, such as one-dimensional (1-D), two-

dimensional (2-D) and porous carbon, trying to create more surface areas for lithium storage and to 

increase the energy and power densities [38]. One-dimensional structured carbon materials were well 

known as carbon nanotubes (CNTs) and carbon nanofibers (CNFs). The anode of CNTs achieved 

~1116 mAh g-1 of reversible capacity using various treatments, such as ball-milling [39], acid 

oxidation [16], and metal oxide cutting [40], while the reversible capacities of CNFs-anodes by 

electrospinning/carbonization process combined with chemical treatments was found to be ~430 mAh 

g−1 at 50 mA g−1.[41-43]   

Graphene, on the other hand, is representative 2-D structured carbonaceous material with high surface 

area including electrical and thermal conductivity. Graphene or graphene-base composited material 

with active metal (Sn [44], Sn-Sb [45] and Si [46]) and/or metal oxide (Co3O4 [47, 48], TiO2 [49], 

Fe3O4 [50, 51], Mn3O4 [52], CuO [53] and SnO2 [54, 55]) has been researched. The graphene as anode 

material was currently reported having ~500 mAh g−1 after 30 cycles [56], and SnO2/graphene anodes 

showed more enhanced performance high reversible capacity of ~800 mAh g−1 at 50mA g−1, and 

~570 mAh g−1 after 30 cycles with 70% capacity retention, while high irreversible capacity and 

unstable performance still existed [57], which needs to further researches. Meso-porous carbon 

anodes with different pore sizes from nano- to micro-scale have been also researched with advantages 

of suppressing volume change by high surface area, which achieved reversible capacity of ~800 mAh 
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g−1 at 100 mA g−1 after 20 cycles because of minimized ion transport resistance around the pores with 

ordered porous structures [58, 59].  

In summary, carbonaceous anode materials with different nanostructure, such as 1-D, 2-D and 

ordered porous carbon) exhibited a good electrochemical performance with individual their 

advantages, but poor rate performance (except for graphene), low volumetric energy density by SEI, 

and low capacity was still in common challenge for practical usage suitable for high-powered-

applications.  

 

1.4  Silicon (Si) anodes in LiBs 

1.4.1  Advantages of Si for anode material 

Silicon (Si) has been currently considered to be a promising anode material, substituted for 

conventional carbonaceous materials like graphite, and thus probably most studied anode material. 

Silicon exhibits low lithiation potential (vs. Li/Li+) below ~300 mV, which makes it relatively stable 

and safe as an anode material compared to graphite with a high energy density material (up to 120 

Table 1-1 Different properties of various anode materials (Th. Sp. Cap. Indicated theoretical specific 
capacity) [64] 

Materials Li C Li4Ti5O12 Si Sn Sb Al Mg 

Density (g cm−3) 

Lithiated phase 

Th.Sp.Cap. (mAh g−1) 

Volume change (%) 

Potential vs. Li (V) 

0.53 

Li 

3862 

100 

0 

2.25 

LiC6 

372 

12 

0.05 

3.5 

Li7Ti5O12 

175 

1 

1.6 

2.3 

Li4.4Si 

4200 

420 

0.4 

7.3 

Li4.4Sn 

994 

260 

0.6 

6.7 

Li3Sb 

660 

200 

0.9 

2.7 

LiAl 

993 

96 

0.3 

1.3 

Li3Mg 

3350 

100 

0.2 
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Wh kg−1 [60]), Besides, Si can accommodate up to 4.4 lithium ions per unit (the stoichiometry of the 

lithiated to Li4.4Si alloy), corresponding with the highest theoretical gravimetric capacity of 4200 

mAh g−1, which is ten times larger than that of conventional graphite [61-63], and high volumetric 

capacity of 9786 mAh cm−3, derived from the calculation on the initial volume of Si [64]. Because of 

this, Si anodes possess an enough potential to apply high-powered storage system, such as electric 

vehicles (EVs). In addition, Si is abundant material on earth with a low cost and environment-friendly, 

and thus has been used for semiconductor devices, and also the delithiation potential of Si occurs at 

a relatively low voltage of ~0.4 V [65], as shown in Table 1-1 [64]. When  lithium is inserted into Si 

anode, Si experiences a series of phase transformations from electrochemical lithiation/delithiation 

 

Figure 1‐4 Electrochemical lithiation/delithiation curves of Si anodes at high temperature of 

450  C  and  room  temperature. Multiple  step  curves  (black)  indicated  at  450  C,  while 
lithiation/delithiation of crystalline Si at room temperature is plotted, as red and green line, 
respectively *[64]. 

* Reprinted from Nano Today, 7, H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium 
ion batteries, 2012, Copyright (2012), with permission from Elsevier (see Appendix). 
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diagram of Si, as shown in Figure 1-4 [64], which is reported multiple step curve of voltage plateau 

at high temperature of 450 C [65], but crystalline Si (cr-Si) transformed into amorphous phase, and 

further amorphous or crystalline lithium silicide phase depending on lithiated potential at initial 

lithium insertion, while amorphous Si (a-Si) goes through amorphous or crystalline lithium silicide 

phase at room temperature.  

 

1.4.2  Challenges for Si anodes 

 As I stated above, Si is more attractive material than any other materials as anode for LiBs. However, 

this high specific capacity is realized by inserting a large amount of Li+ into Si materials, which 

accompanied with large volume change (300–400%, depending on the state of LixSi), supported by 

various microstructural analysis methods, such as X-ray diffraction [66, 67] and nuclear magnetic 

resonance [68], and subsequently Si electrodes do not withstand the heavy strain of such volumetric 

expansion and break down, resulting in pulverization and delamination of the whole structure [69-

71]. Further capacity losses are caused by solid electrolyte interphase (SEI) formation, while 

delamination results in loss of electrical contact with the current collector. The fundamental three 

issues of Si failure phenomena, as an anode for LiBs, were summarized in illustrated Figure 1-5 [64]. 

The large volume change induces large stress and strain, which causes cracking and pulverization of 

the Si anode, results in loss of electrical contact. Moreover, such a large volume change causes 

disconnection of Si nano- or micro-particles in case of nanostructured Si materials or assembled 

materials of Si nanoparticles. Another issue is the formation of passivating film before lithium 

insertion to Si at the surface, called to SEI, induced by decomposition of the organic electrolyte 

because the potential of lithium insertion is lower than reduction potential ≥1 (versus Li/Li+) of 
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organic solvent in commercial electrolyte [72], such as ethylene carbonate (EC), propylene carbonate 

(PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and so on. The SEI films were reported 

to consist of lithium carbonate (Li2O3), various lithium alkylcarbonates (ROCO2Li), mainly, 

including Li2O, LiF or LiCl, and nonconductive polymers [73-78]. 

Consequently, various approaches based on control of Si-base material structure or composition as 

well as on the operation control of lithiation/delithiation cutoff voltage, were carried out to 

accommodate and buffer the effects of volume change. Moreover, conductive materials for enhanced 

lithium diffusion rate, electrolyte additives for improvement of SEI and polymer binder for enhanced 

adhesion between electrodes and current collectors have been researched continuously. 

 

Figure 1‐5  Illustration of Si‐electrode  failure mechanism  (a) Material pulverization.  (b) 
Disconncetion of Si nano‐ and micro‐particles. (c) SEI regeneration *[64]. 

* Reprinted from Nano Today, 7, H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy 
lithium ion batteries, 2012, Copyright (2012), with permission from Elsevier (see Appendix). 
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The various structures of Si-base materials, such as thin film, micro-/nano-particles, nanowires 

(SiNWs), and composite materials of Si with carbon and/or silicides, were introduced and charged 

issues. One-dimensional SiNWs with various structures, introduced by Yi Cui group [79], were 

currently charged issues, achieving excellent electrochemical performance for long cycles. They 

suggested one dimensional structure of SiNWs relax the stress during volume change, and hollow 

structured double-walled Si nanotubes with outside SiOx surface layer also make stronger surface 

film, resulting in no significant capacity fade [80]. Another issue of Si-base materials is composite 

of Si with carbon and/or silicides, such as electrodeposited Si-O-C composite film [81, 82] and 

metal silicide-coated Si films [83], which enhanced electrochemical performance for long cycles 

because of their unique structure and control of SEI. 

 

1.5  Research scope and objectives 

The previously presented studies mainly focused on the electrochemical performance of Si materials, 

and thus various structures and compositions, focusing on realizing accommodates stresses induced 

by volume change, were reported. As a result, high gravimetric capacities of Si-base anode materials 

were achieved successfully, but the weight of heavy current collector was, sometimes, neglected for 

very thin active layers. Commercialized graphite anode, Sony 18650 cell as currently reported, 

consists of LiCoO2 as cathode and graphite as anode. The physical properties of the graphite anode 

of the cell were the mass of 5.7 g, 11 mg cm−2 of areal density, 193 μm in thickness (including current 

collector), and dimensions of the anode is 52.9 × 5.7 cm, and areal capacity is ~4 mAh cmanode
−2. 

Even though theoretical capacity of Si is ten times higher than graphite, the thickness of Si has to 

approach ~10 μm for practical use in LiBs market, supposing that conventional Cu current collector 

has ~100 μm in thickenss. However, previously reported Si nanomaterials have still low areal density 

of ~250–300 μg cmanode
−2, showing low areal capacity of 0.2–0.4 mAh cmanode

−2, even though high 
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gravimetric capacity of 4000 mAh gsi
−1. Furthermore, various fabrication methods of Si anode were 

reported, such as high-energy mechanical milling as top-down approach, and chemical vapour 

deposition (CVD), sol-gel synthesis, hydrothermal synthesis and electron-beam deposition (EB) as 

bottom-up approach. Especially, silane (SiH4) gas and silicon tetrachloride (SiCl4) have been used as 

a precursor by CVD and EB method, which was time-consuming process with low yield.  

In summary, the researches of various structured Si-base materials have successfully demonstrated 

the possibility of Si for usage of next generation anode material in LiBs, while further researches are 

also needed in some respects. The structure design of Si was the most progressive in qualitative level, 

but quantitative understanding, such as size-dependence of particles and pores, has been still 

investigated quantitatively. Furthermore, although various approaches were reported to understand 

and improve of passivating surface film (SEI), high irreversible capacity of Si anodes demands further 

studies. Finally, the development of large-scale, low-cost fabrication and enhanced mass production 

for Si materials with desirable electrochemical performance is the most important challenge of all to 

commercialize Si anode for LiBs. 
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Chapter 2 – Micrometer-thick porous Si films by rapid 

vapour deposition (RVD) 

 

2.1  Introduction 

The current anode material of commercial LiBs is usually graphite because of its long cycle life, 

abundance and relatively low cost [84]. However, graphite anodes possess the disadvantages of low 

capacity (375 mAh gC
−1) and safety issues related to Li deposition [37]. Thus, there has been a 

growing interest in developing alternative anode materials with low cost, good safety, high energy 

density and long cycle life. Si is an attractive alloy-type anode material with a theoretical specific 

capacity (4200 mAh gSi
−1) based on the stoichiometry of the alloy Li22Si5 [61-63] . However, this 

high specific capacity is realized by inserting a large amount of Li+ into the active material, causing 

volume expansion of ~300–400%. Si electrodes easily break down by the heavy strain of such 

volumetric expansion, which triggers pulverization and delamination of the whole structure [69-71], 

resulting in a loss of electrical contact with the current collector.  

To overcome pulverization of electrodes during expansion and shrinkage, many groups, starting with 

the study by Huggins and coworkers [61], have developed various approaches to control electrode 

structures, initially thin films [85, 86], micro-particles [87], nanowires [79, 88-91], nanoparticles [92, 

93], pillar formation [94], NiSix-Si core-shell nanowires [83], and other structures [95, 96]. Full cells 

containing cr-Si core-shell nanowires [97] have been reported. High capacities were reported for such 
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structures; however, sometimes the weight of heavy current collectors was neglected for very thin 

active layers, and the studies about large-scale, mass production and low-cost fabrication are currently 

insufficient compared with structure design reports. 

In this chapter, I rapidly deposited 3–14 µm-thick porous Si films in 1 min or less by a physical 

vapour deposition method called rapid vapour deposition (RVD), focusing on developing low-cost 

fabrication method of Si films with large-scale. Such a high deposition rate is achieved by heating 

the source Si to 2000–2400 C, well above its melting point of 1414 C. Control over the 

amorphous/crystalline structure, film porosity, structure, surface roughness, and Si/Cu interface is 

realized by maintaining the temperature of the Cu substrate at 100–500 C during and after deposition. 

In particular, control over the roughness of the growing Si films caused by the shadowing effect [98, 

99], is important to tailor the film microstructure. The electrochemical behavior of the Si films was 

investigated by a half-cell test using Li as the counter electrode and discussed in relation to their 

microstructure. 

 

2.2  Materials and methods 

2.2.1  Si film fabrication 

Circular Cu plates (15 mm in diameter, 0.5 mm in thickness) instead of thin Cu foils were used as 

substrates for porous Si films to make the handling (adjusting the size to fit the coin cells) easier. 

