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Abstract

We searched for the hidden photon cold dark matter(HPDM) in the mass region
around 5 × 10−5 eV using dish antenna method. The experimental apparatus
consists of a parabolic antenna with a 12-GHz band down converter and a plane
aluminum mirror.

We looked for excess emission of electromagnetic wave derived from the
HPDMs, but found no significant excess of the power and set the 95% confidence
upper limit of 2.0 × 10−12 − 8.0 × 10−12 to the mixing angle χ for the hidden
photon mass between 49.1865 and 53.3195 µeV. This is the most stringent limit
in this mass region.
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Chapter 1

Introduction

The characteristic of dark matter is still one of the most interesting open ques-
tions. Such new particles contribute about 27% of the total energy content of
the Universe [1]. There are two leading candidates of the dark matter, Weakly
interacting slim particles (WISPs) [2] and weakly interacting massive particles
(WIMPs) [3]. WIMPs are searched for in the scattering experiments, while
WISPs could be searched for by kinetic mixing with photons.

In this thesis, we focused on the “hidden photon” which belongs to a family of
the WISPs. This particle arises from extensions of the Standard Model, especially
the String theory. Recently, it is argued that the similar mechanism for axion
production in the early universe (so-called misalignment mechanism [4] [5] [6])
also works for hidden photons [13] [14].

Until now, a number of theoretical studies and experimental searches for
hidden photons have been done and they impose limits on the parameters of
the hidden photon models, but most of these searches do not assume the hidden
photon being dark matter.

On the other hand, halo-scopes such as ADMX [19]( and CARRACK II [20]
) are direct dark matter searches. They are built to search for axions, but also
have sensitivity to hidden photon dark matter (HPDM). They use a resonant
cavity, and achieve extremely high sensitivity when the energy of the dark mat-
ter particle corresponds to the frequency of the cavity. However, there is no
prediction for the mass of HPDM. To search for HPDM, therefore, we need a
broadband experiment which can scan over the wide range of the mass region
fast and easily. To meet the demand, D. Horns and others [23] proposed a non-
resonant broadband search strategy for HPDM (and other WISPy DM) using a
“dish antenna”. They found that a reflective surface can convert HPDMs into
photons. If HPDMs are converted on the surface into photons, outgoing photons
are perpendicular to the surface. So, in the proposal, they suggested to use a
spherical mirror as the “dish”.

In our experiment, however, we invented a method using a “parabolic” an-
tenna which is more easily available than a spherical antenna. In this method,
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a parabolic antenna was used not for converting HPDMs into photons, but used
to collect photons produced by the HPDM conversion. Aside of the parabolic
antenna, we set a plane aluminum mirror to convert HPDMs to photons. If
HPDMs are converted on the plane mirror, outgoing photons are plane wave,
which can be collected by the parabolic antenna onto the focal point.

In this thesis, we explain what the hidden photon is in Chap. 2, previous
studies and proposals in Chap. 3, the new searching methods in Chap. 4,
calibrations in Chap. 5, measurement in Chap. 6, result and discussion in Chap.
7, and we conclude in Chap. 8.
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Chapter 2

Hidden photon theories

In this chapter, we explain what the hidden photon is, and the recent argument
that the hidden photon can be a candidate of dark matter. Also, we describe the
parameter space for hidden photon cold dark matter(HP CDM).

2.1 Hidden photons

The Standard Model has some problems such as the strong CP problem. For this
reason, many extensions of the Standard Model which solve the problems have
been proposed. In some extensions, e.g. String theory, extra U(1) symmetry
arises frequently. A gauge boson corresponding to the “hidden” symmetry is
called hidden photon (,dark photon, or paraphoton).

Okun and Holdom proposed the model that hidden photons interact with
ordinary photons via kinetic mixing [7] [8], which is described by following La-
grangian,

L = −1

4
FµνF

µν − 1

4
XµνX

µν +
χ

2
FµνX

µν +
m2

γ′

2
XµX

µ + JµAµ, (2.1)

where Aµ and Xµ are photon and HP field with field strength Fµν , Xµν respec-
tively, χ is the dimensionless parameter quantifying tiny kinetic mixing, mγ′ is
mass of HP, and Jµ is the ordinary electromagnetic current. As we can see, the
new parameters in this Lagrangian are χ and mγ′ .

The kinetic mixing is generated at one-loop by the exchange of heavy mes-
sengers that couple both to the ordinary photon and to the hidden photon with
coupling constant g.

The parameter region constrained up to now are shown in Fig. 2.1. All
limits on the parameters of HPs except “Haloscope” are, however, constrained
by the experiments and astrophysical observations that do not require HP as
dark matter. So, we will explain about these constraints a little bit on the way

6



to describe HPs (we can see the detailed review in [2]). For “Haloscope”, however,
we discuss this experiment in more detail in the following chapter.

In Eq. (2.1), the somewhat unusual kinetic mixing term has been introduced.
To get a better understanding, it is suitable to remove this term.

To eliminate the kinetic mixing term, it is convenient to introduce a field
re-definition. There are two simple shift that we can remove the kinetic mixing
term of Eq. (2.1):

(1) Aµ → Ãµ − χXµ.

(2) Xµ → X̃µ − χAµ.

Although the resulting physics is completely equivalent, the physical picture
resulting from both re-definitions is slightly different. Let us now consider about
these pictures.

2.1.1 Model (1)

Inserting the shift Aµ → Ãµ − χXµ into Eq. (2.1), and dropping terms of order
∼ χ2, we obtain,

L = −1

4
F̃µνF̃

µν − 1

4
XµνX

µν +
m2

γ′

2
XµX

µ + jµ(Ãµ − χXµ). (2.2)

Note that this lagrandian describes the mass eigenstates called “massless”
photon and “heavy” photon. According to Eq. (2.2), heavy photon couples to
ordinary matter via

−χjµXµ (2.3)

This coupling causes the modification of Coulomb’s law. In order to test
the law, the Cavendish type precision experiments have been done, and these
measurements provide the constraints labelled “Coulomb” (Fig. 2.1).

2.1.2 Model (2)

Inserting the shift Xµ → X̃µ−χAµ into Eq. (2.1), dropping terms of order ∼ χ2,
we find,

L = −1

4
FµνF

µν − 1

4
X̃µνX̃

µν +
m2

γ′

2
(X̃µX̃

µ − 2χAµX̃
µ + χ2AµA

µ) + JµAµ. (2.4)

After inserting this shift, we can see the flavor eigenstates so-called “interacting”
photon and “sterile” photon. Furthermore, we get a non-diagonal mass term.
This term leads that hidden photon and photon can convert each one to an-
other, in the same manner as neutrino oscillation. A number of theoretical and
experimental search for HPs have been done up to now.
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For example, helioscope and light shining through a wall (LSW) experiments
can search a wide range of the relevant parameter space. In fact, we also have
conducted the helioscope experiment [9]. This experiment searched for HPs
produced outside and in the center of the Sun, and LSW experiments assume
HPs produced in the laboratory.

The experimental and observational constraints of solar hidden photons are
shown as “Tokyo” (the result of our experiment), “CAST” and “Solar Lifetime”
[10] in Fig. 2.1. On the other hand, the current best constraint from LSW
experiments is provided by ALPS [11]. The excluded area is shown as “LSW” in
Fig. 2.1.

2.2 Hidden photon for candidate of dark matter

2.2.1 Summary of the misalignment mechanism

In this subsection, we describe that very light particles including HPs can be good
candidates of dark matter. One of the most famous examples is the misalignment
mechanism, discussed mostly for axions.

The mechanism relies on supposing that fields in the early universe have a
random initial state. And the fields will be smoothed by the expansion of the
universe. Even so, the zero-momentum component of the scalar field ϕ in the
FRW (Friedmann-Robertson-Walker) background with mass m has the equation
of motion:

ϕ̈+ 3Hϕ̇+m2ϕ = 0, (2.5)

where H is the time-dependent Hubble parameter. This equation is reminiscent
of the damped harmonic oscillator with damping term H.

In the early Universe (H(t) ≫ m), ϕ act as an over-damped oscillator. Af-
ter inflation, the H(t) becomes diminished. After the time t0 characterized by
9H2(t0) − 4m2 = 0, the discriminant of Eq. (2.5) becomes negative, and the
field A begins to oscillate and we can call them “particles”. The particles are
extremely cold and non-relativistic, regardless of their mass. An adiabatic pertur-
bation spectrum derived from the fluctuations of the inflation field will produce
adiabatic spatial variations on the density of the scalar particles, as needed to fit
the WMAP data.

Now, let us come back to the discussion of HPs. Nelson and Scholtz have
considered that a similar mechanism can apply to generate a population of HPs
in the mass eigenstate basis discussed in Sect. 2.1 [14]. They calculated the
equation of motion:

−∂ν

(
Xµν

√
(−g)

)
= m2

γ′Xµ
√

(−g) (2.6)

where g is the coupling constant. As inflation expands a small patch of space,
we can suppose HPs are uniformly distributed and pick a particular polarization.
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This means ∂iX
µ = 0, and Eq. (2.6) enforces X0 = 0. Using this, Eq. (2.6)

satisfies,

Ẍ i + 3HẊ i +m2
γ′X i = 0 (2.7)

This equation has the same form as Eq. (2.5).

