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Abstract

Nuclear fusion is expected to become one of the main energy sources in the future society. The tokamak,
which confines the plasma in the shape of a “doughnut” by magnetic fields, is regarded as the leading
candidate for magnetic fusion power plant. There is a special class of tokamak, called the spherical
tokamak (ST), which confines the plasma in the shape closer to a sphere rather than a doughnut.
The ST has two advantages over the conventional tokamak: being more compact and having better
stability at high β (β is the ratio of the plasma pressure to the magnetic pressure), leading to the
possibility of realizing a more economical fusion power plant.

In order to realize the ST fusion power plant, the elimination of (or at least reduction of the size
of) the ohmic heating (OH) solenoid is necessary. The OH solenoid is the coil located on the inboard
side of the torus which is normally used to drive the plasma current (necessary to confine the tokamak
plasma) inductively. However, there are two fatal disadvantages: inductive current drive cannot be
used to drive the plasma current in steady state, and it occupies the precious space on the inboard side
of the torus. A new method of non-inductive plasma current drive, capable of steady state operation,
is needed. Radio frequency (RF) waves offer a possibility to drive the plasma current in steady state by
giving their momentum to the plasma continuously. Among RF waves, the lower hybrid wave (LHW)
is promising due to its high current drive efficiency during the initial phase of tokamak (including ST)
plasmas. Although many successful demonstrations of non-inductive plasma current drive using the
LHW have been reported, the development of efficient plasma current drive by the LHW in ST devices
has just begun.

In the Tokyo Spherical Tokamak-2 (TST-2) device, located on Kashiwa Campus of the University
of Tokyo, non-inductive plasma current drive experiments using the LHW at a frequency of 200MHz
are being conducted. Although nearly 20 kA of plasma current has been achieved already, the current
drive efficiency is still low, and needs to be improved. In order to accomplish this, it is necessary to
understand the physics of current drive in the initial ST plasma driven by the LHW, and to use this
knowledge to improve the efficiency and reach higher levels of plasma current. Direct measurements of
the LHW amplitude and wave number in ST devices can provide important information because the
wavenumber determines wave propagation and absorption in the plasma.

A new method for measuring the wavenumber of the LHW using an electrostatic probe with an
embedded high impedance (100 kΩ) non-magnetic resistor is suggested and used for LHW wavenumber
measurement at 200MHz in TST-2. The LHW is the slow wave and is an electrostatic wave, which is
characterized by the oscillation of the electrostatic potential φp. The electrostatic probe is used with
an expectation to measure the temporal variation of φp associated with the LHW directly because
the electrostatic probe can measure the electrostatic potential directly. The reason for using a high
impedance resistor is to reduce the current drawn from the plasma to suppress the perturbation
caused by the probe. Also, φp is linearly related to the floating potential Vf , which is measured
by the electrostatic probe with high impedance. By measuring the phase difference between signals
detected by such high-impedance-embedded electrostatic probes (high impedance Langmuir probes),
the wavenumber of the LHW can be measured.

A probe assembly consisting of three high impedance Langmuir probes, a single magnetic loop, and
a single plain electrostatic probe (plain Langmuir probe) is used to measure the LHW wavenumber at
200MHz in RF start-up plasmas with the plasma current of up to 2 kA, electron density of 4×1016 m−3,
and electron temperature of up to 50 eV in TST-2. The LHW is launched from the dielectric-loaded
waveguide array antenna (grill antenna) and the wavenumber parallel to the toroidal magnetic field
(k‖) of the main lobe of the launched wave is 40m−1.

The waves which can exist in the RF start-up plasma are limited to three types: the fast wave,
the slow wave (LHW) and the electromagnetic wave. Based on the calibrated sensitivity of the probe
assembly to the electromagnetic wave using a coaxial calibrator, the ratio of signal amplitudes measured
by the high impedance Langmuir probes (∼ 4 mV) to that measured by the magnetic probe (∼ 6mV)



cannot be explained by the fast wave nor the electromagnetic wave. Therefore, it can be concluded
that the LHW makes the dominant contribution to the measured signal. It is also shown that the
component of current at 200MHz drawn from the high impedance Langmuir probe is estimated to be
less than 0.64mA, at least by 40% smaller than that drawn by the plain Langmuir probe of 1.1mA,
signifying the effectiveness of using a high impedance resistor to measure the signal closer to the
floating potential at 200MHz, and therefore closer to that originating from the LHW.

Measurements of the identical wave using different pairs of the high impedance Langmuir probes
by rotating the probe assembly gave the same phase difference, confirming the validity of wavenumber
measurement. The direction of the measured wavenumber was nearly along the toroidal direction and
counter-clockwise viewed from the top, consistent with the direction of the main component of the k‖
spectrum of the launched wave. Meanwhile the measured absolute value of the toroidal wavenumber
was k‖ = 19.6 ± 11.0m−1, smaller by a factor of two compared to the main wavenumber component
of the wave launched by the grill antenna, k‖ = 40m−1. This difference cannot be explained by
a spatially uniform cold plasma model with Maxwellian electron velocity distribution function, even
with the inclusion of k‖ upshift/downshift and the presence of two different wavenumbers.

A possible scenario to explain the measured toroidal wavenumber of k‖ = 19.6 ± 11.0m−1 was given
by a non-Maxwellian electron velocity distribution function with a larger population of fast electrons
moving in the direction of the main lobe of the launched wave compared to the Maxwellian distribution,
indicating that the contribution of fast electrons to wave damping is important. This scenario suggests
that the main component of the launched wavenumber around k‖ = 40m−1 is absorbed by such fast
electrons before reaching the probe assembly, and the wavenumber components not absorbed by the
plasma reached the probe assembly, and were detected as k‖ = 19.6 ± 11.0m−1. From the Landau
damping condition, the measured value of k‖ = 19.6 ± 11.0m−1 requires fast electrons with energies
in the range 2.8 keV (for k‖ = 40m−1) to 11.2 keV (for k‖ = 20m−1) during the initial phase of RF
start-up plasmas in TST-2.
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Chapter 1

Introduction

1.1 Nuclear Fusion

Nuclear fusion is expected to be one of the main energy sources in the future. One of its advantages
is the high energy conversion efficiency based on the equation derived by Albert Einstein,

E = mc2, (1.1)

where E, m, and c are energy, mass, and the speed of light, respectively. This equation indicates that
the mass multiplied by the square of the speed of light is equivalent to the energy, and implies that the
mass change of ∆m can be converted to the energy of ∆mc2. This relationship is realized in reactions
of atomic nuclei such as nuclear fission or nuclear fusion. The physical origin of this energy is the
difference in nuclear binding energies depending on the atomic species as shown in Fig. 1.1. Since the
binding energy is defined as the energy necessary for splitting nuclei into individual pieces, nuclei with
higher binding energy per nucleon are in lower energy states. Therefore, energy is gained by fusion
or fission of nuclei in the positive or negative gradient region of Fig. 1.1, and the amount of energy
gained per change of mass number becomes larger as the absolute value of the gradient increases.

There are many kinds of fusion reactions. Some of them are listed below [2]:

D + T → α + n + 17.6MeV, (1.2)
D + D → He3 + n + 3.27 MeV, (1.3)
D + D → T + p + 4.03MeV, (1.4)

D + He3 → α + p + 18.3MeV, (1.5)

where symbols used in Eqs. (1.2)–(1.5) represent

n : neutron, 0n1,

p : hydrogen nucleus (proton), 1H1,

D : deuterium nucleus (deuteron), 1H2,

T : tritium nucleus (triton), 1H3,

α : helium nucleus (alpha), 2He4,

He3 : helium-3 nucleus, 2He3.

The D-T fusion reaction Eq. (1.2) has the highest fusion cross section up to a deuteron energy of
300 keV as shown in Fig. 1.2 and is the prime candidate reaction for a fusion power plant. In the D-T
reaction, deuterium (D) and tritium (T) fuse to produce energetic neutron and alpha particle (helium
nucleus). The alpha particles heat the plasma to maintain the pressure necessary for further fusion
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Figure 1.1: Binding energy per nucleon [1].

reactions. A criterion for a power producing thermonuclear reactor was considered by Lawson, and is
known as the Lawson criterion [3]. Using this criterion, the condition for D-T reactions to continue
without external power is known as the ignition condition [4]

nTτE > 3 × 1021 m−3 keV s, (1.6)

where n and T are the plasma density and temperature, and τE is the energy confinement time defined
as the e-folding decay time of the plasma energy due to the heat conduction loss. A set of parameters
satisfying this condition is, for example, n = 2 × 1020 m−3, T = 10 keV, and τE = 3 s.

1.2 Plasma

At high temperatures necessary for nuclear fusion, virtually all atoms are ionized and they behave
as an ionized gas. This state of matter is called the plasma, in which free ions and free electrons
interact with each other through the electromagnetic force. In this section, two fundamental parameters
for describing the plasma, temperature and density, are defined under near-equilibrium state using
statistical mechanics, and then pressure is introduced. Also, characteristic quantities of the plasma such
as plasma frequency, Debye length, Coulomb collision frequency, and plasma resistivity are described
[5].

1.2.1 Temperature and Density

In a near-equilibrium state, in which the particles collide with each other more often than energy
and particle replacement, it is reasonable to use equilibrium statistical mechanics to give a good
approximation to the temperature. In statistical mechanics, based on the principle of equal a priori
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Figure 1.2: Experimentally measured cross sections for the D-T, D-He3, and D-D fusion reactions.
1 barn= 10−28 m2 and KD represents a deuteron kinetic energy [2].

probabilities, one thinks of the number of microstates Ω of a system where a specific particle has
an energy E in the plasma whose total energy is Etot (ÀE) including this single particle. Here, the
plasma, with the specific single particle removed, is regarded as a thermal bath of energy Etot−E and
the number of microstates Ω can be regarded as a function of the energy of the bath as

Ω = Ω(Etot − E). (1.7)

The entropy S is defined as
S ≡ kBlnΩ, (1.8)

where kB is the Boltzmann constant. The temperature T is defined as

1
T

≡ dS

dE
. (1.9)

This is the definition of temperature for a plasma in a near-equilibrium state. However, this definition
seems to be a formality. In order to connect this temperature to a familiar quantity in physics, it would
be better to consider the kinetic energy of particles. Since the kinetic energy has a certain variance
in a near-equilibrium state, one has to think of the probability of a particle having energy E. This is
accomplished by considering the entropy S as follows.

S = kB [ln Ω (Etot − E)]

' kB

[
ln {Ω(Etot)} +

d {ln(Ω)}
dE

(−E)
]

= kBln {Ω(Etot)} −
dS

dE
E

= kBln {Ω(Etot)} −
E

T
. (1.10)

Dividing both sides by kB gives

ln Ω (Etot − E) ' ln {Ω(Etot)} −
E

kBT
(1.11)
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and exponentiation leads to

Ω (Etot − E) ' Ω(Etot) · exp
(
− E

kBT

)
. (1.12)

This equation shows that the relative probability of a particle to have the energy E is given by the
factor

exp
(
− E

kBT

)
. (1.13)

This factor is called the Boltzmann factor. If, for the time being, any potential associated with the
position of the particle is ignored, the relative probability of a particle to have its velocity within the
volume dvxdvydvz, whose center is (vx, vy, vz) in the three-dimensional velocity space, is given by

exp

{
−m

(
v2

x + v2
y + v2

z

)
2kBT

}
dvxdvydvz,

where m is the mass of the particle. In order to determine the absolute probability P , normalization∫ ∞

−∞
exp

{
−m

(
v2

x + v2
y + v2

z

)
2kBT

}
dvxdvydvz = 1

is needed, and P can be written

P =
1(√

2πvt

)3 exp
(
− v2

2v2
t

)
, (1.14)

where vt ≡
√

kBT
m is the thermal velocity. The reason why vt is called the thermal velocity is described

later. Although P is considered for a single particle in a near-equilibrium state, a number of particles
exist in the real three-dimensional space. Thus, generally, the number density f(x, y, z, vx, vy, vz) of
particles in the six-dimensional phase space is defined such that f(x, y, z, vx, vy, vz) represents the
number of particles contained in the phase space volume dxdydzdvxdvydvz. This f is called the
distribution function. According to this definition, the three-dimensional integral of f over all velocities,
v = (vx, vy, vz), gives the number density of particles per unit volume in the real three-dimensional
space. This number density is denoted by n(x, y, z),

n =
∫

fdvxdvydvz. (1.15)

In the equilibrium state, f is expressed using P as

f = nP =
n(√

2πvt

)3 exp
(
− v2

2v2
t

)
. (1.16)

This is called the Maxwell-Boltzmann distribution function. Now one can approach the familiar concept
of temperature by calculating the average particle kinetic energy for Maxwellian distribution,〈

1
2
mv2

〉
v

=

∫ (
1
2mv2

)
fd3v∫

fd3v
=

3
2
kBT. (1.17)

For the one dimensional case, for example in the z-direction,〈
1
2
mv2

z

〉
v

=

∫ (
1
2mv2

z

)
fd3v∫

fd3v
=

1
2
kBT. (1.18)
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These two equations indicate that the temperature represents the average particle kinetic energy and,
for Maxwellian distribution, the average of any one dimensional component of velocity such as |vz| is√

kBT
m . Thus the velocity

vt =

√
kBT

m
(1.19)

is called the thermal velocity.

1.2.2 Pressure

The pressure is important for considering the equilibrium force balance. In general, pressure is defined
as the momentum flux and is viewed as a tensor quantity. The pressure tensor P is defined in index
form as

Pij ≡ mn 〈(vi − uj)(vj − ui)〉
= mn (< vivj > −uiuj) , (1.20)

where the definition of the mean velocity u, namely ui =< vi >, is used. It can be confirmed that the
velocity relative to the average velocity contributes to the pressure. For the special case of Maxwellian
distribution, drifting at a given velocity u (i.e. f(v − u) = Maxwellian), if this system is seen from
the coordinate system moving at velocity u,

Pii = mn
(〈

v2
i

〉
− 0

)
= mn

kBT

m
= nkBT (1.21)

and
Pij (i 6= j) = 0 (1.22)

are given. If the plasma is immersed in a magnetic field, the temperature depends on the direction
and the pressure can be different in different directions. The off-diagonal component describes the
viscosity.

1.2.3 Plasma Frequency

In equilibrium without any potential, the plasma is in a state of charge neutrality. If a perturbation
is added to the plasma, electrons move much faster than ions because of the large mass ratio (for
example, mi

me
' 1837 where mi and me are the masses of the proton and the electron, respectively).

This breaks charge neutrality and induces an electric field, which introduces a restoring force and the
plasma oscillates. To inspect this oscillation, the continuity equation Eq. (1.23) and the equation of
motion for electrons Eq. (1.24) are used with three assumptions: the plasma is homogeneous, ions are
stationary, and thermal motion can be ignored.

∂ne

∂t
+ ∇ · (neve) = 0, (1.23)

me

(
∂ve

∂t
+ ve · ∇ve

)
= −eE, (1.24)

where e is the elementary charge, and ne and ve are the density and the velocity of electrons, respec-
tively. Here, the electric field E is caused by the perturbation. In order to differentiate the stationary
component and the perturbed component, order separation is performed as

E = E0 + E1 + E2 + · · · , (1.25)

where E0 is the stationary component (E0 = 0 in this case) and E1 is the first order perturbed
component. Higher order components are considered as necessary. Similar order separation can be
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performed on ne and ve. Assuming that the electron motion is one-dimensional and in the z direction,
the continuity equation and the equation of motion reduce to, in first order,

∂ne1

∂t
+

∂

∂z
(ne0ve1) = 0, (1.26)

me

(
∂ve1

∂t

)
= −eE1. (1.27)

These two equations are combined to give Coulomb’s law, which is, in first order,

∂E1

∂z
= − e

ε0
ne1, (1.28)

where ε0 is the vacuum permittivity. Assuming the first order quantities to vary as exp [i (kzz − ωt)]
where kz and ω are the wavenumber along the z direction and the angular frequency, respectively,
partial derivatives can be regarded as ∂

∂t 7→ −iω and ∂
∂z 7→ ikz. Three equations above reduce to

−iωne1 + ikzne0ve1 = 0 (1.29)
−iωmeve1 = −eE1 (1.30)

ikzE1 = − e

ε0
ne1. (1.31)

Eliminating ne1, ve1, and E1, the angular frequency ω is given as

ω2 =
ne0e

2

ε0me
≡ ω2

pe, (1.32)

where ωpe is called the electron plasma angular frequency. Angular frequencies are often simply called
frequencies. For a particle of species s, the squared plasma frequency is

ω2
ps =

ns0 (Zse)
2

ε0ms
, (1.33)

where Zs and ms are the valence and the mass of the charged particle of species s, respectively. This
plasma oscillation is longitudinal with the particle motion in the direction of the wavenumber vector.

1.2.4 Debye Shielding

If a charge exists in vacuum, its potential prevails in space. On the other hand, if a charge is placed in
a plasma, other charged particles in the plasma move according to the potential of the charge placed in
the plasma, and the potential is weakened or “neutralized”. Thus the range that the potential of the
charge extends is limited to the vicinity of the charge. This is a fundamental property of the plasma.
To derive the distance over which the potential survives, we start from the Boltzmann factor. In this
case, an electrostatic potential φ(x, y, z) is involved and the Boltzmann factor given in (1.13) becomes

exp

[
−

(
1
2mv2 + qφ

)
kBT

]
. (1.34)

Under a near-equilibrium state, since the distribution function f is proportional to the Boltzmann
factor, the number density n in the three-dimensional real space is given after integration in three-
dimensional velocity space as

n ∝ exp
[
−qφ(x, y, z)

kBT

]
, (1.35)

where q is a charge of a charged particle. The case of a planar charge in the y-z plane is considered so
that the problem is in one-dimensional. For simplicity, the potential is defined to be zero at infinity,
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and charge neutrality ne = Zni ≡ ne∞ holds where ni is the ion density. Then, from Eq. (1.35),
electron and ion densities are

ne(x) = ne∞ exp
{

e φ(x)
kBTe

}
, (1.36)

Zni(x) = ne∞ exp
{
−eZ φ(x)

kBTi

}
, (1.37)

where Te and Ti are electron and ion temperatures and they are different in general. Since these two
equations stem from the assumption of equilibrium, one must be careful that Te and Ti are spatially
homogeneous, and electrons and ions are in thermal equilibrium separately, i.e., the electrons are in
thermal equilibrium among themselves, and so are the ions. The thermal equilibrium between electrons
and ions is not necessarily reached because the time for energy equilibration between electrons and
ions is much longer than the time scale for energy equilibration among like particles (among electrons,
or among ions) due to the large mass discrepancy between electrons and ions. The Poisson equation
in one-dimensional planar geometry is

ε0
d2φ

dx2
= ene∞

[
exp

{
e φ

kBTe

}
− exp

{
−eZ φ

kBTi

}]
≈ ene∞

[
e φ

kBTe
+

eZ φ

kBTi

]
. (1.38)

In the second line, both |eφ| ¿ kBTe and |eZφ| ¿ kBTi are assumed and Taylor expansion to the first
order was performed. These two assumptions limit the validity of the second line to the range not very
close to the planer charge. The second line becomes

d2φ

dx2
≈

e2ne∞

(
1 + ZTe

Ti

)
ε0kBTe

φ, (1.39)

which leads to

φ ∝ exp
(
− x

λD

)
, (1.40)

where

λD ≡
√√√√ ε0kBTe

nee2
(
1 + ZTe

Ti

) . (1.41)

Here, the subscript of infinity is dropped from ne∞. This λD is called the Debye length and represents
the characteristic length of the potential decay in space. Note that the Debye length is independent
of mass. Often the ion term is not included in the definition of the Debye length, giving

λD ≡
√

ε0kBTe

nee2
. (1.42)

Although the temperature has been considered in Kelvin (K) so far, it is more convenient to express
the temperature in electron volt (eV), which is defined as the energy gained by an electron across the
potential difference of 1V. By definition,

1 eV ≡ e · 1 J = 1.6 × 10−19 J, (1.43)

where J stands for Joule. If we denote T measured in eV as TeV and that measured in K as TK,

eTeV = kBTK (1.44)
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holds. From Eq. (1.44), 1 eV corresponds to

TK =
e

kB
· 1 =

1.60 × 10−19

1.38 × 10−23
' 11604K. (1.45)

Using Eqs. (1.42) and (1.44), the formula for the Debye length is expressed in Te measured in eV as

λD =
√

ε0eTe

nee2
=

√
ε0Te

nee
. (1.46)

For example, if Te is 3 eV and ne is 1016 m−3, which are typical for the edge region of the initial plasma
in fusion devices,

λD =

√
(8.85 × 10−12) × 3

1016 × (1.6 × 10−19)
' 1.3 × 10−4 m or 130 µm. (1.47)

From now on, the temperature T is considered in eV and the thermal energy kBT J is simply denoted
by T , dropping the Boltzmann constant kB.

1.2.5 Coulomb Collisions and Plasma Resistivity

Collision Frequency

In a plasma, an electron loses its momentum by making repeated Coulomb collisions with ions. The
average electron-ion collision frequency < νei > is given by [5]

< νei >=
2

1
2 niZ

2e4 lnΛ

12π
3
2 ε20m

1
2
e T

3
2
e

, (1.48)

where ni is the ion density and Λ ∼
(

Z
12π neλ

3
D

)
. In Eq. (1.48), the ion mass mi is regarded as infinite

and the average is taken over the electron velocity distribution. The average electron-electron and
ion-ion collision frequencies < νee > and < νii > are estimated as

< νee > ≈ nee
4 lnΛ

ε20m
1
2
e T

3
2
e

≈ < νei >

niZ2/ne
, (1.49)

< νii > =
niZ

4e4 ln Λ

12π
3
2 ε20m

1
2
i T

3
2
i

. (1.50)

For Te ∼ Ti and for low Z, the order of magnitude relationship among < νei >, < νee >, and < νii > is

< νei > ∼ < νee > ∼
√

mi

me
< νii > . (1.51)

Equations (1.48)–(1.50) indicate that the collision frequencies become smaller at higher temperatures.
This is an important characteristic of the plasma.

Plasma Resistivity

When an electric field E is applied to a plasma, ions are accelerated in the same direction as E and
electrons are accelerated in the opposite direction to E, generating an electric current in the plasma.
This acceleration is impeded by electron-ion collisions. This is the origin of electric resistivity. In
equilibrium, the plasma current density j is proportional to the applied electric field E,

E = ηj. (1.52)
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Equation (1.52) is the Ohm’s law. The constant η is the resistivity and is related to the electron-ion
collision frequency as [5]

η =
me < νei >

nee2
. (1.53)

Using Eq. (1.48) and the condition of charge neutrality niZ = ne gives

η =
2

1
2 m

1
2
e Ze2 ln Λ

12π
3
2 ε20T

3
2
e

. (1.54)

The resistivity η decreases as the electron temperature Te increases.

1.3 Plasmas in a Magnetic Field

In fusion applications, the plasma temperature is no less than a few eV, or tens of thousands of K.
At such temperatures, no material is useful as a “plasma container” since the plasma will be cooled
down when plasma particles come into contact with a material surface. Fortunately, charged particles
gyrate around magnetic field lines and thus a closed magnetic field configuration can be utilized as a
“plasma container” . In this section, the basic plasma motion in the presence of a magnetic field is
outlined.

1.3.1 Larmor Motion

When a plasma is immersed in a stationary magnetic field, charged particles gyrate around the magnetic
field lines. This is called the Larmor motion and a center of the Larmor motion is called the guiding
center.

If a particle with charge q and mass m moves at a velocity v in a stationary magnetic field B,
the Lorentz force v × B acts on the particle. Taking B in the z direction of the Cartesian coordinate
system so that

B =

 0
0
B

 , (1.55)

the equation of motion is expressed as 

dvx

dt
=

qB

m
vy (1.56)

dvy

dt
= −qB

m
vx (1.57)

dvz

dt
= 0. (1.58)

From Eq. (1.58), the motion in the z direction is a uniform motion with constant velocity. From
Eqs. (1.56) and (1.57),

d2vx

dt2
= −

(
qB

m

)2

vx (1.59)

follows. The solution for vx is given as

vx = v⊥ exp(−iΩt), (1.60)

where
Ω =

qB

m
(1.61)
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is the cyclotron angular frequency, or simply the cyclotron frequency. Note that the cyclotron frequency
changes its sign according to the signs of q and B. Of course the measured value of vx in real space is
given by the real part of Eq. (1.60). Substituting Eq. (1.60) into Eq. (1.56), vy is given as

vy = iv⊥ exp(−iΩt) = ivx. (1.62)

Since the difference between vx and vy is only the factor i, they are simply out of phase by 90◦ and
the amplitudes are equal. Therefore, the particle executes a circular motion at the speed v⊥ in the
x-y plane, perpendicular to B. This is why the perpendicular velocity is expressed in terms of v⊥.
Looking in the direction of the magnetic field (positive z direction), a particle with positive or negative
charge rotates about the magnetic field counter clockwise or clockwise, respectively. In an equilibrium
state and in the absence of a potential, v⊥ is determined by the perpendicular temperature T⊥ as

1
2
mv2

⊥ = 2 × T⊥

2
= T⊥, (1.63)

giving

v⊥ =

√
2T⊥

m
, (1.64)

where the factor 2 in the middle of Eq. (1.63) represents the two degrees of freedom, x and y directions.
Using this v⊥ and the cyclotron frequency Ω, the radius of the Larmor motion rL becomes

rL =
v⊥
Ω

=
√

2mT⊥

qB
. (1.65)

If Te⊥ = Ti⊥, the ratio of the Larmor radii is

rLi

rLe
=

√
mi

me
≈

√
1873 ' 43. (1.66)

For a hydrogen plasma with B = 0.1 T and Te⊥ = Ti⊥ = 3 eV,

rLe =

√
2 × (9.11 × 10−31) × {(1.6 × 10−19) × 3}

(1.6 × 10−19) × 0.1
' 58µm, (1.67)

rLi =

√
2 × (1.67 × 10−27) × {(1.6 × 10−19) × 3}

(1.6 × 10−19) × 0.1
' 2.5mm. (1.68)

In a collisionless plasma in a homogeneous magnetic field and with no potential, the guiding center
keeps moving along the magnetic field line at a constant velocity.

1.3.2 Guiding Center Drift

If a stationary electric field also exists, or if the magnetic field has a gradient in its strength or a
curvature, the guiding center (center of the Larmor motion) gradually drifts away from the magnetic
field line in a direction perpendicular to the magnetic field. The three drift motions are described
below [5].

E × B Drift

In the presence of a uniform electric field in addition to a uniform magnetic field, the guiding center
drifts across the magnetic field with velocity

vE =
E × B

B2
, (1.69)

which is called the E × B drift. From Eq. (1.69), it is found that the perpendicular component of
the electric field (E⊥) to B contributes to the E × B drift and that neither a charge nor a mass of
particles are relevant to it.
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∇B Drift

If the magnetic field is inhomogeneous, other drift motions of the guiding center occur. These drift
motions are considered for the case in which the Larmor radius is much smaller than the typical scale
length of magnetic field variation,

rL(
B

|∇B|

) ¿ 1. (1.70)

If the variation of B is of the form exp (ikx) or exp (kx), Eq. (1.70) yields

krL ¿ 1, (1.71)

where krL is a small expansion parameter. A physical quantity P can then be expanded as

P = P0 + P1 + P2 + · · · , (1.72)

where
Pi ∝ (krL)i. (1.73)

Expressing B and v in the form of Eq. (1.72) and substituting them into the equation of motion, the
drift velocity in the presence of a magnetic field gradient is obtained by equating each order of (krL)i

as
vgrad =

W⊥

q

B ×∇B

B3
, (1.74)

where
W⊥ =

1
2
mv2

⊥ (1.75)

is the component of kinetic energy perpendicular to the magnetic field. This drift is called the gradient
B drift.

Curvature Drift

The drift velocity in the presence of a magnetic field curvature is derived based on the same asymptotic
expansion. For the vacuum field (magnetic field with very low plasma pressure and current), ∇×B = 0
is approximately satisfied. The curvature drift is given as

vcurv =
2W‖

q

B ×∇B

B3
, (1.76)

where
W‖ =

1
2
mv2

‖ (1.77)

is the component of kinetic energy parallel to the magnetic field.

1.4 Magnetic Confinement of Plasmas

In order to realize the fusion reaction, one of the promising methods is to confine the plasma in a
closed magnetic field configuration, taking advantage of the Larmor motion of charged particles. In
this section, the leading candidate for a magnetic fusion power plant, called the tokamak, and its
derivative, the spherical tokamak, are described.
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Figure 1.3: Plasma loss when only the toroidal field is present. (1) A charge separation occurs due to
the ∇B drift and the curvature drift. (2) An electric field that points upward is induced. (3) Plasma
is lost via the outward E × B drift.

1.4.1 Tokamak

A closed magnetic field configuration in the form of a torus can confine the plasma effectively. The
tokamak is an axisymmetric configuration with a large toroidal field and a significant poloidal field
generated by the DC toroidal current [2]. The reason why not only the toroidal field but also the DC
toroidal current are required for confining the plasma is explained below. An international collaboration
project, the ITER project, is also introduced.

Necessity of the Plasma Current for Confining the Plasma

The plasma cannot be confined by the toroidal field alone. This is explained in Fig. 1.3. The toroidal
field has both spatial gradient and curvature because it is formed by a current flowing along the
symmetry axis of the torus. The toroidal field is inversely proportional to the distance from the
symmetry axis (i.e., the major radius) of the torus. Therefore, ∇B is towards the symmetry axis. If
the field is as shown in Fig. 1.3, the plasma would be lost by processes (1)–(3) shown in Fig. 1.3: (1)
Ions and electrons drift downward and upward, respectively, due to the ∇B drift and the curvature
drift according to Eqs. (1.74) and (1.76), causing charge separation. (2) A vertical electric field pointing
upward is formed. (3) The plasma would then be lost quickly by the outward E × B drift according
to Eq. (1.69).

To prevent the plasma from being lost, the charge separation must be prevented. This can be
achieved by adding another magnetic field that encircles the plasma poloidally to create a helically
twisted magnetic field configuration. The helical magnetic field can prevent charge accumulation by
connecting the top and the bottom of the torus by magnetic field lines. This additional magnetic field
is called the “poloidal field” and is generated by the “plasma current” flowing in the toroidal direction.
Since the plasma current is a ring current, a force to expand the toroidal loop is generated. A vertical
field must be applied to generate an inward force to balance this expansion force.
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Figure 1.4: Concept of the conventional tokamak.

Tokamak Configuration

There are three fundamental constituent elements for the tokamak: The toroidal field Bt, the plasma
current Ip, and the vertical field Bv. Figure 1.4 shows these elements for generating them in conven-
tional tokamaks. The toroidal field Bt is produced by the toroidal field coils (yellow). Although only
two toroidal field coils are shown in Fig. 1.4, in practice more toroidal field coils are used to ensure
axisymmetry of Bt. The plasma current Ip is induced by temporally varying the current flowing in
the Ohmic Heating (OH) solenoid (light blue). The vertical field Bv is created by the vertical field coil
(light green).

Toroidal Coordinate System

Figure 1.5 shows the coordinate system used for tokamaks. R0 and a are called the major radius and
the minor radius of the torus, respectively, while r is the distance from the center of the plasma cross
section. θ is called the poloidal angle. The direction of increase/decrease of θ is called the poloidal
direction. Three quantities are defined: the aspect ratio A, the plasma elongation κ, and the safety
factor q, which are all relevant for stability of the tokamak plasma. The aspect ratio A is defined as
the ratio of the major radius R0 to the minor radius a of the torus,

A =
R0

a
. (1.78)

The elongation κ is defined as

κ =
b

a
. (1.79)
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Figure 1.5: Toroidal coordinate system.

The plasma cross section shown in Fig. 1.5 is called the poloidal cross section. Since the magnetic
field line draws a helix whose axis is along the toroidal direction, during one rotation of the field line
in the poloidal direction, a field line passes through the same poloidal cross section a certain times.
The safety factor q is defined as this number, i.e., the number of times a field line passes through the
same poloidal cross section in the toroidal direction while it rotates once in the poloidal direction. For
example, using the poloidal magnetic field Bp, the safety factor q is given for a circular poloidal cross
section tokamak as [2]

q(r) =
rBt(r)

R0Bp(r)
1√

1 − r2/R2
0

. (1.80)

These three quantities, A, κ, and q are used in Subsection 1.4.2.

ITER

Presently, the tokamak is the leading candidate for a fusion reactor and the ITER (International Ther-
monuclear Experimental Reactor) project is under progress as an international collaboration among
the United States of America, China, European Union, India, Korea, Japan, and Russia. The principal
aim of the ITER project is to investigate the state of nuclear fusion burning and to achieve the physics
gain factor Q of greater than 10 [6], where Q is defined as [2]

Q ≡ net thermal power out
heating power in

=
total thermal power out − heating power in

heating power in
. (1.81)

The total fusion power is expected to be 500MW. The toroidal field and the plasma current are 5.3T
and 15MA, respectively, and the major and minor radii are 6.2m and 2.0m, respectively [6]. Figure 1.6
shows a cutaway view of ITER [7]. ITER is being constructed in south France. The construction work
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Figure 1.6: ITER [7].

on ITER began in 2010. The first plasma in ITER is scheduled to be obtained in 2020, and deuterium-
tritium operation is scheduled to start in 2027 [8]. The cost for building ITER is estimated to be
2755 kIUA. “IUA” is defined as 1 IUA = $1000 (Jan. 1989 value) [7].

One of the great contributions which lead to the initiation of the ITER project was the discovery
of an improved confinement mode, called the high confinement mode, or H-mode, in the ASDEX
tokamak in 1982 [9]. In H-mode, the energy confinement time τE becomes larger than that in the
usual low confinement mode, or L-mode by a factor of about 2 [10]. The H-mode was observed in
plasmas heated by Neutral Beam Injection (NBI), in which high energy neutral atoms are injected into
the plasma, ionized by collisions within the plasma, and heat the plasma [11]. With the help of the
H-mode, plasma with Qequiv ' 1 was studied extensively in large tokamak devices such as TFTR [12],
JET [13], and JT-60U [14]. Qequiv is the expected Q if the fuel ions were replaced by a 50%-50%
mix of deuterium and tritium. The knowledge obtained through these experiments will be utilized
in the ITER project. The JT-60SA tokamak is being constructed in Japan under collaboration with
EU to replace JT-60U [15,16]. JT-60SA serves as a “satellite” tokamak of ITER to both support and
complement ITER.

1.4.2 Spherical Tokamak

The spherical tokamak (ST) is a small aspect ratio tokamak, with typically A < 2. The concept of
ST was introduced in 1986 [17]. Figure 1.7 shows the magnetic configuration of the spherical tokamak
(sometimes called the spherical torus). As can be seen in Fig. 1.7, the ST plasma extends closer to
the symmetry axis of the torus device compared to the conventional tokamak plasma, leading to the
potential advantage of being compact. The major advantage of the ST is its superior stability at high
plasma β. The plasma β is defined as the ratio of the plasma pressure p to the magnetic field pressure
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Figure 1.7: Comparison of the conventional tokamak and the spherical tokamak (torus) [18].

B2

2µ0
,

β ≡ p

B2/2µ0
. (1.82)

In high β plasmas, the same plasma pressure (and therefore, fusion power density) can be achieved at
a lower confining magnetic field. The volume average β, 〈β〉v, represents β of the configuration and is
denoted by

〈β〉v =
〈p〉v

〈B2〉v /2µ0
. (1.83)

The toroidal beta

βt =
〈p〉v

B2
t0/2µ0

, (1.84)

is often used in practice where Bt0 is the toroidal magnetic field at R0. The stability analysis of
tokamak plasmas was pioneered by Sykes [19] and Troyon [20]. Based on their work, the relationship
between the maximum attainable β, and the aspect ratio A is approximately given in terms of βt

without introducing much error as [18]

〈β〉v, max ' βt,max ≈ βN
Ip

aBt0
≈ 5βNκ

Aq(a)
, (1.85)

where βN is a numerically determined coefficient. Equation (1.85) states that 〈β〉v, max is approximately
inversely proportional to A, signifying the advantage of ST to use the magnetic field more effectively
to confine the plasma. This is confirmed experimentally as shown in Fig. 1.8. The attainable βt in
ST is nearly 40%, larger than the highest value achieved in conventional tokamaks of about 13% by
a factor of three.

Therefore, the ST has at least two advantages:

• Plasma position is closer to the symmetry axis of the device compared to conventional tokamaks,
leading to the possibility of being compact.
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Figure 1.8: Toroidal beta βt achieved in START during 1996–1998 as a function of Ip/aBt0 [18]. βT

and BT are identical to βt and Bt0 used in this thesis.
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• The maximum attainable volume average β is larger than that in conventional tokamaks, meaning
the required plasma pressure can be achieved with smaller toroidal field, offering the possibility
of potentially simpler and less massive magnet structure.

Since ultimately nuclear fusion energy should be produced economically, these features of the spherical
tokamak are attractive and desirable.

1.5 Non-Inductive Plasma Current Drive Using the Lower Hy-
brid Wave

1.5.1 Necessity of Eliminating the OH Solenoid

Since the ST plasma extends close to the symmetry axis of the torus, it is difficult to provide enough
space for components such as the OH solenoid, shown in Fig. 1.4. It is desirable to eliminate or at
least reduce the size of the OH solenoid [21,22]. Although the OH solenoid has been used to drive the
plasma current, which is indispensable for the tokamaks, in virtually all tokamaks so far, there are two
fatal disadvantages:

• Since the OH solenoid drives the plasma current by electromagnetic induction and requires the
solenoid current to keep changing in one direction, it cannot be used for steady state current
drive.