Before Si deposition, the Cu plates were sonicated in isopropanol for 10 min and then exposed to 

UV-O3 for 3 min to remove organic contaminants on their surface. Then, the Cu plates were annealed 

under hydrogen (5 vol% H2/ Ar, 1 atm) at 800 C for 10 min to reduce the oxide layer on the Cu 

surface. Finally, Si was deposited on the Cu substrates by RVD. 
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Figure 2-1a shows a schematic diagram of the RVD system. The Si source for RVD was prepared by 

first immersing a Si wafer (CZ p-type, resistivity of 10–20 Ω cm) in 5 wt% hydrogen fluoride  (HF) 

solution for 1 min, and then rinsing it with purified water for 1 min. The wafer was ground into Si 

powder using mortar and pestle and then loaded into a carbon boat. The Si source was heated by 

resistive heating of the carbon boat under 0.1 Torr Ar to 2000–2400 °C (boat temperature, Tboat) to 

increase its vapor pressure and thus the deposition rate. A Cu substrate was positioned in the chamber 

and kept at 100–500 °C (substrate temperature, Tsub) during RVD to suppress the surface diffusion of 

 

Figure  2‐1  (a)  Schematic  diagram  of  the  RVD  system.  (b)  Typical  time  profiles  of  the 
temperatures of the Si source and Cu plate during RVD at Pboat = 1600 W. Tboat is shown 

for a run with Tsub = 300 C and is similar for different Tsub. 



           
 

 

19 
 

Si, which induces rough and porous structure in the deposited Si films [83, 98]. To maintain the Cu 

substrate at constant temperature under the strong thermal radiation from the Si source, we designed 

a substrate holder made of a block of Cu with a large heat capacity that contained an embedded 

ceramic heater and cooling line for N2 gas. After removing the sample from the RVD system, some 

of the samples were further annealed under 4 vol% H2/Ar at ambient pressure at 200–600 °C 

(annealing temperature, Tan) for 10 min to form a copper silicide (CuSix) intermixed layer to improve 

the adhesion between the Cu substrate and Si film. 

Figure 2-1b shows temperature profiles of the Si source and Cu substrate as a function of operation 

time during deposition. The boat heating power, Pboat, was increased manually, and when the source 

temperature was well above the melting point of Si, deposition began and was then completed after 

about 1 min. Because of the Cu block holder, the substrate temperature was able to be held at 100, 

300 or 500 C as desired (Figure 2-1b). Before and after Si deposition, each sample was weighed by 

a microbalance with a sensitivity and precision of 10 μg. Effective thickness teff was calculated using 

a value of 2.33 g cm−3 for bulk Si crystal. By changing the substrate temperature, a series of Si films 

with different morphology and electrochemical performance were fabricated.  

 

2.2.2 Characterization 

X-ray photoelectron spectroscopy (XPS; JPS9010 TR; JEOL, Akishima, Japan) with a 

monochromatised Mg Kα X-ray source was used to investigate the surface condition of treated and 

untreated Cu substrates. Microstructural analysis of the fabricated Si films was carried out using X-

ray diffraction (XRD; ATX-G; Rigaku, Akishima, Japan) and laser micro-Raman spectroscopy (HR-

800; Horiba, Kyoto, Japan). The microstructure and composition distribution of the Si/Cu samples 

were analyzed by scanning electron microscopy (SEM; S-4800; Hitachi, Tokyo, Japan) with energy-
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dispersive X-ray spectroscopy (EDS, EDAX Genesis; AMETEK, Elancourt, France).  

 

2.2.3  Electrochemical characterization 

Capacity and cycle performance measurements were performed by collaborative researchers, Mr. 

Kenji Nakane and Mr. Shingo Matsumoto at Sumitomo Chemical Co. Ltd., using the Si films on Cu 

substrates as a working electrode with Li metal (0.5-mm-thick foil) as the counter electrode for 

R2032-type coin-shaped half cells. LiPF6 solution (1 M) in a 1:1:1 (v/v) mixture of ethylene carbonate 

(EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) was used as the electrolyte. 

Half-cell tests were carried out in the range from 0.005 to 1.000, 1.5000 or 2.000 V vs. Li/Li+ with 

different charge rates of 0.05C–0.2C at a constant temperature of 25 °C. C-rate was determined using 

the weight of Si and a theoretical capacity of 4200 mAh gSi
−1. After different numbers of cycles, 

electrochemical impedance spectroscopy (EIS) measurements were performed using a 

Solartron®1287 electrochemical interface coupled to a Solartron®1260 frequency response analyzer 

(Ametek, Elancourt, France) in the 106 to 10−2 Hz frequency range.  
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2.3 Structure on Si film deposited on Cu substrate by RVD 

Figure 2-2a shows a top-view SEM image of an as-purchased Cu plate, which clearly contains lines 

patterned at intervals of about 2 μm on its surface. Figure 2-2b and c show top-view and cross-

sectional SEM images of a 14-μm-thick Si film deposited on a Cu substrate. The Si film contained 

 

Figure 2‐2 (a) A top‐view SEM  image of an as‐purchased Cu plate. (b) Top‐view and (c) 
tilted‐view SEM images of a typical Si film (tact = 14 µm) prepared by RVD in 10 s at a high 
Pboat of 1600 W. 
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many 2-µm-thick stripes that were aligned in one direction. It is clear that the striped structure 

originates from the line patterns of the as-purchased Cu plates. The Si film also contained cracks in 

the in-plane and vertical directions to the alignment of the stripes. These cracks were at rather random 

positions but appeared at intervals of around 20 µm. The surface of the Si film formed with a high 

Pboat of 1600 W contained numerous protrusions with a height of a few μm. If the source heating 

power was too high, although Si deposition occurred within 10 s, it caused the Si source to boil and 

spread Si droplets on the Cu substrate, resulting in protrusions in the Si film (Figure 2-3a and c). The 

cycle performance of such films was very poor regardless of Tan for post-annealing treatment; 

maximum initial charge and discharge capacities were ~2000 and ~600 mAh gSi
−1, respectively, and 

Figure  2‐3  Low‐magnification  cross‐sectional  SEM  images  of  Si  films  (tact  =  3−5  µm) 
deposited with  (a) high Pboat of 1600 W and  (b) moderate Pboat of 1300 W.  (c, d) High‐
magnification cross‐sectional SEM images of (a) and (b), respectively. 
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capacity decreased within a few cycles (Figure 2-4). At a moderate Pboat of 1300 W, porous Si films 

without protrusions were formed although the deposition time was a little longer (1 min) (Figure 2-

3b and d). The weight of Si deposited at Pboat = 1300 W was about 1 mg on average for a circular film 

with a diameter of 14 mm. This areal weight (0.6–0.7 g cm−2) corresponds to teff ~ 3 μm if the film 

has the same mass density as bulk crystalline Si (2.33 g cm−3), and the actual thickness tact is larger 

because of the porous structure of the film. Such films were showed some improvement of cycle 

performance compared with those deposited at higher Pboat; maximum initial charge and discharge 

capacities were ~2800 and ~1300 mAh g-Si
−1, respectively, but capacity reduced within a few cycles 

Figure 2‐4 Voltage‐capacity curves of thick Si films (~10 μm) deposited at high Pboat = 1600 
W and  low Tsub = RT on as‐purchased Cu substrates. (a) An as‐deposited Si film, and Si 

films post‐annealed at (b) 200, (c) 400, and (d) 600 C. Effective Si thicknesses were teff = 
(a) 9.6, (b) 11.0, (c) 10.8 and (d) 10.3 μm. 
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(Figure 2-5). Such rapid capacity fade can be attributed to the insufficient adhesion of the Si films to 

the Cu substrates, as can be seen in the SEM image (Figure 2-3) that show the Si films detaching 

from the Cu substrates (note that the cross-sections were prepared by vending the 0.5-mm-thick Cu 

substrate, resulting in such detachment). Post-annealing treatment was used to improve electrode 

performance by forming a CuSix intermixed layer to prevent detachment of the Si film from the Cu 

substrate. Because it is known that solid-state crystallisation of amorphous Si takes about 10 min at 

700 C [100], we annealed the samples for 10 min at Tan = 200, 400, and 600 C to avoid 

crystallization of the Si films (Figure 2-5b−d). The Si film post-annealed at Tan = 600 C (Figure 2-

 

Figure 2‐5 Voltage‐capacity curves of thick Si films (teff of ~3 μm) deposited at high Pboat = 
1300 W and low Tsub = RT on as‐purchased Cu substrates. (a) An as‐deposited Si film, and 

Si films post‐annealed at (b) 200, (c) 400, and (d) 600 C. Effective Si thicknesses were teff 
= (a) 3.2, (b) 3.1 (c) 2.8 and (d) 3.4 μm. 
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5d) showed the best initial capacity and capacity retention, so we used Tan = 600 C as the standard 

post-annealing temperature.  

Figure 2-6a shows a top-view SEM image of a Si film with teff of ~3 μm deposited at a moderate Pboat 

of 1300 W. Compared with the 14 μm-thick Si film deposited at a high Pboat of 1600 W  (Figure 2-2), 

a similar striped structure was realized but it did not contain any Si protrusions. The morphology of 

the Si films with teff of ~3 μm depended on Tsub during deposition (Figure 2-6b–d). A low Tsub of 100 

C suppressed the surface diffusion of deposited Si atoms on the surface of the Cu substrate and 

growing Si film, which made Si film have a porous structure. These Si films were composed of 

Figure 2‐6 (a) Top‐view SEM image of a Si film deposited at Tsub = 300 C. Cross‐sectional 
SEM images of Si films deposited at Tsub of (b) 100, (c) 300, and (d) 500 C. All of the films 
were deposited by RVD in 1 min at a moderate Pboat of 1300 W. 
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numerous Si pillars with a lateral size ~50 nm and many pores between Si pillars, which were 

obviously induced by a shadowing effect (Figure 2-6b). In contrast, Tsub of 300 and 500 C during 

deposition yielded denser porous Si films (Figure 2-6c and d, respectively). The striped, porous 

structures will not only facilitate rapid diffusion of Li+, but also relax the stress caused by volume 

changes during cycling. The electrochemical performance of these Si films should be modulated by 

their different porous structure.  

We next evaluated the film density by measuring the weight and volume of the films. Typical 

thickness distribution is shown in Figure 2-7, from which we determined film volumes. The film 

density and porosity obtained using different conditions are summarized in Table 2-1. Here we define 

the porosity pfilm as (1), 

Figure 2‐7 Thickness profiles of typical porous Si films deposited on Cu substrates by RVD. (a) 
As‐deposited films at different Tsub. (b) As‐deposited and post‐annealed films with Tsub = 300 

C. 

Table 2-1 Mass density and porosity of Si films formed at different temperatures 

Sample conditions ρfilm  (g cm−3) pfilm (a.u.) 

As-deposited at Tsub = 100 C 1.54 0.34 

Deposited at Tsub = 100 C and annealed at Tan = 600 C 1.57 0.33 

As-deposited at Tsub = 300 C 1.74 0.25 

As-deposited at Tsub = 500 C 1.98 0.15 



           
 

 

27 
 

 ≡ film݌
ρSi	- ρfilm

ρSi
          (1)  

where ρSi and ρfilm are the mass densities of bulk Si and porous Si film, respectively. The Si film 

showed the lowest ρfilm = 1.54 g cm−3 and highest pfilm = 0.34 when deposited at Tsub = 100 C, 

moderate ρfilm = 1.74 g cm−3 and pfilm = 0.25 when deposited at Tsub = 300 C, and highest ρfilm = 1.98 

g cm−3 and lowest pfilm = 0.15 when deposited at Tsub = 500 °C. In contrast, post-annealing at Tan = 

600 C, had little influence on the density and porosity of the films.  

 

2.4  Effects of the surface condition of the Cu substrates on the 

cycle performance 

The surface condition of the Cu substrate strongly affects the adhesion between the Si films and Cu 

substrates, and thus was evaluated by XPS. Only O and C were observed as contaminants in addition 

to Cu, as shown in Figure 2-8 and Table 2-2. The as-purchased Cu substrate contained a large amount 

of C (69.9 at%) on its surface, possibly from an oily contaminant used during mechanical processing, 

which resulted in Si films being easily detached from the Cu substrate in a "Scotch-tape" test. 

Sonication in isopropanol followed by UV-O3 treatment reduced the surface C content to 29.8 at%, 

but increased the O content to 50.9 at%. The Cu 2p peaks became evident with the 2p3/2 peak centred 

Table 2-2 Elemental compositions of Cu plate surfaces after different treatments 

Surface conditions 

Cu (2p3/2) 

(at%) 

O (1s) 

(at%) 

C (1s) 

(at%) 

As-purchased 6.5 23.6 69.9 

UV-O3 treated 19.3 50.9 29.8 

UV-O3 & H2 annealed 63.6 24.6 11.8 
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at 933.8 eV (Figure 2-8b), which is chemically shifted to higher binding energy from the Cu0 position 

(932.4 eV) because of surface oxidation. The full-width at half maximum (FWHM) of the Cu 2p3/2 

peak was large (3.84 eV), which was attributed to multiplet splitting caused by Cu2+ [101, 102]. The 

UV-O3-treated surface improved the adhesion between Cu and as-deposited Si (stable against the 

Scotch-tape test), but corrosion of CuO occurred at the Cu-Si interface during Li+ intercalation [103-

105], resulting in detachment of the Si film. H2 annealing following UV-O3 exposure resulted in 

considerable reductions in both C (11.8 at%) and O (24.6 at%) surface contents (Table 2-2). The Cu 

2p peaks were more intense, sharper (FWHM = 1.31 eV for Cu 2p3/2), and the binding energy of the 

Cu 2p3/2 peak was centred at 932.4 eV, consistent with the Cu substrate having a metallic surface. 