Additionally, as argued in [13], we will consider two possible scenarios for the
direction of the X field in the following.

(a) The direction is not affected by structure formation, and all HPs
point in the same direction

(b) The direction changes during the process of structure formation
and behave with random directions.

These have crucial consequences for direct detection.

If we assume that all the dark matter energy density in the galactic halo of
order,

ρCDM,halo ≃
0.3GeV

cm3
, (2.8)

consisted of a hidden photon condensate, then the energy density is given by

ρHP =
m2

γ′

2
⟨|XDM|2⟩ = ρCDM,halo ≃

0.3GeV

cm3
. (2.9)

The average is only relevant in the case (b) and trivial in the case (a).

2.2.2 Allowed parameter space for HP CDM

Although HPs can be a candidate of dark matter, we must make sure of allowed
parameter space for HP CDM by considering that HPs do not decay, or spoil
observations such as CMB. This computation has been done in [13], and this
leads to constraints on the kinetic mixing parameter.

The allowed parameter space for HP CDM is shown in Fig. 2.1. In this
section, we will explain about the suppression of the kinetic mixing.

Let us come back to the discussion of the model (1). In this basis, we can
identify that Ã and X are the propagation eigenstates in vacuum. The universe
is, however, not empty. The interactions between photons and the charged par-
ticle in the primordial plasma induce refraction and absorption. This can be
represented with an effective mass squared of photon,

M2 ≡ m2
γ + iωΓ, (2.10)

where both the plasma mass mγ and the interaction rate Γ depend on the photon
frequency ω, and the modules of the wavenumber k [12]. As argued in [13], if
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Γ ̸= 0, the HPDMs decay with rates Γ′ = χeffΓ, where χeff is effective mixing
angle which can be approximated by

χ2
eff ≃

χ2m4
γ′(

m2
γ −m2

γ′

)2
+ µ4

(2.11)

where µ2 = max{χm2
γ′ ,mγ′Γ}. Before recombination, m2

γ is positive so there
might be a moment where plasma mass is equal to mγ′ . According to Eq. (2.11),
this equality causes the resonance.

The decay of the HP condensate can be written by the ratio

Xtoday

Xinitial

=

(
ainitial
atoday

)3/2

exp
(
−τ2

2

)
,

(
τ2 ≡

∫ ttoday

tinitial

dtΓ′
)

(2.12)

where a is the universe scale factor. The exponential term of this equation gives
the damping of the total energy density due to the resonance.

In the mass range from neV to 104eV order, this disappearance mechanisms of
HPs dominate. These caused not only the decay of the HP condensate, but also
transferring energy to the ordinary electrons and producing extra photons. These
can lead to effects such as CMB distortions or changing the effective number of
relativistic neutrino species N eff

ν . These bounds are calculated in [13] and shown
as “CMB Distortions” and “N eff

ν ” in Fig. 2.1

The lower limit of the CMB constraints, mγ′ ≃ neV, is coincident with reso-
nances happening around the onset of recombination. Smaller HP masses suffer
the resonance around this epoch because neutral Hydrogen affect m2

γ to be a
negative quantity which increases with time and finally makes m2

γ = 0 by com-
pensating the contribution of free electrons. HPs with sub-neV mass have their
resonance around this epoch. However, we cannot ascertain the fate of the low
energy photons injected during recombination, therefore we cannot constrain the
kinetic mixing by this way. However, there is a simple way of limiting the ki-
netic mixing of HP CDMs in this small mass region. The density fluctuations
are already imprinted in the CMB at late recombination, and they enable us to
estimate the DM density. It was computed in [13], and the value agrees roughly
with the average DM density observed today. Therefore, we cannot allow the
resonant transition of HPs into photons at this epoch or any later, thus requiring
about τ2 < 1, This bounds is shown in Fig. 2.1 labelled as “τ2 > 1”.

If HP mass is below twice the electron mass, HP can decay into three photons.
By considering that the population of decay photons is lower than the diffuse X-
ray backgrounds, one can constrain the mixing parameter. This has been done
in [12], and the excluded area is shown as “X-rays” in Fig. 2.1.
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Figure 2.1: The allowed region of HPCDM is shown in light-red. The other
painted regions arise from experiments and astrophysical observations that do
not require HP dark matter except the region labelled “Haloscope”. We explain
several of them in the text.
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Chapter 3

Previous studies and proposals
to search for HPDM

In the past, haloscope searches had imposed the limit on the parameter space
for HPDMs. Moreover, a new method to search for HPDMs (or other WISPy
cold dark matter) is proposed recently. In this chapter, we will explain about
the searches with haloscopes and the proposal.

3.1 Microwave cavity

One of the famous methods to search for WISPy dark matter is so-called “halo-
scopes”. This tool has been used to search for axion dark matter, but this also has
the sensitivity to HPDMs. Let us summarize the basic principle of the haloscope,
and explain about the sensitivity to HPDMs.

Let us now come back to the discussion of HP-photon oscillation. In Eq.
(2.4), we can see that the HP field plays a role as a source for the ordinary
photon.

In the experiments, HP → photon conversion can resonantly occur when the
frequency of conversion photon corresponds to the resonant frequency of the cav-
ity. The energy of conversion photons corresponds to the energy of the incoming
HPDMs. Since the HPDMs are very cold, their energy coincides approximately
with their mass.

A number of experiments of this type have been already done [15–19], and the
analysis to constrain HPDM parameters with these experiment has been carried
out in [13]. The result of the analysis is shown in Fig. 2.1, with the “Haloscope”
label.
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3.2 Dish antenna

In this section, we will discuss a new technique with dish antennas. This method
is proposed recently, and we applied this proposal to our experiment. Therefore,
we will explain about this technique in more detail than others.

For discussion about the proposal, let us restart from Eq. (2.4). The equation
of motion for plane waves with frequency ω and momentum k is,[

(ω2 − k2)

(
1 0
0 1

)
−m2

γ′

(
χ2 −χ
−χ 1

)](
A
X

)
=

(
0
0

)
. (3.1)

Since the particles are very cold, i.e. they have very small velocities, momentum
k is nearly zero. Therefore, we can achieve X0 ≈ A0 ≈ 0 by a suitable gauge
choice.

For a particle traveling with momentum k and frequency ω =
√
m2

γ′ + |k|2

we get, (
A
X

)∣∣∣∣
DM

= XDM(k)

(
−χ
1

)
exp(−i(ωt− kx)). (3.2)

Although the field of HPDM is almost sterile, it has a small component of an
ordinary electromagnetic field that will enable HPDMs to be detected.

EDM(k) = χmγ′XDM(k) (3.3)

In order to explain about the dark matter search using dish antennas, let us
start considering a perfect plane mirror at z=0. In this case, an ordinary electric
field is required to vanish on the surface in all directions parallel to the surface,

E∥|surfaceoftheplane = 0, (3.4)

Here,the index ∥ means the directions parallel to the plane. As a result, the
ordinary electric field of the HPDM is cancelled by emitting a suitable outgoing
almost ordinary electromagnetic plane wave1 with the same frequency,(

E
Ehid

)
out

= EDM,∥exp(−i(ωt− px))

(
1
χ

)
, (3.5)

where E and Ehid are visible and hidden electric field respectively.

On the plane at z=0, the field of HPDMs and outgoing wave satisfy the
boundary condition Eq. (3.4),

1Note that, this wave has a tiny field of HPs, therefore, we named this “almost” ordinary
photon.
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(
E

Ehid

)
total,∥

= EDM,∥

[(
1
χ

)
exp(−i(ωt− px)) +

1

χ

(
−χ
1

)
exp(−i(ωt− kx))

]
z=0

= EDM,∥
1

χ

(
0
1

)
. (3.6)

By the boundary condition, we get,

p · x|z=0 = k · x|z=0. (3.7)

Therefore,

p∥ = k∥, (3.8)

and this decides two of three components of p. The rest component can be
determined by conservation of energy, which is described by,

|p| = ω =
√

m2
γ′ + |k2|. (3.9)

Clearly, we get,

p =
√
m2

γ′ + |k⊥|2n+ k∥, (3.10)

where k⊥ is the component of k which is perpendicular to the surface, and n is
the unit vector which is perpendicular to the surface, too.

Since the momenta of the incoming HPDMs are non-relativistic |k| ≪ mγ′ ,
the outgoing electromagnetic waves are emitted at a small angle (ϕ ≃ |p∥|/mγ′)
with respect to the axis which is normal to the surface (Fig. 3.1).

Therefore, if we use a dish antenna shaped spherically, these outgoing waves
are concentrated in the center of the sphere, as recently discussed in [23] (Fig.
3.2). Nearly all dish antennas on the market, however, are not spherical, but
parabolic. Furthermore, even if a parabolic antenna is very flat enough to be
taken as approximately spherical, a receiver of the antenna is attached not to the
center, but the focal point of the dish (Fig. 3.3).

In order to solve the problem, we invented a new method to search for HPDMs
with “parabolic antenna” which can be realized easily. In Chap. 4, we will discuss
the new technique.
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Figure 3.1: In response to an incoming HPDM, an outgoing (almost) ordinary
photon is emitted at a small angle with respect to the axis which is normal to
the surface.