• At high plasma temperature, resistive heating of the plasma by the inductively driven current
decreases rapidly because the plasma resistivity, shown in Eq. (1.54), is inversely proportional to

T
3
2
e , though this is not directly relevant to the ability to drive the plasma current.

For these reasons, the development of a method to drive the plasma current non-inductively (in steady
state) without the use of the OH solenoid is highly desired.

1.5.2 Current Drive Efficiencies

Various method of non-inductive current drive have been studied, momentum transfer from waves
or injected particles. The current drive efficiencies using various waves and particle injection are
summarized in Fig. 1.9 [23]. The abscissa is U0, which is the wave phase velocity ω/k‖ or the particle
velocity v0, normalized by the electron velocity ve . The reason for comparing with the electron velocity
is that the electrons are much more effective in contributing to the plasma current because the electron
mass is much smaller than the ion mass. The ordinate is J/P, referred to as the normalized efficiency
factor, where J is the current density and P is the power density required to maintain the current.

It can be seen from Fig. 1.9 that the current drive efficiency is high for U0 < 10−1 or 4 < U0. In
these regions, among the various waves, the lower hybrid wave (LHW) has the second largest current
drive efficiency. The compressional Alfvén wave and the fast magnetosonic wave have slightly higher
efficiencies, but are less well developed. Therefore, the LHW is commonly used to drive the plasma
current.

1.5.3 Non-Inductive Current Drive Experiments Using the LHW

The possibility of using the LHW to drive the plasma current in steady state was pointed out by
Fisch [24–26]. The LHW has been used for plasma current sustainment and/or ramp-up in conventional
tokamaks. During the last decade, current drive experiments using the LHW are also conducted in ST
devices.
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Figure 1.9: Normalized efficiency factor versus U0 = ω/
(
k‖ve

)
for waves or v0/ve for particle injection

at velocity v0 [23]. The abbreviations are. OHMIC: OH solenoid, CAW: Compressional Alfvén Wave,
REB: Relativistic Electron Beam, LH: Lower Hybrid Wave, FM: Fast Magnetosonic Wave, ECRH:
Electron Cyclotron Resonance Heating, ICRH: Ion Cyclotron Minority Heating.
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Plasma Current Sustainment by LHW in PLT

In one of the early successful experiments the plasma current was sustained by the LHW in the
Princeton Large Torus (PLT, R = 1.32 m, a = 0.4m, Bt = 3T) [27, 28] in 1982. Figure 1.10 shows
a schematic diagram of PLT and the lower hybrid apparatus. The LHW with an RF power of up
to 500 kW at 800MHz was excited in the plasma by means of a radiating antenna consisting of a
six-element waveguide array, called the grill antenna. Figure 1.11 shows the behaviors of the plasma
current in deuterium discharges in PLT with and without (solid and dashed lines) RF power. The
plasma current was maintained at 240 kA for 1 second with 130 kW of RF power. The phase difference
between adjacent waveguides of the grill antenna was set to 90◦ and the toroidal field was 3.1T.
With the same setting for the phase difference, a plasma current of 165 kA was sustained for ∼ 3.5
second with up to 70 kW of RF power at the toroidal field of 2.3T. This experiment demonstrated the
capability of the LHW to sustain the plasma current.

Plasma Current Ramp-Up by LHW in JT-60U

In order to eliminate the OH solenoid, plasma current ramp-up to high enough level to confine energetic
ions must be demonstrated without the use of the OH solenoid. An experiment to demonstrate such
an operation was performed in the JT-60U tokamak in 2002 [29–31]. Figure 1.12 shows the coil system
of JT-60U. A successful ramp-up scenario was demonstrated as shown in Fig. 1.13.

The discharge number E041711 consists of three phases, described at the top of Fig. 1.13: (1) Initial
plasma current formation by using induction from the triangularity control coil current (IVT). (2) Non-
inductive Ip ramp-up using the LHW (2GHz) with the electron cyclotron wave (ECW) (110GHz). (3)
Transition to the advanced tokamak phase [32,33] using neutral beam injection (NBI).

The advanced tokamak is a concept to improve the tokamak toward steady-state operation. In the
advanced tokamak, the plasma current is maintained mainly by the self-generated bootstrap current
[34]. The advanced tokamak phase is initiated by NBI, which needs sufficient plasma current and
density to ionize the neutral beam and confine these energetic ions. The plasma confinement improves
as the plasma current increases because the higher poloidal magnetic field reduces the deviation of
ion orbits from the flux surface (determined by the poloidal Larmor radius), as shown in Eq. (1.65).
Since the smaller poloidal Larmor radius reduces plasma transport across the magnetic field [5], higher
plasma current provides improved plasma confinement.

The significance of this experiment is in the demonstration of an integrated scenario from the initial
plasma to a state with high enough plasma current for NBI, which is required for a successful transition
to the advanced tokamak phase without the use of the OH solenoid (see the zero value of IF shown
by the blue dashed line in Fig. 1.13). Note that IVR and IVT also increase as Ip increases to keep
the plasma in equilibrium (radial position and shape) and contributes to plasma current ramp-up,
their contribution is about 20% in terms of the poloidal magnetic flux, and therefore the current is
dominantly driven by the LHW, assisted by the ECW (same as ECRH in Fig. 1.9). The role of ECW
in this experiment is not to contribute to current drive, but to keep the electron temperature high.
This successful result gives a great encouragement to the ST fusion reactor for which the elimination
of the OH solenoid is a necessity [31].

Plasma Current Ramp-Up by LHW in Spherical Tokamaks

In order to demonstrate ST operation without the use of the OH solenoid, non-inductive current drive
experiments using the LHW are being conducted on ST devices. In the Tokyo Spherical Tokamak-
2 (TST-2) device, non-inductive current drive experiments using waves at a frequency of 200MHz
(LHW frequency range) have been conducted using an inductively-coupled combline antenna [35] and
a dielectric-loaded waveguide array (grill) antenna [36]. Detailed information on TST-2 is given in
Chapter 4.

Figure 1.14 shows typical discharge waveforms of a plasma driven non-inductively by waves in the
LHW frequency range using the inductively-coupled combline antenna, which was used on the JFT-2M
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Figure 1.10: Schematic diagram of PLT, RF system, and locations of various diagnostics [28].
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Figure 1.11: Waveforms of the plasma current in PLT with and without (solid and dashed lines) RF
power [27].

Figure 1.12: JT-60U coil configuration and typical equilibria for the lower hybrid current drive phase
(blue) and the neutral beam heating phase (red). The OH solenoid (F coil) was not used in this
experiment. Locations of flux loops and poloidal field pick-up coils are also shown [29].
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Figure 1.13: Integrated scenario from plasma start-up to the achievement of an advanced tokamak
plasma without the use of the OH solenoid [29]. Ip: plasma current, IVT: triangularity control coil
current, IF: OH solenoid current, PLH: LHW power, PPNB and PNNB: positive/negative ion based
neutral beam powers, and nel: line integrated electron density (l is given in the figure).
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Figure 1.14: Typical waveforms of a TST-2 discharge ramped up by the LHW. (a) Plasma current,
(b) ECH and RF powers, (c) line-integrated density (typical path length is 0.88m), (d) vertical field,
(e) loop voltage, (f) soft x-ray emission [35].

tokamak for current drive experiments [37], and was subsequently modified for use on TST-2. Plasma
currents of up to 15 kA were achieved at Bt0 of about 0.1T. Similar plasma currents were obtained
using the dielectric-loaded grill antenna [36] and the dependence of the hard x-ray emission from the
plasma on the launched wavenumber spectrum was studied.

Another non-inductive current drive experiment was conducted on the Globus-M spherical tokamak
(R = 0.36m, a = 0.24m, and R/a = 1.5) [38]. Plasma currents of up to 21 kA were achieved using the
LHW with RF power of 100 kW at 900MHz at Bt0 ∼ 0.4T [39]. It is desirable for STs of the scale of
TST-2 and Globus-M to demonstrate non-inductive ramp-up to a level of order 100 kA.

Currently, the achieved value of non-inductively driven current using the LHW is about 20 kA,
considerably smaller than the desired value of 100 kA. In order to improve the amount of driven
current, a further understanding of the physics of start-up plasmas driven by the LHW is necessary.
As will be described in Chapter 2, the wavenumber determines wave propagation in the plasma and
interaction with the plasma. A measurement of the wavenumber can help clarify the physical picture
of non-inductive start-up plasmas using the LHW, and is therefore important.

1.6 Review of Preceding Studies on LHW Wavenumber Mea-
surement

In this section, three preceding studies on LHW wavenumber measurement are reviewed.
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1.6.1 Electrostatic Probe Measurement in a Linear Device

The LHW was excited by a meander-line antenna in a linear device at Nagoya University, and the
wavenumber components parallel and perpendicular to the static magnetic field (k‖ and k⊥) were
measured by interferometric method and by a double-tip electrostatic probe, respectively [40, 41]. In
this experiment, argon plasma was produced by LHW at a frequency of 289MHz or 432MHz with
RF power of up to 100W at a pressure of 2–3 × 10−4 Torr. The plasma column is 13 cm in diameter
and 130 cm in length. Typical plasma parameters were: electron density 1016–1017 m−3, electron
temperature 3–4 eV, and static magnetic field 0.07T.

Figure 1.15 shows the meander-line antenna used in this experiment. Figure 1.16 shows (a)
the waveforms along the static magnetic field (along the z-axis) measured by the interferometric
method [40] and (b) a movable z-r double-tip electrostatic probe [41]. As shown in Fig. 1.16(a), the
wavelength along the static magnetic field λz was measured from the interferogram and was converted
to k‖. The wavelength perpendicular to the static magnetic field was measured by the z-r double-tip
electrostatic probe tips and was converted to k⊥. In this experiment, the meander-line antenna shown
in Fig. 1.15 was used instead of the helical antenna shown in Fig. 1.16(b). Figure 1.17 shows the
relationship between the ratio k⊥/k‖ and the wave angular frequency for the LHW. This relationship
is the dispersion relation, explained in Chapter 2. Experimental data points showed good agreement
with the theoretical curve of the cold plasma dispersion relation for the LHW.

1.6.2 CO2 Laser Scattering Measurement in Alcator-C

The wavenumber of the LHW was measured using CO2 laser scattering in the Alcator-C tokamak [42].
The purpose of this experiment was to investigate the deterioration of heating and current drive by
the LHW due to the parametric decay instability [43,44], in which a fraction of the LHW is converted
to another wave with different frequency and wavenumber.

Figure 1.18 shows the experimental setup. The LHW was launched from two 4×4 waveguide
arrays (MW1 and MW2). Each waveguide array was fed by four 250 kW, 4.6GHz klystrons, and
adjacent columns of waveguides were phased 180◦ (90◦) relative to each other for heating (current
drive) [45, 46]. Plasma parameters were: toroidal magnetic field B = 8T, line averaged electron
density 1.8 × 1020 m−3 < ne < 2.4 × 1020 m−3, launched LHW power Prf = 260 kW from MW2 alone.
The measurement was performed along a vertical chord at x ≡ R−R0 = +12 cm at E port (Fig. 1.18),
where R0 is the major radial location of the plasma center.

Figure 1.19 shows the principle of wavenumber measurement using CO2 laser scattering [47]. The
incident CO2 laser beam is split by the first beam splitter (BS1). Majority of the beam is passed
through the plasma. A small fraction of the incident beam is scattered by a small angle φB due to the
density fluctuation in the plasma. Since the density fluctuation includes frequency and wavenumber
components of the LHW (both the externally excited pump wave and the decay wave produced by
parametric decay), information of the LHW is contained in the scattered signal.

Since the wavelength of the CO2 laser is 10.6 µm, its frequency is about 30THz, much larger than
the electron plasma frequency so that the propagation path of the CO2 laser beam is unaffected by the
presence of the plasma. The wavenumbers of both the incident wave and the scattered wave (

∣∣∣−→k 0

∣∣∣ and∣∣∣−→k s

∣∣∣) are typically much larger than the wavenumber of the density fluctuations in the plasma
∣∣∣−→k d

∣∣∣,
so the scattering angle φB is small (forward scattering) and

−→
k d is oriented nearly perpendicular to the

incident wavevector
−→
k 0. The scattering wavenumber

∣∣∣−→k d

∣∣∣ can be chosen by adjusting the rotatable
mirror (RM) so that the scattered beam with scattering angle φB is made collinear with the LO beam
and detected by the detector D. Since the frequency of the CO2 laser beam is too high to be sampled
by the detector, the frequency of the scattered beam is down-converted by heterodyne mixing with
the LO beam and mixed at the detector D.

The scattered signals were obtained for a range of kd ≡
∣∣∣−→k d

∣∣∣, and the wavenumber spectra were
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Figure 1.15: Meander-line antenna [40]. (a) Microstrip meander line. p is the pitch of the periodic
structure, s is the spacing between two neighboring strip lines, w is the width of the microstrip line,
and b is the thickness of dielectric substrate. (b) Meander-line antenna used in the experiment.
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Figure 1.16: (a) Interferograms of LHW along the z-axis and the radial electric field Er [40]. (b) z-r
probe used to measure the perpendicular wavenumber k⊥ [41]. The meander-line antenna shown in
Fig. 1.15(b) was used instead of the helical antenna shown in this figure.
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Figure 1.17: Dispersion curve of the excited wave. ω2
pe/Ω2

e = 1.3 [40].

Figure 1.18: Locations of the waveguide arrays, limiters, and relevant diagnostics in Alcator-C [42].
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Figure 1.19: (a) A schematic diagram of small angle CO2 laser scattering from a plasma. The laser
beam is shaped by lenses L1 and L2. Aperture A is used to eliminate higher order modes. The dashed
line shows the local oscillator (LO) path from beam splitters BS1 and BS2 to the detector D. Mirror
RM is used to align the scattered radiation S (at angle φB from the incident beam) with the LO beam
at BS2 [47]. (b) Diagram showing the relationship among the incident wavevector ~k0, the scattered
wavevector ~ks, and the scattering wavevector ~kd of the density fluctuation.

obtained for the pump wave and the decay wave. The wavenumber spectra can be plotted in terms
of N‖ = c

ω k‖, where k‖ is converted from the measured kd
∼= k⊥ using the warm plasma dispersion

relation. As pointed out in Ref. [42], since the vertical extent of the scattering volume is large (especially
for small scattering angles), a unique mapping of k⊥ into N‖ cannot be made. The authors of Ref. [42]
introduced N∗

‖ as the value of N‖ obtained using the electron density on the midplane of the torus.
N∗

‖ gives a lower bound on the true value of N‖. Figure 1.20 shows the wavenumber spectra for the
pump wave and the decay wave in terms of N∗

‖ . The power density for the pump wave increases as
N∗

‖ decreases to 3, which is consistent with the peak value of N‖ = 2.6 of the launched pump wave
spectrum for 180◦ phasing used in this experiment.

1.6.3 Magnetic Probe Measurement in TST-2

In the TST-2 spherical tokamak, wavenumber components of the LHW at 200MHz were measured
in RF start-up plasmas using an array of five radio frequency magnetic probes (RFMPs) shown in
Fig. 1.21 [35, 48]. The RFMP detects the RF magnetic field component parallel to the slit in front of
each magnetic probe. Figure 1.22 shows (a) the midplane cross section of TST-2 for this experiment, (b)
the parallel wavenumber spectrum excited by the grill antenna (not optimized for current drive), and
(c) the result of wave identification calculation. The grill antenna shown schematically in Fig. 1.22(a)
is identical to that used in Ref. [36]. The three components of the wavevector (toroidal, poloidal,
and radial) were measured using this probe array. The radial component was measured by scanning
the position of the RFMP array radially and measuring the phase shift with respect to the reference
signal sampled from the incident wave to the grill antenna. From these components, both k‖ and
k⊥ can be evaluated. The measured value of k‖ was used to calculate k⊥ using the cold plasma
dispersion relation for the electron plasma densities typical in RF start-up plasmas in TST-2 as shown
in Fig. 1.22(c) by black and red solid lines. SW (black) and FW (red) represent the two solutions
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Figure 1.20: Wavenumber spectra P (N∗
‖ ) for the pump wave and for the decay wave deduced from

the experimentally measured kd
∼= k⊥ spectra. Deuterium, B = 8T, 1.8 ≤ ne

(
1020 m−3

)
≤2.4,

Prf = 260 kW, and x = +12 cm. The pump wave data points are scaled down by a factor of 20 [42].

Figure 1.21: Magnetic probe array. The entire assembly can be turned around its axis to measure the
RF poloidal magnetic field (when θ = 0◦), RF toroidal magnetic field (when θ = 90◦), or their linear
combination [35].
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Figure 1.22: Wavenumber measurement using the RF magnetic probe array [48]. (a) Midplane cross
section showing the 5-channel RFMP and the grill antenna. (b) Parallel wavenumber (k‖) spectrum
in front of the grill antenna. (The 5ch-RFMP can detect waves in the range |k‖| < 105m−1.) (c) Cold
plasma dispersion calculation. Black lines represent the slow wave (SW) and red lines represent the
fast wave (FW). |k⊥| is calculated using the measured k‖ at R = 0.63m, Bt = 0.04T, and the electron
density ne in the range 1015–1016 m−3. The blue lines mark the range of measured |k⊥| at R = 0.63m.
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of the cold plasma dispersion relation, i.e., the slow wave and the fast wave, respectively. As will be
described in Subsection 2.5, the slow wave is the LHW. The measured k⊥, shown by the blue region,
is located in the region of the slow wave (LHW).

1.7 Thesis Objective and Original Contribution

In Section 1.4, the spherical tokamak (ST) was introduced to have two advantages over conventional
tokamaks: being more compact and having better stability at high β. In Section 1.5, it was explained
that the elimination of the OH solenoid was necessary for realizing the ST fusion power plant and
that the lower hybrid wave (LHW) was a promising candidate for driving the plasma current non-
inductively. Successful uses of the LHW to drive current in tokamaks and the current situation in
STs were reviewed, It was pointed out that further understanding of RF start-up ST plasmas driven
by the LHW is essential for improving the current drive performance. Direct measurements of the
LHW wavenumber in ST devices can make a great contribution to the understanding because the
wavenumber determines wave propagation and absorption in the plasma.

The objective of this thesis is to measure the wavenumber of the LHW in RF start-up plasmas
at a frequency of 200MHz used in TST-2 by an array of electrostatic probes. This thesis reports
the first application of the electrostatic probe to the measurement of the LHW wavenumber in RF
start-up ST plasmas, and will add new knowledge on RF wavenumber measurement. Table 1.1 shows
a comparison of preceding studies of LHW wavenumber measurement and this thesis. Although LHW
wavenumber measurement has already been conducted using an array of RF magnetic probes in TST-2,
the significance of using an array of electrostatic probes is explained as follows. As will be explained
in Section 2.5, the LHW is the slow wave, and as explained in Subsection 2.4.2, the slow wave is an
oscillation of the electrostatic potential φp. While the magnetic probe measures the RF magnetic field
accompanying the temporal variation of φp, the electrostatic probe can measure the potential directly.
Therefore, the electrostatic probe is expected to measure the temporal variation of φp associated with
the LHW more directly.

A unique point of this research is the use of an embedded high impedance resistor just after the
electrode of the electrostatic probe. The reason for using a high impedance resistor is to reduce the
current drawn from the plasma to suppress the perturbation caused by the probe. Also, as will be
shown in Chapter 3, φp is linearly related to the floating potential Vf , which is measured by the
electrostatic probe with high impedance. Although the simple linear relationship between φp and Vf

is proven in low frequency regimes, much smaller than 200MHz, even at high frequencies such as
200MHz, the use of a high impedance resistor is expected to enable measurement of Vf , through which
the temporal variation of φp (the LHW) is detected. By measuring the phase difference between signals
detected by such high-impedance-embedded electrostatic probes, the wavenumber of the LHW can be
measured.

Although the idea of using a high impedance resistor just after the electrode of an electrostatic
probe existed previously [49,50], this is the first time to apply this type of electrostatic probe (referred
to as “Modified Electrostatic Probe” in Table 1.1) to the high frequency range of 200MHz.

Table 1.1: Comparison of preceding studies and this thesis.
Research Subsection 1.6.1 Subsection 1.6.2 Subsection 1.6.3 This Thesis

Device Linear Device
Alcator-C
Tokamak

TST-2
Spherical Tokamak

TST-2
Spherical Tokamak

Measuring
Instrument Electrostatic Probe

CO2 Laser
Scattering Magnetic Probe

Modified
Electrostatic Probe

Frequency 289 MHz 4.6GHz 200MHz 200MHz
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Chapter 2

Theory of Waves in Cold Plasmas

Waves in a cold plasma are described in this Chapter [51]. The modifier “cold” means that finite tem-
perature effects can be neglected. This assumption is usually valid when describing waves propagating
in plasmas whose temperature is in the range of a few eV to tens of eV.

2.1 Wave Equation in a Cold Plasma

2.1.1 Background and Assumptions

Waves considered here are waves with an oscillating electric field and a magnetic field. The dynamics
of these waves are governed by the wave equation, which is derived from Maxwell equations,

∇ · D = ρ, (2.1)

∇× E = −∂B

∂t
, (2.2)

∇ · B = 0, (2.3)

∇× H = j +
∂D

∂t
, (2.4)

where, in the SI unit system, ρ, H, j, and D are the net charge density [C/m3], magnetic field [T],
current density [C/

(
m2s

)
], and electric displacement [C/m2], respectively. Although B is called the

magnetic field in this thesis, the formal nomenclature is that H is the magnetic field and B is the
magnetic flux density [T]. In Section 2.1, the terminology follows the formal nomenclature, but in other
sections, B is called the magnetic field. These four equations have to be applied to the cold plasma,
which is characterized by

• zero-temperature,

• approximately charge neutral,

• frictionless fluids of ions and electrons.

The zero-temperature assumption makes the thermal velocity zero, so the plasma is stationary on its
own, but the particle inertia is taken into account. The background magnetic field, as well as the
density and composition of the plasma are assumed to be stationary in time and homogeneous in
space.
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2.1.2 Order Separation between Wave Components

In considering waves in such a plasma, waves are regarded as perturbations in the plasma which is
assumed to be a stationary medium. To handle this situation, it is helpful to perform order separation.
This is already partly mentioned in Subsection 1.2.3 where stationary quantities are regarded as zeroth
order, and wave quantities are regarded as first order perturbations. Physical quantities are expressed
as

vs = v0s + v1s = 0 + v1s = v1s, (2.5)
B = B0 + B1, (2.6)
ns = n0s + n1s, (2.7)
E = E0 + E1 = 0 + E1 = E1, (2.8)

where the index s represents the particle species. All the first order quantities are assumed to vary as

exp [i (k · r − ω t)] ,

where k, r, and ω are the wavenumber vector (or wave vector), the position vector in real space, and
the angular frequency of the wave, respectively. The reason why the phase factor (k · r − ω t) is chosen
rather than (ω t − k · r) is that, in quantum mechanics, the operator Û of time evolution is defined as

Û(t) = exp

(
−i

Ĥ

~
t

)
,

where ~ and Ĥ are the Planck constant divided by 2π and the time-independent Hamiltonian. Taking
(k · r − ω t) as the phase factor, it can be proven that exp [i (k · r)] is an eigenfunction of a state
moving in the direction of k in real three-dimensional space, consistent with quantum mechanics.

2.1.3 Maxwell Equations in a Cold Plasma

Maxwell equations can be arranged in a simpler form for the cold plasma case by using the assumption
of approximate charge neutrality. This assumption requires that a net charge density ρ in Eq. (2.1)
must vanish. An external current j in Eq. (2.4), which is the current generated by sources not related to
the plasma, must also vanish. On the other hand, an internal current, which is caused by polarization
of the plasma must be taken into consideration. The effect of plasma polarization is included in the
electric displacement D in Eq. (2,4), defined as

D ≡ ε0E + P , (2.9)

where P is the polarization vector and is given as

P =
∑

s

nsqsxs, (2.10)

in which xs denotes the position of particles of species s. Thus, when considering D, both the electric
field E and the first order motion of charged particles must be included. For the magnetic flux density
B, it is sufficient to consider only the contribution of the magnetic field H, because there is no
magnetic monopole. Although the plasma can exhibit diamagnetism by the Larmor motion of charged
particles, under the cold plasma assumption there is no zeroth order Larmor motion, and thus the cold
plasma can be regarded as exhibiting paramagnetism. Therefore the permeability µ is equal to µ0, the
permeability in vacuum, and

B = µ0H (2.11)
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holds in a cold plasma. Therefore, in a cold plasma,

ρ = 0, (2.12)
j = 0, (2.13)

B = µ0H, (2.14)

are satisfied and Maxwell equations reduce to

∇ · D = 0, (2.15)

∇× E = −∂B

∂t
, (2.16)

∇ · B = 0, (2.17)

∇× B = µ0
∂D

∂t
, (2.18)

where
D ≡ ε0E + P = ε0E +

∑
s

nsqsxs. (2.19)

The partial time derivative of D in Eq. (2.18) is

∂D

∂t
= ε0

∂E

∂t
+

∂

∂t

(∑
s

nsqsxs

)
= ε0

∂E

∂t
+

∑
s

nsqsvs. (2.20)

Here, the second term in the rightmost side of Eq. (2.20) represents the plasma response consisting of
the summation of the first order internal (polarization) current js = nsqsvs for each species.

2.1.4 Dielectric Tensor

In principle, combining Eqs. (2.15)–(2.18) gives waves we are seeking. But the electric displacement
D includes the effects of not only the electric field E but also the motions of charged particles. It is
convenient to express D only by E. This is possible because the velocities of charged particles are
linearly dependent on E through the equation of motion. Thus the dielectric tensor ε is defined as

D = ε ε0 · E (2.21)

and for a cold plasma, from Eq. (2.19),

ε ε0 · E = D = ε0E +
∑

s

nsqsxs (2.22)

follows. The dielectric tensor represents the relative dielectric in three-dimensional space and is di-
mensionless. Remembering that only B0, n0s and x0s are finite in the zeroth order, and all the first
order quantities vary as exp [i (k · r − ω t)], Eq. (2.22) in the first order is

ε ε0 · E1 = ε0E1 +
∑

s

nsqsxs1, (2.23)

leading to

ε · E1 = E1 +
i

ε0ω

∑
s

nsqsvs1, (2.24)

where
vs1 =

dxs1

dt
= −iωxs1 (2.25)
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has been used.
Note that the first order quantities such as E1 and vs1 in Eq. (2.24) are in the form of

E1 (t, r) =
1(√
2π

)4

∫
dω

∫
dk E1 (ω, k) exp [i (k · r − ω t)] . (2.26)

E1 (ω, k) is the complex amplitude of the electric field whose frequency and wavenumber vector are ω
and k. E1 (ω, k) is given by the inverse transform

E1 (ω, k) =
1(√
2π

)4

∫
dt

∫
dr E1 (t, r) exp [−i (k · r − ω t)] . (2.27)

From now on, E1 (ω, k) is considered in the (ω, k) domain, since the dependence of the amplitude of
the electric field E1 on ω and k is of interest. Performing the inverse Fourier transform of Eq. (2.24)
leads to

ε(ω, k) · E(ω, k) = E(ω, k) +
i

ε0ω

∑
s

nsqsvs(ω, k), (2.28)

where the subscript 1 indicating the first order is omitted. From this equation, the dielectric tensor
can be expressed as

ε(ω, k) = 1 +
∑

s

χs(ω, k), (2.29)

where 1 is the 3 × 3 identity matrix and χs(ω, k) is the susceptivility tensor for particle species s.
Substituting Eq. (2.29) in Eq. (2.28) and comparing both sides, it is shown that the contributions of
charged particle motions appear in χs(ω, k) as

χs(ω, k) · E(ω, k) =
i

ε0ω
nsqsvs(ω, k). (2.30)

This means that if vs(ω, k) could be expressed linearly in E(ω, k), the effects of the first order motions
of charged particles are included in the dielectric tensor ε(ω, k) through χs(ω, k) and the wave equation
is obtained.

From the assumption that a cold plasma consists of frictionless fluids of ions and electrons, the
equation of motion for the fluid of species s is

nsms
dvs

dt
= nsms

(
∂vs

∂t
+ vs · ∇vs

)
= nsqs (E + vs × B) −∇ · Φs, (2.31)

where Φs is the fluid stress tensor which is zero under the cold plasma assumption. Collisions are also
neglected due to the assumption of frictionless fluid. Therefore, Eq. (2.31) reduces to

ms
dvs

dt
= qs(E + vs × B). (2.32)

This equation is solved in each order of perturbation. Since vs0 and E0 are zero, this equation is
trivially satisfied in the zeroth order. In the first order, omitting the subscript 1 indicating the first
order,

ms
dvs

dt
= qs(E + vs × B0) (2.33)

holds. Note that this is an equation in the (t, r) domain. From Eq. (2.26), the time derivative on vs

generates a factor −iω, and performing the inverse Fourier transform gives

−iωmsvs(ω, k) = qs {E(ω, k) + vs(ω, k) × B0} . (2.34)
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Recalling that the direction of the magnetic field is in the z direction:

B =

 0
0

B0

 , (2.35)

the solution vs is given in terms of E(ω, k) as

vs(ω, k) =

 vsx(ω, k)
vsy(ω, k)
vsz(ω, k)

 = − iqs

ms



− ω

ω2 − Ω2
s

−i
Ωs

ω2 − Ω2
s

0

i
Ωs

ω2 − Ω2
s

− ω

ω2 − Ω2
s

0

0 0 − 1
ω


 Ex(ω, k)

Ey(ω, k)
Ez(ω, k)

 . (2.36)

Thus, from Eq. (2.30),

χ(ω, k)s · E(ω, k) =
i

ε0ω
nsqsvs(ω, k)

=
nsq

2
s

ε0ms



− 1
ω2 − Ω2

s

−i
Ωs

ω (ω2 − Ω2
s)

0

i
Ωs

ω (ω2 − Ω2
s)

− 1
ω2 − Ω2

s

0

0 0 − 1
ω2


 Ex(ω, k)

Ey(ω, k)
Ez(ω, k)



=



−
ω2

ps

ω2 − Ω2
s

−i
Ωs

ω

ω2
ps

ω2 − Ω2
s

0

i
Ωs

ω

ω2
ps

ω2 − Ω2
s

−
ω2

ps

ω2 − Ω2
s

0

0 0 −
ω2

ps

ω2


· E(ω, k), (2.37)

where ωps is the plasma frequency defined in Eq. (1.33). The dielectric tensor

ε(ω, k) = 1 +
∑

s

χs(ω, k)

is then obtained as

ε(ω, k) · E(ω, k) =

 S −iD 0
iD S 0
0 0 P

  Ex(ω, k)
Ey(ω, k)
Ez(ω, k)

 , (2.38)

where

S = 1 −
∑

s

ω2
ps

ω2 − Ω2
s

(2.39)

D =
∑

s

Ωs

ω

ω2
ps

ω2 − Ω2
s

(2.40)

P = 1 −
∑

s

ω2
ps

ω2
. (2.41)
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The two parameters R and L are also used for describing the property of waves in a cold plasma:

R = 1 −
∑

s

ω2
ps

ω(ω + Ωs)
, (2.42)

L = 1 −
∑

s

ω2
ps

ω(ω − Ωs)
, (2.43)

which can express S and D as

S =
1
2
(R + L), (2.44)

D =
1
2
(R − L). (2.45)

Parameters R, L, P , S, and D are called the Stix parameters [51].

2.1.5 Wave Equation in a Cold Plasma

Now that the effects of charged particle motions are included in the dielectric tensor, the wave equation
in a cold plasma can be obtained. The two Maxwell equations for a cold plasma, Eqs. (2.16) and (2.18),
give

∇× (∇× E) = − ∂

∂t
(∇× B) = −µ0

∂2D

∂t2
, (2.46)

where D = ε ε0 ·E. For the Fourier amplitude E(ω, k), differentiation (i.e. ∇× 7→ ik× and ∂
∂t 7→ −iω)

leads to
−k × {k × E(ω, k)} = µ0ω

2ε0ε(ω, k) · E(ω, k), (2.47)

resulting in

k × (k × E) +
ω2

c2
ε · E = 0 (2.48)

with (ω, k) omitted and c = 1√
ε0µ0

is the speed of light. It is convenient to introduce a dimensionless
vector n which has the direction of the propagation vector k and the magnitude of the refractive index:

n ≡ kc
ω

. (2.49)

The magnitude of n is
|n| =

c(
ω

|k|

) , (2.50)

where the denominator ω

|k|
is the phase velocity. Using n, the wave equation Eq. (2.48) becomes

n × (n × E) + ε · E = 0. (2.51)

Using the angle θ between B0 = ẑ B0 and n where ẑ is a unit vector along the z-axis, and assuming
n to lie in the x-z plane, Eq. (2.51) becomes S − n2cos2θ −iD n2cosθ sinθ

iD S − n2 0
n2cosθ sinθ 0 P − n2sin2θ

  Ex

Ey

Ez

 = 0, (2.52)

where the coordinate system shown in Fig. 2.1 is used. This is the wave equation in a cold plasma.
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Figure 2.1: Coordinate system.

2.2 Cold Plasma Dispersion Relation

The condition for n of a propagating wave is obtained by setting the determinant of the coefficient
matrix M of E in Eq. (2.52) to zero,

detM = 0, (2.53)

otherwise E has only a trivial solution E(ω, k) = 0. Considering that n is written explicitly as

n =

 nsin θ
0

ncos θ

 ≡

 n⊥
0
n‖

 , (2.54)

where the indices ‖ and ⊥ denote the parallel and perpendicular directions with respect to B0, and
that n‖ is fixed by the boundary condition specified by the antenna, it is more practical to regard the
condition detM = 0 as the condition for n⊥ for a given n‖. The wave equation Eq. (2.52) is rewritten
in terms of n‖ and n⊥ as  S − n2

‖ −iD n‖n⊥
iD S − n2 0

n‖n⊥ 0 P − n2
⊥

  Ex

Ey

Ez

 = 0 (2.55)

and the condition detM = 0 gives the cold-plasma dispersion relation

an4
⊥ − bn2

⊥ + c = 0, (2.56)

where

a ≡ S (2.57)
b ≡ RL + PS − (P + S)n2

‖ (2.58)

c ≡ P
(
RL − 2Sn2

‖ + n4
‖

)
. (2.59)
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2.3 Properties of a Propagating Wave

2.3.1 Fast Wave and Slow Wave

There are two solutions for the cold-plasma dispersion relation Eq. (2.56):

n2
⊥ =

b ±
√

b2 − 4ac

2a
. (2.60)

The two solutions correspond to the slow wave and the fast wave. The nomenclatures of slow and fast
are based on the phase velocity

vph =
ω

|k|
, (2.61)

and
vph,fast > vph,slow (2.62)

holds by definition. From Eqs. (2.50) and (2.61),

|n| =
c(
ω

|k|

) =
c

vph
(2.63)

is satisfied and the relation vph,fast > vph,slow leads to

|n|fast < |n|slow. (2.64)

Thus, for a given n‖, two solutions of Eq. (2.60) are

n2
⊥,slow =

b +
√

b2 − 4ac

2a
, (2.65)

n2
⊥,fast =

b −
√

b2 − 4ac

2a
. (2.66)

2.3.2 Propagation and Evanescence

Note that n2
⊥ can be negative or complex, in which case n⊥ has an imaginary component. For example,

if n2
⊥ < 0, n⊥ and thus k⊥ is purely imaginary for positive ω. In this case, k⊥ is denoted by k⊥ = ±iκ⊥

where κ⊥ ∈ R, and the wave solution is expressed as

exp [i (k · r − ω t)] = exp (∓κ⊥x) · exp
[
i
(
k‖z − ω t

)]
, (2.67)

where the x direction is perpendicular to B0. Without any mechanism of amplifying the wave, the
solution that attenuates in the x direction is chosen. This decaying wave is called an evanescent wave.
In order for a wave to exist as a propagating wave in space, both

b2 − 4ac ≥ 0 (2.68)

and
n2
⊥ ≥ 0 (2.69)

must be satisfied for our definition of n.
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2.3.3 Relations Among the Electric and Magnetic Field Components

The difference in n between the fast wave and the slow wave features their “characters”. The magnitude
relations among the six components of the wave, i.e., Ex, Ey, Ez, Bx, By, and Bz can be derived from
the wave equation Eq. (2.55): S − n2

‖ −iD n‖n⊥
iD S − n2 0

n‖n⊥ 0 P − n2
⊥

  Ex(ω, k)
Ey(ω, k)
Ez(ω, k)

 = 0,

which is expressed in terms of E(ω, k). Recalling that the physical quantities can be perceived in the
form of Re [E(t, r)] in experiments, it is important to verify the relationship between Re [E(t, r)] and
E(ω, k). Starting from Eq. (2.26):

E1 (t, r) =
1(√
2π

)4

∫
dω

∫
dk E1 (ω, k) exp [i (k · r − ω t)] ,

where E1(t, r) and E1(ω, k) are complex vectors, this equation gives

Re [E1 (t, r)] =
1(√
2π

)4

∫
dω

∫
dk Re {E1 (ω, k) exp [i (k · r − ω t)]} . (2.70)

For the x-component, after dropping the subscript 1 and expressing Ex(ω, k) as

Ex(ω, k) = Exr(ω, k) + iExi(ω, k), (2.71)

where Exr(ω, k) and Exi(ω, k) are real numbers. The integrand of the x-component of Eq. (2.70) is

Re {Ex (ω, k) exp [i (k · r − ω t)]}
= Exr(ω, k)cos (k · r − ω t) − Exi(ω, k)sin (k · r − ω t)

=
√

E2
xr(ω, k) + E2

xi(ω, k)cos (k · r − ω t + δx)

= |Ex(ω, k)| cos (k · r − ω t + δx) , (2.72)

where tan δx =
Exi(ω,k)
Exr(ω,k) . Thus, for the x-component,

Re [Ex (t, r)] =
1(√
2π

)4

∫
dω

∫
dk |Ex(ω, k)| cos (k · r − ω t + δx) (2.73)

is satisfied. Similarly for the y and the z components,

Re

 Ex(t,k)
Ey(t, k)
Ez(t,k)

 =
1(√
2π

)4

∫
dω

∫
dk

 |Ex(ω, k)| cos (k · r − ω t + δx)
|Ey(ω, k)| cos (k · r − ω t + δy)
|Ez(ω, k)| cos (k · r − ω t + δz)

 (2.74)

is obtained. Therefore, the absolute value of E(ω, k), or |E(ω, k)|, can be regarded as being propor-
tional to the amplitude of the measured quantity for the (ω, k) component with a common constant
of proportionality.