 

Figure  2‐8  XPS  analysis  of  the  surfaces  of  Cu  plates  after  different  treatments;  as 
purchased, after UV‐O3 treatment for 3 min, and after UV‐O3 treatment for 3 min followed 

by annealing under 5 vol% H2 at 1 atm and 800 C for 10 min. (a) Cu 2p, (b) Cu 2p3/2, (c) O 
1s, and (d) C 1s. 
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Such a metallic surface allowed good adhesion of the Si films to the Cu substrates without the problem 

of corrosion at the Cu-Si interface during Li+ insertion, as shown later. Thus, we used UV-O3 and H2 

annealing as the standard procedure for treating the Cu substrates in the following experiments. 

 

2.5  Heat treatment to enhance interfacial adhesion while retaining 

porous structure 

The temperatures of the Cu substrate during RVD (Tsub) and post-annealing (Tan) are the most 

important factors that determine the crystallinity of deposited Si films as well as the thickness of the 

intermixed layer between the Si film and Cu substrate. With regard to the crystallinity of Si films, the 

amorphous phase is preferred because of its isotropic expansion behavior rather than the crystalline 

phase, which shows anisotropic expansion during Li+ insertion [106]. Moreover, the diffusion of Li+ 

into amorphous Si is much faster than that into crystalline Si [107]. Figure 2-9a shows the Raman 

spectra of a series of Si films formed at different Cu substrate temperatures. These films possess 

different degrees of crystallinity from a pure amorphous phase to a mixture of amorphous and 

microcrystalline phases depending on the temperature of the Cu substrate. The crystal structure of Si 

is diamond cubic, which is characterized by one intense sharp peak around 520 cm−1 in Raman spectra. 

This peak broadens and/or shifts to lower frequency when the crystal size is  several tens of 

nanometers. Tsub = 500 C resulted in a mixture of microcrystalline and amorphous phases, while 

lower Tsub (100–300 C) gave the pure amorphous phase with a broad band at around 480 cm−1. 

Intermixing between Cu and Si is also important to enhance the adhesion between Si films and Cu 

substrates and suppress the lifting of the Si films from the Cu substrates. In addition to the effect of 

Tsub during Si deposition, we examined the effect of Tan on the depth profile of the elemental 

composition of the films. SEM-EDS analysis showed little intermixing in the as-deposited Si film 
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prepared at low Tsub = 100 C, and more intermixing for higher Tsub of 300–500 C (Figure 2-9b). 

Intermixing was also enhanced by post-annealing at Tan = 600 C the Si films deposited at Tsub = 300 

C. Deposition at high Cu substrate temperature (Tsub) increased both the crystallisation of Si films 

 

Figure 2‐9 (a) Raman spectra of Si films (teff = 3−4 μm) deposited at Tsub = 100, 300, and 

500 C on Cu plates. (b) Depth profiles of the elemental compositions of Si films (teff = 3−4 

μm) deposited at Tsub = 100, 300, and 500 C without post annealing and that deposited 
at Tsub = 300 C with post‐annealing at Tan = 600 C measured by SEM‐EDS. The Cu signal 
of ~3 at% is a background signal from the Cu plate for all measurements. 
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and intermixing between the Si films and Cu substrates while post-annealing at an appropriate 

temperature (Tan = 600 C) enhanced intermixing only. Through such temperature control, we can 

obtain 3–4-μm-thick Si films that contain both amorphous and microcrystalline phases with an 

intermixed layer that is 10% of the total thickness of the Si films.  

 

2.6  Cycle performance and impedance analysis of porous Si films  

The electrochemical behavior of Si films (teff = 3–4 μm) deposited at different Tsub on Cu substrates 

was investigated by galvanostatic charge-discharge measurements using half cells (Figure 2-10). 

Figure 2-10a shows the initial charge/discharge capacities of the Si films. In the initial lithiation 

process, the voltage profile of all films coincided with that of previous Si films with a plateau region 

at a potential below 0.2 V vs. Li/Li+, which indicates that amorphous Si reacted with Li+ to form 

amorphous LixSi alloy [61]. In the case of lower Tsub of 100 and 300 C, charge capacities reached 

2759 and 2471 mAh gSi
−1 while discharge capacities were 1151 and 1494 mAh gSi

−1, for 0.05C for 

Tsub = 100 C and 0.1C for Tsub = 300 C, respectively. The large irreversible capacity is mainly 

attributed to the consumption of Li+ in the formation of an SEI layer [108]. In particular, the large 

exposed surface area of the porous structure formed at low Tsub (Figure 2-6b, c) consumed a large 

amount of Li+ during SEI formation, resulting in low first Coulombic efficiencies of 41% (Tsub = 100 

C)  and 60% (Tsub = 300 C). Moreover, the Si films are vulnerable to oxidation, particularly 

amorphous Si compared with crystalline Si. Oxidation of the Si films during the time (2 days or more) 

between Si deposition and electrochemical testing should have a considerable effect on cycling 

performance. In contrast, the Si film deposited on a Cu substrate at Tsub = 500 C exhibited the highest 

initial charging (Li+ insertion) capacity of 4045 mAh gSi
−1 at a rate of 0.05C with a discharge capacity 
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of 3328 mAh gSi
−1. The charge capacity is nearly equivalent to the theoretical value for Li22Si5 alloy 

(4200 mAh gSi
−1) [61]. This is because the high Tsub yielded dense Si films with reduced surface area 

(Figure 2-6d) and partial crystallization of the Si film (Figure 2-9a), which can reduce SEI formation 

 

Figure 2‐10 Electrochemical performance of Si films deposited at Tsub = 100, 300, and 500 

C on Cu plates (teff = 3.1, 3.5, and 3.4 μm respectively). (a) Voltage‐capacity curves for 
the first charge/discharge cycles. Cycle performance at 0.1C expressed as (b) gravimetric 
capacity, (c) volumetric capacity, and (d) areal capacity. (e) Coulombic efficiency. (f) The 
capacity ratio of charge at the [n+1]th cycle to discharge at the [n]th cycle, which provides 
information about the reaction of the newly used Si through cycles. The cycle test was 

made at 0.1C for all cycles (1−80) for Tsub = 300 C, and at 0.05C for the first cycle and 0.1C 
for later cycles (2) for Tsub = 100 and 500 C. 
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and oxidation of the Si film, compared with the films formed at lower Tsub. However, the Si film 

deposited at Tsub = 500 C showed more rapid degradation than those deposited at lower Tsub, resulting 

in a poor capacity retention of 15% after 20 cycles (Figure 2-10b). This is possibly because of the 

small porosity (pfilm = 0.15, Table 2-1) and mixed amorphous and microcrystalline phases (Figure 2-

9a) in this film, which resulted in large stress upon volume change during cycling. Another possible 

explanation is that Li+ reached the Si/Cu interface at around the 10th cycle and corroded the interface 

for this film having the thickest CuSix intermixed layer (Figure 2-9b). The previous works reported 

the absence at room temperature [109] but existence at ~120 C [110] of the reaction of Cu3Si alloy 

with Li+. When we consider that the Si film deposited at Tsub = 300 C had a similarly thick Cu3Si 

intermixed layer but did not show such abrupt capacity fade, the latter explanation seems less 

probable. In contrast, the Si film deposited at Tsub = 300 C showed much higher capacity retention 

of 81% with a discharge capacity of 1210 mAh gSi
−1 after 40 cycles, which decreased to 40% and 

~600 mAh gSi
−1, respectively, after 80 cycles.  

The Si film deposited at Tsub = 100 C showed interesting behavior; it exhibited the smallest discharge 

capacity of the films of 1151 mAh gSi
−1 for the first cycle but a good capacity retention of 70% after 

50 cycles. The high porosity of this film of pfilm = 0.34 (Table 2-1) as well as the thick SEI layer 

formed in the first cycle should contribute to the stable charge/discharge capacity. The volumetric 

capacity (mAh cmfilm
−3) and areal capacity (mAh cmanode

−2) of films are critically important for 

practical battery devices. Thus, the cycle performance based on gravimetric capacity  (mAh gSi
−1) in 

Figure 2-10b is plotted as volumetric capacity and areal capacity in Figure 2-10c and d, respectively. 

The volumetric capacity of the Si film formed at Tsub = 100 C (Figure 2-10c) was about 1500 mAh 

cm−3 after 50 cycles, which is nearly four times the capacity of commercial graphite anodes [111]. It 

should be noted that there is still potential to increase the capacity of later cycles by optimising the 

Si film porosity and operating conditions such as electrolyte additives and cut-off potential. The areal 
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capacity of the Si film formed at Tsub = 100 C (Figure 2-10d) was also higher (0.66 mAh cm−2) than 

the previous values reported for Si nanomaterials (0.2–0.4 mAh cm−2) [79, 88] and approaching that 

of commercial graphite anodes (~4 mAh cm−2, 18650 Li-ion cells, Sony, Japan) [112] and the recent 

Si-base hybrid materials (2 mAh cm−2) [113]. 

The films deposited at Tsub = 100 and 300 C also showed rather good Coulombic efficiency (Figure 

2-10e). After the 5th cycle, Coulombic efficiency was above 98%, and remained at ~99.5% for 50 

cycles for Tsub = 100 C and 98–99.5% for 80 cycles for Tsub = 300 C. The capacity ratio of the 

[n+1]th charge over the [n]th discharge for the films is plotted in Figure 2-10f. The ratio was above 

100% for the initial 30 cycles, suggesting that the Si anode did not fully react initially and unreacted 

Si gradually contributed to the reaction with increasing cycle number, compensating for the decrease 

in discharge capacity (99% Coulombic efficiency corresponds to 1% loss in effective Si for each 

cycle) and maintaining the capacity retention. The quick capacity fade observed for the Si film with 

Tsub = 300 C after the 30th cycle (Figure 2-10b) suggests the depletion of the unreacted Si. The Si 

film deposited at Tsub = 300 C and post-annealed at Tan = 600 C (teff = 3.5 μm) was investigated by 

EIS after charging for different numbers of cycles. In the Nyquist plot (Figure 2-11), a pronounced 

 

Figure 2‐11 Nyquist plots of a thick Si film anode (teff = 3.5 μm) deposited at Tsub = 300 C 
and post‐annealed at Tan = 600 C after charging for different numbers of cycles. 
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semicircle appeared at the 1st cycle and this semicircle did not change for the 10th cycle. We attribute 

this to the large reaction resistance for the unreacted Si remaining in the charged Si film, which was 

evidenced by the capacity ratio of the [n+1]th charge over the [n]th discharge exceeding 100% for 

the initial 30 cycles (Figure 2-10f). This semicircle got much smaller after the 40th cycle (Figure 2-

11), which we attribute to the depletion of the unreacted Si in the charged Si film, which was observed 

in the capacity ratio of the [n+1]th charge over the [n]th discharge of less than 100% for >30 cycles 

 

Figure 2‐12 Photographs and SEM  images of the Si film deposited at Tsub = 300 C and 
post‐annealed at Tan = 600 C before and after the charge‐discharge cycle. The sample is 
the same as that in Fig. 7. Before the cycle, the Si film was uniform over the Cu substrate 
and show porous surface structure. While  it was detached from the substrate at some 
regions  to  show  the  Cu  surface  in  the  photograph  and  had  several‐tens‐μm  large 
protrusions in the SEM images after 80 cycles.  
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(Figure 2-10f). It is reasonable to consider that the reaction resistance became much smaller once the 

porous Si film was lithiated [114]. We also see a slight increase of contact resistance between the 1st 

and 10th cycles (Figure 2-11). We attribute this to some detachment of the Si film from the Cu 

substrate despite the improved Si/Cu interface with a composition gradient fabricated by thermal 

treatment at Tsub = 300 C and post-annealing at Tan = 600 C. We also characterized the same Si film 

 

Figure 2‐13 (a) Rate capability of a thick Si film (teff = 3.1 μm) deposited on a Cu plate at 

Tsub = 300 C and post‐annealed at Tan = 600 C for 50 cycles. (b) Coulombic efficiency and 
the capacity ratio of charge at the (n+1)th cycle to discharge at the (n)th cycle as a function 
of cycle number n of the same film as in (a). 
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before and after the cycles. The photographs and SEM images (Figure 2-12) shows the uniform Si 

film over the Cu substrate with porous surface structure before the cycle. On the other hand, the Si 

film was detached from the substrate at some regions to show the Cu surface in the photograph and 

had several-tens-μm large protrusions in the SEM images after 80 cycles. Some countermeasure such 

as using nano-/micro-structured substrate would be needed to enhance the interfacial adhesion further.  

The rate capability of a representative 3.1-μm-thick Si anode deposited at Tsub = 300 C and post-

annealed at Tan = 600 C is shown in Figure 2-13. Starting from 0.05C at the 1st cycle, the Si film 

achieved a discharge capacity of 1426 mAh gSi
−1, which increased to 1472 mAh gSi

−1 after 10 cycles. 