Figure 3.2: Schematic view of HPDM experiment using dish antenna.
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Receiver

Figure 3.3: Schematic view of parabolic antenna which can be approximated by
spherical one. But a receiver is attached to its focal point, not center.

We now estimate the sensitivity of a search experiment with practical param-
eters to the mixing parameter χ on the basis of the following assumptions:

• We assume that the vector field of HPDM XDM has random directions(case
(b)).

• We assume the isothermal dark matter halo, i.e. the velocity of the HPDMs
obeys Maxwell-Boltzmann distribution.

• We assume that the time over which HPDMs will interact coherently is
much longer than our measurement time.

Note that, if the measurement time is longer than signal coherence time, the
shape of signal derived from HPDMs is modulated as argued in ref. [27]. However,
there is no prediction of the coherence time. Therefore, we assumed the coherence
time is much longer than the measurement time as is implied in the analysis of
“Haloscope” [13]. In this assumption, the shape of signal derived from HPDMs
is not affected by the incoherence. On the other hand, if the coherent time turns
out to be relatively short, we will be able to evaluate the effect of the incoherence
according to the arguments in ref. [27].
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Let us consider the situation: the electrons of the mirror’s surface oscillate
under the tiny electromagnetic field of HPDMs. The outgoing photons have the
field magnitude which is related to χ by Eq. (3.3) and is set by the dark matter
density via, √

⟨|EDM,|||2⟩ = χ
√
2ρHPα (3.11)

where α represents,

| cos(θ)| case (a) and√
2
3

case (b).
(3.12)

θ is the angle between the HP field (it points in the same direction everywhere
and it is unknown for case (a)) and the surface of mirror. In case (b), this value
arises from the average over the random orientation of the HPs.

The power collected into the receiver is approximately,

Pcenter ≃ Aeff⟨|EDM,|||2⟩ = 2⟨α2⟩dishχ2ρHPAeff , (3.13)

where Aeff is the effective area of the dish.
Therefore, the sensitivity to the kinetic mixing parameter is,

χsens = 4.5× 10−14

(
Pdet

10−23W

) 1
2
(
0.3GeV/cm3

ρHP

) 1
2
(
1m2

Aeff

) 1
2

(√
2/3

α

)
. (3.14)

where Pdet is the detectable power in presence of various backgrounds. The mass
range which we focuced on is about 5× 10−5eV. In this region, χsens ≃ 10−10 is
required to surpass the existing constraint. If we use the dish antenna which has
the effective area 1 m2, Pdet ≃ 5× 10−17 W is required.

In our experiment, room temperature black body radiation is the dominant
background. As shown in the appendix A, the power of input noise to a receiver
with frequency band width ∆ν is,

PRT = kBT∆ν, (3.15)

where T is room temperature (≃ 300 K). The frequency dispersion of the sig-
nal derived from HPDMs is a few tens of kHz as estimated later in Sect 7.1.
Therefore, the power of input noise can be estimated to be order of 4× 10−17 W.

Since the required power sensitivity with the dish antenna which has the
effective area 1 m2 roughly corresponds to the power of the background, we can
achieve required sensitivity easily.

On the other hand, we used the Fast Fourier Transform (FFT-analyzer, see
Sect. 4.2). In our set up of searching for HPDMs, a bin bandwidth2 of FFT
power spectrum was set to 5 kHz in order that the signal derived from HPDMs
has several bins wide (discussed in Chap. 7.1).

2In this thesis, we call the frequency bandwidth of a bin“Resolution Band Width (RBW)”.
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Chapter 4

New method of searching for
HPDM using parabolic antenna

4.1 How to search for HPDMs with parabolic

antenna

As discussed in the previous chapter, it is the original idea to use a spherical
antenna for searching for the HPDMs, but it may not be easily available because
of the necessary conditions. Even if we can get the antenna, it may be difficult
to calibrate the apparatus.

To avoid such problems, we decide to use a commercially available parabolic
antenna. Unfortunately, however, we cannot collect the conversion photons with
parabolic antenna alone. So, we devised the system using a combination of a
parabolic antenna and a plane mirror. Fig. 4.1 is a sketch of the new method.

In this method, we used a parabolic antenna not as an emitter of the waves
derived from HPDMs, but only to collect the plane waves. If a plane mirror
emits the waves derived from HPDMs, emitted waves are plane waves. So they
can be collected by a parabolic antenna easily.

In the following section, we explain about the experimental apparatuses sep-
arately.
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Figure 4.1: Schematic view of the new method.

4.2 Experimental apparatus

4.2.1 Parabolic antenna

The frequency band which we focused on is “Ku band” (12-18GHz). This band
is used for satellite communications, especially broadcast services. In Japan,
around 12GHz band is used for broadcasting satellite (BS) and communications
satellite broadcasting (CS). We decided to use the parabolic antenna used for BS
and CS broadcasting which is easily available.

As discussed in the previous chapter, Aeff ≧ 1m2 is good condition to search
for HPDMs.

Thus we used the parabolic antenna which has 2.2 m diameter (SXT-220,
Anstellar, Fig. 4.2). In Japan, most parabolic antennas are off-axis feed, but
SXT-220 is axial feed type. This antenna has a pillar named “king post” for
supporting the dish and setting up the antenna on a ground or a floor (Fig. 4.3).
We used the aluminum frames (HFS4590 series, Misumi) for legs of the antenna,
and the channel bars for connecting the frames and the king post (Fig. 4.4).

Tab. 4.1 shows the specification of the dish. Let us explain the technical
terms of radio astronomy used in the table.
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The VSWR means “voltage standing wave ratio” which is a function of the
reflection coefficient Γ known as return loss. This is defined by

VSWR ≡ 1 + |Γ|
1− |Γ|

. (4.1)

For example, in Tab. 4.1, the VSWR value is 1.3. Therefore, the ratio of reflected
power and input power is |Γ|2 ≃ 0.017. This means about 98.3 percent of input
power can be collected to the receiver.

“-3dB beam width” denotes the attenuation level when we incline the dish
axis off the direction of the satellite. If we incline the axis by a half of the
beam width with respect to the direction, then the gain attenuates by about half
(-3dB).

“Gain” represents the ratio of the effective aperture of dish and the area of
ideal isotropic antenna. For more information, see Appendix B.

Even if we incline the antenna by an angle larger than “-3dB beam width”,
a small part of the power from the satellite can be collected by the dish. This
efficiency is described as “side lobe”. Conversely, the antenna has a tiny sensi-
tivity, even if the incident angle of the signal is large. For this reason, there were
cases where we obtained the signals from exterior sources when we conducted
the measurement of searching for HPDMs. This problem is discussed in Chap.
6 and Appendix C.

Finally, “Noise temperature” denotes the black body radiation from the
ground, which the antenna can collect when the elevation angle of the antenna is
small. For example, according to Tab. 4.1, the power of the radiation collected
by the antenna corresponds to the power of black body radiation at 42K when
elevation angle is 10◦.
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Figure 4.2: Picture of the parabolic antenna

Diameter 2.2m
Frequency 10.95 to 12.75 GHz
VSWR 1.3:1

Insertion loss 0.2dB
-3dB Beamwidth 0.708◦

Side lobe 32− 25logθ
2◦ ≦ θ ≦ 20◦

Gain 47.32dB (at 12.5GHz)
Noise temperature 42 K at 10◦

Antenna optics Prime-focus antenna
Elevation adjustment 5 to 90 ◦

Azimuth Adjustment 0 to 360 ◦

Table 4.1: The specification of the parabolic antenna
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Figure 4.3: Left: Photograph of king post. Right:Schematic bottom view of king
post.

Figure 4.4: Two channels connecting king post and the flames
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4.2.2 Low Noise Block converter(LNB)

We used a Low Noise Block down-converter with Feedhorn (LNBF) at the focal
point of the dish (Fig. 4.5). The LNBF which we selected is Norsat 4506B. This
LNBF is normally used as a receiver for CS broadcasting whose wave polarization
is linear. Thus, for the following discussion, we also call it the “receiver”.

The receiver has 11.3GHz local oscillation frequency with which LNBF con-
verts received radio wave down into about O(1GHz).

The characteristics of the receiver are listed in Tab. 4.2.

Figure 4.5: Picture of Low Noise Block converter

Frequency 12.25 to 12.75 GHz
Local oscillation (L.O.) frequency 11.3GHz

Output frequency 950 to 1450 MHz
L.O. stability (over temperature range) ± 500 kHz

Noise figure 0.6dB
Phase noise -65dBc/Hz at 1kHz

-80dBc/Hz at 10kHz
-100dBc/Hz at 100kHz

Input VSWR 2.2:1
Output VSWR 2.2:1
Conversion gain 64dB
Output P1dB 8dBm

Power requirements +15 to +24 V supplied through
center conductor of IF cable

Dimensions 85(L) × 43(W) × 43(H) mm
Weight 120g

Temperature range −40◦C to +60◦C

Table 4.2: The specification of the Low Noise Block converter
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4.2.3 Signal generator

According to the specification of the LNBF, L.O. stability is 500kHz over the
temperature range (from -40◦C to + 60◦C). It means that the frequency of L.O.
might be shifted with a change in room temperature. If room temperature is
varied by 0.5◦C , the frequency of L.O. might be shifted by 5kHz. This frequency
shift can be fatal problem because our setting value of the 1bin RBW in searching
for HPDMs is 5kHz which we explain in Chap. 6. Therefore, we used the a signal
from the signal generator (2023A, Aerofrex)to calibrate the L.O. frequency (Fig.
4.6, Tab. 4.3).