Now back to the wave equation S − n2
‖ −iD n‖n⊥

iD S − n2 0
n‖n⊥ 0 P − n2

⊥

  Ex(ω, k)
Ey(ω, k)
Ez(ω, k)

 = 0,

50



the second and the third rows give Ey(ω, k) and Ez(ω, k) in terms of Ex(ω, k) and Ex(ω, k)
Ey(ω, k)
Ez(ω, k)

 = Ex(ω, k)

 1
i D
n2−S
n‖n⊥
n2
⊥−P

 (2.75)

follows. It can be shown that Eq. (2.75) satisfies the first row of the wave equation. B(ω, k) is obtained
from Faraday’s law:

∇× E = −∂B

∂t
,

which can be written in Fourier representation as

ik × E(ω, k) = −(−iω)B(ω, k),

i.e.,
cB(ω, k) = n × E(ω, k). (2.76)

Equations (2.54), (2.75), and (2.76) give cBx(ω, k)
cBy(ω, k)
cBz(ω, k)

 =

 n‖Ey(ω, k)
n‖Ex(ω, k) − n⊥Ez(ω, k)

n⊥Ey(ω, k)


= Ex(ω, k)

 n‖i
D

n2−S

n‖ − n⊥
n‖n⊥
n2
⊥−P

n⊥i D
n2−S


= Ex(ω, k)

 i
n‖D

n2−S

− n‖P

n2
⊥−P

i n⊥D
n2−S

 . (2.77)

So, from Eqs. (2.75) and (2.77), the relative amplitudes are expressed with reference to |Ex(ω, k)| as

(|Ex(ω, k)|, |Ey(ω, k)|, |Ez(ω, k)|, |cBx(ω, k)|, |cBy(ω, k)|, |cBz(ω, k)|)

= |Ex(ω, k)|
(

1,

∣∣∣∣ D

n2 − S

∣∣∣∣ ,

∣∣∣∣ n‖n⊥

n2
⊥ − P

∣∣∣∣ ,

∣∣∣∣ n‖D

n2 − S

∣∣∣∣ ,

∣∣∣∣ n‖P

n2
⊥ − P

∣∣∣∣ ,

∣∣∣∣ n⊥D

n2 − S

∣∣∣∣) . (2.78)

This is the amplitude relationship among the field components.

2.4 Application of Theory

2.4.1 Electric and Magnetic Field Components

Properties of cold plasma waves are analyzed for specific conditions. For the initial plasma created
by RF power, which can be regarded as a cold plasma, four quantities such as the perpendicular
refractive index n⊥, the perpendicular wavenumber k⊥, the perpendicular wavelength λ⊥, and the
angle θ that the wavenumber vector makes with the direction of the toroidal magnetic field, are plotted
for the fast wave and the slow wave against the electron density in Fig. 2.2 for a wave frequency of
f = ω

2π = 200MHz, B0 = 0.15T and n‖ = −9.5. In this thesis, the wave frequency is taken to be
200MHz, the frequency used in the TST-2 experiment. B0 = 0.15T is the toroidal magnetic field
strength in the plasma core at a major radius of R = 380mm. n‖ = −9.5 is the parallel refractive
index of the main peak of the wave launched by the grill antenna used in the TST-2 experiment in
this thesis in the direction opposite to the toroidal magnetic field.
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Figure 2.2: Perpendicular refractive indices n⊥, perpendicular wavenumbers k⊥, perpendicular wave-
lengths λ⊥, and the angles θ that the wavenumber vector makes with the toroidal magnetic field for
the slow wave and the fast wave for B0 = 0.15T and n‖ = −9.5.

For B0 = 0.15T and n‖ = −9.5, when the discriminant b2 − 4ac in the cold plasma dispersion
relation Eq. (2.56) is positive and for densities above the respective cutoff densities, the fast wave and
the slow wave exist as propagating waves. For the density range 1016 to 1018 m−3 typical of the initial
plasma, the slow wave is propagating whereas the fast wave is virtually evanescent. Thus, the slow
wave can be used effectively to drive the plasma current. The perpendicular wavelengths λ⊥slow and
λ⊥fast shown in Fig. 2.2 were calculated as

λ⊥ =
2π

k⊥
. (2.79)

These perpendicular wavelengths were used in determining the electrode length of the Langmuir probe.
From Eq. (2.78), the field amplitudes relative to |Ex(ω, k)| were obtained using the calculated

n⊥slow and n⊥fast. These ratios are plotted in Fig. 2.3 where the top figures are for the slow wave and
the bottom figures are for the fast wave. Note that the scales of E(ω, k) and cB(ω, k) are common
in these plots so the amplitudes of different components can be compared directly.

The same evaluation was applied to the case with B0 = 0.055 T, which is the magnetic field strength
at R = 590mm where the probe assembly was located for wavenumber measurement. The results are
plotted in Figs. 2.4 and 2.5. Although both the fast wave and the slow wave become less propagative
at high densities than for the case with B0 = 0.15T, overall wave propagation characteristics remain
the same. The red broken line in Figs. 2.3 and 2.5 will be discussed in Subsection 2.4.2.

The amplitude relation is roughly summarized in Table 2.1. Roughly speaking, the slow wave is
dominantly electric and the fast wave is dominantly magnetic. For the slow wave, Ez is the largest
next to Ex and this Ez of the slow wave works effectively in driving a toroidal plasma current, which
is in the z direction. Therefore the slow wave is used for the non-inductive plasma current drive in
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Figure 2.3: Field amplitudes relative to |Ex(ω, k)| for the slow wave and the fast wave for B0 = 0.15T
and n‖ = −9.5.

Figure 2.4: Perpendicular refractive indices n⊥, perpendicular wavenumbers k⊥, perpendicular wave-
lengths λ⊥, and the angles θ that the wavenumber vector makes with the toroidal magnetic field for
the slow wave and the fast wave for B0 = 0.055T and n‖ = −9.5.
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Figure 2.5: Field amplitudes relative to |Ex(ω, k)| for the slow wave and the fast wave for B0 = 0.055T
and n‖ = −9.5.

Table 2.1: Amplitude relation of wave components with reference to Ex = 1.
Wave component Slow wave Fast wave

Ex 1 1
Ey 0.001 ∼ 0.01 0.1 ∼ 1
Ez 0.1 ∼ 1 0.1
cBx 0.01 ∼ 0.1 1 ∼ 10
cBy 0.1 ∼ 1 10
cBz 0.01 ∼ 1 1 ∼ 10

tokamaks and spherical tokamaks.

2.4.2 Electrostatic Wave

Since the slow wave is used for the plasma current drive and is electric field-dominant in the initial
plasma for 200MHz, it is helpful to consider the electric field in more detail. The electric field is given
by

E = −∇φ − ∂A

∂t
, (2.80)

where φ is a scalar potential and A is a vector potential, which is related to a magnetic field B as

B = ∇× A. (2.81)
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The case in which the contribution from the time varying magnetic field vanishes, ∂A
∂t = 0, is called

electrostatic. In this case, the electric field is simply written as

E = −∇φ. (2.82)

Although this situation is called electrostatic, it does not mean that the charged particles are stationary.
Since φ is determined by the spatial distribution of charged particles, their motion causes a time
variation of φ and E changes in time. The term electrostatic means that the second term on the right
hand side of Eq. (2.80) can be ignored compared to the first term.

Under the coordinate system adopted in this thesis, Eq. (2.82) gives

E(ω, k) = −ikφ(ω, k) = −iφ(ω, k)

 k⊥
0
k‖

 = −iφ(ω, k)k

 sin θ
0

cos θ

 , (2.83)

leading to
|Ey(ω, k)| = 0 (2.84)

and
|Ez(ω, k)|
|Ex(ω, k)|

=
1

tan θ
. (2.85)

The ratio 1
tan θ , which is the ratio of electric field component magnitudes |Ez(ω, k)| to |Ex(ω, k)|, is

plotted in Figs. 2.3 and 2.5 in a red broken line, where θslow in Figs. 2.2 and 2.4 are used for θ,
respectively. |Ez(ω, k)| shown by the purple line (slow wave as a solution of the cold-plasma dispersion
relation) and by the red broken line (in the electrostatic approximation) agree with each other up to
the density of at least 1017 m−3. In addition, Eq. (2.84) is consistent with the smallness of Ey for slow
wave. These agreements state that the slow wave can be regarded as an electrostatic wave up to that
density.

For grater densities, the slow wave deviates from the electrostatic approximation. As for Fig. 2.3,
for example, this happens for densities of greater than 1018 m−3. This is because the two propagating
waves, the slow wave (E dominant) and the fast wave (B dominant) become closer in quality, and a
mode conversion between them occurs [51].

2.5 Physical Picture of the Lower Hybrid Wave

The slow wave at a frequency of 200MHz used in the TST-2 experiment is classified as the Lower
Hybrid Wave (LHW). In this section, the meaning of the name “Lower Hybrid Wave” and the particle
motion under the influence of the LHW are described.

2.5.1 Hybrid Waves

In a magnetic confinement fusion device, both the plasma density and the static magnetic field are
finite. Recalling Eq. (1.33) and Eq. (1.61), the plasma density and the static magnetic field give rise
to the plasma frequency ωps and the cyclotron frequency Ωs, respectively. These are fundamental
frequencies for plasmas in a magnetic field.

Considering a perturbative displacement of the position of a charged particle purely parallel to the
static magnetic field, only the longitudinal electrostatic restoring force acts on the charged particle.
In this case, the particle exhibits the plasma oscillation at ωps . If the perturbative displacement
has a finite component perpendicular to the static magnetic field, the charged particle experiences a
“hybrid” force consisting of the transverse Lorentz force and the longitudinal electrostatic force. This
is the physical picture of hybrid waves. The characteristic frequencies of hybrid waves deviate from
the plasma frequency ωps and the correction term is given in terms of the cyclotron frequency Ωs.
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Table 2.2: Frequencies [MHz] for the plasma core and the plasma edge of a typical initial plasma in
TST-2.

frequency
in the plasma core [MHz]

( B0 = 0.15T and ne = 5 × 1017 m−3 )
in the plasma edge [MHz]

( B0 = 0.055T and ne = 1 × 1016 m−3 )
ωUH/ (2π) 7608 1782
ωpe/ (2π) 6345 897
|Ωe|/ (2π) 4197 1539
ωpi/ (2π) 104.7 14.8
ωLH/ (2π) 57.8 12.8
Ωi/ (2π) 1.1 0.4

Lower Hybrid and Upper Hybrid Resonance Frequencies

The two main types of hybrid waves, the lower hybrid wave and the upper hybrid wave have charac-
teristic frequencies in the vicinities of the lower hybrid resonance frequency ωLH and the upper hybrid
resonance frequency ωUH, respectively, where ωLH < ωUH. They are defined for perpendicular propa-
gation (θ = π

2 ) and are given by the two solutions for S = 0, where S is the Stix S parameter defined
in Eq. (2.44):

S =
R + L

2
'

ω4 −
(
Ω2

i + Ω2
e + ω2

pe

)
ω2 − ΩiΩe

(
ω2

pe − ΩiΩe

)
(ω2 − Ω2

i ) (ω2 − Ω2
e)

, (2.86)

where the approximation
ω2

pi

ω2
pe

=
∣∣∣∣ Ωi

Ωe

∣∣∣∣ =
Zme

mi
¿ 1 (2.87)

for Z = 1 was used. Solving S = 0 under the approximation Eq. (2.87) yields [52],

1
ω2

LH

=
1

Ω2
i + ω2

pi

+
1

|ΩiΩe|
, (2.88)

and
ω2

UH = Ω2
e + ω2

pe. (2.89)

In Eq. (2.88), ω2
LH ' Ω2

i + ω2
pi for ωpe ¿ Ωe whereas ω2

LH ' |ΩiΩe| for ωpe À Ωe. For θ = π
2 , n‖ = 0

follows from Eq. (2.54), and from Eqs. (2.57)–(2.60), the perpendicular refractive index n⊥ is given as

n2
⊥ =

RL

S
. (2.90)

As S approaches to zero, n2
⊥ (and therefore k2

⊥) goes to infinity, and both the phase velocity and the
group velocity go to zero, resulting in wave energy pile up in a localized space. This is called the reso-
nance. From the plasma current drive point of view, the resonance is not necessarily favorable, because
the wave energy becomes concentrated and as the wavelength shortens the wave can be converted to
another wave which is less suitable for current drive [51].

Comparison of Frequencies

The characteristic frequencies Ωs, ωps , ωLH, and ωUH are tabulated for the core plasma and the edge
plasma (where the wavenumber measurement is conducted) of a typical initial plasma in TST-2 in
Table 2.2. The frequency of 200MHz used in TST-2 is close to the ion plasma frequency ωpi and the
lower hybrid resonance frequency ωLH. In the presence of the magnetic field, the ion plasma oscillation
is modified as described in the next subsection, and the wave is called the lower hybrid wave.

56



2.5.2 Motion of Charged Particles in the Lower Hybrid Wave

Since the 200MHz slow wave in an initial TST-2 plasma is an electrostatic wave, as shown in Figs. 2.3
and 2.5, Ey can be set to zero as in Eq. (2.84). For Ey = 0, the solution of the equation of motion
Eq. (2.36) reduces to 

vsx(ω, k) = iω
qs

ms (ω2 − Ω2
s)

Ex(ω, k) (2.91)

vsy(ω, k) = Ωs
qs

ms (ω2 − Ω2
s)

Ex(ω, k) (2.92)

vsz(ω, k) = i
qs

msω
Ez(ω, k). (2.93)

Using a shortcut representation [51] with single values for ω and k, the velocity of the charged particle
v(t, r) can be written as

vs(t, r) ∼ Re
[
vs(ω, k)ei(k·r−ωt)

]
. (2.94)

Equations (2.91)–(2.93) give

vsx(t, r) = A0
qsω

ms (ω2 − Ω2
s)

Re
[
iEx (ω, k)ei(k·r−ωt)

]
(2.95)

vsy(t, r) = A0
qsΩs

ms (ω2 − Ω2
s)

Re
[
Ex (ω, k)ei(k·r−ωt)

]
(2.96)

vsz(t, r) = D0
qs

msω
Re

[
iEz (ω, k)ei(k·r−ωt)

]
, (2.97)

where A0 and D0 are real correction coefficients due to the shortcut representation. A0 in Eq. (2.95)
and A0 in Eq. (2.96) are the same because the operation Re[ ] is applied to iEx(ω, k) and Ex(ω, k),
which have the same absolute values |Ex(ω, k)|. Using

Re
[
iEj(ω, k)ei(k·r−ωt)

]
= |Ej(ω, k)| cos

{
k · r − ωt + arg [Ej(ω, k)] +

π

2

}
for j = x and z,

(2.98)

Re
[
Ex(ω, k)ei(k·r−ωt)

]
= |Ex(ω, k)| cos {k · r − ωt + arg [Ex(ω, k)]} , (2.99)

and defining real lengths Rs and Rsz as

Rs = A0
qs|Ex(ω, k)|
ms (ω2 − Ω2

s)
, (2.100)

Rsz = D0
qs|Ez(ω, k)|

msω2
, (2.101)

Eqs. (2.95)–(2.97) lead to 
vsx = −ωRs sin {k · r − ωt + arg [Ex(ω, k)]} (2.102)
vsy = ΩsRs cos {k · r − ωt + arg [Ex(ω, k)]} (2.103)
vsz = −ωRsz sin {k · r − ωt + arg [Ez(ω, k)]} . (2.104)

and integrating by time t gives the position of the charged particle as
xsx − x0 = −Rs cos {k · r − ωt + arg [Ex(ω, k)]} (2.105)

ysy − y0 = −Ωs

ω
Rs sin {k · r − ωt + arg [Ex(ω, k)]} (2.106)

zsz − z0 = −Rsz cos {k · r − ωt + arg [Ez(ω, k)]} . (2.107)
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Figure 2.6: Particle orbits in the presence of the LHW for B0 = 0.055T. (a) For ω/ (2π) =√
|ΩiΩe|/ (2π) = 25.4MHz. Ion motion is enlarged in the y direction by a factor 5 × 104. (b) For

ω/ (2π) = 200MHz.

The initial position tr0 = (x0, y0, z0) is common to ions (s = i) and electrons (s = e) due to the charge
neutrality of the plasma. From Eq. (2.75), since Ez(ω, k) is given by multiplying Ex(ω, k) by n‖n⊥

n2
⊥−P

which is real in the propagating region, Ex(ω, k) and Ez(ω, k) are in phase. Thus arg [Ex(ω, k)] and
arg [Ez(ω, k)] can be dropped, resulting in

xsx − x0 = −Rs cos (k · r − ωt) (2.108)

ysy − y0 = −Ωs

ω
Rs sin (k · r − ωt) (2.109)

zsz − z0 = −Rsz cos (k · r − ωt) . (2.110)

These equations state that the charged particle trajectory is an ellipse with major and minor radii Rs

and Ωs

ω Rs in the x-y plane and oscillates in the z direction (in the direction of B0) with an amplitude of
Rsz. The shapes of orbits for ions and electrons in the x-y plane are shown in Fig. 2.6 for ω =

√
|ΩiΩe|

and ω/ (2π) = 200MHz for B0 = 0.055T. For ω =
√
|ΩiΩe|, the radii for the ion and the electron

in the x direction are same. At 200MHz, ions are nearly fixed to the magnetic field line because the
ion inertia is too large to follow the oscillation at such high frequency. On the other hand, electrons
mainly exhibit the E × B motion. It should be noted that the center of particle orbit does not move
in a cold plasma.

2.6 Wave Energy Density and Group Velocity

Although the center of the orbit of a charged particle moving under the influence of the LHW does
not move in a cold plasma, the wave energy associated with the LHW propagates in the plasma. In
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this section, the wave energy density W is defined and the velocity of wave energy propagation, called
the group velocity vg [51], is calculated for the LHW. Both W and vg are important quantities for
evaluating damping of wave energy.

2.6.1 Wave Energy Density

The purpose of this subsection is to express the wave energy density W and some related quantities
in terms of E(ω, k), B(ω, k), and ε(ω, k) since the wave energy of the LHW for a particular (ω, k) is
of interest.

Poynting Theorem

The power given to charged particles by the electromagnetic field is given by j · E, since the Lorentz
force v × B does not do work. Equation (2.4) is used to rewrite j · E as

j · E = E · (∇× H) − E · ∂D

∂t
. (2.111)

Using the vector identity

∇ · (E × H) = H · (∇× E) − E · (∇× H) (2.112)

and Faraday’s law Eq. (2.2), Eq. (2.111) leads to

j · E = −
{
∇ · (E × H) + E · ∂D

∂t
+ H · ∂B

∂t

}
. (2.113)

This is the Poynting Theorem. The Poynting vector S′ is defined as

S′ = E × H. (2.114)

Considering a plasma with no external current density, the current density in the plasma is regarded
as an internal response of the plasma to the electromagnetic field. The effect of this internal current
density is included in the electric and magnetic field terms, leading to j = 0. For this case, Eq. (2.113)
reduces to

∇ · S′ +
(

E · ∂D

∂t
+ H · ∂B

∂t

)
= 0. (2.115)

Equation (2.115) is an energy conservation equation for waves in plasmas with no external current.

Expression of Wave Energy Density using Complex Wave Amplitudes E(ω, k) and B(ω, k)

In order to express the energy conservation equation (2.115) given for (t, r) in terms of (ω, k), the
shortcut representation Eq. (2.94) is used such that

E(t, r) = Re
[
E(ω, k)e−iφ(t,r)

]
, (2.116)

where the equal sign is used [51]. The phase factor φ(t, r) is called the “eikonal” and is expressed as

φ(t, r) ≡ −k · r + ωt

= − (kr + iki) · r + (ωr + iωi) t

= (−kr · r + ωrt) + i (−ki · r + ωit)
≡ φr(t, r) + iφi(t, r), (2.117)
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where ki and ωi are imaginary parts of k and ω given by

ki = −∇φi(t, r), (2.118)

ωi =
∂

∂t
φi(t, r). (2.119)

The imaginary part φi(t, r) describes temporal/spatial variations of the wave amplitude over several
periods/wavelengths. Note that Eq. (2.115) consists of products of vector quantities with a common
phase. The product between vectors X(t, r) and Y (t, r) with a common φ(t, r) is expressed as

X(t, r)Y (t, r) = Re
[
X(ω, k)e−iφ(t,r)

]
Re

[
Y (ω, k)e−iφ(t,r)

]
=

1
2

(
Xe−iφ + Xe−iφ

) 1
2

(
Y e−iφ + Y e−iφ

)
=

1
4

(
XY e−2iφ + XY e2iφ + XY e2φi + XY e2φi

)
, (2.120)

where (ω, k) and (t, r) were omitted from the second row. From Eq. (2.117), the first and second
terms in Eq. (2.120) are proportional to exp {±i [φr(t, r)]}. If exp {±i [φr(t, r)]} were periodic in time
or space, averaging Eq. (2.120) over several periods or wavelengths gives

〈X(t, r)Y (t, r)〉ave. =
1
4

{
X(ω, k)Y (ω, k) + X(ω, k)Y (ω, k)

}
exp [2φi(t, r)]. (2.121)

Equation (2.121) provides a fundamental relationship between periodically averaged values and am-
plitudes expressed in (ω, k).

Using Eq. (2.121), the average of Eq. (2.115) over several periods is written as

∇ · 〈S′〉ave. +
〈

E · ∂D

∂t

〉
ave.

+
〈

H · ∂B

∂t

〉
ave.

= 0. (2.122)

〈S′〉ave. in the first term in Eq. (2.122) is given using Eqs. (2.114), (2.11), and (2.121) as

〈S′〉ave. =
〈

E × B

µ0

〉
ave.

=
1

4µ0

{
E(ω, k) × B(ω, k) + E(ω, k) × B(ω, k)

}
exp [2φi(t, r)]. (2.123)

The second term
〈
E · ∂D

∂t

〉
ave.

on the left-hand side of Eq. (2.122) is calculated as follows. ∂D(t,r)
∂t

is expressed as

∂D(t, r)
∂t

=
∂

∂t
Re

[
D(ω, k)e−iφ(t,r)

]
= Re

[
D(ω, k)

∂

∂t
e−iφ(t,r)

]
= Re

[
ε0ε(ω, k) · E(ω, k) {−i (ωr + iωi)} e−iφ(t,r)

]
, (2.124)

where Eqs. (2.21) and (2.117) were used. Referring to Eqs. (2.121) and (2.124),
〈
E · ∂D

∂t

〉
ave.

is given

by substituting in Eq. (2.121) as

E(ω, k) 7→ X(ω, k),
ε0ε(ω, k) · E(ω, k) (ωi − iωr) 7→ Y (ω, k),

with the result〈
E · ∂D

∂t

〉
ave.

=
1
4
ε0

{
ωiE ·

(
ε + ε†

)
· E + ωrE ·

(
−iε + iε†

)
· E

}
exp [2φi(t, r)], (2.125)
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where (ω, k) is omitted and

ε(ω, k) · E(ω, k) = ε(ω, k) · E(ω, k),
E(ω, k) · ε(ω, k) · E(ω, k) = E(ω, k) · ε†(ω, k) · E(ω, k),

were used. ε†(ω, k) is the complex conjugate of the transposed matrix of ε(ω, k).
Similarly, the third term

〈
H · ∂B

∂t

〉
ave.

on the left-hand side of Eq. (2.122) is given by substituting

in Eq. (2.121) as

B(ω, k)
µ0

7→ X(ω, k),

B(ω, k) (ωi − iωr) 7→ Y (ω, k),

with the result 〈
H · ∂B

∂t

〉
ave.

=
1

4µ0

{
2ωiB(ω, k) · B(ω, k)

}
exp [2φi(t, r)]. (2.126)

Thus, the energy conservation Eq. (2.122) is expressed in terms of Eqs. (2.123), (2.125), and (2.126).

Simplification under the Condition |ωi| ¿ |ω| and |ki| ¿ |k|

For |ωi| ¿ |ω| and |ki| ¿ |k|, Eq. (2.125) can be simplified as follows. ε(ω, k) is decomposed into the
Hermitian component εh(ω, k)

(
= ε†h(ω, k)

)
and the anti-Hermitian component iεa(ω, k) as

ε(ω, k) = εh(ω, k) + iεa(ω, k), (2.127)

ε†(ω, k) = ε†h(ω, k) − iεa(ω, k), (2.128)

where
{iεa(ω, k)}† = −iεa(ω, k)

was used. For εh(ω, k), under the condition |ωi| ¿ |ω| and |ki| ¿ |k|, analytical continuation by a
small distance into the complex ω, k planes gives

εh(ωr + iωi, kr + iki) =
[
εh + iωi

∂

∂ω
εh + iki ·

∂

∂k
εh

]
ωr, kr

+ · · · , (2.129)

ε†h(ωr + iωi, kr + iki) =
[
εh − iωi

∂

∂ω
εh − iki ·

∂

∂k
εh

]
ωr, kr

+ · · · . (2.130)

Using Eqs. (2.127)–(2.130),
(
ε + ε†

)
and

(
−iε + iε†

)
in Eq. (2.125) can be calculated as

ε + ε†

= ε(ωr + iωi, kr + iki) + ε†(ωr + iωi, kr + iki)

= εh(ωr + iωi, kr + iki) + ε†h(ωr + iωi, kr + iki)
' 2εh(ωr, kr) (2.131)

and

−iε + iε†

= −iε(ωr + iωi, kr + iki) + iε†(ωr + iωi, kr + iki)

= −i
{

εh(ωr + iωi, kr + iki) − ε†h(ωr + iωi, kr + iki)
}

+ 2εa(ωr, kr)

' 2ωi
∂

∂ω
εh(ωr, kr) + 2ki ·

∂

∂k
εh(ωr, kr) + 2εa(ωr, kr). (2.132)
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Substituting Eqs. (2.131) and (2.132) into Eq. (2.125) gives〈
E · ∂D

∂t

〉
ave.

=
1
4
ε0

{
2ωiE · εh · E + 2ωrE ·

(
ωi

∂

∂ω
εh + ki ·

∂

∂k
εh + εa

)
· E

}
exp [2φi(t, r)].

(2.133)

The wave energy conservation equation (2.122) is now expressed in terms of ki and ωi using Eqs. (2.123),
(2.126), and (2.133). ∇ · 〈S′〉ave. in Eq. (2.122) is expressed using Eqs. (2.118) and (2.123) as

∇ · 〈S′〉ave. = −2 (ki · S) exp [2φi(t, r)], (2.134)

where S is in the form of
S ≡ 1

4µ0

(
E × B + E × B

)
(2.135)

and is discussed below.
Equations (2.134), (2.133), and (2.126) are substituted into the energy conservation equation

(2.122), with the common coefficient exp [2φi(t, r)] dropped, to give

0 = ∇ · 〈S′〉ave. +
〈

E · ∂D

∂t

〉
ave.

+
〈

H · ∂B

∂t

〉
ave.

= −2ki ·
(

S − 1
4
ε0ωrE · ∂

∂k
εh · E

)
+ 2ωi ·

1
4

{
B · B

µ0
+ ε0E ·

(
εh + ωr

∂

∂ω
εh

)
· E

}
+

1
2
ε0ωrE · εa · E

≡ −2ki · (S + T ) + 2ωiW +
(

∂W

∂t

)
lossy

, (2.136)

where
S ≡ 1

4µ0

(
E × B + E × B

)
is the flux density of electromagnetic energy defined in Eq. (2.135),

T ≡ −1
4
ε0ωE · ∂

∂k
εh · E (2.137)

is the flux density of acoustic energy,

W ≡ 1
4

{
B · B

µ0
+ ε0E · ∂

∂ω
(ωεh) · E

}
(2.138)

is the wave energy density, and (
∂W

∂t

)
lossy

=
1
2
ε0ωE · εa · E (2.139)

represents dissipation or absorption of energy density. In Eqs. (2.137)–(2.139), ωr is replaced by ω
under the assumption |ωi| ¿ |ω|. The quantities S, T , W , and

(
∂W
∂t

)
lossy

are expressed in terms of

E(ω, k), B(ω, k), εh(ω, k), and εa(ω, k). Using Eqs. (2.127) and (2.128) with ε†h(ω, k) = εh(ω, k),
εh(ω, k) and εa(ω, k) are given as

εh(ω, k) =
ε(ω, k) + ε†(ω, k)

2
, (2.140)

εa(ω, k) =
ε(ω, k) − ε†(ω, k)

2i
. (2.141)
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2.6.2 Group Velocity

In a plasma, the direction of wave energy propagation is not necessarily the same as the direction of
phase propagation, or the wavenumber vector k. The velocity of wave energy propagation is called the
group velocity vg, and is defined using S, T , and W given in Subsection 2.6.1 as [51]

vg =
S + T

W
=

total energy flux density
total energy density

. (2.142)

It can be shown that [51]

vg =
∂ω (k)

∂k
. (2.143)

2.6.3 Group Velocity of a Cold Plasma Electrostatic Wave

Since the LHW is an electrostatic wave, the group velocity is evaluated for an electrostatic wave.
Referring to Eqs. (2.82) and (2.83), the electric field E for an electrostatic wave is expressed as

E = −∇φ = −iφk = −iφ

 k⊥
0
k‖

 , (2.144)

where k is real and (ω, k) is omitted. In the rest of this subsection, (ω, k) is omitted.
The plasma is assumed to be cold. The dielectric tensor ε for a cold plasma is given by Eq. (2.38):

ε =

 S −iD 0
iD S 0
0 0 P


and ε† = ε holds. Therefore Eqs. (2.140) and (2.141) give εh and εa as

εh =

 S −iD 0
iD S 0
0 0 P

 = ε, (2.145)

εa =

 0 0 0
0 0 0
0 0 0

 . (2.146)

Since εh is independent of k in a cold plasma, Eq. (2.137) gives zero acoustic energy flux density

T = 0. (2.147)

Equations (2.139) and (2.146) give the dissipative or absorptive energy component
(

∂W
∂t

)
lossy

as(
∂W

∂t

)
lossy

= 0, (2.148)

meaning that a cold plasma is loss-free. Therefore, vg reduces to

vg =
S

W
. (2.149)
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Electromagnetic Energy Flux Density S

From Eq. (2.135), the magnetic field B is necessary for deriving S. Starting from Eq. (2.18):

∇× B = µ0
∂D

∂t

and Eq. (2.21):
D = ε ε0 · E,

the following equation
ik × B = µ0 (−iω) ε0ε · E (2.150)

is derived. Taking the cross product of k with Eq. (2.150) gives

B =
ε0µ0ω

k2
k × (ε · E) , (2.151)

where ∇ · B = ik · B = 0 was used. Using Eqs. (2.135) and (2.151), S is calculated as

S =
1

4µ0

(
E × B + E × B

)
=

ωε0
4k2

{
E × [k × (ε · E)] + E × [k × (ε · E)]

}
=

ωε0
4k2

{
E × [k × (ε · E)] + E ×

[
k ×

(
ε · E

)]}
=

ωε0
4k2

{[(
E · ε · E

)
k −

(
E · k

)
(ε · E)

]
+

[(
E · ε · E

)
k −

(
E · k

) (
ε · E

)]}
. (2.152)

Since k is real and E · ε · E = E · ε† · E holds, the first and the third terms in Eq. (2.152) can be
combined, and S reduces to

S =
ωε0
4k2

{[
E ·

(
ε + ε†

)
· E

]
−

(
E · k

)
(ε · E) − (E · k)

(
ε · E

)}
=

ωε0
4k2

{[
E · (2εh) · E

]
−

(
E · k

)
(ε · E) − (E · k)

(
ε · E

)}
, (2.153)

where Eq. (2.140) was used. Substituting Eq. (2.144) or E = −iφk into Eq. (2.153) gives

S =
ωε0
4k2

{
2|φ|2 (k · εh · k) − |φ|2k2 (ε · k) − |φ|2k2 (ε · k)

}
=

ωε0|φ|2

4k2

{
2 (k · εh · k) − k2 (ε + ε) · k

}
. (2.154)

The first term in Eq. (2.154) vanishes as follows. The zero divergence of Eq. (2.18):

0 = ∇ · (∇× B) = ∇ ·
(

µ0
∂D

∂t

)
= µ0 (ik) (−iω) · D
= µ0ωε0 (k · ε · k) (2.155)

and Eq. (2.145) give
k · εh · k = k · ε · k = 0. (2.156)

Therefore, S is expressed as

S = −1
4
ωε0|φ|2 (ε + ε) · k = −1

4
ωε0|φ|2

 2S 0 0
0 2S 0
0 0 2P

  k⊥
0
k‖


= −1

2
ωε0|φ|2

 Sk⊥
0

Pk‖

 . (2.157)
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Wave Energy Density W

From Eq. (2.138), W is expressed as

W =
1
4

{
B · B

µ0
+ ε0E · ∂

∂ω
(ωεh) · E

}
.

First, the magnetic field B is calculated explicitly by substituting the electrostatic notation E = −iφk
into Eq. (2.151) as

B =
ε0µ0ω

k2
k × (ε · E)

=
ε0µ0ω

k2
(−iφ)k × (ε · k)

=
ε0µ0ω

k2
(−iφ)

 k⊥
0
k‖

 ×

 S −iD 0
iD S 0
0 0 P

  k⊥
0
k‖


=

ε0µ0ω

k2
(−iφ)

 k⊥
0
k‖

 ×

 Sk⊥
iDk⊥
Pk‖


=

ε0µ0ω

k2
(−iφ)

 −iDk‖k⊥
(S − P ) k‖k⊥

iDk2
⊥

 . (2.158)

Using Eq. (2.158), the first term B·B
µ0

in W is calculated as

B · B
µ0

= µ0

(ε0ω

k2

)2

(−iφ)

 −iDk‖k⊥
(S − P ) k‖k⊥

iDk2
⊥

 · (−iφ)

 −iDk‖k⊥
(S − P ) k‖k⊥

iDk2
⊥


= µ0

(ε0ω

k2

)2

|φ|2
 iDk‖k⊥

(S − P ) k‖k⊥
−iDk2

⊥

 ·

 −iDk‖k⊥
(S − P ) k‖k⊥

iDk2
⊥


= µ0

(ε0ω

k2

)2

|φ|2
{

D2k2
‖k

2
⊥ + (S − P )2 k2

‖k
2
⊥ + D2k4

⊥

}
= µ0ε

2
0ω

2|φ|2
k2
⊥

{
D2k2 + (S − P )2 k2

‖

}
k4

, (2.159)

where k2
‖ + k2

⊥ = k2 was used to obtain the last row.
The second term ε0E · ∂

∂ω (ωεh) · E in W is evaluated as follows. Using Eq. (2.145) and Stix
parameters S, D, and P defined by Eqs. (2.39)–(2.41), ∂

∂ω (ωεh) is given as

∂

∂ω
(ωεh) =

∂

∂ω

ω

 S −iD 0
iD S 0
0 0 P

 =

 F −iG 0
iG F 0
0 0 H

 , (2.160)

where F , G, and H are defined as

F ≡ ∂

∂ω
(ωS) = 1 +

∑
s

ω2
ps

(
ω2 + Ω2

s

)
(ω2 − Ω2

s)
2 (2.161)

G ≡ ∂

∂ω
(ωD) = −2

∑
s

ωΩsω
2
ps

(ω2 − Ω2
s)

2 (2.162)

H ≡ ∂

∂ω
(ωP ) = 1 +

∑
s

ω2
ps

ω2
. (2.163)
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Using Eq. (2.160) and E = −iφk, ε0E · ∂
∂ω (ωεh) · E is calculated for real k as

ε0E · ∂

∂ω
(ωεh) · E = ε0|φ|2k · ∂

∂ω
(ωεh) · k

= ε0|φ|2
 k⊥

0
k‖

 ·

 F −iG 0
iG F 0
0 0 H

  k⊥
0
k‖


= ε0|φ|2

 k⊥
0
k‖

 ·

 Fk⊥
iGk⊥
Hk‖


= ε0|φ|2

(
Fk2

⊥ + Hk2
‖

)
. (2.164)

Eqs. (2.159) and (2.164) give the wave energy density W for a cold plasma electrostatic wave as

W =
1
4

{
B · B

µ0
+ ε0E · ∂

∂ω
(ωεh) · E

}

=
1
4
ε0|φ|2

µ0ε0ω
2
k2
⊥

[
D2k2 + (S − P )2 k2

‖

]
k4

+
(
Fk2

⊥ + Hk2
‖

)
=

1
4
ε0|φ|2

ω2

c2

k2
⊥

[
D2k2 + (S − P )2 k2

‖

]
k4

+
(
Fk2

⊥ + Hk2
‖

) . (2.165)

Explicit Notation for Group Velocity vg

From Eqs. (2.149), (2.157) and (2.165), the group velocity vg for a cold plasma electrostatic wave is
given as

vg =
S

W
=

−1
2ωε0|φ|2

 Sk⊥
0

Pk‖


1
4ε0|φ|2

{
ω2

c2

k2
⊥

h

D2k2+(S−P )2k2
‖

i

k4 +
(
Fk2

⊥ + Hk2
‖

)}

= − 2ω

ω2

c2

k2
⊥

h

D2k2+(S−P )2k2
‖

i

k4 +
(
Fk2

⊥ + Hk2
‖

)
 Sk⊥

0
Pk‖

 (2.166)

= − 2c

n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

)
 Sn⊥

0
Pn‖

 , (2.167)

where the notation n = c
ω k was used. Eqs. (2.166) and (2.167) are expressions for vg in terms of k

and n, respectively.
It is worth noting that k and vg are perpendicular to each other. This is shown as follows. From

Eq. (2.156), a short calculation yields

0 = k · ε · k = Sk2
⊥ + Pk2

‖ (2.168)

and therefore, from Eq. (2.166),

k · vg ∝

 k⊥
0
k‖

 ·

 Sk⊥
0

Pk‖

 = Sk2
⊥ + Pk2

‖ = 0. (2.169)
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2.7 Landau Damping

An electrostatic wave can interact with charged particles and exchange energy. An important energy
exchange processes was suggested by Landau in 1946 [53]. This is called Landau damping. In this
section, the physical picture of the Landau damping is described [51, 54, 55] and the temporal wave
energy damping rate by Landau damping is evaluated.

