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Abstract

Analysis of cell behaviors in populations is important for research and discovery

in biology and medicine. For example, in drug discovery, cell migration speed and

cell death are analyzed to assess the effectiveness of anticancer drug candidates. In

regenerative medicine, cell behaviors are considered important measures to assess the

quality of cells in non-invasive images. To effectively obtain quantitative measurements

of cell behaviors, automatic cell-tracking methods have been developed and success-

fully applied to low-to-middle density cell cultures. However, tracking cells in highly

populated cultures remains difficult despite recent advances. The main difficulty arises

from the following aspects of this problem in such a case. First, cells more often touch

and partially overlap and form a cell cluster with blurry intercellular boundaries. Such

conditions cause difficulty in segmenting cell regions from one image. Second, the num-

ber of cells may change due to cell division and cells entering or leaving the field of

view. Third, neighboring cells often have similar appearances. This makes it difficult

for appearance-based association methods to properly work. In addition, the cell move-

ments between successive frames are often larger than the distances to nearby cells when

a wide area is observed in a 3D volume. This makes it almost impossible to associate

cells between frames based on their proximity.

In this thesis, I address these difficulties step-by-step. Before addressing the tracking

of cells under dense conditions, in the first two chapters of this thesis, I propose cell-

tracking methods for reliably tracking cells under low-to-middle density conditions in

which several cells touch and make a cluster with blurry inter-cellular boundaries. I

first propose a tracking method for identifying touching-cell clusters in the frame-by-

frame association step, then re-segmenting the clusters to their member cells by partial

contour matching to reliably track individual cells even when they partially overlap.

A disadvantage of frame-by-frame association methods is that they use only local

temporal information to optimize an association in each successive frames. This often

causes mistakes in which a cell trajectory is associated with a false positive detection

error, such as tips of cells, when a false positive appears near the cell. If cells are observed

for several frames, such mistakes can be easily corrected since false positives usually

quickly disappear. Based on this observation, I proposed a global spatio-temporal data

association method for tracking dividing objects. This method first generates reliable

tracklets by frame-by-frame association, then the tracklets are linked using binary linear

programming. This method exhibits higher accuracy compared with state-of-the-art

methods.

Under high-density conditions, the performance of the above-mentioned methods

drastically declines because cell detection cannot be done reliably in such conditions.

For better cell detection in such high-density conditions, I propose a cell-detection

method for selecting an optimal set of cell regions from redundant candidate regions.

The method first detects redundant candidate regions by allowing candidates to overlap

to avoid miss detections. Then, to avoid over detections, an optimal set of cell regions is

selected from the redundant regions under non-overlapping constraints, where a selected

region looks like a single cell and does not overlap with other cells. This cell-detection
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method improves the performance of cell detection and tracking. This idea of selecting

an optimal set from redundant candidates is expanded to tracking.

A disadvantage of typical detection-and-association tracking methods is that the

tracking process heavily depends on detection results since the detection step is in-

dependent of the associate step, and the detection errors directly propagate to the

association step. To solve this problem, I propose a cell-tracking method which uses

the cell region information from the previous frame to help segment the blurry cells,

rather than relying on only the image appearance at the current frame. This method

concurrently solves both selection of an optimal set of cell regions from the redundant

candidates and association of cell regions between successive frames for generating reli-

able tracklets. The generated tracklets are linked to obtain entire trajectories by using

global spatio-temporal data association method proposed in Chapter 3. This method

achieves better tracking performance compared with above methods proposed in Chap-

ters 2 and 3. Moreover, I extend this method to solve the joint problem of optimal

tracklet selection from redundant candidate tracklets and global association in order to

track cells more robustly under dense conditions.

To address the large displacement problem, in which cell movements between suc-

cessive frames are often larger than the distances to the nearby cells when a wide are is

observed in 3D volume, I also propose a tracking method for exploiting an observation in

which nearby cells under high-density conditions exhibit similar motion patterns. This

is done by introducing global motion estimation and local pairwise spatial relationships

of cell positions. Finally, I discuss the effectiveness of my methods in biological research

by analyzing cell behavior in scratch wound healing assays.
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Chapter 1

Introduction

1.1 Background and motivation

Analysis of cell behaviors in populations is important for research and discovery in biology

and medicine. For example, in biological research, Nikolic et al. [Nikolic06] manually

tracked cell migration in wound healing assay to understand how multiple cells execute

highly dynamic and coordinated movements during the healing process. In addition to

individual cell trajectories, the analysis of cell lineage is important, in particular, to study

cell differentiations. Ravin et al. [Ravin08] developed an in vitro system that allows analysis

of the fate transitions from central nervous system (CNS) stem cells to differentiated neurons

and glia cells. In their system, the cells are manually annotated for identifying mother-

daughter relationships and when and which stem cells are differentiated to other types of

cells. To effectively obtain quantitative measurements of cell behaviors, many automatic

cell-tracking methods have been developed. However, in biology and medicine, cells are often

cultured under a variety of cell culture conditions, such as low-to-high density, as shown in

Figure 1.1. For example, in regenerative medicine, the cells are cultured until they densely

fill in the dish in order to mature them. Cell behavior metrics, such as migration speed and

cell shape information, in high density are important to assess the quality of cells in non-

invasive images before transplantation. Cell tracking under such high-density conditions

still remains a non-trivial task. The main difficulty arises from the following aspects of this

problem.

• Touching and partially overlapping: When multiple cells touch or partially overlap,

they form a cell cluster with blurry intercellular boundaries. Such touching and/or

partially overlapping cells present a performance bottleneck with most current cell-

tracking methods; they may either lose track of one or more of the cells or confuse

their identities.

• Cell division: The number of cells may change due to cell division and cells entering

1
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Figure 1.1: Example images in cell populations. Cell density increases from left to right.

or leaving the field of view.

• Similar appearance: Neighboring cells often have similar appearances. This makes it

difficult for appearance-based association methods to properly work.

• Large displacement: Cell movements between successive frames are often larger than

the distances to the nearby cells when it takes time to obtain 3D volume data for a

wide range of specimens. This makes it almost impossible to associate cells between

frames based on their proximity.

In this thesis, I propose several cell-tracking methods for addressing these challenges. I

quantitatively evaluated these methods by applying them to actual biological research and

discuss their effectiveness.

1.2 Related work

1.2.1 Cell detection

Automated cell detection in microscopy images is one of the most important tasks in cell

behavior analysis in biological research. Robust cell detection and segmentation play a

crucial role in developing cell-tracking methods. Even though many cell-detection methods

have been proposed, cell detection under high-density conditions still remains a non-trivial

task. There are several difficulties in cell detection. First, microscopy images often have

inhomogeneous backgrounds and noise, and their contrast is usually very low. In such

images, the pixel intensity of a cell is often lower than that of the background. Second, cells

often touch other cells and form a cluster with blurry inter-cellular boundaries.

Many cell-detection methods have been developed for detecting individual cells in pop-

ulations. Simple intensity thresholding methods, such as the Otsu method [Otsu79], set

an intensity threshold on the basis of the statistical intensity histogram of all image pix-

els and classify these pixels into cells and background. However, such single-threshold
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methods do not work well since microscopy images often have inhomogeneous backgrounds.

Local adaptive thresholding methods have thus been developed for detecting cells under

inhomogeneous background conditions [Peng09b][Praveen06]. They set the thresholds on

the basis of a local spatial intensity histogram. They generally work well when the cell

density is sufficiently sparse and the image contrast is sufficiently high. However, if the

density is high and/or the contrast is low, they often fail to segment closely located cells

since the intensities at the boundary between these cells tend to exceed the local thresh-

old. In addition, morphological operations, such as dilate and erode that are used to re-

move noise [House09][Li08], are not sufficient to detect cells under high-density conditions.

Two commonly used open-source detection methods are CellProfiler [Carpenter06] and FIJI

[Schindelin12]. The IdentifyPrimaryObjects module in CellProfiler first segments the im-

age foreground using binarization with a threshold. Then, the touching cells are separated

using the intensity peaks and shapes. In FIJI detection, the contrast is first enhanced us-

ing the difference of Gaussian filter. The local maxima or minima that satisfy pre-defined

conditions, e.g., intensity range and window size, are then found since local maxima of-

ten include false positives. This method usually depends on pre-defined conditions: if the

conditions between the training data and test data differ, performance is degraded. Filter-

based methods have also been proposed. Laplacian-of-Gaussian (LoG) filters are applied

to detect cell blobs [Peng09a]. Eom et. al. proposed a cell-detection method for selecting

an optimal solution from candidate points after applying a filter-bank [Eom10]. Watershed

segmentation methods [Kachouie08][Yang05] have also been developed for segmenting mul-

tiple cells in one image. The watershed method of Vincent and Soille [Vincent91] isolates

the catchment basin by flooding the gray value relief of the gradient of an image. A number

of ”water sources” are placed at various pixel locations, usually local maxima/minima, and

the water is allowed to flow out and flood freely. The water flows eventually meet along the

watershed lines. However, this method tends to result in over-segmentation since many false

positives of water sources are usually detected. Active contour methods such as the level-

set method [Tse09][Yu08] have also been widely used for cell segmentation. The level-set

method represents closed curves by using the zero level-set of a function in which multiple

closed curves are allowed to represent multiple cell regions. Optimal regions are found while

the closed curves are being changed by maximizing the energy function, which is defined

on the basis of several elements such as region statistics and image edges. Different en-

ergy functions for level-set and snakes have been proposed, such as edge-based [Zimmer02],

region-based [Chan01], and texture-feature-based [Wang07]. However, this optimization is

done locally; thus, it depends on the initial curves, which tends to result in miss detection

when multiple cells touch and partially overlap.

A graphical-model-based method [Pan10] has been proposed for detecting cells in phase-

contrast images. It first detects interest points, which are then used to form a graph. It
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next solves the problem of whether the neighboring points are in the same cell by using a

graphical model. It uses the characteristics of phase-contrast images, in which the intensities

of a cell’s boundaries are higher than those of its inner area, to compute the probability

that neighboring interest points are in the same cell. However, this method works for only

a certain microscope type and cannot be used for images from other types of microscopes.

For fluorescent microscopy, Lou et. al. proposed a graph cut framework that incorporates

a“ blob”-like shape prior [Lou12]. Lesko incorporated a gradient-based score into the

pair-wise term in the energy function [Lesko10] for phase-contrast microscopy images.

Suitable preconditioning methods have been developed [Li09][Yin10a] for segmenting

cells in non-invasive microscopy images such as phase-contrast and differential interference

contrast (DIC) images. They are based on a specific microscopy image formation model

that is used to restore authentic images without artifacts such as halos and shading. With

these methods, cells appear as regions of positive values against a uniform background with

almost zero pixel intensities. Non-invasive microscopy images can be treated like fluorescent

images by using these methods. However, although they segment the foreground and back-

ground very well, post processing is needed to detect individual cells. Yin et. al. [Yin12]

presented a cell-detection method for use after preconditioning. Their method segments a

preconditioned image into foreground and background regions by using a threshold value.

It then connects bright neighbor pixel components into a blob as a cell candidate. Finally,

it classifies the blobs into cells or non-cell regions by using a trained support vector machine

(SVM) classifier that uses cell appearance features including the shape and corresponding

intensity values in the original and preconditioned images. This method removes false posi-

tive regions such as chips of cells. However, when cells touch under high-density conditions,

they often cause false negatives in which multiple cells are detected as a single cell.

1.2.2 Cell tracking

As recently reviewed in [Hand09][Meijering09][Rittscher10][Maska04], many cell-tracking

methods have been proposed, which can be classified into three groups: those based on

filtering-based sampling, those with model-based contour evolution, and those based on

detection-and-association.

The first group uses sequential Bayesian filters, such as Kalman filters and particle

filters, that are widely used in object tracking [Smal06][Okuma04]. Particle filter tracking

maintains a probability distribution as a set of weighted particles. Each particle is an

estimate representing one possible location of the object being tracked. This group requires

other initialization methods to define the prior distributions of object states in the first

frame. One of the disadvantages of this group is that cells may be difficult to track when

they are closely located and exhibit a similar appearance.
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The second group, in particular those using the level-set, is widely used in cell segmenta-

tion and tracking [Yang05][Xiaoxu07][Li08][Dzyubachyk10] [Zhang04][Dufour05][Maska04].

Segmented contours in the previous frame are given as initial contours to identify the cell

contours in the subsequent frame by minimizing the energy function. The advantage of

level-set tracking is that it can easily follow shapes that change the topology. Traditional

level-set methods have several shortcomings, such as their sensitivity to the energy weights

and how they handle (initially) touching cells and cells entering the observation frame. Li

et. al. proposed a tracking method that involves using both level-set and detection-and-

association methods to handle cell entering and exiting [Li08]. To handle contact between

cells in a sequence, Zhang et. al. proposed a method for assigning a single level-set function

per cell by minimizing the overlap region between these level-sets [Zhang04]. Dzyubachyk et.

al. proposed a tracking method for overcoming all the shortcomings of traditional level-set

methods [Dzyubachyk10]. The method uses the watershed transform to refine the results of

a level-set method for closely located cells. The method also uses Radon transform, which

“decouples”the active surfaces by means of separating planes, making it possible to apply

the stopping criterion to each level-set function separately. For 3D volume data, Dufour

et. al. [Dufour11] proposed a 3D cell-tracking method for expressing a surface as a discrete

triangular mesh and minimizing the energy functional accordingly to reduce computational

cost. A disadvantage of this group is that tracking cells would fail under densely populated

conditions due to the problem of local minima in energy minimization, such as part of an

active contour being incorrectly assigned to the boundary of a neighboring cell.

The third group, based on detection-and-association, has also been frequently used.

Al-Kofahi et. al.[Kofahi06] proposed a method for first segmenting the cell regions using

the adaptive thresholds then solving the association between the successive frames using

integer linear programming. However, this method cannot handle cases in which multiple

cells frequently overlap and split. Padfield et. al. [Padfield11] used the min-cost flow to

solve the association problem. This method can handle various cell behaviors that include

migration (cell movement), mitosis (cell division), overlapping, entering, and leaving. For

3D data, this third group can be straightforwardly extended using 3D cell segmentation

methods [Lin05][Long07][Indhumathi11] for the detection step. However, such frame-by-

frame association methods face a problem when a false positive appears near a cell because

the false positive may be associated with a track.

Recently, global spatio-temporal data association methods have been proposed for track-

ing general objects that do not divide [Bonneau05][Zhang08]. Zhang et. al. [Zhang08] pro-

posed a minimum-cost flow network to solve the global data association of multiple objects

over time. Global data association methods for tracking dividing objects have been also

proposed [Schiegg13][Kausler12]. Schiegg et. al.[Schiegg13] proposed a tracking method

for identifying a cluster consisting of touching cells in the global association step then
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re-segmenting the touching cells. These global association methods are known to exhibit

higher accuracy of tracking general objects than frame-by-frame association methods since

the method uses global spatio-temporal information for association. The disadvantage of

this third group is that the detection results are independently produced with the associa-

tion step, where the detection results are directly used. Thus, these methods are susceptible

to errors in the detection step.

Identifying cell division events is an important task in cell tracking. I briefly summarize

related work on detecting cell division, though it is not my main target in this thesis.

Several mitosis detection methods, which use temporal shape dynamics in cell division

without tracking, have been proposed. Li et. al. [Li08b] applied a fast cascade Adaboost

method to volumetric Haar-like features to detect mitosis events. Liu et. al. [Liu10] applied

the Hidden Conditional Random Field (HCRF) model to detect patch sequences containing

mitosis. This method cannot localize division timing in the sequence, though it determines

if the patch sequences contain cell division. Huh et. al. [Huh11] proposed a graphical model

called ’EDCRF’, which identifies the temporal localization of birth events as well. They also

demonstrated that the functionality of this recent mitosis detection algorithm significantly

improves state-of-the-art cell tracking systems [Huh11b]. In this research, I used EDCRF

to detect cell division events.

1.3 Overview and contributions

The work presented in this thesis is based on the third group of cell-tracking methods ,

i.e., detection and association, since these methods can easily handle various cell behav-

iors, including migration, mitosis, overlapping, entering, and exiting. Figure 1.2 shows the

framework of all the proposed cell-tracking methods including the following five functions:

detecting cell positions at each frame (cell detection); identifying cell division events in

sequences (mitosis detection); associating detection results between successive frames to

identify cell behaviors including migration, division, enter, exit, and overlapping (frame-by-

frame association); segmenting cell cluster regions to their member cells (re-segmentation);

and linking tracklets globally to obtain entire cell trajectories (global association). In par-

ticular, my methods contribute four functions, cell detection, frame-by-frame association,

re-segmentation, and global association. For mitosis detection, I use a current method

’EDCRF’ [Huh11]. I developed tracking methods step-by-step to address all the difficul-

ties in tracking cells under dense conditions. Each proposed method and specific problems

are presented in each chapter. I first present proposed cell-tracking methods for addressing

difficulties, in which several cells touch and make a cluster under low-to-middle density con-

ditions, in Chapters 2 and 3 before focusing on the difficulties under high-density conditions.

Then, cell detection and tracking methods for addressing difficulties under high-density are
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Figure 1.2: Overview of framework of proposed tracking methods. The proposed methods

contribute to four functions: cell detection, frame-by-frame association, re-segmentation

and global association.

presented in the remaining chapters.

Figure 1.3 shows the relationships among the proposed methods and tracking functions.

The circles indicate the main contributions of the proposed methods. If a chapter number

is in a cell of the table, that particular method uses the method proposed in that referenced

chapter for that particular function. For example, the cell-tracking method by global as-

sociation proposed in Chapter 3 uses the frame-by-frame association method proposed in

Chapter 2 for generating tracklets. The description of ”(Chapter X)” indicates that the

method proposed in Chapter X could be applied for a function, though the method was not

used in the experiments. The contributions of each chapter are summarized as follows:

• Chapter 2: When multiple cells touch or overlap, they appear to form a cell cluster

with blurry intercellular boundaries. In this case, it is often difficult to identify indi-

vidual cells in the cluster from one image even though a human manually annotated. I

propose a tracking method that identifies touching cell clusters from detection results

by frame-by-frame data association then re-segments the clusters to their member

cells by partial contour matching between cells and the cluster. This method makes

it possible to robustly track two or three partially overlapping cells while maintaining

the identity information of individual cells throughout the process from their initial

contact to eventual separation.

• Chapter 3: When a false positive segmentation, such as tips of cells, appears near a mi-

totic cell, local temporal association methods may cause a mother-daughter relation-
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Figure 1.3: Relationships of proposed methods.

ship error. Global temporal information is important in solving this problem. If the

cells are observed for several frames after the birth event, it can be easily determined

that one of the children cells is a false positive since false positives usually quickly dis-

appear. This allows to correct the relationship. Current global spatio-temporal data

association methods for tracking non-dividing objects cannot be applied to cell track-

ing directly since they do not take into account cell division i.e., a mother cell divides

into two daughter cells to form a tree structure in the trajectory. I propose a global

spatio-temporal data association method for the tree structure to obtain cell trajec-

tories and lineage trees. First, reliable tracklets (i.e., short trajectories) are generated

by linking detection responses based on the frame-by-frame detection-and-association

approach method in Chapter 2. Then, the global tracklet association for the tree

structures is solved using linear programming. To the best of my knowledge, this

is the first attempt at formulating tree structure global association to track dividing

objects. By introducing global spatio-temporal information, we can easily determines

the false positives of cell detection as cell or noise since false positives usually quickly

disappear. This method was quantitatively evaluated on sequences with thousands of

cells captured over several days.
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• Chapter 4: Cell detection in each frame is obviously important for improving tracking

performance since detection errors usually cause association errors. When cell density

is high, the performances of the above two methods proposed in Chapters 2 and 3

drastically decline because of the increase in cell-detection errors. Thus, I propose a

cell-detection method for addressing all the difficulties in detecting dense cells simul-

taneously: multiple cells are mistakenly merged, a single cell is divided into multiple

regions, and low-intensity cells are miss detected. The method first detects redundant

candidate regions by allowing candidates to overlap to avoid miss detections. Then,

to avoid over detections, I select an optimal set of cell regions from the redundant

regions under non-overlapping constraints, in which a selected region looks like a sin-

gle cell and does not overlap with other cells. This method improves the performance

of cell detection and tracking. This idea of selecting an optimal set from redundant

candidates is expanded to tracking in the following chapters.

• Chapter 5: Under dense cell-culture conditions, cells more often touch other cells with

blurry intercellular boundaries. Such conditions cause difficulty in generating reliable

tracklets with the global spatio-temporal data association method proposed in Chapter

3 since the frame-by-frame detection-and-association tracking process heavily depends

on the detection results. To mitigate this problem, I propose a tracking method

for determining the detection results in the association step by using both image

features in the current frame and the tracking results in the previous frame. This make

it possible to make more reliable tracklets under high density conditions compared

with typical detection-and-association methods. After generating reliable tracklets,

the global data association method proposed in Chapter 3 is used to obtain all cell

trajectories and lineage trees. This method was evaluated based on the challenging

image sequences in which cells were cultured in high density and the boundaries of

cells were blurring. The experimental results show that this method significantly

improves the tracking performance comparing with the two other proposed methods

introduced above.

• Chapter 6: The method proposed in Chapter 5 depends on initialization of cell de-

tection since the joint problem of optimal region selection and association is solved at

each frame independently. I propose a cell-tracking method that first generates redun-

dant candidate tracklets, then solves the joint problem of optimal tracklets selection

and association globally. This method generates redundant candidate tracklets, which

include many false positives but in turn very few false negatives, by allowing track-

lets to overlap. This is a similar idea with the detection step proposed in Chapter 5.

Next, the problem of both selecting an optimal set of cell tracklets from the redundant

tracklets and associating the tracklets over frames under non-overlapping constraints
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is solved simultaneously. This methods achieved the best performance on the com-

parison with the above tracking methods proposed in Chapters 2, 3 and 5.

• Chapter 7: I propose a cell-tracking method that enables to track cells with large

movements. The increment in time-lapse imaging cannot be shortened to monitor

a wide area, which results in the problem in which the movements of cells between

successive frames are often larger than the distances to the nearby cells. This makes

it almost impossible to associate cells between frames based on their proximity. To

mitigate this problem, this method exploits the observation in which nearby cells under

high-density conditions exhibit similar motion patterns. This is done by introducing

global motion estimation and local pairwise spatial relationships. This method was

evaluated on synthetic point-sets and compared against the existing methods. The

proposed method was evaluated on synthetic point-set and compared against current

methods.

• Chapter 8: I show how easily and effectively automated cell-tracking systems can

provide detailed spatio-temporal cell behavior measurements for biological analysis.

The spatio-temporal measurements of cell behaviors are important for critical analysis,

because the cell culture conditions vary with time and space on the dish. For example,

the effectiveness of a medicine may change with time and space since cell density can

differ in the different space. I present an application of automatic cell-tracking for

wound healing assay in vitro under three different culture conditions to demonstrate

how easily and effectively automated cell-tracking systems can provide detailed spatio-

temporal cell behavior measurements for biological research.

Finally, I present a conclusion and future directions in Chapter 9.

1.4 Notations

I propose cell-detection and tracking methods individually in each chapter. Thus, I basically

define the notations of functions, variables, sets and parameters independently in each

chapter. For key notations, I use common notations for all chapters as following. A set of

candidate cell regions at each frame is denoted as At = {At
i}, where Ai represents the i-th

candidate cell region at frame t. The set of detection results is denoted as R = {Ri}, where
Ri represents the ith cell blob. The term X = {Xi}. Xi = {Rij} is a tracklet consisting

of an order list of detection results, where Rij indicates the jth detection result on tracklet

Xi.



Chapter 2

Tracking Partially Overlapping

Cells

2.1 Introduction

A reliable cell-tracking system should be capable of tracking not only well separated cells but

also cells that are touching or partially overlapping. When multiple cells touch or overlap,

they appear to form a cell cluster with blurry intercellular boundaries. Such touching and/or

partially overlapping cells present a performance bottleneck with most current cell-tracking

methods; they may either lose track of one or more of the cells, or confuse their identities.

These errors, frequently compounded with the misclassification of the split and merge of

cell clusters, as cellular division or fusion events, result in fatally erroneous cell lineages.

I propose a tracking method for identifying touching cell clusters from segmentation

results by solving a data association problem, then re-segmenting the clusters to their

member cells by using contour shapes of cells and cell clusters to reliably track individual

cells even when they partially overlap.

This method first segments images into blobs for each frame, where each blob corre-

sponds to either an individual cell or a cluster of overlapping cells. Next, the association

step involves making hypotheses of all possible cell actions including migration, mitosis,

touch or overlap, enter and exit, and computes corresponding an association score. Then

an optimization problem that maximizes the sum of the scores of the hypotheses is solved

by a binary linear programming problem.

When touching cell clusters are identified by data association, they are re-segmented to

their member cells. The boundary contour of the resultant cluster is made of the partial

contours of the cells that constitute the cluster when cells touch and overlap. As the contours

of member cells deform and as the manner and degree of cell overlap change, the boundary

contour of the cluster also continually deforms. This deformation provides the primary cue

11
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Figure 2.1: Method overview.

for distinguishing individual cells in a cluster.

My method proposed in this chapter utilizes this information by optimal matching

between partial cell contours and the cluster boundary contour. For each cell, its contour

shape is identified when it first appears, and is updated while being tracked. When two or

more cells touch and overlap, and form a cluster, I compute the optimal combination of their

partial contours such that they together comprise the cluster boundary. These identified

partial contours are maintained as the updated contours of the respective member cells.

This process is repeated until they separate and no longer form a cluster. Therefore, this

proposed method can maintain each cell’s identity information throughout the process from

their initial contact to eventual separation.

The proposed method is applied to a task of tracking migrating and proliferating human

CNS stem cells in image sequences of DIC microscopy and achieved 96% tracking accuracy

despite the frequent formation of multiple-cell clusters. I also evaluated the accuracy of cell

lineages, in which 94% of target effectiveness and 93% of mitosis branching correctness were

achieved.

2.2 Cell tracking method for tracking partially overlapping

cells

Figure 2.1 shows the overview of the proposed cell-tracking method in which I use for

automated construction of cell lineage from a sequence of DIC images. Each image frame

of a sequence is processed in three steps: 1) Step of cell segmentation: converting an input

image to a binary image consisting of blobs, each of this corresponds to either an isolated

cell or a cluster of overlapping cells; 2) Step of cell association: solving the data association

problem between the cells tracked until the previous frame and the blobs detected in the

current frame, and identifying cell clusters; and 3) Step of segmentation of overlapping cells:

decomposing each cluster to its member cells by using partial contour matching [Bise09].
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Figure 2.2: Example of cell segmentation results. (a) Original image. (b) Preconditioned

image. (c) Detected cell blob regions overlaid on the original image.