According to the specification, the frequency stability of the signal generator
is better than ±7× 10−7 over the operating range of 0 to 55◦C. For example, let
us consider that the signal generator outputs 12 GHz as a reference signal. The
frequency shift is lower than 8.4kHz over the operating range. The predicted
change of the room temperature is a few ◦C, thus the frequency shift can be
considered to be lower than 1kHz which is much smaller than the RBW for
searching for HPDMs. Therefore, we used this signal generator for the calibration
of L.O. frequency.

Figure 4.6: Picture of the signal generator
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Carrier frequency (C.F.) range 9kHz to 1.2GHz
C.F. resolution 1Hz

C.F. accuracy (Ageing rate) less than 1 ×10−6 per year
(Against temperatures) Better than ± 7 ×10−7 over the operating range of 0 to 55 ◦C
Output level range -140dBm to +13dBm
Level resolution settable 0.01dB

displayed 0.1dB
Level accuracy ±0.8dB

Temp. coefficient ±0.02dB/◦C
VSWR Less than 1.3:1 for output levels less than -5dBm

Less than 1.5:1 for output levels greater than -5dBm
Harmonics Typ. better than -30dBc for RF levels up to +7dBm

Typ. better than -25dBc for RF levels up to +13dBm
SSB phase noise Better than -124dBc/Hz at 20kHz offset from a C.F. 470MHz

Better than -121dBc/Hz at 20kHz offset from a C.F. 1GHz

Table 4.3: The primary specification of the signal generator.

4.2.4 Fast Fourier Transform(FFT) analyzer

After converting and amplifying, output frequency is about 1GHz. So we used the
spectrum analyzer (FSV-4, Rohde & Schwarz, Fig. 4.7) whose frequency range
is from 10Hz to 4GHz. Tab. 4.4 show the primary specification of the analyzer.
It can calculate Fast Fourier Transformation (FFT) with 28MHz signal analysis
bandwidth, and plot the signal power against the frequency.
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Figure 4.7: Picture of the Fast Fourier Transform analyzer

Frequency range 10 Hz to 4 GHz
Resolution bandwidth (standard sweep) 1Hz to 10MHz
Resolution bandwidth (FFT sweep) 1Hz to 300kHz
Signal analysis bandwidth 28MHz
Displayed average noise level(DANL) with 1Hz bandwidth -150dBm, typ. -153dBm at 3GHz
Phase noise (1GHz carrier frequency) -106dBc

Table 4.4: The primary specification of the Fast Fourier Transform analyzer.
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4.2.5 Plane mirror

We used aluminum boards as plane mirror. The reasons for using the aluminum
plane are as follows:

• High reflectance at ≃ 12GHz.

• Thin skin depth at the frequency.

For a substance that is very conductive such as aluminum, the reflectance
and the skin depth can be described by the following form;

Pref ≃ 1− 4

√
πfϵ0
σ

(4.2)

δ ≃
√

1

πσfµ
(4.3)

where ϵ0 is the vacuum permittivity, f is the frequency, σ is conductivity, and
µ is magnetic permeability. The frequency we observed is about 12GHz and
conductivity is σ ≃ 4.0× 107Ω−1m−1, therefore we obtain,

4

√
πfϵ0
σ

≃ 3.7× 10−4. (4.4)

This represents only a small power loss of 3.7× 10−2%, therefore the aluminum
plane acts as very good mirror at the frequency.

Next, let us consider the skin depth. The magnetic permeability of aluminum
are µ ≃ µ0 = 4π × 10−7H/m. Therefore, the skin depth of aluminum plane at
the frequency is less than 1.0µm.

For these reasons, we can consider the aluminum plane as almost perfect
mirror at this frequency. On the other hand, although the thickness of the
plane is not important, we decided to use the aluminum planes which has 2mm
thickness. It is in order not to be deformed, for example, when we set up it.

We decided to use the four aluminum planes whose size is 1245(H) × 1240
(W) × 2(D) mm. We installed them in parallel with one another on a same plane
with about 10mm gaps as shown in Fig. 4.8

Five small holes were punched in each plane for geometrical adjustment. We
explain the geometrical adjustment in Sect.6.1.
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Figure 4.8: Phorograph of the plane mirror.
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Chapter 5

Calibrations

5.1 The standard deviation of the power of the

thermal noise of the FFT analyzer

We must know the standard deviation of the power measured by the FFT ana-
lyzer. As noted below, we can obtain the standard deviation of the power from
the values of signal analysis bandwidth and the measurement time. However, it
depends on the setting value of the FFT analyzer, and we have no means to know
the analysis bandwidth. Therefore, in order to estimate the standard deviation,
we measured the thermal noise of the FFT analyzer directly.

Let us start with explaining the standard deviation of the power of Gaussian
random noise (e.g. thermal noise). In the measurement of searching for HPDMs,
the black body radiation, which is also gaussian random noise, is the dominant
noise source. It is well known in the field of radio astronomy that the standard
deviation of the power of Gaussian random noise P with the RBW ∆νRBW and
the measurement time τ is,

σP =
P√

∆νRBWτ
. (5.1)

Here, τ relates the sweep time T and the number of sweep points n as,

τ =
T

n
(5.2)

In the case of sweep type spectrum analyzer,

n =
S

∆νRBW

, (5.3)

where S is the frequency span. On the other hand, in the case of FFT analyzer
with analysis bandwidth ∆νFFT which is much broader than ∆νRBW, the number
of sweep points is,

nFFT =
S

∆νFFT
. (5.4)
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Therefore, τ increases by the factor of ∆νFFT/∆νRBW,

τFFT =
T

nFFT

, (5.5)

and the deviation becomes,

σPFFT
=

P√
∆νRBWτFFT

. (5.6)

As we explained above, we do not know ∆νFFT and, therefore, cannot evaluate
σPFFT

with Eq. (5.4) – (5.6). Instead, we measured the thermal noise of the FFT
analyzer and estimated σPFFT

/P . Conversely, we also got ∆νFFT with these
equations, i.e. in this measurement, we can obtain σPFFT

/P and ∆νFFT.

5.1.1 Measurement

For measuring the thermal noise, we did not install the LNBF to the FFT ana-
lyzer. Thus we measured only the thermal noise of the FFT analyzer. However,
we confirmed Eq. (5.6) is also valid for measurement of searching for HPDMs.

This measurement was done by the setup for searching for HPDMs (we explain
this setup in the following chapter). We conducted the measurement by the same
setup with the actual measurement (Tab. 5.1).

The setup value of RBW and measurement frequency range of searching for
HPDMs are 5kHz and 0.6 to 1.6 GHz, respectively. Then, the number of bins is,

N =
1GHz

5kHz
= 2.0× 105. (5.7)

The FFT analyzer which we used cannot measure such a large number of bins at
one time. Therefore, we separated the frequency region into a plurality of partial
regions and measured in order. We decided to divide the frequency range into 20
equal parts. In this way, the measurement is conducted from 0.6 to 1.6 GHz in
increments of 50MHz. In this thesis, we named each 50-MHz part a “sub-sweep”
and the whole set of 20 parts a “sweep”. Fig. 5.1 shows two examples of sub-
sweep. At first, we measured the frequency range of 0.6-0.65 GHz and then we
measured the next frequency range of 0.65-0.7GHz.

We can obtain the result of single-sweep by connecting the result of sub-
sweeps. For example, Fig. 5.2 shows the result of connecting two sub-sweeps
shown in Fig. 5.1.
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Center frequency from 675 MHz to 1575 MHz (in incliments of 50MHz)
Span 50MHz
RBW 5kHz

Number of bins 10001
Sweep time 3 sec.
Average type Power
Detector mode Average

Table 5.1: Set up of searching for HPDMs

-118.5

-118

-117.5

-117

 0.6  0.61  0.62  0.63  0.64  0.65

P
ow

er
 [d

B
m

W
/5

kH
z]

Frequency [GHz]

-118.5

-118

-117.5

-117

 0.65  0.66  0.67  0.68  0.69  0.7

P
ow

er
 [d

B
m

W
/5

kH
z]

Frequency [GHz]

Figure 5.1: Two examples of sub-sweeps. Sweep ranges are 0.6 to 0.65 GHz and
0.65 to 0.7 GHz respectively.
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Figure 5.2: The result of connecting two sub-sweeps shown in Fig. 5.1.
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The result of single sweep measurement is shown in Fig. 5.3. There are some
frequency characteristics in the result. The characteristics are:

• There are discontinuities at the several connecting points of sub-sweeps.

• There is periodical structure whose period is about 4.2 MHz.

This period is supposedly related to the analysis bandwidth of the FFT an-
alyzer (the details of this is discussed below).

5.1.2 Estimation

The deviation of the thermal noise power

In order to estimate the deviation of the thermal noise power, we selected the 1.55
to 1.6 GHz frequency sub-sweep where the power can be regarded as white noise,
i.e. the power is constant in the frequency span(Fig. 5.4). Also, we performed
fitting of the data of Fig. 5.4 for correcting the distortion of the baseline. We
conducted the fitting by the following method;

• We fitted the quadratic functions with the least squares.