2.7.1 Physical Picture of Landau Damping

Temporal Variation of the Particle Kinetic Energy

Consider a 1-dimensional electrostatic (longitudinal) wave with E ‖ k in the absence of magnetic field
(or in the direction of the magnetic field). Taking v = ẑv and E = ẑE cos (kz − ωt) where ẑ is the
unit vector in the z direction, the single-particle equation of motion is written as

m
dv

dt
= qE cos (kz − ωt) , (2.170)

where E is real and is taken to be a first order quantity. Expanding v and z as

v = v0 + v1 + v2 + · · · , (2.171)
z = z0 + z1 + z2 + · · · , (2.172)

Eq. (2.170) is written for the zeroth order and the first order as

m
dv0

dt
= 0, (2.173)

m
dv1

dt
= qE cos (kz0 − ωt) . (2.174)

Solving Eq. (2.173) gives v0 as
v0 = constant (2.175)

and z0 as
z0 = v0t + zini, (2.176)

where zini is the initial position of the particle at t = 0. Equation (2.176) is substituted into Eq. (2.174)
and a time integration gives

v1 =
qE

m

sin [kzini + (kv0 − ω) t] − sin (kzini)
kv0 − ω

, (2.177)

where v1 = 0 at t = 0 was used as the initial condition. With z1 = 0 at t = 0, a time integration of
Eq. (2.177) gives

z1 =
∫ t

0

v1dt =
qE

m

[
− cos (kzini − αt) + cos (kzini)

α2
− t sin (kzini)

α

]
, (2.178)

where
α ≡ kv0 − ω. (2.179)

The time derivative of the particle kinetic energy is expanded as

d

dt

mv2

2
= v

d

dt
mv

= v0
d

dt
mv1 +

(
v1

d

dt
mv1 + v0

d

dt
mv2

)
+ · · · . (2.180)
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The first and second terms in Eq. (2.180) are given using Eq. (2.177). The third term is calculated
using Eqs. (2.170)–(2.172) as

m
d

dt
(v0 + v1 + v2) ' qE cos [k (z0 + z1) − ωt] , (2.181)

which leads to

m
d

dt
v1 + m

d

dt
v2 ' qE cos [k (z0 + z1) − ωt]

= qE cos [(αt + kzini) + kz1]
= qE cos (ϕ + kz1) , (2.182)

where Eq. (2.176) was used and ϕ ≡ αt + kzini. For small kz1,

cos (ϕ + kz1) = cos ϕ +
(

d cos θ

dθ

)
θ=ϕ

(kz1) + · · ·

' cos ϕ − sinϕ · kz1 (2.183)

is available and Eq. (2.182) becomes

m
d

dt
v1 + m

d

dt
v2 ' qE cos (αt + kzini) + qEkz1 sin (αt + kzini) . (2.184)

The first terms on both sides of Eq. (2.184) are the same, because from Eqs. (2.174), (2.176), and
(2.179),

m
dv1

dt
= qE cos (kz0 − ωt) = qE cos [k (v0t + zini) − ωt] = qE cos (αt + kzini) . (2.185)

Therefore, from Eq. (2.184),

m
dv2

dt
' qEkz1 sin (αt + kzini) (2.186)

is obtained and then Eq. (2.180) can be evaluated.

Averaging over Initial Position and Velocity Distribution Function

Since there is a vast number of particles in space, zini can take various values. Therefore, Eq. (2.180)
must be averaged over zini. Using Eqs. (2.177), (2.178), (2.186) and trigonometric additive theorems,
the result is [51] 〈

d

dt

mv2

2

〉
zini

=
q2E2

2m

(
−ω sinαt

α2
+ t cos αt +

ωt cos αt

α

)
. (2.187)

Oscillatory terms with respect to zini vanish. A further averaging of Eq. (2.187) over the velocity
distribution function

f (v0) = f

(
α + ω

k

)
≡ g (α) (2.188)

gives [51] 〈
d

dt

mv2

2

〉
zini,v0

= −ωq2E2

2m|k|
P

∫ ∞

−∞
dα

g(α) sinαt

α2
, (2.189)

where P indicates the principal value. Main contributions to the integral come from the vicinity of
α = 0 (v0 = ω

k = vphase). Therefore, g(α) is expanded around α = 0 as

g(α) = g(0) + αg′(0) +
α2

2
g′′(0) + · · · . (2.190)
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Since sin αt
α2 in the integrand in Eq. (2.189) is an odd function of α, αg′(0) in Eq. (2.190) is retained,

yielding [51] 〈
d

dt

mv2

2

〉
zini,v0

' −ωq2E2

2m|k|

∫ ∞

−∞
dα

g′(0) sinαt

α

= −πωq2E2

2mk|k|

[
df(v0)
dv0

]
v0=

ω
k

. (2.191)

Equation (2.191) gives the time derivative of the particle power density [W/m3] due to energy exchange
with the wave. For

[
df(v0)

dv0

]
v0=

ω
k

< 0,
〈

d
dt

mv2

2

〉
zini,v0

is positive. In this case, the number of particles

streaming infinitesimally slower than the wave phase velocity ω
k and being accelerated is greater than

the number of particles streaming infinitesimally faster than ω
k and being decelerated, and the total

particle kinetic energy increases, while the total wave energy decreases by the same amount.

2.7.2 Temporal Wave Energy Damping Rate ωi

Since, from Eqs. (2.125) and (2.126),
〈
E · ∂D

∂t

〉
ave.

and
〈
H · ∂B

∂t

〉
ave.

are proportional to exp [2φi (t, r)],

the time derivative of wave energy density dW
dt is proportional to exp [2φi (t, r)]. Upon integration

W = W0e
2φi(t,r), (2.192)

where W0 is the value of W at t = 0. Temporal differentiation of Eq. (2.192) with Eq. (2.119) gives

dW

dt
= 2ωiW0e

2φi(t,r) = 2ωiW, (2.193)

which can be integrated to give
W = W0e

2ωit. (2.194)

Equation (2.194) states that ωi determines the rate of temporal change of the wave energy density.
The power conservation equation

dW

dt
+

〈
d

dt

mv2

2

〉
zini,v0

= 0 (2.195)

gives ωi using Eqs. (2.191) and (2.193) as

2ωiW =
πωq2E2

‖

2mk‖|k‖|

[
df(v‖)
dv‖

]
v‖= ω

k‖

=
πωq2|φ|2

2m

k‖

|k‖|

[
df(v‖)
dv‖

]
v‖= ω

k‖

, (2.196)

where E, k, and v0 in Eq. (2.191) are replaced by E‖, k‖, and v‖ in the presence of magnetic field since
the charged particle motion along the magnetic field is not affected. The second equal sign comes from
the property of an electrostatic wave,

E2
‖ = |E‖|2 = | − iφk‖|2 = k2

‖|φ|
2. (2.197)

Eqs. (2.165) and (2.196) are combined to give

ωi =
πωq2

ε0m

k‖

|k‖|
1

ω2

c2

k2
⊥

h

D2k2+(S−P )2k2
‖

i

k4 +
(
Fk2

⊥ + Hk2
‖

) [
df(v‖)
dv‖

]
v‖= ω

k‖

. (2.198)
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It should be noted that the velocity distribution function f(v‖) in Eq. (2.198) is one-dimensional, in
the direction along the magnetic field. Since Landau damping by electrons is used to drive current,
f(v‖) for electrons is considered from now on.

If f(v‖) were a Maxwellian distribution function, f(v‖) takes the form

f(v‖) =
ne√

2πvt,e

exp

(
−

v2
‖

2v2
t,e

)
, (2.199)

where ne is the electron density and vt,e is the electron thermal velocity. The thermal velocity is
defined in Eq. (1.19) and for the present case,

vt,e =

√
Te,‖

me
=

√{
eTe,‖ [eV]

}
[J]

me
, (2.200)

where Te,‖ is the electron temperature in the direction along the magnetic field. Since the derivative
of f(v‖) is calculated as

df(v‖)
dv‖

= − ne√
2πv3

t,e

v‖ exp

(
−

v2
‖

2v2
t,e

)
, (2.201)

Eq. (2.198) leads to

ωi =
πωe2

ε0me

k‖

|k‖|
1

ω2

c2

k2
⊥

h

D2k2+(S−P )2k2
‖

i

k4 +
(
Fk2

⊥ + Hk2
‖

) ·

[
− ne√

2πv3
t,e

ω

k‖
exp

(
− 1

2v2
t,e

ω2

k2
‖

)]

= −
√

π

2
nee

2

ε0me

ω2

|k‖|v3
t,e

1

ω2

c2

k2
⊥

h

D2k2+(S−P )2k2
‖

i

k4 +
(
Fk2

⊥ + Hk2
‖

) exp

(
− 1

2v2
t,e

ω2

k2
‖

)

= −
√

2π

2|n‖|
ω2

pe

ω

(
c

vt,e

)3 1
n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

) exp

[
−

(
c

vt,e

)2 1
2n2

‖

]
, (2.202)

where k is converted to n using k = ω
c n and

nee
2

ε0me
= ω2

pe

is the squared electron plasma angular frequency defined in Eq. (1.32). Although the expression for
ωi in Eq. (2.202) was derived using both energy density W evaluated in cold plasma and the temporal
rate of change of the particle kinetic energy by Landau damping, which assumes a finite electron
temperature, Eq. (2.202) should give a modest approximation for ωi at low plasma temperatures up
to about 100 eV.
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Chapter 3

Theory of Langmuir Probe
Measurement

There are many methods for investigating various properties of the plasma. One powerful method is by
an electrostatic probe called the Langmuir probe [56,57]. In this method an electrode is inserted directly
into the plasma and the current drawn from the plasma is regarded as an indicator of plasma properties.
Electrodes are usually made of metal with high melting point such as tungsten and molybdenum.

3.1 I-V Characteristics

When an electrode is inserted into the plasma, the current I drawn by the electrode depends on the
electrode potential relative to the plasma. Denoting the potentials of the electrode and the plasma as
V and φp, respectively, different situations are described according to the values of V relative to φp. It
is noted that the plasma potential φp is called also the electrostatic potential. The I-V characteristic
is obtained by measuring I as V is varied. In this section, the space potential is also introduced and
denoted by φ.

3.1.1 Electrode Potential Equal to Plasma Potential

If V = φp, charged particles in the plasma feel no electric force from the probe electrode, and thus the
current drawn from the plasma is determined simply by the thermal motion of the charged particles
and the surface area Aprobe of the electrode. The current carried by the charged particles of species s
is given by

Js = qsAprobeΓs, (3.1)

where Γs is the flux density of the particle s and becomes, for the Maxwellian distribution,

Γs ≡
∫ ∞

0

dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvznsvx

(
ms

2πTs

) 3
2

exp

{
−

ms

(
v2

x + v2
y + v2

z

)
2Ts

}

=
1
2
ns

√
2Ts

πms

=
1
4
ns 〈vs〉 , (3.2)
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where the flux density is taken to be in the x direction and 〈vs〉 is the averaged particle speed in the
isotropic thermal equilibrium

〈vs〉 ≡
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz

√
v2

x + v2
y + v2

z

(
ms

2πTs

) 3
2

exp

{
−

ms

(
v2

x + v2
y + v2

z

)
2Ts

}

=
∫ ∞

0

dv

∫ π

0

dθ

∫ 2π

0

dφ v

(
ms

2πTs

) 3
2

exp
(
−mv2

2Ts

)
v2 sin θ

= 2
√

2Ts

πms
. (3.3)

Here, (v, θ, φ) is the velocity in the spherical coordinate system and v =
√

v2
x + v2

y + v2
z . If Te ' Ti,

〈ve〉 À 〈vi〉 follows because of the large mass separation between ions and electrons, and from Eqs. (3.1)
and (3.2), the total current I drawn from the plasma is given as

I = eAprobe

(
1
4
ni 〈vi〉 −

1
4
ne 〈ve〉

)
≈ −1

4
eAne 〈ve〉 , (3.4)

meaning that the probe current is negative when V = φp.

3.1.2 Electrode Potential Lower than Plasma Potential

If V < φp, electrons are decelerated and ions are accelerated when approaching the electrode, and thus
the probe current becomes more positive as the electrode potential becomes more negative. In order
to deal with this situation quantitatively, one must recall that the effect of the electrode potential is
Debye-shielded up to a distance characterized by the Debye length from the probe. The space around
the electrode can be divided roughly into two regions; the plasma region and the sheath region. In the
plasma region, quasi charge neutrality is satisfied and the space potential is nearly constant. In the
sheath region, on the other hand, quasi charge neutrality is violated and the space potential varies in
space. This situation is depicted in Fig. 3.1 [58].

A consideration of the Poisson equation

∇2φ = − e

ε0
(ni − ne) (3.5)

in the sheath region near the plasma-sheath boundary leads to an important condition for the boundary
between the plasma region and the sheath region to exist. The space potential at this plasma-sheath
boundary is denoted by φsh in this thesis (φsh corresponds to Vs in Fig. 3.1). We would like to express
the Poisson Eq. (3.5) in terms of φ. Before proceeding, it is assumed that ions are stationary far from
the electrode and that electrons are in thermal equilibrium. These assumptions are valid in the edge
plasma region of experimental fusion devices.

Letting φ = 0 far from the electrode, energy conservation for ions leads to

1
2
miv

2
i + eφ = 0, (3.6)

where the ion valence is assumed to be unity. This equation can be solved for φ ≤ 0,

|vi| =

√
2e (−φ)

mi
. (3.7)

Under the condition for the ionization of charge-neutral particles to be negligible, the ion flux is
conserved

nivi = constant. (3.8)
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Figure 3.1: Plasma region and sheath region [58]. V0, Vs, V∞ = 0, and V in this figure correspond to
V , φsh, φ∞ = 0, and φ in the text, respectively.
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Combining Eqs. (3.7) and (3.8) gives ni in terms of the ion density at the plasma-sheath boundary
ni,sh,

ni = ni,sh

√
φsh

φ
. (3.9)

Since electrons are assumed to be in the thermal equilibrium, the electron density at the potential φ
is given simply using the Boltzmann factor as

ne = n∞ exp
(

eφ

Te

)
=

{
n∞ exp

(
eφsh

Te

)}
exp

{
e (φ − φsh)

Te

}
= ne,sh exp

{
e (φ − φsh)

Te

}
, (3.10)

where n∞ is the electron density far from the electrode, and the relationship between n∞ and ne,sh,

ne,sh = n∞ exp
(

eφsh

Te

)
(3.11)

was used in Eq. (3.10). Using ni and ne expressed in terms of the values at the plasma-sheath boundary,
the Poisson equation becomes

∇2φ = − e

ε0

[
ni,sh

√
φsh

φ
− ne,sh exp

{
e (φ − φsh)

Te

}]
. (3.12)

At the plasma-sheath boundary, charge neutrality must be satisfied so that the plasma region and the
sheath region are connected smoothly, and this requires

ni,sh = ne,sh ≡ nsh. (3.13)

Therefore, the Poisson Eq. (3.12) leads to

∇2φ = −ensh

ε0

[√
φsh

φ
− exp

{
e (φ − φsh)

Te

}]

' −ensh

ε0

[√
φsh

{
1√
φsh

− 1
2
φ
− 3

2
sh (φ − φsh)

}
−

{
1 +

e (φ − φsh)
Te

}]
= −ensh

ε0

[
− 1

2φsh
− e

Te

]
(φ − φsh) , (3.14)

where the Taylor expansion about φ = φsh to the lowest order was used. If the coefficient
[
− 1

2φsh
− e

Te

]
is negative, the solution for φ in the sheath region is exponential, and this can be connected to the
solution in the plasma region. Otherwise, the solution in the sheath becomes sinusoidal, which is
unphysical. Thus

[
− 1

2φsh
− e

Te

]
≤ 0, or

φsh ≤ −Te

2e
(3.15)

is required for the sheath to be formed. For the plasma region, the condition of charge neutrality
establishes another limit on φsh as [58]

φsh ≥ −Te

2e
. (3.16)

Thus the potential at the plasma-sheath boundary is determined uniquely as

φsh = −Te

2e
. (3.17)

Now we come back to the problem of current drawn from the plasma by a Langmuir probe. As-
suming that the probe potential is sufficiently negative for a sheath to be formed and for all electrons
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to be repelled from the probe, the probe current is simply equal to the ion current Jis across the sheath
surface

Jis = eAsh ni,sh vi,sh = eAshn∞ exp
(

eφsh

Te

)√
2e (−φsh)

mi

= exp
(
−1

2

)
eAshn∞

√
Te

mi
, (3.18)

where Ash denotes the area of the sheath surface and Eqs. (3.11) and (3.13) were used for ni,sh, and
Eq. (3.7) for φ = φsh was used for vi,sh in the first row. The value given in Eq. (3.18) was given by
using Eq. (3.17): φsh = −Te

2e . This Jis is called the ion saturation current. For a sufficiently negative
probe potential such that all electrons are repelled from the probe, the plasma density n∞ can be
obtained with the knowledge of Ash and Te.

In the intermediate region, not all electrons are repelled from the probe. The electron flux density
Γe near the probe surface, where the potential is V , is given using Eqs. (3.2), (3.3), and (3.10) as

Γe =
1
4
ne 〈ve〉 =

1
4

{
n∞ exp

(
eV

Te

)}
· 2

√
2Te

πme
=

1
2
n∞

√
2Te

πme
exp

(
eV

Te

)
. (3.19)

Following the convention of adopting the positive sign for the electron current, the total current Ie

drawn from the plasma is

Ie = − (Je + Jis)
= − (−eAprobeΓe) − Jis

= n∞eAprobe

√
Te

mi

[
1
2

√
2mi

πme
exp

(
eV

Te

)
− Ash

Aprobe
exp

(
−1

2

)]
, (3.20)

where the electron current Je is given using Eq. (3.1) and the area ratio Ash
Aprobe

is approximately unity.
From Eq. (3.20), the floating potential Vf is defined as the probe potential at Ie = 0,

Vf =
1
2

[
ln

(
2π

me

mi

)
− 1

]
Te

e
. (3.21)

The entire I-V characteristic curve is shown in Fig. 3.2 [58].
The electron temperature Te can be obtained from the slope of the I-V characteristic curve using

Je = −eAprobeΓe and Eq. (3.19) as

dIe

dV
= −dJe

dV
− dJis

dV

= − e

Te
Je −

dJis

dV

=
e

Te
(Ie + Jis) −

dJis

dV
, (3.22)

and in the region where dJis
dV is negligible compared to dIe

dV , Te can be obtained as

Te =
e (Ie + Jis)

dIe
dV

. (3.23)

Using Te given by Eq. (3.23) and Ash ' Aprobe, the plasma density n∞ is derived from Eq. (3.18) as

n∞ ' Jis

exp
(
−1

2

)
eAprobe

√
mi

Te
. (3.24)
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Figure 3.2: Typical I-V characteristic curve [58]. A: electron saturation region, B: electron deceleration
region, C: ion saturation region. I in this figure corresponds to Ie in the text and Isi in this figure
corresponds to −Jis.
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3.1.3 Relationship Between Plasma Potential and Floating Potential

In the last subsection, φ = 0 was assumed far from the electrode for simplicity. “Far from the
electrode” means that the effect of the probe potential is shielded sufficiently. Since the range of
shielding is typically at most an order of magnitude larger than the Debye length given in Eq. (1.42),
and in practice it is less than 1mm in initial plasmas, the plasma exists in sufficiently shielded regions
and the space potential in such regions is equal to the plasma potential φp. In practice, the potential
is measured not with respect to φ = 0 but to φ = φp. For this case the relationship between Vf and
φp is obtained from Eq. (3.21) by regarding

Vf = Vf − 0 → Vf − φp, (3.25)

i.e.,

Vf − φp =
1
2

[
ln

(
2π

me

mi

)
− 1

]
Te

e
,

leading to

Vf = φp +
1
2

[
ln

(
2π

me

mi

)
− 1

]
Te

e
. (3.26)

Equation (3.26) indicates a linear relationship between Vf and φp. Therefore, the plasma potential
or the electrostatic potential φp, can be estimated from the floating potential Vf . Although there is
an additional term that depends on Te in Eq. (3.26) and this equation holds only in equilibrium, it is
expected that Vf reflects φp even at high frequencies such as 200MHz. It should be possible to detect
the time variation of φp, which characterizes the LHW, through the time variation of the Vf signal. By
definition, Vf is measured when the current drawn from the plasma is zero. This condition is achieved
by adding a high impedance resistor to the probe circuit. An attempt to ensure a high impedance on
the electrostatic probe at 200MHz is discussed in Chapter 5. A flow chart for the determination of
the LHW wavenumber from the measurement of Vf is shown in Fig. 3.3.

77



Figure 3.3: Flow chart for the determination of the LHW wavenumber from the measurement of Vf .
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Chapter 4

The TST-2 Spherical Tokamak and
200MHz RF System

4.1 TST-2 Device

TST-2 (Tokyo Spherical Tokamak-2) is a spherical tokamak built in 1999 as an upgrade of the TST-M
(Tokyo Spherical Tokamak-Modified) [59,60] and is located in the Kashiwa campus of the university of
Tokyo. A photograph of the TST-2 device is shown in Fig. 4.1 and its coil system is shown in Fig. 4.2.
The TST-2 has 24 turns of toroidal coils on vertical planes with equal interval in the toroidal direction
for making toroidal magnetic field, and 40 turns of poloidal field 3 coils on the two horizontal planes
with equal distances from the equatorial plane for making poloidal magnetic field, which is necessary
for an equilibrium. The other coils are also used to make additional poloidal magnetic field or adjust
a shape of a plasma. The TST-2 has two operation modes using the OH solenoid or the 200MHz RF
wave (the lower hybrid wave). Typical parameters of these operations are listed in Table 4.1. The
TST-2 equips many diagnostics to monitor various signals from plasmas. Diagnostics in the TST-2
are summarized in Table 4.2.

Presently, TST-2 has three heating systems. They are an ohmic heating solenoid coil (OH solenoid),
a 2.45GHz magnetron for electron cyclotron heating, and a 200MHz RF system. The OH solenoid is
1.7m long and consists of 240 turns of coils inside a center stack of the TST-2. In the case of a charging
voltage to be 4 kV, it takes 8 ms for the coil current to reach its maximum of about 23 kA. After a
commutation, it takes 21ms for the current to change from +23 kA to −15 kA, which is a maximum

Table 4.1: Typical parameters of TST-2.

OH Operation 200MHz RF Start-up Operation
Major Radius R0 0.38m
Minor Radius a 0.24m

Aspect Ratio A = R0/a < 1.6
Toroidal Magnetic Field Bt ∼ 0.3T ∼ 0.2 T

Plasma Current Ip < 0.2MA < 20 kA
Ion Temperature Ti 50 ∼ 100 eV ∼ 20 eV

Electron Temperature Te 100 ∼ 400 eV (R = 0.38m) ∼ 20 eV (R = 0.38m, Bulk)
Electron Density ne0 (1 ∼ 2)× 1019 m−3 (R = 0.38m) ∼ 5 × 1017 m−3 (R = 0.38 m)

Discharge Duration Time < 40ms < 120ms
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Figure 4.1: Tokyo Spherical Tokamak-2 (TST-2).

Figure 4.2: Coil system of TST-2.
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Table 4.2: Diagnostics in the TST-2.
Instrument Measured information
Coils Magnetic field and plasma current (Ip)
Halpha, Hbeta Radiation from hydrogen
AXUV Total radiation from plasmas
SBD Hard X ray
Pin-Diode Soft X ray
CCD-Camera Visible radiation profile
Visible light spectroscopy Ion temperature
Thomson scattering Electron temperature and density
Interferometer Line integrated density
Electrostatic probes Electron temperature and density

of a reversed current. In this phase, induced electric field along the toroidal direction accelerates and
heats the plasma. An average loop voltage of this phase is estimated as

Vloop,avg =
∆Φ
∆t

=
∆B × S

∆t
=

{4.08 − (−2.66)} [T] × 0.0254[m2]
0.021[s]

= 8.15 V, (4.1)

where Φ and B are a magnitude of magnetic flux and a magnitude of magnetic flux density inside the
OH solenoid, respectively, and S is an area of its cross section.

The magnetron provides 5 kW of microwave at 2.45GHz, which is the electron cyclotron frequency
for the magnetic field of 0.0875T. This is called ECH and used for electron cyclotron heating and
pre-ionization of the plasma. Modes of the wave are selected to O-mode or X-mode by adjusting a
polarization in the wave guide. In the ECH plasmas, spherical tokamak start-up experiments have
been conducted [61]. The 200MHz RF system is referred to in detail in the next section.

4.2 200MHz RF System

4.2.1 High Power Amplifier System

The 200MHz RF system is utilized for non-inductive plasma start-up and Ip ramp up. Figure 4.3 shows
a photograph of the RF system. RF power at 200MHz was first injected into the TST-2 plasma in
February 2010. This system was originally built as the fast wave current drive system for the JFT-2M
tokamak at Japan Atomic Energy Agency (JAEA) [37]. The system consists of four identical amplifier
chain subsystems with a common RF source. The nominal output power of each subsystem is 100 kW.
Therefore, the total output power of up to 400 kW is available. A schematic diagram of this system is
shown in Fig. 4.4. The RF source signal is generated by a signal generator, and is amplitude modulated
by a pulse modulator to have the desired waveform and pulse width. After amplification, the power is
divided into four subsystems and amplified further. Attenuators and phase shifters located after the
power divider are used to adjust the relative amplitude and relative phase of waves in each subsystem.
The circulator at the output of the final amplifier protects the amplifier from excessive reflected power.
The output of each subsystem is fed to each waveguide of the grill antenna, described briefly in the
next subsection, and is radiated into the plasma. The transmission line is electrically isolated between
the final amplifier and the grill antenna by a DC break. Typical power gains of components in the
amplification system are listed in Table 4.3.
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Figure 4.3: 200MHz RF System.

Figure 4.4: Schematic diagram of the 200MHz RF system.
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Table 4.3: Typical power gains of components in the amplification system.
Component Power Gain
Wideband Amplifier 40 dB
Excitation Amplifier 13 dB
Power Divider −6 dB
Attenuator −70 ∼ 0 dB
Intermediate Amplifier 10 dB
Final Amplifier 6 dB

4.2.2 Grill Antenna

A dielectric-loaded waveguide array antenna, called the “Grill antenna” is installed in the TST-2 in
order to launch the LHW [36]. This antenna consists of four waveguides filled with alumina (εr = 10)
to reduce the waveguide size. The launched wavenumber is variable by changing a phase difference
between adjacent waveguides by tuning a phase shifter shown in Fig. 4.4. The launched wavenumber
is k‖ = 0 ∼ 75.4 m−1, or n‖ = 0 ∼ 18. A waveguide size is 285mm by 30mm and the appearance of
the grill antenna is shown in Fig. 4.5.
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Figure 4.5: Grill antenna.
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Chapter 5

Electrostatic Probe with an
Embedded High Impedance
Resistor

As stated in Chapter 2, the lower hybrid wave (LHW) can be regarded as an electrostatic wave in the
initial plasma, meaning that it is described by an oscillating electrostatic potential φp. Since φp can
be related to the floating potential Vf , as described in Chapter 3, the measurement of Vf is important.
Although Eq. (3.26) is a relationship that holds in equilibrium, a linkage between the oscillating parts
of φp and Vf is expected, and thus it is worth investigating Vf at 200MHz.

5.1 Floating Potential Measurement at 200MHz

In order to measure the floating potential, it is necessary to create the condition I = 0, where I is
the probe current. This is realized by introducing a high impedance to the probe circuit. For low
frequencies up to several MHz, the measurement of Vf is easily accomplished by connecting a high
impedance resistor at the end of the signal transmission line, as shown schematically in Fig. 5.1. For
these frequencies, the wavelength on the transmission line is greater than 100m which is usually much
longer than the signal transmission line. Therefore, the wave at the left end of the transmission line
in Fig. 5.1 sees the high impedance resistor within its wavelength, and the voltage of the wave acts
on both the transmission line and the high impedance resistor. This system is called the lumped
parameter circuit. In this case, the transmission line is represented by a lumped parameter.

On the other hand, at 200MHz, the wavelength is only about 1m in the transmission line. This
wavelength is usually shorter than the transmission line in an experimental system, and thus the wave
on the left end of the transmission line in Fig. 5.1 cannot see the high impedance resistor on the right
end of the transmission line within its wavelength. In this case, it is necessary to consider how the wave
propagates in the transmission line and how the wave behaves when it reaches the high impedance
resistor. This system is called the distributed parameter circuit.

In this way, an appropriate model depends on the relative magnitude between the wavelength and
the size of circuit elements, including the resistor and the transmission line. Therefore, measuring
systems used in this thesis are treated using either lumped parameters or distributed parameters
depending on the situation.
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Figure 5.1: Floating potential measurement at low frequencies by a Langmuir probe.

5.2 Loss-less Transmission-Line Theory

5.2.1 Voltage and Current in a Transmission Line

Neglecting the resistive loss and the conductance in the cable, an equivalent circuit for a coaxial cable
treated as a distributed parameter element is shown in Fig. 5.2, where L and C are inductance and
capacitance per unit length (1m), respectively. Considering Kirchhoff’s laws, the following equations
are derived: 

V (z, t) = V (z + ∆z, t) + (L∆z)
∂I(z, t)

∂t

I(z, t) = I(z + ∆z, t) + (C∆z)
∂V (z, t)

∂t
or 

V (z + ∆z, t) − V (z, t)
∆z

= −L
∂I(z, t)

∂t

I(z + ∆z, t) − I(z, t)
∆z

= −C
∂V (z, t)

∂t
.

In the limit ∆z → 0, 
∂V (z, t)

∂z
= −L

∂I(z, t)
∂t

(5.1)

∂I(z, t)
∂z

= −C
∂V (z, t)

∂t
. (5.2)

Upon partial differentiation of Eqs. (5.1) and (5.2) by z and t, the two equations can be combined to
give

∂2V (z, t)
∂z2

= LC
∂2V (z, t)

∂t2
. (5.3)

For
V (z, t) = V0 exp {i (k0z − ωt)}, (5.4)

where V0 is the complex amplitude, k0 is a constant wavenumber, and ω > 0 is the angular frequency.
Substituting Eq. (5.4) into Eq. (5.3) gives

k0 = ±ω
√

LC. (5.5)
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Figure 5.2: Equivalent circuit diagram for an infinitesimal part of a transmission line.

Defining
ω
√

LC = k, (5.6)

Eq. (5.5) can be written as k0 = ±k. The solution for Eq. (5.3) is given as

V (z, t) = Aei(kz−ωt) + Bei(−kz−ωt), (5.7)

where both A and B are complex amplitudes. Physical meanings of the first term and the second
term on the right-hand side of Eq. (5.7) are waves propagating in positive and negative z directions,
respectively. This can be understood by considering the position z = z0 of constant phase φ0,

±kz0 − ωt = φ0,

where the positive and negative signs come from the first term and the second term on the right-hand
side of Eq. (5.7). The velocity of the position where the phase is φ0 is

dz0

dt
= ±ω

k
.

Since ω and k are both positive, dz0
dt > 0 for the positive sign and dz0

dt < 0 for the negative one. This
means that the waves Aei(kz−ωt) and Bei(−kz−ωt) proceed in the positive and negative z directions,
respectively. Equation (5.7) can be expressed as a product of the spatially-varying term and the
temporally-varying term as

V (z, t) =
(
Aeikz + Be−ikz

)
e−iωt

≡ V (z)e−iωt. (5.8)

Assuming the same time dependence e−iωt for I(z, t), substituting Eq. (5.7) into Eq. (5.1) gives

ik
(
Aeikz − Be−ikz

)
e−iωt = iωLI(z, t).
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Figure 5.3: Voltage and current on each side of the boundary between a transmission line and a lumped
impedance ZL.

Using Eq. (5.6), this equation reduces to

I(z, t) =
Aeikz − Be−ikz√

L
C

e−iωt

≡ Aeikz − Be−ikz

Z0
e−iωt

≡ I(z)e−iωt, (5.9)

where

Z0 =

√
L

C
(5.10)

is called the characteristic impedance of the transmission line and is independent of the wave frequency.
Equations (5.8) and (5.9) describe the voltage and current in a transmission line.

5.2.2 Reflection and Transmission at a Transmission Line Boundary

In this subsection, wave behavior in a transmission line when it encounters a lumped circuit element
is considered. This is the case when the signal propagating in the coaxial cable in Fig. 5.1 reaches the
oscilloscope. Taking the z-axis along the coaxial cable and representing the input impedance of the
oscilloscope by ZL , this situation is indicated graphically in Fig. 5.3. The position of ZL is at z = L.
Here, V (z) and I(z) are voltage and current in the cable, and are derived from Eqs. (5.8) and (5.9) as

V (z) = Aeikz + Be−ikz (5.11)

I(z) =
Aeikz − Be−ikz

Z0
. (5.12)
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VL in Fig. 5.3 is the voltage across the impedance ZL, and IL is the current through the impedance.
Continuity of voltage and current at z = L and the definition of the impedance ZL require

V (L) = AeikL + Be−ikL = VL (5.13)

I(L) =
AeikL − Be−ikL

Z0
= IL

VL

IL
= ZL.

These three equations give
AeikL + Be−ikL

AeikL − Be−ikL
=

ZL

Z0
. (5.14)

A point of interest is what fraction of the incident wave is reflected back at z = L. The voltage
reflection coefficient Γ (z) is defined as

Γ (z) ≡ Be−ikz

Aeikz
. (5.15)

Equation (5.14) can be expressed in terms of Γ (z = L) as

1 + Γ (L)
1 − Γ (L)

=
ZL

Z0
,

or equivalently

Γ (L) =
ZL − Z0

ZL + Z0
. (5.16)

From Eq. (5.16), Γ (L) = 0 when ZL = Z0, and thus no reflection occurs at z = L. When Γ (L) = 0,
B = 0 and a wave propagating in the negative z direction no longer exists since

Γ (z) ≡ Be−ikz

Aeikz
=

Be−ik{L+(z−L)}

Aeik{L+(z−L)} =
Be−ikL

AeikL
e−2ik(z−L)

= Γ (L)e−2ik(z−L)

and thus Γ (L) = 0 gives Γ (z) = 0 for any z in the cable. This is called impedance matching, and under
this condition the amplitude and the phase of the signal are transferred to subsequent circuit elements
without any alteration. Therefore, it is critical to match the input impedance of the instrument to the
same value as the characteristic impedance Z0 of the transmission line.

Another important quantity is the voltage transmission coefficient defined at z = L as

T (L) ≡ VL

AeikL
. (5.17)

Using Eqs. (5.13), (5.15) for z = L, and (5.16), T (L) can be expressed as

T (L) ≡ VL

AeikL
=

AeikL + Be−ikL

AeikL
= 1 + Γ (L)

=
2ZL

ZL + Z0
. (5.18)

It can be seen that T (L) = 1 for ZL = Z0.
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Figure 5.4: Proposed configuration for floating potential measurement at high frequencies, with a high
impedance resistor between the probe electrode and the signal transmission cable.

5.3 Electrostatic Probe with an Embedded High Resistance

In the previous section, the requirement for a signal transmission line with a characteristic impedance
Z0 to be terminated by a measurement instrument with the same input impedance was described.
Although a sheath that forms in front of a probe electrode adds an impedance of the order of kΩ, the
impedance of the probe system is still much smaller than hundreds of kΩ, typical values of resistance
used for floating potential measurement at low frequencies.

A new configuration for a floating potential measurement circuit is suggested in which a high
impedance resistor is placed before the cable, immediately after the probe electrode, as shown in
Fig. 5.4. Under this configuration, even high frequency signals such as 200MHz can recognize the high
impedance resistor within its wavelength at the entrance to the probe circuit, satisfying the condition
suitable for measuring Vf . A 100 kΩ non-magnetic chip resistor was used. In order to protect the circuit
from the plasma and to shield it from electromagnetic noise, the circuit is enclosed in a stainless steel
(SUS304) box. The length of this probe circuit is about 1 cm. The probe unit is shown in Fig. 5.5.