2.2.1 Cell segmentation of difference interference images

A differential interference contrast (DIC) microscope is widely used for long term imag-

ing of unstained, transparent specimens, such as living cells and micro-organisms. Due to

the dual-beam interference optics of a DIC microscope, DIC images include non-uniform

shadow-cast artifacts as shown in Figure 2.2 (a), making its direct segmentation difficult.

To facilitate segmentation, I have adopted the image preconditioning method recently devel-

oped in [Li09]. The method utilizes the opto-physical principle of image formation by DIC

microscopy, and transforms an input DIC image into an artifact-free image by minimizing

a nonnegative-constrained convex objective function. In the resultant transformed image

shown in Figure 2.2 (b), cells appear as regions of positive values against a uniformly-zero

background. A simple thresholding method, such as Otsu thresholding, can easily seg-

ment out the cell regions (Figure 2.2 (c)). The set of such detection results is denoted as

Rt = {Rt
i} where Rt

i represents the i-th cell blob at frame t.

One may notice that the segmented blobs exclude some portions of the cells, such as long,

thin parts, called processes that extend from them. This exclusion is intentional because

these portions, while important for later analysis, tend to confuse the tracking process since

they deform significantly over time. They can be included later for further processing once

cell identities are established.

2.2.2 Cell association

The tracking system assigns a unique ID to each tracked cell, its parent identifier Parent-ID,

and its state information (i.e., centroid, contour shape of the cell region, and a cell event

type) at each frame. The parent identifiers are important for maintaining its cell lineage

information (Parent-ID=0 for cells that appear in the first frame, or enter the image view).

In each frame, the method determines the behavior of each cell based on both the spatio-
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temporal history of cells up to the previous frame and the detected blobs in the current

frame. Following seven possible events can be taken for a cell between time t− 1 and t: (1)

Migration: a cell deforms and moves; (2) Exit: a cell leaves the field of view; (3) Enter: a

cell appears from the out of the field of view; (4) Mitosis: a cell divides into two new cells;

(5) Overlapping: two or more cells touch or partially overlap with each other and make a

single cluster together; (6) Joint migration in a cluster: two or more cells that have been

in a cluster in the previous frame are again associated with one blob; and (7) Separation

from a cluster: two or more cells that have been in a single cluster are now associated with

two or more blobs. Here, the proposed method re-segments a touching cell cluster to its

member cells for each frame when a cluster is identified (i.e., IDs and regions of the member

cells are identified in the previous frame). Thus, I treat event (6) the same as event (5),

and event (7) the same as event (1) in the cell association step.

In order to find the right association between blobs that are segmented out in the current

frame t, and the cells that have been tracked till the previous frame t − 1, the method

considers all of these possible events for each cell as hypotheses, and determine optimum

set of hypotheses, i.e., the optimum association, in terms of visual similarities and locational

vicinity between associated cells, trajectory continuity, and consistency constraints (such as

no cells to be left unexplained, or the number of cells to be conserved with respect to enter,

exit, and division).

Let Nc be the number of cells at frame t − 1, Nb the number of blobs at frame t, and

H the total number of hypotheses that I have to consider for all the cell. I construct a H-

dimensional vector ρ (called score vector), whose h-th component ρ(h) of the score vector

represents an association score of hypothesis h if it were considered, where an association

score indicates how likely the association hypothesis is in an optimal solution. I also con-

struct an H × (Nc + Nb) binary-valued matrix C (called Constraint Matrix), whose h-th

row represents which cells are associated to which blobs under that hypothesis. A set of

hypotheses that I have to consider is generated, and the corresponding entries of ρ and C

are defined as follows.

1. Migration hypothesis:

If the space distance between cell l at t− 1 and blob m at t is less than threshold de,

the cell migration hypothesis celll → blobm needs to be considered, and thus is added

to the hypotheses set. Let h be the index of a new hypothesis. I append h-th row to

C and a corresponding score to ρ:

C(h, i) =

{
1, for i = l and i = Nc +m

0, otherwise.

ρ(h) = Pmig(blobm|celll)

where Pmig(blobm|celll) is computed based on the cell location similarity and shape
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similarity between the cell at frame t and the detected blob at frame t−1. The detail

of the current particular implementations of computing this score are provided in the

next section.

2. Exit hypothesis:

If the l-th cell at t − 1 is near the boundary of the field of view, the exit hypothesis

celll → none needs to be considered, and thus is added to the hypotheses set. New

entries for C and ρ are defined as:

C(h, i) =

{
1, if i = l

0, otherwise.

ρ(h) = Pexit(exit|celll)

where Pexit(exit|celll) is computed based on a distance from the image boundary.

(Refer to the next section)

3. Enter hypothesis:

If the m-th blob at t appears near the boundary of the field of view, the enter hy-

pothesis none→ blobm is added.

C(h, i) =

{
1, if i = Nc +m

0, otherwise.

ρ(h) = Pentr(enter|blobm)

4. Division hypothesis:

If both of m1-th and m2-th blobs appear near the l-th cell, the division hypothesis

celll → (blobm1 , blobm2) is added.

C(h, i) =

{
1, for i = l, i = Nc +m1, and i = Nc +m2

0, otherwise.

ρ(h) = Pdiv(blobm1 , blobm2 |celll)

5. Overlaping hypothesis:

If both of l1-th and l2-th cells appear near the m-th blob, the overlapping hypothesis

(celll1 , celll2)→ blobm is added.

C(h, i) =

{
1, for i = l1, i = l2, and i = Nc +m

0, otherwise.

ρ(h) = Pover(blobm|celll1 , celll2)

Figure 2.3 illustrates a simple example, where the number of cells at t − 1 is 5, the

number of blobs at t is 5, and the number of hypotheses is 13.
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Figure 2.3: Example of binary linear programming where the optimal solution is highlighted

by orange.

Once I make H hypotheses over Nc cells at t − 1 and Nb blobs at t, the association

problem selects a subset of rows of C such that the sum of corresponding elements in ρ is

maximized, under the constraint where any cell or blob appears on at most one hypothesis.

This can be formulated as the following binary linear programming problem:

x∗ = argmax
x

ρTx, s.t. CTx ≤ 1 (2.1)

where x = (x1, · · · , xH)t is a H × 1 binary vector, and xh = 1 means the h-th hypothesis is

selected in the optimal solution. The constraint CTx ≤ 1 guarantees that each cell ID or

blob ID appears in only one selected hypothesis.

To solve the binary linear programing problem, I use the branch-and-bound algorithm

[Ross75], which divides the original problem into all possible sub-problem and then solves

a series of LP-relaxation problems for each sub-problem. For the case of Figure 2.3, the

optimal solution is that cell 1 migrates to blob 1′, cell 2 divides to blob 2′ and 3′, cell 3, 4

overlap and make a cluster blob 4′, and cell 5 migrates blob 5’.

When an overlapping event is selected in the optimal solution, the event is furthermore

identified as either event (5) newly overlapping or (6) joint migration in a cluster by using

the previous state of cells.
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Figure 2.4: Upper : Cell shapes at t − 1 and the detected blob shapes at t for each event

at the original mask image. Bottom : When there are multiple cells or blobs, the method

combined the shapes to a cluster. The mitosis event at t, Rj,k is a combined cluster by Rj

and Rk. The overlapping event at t− 1, Ra,b is a combined cluster by Ra and Rb.

2.2.3 Computing scores of hypotheses

In this section, the implementation of computing the score of the hypothesis for cell asso-

ciation is presented. The score of each hypothesis are computed based on the cell location

similarity and shape similarity between a cell at frame t and a detected blob at t− 1. The

score of cell migration hypothesis is defined as:

Pmig(blobj |celli) = ωζ · ζ(Ri, Rj)+ωη · η(Ri, Rj)

ωζ + ωη = 1, 0 ≤ ωζ , ωη ≤ 1 (2.2)

where ωζ and ωη are weights of each term, Ri indicates the detection results of cell or blob

i, ζ(Ri, Rj) indicates position similarity that is the degree of overlapping between Ri and

Rj (i.e.,
Ri∩Rj

Ri∪Rj
), η(Ri, Rj) indicates the shape similarity that is calculated by the distance

of Fourier descriptors between Ri and Rj [FontouraCosta01]. For one-to-one association,

such as the migration hypothesis, the shape similarity can be computed. However the

shape similarity of one-to-two association, such as the division hypothesis and overlapping

hypothesis, cannot be directly computed.

As shown in the Figures 2.4 (c) and (d), when a cell regions divide into two cells, the

shapes of these two children cells are similar with the partial shapes before division. As

shown in the Figures 2.4 (f) and (g), when two cells partially overlap and make a cluster,

these two cells before overlapping are also similar with the partial shapes of the cluster. In
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order to compute the shape similarity of mitosis hypothesis, I translate two regions of the

blobs Rj , Rk and make a cluster Rj,k until overlapped area ratio is 5% of the total as shown

in Figure 2.4 (e). For overlapping hypothesis, I also make a cluster Ra,b by translating the

two cells Ra, Rb as shown in Figure 2.4 (h). Then, the score between the combined shape

Ra,b and the blob shape Rc is calculated. The scores are defined for each event as:

Pdiv(blobj , blobk|celli) = ωζ · ζ(Ri, Rj,k)+ωη · η(Ri, Rj,k)

Pover(blobc|cella, cellb) = ωζ · ζ(Ra,b, Rc)+ωη · η(Ra,b, Rc)

(2.3)

For enter and exit hypotheses (i.e., none-to-one and one-to-none association), the spatial

distance between the boundary of the field of view and the cell centroid since a cell does

not newly appear in the field of view except boundary area. The scores are defined as:

Pentr(enter|blobl) =

 e
− ds(Rl)

λ1 , if ds(Rl) < θs

ξ otherwise (ξ is small)
(2.4)

Pexit(exit|celll) =

 e
− ds(Rl)

λ1 , if ds(Rl) < θs

ξ otherwise (ξ is small)
(2.5)

where ds(Rl) is the distance between the centroid of the detection region Rl and the image

boundary. λ1 is free parameters to adjust the distribution. I set λ1 = 1.

2.2.4 Segmentation of overlapping cells

When the method detects event (5) and (6) that may involve a cluster of multiple cells, the

method tries to segment the blob of overlapping cells into its member cells. I obtain the

optimal contour matching of the blob contour with partial contours of candidate member

cells [Bise09]. The method relies on the fact that as multiple cells touch or partially overlap,

the blob contour of the resultant cluster must be comprised of partial contours of the member

cells, and the contours of the member cells gradually deform with time while touched cells

jointly migrate in the cluster (i.e., a contour shape of a member cell at the next frame is

similar to that at the previous frame). Here, I first explain the partial matching method for

event (6) joint migration since the method for event (5) can be consider as a special case

for event (6).

Let me consider a case of tracking two overlapping cells whose respective boundary

contours (partial or whole) in the previous frame are known. Figure 2.5 shows an example

case. The partial contour shape of its member cells have been established for frame t− 1 as

shown in Figure 2.5 (a) (i.e., a cell contour is drawn by red, the other by white). Now the task

is to match these with the blob contour in frame t shown in Figure 2.5 (b) as black contour.
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The matching method proceeds in five steps: 1) In each contour, detect flexion points

(local extremum points of curvature) that are candidate locations at which the contour is

split; 2) Generate all possible combinations of matching flexion points between frame t-1

and frame t; 3) For each combination, compute the optimal partial matches between the

contour segments split by the flexion points with the use of dynamic programming (DP) to

account for cell shape deformation. Figure 2.5 (c) indicates cost matrices for DP matching,

in which the green lines are optimal paths corresponding to the optimal matching; 4) Select

the overall optimal partial matches among all combinations; and, 5) Propagate the cell

identity information, and update the member cells’ contour shape according to the selected

match.

In the following description, I first consider the case in which two cells ct−1
a and ct−1

b

overlap and form a cluster ctab. The symbols ct−1
a and ct−1

b denote the contours of cells a

and b in frame t − 1, respectively. The contour of the cell cluster ab in frame t is denoted

by ctab. The problem is to find the best match between the partial segments of ct−1
a , ct−1

b

and those of ctab.

Flexion point detection and matching

Flexion points on a contour are defined as the points at which the curvature of the contour

exceeds a certain magnitude. At each point p⃗i = (xi, yi) on a contour, the curvature κi is

computed as

κi =
|(p⃗i+1 − p⃗i)× (p⃗i−1 − p⃗i)|

|p⃗i+1 − p⃗i−1||p⃗i+1 − p⃗i||p⃗i−1 − p⃗i|
(2.6)

where p⃗i−1 and p⃗i+1 are neighbor points of p⃗i; × denotes a cross product; and | · | is the

Euclidean norm of a vector. A flexion point is detected if the curvature takes a local

maximum and its absolute value satisfies |κi| > thκ. The parameter is adjusted such that

the number of frexion points on a blob roughly corresponds to the possible number of

separation points of clustered cells.

Once flexion points are detected, the method generates a list of matching combinations

between all flexion points on ct−1
a , ct−1

b and those on ctab. Each combination is a quadruple

in the form of {(f⃗ l
a, f⃗

k
ab), (f⃗

m
b , f⃗k′

ab)}, where f⃗ l
a, f⃗

m
b represent flexion points on ct−1

a and ct−1
b ,

respectively, and f⃗k
ab, f⃗

k′
ab are two flexion points on ctab. The combinations are generated

using the following procedure:

• For each cell α ∈ {a, b}:

– for each pair (f⃗ l
α, f⃗

k
ab), compute the matching distance

d(f⃗ l
α, f⃗

k
ab) = wcurvdcurv(f⃗

l
α, f⃗

k
ab)

+ wposdpos(f⃗
l
α, f⃗

k
ab) (2.7)



CHAPTER 2. TRACKING PARTIALLY OVERLAPPING CELLS 20

Figure 2.5: Flexion points and contour segment matching. (a),(b) A combination of match-

ing flexion points in consecutive frames. (c) Cost matrices for dynamic programming, in

which the green lines are back-traced optimal paths corresponding to the optimal matching.

(d) Results of matched partial contours. The results match well with human perception of

segmentation due to the faint dark boundary extending vertically (though that is accidental

coincidence because that information has not been used yet by the proposed method).

– Sort the matching distances in ascending order, and select the top min(Np, 5)

pairs, where Np is the total number of flexion point pairs.

• Enumerate all combinations {(f⃗ l
a, f⃗

k
ab), (f⃗

m
b , f⃗k′

ab)} among the selected pairs.

In Eq. 2.7, d(f⃗ l
α, f⃗

k
ab) denotes the dissimilarity measure between flexion points f⃗ l

α and f⃗k
ab,

which is a weighted combination of the curve difference dcurv and the position distance

dpos with weights wcurv and wpos. These parameters are adjusted so that wcurvdcurv and

wposdpos are of the same order of magnitude. The curvature distance is defined by

dcurv(f⃗
l
α, f⃗

k
ab) =

1

2P + 1

∑
κi∈F l

α,κj∈Fk
ab

|κi − κj | (2.8)

where F l
α and F k

ab are contour segments of length 2P+1 centered at f⃗ l
α and f⃗k

ab, respectively.

The position distance dpos(f⃗
l
α, f⃗

k
ab) is simply the 2D Euclidean distance.
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Matching contour segments by dynamic programming

For each combination of matching flexion points {(f⃗ l
a, f⃗

k
ab), (f⃗

m
b , f⃗k′

ab)}, the contours are split
into segments:

S1
a = ⟨start(ct−1

a ), f⃗ l
a⟩, S2

a = ⟨f⃗ l
a, end(c

t−1
a )⟩,

S1
b = ⟨start(ct−1

b ), f⃗ l
b⟩, S2

b = ⟨f⃗ l
b, end(c

t−1
b )⟩,

S1
ab = ⟨f⃗k

ab, f⃗
k′
ab⟩, and S2

ab = ⟨f⃗k′
ab, f⃗

k
ab⟩

Here, ⟨p⃗1, p⃗2⟩ represents the contour segment from p⃗1 to p⃗2, and start(ct−1
a ), end(ct−1

a )

represent the endpoints of contour ct−1
a . Note that for a closed contour, the endpoints

coincide with the flexion point. Figure 2.5 illustrates the contour segments corresponding

to a matching combination of flexion points in two successive frames.

Dynamic programming is used to compute the optimal partial matching between (Sn
a ,

Sn
b ) and Sn

ab (n ∈ {1, 2}). The method consists of two steps.

First, two cost matrices are constructed: one for computing the partial matching between

Sn
a and Sn

ab, denoted by Gn
a ; the other for the partial matching between Sn

b and S̄n
ab, denoted

by Gn
b , where S̄

n
ab denotes the reverse of S

n
ab. Suppose that segment Sn

ab consists of P
n
a points

{p⃗i|i = 1, . . . , Pn
ab}, and Sn

a of Pn
a points {p⃗j |j = 1, . . . , Pn

a }. Then Gn
a is an Pn

ab×Pn
a matrix

with entries

gna (i, j) = min


gna (i− 1, j − 2) + 2u(i, j − 1) + u(i, j),

gna (i− 1, j − 1) + 2u(i, j),

gna (i− 2, j − 1) + 2u(i− 1, j) + u(i, j)

(2.9)

where u(i, j) = |κi − κj | is the unsigned distance between the curvatures at p⃗i and p⃗j for

i, j > 0, and u(i, j) = 0 otherwise. The values of gna (i, j) for i <= 0 and/or j <= 0 are

defined as:

gna (i, j) =

{
0, if (i ≤ 0 and j ≤ 0),

Large, otherwise,
(2.10)

where Large represents a large positive value that is greater than the total cost of any path

in the cost matrix. The cost matrix Gn
b is constructed analogously. Then, the method

computes the optimal separation point s⃗n on segment Sn
ab that splits Sn

ab into two partial

segments, Sn,a
ab and Sn,b

ab , such that the overall matching cost between these partial segments

and Sn
a , S

n
a is minimized. The overall matching cost Cost(s⃗1, s⃗2) for s⃗1 ∈ S1

ab and s⃗2 ∈ S2
ab
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Figure 2.6: Flexion points and contour segment matching for event (5) when two individual

cells newly touch and form a cluster. The left image shows the previous frame, the right

image shows the next frame.

is defined as:

Cost(s⃗1, s⃗2) = cost(S1
a, S

1,a
ab ) + cost(S1

b , S
1,b
ab ) (2.11)

+cost(S2
a, S

2,a
ab ) + cost(S2

b , S
2,b
ab )

+ωκ(κ1 + κ2),

with cost(Sn
a , S

n,a
ab ) = min

j
gna (is⃗n , j),

and cost(Sn
b , S

n,b
ab ) = min

j
gnb (is⃗n , j)

Because the contours near the separating points are more likely to be locally concave than

convex, the curvatures κ1,κ2 at s⃗1 and s⃗2 are added to the cost function in Eq. 2.11

with weighting coefficient ωκ in order to penalize convex, thus favoring concave, separation

points.

With the optimal separation points identified, the optimally matching partial contours

are obtained by back tracing the corresponding cost matrices.

Figure 2.5 shows the result of this process. The combination of flexion point matching

shown is the one that has produced the best match and the resultant assignments of the

partial contour is shown in Figure 2.5 (d).

Before concluding this sub-section, it is worthwhile to mention that partial shape match-

ing techniques using dynamic programming have been used in shape retrieval applications

[Petrakis02][Milios00] for handling distorted shapes. In my application, I must handle mul-

tiple shapes that (partially) overlap. However, considering all combinations of all possible

endpoints of the overlapping is computationally very expensive. The use of flexion point

(Step 1) allows efficiently identifying probable endpoints of partial overlap.
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Newly overlapping case

Segmentation method for a case when two cells newly touch and form a cluster (i.e., event

(5)) is a special case of segmentation for event (6). The difference is the definition of the

segments of contours. For each combination of matching flexion points {(f⃗ l
a, f⃗

k
ab), (f⃗

m
b , f⃗k′

ab)},
the contours are split into segments:

S1
a = ⟨f⃗ l

a, f⃗
l
a⟩clock, S2

a = S̄1
a,

S1
b = S̄2

b , S
2
b = ⟨f⃗ l

b, f⃗
l
b⟩clock,

S1
ab = ⟨f⃗k

ab, f⃗
k′
ab⟩, and S2

ab = ⟨f⃗k′
ab, f⃗

k
ab⟩

where ⟨f⃗ l
a, f⃗

l
a⟩clock represents a whole contour of cell ct−1

a with end point f⃗ l
a in a clockwise

direction, S2
a is the reverse of S1

a. To compute the optimal partial matching, the same

process for event (6) is used since the dynamic programming can compute a matching cost

between a partial contour of S1
a and the contour of segment S1

ab. Figure 2.6 illustrates

the contour segments corresponding to a matching combination of flexion points in two

successive frames for event (5).

Figure 2.7: Example of segmenting a three-cell cluster into members. Left: Original image.

Right: Segmentation results.

Handling N-cell clusters (N > 2)

So far I have discussed partial contour matching for the two-cell cluster case. It is straight-

forward to extend the method to handle three or more cells. Consider the example that

the contours of three cells ct−1
a , ct−1

b and ct−1
d in frame t − 1 merge into a single con-

tour ct−1
abd in frame t. Matching can be obtained by first considering the contours ct−1

a and

ct−1
bd = ct−1

b

∪
ct−1
d , and computing their optimal partial matching to ctabd using the above

method. Then, the partial contour of ctabd that is matched to ct−1
bd is converted into a closed

contour ctbd, by interpolation. The above method is applied again to obtain a matching be-

tween ct−1
b , ct−1

d and ctbd. Further extensions can be made by following the same approach.
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Figure 2.7 shows an example in which three cells are involved. In practice, however, tracking

individual motions of four or more overlapping cells with unclear intercellular boundaries is

extremely difficult, even for expert cell biologists. I propose tracking methods to solve the

problems in Chapters 5 and 6.

2.3 Experiments and results

2.3.1 Data

I tested two DIC microscopy image sequences of human CNS stem cell populations, each

of which are captured over 66 hours using 12-bit Orca ER (Hamamatsu) CCD camera

mounted on a Zeiss Axiovert 135 TV microscope with a 40x, 1.3 NA oil-immersion DIC

objective. A 0.6x lens was installed in front of the camera to increase the visual field. The

image size is 640 × 512 pixels. One of the sequence (seq 1) was captured every 5 minutes

for 800 frames (66.66 hours), and another sequence (seq 2) was captured every 2.5 minutes

for 1600 frames (66.66 hours). The cell population varied in the range of 16 to 50 cells per

frame, and cells often overlapped with each other. Manual cell tracking was performed by

an expert biologist for a total of whole frames containing 39206 cells which appeared in

the initial frame and their progeny. The results were confirmed by two other biologists and

served as ground truth.

For implementation, I set the parameters de = 30, thk = 0.5, wcurv = 0.9, and wpos =

0.9. The code of the proposed method was implemented by MATLAB.

2.3.2 Tracking examples

Two examples of tracking two and three partially overlapping cells are shown in Figures

2.8 (a) and (b). Figures 2.8 (a-1) and (b-1) show the tracking results by a method utilizing

level-set and motion filter [Li08] which failed separating overlapping cells and tracking one

of the cells. The results by the proposed method, shown in Figures 2.8 (a-2) and (b-2),

successfully tracked all the cells throughout the long overlapping period.

Figure 2.9 shows a more complicated example that involves cell mitosis (cell division).

Frame 920 contains two separated cells (shown by white and blue contours). In frame 936,

the white and blue cells began to touch, and by frame 963, they overlapped fairly severely.

In frame 981 and 982, the blue cell divided to two cells (shown by red and purple). Then,

these three cells made a cluster, and in the following sequence, the 3-cell cluster returned

back to three separated cells. The tracking method had correctly tracked through the event

in spite of shape deformation. The right-hand side figure on Figure 2.9 shows the space-time

(x-y-t) trajectory plot.
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Figure 2.8: Examples of tracking results. (a-1), (b-1): Results by a method using level-

set and IMM Filter [Li08]. (a-2) (b-2): Results by the proposed method. Black dots are

centroid of cell contour.

Figure 2.10 (a) shows a result for one whole frame, and the total results of tracking and

cell identification for the whole sequence can generate a time-space tree, shown in Figure

2.10 (b), which represents the complete motions of all the cells as well as their lineage

information.

2.3.3 Quantitative evaluation

Detection accuracy.

Table 2.1 summarizes detection accuracy for two sequences where the detection results were

provided after the re-segmentation of overlapped cells. The results include a total of 39206

true positives (TPs), 2341 false positives (FPs), and 253 false negatives (FNs). In seq 2,

since dead cells were detected as cell region, FP rate were larger than one of seq 1. In terms
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Figure 2.9: More complicated example of tracking cells through a sequence that involves

touching, overlapping, separation and mitosis.

#Frame #Cell TP FP FN Precision Recall

seq 1 800 24683 24534 842 149 0.967 0.994

seq 2 1600 14523 14419 1499 104 0.906 0.993

Total 2400 39206 38953 2341 253 0.943 0.994

Table 2.1: Accuracy of cell identification.

of precision = TP
TP+FP and recall = TP

TP+FN , the proposed method achieved a precision of

94.3%, and a high recall of 99.4%. The details of the metrics are described in Appendix A.

Tracking accuracy for touching events.

To show the proposed method capability of tracking touching cells, I evaluated the tracking

accuracies for different types of cell cluster motion events (formation, migration, separation)

in the two sequences that involve up to three cells as shown in Table 2.2. In the table, C1

stands for one cell, and C2 and C3 correspond to cell clusters containing two and three

cells, respectively. ”C1, C1→ C2” stands for the event in which two cells come to overlap

to form one cluster; ”C2 → C2” for the event of two cells migrating jointly as a cluster;

”C3 → C1, C2” for the event of a three-cell cluster separating into one cell and a two-cell

cluster; and so on. The method recognized these different cases explicitly. Overall, a 96.3%

accuracy was achieved.

Target effectiveness

I used target effectiveness [Blackman86] to assess the system performance. The definition

of target effectiveness is described in Appendix A. Figure 2.11 shows the target effectiveness
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Figure 2.10: Left: Example of tracking results for a frame. Right: Complete space-time

track representation.

Event Count Errors Accuracy

C1, C1→ C2 200 9 0.955

C2→ C2 921 25 0.973

C2→ C1, C1 181 10 0.945

C1, C2→ C3 27 3 0.889

C3→ C3 57 4 0.930

C3→ C1, C2 26 2 0.923

Total 1412 53 0.963

Table 2.2: Tracking accuracies of cell cluster motion for various events.

over time. Given a specific time, the metric was computed with only tracks that are formed

until the time. It is shown that the overall performance had a tendency to reduce somewhat

since the number of cells increases and they more often touch and overlap. The final values

of the last frame was 98% in seq 1, and 91% in seq 2.