This increase is because unreacted Si gradually reacted with Li+ and contributed to the discharge 

capacity as can be seen in the charge[n+1]th/discharge[n]th capacity ratio of > 100% with smaller loss of 

reacted Si, which is evidenced by the Coulombic efficiency approaching 100% (Figure 2-13b). When 

the current density was quadrupled to 0.2C from the 11th cycle, Coulombic efficiency dropped from 

above 99% to 95%, but recovered immediately at the 12th cycle. Moreover, the discharge capacity 

showed only a slight decrease to 1428 mAh gSi
−1 at 0.2C. After the 20th cycle, both the charge and 

discharge capacity of the film started to decrease gradually. When the charge/discharge rate were set 

back to 0.05C at the 30th, 40th and 50th cycles, both the charge and discharge capacity increased 

slightly by a few tens of mAh gSi
−1. This small capacity difference of a few percent confirms the 

sufficient rate performance of the Si anode for 0.05C–0.2C. At the 50th cycle, a reversible capacity 

of 1050 mAh gSi
−1 was achieved at 0.05C. The Coulombic efficiency was above 98% for cycle 5–50 

regardless of the current density (0.05C or 0.2C).  

 

2.7  Conclusions  

We developed the RVD method, in which a Si source is heated to well above its melting point (Tboat 
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= 2000−2400 C) while a Cu substrate is kept at much lower temperature (Tsub = 100–500 C), and 

rapidly deposited 3–14-μm-thick porous Si films directly on Cu substrates in 10 s to 1 min. Such 

deposition is several orders of magnitude faster than the conventional physical vapour deposition 

methods using Si source near its melting point (6–90 nm min−1 by thermal evaporation) or the 

sputtering (8.6 nm and 2.8–6.1 nm min−1 by radio frequency magnetron sputtering). And such fast 

deposition eliminates the need for ultra-high vacuum systems because the contaminant oxygen is 

diluted by the rapidly depositing Si. Compared with chemical vapour deposition methods, RVD uses 

the safe source instead of the explosive/toxic silane/chlorosilane sources, and moreover the Si vapour 

enables deposition at low temperatures, leading to the spontaneous roughening of the Si film. The Si 

films had striped, porous structure, with different porosity (pfilm = 0.15–0.34) and ratio of amorphous 

to microcrystalline phases depending on Tsub. Rapid deposition of 14 μm of Si in 10 s resulted in 

protrusions in the films, while moderately rapid deposition of 3–4 μm in 1 min gave films without 

protrusions. Pretreatment of the Cu substrates by sonication in isopropanol followed by UV-O3 

treatment and finally annealing in H2/Ar at 800 C was effective to remove C and O contaminants 

from their surfaces. The as-deposited porous Si films showed very poor charge-discharge cycle 

performance that was improved considerably once the films were annealed at 600 C for 10 min 

because a sub-micrometer-thick CuSix intermixed layer formed at the Si/Cu interface without the Si 

films crystallizing. The rather dense (pfilm = 0.15), thick Si films (teff = 3.4 μm) of mixed amorphous-

microcrystalline phase deposited at Tsub = 500 C showed fairly high initial charge/discharge 

capacities of 4045 and 3328 mAh gSi
−1 at 0.05C, respectively, and kept a high capacity of >3000 mAh 

gSi
−1 for the first 10 cycles but their capacity decreased to below 500 mAh gSi

−1 after 20 cycles. The 

dense structure of these films possibly suppressed their oxidation in air and excess SEI layer 

formation, resulting in good initial performance but large stress caused by volume changes during 

cycling, resulting in the rapid capacity fade within 20 cycles. In contrast, the low-density (pfilm = 0.33) 

thick amorphous Si films (teff = 3.1 μm) deposited at Tsub = 100 C showed a rather small discharge 
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capacity of 1151 mAh gSi
−1 for the first cycle but good capacity retention of 70% after 50 cycles. The 

porous structure of these films possibly facilitated their oxidation in air and excess SEI layer 

formation, resulting in a small initial discharge capacity but suppressed the stress caused by volume 

changes during cycling and yielded a stable SEI layer, resulting in rather good cycle stability. The 

reversible capacity of ~1000 mAh gSi
−1 after 50 cycles of the Si film deposited at low Tsub (100 C) 

corresponds to a high volumetric capacity of ~1500 mAh cmfilm
−3 and areal capacity of ~0.5 mAh 

cmanode
−2, which suggest Si anodes may be suited for practical use. Toward the future goal having 

porous Si films of teff~10 μm on both sides of a 15-μm -thick Cu foil and operating it for longer cycles 

of ~1,000 or more, we are now examining the charge limitation to reduce the volume expansion and 

additives to electrolyte to make more stable SEI. Although further improvement is needed in thickness 

and cycle performance, the RVD method yielding micrometer-thick Si films rapidly from an 

inexpensive, safe Si source, and that allows control over porosity, crystallinity, and interface with the 

Cu collector, and that can be applied to various substrates including nano-/micro-structured substrates, 

is a promising route to fabricate practical Si anodes for LiBs. 
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Chapter 3 – Rapidly deposited, porous Si–Cu anodes with 

compositional gradients 

 

3.1  Introduction 

For the efficient use of electrical energy and particularly renewable energy, electrical energy storage 

systems are very important. Rechargeable lithium ion batteries have been used successfully in 

portable electronic device and electric vehicle applications, but there is considerable demand for 

further enhancements of the energy and power densities of these batteries, along with the need for 

cost reduction. Si is considered to be a promising anode material for lithium secondary batteries [65]. 

Si can accommodate up to 4.4 lithium atoms per Si atom (Li4.4Si alloy), thus yielding huge theoretical 

gravimetric and volumetric capacities of 4200 mAh gSi
−1 and 9786 mAh cmsi

−3, respectively, which 

are approximately ten times larger than the corresponding values for conventional graphite [61-64]. 

However, this high specific capacity is realized by holding large amounts of Li with Si, and is 

accompanied by large volume changes (300–400%, depending on the state of LixSi [66-68]). Si 

anodes cannot withstand the heavy strain of this expansion and thus break down, resulting in the 

pulverization and delamination of entire structures [69-71]. Various structures, including porous thin 

films [85, 86], hollow-structured double-walled Si nanotubes [80] and composites of Si with carbon 

[82, 115], carbon fibres [60], and silicides [83], have previously been reported that can accommodate 

the volume changes. As a result, the high gravimetric capacities of Si-base anode materials were 

achieved successfully, but sometimes with small Si loads compared with the heavy current collectors, 
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and also required complicated and time-consuming processing using expensive raw materials. Large-

scale and low-cost fabrication of Si anodes with stable electrochemical performance is essential for 

practical use of these anodes in lithium secondary batteries.  

 We recently reported a rapid vapour deposition (RVD) method that enables simple fabrication of 

3–14-μm-thick porous Si films rapidly in 10–60 s that are deposited directly on the Cu current 

collectors using inexpensive Si powder sources [116]. Rapid vapour deposition is a physical vapour 

deposition method in which a source material is heated to much higher temperatures than the melting 

point of the source (2000–2400 C for the case of Si), leading to deposition rates that are several 

orders of magnitude higher than conventional physical vapour deposition methods [85]. Post-

annealing at 600 C enhanced the adhesion of the Si films to the Cu current collectors by yielding a 

sub-μm-thick intermixed layer, and produced anode capacitances of 1000 mAh gSi
−1 and 0.66 mAh 

cmanode
−2 for the 50th cycle of a moderately thick Si film. The film had an effective thickness of 3–4 

µm (teff, calculated by dividing the areal Si mass by the bulk Si density of ρSi = 2.33 g cm−3) and 

porosity of 15–30%. However, delamination failures ultimately occurred because of the high stress 

at the Si/Cu interface. Strain-graded C-Al-Si multilayers (C, Al and Si experience volume changes of 

10, 100 and 400%, respectively, upon lithiation) produced by sputter deposition [94] and Si-base 

nanowall arrays fabricated by oblique angle deposition [117] are effective approaches for stress 

relaxation during lithiation/delithiation. Furthermore, well-aligned CuSi nanorod arrays with gradient 

profiles in Cu and Si compositions were realized by co-deposing Cu and Si with independent dynamic 

tuning of their deposition rates at 0–0.5 nm s-1 (0–0.03 µm min-1) at an oblique angle of 88 with 

respect to substrate normal although their electrochemical performance was not reported [118]. These 

processes are attractive in engineering the Si anode structure, however, require high vacuums and 

long processing times.  

Here we propose porous and amorphous Si–Cu films with gradient composition profiles that change 
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continuously from Cu to Si as ideal structures for defocusing stress during lithiation/delithiation 

processes. This type of structure corresponds to a strain-graded multilayer with an infinite number of 

layers, and can be fabricated easily and spontaneously by RVD in 1 min. Si and Cu are co-deposited 

on the Cu current collector by heating Si and Cu powders together in a carbon boat to ~2000 C. Cu 

has a lower melting point (1085 C) and a higher vapour pressure than Si (melting point of 1414 C), 

and vaporizes and is deposited preferentially at the initial stage, whereas Si vaporizes and is deposited 

preferentially at the later stage. Also, the porous and amorphous structures of the films are realized 

by keeping the Cu current collector at a low temperature of ~100 C. I compared the microstructures 

and electrochemical performances of the Si–Cu films with pure Si films and discussed the effects of 

the composition gradient and diffuse interface in the Si–Cu films in enhancing the cycle performances. 

 

3.2  Materials and methods 

3.2.1  Si–Cu film fabrication 

Circular Cu plates (15-mm diameter, 0.5-mm thickness) were used as substrates for the Si–Cu films. 

The Cu substrates were pretreated by bath sonication in isopropanol for 10 min followed by UV-O3 

exposure for 3 min to remove organic contaminants from their surfaces. The Cu substrates were then 

annealed under a 4 vol% H2/Ar flow at ambient pressure and 800 C for 10 min to remove any organic 

contaminants and reduce the Cu surface [116]. The Si wafer (p-type, resistivity of 10–20 Ω cm) was 

immersed in 5 wt% hydrofluoric acid for 1 min and then ground into powder using a mortar and 

pestle. The Cu powder was used as purchased (~75-µm diameter, 99.9%, Wako Pure Chemicals, 

Osaka, Japan). These Si and Cu powders were loaded together (with weight ratios of 100:0, 95:5, 

90:10, and 80:20) in a carbon boat, heated in the resistively heated carbon boat to ~2000 C (boat 

temperature, Tboat) in a 0.1-Torr Ar atmosphere, and vaporized rapidly in 1 min. A Cu substrate was 
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held ~40 mm from the boat and was kept at 100–500 C (substrate temperature, Tsub, 100 C in most 

experiments) during deposition to suppress the surface diffusion of the Si and Cu adatoms and yield 

rough and porous films through the shadowing effect [98, 99]. The Cu substrate was maintained at 

constant temperature under the strong thermal radiation from the carbon boat by using a substrate 

holder made of a block of Cu with a large heat capacity that contained an embedded ceramic heater 

and N2-gas cooling line [116]. The co-deposited Si–Cu films were post-annealed under a 4 vol% 

H2/Ar flow at ambient pressure at 600 C (annealing temperature, Tan) for 10 min to improve the 

adhesion between the Cu substrate and the Si–Cu film. The areal weight of the Si–Cu film for 

electrochemical measurements was in the 0.7–0.8 mg cm−2 range, corresponding to teff = 3–3.5 μm. 

Note that the Si content of the Si–Cu films is less than 100% and thus the actual Si content in the 

films is lower than that in bulk Si films with the same teff.  

 

3.2.2  Characterization 

The microstructures and the elemental composition distributions of the Si–Cu films were 

characterized by scanning electron microscopy (SEM; Hitachi S-4800, Tokyo, Japan) equipped with 

energy-dispersive X-ray spectroscopy (EDX; EDAX Genesis, AMETEK, Elancourt, France). The 

specific surface area and pore volume of the Si–Cu films were obtained by Brunauer-Emmett-Teller 

(BET) analysis of nitrogen adsorption isotherms measured at 77 K (Quantachrome Instruments 

Autosorb 1C, Boynton Beach, FL, USA). The crystal structures of the Si–Cu films were characterized 

by X-ray diffraction (XRD; Rigaku RINT Ultima III, Akishima, Japan) using Cu Kα radiation (λ = 

1.54 Å). Following the charge–discharge cycles, some samples were also characterized after 

delithiation and rinsing with dimethyl carbonate (DMC). 
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3.2.3  Electrochemical characterization 

Electrochemical measurements were performed using three-electrode beaker cells. Either a Si film or 

a Si–Cu film on a Cu substrate as a working electrode, Li metal (15 mm × 30 mm) as the counter 

electrode, and a Li reference electrode was set up in an Ar glove box with a dew point that was lower 

than −90 C. Lithium perchlorate (LiClO4, 1 M) in a 1:1 (v/v) mixture of ethylene carbonate (EC) 

and propylene carbonate (PC) with H2O content of less than 20 ppm (Kishida Chemical, Osaka, Japan) 

was used as the electrolyte. Charge/discharge measurements were carried out in a potential range of 

0.005–1.200 V vs. Li/Li+ in constant-current (CC) mode with different rates of 0.1C–1C using a 

battery charge/discharge system (Hokuto denko HJ1020mSD8, Tokyo, Japan). The C-rate was 

determined using the sum weight of Si and Cu and a value of 4200 mAh gfilm
−1 for the theoretical 

capacity regardless of the Cu content. For the Si–Cu films, the Cu contributes to the weight but not 

to the capacity, making the theoretical capacity smaller than this value, and thus the actual C-rate 

should be higher. In this work, I define lithiation as “charge” and delithiation as “discharge”. Three-

electrode cells were also used to perform electrochemical impedance spectroscopy with a potentiostat 

(Bio-Logic VMP3, Claix, France). 