Although inductors can introduce high impedance at high frequency, no such circuit element was
used. This is because for the wavenumber measurement, the phase of the probe signal is important
and such inductors could alter the phase drastically by creating a resonance in the probe circuit. In
order to avoid such a risk and to keep a plain phase response of the probe, only a resistor is used
in the probe circuit. In this thesis, the Langmuir probe with an embedded high impedance resistor
enclosed in a stainless steel box is called the high impedance Langmuir probe unit, and the high
impedance Langmuir probe unit with a transmission cable to the measuring instrument is called the
high impedance Langmuir probe system.
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Figure 5.5: Photographs of the probe unit. (a) Probe circuit with a high impedance chip resistor and
a stainless steel (SUS304) shield box. (b) Assembled unit.

5.4 Frequency Response of the High Impedance Langmuir Probe
System

In this section, the impedance of the high impedance Langmuir probe system is evaluated in air and
compared with the impedance of a sheath formed around the probe when the probe is inserted into a
plasma. If the absolute value of the impedance of the high impedance Langmuir probe system is larger
than the sheath impedance, the 100 kΩ chip resistor is effective in presenting a high impedance to the
probe circuit.

5.4.1 Equivalent Circuit of the High Impedance Langmuir Probe System

When a signal enters the electrode of the high impedance Langmuir probe unit, it passes through the
100 kΩ chip resistor and enters the transmission cable of characteristic impedance Z0, and is detected
by a measuring instrument whose input impedance is matched to Z0. An equivalent circuit of this high
impedance Langmuir probe system is depicted in Fig. 5.6, where Zchip, Cbox, and Z0 represent the
impedance of the 100 kΩ chip resistor, the capacitance formed between the signal line and the stainless
steel box, and the transmission cable terminated by its characteristic impedance Z0, respectively.

It is reasonable to use the lumped parameters Zchip and Cbox to represent the high impedance
Langmuir probe unit because the dimension of the probe unit is no more than 3 cm, much shorter
than the wavelength, which is of the order of 1m at 200MHz. A transmission cable longer than 1m is
usually treated as a distributed parameter element with characteristic impedance Z0 at 200MHz, but
it can be expressed as a lumped parameter element with impedance Z0 when it is terminated by the
matched impedance Z0. Under this situation, the energy propagating in the transmission cable will
not reflect back to the probe, and can be represented by dissipation by a lumped parameter resistor
with R = Z0. In what follows, the impedance of this probe system is discussed.

1. Impedance of the 100 kΩ Chip Resistor

Although the nominal impedance of the chip resistor is 100 kΩ, it also has a parasitic capacitance
Cparasitic, as shown in Fig. 5.6. This parasitic capacitance can be measured by a network analyzer.
The chip resistor was connected to a coaxial cable as shown in Fig. 5.7, with each side of the chip
resistor soldered to a plug segment of the coaxial cable, and is inserted into a jack type connector.
The RF power is supplied by the output port of the network analyzer through the cable on the left,
and the transmitted power goes back to the input port of the network analyzer through the cable on
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Figure 5.6: Equivalent circuit for the high impedance Langmuir probe system.
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Figure 5.7: Chip resistor connection.

the right. The impedance of each port of the network analyzer is 50Ω. This configuration is modeled
as shown in Fig. 5.8, where the chip resistor and the terminated transmission cable are represented by
lumped parameters.

The voltage and the current in this model are depicted in Fig. 5.9. In this figure, V and Vlump

are the voltage in the transmission cable and the voltage on the lumped parameter section. Since the
impedance of the lumped parameter section is ZL = Zchip + Z0 where Zchip is the impedance of the
chip resistor including the parasitic capacitance Cparasitic, Vlump is given in terms of V using Eq. (5.18)
as

Vlump =
2ZL

ZL + Z0
V =

2 (Zchip + Z0)
Zchip + 2Z0

V. (5.19)

VZ0 and IZ0 in Fig. 5.9 are the voltage across and the current through the network analyzer input
port, and are expressed as

VZ0 =
Z0

Zchip + Z0
Vlump, (5.20)

IZ0 =
Vlump

Zchip + Z0
. (5.21)

Thus, the time-averaged power PZ0 into the network analyzer input port is given as

PZ0 =
1
2
IZ0VZ0 =

1
2

Z0

|Zchip + Z0|2
|Vlump|2

=
2Z0

|Zchip + 2Z0|2
|V |2 (5.22)

where the overline IZ0 stands for the complex conjugate of IZ0 and Eq. (5.19) was used. After the
effects of the two cables are calibrated out, the network analyzer gives the power ratio of PZ0 to the
time-averaged output power provided by the network analyzer P = 1

2
|V |2
Z0

, i.e.,

PZ0

P
=

4Z2
0

|Zchip + 2Z0|2
. (5.23)
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Figure 5.8: Circuit model of the chip resistor.

Figure 5.9: Voltage and current in the chip resistor circuit model.
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Figure 5.10: Measured frequency response of the chip resistor and that calculated by the circuit model
using Cparasitic = 0.065 pF. The blue lines represent the measured response and the red lines represent
the model calculation.

Since Zchip is the parallel impedance consisting of R100 kΩ and Cparasitic, it is expressed as

1
Zchip

=
1

R100 kΩ
+ iωCparasitic =

1 + iK

R100 kΩ
, (5.24)

where a dimensionless constant K is defined as

K ≡ ωCparasiticR100 kΩ. (5.25)

Equation (5.23) can then be expressed including the effect of Cparasitic through K as

PZ0

P
=

4
(
1 + K2

)
Z2

0

(R100 kΩ + 2Z0)
2 + 4K2Z2

0

. (5.26)

The phase shift

arg
(

VZ0

V

)
= arg

(
2Z0

Zchip + 2Z0

)
= arctan

[
KR100 kΩ

R100 kΩ + 2 (1 + K2) Z0

]
(5.27)

is also measured by the network analyzer.
In order for Eqs. (5.26) and (5.27) to reproduce the measured result, a parasitic capacitance of

0.065 pF must be included. A comparison between the measured frequency response and that calculated
by the circuit model is shown in Fig. 5.10. The discrepancy between the measured and calculated phases
is due to the difference in the signal line length for cable calibration and chip resistor measurement, as
shown in Fig. 5.11. The length of the signal line is about 5mm shorter for chip resistor measurement
and thus the same phase reaches to the network analyzer input port at earlier time at measurement
than at the calibration. Since the calibration conducts the zero point adjustment, this earlier arrival
at measurement gives more positive phase. The length of about 5mm shorter at measurement gives
the phase ∆θ of

∆θ = 360◦ × 5mm
λin cable

= 360◦ ×
(
5 × 10−3

)
×
√

2.3
fGHz × 109

3 × 108

= 9◦ × fGHz. (5.28)
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Figure 5.11: Difference in the length of signal lines for (a) calibration and (b) chip resistor measurement.

where λin cable is a wavelength in the transmission cable and fGHz is a frequency in unit of GHz. The
λin cable is given as

λin cable =
λ

√
εr

(5.29)

where λ is the wavelength in vacuum and εr is the relative permittivity of the transmission cable. The
value 2.3 for polyethylene is used for εr. Equation (5.28) gives ∆θ of +9◦ for 1GHz. This is about
half of 20◦, the difference between the measured and modeled phase in Fig. 5.10 for 1GHz. Although
there is a difference by factor 2, the measured and modeled phases are in the same order and their
difference increases linearly as the signal frequency, which is consistent with Eq. (5.28). Therefore it
is reasonable to consider Cparasitic = 0.065 pF.

Using this value, the impedance of the chip resistor Zchip at 200MHz is, from Eq. (5.24),

Zchip =
R100 kΩ

1 + K2
− i

KR100 kΩ

1 + K2
= 1477 − 12062 i Ω, (5.30)

|Zchip| = 12.2 kΩ. (5.31)

The absolute value of the impedance of the chip resistor at 200MHz is reduced from 100 kΩ to 12.2 kΩ
by the parasitic capacitance of 0.065 pF.

2. Capacitance between the Signal Line and the Stainless Steel Box

Another capacitance Cbox shown in Fig. 5.6, the capacitance formed between the signal line and the
stainless steel box, must be evaluated. A cross sectional drawing of the high impedance Langmuir
probe unit is shown in Fig. 5.12. The space between the signal line and the stainless steel box opening
has a coaxial shape. As shown in Fig. 5.12, a ceramic (boron nitride) and a SUS304 board in front of
the stainless steel box are used for assembling the high impedance Langmuir probe units, as discussed
in Chapter 6. Since the capacitance of a coaxial transmission line Ccoaxial is given by

Ccoaxial =
2πε

ln
(

b
a

) lcoaxial, (5.32)

where ε, a, b, and lcoaxial are the dielectric constant in the coaxial transmission line, the radii of the
inner and outer conductors, and the length of the transmission line, respectively. Using this equation
and Fig. 5.12, Cbox is approximately given by

Cbox ' 2πε0 × 10−3 ×

{
4

ln
(

1.5
0.25

) +
2

ln
(

1
0.25

) +
1

ln
(

3.5
0.25

) +
5.5

ln
(

4
0.25

)}
= 3.36 × 10−13 F = 0.336 pF, (5.33)
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Figure 5.12: Cross section of the high impedance Langmuir probe unit.
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where ε0 is used for ε. The impedance Zbox at 200 MHz is

Zbox =
1

iωCbox
= −2368 i Ω (5.34)

and its absolute value is about 2.4 kΩ. Since Cbox is connected in parallel with the chip resistor as
shown in Fig. 5.6, and the absolute value of its impedance is about one fifth of that of the chip resistor
|Zchip| = 12.2 kΩ, Cbox must be included when considering the impedance of the high impedance
Langmuir probe system.

3. Impedance of the High Impedance Langmuir Probe System

The impedance of the high impedance Langmuir probe system Zsystem can be calculated using Eqs. (5.30)
and (5.33). According to Fig. 5.6, Zsystem is given by

1
Zsystem

= iωCbox +
1

Zchip + Z0

= iωCbox +
1(

R100 kΩ
1+K2 + Z0

)
− iKR100 kΩ

1+K2

=
R100 kΩ +

(
1 + K2

)
Z0

(R100 kΩ + Z0)
2 + (KZ0)

2 + i

{
KR100 kΩ

(R100 kΩ + Z0)
2 + (KZ0)

2 + ωCbox

}
≡ α + iβ,

where K is defined in Eq. (5.25), and α and β are the real and imaginary parts of 1
Zsystem

. Zsystem can
be expressed as

Zsystem =
1

α + iβ
=

α − iβ

α2 + β2
(5.35)

|Zsystem| =
1√

α2 + β2
. (5.36)

The real part, the imaginary part (multiplied by −1), and the absolute value of Zsystem are plotted in
Fig. 5.13 for two cases, with (red solid line) and without (black solid line) Cbox. From this figure, it can
be seen that at 200MHz, the absolute value of Zsystem is about 2 kΩ with Cbox included, and 12 kΩ
without Cbox. The relative magnitude of the absolute value of Zsystem at 200MHz and the sheath
impedance at that frequency is of interest.

5.4.2 Probe System Impedance and the Sheath Impedance

Sheath Model

As described in Chapter 3, the sheath is formed around the probe when the electrode is inserted into
a plasma. In order to estimate the sheath impedance, the following sheath model is considered. The
sheath model for high frequencies around 200MHz is not well developed. It is noted that the sheath
model described here was developed for low frequencies, and may not hold at high frequencies such as
200MHz. The sheath is regarded as a parallel circuit consisting of the sheath resistance Rsheath and
the sheath capacitance Csheath. This is shown in the overall circuit diagram of the high impedance
Langmuir probe system shown in Fig. 5.14. These quantities are estimated as [63,64]

Rsheath ' Te[eV]
Jis[A]

(5.37)

Csheath ≈ ε0Area

λD
, (5.38)
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Figure 5.13: Real part, imaginary part, and absolute value of Zsystem with (red solid line) and without
(black solid line) Cbox.
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Figure 5.14: Circuit diagram of the high impedance Langmuir probe system including the plasma
sheath.

where Area is the area of the electrode facing the sheath. The sheath impedance Zsheath is expressed
in this model as

1
Zsheath

=
1

Rsheath
+ iωCsheath. (5.39)

For Te = 50 eV, Jis = 0.5 mA, and ne = 4 × 1016m−3, which are the measured values in the
wavenumber measurement experiment described in Chapter 8, and for the electrode length of 1.65
mm and radius 0.25 mm covered by a sheath, Rsheath ' 100 kΩ and Csheath ≈ 0.094 pF are given (in
this case, Area = 2.8mm2 and λD = 0.26mm). The frequency characteristics of the absolute values
of the impedance of the high impedance Langmuir probe system Zsystem and the sheath impedance
Zsheath are compared in Fig. 5.15. According to this simple sheath model, |Zsystem| is smaller than
|Zsheath| in the initial plasma driven by the LHW by an order of magnitude at high frequencies. At
200MHz, while |Zsystem| is evaluated to be 2.0 kΩ, |Zsheath| is evaluated to be 8.5 kΩ. Since Zsystem is
connected in series to Zsheath as shown in Fig. 5.14 and the absolute value of the synthetic impedance
|Zsheath + Zsystem| is calculated to be 10.4 kΩ, this estimation suggests that the effect of the high
impedance resistor (100 kΩ nominal) to the wavenumber measurement system including the sheath is
limited, and the current drawn from the plasma is reduced by only

∣∣ 1
10.4 − 1

8.5

∣∣ / 1
8.5 × 100 = 18% in

the peripheral region of initial plasmas driven by the LHW.
Since this estimation was conducted using a simple sheath model developed for low frequencies,

this result is not necessarily true for high frequencies such as 200MHz. In order to validate the
effectiveness of using the high impedance resistor in measuring the floating potential Vf at 200MHz,
which is expected to contain information on the LHW, the current drawn from the plasma by the
probe should be examined experimentally.
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Figure 5.15: Comparison of frequency characteristics of the absolute values of the high impedance
Langmuir probe system |Zsystem| (red solid line) and the sheath impedance |Zsheath| (black solid line)
using a simple sheath model developed for low frequencies.
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Figure 5.16: Currents drawn from the plasma and voltages at the entrance of the signal transmission
line for (a) the high impedance Langmuir probe system and (b) the plain Langmuir probe.

5.5 Evaluation of Current Drawn from the Plasma

The effectiveness of using a high impedance resistor in measuring Vf at 200MHz is evaluated by
comparing the current drawn from the plasma by the high impedance Langmuir probe system with
that drawn by the plain Langmuir probe. Figure 5.16 shows the paths of currents and measured voltage
signals for (a) the high impedance Langmuir probe system and (b) the plain Langmuir probe. The
total current drawn from the plasma is I1 + I2 for the high impedance Langmuir probe system and
I3 for the plain Langmuir probe. As described in Subsection 5.4.1, the circuit of the high impedance
Langmuir probe system can be treated as a lumped parameter circuit. These currents can be evaluated
by measuring the voltages Vmod and Vord across the characteristic impedance Z0 = 50Ω of the signal
transmission line to the digitizer. Strictly speaking, Vmod and Vord shown in Fig. 5.16 are voltages
at the entrance of the signal transmission line, different from the voltages measured by the digitizer
at the exit of the transmission line. However, since the loss in the transmission line (less than 3m)
is negligibly small, voltages Vmod and Vord, and those measured by the digitizer can be considered
identical except for the phase.

We can estimate the currents drawn from the plasma using the measured voltages without knowing
the sheath impedance, which is assumed to be common to the high impedance Langmuir probe system
and the plain Langmuir probe. From Fig. 5.16(a), I1 is simply given as

I1 =
Vmod

Z0
. (5.40)
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Using Vsystem shown in Fig. 5.16(a):

Vsystem = I1 (Zchip + Z0) , (5.41)

I2 is evaluated as

I2 = Vsystem/

(
1

iωCbox

)
= iωCbox (Zchip + Z0) I1. (5.42)

Combining this equation with Eq. (5.40), the total current I1 + I2 drawn from the plasma by the high
impedance Langmuir probe system is given as

I1 + I2 = [1 + iωCbox (Zchip + Z0)]
Vmod

Z0
. (5.43)

Similarly, the current drawn from the plasma by the plain Langmuir probe is

I3 =
Vord

Z0
. (5.44)

Assuming the plasma is identical in front of the high impedance Langmuir probe system and the plain
Langmuir probe, which is reasonable for the distance of 10mm between them, the effectiveness of using
the high impedance resistor in measuring Vf at 200MHz is evaluated by comparing |I1 + I2| and |I3|,
where

|I1 + I2| ≤ |1 + iωCbox (Zchip + Z0)|
|Vmod|

Z0
, (5.45)

in which the triangle inequality was used, and

|I3| =
|Vord|
Z0

. (5.46)

Cbox and Zchip at 200MHz were already evaluated to be 0.34 pF and (1477 − 12062i Ω) in Subsec-
tion 5.4.1, and |Vmod| and |Vord| can be measured experimentally. The result of this comparison will
be discussed in Subsection 8.3.3.

103



Chapter 6

Probe Assembly for Wavenumber
Measurement

A probe assembly consisting of three high impedance Langmuir probe units, a single-loop magnetic
probe, and a plain Langmuir probe was made in order to measure the wavenumber of the LHW and
to confirm that the measured wave is the LHW. In this chapter, probes necessary for accomplishing
these tasks and the process of probe assembly are explained. Calibrations of components forming the
signal transmission line and properties of the probe assembly such as the spatial resolution and the
rotational functionality are described.

6.1 Quantities Measured by the Probe Assembly

Quantities that can be measured by the probe assembly are listed below:

• Phase difference of 200MHz signals, used to derive the wavenumber.

• Magnetic component of the wave to be used with the high impedance Langmuir probe unit signal
to identify the type of wave being measured. As described in Chapter 2, the amplitude ratio of
electric and magnetic fields depends on the type of wave.

• Plasma density needed to identify propagating regions for waves.

The phase difference is measured by an array of three high impedance Langmuir probe units. The
high impedance Langmuir probe unit was described in Chapter 5.

The magnetic component of the wave is measured by a single-loop magnetic probe shown in Fig. 6.1.
An enameled wire of diameter 1mm is used to make a single-turn loop. One end of the wire, with
enamel removed, is soldered to the inner conductor of a panel-mount type SMA connector and the
other end of the wire, with enamel removed, is fastened to the outer conductor (ground) of the SMA
connector by a screw and a nut. Enamel between the two ends prevents the loop from any electrical
contact. The loop is an ellipse with 15mm major radius and 9mm minor radius.

The plasma density is measured by a plain Langmuir probe. A derivation of plasma density was
described in Chapter 3.

6.2 Probe Assembly

6.2.1 Probe Head

The probe head consists of three high impedance Langmuir probe units, a single-loop magnetic probe,
and a plain Langmuir probe. These probes are enclosed in a stainless steel (SUS304) box to shield
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Figure 6.1: A single-loop magnetic probe.

from electromagnetic noise. Figure 6.2 shows the probes and the stainless box. A small space for the
plain Langmuir probe is provided at the center.

The three high impedance Langmuir probe units and the magnetic probe are held together by a
SUS304 piece with a 2mm diameter hole, as shown in Fig. 6.3. The plain Langmuir probe passes
through this hole and is fixed by a slotted set screw inside the piece.

Figure 6.4 shows the probe assembly without the stainless steel cover and the distances between
probe electrodes. Electrode numbers are defined in this figure for the high impedance Langmuir
probe units (electrodes 1, 2, and 3), the magnetic probe (electrode 4), and the plain Langmuir probe
(electrode 5). Electrodes 1 through 4 form a 14.2mm square and electrode 5 is placed at the center of
the four electrodes.

Gold plating on electrodes 1, 2, and 3 are removed to avoid vaporization by the plasma. Electrodes
are cut to proper lengths, as described in the next paragraph, and the stainless square cover is attached
as shown in Fig. 6.5. The stainless square cover is 4mm thick and have four through holes of diameter
3mm and one slit of 2mm width and 12mm length. The slit permits the magnetic field component
parallel to the slit to enter the magnetic probe region.

Finally, the probe assembly is covered by 3mm thick boron nitride (BN) plates as shown in Fig. 6.6
to prevent the plasma particles from entering the stainless steel box and disturbing the ground elec-
trically. The BN plate at the end of the probe has five 2mm diameter through holes. The length of
each electrode from the front surface of the BN plate is 1.70mm ± 0.05mm.

6.2.2 Calibration of Components in the Transmission Line

A full view of the probe assembly is shown in Fig. 6.7. This probe assembly is installed on the TST-2
device as shown in Fig. 6.8. The signal transmission line from the probe head to the oscilloscope
consists of four components:

1. Semi-rigid cables of length 90.5± 0.5 cm from the probe head to the feed-through flange.
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Figure 6.2: Probes with stainless (SUS304) shield box.

Figure 6.3: Back view of the probes held together by a SUS304 piece.
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Figure 6.4: Probe assembly. (a) Electrode numbers for the three high impedance Langmuir probes units
(electrodes 1, 2, and 3), the magnetic probe (electrode 4), and the plain Langmuir probe (electrode
5). (b) Distances between probe electrodes.

Figure 6.5: Probe assembly with the stainless (SUS304) cover attached, showing the holes and the slit.
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Figure 6.6: Probe assembly covered by boron nitride plates.

Figure 6.7: Full view of the probe assembly.
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Figure 6.8: Four components of the signal transmission line from the probe head to the oscilloscope.

Table 6.1: Attenuation through each component of the transmission line.
Transmitted

power
[dB]

1. Semi-rigid
cables

2. Feed-through
flange

(non-insulation)
3. 5D-FB

cables

4. 50Ω
feed-through
terminators

Total
[dB]

Electrode 1 −0.70 −0.12 −0.12 − −0.94
Electrode 2 −0.68 −0.14 −0.10 − −0.92
Electrode 3 −0.69 −0.14 −0.10 − −0.93
Electrode 4 −0.69 −0.11 −0.17 − −0.97
Electrode 5 −0.73 −0.10 −0.10 − −0.93

2. Feed-through flange (uninsulated type).

3. 5D-FB coaxial cables of length 55.0± 0.5 cm.

4. 50Ω feed-through type terminators.

When measuring the power and phase of the signal transmitted through the transmission line, effects
of these components must be taken into account. Power attenuation and phase shift through each
component are summarized in Tables 6.1 and 6.2. The difference in the phase shift among cables
attached to different electrodes is less than 4 degrees. For cables used for electrodes 1, 2, and 3, the
difference in the phase shift is less than 2 degrees.

6.3 Properties of the Probe Assembly

6.3.1 Spatial Resolution

The probe assembly is envisioned to be used in a configuration shown in Fig. 6.9. This probe must
ensure a finer spatial resolution than the wavelengths of waves in the plasma at 200MHz. The di-
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Table 6.2: Phase shift through each component of the transmission line.
Transmitted

phase
[degrees]

1. Semi-rigid
cables

2. Feed-through
flange

(non-insulation)
3. 5D-FB

cables

4. 50Ω
feed-through
terminators

Total
[degrees]

Electrode 1 −17.6 −2 −167.6 −11.1 −198.3
Electrode 2 −16.4 −2 −167.5 −11.5 −197.4
Electrode 3 −16.8 −2 −167.5 −10.7 −197.0
Electrode 4 −17.6 −2 −169.2 −12.0 −200.8
Electrode 5 −17.1 −2 −167.2 −10.9 −197.2

Figure 6.9: Configuration intended for probe usage.

mensions of the probe are discussed for both parallel and perpendicular directions with respect to the
toroidal magnetic field.

Direction Parallel to the Toroidal Magnetic Field

The probe electrodes are arranged on a vertical plane which includes the toroidal magnetic field. The
parallel wavelength λ// itself or its projection along the electrode array, λp, can be derived from the
phase differences of signals measured by different high impedance Langmuir probe units, as depicted in
Fig. 6.10. Here, λp, d, and ∆φ denote the projected wavelength along the electrode array, the distance
between the two electrodes, and the phase difference between the two signals measured by the two
electrodes. The relationship among them is given by

λp = d × 360◦

∆φdegree
, (6.1)

where ∆φdegree is the phase difference in degrees. The projected wavenumber kp is given as

kp =
2π

λp
=

2π

d
· ∆φdegree

360◦
. (6.2)

By the Nyquist Theorem, the inter-electrode distance d = 14.2 mm gives the maximum measurable
wavenumber of 223m−1, which covers the wavenumber from 0m−1 to 75.4m−1 launched by the grill
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Figure 6.10: Concept of measuring the projected wavelength λp. (a) Traveling wave projected along a
two-electrode array. (b) Signals at the same time. (c) Phase difference ∆φ.
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Figure 6.11: Rotation of the probe head. (a) Probe head without BN plates at the probe angle of
0 degree. (b) Electrode positions and measured magnetic field components at different probe angles.

antenna.

Direction Perpendicular to the Toroidal Magnetic Field

The length of the electrodes, which is in the perpendicular (radial) direction, must be shorter than
the perpendicular wavelength λ⊥ of waves in the plasma, because otherwise the signal is averaged
out over a wavelength in that direction and the wave information could be lost. The length of each
electrode exposed beyond the surface of the BN plate is 1.70mm ± 0.05mm. In the peripheral region
of start-up plasmas with the toroidal magnetic field of about 0.05T, the plasma density is around
1017 m−3 or less, so the wavelength along the electrode is more than 20mm from Fig. 2.4. Therefore,
the electrode length of 1.70mm ± 0.05mm is short enough and the spatial resolution in the radial
direction is secured.

6.3.2 Rotation of the Probe Head about its Axis

The probe head can be rotated about the axis of the probe head, which is collinear with electrode
5. Rotation of the probe enables measurement of different components of the magnetic field, and
also measurement of the same wave with different electrodes when the probe assembly is rotated by
90 degrees as described in Fig. 6.11, which is useful for validating the wavenumber measurement. The
positive direction of the probe rotation angle is defined to be in the clockwise direction as seen from
the front of the probe assembly.
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Chapter 7

Electromagnetic Sensitivity of the
Probe

As described in Chapter 2, the amplitude ratio of the electric field E and the magnetic field B is
different between the fast wave and the slow wave (LHW). Therefore, it would be helpful for identifying
the wave type if |E| and |cB| could be measured using the high impedance Langmuir probe unit and
the magnetic probe. In this chapter, the measured electric and magnetic fields of the electromagnetic
wave propagating in a coaxial transmission line, for which |E| = |cB| holds, are discussed.

7.1 Electromagnetic Wave in a Coaxial Transmission Line

A coaxial transmission line with inner and outer conductor radii a and b is considered. A cylindrical
coordinate system (r, θ, z) with the z-axis along the axis of the coaxial transmission line is used.
According to Appendix A, waves with Ez = 0 and Bz = 0, which are called the Transverse Electro-
Magnetic (TEM) wave, are dominant in a coaxial transmission line. From Eqs. (A.39) and (A.40) in
Appendix A, this condition places restrictions on the electric field Et perpendicular to the z-axis as{ ∇t · Et = 0 (7.1)

∇t × Et = 0 (7.2)

and on the wavenumber kz in the z direction as

kz = ω
√

µε, (7.3)

where ∇t is the spatial differential operator in the r-θ plane [65]. From Eqs. (7.1) and (7.2), the spatial
distribution of Et in a coaxial transmission line is the same as that in a 2-dimensional electrostatic
problem. Therefore, an electrostatic situation shown in Fig. 7.1 in which line charge densities σ [C/m]
and −σ [C/m] are given to the inner and outer conductors, respectively, can be used. Since the coaxial
transmission line is symmetric about the z-axis, σ is distributed uniformly on the inner conductor and
Et has only the radial (r) component Er. For a < r < b, Gauss’s law on the coaxial transmission line
of unit length gives

ε0 · Er(r) · 2πr · 1 = σ,

yielding

Er(r) =
σ

2πε0

1
r

(a < r < b) . (7.4)

From Eq. (7,3), it is found that both the phase velocity and the group velocity of TEM waves are
1√

µ0ε0
= c in air. This means that Er propagates in z direction at speed c, which can be seen as the
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Figure 7.1: Line charge densities σ and −σ distributed uniformly on the inner and outer coaxial
cylinders of radii a and b, respectively, used for the analysis of a coaxial transmission line.

line charge density σ traveling in the z direction at speed c, indicating that a current cσ flows in the z
direction because the charge distributed over the length c [m], cσ [C], passes through a cross section in
the coaxial transmission line per unit time. Therefore, a magnetic field in the θ direction Bθ is induced
by Ampere’s law as

Bθ(r) = µ0
cσ

2π

1
r

(a < r < b) . (7.5)

Using Eqs. (7.4) and (7.5), the relationship between Er(r) and Bθ(r) is obtained as

Er(r) =
σ

2πε0

1
r

=
1

µ0ε0

(
µ0

σ

2π

1
r

)
= c2

{
1
c
Bθ(r)

}
= cBθ(r), (7.6)

which satisfies Eq. (A.38) in Appendix A. Therefore, the electric and magnetic fields of TEM waves in
a coaxial transmission line satisfy |E| = |cB| and their spatial distributions are as shown in Fig. 7.2.

7.2 Coaxial Transmission Line as a Calibrator

Sensitivities of the probes against the electromagnetic wave with |E| = |cB| were measured inside a
coaxial transmission line of length 1m length and radii a = 26mm and b = 60mm, with a charac-
teristic impedance of 50Ω. A hole of about 90mm diameter is opened on the outer conductor of the
transmission line and a copper cylinder of length 125mm is attached as shown in Fig. 7.3. After the
horizontal position of the probe with respect to the coaxial transmission line calibrator is adjusted as
shown in Fig. 7.4, the probe assembly is inserted into the calibrator. Figure 7.5 shows the configura-
tion of electromagnetic sensitivity calibration of the probe assembly. The RF power is supplied from
the output port of the network analyzer to the left end of the calibrator and the transmitted power
returns to the input port of the network analyzer through each probe. The right end of the calibrator
is terminated by a 50Ω terminator. Therefore, no power is reflected back from the right end of the
calibrator and only the rightward traveling wave exists in the coaxial calibrator.

The actual electric and magnetic fields measured by the probe assembly are those at positions
of electrodes 1 through 4, Er(s) cos α and Bθ(s) cos α as shown in Fig. 7.6 where s ≡

√
r2 + h2 and

h = 7.1mm. Er(s) cos α is parallel to electrodes 1 through 3 and Bθ(s) cos α is perpendicular to the
magnetic probe. Using Eqs. (7.4) and (7.5), the ratio of Er(s) cos α to cBθ(s) cos α is
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Figure 7.2: Electric and magnetic fields in a coaxial transmission line.

Figure 7.3: Coaxial transmission line calibrator.
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Figure 7.4: Horizontal position adjustment.

Figure 7.5: Configuration of the electromagnetic sensitivity calibration.
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Figure 7.6: Actual electric and magnetic fields measured by probes.

Er(s) cos α

cBθ(s) cos α
=

1
µ0ε0c2

√
r2 + h2

√
r2 + h2

= 1, (7.7)

giving Er(s) cos α = cBθ(s) cos α. In addition, from Fig. 7.6, the measured components Er(s) cos α and
Bθ(s) cos α are perpendicular to each other. Under this situation the probe assembly can be considered
to measure the electromagnetic wave with |E| = |cB|.

7.3 Angular Dependence of Probe Response

The angular dependence of the probe response was measured with the front surface of the probe head
located at r = 40mm, which is within the region 26mm ≤ r ≤ 60mm where the electromagnetic
wave propagates inside the coaxial transmission line calibrator. Since the position and the angle of
each probe change as the probe head is rotated about its axis, the probe response can be checked by
scanning the probe angle. In this section, the frequency response to the electromagnetic wave up to
500 MHz measured at probe angles of 0 degree and 90 degrees are presented first. Then the angular
dependence of the electromagnetic sensitivity at 200MHz is investigated. The transmitted power and
phase are measured for the signal path from the entrance of the coaxial calibrator, through probes to
the input port of the network analyzer.

7.3.1 Frequency Response Up to 500MHz

Figures 7.7 and 7.8, and Figs. 7.9 and 7.10 show the frequency responses of the transmitted power and
phase for probe angles of 0 degree and 90 degrees, respectively, up to 500MHz. While no significant
difference is seen for electrostatic electrodes 1, 2, 3, and 5 between the probe angles of 0 degree and
90 degrees, electrode 4 (magnetic probe) for the probe angle of 90 degrees shows a drastic reduction in
the transmitted power by 20 to 30 dB compared to the probe angle of 0 degree, and the transmitted
phase for the probe angle of 90 degrees has large uncertainties because of the small transmitted power.
This is because for the probe angle of 90 degrees, the plane of the magnetic loop becomes parallel to
the magnetic field in the coaxial calibrator and the detection efficiency reduces to nearly zero.

At both probe angles, no resonance appears at 200MHz for any electrode. Considering rotational
symmetry of the probe head by 180 degrees, it is reasonable to conclude that no resonance appears at
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Figure 7.7: Frequency response of the transmitted power for the probe angle of 0 degree.

Figure 7.8: Frequency response of the transmitted phase for the probe angle of 0 degree.
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Figure 7.9: Frequency response of the transmitted power for the probe angle of 90 degrees.

Figure 7.10: Frequency response of the transmitted phase for the probe angle of 90 degrees.
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Figure 7.11: Reflected power from the calibrator for probe angles 0 degree and 90 degrees.

200MHz for any other probe angle.
Figure 7.11 shows the reflected power from the coaxial calibrator for the probe angles of 0 degree

and 90 degrees up to 500MHz. At 200MHz, the reflected power is only −35 dB at both probe angles
and is negligible compared to the forward traveling wave in the calibrator.

7.3.2 Angular Dependence of Probe Response at 200MHz

The angular dependence of probe sensitivities to the electromagnetic wave at 200MHz was measured.
Figures 7.12 and 7.13 show the transmitted power and phase at 200MHz for various probe angles.
From these figures, it is evident that electrostatic electrodes 1, 2, 3, and 5 show no significant change
as the probe head rotates about its axis. Although a phase difference of 3.4 degrees, which corresponds
to a phase difference of the 200MHz wave over a distance of 14.2 mm (inter-electrode distance) in air,
should be detected, the phase output measured by the network analyzer varies by about 5 degrees due
to small signal levels. This gives the uncertainty in the phase measurement.

The magnetic probe (electrode 4), on the other hand, shows a drastic change as the probe head is
rotated. Its sensitivity to the electromagnetic wave in the calibrator changes by about 30 dB at 200
MHz between the cases with the magnetic field parallel and perpendicular to the loop. The transmitted
power measured by the magnetic probe has a 180 degree periodicity and takes the maximum values at
probe angles 0 degree and 180 degrees, and minimum values at 90 degrees and 270 degrees, consistent
with the magnetic field orientation in a coaxial transmission line.

As for the phase measured by the magnetic probe, it is constant from 90 degrees to 270 degrees
and from 270 degrees (or −90 degrees) to 90 degrees, with a phase jump by 180 degrees at 90 degrees
and 270 degrees. The phase jumps occur when the plane of the magnetic loop crosses the angle of
the magnetic field. Thus, the magnetic probe behaves as expected, and it can be concluded that the
magnetic probe measures the magnetic field correctly even in the presence of a radial electric field Er.
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Figure 7.12: Dependence of the transmitted power at 200MHz on the probe angle.

Figure 7.13: Dependence of the transmitted phase at 200MHz on the probe angle.
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Figure 7.14: Dependence of the electromagnetic sensitivities of probes at 200MHz on the radial posi-
tion. Reflected power from the calibrator is also shown.

7.4 Dependence of Probe Response on Radial Position

The purpose of this section is to derive the signal amplitude ratios of electrodes 1 through 3 to the
magnetic probe signal at 200MHz. The probe angle is set to 0 degree since the magnetic loop gives
the maximum signal amplitude at this angle.

7.4.1 Transmitted Power and Phase

Figures 7.14 and 7.15 show the dependence of the transmitted power and phase at 200MHz on the
radial position. The hatched region indicates the region between the inner and outer cylinders of
the coaxial transmission line calibrator. Throughout the radial scan, the reflected power from the
calibrator is about 30 dB or less, so only a forward traveling wave exists in the calibrator. Phases
measured by electrode 1 through 5 are nearly constant, consistent with the TEM wave in a coaxial
transmission line which has no radial wavenumber.

7.4.2 Amplitude Ratios of Electrostatic and Magnetic Probes

The RF power supplied by the network analyzer output port (PRF) is 10 dBm. From Fig. 7.14, this
power gives the signal amplitudes (V0−peak) measured by electrodes 1 through 4 by the relationship

PRF = V 2
0−peak
2Z0

, as shown in Fig. 7.16. The amplitude ratios of signals measured by electrodes 1 through
3 to the magnetic probe signal are given in Fig. 7.17. These ratios are less than 0.3. The value 0.3 is
used as the signal amplitude ratio for the wave with |E| = |cB| to identify the type of wave measured
in the plasma.
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Figure 7.15: Dependence of the probe phase responses to the electromagnetic wave at 200MHz on the
radial position. Phase of the reflected power from the calibrator is also shown.