Mitosis branching correctness

Cell lineage is especially important for stem cell research [Ravin08][Chisholm00], as it pro-

vides fine-grain quantification measurements of mitosis, such as division time and synchrony

of mitosis. To accurately generate cell lineages, the mitotic branching correctness [Bise11]

is also an important measure. The mitotic branching correctness measured the accuracy of
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Figure 2.11: Accumulated target effectiveness over time for the two test sequences. Red

line is seq 1. Blue dots line is seq 2.

mother-daughter relationships between tree branches. The correctness of mitotic branch-

ing is the number of the correctly detected mitosis branching over the total number of the

mitotic events. In the evaluation, I set the parameter as θϵ = 10. The details of the metrics

is described in Appendix A.

The proposed method achieved 91% accuracy of mitosis branching correctness in se-

quence 1 and 94% accuracy in sequence 2. Figure 2.12 shows an example of the linage

trees compared to human annotated one. Horizontal red line indicate tracks that follow

the ground-truth, vertical red lines indicate that the mitosis branching is correctly detected

on the branch nodes of the linage tree. The results show that the lineage trees were well

constructed.

2.4 Conclusion

I have presented a cell-tracking method based on partial contour matching using dynamic

programming. The method is capable of tracking migrating cells that sometimes partially

overlap, while maintaining the identity information of individual cells throughout the pro-

cess from their initial contact to eventual separation. Therefore, the proposed method have

achieved high accuracy where 91% of the paths from the initial cells to the descendant

cells in the last frame are fully correct in both its mother-daughter relationships and its

locational trajectories despite frequent formation of multiple-cell clusters.

The proposed method can track two or three touching cells, however, it still remains

several challenges. When false positives of cell detection appears near a cell, the method
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Figure 2.12: Tracking performance evaluation with lineage trees in terms of target effective-

ness. The black lines indicate the lineage tree of the ground truth. The red lines indicate

correctly tracked parts in the ground truth. The numbers located in the front of each line

indicate track/cell IDs. The horizontal axes indicate time (HH:MM).

may confuse the false positive as a divided cell. For such case, I propose a cell-tracking

method by global data association in Chapter 3

In practice, tracking individual motions of four or more overlapping cells with unclear

intercellular boundaries is extremely difficult, even for expert cell biologists. For such dense

culture conditions, I developed the other methods. These methods are explained in Chapters

5 and 6.



Chapter 3

Cell Tracking by Global Data

Association

3.1 Introduction

Frame-by-frame association methods, such as the method proposed in Chapter 2, exhibit

high tracking accuracy based on trajectory-level evaluation (how well ground-truth cells

are followed by computer-generated tracks). However, it is still challenging to achieve high

accuracy based on lineage-level (tree structure) evaluation including the correctness of the

mother-daughter relationship. For example, when a false positive segmentation appears

near a mitotic cell, the local temporal association methods may result in a mother-daughter

relationship error. Global temporal information is important to solve this problem. If we

observe the cells for several frames after the birth event, we can easily determine that one

of the children cells is false positive since false positives usually quickly disappear. This

allows us to correct the relationship.

Recently, global spatio-temporal data association methods have been proposed for gen-

eral object tracking. Multi-Hypothesis Tracking (MHT) [Reid79] and Joint Probabilistic

Data Association Filters (JPDAF) [Fortmann83] are two representative examples for as-

sociating multiple trajectories over time. Tracklet stitching [Huang09] was proposed for

reducing computational cost. Huang et al. [Huang09] first generated reliable tracklets

that are fragments of tracks formed by conservative grouping of detection responses. The

tracklets were then connected using the Hungarian algorithm [Kuhn55]. Bonneau et al.

[Bonneau05] proposed a tracklet linking method with which a minimal path between track-

lets is obtained using dynamic programming in order to track quantum dots in a living cell.

Zhang et al. [Zhang08] proposed a minimum-cost flow network to resolve the global data

association of multiple objects over time. These global association methods are known to

exhibit higher accuracy of tracking general objects than frame-by-frame association meth-

30
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Figure 3.1: Method overview.

ods. However, these methods cannot be applied to cell tracking directly since they do not

take into account cell division (a mother cell divides into two daughter cells to form a tree

structure in the trajectory).

In this chapter, I propose a global spatio-temporal data association method for tree

structures to obtain cell trajectories and lineage trees. Reliable tracklets (i.e., short trajecto-

ries) are first generated by linking detection responses based on frame-by-frame association.

The global tracklet association for the tree structures is then formulated as a maximum-a-

posteriori (MAP) problem. The MAP problem is solved by linear programming to provide

the cell trajectories and lineage trees. This method was evaluated on five sequences with

thousands of cells captured over several days. The results show an improvement in tracking

performance compared to the state-of-the-art method proposed by Li et. al. [Li08].

3.2 Method

Figure 3.1 shows the overview of my cell-tracking method. First, the cell-detection step

segments cell blobs from input images that may include false positives and false negatives,

and the mitosis detection step locates birth events where and when one cell divides into two

cells. Next, the detected cell blobs are associated to reliable tracklets by frame-by-frame

data association. Finally, the global association step associates the tracklets to obtain cell

trajectories and lineage trees.

3.2.1 Cell detection

Due to the interference optics of a phase contrast microscope, cells are surrounded by bright

halos, and cellular fluid inside the membrane has similar intensity as the background. To

facilitate segmentation, I have adopted the image restoration technique recently developed

in [Yin10a]. The technique utilizes the optophysical principle of image formation by phase

contrast microscope, and transforms an input image to an artifact-free image by minimizing

a regularized quadratic cost function. In the restored image, cells appear as regions of

positive values against a uniformly-zero background. A simple thresholding method, such
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as Otsu thresholding, can segment out the cell regions. The set of detection results is

denoted as R = {Ri} where Ri represents the i-th cell blob.

3.2.2 Cell mitosis event detection

To detect the birth events (time and location at which one cell divides into two cells), I

have adopted the mitosis detection technique recently developed in [Huh11]. Firstly, as a

mitosis event generally exhibits an increase of brightness, bright regions are extracted as

patches, and then candidate patch sequences are constructed by associated patches. Next,

the gradient histogram features are extracted from the patches. Finally, a probabilistic

model named Event Detection Conditional Random Field (EDCRF) is applied to determine

whether each candidate patch sequence contains a birth event and which frame the birth

event is located in. The set of the detected mitosis events is represented as M = {Mi}
where Mi is a detected mitosis event.

3.2.3 Tracklet generation

Since a long trajectory obtained via frame-by-frame association may include more failures,

such as drift and occlusion, than a short trajectory, the detected blobs are first associated

to make reliable tracklets. A tracklet is considered reliable when cell blobs in consecutive

frames are close enough, and there are no extra confusing blobs near the cell. Figure 3.2

shows examples of extracted tracklets in which two cells migrate. In this example, when the

occlusions occur, it is not clear if a detection response right after the occlusion is associated

with tracklet 1 or 2, so tracklet 1 and 2 are terminated at that time. False negatives and

large distance between the blobs also cause uncertain association, so tracklets 3 and 4 are

also terminated at that time.

For the implementation, I use a frame-by-frame association method to generate tracklets.

The cell association method makes hypotheses of all possible cell translation and computes



CHAPTER 3. CELL TRACKING BY GLOBAL DATA ASSOCIATION 33

�

�

�

�

�

�

�

�

�

Root Edge:

Leaf Edges:Branch nodes:

Tree:

�

�

�

�

�

�

�

Edge:

Figure 3.3: Example of a tree structure hypothesis. Bottom illustration shows zooming of

an edge which consists of tracklets.

their score as:

Plink(bj |ci) = e−
∥f(ci)−f(bj)∥

σ

where ci represents the i-th cell in the previous frame and bj represents the j-th blob in the

current frame. f(·) computes an object’s feature vector where different types of features can

be incorporated such as appearance histogram, shape and motion history. Then, the optimal

association from the hypothesis set is found by solving a binary optimization problem which

is similar to the optimization approach proposed in Chapter 2. The detected blob is linked

to a cell if and only if their score is higher than a threshold.

Based on the frame-by-frame association, a set of reliable tracklets X = {Xi} is gener-
ated. The term Xi = {Rij} is a tracklet consisting of an order list of detection results where

Rij indicates the j-th detection result on tracklet Xi. Any isolated detection response that

is not linked with any other one is considered as a tracklet and also included in X. Unclear

associations are solved on the next step by using the global data association.

3.2.4 Global data association

In this section, I propose a global data association method which addresses the tree structure

association problem.

Let T = {Tk} be a hypotheses set of cell trajectory trees over the entire video. Each tree

Tk, corresponding to a cell family from the ancestor to all of its descendents, is formed by
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associated tracklets. I define a tree structure hypothesis on Tk using the following notations

(Figure 3.3):

1. Ek = {Eki}: a set of edges of tree Tk. Each edge is defined as an order list of tracklets,

i.e., Eki = {X
j
ki
} where Xj

ki
is j-th tracklet on edge Eki . Specifically, Ek0 denotes the

root edge of the tree.

2. Bk = {Bki}: a set of branch nodes of tree Tk. Each branch node Bki defines a parent-

children relationship, Bki = {Ekpi
, Ekci1

, Ekci2
} (Ekpi

is a parent, and Ekci1
, Ekci2

are

children.)

3. Lk = {Ekli
}: a set of leaf edges of tree Tk.

Given the observation tracklet set X, the posteriori probability is maximized to solve

for the best hypothesis T∗.

T∗ = argmax
T

P (T|X)

= argmax
T

P (X|T)P (T)

= argmax
T

∏
Xi∈X

P (Xi|T)
∏

Tk∈T
PTree(Tk) (3.1)

In Eq. 3.1, I assume that the likelihoods of input tracklets are conditionally independent

given T, and Tk ∈ T can not overlap with each other, i.e., Tk ∩ Tl = ϕ, ∀k ̸= l. The

likelihood of observed tracklet Xi is

P (Xi|T) =

{
PTP (Xi), if ∃Tk ∈ T, Xi ∈ Tk

PFP (Xi), otherwise
(3.2)

where PTP (Xi) is the probability forXi being a true positive, and PFP (Xi) is the probability

for Xi being a false alarm. Ptree(Tk) is modeled as a Markov chain:

PTree(Tk) = Pini(Ek0)×
∏

Eki
∈Tk

Pedge(Eki)

×
∏

{Ekpi
,Ekci1

,Ekci2
}∈Bk, Bk∈Tk

Pdiv(Ekci1
, Ekci2

|Ekpi
)

×
∏

Ekli
∈Lk, Lk∈Tk

Pterm(Ekli
) (3.3)

where Pini is an initialization probability on the root of the tree, and Pterm is a termination

probability on a leaf of the tree. Pdiv(Ekci1
, Ekci2

|Ekpi
) is an edge dividing probability in

which edge Ekpi
divides into two edges Ekci1

, Ekci2
. Under the Markov assumption, the

edge probability can be formulated as:

Pedge(Eki) =
∏

j=1:Nki
−1

Plink(X
j
ki
|Xj−1

ki
) (3.4)
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where Plink(X
j
ki
|Xj−1

ki
) is the probability to link tacklets Xj

ki
and Xj−1

ki
together, Nki is the

number of tracklets on the edge Eki . Let X0
ki

be the first tracklet of Eki , and Xend
ki

be

the last tracklet of Eki . Under the Markov assumption, the initialization, termination, and

dividing probabilities can be formulated as:

Pini(Ek0) = Pini(X
0
k0), (3.5)

Pterm(Ekli
) = Pterm(Xend

kli
), (3.6)

Pdiv(Ekci1
, Ekci2

|Ekpi
) = Pdiv(X

0
kci1

, X0
kci2
|Xend

kpi
) (3.7)

After substituting Eqs. 3.2-3.7 into Eq. 3.1, I take a logarithm on the objective function:

T∗ = argmax
T
{

∑
Xi /∈Tk, ∀Tk∈T

logPFP (Xi)

+
∑

Xi∈Tk, ∀Tk∈T
logPTP (Xi)

+
∑

X0
k0

∈Ek0
, Ek0

∈Tk, ∀Tk∈T

logPini(X
0
k0)

+
∑

Xj
ki
, Xj−1

ki
∈Eki

, ∀Eki
∈Tk, ∀Tk∈T

logPlink(X
j
ki
|Xj−1

ki
)

+
∑

{Xend
kpi

, X0
kci1

, X0
kci1

}∈Bk, Bk∈Tk, ∀Tk∈T

logPdiv(X
0
kci1

, X0
kci2
|Xend

kpi
)

+
∑

Xend
kli

∈Ekli
, ∀Ekli

∈Lk, Lk∈Tk, ∀Tk∈T

logPterm(Xend
kli

)} (3.8)

The above MAP problem is solved by binary linear programming. Let NX be the

number of tracklets in the entire sequence, vector ρ stores the likelihoods of every possible

hypothesis and matrix C stores the constraints to avoid conflict hypotheses, where each row

of C has 2NX columns and each column indicates tracklet index on the association between

two tracklets. The entries of ρ and C are computed based on the following hypotheses.

1. Initialization hypothesis:

If the first blob of tracklet Xk appears in the beginning of the sequence or appears

near the boundary of the field of view, the tracklet is a candidate of a initial tracklet.

Let h be the index of a new hypothesis, I append a new row to C and a corresponding

likelihood to ρ:

C(h, i) =

{
1, if i = NX + k

0, otherwise.

ρ(h) = logPini(Xk) + 0.5 logPTP (Xk)
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Figure 3.4: Example of binary linear programming where the optimal solution is highlighted

by orange.

2. Termination hypothesis:

If the last blob of tracklet Xk appears in the end of the sequence or appears near the

boundary of the field of view, the tracklet is a candidate of a termination tracklet.

New entries for C and ρ are defined as:

C(h, i) =

{
1, if i = k

0, otherwise.

ρ(h) = logPterm(Xk) + 0.5 logPTP (Xk)

3. Translation hypothesis:

If the time and space distances between the last blob of tracklet Xk1 and the first blob

of Xk2 are less than thresholds, Xk1 → Xk2 is a candidate of a tracklet translation.

New entries for C and ρ are defined as:

C(h, i) =

{
1, if i = k1 or i = NX + k2

0, otherwise.

ρ(h) = logPlink(Xk2 |Xk1)

+ 0.5 logPTP (Xk1) + 0.5 logPTP (Xk2)
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4. Dividing hypothesis:

If the last blob of tracklet Xp is near a birth event detected by the mitosis detection

step, the tracklet is a candidate of the parent tracklet, and if the first blobs of some

other tracklets Xc1, Xc2 are near the candidate parent tracklet, these tracklets are

candidates of the children tracklets, New entries for C and ρ are defined as:

C(h, i) =


1, if i = p or i = NX + c1,

or i = NX + c2

0, otherwise.

ρ(h) = logPdiv(Xc1 , Xc2 |Xp) + 0.5 logPTP (Xp)

+ 0.5 logPTP (Xc1) + 0.5 logPTP (Xc2)

5. False positive hypothesis:

All of the tracklets can be false positive. When Xk is a candidate of a false positive

on hypothesis h, New entries for C and ρ are defined as:

C(h, i) =

{
1, if i = k or i = NX + k

0, otherwise.

ρ(h) = logPFP (Xk)

A true positive tracklet appears in two and only two associations in the optimal solution:

the first blob of the tracklet appears in an initialization, translation or dividing hypothesis,

and the last blob of the tracklet appears in a translation, dividing or termination hypoth-

esis. Thus, logPTP (Xk) in the second term of Eq. 3.8 is divided into two halves that

are integrated into the two neighboring transition hypotheses respectively, as described in

hypotheses 1-4.

After making M hypotheses over NX tracklets, the MAP problem in Eq. 3.8 can be

considered as selecting a subset of rows of C such that the sum of corresponding elements

in ρ is maximized, under the constraint where any trees can not overlap with each other.

This can be formulated as the following binary optimization problem:

x∗ = argmax
x

ρTx, s.t. CTx = 1 (3.9)

where x is a M × 1 binary vector, and xk = 1 means the k-th hypothesis is selected in the

global optimal solution. The term 1 is a M × 1 vector in which all elements are 1. The

constraint CTx = 1 guarantees that each tracklet ID appears in only one associated tree or

false positive tracklet. Figure 3.4 shows a simple example of the linear programming where

the number of tracklets is 7 and the number of hypotheses is 18. In the optimal solution,

initial tracklet 1 is linked to tracklet 3 (i.e., tracklets 1, 3 are associated as a single edge

tree). Initial tracklet 4 divides into 5 and 6, tracklet 5 is linked to tracklet 7, and tracklets

6 and 7 are termination tracklets (i.e., tracklets 4, 5, 6 and 7 are associated as a binary

tree).
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3.2.5 Implementation details

In this section, I describe the estimation of the probabilities in my method. Let α be the

miss detection rate of the cell detector, and |Xi| be the number of total detection responses

in a tracklet Xi. The probabilities of false positive and true positive are defined as:

PFP (Xi) = α|Xi| (3.10)

PTP (Xi) = 1− PFP (Xi) (3.11)

The initialization probability is defined based on the time distance between the beginning

of the sequence and the first appearance frame of the tracklet, or the spatial distance between

the boundary of the field of view and the cell centroid for the cell entering case.

Pini(Xi) =


e
−

dt0(Ri0
)

λ1 , if dt0(Ri0) < θt

e
−

ds(Ri0
)

λ2 , if ds(Ri0) < θs

ξ otherwise (ξ is small)

(3.12)

where Ri0 is the first detection response of trackletXi, dt0(Ri) is a time distance between the

first frame of the sequence and the frame when the detection response Ri appears. ds(Ri)

is the distance between the centroid of detection response Ri and the image boundary. λ1

and λ2 are free parameters to adjust the distribution. If the first detection response of the

tracklet appears in both beginning of the sequence and near the boundary, a maximam one

is taken for the probability.

The termination probability is defined in a similar way as the initialization probability.

Pterm(Xi) =


e
−

dtend(Riend
)

λ1 , if dtend(Riend
) < θt

e
−

ds(Riend
)

λ2 , if ds(Riend
) < θs

ξ, otherwise (ξ is small)

(3.13)

where Riend
is the last detection response of trackletXi, dtend(Ri) is a time distance between

the last frame of the sequence and the frame when detection response Ri appears.

The link probability between two tracklets and the dividing probability that one tracklet

divides to two tracklets are defined as:

Plink(Xj |Xi) = e−∥g(Rj0
)−g(Riend

)∥/λ3 (3.14)

Pdiv(Xc1, Xc2|Xp)

= e−(∥g(Rpend
)−g(Rc10 )∥+∥g(Rpend

)−g(Rc20 )∥)/2λ3 (3.15)

where g(·) computes an object’s feature vector in which different types of features can be

incorporated such as appearance time and motion history. λ3 is a free parameter to adjust

the distribution. Based on the cell movement history, these parameters are set as: λ1 = 5,

λ2 = 30, λ3 = 25, θt = 15, θs = 40.
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Figure 3.5: Example images of tracking results. Green contours are segmented cell bound-

aries. Red color boxes are detected mitosis events. The numbers in the images are cell ID.

The number on the top and bottom of the images are frame indexes. The colors of cell IDs

indicate their family identity. Cells with the same color have the same ancestor.

3.3 Experimental results

3.3.1 Tracking results

Figure 3.5 shows an example sequence of tracking results. The cell 771 on the center of the

image spreads out and the boundary is ambiguous, thus, from frame 580 to 585, the cell

are segmented to multiple regions some of which are false positives. These false positives

disappear in several frames, and only one region can be associated with the tree. Since

my global association method uses not only space and appearance information but also

temporal information, my method tracks the cells well and recognizes the false positives.

Using the detected mitosis event information (red box in Figure 3.5), the proposed method

makes a hypothesis of cell division, thus, the two children cells 1928 and 1929 are correctly

associated to the parent cell 771.

Figure 3.6(a) shows the tracklets before the global association and Figure 3.6(b) shows

the associated tree after the global association. There are 38 tracklets in Figure 3.6(a)

including false positives and false negatives. The true positive tracklets are well associated

to a tree and false positive tracklets are removed by global data association as shown in

Figure 3.6(b).



CHAPTER 3. CELL TRACKING BY GLOBAL DATA ASSOCIATION 40

Figure 3.6: Example of space-time trajectories of a cell family. (a) Tracklets. (b) A tree in

which tracklets are associated by global data association.

3.3.2 Quantitative evaluation

Data

Five sequences were captured at the resolution of 1040 × 1392 pixels where C2C12 muscle

stem cells growing from 30+ to 600+ are imaged every 5 minutes by ZEISS Axiovert 135TV

phase contrast microscope at 5X magnification over 65 hours (780 images). For one image

sequence, all cells are annotated. Since it is extremely time-consuming to annotate all cells,

for the other four image sequences, three cells are randomly selected in the initial frame

and their progeny cells are manually tracked. The total number of annotated cells in the

five sequences is 124, 621.

Metrics

I use three quantitative criteria to assess the system performance: track purity, target

effectiveness [Blackman86], and mitosis branching correctness.

To compute target effectiveness, each target (human annotated) is first assigned to a

track (computer-generated) that contains the most observations from that ground-truth.

Then target effectiveness is computed as the number of the assigned track observations

over the total number of frames of the target. It indicates how many frames of targets are

followed by computer-generated tracks. Similarly, track purity is defined as how well tracks

are followed by targets.

The mitotic branching correctness measured the accuracy of mother-daughter relation-

ships between tree branches. The definition of the metric is described in Appendix A. In

this evaluation, I set the parameter as θϵ = 10.
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Figure 3.7: Example of tracking result image with track IDs and segmented regions.

Performance evaluation

Figure 3.7 shows an example image of cell tracking with track IDs and segmented regions.

Cells are well segmented and tracked in the population. Figure 3.8 shows the space-time

trajectory plot of the whole sequence. It represents the complete history of the cell popula-

tion: motions of all the cells and their lineage information. Figure 3.9 shows examples of the

lineage trees compared to human annotated ones. Horizontal red lines indicate tracks that

follow the ground-truth, vertical red lines indicate that the mitosis branching is correctly

detected on the branch nodes of the lineage tree. The results show that the lineage trees

are well constructed.

As shown in Table 3.1, my method achieves higher accuracy on all of the performance

metrics than the state-of-the-art method in [Li08] on the full-annotated sequence. Table 3.2

summarizes the target effectiveness and mitotic branching correctness comparison on four

image sequences1. On average, the proposed method improved 19% on target effectiveness

and 27% on mitosis branching correctness compared with [Li08].

1I am not able to compute track purity for the four partially-annotated sequences because it needs all

cells to be annotated.
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Figure 3.8: Examples of space-time trajectories of the whole sequence. X and Y axes

represent 2D space, Z axis represents time.

Figure 3.9: Lineage trees and performance evaluation (thin black lines: three human anno-

tated lineage trees; overlaid thick red lines: correctly-tracked cells by the proposed method).
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Track
Purity

Target
Effectiveness

Mitosis Branching
Correctness

Li et al. [Li08] 0.62 0.70 0.46

Proposed 0.81 0.87 0.65

Table 3.1: Comparison of my method with [Li08] on a sequence with all cells annotated.

Target
Effectiveness

Mitosis Branching
Correctness

Proposed Li et al. Proposed Li et al

exp1 0.96 0.75 0.75 0.25

exp2 0.87 0.7 0.65 0.63

exp3 0.87 0.68 0.59 0.39

exp4 0.78 0.6 0.57 0.2

average 0.87 0.68 0.64 0.37

Table 3.2: Comparison of my method with [Li08] on four sequences.

3.4 Conclusion

I proposed a global data association method for cell tracking problem. The proposed method

can associate tracklets to form not only sequential structures but also tree structures. The

results of the data association provide the full cell trajectories and lineage trees. Experimen-

tal results on a challenging data set show that the proposed method significantly improves

the tracking performance including target effectiveness, track purity, mitosis branching cor-

rectness by globally associating tracklets.



Chapter 4

Cell Detection from Redundant

Candidate Regions under

Non-Overlapping Constraints

4.1 Introduction

Automated cell detection in microscopy images is one of the most important tasks in cell

behavior analysis in biological research. Robust cell detection and segmentation play a

crucial role in developing cell-tracking methods. Even though many cell-detection methods

have been proposed, cell detection under high-density conditions still remains a non-trivial

task. There are several difficulties in cell detection. First, microscopy images often have

inhomogeneous backgrounds and noise, and their contrast is usually very low. In such

images, the pixel intensity of a cell is often lower than that of the background. Second, cells

often touch other cells and form a cluster with blurry inter-cellular boundaries.

In Chapters 2 and 3, I discussed current cell-detection methods, which apply precon-

ditioning methods [Li09][Yin10a] then segment cell regions by Otsu thresholding [Otsu79].

However, as summarized in the introduction, these cell-detection methods do not simul-

taneously overcome all of the difficulties in detecting cells under high-density conditions:

multiple cells are mistakenly merged, a single cell is segmented into multiple regions, and

low-intensity cells are miss detected. Therefore, I propose a cell-detection method which

detects cells from redundant candidate regions under non-overlapping constraints to over-

come these difficulties. It first detects redundant candidate regions by allowing candidates

to overlap; thereby, avoiding miss detections. It avoids over-detection by producing an

optimal set of cell regions from the redundant regions under non-overlapping constraints:

a selected region looks like a single cell and does not overlap other cells. I formulate this

problem of optimal region selection under non-overlapping constraints as a binary linear

44
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Figure 4.1: Method overview. Bottom images illustrate an example of a case in which two

cells touch and form a cluster in each step. (a) Example illustration of detected candidates.

(b) Tree consists of candidate nodes, and each node represents a candidate region. (c)

Example scores of candidate regions. (d) Optimal solution set in which selected regions do

not overlap.

programming problem by using a tree structure that represents the overlapping relation-

ships of candidates.

The proposed cell-detection method was evaluated in comparison with five other cell-

detection methods: Otsu thresholding [Otsu79], thresholding with classification [Yin12],

thresholding with separating touching cells (CellProfiler) [Carpenter06], level-set [Li10], and

finding local maxima with morphological operations (FIJI) [Schindelin12]. Since my aim

was to detect individual cells rather than segmenting complex cell shapes, the evaluation was

done using recall, precision, and F-measure for cell detection as the metrics. The datasets

included 2D microscopy images of several types of cells: stained zebrafish cells (digital

scanned light-sheet microscopy images), stained bovine aortic endothelial cells (fluorescence

microscopy images), and human CNS stem cells (DIC microscopy images). The proposed

method exhibited the best performance, with an F-measure of over 0.9 for all datasets. I

also applied the method to 3D data. The results suggest that it also works for the 3D

cell-detection problem.

4.2 Cell detection from redundant candidate regions

Figure 4.1 shows an overview of the proposed method. The method consists of four steps,

• Detect candidate regions: A set of redundant candidate regions is produced by using

a multiple threshold method. The set includes many false positives but is expected

in turn to contain very few false negatives (Figure 4.1(a)). This indicates that most

true positives are included in the candidate set.
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• Generate tree structure: A tree structure is generated in which the candidate regions

are nodes, and the relationships between nodes are generated on the basis of infor-

mation about overlapping (Figure 4.1(b)). This tree represents the non-overlapping

constraints and is used for weighting the scores in the fourth step.