• Fitting was performed for every 50 points (250 kHz).

• The adjacent functions were formed to be continuous without a step.

The result of the fitting is shown in Fig. 5.5. After the fitting, we subtracted
the fitting result from the measurement data in order to correct the baseline to
be zero (Fig. 5.6). Eventually, we calculated the distribution of the power of
each RBW bin around the baseline.

Next, we fitted gaussian:

N√
2πσ2

exp

(
−(p− µ)2

2σ2

)
, (5.8)

to the distributions, where p represents the power which corresponds to the
horizontal axis of Fig. 5.7. Fitting results are shown in Tab. 5.4.

According to the result of fitting, if we conduct a single sweep with this setup,
we obtain,

σPFFT

P
= 2.57× 10−2. (5.9)

In order to calculate Eq. (5.9), we used the value P = 1.15 × 10−12 mW/5kHz
(≃ −119.4 dBmW/5kHz) which roughly corresponds to the average power before
subtraction. Of course, if we conduct N times sweeps, the deviation decreases
as the square root of N .
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The analysis bandwidth

As described above, there are the periodical structure in the spectrum. We
considered thath the cause of this structure is the analysis bandwidth ∆νFFT.
In order to estimate ∆νFFT, we solved Eq. (5.4) for ∆νFFT. Furthermore, using
(5.5) and (5.6), we obtain,

∆νFFT =

(
∆νRBW × T

S

(σPFFT

P

)2)−1

. (5.10)

Inserting Eq. (5.9), ∆νRBW = 5 kHz , T = 3 sec., and S = 50 MHz into Eq.
(5.10), we obtain,

∆νFFT =

(
5000 Hz× 3 sec.

50 MHz
× (2.57× 10−2)2

)−1

≃ 5.0 MHz. (5.11)

It is slightly larger than 4.2 MHz. It might be due to the characteristics of the
FFT analysis method. In FFT calculation, an analysis bandwidth may overlaps
with neighboring analysis bandwidth making the period of structure smaller than
the actual analysis bandwidth. However we have no means to know the detailed
calculation method of the FFT-analyzer, and this is beyond the reach of this
thesis. Even so, it is certain that the periodical structure is not derived from
outside, bacause the LNBF was not installed to the FFT-analyzer.

This structure and the discontinuities at the several connecting points of
sub-sweeps can be considered to have an effect on the searching for HPDMs.
Therefore we must take care of this effect in the measurement of the searching
for HPDMs which we explain in Chap. 6.
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Figure 5.3: The result of single sweep measuement of thermal noise of the FFT-
analyzer.
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Figure 5.4: Enlarged view of the single sweep of Fig. 5.3.
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Figure 5.5: The result of fitting. The vertical axis is changed to linear scale.
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Figure 5.6: The result of subtraction between the data and the result of fitting.

35



 0

 200

 400

 600

 800

 1000

 1200

 1400

-100 -50  0  50  100

N
um

be
r 

of
 c

ou
nt

s

Power [×10-18W/5kHz]

fit

Figure 5.7: The distribution of the power of each RBW bin.

Fitting parameter Result

N 99262.1 ± 548.2
µ −0.374074± 0.1816
σ 29.5679± 0.207

Table 5.2: The result values of fitting parameters.

5.2 Gain of the receiver

In the receiver calibration process, we use a black absorber as a noise source. As
shown in the appendix A, the total input power to the receiver with frequency
band width ∆ν is,

PNS = kBTabs∆ν, (5.12)

where, kB is boltzmann constant, Tabs is temperature of the absorber. Note that
this equation is valid only in the situation that the absorber covers the entire
visual field of the receiver.

Furthermore, the output of the receiver gets additional noise at the time of
the amplification. If we define the noise temperature as,

Tsys ≡
Nsys

kB∆ν
(5.13)
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where Nsys is the additional noise. Then, total output power is,

P = kB(Tabs + Tsys)G∆ν (5.14)

where, G is gain of the receiver. To calibrate the gain of receiver, it is important
to measure the output power with different input noise temperature. For this
reason, we measured the absorber at room temperature TRT(≃ 300K) and at
liquid nitrogen temperature TLN(≃ 77K).{

PTRT
= kB(TRT + Tsys)G∆ν

PTLN
= kB(TLN + Tsys)G∆ν

}
(5.15)

Taking difference of these powers, we get

PTRT
− PTLN

= kB(TRT − TLN)G∆ν, (5.16)

then we can get gain of the receiver. Fig. 5.8 shows an absorber called “Eccosorb”(AN-
73, E & C engineering) which we used for calibration. Reflectance of the absorber
at around 12GHz region is about -22dB, i.e. we can regard the absorber as almost
completely black body at this region.

In this calibration measurement, we set the receiver not only at room tem-
perature, but also in a cooled and heated environment. We conducted the mea-
surement of searching for HPDMs at room temperature. However, the room
temperature was easily conceivable to vary over time. Therefore, the gain of the
receiver might be changed by the time varying of the temperature. In order to
solve the problem, we calibrate at several different temperature conditions and
we decided to use the worst gain values for conservative estimation.

We used cement resistors for heating and a starling refrigerator for cooling
(Fig.5.9). The receiver was fixed in a Styrofoam box, and a fan stirs air heated
(or cooled) by the device (Fig. 5.10 and Fig. 5.11). In these measurements, we
set the value of RBW to be 10 kHz. This is different from the value of 5kHz
which we used for searching for HPDMs. Therefore, these measurements did not
mean the gain calibration, but we can decide the temperature, which we use for
the gain calibration by comparing the result of these measurements, i.e. we must
conduct additional measurement for the gain calibration.

On the other hand, in order to satisfy the Eq. (5.12), we must cover the
whole viewing field of the receiver with eccosorb. The dish of the antenna has
2200 mm diameter, and 770 mm focal length, so the receiver is required to have
the viewing field as shown in Fig. 5.12.

The measurement has been done at 37 mm of the distance from the eccosorb.
We estimated the attenuation by the wall of the Styrofoam box and found it is
negligible [26]. According to Fig. 5.12, the diameter of the eccosorb was required
to be larger than 220 mm diameter, thus we used the square eccosorb which has
a side length of about 300 mm.
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The measurements have been done by changing the temperature of the re-
ceiver from 20 to 40 ◦C in increments of 10 ◦C. Fig. 5.14 and 5.15 shows the result
of power-versus-frequency spectrum, and we calculated the gain of the receiver
by Eq. (5.16). Since the gain got worse when the temperature of the receiver be-
came higher, we conducted the calibration measurement at 40 ◦C with the setup
of the FFT analyzer for searching for the HPDMs. The number of sweeps was
five for both of the measurements of the eccosorb at room temperature 1 and at
liquid nitrogen temperature. The result of the calibration is shown in Fig. 5.16.

Figure 5.8: Eccosorb

1The room temperature was about 25◦C when we conducted the measurements.
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Figure 5.9: The devices for temperature control. The left one is cement resistor
for heating and the right one is starling refrigerator for cooling.

Figure 5.10: The receiver fixed in the Styrofoam box.
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Figure 5.11: Set up of the measurement. The photograph shows the measurement
with starling refrigerator. The temperature of the receiver is controlled at 20 ◦C.
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Figure 5.12: Schematic view of the visual field of the receiver.

Figure 5.13: Photograph of the measurement for eccosorb at LN temperature.
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Figure 5.16: The result of calibration of gain of the receiver.

5.3 About the dish of parabolic antenna

For the parabolic antenna, gain calibration of the dish and measurement of
power pattern versus angle of input are required. Even if the shape of a dish of
parabolic antenna is completely paraboloidal surface, it cannot collect electro-
magnetic wave perfectly when angle between the axis of parabolic antenna and
the direction of the wave is not aligned. And to make matter worse, there is no
parabolic antenna which has completely paraboloidal surface. In fact, there are
some phase error caused by the fabrication tolerances of the mirror. The gain
of the dish of the antenna got worse by the inaccuracy of the direction and the
deformation of the dish. It means that the area of the dish become effectively
smaller by these reasons.

In order to estimate the gain and its angle dependence, we observed satellite
broadcasting (BS/CS). For setting the antenna toward the direction of a satel-
lite, we used the angle adjusting screw which connect the antenna and the king
post(Fig. 5.17 and Fig. 5.18).
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Figure 5.17: The adjustment mechanism for elevation angle.

Figure 5.18: The adjustment mechanism for azimuth angle.
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5.3.1 Location and assumption

At first, we chose the rooftop of the science building#1, the University of Tokyo
for the location of the measurement. The rooftop is surrounded by walls and　
there is a sunshade above a door. So we set the antenna carefully so that the
signal from the satellite are not hidden by the walls and the sunshade(Fig. 5.19,
5.20). The satellite, which we focused on is N-SAT-110 whose orbit position is
at longitude 110 degrees east. In Tokyo, Japan, the satellite can be seen in the
direction whose elevation angle and azimuth angle from the true north are 38.0◦

and 224.4◦ respectively. The shadowed area was calculated on the basis of the
information about the direction of the satellite. Fig. 5.20 shows the overview
of our measurement location , the direction of the satellite, and shadow of the
signals from the satellite caused by the walls and the sunshade.