Figure 7.16: Radial position dependence of probe signal amplitudes at 200MHz.
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Figure 7.17: Amplitude ratios of signals measured by electrodes 1 through 3 to the magnetic probe
(electrode 4) signal at 200MHz.
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Chapter 8

Wavenumber Measurement of the
Lower Hybrid Wave

The probe assembly, which consists of three high impedance Langmuir probe units, one magnetic
probe, and one plain Langmuir probe was installed on TST-2 and wavenumber measurements were
conducted in RF start-up plasmas. In this chapter, the experimental configuration is described, and an
overview of the plasma discharge and probe signals are given. Using the measured signals, the effect
of using a high impedance resistor on an electrostatic probe is investigated, and phase differences
among the high impedance Langmuir probe signals are extracted and converted to the wavenumber,
its error, and the direction of phase propagation. Identification of the type of the measured wave is
also conducted based on the measured signal amplitudes in a plasma and the calibrated sensitivity of
probes to the electromagnetic wave.

8.1 Experimental Configuration

Top view of the experimental configuration is shown in Fig. 8.1. The toroidal magnetic field and the
plasma current are in the clockwise direction and the RF wave is launched into the plasma from the
grill antenna in the counter-clockwise direction to accelerate electrons in that direction (i.e., to drive
the plasma current in the clockwise direction). The radial, poloidal, and toroidal directions are defined
in terms of the Cartesian x, y, and z-axes, respectively. The radial direction R from the center of the
TST-2 device is also defined. The front surface of the probe assembly is placed at R = 590mm and the
position of the front surface of the grill antenna is at R = 650mm. They are displaced in the toroidal
direction by 120 degrees. The plasma is physically limited in radial direction by a structure called the
limiter at R = 607mm, and thus the probe surface is inside the plasma and the grill antenna is behind
the limiter.

Signals of the high impedance Langmuir probe units (electrodes 1, 2, and 3) and the magnetic
probe (electrode 4) were digitized by a digital oscilloscope (DL7480, Yokogawa Electric Corporation)
with a sampling rate of 1GHz. The signal from the directional coupler which samples a fraction of
the forward power to waveguide #1 of the grill antenna is also digitized by the same oscilloscope. The
plain Langmuir probe (electrode 5) signal is digitized by this oscilloscope for the RF signal, or by a
digitizer (HIOKI 8861-50 MEMORY HiCORDER and HIOKI 8956 ANALOG UNIT, HIOKI E. E.
CORPORATION) for measuring the low frequency Vf or the plasma density.
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Figure 8.1: Cross sectional view of the experimental configuration as seen from the top.
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8.2 Plasma Discharge

In this section, an overview of a representative plasma discharge is given. The plasma density is needed
to identify regions where waves can propagate, and is measured by the plain Langmuir probe (electrode
5). The wavenumber of the wave launched by the grill antenna is also evaluated.

8.2.1 Typical Plasma Discharge

A representative discharge used in this experiment is shown in Fig. 8.2. The shot number is 105498.
This is a deuterium plasma created by RF wave at 2.45GHz injected from 5ms to 45ms. In TST-2, this
wave is used for pre-ionization of the deuterium gas. The incident (or forward) and reflected powers
are shown by black and red lines, respectively, in the “ECH Forward and Reflected Power” frame.
Subsequently, the plasma current (Ip) is driven by RF wave at 200MHz. The toroidal magnetic field
(TF) is shown by black and green lines for the major radial positions R = 380mm (approximate center
of the plasma center) and R = 590mm, respectively. In order to maintain the plasma in equilibrium
(major radial force balance), the vertical field must be applied to prevent the toroidal plasma current
from expanding outward. The time evolution of the vertical field is shown in the “Poloidal Field Coil
Current” frame as the current flowing in the poloidal field coil. The low frequency floating potential is
plotted in the “Floating potential (Vf)” frame. The soft x-ray radiation over a broad range of energy
is also plotted. The trace plotted in the “Rout [m]” frame represents the approximate major radial
position of the outermost closed flux surface which defines the boundary of confined plasma.

The power of the RF wave at 200MHz is shown in the “Total RF Forward and Reflected Power”
frame where the black and red lines represent the total forward and reflected powers summed over the
four waveguides of the grill antenna.

The front surface of the probe assembly is located on the mid-plane (equatorial plane) of TST-2,
and is inserted to the radial position R = 590mm, slightly outboard of “Rout”, so that the probe does
not disturb the confined plasma. Although the probe position is outside the last closed flux surface,
it is located farther in than the limiter, which is located at R = 607mm and physically limits the
outboard side of the plasma. The peripheral region of the plasma is measured in this way. RF signals
from the probe assembly were analyzed for the time interval from 55ms to 63ms, which marked by
black vertical solid lines in Fig. 8.2.

8.2.2 Plasma Density

The plasma density is important for identifying the regions where waves can propagate, and is measured
by the plain Langmuir probe, electrode 5. The plasma density and temperature can be derived from the
response of the probe current to the varying applied bias voltage on the probe electrode, as described
in Chapter 3. In this experiment, a sinusoidal sweep of the bias voltage from −250V to 50V at 1 kHz
is used, and the probe current is measured by the voltage drop across a 100Ω resistor. Figure 8.3
shows an expanded view of the plasma current, the bias voltage, and the probe current during the RF
signal analysis period from 55ms to 63ms for shot number 105562. The plasma condition is the same
as shot number 105498. The probe current is examined for seven half sweep periods, each of which is
shown as an interval between vertical lines of the same color in Fig. 8.3.

Figure 8.4 shows the seven traces of the probe current for the seven intervals indicated in Fig. 8.3
and the averaged probe current. At sufficiently negative bias voltage, the probe current is slightly
positive. This is the ion saturation region. From Fig. 8.4, the ion saturation current is 0.48mA. For
this measurement, the surface of the probe assembly was located at R = 570mm, 20mm farther in
than R = 590mm, because at R = 590mm the probe current did not reach the ion saturation region
due to low plasma density.

The electron current is derived by subtracting the ion saturation current of 0.48mA from the probe
current. Figure 8.5 shows the electron current (with positive sign for electron current). The electron
deceleration region is fitted by the red curve shown in Fig. 8.5, from which Te is estimated to be 55 eV.
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Figure 8.2: Discharge waveforms of a representative discharge used in this experiment (shot number
105498). The probe is located at R = 590mm.
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Figure 8.3: Expanded view of discharge waveforms for shot number 105562. The probe is located at
R = 570mm.
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Figure 8.4: Probe current for seven half sweep periods and the averaged probe current.
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Figure 8.5: Electron current used for deriving Te.

For the probe surface area of the plain Langmuir probe of 0.4mm diameter and 1.65mm length is
2.2mm2, using which the plasma density ne of

ne = 4 × 1016 m−3 (8.1)

is derived. The plasma density derived from the plain Langmuir probe data is only an estimate because
the probe I-V characteristic curve is distorted in the presence of RF waves [66].

8.2.3 Launched Wavenumber from the Grill Antenna

The RF power and phase data for the grill antenna is shown in Fig. 8.6 for the representative discharge
(shot number 105498). The black and red lines in frames #1 through #4 are the forward and reflected
powers measured for the four waveguides. The blue solid line in the “Total power” frame is the total
power radiated into the plasma from the antenna. The “Phase” frame shows the phases measured
for the four waveguides. The phase differences between adjacent waveguides determine the toroidal
wavenumber (synonymous to the component of wavenumber parallel to the magnetic field in this
experiment) of the wave excited in the plasma. In this experiment, the phase difference between
adjacent waveguides was fixed to 90 degrees. From these data, the parallel wavenumber spectrum of
the wave excited by this antenna is derived as follows.

Figure 8.7 is the equatorial cross sectional view of the TST-2 device and the grill antenna. The
RF field is specified at the front surface of the grill antenna located at R ≡ Rantenna = 650mm. The
toroidal extent of the antenna ranges in toroidal angle from 0degree to 13.2 degrees. The toroidal
circumference is L = 2πRantenna. The amplitude and phase of this RF field is given by the time
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Figure 8.6: RF waveforms for shot number 105498.
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Figure 8.7: Cross sectional view of the grill antenna placement as seen from the top.

average from 55ms to 63ms as shown in Fig. 8.8 and is expanded in terms of kn, which are multiples
of the fundamental wavenumber kf .

kf is given as

kf =
2π

L
=

1
Rantenna

(8.2)

and kn is given by
kn = nkf =

n

Rantenna
, (8.3)

where n is an integer, called the toroidal mode number and is denoted by ntor.
A situation is considered in which the circumference of length L is equally divided by N +1 points,

where N is a positive even number and a positive number m is defined as m = N
2 . Defining the

coordinate z along the circumference of length L, the time averaged RF field V (z) is expressed by
inverse discrete Fourier transform as

V (z) =
m−1∑

n=−m

(
Aneiknz

)
, (8.4)

where An is the complex amplitude for spatial wavelength kn and is calculated as

An =
1
N

N−1∑
l=0

V

(
L

N
l

)
e−i 2πn

N l. (8.5)

According to Eq. (8.4), the parallel wavenumber spectrum is given by plotting

{|A−m|2, |A−m+1|2. · · · , |A−1|2, |A0|2, |A1|2, · · · .|Am−1|2}
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Figure 8.8: Relative voltage and phase at the front surface of the grill antenna.
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against
{k−m, k−m+1. · · · , k−1, k0, k1, · · · .km−1}.

Although the phase difference between adjacent waveguides is fixed at 90 degrees, the phase mea-
sured at waveguide #4 in Fig. 8.6 was not constant. The cause of this phase variation at #4 is not
clear. An external source of noise could affect the phase measurement. The parallel wavenumber
spectrum is calculated in two ways, with the RF power #4 included or not included in V (z), as shown
in Fig. 8.8. Figure 8.9 shows the calculated parallel wavenumber spectra for the two cases. Overall
features of the wavenumber spectra are similar. Considering the possibility that the phase signal of
waveguide #4 is spoiled by noise, the parallel wavenumber spectrum without waveguide #4 data is
used. As described in Chapter 9, this choice does not affect the physics consideration.

8.3 Wavenumber Derivation from Probe Assembly Signals

The wavenumber of the 200MHz RF wave is derived from the phase difference of signals measured by
the probe assembly, in particular by the three high impedance Langmuir probes. A discrete Fourier
transform is performed on measured signals and the resultant Fourier complex amplitudes are used to
give phase differences between signals. The wavenumber and its direction are derived from the phase
difference with its sign considered. An overview of these processes are given in this section.

8.3.1 Raw Waveforms of Probe Assembly Signals

RF signals were measured with a sampling rate of 1GHz by a digital oscilloscope (DL7480, Yokogawa
Electric Corporation) as shown in Fig 8.10. RF noise suppression is achieved by bundling cables from
the vacuum feedthrough to the oscilloscope with cable ties to reduce eliminate loops, and by covering
the feedthrough flange by aluminum foil to prevent the electromagnetic noise from entering signal lines.
In this section, shot number 105590, with the same conditions for the representative discharge 105498,
is used for explanation. Figure 8.11 shows the plasma discharge (shot number 105590) by black lines
and a vacuum shot (105591) with RF injection only by red lines. The RF forward power (solid line)
is almost the same between the two shots, whereas the reflected power (dashed line) is smaller for the
plasma because the RF power is absorbed by the plasma. Rout does not work in the absence of plasma.
RF signals were sampled over the time interval 55ms to 63 ms, shown as the region between two solid
black lines.

As in the representative plasma discharge (shot number 105498), the magnetic field is nearly purely
toroidal (horizontal) in the shot number 105590. The probe assembly was inclined at 15 degrees from
the horizontal direction to prevent shadowing of the probe electrode from plasma flow along the
magnetic field by a neighboring probe electrode. Figures 8.12, 8.13, and 8.14 show raw signals over the
whole time interval of 8ms for electrodes 1 through 3, for electrode 4 and 5, and for the RF reference
signal and the noise reference signal, respectively, with expanded views of the waveforms. Zero on the
time axis of windows for signals over the time interval of 8ms corresponds to 55ms. Expanded views
of signals are shown at 59ms for 20 nano seconds. The expanded view of raw signals shows that the
period is about 5 ns, which corresponds to the period of 200MHz. For the same RF forward power
(shown in the first and the second rows in Fig. 8.14), all signal magnitudes of the probe assembly are
obviously larger for the plasma shot (black lines) than in a vacuum shot (red lines). DC components
of electrodes 1 through 3 are negative, whereas that of electrode 4 (magnetic probe) is nearly zero.

8.3.2 Amplitude Spectra of Probe Assembly Signals

A discrete Fourier transform is performed on raw signals to extract the amplitude and phase of 200MHz
frequency. As in Subsection 8.2.3, the situation in which the data time interval T is equally divided
by N + 1 points is considered. N is a positive even number and a positive number m is defined as
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Figure 8.9: Parallel wavenumber spectra of the wave launched by the grill antenna with and without
waveguide #4 data.
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Figure 8.10: Provision for noise suppression.
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Figure 8.11: Comparison of the plasma discharge of the shot number 105590 (black) with the vacuum
shot number 105591 (red).
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Figure 8.12: Raw waveforms of the whole time interval of 8ms and expanded views of the waveforms
of signals from electrodes 1 through 3 for the plasma shot number 105590 (black) and the vacuum shot
number 105591 (red).
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Figure 8.13: Raw waveforms of the whole time interval of 8ms and expanded views of the waveforms
of signals from electrodes 4 and 5 for the plasma shot number 105590 (black) and the vacuum shot
number 105591 (red).

140



Figure 8.14: Raw waveforms of the whole time interval of 8ms and expanded views of the waveforms
of the RF reference signal and the noise reference signal for the plasma shot number 105590 (black)
and the vacuum shot number 105591 (red).
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Figure 8.15: RF data acquisition time interval of 8ms and seven 2ms sub-intervals.

m = N
2 . From Appendix B, the time-dependent voltage V (t) is expressed as

V (t) = C0 +
m−1∑
n=1

{2|Cn| cos (ωnt + arg Cn)}, (8.6)

where Cn is the complex Fourier amplitude

Cn =
1
N

N−1∑
l=0

V

(
T

N
l

)
e−i 2πn

N l (8.7)

and ωn is defined as

ωn =
2π

T
n. (8.8)

From Eq. (8.6), it is found that the amplitude and phase of the signal component for the angular
frequency ωn are given by 2|Cn| and arg Cn, respectively. Since Fourier analysis assumes stationarity
of the analyzed signal in time, the sampled time interval of 8ms is divided into “sub-intervals” to
check whether the complex Fourier amplitudes derived from each sub-interval are stationary in time
or not. In this thesis, the 8ms time interval is divided into 2ms sub-intervals (the first sub-interval is
55ms to 57ms, the second sub-interval is 56ms to 58ms, and so on), as shown in Fig. 8.15. For the
sub-interval of T = 2ms with a data sampling rate of 1GHz, N = 2 × 106. In performing discrete
Fourier transform, the data in a sub-interval was windowed by a hanning window w(t), which is defined
for the time interval [0, T ] as

w(t) =

{
1 1

10T ≤ t ≤ 9
10T ,

1
2

{
1 − cos

(
2π 5

T t
)}

0 ≤ t ≤ 1
10T , 9

10T ≤ t ≤ T.
(8.9)

Figure. 8.16 shows w(t) with the abscissa expressed by the data point number for a 2ms sub-
interval. Using w(t), the signal w(t)V (t) is used instead of V (t) in Eq. (8.7) and the complex Fourier
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Figure 8.16: Window function.

amplitude C
′

n for the windowed data w(t)V (t) is calculated as

C
′

n =
1
N

N−1∑
l=0

w

(
T

N
l

)
V

(
T

N
l

)
e−i 2πn

N l.

In order for C
′

n to take a correct signal amplitude, C
′

n should be corrected by dividing by a factor∑N−1
l=0 w

(
T
N l

)∑N−1
l=0 1

= 0.9 ,

which is the ratio of the window area to the area not windowed. This amplitude correction was
confirmed to be valid using virtual test signals. From now on, the corrected complex Fourier amplitude
C

′

n/0.9 is used as Cn:
C

′

n

0.9
→ Cn. (8.10)

It should be noted that 2|Cn| given in Eq. (8.10) reflects the correct signal amplitude for angular
frequency ωn.

Figure 8.17 shows the averaged 2|Cn| of measured signals over the seven sub-intervals for plasma
shot number 105590 (black line) and vacuum shot number 105591 (red line). All amplitudes take the
maximum value at 200.001MHz. For the same RF reference signal amplitude, the amplitudes of all
probe assembly electrodes are larger for plasma discharge at this frequency than for vacuum. The
noise reference signal amplitude is slightly smaller for plasma discharge than for vacuum. This is
presumably because the amplitude of RF wave in a plasma discharge is reduced from that in vacuum
due to absorption of RF wave power by the plasma.

Figure 8.18 shows the double corrected complex Fourier amplitudes 2Cn at 200.001MHz for each
sub-interval for plasma shot number 105590. Colors of data points begin with red for the first sub-
interval and the colors for subsequent sub-intervals progress in the same order as the rainbow. The
distance between each data point and the origin represents the amplitude of the real signal. The
argument changes by similar values because the sub-interval is not an exact integral multiple of the
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Figure 8.17: Signal amplitudes averaged over the seven sub-intervals.
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Figure 8.18: Fourier components 2Cn for each sub-interval for the frequency of 200.001MHz for plasma
shot number 105590.
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Figure 8.19: Phase shift between sub-intervals.

period corresponding to 200.001MHz, and thus each sub-interval perceive the signal with different
phase, as depicted in Fig. 8.19. As long as the wave frequency is constant, this effect is irrelevant to
the phase difference, which is calculated for each sub-interval, because the phase increment is cancelled
out by subtracting one phase from another phase in the same sub-interval. With this effect taken into
account, it is reasonable to conclude from Fig. 8.18 that signals are nearly stationary during the data
acquisition time of 55ms to 63ms.

8.3.3 Effect of Using a High Impedance Resistor for Measuring the Floating
Potential at 200MHz

In this Subsection, the effect of using a high impedance resistor (100 kΩ nominal) on the floating
potential measurement at 200MHz is considered using amplitudes of voltage signals measured by the
high impedance Langmuir probe systems and the plain Langmuir probe, as described in Section 5.5.
Table 8.1 shows the average signal amplitudes and errors measured by electrodes 1 through 3 (high
impedance Langmuir probes) and electrode 5 (plain Langmuir probe) over seven sub-intervals for the
plasma shot 105590 and the vacuum shot 105591, and Table 8.2 shows those of electrode 4 (magnetic
probe), RF reference signal, and noise reference signal. It should be noted that the rows for “Plasma
Shot 105590” in Tables 8.1 and 8.2 come from the absolute values of Fourier components (signal
amplitudes) shown in Fig. 8.18. The error is taken from the standard deviation over seven sub-intervals.

From Eqs. (5.45) and (5.46), the absolute values of currents drawn from the plasma by the high
impedance Langmuir probe system and the plain Langmuir probe are:

|I1 + I2| ≤ |1 + iωCbox (Zchip + Z0)|
|Vmod|

Z0

Table 8.1: Average signal amplitudes of electrodes 1 through 3 (high impedance Langmuir probes)
and electrode 5 (plain Langmuir probe) over seven sub-intervals for the plasma shot 105590 and the
vacuum shot 105591.

Signal Amplitude
(mV)

1
High Impedance
Langmuir Probe

2
High Impedance
Langmuir Probe

3
High Impedance
Langmuir Probe

5
Plain

Langmuir Probe
Plasma Shot

105590
4.77

± 0.68
4.57

± 0.58
5.23

± 0.63
54.56
± 7.45

Vacuum Shot
105591

1.40
± 0.01

0.61
± 0.03

0.49
± 0.02

1.56
± 0.16
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Table 8.2: Average signal amplitudes of electrode 4 (magnetic probe), RF reference, and noise reference
over seven sub-intervals for the plasma shot 105590 and the vacuum shot 105591.

Signal Amplitude
(mV) ( (V) for CH. 6)

4
Magnetic Probe

6
RF Reference

7
Noise Reference

Plasma Shot
105590

6.24
± 0.48

14.78
± 0.19

0.48
± 0.04

Vacuum Shot
105591

2.39
± 0.03

15.43
± 0.20

0.59
± 0.03

and

|I3| =
|Vord|
Z0

,

respectively. Cbox = 0.34 pF and Zchip = 1477 − 12062i Ω for 200MHz were given in Subsection 5.4.1.
From Table 8.1, signal amplitudes measured measured by the high impedance Langmuir probe system
|Vmod| and by the plain Langmuir probe |Vord| take the values of

|Vmod| = 5.2mV,

|Vord| = 54.6mV,

where the signal amplitude measured by electrode 3, the highest among the three high impedance
Langmuir probe systems, was chosen for |Vmod|. Using these values, |I1 + I2| and |I3| are calculated as

|I1 + I2| ≤
∣∣1 + i

(
2π × 2 × 108

)
×

(
3.4 × 10−13

)
× [(1477 + 50) − 12062 i]

∣∣ × 5.2 × 10−3

50
∼= 6.4 × 10−4 A = 0.64mA

and

|I3| =
54.6 × 10−3

50
∼= 1.1 × 10−3 A = 1.1mA,

leading to
|I1 + I2| < 0.6 × |I3|.

This result signifies that at 200MHz the total current drawn from the plasma by the high impedance
Langmuir probe system is less than that drawn by the plain Langmuir probe by at least 40%, showing
that using a high impedance resistor of 100 kΩ just after the electrode of the Langmuir probe is effective
for floating potential measurement at 200MHz. Although the signal level is smaller than that measured
by the plain Langmuir probe, the measurement using the high impedance Langmuir probe system is
less perturbative. The high impedance Langmuir probe system detects the signal closer to the floating
potential than that measured by the plain Langmuir probe. It is expected that the signal measured
by the high impedance Langmuir probe system is closer to that originating from the LHW.

The reduction of the current drawn from the plasma by at least 40% is more than twice larger than
18% estimated using the low frequency sheath model in Subsection 5.4.2, suggesting that the sheath
at 200MHz is not described correctly by the low frequency sheath model.

8.3.4 Phase Difference and Coherence for Plasma Discharge

The quantity needed is the phase difference between signals measured by the high impedance Langmuir
probe units. From Eq. (8.6), arg Cn can be regarded as the phase for angular frequency ωn. If the two
complex Fourier amplitudes Cn,1 and Cn,2 are given for the two signals V1(t) and V2(t), they can be
written as

Cn,1 = |Cn,1|ei(arg Cn,1) (8.11)

Cn,2 = |Cn,2|ei(arg Cn,2), (8.12)
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since they are complex numbers. Defining the phase difference ∆φ2,1 of signal 2 with respect to signal
1 for a common n as

∆φ2,1 ≡ arg Cn,2 − arg Cn,1, (8.13)
∆φ2,1 is given from Eqs. (8.11) and (8.12) by the argument of the quantity

Cn,1Cn,2 = |Cn,1||Cn,2|ei(arg Cn,2−arg Cn,1) = |Cn,1||Cn,2|ei∆φ2,1 . (8.14)

The quantity Cn,1Cn,2 has the information of ∆φ2,1 weighted by the absolute values of complex Fourier
amplitudes. In this sense, the argument of the ensemble average of Cn,1Cn,2 over the seven sub-intervals
is considered to be a good estimate of the phase difference during the entire 8ms time interval. In
the field of spectrum analysis, the cross-spectrum Sxy(ω) is calculated using the complex Fourier
amplitudes of X(ω) and Y (ω) of signals x(t) and y(t), respectively, as

Sxy(ω) = lim
T→∞

[
2π

T
X(ω)Y (ω)

]
= E

[
2π

T
X(ω)Y (ω)

]
, (8.15)

where “E[ ]” stands for ensemble average and the second equal sign holds for Ergodic signals, for which
the time average of the signal over a long time interval is equal to its ensemble average. A derivation
of Eq. (8.15) is given in Appendix B. For the measured signals with modest time-stationarity, the
corresponding notation to Eq. (8.15) for the cross-spectrum for signal 2 with respect to signal 1 is
given as

Sn,21 = E
[
2π

T
Cn,1Cn,2

]
, (8.16)

where the ensemble average is taken over the seven sub-intervals and T = 2ms for the sub-interval. The
average phase difference ∆θn,21 during the entire 8ms time interval, or over the seven sub-intervals, is
given by

∆θn,21 = arg (Sn,21) . (8.17)
The squared coherence coh2

n,21, which evaluates the linearity of signal 2 with respect to signal 1, is
defined as

coh2
n,21 ≡ |Sn,21|2

Sn,11Sn,22
. (8.18)

The phase differences and the squared coherence of signals with respect to the electrode 1 signal are
shown in Figs. 8.20 and 8.21.

Each squared coherence is larger than 0.97 at 200.001MHz. Therefore, the phase differences of the
electrode 2 signal to the electrode 1 signal, and of the electrode 3 signal to the electrode 1 signal of
15.1 degrees and −2.9 degrees at this frequency, respectively, are reliable as median values.

8.3.5 Relationship between the Sign of Phase Difference and the Wavenum-
ber Direction

The phase differences of RF signals detected by different high impedance Langmuir probes are related
to the wavenumber of the measured wave. As described by Eq. (5.7), the phase factor including both
space and time coordinates is taken as (k · r − ωt) instead of (ωt − k · r) because in the former notation
k · r > 0 means that k has a component in the positive direction of r and it is easier to imagine the
direction of wave propagation. Adopting the phase factor θ as

θn = kn · r − ωnt, (8.19)

Eq (8.6) is rewritten as

V (t) = C0 +
m−1∑
n=1

{2|Cn| cos (ωnt + arg Cn)}

= C0 +
m−1∑
n=1

{2|Cn| cos (− arg Cn − ωnt)}. (8.20)
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Figure 8.20: Phase difference and squared coherence of electrodes 2 through 4 with respect to the
electrode 1 signal.

Figure 8.21: Phase difference and squared coherence of the electrode 5 signal, the RF reference signal,
and the noise reference signal, with respect to the electrode 1 signal.

149



Figure 8.22: Correspondence between the wavenumber direction and the sign of phase difference.

The phase factor (− arg Cn − ωnt) in Eq. (8.20) can be regarded equal to θn in Eq. (8.19). Denoting
the phase factors of signals of electrodes 1 and 2 as θn,1 and θn,2, they are given as

θn,1 = kn · r1 − ωnt = − arg Cn,1 − ωnt (8.21)
θn,2 = kn · r2 − ωnt = − arg Cn,2 − ωnt, (8.22)

where r1 and r2 are the position vectors of electrodes 1 and 2, and k and ωnt are assumed to be the
same for the two electrodes. Eqs. (8.21) and (8.22) give

kn · (r2 − r1) = −{arg Cn,2 − arg Cn,1} , (8.23)

which leads to
kn · r1→2 = −∆φn,21 (8.24)

where r1→2 is the vector from electrode 1 to electrode 2 and ∆φn,21 is defined in Eq. (8.13). Using the
phase difference ∆θn,21 = arg (Sn,21) calculated in Eq. (8.17) by ensemble average, ∆φn,21 is replaced
by ∆θn,21 and the averaged wavenumber over the seven sub-intervals < kn > is given as

< kn > · r1→2 = −∆θn,21, (8.25)

where <> stands for the ensemble average over the seven sub-intervals. Equation (8.25) indicates that
the projected wavenumber < kn,p > along the electrode array is in the direction from electrode 2 to
electrode 1 for a positive ∆θn,21 and vice versa, as shown in Fig. 8.22.

Following Fig. 8.22, the measured phase difference ∆θn,21 = 15.1◦ and ∆θn,31 = −2.9◦ at the probe
angle of 15 degrees are translated using Eq. (6.2):

| < kn,p > | =
2π

d
· |∆θn|

360◦
,

where kp and φdegree are replaced by | < kn,p > | and |∆θn|, respectively, to the absolute value of
the projected wavenumbers of | < kn,p,21 > | = 18.6m−1 and | < kn,p,31 > | = 3.6 m−1, respectively.
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Figure 8.23: Median values and directions of measured wavenumbers for plasma shot number 105590.

These wavenumbers are shown in Fig. 8.23, including the directions of wavenumbers. Since two arrays
formed between electrodes 1 and 2, and that formed between electrodes 1 and 3 are diagonal, the
measured horizontal (parallel) wavenumber k‖,mea. is given as

k‖,mea. =
√

(18.6 cos 15◦)2 + (3.6 cos 75◦)2 ∼= 18.0 m−1,

which is smaller than the launched parallel wavenumber for shot number 105590 of k‖ = 41.5m−1

by a factor of about 2. The value of k‖ = 41.5 m−1 here is derived by the same process described in
Subsection 8.2.3 (excluding the RF data of the waveguide #4) using the RF data for shot number
105590. Although the wavenumber directions are consistent with the launched RF waves from the grill
antenna, an evaluation of errors in the wavenumber measurement is needed.

8.3.6 Error of the Phase Difference

Supposing that the measured signal V (t) consists of signals of interest Vs(t) and noise Vnoise(t) as

V (t) = Vs(t) + Vnoise(t), (8.26)

the linearity of the discrete Fourier transformation leads to

Cn =
1
N

N−1∑
l=0

V

(
T

N
l

)
e−i 2πn

N l

=
1
N

N−1∑
l=0

{
Vs

(
T

N
l

)
+ Vnoise

(
T

N
l

)}
e−i 2πn

N l

= Cn,s + Cn,noise. (8.27)

Equation (8.27) states
Cn,s = Cn − Cn,noise, (8.28)

meaning that the objective Fourier complex amplitude Cn,s is given by subtracting the noise Fourier
complex amplitude Cn,noise from the measured Cn. Although Eq. (8.28) requires both Cn and Cn,noise

must be known in one discharge to calculate Cn,s, this is difficult because they are mixed each other.
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Figure 8.24: Evaluation of the objective Fourier complex amplitude Cn,s. (a) Noise Fourier complex
amplitude Cn,noise. (b) Measured Fourier complex amplitude Cn. (c) Objective Fourier complex
amplitude Cn,s.

If |Cn,noise| is similar to or less in a plasma discharge than that in other discharges, for example in
vacuum shots, it is possible to evaluate Cn,s by using Cn from a plasma discharge and Cn,noise from
another shot. This situation is shown schematically in Fig. 8.24 for a situation with known |Cn,noise|
and unknown arg (Cn,noise).

The phase information of Cn,noise is lost by being applied to another shot and only the absolute
amplitude information |Cn,noise| is available. In this sense, Cn,noise is represented by a purple circle in
Fig. 8.24 (a). This purple circle is subtracted by vector operation from the measured Fourier complex
amplitude Cn in (b) and the resultant figure of Cn,s becomes also a circle shown as a red circle in (c).
For the fixed Cn, the argument of Cn,s is evaluated by the absolute amplitude of Cn,noise. Denoting
the argument between the Cn,s and Cn by δ, which gives an error of the arg (Cn,s), tan δ is derived
according to Fig. 8.25 as

tan δ =
|Cn,noise| sin θ

|Cn| + |Cn,noise| cos θ
≡ γ(θ) (8.29)

and δ is given as
δ(θ) = arctan {γ(θ)} . (8.30)

Since arg (Cn,noise) is unknown, θ in Fig. 8.25 is assumed to be random and the mean value of δ is
evaluated by a standard deviation σδ instead of a mean value over θ because the mean value of δ over
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Figure 8.25: Argument δ between Cn,s and Cn.

θ is zero. The variance Vδ of δ is given and numerically calculated as

Vδ =
1
2π

∫ 2π

0

{δ(θ)}2
dθ =

1
2π

N−1∑
l=0

{
δ

(
2π

N
l

)}2

· 2π

N

=
1
N

N−1∑
l=0

{
arctan

[
γ

(
2π

N
l

)]}2

(8.31)

and σδ is then calculated as

σδ =
√

Vδ =

√√√√ 1
N

N−1∑
l=0

{
arctan

[
γ

(
2π

N
l

)]}2

. (8.32)

For example, for |Cn| : |Cn,noise| = 4 : 1 and N = 1000, σδ = 10.2◦ is calculated. This value is about

70% of the maximum value δmax = arcsin
(

|Cn,noise|
|Cn|

)
= 14.5◦.

Using σδ, arguments of objective signals of electrode 1 and 2 are evaluated as

arg Cn,s,1 = arg Cn,1 ± σδ,1 (8.33)
arg Cn,s,2 = arg Cn,2 ± σδ,2, (8.34)

and the objective wavenumber ks is evaluated using σδ,1 and σδ,2 according to Eq. (8.23) as

kn,s · r1→2 = − (arg Cn,s,2 − arg Cn,s,1)

= − (arg Cn,2 − arg Cn,1) ±
√

σ2
δ,1 + σ2

δ,2

= −∆φn,21 ±
√

σ2
δ,1 + σ2

δ,2, (8.35)
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where no correlation between σδ,1 and σδ,2 is assumed and Eq. (8.13) is used. As in the derivation of
Eq. (8.25) from Eq. (8.24) in the ensemble averaging, Eq. (8.35) is rewritten by replacing ∆φn,21 to
∆θn,21 = arg (Sn,21) and the objective wavenumber < kn,s > is given as

< kn,s > ·r1→2 = −∆θn,21 ±
√

< σδ,1 >2 + < σδ,2 >2, (8.36)

where < σδ,1 > and < σδ,2 > are ensemble averaged σδ,1 and σδ,2 over the seven sub-intervals.
In this thesis, the slow wave (LHW) signal is the objective one and the fast wave and the electro-

magnetic wave are treated as noise signals. Whether the way of evaluating the phase error described
above is applicable or not depends on types of propagating waves in the plasma discharge.

8.4 Wavenumber Measurement

Wavenumber measurements were performed by a shot-to-shot angular scan of the probe assembly
in reproducible plasmas represented by shot number 105498. From rotational symmetry, the phase
difference of electrode 2 relative to electrode 1 at the probe angle of 0 degree should be the same as the
phase difference of electrode 1 relative to electrode 3 at the probe angle of 90 degrees in reproducible
plasmas. This can be used to validate the wavenumber measurement. The magnetic field amplitude
and polarization can also be determined from an angular scan of the probe assembly using the magnetic
probe (electrode 4), which can be used to identify the wave type of the measured wave. The wave type
identification is accomplished by comparing the maximum amplitude of the magnetic probe signal with
the signal amplitudes measured by the high impedance Langmuir probe units (electrodes 1 through
3). The ratio of |E| to |cB| can be compared to that obtained for the electromagnetic wave using the
coaxial calibrator, shown in Fig. 7.17.

In the representative plasma discharge (shot number 105498), the magnetic field is nearly purely
toroidal (horizontal). The probe assembly was inclined at 15 degrees from the horizontal direction to
prevent shadowing of the probe electrode from plasma flow along the magnetic field by a neighboring
probe electrode. The angular scan consisted of probe angles 15 degrees, 105 degrees, 195 degrees,
285 degrees, and an intermediate probe angle of 60 degrees as shown in Fig. 8.26, in which positions of
electrodes and the magnetic probe orientation are also shown.

At each probe angle, measurements were conducted for one vacuum shot and three plasma shots.
The plasma discharges were highly reproducible. The measured signals were processed as described in
Section 8.3.

8.4.1 Magnetic Probe Signal Amplitude and Polarization

The amplitude and the polarization of the RF magnetic field can be determined from an angular scan of
the magnetic probe. Figure 8.27 shows the coordinate system for the magnetic probe, with definitions
of the magnetic field B and the unit vector n normal to the loop surface of the magnetic probe. The
angle θ in Fig. 8.27 is the same as the orientation angle of the probe assembly, and the angle δ is
the phase difference between the y- and z-components of the magnetic field, which determines the
polarization of the magnetic field in the y-z plane. Using the vector S = Sn, in which S is the area
of the magnetic loop, the magnetic flux Φ threading the magnetic loop is expressed as

Φ ≡ B · S = S {−Bz0 sin θ cos (ωt) + By0 cos θ cos (ωt + δ)} . (8.37)

Note that the radial component of the magnetic field Bx is not measured by the magnetic probe. The
induced voltage V on the magnetic loop is given by

V = −dΦ
dt

= −ωS {Bz0 sin θ sin (ωt) − By0 cos θ sin (ωt + δ)}

= −ωS {[Bz0 sin θ − By0 cos θ cos δ] sin (ωt) − [By0 cos θ sin δ] cos (ωt)}

= −ωS
√

B2
z0 sin2 θ − Bz0By0 cos δ sin 2θ + B2

y0 cos2 θ sin (ωt + α) , (8.38)
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Figure 8.26: Probe angles, positions of electrodes, and the magnetic probe orientation.

Figure 8.27: Coordinate system for magnetic probe signal analysis.
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Figure 8.28: Angular dependences of magnetic probe signals and fitted curves for plasma shots (blue
points and solid line) and vacuum shots (red points and solid line).

where α is a constant which depends on both θ and δ. Since ωSBz0 and ωSBy0 have the dimension
of voltage, they are denoted by ωSBz0 = VBz0 and ωSBy0 = VBy0 . Using the noise amplitude Nnoise,
the absolute value of the output voltage of the magnetic probe is expressed as

|V | =
√

V 2
Bz0

sin2 θ − VBz0VBy0 cos δ sin 2θ + V 2
By0

cos2 θ + Nnoise (8.39)

and this equation is used to fit the angular dependence of the magnetic probe signal to derive the
amplitude of the RF magnetic field for discharges represented by shot number 105498.