• Compute scores of candidate regions: The scores of the candidate regions are computed

on the basis of how much each region looks like a single cell as determined by using

cell appearance features (Figure 4.1(c)).

• Select optimal set of cell regions: An optimal set of cell regions is produced from

the redundant candidate regions under non-overlapping constraints (Figure 4.1(d)).

This optimization problem is formulated as a binary linear programming problem

by using the generated tree and computed candidate scores. This binary linear pro-

gramming maximizes the sum of the weighted scores of the selected regions under

non-overlapping constraints.

These steps are next described in detail.

4.2.1 Detect set of candidate regions

The goal in this step is to produce a set of candidate regions that may include many false

positives but in turn very few false negatives.

My method is based on the fact that cell regions appear bright under fluorescence and

preconditioned images and on the fact that the intensities on the inside of a cell are slightly

higher than those at its boundaries among touching cells. Candidate regions are identified

by segmenting all regions by using multiple-level thresholding. I set K level thresholds

T = {Ti|i = 1, ...,K}, that are equally spaced, and each threshold is used to segment images

at a particular level of intensity. The holes of the foreground region are filled since a cell does

not have holes. Finally, the segmentation results are registered as candidate cell regions.

A set of candidate cell regions is denoted as A = {Ai, i = 1, 2, ..., N}, where Ai represents

the i-th candidate cell region, and N is the number of candidate regions. For the example

in Figure 4.1, all the segmentation results {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} are

registered as candidate regions. These candidate regions include almost all the true positives

even though many false positives are included.

This process can also be applied to non-invasive microscopy images by using precondi-

tioning methods developed for phase contrast images [Yin10a] and for DIC images [Li09]. In

preconditioned images, a large pixel value indicates the foreground and a small pixel value

indicates the background. After preconditioning has been applied, non-invasive microscopy

images can be treated the same as fluorescent images.
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Figure 4.2: Example of pruning process. (a) Original tree. Dotted boxes indicate nodes

outside pre-defined size range. (b) Pruned tree.

4.2.2 Generate tree structure

The detected cell candidates constitute a tree structure with the cell candidates as nodes.

If candidate region Ai is inside candidate region Aj , Aj is one of the root components of Ai

in the tree. The set of all candidate regions under all thresholds is obviously hierarchically

ordered by subset inclusion, as shown in Figure 4.1(a). This hierarchical order produces a

tree structure, as shown in Figure 4.1(b).

To reduce computational costs, some nodes of the tree are pruned. A set of candidate

regions typically includes large and small regions with a size that does not match the

expected cell size. In the pruning step, nodes smaller than θmin or larger than θmax are

eliminated: θmin and θmax are pre-defined parameters used to remove noise. An example of

this pruning step is illustrated in Figure 4.2, in which nodes A1, A9, and A10 are eliminated.

This tree structure is the key to performing the fourth step, effectively finding an optimal

set of cells. The tree structure is used to handle non-overlapping constraints and to define

the target function of the optimization.

Intensity level tree representation is used for image matching tasks. Mattes et.al.

[Mattes99] proposed an image matching method that uses a tree representation match-

ing strategy. Matas et.al. [Matas02] proposed a maximally stable extremal region (MSER)

detection method for finding the correspondences between image elements from two images

with different viewpoints. There is a key difference between these methods and my method:

my method uses tree representation to formulate the problem of optimal region selection

from candidate regions under non-overlapping constraints.
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Figure 4.3: Examples of visual features used to compute the score representing resemblance

of a candidate region to a single cell. (a) Example of a false candidate in which the region

consists of two cells. (b) Example of a true candidate in which the region consists of single

cell. Horizontal axes show bin IDs; vertical axes show feature frequencies.

4.2.3 Compute score of each candidate region

A score representing how likely the candidate region contains the main part of a single cell

is computed for each cell candidates.

Figure 4.3 shows typical examples of a region consisting of two touching cells (Figure

4.3(a)) and a region consisting of a single cell (Figure 4.3 (b)). As mentioned above, cells

usually exhibit higher intensity inside the cell, and the intensity gradually decreases toward

the edge since cell boundary is thinner than the center area, and the center area tends to be

ellipsoid. This means that appearance-related items are important for judging whether a

candidate region consists of a single cell. 1) Intensity distribution: the intensity histogram

of a cluster region has lower intensity values, and the variance is larger compared with that

of a single cell region, as shown by the intensity charts in Figure 4.3. 2) Distribution of

angles between gradient direction and direction toward centroid from point in each pixel:

the average and variance of the distribution of angles for a cluster region are usually larger

than those for a single cell region since a cluster region has several local peaks, as shown

by the angle charts in Figure 4.3. 3) Distribution of centroid distances [Mingqiang08]: the

centroid distance is the distance to a boundary point from the cell center, and the centroid

distance distribution for a cluster region has a larger variance than for a single cell since a

touching cell region often has concavities, as shown by the shape charts in Figure 4.3.

A binary classifier is learned via an SVM algorithm [Cortes95] by using the feature
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Figure 4.4: (a) Example of a set of candidate regions. (b) Pruned candidate regions and

clicked positions. ’red plus’ indicates a clicked position for annotation.

vectors and training data. In the inference step, the class membership probabilities are

computed as the scores of regions that look like cell regions via the trained SVM [Drish01].

The computed score of a candidate region Ai is represented as P (Ai), where P (Ai) is

normalized in the 0 to 1 range.

To obtain training data, an annotator selects only true positives from the candidate

regions rather than annotating cell region boundaries since the aim here is to detect indi-

vidual cell regions rather than to extract complex cell shapes. Moreover, annotating the

training data in this way reduces the amount of time and effort. A candidate region set

and a corresponding tree structure are generated by using multiple-level thresholding, as

described in section II.A and B. To reduce the number of candidates, if a node has only

one child, the child node is pruned, as shown in Figure 4.4. The annotator is shown the

original image and the corresponding pruned candidate regions. The annotator then selects

the true positive regions from the displayed regions. A true positive region is one of cell

soma. Any desired cell, for instance A2 and A3 in Figure 4.4, can be selected by clicking

any position inside the cell except one included in any of the cell’s child regions as shown in

Figure 4.4 (b). After all cells in an image are annotated, the selected regions are labeled as

positive samples, and the non-selected ones are labeled as negative samples. For example in

Figure 4.4, {A2, A3} are positive samples, and {A1, A5, A6, A9, A10} are negative samples.

A pre-pruned tree is used to extend the training data, as shown in Figure 4.4 (a). If a

region is a descendant of a positive sample and the ratio of its size to that of the positive

region exceeds a threshold, it is also labeled as a positive sample. Descendant regions of a

negative sample are also labeled as negative samples. Here, I set the threshold ratio to 0.8.

For example in Figure 4.4, if the ratio of the size of A4 to that of A2 exceeds the threshold

and the ratio of the size of A7 to that of A2 does not exceed the threshold, A4 is labeled a

positive sample, and A7 is labeled a negative sample. A8 is also labeled a negative sample

since A8 is a child of negative sample A5.
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Figure 4.5: (a) Simple example of set of candidate regions. (b) Scores for three candidate.

4.2.4 Select optimal set of cell regions

An optimal set of regions is then selected from candidate regions under non-overlapping

constraints (i.e., the selected regions do not overlap). This is a problem of maximizing the

sum of the selected regions’ scores. However, if the scores computed in the previous step

were simply used, the leaf regions would tend to be selected since the larger the number

of selected regions, the higher the sum. For example, consider a simple case in which root

region A1 with P (A1) = 0.8 has two children A2 and A3 with P (A2) = 0.5, and P (A3) = 0.4,

where A2 and A3 are inside A1, as shown in Figure 4.5. There are two hypothetical solutions

including {A1} and {A2, A3} that satisfy the non-overlapping constraints. In this case, even

though the score of A1 is higher than those of both A2 and A3, A2 and A3 are selected since

P (A2) + P (A3) > P (A1), which maximizes the sum of the scores of the selected regions.

For fair comparison, I compared the score of root region P (A1) and the average scores of

the leaf regions 1
2(P (A2) + P (A3)). To extend this idea to all nodes in the tree, each node

is weighted, where the weight of the root region is 1 and the weight of the next layer is

equally divided by the number of edges. This weighting process is iteratively applied until

the leaf of the tree resembles a flow of water. The weight wl of Al is

wl =
∏

Am∈Ψ(Al)

1

B(Am)
(4.1)

where Ψ(Al) is the set of ancestor nodes of Al in the generated tree, and B(Am) is the

number of brothers of Am in the tree where the number of brothers includes Am. For

example, consider the more complex case shown in Figure 4.6. In this example, Ψ(A8) is

{A8, A5, A3, A1}, and B(A5) is 2 since its brothers are A5 and A6. Here, w8, which is the

weight for region candidate A8, can be computed as w8 =
1

B(A1)
× 1

B(A3)
× 1

B(A5)
× 1

B(A8)
=

1
1 ×

1
2 ×

1
2 ×

1
1 = 1

4 . From this process, the weight of a parent node equals the sum of

the weights of the child nodes in each layer. In Figure 4.6, for example, the weight of A3

(w3 = 0.5) equals the sum of the weights of A5 (w5 = 0.25) and A6 (w6 = 0.25). This means

that the score of each node can be compared with the average of the scores of its children



CHAPTER 4. CELL DETECTION FROM REDUNDANT CANDIDATE REGIONS 51

ID � �

�

�

A1 0.4 1 0.4
A2 0.9 0.5 0.45
A3 0.7 0.5 0.35
A4 0.7 0.5 0.35
A5 0.5 0.25 0.125
A6 0.4 0.25 0.09
A7 0.6 0.5 0.3
A8 0.6 0.25 0.15
A9 0.2 0.125 0.025
A10 0.2 0.125 0.025

ID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 1 1 1 1 1 1 1 1 1 1
A2 0 1 0 1 0 0 1 0 0 0
A3 0 0 1 0 1 1 0 1 1 1
A4 0 0 0 1 0 0 1 0 0 0
A5 0 0 0 0 1 0 0 1 0 0
A6 0 0 0 0 0 1 0 0 1 1
A7 0 0 0 0 0 0 1 0 0 0
A8 0 0 0 0 0 0 0 1 0 0
A9 0 0 0 0 0 0 0 0 1 0

A10 0 0 0 0 0 0 0 0 0 1

�

0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1

Constraint matrix �Score vector �

(c) (d) A1

A2 A3

A7 

A4

A8

A5

A9

A6

A10
(a) (b)A1

A2
A3

A4

A7

A5

A8
A6 A10

A9

w1=1.0

w2=0.5 w3=0.5

w4=0.5

w7=0.5

w5=0.25 w6=0.25

w8=0.25 w9=0.125 w10=0.125

Figure 4.6: (a) Example set of candidate regions. (b) Tree consisting of all candidates.

(c) Example scores, weight, and weighted score vector for each candidate. (d) Constraint

matrix of candidate set.

nodes by multiplying each score by the appropriate weight.

I formalize this optimization task, i.e., maximizing the sum of the weighted scores of

the selected regions under non-overlapping constraints, as a binary linear programming

problem [Wolsey98]. Let N be the number of candidate regions; an N × 1 vector ρ stores

the weighted score for every candidate region, and an N×N matrix C stores the constraints

needed to avoid overlapping regions, where each row and column index represents the index

of a candidate region. Let l be the index of a new hypothesis in which I append a new row

to C and a corresponding weighted score to ρ:

C(l, i) =

{
1, if i = mr,mr ∈ Ω(Al)

0, otherwise.
(4.2)

ρ(l) = wlP (Al) (4.3)

where Ω(Al) is a set of candidate region indexes that are all descendant node indexes of Al

in the tree. The set includes Al. For the example in Figure 4.6(b), Ω(A3) is {3, 5, 6, 8, 9, 10}.
After score vector ρ and constraint matrix C are generated for all N candidate regions, the

optimization problem can be formulated as a binary linear programming problem:

x∗ = argmax
x

ρTx, s.t. CTx ≤ 1, (4.4)
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where x is an N×1 binary vector and xk = 1 means the k-th candidate region is selected in

the optimal solution. To solve this problem, I use the branch-and-bound algorithm [Ross75],

which is based on the simple concept of ”divide and conquer”. The algorithm works like

a tree search: the original problem is divided into all possible sub-problems, and each

sub-problem is solved. A binary linear programming problem is solved by solving a series

of LP-relaxation problems in each sub-problem. The binary integer requirement on the

variables is replaced with a weaker constraint, 0 < x < 1. The constraint CTx ≤ 1

guarantees that overlapping regions are not included in the solution. In the example in

Figure 4.6, the set of overlapping candidates with A2 is {1, 2, 4, 7}. This constraint means

that candidates {1, 4, 7} are not included in the optimal solution if A2 is selected as a cell

region.

Linear programming (LP) is used in cell tracking [Kofahi06][Bise11] and segmentation

methods [Keuper11][Wood13]. Al-Kofahi et.al. [Kofahi06] use LP to associate cells between

successive frames for cell tracking. Keuper et.al. [Keuper11] use LP to solve Markov random

field problems for cell and subcellular segmentation. The proposed method is the first to

use LP to find an optimal set of cell regions from candidate regions.

4.3 Experiments with 2D images

I evaluated the 2D image performance of the proposed method and compared it with those

of several current methods.

4.3.1 Data-sets

For evaluation, I prepared three data-sets for two types of microscopic images (fluorescent

microscopy and DIC microscopy) and several types of cells. Three images were used for

learning, and 20 were used for performance testing for each data-set.

• Data-set A: Stained zebrafish cells in fluorescent microscopy images.

Zebrafish cells in vivo were stained using enhanced green fluorescent protein (EGFP),

which caused the nuclei to exhibit bright green fluorescence. A z-slice of the stained

cells in vivo was captured at a resolution of 360 × 290 pixels per image with a digital

scanned light-sheet microscope (DSLM). The number of cells was 100 to 150 per image,

and the total number of cells was 2306. The long radius of the cell is ranged from 7

to 20 pixels. An example image in dataset A is shown in Figure 4.9(a). The contrast

is low, and the background is inhomogeneous, so the cell boundaries are unclear (i.e.,

some adjacent cells have blurry boundaries).

• Data-set B : Stained BAEC in fluorescent microscopy images.
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Bovine aortic endothelial cell (BAEC) populations were stained using green fluorescent

protein (GFP), which caused the entire cell body, including the membranes and nuclei,

to exhibit bright green fluorescence. The stained cells in vitro were captured at a

resolution of 512 × 512 pixels per image using a 20× objective with a fluorescent

microscope. The number of cells was 40 to 50 per image, and the total number of

cells was 968. The long radius of the cell is ranged from 10 to 25 pixels. An example

image is shown in Figure 4.9(a). The contrast is very low, and the background is

inhomogeneous, so the cell boundaries of cells are unclear, and the intensity of the

background is sometimes higher than that in the cell regions.

• Data-set C : Human CNS stem cell in DIC microscopy images.

Human central nervous system (CNS) stem cell populations were captured at a res-

olution of 512 × 512 pixels per image using a 40× objective with DIC optics. The

number of cells was 120 to 150 per image, and the total number of cells was 2960. The

long radius of the cell is ranged from 8 to 20 pixels. These images were provided by

Hoeppner et al. [Ravin08]. Preconditioned images prepared by Li and Kanade [Li09]

were used before detection instead of directly using DIC images. An example origi-

nal image is shown in Figure 4.10(a), and the image after preconditioning is shown

in Figure 4.10(b). There are blurred cell boundaries and multiple touching cells, as

indicated by the red dashed-line box in Figure 4.10(b).

4.3.2 Metrics

I evaluated detection performance by using the centroid points of cells. To create a ground

truth, I roughly annotated the cell centers by hand. Since the annotation was done in a

subjective manner, the annotated positions were not exactly the center positions of the

cells. For data-set A, the cell-detection task was ambiguous even for human annotators

as evidenced by differences in results between annotators. To mitigate this problem, I

used an evaluation method [Milan13] that uses several annotation sets and averages the

performance.

I used precision ( TP
TP+FP ), recall (

TP
TP+FN ), and F-measure (2 · precision·recall

precision+recall ) as the

metrics, where TP is the number of true positives, FP is the number of false positives,

and FN is the number of false negatives. Each manually detected cell was assigned to an

automatic detection result by solving linear programming problem in which the sum of

the distances between the detection results and the ground-truth were minimized so that

multiple detection results were not assigned to one ground truth. After the detection results

were assigned to ground-truth, if the distance between the ground truth and corresponding

detection result was less than the threshold, that result was assigned. Assigned detection
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Figure 4.7: Examples of cell-detection results for data-set A. (a) Otsu thresholding [Otsu79],

(b) thresholding with classification [Yin12], (c) CellProfiler [Carpenter06], (d) level-set

[Li10], (e) FIJI [Schindelin12], and (f) proposed method.

results were counted as TP, non-assigned detection results were counted as FP, and non-

assigned ground truths were counted as FN. I set the threshold to 10 pixels given that the

cell diameter was 15 to 40 pixels.

4.3.3 Evaluation

I evaluated the performance of the proposed cell-detection method in comparison with

those of five other methods, as following. The Otsu thresholding method [Otsu79] with

noise reduction removes noise on the basis of the cell size parameter (θmin = 30). This

thresholding method usually detects many small false positives. The cell size parameter

was used to remove these small regions. The cell candidate detection with classification

first detects candidate regions and then classifies the candidate regions as either cells or

non-cells using a trained SVM classifier [Yin12]. CellProfiler [Carpenter06] which first

segments the foreground and background and then separates the touching cells by using the

intensity peaks and shapes. The level-set method proposed by Li et al. [Li10] segments cell

regions by maximizing the energy function. The FIJI [Schindelin12] detection method first

computes the difference of Gaussian (DoG) and then detects intensity maxima that satisfy

pre-defined conditions as cells.

For implementation, I set θmin = 30 and θmax = 2000 for all datasets. These pa-
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Figure 4.8: Evaluation of cell-detection performance. (a) input image in data-set A using

fluorescent microscope. (image contrast manually adjusted for visualization purposes), (b)

input image with detected cells compared with ground truth.

Method Recall Precision F-measure

Otsu thresholding [Otsu79] 0.533 0.981 0.69S0

Thresholding with classification [Yin12] 0.481 0.998 0.648

CellProfiler [Carpenter06] 0.688 0.990 0.811

Level set [Li10] 0.212 0.931 0.338

FIJI [Schindelin12] 0.8227 0.9673 0.8884

Proposed 0.938 0.971 0.954

Table 4.1: Performance comparison for dataset A

rameters are not sensitive since they are used for reducing computational costs. For Otsu

thresholding [Otsu79], cell candidate detection with classification [Yin12], level-set [Li10],

and the proposed method, all the codes were written in MATLAB. The SVM classifier was

implemented using LIVSVM [Chan11]. For level-set [Li10], the provided code [Li10] from

MATLAB Central was used. For local maxima detection in DoG map [Schindelin12], DoG

and the local maxima module in FIJI were used. For foreground segmentation and separa-

tion of touching cells [Carpenter06], the IdentifyPrimaryObjects module in CellProfiler was

used. The parameters for each method were adjusted by using the training data for each

dataset.

Figure 4.7 shows examples of the cell-detection results for each method for dataset A.

Table 4.1 summarizes detection performance in terms of recall, precision, and F-measure for

dataset A. The best performance is shown in bold type for each metric in the table. With
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Figure 4.9: Evaluation of cell-detection performance: (a) input image in dataset B using

fluorescent microscope (image contrast manually adjusted for visualization purposes) and

results from (b) Otsu thresholding [Otsu79], (c) thresholding with classification [Yin12],

(d) CellProfiler [Carpenter06], (e) level-set method [Li10], (f) FIJI [Schindelin12], and (g)

proposed method.

Method Recall Precision F-measure

Otsu thresholding [Otsu79] 0.699 0.924 0.795

Thresholding with classification [Yin12] 0.613 0.985 0.754

CellProfiler [Carpenter06] 0.826 0.948 0.882

Level-set [Li10] 0.743 0.921 0.822

FIJI [Schindelin12] 0.7467 0.7882 0.7656

Proposed 0.937 0.908 0.920

Table 4.2: Performance comparison for dataset B

Otsu thresholding (Figure 4.7(a)), higher intensity regions were detected and touching cells

were detected as a single blob. Therefore, the performance, recall in particular, was not

good. Even though the threshold was manually adjusted, a single threshold does not result

in good segmentation for such low contrast and closely located cells. With thresholding

with classification [Yin12] (Figure 4.8(b)), blobs consisting of touching cells were removed

as noise by the classifier. Thus, precision was better, but recall was worse. Therefore,

the F-measure was lower than with Otsu thresholding. This method works well if the set

of candidate regions mostly includes true positives and false positives, i.e., mis-detected

non-cell regions, but performs poorly if an image has low contrast and the cells are located

closely together. With CellProfiler (Figure 4.8(c)), higher intensity regions were detected,

and touching cells were correctly detected since the method first applies a thresholding
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Figure 4.10: Evaluation of cell-detection performance: (a) input image in data-set C using

DIC microscope, (b) input image after preconditioning, and (c) input image with detected

cells compared with ground truth.

method and then separates touching cells. Therefore, the recall and F-measure were better

than with Otsu thresholding. However, low intensity regions were not detected. With the

level-set method [Li10] (Figure 4.8(d)), blobs with lower intensity were detected compared

with Otsu thresholding and thresholding with classification. However, many closely located

cells were detected as a large cluster. A disadvantage of this method is that closely located

cells are often detected as a blob since the energy function is locally optimized. Therefore,

the performance of this method was the worst. With FIJI (Figure 4.8(e)), many cells were

correctly detected. Therefore, the F-measure was better than for the other methods. Local

maxima often include false positives since contrast enhancement usually not only enhances

the contrast between cells and background but also the noise. Thus, the method uses a

pre-defined condition, such as intensity range. If the conditions between the training data

and test data differ, performance is degraded. Thus, the F-measure with FIJI was less

than that with the proposed method. With the proposed method (Figure 4.8(f)), many

cells were correctly detected even though the intensities were low, and closely located cells

were separated. Therefore, the method achieved the best F-measure in the comparison.

Figure 4.8(b) shows a comparison of the detection results between the proposed method

and manual annotation. The red pluses indicate the results with the proposed method,

the green circles indicate true positives, and the yellow circles indicate false negatives. The

results show that the method worked well when the image had low contrast and the cells

were closely located though several deeply touched cells were mis-detected.

Figure 4.9 and Table 4.2 show the detection results for dataset B, for which the cell

density was not high but the contrast was very low. With Otsu thresholding, thresholding

with classification and CellProfiler (Figures 4.9(b),(c),(d)), low intensity cells were not de-
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Figure 4.11: Enlarged images of area indicated by dashed-line box in Figure 4.10(b). Results

from (a) Otsu thresholding [Otsu79], (b) thresholding with classification [Yin12], (c) Cell-

Profiler [Carpenter06], (d) level-set method [Li10], (e) FIJI [Schindelin12] and (f) proposed

method.

Method Recall Precision F-measure

Otsu thresholding [Otsu79] 0.783 0.909 0.840

Thresholding with classification [Yin12] 0.732 0.966 0.832

CellProfiler [Carpenter06] 0.830 0.894 0.861

Level-set [Li10] 0.756 0.875 0.810

FIJI [Schindelin12] 0.8723 0.7675 0.8158

Proposed 0.926 0.886 0.905

Table 4.3: Performance comparison for dataset C

tected. With level-set method (Figure 4.9(e)), some cells were detected as a cluster. This

method worked better than thresholding methods since the cell density was not high. With

FIJI (Figure 4.9(f)), the detected local maxima were misaligned from the ground-truth cell

positions. Therefore, the F-measure was less with dataset A. With the proposed method

(Figure 4.9(f)), the cells were correctly detected. The F-measure with the proposed method

was the best.

To confirm that the proposed method can be applied to non-invasive microscopy images,

I used DIC images in dataset C. Before each method was applied, DIC preconditioning [Li09]

was applied to facilitate segmentation. Figure 4.10 shows the detection results for an exam-

ple image in which multiple cells touched. Table 4.3 summarizes the detection performances

for dataset C. With Otsu thresholding (Figure 4.11(a)), touching cells were detected as one

cell. With thresholding with classification (Figure 4.11(b)), a cluster was classified as noise

since the shape of the cluster did not look like a single cell. With CellProfiler (Figure

4.11(c)), most touching cells were correctly separated after thresholding. With level-set

(Figure 4.11(d)), touching cells were also detected as one cell. With FIJI (Figure 4.11(e)),

several touching cells were not detected, and a small false positive was detected. With the

proposed method (Figure 4.11(f)), the cells were correctly detected. The F-measure with
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Method Recall Precision F-measure

Otsu thresholding [Otsu79] 0.672 0.938 0.775

Thresholding with classification [Yin12] 0.609 0.983 0.745

CellProfiler [Carpenter06] 0.781 0.944 0.851

Level set [Li10] 0.570 0.909 0.657

FIJI [Schindelin12] 0.8139 0.8410 0.8233

Proposed 0.9320 0.9216 0.9262

Table 4.4: Average performance for all data set.

Method Recall Precision F-measure

Otsu thresholding [Otsu79] 0.447 0.993 0.616

Proposed 0.906 0.966 0.935

Table 4.5: Performance comparison for 3D volume data

the proposed method was the best.

Table 4.4 summarizes the average performance for all datasets. Overall, the proposed

method improved recall without degrading precision. Therefore, the recalls and the F-

measures were the best for all datasets compared with those of the other methods.

4.4 Experiments with 3D images

I applied the proposed detection method to z-stack images to determine whether the pro-

posed method can detect cells in 3D as well. Cells in the embryo of zebrafish were captured

using DSLM. The image size was 300 × 300 pixels (0.645 µm/pixel), and the number of

z-slices was 74 (2 µm/pixel). An example of a projection image of the 3D volume is shown

in Figure 4.12(a), and examples of the z-slices are shown in Figures 4.12 (b), (c), and (d).

To apply the proposed method, I treated the z-stack images as 3D volume data (i.e., one

pixel in a z-stack image was treated as a voxel in 3D).

The proposed method was easily extended to detect cells in 3D. In 3D volume data, a

threshold also makes a region which is a connected blob as a candidate region. When the

threshold is slightly increased, the new candidate region must be the same size or smaller

than the candidate region generated by the lower threshold, and the new candidate must

be inside the previous candidate region. This means that a tree is also generated in 3D

data. In addition, the features for computing scores including the intensity distribution,

the distribution of angles between gradient direction and the direction toward the centroid

from a point in each pixel, and the distribution of centroid distance were also computed for
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Figure 4.12: Examples of z-stacks for 3D data. (a) Projection image. (b),(c), and (d)

Examples of z-slice images. Image contrast was manually adjusted for visualization.

3D regions. The proposed method is thus applicable in 3D data.