We assumed any attenuation caused by the atmosphere　 is negligible. And
we adjusted the azimuth angle to maximize the signal power by looking at the
FFT analyzer. In this way, there is a risk to underestimate the gain. From the
point of view to search for HPDMs, however, the assumption The assumption
makes the estimation only conservative, and therefore, we decided to take this
way.

Figure 5.19: The parabolic antenna at the rooftop
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5.3.2 Estimation of the standard deviation

We estimated the standard deviation of the power from the satellite in the similar
manner as discussed in Sect. 5.1.

• We did not install the LNBF to the FFT-analyzer (Fig. 5.22)

• The setup value of the FFT-analyzer was same as the setup of the satellite
measurement(Tab. 5.3)

• We selected the frequency span of 1.2 to 1.75GHz which can be regarded
as white noise (Fig. 5.23)

• we calculated the distribution of the power of each RBW bin around the
baseline (Fig. 5.24, Tab. 5.4)

Note that, there is not periodical structure discussed in Sect. 5.1, but there is
the step structure which arises in Fig. 5.22. Although we did not find out the
reason of the step structure, this can be considered not to affect the spectrum
of the signal power from the satellite because the power is much larger than the
thermal noise of the FFT-analyzer.

As the result, we obtain;

σPFFT

P
= 7.93× 10−2. (5.17)

Center frequency 1GHz
Span 1.5GHz
RBW 1MHz

Sweep point 1501
RF attenuation 20dB
Sweep time 1.51msec

Detector mode Average
Trace mode Average
Average type Power

Number of sweeps 100
Table 5.3: Set up of the satellite measurement.
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Figure 5.22: The result of single sweep measurement of the thermal noise of the
FFT-analyzer.
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Figure 5.23: Enlarged view of Fig. 5.22.
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Figure 5.24: The distribution of the power of each RBW bin.

Fitting parameter Result

N 545.462±24.49
µ 28.1274± 0.1088
σ 2.2317± 0.09635

Table 5.4: The result values of fitting parameters.

5.3.3 Result

After adjustment of azimuth angle as mentioned above, we also adjusted elevation
angle in the same way. For elevation angle, however, the angle dependence of the
dish gain was measured. So we varied the elevation angle from the point of the
gain maximum (about 38◦). Here we assumed the power pattern which centered
on the maximum is rotationally symmetric, because a parabolic antenna has a
rotational symmetry, thus we did not vary the azimuth angle.

We measured the elevation angle with level meter called “bevel box” (BB-
180A, Niigata Seiki, Fig. 5.25). We equipped the back of parabolic antenna with
the bevel box and we varied the elevation angle in increments of 0.1 degrees. The
result of the measurement at several elevation angles is shown Fig.5.26. The sev-
eral peaks of the power represent signal from the plurality of the transponders.
Several programs belonging to the same category are transmitted by grouping
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them together in a single transmission channel at each transponder of the satel-
lite. We numbered the serial number to the peaks from TP-1 to TP-12 in order
of frequency increasing.

For calculating of the dish gain, let us begin by considering signal propagation
from the satellite, and concentration of the signal. The signal emitted from a
certain transponder of NSAT-110 satellite (PTP) is attenuated by propagation
broadening (Ls). After that, the signal has been collected by the parabolic
antenna whose gain is Gd, so we get the power entering to the receiver,

Pinput =
PTP

2
× Ls×Gd, (5.18)

where the factor 1
2
arises from following reason. Our converter has a sensitivity

for linearly polarized wave, but the signal from the satellite is circularly polar-
ized wave which is composed of a combination of two vertically-aligned linearly
polarized waves. Since the converter can receive only one component of linearly
polarized wave, the input power is half of the total.

As shown in Appendix B, the degree of attenuation of the signal power can
be calculated by,

Ls =

(
λ

4πd

)2

, (5.19)

where d is the distance between the satellite and the measurement location, and
λ is observation wavelength. The distances between Tokyo and the satellite is
37,930 km, so Ls can be calculated to be -205.8 dB for the wave of 12.3 GHz
frequency.

For getting PTP, we contacted the “SKY Perfect JSAT Corporation” which
operates the satellite (NSAT-110). According to their response, The equivalent
isotropic radiated power (EIRP) at Tokyo is 58dBW, and the fluctuation of EIRP
is less than ± 1dB. For conservative estimation (to estimate the gain worse than
real value), we decided to use 59dBW as PTP.

According to Eq. (5.18), in order to estimate the dish gain, Pinput is required.
We used the result of the measurement for the satellite in order to calculate
Pinput. For example, we explain about the result of measurement at elevation
angle of 37.7◦ shown in Fig. 5.26. We divided this power by the gain of the
receiver which is discussed in Sect. 5.2 (Fig. 5.27). This means the power before
amplification by the receiver, i.e. the power of the radio wave entering to the
receiver. In order to estimate Pinput, we summed the power of each sweep point
(pSP) for whole frequency band of a transponder. For TP2, for example:

Pinput =
∑
TP2

pSP. (5.20)

Since each pSP has the error which can be estimated from Eq. (5.17). The error
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of Pinput can be calculated as,

σPinput
=

√∑
TP2

σ2
pSP

. (5.21)

We conducted these calculation for the result of measurement at each elevation
angle. In order to estimate the gain of the dish and its error, we inserted the
calculation result of Pinput and σPinput

, Ls = −205.8 dB (for 12.3 GHz frequency
of TP2), and PTP into the Eq. (5.18). Thus we obtain,

Gd = 2× 1020.58−5.9 × Pinput, (5.22)

σGd
= 2× 1020.58−5.9 × σPinput

. (5.23)

Fig. 5.28 shows the result of calculations. We fitted following gaussian function,

N√
2πσ2

exp

(
−(θ − µ)2

2σ2

)
, (5.24)

to the result, where θ represents elevation angle. The result values of fitting
parameters are shown in Tab. 5.5. The maximal dish gain Gd is 3.94×104±1000
(45.9±0.1 dB) at θ = µ, and “-3dB beam width” is 0.9◦. The obtained gain and
the beam width are slightly lower and broader than the specification values in
Table 4.1. The relation between the dish gain and the effective area of the dish
is, as described in appendix B,

Ae =
λ2

4π
Gd, (5.25)

where Gd = 3.94 × 104 ± 1000. We decide to use the 2σ smaller value, i.e.
Gd = 3.74× 104, thus we obtain,

Ae =
(24.4× 10−3m)2

4π
× 3.84× 104 ≃ 1.77 [m2]. (5.26)

Therefore, we evaluated the effective area of the dish to be 1.77 m2. Note that,
we can obtain this value when we precisely orient the parabolic antenna toward
the satellite, but if the direction is inaccurate, the effective area becomes smaller
depending of the angular dependence shown in Fig. 5.28.

51



Figure 5.25: Photograph of bevel box.
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Figure 5.26: The result of the measurement at several elevation angles. The
vertical axis represents the power output from the receiver.
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Figure 5.28: Angular dependence of dish gain
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Fitting parameter result

N 38091.4 ± 692.1
µ 37.7288 ± 0.007275
σ 0.38547 ± 0.006774

Table 5.5: The result values of fitting parameters.
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Chapter 6

Measurement

6.1 Geometric adjustment

The aluminum plane was used to emit the photons derived from HPDMs as plane
waves. This allows the parabolic antenna to collect the photons.

However, the aluminum plane is not perfectly flat. The phase error caused by
the incompleteness of the plane affects the sensitivity for HPDMs to be worse.
However, a phase error that varies linearly along some direction across the plane
can be treated as tilt. Eventually, only the phase error caused by the fabrication
tolerances of the plane affects the gain.

If the plane has some tolerance ϵ, this will cause a phase error,

δ = 2π
ϵ

λ
(6.1)

where λ is the observation wavelength. In the field of radio astronomy, the effect
of tolerance is well computed by Ruze [21] [22]. He calculated the effect of phase
error when it follows a Gaussian distribution where its mean is zero and standard
deviation is σδ;

Peff = P0 exp(−σ2
δ ) (6.2)

where P0 is the total power that we can obtain if the tolerance is zero. In this
case the deviation of phase error is,

σδ = 2π
σϵ

λ
, (6.3)

where σϵ is the deviation of tolerances assuming that it follows a Gaussian distri-
bution whose meen is zero. If the tolerance is greater than 1

10
of the wavelength,

the signal power is extremely attenuated ( shown in the Fig. 6.1). Since the wave-
length which we focused on is about 25 mm, it is necessary for our experiment
to adjust the distortion of the planes to be less than about 2mm.
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On the other hand, we used four aluminum planes as already discussed in
Sec. 4.2. Therefore, we must make an adjustment of the planes to be aligned in
the same plane.

Additionally, the planes are required to be perpendicular to the symmetrical
axis of parabolic antenna with extreme accuracy. In this section, we describe the
geometrical adjustment of the planes, and the adjustment of relative positions of
the planes and the parabolic antenna, respectively.
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Figure 6.1: Degrees of power attenuation versus torelance.