 

3.3  Microstructure and composition profile of Si–Cu films 

Figure 3-1 shows a typical Si–Cu film with actual thickness of 2.7 µm (tact). The film had a wall-

shaped structure that was induced by stripe patterns on the Cu substrate surface (Figure 3-1a), which 

was quite similar to the pure Si films in our previous report [116]. The porous structure is visible in 

the high-resolution cross-sectional images (Figure 3-1b and c), and is induced by suppressed surface 

diffusion of the deposited Si and Cu at the low Tsub of 100 C. The Si–Cu films deposited at higher 

Tsub are also shown in Figure 3-1d and e. The film got denser for the higher Tsub. Among the Si–Cu 
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films deposited at Tsub = 100, 300, and 500 C, those deposited at 100 C showed the best 

electrochemical performance (Figure 3-2), and thus Tsub was fixed at 100 C in the following 

 

Figure 3‐1 SEM images of typical Si–Cu films prepared by RVD using a 5 wt% Cu source in 

1 min without post‐annealing. The Si–Cu film deposited at Tsub = 100 C (tact  2.7 µm, ρfilm 

 1.54 g cm‐3); (a) the tilted view, (b) the cross‐sectional view in the longitudinal direction, 
and (c) the cross‐sectional view in the transverse direction of the stripe patterns on the 

Cu substrate surface. The Si–Cu films deposited at Tsub = 300 C (d) (tact  2.8 µm, ρfilm  
1.87 g cm‐3) and at Tsub = 500 C (e) (tact  2.6 µm, ρfilm  2.01 g cm‐3) 
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experiments. The cross-sectional images were acquired by bending the 0.5-mm-thick Cu substrate, 

which resulted in detachment of the Si–Cu film. Post-annealing at Tan = 600 C for 10 min was thus 

performed on the films that were used for electrochemical measurements to enhance the adhesion of 

these films to the Cu substrates.  

Cross-sectional SEM images of the pure Si and Si–Cu films that were deposited using Si sources with 

various Cu contents are shown in Figure 3-3a–d. The films that were deposited in 1 min had tact of 

2.3–6.7 µm, showing that such rapid deposition is possible, regardless of the Cu content of the source. 

The pure Si film showed no contrast in its cross-section from bottom to top (Figure 3-3a), while the 

Si–Cu film showed a clear change in brightness from bottom to top (Figure 3-3b–d). This change in 

 

Figure 3‐2 Electrochemical performance of the Si–Cu films deposited using the 5 wt% Cu 

source at various Tsub of 100, 300, and 500 C. All samples were post‐annealed at Tan = 

600 C and measurements were carried out using 1 M LiClO4 in a 1:1 (v/v) mixture of EC 
and PC as the electrolyte 
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brightness indicates the change in the Cu content of the film. I also evaluated the mass densities of 

the Si and Si–Cu films by measuring the masses and volumes of these films [116]. The pure Si film 

 

Figure 3‐3 Cross‐sectional SEM images and photographs (inset) of (a) a Si film (tact ≈ 6.7 
μm at the centre of the film, ρfilm ≈ 1.54 g cm−3) prepared with a pure Si source, and of Si–
Cu films prepared using Si sources containing (b) 5 wt% Cu (tact ≈ 4.9 μm, ρfilm ≈ 1.60 g 
cm−3), (c) 10 wt% Cu (tact ≈ 2.3 μm, ρfilm ≈ 1.67 g cm−3), and (d) 20 wt% Cu (tact ≈ 4.5 μm, 

ρfilm ≈ 1.82 g cm−3). All samples were prepared at Tsub = 100 C without post‐annealing. (e) 
Depth profiles of the elemental compositions of the pure Si films and the Si–Cu films as 
measured by SEM‐EDX. The standard deviation was 1–3% of  the  intensity  (Cu content 
value)  and 0.2–0.4  at%  as  the Cu  content  value  (see  Figure 3‐4). These  films  showed 
detachment  from  the  Cu  substrate  upon  bending  because  post‐annealing  treatments 
were not applied to the samples. The ~3 at% Cu signal is a background signal from the Cu 
plate for all measurements (see Figure 3‐5). 
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had a mass density (ρfilm) of 1.54 g cm−3, and its porosity (Pfilm) was calculated to be 0.33 using the 

following equation: Pfilm = 1 − ρfilm/ρSi. The mass densities of the films increased from 1.60, to 1.67, 

to 1.82 g cm−3 with increasing Cu content (5, 10, and 20 wt%, respectively) in the Si source. Using 

the mass density of bulk Si (ρSi = 2.33 g cm−3), the respective porosities of these films were calculated 

to be 0.31, 0.28, and 0.21; however, their actual porosities should be higher because the bulk Si–Cu 

alloys have increasing mass densities with increasing Cu content.  

Elemental composition of these films were analysed by SEM-EDX at ~50 points for each sample as 

shown in Figure 3-4 and summarized in a graph of the composition profiles (Figure 3-3e). The graph 

 

Figure 3‐4 Typical SEM‐EDX result for a point‐measurement of the cross‐section of the Si–

Cu film (5 wt% cu source, Tsub = 100 C, without post‐annealing). This kind of measurement 
was made  for ~50 different points  at  various distances  from  the  interface  to make  a 
profile  for each  sample  in Figure 3‐3e. Standard deviation of  the Cu  content values  is 
shown in (d) for the film from 5 wt% Cu source. 
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clearly demonstrated the Cu concentration gradient in the direction perpendicular to the Cu substrate. 

The Si film that was deposited at Tsub = 100 C showed minimal intermixing of Si with Cu, while the 

 

Figure  3‐5  SEM‐EDX  measurements  examining  the  background  signal  from  the  Cu 

substrate.  The  sample  was  a  pure  Si  film  deposited  at  Tsub  =  100  C  without  post‐
annealing. The point measurement detected Cu at ~3 at%  for  the  top position of  the 
cross‐section of the Si film on the Cu substrate. Whereas no Cu was detected for the top 
position of the cross‐section of the Si film detached from the Cu substrate and for the top 
surface of the Si film on the Cu substrate. 
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film that was deposited at Tsub = 300 C showed a thin intermixed layer of 0.1–0.2 μm, which is 

consistent with the results of our previous report [116]. A higher deposition temperature (Tsub = 500 

C) can yield a thicker intermixed layer but containing a mixed amorphous-microcrystalline phase 

with small porosity, which resulted in poor cycle performance [116]. In contrast, the co-deposited Si–

Cu films showed a much thicker compositional gradient layer; ≥ 5 at% for ≤2 µm from the interface 

and 2–3 at% for the entire thickness range of 4.5-µm-thick films without the need to increase Tsub. 

The Cu content of the gradient layer can also easily be increased to ~40 at% by increasing the Cu 

content of the source.  

 

3.4  Crystallinity and lithiation behavior of porous Si–Cu films 

To enhance the adhesion of the Si and Si–Cu films with the Cu substrate, post-annealing was 

performed at Tan = 600 C. The high-magnification cross-sectional SEM images of the films at the 

interface with the Cu substrates clearly show the significant improvements in the adhesion compared 

with the as-deposited films (Figure 3-3); the gap was very small for the pure Si film (Figure 3-6a) 

and was eliminated for the Si–Cu films (figure 3-6b–d). Nitrogen adsorption measurement was also 

performed for the Si–Cu film deposited using a 5 wt% Cu source. It showed that the Si–Cu film had 

a specific surface area as high as 95.8 m2 gfilm
-1 (Figure 3-6f) and pore volume as high as 0.237 cm3 

gfilm
-1 (Figure 3-6g). When we use the mass density of Si (2.33 g cm-3), 1 g of the Si–Cu film has 

0.429 cm3 solid with 0.237 cm3 pore, resulting in porosity of 0.356, which is closed to the porosity 

value (0.31) estimated using the mass density of the film (1.60 g cm-3) for the as-deposited film.  

The crystallinity of the Si-base films is one of the most significant factors to affect the electrochemical 

performance, and causes different lithiation behaviour at the initial cycle. We previously reported a 
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change in the crystallinity of pure Si films with Tsub [116]; deposition at low Tsub values of 100 and 

300 C yielded Si films with a purely amorphous phase that did not crystallize upon post-annealing 

 

Figure 3‐6 Structure analysis of the Si–Cu films deposited on cu substrates at Tsub = 100 C 
and post‐annealed at Tan = 600 C. Cross‐sectional SEM images at the interface between 
the Cu substrates and Si–Cu films made with (a) pure Si source, (b) 5 wt% Cu source, (c) 
10 wt% Cu source, and (d) 20 wt% cu source. BET analysis of the Si–Cu films deposited on 

a 10 µm‐thick Cu foil at Tsub = 100 C and post‐annealed at Tan = 600 C; (e) N2 adsorption 
isotherm, (f) BET plot, and (g) pore size distribution. XRD patterns of Si–Cu films deposited 

at  Tsub  =  100  C  and  post‐annealed  at  Tan  =  600  C;  in  full  intensity  scales  (h)  and  a 
magnified intensity scale (i). 
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at Tan = 600 C, while deposition at the high Tsub of 500 C yielded Si films with a mixed amorphous 

and microcrystalline phase. The solid phase crystallization of amorphous Si (a-Si) is known to occur 

upon annealing at temperatures ≥700 C for 10 min or more [100], but it does so more easily in 

coexistence with a metal, which is known as metal-induced crystallization [119-123]. I therefore 

analysed Si–Cu samples that had been post-annealed at Tan = 600 C by XRD (Figure 3-6h and i). 

From the spectra for full y-axis range (Figure 3-6h), we can see that the Cu substrates had (200) out-

of-plane orientation. The film from 5 wt% cu source showed a broad peak of a-Si at ~29 [124], in 

addition to the intense Cu (111) and (200) peaks at 43.3° and 50.4°, respectively. Because of the 

strong (200) orientation of the cu substrate, we can also see its diffraction at 45.0 due to the weak 

Cu Kβ line. The film from 10 wt% cu source showed the sharpened peak of a-Si at ~29 with a strong 

Si (111) peak, showing the partial crystallization of a-Si. In addition to the above-mentioned peaks 

from the Cu substrate at 43.3, 45.0 and 50.4, the film had peaks of Cu15Si4 (332) at 44.1 [123, 

125], Si (220) at 47.3 and Si (311) at 56.1 [124]. The film from 20 wt% Cu source showed similar 

spectrum with that from 10 wt% cu source with some differences; the broad peak of a-Si at ~29 got 

weakened, the Cu15Si4 (510) peak at 48.1 got pronounced, and the Si (311) peak at 56.1 got less 

obvious. In the standard powder pattern, Cu3Si has intense diffractions by the (012) and (300) planes 

at 44.6 and 45.0 with relative intensities of 64 and 100, respectively [123, 125]. We attribute the 

peak at 45.0 to the Cu (200) diffraction of the Cu Kβ line for the film from 5 wt% Cu source, which 

show no other diffraction except for those from the Cu substrate, but the Cu3Si (012) and (300) peaks 

may overlap with it for the films from 10 to 20 wt% Cu sources. From these analysis, we can conclude 

that the film from 5 wt% cu source was fully amorphous and that the films from 10 wt% and 20 wt% 

cu sources were partially crystallized with c-Si and crystalline copper silicide phases (with c-Cu15Si4 

phase, at least). Next, I examined the electrochemical performances of the Si–Cu films via 

galvanostatic charge–discharge measurements using three-electrode beaker cells. First, the 
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performance was evaluated using an electrolyte of 1 M LiPF6 in EC/diethyl carbonate (1:1 v/v); 

however, all the Si and Si–Cu films showed poor cycle performances (Figure 3-7). Hydrofluoric acid 

possibly formed because of insufficient removal of oxygen/water and the excess amounts of the 

electrolyte used in the beaker cells, which resulted in the etching and delamination of the films. 

Therefore, I subsequently used 1 M LiClO4 in EC/PC (1:1 v/v) as the electrolyte.  

Figure 3-8 shows the lithiation/delithiation behaviour of these films over the first two cycles measured 

at a rate of 0.1C. Note that the rate is calculated by assuming 100% Si content, and thus the actual 

rate is higher than 0.1C for the Si–Cu films. In the case of the Si–Cu film with the lowest Cu content 

(5 wt% Cu source), the first plateau appeared at ~200 mV vs. Li/Li+ during lithiation, which 

 

Figure  3‐7  Electrochemical  performance  of  pure  Si  and  Si–Cu films using lithium 
hexafluorophosphate (LiPF6, 1 M) in a 1:1 (v/v) mixture of EC and diethyl carbonate 
as the electrolyte with H2O content of less than 20 ppm (Kishida Chemical, Osaka, 
Japan) 
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corresponds to the lithiation potential of a-Si (Figure 3-8a), while the Si–Cu films with higher Cu 

content (10 and 20 wt% Cu sources) showed plateaus at ~150 mV (Figure 3-8b) and ~100 mV (Figure 

3-8c), respectively, because of partial crystallization of the Si–Cu films (Figure 3-6i). It is known that 

the initial lithiation of c-Si generally occurs at ~100 mV, which corresponds to the conversion of c-

Si to a-LixSi (x~3.5) [66, 68, 126], while a-Si converts into a-LixSi (x=0–2.0) at ~200 mV, and then 

converts further into a-LixSi (x=2.0–3.5) at ~100 mV [66, 67, 127-130].  