The segmentation results for the proposed method are shown in Figures 4.13(a), (b), and

(c). For comparison, the results for Otsu thresholding [Otsu79] are shown in Figures 4.13(d),

(e) and (f). Figures 4.13(b),(e) and (c),(f) respectively show examples of the enlarged image

results from the same viewpoint. As shown in Figures 4.13(b) and (e), the proposed method

detected individual cells while the Otsu method detected several closely located cells as a

cluster. As shown in Figures 4.13(c) and (f), the proposed method detected low-intensity

cells that were not detected with the Otsu method. Table 4.5 summarizes the evaluation

results. The proposed method was significantly better in terms of recall and F-measure for

3D data.
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Figure 4.13: Examples of 3D detection results. (a) Overall results for the proposed method.

(b) and (c) Enlarged image results for the proposed method. (d) Overall results for the

Otsu thresholding method. (e) and (f) Enlarged image results for the Otsu thresholding

method. Different colors indicate individual cells.

4.5 Conclusion and discussion

The proposed cell-detection method addresses all of the difficulties in detecting dense cells

simultaneously under high-density conditions, including the mistaken merging of multiple

cells, the segmentation of single cells into multiple regions, and the misdetection of low-

intensity cells. The proposed method first detects candidate regions that include many false

positives but in turn very few false negatives: i.e., the candidates include almost all correct

solutions due to using multiple thresholds. The candidate set forms a tree structure. Next,

the score for each candidate region is computed on the basis of cell appearance (shape,

intensity, intensity gradients, etc.). Then the problem of selecting an optimal set of cell

regions from the candidate regions is formulated as a binary linear programming problem

under non-overlapping constraints by using the tree structure.

Evaluation of the proposed method and comparison of its detection performance with

those of current cell-detection methods for several types of cells and microscopy images
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demonstrated that the proposed method significantly improves the F-measure for various

types of data-sets. Experiments demonstrated that the proposed method can be applied to

3D volume data successfully.

The proposed method improved the cell-detection accuracy, however, it is still far from

perfect, i.e., the detection results includes some false positives and negatives. In these case,

time-lapse information usually help us to correct these detection errors. Thus, I propose

cell-tracking methods in following chapters to mitigate the problem.



Chapter 5

Cell Tracking by Solving Both Cell

Detection and Association

5.1 Introduction

The global spatio-temporal data association method proposed in Chapter 3 works well if

the tracklets are reliably generated. However, under high-density conditions, cells often

touch or partially overlap and form cell clusters with blurry intercellular boundaries. Such

conditions make it difficult to generate reliable tracklets. In such conditions, the method

proposed in Chapter 2 also does not exhibit accurate tracking since cells often touch four

or more cells.

In this chapter, I propose a tracking method that tracks cells under high-density condi-

tions by solving a joint problem of both association and optimal region selection from re-

dundant candidate regions. One of the disadvantages of detection-and-association methods,

including the methods proposed in Chapter 2, is that the tracking process depends heavily

on the detection step because these method first detect cell regions then associate them; in

other words, the detection step is independent of the associate step and the errors of the

detection step directly propagate to the association step. To mitigate this problem, the cell

region information from the previous frame is used to help segment the blurry cells, rather

than relying on only the image appearance at the current frame. The proposed method first

detects cell region candidates in a process that may include many false positives but also

features very few false negatives. Then, the optimal cell regions are selected from among the

candidate regions by solving the association problem between the candidate regions at the

current frame and the tracking results from the previous frame. Since the candidate regions

may overlap, conventional association methods [Kofahi06],[House09] and [Padfield11] can-

not be directly applied to this problem. I therefore formulate this problem as a binary linear

programming problem containing constraints to avoid conflict associations. In addition, a

63
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Figure 5.1: Method overview.

re-initialization step starts the tracking process for a candidate region only if the boundary

of the cell has been clear for several frames continuously. This proposed method can create

more reliable tracks under high-density conditions. I evaluated the proposed method on

four sequences with hundreds of cells cultured under high-density conditions. The results

show that the proposed method has an improved tracking performance compared with the

state-of-the-art methods proposed in Chapters 2 and 3.

5.2 Method for jointly solving detection and association

The overview of the proposed method is shown in Figure 5.1 and the pseudo code of the

method is shown in Algorithm 1. First, the method creates candidate cell regions (which

may include many false positives but also very few false negatives) by using multiple thresh-

olds for each frame (lines 4 to 9 in the pseudo code). Next, the method solves both problems

that is, selecting the optimal cell regions from among the candidates and associating the

optimal cell regions with tracked cell regions at the previous frame while avoiding conflicts

by using binary linear programming (lines 10 to 19). Then, the non-associated candidate

regions in the optimal region selection and association step are associated with candidate

tracking results to judge if the candidate regions should be registered as the new track. If

the candidate track has been tracked for several frames continuously, the method starts the

tracking process (lines 20 to 33). This process is iteratively performed for each frame until

the end of the sequence to make tracklets. Finally, post-processing is applied to connect

the generated tracklets by using global spatio-temporal information (lines 34 to 35). The

method is described in more detail below.
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Algorithm 1 Cell tracking

1: Input: Sequence of images I1, ..., IK ; the number of multiple-threshold N ; the threshold

thlength

2: Ouput: Sequence of segmentation images and tracking results T∗.

3: for t = 1 to K do

4: 1) Candidate cell region generation

5: for n = 1 to N do

6: % Detect candidate regions by each threshold.

7: At
n ← CandidateRegionDetection(It, thn)

8: Add At
n to At

9: end for

10: 2) Optimal region selection and association

11: % Get all hypotheses of association

12: Ht ← GetHypotheses(Xt−1,At
n)

13: for all hypothesis h = 1 to length(Ht) do

14: % Append a new row of constraint matrix C for the hypothesis Ht
h

15: C(h, :)← AddConstraints(Ht
h)

16: ρ(h, :)← CmpLikeliness(Ht
h,X

t−1,At
n)

17: end for

18: % Solve the association problem.

19: Xt ← ResolveAssociation(C,ρ)

20: 3) Candidate tracking for re-initialization

21: A2t ← GetNonAssociatedRegions(At,Xt)

22: H2t ← GetHypotheses(X2t−1,A2t)

23: for all hypothesis h = 1 to length(H2t) do

24: C2(h, :)← AddConstraints(H2th)

25: ρ2(h, :)← CmpLikeliness(H2th,X2t−1,A2t)

26: end for

27: X2t ← ResolveAssociation(C2,ρ2)

28: for all candidate track i = 1 to length(X2t) do

29: if length(X2ti ) > thlength then

30: Add X2ti to Xt

31: end if

32: end for

33: end for

34: 4) Post processing (global data association)

35: T∗ ← GlobalAssociation(X)



CHAPTER 5. JOINT PROBLEM OF DETECTION AND ASSOCIATION 66

Hypotheses

�->1

�->3

�->1

�->4

�->5

�->7

0.3

0.8

0.7

0.3

0.9

0.5

1 or 0

1 or 0

1 or 0

1 or 0

1 or 0

1 or 0

�->2

0.1 1 or 0

Candidate ID

1

�->6 0.5 1 or 0

Time : t-1

Time : t

�

1
2

4

5
6

7

� 0 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 0

1 0 0 0 1 0 0 0 0

0 1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1 0

0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1

� � 1 2 3 4 5 6 7

3

cell ID

Tracking results

Candidate Regions

Figure 5.2: Examples of a constraint matrix and score vector for jointly solving detection

and association.

5.2.1 Candidate cell region generation

In this step, the method generates candidates of cell regions that may include many false

positives but also very few false negatives. For this step, the same process with a step of

detecting set of candidate regions with the method proposed in Chapter 4 is used. I denote

the set of candidate cell regions as At = {At
i}, where At

i represents the ith candidate cell

blob at frame t.

5.2.2 Optimal region selection and association

After generating the candidate cell regions, the method determines optimized cell regions by

solving the association between candidate regions in the current frame t and cells that have

been tracked up to frame t−1. This problem is formulated as a binary linear programming

problem.

Let N1 be the number of cells at the frame t − 1, let N2 be the number of candidate

cell regions at the frame t, let vector ρ store the scores of every possible hypothesis, and

let matrix C store the constraints to avoid conflict hypotheses, where each row of C has

N1 + N2 columns and each column on 1 to N1 indicates cell index and each column on

N1+1 to N1+N2 indicates candidate region index on the association between track results

and candidate regions. Ω(At
i) is a set of candidate region indexes that are all descendant

node indexes of At
i in the tree. The set includes At

i. For example, in Figure 5.2, Ω(At
1) is

{1, 2, 3, 4, 5, 6, 7} since the candidate region At
1 is overlapped with all of the other candidates.

Ω(At
2) is {2, 3}. If the region of cell l at t − 1 overlaps with candidate m at t, the cell
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migration hypothesis celll → At
m is added to the hypotheses set. Let h be the index of a

new hypothesis, where a new row to C and a corresponding score to ρ are appended:

C(h, i)=

{
1, if i = l or i = N1 +mr,mr ∈ Ω(At

m)

0, otherwise.
(5.1)

ρ(h)=Pmig(A
t
m|celll)PTP (A

t
m), (5.2)

where Pmig(A
t
m|celll) is the score of migration hypothesis celll → At

m. PTP (A
t
m) is the score

in which the region of At
m is a single cell region. For the implementation, since the cells

do not move fast under high-density, I use ’relative overlap’ between cell region celll and

candidate region At
m, i.e.,

Pmig(A
t
m|celll) =

celll ∩At
m

celll ∪At
m

(5.3)

I assume that the area surrounded by a clearer edge is more likely to contain a single cell since

the intensity gradient of the cell boundaries is usually higher than the intensity gradient

of the boundaries of the cell nucleus in precondition images. For the implementation, I

compute the score in which the candidate region At
m is a single cell region as

PTP (A
t
m) = e

− 1
Eedge

1
σ (5.4)

Eedge(A
t
m) =

1

length(ΦAt
m
)

∫
Φ

At
m

e(ΦAt
m
)dl, (5.5)

where the edge energy Eedge measures the edgeness along the region boundaries. ΦAt
m
is the

region boundary of candidate region At
m. The function e(·) is the edgeness metric, which

takes a large value if the intensity gradient on ΦAt
m

is large. length(ΦAt
m
) indicates the

length of the region boundary. When the edgeness of the region boundary takes a larger

value, the score PTP (A
t
m) closes to 1. After computing the score vector ρ and constraint

matrix C of all H hypotheses over N1 cells and N2 candidate regions, the association

problem can be formulated as the following binary linear programming:

x∗ = argmax
x

ρTx, s.t. CTx ≤ 1, (5.6)

where x is a H × 1 binary vector and xk = 1 means the kth hypothesis is selected in an

optimal solution.

Figure 5.2 shows a simple example of a binary linear programming problem in which

the number of tracking results at the previous frame is 2 and the number of candidate

regions is 7. In the hypothesis cell 1⃝ → At
1, the set of descendant candidates with At

1

is {1, 2, 3, 4, 5, 6, 7}. This constraint indicates that the candidates {2, 3, 4, 5, 6, 7} are not

associated with any cells if the region At
1 is selected as an optimal solution. In this example,
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the hypotheses cell 1⃝→ At
2 and cell 2⃝→ At

4 are selected as the optimal solution. Based on

this process, a set of tracklets X = {Xi} is generated. The term Xi = {Rij} is a trajectory

consisting of an order list of associated cell regions where the associated candidate region

is registered as Rij , which indicates the jth detection result on tracklet Xi.

5.2.3 Initialization of cell regions for tracking

The initialization of cell regions is a key stage for tracking methods. If the detected region at

the previous frame is not reliable, the tracking result at the current frame is also unreliable

since the tracking method uses the results from the previous frame. In a sequence, a

boundary of a cell is sometimes clear and sometimes blurry while the cell migrates under

high-density. Generally, it is difficult to segment cell regions that have blurry boundaries.

However, I can make informed guesses about the blurry regions by consulting the cell

regions from the previous frames if they have clearer boundaries than the target frame.

The initialization step is based on this idea. As I discussed in the previous section, the

proposed method terminates the tracking process if the reliability is less than a threshold.

This means that some cells are not tracked. Here, the initialization process is intended

to determine which cell regions are reliable in the set of candidate cell regions and which

are not tracked. The proposed method only initializes cell regions and starts the tracking

process if the boundary of the cell has been clear for several frames continuously.

Since the targets of the initialization are the cells that are not tracked, to initialize

tracklets at frame t, the method first removes candidates that are overlapped with selected

optimal cell regions in the process described in section 5.2.2 at each frame t−1 and t. Here,

the rest of the candidate blobs is denoted as A2t = {A2ti}. Next, the method determines

which cell regions have boundaries that are continuously clear in several consecutive frames,

as these are considered reliable. The candidates A2t and A2t−1 are associated by using the

same method proposed in section 5.2.2, where the only difference is the association score

ρ(h) of the hypothesis A2t−1
l → A2tm.

ρ(h) = Pmig(A2
t
m|A2t−1

l )PTP (A2tm)PTP (A2
t−1
l ) (5.7)

Using this score, the optimal candidate regions and associations are solved by linear pro-

gramming. Here, the high value of the score indicates that both boundaries of the regions

A2tm and A2t−1
l are clear and that these regions appear to be the same object. The purpose

of this step is to initialize the tracker for clear cell regions. Thus, the associated candidate

region is linked to a trajectory if and only if its score is higher than a threshold. These

selected regions are tracked until the reliability of the association is less than threshold by

using the method proposed in the previous section. Then, if the length of the generated

tracklet is longer than a threshold (default is 5), the tracklet is registered as reliable.
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Figure 5.3: Example images of tracking results. Top: Original images with manual annota-

tion. The red points are annotated cell positions. Bottom: Tracking results. The numbers

in the images are cell IDs. The red outline indicates the cell contour.

5.2.4 Post processing (global data association)

Generated tracklets are globally associated over time to obtain final cell trajectories and

lineage trees. To solve the global data association among generated tracklets, I use the tree

structure association method proposed in Chapter 3.

5.3 Experimental results

5.3.1 Data

My collaborators cultured retinal pigment epithelium (RPE) cells for 30 days. Since it is

an enormous task to analyze the entire data, I used four sequences captured at a resolution

of 320 × 320 pixels (1.03 µm/pixel). The cells were imaged every 2.5 minutes by bright

field microscopy at 7.5X magnification over 4 hours (100 images) and I evaluated them at

day 1, day 7, day 14, and day 21. The population of the cells ranged from 100 to 200 and

the density ranged from 90% to 100%. For each image sequence, 100 cells were randomly

picked in the initial frame and their progeny cells were manually tracked.

5.3.2 Tracking results and evaluation

Figure 5.3 shows an example sequence of the tracking results. In this sequence, the cells

migrated and became more blurry as time went by. At frame 60, it is difficult to segment

the cells even manually if an annotator does not use the previous frame information since

the boundaries of the cells are so blurry. Despite such challenging images, the cells were well

segmented at the beginning of the sequence and then effectively tracked over all the frames.

Figure 5.4 (a)(c) shows example images of cell tracking with track IDs and segmented
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Figure 5.4: Examples of tracking result images with track IDs and segmented regions in the

(a) day 1 and (c) day 21 sequences. Space-time trajectory plot of entire sequences in (b)

day 1 and (d) day 21. X and Y axes are 2D space and Z axis is time.

regions, and Figures. 5.4 (b)(d) shows space-time trajectory plots of the entire sequence for

days 1 and 21. These results show that the cells were accurately tracked.

I used target effectiveness [Blackman86] to assess the tracking performance, where the

details of the metrics is described in Appendix A. Here, I did not evaluate branching cor-

rectness since almost cells do not divide in this experiments.

For the quantitative evaluation, I compared the proposed method with four methods:
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Day 1 Day 7 Day 14 Day 21 Average

frame-by-frame association 0.6891 0.4068 0.4266 0.5462 0.5172

global association 0.7014 0.4142 0.4445 0.5508 0.5277

frame-by-frame association
with improved detection 0.6902 0.7055 0.7428 0.8587 0.7493

global association
with improved detection 0.8331 0.7183 0.7678 0.865 0.7961

Proposed without
global association 0.8267 0.7940 0.8354 0.9766 0.8582

Proposed with
global association 0.8483 0.840 0.8482 0.9766 0.8782

Table 5.1: Comparison of target effectiveness of the proposed method with the methods

proposed in Chapters 2 and 3 on four sequences.

frame-by-frame association (Chapter 2); global data association (Chapter 3); frame-by-

frame association with improved detection (Chapter 2+4); global association with improved

detection (Chapter 3+4). Since both of methods proposed in Chapters 2 and 3 use a simple

threshold method after preconditioning in the detection step, they cannot perform well when

it comes to images under a dense condition, and segmentation errors harm the tracking

accuracy. To ensure a fair comparison, I used the detection method proposed in Chapter 4.

The segmentation results were better than the original simple threshold method in frame-

by-frame association and global data association. To better highlight the advantages of the

method proposed in this chapter, I used it without post processing (global association).

As shown in Table 5.1, the method proposed in this chapter achieved the best per-

formance on all of the sequences compared with frame-by-frame association method, and

global association method. The global association method performed slightly better than

the frame-by-frame association method. In the results of global association, tracklets were

not reliably generated since the high-density conditions caused many segmentation errors.

Even though the accuracies of frame-by-frame association and global association with the

improved segmentation were much better than those with the original segmentation results.

The method proposed in this chapter performed better than both. The proposed method

with post processing was only a little bit better (2%) than the method without post pro-

cessing. These results indicate that the tracking method for jointly solving detection and

association has a greater effect on improving the accuracy under high-density conditions

than post processing (global data association). On average, the proposed method improved
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Figure 5.5: Example images of cell behavior metrics. Left: The scatter plot on day 1. Right:

The scatter plot on day 21. The horizontal axis is the cell migration speed (µm) and the

vertical axis is cell size (µm2).

Day 1 Day 7 Day 14 Day 21

Average cell size (µ2m) 225.01 157.48 152.84 108.57

Average migration speed (µm/hour) 10.90 3.42 3.249 3.18

Table 5.2: Cell behavior metrics on four sequences.

the target effectiveness over 8% compared with the other methods.

5.4 Biological applications

In stem cell research, it is important to assess the quality of cells for transplant by non-

invasive methods. I applied my cell-tracking method to a biological study on the relationship

between cell behaviors and the maturity of retinal pigment epithelium (RPE) cells. RPE

cells gradually mature as they are cultured for 30 days and are therefore more mature on

day 21 than on day 1. To analyze the difference in cell behaviors depending on the amount

of culturing days, I computed the cell migration speed and the cell size by using the tracking

results. Figure 5.5 shows the scatter graphs of the cell size and migration speed on days

1 and 21. On day 1, both the cell size and the migration speed were bigger and more

variable than on day 21. In addition, the average cell size and migration speed on day 1

were much bigger than the other sequences (Table 5.2). These metrics slightly decreased as
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the days passed. These results indicate that the metrics may be related to the degree of cell

maturity. I intend to continue researching metrics for evaluating cell maturity. The results

also demonstrate that my tracking system can track cells non-invasively under high-density

conditions, thus making it of enormous use to biological research.

5.5 Conclusion

I proposed a tracking method which jointly solves detection and association to track cells

under high-density conditions. To reduce the problems evident in conventional methods

based on detenction-and-association methods, which heavily depend on the detection re-

sults, the method proposed in this chapter determines the detection results in the tracking

process by using both image features in the current frame and the tracking results from the

previous frame. Although I used a multiple-threshold method to generate candidate regions,

the proposed method can be applied to other types of detecting methods that have many

false positives but few false negatives. For example, super-pixel segmentation methods can

be applied. In this case, a combination of super-pixels can function as a candidate region.

I evaluated the proposed method using challenging image sequences in which cells were

cultured under a high-density condition and had blurry boundaries. Results show that the

proposed method significantly improves the tracking performance on target effectiveness.



Chapter 6

Cell Tracking by Jointly Solving

Tracklet Selection and Global

Association

6.1 Introduction

The method proposed in Chapter 5 determines the detection results in the association step

by using both image features in the current frame and the tracking results in the previous

frame. This helps to generate more reliable tracklets than traditional frame-by-frame meth-

ods. However, the method still depends on initialization of cell detection since the joint

problem of optimal region selection and association is solved at each frame independently.

To avoid error propagation from detection/initialization to data association, it is ideal to

simultaneously solve both global association and detection by optimizing a single objective

function. However, to the best of my knowledge, no ideal approach has been proposed.

In this chapter, I propose a tracking method that simultaneously solves both global asso-

ciation and tracklet selection from redundant tracklets. Since jointly solving segmentation

and association is still difficult, I simplify the cell segmentation problem by, for example,

selecting an optimal tracklets from redundant candidate tracklets. This method first gen-

erates redundant candidate tracklets, which include many false positives but in turn very

few false negatives, by allowing tracklets to overlap. To generate reliable tracklets, the

association problem is solved with constraints that preserve three structures of detection

candidate between successive frames. Next, the problems of selecting an optimal set of cell

tracklets from the redundant tracklets and associating the tracklets over frames under non-

overlapping constraints are solved simultaneously. This idea of optimization is based on the

methods proposed in Chapters 3 and 5. The method proposed in this chapter achieved the

best performance compared with the tracking methods proposed in Chapters 2, 3, and 5

74
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Figure 6.1: Cell-tracking method overview. Bottom images illustrate example in which two

cells touch and form cluster in each step. (a) Example illustration of detected candidates.

(b) Redundant candidate tracklets generated by linking detection results. (c) Optimal

solution set in which selected tracklets are not in conflict.

under dense culture conditions.

6.2 Method for jointly solving tracklet selection and global

association

Figure 6.1 shows an overview of the proposed cell-tracking method. First, the method

generates candidate cell regions that may include many false positives but very few false

negatives, by using multiple thresholds for each frame. The generated detection candidates

form tree structures, as shown in Figure 6.1(a). Next, the candidate detection results are

associated with redundant candidate tracklets, which may also include many false positives

but in tern very few false negatives. To generate reliable tracklets, the association problem

is solved with constraints that preserve tree structures of detection candidates between

successive frames. The generated tracklets may conflict with each other as shown in Figure

6.1(b). Finally, the problems of selecting an optimal set of cell tracklets from the redundant

tracklets and associating the tracklets over frames under non-overlapping constraints are

solved simultaneously by binary linear programming. The conflicted tracklets with the

selected tracklets are eliminated, as shown in Figure 6.1(c). The method is described in

more detail below.

6.2.1 Cell detection

For this step, the same process with a step of detecting set of candidate regions with the

methods proposed in Chapter 4 and 5 is used with the following parameters: K level

thresholds that are equally spaced, and each threshold is used to segment images at a

particular level of intensity, and the minimum and maximum cell sizes θmin and θmax. The
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set of candidate cell regions is denoted asAt = {At
i}. The scores of the candidate regions are

computed as explained in Chapter 4, where the score indicates how much each region looks

like a single cell. The score of candidate region At
i is denoted as Pshape(A

t
i). A tree structure

is also generated in which the candidate regions are nodes, and the relationships between

nodes are generated on the basis of information about the containment relationship. This

tree is used to represent constraints for generating reliable tracklets in the second step and

to avoid selecting conflicting tracklets in the third step.

6.2.2 Tracklet generation

As discussed in Chapters 2 and 5, it is difficult to determine cell regions from local temporal

information when multiple cells touch and make a cluster for several frames. In this step,

a set of redundant candidate tracklets from candidate detections that include an optimal

set of reliable tracklets is generated. Figure 6.2 shows examples of generated tracklets, in

which two cells touch and form a cluster then eventually separate into individual cells.

In the tracklet generating step of the method proposed in Chapter 3, a tracklet is consid-

ered reliable when cell blobs in consecutive frames are close enough and there are no extra

confusing blobs near the cell. However, this idea cannot be directly applied under dense cell

culture conditions since there are many confusing candidates, such as parent and children

nodes of the target candidate regions in the generated tree, near a cell under such condi-

tions. Therefore, I also propose a frame-by-frame tree matching method that preserves tree

structures of associated detection candidates between successive frames to avoid generating

tracklets that include association errors. This frame-by-frame tree matching method main-

tains the containment relationships among the associated detection candidates between the

consecutive frames.

Figure 6.3 shows examples of possible associations and conflicting associations. There

are three types of containment relationships in a tree, parents, brothers, and children. For

example in Figure 6.3, nodes 2 and 3 are child nodes of node 1; node 1 is a parent node of

node 2; node 3 is a brother node of node 2. Association of the same types of relationships

is possible. In this example, if ’1 to a’ is a true association, ’2 to b’, ’2 to c’, ’3 to b’, and

’3 to c’ are possible associations. Association between different types of relationships is not

allowed. For example, if ’2 to a’ is a true association, ’1 to b’ and ’1 to c’ are not allowed.

The other types of conflicting associations are described in Figure 6.3.

This association problem of maximizing an association score function with constraints

that preserve such containment relationships in a tree is formulated by binary linear pro-

gramming. In this association, ’1 to 1’ association (translation hypothesis) is only consid-

ered, i.e., the other types of associations including, enter, exit, and divisions, are solved

at the next step. All possible translation hypotheses are first listed if a relative overlap
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Figure 6.2: Examples of tracklets in which two cells touch and form cluster then eventually

separate into individual cells.

between candidates (Eq. 5.3 in Chapter 5) is larger than threshold θd since it is considered

that the association is not reliable if the relative overlap is small. The optimal association

from the hypothesis set is found by solving a binary linear programming problem that is

similar to the optimization approach proposed in the previous chapters. The difference is

introducing a constraint to preserve tree structures of candidates between successive frames.

The formulation is described as follows.

Let Nt be the number of cells at frame t, and H be the total number of hypotheses

that I have to consider for all the cell. An H × 1 vector ρ stores the association score for

every hypothesis, H× (Nt+Nt+1) matrix C stores the constraints needed to avoid selecting

conflicted hypotheses, and H × H matrix Ctree stores the constraints needed to preserve

tree structures of candidates between successive frames. Let h be the index of a hypothesis

in which the hypothesis is ’At
i to At+1

j ’. The h-th row of C,Ctree and ρ are determined as

follows:

C(h, k) =

{
1, for k = i and k = Nt + j

0, otherwise.

Ctree(h, k) =


H, if k = h

1, if k ∈ Ψ(At
i, A

t+1
j )

0, otherwise.

ρ(h) = Pmig(A
t+1
j |A

t
i) (6.1)

where Ψ(At
i, A

t+1
j ) is a set of hypothesis indices that conflict with hypothesis h. The con-

flicted hypothesis index set Ψ(At
i, A

t+1
j ) includes hypotheses of Λ(At

i) → Υ(At+1
j ) (parent

to brother), Λ(At
i) → Γ(At+1

j ) (parent to child), Υ(At
i) → Λ(At+1

j ) (brother to parent),

Υ(At
i) → Γ(At+1

j ) (brother to child), Γ(At
i) → Λ(At+1

j ) (child to parent), and Γ(At
i) →

Υ(At+1
j ) (child to brother), where Λ(At

i) indicates a set of ancestor nodes of At
i, Υ(At

i)

indicates a set of brother nodes of At
i, and Γ(At

i) indicates a set of descendant nodes of At
i.