Figure 8.28 shows the angular dependence of the magnetic probe signal. The data points in blue
and red represent data for plasma shots and vacuum shots, respectively. Error bars represent the
standard deviation of the signal amplitude over seven sub-intervals for each shot. It is obvious that
the RF magnetic field amplitude is larger for plasma shots than for vacuum shots. The blue and red
curves are fits to data points by Eq. (8.39). The fitted value of cos δ for plasma shots is −0.96, which
is nearly −1. When cos δ = −1 holds, δ = π +2nπ where n is an integer, and the y- and z-components
of the magnetic field By and Bz become{

By = By0 cos (ωt + δ) = −By0 cos (ωt)
Bz = Bz0 cos (ωt) ,

yielding

By = −By0

Bz0
Bz. (8.40)

Equation (8.40) means that the magnetic field is linearly polarized in the y-z plane. Defining the
polarization angle from the z-axis to be β and using the fitted values VBy0 = 5.50mV and VBz0 =
1.46mV, β is given as

β = arctan
(
−By0

Bz0

)
= arctan

(
−

VBy0

VBz0

)
= arctan (−3.77)

= 104.9◦. (8.41)

156



Figure 8.29: Magnetic field polarization and the magnetic probe orientation at the maximum signal
amplitude.

|V | is calculated for cos δ = −1 to be

|V | =
√

V 2
Bz0

sin2 θ − VBz0VBy0 cos δ sin 2θ + V 2
By0

cos2 θ + Nnoise

=
√

V 2
Bz0

sin2 θ + 2VBz0VBy0 sin θ cos θ + V 2
By0

cos2 θ + Nnoise

= |VBz0 sin θ + VBy0 cos θ| + Nnoise

=
√

V 2
Bz0

+ V 2
By0

| cos (θ − θ0) | + Nnoise, (8.42)

where

θ0 = arctan
(

VBz0

VBy0

)
= arctan (0.265)

= 14.9◦ (8.43)

and the maximum amplitude of the magnetic probe signal VM,max is given as

VM,max =
√

V 2
Bz0

+ V 2
By0

=
√

1.462 + 5.502 = 5.7mV. (8.44)

Figure 8.29 summarizes the result of angular scan. The polarization of the magnetic field is linear
and is nearly in the poloidal (y) direction due to the dominance of the poloidal magnetic field, which
is consistent with the dominance of cBy in the field amplitude calculation for plasma densities of
4 × 1016 m−3 or less in Fig. 2.3. The estimated maximum amplitude of the magnetic probe signal
VM,max = 5.7mV in the plasma is used to identify the type of wave measured by the probe assembly.
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8.4.2 Wave Type Identification

There are three types of wave that can be detected by the probe assembly inside the TST-2 vacuum
vessel: The slow wave (the lower hybrid wave), the fast wave, and the electromagnetic wave. This
is because the slow wave and the fast wave can exist in start-up plasmas (seen as cold plasmas)
as propagative waves as two real solutions of the cold plasma dispersion relation. Solutions of the
cold plasma dispersion relation are limited to the slow wave and the fast wave. The electromagnetic
wave can also exist inside the TST-2 vacuum vessel because the wave launched from the grill antenna
initially takes the form of the electromagnetic wave, and not all of the launched wave are absorbed by
the plasma. This thesis aims at measuring the lower hybrid wave. The signal amplitudes measured
by the high impedance Langmuir probe units (electrodes 1 through 3) are compared with the signal
amplitude measured by the magnetic probe (electrode 4) to identify which type of wave is measured
by the probe assembly.

Since the signal amplitudes measured by electrodes 1 through 3 were at most 0.3 times that mea-
sured by electrode 4 for the electromagnetic wave as shown in Fig. 7.17, the maximum amplitude of
the magnetic probe signal VM,max = 5.7mV measured in the plasma should give signal amplitudes due
to the electromagnetic wave on electrodes 1 through 3 of equal to or less than the maximum value
VEM,max defined as

VEM,max ≡ 0.3 × VM,max = 0.3 × 5.7mV = 1.71mV. (8.45)

Figure 8.30 shows the signal amplitudes measured by electrodes 1 through 4 for the five probe
angles. For each graph, signal amplitudes measured for one vacuum shot and three plasma shots are
plotted, with the maximum EM amplitude VEM,max level shown by the orange line. The error bars for
each plot represent the standard deviation of signal amplitude over seven sub-intervals for each shot.

It is found that the signal amplitudes measured by electrodes 1 through 3, in the yellow shaded
regions in Fig. 8.30, exceeds the maximum EM amplitude VEM,max = 1.71 mV by a factor of two or
larger at all probe angles. This means that the signal amplitudes measured by electrodes 1 through 3
cannot be explained by the electromagnetic wave.

The fast wave cannot explain the signal amplitudes measured by electrodes 1 through 3 either
because the fast wave has a even weaker electric field amplitude for a given magnetic field amplitude
than the electromagnetic wave, according to Table 2.1. Since the plasma density is measured to be
4 × 1016 m−3 at R = 570mm and is even lower at the probe surface position R = 590mm, the fast
wave is evanescent at the probe surface according to Fig. 2.2. Figure 8.31 shows n2

⊥ for the fast wave
in the upper frame and the imaginary part of the perpendicular wavenumber for the fast wave in the
lower frame for Btoroidal =0.06 T, which is the toroidal magnetic field strength at the probe surface.
The perpendicular wavenumber k⊥ is expressed as

k⊥ = k⊥,r + ik⊥,i, (8.46)

where k⊥,r and k⊥,i are real, and k⊥,i > 0 at the plasma density of 4 × 1016 m−3 or lower. The wave
amplitude varies as exp (ik⊥r) in the perpendicular direction,

exp (ik⊥r) = exp (−k⊥,ir) · exp (ik⊥,rr) (8.47)

and the spatial decay length Ld is given as

Ld =
1

k⊥,i
. (8.48)

From Fig. 8.31, k⊥,i is 37.5m−1 at plasma densities of 4 × 1016 m−3 or lower, giving Ld = 26.7mm.
This is small compared to the distance of order 100mm or longer from the probe surface to the high
density region where the density is of order 1018 m−3 and the fast wave can propagate. Thus, the fast
wave is negligible around the probe location.

Neither the electromagnetic wave nor the fast wave can explain the measured signal amplitudes of
electrodes 1 through 3 for the measured amplitude of electrode 4 and therefore it is concluded that
the signals measured by the probe assembly are dominated by the slow wave.
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Figure 8.30: Signal amplitudes measured by electrodes 1 through 4 for one vacuum shot and three
plasma shots for the five probe angles, compared with VEM,max = 1.71mV.
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Figure 8.31: n2
⊥ and the imaginary part of the perpendicular wavenumber of the fast wave.
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8.4.3 Phase Difference and Wavenumber Measured by the Probe Assembly

Since the signals measured by the probe assembly are dominated by the slow wave, the phase difference
between different electrodes is considered to reflect the wavelength of the slow wave. Figure 8.32 shows
the phase differences of electrodes 2 and 3 with respect to electrode 1 for one vacuum shot and three
plasma shots for five probe angles (signal amplitudes are shown in Fig. 8.30).

Estimation of Error in the Phase Difference

Error bars in Fig. 8.32 are determined according to the procedure described in Subsection 8.3.5 using
the signal amplitudes shown in Fig. 8.30. As an estimate of the noise signal Vnoise(t) for plasma shots,
signals measured in vacuum shots, which reflect electromagnetic waves both inside and outside the
TST-2 vacuum vessel, are used. Although the fast wave is also a candidate for Vnoise(t), it is not
included in Vnoise(t) since it is negligible around the probe location as shown in Subsection 8.4.2. The
electromagnetic wave strength inside the TST-2 vacuum vessel in plasma shots is unknown but it is
reasonable to assume that it is smaller than in vacuum shots, because some of the electromagnetic
wave energy is absorbed by the plasma, and the wave energy is distributed in the slow wave and the
fast wave in addition to the electromagnetic wave. The electromagnetic wave strength outside the
TST-2 vacuum vessel in plasma shots is also the same as or smaller than in vacuum shots (see the
“Noise Reference” in Fig. 8.17). In this way, the noise signals Vnoise(t) for electrodes 1 through 3 in
plasma shots are smaller than the noise signals measured in vacuum shots. Therefore, the error in the
phase difference for plasma shots is limited by that evaluated using signals measured in vacuum shots
for Vnoise(t).

For example, the error in the phase difference of electrode 2 with respect to electrode 1 for shot num-
ber 105498 is calculated as follows. The phase error is given by

√
< σδ,1 >2 + < σδ,2 >2 in Eq. (8.36).

Here, < σδ,1 > and < σδ,2 > are 〈σδ〉 for signals measured by electrodes 1 and 2, respectively. Al-
though 〈σδ〉 is the ensemble averaged σδ over seven sub-intervals, it is approximated to be given from
Eqs. (8.32) and (8.29) using the ensemble averaged signal amplitudes 〈2|Cn|〉 and 〈2|Cn,noise|〉 as

〈σδ〉 =
〈√

Vδ

〉
=

〈√√√√ 1
N

N−1∑
l=0

{
arctan

[
γ

(
2π

N
l

)]}2
〉

≈

√√√√ 1
N

N−1∑
l=0

{
arctan

[〈
γ

(
2π

N
l

)〉]}2

, (8.49)

where
〈
γ

(
2π
N l

)〉
= 〈γ (θ)〉 is defined using the ensemble averaged Fourier amplitudes 〈|Cn|〉 and

〈|Cn,noise|〉 as

〈γ(θ)〉 ≡ 〈|Cn,noise|〉 sin θ

〈|Cn|〉 + 〈|Cn,noise|〉 cos θ
=

〈2|Cn,noise|〉 sin θ

〈2|Cn|〉 + 〈2|Cn,noise|〉 cos θ
. (8.50)

This approximation for 〈σδ〉 is valid due to the modest stationarity of signals during the data acquisition
time interval of 55ms to 63ms as shown representatively in Fig. 8.18. In Eq. (8.50), 〈2|Cn|〉 is the
ensemble averaged signal amplitude over seven sub-intervals and is taken from the plasma shot number
105498. 〈2|Cn,noise|〉 represents the ensemble averaged noise signal amplitude over seven sub-intervals
and is taken from the vacuum shot number 105497. Explicitly, the values of 〈2|Cn|〉 and 〈2|Cn,noise|〉
for electrode 1, denoted by 〈2|Cn,1|〉 and 〈2|Cn,noise,1|〉, are obtained from Fig. 8.30 as{ 〈2|Cn,1|〉 = 3.59mV,

〈2|Cn,noise,1|〉 = 0.95mV,

which lead to < σδ,1 > using Eqs. (8.49) and (8.50) with N = 1000 as

〈σδ,1〉 = 11.0 degrees.

For electrode 2, { 〈2|Cn,2|〉 = 3.53mV,

〈2|Cn,noise,2|〉 = 0.40mV,
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Figure 8.32: Phase differences of electrodes 2 and 3 with respect to electrode 1 for one vacuum shot
and three plasma shots for five probe angles.

162



and
〈σδ,2〉 = 4.6 degrees.

〈σδ,1〉 and 〈σδ,2〉 are combined to give the error in the phase difference of electrode 2 with respect to
1 as √

< σδ,1 >2 + < σδ,2 >2 =
√

11.02 + 4.62 = 11.9 degrees. (8.51)

This value is used for the error bar for the phase difference of electrode 2 with respect to electrode 1
plotted by the red dot for shot number 105498 in Fig. 8.32.

Determination of the Wavenumber along the Electrode Array

The phase difference and its error are translated into the wavenumber and its error. Since the ensemble
averaged phase difference over seven sub-intervals is calculated to be ∆θn,21 = 19.8 degrees for the
plasma shot number 105498, Eqs. (8.36) and (8.51) yield

< kn,s > · r1→2 = −19.8 ± 11.9 degrees. (8.52)

Defining the projected wavenumber component along the line from electrode 1 to electrode 2 as
〈kn,n,p〉1→2,

< kn,s > · r1→2 = 〈kn,n,p〉1→2 |r1→2|. (8.53)

Numerically, using Eq. (8.52) gives

< kn,n,p >1→2=
−19.8 ± 11.9

|r1→2|
× π

180
= −24.3 ± 14.6 m−1, (8.54)

where |r1→2| = 14.2mm = 1.42 × 10−2 m. Since 〈kn,n,p〉1→2 is negative, the projected component of
< kn,s > is in the direction from electrode 2 to electrode 1.

In this way, phase differences of electrode 2 with respect to electrode 1 (red), and of electrode 3
with respect to electrode 1 (blue) shown in Fig. 8.32 are translated into wavenumber components and
their directions as shown in Fig. 8.33. The wavenumber and its error for each probe angle are averaged
over three plasma shots.

Toroidal Wavenumber and Poloidal Wavenumber

The toroidal wavenumber ktor and the poloidal wavenumber kpol are derived by vector operation
from Fig. 8.33. The positive toroidal direction is defined leftward and the positive poloidal direction is
defined upward in Fig. 8.33. For the probe angle of 15 degrees, for example, ktor and kpol are calculated
as

ktor = −{(27.3 ± 13.6) cos 165◦ + (1.8 ± 13.6) cos 255◦} ' 26.8 ±
√

(13.6 cos 165◦)2 + (13.6 cos 255◦)2

= 26.8 ± 13.6 m−1 (8.55)

and

kpol = (27.3 ± 13.6) sin 165◦ + (1.8 ± 13.6) sin 255◦ ' 5.3 ±
√

(13.6 sin 165◦)2 + (13.6 sin 255◦)2

= 5.3 ± 13.6 m−1. (8.56)

It is assumed that the errors in wavenumbers in the two directions defined by electrodes 1 and 2, and
by electrodes 1 and 3 are uncorrelated. Similar calculations for other probe angles give independent
measurements of ktor and kpol, as summarized in Fig 8.34.

The measured values of the toroidal wavenumber vary from 12.8 ± 10.3m−1 to 26.8 ± 13.6m−1, and
its direction is consistent with that of the main lobe of the wave launched from the grill antenna. The
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Figure 8.33: Measured wavenumber and direction along the high impedance Langmuir probe array.
Units are m−1.
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Figure 8.34: Measured toroidal and poloidal wavenumbers at 200MHz.

average toroidal wavenumber and its error over the five probe angles are 19.6 ± 11.0m−1. This value
is smaller than the main lobe of the launched wavenumber, 40m−1. The average poloidal wavenumber
and its error are 6.4 ± 11.0m−1. Although the error encompasses both positive and negative regions,
the median value is positive. This direction is the direction of the magnetic field created by the plasma
current.
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Chapter 9

Discussion

The measured toroidal wavenumber k‖ = 19.6 ± 11.0m−1 is smaller by a factor of two compared to the
main wavenumber component of the wave launched by the grill antenna, k‖ = 40m−1. This chapter
is devoted to the discussion of physical mechanisms which might be responsible for this experimental
result. The discussion consists of three parts. In the first part, for wave energy damping during
propagation inside the plasma is discussed. The simplest case of a spatially uniform cold plasma with
a Maxwellian electron distribution function is treated as an analytically tractable case and is used as a
basis for considering more complicated effects such as a non-Maxwellian electron distribution function.
In the second part, k‖ ‘upshift’ and ‘downshift’ due to the effect of propagation in toroidal geometry
are discussed. In the third part, the apparent phase difference measured by the probe assembly in the
presence of two different wavenumbers is discussed.

From now on and throughout Chapter 9, the sign of k‖ is defined with respect to the direction
of the toroidal magnetic field (z-axis). With this definition, and referring to Fig. 8.1, the measured
toroidal wavenumber of k‖ = 19.6 ± 11.0m−1 and the launched wavenumber of k‖ = 40m−1 are
labeled k‖ = −19.6 ± 11.0m−1 and k‖ = −40m−1, respectively.

9.1 Group Velocity and Wave Energy Damping for Maxwellian
Distribution Function

If a wave were damped before reaching the probe assembly, the wave would not be measured. Only
surviving waves reaching the probe are detected. Figure 9.1 shows the launched parallel wavenumber
(k‖) spectrum for a representative shot number 105498 (already shown in Fig. 8.9), and the parallel
refractive index (n‖) spectrum converted from the k‖ spectrum using the relationship n‖ = c

ω k‖.
Because of the definition of the sign of k‖ (n‖) introduced in this chapter, the sign for the abscissa
is opposite to that in Fig. 8.9. In this section, wave propagation and damping are treated under two
assumptions, the plasma is cold and spatially uniform, and the electron velocity distribution function
is Maxwellian. These assumptions enable analytic calculation of the group velocity and wave energy
damping.

9.1.1 Group Velocity

The group velocity is calculated using Eq. (2.167) as

vg = − 2c

n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

)
 Sn⊥

0
Pn‖

 . (9.1)
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Figure 9.1: Launched parallel wavenumber and refractive index spectra for a representative shot num-
ber 105498.
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Figure 9.2: Wave propagation calculated for n‖ = −9.5. (a) Perpendicular refractive index for the
slow wave (n⊥,slow), (b) vector configuration, (c) group velocity components, and (d) angles from the
toroidal magnetic field direction.

The magnetic field of B0 = 0.055T at R = 590mm, where the wavenumber measurement was con-
ducted, was used. Figures 9.2 and 9.3 show (a) n⊥,slow, (b) directions of various vectors, (c) group
velocity components, and (d) angles of vectors k and vg from the direction of the toroidal magnetic
field Bt = B0ẑ, for the two peaks in the refractive index spectrum n‖ = −9.5 and 25, plotted as func-
tions of the electron density. For both n‖ = −9.5 and 25, the group velocity in the toroidal direction
(vgz) is of order 107 m/s for the electron density of 1016 m−3 where the wavenumber measurement was
conducted. Denoting the angles of the refractive index vector n (or the wavenumber vector k) and
the group velocity vg from the toroidal magnetic field direction as θk and θvg , respectively, θk − θvg is
nearly 270 degrees (or 90 degrees), meaning that vg is nearly perpendicular to n. From Figs. 9.2 and
9.3, it can be seen that the group velocity vg is nearly in the same (opposite) direction to the toroidal
magnetic field for positive (negative) n‖.

9.1.2 Wave Damping

In order to grasp the overall picture of wave energy transport as the wave propagates, the amount
of wave energy damped during the time interval for the launched wave to reach the probe assembly
for the first time is estimated. This time interval τ is estimated as the time required for the wave to
propagate from the grill antenna to the probe assembly at a major radius of R = 600mm at speed
vgz, the z component of the group velocity. The reason for choosing R = 600mm is that the probe
assembly is located at R = 590mm and the front end of the grill antenna is located at R = 650mm.
The relative locations of the grill antenna and the probe assembly are shown in Fig. 9.4. Since τ
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Figure 9.3: Wave propagation calculated for n‖ = 25. (a) Perpendicular refractive index for the
slow wave (n⊥,slow), (b) vector configuration, (c) group velocity components, and (d) angles from the
toroidal magnetic field direction.

Figure 9.4: Geometry for wave propagation (mid-plane cross section of TST-2).
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Figure 9.5: Group velocity components and τ for n‖ from −50 to 50 for B0 = 0.055 T and ne =
1016 m−3.

depends on the sign of n‖, τ+ and τ− are defined for positive and negative n‖, respectively,

τ+ =
(

2π × 0.6 × 240◦

360◦

)
/vgz(n‖ > 0), (9.2)

τ− =
(

2π × 0.6 × 120◦

360◦

)
/vgz(n‖ < 0). (9.3)

The z-component of the group velocity vgz is calculated using Eq. (9.1) using the toroidal magnetic
field B0 = 0.055T and electron density ne = 1016 m−3. Figure 9.5 shows the x and z-components of
the group velocity (vgx and vgz), and τ (τ+ and τ−) for n‖ from −50 to 50. Using τ+ and τ−, the
temporal wave energy damping factor is given by e2ωiτ+ for n‖ > 0 and e2ωiτ− for n‖ < 0, where ωi is

ωi = −
√

2π

2|n‖|
ω2

pe

ω

(
c

vt,e

)3 1
n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

) exp

[
−

(
c

vt,e

)2 1
2n2

‖

]
(9.4)

from Eq. (2.202). Figure 9.6 shows the absolute value of the temporal energy damping rate −ωi

and 2ωiτ for Te = 10 eV, 50 eV, and 100 eV, for B0 = 0.055T and ne = 1016 m−3. The energy
damping factor e2ωiτ is plotted in Fig. 9.7. From Fig. 9.7, e2ωiτ− is almost unity for n‖ = −9.5 up to
Te =100 eV, so no significant wave damping is expected within time τ−. On the other hand, e2ωiτ+

is nearly zero for n‖ = 25 for Te of 50 eV or greater. Therefore, using the cold plasma group velocity
and a low temperature Maxwellian electron distribution function in a simple propagation geometry
wave components with n‖ from −15 to 0 (n‖ components from 0 to 15 in the lower graph of Fig. 9.1)
survive for Te of 50 eV or greater. The surviving n‖ components will circulate toroidally inside the
vacuum vessel many times and can experience a modification of n‖ (upshift/downshift), as described
in the next section.

9.2 k‖ Upshift/Downshift in Toroidal Geometry

The parallel wavenumber k‖ (or n‖) can change during propagation in a toroidal plasma. In this
section, the physical picture of k‖ upshift/downshift is described and the magnitude of k‖ change is
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Figure 9.6: Absolute value of the temporal energy damping rate −ωi and 2ωiτ for Te = 10 eV (black),
50 eV (blue) and 100 eV (green), for B0 = 0.055 T and ne = 1016 m−3.

Figure 9.7: Energy damping factor e2ωiτ for Te = 10 eV (black), 50 eV (blue) and 100 eV (green), for
B0 = 0.055T and ne = 1016 m−3.
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estimated.

9.2.1 Decomposition of k‖ into Toroidal and Poloidal Components

The parallel wavenumber k‖ is defined as

k‖ =
k · B
|B|

. (9.5)

Decomposing the magnetic field B into the toroidal (z-) component Btor = B0ẑ and the poloidal (θ-)
component Bpol = Bpolθ̂, where θ̂ is the unit vector in the poloidal direction, B is written as

B = Btor + Bpol = B0ẑ + Bpolθ̂. (9.6)

Denoting the wavenumber components along Btor and Bpol by ktor and kpol, k‖ is expressed using
Eqs. (9.5) and (9.6) as

k‖ = ktor
B0

|B|
+ kpol

Bpol

|B|
. (9.7)

Since ktor is the wavenumber component in the toroidal direction, ktor can be regarded as kn in
Eq. (8.3):

kn =
n

Rantenna

and is written as
ktor =

ntor

R
, (9.8)

where Rantenna is replaced by a general R because the wave propagates over various positions. ntor is
an integer called the toroidal mode number. Using Eq. (9.8), Eq. (9.7) gives k‖ as

k‖ =
ntor

R

B0

|B|
+ kpol

Bpol

|B|
. (9.9)

9.2.2 k‖ Variation in a Low Current Plasma

k‖ variation from the toroidal effect

At R = Rprobe = 590mm where the wavenumber measurement was conducted, the toroidal magnetic
field strength B0 is 0.055T. The poloidal magnetic field strength, |Bpol|, at Rprobe can be estimated
using the plasma current of Ip = 0.5 kA and the major radial position of the plasma center R =
Rcenter = 380mm as

|Bpol| ' µ0
Ip

2π (Rprobe − Rcenter)
=

4π

107
· 0.5 × 103

2π × (0.59 − 0.38)
= 0.47 × 10−3 T, (9.10)

resulting in
|Bpol| ¿ B0 (9.11)

at the position of the probe assembly. Since B0 ∝ 1
R and the total amount of Ip which contributes to

|Bpol| decreases inside the plasma, the relationship Eq. (9.11) holds for any R inside the vacuum vessel
for a series of shots represented by shot number 105498. Since |B| =

√
B2

0 + |Bpol|2 from Eq. (9.6),
under Eq. (9.11),

B0

|B|
' 1 (9.12)

and
|Bpol|
|B|

¿ 1 (9.13)
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are satisfied. Unless kpol is large, Eq. (9.9) is combined with Eqs. (9.12) and (9.13) to give

k‖ ' ntor

R
. (9.14)

Denoting k‖ at the position of the grill antenna R = Rprobe = 650mm by k‖,antenna,

k‖,antenna ' ntor

Rantenna
. (9.15)

If the plasma were symmetric in the toroidal direction, ntor is conserved [68], so |k‖| > |k‖,antenna|
for R < Rantenna. This is called the toroidal upshift of k‖. If the antenna for plasma heating and/or
current drive is installed on the outboard side of the torus, R < Rantenna inside the plasma. In this
case, and with Eq. (9.11), k‖ is upshifted as the wave propagates inside the plasma, and becomes more
likely to be absorbed by the plasma as shown in Fig. 9.7.

k‖ variation from the poloidal effect

Another mechanism of k‖ variation comes from the second term on the right-hand side of Eq. (9.9),
i.e., kpol

Bpol

|B|
. For a constant R, for example for R = Rprobe, only the term kpol

Bpol

|B|
determines the

variation of k‖. Denoting

∆k‖ ≡ kpol
Bpol

|B|
, (9.16)

the sign of ∆k‖ depends on the sign of kpolBpol, and k‖ can experience not only upshift but also
downshift. The absolute value of ∆k‖ is evaluated as

|∆k‖| =
|kpolBpol|

|B|
≤ |kpol|

|Bpol|
|B|

. (9.17)

Since ky ' 0 for an electrostatic wave in the present geometry,

|kpol| ' |k⊥| = 149m−1 (9.18)

for B0 = 0.055T and ne = 1016 m−3 from Fig. 2.2. Using Eqs. (9.10), (9.12), and (9.17), |∆k‖| is
evaluated as

|∆k‖| ≤ |kpol|
|Bpol|
|B|

' 149 × 0.47 × 10−3

0.055
= 1.3m−1. (9.19)

From this estimation of |∆k‖|, the downshift of k‖ is at most 1.3 m−1, which is too small to explain the
difference between the launched value of k‖ = 40m−1 and the measured value of k‖ = 19.6 ± 11.0 m−1.

9.3 Behavior of the Measured Phase Difference in the Pres-
ence of Two Wavenumbers

The velocity distribution function was assumed to be Maxwellian in Section 9.1. However, it could be
different from Maxwellian and both k‖ = −40m−1 and k‖ = 105m−1 might survive. In this section,
the phase difference between probe electrodes in the presence of waves with wavenumbers in exactly
opposite directions is investigated.

9.3.1 Coordinate System and Model

Taking the x-axis in the direction of two wavenumbers kf and kb, the two dimensional coordinate
system is defined as shown in Fig. 9.8. There are three electrodes 1 through 3 with electrode numbers
corresponding to those of the probe assembly used in the wavenumber experiment. Taking the angle
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Figure 9.8: Coordinate system for the three point measurement.

of the thick broken line, which passes through the origin and is parallel to the line segment formed by
electrodes 1 and 2, from the x-axis as θ, β is defined as

β = α − θ, (9.20)

where α = 45◦, and the distance from the origin to each electrode is

r =
14.2 × 10−3

√
2

= 0.01m. (9.21)

Using this coordinate system and assuming that the phase is constant in the y-direction over the
distance of several times r, The measured signal at electrode i (i = 1, 2, 3), ψ(xi, t), is expressed as

ψ(xi, t) = Afe
i(kfxi−ωt+φf ) + Abei(kbxi−ωt+φb) (9.22)

≡ Ψie
i(−ωt+Θi), (9.23)

where Af , Ab, and Ψi are real amplitudes, and φf and φb are phases of each wave. The case with
kb = −kf for three electrode in a linear arrangement with equal intervals is studied in [69]. The
notations of Eqs. (9.22) and (9.23) are adopted from [69]. xi is given in terms of β as

x1 = −r sinβ, (9.24)
x2 = r cos β, (9.25)
x3 = −r cos β. (9.26)
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9.3.2 Derivation of Cosine of Phase Difference and A2
f + A2

b

Since the phase difference ∆Θji ≡ Θj − Θi is of interest, taking the real part of ψ(xi, t)ψ(xj , t) gives

ΨiΨj cos∆Θji

= A2
f cos [kf (xj − xi)] + A2

b cos [kb (xj − xi)]
+AfAb {cos [kfxi − kbxj + (φf − φb)] + cos [kfxj − kbxi + (φf − φb)]}

= A2
f cos [kf (xj − xi)] + A2

b cos [kb (xj − xi)]

+2AfAb cos
[
kf + kb

2
(xj − xi)

]
cos

[
kf − kb

2
(xj + xi) + (φf − φb)

]
= A2

f cos [kf (xj − xi)] + A2
b cos [kb (xj − xi)]

+2AfAb cos
[
kf + kb

2
(xj − xi)

]
×

{
cos

[
kf − kb

2
(xj + xi)

]
cos (φf − φb) − sin

[
kf − kb

2
(xj + xi)

]
sin (φf − φb)

}
,

(9.27)

and ψ(xi, t)ψ(xi, t) leads to

Ψ2
i = A2

f + A2
b + 2AfAb cos [(kf − kb)xi + (φf − φb)] . (9.28)

In order to eliminate (φf − φb) from Eq. (9.27), cos (φf − φb) and sin (φf − φb) are calculated as follows.
Using Eq. (9.28) for x2 = r cos β and x3 = −r cos β, and defining

θc ≡ (kf − kb) r cos β, (9.29)

Ψ2
2 = A2

f + A2
b

+2AfAb {cos [(kf − kb) r cos β] cos (φf − φb) − sin [(kf − kb) r cos β] sin (φf − φb)}

= A2
f + A2

b + 2AfAb [cos θc cos (φf − φb) − sin θc sin (φf − φb)] (9.30)

and

Ψ2
3 = A2

f + A2
b

+2AfAb {cos [(kf − kb) r cos β] cos (φf − φb) + sin [(kf − kb) r cos β] sin (φf − φb)}

= A2
f + A2

b + 2AfAb [cos θc cos (φf − φb) + sin θc sin (φf − φb)] (9.31)

are derived. Summing and subtracting Eqs. (9.29) and (9.30) yield

Ψ2
3 + Ψ2

2 = 2A2
f + 2A2

b + 4AfAb cos θc cos (φf − φb) , (9.32)
Ψ2

3 − Ψ2
2 = 4AfAb sin θc sin (φf − φb) , (9.33)

leading to

cos (φf − φb) =
Ψ2

3 + Ψ2
2 − 2

(
A2

f + A2
b

)
4AfAb cos θc

, (9.34)

sin (φf − φb) =
Ψ2

3 − Ψ2
2

4AfAb sin θc
, (9.35)
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where cos θc 6= 0 and sin θc 6= 0.
Substituting Eqs. (9.34) and (9.35) into Eq. (9.27) gives

ΨiΨj cos∆Θji

= A2
f cos [kf (xj − xi)] + A2

b cos [kb (xj − xi)]

+
1
2

cos
[
kf + kb

2
(xj − xi)

]
×

{
cos

[
kf − kb

2
(xj + xi)

]
Ψ2

3 + Ψ2
2 − 2

(
A2

f + A2
b

)
cos θc

− sin
[
kf − kb

2
(xj + xi)

]
Ψ2

3 − Ψ2
2

sin θc

}
.

(9.36)

From Eq. (9.36), the cosine of phase difference of electrode 2 with respect to electrode 1, ∆Θ21 =
Θ2 − Θ1, is given by setting xj = x2 = r cos β and xi = x1 = −r sinβ as

Ψ1Ψ2 cos∆Θ21

= A2
f cos [kfr (cos β + sin β)] + A2

b cos [kbr (cos β + sin β)]

+
1
2

cos
[
kf + kb

2
r (cos β + sin β)

]
×

{
cos

[
kf − kb

2
r (cos β − sinβ)

]
Ψ2

3 + Ψ2
2 − 2

(
A2

f + A2
b

)
cos θc

− sin
[
kf − kb

2
r (cos β − sin β)

]
Ψ2

3 − Ψ2
2

sin θc

}
.

(9.37)

Equation (9.37) states that cos∆Θ21 is calculated in terms of r, β, Ψ1 Ψ2, Ψ3, kf , kb, Af , and
Ab. Variables r, β, Ψ1 Ψ2, and Ψ3 are determined by the probe configuration or measured signal
amplitudes. kf and kb are wavenumbers in opposite directions and can be taken as the two peaks in
the launched spectrum of the grill antenna. The wave amplitudes Af and Ab should be set according
to r, β, Ψ1 Ψ2, Ψ3, kf and kb.

Actually a constraint is applied on the quantity A2
f + A2

b. Defining

θs ≡ (kf − kb) r sin β, (9.38)

Eq. (9.28) for xi = x1 = −r sinβ reduces to

Ψ2
1 = A2

f + A2
b

+2AfAb {cos [(kf − kb) r sinβ] cos (φf − φb) + sin [(kf − kb) r sin β] sin (φf − φb)}

= A2
f + A2

b + cos θs

Ψ2
3 + Ψ2

2 − 2
(
A2

f + A2
b

)
2 cos θc

+ sin θs
Ψ2

3 − Ψ2
2

2 sin θc
, (9.39)

where Eqs. (9.34), (9.35), and (9.38) were used. Equation (9.39) is solved for A2
f + A2

b as

Ψ2
1 =

(
1 − cos θs

cos θc

)(
A2

f + A2
b

)
+

1
2
· cos θs

cos θc

(
Ψ2

3 + Ψ2
2

)
+

1
2
· sin θs

sin θc

(
Ψ2

3 − Ψ2
2

)
, (9.40)

giving

A2
f + A2

b =
cos θc

cos θc − cos θs

[
Ψ2

1 −
1
2

(
cos θs

cos θc
− sin θs

sin θc

)
Ψ2

2 −
1
2

(
cos θs

cos θc
+

sin θs

sin θc

)
Ψ2

3

]
(9.41)

for cos θc 6= cos θs and cos θc sin θs 6= 0.
From Eq. (9.41), if Af is given, Ab is calculated using r, β, Ψ1 Ψ2, Ψ3, kf , kb and Af . Substituting

Af and Ab into Eq. (9.37) together with r, β, Ψ1 Ψ2, Ψ3, kf , and kb, cos∆Θ21 and therefore ∆Θ21

can be calculated explicitly.
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9.3.3 Calculation of Phase Difference ∆Θ21 for the Condition of Wavenum-
ber Measurement

Ab and ∆Θ21 are calculated using Eqs. (9.41) and (9.37) for given Af . Variables r, β, Ψ1 Ψ2, Ψ3, kf ,
and kb, are set as follows: r = 0.01m from Eq. (9.21),

θ = 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 85◦, 100◦, (9.42)

and thus

β = α − θ = 45◦ − θ

= 35◦, 30◦, 15◦, 0◦, − 15◦, − 30◦, − 40◦, − 55◦. (9.43)

Signal amplitudes Ψ1 Ψ2, and Ψ3 are set with reference to the experimental signal amplitudes shown
in Fig. (8.30) as 

Ψ1 = 3.5mV (9.44)
Ψ2 = 4.0mV (9.45)
Ψ3 = 4.5mV. (9.46)

kf and kb are set to {
kf = −40m−1 (9.47)
kb = 105m−1. (9.48)

according to Fig. 9.1 (a). The signs are inverted to correspond to the definition with respect to the
direction of the toroidal magnetic field. Scanning Af up to 5mV, Ab and ∆Θ21 are calculated as
shown in Fig. 9.9. As θ increases, the line segment between electrodes 1 and 2 changes from parallel
to perpendicular to the wavenumber vector (x-axis), and the phase difference ∆Θ21 should decrease,
consistent with the behavior of ∆Θ21 shown in Fig. 9.9.

Assuming that k‖ is in the horizontal plane in the wavenumber measurement, the probe angle of
15 degrees in the experiment corresponds to the case of θ = 15◦ in Fig. 9.8. In Fig. 9.9, however,
the calculated phase difference is from 70 degrees to 150 degrees, far larger than the measured phase
difference of about 20 degrees at the probe angle of 15 degrees. For this reason, the model of two
wavenumbers opposite to each other cannot explain the experimental result.

9.4 Evaluation of Wave Damping for Non-Maxwellian Elec-
tron Velocity Distribution Function

The experimental results cannot be explained if the electron velocity distribution function were assumed
to be Maxwellian. In this section, the wave energy damping factor exp (2ωiτ) is considered for non-
Maxwellian distribution functions. The one-dimensional electron velocity distribution function in the
direction of the magnetic field can be expressed as

f(v‖) = neP (v‖), (9.49)

where P is the probability distribution function and ne is the electron density. From Eq. (2.199), P
for the Maxwellian distribution function, PM, is written as

PM(v‖) =
1√

2πvt,e

exp

(
−

v2
‖

2v2
t,e

)
=

1√
2πvt,e

exp

−(
v‖√
2vt,e

)2
. (9.50)
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Figure 9.9: Ab and ∆Θ21 plotted as functions of Ab for eight angles, and kf = −40m−1 and kb =
105m−1. Colors in both plots correspond to each other.
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Since the main lobe of the k‖ spectrum of the LHW launched from the grill antenna is in the
negative region of k‖ (n‖) as shown in Fig. 9.1, it is expected that electrons with v‖ < 0 are dominantly
accelerated. A simple non-Maxwellian probability distribution function Phybrid(v‖) is considered:

Phybrid(v‖ ≥ 0) ≡ PM(v‖) =
1√

2πvt,e

exp

(
−

v2
‖

2v2
t,e

)
(9.51)

Phybrid(v‖ < 0) ≡ Pnon−M(v‖) ≡
1

2
√

2vt,e

exp

(
−

|v‖|√
2vt,e

)
, (9.52)

where Pnon−M is a non-Maxwellian (exponential) probability distribution function. Figure 9.10 shows
Phybrid(v‖ ≥ 0) in black line and Phybrid(v‖ < 0) in red line, with PM(v‖ < 0) in black dashed line for
comparison, for Te = 10, 50, and 100 eV. It can be seen that Phybrid(v‖ < 0) (shown in red) has more
high energy electrons and fewer low energy electrons than PM(v‖ < 0). It should be noted that Te is
the electron temperature only for the Maxwellian distribution. For example, the effective temperatures
for Phybrid(v‖ < 0) shown in the top frame in Fig. 9.10 is larger than 10 eV, it is labeled Te = 10 eV in
the present discussion.