Figure 3-8d–g shows differential capacity curves of the Si–Cu films that were derived from the 

 

Figure 3‐8 Voltage‐capacity profiles of Si–Cu films with (a) 5 wt% Cu source (teff = 3.3 µm), 
(b) 10 wt% Cu source (teff = 3.4 µm), and (c) 20 wt% Cu source (teff = 3.1 µm) for the first 
and second cycles measured at a rate of 0.1C. (d−g) DifferenƟal capacity curves derived 
from the voltage‐capacity profiles shown in parts (a−c).  
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voltage-capacity profiles (Figure 3-8a–c). During the first charging process (Figure 3-8d), the Si–Cu 

film with the low Cu content (5 wt% Cu source) showed three peaks; small and dominant sharp peaks 

at ~200 and ~180 mV, respectively, and another broad peak at ~90 mV, which correspond to 

potentials forming a-Li2.0Si, a-Li3.5Si, and a-Li3.75Si, respectively [70, 87, 130, 131]. The Si–Cu film 

with moderate Cu content (10 wt% Cu source) also showed three different peaks, which shifted to 

lower potentials of ~160, ~130 and ~70 mV. In contrast, the Si–Cu film with the highest Cu content 

(20 wt% Cu source) showed one dominant peak at ~100 mV, which was similar to the lithiation 

behaviour of c-Si [87]. During the first discharge process (Figure 3-8e), all the Si–Cu films exhibited 

the same initial delithiation peak at ~270 mV, which corresponds to the transformation of a-Li3.5Si 

into a-Li2.0Si. A difference was found at the second delithiation peak, where the Si–Cu films with the 

lowest and moderate Cu contents (5 and 10 wt% Cu sources) both exhibited a broad peak in the 400–

500 mV range, corresponding to the transformation of a-Li2.0Si into a-Si [68, 70], while that with the 

highest Cu content (20 wt% Cu source) showed a sharp peak at ~450 mV, corresponding to the 

transformation of c-Li3.75+δSi into a-LixSi [68, 131]. In the second charging process (Figure 3-8f), the 

lithiation potentials shifted to higher potentials in all the Si–Cu films, which is possibly due in part to 

the conversion of c-Si to a-Si during the first charge–discharge process. Little change was found in 

the second discharge process (Figure 3-8g) when compared with the first discharge process (Figure 

3-8e). The dominant first peak at ~270 mV appeared for all films, with the broad second peak at 400–

500 mV for the Si–Cu films with the lowest and moderate Cu contents (5 and 10 wt% Cu sources) 

and the sharp second peak occurred at ~450 mV for the Si–Cu film with the highest Cu content (20 

wt% Cu source). The high Cu content of the film may have inhibited complete lithiation of Si in the 

initial cycles, and thus c-Si content possibly remained in this film for at least the first two cycles. 
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3.5  Cycle performance of porous Si–Cu anodes 

Figure 3-9 shows the electrochemical behaviour of the Si and Si–Cu films. The initial charge and 

discharge capacities of the pure Si film reached 3625 and 2520 mAh gfilm
−1, respectively (Figure 3-

9a). The large irreversible capacity is attributed to Si consumption during the formation of the solid 

electrolyte interphase (SEI), which was significant because of the large exposed surface of the porous 

Si film. The Coulombic efficiency increased to 98% after 20 cycles, but then dropped abruptly at the 

30th cycle (Figure 3-9b). This occurs because the Si film begins to peel off the Cu substrate because 

of the large volume change during the charge–discharge cycles. Finally, the discharge capacity at the 

50th cycle decreased to ~500 mAh gfilm
−1. These performances were worse when compared with the 

results of our previous report [116], which were a Coulombic efficiency of ~99.5% and a discharge 

capacity of ~1000 mAh gfilm
−1 at the 50th cycle. This difference originated from the different cell 

structure (coin cells) and electrolyte (1 M LiPF6 in a 1:1:1 (v/v) mixture of EC, DMC, and ethyl 

methyl carbonate) that were used in the previous work. In contrast, the small addition of 5 wt% Cu 

to the Si source yielded a Si–Cu film with remarkably enhanced cycle performance. The film 

exhibited a high initial charge capacity of 3425 mAh gfilm
−1 with a discharge capacity of 2073 mAh 

gfilm
−1 (Figure 3-9a). The capacity retention of this film was the highest among all the films examined, 

at 73% and 60% with discharge capacities of 1518 and 1250 mAh gfilm
−1 at the 50th and 100th cycles, 

respectively. The Coulombic efficiency exceeded 98% at the 10th cycle and remained stable at ~99% 

for 100 cycles. These values are much higher than that of the pure Si film, possibly because of the 

gradient volume expansion of the Si–Cu film in the direction perpendicular to the Cu substrate. 

Further increases in the Cu content of the Si source to 10 and 20 wt%, however, resulted in poorer 

performance levels with lower initial charge and discharge capacities, Coulombic efficiencies, and 

capacity retention. This is because of the partial crystallization of the Si–Cu films (Figure 3-6i) and 

the inhibited lithiation (Figure 3-8) for those with higher Cu contents.  
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The volumetric capacity (mAh cmfilm
−3) and the areal capacity (mAh cmanode

−2) (shown as inset of 

Figure 3-9a) of the films are highly important factors for practical battery devices. The volumetric 

 

Figure 3‐9 Electrochemical performance of pure Si and Si–Cu films deposited at Tsub = 100 

C and post‐annealed at Tan = 600 C.  teff = 3.5, 3.3, 3.4, and 3.1  μm  for  films  from Si 
sources with 0, 5, 10, and 20 wt% of Cu, respectively. The cycle performance at 0.1C was 
expressed as gravimetric capacity (a) with volumetric capacity and areal capacity values 
as inset. (b) Coulombic efficiency of the films. Cycle tests were performed at 0.1C for all 
cycles (1–100). 
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capacity of the Si–Cu film (5 wt% Cu source) was 1956 mAh cmfilm
−3 after 100 cycles, which is much 

higher than that of commercial graphite anodes. The areal capacity of the Si–Cu film (5 wt% Cu 

source) was 0.96 mAh cmanode
−2, which is higher than previously reported values for Si nanomaterials 

(0.2–0.4 mAh cmanode
−2 [79, 88]) and porous Si films by ourselves (0.66 mAh cmanode

−2 [116]), but is 

still smaller than that of commercial graphite anodes (~4 mAh cmanode
−2, 18650 Li-ion cells, Sony, 

Japan) [112] and Si–carbon nanotube hybrid anodes (2 mAh cmanode
−2) [113]. The cycle performance 

of the pure Si film in this work is smaller than that in our previous  work [116], which is possibly 

because of differences in the measurement method, and thus the Si–Cu film from the 5 wt% Cu source 

may perform better in a coin cell test and/or electrolyte of 1 M LiPF6 in a 1:1:1 (v/v) mixture of EC, 

DMC, and ethyl methyl carbonate. The Si–Cu film (5 wt% Cu source) showed very stable Coulombic 

efficiency of ~99% for 10–100 cycles, indicating the formation of stable SEI layer and/or efficient 

use of Si in the film from the early cycles. The Si–Cu film (10 wt% Cu source) showed lower values 

of 97% for the first 50 cycles, and fluctuating values in the 96%–98% range for the later cycles. The 

Si–Cu film (20wt% Cu source) showed a very low initial value, which increased to >94% after 20 

cycles. These values lower than 100% indicate the continuous formation of SEI layer due to the 

incomplete formation of stable SEI layer in the early cycles. And some fraction of the Si in the films 

may not have reacted in the early cycles, as can be seen in the small initial charge capacity of 1992 

mAh gfilm
-1 (Figure 3-9a) and in the low potential for lithiation (Figure 3-7), and then gradually began 

to react with the increasing number of cycles. High Cu contents inhibited the formation of stable SEI 

layer and/or the reaction of Si with Li+.  

The Si–Cu film made using 5 wt% Cu in the Si source showed the best cycle performance and I 

therefore examined its rate performance (Figure 3-10). Beginning with the 0.1C rate, the Si–Cu film 

showed an initial discharge capacity of 2065 mAh gfilm
−1, and a reduced capacity of 1755 mAh gfilm

−1 

after 10 cycles with a Coulombic efficiency of ~97%. When the charge–discharge rate was doubled 
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to 0.2C from the beginning of the 11th cycle, the Coulombic efficiency dropped slightly to 95%, but 

immediately increased to ~98% at the 12th cycle, and that efficiency was maintained with a reduced 

discharge capacity of 1485 mAh gfilm
−1 at the 20th cycle. Similar changes were observed for later 

cycles, where the Coulombic efficiency dropped slightly upon an increase in the charge–discharge 

 

Figure 3‐10 (a) Rate capability of representative Si–Cu film (teff = 3.3 μm, 5 wt% Cu source, 

Tsub = 100 C, Tan = 600 C). (b) Coulombic efficiency and (c) capacity ratio of charge at the 
[n+1]th cycle to discharge at the [n]th cycle as a function of cycle number n. 
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rate but immediately recovered in the next cycle, and maintained a steady value of 98–100% at 0.1C–

1C rates for 100 cycles (Figure 3-10b). The discharge capacity decreased/increased upon any 

increase/decrease in the charge–discharge rate, with continuous gradual decay with increasing 

numbers of cycles. The discharge capacity decreased to 505 mAh gfilm
−1 at 1C at the 80th cycle and 

recovered to 964 mAh gfilm
−1 at 0.1C at the 100th cycle (Figure 3-10b). These results show that the 

stable SEI layer formed on this Si–Cu film and the Si in this film reacted efficiently with the Li+ from 

the early cycles. 

 

3.6  Cycle performance of porous Si–Cu anodes with different cut-off 

potentials for charge 

Figure 3-11 shows the effects of the different cut-off potentials for charge on the electrochemical 

performances of the Si–Cu films at a rate of 0.1C for 50 cycles. When compared with the 5 mV cut-

off, all films with the 100 mV cut-off showed reduced values for the initial charge capacities and 

reduced or similar values for the initial discharge capacities (Figure 3-11a–c, Figure 3-12a). The Si–

Cu film with the lowest Cu content (5 wt% Cu source) showed little change in capacity retention, 

whereas the Si–Cu films with moderate and highest Cu contents (10 and 20 wt% Cu sources) showed 

remarkable increases in capacity retention of 6% and 28%, respectively (Figure 3-11d). These results 

show that the cut-off operation for charge (lithiation) helps the Si–Cu anodes that contain c-Si to 

increase their capacity retention during cycling, possibly by suppressing the phase transformation, 

while the cut-off operation does not help the a-Si–Cu anode without c-Si, possibly because of the 

absence of such a phase transformation, regardless of the cut-off potential. The areal capacities of the 

Si–Cu films (5, 10 and 20 wt% Cu sources) were 0.8, 0.7 and 0.5 mAh cmanode
−2, respectively (Figure 
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3-12b), at the 50th cycle. The Coulombic efficiencies of the Si–Cu films (10 and 20 wt% Cu sources) 

Figure 3‐11 Voltage‐capacity curves for the first and 50th charge/discharge cycles of Si–
Cu films deposited using sources with (a) 5 wt% Cu (teff = 3.3 µm), (b) 10 wt% Cu (teff = 3.5 
µm), and (c) 20 wt% Cu (teff = 3.2 µm) with different cut‐off operations at 5 and 100 mV 
for charge. (d) Cycle performance and (e) Coulombic efficiency of the Si–Cu films. The Si–

Cu films were deposited at Tsub = 100 C and post‐annealed at Tan = 600 C. 

 

Figure 3‐12 Electrochemical performance of Si–Cu films with 100 mV cut‐off potential for 
charge. The Si–Cu films were deposited using Si sources with different Cu contents (5, 10 

and 20 wt%) at Tsub = 100 C, post‐annealed at Tan = 600 C, and had teff = 3.3, 3.5 and 3.2 
µm, respectively. (a) Gravimetric capacity and (b) areal capacity of the deposited Si–Cu 
films. 
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increased to more than 95% after the fifth cycle, and remained at ~99% for 50 cycles, which are 

similar values to the efficiencies of the Si–Cu films with the lowest Cu content  (5 wt% Cu source) 

with both 5 and 100 mV cut-offs (Figure 3-11e).  

 

3.7  Failure behavior of pure Si and Si–Cu films after charge–

discharge cycles 

Figure 3-13 shows top-view SEM images of the pure Si and Si–Cu films before and after 100 cycles. 

Both films initially had similar morphologies with wall-shaped structures (Figure 3-13a and c), but 

the pure Si film was completely pulverized into a few µm-sized particles, and peeled off after 100 

cycles. This occurred because of large-scale volume change of the pure Si film and its poor adhesion 

to the Cu substrate. At the region where the Si film was peeling off, SEM-EDX analysis detected Si 

and Cu at 1.1 and 74.4 at%, respectively, indicating the delamination at the interface between the Si 

film and the Cu substrate (Figure 3-13e). In contrast, the Si–Cu film (5 wt% Cu source) had square 

domains with ordered domain boundaries at a pitch of 10–20 µm in one direction, with random 

domain boundaries in a direction that was roughly perpendicular to the former direction. The ordered 

domain boundaries apparently originated from the wall-shaped structure found in the as-deposited 

film (Figure 3-1a), which in turn originated from the stripe patterns on the as-received Cu substrates. 