The probability Pmig(A
t+1
j |At

i) is a relative overlap between At
i and At+1

j as defined at Eq.

5.3.
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Figure 6.3: Examples of possible associations and conflicting associations. Light blue in-

dicates base association. Purple indicates possible association that does not conflict with

light blue. Red indicates conflicting association with light blue.

After score vector ρ and constraint matrices C, Ctree are generated, the optimization

problem can be formulated as a binary linear programming problem:

x∗ = argmax
x

ρTx, s.t. CTx ≤ 1, Ctreex ≤H (6.2)

where x is an H × 1 binary vector and xk = 1 means the k-th candidate region is selected

in the optimal solution. The term 1 is an H × 1 vector in which all elements are 1,

and H is an H × 1 vector in which all elements are H. The optimization problem is

solved using the branch-and-bound algorithm [Ross75]. The constraint CTx ≤ 1 guarantees

that each candidate region ID appears in only one selected hypothesis, i.e., a candidate is

associated with only another candidate between successive frames. The constraint Ctreex ≤
H guarantees to preserve tree structures of candidates between successive frames. Figure

6.4 shows an example of the tree matching constraints. This constraint means that the

i-th column of other optimal solutions should be 0 if the i-th hypothesis is selected as an

optimal solution. For example, if the first hypothesis ’1 → a’ is selected in an optimal

solution, hypotheses 2, 3, 4, 5, 6, and 8 are not selected in the optimal solution since these

first column are 1, i.e., these hypotheses conflict with hypothesis ’1→ a’. In this example,
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Figure 6.4: Examples of constraint matrix. Optimal solution is highlighted in orange.

’1→ a’, ’2→ b’, and ’3→ c’ are selected as an optimal solution set.

Based on this tree-structure preserving association method, a set of reliable tracklets

X = {Xi} is generated. The term Xi = {Aij} is a tracklet consisting of an order list

of detection results in which Aij indicates the jth detection result on tracklet Xi. Any

isolated detection response that is not linked with any other is considered a tracklet and

also included in X. The generated tracklets also form a tree structure on the basis of the

containment relationships of detection candidates. Unclear associations are solved at the

next step by using global data association.

6.2.3 Global data association

In this section, I propose a method that simultaneously solves both global association

and tracklet selection from redundant tracklets with non-overlapping constraints in which

conflicted tracklets are not selected. The global association problem is similar to the method

proposed in Chapter 3. The differences are introducing the non-overlapping constraints to

avoid selecting conflicted tracklets and computing manner of PTP (Xi) and PFP (Xi). For

the sake of explicitness, I explain the entire of this proposed method, which partly overlaps

with the method proposed in Chapter 3, in detail.

Given the redundant tracklet set X, the posteriori probability is maximized to solve for
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the best hypothesis T∗.

T∗ = argmax
T

P (T|X)

= argmax
T

P (X|T)P (T)

= argmax
T

∏
Xi∈X

P (Xi|T)
∏

Tk∈T
PTree(Tk) (6.3)

As explained in Chapter 3, the MAP problem can be formulated as

T∗ = argmax
T
{

∑
Xi /∈Tk, ∀Tk∈T

logPFP (Xi)

+
∑

Xi∈Tk, ∀Tk∈T
logPTP (Xi)

+
∑

X0
k0

∈Ek0
, Ek0

∈Tk, ∀Tk∈T

logPini(X
0
k0)

+
∑

Xj
ki
, Xj−1

ki
∈Eki

, ∀Eki
∈Tk, ∀Tk∈T

logPlink(X
j
ki
|Xj−1

ki
)

+
∑

{Xend
kpi

, X0
kci1

, X0
kci1

}∈Bk, Bk∈Tk, ∀Tk∈T

logPdiv(X
0
kci1

, X0
kci2
|Xend

kpi
)

+
∑

Xend
kli

∈Ekli
, ∀Ekli

∈Lk, Lk∈Tk, ∀Tk∈T

logPterm(Xend
kli

)} (6.4)

I should consider the non-overlapping constraints since candidate tracklets may overlap,

i.e., some tracklets are conflicting. Introducing these constraints differs from that with the

method proposed in Chapter 3.

Let NX be the number of tracklets in the entire sequence, M the number of tracklet

association hypotheses. M × 1 vector ρg stores the score of every possible hypothesis, and

M × 2NX matrix Cg stores the constraints to avoid conflicting hypotheses, where each

column indicates a tracklet index on the association between two tracklets. In addition to

these matrix and vectors, I define the non-overlapping M ×NX constraint matrix Cover, in

which each column indicates a tracklet index, to avoid selecting conflicting tracklets.

1. Initialization hypothesis:

If the first blob of a tracklet Xk appears at the beginning of the sequence or appears

near the boundary of the field of view, the tracklet is a candidate of a initial tracklet.

Let h be the index of the hypothesis. The h-th rows of Cg, ρg and Cover are determined
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as:

Cg(h, i) =

{
1, if i = NX + k

0, otherwise.

Cover(h, i) =

{
1, if i = k or i = mr, mr ∈ Ω(Xk)

0, otherwise.

ρg(h) = logPini(Xk) + 0.5 logPTP (Xk) (6.5)

where Ω(Xk) is a set of hypothesis indices that are all descendant tracklet indeces of

Xk.

2. Termination hypothesis:

If the last blob of tracklet Xk appears at the end of the sequence or appears near the

boundary of the field of view, the tracklet is a candidate of a termination tracklet.

The h-th rows of Cg, ρg and Cover are determined as:

Cg(h, i) =

{
1, if i = k

0, otherwise.

Cover(h, i) = 0

ρg(h) = logPterm(Xk) + 0.5 logPTP (Xk) (6.6)

3. Translation hypothesis:

If the time and space distances between the last blob of tracklets Xk1 and the first

blob of Xk2 are less than the thresholds, Xk1 → Xk2 is a candidate of a tracklet

translation. The h-th rows of Cg, ρg and Cover are determined as

Cg(h, i) =

{
1, if i = k1 or i = NX + k2

0, otherwise.

Cover(h, i) =

{
1, if i = k1 or i = mr, mr ∈ Ω(Xk1)

0, otherwise.

ρg(h) = logPlink(Xk2 |Xk1)

+ 0.5 logPTP (Xk1) + 0.5 logPTP (Xk2) (6.7)

4. Dividing hypothesis:

If the last blob of a tracklet Xp is near a birth event detected by a mitosis detection

module, the tracklet is a candidate of the parent tracklet, and if the first blobs of

some other tracklets Xc1, Xc2 are near the candidate parent tracklet, these tracklets

are candidates of the children tracklets. The h-th rows of Cg, ρg and Cover are
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determined as:

Cg(h, i) =


1, if i = p or i = NX + c1,

or i = NX + c2

0, otherwise.

Cover(h, i) =

{
1, if i = p or i = mr, mr ∈ Ω(Xp)

0, otherwise.

ρg(h) = logPdiv(Xc1 , Xc2 |Xp) + 0.5 logPTP (Xp)

+ 0.5 logPTP (Xc1) + 0.5 logPTP (Xc2) (6.8)

5. False positive hypothesis:

All the tracklets can be false positive. When Xk is a candidate of a false positive on

hypothesis h, the h-th rows of Cg, ρg and Cover are determined as:

Cg(h, i) =

{
1, if i = k or i = NX + k

0, otherwise.

Cover(h, i) = 0

ρg(h) = logPFP (Xk) (6.9)

A true positive tracklet appears in two and only two associations in the optimal solution:

the first blob of the tracklet appears in an initialization, translation, or dividing hypothesis,

and the last blob of the tracklet appears in a translation, dividing, or termination hypoth-

esis. Thus, logPTP (Xk) in the second term of Eq. 6.4 is divided into two halves that are

integrated into the two neighboring transition hypotheses, as described in hypotheses 1-4.

For the same reason, the non-overlapping constraint matrix Cover has a non-zero value for

the one-side only; for example, the non-overlapping constraints of Xk1 are only represented

in the h-th row of Cover for the h-th hypothesis Xk1 → Xk2 .

After generating score vector ρg and constraints Cg, Cover over NX tracklets, the MAP

problem can be considered for selecting a subset of hypotheses, such that the sum of the

corresponding elements in ρg is maximized, under the constraints in which no tree can

overlap and no tracklets are in conflict. This can be formulated as the following binary

optimization problem:

x∗ = argmax
x

ρT
g x, s.t. CT

g x = 1, CT
overx ≤ 1 (6.10)

where x is a M × 1 binary vector, and xk = 1 means that the kth hypothesis is selected

in the global optimal solution. The constraint CT
g x = 1 guarantees that each tracklet ID

appears in only one associated tree or false positive tracklet. The non-overlapping constraint

CT
overx ≤ 1 guarantees that selected tracklets do not overlap.
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6.2.4 Implementation details

In this section, I describe the estimation of the probabilities in my framework. The difference

from the method proposed in Chapter 3 is the computing manner of PTP (Xi) and PFP (Xi)

where Xi = {Aij |j = 1, ..., α}. These terms are defined as

PTP (Xi) =
1

2

∑
j=1,...,α

(Pshape(Aij )) +
1

2

∑
j=1,...,α−1

(Pmig(Aij , Aij+1)) (6.11)

PFP (Xi) =
1

2

∑
j=1,...,α

(1− Pshape(Aij )) +
1

2

∑
j=1,...,α−1

(1− Pmig(Aij , Aij+1)) (6.12)

where Pshape(Aij ) is a shape score of candidate region Aij and Pmig(Aij , Aij+1) is a transla-

tion score from candidate region Aij to Aij+1 as defined above. The termPTP (Xi) indicates

the score of how much the tracklet looks like a true cell-trajectory, which is calculated by

the average of the sum of the shape scores and the sum of the translation scores. The

term PFP (Xi) indicates the score of how much the tracklet looks like a false positive. Here,

PTP (Xi) is not normalized in the 0 to 1 range since the number of short tracklets tend to

be selected in optimal solutions if it is normalized. Thus, these terms are normalized in the

range of 0 to the length of each tracklet.

The initialization probability is defined based on the time distance between the beginning

of the sequence and the first appearance frame of the tracklet, or the spatial distance between

the boundary of the field of view and the cell centroid for the cell entering case.

Pini(Xi) =


e
−

dt0(Ri0
)

λ1 , if dt0(Ri0) < θt

e
−

ds(Ri0
)

λ2 , if ds(Ri0) < θs

ξ otherwise (ξ is small)

(6.13)

where Ri0 is the first detection response of tracklet Xi, dt0(Ri) is the time distance between

the first frame of the sequence and the frame when the detection response Ri appears,

ds(Ri) is the distance between the centroid of Ri and the image boundary, and λ1 and λ2

are free parameters to adjust the distribution. If the first detection response of the tracklet

appears at both the beginning of the sequence and near the boundary, I take the maximum

one as the probability.

The termination probability is defined similarly to the initialization probability.

Pterm(Xi) =


e
−

dtend(Riend
)

λ1 , if dtend(Riend
) < θt

e
−

ds(Riend
)

λ2 , if ds(Riend
) < θs

ξ, otherwise (ξ is small)

(6.14)

where Riend
is the last detection response of tracklet Xi, and dtend(Ri) is the time distance

between the last frame of the sequence and the frame when Ri appears.
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The link probability between two tracklets and the dividing probability that one tracklet

divides into two tracklets are defined as

Plink(Xj |Xi) = e−∥g(Rj0
)−g(Riend

)∥)/λ3 (6.15)

Pdiv(Xc1, Xc2|Xp)

= e−(∥g(Rpend
)−g(Rc10 )∥+∥g(Rpend

)−g(Rc20 )∥)/2λ3 (6.16)

where g(·) computes an object’s feature vector in which different types of features can be

incorporated such as appearance time and motion history. The term λ3 is a free parameter

to adjust the distribution. Based on the cell movement history, I set these parameter as:

K = 100, θmin = 30, θmax = 2000, λ1 = 5, λ2 = 30, λ3 = 25, θd = 0.5, θt = 3, and θs = 30.

To reduce computation cost, I divided the entire sequence into several sequences then

applied the method proposed in this chapter for each divided sequence iteratively. After

obtaining all the results, I combined the results to obtain whole trajectories.

6.3 Experimental results

6.3.1 Data

I tested a DIC microscopy image sequence of human CNS stem cell populations, which was

captured over 8 hours using a 12-bit Orea ER (Hamamatsu) CCD camera mounted on a

Zeiss Axiovert 135 TV microscope with a 40x, 1.3 NA oil-immersion DIC objective. A 0.6x

lens was installed in front of the camera to increase the visual field. The image size was

512× 512 pixels. The sequence was captured every 5 minutes for 100 frames (8.33 hours).

The cell population varied in the range of 120 to 150 cells per frame, and four or more cells

often overlapped. The long radius of the cell ranged from 10 to 25 pixels. Preconditioning

images prepared by Li and Kanade [Li09] were used before the detection step instead of

directly using DIC images. Manual cell tracking was done for whole frames containing a

total of 11883 cells, which appeared in the initial frame and their progeny.

6.3.2 Metrics

I used two quantitative criteria to assess the tracking performance: association accuracy

and target effectiveness [Blackman86] as explained in Appendix A. To compute association

accuracy, each target (human annotated) was assigned to a track (computer-generated)

for each frame. The association accuracy was computed as the number of true positive

associations divided by the number of associations in the ground-truth.
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Figure 6.5: Example images of tracking results. Numbers in images are cell IDs. Number

on top and at bottom of images are frame indexes. Colors of cell IDs indicate individual

cells.

6.3.3 Performance evaluation

I evaluated the performance of the proposed cell-tracking method in comparison with those

of six other proposed methods: the frame-by-frame association method proposed in Chapter

2, in which precondition [Li09] and Otsu thresholding [Otsu79] were used for the cell-

detection step (Chapter 2); the frame-by-frame association method proposed in Chapter 2,

in which the detection method proposed in Chapter 4 was used for the cell-detection step

(Chapter 2 + 4); the global association method proposed in Chapter 3, in which precondition

[Li09] and Otsu thresholding [Otsu79] were used for the cell-detection step (Chapter 3); the

global association method proposed in Chapter 3, in which the detection method proposed

in Chapter 4 was used for the cell-detection step (Chapter 3 + 4); the method proposed in

Chapter 5 without global association (Chapter 5); the method proposed in Chapter 5 with

global association (Chapter 5 + 3);

Figure 6.5 shows an example image of cell tracking with track IDs. In this sequence, four

or more cells often touch and form clusters with blurry intercellular boundaries. Despite such

conditions, the cells were detected and tracked over all the frames. Figure 6.6 shows example

images of each comparison method. From the tracking results of the methods proposed in

Chapters 2 and 3 (Figure 6.6 (b),(d)), several cells were not tracked due to miss-detection.

For these methods using improved detection (Figure 6.6 (c),(e)), the tracking results also
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Figure 6.6: Comparison of the proposed method with other methods: (a) original image and

tracking results from (b) frame-by-frame association (Chapter 2), (c) frame-by-frame asso-

ciation with improved detection (Chapter 2+4), (d) global data association (Chapter 3), (e)

global data association with improved detection (Chapter 3+4), (f) jointly solving detec-

tion and association (Chapter 5), (g) jointly solving detection and association with global

association (Chapter 5+3), (h) jointly solving tracklet selection and global association.



CHAPTER 6. TRACKLET SELECTION AND GLOBAL ASSOCIATION 87

Association
Accuracy

Target
Effectiveness

(Chapter 2) 0.757 0.427

(Chapter 2 + 4) 0.881 0.601

(Chapter 3) 0.799 0.593

(Chapter 3 + 4) 0.863 0.587

(Chapter 5) 0.910 0.650

(Chapter 5 + 3) 0.911 0.636

Proposed 0.945 0.683

Table 6.1: Comparison of proposed method with six other proposed method.

improved. From the tracking results of the method proposed in Chapter 5 (Figure 6.6

(f),(g)), the tracking results were better than those of the methods proposed in Chapters

2 and 3. However, a cell was still not tracked. From the tracking results of the method

proposed in this chapter (Figure 6.6 (h)), all cells were well tracked.

Table 6.1 shows tracking performances of each comparison methods. The tracking

method proposed in this chapter exhibited the best performance for two metrics.

6.4 Conclusion

I proposed a tracking method that first generates redundant candidate tracklets, then solves

the joint problem of optimal tracklets selection and global association. The method gener-

ates reliable tracklets by introducing constraints that preserve three structures of detection

candidate between successive frames for association. Then the problem of both selecting

an optimal set of cell tracklets from the redundant tracklets and associating the tracklates

over frames under non-overlapping constraints is solved simultaneously.

Experimental results on a challenging data set show that the proposed tracking method

improves the tracking performance including association accuracy and target effectiveness

compared with the method proposed in the previous chapters.



Chapter 7

3D Cell Tracking using Global

Motion and Local Spatial

Relationships

7.1 Introduction

In the previous chapters, I assumed that cell movement in successive frames is small under

dense culture conditions since the motion of a cell is constrained by its surrounding cells.

This is true when a small area in 2D is observed and analyzed. However, the increment in

time-lapse imaging cannot be shortened to monitor a wide area, which makes the problem

even more challenging. In 2D images for example, it takes time to obtain a large image

covering a wide area at a high resolution where the system captures multiple images that

are then merged to generate a larger image. In 3D images, it also takes time to obtain 3D

volume data for a wide range of specimens.

The main difficulty arises from two aspects of this problem. First, the movements of

cells between successive frames are often larger than the distances to the nearby cells. This

makes it almost impossible to associate cells between frames based on their proximity.

Figure 7.1 shows an example of cells moving large distances in successive frames. The

distance of corresponding cells between successive frames is often larger than that between

non-corresponding cells. For instance, the distance between Bt and Bt−1 is larger than

Bt and At−1. Second, it is more likely that other cells will be found to have a similar

appearance in the local region. This makes it difficult for appearance-based association

methods to properly work.

In this chapter, I propose a method for tracking a large number of cells successfully under

such a densely populated condition in 3D. The key observation behind this method is that

nearby cells under such highly populated conditions exhibit similar motion patterns since

88



CHAPTER 7. 3D CELL TRACKING 89

the motion of a cell is constrained by its surrounding cells. This leaves the relative position

of cells largely unaltered. The proposed method exploits this observation by introducing

the following two stages.

• Global motion estimation: First, the global motion of cells is estimated using non-rigid

alignment between successive frames. The global motion can be seen as a flow field.

Therefore, the global motion of cells does not provide the exact motion of each cell,

but rather provides a rough estimate of a cell’s position in the next frame that is then

used in the following stage of target association. To the best of my knowledge, this

is the first attempt at utilizing non-rigid alignment to estimate the global motion of

multiple target tracking.

• Multiple cell association by using the local pairwise spatial relationships: Second, all

the cells are individually tracked by using the detection-and-association approach,

where pairwise spatial relationships are taken into account to evaluate the association

scores. An advantage of introducing the pairwise spatial relationships is to keep the

relative positions of the cells among the successive frames. In addition, the method

identifies new tracks and connects them with its mother cells to deal with any cell

division.

The proposed method was evaluated and compared with other recent tracking methods

[Kofahi06][Xiao10] based on the tracking accuracy using synthetic 3D point-set data. Since

a cell can be divided into two cells, both the correctness of the movement (1-to-1) association

and the division (1-to-2) association are evaluated. The results obtained from the evaluation

indicate that both stages (global motion estimation and target association using pairwise

spatial relationships) contribute to a higher level of accuracy in tracking than the existing

methods. I also introduce the application of the proposed method to the field of biological

research to analyze the somite formation process of a zebrafish embryo.

7.2 Overview of proposed method

The proposed method consists of three stages: 1) Cell detection to detect and locate the

positions of cells in each frame. 2) Global motion estimation to estimate the global motion

of cells by using non-rigid alignment in 3D between successive frames. The estimated

global motion is used to provide the estimated position of each cell in the next stage. 3)

Multiple cell association to find the optimal association among all the possible cell movement

hypotheses between successive frames by using the local pairwise spatial relationships from

the neighbors. The method overview is shown in Figure 7.2.
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Figure 7.1: Examples of cells moving large distance in successive frames. The left image

shows cell regions in a z-slice of 3D data in the previous frame. The right image shows

overlaid cell regions of the previous and current frames where red indicates the contour

in the current frame and green indicates that in the previous frame. The increment in

time-lapse is 3 minutes.

In the cell-detection stage, I have adopted cell-detection method proposed in Chapter 4

that can detect the cell regions in 3D volume data. The method first detects many of the

cell candidates with possible overlaps among them, and then solves an optimization problem

to find the optimal cell-detection set within the candidate set based on the non-overlapping

constraints. Blob regions are obtained on each frame when using this method. The set of

blob regions at t is denoted as Rt = {Rt
m,m = 1, 2, ...,Mt}.

The details of the other two stages, which is the main contribution of this chapter, are

explained in the following sections.

7.3 Global motion estimation

In this stage, I estimate the global motion of cells based on the key observation that nearby

cells under highly populated conditions exhibit similar motion patterns. This is done by

non-rigid alignment, which aligns the structure of the target objects among multiple data.

Non-rigid alignment has been successfully used in medical image analysis, including the

registration, matching, and shape tracking of a single object [Mcinerney96]. Unlike in

previous works, I use non-rigid alignment for the global motion estimation in multiple object

tracking. A crowd of cells under dense cell culture conditions cluster, and the form of the

crowd changes over time. In this process, even though the cells individually migrate, the

relative positions of the cells are largely unaltered since the motion of the cells is constrained

by the surrounding cells. For example, a cell near the boundary of a crowd usually stays

near the boundary in the next time frame. As stated in the introduction, one of the novelties

of the proposed method is that I directly align the crowd of cells between successive frames
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Figure 7.2: Method overview. The proposed method consists of three stages, cell-detection,

global motion estimation, and multiple cell association. I must note that this is illustrated

using 2D images for clarity purposes, but all the steps are conducted within a 3D volume

constructed from multiple 2D layers.

using non-rigid alignment to estimate the motion of each cell before multi-target association.

Here, the data from my research target is a z-stack of 2D images. I treat the z-stack

images as 3D volume data (i.e., one pixel in a z-stack image is treated as a voxel in 3D)

in order to use 3D alignment. I use B-spline Free-Form Deformation (FFD) [Rueckert99]

for 3D alignment, which has been successfully used for the automatic image registration

of three-dimensional breast MRI images. Spline-based FFD deforms an image to minimize

the similarity function between the deformed image and the target image by manipulating

the underlying mesh of control points. The optimal transformation of the control points is

found by using the steepest descent optimization of a similarity function between the input

and target images. This process is illustrated in the middle of Figure 7.2. For the sake of

self-completeness, I briefly explain the deformation method.

Let Φ be a nx × ny × nz 3-D mesh of control points ϕi,j,k whose initial positions are

uniformly spaced by δ, and T (x, y, z|Φ) be a non-rigid transformation function where any
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Figure 7.3: Examples of alignment results of 3D volume data. The images are on the 3D

z-slice. (a) Original image in the previous frame on z-slice (z=50). (b) Original image

in the next frame (z=50). (c) Smoothed image of (a). (d) Smoothed image of (b). (e)

Deformed image in which (c) is aligned with (d). (f) Overlaid image of (c) and (d), where

blue represent image (d) and green is (c). (g) Overlaid image of (d) and (e), where blue

represents (d) and red is (e). (h) Zooming image of (f). (i) Zooming image of (g).

points (x, y, z) are transformed into its corresponding point as

T (x, y, z|Φ)

=

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ϕi+l,j+m,k+n (7.1)

where i = ⌊x/nx⌋, j = ⌊y/ny⌋−1, k = ⌊z/nz⌋−1, u = x/nx−⌊x/nx⌋, v = y/ny−⌊y/ny⌋, w =

z/nz−⌊z/nz⌋, and Bl represents the lth basis function of the B-spline [Lee97]. The problem

of finding the optimal transformation of the control points is formulated using non-rigid

transformation as follows:

Φ∗ = argmin
Φ
−Csim(I(X, t), I(T (X|Φ), t− 1)) (7.2)

where X is a list of all points in the 3D volume, and I(T (X|Φ), t − 1) is a transformed

image from volume data I(t − 1) by T . Csim is the similarity measure between two sets

of volume data I(t) and I(T (X|Φ), t − 1) such as the sum of squared distance (SSD) or

the normalized mutual information (NMI). Eq. (2) is solved by using steepest descent

optimization. The advantage of this method is that the displacement of a control point

affects only the translation in the local neighborhood of the control point, making the

method computationally more efficient than the other methods. Please refer to [Rueckert99]

for further explanations.
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Figure 7.4: Examples of results for estimating positions by using results from alignment.

The graph at the left indicates the positions of objects in two consecutive frames. Red

represents the positions in the previous frame, and blue is those in the next frame. The

graph at the right represents the estimated positions (red) and those in the next frame

(blue).

Unlike for alignment of 3D MRI images, special care has to be taken to deal with two

issues in my case. First, the intensity of a cell may fluctuate due to the change of fluorescent

substances in the cell over time (e.g., some cells suddenly become much brighter). Such cells

introduce errors in non-rigid alignment. Second, cells may enter or leave the field of view,

and therefore some cells near the boundary of the field of view may not have corresponding

cells between two frames. This also results in errors in non-rigid alignment.

These issues are handled in my method in the following way. First, the volume data is

smoothed by using a 3D Gaussian filter to relive the problem of local minima in non-rigid

alignment. Examples of the z-slice images of the smoothed 3D volume data are shown in

Figures 2(c) and (d). Non-rigid alignment is then applied to the original volume data for fine

adjustment by using the resulting positions from alignment of the smoothed volume data as

the initial positions. In addition, a coarse-to-fine approach is used for better computational

efficiency. The largess of the spatial interval δ of the control points is used first, and then

the smaller one is iteratively used just as in [Lee97].

Second, the boundary area of the 3D volume data is down-weighted in non-rigid align-

ment to reduce any negative effects from the entering or existing cells. More specifically,

the following exponential decay function is multiplied to the volume data

f(k) =

{
e−

K−k
λ , if k ≤ K

1, otherwise.
, k ≥ 0 (7.3)

where k is the distance from the field of the view, K is a parameter that is the width of the

boundary area to be multiplied, and λ is the parameter of the decay constant.
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Figure 7.3 shows some examples of alignment of the 3D volume data. Only 2D slices at a

certain depth are shown for visualization purposes. After smoothing, the smoothed data is

deformed by the non-rigid alignment, and the result is shown in Figure 7.3(e). The overlaid

images between the next image (blue) and the previous image (green) are shown in Figure

7.3(f), and that between the next image (blue) and the deformed image (red) are shown in

Figure 7.3(g) to show how the alignment works for real data. The green and blue regions

are not overlaid in Figure 7.3 (f). This indicates that the cells are in different positions in

the two successive frames. On the other hand, there are many purple regions (i.e., blue and

red are overlaid) in Figure 7.3 (g), showing that the images are roughly aligned. The sum

of squared differences between two frames is reduced by 50% using non-rigid alignment.