6.1.1 Adjustment of the aluminum planes

In order to adjust geometry of the aluminum plane, we set the springs together
with screws between five holes of each plane and the aluminum frame. (Fig. 6.2)
We adjusted the geometry by applying moderate force to the springs.

After adjustment, we measured the space coordinates of the planes by trian-
gulation using a theodolite (SOKKIA SLT-20, Fig. 6.3). Fig. 6.4 shows how to
measure the space cordinates of the planes.

The result of measurement and the plane fitted by least squares are shown
in Fig. 6.5. We obtained the degrees of irregularity of the planes by subtracting
the space coordinates. The distribution of the degrees of irregularity is shown in
Fig. 6.6

This result denotes that all planes are in the same plane, and the irregularity
of the plane is ±1 mm at the maximum. The minimum value of the observation
wavelength is about 23.3 mm corresponding to the frequency of 12.9 GHz. From
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the measurement result, we decide conservatively that the deviation of the irreg-
ularity is 1mm. Inserting the values of λ = 23.3 mm and σϵ = 1 mm into Eq.
(6.2), we obtain,

Peff

P0

≃ 0.930. (6.4)

Therefore, the degrees of the decreasing power caused by the irregularity of the
plane mirror is 93.0%
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Figure 6.2: Spring

Figure 6.3: Photograph of SLT20. It was used for triangulation.
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Figure 6.4: Schematic overhead view of the triangulation.
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Figure 6.5: The result of the triangulation measurement and the best fit plane
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Figure 6.6: The distribution of the degrees of irregularity.
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6.1.2 Adjustment of relative positions of the aluminum
planes and the parabolic antenna

After adjusting the aluminum planes, we installed the parabolic antenna (Fig.
6.7). When we install the antenna, the geometric alignment is required so that
the symmetrical axis of the antenna is perpendicularly crossed the planes with
accuracy.

For adjusting the alignment, we measured the distance between the planes
and the edge of the dish. Furthermore, we measured the form of the parabolic
antenna in order to make sure of the result of the distance measurement.
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Figure 6.7: Schematic view of the apparatus for direct detection of HPDMs.

The distance between the planes and the edge of the dish

We used a ruler with aluminum frames which fit the ruler perpendicularly to
the plane mirror, and a slide caliper for measuring the distance between the
parabolic antenna and the ruler (Fig. 6.8). The measurement points are shown
in Fig. 6.9. We conducted the measurement before and after searching for
HPDMs measurement. The result is shown in Tab. 6.1. The variation of the
distances between two apparatuses was smaller than ± 4mm. This variation
could probably be due to the deformation of the dish from the ideal parabolic
shape. If this is the case, we cannot adjust the inclination of the parabolic
antenna relative to the plane mirror with higher precision than,

arctan

(
4 mm

1100 mm

)
≃ 0.2◦, (6.5)

where 1100mm is the radius of the dish. In order to make sure of the result of
the distance measurement, we measured the form of the parabolic antenna.
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Figure 6.8: Picture of the ruler and the slide caliper.
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Figure 6.9: Shematic view from behind the parabolic antenna. We assigned the
serial numbers to measurement points.

Serial number Date Distance (between the edge and the ruler) [mm]

1 Oct. 9, 2014 56.7
Dec. 1, 2014 56.4

2 Oct. 9, 2014 60.0
Dec. 1, 2014 59.2

3 Oct. 9, 2014 62.9
Dec. 1, 2014 62.8

4 Oct. 9, 2014 58.3
Dec. 1, 2014 59.2

5 Oct. 9, 2014 58.7
Dec. 1, 2014 59.7

6 Oct. 9, 2014 64.0
Dec. 1, 2014 64.4

7 Oct. 9, 2014 62.2
Dec. 1, 2014 63.8

8 Oct. 9, 2014 59.5
Dec. 1, 2014 60.7
Table 6.1: Result of the distance measurement.
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The form of the parabolic antenna

We measured form of the parabolic antenna in the same manner as the adjust-
ment of the aluminum plane, i.e. triangulation. We fitted the result of triangu-
lation with the method of least square and the result is shown in Fig. 6.10.

We calculated subtraction between the result of triangulation and the fitted
parabolic shape. As a result of calculation, we find that the deviations between
the shape of parabolic antenna and ideal parabolic shape are within ± 4mm (Fig.
6.11). This result confirmed the result of the distance measurement discussed
above. Therefore, we adopted the value of 0.2◦ as the inclination of the parabolic
antenna relative to the plane mirror.
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Figure 6.10: The result of triangulation measurement and fitting of parabolic
antenna.
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Figure 6.11: The degrees of deviation from the parabolic shape.
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6.2 Search for HPDMs

6.2.1 An example of single sweep

After completion of geometric adjustment, we started searching for HPDMs. At
first, let us consider the setting value of the FFT analyzer. If we assume the
dark matter is isothermal, the typical velocity of the dark matter in the galaxy is
expected to be vtyp/c ≃ 10−3. Therefore the energy of HPDMs can be supposed
to be,

ω =
mγ′√

1−
(vtyp

c

)2 ≃ mγ′

√
1 + (O(10−3))2 ≃ mγ′(1 +O(10−6)) (6.6)

Since the observed frequency is about 12GHz, we obtain the signal peak from
HPDMs with O(10kHz) bandwidth. With this consideration, as we already dis-
cussed in Sect. 5.1, we determined to set the value of resolution bandwidth to
be 5kHz.

The setting values of FFT analyzer in our experiment is shown in Tab. 6.2
(same as we explained in Sect. 5.1). Note that, this table represents the setting
values for sub-sweep. Therefore, in order to obtain the result of single sweep,
we must joint the 20 times sub-sweeps from 0.6 to 1.6 GHz. It means that the
sweep time and the number of sweep points are 60 seconds and 200020 for single
sweep.

Center frequency from 675 MHz to 1575 MHz (in incliments of 50MHz)
Span 50MHz

Resolution band width 5kHz
Video band width 5kHz

Sweep point 10001
Sweep time 3 sec.
Average type Power
Detector mode Average
Table 6.2: Setting values of FFT analyzer for searching for HPDMs.

Fig. 6.12 shows two examples of the spectrum of single sweep. One of them
has been done with the setup for search for the HPDMs, which we explained in
Sect. 6.1, and the other has been done in the condition that the receiver was
covered by the eccosorb at room temperature. In settings for search for HPDMs,
the noise is derived from the receiver. The black body radiation derived from the
receiver is returned to the receiver via the dish and the plane mirror. Although
the temperature of the receiver roughly corresponds to room temperature, the
spectrum does not coincide with the spectrum of the measurement of black body
radiation from eccosorb at room temperature. Subtracting the latter from the
former, we obtain the periodical structure as shown in Fig. 6.13. It can be
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considered that the cause of this difference is that the apparatuses play a role of
a resonator.

Fig. 6.15 shows an explanation of resonance. In this situation, resonance
condition is, of course,

L = nλ, (6.7)

where L is the length of light path, n is natural number, λ is observed wavelength.
Let us consider two adjacent frequencies f1, f2 (f2 > f1), and both of them satisfy
the requirement of Eq. (6.7) i.e. L = n c

f1
= (n+1) c

f2
. The frequency subtraciton

is,

∆f ≡ f2 − f1

= (n+ 1)
c

L
− n

c

L

=
c

L
. (6.8)

The length of the ruler which we used for the geomtric adjustment as we
discussed in Sect. 6.1 is 60cm, i.e. the distance between the plane mirror and
the edge of the dish is about 66 cm. Since the depth of the dish is about 400mm
(see Fig.5.12) and the focal length is 770mm, thus the length of light path is
estimated about 3.6 m. Then we obtain,

∆f ≃ 3.0× 108m/s

3.6m
≃ 80MHz. (6.9)

This agrees rather well with the result of the single sweep(Fig. 6.13).

Furthermore, we measured the sweep with different distance. We moved the
parabolic antenna closer to the planes than the initial position by 6mm. This
will change the length of light path by 12mm which is approximately equal to
half the wavelength. Compared with the measurement conducted at the initial
position, the resonance condition was reversed (Fig. 6.14), confirming the above
hypothesis.

On the other hand, we can see another periodical structure of ∆f ≃ 20 MHz
in the result of the eccosorb measurement. Same structures are arisen in the
receiver gain as we discussed in Sect. 5.2. This corresponds to the light length
path of 15 m. It can be considered that the resonance occurs between the output
of the receiver and the input of the FFT analyzer. The receiver and the FFT
analyzer were connected by a cable of 6 m long. If the signal reciprocated in the
cable, the path length is 12 m which can explain the resonance frequencies.
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Figure 6.12: The result of measurement of the setup for searching for HPDMs
compared with the eccosorb measurement.

Figure 6.13: The result of subtraction between The result of measurement of the
setup for searching for HPDMs and the result of the eccosorb measurement.
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Figure 6.14: The comparison of the single sweep with different distance.
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Figure 6.15: Schematic diagram of the resonance.
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6.2.2 Measurement for a long period of time

Measurement and analysis procedure

The measurement was done from November 25th, 2014 to November 28th, 2014
(4days). The measurement procedure is as follows:

(1) We conducted a sweep from 0.6 to 1.6 GHz with 50MHz sub-sweep spans as
we explained in section 5.1.