Also, the domains contained numerous small cracks. Such a structure could possibly show reversible 

expansion and shrinkage for 100 cycles without pulverization. The similar results were obtained for 

the Si–Cu films using 10 and 20 wt% cu source (Figure 3-14); the films retained mostly attached to 

the Cu substrate with square domains. The Si–Cu films were delaminated in some areas but mostly 

remained attached to the Cu substrate (Figure 3-13d), possibly because of the gradient volume 

expansion of the Si–Cu films with gradient composition profiles and because of stress defocusing on 

the diffuse interface between the Si–Cu film and the Cu substrate. In the region where the Si–Cu film 
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was being delaminated, SEM-EDX detected Si and Cu at 15.6 and 40.7 at%, respectively, which 

indicated that the delamination occurred not at the interface but in the film itself (Figure 3-13f).  

 

Figure 3‐13 Top‐view SEM images of the pure Si film (teff = 3.3 µm) (a,b) and the Si–Cu film 
(5 wt% Cu source, teff = 3.3 µm) (c,d) before cycles (a,c) and after (b,d) the 100th discharge. 
Cycles were performed at 0.1C charge/discharge rates. Both films were deposited at Tsub 

= 100 C and post‐annealed at Tan = 600 C. SEM‐EDX analysis results for the pure Si film 
(e) and the Si–Cu film (f) after the 100th discharge. 
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In order to understand the underlying mechanism for the cycle performances, electrochemical 

impedance spectroscopy was performed for a pure Si film and Si–Cu films (Figure 3-15). The very 

high frequency region (above 126 kHz) corresponds to the sum of the solution resistance, resistance 

at the film/Cu interface and external circuits [132], and the  degradation of electrolyte can be 

neglected here due to the huge amount of electrolyte in the beaker cell. For the pure Si film, this 

resistance increased continuously during cycles, corresponding to the continuous detachment of the 

film from the Cu substrate. For the Si–Cu films (5 and 20 wt% Cu), on the other hand, this resistance 

showed very small increase due to the better adhesion at the film/Cu interface as shown in Figure 3-

 

Figure 3‐14 Top‐view SEM images of the Si and Si–Cu films after the 100th discharge. The 

films were deposited at Tsub = 100 C using (a) a pure Si source and (b) 5 wt%, (c) 10 wt%, 
and (d) 20 wt% Cu sources and post annealed at Tan = 600 C. The cycles were performed 
at 0.3C except for the 1st, 25th, 75th and 100th cycles. The films (a, b, d) were charged at 
0.1C, measured by  impedance  test, and discharged at 0.1C at  the 1st, 25th, 75th and 
100th cycles. 
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13 and Figure 3-14. Two semicircles at high and medium frequency range (126 kHz–0.5 Hz) were 

clearly observed. The small semicircle at high frequency and the large semicircle at middle frequency 

are attributed to the surface film resistance and charge transfer resistance, respectively [132]. The 

 

Figure 3‐15 Nyquist plots of  the  (a, b) pure Si  films  (teff ~ 3.3 µm) and  the Si–Cu  films 
deposited using  (c, d) 5 wt% Cu  (teff ~ 3.4 µm) and  (e,  f) 20 wt% Cu  (teff ~ 3.4 µm) at 

different cycles. All the films were deposited at Tsub = 100 C and post‐annealed at Tan = 
600 C. Cycles were performed at 0.3C except for the 1st, 25th, 50th, and 100th cycles. 
Impedance measurements were made after the 1st, 25th, 50th, and 100th charge; as soon 
as potential reached 5 mV during lithiation, the films were left at open circuit voltage for 
30 min, and then impedance measurement was performed between 1 MHz and 5 mHz. 
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surface film resistance of the pure Si films increased quickly, suggesting the continuous formation of 

the SEI layer possibly due to its fracture (as can be seen in the pulverized Si film at the 100th cycle 

in Figure 3-13b) and its regeneration at the newly exposed Si surface. The surface film resistance 

remained smallest for the Si–Cu film (5 wt%) while somewhat larger for the Si–Cu film (20 wt%). 

As the dQ/dV analysis (Figure 3-8) showed, lithiation proceeded at lower potential for the Si–Cu film 

(20 wt%) than the Si–Cu film (5 wt%), resulting in the longer period at low potential and thus in the 

possible enhancement in the SEI layer formation in the former. The charge transfer resistance of the 

pure Si film increased significantly in 50 cycles, indicating that the Si film got more and more resistive 

during the cycles, which will be related with the pulverization of the pure Si film (Figure 3-13b). The 

Si–Cu film (20 wt%) had the smallest charge transfer resistance at the early cycles, possibly due to 

the highest Cu content and lowest film resistivity, but the resistance increased continuously and 

approached to that of the Si–Cu film (5 wt%). 

 

Figure 3‐16 Schematic summarizing the initial structures of the porous Si and Si–Cu films 
and the final structures of these films after charge–discharge cycles. 
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Figure 3-16 schematically summarizes the initial structures of the pure Si and Si–Cu films and final 

structures after the charge–discharge cycles. The pure Si films showed pulverization and delamination 

from the Cu substrates due to the brittle nature of Si and clear difference in the volumetric change 

between the Si films (up to 400%) and Cu (0%) even with the porous and amorphous structure. They 

quickly lost electrical contact with the Cu substrates, resulting in rapid capacity fade and short lifetime. 

In contrast, the Si–Cu films had gradient composition profiles and diffuse interfaces with the Cu 

substrates, resulting in gradient volumetric expansion in the films and defocused stress at the interface. 

These Si–Cu films showed no pulverization and suppressed delamination, enabling them to survive 

for more cycles than the pure Si films. Although further improvements are needed, the gradient 

composition profile and the diffuse interface that formed spontaneously in the µm-thick Si–Cu film 

on the Cu current collector certainly enhanced the cycle performance of these Si-base anodes. 

 

3.8 Conclusions 

I have realized rapid deposition of 5–7-μm-thick porous Si–Cu films in 1 min on Cu current collectors 

by RVD using a mixed source of Si and Cu powders. Because of the preferential vaporization and 

deposition of Cu at the initial stage, which has a higher vapour pressure than Si, these films had 2–

4.5-μm-thick composition gradient that changed from a Cu-rich region at the bottom to a Si-rich 

region at the top. The Cu content of the gradient layer was changed easily by varying the Cu content 

in the source. A porous structure was built into the Si–Cu films by keeping the substrate at a low 

temperature (Tsub = 100 C), while the adhesion of the films to their substrates was improved by post-

annealing at a higher temperature (Tan = 600 C).  

The resulting films were mostly amorphous in the low Cu content (5 wt% Cu source) case, whereas 

they were partially crystallized in the higher Cu content cases (10 and 20 wt% Cu source). The pure 
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Si film showed poor cycling performance with a discharge capacity of ~500 mAh gfilm
−1 at 0.1C at 

the 50th cycle, while Cu addition at even the smallest content (5 wt% Cu source) enhanced the film 

performance remarkably to 1518 and 1250 mAh gfilm
−1 at the 50th and 100th cycles, respectively. The 

Cu composition gradient in the film and the diffuse interface between the film and the Cu substrate 

possibly yielded the gradient volume expansion and the stress defocusing at the interface. The film 

had a 10–20-μm-sized square domain structure during cycling, which showed no pulverization and 

suppressed the delamination from the substrate. However, excess addition of Cu (10 and 20 wt% Cu 

sources) reduced the cycle performances of the Si–Cu films due to partial crystallization, inhibited Si 

lithiation, and inhibited formation of stable SEI layer. The increased cut-off potential for charge from 

5 to 100 mV vs. Li/Li+, improved the cycle performances of the Si–Cu films with higher Cu contents 

(10 and 20 wt% Cu sources) that contained some crystalline phases, but did not do so for the Si–Cu 

film with the lowest Cu content (5 wt% Cu source) that had a mostly amorphous phase.  

The Si–Cu film with the lowest Cu content (5 wt% Cu source) showed a gravimetric capacity of 1250 

mAh gfilm
−1, a volumetric capacity of 1956 mAh cmfilm

−3, and an areal capacity of 0.96 mAh cmanode
−2 

at the 100th cycle. Although further improvement is required, this performance is encouraging for 

practical use of these Si-base anodes in lithium secondary batteries when we consider the quick and 

simple fabrication process for these Si–Cu films using inexpensive Si and Cu powder sources, along 

with the applicability of the RVD method to various substrates.  
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Chapter 4 – Carbon nanotubes (CNTs) and Si hybrid films as 

anodes in LiBs 

 

4.1  Introduction 

The micrometer-thick Si-Cu film, fabricated rapidly by Cu co-deposition with Si in RVD system, 

demonstrated that gradient Si–Cu layer can enhance the adhesion at the interface between Si(–Cu) 

layer and Cu current collector in spite of fairly large thickness (teff = 3–4 μm) with high packing 

density of ~1.5 g cm−3. The films achieved enhanced electrochemical performance for 100 cycles 

compared with the pure Si film, as stated in Chapter 3.  However, cycle stability for long cycles still 

remains a challenge because of highly dense Si-Cu films. It was reported that one-dimensional 

structure of Si, such as Si nanowires, on the other hand, was close to an ideal structure for 

improvement of electrochemical performance, but complicated process with expensive/explosive 

silane source used for nanowire makes the low-cost production difficult. 

Since the discovery of CNTs [133], lots of efforts improving the performance of energy storage 

devices, such as electrochemical capacitors (ECs) and lithium ion batteries (LiBs), by using CNTs 

have been reported [134, 135]. Especially, CNTs have been used as an additive either in the anode or 

cathode for LiBs due to high theoretical conductivity over 5 × 105 S cm-1 at room temperature [136] 

and high aspect ratio, which enable CNTs to make a role of electron/hole pathway. The incorporation 

of CNTs as a conductive additive at a lower weight loading than conventional carbon black and 
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graphite presents that the use of CNTs could represent more than an order of magnitude reduction in 

additive mass [25, 137]. In addition, CNTs have the capability to be assembled free-standing carbon 

electrode in electrochemical application without any binder or current collector, or a physical support 

and sufficient electronic transport for high capacity anode materials like silicon or germanium [25].  

Although further research is needed to solve the issues including high irreversible capacity [39, 40, 

138], the use of CNTs in LiBs is attractive due to their flexibility as well as the effective diffusion of 

Li+ ions into their porous matrix. 

In this chapter, I designed the core-shell wall structure of CNT–Si hybrid film by depositing Si onto 

the standing walls of shrunk CNT arrays on Cu substrate. I designed such a hybrid film to make the 

best combination of rapid vapor deposition for Si fabrication and self-organized CNT structure. In 

Chapter 2, dense Si films deposited at higher substrate temperatures showed good initial 

performances due to their stability against oxidation in air and suppressed SEI formation but poor 

long-cycle performances due to the volumetric change during charge–discharge cycles. Thus I used 

the CNT walls as templates and deposited Si on them at high temperature to realize dense Si films on 

CNT walls while spaces for volume expansion between the walls. Moreover, in order to avoid the 

side reaction of CNTs against electrolyte, the vertical aligned CNTs were covered completely with 

Si by RVD.  

 

4.2  Materials and methods 

4.2.1  Synthesis of vertical aligned CNTs 

Cu plates with 15 mm diameter and 0.5 mm thickness were used as substrates, cleaned by sonication 

in isopropanol for 10 min, and further exposed to UV-O3 for 3 min to remove organic contaminants 
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on their surface, followed by annealing treatment under 4 vol% H2/Ar at ambient pressure and 800 

C for 10 min. Synthesis of CNT arrays on Cu substrates were conducted by the collaborative 

researcher Mr. Nuri Na. The combination of 10 nm-thick Ta and 15 nm-thick TiN as diffusion barriers 

were deposited, followed by 4 nm-thick Fe or Co thin layers using a magnetron sputtering apparatus 

(MPS-2000HC2S, ULVAC, Chigasaki, Japan). Vertical-aligned CNT arrays were grown from Fe or 

Co catalyst particles and 0.2 Torr C2H2 at 700 C for 5–10 min using chemical vapour deposition 

(CVD) method. The wall-shape structure of the vertical aligned CNTs was developed by a drop of 

ethanol (EtOH), which cause shrinkage of CNTs by surface tension during drying.  

 

4.2.2  Fabrication of CNT–Si hybrid films 

The CNT–Si hybrid films were fabricated by Si deposition on ethanol (EtOH)-treated and untreated 

CNTs on Cu substrates using RVD in 2 min. Si sources were prepared using the same procedures as 

previously stated in Chapter 2. The Si sources were heated by resistive heating of carbon boat under 

0.1 Torr Ar to Tboat of 2000–2400 C, while substrate was heated to Tsub of 400 C. After Si deposition, 

the CNT–Si hybrid films were further annealed at Tan of 600 C under 4 vol% H2/Ar at ambient 

pressure to improve adhesion between Si and Cu substrate. Before and after Si deposition, each 

sample was weighed by microbalance with a precision of 1 μg.  