The position of each cell in the next frame is approximately estimated by using the

optimal deformation results. Figure 7.4 shows the estimated positions using the results

from non-rigid alignment shown in Figure 7.3. These results indicate that the proposed

method provided a better estimation than the original positions. Based on the estimated

positions, the cells among successive frames are associated on the next stage.

7.4 Multiple cell association by using local pairwise spatial

relationship

Multiple target association approaches first segment and locate the targets at each frame,

and then find the optimal association among all the possible cell movement hypotheses where

a cell in the previous frame moves to a position of a detected cell in the next frame. This

section explains how multiple target association is conducted using the proposed method.

The set of tracked cells at frame t − 1 is denoted as Ct−1 = {ct−1
l , l = 1, ..., Nt−1}

where ct−1
l stores each cell’s state, which contains its centroid and region. For each frame, a

detected blob Rt
m in the next frame t is associated with a cell ct−1

l . Each cell has its parent’s

index Parent-ID for maintaining its lineage information and its state in each frame. Parent-

ID is 0 for cells with no parent. If a blob is not associated with any cell, the blob is removed

as noise. If a cell is not associated with any blob, the track of the cell is terminated as a lost

track. Here, I denote an estimated position of ct−1
l on the next frame t from the previous

stage as Tt−1(c
t−1
l ).

In the proposed method, the following processes are iterated for each pair of two suc-

cessive frames to obtain tracks.

• Listing all possible cell movement hypotheses:

All possible cell movement hypotheses are listed. Since a cell usually cannot move a

great distance, if the distance between an estimated position Tt−1(c
t−1
l ) and a blob’s

position Rt
m is smaller than a threshold τ , a movement hypothesis ct−1

l → Rt
m is
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created. The hypotheses set is denoted as Ht = {ht
k, k = 1, 2, ..., Ht} where Ht is the

number of hypotheses in frame t.

• Computing association scores of hypotheses

For each hypothesis, the association score of the hypothesis is computed by incorpo-

rating the local pairwise spatial relationship similarity.

• Solving optimal association

The cell association problem is formulated as binary linear programming. I generate

an association score vector and a constraint matrix to accomplish this. The constraint

matrix guarantees that a cell cannot move to or come from different multiple places

at the same time. The association score vector and the constraint matrix are then

used to find the optimal association by using binary linear programming.

• Track maintenance

A new track that suddenly appears in the sequence is identified by using temporal

information. Such a track is regarded as a divided cell and assigned to its mother cell.

The following sections explain each step in details.

7.4.1 Compute association scores of hypotheses

An association score for each hypothesis is computed in this step. Unlike when using the

existing cell-tracking methods that use only the target similarity to compute association

scores, I use the local pairwise spatial relationships to compute the association score of a

movement hypothesis. As a result, as many of the spatial relationships among cells between

successive frames as possible are preserved.

The pairwise spatial relationships are incorporated into the association score computa-

tion by using a graph similarity measure in hyper graph matching. Such a measure has

previously been successfully used for the image matching problem[Cour06][Zass08][Lee11].

Hyper graph matching is used to find a mapping between the two edges, and it is able to

preserve as many of the spatial relationships between nodes as possible. However, hyper

graph matching often becomes expensive in both memory usage and computational cost in

comparison to vertices matching since hyper graph matching takes into consideration all of

the hypotheses of edge matching. This problem becomes particularly evident in my case

of dense cell tracking where the number of targets is significantly larger than that of the

interest points used for typical image matching. I use the local pairwise spatial similarity

among neighbor cells rather than the global one since the global spatial structure is mostly

preserved by the previous global motion estimation stage to reduce the computational cost.

As discussed above, the local pairwise spatial relationships are taken into account to

compute the association scores. Given hypothesis ct−1
l → Rt

m, which indicates that cell
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Figure 7.5: Examples of graphs GTt−1(c
t−1
l ) and GRt

m
. The red circles represent the local

window to generate the graph. The local window of graph GRt
m
is larger than that of graph

GTt−1(c
t−1
l ).

ct−1
l moves to blob Rt

m, the association score is defined as a total of a vertex (target)

matching score [Kofahi06][Padfield11][Kanade11] and a partial graph matching score:

S(Rt
m, ct−1

l )=SV (R
t
m, Tt−1(c

t−1
l )) (7.4)

+αSG(GRt
m
, GTt−1(c

t−1
l ))

where SV (R
t
m, Tt−1(c

t−1
l )) is the vertex matching score, which indicates the similarity mea-

sure between targets ct−1
l and Rt

m. The vertex matching score is calculated by using

exp(−d2lm/σ), where dlm is the distance between Tt−1(c
t−1
l ) and Rt

m, and σ is the con-

trol parameter. SG(GRt
m
, GTt−1(c

t−1
l )) is the partial graph matching score, which represents

the similarity measure between the GTt−1(c
t−1
l ) and GRt

m
graphs, where Gc is the local graph

consisting of the neighboring cells of cell c. The relative weight α of the two scores is au-

tomatically determined, so the average of SV (R
t
m, Tt−1(c

t−1
l )) is equal to the average of

αSG(GRt
m
, GTt−1(c

t−1
l )).

A local spatial window is used to generate the local graph GTt−1(c
t−1
l ) = {V,E}. First,

all the estimated positions of the cells whose distance from Tt−1(c
t−1
l ) is smaller than the

threshold κ1 are registered in V . Then, all the pairwise combinations of V are registered in

E. Graph GRt
m
= {V ′, E′} is generated in the same way using a threshold κ2 that is larger

than κ1. Note that two different thresholds are used for creating the two local graphs. A

cell near the boundary of the local spatial window of a target cell may move away from

Tt−1(c
t−1
l ) in the next frame. As a result, the corresponding cell may not be found in Gt

Rt
m

if the size of local window is the same between successive frames. An example is shown

in Figure 7.5, where node Rt
2, which corresponds to node Tt−1(c

t−1
1 ), is outside the local

window. The size of GRt
m

is set to be larger than that of GTt−1(c
t−1
l ) by using two different
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κ1 and κ2 thresholds to avoid this problem. κ2 is set to be 1.5κ1 in my experiments.

After generating local graphs, the partial graph matching score SG(GRt
m
, GTt−1(c

t−1
l ))

is computed by maximizing the sum of the edge distance similarities of the corresponding

edges among the graphs. This is given as

SG(GRt
m
, GTt−1(c

t−1
l ))= max

∑
{ij,i′j′}∈(G

Rt
m
,G

Tt−1(c
t−1
l

)
)

SE(E
′
i′j′ , Eij) (7.5)

SE(E
′
i′j′ , Eij) = exp(−|dij − d′i′j′ |2) (7.6)

where {ij, i′j′} ∈ (G,G′) is a set of any corresponding edges in the graphs. SE(E
′
i′j′ , Eij) is

the edge similarity between E′
i′j′ and Eij , where dij and d′i′j′ are the lengths of edges Eij and

E′
i′j′ respectively. Eq. (5) is used to attain the optimal partial graph matching score between

the smaller graph GTt−1(c
t−1
l ) and the optimal partial graph in the larger graph GRt

m
. For ex-

ample, in Figure 7.5, the node of the optimal partial graph in GRt
m
is V ′ = {Rt

m, Rt
2, R

t
5, R

t
7}

corresponding to the graphGTt−1(c
t−1
l ) as V = {Tt−1(c

t−1
l ), Tt−1(c

t−1
1 ), Tt−1(c

t−1
2 ), Tt−1(c

t−1
3 )}.

This partial graph matching problem can be solved by using any existing graph matching

method[Zass08][Lee11]. It can also be solved by conducting a full search as well since the

number of edges are limited, and one of the matching (ct−1
l matches with Rt

m) is known in

my case. The computed association scores of the movement hypotheses set are used in the

next step to find the optimal association set from all the hypotheses.

7.4.2 Finding optimal association by using binary programming

In this section, I explain how the optimal association set is found from all the movement

hypotheses Ht without conflict. The problem of optimal association is similarly formulated

to that in [Li08][Kanade11] based on binary programming. I briefly explain the association

method to make this paper self-contained.

The binary programming is formulated based on two inputs: a constraint matrix C and

a score vector ρ. The Ht×1 score vector ρ stores the association scores where the k-th row

is the association score of the k-th hypothesis ht
k computed by using the previous step. Let

C be the Ht × (Nt−1 + Mt) constraint matrix used to avoid conflicting hypotheses. Each

row corresponds to a hypothesis ht
k(k = 1, ..., Ht) in Ht. Each of the first Nt−1 columns

indicates the cell index at t−1 of the hypothesis ht
k, and each of the remaining Mt columns

is an index of the detected blob in the next frame t of ht
k. The constraint matrix C and

the score vector ρ are constructed as follows.

For each hypothesis, a new row is appended to both the constraint matrix C and the

score vector ρ. Let k be the index of the movement hypothesis ht
k = {ct−1

l → Rt
m}, and I
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Figure 7.6: Examples of association results. The image on the left shows the results of using

the multiple hypotheses association method without the pair-wise similarity. The one on

the right shows the results of using the proposed method. ’◦’ points indicate the positions

in the previous frame and ’+’ points indicate the positions in the next frame.

append the k-th row to C and ρ:

C(k, i)=

{
1, if i = l or i = Nt−1 +m

0, otherwise.
(7.7)

ρ(k)=S(Rt
m, ct−1

l ) (7.8)

After constructing C and ρ for all the possible hypotheses inHt, the association problem

can be considered as selecting a subset of rows on ρ such that the sum of the corresponding

elements in ρ is maximized under the constraint in which any cell or detected blob appears in

at most one hypothesis. This can be formulated as the following binary linear programming

problem:

x∗ = argmax
x

ρTx, (7.9)

s.t. CTx ≤ 1,xk ∈ {0, 1} (k = 1, ...,Ht)

where 1 is a Ht × 1 vector of ones. x is a Ht × 1 binary vector, and xk = 1 means the k-th

hypothesis is selected as the optimal solution. Constraint CTx ≤ 1 guarantees that each cell

index and blob index appears in only one selected hypothesis (i.e., the same cell index/blob

index does not appear in multiple hypotheses). The problem in Eq. (7.9) can be solved

since binary programming always has a binary-valued solution if the constraint matrix C is

totally uni-modular (i.e., the determinant of any square submatrix takes one of the values

in −1, 0, 1), and the right-hand sides of the constraints are all integers [Papadimitriou98].

Figure 7.6 shows the results of the association between successive frames. The cells in

the results for the existing method (left image) tended to be associated with the closest
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Figure 7.7: Example of a cell division event where a cell divides two cells on curve slice in

3D data. Two children cells usually appear near the mother cell.

one. In the results of the proposed method (right image), the cells tended to move in the

same direction as their neighboring cells, and the structures of the relative positions are

preserved after movement.

7.4.3 Track maintenance

The track maintenance step is used after the association step to deal with cell division

events. An example of a cell division event is shown in Figure 7.7. I use a similar approach

to that discussed in Chapter 5 to handle such division events.

The track maintenance step identifies a new track and connects the track with its mother

cell. Here, I make three assumptions. 1) If a new cell suddenly appears in the field of view

outside the boundary of the volume, the new cell is considered a divided cell since a cell does

not appear unless it enters from outside or divides from another cell. 2) A detected noise

such as a cell mistakenly detected as two blobs usually disappears within several frames. 3)

The positions of the divided children cells are usually close to their mother cell. I identify

a new track based on the assumptions.

First, I register a blob that is not associated with any cells in the previous frame as

a candidate cell. Then, the candidate cell is continuously tracked until the length of the

candidate track is longer than a threshold η or the candidate track is lost. If the length

of the candidate track exceeds the threshold, the candidate cell is registered as a reliable

cell, and if the candidate cell is lost before the registration, the candidate cell is removed as

noise. Next, its mother cell is identified by finding a cell that minimizes the distance from

the center position of the cell and the newly registered cell to the previous position of the

cell. Then, the identified cell is connected with the child cell as the mother cell. Figure 7.8

illustrates an example of this step.
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Start to track candidate cell �′
�

Frame t � 1 Frame t Frame t � 1 Frame t � η

Length of the track �′
�

is larger than the threshold.

Connect candidate track �′
�

with its mother cell �
�

Figure 7.8: Example when a candidate cell is registered as a child cell and connected with

its mother cell.

7.5 Experiments

I evaluated and compared the performance of the proposed method with the existing track-

ing methods by using synthetic point-set data. Both the correctness of the movement

association and the division association were evaluated to evaluate the tracking accuracy.

I used a detection-and-association method like in [Kanade11] and [Kofahi06] as a baseline,

where the association score is computed based on the proximity without using the pairwise

relationships. In addition, a state-of-the-art object tracking method that is based on graph

matching to track multiple vehicles in aerial videos [Xiao10] was also used. This method

incorporates edge (i.e., pairwise ) matching to vertices (i.e., targets) matching based on hy-

per graph matching [Zass08] for better tracking accuracy. Five methods including baseline1

([Kanade11][Kofahi06]), baseline2 ([Xiao10]), baseline1 with global motion estimation, base-

line2 with global motion estimation, and the proposed method (global motion estimation +

pair-wise relationship) were evaluated to show the effectiveness of both the global motion

estimation and target association using the pair-wise spatial relationships, respectively.

These methods were implemented in Matlab. The code ’B-spline Grid, Image and Point

based Registration’ [Kron08] in Matlab Central was used for non-rigid alignment. The

parameters were set as follows. The sizes of the spatial interval δ of the control points were

{ I2 ,
I
4 ,

I
8 ,

I
16} where I = {nx, ny, nz} is the size of the input data, and the size of the boundary

of the field of viewK was 5 pixels. The window size to create movement hypotheses τ was 20
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Figure 7.9: Example of evaluation data. D is 0.25. The red circles indicate the cell positions

of the previous frame and the blue ones are the cell positions of the next frame.

pixels. κ1 and κ2 were automatically decided based on the means of the distances between

neighboring cells; κ1 was set to the mean multiplied by 1.5, κ2 = 1.5κ1. The threshold η

was 4 frames. Each quantitative result in my synthetic experiments was obtained as the

average of 30 random trials.

7.5.1 Data

The accuracy of the cell tracking was evaluated by using synthetic sequential point set

data, because it is difficult to provide the ground truth data of dense cell tracking in 3D

microscopic images. I first randomly generated N = 500 points as the cells using uniformly

distributed pseudorandom numbers in 3D space to determine the initial positions of cells

in the data. A Gaussian filter (sigma = 2) was added to make cells with given sizes. Then,

two types of cell motions, which are the global motion and the individual motion, were

added to simulate the real cell movement for each frame.

Every point was deformed by the B-spline free-form deformation using randomly decided

parameters to simulate the global motion of cells that indicate the deformation of cell

crowds. The free-form deformation was used four times at different sizes δ = { I2 ,
I
4 ,

I
8 ,

I
16}.

Each time all the control grid points were randomly displaced using uniformly distributed

pseudorandom numbers where the max of the displacement noise was D × δ. I call the

deformation noise level D here. Gaussian noise was independently added to each point to

simulate the individual motion of the cells. The mean of the Gaussian noise was 0.2 times

the mean of the distance between neighboring cells, and the variance was 1.

In addition, since the results of the cell-detection step usually include errors, the de-
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Figure 7.10: Performance according to

change in deformation level. Here, N = 500

and E = 0.

Figure 7.11: Performance according to

change in deformation level. Here, N = 500

and E = 0.05.

tection errors were added. E ×Nt points were removed (i.e., false negatives), and E ×Nt

random points were added (i.e., false positives) in each to simulate the detection errors,

where the detection error E was the rate of the number of detection errors and the number

of total cells. Figure 7.9 shows an example of the synthetic data. Figure 7.9(a) shows the

centroids of cell positions in frames t − 1 (red) and t (blue). Figure 7.9(b) shows a z-slice

image on the 3D volume. The cell migration distance was much larger than the distance

between neighboring cells.

In addition, cell division events were added to evaluate the correctness of the cell division

association. Several cells were randomly selected as the mother cells of the division events

for each frame to simulate the cell division events. In the next frame, the positions of

two children cells were decided based on the selected mother cells for each division event.

Gaussian noise was added to the position of a mother cell after adding the global motion to

determine the positions of the two children. I set the number of cells in the initial frame at

N1 = 500, the rate of the number of cell divisions at 0.01, where the number of division cells

on each frame is 0.01×Nt cells (i.e., after 30 frames, the number of cells was N30 = 674).

7.5.2 Evaluation for the cell movement.

The performances of each method were measured as the accuracy, which was the ratio

between the number of correctly selected associations on the tracking results and the number

of associations on the ground truth. I evaluated the methods by using different values for

each simulation parameter (D and E), respectively, to investigate how the method is robust

for the deformation noise and the detection error.
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Figure 7.12: Performance according to detection error change. The horizontal axis is the

detection error. Here, N = 500 and D = 0.2.

Figures 7.10 and 7.11 show the experimental results where the horizontal axis is the de-

formation noise level D and the vertical axis indicates the tracking accuracy. The detection

error was fixed in these experiments; E = 0 in Figure 7.10 and E = 0.05 in Figure 7.11. In

Figure 7.10, baseline1, which uses the position similarity score for the cell association, did

not work because of large deformation. The accuracy of baseline2, which uses the graph

matching adding to the proximity score, was slightly better than baseline1. The accuracy of

baseline1 using global motion estimation was clearly improved compared to baseline1. This

indicates that the global motion estimation by using non-rigid alignment contributed to

improving the performance. Moreover, the proposed method outperformed baseline1 using

global motion estimation. This indicates that the target association that uses the pair-wise

relationship contributed to improving the performance. The accuracy of baseline2 using

global motion estimation was competitive with the proposed method in Figure 7.10 because

it uses graph matching for target association, which also contributes to preserving the rel-

ative positions of the cells among successive frames. In Figure 7.11, where the detection

error was 0.05, the accuracy of baseline2 using global motion estimation severely decreased

compared with the other methods. The proposed method outperformed the other methods

on all deformation levels.

Figure 7.12 shows the experimental results, where the horizontal axis is the detection

error and the vertical axis is the accuracy. This graph illustrates how the methods are robust

for the detection error. In these experiments, the accuracies of baseline1 and baseline2 using

global motion estimation were also clearly improved compared to the baseline methods.

The accuracy of baseline2 using global motion estimation declined more quickly with the

detection error than the proposed method. In the real data, the detection results must have

some errors (several percentages), and thus, the proposed method can be considered as the

best method in comparison.
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Method

Rate of
false

positives
Identification of

mitosis occurrence
Mitotic Branching

Correctness

Recall Precision F-measure Recall Precision F-measure

Proposed

0.00 1.000 1.000 1.000 0.8077 0.8077 0.8077

0.05 1.000 0.936 0.967 0.8308 0.766 0.797

0.10 1.000 0.675 0.809 0.7923 0.5309 0.6358

0.15 0.954 0.490 0.648 0.7308 0.3755 0.4961

Baseline1
using
global
motion

0.00 0.662 0.623 0.642 0.4690 0.4416 0.4548

0.05 0.697 0.284 0.403 0.4621 0.1882 0.2675

0.10 0.807 0.194 0.312 0.4276 0.1026 0.1656

0.15 0.717 0.118 0.202 0.4000 0.0656 0.1127

Table 7.1: Comparison of the proposed method with baseline1 using global motion estima-

tion for terms of identification of mitosis occurrence and mitotic branching correctness.

7.5.3 Evaluation of cell division

I evaluated the accuracy of identifying cell division events on synthetic data. It is believed

that the cell division accuracy is affected by the false positives of cell detection. I evaluated

the methods by using different false positive rates (0, 0.05, 0.1, and 0.15) to investigate how

robust the method is for the rate of false positives. I set the deformation noise D at 0.2.

I evaluated the accuracy of identifying cell division events based on two metrics including

the identification of the mitosis occurrence [Huh11] and the mitotic branching correctness

[Bise11]. For the identification of mitosis occurrence, a true positive is defined as when

a division event is correctly identified (i.e., a newly identified cell is one of the children

cells in the ground truth). The mitotic branching correctness measured the accuracy of

the mother-daughter relationships of the cell division event as described in Appendix A. In

this case, a correct mitotic branching is defined as when both its mother cell and children

cells are correctly identified. The precision, recall, and F-measure were evaluated for both

metrics. Here, the precision is defined as TP
TP+FP , the recall is TP

TP+FN , and the F-measure

is 2precision×recall
precision+recall , where TP is the number of true positives, FP is the number of false

positives, and FN is the number of false negatives.

I used baseline1 based on [Kofahi06], which detects cell division events by resolving

a multiple object matching problem for comparison. Baseline2 cannot be used to detect

the cell division because the targets of the method are vehicles, which do not divide. The

baseline method did not work on the association of the cell movement. Thus, I used baseline1

using global motion for the comparison.
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Figure 7.13: Examples of time-lapse images on same z-level (z = 50). The cells move and

form the somite of a zebrafish. The illustration of the zebrafish was taken from [Kimmel95].

Table 7.1 shows the evaluation results for the identification of mitosis occurrence and

mitotic branching correctness. The proposed method outperformed baseline1 in all of the

identification of mitosis occurrence for all the error rates. The proposed method achieved

100% accuracies of all the measures when the detection error rate was 0. Then, these

accuracies decreased with the error rate. Recall maintained a high level of accuracy at

a high error rate 0.15. The precision decreased more quickly than for the recall. This

means that the number of false positives of cell divisions was affected by the false positives

of the detection results since the false positives were detected as cell division events. The

performance of the mitotic branching correctness was lower than the identification of mitosis

occurrence for both methods since the mitotic branching correctness is stricter metrics. For

this metric, the proposed method also outperformed baseline1 for all of the metrics.

7.6 Application

In this section, I introduce the application of the proposed cell-tracking method in biological

research to study the somite formation process of a zebrafish embryo. More specifically, the

cell migration trajectories were analyzed to study the cell derivation where the cells came

from.

A digital scanned light-sheet microscope (DSLM) was used to capture the time-lapse

images every 10 minutes for 5 hours (30 frames). The image size was 1344 × 1024 pixels

(0.645µ m/pixel) and the number of z-slices was 100 (2µm/pixel). Examples of the time-

lapse images on the same z-slice are shown in Figure 7.13. The cells moved and formed the

somite of the zebrafish. In frame 30, the area indicated by red arrows corresponds to that

of the illustration. Figure 7.14 shows an example of the detection results. The image was

sliced at the surface curve of the embryo in 3D. Figures 7.15 and 7.16 show the tracking

results. In the initial frame, the cells were placed on the right side, then the cells spread
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Figure 7.14: Examples of detection results. The results show that the image is sliced at

the surface. The image on the left is the original image, and the one on the right is the

detection results.

Figure 7.15: Examples of tracking results corresponding with Figure 7.13.

toward the left side of the image along the surface of the semi-sphere. Finally, the cells

gathered and formed the somite of the zebrafish. These tracking results allows biologists to

more easily study the cell trajectories rather than manually investigating the z-slice stacks.

7.7 Conclusion

I proposed a tracking method that exploits the observation in which nearby cells under high

dense conditions exhibit similar motion patterns. This is done by introducing two stages

of tracking. First, the global motion of cells is coarsely estimated by treating the problem

as non-rigid alignment in 3D. Then each cell is tracked using multiple target association

between successive frames, which uses both pairwise spatial relationships and the estimated

global motion. The proposed method was evaluated on synthetic point-set and compared

against the existing methods. The evaluation results showed that both stages (global mo-

tion estimation and target association using pairwise spatial relationships) contribute to
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Figure 7.16: Examples of track trajectories corresponding with Figure 7.15. (a) Trajectories

from frames 1 to 2, (b) trajectories from 1 to 10, (c) trajectories from 10 to 20, and (d)

trajectories from 20 to 30.

achieving a better tracking accuracy. I also introduced an application of the proposed cell-

tracking method in biological research that analyzes the somite formation process of the

zebrafish embryo.



Chapter 8

Biological Applications

8.1 Introduction

In this chapter, I aim to show how easily and effectively our automated cell-tracking system

can provide detailed spatio-temporal cell behavior measurements for biological analysis.

Spatio-temporal measurements of cell behaviors are important for critical analysis, because

the cell culture conditions vary with time and space on the dish. For example, the effect

of a medicine may change with time and space since cell density can differ in a different

space. I present an application of automatic cell-tracking for wound healing assay in vitro

under three different culture conditions to demonstrate how easily and effectively automated

cell-tracking systems can provide detailed spatio-temporal cell behavior measurements for

biological research.

The wound healing assay is an easy and low-cost method to allow for observing cell

migration in vitro [ChunChi07]. In this assay, cells are firstly grown to form a confluent

monolayer in vitro. An artificial wound is generated by scratching and displacing a group

of cells at the center as shown in Figure 8.1, and then the healing process is observed while

neighboring cells fill in the wound area as shown in Figure 8.1 (a-c). This healing process

takes 3 to 24 hours, depending on cell types and culture conditions. The healing process

is monitored by a sequence of microscopic images. Liang et al. [ChunChi07] compared

several migration assays in vitro and described advantages of using the wound healing assay

that mimics cell migration in vivo. For example, endothelial cells (ECs) in vitro mimic

the process in which ECs in the blood vessels migrate into the denuded area to close the

wound. Yarrow et al. [Yarrow04] measured the healing speed by observing the size of the

wound area in order to analyze the effectiveness of different culture conditions. For further

analysis of the effectiveness of the cell culture condtions, more detailed measurements of

the cell behaviors are often required. For example, Abbi et al. [Abbi02] analyzed the

cell migration path to assess the effects of expression of exogenous genes on migration of
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Culture cells scratch for 
“wound”

Figure 8.1: Process of making wound.

Figure 8.2: Example images of the wound healing process. (a) The initial image on the

healing process. (b) An image at which cells move to wound area. (c) An image at which

cells fill the wound area.

individual cells. Nikolic et al. [Nikolic06] manually tracked cell migration in wound healing

assay in order to understand how multiple cells execute highly dynamic and coordinated

movements during the healing process.

Cell tracking allowed them to analyze how individual aspects of the wound contribute

to the coordinated dynamics of cells. Zahm et al. [Zahm97] used a computer-assisted tech-

nique to quantitatively study the cell proliferation and migration during the wound healing

process. Citing the difficulty of tracking cells in phase-contrast microscopy images, they

used chemical compounds to create fluorescent images to track cells and count proliferative

cells. Such chemical compounds generally interfere with the efficacy of drug candidates.