Using Eqs. (9.49), (9.51), and (9.52), the electron velocity distribution function fhybrid(v‖) is defined
as

fhybrid(v‖ ≥ 0) ≡ nePhybrid(v‖ ≥ 0) =
ne√

2πvt,e

exp

(
−

v2
‖

2v2
t,e

)
, (9.53)

fhybrid(v‖ < 0) ≡ nePhybrid(v‖ < 0) =
ne

2
√

2vt,e

exp

(
−

|v‖|√
2vt,e

)
. (9.54)

This will be referred to as the “hybrid” distribution. Although fhybrid(v‖) is discontinuous at v‖ = 0
and is unphysical, this discontinuity does not affect the evaluation of wave damping below because
there is no wave component which can interact with electrons with v‖ = 0 (|n‖| = ∞). Although
the hybrid distribution fhybrid(v‖) used here does not represent the true distribution function, it is a
convenient model to evaluating the effect of high energy electrons on wave damping analytically.

Since the derivatives of fhybrid(v‖) are given for v‖ 6= 0 as

dfhybrid(v‖ > 0)
dv‖

= − ne√
2πv3

t,e

v‖ exp

(
−

v2
‖

2v2
t,e

)
, (9.55)

dfhybrid(v‖ < 0)
dv‖

= − ne

4v2
t,e

exp

(
−

|v‖|√
2vt,e

)
, (9.56)

the values at v‖ = ω/k‖ = c/n‖ are given as[
dfhybrid(v‖ > 0)

dv‖

]
v‖= ω

k‖
= c

n‖

= − ne√
2πv3

t,e

c

n‖
exp

[
−

(
c

vt,e

)2

· 1
2n‖

]
, (9.57)

[
dfhybrid(v‖ < 0)

dv‖

]
v‖= ω

k‖
= c

n‖

= − ne

4v2
t,e

exp

(
− c

vt,e
· 1√

2|n‖|

)
. (9.58)

Equation (2.198) for the wave damping rate ωi is expressed in terms of n‖ as

ωi =
πc2

ω

e2

ε0me

n‖

|n‖|
1

n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

) [
df(v‖)
dv‖

]
v‖= ω

k‖
= c

n‖

. (9.59)
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Figure 9.10: Probability distribution functions Phybrid(v‖ ≥ 0) = PM(v‖ ≥ 0) (black line) and
Phybrid(v‖ < 0) = Pnon−M(v‖ < 0) (red line), with PM(v‖ < 0) (black dashed line) shown for compari-
son, for Te = 10, 50, and 100 eV.
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Substituting Eqs. (9.57) and (9.58) into Eq. (9.59) gives the wave damping rate ωi,hybridas

ωi,hybrid(n‖ > 0) = −
√

2π

2|n‖|
ω2

pe

ω

(
c

vt,e

)3 1
n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

) exp

[
−

(
c

vt,e

)2 1
2n2

‖

]
,

(9.60)

ωi,hybrid(n‖ < 0) = −π

4
ω2

pe

ω

(
c

vt,e

)2 1
n2
⊥

h

D2n2+(S−P )2n2
‖

i

n4 +
(
Fn2

⊥ + Hn2
‖

) exp

(
− c

vt,e
· 1√

2|n‖|

)
.

(9.61)

The wave energy damping factor exp (2ωi,hybridτ) for the hybrid distribution is calculated and compared
with exp (2ωiτ) for the Maxwellian case in Fig. 9.11. For τ , values in the right column of Fig. 9.5 were
used. From Fig. 9.11, it can be seen that the highest surviving

∣∣n‖
∣∣ decreases as the population

of higher energy electrons increases. It is noted that for the hybrid distributions with Te = 50 eV
and 100 eV, almost no wave energy survives for

∣∣n‖
∣∣ > 10, showing the possibility of explaining the

measured wavenumber of −19.6 ± 11.0 m−1 (corresponding to n‖ = −9.5 ± 2.6). The wavenumber
component around k‖ = 105m−1 also vanishes for Te = 100 eV.

The surviving wave power spectrum at the probe assembly is calculated by multiplying the wavenum-
ber spectrum of the LHW launched by the grill antenna (shown in Fig. 9.1) by the energy damping
factor exp (2ωi,hybridτ) for the hybrid distribution shown in Fig. 9.11(b). The result is shown in Fig 9.12.
From Fig. 9.12, the peak of the surviving power spectrum for 100 eV (red solid line) is consistent with
the measured wavenumber of k‖ = −19.6 ± 11.0m−1. From the comparison between the hybrid
distribution and the Maxwellian distribution, it can be inferred that the same peak of the surviving
spectrum at the probe assembly can be obtained even at lower electron temperatures than 100 eV if a
larger population of high energy electrons than the hybrid distribution with 100 eV was present. Such
a scenario could explain the experimentally measured wavenumber of k‖ = −19.6 ± 11.0 m−1.

9.5 Summary of Discussion

In Section 9.1, the simplest case of a spatially uniform cold plasma with Maxwellian electron distribu-
tion function was treated. For low electron temperatures of up to 100 eV, two cases were examined:

• For Te of 50 eV or greater, the wave component with n‖ = 25 is expected to be damped before
reaching the probe assembly, whereas the wave component with n‖ = −9.5 will survive and could
be detected by the probe assembly.

• For Te lower than 50 eV, both n‖ = −9.5 and 25 components survive and could be detected by
the probe assembly.

For the first case, the down shift of k‖ by the poloidal effect was discussed in Section 9.2. The
expected downshift of k‖ is at most 1.3m−1, which is too small to explain the difference between the
launched value of k‖ = 40m−1 and the measured value of k‖ = 19.6 ± 11.0m−1. For the second
case, the apparent phase difference measured by the probe assembly in the presence of two different
wavenumbers in exactly opposite directions was considered in Section 9.3. For typical signal amplitudes
measured by electrodes 1 through 3, the calculated phase difference between electrodes 1 and 2 at the
probe angle of 15 degrees was estimated to be in the range 70 degrees to 150 degrees, which is too large
to explain the measured phase difference of about 20 degrees at the probe angle of 15 degrees.

In both cases, the difference between the launched value of k‖ = −40m−1 and the measured value
of k‖ = −19.6 ± 11.0m−1 cannot be explained. There are at least two possibilities:
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Figure 9.11: Wave energy damping factors for Te = 10 eV (blue), 50 eV (green), and 100 eV (red) for
(a) Maxwellian distribution and (b) hybrid distribution.
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Figure 9.12: Calculated surviving refractive index spectrum and the wavenumber spectrum at the
probe assembly for Te = 10 (blue), 50 (green), and 100 eV (red) using the energy damping factor
exp (2ωi,hybridτ) for the hybrid distribution, shown in Fig. 9.11(b). The black dashed line shows the
spectrum of the wave launched from the grill antenna.
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• Electron velocity distribution function is not Maxwellian and fast electrons with energies of a
few keV or grater exist in the plasma.

• Waves with different wavenumbers reach the probe assembly from different directions.

In Section 9.4, a “hybrid” distribution fhybrid(v‖), with a larger population of fast electrons moving
in the direction of the main lobe of the launched wave compared to the Maxwellian distribution, was
used to evaluate wave damping analytically. A possible scenario to explain the experimentally measured
wavenumber of k‖ = −19.6 ± 11.0m−1 (a factor of two smaller than the launched k‖ = −40m−1)
was given, indicating that the contribution of fast electrons to wave damping is important. Although
this scenario was given for the “hybrid” distribution with Te = 100 eV, this distribution does not
represent the real velocity distribution accurately. Wave damping depends sensitively on the slope of
the distribution function at the wave phase velocity, which is difficult to determine experimentally.
An improvement beyond the present analysis would involve a consistent use of a Fokker-Planck code
to model the deformation of the velocity distribution function and a wave code (either full-wave or
ray-tracing) to evaluate the spatial distribution of the wave fields.

The energy of electrons that interact with the launched wave can be estimated as follows. Electrons
with velocity v‖ can interact with the wave and absorb energy from the wave if

v‖ =
ω

k‖
, (9.62)

where ω
k‖

is the parallel phase velocity of the wave. This is a literal expression of Eq. (2.196). Electrons
with v‖ have energies of at least

Emin =
1
2
mev

2
‖, (9.63)

where me is the electron mass. In order for waves at 200MHz with k‖ in the range −40m−1 to −20m−1

to be absorbed by the plasma, the minimum energy Emin of fast electrons is 2.8 keV for k‖ = −40m−1

and 11.2 keV for k‖ = −20m−1. From the measured value of k‖ = −19.6 ± 11.0m−1, electrons with
energies in this range should exist during the initial phase of RF driven plasmas in TST-2.

For further considerations, there is a numerical code for simulating the development of the electron
velocity distribution function in the presence of RF wave fields, called CQL3D [70]. This code is
usually used with an RF wave code (ray-tracing or full-wave) and iterated until a self-consistent
solution is obtained. In order to obtain simulation results which can be compared directly with
experimental results, detailed measurements of the density profile, temperature profile, and hard x-ray
profile (including the energy spectrum) are necessary. These quantities can be measured by a multi-
chord interferometry, Thomson scattering, and hard x-ray tomography, but these diagnostic systems
are still under development in TST-2. Such detailed comparisons remain a subject of future work.
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Chapter 10

Conclusions and Future Works

10.1 Conclusions

Wavenumber measurements were performed during plasma start-up experiments on TST-2 using RF
power at 200MHz. Plasmas with plasma current of up to 2 kA were diagnosed using a probe assembly
consisting of three high impedance Langmuir probe units, one single-loop magnetic probe, and one
plain Langmuir probe. The high impedance Langmuir probe unit has a high impedance (100 kΩ) non-
magnetic resistor placed immediately behind the probe electrode. From the results of wavenumber
measurements using this probe assembly, the following conclusions are drawn:

1. Measurements of the identical wave performed using different pairs of electrodes by rotating the
probe assembly gave the same phase difference, confirming the validity of wavenumber measure-
ment. The direction of the measured wavenumber was nearly along the toroidal direction and
counter-clockwise, consistent with the direction of the main component of the k‖ spectrum of
the wave launched from the grill antenna.

2. The polarization of the RF magnetic field was dominantly in the poloidal direction, consistent
with the calculated polarization of the slow wave (LHW).

3. The fast wave is evanescent for the measured density of order 1016 m−3.

4. The sensitivity of the probe assembly to electromagnetic waves was measured using a coaxial
transmission line calibrator. Using the measured sensitivity to electromagnetic waves, neither the
fast wave nor the electromagnetic wave can explain the ratio of the measured signal amplitudes
of the high impedance Langmuir probe system (electrostatic probe) and the magnetic probe,
whose typical amplitudes are about 4mV and 6mV, respectively. Since the waves which can
exist inside the TST-2 vacuum vessel in the presence of a plasma are limited to the slow wave,
the fast wave, and the electromagnetic wave, this result indicates that the contribution to the
measured signal from the slow wave (LHW) is dominant.

5. Even though the absolute value of impedance of the high impedance Langmuir probe unit de-
creases from 100 kΩ to 2 kΩ due to capacitances Cbox = 0.34 pF formed between the probe
electrode and the stainless steel shield box and Cparasitic = 0.065 pF in the 100 kΩ non-magnetic
resistor, the measured voltage signal amplitudes of 5.3mV for the high impedance Langmuir
probe unit and 54.6mV for the plain Langmuir probe at 200MHz showed that the total current
drawn from the plasma is reduced by at least 40% compared to the plain Langmuir probe by
placing a high impedance resistor immediately behind the probe electrode. This reduction of the
current drawn from the plasma indicates that the high impedance Langmuir probe unit detects
the signal closer to the floating potential than a plain Langmuir probe. Therefore, the signal
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measured by the high impedance Langmuir probe unit is closer to that originating from the
LHW. This is consistent with the detection of the LHW-dominant signal mentioned in item 4.

6. Considering the five items 1 through 5 altogether, it can be concluded that the wavenumber of
the slow wave (LHW) was measured successfully.

7. The measured toroidal wavenumber k‖ = 19.6 ± 11.0m−1 is smaller by a factor of two compared
to the main wavenumber component of the wave launched by the grill antenna, k‖ = 40m−1.
This difference cannot be explained by a spatially uniform cold plasma model with Maxwellian
electron velocity distribution function, even with the inclusion of k‖ upshift/downshift and the
presence of two different wavenumbers.

8. A possible scenario that can explain the measured toroidal wavenumber of k‖ = 19.6 ± 11.0m−1

was given by a non-Maxwellian electron velocity distribution function with a larger population
of fast electrons moving in the direction of the main lobe of the launched wave compared to
the Maxwellian distribution, indicating that the contribution of fast electrons to wave damping
is important. This scenario suggests that the main component of the launched wavenumber
around k‖ = 40m−1 is absorbed by such fast electrons before reaching the probe assembly, and
the wavenumber component not absorbed by the plasma reached the probe assembly, and was
detected as k‖ = 19.6 ± 11.0m−1.

9. From the Landau damping condition, the measured value of k‖ = 19.6 ± 11.0m−1 requires fast
electrons with energies in the range 2.8 keV (for k‖ = 40m−1) to 11.2 keV (for k‖ = 20m−1)
during the initial phase of RF driven plasma in TST-2.

10. More detailed analysis of wave propagation and wave energy damping with proper inclusion of the
electron distribution function evolution using sophisticated codes such as CQL3D, which makes
quantitative comparison between experimental results and simulation results possible, remains a
subject of future work. Such work will require more detailed information of the plasma including
the density profile, the electron temperature profile, and hard x-ray profile (including the energy
spectrum).

11. The work reported in this thesis provides experimentally measured toroidal and poloidal wavenum-
bers of the LHW at 200MHz. These measured wavenumbers can be used as reference data for
checking the validity of numerical codes such as CQL3D coupled with wave codes (GENRAY,
TORLH, etc.). From the point of view of nuclear fusion research, this work makes important
contributions needed for proper validation of such numerical codes which are widely used to
analyze existing data and to make predictions for planned reactor-grade devices such as ITER
and DEMO.

12. The measured wavenumbers provide information on wave excitation and propagation, as well as
evidence of wave absorption by the plasma. These data can be used to characterize the initial
plasmas driven by the LHW, and extract information such as the lower bound for the energy
of fast electrons. Such information is useful for optimizing the plasma formation and plasma
current ramp-up for ST plasmas, and for improving the design of the LHW antenna for the ST.
Through such processes, the work reported in this thesis contributes to the realization of a more
compact and economical magnetic fusion power plant.

10.2 Future Work

The following items are unanswered or unexplored, and remain subjects of future study:

1. In order to reduce the error for the measured phase difference, a reduction of RF noise is necessary.
For example, in Fig. 8.10, there is room for improving the wavenumber measurement by reducing
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the area of loops at the entrance of the oscilloscope. Enclosing the whole measurement system
by metal completely might reduce RF noise. By reducing the RF noise, it is expected that in
addition to the toroidal wavenumber, the poloidal wavenumber could also be specified.

2. In order to measure signals even closer to the floating potential, the impedance of the high
impedance Langmuir probe unit should be increased. Since the reduction of the impedance is
caused primarily by the capacitance Cbox, it is suggested that Cbox is reduced by decreasing the
thickness of the stainless steel shield box to increase the distance of the stainless steel shield box
from the probe electrode.

3. For a more direct proof of the detection of the LHW, the LHW dispersion relation should be
confirmed. This is possible, as described in Ref. [48], by measuring the radial wavenumber
component by scanning the position of the probe assembly radially and measuring the phase
shift with respect to a reference signal sampled from the incident wave to the antenna. It
should be noted that by scanning the radial position of the probe assembly, the sheath in front
of the electrostatic probe changes, leading to the possibility for the frequency response of the
electrostatic probe to depend on the radial position, thus breaking the simple relationship between
the signal measured by the electrostatic probe and the reference signal. If this were the case, it
may be necessary to use a magnetic probe, which is considered to be less sensitive to the effect
of the sheath than the electrostatic probe.

4. In order to expand the range of application of the electrostatic probe, such as measuring the
phase difference of high frequency signals by scanning the radial position of the probe mentioned
in item 3, the establishment of the high frequency sheath model is important. This should
be possible by accumulating data obtained by electrostatic probes with various impedances to
plasmas with various densities and temperatures at high frequencies such as 200MHz.

5. Wavenumber measurements of the LHW at different positions and times, using arrays of probe
assemblies distributed in space, will reveal the spatio-temporal change of the wavenumber and
the RF field strength, providing further information on start-up plasmas driven by the LHW.

6. Effects of secondary electron emission from the probe electrode by collisions with fast electrons
are necessary to measure the LHW wavenumber in RF start-up plasmas with larger plasma
currents, in which larger numbers of fast electrons are present.

7. As stated in the conclusions, the result of wavenumber measurements should be compared with
the analysis of wave propagation and wave energy damping with proper inclusion of the electron
distribution function evolution using sophisticated codes such as CQL3D, which will require more
detailed information of the plasma including the electron density profile, the electron temperature
profile, and the hard x-ray emission profile (including the energy spectrum).
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Appendix A

Theory of Electromagnetic Waves
in a Coaxial Transmission Line

In order to calibrate the sensitivities of the electrostatic probe and the magnetic probe to the electro-
magnetic wave in a coaxial transmission line, it is necessary to understand how the wave propagates
in the coaxial transmission line. A wave propagating in a waveguide which satisfies the following three
conditions is considered [65]:

• Made by a perfect conductor.

• Filled with a non-dissipative material uniformly whose permittivity and permeability are ε and
µ, respectively.

• The axis of the waveguide is straight and the shape of the cross-section is identical along the axis
of the waveguide.

A.1 Expression of Transverse Field Components in Terms of
Longitudinal Field Components

In this analysis, the z-axis is taken along the axis of the waveguide. In the absence of external charge
or current, Maxwell’s equations take the form

∇ · E = 0, (A.1)

∇× E = −∂B

∂t
, (A.2)

∇ · B = 0, (A.3)

∇× B = µε
∂E

∂t
. (A.4)

These equations yield 
∇2E = µε

∂2E

∂t2
, (A.5)

∇2B = µε
∂2B

∂t2
. (A.6)

190



These two differential equations are symmetric for E and B. Taking the waveguide geometry into
account, E and B can be expressed as{

E(x, y, z, t) = E(x, y)ei(kz−ωt), (A.7)
B(x, y, z, t) = B(x, y)ei(kz−ωt). (A.8)

where the x-y plane is perpendicular to the z-axis and k is the wavenumber for a wave propagating in
the z direction. Using Eq. (A.7), Eq. (A.5) gives{(

∂2

∂x2
+

∂2

∂y2
− k2

)
E(x, y)

}
ei(kz−ωt) = µε

(
−ω2

)
E(x, y)ei(kz−ωt),

from which [
∇t

2 +
(
µεω2 − k2

)]
E(x, y, z, t) = 0 (A.9)

is obtained where ∇t
2 is defined as

∇t
2 ≡ ∂2

∂x2
+

∂2

∂y2
= ∇2 − ∂2

∂z2
. (A.10)

The differentiation in Eq. (A.9) is two dimensional. It is convenient to separate E(x, y, z, t) into
components parallel and perpendicular to the z-axis:

E(x, y, z, t) = Ez(x, y, z, t) + Et(x, y, z, t) = ẑEz + Et (A.11)

where ẑ is the unit vector along the z-axis and

Ez = ẑEz (A.12)
Et = (ẑ × E) × ẑ . (A.13)

Similarly,
B(x, y, z, t) = Bz(x, y, z, t) + Bt(x, y, z, t) = ẑBz + Bt. (A.14)

Maxwell’s equations (A.1)–(A.4) can be expressed in terms of Ez, Et, Bz, and Bt. First, using

∇ =
(

x̂
∂

∂x
+ ŷ

∂

∂y

)
+ ẑ

∂

∂z
= ∇t + ẑ

∂

∂z
(A.15)

and Eq. (A.11), Eq. (A.1) becomes(
∇t + ẑ

∂

∂z

)
· (Et + ẑEz) = 0 ,

leading to

∇t · Et +
∂Ez

∂z
= 0 . (A.16)

Faraday’s law Eq. (A.2) is combined with Eq. (A.8) to give

∇× E = iωB. (A.17)

With the help of Eqs. (A.11), (A.14), and (A.15), Eq. (A.17) leads to,(
∇t + ẑ

∂

∂z

)
× (Et + ẑEz) = iω (Bt + ẑBz) . (A.18)
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The left-hand side of Eq. (A.18) is(
∇t + ẑ

∂

∂z

)
× (Et + ẑEz)

= ∇t × Et + ∇t × (ẑEz) +
(

ẑ
∂

∂z

)
× Et +

(
ẑ

∂

∂z

)
× (ẑEz) (A.19)

= (z−component) + (t−component) + (t−component) + 0 .

Making use of Eq. (A.19), and taking the inner product of Eq. (A.18) with ẑ gives

ẑ · (∇t × Et) = iωBz (A.20)

whereas taking the cross product of Eq. (A.18) with ẑ yields

iωẑ × Bt

= ẑ × {∇t × (ẑEz)} + ẑ ×
{(

ẑ
∂

∂z

)
× Et

}
= ẑ × {(∇tEz) × ẑ} + ẑ ×

{
ẑ × ∂Et

∂z

}
= {(∇tEz) − [ẑ · (∇tEz)] ẑ} +

{(
ẑ · ∂Et

∂z

)
ẑ − ∂Et

∂z

}
= ∇tEz − ∂Et

∂z
, (A.21)

where
ẑ · (∇tEz) = 0 and ẑ · ∂Et

∂z
= 0

have been used, since both ∇tEz and ∂Et

∂z are in the x-y plane. Equations (A.16), (A.20), and (A.21)
are summarized as below:

∇t · Et = −∂Ez

∂z
, (A.22)

ẑ · (∇t × Et) = iωBz , (A.23)
∂Et

∂z
+ iωẑ × Bt = ∇tEz . (A.24)

Formally, Eqs. (A.22)–(A.24) are derived from Eqs. (A.1) and (A.2):{
∇ · E = 0,

∇× E = iωB,

with assumptions Eqs. (A.7) and (A.8). Using the symmetry between E and B, Eqs. (A.3), (A.4):{
∇ · B = 0
∇× B = −iµεωE

and with assumptions Eqs. (A.7), (A.8)

∇t · Bt = −∂Bz

∂z
, (A.25)

ẑ · (∇t × Bt) = −iµεωEz , (A.26)
∂Bt

∂z
− iµεωẑ × Et = ∇tBz (A.27)
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where replacements E → B, B → E, and ω → −µεω were applied to Eqs. (A.22)–(A.24).
Et and Bt can be expressed in terms of Ez and Bz. Using

∂Et

∂z
=

∂

∂z

{
[x̂Ex(x, y) + ŷEy(x, y)] e[i(kz−ωt)]

}
= ikEt (A.28)

and
∂Bt

∂z
= ikBt , (A.29)

Eqs. (A.24) and (A.27) give

ikEt + iω (ẑ × Bt) = ∇tEz, (A.30)
ikBt − iµεω (ẑ × Et) = ∇tBz. (A.31)

Taking the cross product of (A.31) with ẑ yields

ik (ẑ × Bt) + iµεωEt = ẑ × (∇tBz) , (A.32)

where
ẑ × (ẑ × Et) = (ẑ · Et) ẑ − (ẑ · ẑ) Et = −Et

was used. Calculating [(A.30) × k − (A.32) × ω] yields

i
(
k2 − µεω2

)
Et = k∇tEz − ωẑ × (∇tBz) . (A.33)

If either Ez 6= 0 or Bz 6= 0 and k2 − µεω2 6= 0,

Et =
i

µεω2 − k2
[k∇tEz − ωẑ × (∇tBz)] , (A.34)

and similarly

Bt =
i

µεω2 − k2
[k∇tBz + µεωẑ × (∇tEz)] . (A.35)

A.2 Transverse Electromagnetic (TEM) Wave

When both Ez = 0 and Bz = 0, the electromagnetic field in a waveguide has purely transverse
components. Such a wave is called the transverse electromagnetic (TEM) wave. For both Ez = 0 and
Bz = 0, and for non-zero Et, Eq. (A.33) gives

µεω2 − k2 = 0, (A.36)

leading to
k = ±ω

√
µε ≡ ±k0. (A.37)

Combining these wavenumbers with Eqs. (A.30) or (A.31), the relationship between Et and Bt is
given as

Bt = ±√
µεẑ × Et. (A.38)

This relationship is the same as that for a plane wave propagating in an infinite space. Using both
Ez = 0 and Bz = 0, Eqs. (A.22) and (A.23) give

∇t · Et = 0, (A.39)
∇t × Et = 0, (A.40)

meaning that Et takes the same form as for the 2-dimensional electrostatic situation. These conditions
impose a limitation on the environment in which the TEM wave can exist as described in Ref. [65].
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If a volume is enclosed by a perfect conductor, the potential on its surface is equal under the electro-
static situation and thus the electric field is zero inside the volume. Therefore, in a single cylindrical
waveguide, for example, the TEM wave cannot exist. Conversely, if the volume is enclosed by multiple
conductors, the potentials on the surfaces of different conductors can be different, providing a room for
the electric field to exist. Therefore, the TEM wave can propagate inside a coaxial waveguide, which
consists of two cylindrical conductors (the inner and outer conductors).
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Appendix B

Signal Processing

B.1 Discrete Fourier Transform

In order to obtain the LHW wavenumber from probe signals, it is necessary to extract the phase and
amplitude of the frequency component of interest. Since data are acquired discretely, a discrete Fourier
transform is used [71].

A real function x(t) which is periodic with period T can in principle be expressed in a linear
combination of a constant, sine waves, and cosine waves as follows:

x(t) =
a0

2
+

∞∑
n=1

{an cos(ωnt) + bn sin(ωnt)} , (B.1)

where n is a non-negative integer, {an} and {bn} are real amplitudes, and ωn is the angular frequency
whose period Tn is included exactly n times in the time interval [−T

2 , T
2 ], i.e.,

nTn = T , (B.2)

ωn =
2π

Tn
=

2π

T
n . (B.3)

Expression (B.1) is possible due to the completeness formed among a constant, sine waves, and cosine
waves. Using the orthogonality:∫ T

2

−T
2

1 · cos(ωnt)dt = 0,

∫ T
2

−T
2

1 · sin(ωnt)dt = 0,

∫ T
2

−T
2

cos(ωmt) sin(ωnt)dt = 0, and

∫ T
2

−T
2

cos(ωmt) cos(ωnt)dt =
∫ T

2

−T
2

sin(ωmt) sin(ωnt)dt =
T

2
δm,n,

where m is a non-negative integer and δm,n is the Kronecker delta. an and bn are given as

an =
2
T

∫ T
2

−T
2

x(t) cos(ωnt)dt, (B.4)

bn =
2
T

∫ T
2

−T
2

x(t) sin(ωnt)dt. (B.5)

x(t) can be expressed with complex numbers by applying the relationships

cos(ωnt) =
eiωnt + e−iωnt

2
, sin(ωnt) =

eiωnt − e−iωnt

2i
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to Eq. (B.1) as

x(t) =
a0

2
+

∞∑
n=1

(
an − ibn

2
eiωnt +

an + ibn

2
e−iωnt

)

=
a0

2
+

∞∑
n=1

(
Aneiωnt + Bne−iωnt

)
, (B.6)

where

An ≡ an − ibn

2
=

1
2

{
2
T

∫ T
2

−T
2

x(t) cos(ωnt)dt − i
2
T

∫ T
2

−T
2

x(t) sin(ωnt)dt

}

=
1
T

∫ T
2

−T
2

x(t) {cos(ωnt) − i sin(ωnt)} dt

=
1
T

∫ T
2

−T
2

x(t)e−iωntdt (B.7)

and

Bn ≡ an + ibn

2
=

1
T

∫ T
2

−T
2

x(t)eiωntdt. (B.8)

Since an and bn are real, Eqs. (B.7) and (B.8) give

Bn = An, (B.9)

where An denotes the complex conjugate of An. Using

A0 =
a0 − ib0

2
=

a0

2
(B.10)

and
e−iωt = eiωt , (B.11)

Eq. (B.6) becomes

x(t) = A0 +
∞∑

n=1

(
Aneiωnt + Aneiωnt

)
= A0 +

∞∑
n=1

2Re
[
Aneiωnt

]
= A0 +

∞∑
n=1

2Re
[
|An|ei(ωnt+arg An)

]
= A0 +

∞∑
n=1

2|An| cos (ωnt + arg An) . (B.12)

Since n represents a harmonic of the fundamental frequency f0 = 1
T , Eq. (B.12) states that x(t) consists

of various harmonic signals with amplitude 2|An| and phase arg An. In practice, n is limited by the
number of sampled data by the sampling theorem. This theorem requires the sampling frequency (or
sampling rate) to be at least twice larger than that of the signal to be measured. For example, if the
data sampling is conducted N +1 times with equal interval in the period T (i.e., the period T is equally
divided into N intervals by N + 1 sampling points including two end points), the sampling rate fs for
this case is

fs =
T

N
(B.13)
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and the sampling theorem requires

fs =
N

T
> 2 × nf0 =

2n

T
, (B.14)

restricting the value of n to

n <
N

2
≡ m. (B.15)

If N is an even number, m is a positive integer.
From now on, this case is considered. The summation in Eq. (B.12) is performed for n up to

N
2 − 1 = m − 1. Under this condition, Eq. (B.12) becomes

x(t) = A0 +
m−1∑
n=1

2|An| cos (ωnt + arg An) . (B.16)

It should be noted that, because of aliasing, contributions from higher frequency components with
n ≥ m are included in the summation Eq. (B.16) as lower frequency components. Fortunately, in the
plasma current drive experiments in TST-2 using the LHW at 200MHz, most of these unfavorable
contributions are small enough or appear at frequencies different from that of interest.

Expression (B.16) is convenient for relating the Fourier component An to the real signal x(t). Using
the periodicity of x(t) with time T , x(t−T ) = x(t), and the discrete integration, An can be computed
from Eq. (B.7) as

An =
1
T

∫ T
2

−T
2

x(t)e−iωntdt

=
1
T

{∫ 0

−T
2

x(t)e−iωntdt +
∫ T

2

0

x(t)e−iωntdt

}

=
1
T

{∫ T

T
2

x(t − T )e−iωnteiωnT dt +
∫ T

2

0

x(t)e−iωntdt

}

=
1
T

{∫ T

T
2

x(t)e−iωntdt +
∫ T

2

0

x(t)e−iωntdt

}

=
1
T

∫ T

0

x(t)e−iωntdt

=
1
T

N−1∑
k=0

x

(
k

T

N

)
e−iωnk T

N
T

N

=
1
N

N−1∑
k=0

x

(
k

T

N

)
e−i 2πn

N k, (B.17)

where ωn = 2πn
T , t = k T

N (k = 0, 1, 2, · · · , N − 1), and dt = T
N were used. This is the discrete Fourier

transform.

B.2 Cross-Spectrum

When considering the relationship between two time series data, say x(t) and y(t), the phase difference
and the coherence between them are important. These two quantities stem from the cross-correlation
function Cxy(τ), which is defined as a long time average of the product of x(t) and y(t + τ) as

Cxy(τ) = 〈x(t)y(t + τ)〉 = lim
T→∞

1
T

∫ T
2

−T
2

x(t)y(t + τ)dt, (B.18)
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where “<>” means taking the average and τ is the time lag between the two signals. The cross-
spectrum Sxy(ω) is defined as the Fourier transform of the cross-correlation function as

Sxy(ω) =
1
2π

∫ ∞

−∞
Cxy(τ)e−iωτdτ. (B.19)

The cross-spectrum quantifies the “strength” of correlation between the two signals as a function of ω.

B.2.1 Expression of Cross-Spectrum in Terms of Fourier Transforms of x(t)
and y(t)

The purpose of this subsection is to express Sxy(ω) in terms of Fourier transforms of x(t) and y(t).
The Fourier transform used here is a manipulation described as follows. Starting from Eq. (B.6), x(t)
can be expressed as

x(t) =
a0

2
+

∞∑
n=1

(
Aneiωnt + Bne−iωnt

)
= A0 +

∞∑
n=1

(
Aneiωnt + A−neiω−nt

)
=

∞∑
n=−∞

Aneiωnt, (B.20)

where from Eq. (B.3),

−ωn = −2πn

T
=

2π(−n)
T

≡ ω−n (B.21)

and from Eqs. (B.7), (B.8), and (B.21),
Bn = A−n (B.22)

are used. Substituting Eq. (B.7) into Eq. (B.20), x(t) is expressed as

x(t) =
∞∑

n=−∞
Aneiωnt

=
∞∑

n=−∞

{[
1
T

∫ T
2

−T
2

x(t′)e−iωnt′dt′

]
eiωnt

}

=
∞∑

n=−∞

{[∫ T
2

−T
2

x(t′)e−i2π(n∆f)t′dt′

]
ei2π(n∆f)t∆f

}
, (B.23)

where ∆f was substituted for 1
T in the last row. Taking the limit T → ∞ gives ∆f → 0, leading to

x(t) →
∫ ∞

−∞

[∫ ∞

−∞
x(t′)e−i2πft′dt′

]
ei2πftdf

=
∫ ∞

−∞
[X(f)] ei2πftdf, (B.24)

where n∆f is denoted by f and X(f) takes the form

X(f) =
∫ ∞

−∞
x(t)e−i2πftdt. (B.25)
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This is the Fourier transform. In practice, ω = 2πf is used instead of f and Eq. (B.24) gives

x(t) =
∫ ∞

−∞

X(f)
2π

eiωtdω. (B.26)

Denoting X(f)
2π as X(ω), (B.25) and (B.26) give the forms of Fourier transform and the inverse transform

as

X(ω) =
1
2π

∫ ∞

−∞
x(t)e−iωtdt, (B.27)

x(t) =
∫ ∞

−∞
X(ω)eiωtdω. (B.28)

Cxy(τ) is expressed in terms of Sxy(ω) by inverse Fourier transform of Eq. (B.19) as

Cxy(τ) =
∫ ∞

−∞
Sxy(ω)eiωτdω. (B.29)

From the definition of Cxy(τ) shown in Eq. (B.18) and using Eqs. (B.27) and (B.28), Cxy(τ) is
expressed as

Cxy(τ) = lim
T→∞

1
T

∫ T
2

−T
2

x(t)y(t + τ)dt

= lim
T→∞

1
T

∫ T
2

−T
2

x(t)
[∫ ∞

−∞
Y (ω)eiω(t+τ)dω

]
dt

=
∫ ∞

−∞

{[
lim

T→∞

1
T

∫ T
2

−T
2

x(t)eiωtdt

]
Y (ω)eiωτdω

}

=
∫ ∞

−∞


 lim

T→∞

2π

T
· 1
2π

∫ T
2

−T
2

x(t)e−iωtdt

Y (ω)eiωτdω

 . (B.30)

If x(t) = 0 outside the time interval [−T
2 , T

2 ], which is reasonable in the large T limit,

1
2π

∫ T
2

−T
2

x(t)e−iωtdt → 1
2π

∫ ∞

−∞
x(t)e−iωtdt = X(ω)

and Eq. (B.30) reduces to

Cxy(τ) =
∫ ∞

−∞

{[(
lim

T→∞

2π

T
X(ω)

)
Y (ω)

]
eiωτdω

}
. (B.31)

Comparing Eqs. (B.29) and (B.31), the cross-spectrum Sxy(ω) is given as

Sxy(ω) = lim
T→∞

[
2π

T
X(ω)Y (ω)

]
. (B.32)

This equation gives the relationship between the cross-spectrum Sxy(ω) and the Fourier components
X(ω) and Y (ω).
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B.2.2 Phase Difference

Recalling from Eqs. (B.23)–(B.26) that X(ω)
(
= X(f)

2π

)
originates from An, and from Eq. (B.12), that

arg An represents the phase of a real signal, θx(ω) in the polar coordinate expression

X(ω) = |X(ω)|eiθx(ω) (B.33)

is regarded as the phase of a frequency component ω. Denoting Y (ω) as

Y (ω) = |Y (ω)|eiθy(ω), (B.34)

the product X(ω)Y (ω) in Sxy(ω) is written as

X(ω)Y (ω) = |X(ω)||Y (ω)|ei{θy(ω)−θx(ω)}. (B.35)

Since 2π
T in Sxy(ω) in Eq. (B.32) is real, Eqs. (B.32) and (B.35) give the phase difference ∆θyx(ω) of

y(t) with respect to x(t) as a function of ω as

∆θyx(ω) ≡ θy(ω) − θx(ω) = arg [Sxy(ω)] = arctan
{

Im[Sxy(ω)]
Re[Sxy(ω)]

}
. (B.36)

Although Sxy(ω) is given in the limit T → ∞, it is not practical to use data of infinite length.
Fortunately, under the condition of ergodicity,

Sxy(ω) = lim
T→∞

[
2π

T
X(ω)Y (ω)

]
= E

[
2π

T
X(ω)Y (ω)

]
(B.37)

holds where “E[ ]” symbolizes taking an ensemble average. By virtue of ensemble averaging, the effect
of random noise can be suppressed.

B.2.3 Coherence

By using Sxy(ω), the squared coherence coh2(ω) is defined as

coh2(ω) ≡ |Sxy(ω)|2

Sxx(ω)Syy(ω)
, (B.38)

which quantifies the linearity between the two signals x(t) and y(t).
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