 

4.2.3  Characterization 

The analysis of microstructure of ethanol-treated and untreated CNTs-Si core-shell wall films was 

carried out using field-emission scanning electron microscopy (SEM; S-4800, Hitachi, Tokyo, Japan). 

To evaluate electrochemical performances of CNT-Si hybrid films, three-electrode beaker cells were 
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assembled in Ar glove box, which had a CNT-Si hybrid film as the anode, Li metal as the cathode 

and reference electrode in ~40 mL of electrolyte (1 M LiClO4 in a 1:1 (v/v) mixture of EC and PC 

with H2O content of less than 20 ppm, Kishida Chemical, Osaka, Japan). Charge/discharge 

measurements by constant–current (CC) mode were carried out in the potential range between 0.005–

1.200 V vs. Li/Li+ at the rate of 0.4 A gsi
-1 (corresponding to ~0.1C) using galvanostatic cycling with 

potential limitation system (Bio-Logic VMP3, Claix, France). C-rate was determined using the 

weight of Si and a theoretical value of 4200 mAh gsi
-1. In this work, I define the Li+ insertion to CNT–

Si films as “charge” and Li+ extraction from CNT-Si films as “discharge”. 

 

4.3  Structure change in CNT arrays by capillary action 

Figure 4-1 shows photographs the Cu substrates with CNT arrays grown by Fe catalyst (deposited in 

a circular area of 8 mm in diameter), without and with ethanol treatment and without and with Si 

deposition. The untreated CNT arrays had a smooth surface, resulting in a CNT–Si hybrid film with 

plain surface. While ethanol-treated CNT arrays had clear patterns on the surface, resulting in a CNT–

Si hybrid film with patterns after Si deposition at Tsub of 400 C.  

 

Figure 4‐1 Photographs of (a) vertical aligned CNTs grown on Cu substrate,  (b) CNTs‐Si 
hybrid film deposited on as‐grown CNTs, (c) ethanol‐treated CNTs and (d) CNT‐Si hybrid 
film deposited on ethanol‐treated CNTs. 
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The thickness of as grown CNTs was characterized by SEM. For the synthesis of vertical aligned 

CNTs on Cu substrates, 10-nm-thick Ta was used as diffusion barrier to suppress Cu diffusion [139, 

140], and 15-nm-thick TiN was also used as underlayer, which enables Fe or Co to form particles by 

dewetting [141-143].  

Figure 4-2 shows the cross-sectional view SEM images of the vertical aligned CNTs, grown by Fe 

catalyst for different growth time with a partial pressure of 0.2 Torr C2H2 and 2 Torr H2 at 700 C. 

The heighst of CNTs varied from ~10 μm for 4.5 min, ~20 μm for 6 min, ~50 μm for 8 min, to ~110 

μm for 30 min. Since the target height of CNTs was 15–20 μm, I used 6 min as the standard CVD 

time. Figure 4-3 shows the CNTs grown for 6 min, having a thickness of 15–20 μm and a density of 

 

Figure 4‐2 Cross‐sectional view SEM images of vertical aligned CNTs grown by Fe catalyst 
for (a) 4.5 min, (b) 6 min, (c) 8 min and (d) 30 min. 
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~0.07 g cm-3. All of the CNT arrays were aligned vertically to the substrate (Figure 4-3a), while CNTs 

were entangled with each other at the array top (Figure 4-3b–c).  

In contrast, Figure 4-4 shows SEM images of self-organized CNTs as a result of capillary action. 

When liquid evaporates from CNT arrays, capillary force works on CNTs, which induces the CNT 

arrays to shrink, and finally results in such wall structure [144-148]. The wall structure also turns to 

 

Figure 4‐3  (a) Cross‐sectional and  (b)  tilted‐view  SEM  images of  vertical  aligned CNTs 
grown using Fe catalyst for 6 min. (c) High magnification of (b) 
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diverse 3-D structures by either density of CNTs or roughness of substrates. Since as-purchased Cu 

substrates had line-patterns of ~1 μm in depth on its surface, CNT arrays had lower density near the 

patterns. Therefore, when the CNT arrays were treated with ethanol, the vertical aligned CNT arrays 

 

Figure  4‐4  (a)  A  top‐view  SEM  image  of  self‐organized  CNT  arrays  on  Cu  substrate 
prepared by ethanol‐treatment. (b) High magnification SEM image of aligned CNT walls, 
and (c) cross‐linked CNT walls. 
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aggregated by themselves to wall structures aligned parallel to the line patterns on the Cu substrate 

with some crosslinks at random positions.  

Figure 4-5 shows the CNT–Si hybrid film deposited on as-grown CNTs by RVD in 2 min at Tsub of 

 

Figure 4‐5  (a)  Top  and  (b)  cross‐sectional  view  SEM  images of  the CNT‐Si hybrid  film 

deposited on as‐grown CNTs at Tsub of 400 C 

 

Figure 4‐6  (a) A  top‐view SEM  image of  the CNT‐Si core‐shell wall  film prepared using 

ethanol‐treated CNT arrays by RVD at Tsub of 400 C. (b) High magnification image of (a). 
(c) Tilted‐view and (d) cross‐sectional SEM images of the CNT‐Si core‐shell wall film. 
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400 C. Si did not penetrated deep into the CNT arrays with a narrow interspace (~tens of nm) 

between CNT bundles, causing most Si to deposit on the array surface without covering CNTs inside 

the arrays. Resulting CNT–Si hybrid film looked like bean sprouts. In contrast, the Si deposition on 

ethanol-treated, self-organized CNT walls yielded wall-structured CNT–Si hybrid films with a wall 

height of ~20 μm and interspace of ~20 μm, as shown in Figure 4-6. Such 2-D microstructure of 

CNT–Si hybrid film supplies sufficient space for Si to change in volume during charge-discharge 

cycles although the interspacing should be controlled further. Furthermore, both higher areal density 

of 0.8–1.7 mgsi cm-2 and short-fabrication time of 2 min suggest the high potential of this Si-base film 

for practical use.  

 

4.4 Cycle performance of CNT–Si hybrid film 

Figure 4-7 shows the electrochemical behavior of CNT–Si hybrid films deposited at Tsub = 400 C 

and post-annealed at Tan = 600 C. The initial charge capacities of CNT-Si films with Fe or Co 

catalysts for CNT growth reached 3822 and 3545 mAh gfilm
-1, respectively, and the initial discharge 

capacities were 1980 and 1232 mAh gfilm
-1, respectively (Figure 4-7a). The initial charge capacities 

were closed to that of the pure Si film deposited at Tsub = 500 C (Figure 2-10a), while the initial 

discharge capacities were much smaller. The large irreversible capacity is attributed to Si 

consumption during the formation of solid electrolyte interphase (SEI), which was significant because 

of the large exposed surface area of 2-D wall-shape structure of CNT–Si film formed by CNT arrays. 

The CNT–Si film using Fe catalyst for CNT growth showed poor cycle performance for 10 cycles 

(Figure 4-7, and Figure 4-8a). As shown in Figure 4-7a, capacity dropped continuously even after 

2nd charge. Finally, the discharge capacity at the 10th cycle decreased to 293 mAh gfilm
-1. The CNT–

Si film (Fe catalyst for CNT growth) peeled off the Cu substrate had a similar morphology as initial 
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film, without being completely pulverized (Figure 4-8b and c). At the region where the CNT–Si film 

was peeling off, SEM-EDX analysis detected Ti Kα, but did not detect Fe Kα, indicating Fe catalyst 

layer corroded at interface between CNT and Ti underlayer during electrochemical reaction, causing 

CNT–Si films peeled off. It is known that Fe can easily corrode when it is exposed to moisture and 

also even more quickly if the moisture is salt water like electrolyte of electrochemical cell [152].  

 

Figure  4‐7  Electrochemical  performance  of  CNT–Si  films  with  CNT  arrays  grown  by 

different catalysts (Fe and Co). Si was deposited by RVD at Tsub = 400 C and post‐annealed 
at Tan = 600 C. (a) Gravimetric capacity, (b) areal capacity, (c) Coulombic efficiency, and 
(d) capacity ratio of charge[n+1]th/discharge[n]th. 
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In contrast, the CNT–Si hybrid film (Co catalyst for CNT growth) showed better cycle performance 

with a discharge capacity of 749 mAh gfilm
-1 and a capacity retention of 60% at the 80th cycle, 

indicating that the Co catalyst layer resisted against corrosion by the electrolyte of 1 M LiClO4 in a 

 

Figure 4‐8 (a) Voltage‐capacity profiles, (b) tilted‐view, (c) cross‐sectional view, and (d) 
top‐view  of  SEM  image  of  CNT–Si  film  with  Fe  catalyst  for  CNT  growth  after  80th 
discharge. Cycle test was performed at the rate of 0.4 A g‐1. (e) SEM‐EDX analysis results 
for the CNT–Si film after 80th discharge. 
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1:1 (v/v) the mixture of EC and PC. It is reported that the use of PC causes exfoliation of graphene 

layers in graphitic carbons via solvent co-intercalation, resulting in its reduction and release of 

propylene gas [153, 154]. The Coulombic efficiency of CNT–Si film (Co catalyst for CNT growth) 

was ~92% at the 10th cycle, and remained at ~92% for 80 cycles, which is worse than previous our 

Si-base films. The capacity ratio of the [n+1]th charge over the [n]th discharge for the films was 

above 107% at the 80th cycle, suggesting that continuous SEI formation due to incomplete formation 

of stable SEI layer in the early cycles, possibly because of CNTs. The areal capacity (mAh cmanode
-2) 

of the CNT–Si film is highly important factor for practical battery device. The areal capacity of the 

CNT–Si film (Co catalyst for CNT growth) was 1.33 mAh cmanode
-2 at the 80th cycle, which is higher 

than previously reported values for Si nanomaterials (0.2–0.4 mAh cmanode
-2 [79, 88]) and porous Si–

Cu films by ourselves (0.96 mAh cmanode
-2 [155]).  

 

4.5  Conclusions 

I successfully fabricated wall-shaped CNT–Si core-shell hybrid films by Si deposition on capillary 

force-assisted CNT arrays. In case of Si deposition on as-grown CNT arrays, the arrays held Si mostly 

on their top. Whereas ethanol-treated CNT arrays, they were well covered with Si. The areal density 

of CNT–Si hybrid film was 0.8–1.7 mg cm-2. The CNT–Si hybrid film by Fe catalyst for CNT growth 

suffered from the corrosion of Fe during electrochemical reaction, resulting in delamination of film 

at the interface between the CNT–Si film and Ti underlayer. On the other hand, the CNT–Si hybrid 

film by Co catalyst for CNT growth were more stable with a gravimetric capacity of 749 mAh gfilm
-1 

and an areal capacity of 1.33 mAh cmanode
-2 at the 80th cycle. Although further improvement such by 

controlling the wall distance, and by optimization of electrolyte and electrolyte additives is required, 

the CNT–Si films by RVD within 2 min are attractive for practical use in lithium secondary batteries 

when we consider their quick and simple fabrication using inexpensive source materials. 
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Chapter 5 – Conclusions and perspectives 

 

Targeting at lithium secondary battery anodes, porous Si-base films were fabricated on Cu current 

collectors through a simple process, called RVD, without using any binder and conductive additives. 

The RVD process, making 3–14-micrometer-thick Si-base films, features rapid Si deposition in 1 min, 

which is proper to large-scale, low-cost production for practical battery devices. The porous Si-base 

films had wall-shaped structure along the line patterns on Cu substrate surface, and the porosity was 

simply controlled by changing substrate temperature, Tsub. The adhesion between Si-base films and 

Cu substrates was improved by pretreatment of Cu substrate surface through UV-O3 exposure 

followed by annealing under H2 flow and by development of gradient Si-Cu layers with sub-μm 

thickness by post-annealing and with several-μm thickness (entire film) by co-deposition of Si with 

Cu. Especially, the co-deposition methods proposed in this study remarkably enhanced the adhesion 

at the interface between the Si-Cu films and Cu substrates without crystallizing and densifying the 

Si-base films. The films deposited using a Si source with 5 wt% Cu at Tsub of 100 C exhibited the 

highest electrochemical performance of fairly high initial charge and discharge capacities of 3425 

mAh gfilm
-1 and 2073 mAh gfilm

-1, respectively, and capacity retention of 60% with a discharge 

capacity of 1250 mAh gfilm
-1 at the 100th cycle. The amorphous phase with micrometer-thick Si/Cu 

gradient and high porosity of ~30% built in the Si-Cu film realized such high capacities for fairly 

thick Si–Cu films. Furthermore, the volumetric capacity of ~1900 mAh cmfilm
-3 and areal capacity of 
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~0.95 mAh cmanode
-2 at the 100th cycle approaches to the value of practical lithium ion battery anodes. 

In addition, when the RVD method is applied to the capillary force-assisted self-organized CNT 

arrays, RVD yielded wall-structured CNT-Si hybrid films with an areal capacity of 1.33 mAh cmanode
-

2 at the 80th cycle, which suggests an alternative method for making practically thick 3-dimensional 

Si-base films.  

Rapid vapour deposition will be compatible with practical production of Si-base anodes in terms of 

its high deposition rate, simple process, and inexpensive and safe source materials, but further 

research is needed to improve the anode performance of Si-base films such as optimum cut-off 

potential during lithation/delithiation and electrolyte additives like vinylene carbonate for more stable 

SEI layer to meet the requirements for practical devices. 
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