I applied our automatic cell-tracking system to sequences of phase-contrast microscopy

images of a wound healing assay in vitro under three different culture conditions (i.e., three

different amounts of medicine “Latrunculin B ”that interferes with cellular activity), where

the cell-tracking system is developed based on the method proposed in Chapter 2. Our

system can locate cell regions and track more than hundreds of cells individually under

non-invasive imaging. It allows us to compute spatio-temporal measurements including the

cell density, migration speed and direction, statistics of mitosis events, and their mutual

dependency in order to analyze how the cell culture conditions (i.e., amount of the medicine)

effect the cell behaviors over time and space. These measurements can provide critical

information for investigating the healing process.
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Figure 8.3: Flow of the wound healing assay experiments under three culture conditions.

Figure 8.4: Right: Example image of the tracking result. Left: Example image sequence of

the zooming images that correspond with the white dot rectangle in the right image.

8.2 Space-time analysis of cell behaviors of wound healing

Automated cell-tracking allows us to analyze the space-time transition of cell behaviors

quantitatively and in detail in the wound healing assay. I applied our tracking system

recently developed in [Kanade11] for experiments which aims to screen out cell migration

inhibitors. Cell migration inhibitor is important for inhibiting the migration ability of

cancer cells [Yarrow04][Pril09]. In general, the cell behaviors where the cells move toward

to an open wound in a cellular mono-layer is thought to predict their migratory ability.

Figure 8.3 shows the overall flow of wound healing analysis experiment. Firstly, the culture

dishes with wound area are prepared under difference types of culture conditions. These

dishes are observed by microscope, generating a time-lapse image sequence. The image

sequences are inputted to the automatic cell-tracking system. From the tracking results,

various measurements that characterize the cell behavior are calculated. In the experiments,

I applied our automatic cell-tracking system to sequences of phase-contrast microscopy

images of a wound healing assay in vitro under three different culture conditions (i.e.,
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three different amounts of medicine “Latrunculin B ”that interferes with cellular activity).

Figure 8.4 shows an example of the tracking result where the cells are well tracked in high

confluence. The tracking system assigns a positive integer ID to each cell that is being

tracked as its unique identifier. As its descriptor, each cell has its parent identifier Parent-

ID for maintaining its lineage information (Parent-ID=0 for cells with no parent, i.e., those

cells that appear in the very first frames) and its state information (i.e., its centroid and

contour shape of the cell region) at each frame. Using this information, various cell behavior

measurements can be computed. It allows us to compute spatio-temporal measurements

including the cell density, migration speed and direction, statistics of mitosis events, and

their mutual dependency. These measurements can provide critical data for investigating

the healing process.

8.2.1 Cell culture conditions and imaging modality

The followings are how I prepared the cell culture dishes and how the image sequences were

obtained for the experiments.

Cell culture conditions

On three dishes, BAEC(bovine aortic endothelial cells) were cultured under three different

culture conditions. For each dish, a group of cells at the center of the dish was scratched

and displaced on a confluent monolayer. Different amount of medicine was added to each

dish.

Condition A : control (no medinine)

Condition B : 10nM (nano molar) of Latrunculin B

Condition C : 100nM of (nano molar) Latrunculin B

Time-lapse imaging

The area around the wound area in each dish is observed with a Leica DMI 6000B inverted

microscope using a 10X objective with phase optics until neighboring cells fill completely.

Images were acquired every 5 minutes for 17 hours using a 12-bit CCD camera with each

image of 1040 × 1392 pixels.

8.2.2 Cell behavior characteristic measurements

Using tracking results, various measurements of cell behavior characteristics were calculated.

In cell behavior analysis, the change of the cell density over time on the whole area is a

useful index [Brett09][Tamura98]. To investigate how the cell culture conditions affect the

cell migration, speed and direction of the cell migration are often measured [Brett09][Gu99].
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Figure 8.5: Example of the jet map of cell density changes over time with tracking results,

each row of which represents the density. In the jet map, red color shows higher density,

blue color shows lower density.

Cell culture condition usually affects both migration and proliferation. To separate these

affects, the statistics of the mitotic events are important. Our system allows us to compute

all of these spatio-temporal behavior characteristics in detail, including cell density, the

speed and the direction of cell migration, and the statistics of mitosis events.

Cell density

Figures 8.5 and 8.6 show how the cell density changes over time and location. Since cells

generally migrate horizontally in the experiments as shown in Figure 8.1, the cell density is

computed over narrow vertical window (the width of the window is 40 pixels, i.e., 36.5 µm)

as shown in Figure 8.6 (a). The vertical lines show that the 95% cell migration front of left

and right sides, which is defined as the 95th percentile line of the total cell count of each

side. Red color lines indicate the 95% line at the inital frame, blue dotted lines indicate

the 95% line at the current frame. Figure 8.6 (b-d) show the comparison of the space-time

transision of the cell density under three different conditions. At the second row (condition

A), the cell density in the wound area is low at frame 1. Then, cells in the left and right

regions migrate into the central area and the density in the wound area increases until it

becomes flat in frame 200. I observe the similar behaviors for the other conditions, but cells

on condition C (100nM) migrate more slowly than those in condition A and B. The density

in the wound area is still low at the end of the sequence.
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Figure 8.6: Example of the space-time transition of the cell density.

Figure 8.7: Average speed of the

cell migration over the time.

L1L2L3 R3R2R1

Figure 8.8: Local ar-

eas.
Figure 8.9: Average speed of the

cell migration at each local area.

Speed of cell migration

To analyze how the speed of cell migration changes over time, the average speed of the cell

migration was computed over the whole area in each frame. The results presented in Figure

8.7 show that the speed in the condition A (control) is consistently higher than those in

other conditions, and the speed in the condition C (100nM) is the slowest. The migration

speed firstly increases until frame 50, and then it continuously decrease with the time.

It is conceivable that the speed of the cell migration depends on the distance from the

wound area. To know whether this is the case, the filled area (i.e., the left and right side

of the wound area) is divided into six local areas as shown in Figure 8.8. These local areas

were defined based on the distance from the wound area, from L1 to L3 at the left side

and from R1 to R3 at the right side away from the wound area. The cells on the edges of

the wound area migrate toward the center, therefore, these local areas also move toward
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Figure 8.10: Rose diagrams of cell migration directions on each local area.

the center with the time. For each local area, the average speed of the cell migration is

computed as shown in Figure 8.9. Understandably, the cells in condition A (control) move

faster than the others in every local area, and the cells in condition C (100nM) are the

slowest. The graph indicates another interesting phenomenon in that the order of speeds

are L1, L2 and L3 for the left side, and R1, R2 and R3 for the right side; that is, the speed

of cell migration decreases with the distance from the wound edge.

Direction of cell migration

To quantitatively analyze the direction of the cell migration, the distribution of cell migra-

tion directions on each condition was plotted by an angular histogram (rose diagram) as

shown in Figure 8.10. The first three rows show the distributions of the direction on each

local area, respectively, for conditions A, B and C, and the bottom row shows the distribu-

tions on the whole areas left and right. I can observe that the cells tend to migrate toward

the wound area in every local area on condition A and B. The cell migrations in L1, R1

(nearest area to the wound) are most highly directional to the direction to the wound. Also

the graphs indicate an interesting phenomenon that cell migration in condition C (100nM)

is less directed to the wound area (0◦ for the left side, 180◦ for the right side). This means

that the speed of the cell migration toward the wound area is the slowest in condition C

(Figure 8.6 (d)) not because the migration speed is slow, but because the migration direction

is less directed.
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Figure 8.11: Relationship between density slope and migration direction.

Density slope and migration direction

It is conceivable that the direction and speed of the cell migration depend on the density

slope. For example, when the density slope is high, the cells on the area may move from

high-density area to low density area. To confirm the hypothesis, the graph, in which shows

the relationship between density slope and migration direction, was computed as shown in

Figure 8.11. Th horizontal axis indicates the cell density slope which is computed as how the

cell density change over x axis on Figure 8.6. As shown in the illustration described below

the graph, minus density slope indicates the density decreases from left to right direction on

the image, plus density slope indicates the density increases. As shown in the illustration

described at left side of the graph, vertical axis indicates the directional migration speed

in which the cells move toward to the same direction as the slope. When the value of

the vertical axis is 0, the cell migration direction on the area is less directed. When the

absolute value of the vertical axis is high, the cell migration is highly directional to the

direction from high-density to the low density. I can observe that cell migration direction

is highly directional on the area where the density slope is high, and migration direction is

less directed on the area where the density is flat.

Number of cell mitosis events

To analyze how the number of cell mitosis events changes over time, the number of accu-

mulated mitosis events was computed over the whole area. The results presented in Figure

8.12 show that the number of mitosis events in the condition A (control) is higher than

those in the other conditions. The curves of the accumulated number are almost linear. It

indicates that the mitosis events occur consistently.
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Figure 8.12: The number of accumulated cell mitosis events at each frame.

Figure 8.13: The number of cell mitosis events at each local area.

To show how the number of the cell mitosis events changes by location, the number of

the cell mitosis events is computed over each local area as shown in Figure 8.13. In this

graph, I observe no distinctive characteristics. This means that the culture condition has

more effects to the number of mitosis events than the distance from the wound area does.

8.3 Discussion and conclusion

I presented the application of automatic cell-tracking in phase-contrast microscopy images

for wound healing assays in vitro in order to produce detailed quantitative analysis of the

cell behaviors under three different culture conditions.
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Understanding the cell behaviors is important to studying the influence of the envi-

ronments including the types of medicines, the amount of the medicine, and materials in

which these cells can grow. In the past, the simple measurement, such as the size of the

wound area is often used, but such simple measures cannot provide the detailed analysis

of cell behaviors. The spatio-temporal measurements of cell behaviors are important for

critical analysis, because the cell culture conditions vary with time and space on the dish.

Our system can provide such spatio-temporal cell behaviors measurements: the cell den-

sity, cell migration speed and direction, and statistics of cell mitosis events. The results of

the experiments demonstrated the effectiveness of automatic cell-tracking for quantitatively

analyzing cell behaviors.



Chapter 9

Conclusion

9.1 Summary

In this thesis, I have proposed several cell-tracking methods to address the following diffi-

culties in tracking cells under high-density conditions: multiple cells touching and forming a

cluster with blurry intercellular boundaries, the number of cells changing due to cell division

and cells entering or leaving the field of view, and cells moving large distances.

I first proposed tracking methods based on detection-and-association tracking methods

in Chapters 2 and 3 for low-to-middle density conditions in which several cells partially

overlap with blurry inter-cellular boundaries. In Chapter 2, I proposed a frame-by-frame

association tracking method that identifies touching-cell clusters in the association step

then re-segments the clusters to its member cells by partial contour matching. The method

enables robustly tracking of two or three partially overlapping cells.

In Chapter 3, I proposed a global spatio-temporal data association tracking method

that first generates reliable tracklets by frame-by-frame association, then the tracklets are

globally linked using integer linear programming to reduce the negative influence of false

positive detections. These proposed methods outperform a state-of-the-art tracking method

proposed by Li et. al. [Li08].

I then proposed detection and tracking methods based on an idea of selecting an op-

timal set of detection and association from redundant candidates under non-overlapping

constraints to address tracking under high-density conditions. In Chapter 4, I proposed a

cell-detection method for obtaining high-accuracy detection results under dense conditions.

It first detects redundant candidate regions, which may include many false positives but in

turn very few false negatives, by allowing candidates to overlap. This problem of optimal

region selection under non-overlapping constraints is solved by a binary linear programming

problem under non-overlapping constraints. This method exhibited the best performance,

with an F-measure of over 0.9 for all datasets in experiments.
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In Chapter 5, the idea of selecting an optimal set from redundant candidates was ex-

tended to tracking. One of the drawbacks of current detection-and-association methods

is that they heavily depend on the detection results since the errors of the detection step

directly propagate to the association step. To mitigate this problem, the proposed tracking

method determines the detection results in the tracking process by solving concurrently

both optimal set selection of detections from redundant candidates and association between

successive frames. This method makes it possible to generate reliable tracklets for the global

spatio-temporal association method proposed in Chapter 3. In Chapter 6, I furthermore

extended the method to solve the joint problem of selecting an optimal set of tracklets from

redundant candidate tracklets and global associating tracklets in order to become more

robust under dense conditions.

In Chapter 7, I proposed a cell-tracking method that enables us to track cells that move

largely when the increment in time-lapse imaging cannot be shortened to monitor a wide

area in 3D. The method exploits the observation in which nearby cells under high-density

conditions exhibit similar motion patterns by introducing global motion estimation and

local pairwise spatial relationships. This method exhibited better tracking accuracy on

synthetic point-sets compared to current methods [Kofahi06][Xiao10].

Finally, in Chapter 8, I presented an application of automatic cell tracking for wound

healing assay in vitro to demonstrate how effectively automated cell-tracking systems can

provide detailed spatio-temporal cell behavior metrics for biological analysis.

9.2 Comparison of the proposed methods

In this section, I discuss advantages and disadvantages of the proposed methods.

The tracking-methods proposed for high-density conditions in Chapters 5 and 6 may not

outperform tracking-methods proposed in Chapters 2 and 3 when an experiment is done

under low-to-middle density conditions. Therefore, for low-to-middle density conditions,

the methods proposed in Chapters 2 and 3 are better from the aspect of computational

cost. Thus, I discuss advantages of methods for low-to-middle and high density conditions

respectively.

I first discuss the methods proposed for low-to-middle density conditions. When cells

partially overlap through long-term, the partial contour matching method proposed in

Chapter 2 is better than the global association method proposed in Chapter 3 since the

global data association method cannot link tracklets where their temporal-distance is larger

than a spatio-temporal window. For example, neural stem cell tend to partially overlap

through long-term. In such case, the partial contour matching method has advantages.

On the other hand, in the partial contour matching method, a switching error occurs

when a false positive segmentation appears near a mitotic cell. Therefore, the global associ-
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Figure 9.1: Example image of false positive. Red box indicates a chip of a cell. Blue box

indicates a cell main body. In this example, current cell detection methods tend to detect

both of them.

ation method is better when false positives of detection tend to occur rather than long-term

partial overlapping. For example, a cell type tend to extend their bodies during migration

as shown in Figure 9.1. In that case, a chip of a cell is often detected as a false positive by

automatic detection. In such case, the global association method has advantages.

Next, I discuss the methods proposed for high-density conditions. The method for

solving both cell detection and association proposed in Chapter 5 has an advantage from

the aspect of computational cost. The method well works when the segmentation results

from initialization are good. For example in Figure 5.3, the boundaries of the cells in

the initial frame are clearer and the cell regions are well segmented. In such case, the

method proposed in Chapter 5 is better. The method proposed in Chapters 5 and 6 use

multiple-thresholding in preconditioning images for candidate region detection based on an

assumption that the intensities on the inside of a cell are slightly higher than those at its

boundaries among touching cells. Thus, these methods have a disadvantage when cells often

deeply overlap, in which the intensities at boundaries are higher than those on the inside

of a cell. This work addressing the problem remains as a future work.

The method proposed in Chapters 7 has advantages for a case when cells move largely

since the increment in time-lapse imaging cannot be shortened to monitor a wide area in

3D. However, the methods does not address the cases that detection results include many

errors under high-density. Combining the method using global motion and local pairwise

relationships to the method proposed in Chapter 6 may improve the performance for such

problem.

9.3 Future directions

Although my tracking methods exhibited better tracking performances compared with cur-

rent tracking methods under dense conditions, they have limitations. For more detailed
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cell image analysis including detailed cell shape analysis, differentiation analysis, and cell

lineage analysis, it is necessary to achieve higher accuracy of tracking and individual cell

segmentation. In this chapter, I discuss several ideas to improve and extend the proposed

methods.

Improving tracking accuracy: associating score of tracklets

With my methods, the associating score was computed on the basis of a spatio-temporal

distance in global tracklet association. After associating the tracklets, the cell trajectories

are interpolated. However, there were some unnatural results, in which a cell trajectory

passed in the background area, when I compared the tracking results with original data. I

argue that using interpolated trajectories with original data to compute association scores

of tracklets mitigates this type of error. For example, if the interpolated trajectory between

associated tracklets passes in the background, the association score is penalized. This idea

may contribute to selecting the correct tracklet association.

Improving tracking accuracy: tracking using landmark

With my methods, all cell tracklets are equally treated in the objective function of opti-

mizing association, and the optimization problems are solved at once while detection and

association of some cells are clear and those of others cells are not. On the other hand, a

human annotator first detects and annotates the clearer cells, which are brighter or located

on the boundary of a cluster, then identifies the other cells based on the first identified cells

as a landmark when a movement distance is large. For example, to find landmark cells, a

saliency map and a pair-wise structure of cells may be used. The position in relation to the

landmarks is used for association of the other cells after identifying the landmarks. This

idea may contribute to improving the tracking accuracy.

Detailed cell shape segmentation

In this thesis, my aim was cell-position tracking rather than segmentation of an entire

cell region with a complex shape. The proposed methods contribute to analyzing cell

behavior metrics including the number of cells, migration speed, and number of mitoses

over time. However, in biological research, detailed cell shape analysis is an important

task. For example, cell appearance differs with cell quality, for instance, an old fibroblast

cell tends to spread and become larger than a younger cell. It is necessary to accurate

segment detailed cell shapes. This remains for future work. In individual detailed cell shape

analysis, the density of cell shape is usually not too high since cell shape may be limited

due to surrounding cells under confluence conditions and it is too difficult to recognize the

detailed cell shape. Thus, the target condition is low-to-middle. Several methods have been
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proposed to segment cell regions and background under such conditions [Yin10b]. These

methods can segment cell regions though they cannot segment individual cell regions. My

tracking results reported in this thesis should be of use in segmenting cells with complex

shapes by incorporating the foreground-and-background segmentation methods.

Interactive system for cell image analysis

Automated cell-tracking systems have not been widely used for biological research yet

though many tracking methods have been proposed. One of the main reasons is that

there are many variations in analysis targets of cell images including cell types, culture

conditions, magnification of microscope, and microscope types. Tracking accuracy tends

to dramatically decline if the target images are different. In particular, cell detection and

segmentation are adversely affected by the image conditions. It is difficult to develop the

perfect tracking method for all cell image conditions. If multiple methods are integrated in

an automated system, a biological user usually cannot select an optimal method from the

menu. An interactive system is important to address this issue. Given few image samples

that are manually annotated and answers for prepared questions, which include cell and

microscope types etc., the system automatically suggests optimal tracking and shows the

tracking results of the sample data by comparing the performance of methods. The sample

annotation data are also used for training data of learning algorithms.

In addition, the required tracking accuracy is different from the analysis, in which high

accuracy is not required to analyze cell motion and almost perfect accuracy is required for

cell lineage analysis. To obtain perfect tracking results, manual correction is required. To

facilitate manual correction, the system shows the area when the automated results do not

seem reliable. The collection results are also used as training data to boost a more accurate

model. I argue that the interactive system contributes to cell behavior analysis in biological

research.



Appendix A

Performance metrics

In this appendix, details of the performance metrics used for this thesis are introduced.

One of the main aims of the automated cell tracking is obtaining fine-grained information

of cell behaviors. For the measurements of cell behaviors, the number of cells, the density

of cells, the speed and direction of cell migration, the number of mitosis events and the cell

division time are often computed and analyzed in many biological works. To obtain these

measurements, cell tracking provides the track information and cell mitosis information. In

general, the track information consists of an identity of the track, and a sequence of cell

locations (i.e., positions or regions) at each frame. The cell mitosis information indicates

the cell division event that includes the mother-daughter relationship and timing. These

output information can be divided to three types of information i.e., cell detection, track

identity and mitosis information. I introduce the performance metrics for evaluating these

elements respectively.

A.1 Preparation for evaluation

To create a ground-truth, we roughly annotated the cell centers at each frame by hand using

an annotating system which was developed in CMU Cell Image Analysis Consortium. The

other annotation systems are provided for plug-in of Image-J. Figure A.1 shows tracking

annotation results under high-density conditions. In the annotation, a cell ID is assigned to

a cell. An annotator clicks a center-like position of a target cell at each frame until the end

of the sequence in a subjective manner, where the annotated positions were not exactly the

center positions of the cell. The annotated position and the cell ID are registered to the

system for each cell at each frame, representing ’(x, y), frame-index, cell-ID’. (x, y) indicates

the annotated position in the image.

When a tracking target cell divides to two cells. The track of the dividing cell is termi-

nated and two new IDs are assigned for the children cells. The relationships of the children
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Figure A.1: Example images of manual annotation. Top: annotation results of cell ’1’.

Bottom: annotation results of cell ’2’.

IDs and the parent ID are registered as representing ’parent-ID, child-ID’. This annotation

process was done for all target cells. Here, automated tracking results were also registered

using the same format.

After annotating cells, correspondences between tracking results and ground-truths are

identified at each frame. I here use a global nearest neighbor (GNN) method with Euclidean

distance between annotation positions and center positions of automated tracking at each

frame. The distance defines a cost to assign a tracking result to a ground-truth at each

frame. A tracking result and a ground-truth are paired only if the distance between them

is smaller than a threshold. If the distance is larger than the threshold, the tracking results

and ground-truth have no pair i.e., the tracking results is counted as a false positive and

the ground-truth is counted as a false negative. Basically, the threshold is set based on an

average of major radii of cells.

As the results of this step, a truth-to-track paring map is obtained. I show example

trajectories and the results of truth-to-track paring map in Figure A.2 (a) and (b), respec-

tively. Track A is paired with truth 1 from t = 1 to 5, then Track A is paired with Truth 2

after t = 6. Track C has no pair on t = 3 and 4, these are false positives. Truth 2 has no

pair on t = 8, this is a false negative. Once truth-to-track pairing map is made, performance

metrics can be calculated.
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Figure A.2: (a) Example trajectories of track and gorund-truth. (b) Truth-track pairing

map. Here, truth indicates a trajectory of an actual cell, Track indicates a trajectory on

tracking results.

A.2 Performance metrics for detection

To evaluate the accuracy of cell detection, recall and precision are often used. Recall is the

ratio of the number of detected cells to the total number of cells in ground-truth. Precision

is the ratio of the number of detected cells to the number of the detected objects. The

trade-off between recall and precision is well-known. Greater precision decreases recall and

greater recall leads to decreased precision. The F-measure is the harmonic-mean of Precision

and Recall and takes account of both measures. The metrics can be computed as:

recall =
TP

(TP + FN)
(A.1)

precision =
TP

TP + FP
(A.2)

F −measure =
2× recall × precision

(recall + precision)
(A.3)

where TP is true positives; FP is false positives; TN is true negatives; and FN is false

negatives. In the example in Figure A.2, TP is 17, FP is 2, and FN is 1. Thus, recall is

0.944, precision is 0.895, and F-measure is 0.919.

A.3 Performance metrics for tracking

To evaluate the accuracy of cell tracking, I used the association accuracy and the target

effectiveness.The association accuracy is the number of correct associations divided by the

number of total associations on the ground-truth. I show an example of the tracking results

in Figure A.3 (a). The red color branch indicates one association between successive frames
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Association accuracy 26/33 = 0.79

Target Effectiveness 30/39= 0.77

Ground 
truth

Tracking 
result

Track 1

Track 2

Track 3

Track 6

Track 7

Track 8 

FN Track 5
Lost Assign new ID Tracked 

object

False 
Negative

FN

FP False 
Positive

Track 4

FN

FP

Truth A

Truth B

Truth C

Truth B-1

Truth B-2

Truth C-1

Truth C-2

Truth A

Truth B

1

1

2

2

1

2

3

1

2

4

1

2

5

1

2

6

1

-

7

N

-

8

5

-

9

5

-

time
truth

10

5

-

Truth C

Truth B-1

3

-

3

-

3

-

N

-

3

-

3

6

-

6

-

6

-

6

-

6

Truth B-1

Truth C-1

-

-

-

-

-

-

-

-

-

-

7

-

7

3

7

3

7

8

7

8

Truth C-2 - - - - - - 8 8 3 3

#observation 
of track

6

5

5

5

5

2

2

#observation
of truth

10

5

6

5

5

4

4

(a)

(b)

#correct 
association

7

4

3

4

4

2

2

#association 
of truth

9

5

5

4

4

3

3

30 3926 33Total

Association accuracy Target Effectiveness

Switch 
to noise

Figure A.3: (a) Examples of correspondence of tracking results and ground-truth. (b) Truth-

track pairing map of (a) and target effectiveness for each truth trajectory. N indicates no

assigning.

on the ground-truth, the blue circles are track objects that are paired with the cells on the

ground-truth, and the blue color branch indicates one association between successive frames

on the tracking results. If assigned track IDs are same between two successive frames in the

truth-to-track paring map, the association is counted on a correct association. For example

in Figure A.3 (b), Truth A has 9 associations from frame 1 to 10. An association between

frame 1 and 2 (1-to-2) for Truth A is counted on a correct association. Associations for frame

6-to-7 and 7-to-8 are counted on incorrect associations. In this example, the total number

of correct associations is 26 and the total number of associations on the ground-truth is 33.

Therefore, the association accuracy is 0.79 (26/33).

To compute target effectiveness, each truth (human annotated) is first assigned to a

track (computer generated) that contains the most observations from that ground-truth.

Then target effectiveness is computed as the number of the assigned track observations

over the total number of frames of the truth. It indicates how many frames of targets are

followed by computer-generated tracks.
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Figure A.4: Evaluation of mitosis branching.

I show an example of truth-track paring map in Figure A.3(b). Truth A is paired with

both of track 1 and 5. The number of observation of track 1 paired with Truth A (i.e., the

number is 6) is larger than the number of track 5 paired with truth A (i.e., the number is

3). Therefore, truth A is assigned with track 1. In the same way, longest observation track

is assigned with each truth. Then, target effectiveness is calculated. In this example, the

total number of the assigned track observations is 30 and the total number of frames of

truth A is 39. Therefore, the target effectiveness is 0.77 (30/39).

A.4 Performance metrics for identifying cell division

Cell lineage is also important for stem cell research [Ravin08][Chisholm00], as it provides

fine-grain quantification measurements of mitosis, such as division time and synchrony of

mitosis. To accurately generate cell lineages, the mitotic branching correctness [Bise11] is

also an important measure. The mitotic branching correctness measured the accuracy of

mother-daughter relationships between tree branches. Figure A.4 shows an example of a

mitosis branch, black lines indicate ground-truth trajectory, and red dotted lines indicate

tracking results. In the ground-truth, there is a birth event at time t in which cell i divides

into cell j and k. If the automatic tracking results include a birth event of the cell i′ that

corresponds to cell i, and children j′,k′ of the cell i′ are also corresponded to cell j and

k, and the time distance between the two birth events, ϵ = ∥t − t′∥, is close enough (i.e.,

ϵ < θϵ), it is considered as a correctly detected mitosis branching (TP). If the condition

is not satisfied, then it is a false negative error (FN). For a mitosis event that is detected

by automatic tracking, if there is no mitosis event in the ground-truth that can correspond

to it in terms of cell identities and timing, it is considered as a false positive error (FP).

With these definition, recall and precision of mitotic branching correctness are computed.

In example in Figure A.3, recall is 0.5, precision is 1.0.
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