(2)After each sweep, we measured an extra sweep around 1050 MHz in detail in
order to calibrate the local oscillator frequency of the receiver (we named this
“calibration sweep”). The signal generator was installed outside of the space
between the plane mirror and the parabolic antenna in order not to disrupt
the propagation of the radio wave arising from HPDMs at the plane mirror (Fig.
6.16). A piece of wire with a length of 10mm was attached to the center conductor
of the output of the signal generator, and it was used to radiate the signal into
the space.
The setting parameters of the generator and FFT analyzer for the calibration
sweep are shown in Tab. 6.3. Since the output frequency is 950MHz, the fre-
quency of the thirteenth harmonic wave is received by the receiver with the
frequency of 12.35GHz (the down-converted frequency is 1.05GHz). The receiver
receives the signal collected by the parabolic antenna directly, or the signal re-
flected once by the plane mirror and then by the parabolic antenna. Two exam-
ples of the result of calibration sweep are shown in Fig. 6.17.

(3)We repeated the steps (1) and (2).

During the measurement, we repeated the above procedure 2700 times. Time
variations in temperature of the receiver and L.O. frequency during the search
of HPDMs are shown in Fig. 6.18 and Fig. 6.19 respectively.

It is seen that the nominal frequency of FFT was drifting with the tem-
perature with respect to the standard frequency of the signal generator. The
frequency shift ∆f ranged from 40 kHz to 85 kHz.

We sorted the obtained sweep data into the groups of the same L.O. frequency
shift ∆f within the resolution bandwidth of 5kHz. They are summarized in Tab.
6.4.
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output

Parabolic antenna

Plane−mirror

signal generator

Figure 6.16: Schematic view from behind the parabolic antenna. The signal
generator was set on the outside of the searching apparatuses.

Component parameter value

Signal generator Carrier frequency 950 MHz
RF level +13dBm

Modulation Off
FFT analyzer Center frequency 1.050050 GHz

Span 200kHz
Resolution band width 100Hz

Table 6.3: Setting parameters of the signal generator and FFT analyzer for the
calibration sweep
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Figure 6.17: Two examples of the result of reference signal measurement
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Figure 6.18: The time series graph of the temperature of the receiver. The origin
of the time is Nov. 25 12:59:56.
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Figure 6.19: The time series graph of the peak shift.The origin of the time is
Nov. 25 12:59:56 and the origin of the frequency is 1050MHz.

Frequency shifts [kHz] Number of sweeps

40 ≦ ∆f < 45 63
45 ≦ ∆f < 50 377
50 ≦ ∆f < 55 353
55 ≦ ∆f < 60 557
60 ≦ ∆f < 65 456
65 ≦ ∆f < 70 326
70 ≦ ∆f < 75 188
75 ≦ ∆f < 80 157
80 ≦ ∆f < 85 251

Table 6.4: Number of sweeps in the Frequency shift groups

To find out the possible evidence of HPDMs from the data of the measure-
ments, we take several steps of the analytical process which we explain in the
following.

1. We combined all 2700 sweeps without correcting the frequency shift. We
calculated difference between ends of two sub-sweeps, thus we obtained the
depth of the discontinuities. Note that, we did not use the combined data
for later analysis because the data were not corrected.
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2. We combined the data of each group and each sub-sweep span separately.
For example, the number of sub-sweeps of 0.6-0.65 GHz in the group of
40 kHz≦ ∆f <45 kHz is 63 (the other sub-sweeps were also conducted 63
times). We combined these 63 sub-sweeps data.

After combining, we eliminated the discontinuities by adding the difference
between ends of two sub-sweeps which we calculated in procedure 1. Since
the discontinuities were corrected, we jointed each sub-sweep.

3. We corrected the L. O. frequency of the LNBF, and combined the data of
all groups.

4. We divided the power by the LNBF gain, thus we obtained the emission
power which entered the LNBF.

5. We searched for possible excess power derived from HPDMs by fitting the
sum of a quadratic function and expected peak shape function for HPDM.
We calculated optimum excess power and its error at each frequency bin.

6. We computed the distribution of P/∆P . Because of the correlation between
a certain bin and its neighboring two bins, the distribution of P/∆P is
broadened, i.e. ∆P is made small. We corrected this broadening by the
correlation from the distribution of P/∆P .

7. We examined the significance of the excess power with the correction of
procedure 6. If there is no significant excess of the power, we estimated
upper limit of kinetic mixing parameter χ.

We explain each step of the analysis in more detail below.

1. Estimating the discontinuities

At first, we estimated the depth of the discontinuities which exist at the con-
necting points of sub-sweeps. Since these discontinuities arose at the connecting
points of sub-sweeps independent of the frequency shifts, thus we combined all
2700 single-sweeps without correcting the frequency shifts (Fig. 6.20). For ex-
ample, there is a discontinuity at 0.8 GHz (Fig. 6.21). Tab. 6.5 shows the
discontinuities of all connecting point of sub-sweeps. We corrected the disconti-
nuities.
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Figure 6.20: The spectrum combined without correcting the frequency shifts.
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Figure 6.21: The enlarged view of Fig. 6.20. We determined the difference
between ends of two single-sweeps as the depth of the discontinuities.
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Frequency [GHz] Difference of power [×10−15W/5kHz]

0.65 8.48
0.7 5.3
0.75 10.8
0.8 -56.76
0.85 2.13
0.9 1.66
0.95 8.60
1.0 -11.1
1.05 0.97
1.1 14.9
1.15 -92.1
1.2 48.57
1.25 9.46
1.3 -1.94
1.35 -2.10
1.4 -3.15
1.45 6.70
1.5 3.54
1.55 6.32

Table 6.5: The depth of the discontinuities at each joint of sub-sweeps. “ Dif-
ference of power”means the subtraction of the end of lower frequency side of
sub-sweep from higher one.

2. Correcting the discontinuities

We combined the data of each frequency shift group and each sub-sweep span
separately. For example, we added the correction value estimated in Tab. 6.5 into
sub-sweeps of 0.75-0.8 GHz and 0.8-0.85 GHz in the group of 55 kHz≦ ∆f <60
kHz (Fig. 6.22). As a result, the discontinuous structure is corrected, thus we
were allowed to connect all the sub-sweeps in same frequency shift group to make
a power spectrum of the full frequency range between 0.6-1.6 GHz.
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Figure 6.22: The result of correcting the sub-sweeps of 0.75-0.8 GHz and 0.8-0.85
GHz in the group of 55 kHz≦ ∆f <60 kHz.

3. Combination of all sweeps

After connecting sub-sweeps, we corrected the frequency shift for the data of
groups by shifting the RBW bins. For example, for the data of the group of 55
kHz≦ ∆f <60 kHz, the number of bins corresponding to the frequency shift is,

Nbin ≡
[

∆f

RBW

]
= 11. (6.10)

Next, we combined the data of all frequency shift groups with the weighted mean
method. We divided all the data into 9 groups of the same L.O. frequency shift
as summarized in Tab. 6.4. The number of bins corresponding to the frequency
shift ranged from 8 to 16 bins. Because of the difference of the frequency shift,
there are several points whose frequency does not correspond to the data of other
groups as shown in Fig. 6.23. We excluded these points for the analysis.

On the other hand, we cannot correct the frequency shift which is smaller than
5 kHz. The distribution of the excess power derived from HPDMs is distorted
by this reason. We explain about this distortion in Chap. 7.
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Figure 6.23: The comparison between the combined data in the group of 40
kHz≤ ∆f <45 kHz and the combined data in the group of 80 kHz≤ ∆f <85
kHz. Left: enlarged figure around 0.6 GHz. Right: enlarged figure around 1.6
GHz. There are 8 points which do not overlap on either side.

4. Division by the gain of the LNBF

In order to estimate the input power to the receiver, we divided the power by the
gain of the receiver discussed in Sect. 5.2. Since the measuring time is much less
than measurement for HPDMs, the statistical error is large. In order to prevent
this problem, we fitted the gain. The fitting procedure is as follows:

(a) We fitted the quadratic function to 1000 data points starting from the lower
edge. LNBF gains in the first 500 RBW bins are determined by the fitting
result.

(b) Gain in the 501th bin is determined by a quadratic function fitting to the
1000 data points around the said bin, i. e. from bin 1 to bin 1000. Gains
in the 502th bin is determined by a fitting to the data points of bin 2 to
bin 1001, and so on.

(c) Gains in the 500 upper most bins are again determined by a fitting to the
last 1000 data points.

For example, Fig. 6.24 shows the result of fitting for the data around start
frequency. By this method, we obtained the fitted curve for 0.6-1.6 GHz (Fig.
6.25). We divided the combined data by the fitted curve of the gain of the LNBF
(Fig. 6.26). Note that, we must calibrate the L.O. frequency of the LNBF at
gain calibration measurement. We measured calibration-sweep in gain calibration
measurement. In this measurement, the degrees of frequency shift is 23 bins. As
with the procedure 3, we corrected the frequency shifts, and we excluded the
points which do not overlap with the combined data computed in procedure 3
for the analysis. Eventually, we are ready to search for the excess power derived
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from HPDMs. We explain the analysis of the search for HPDMs in following
chapter.
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Figure 6.24: The fitting result near the lower end frequency 0.6 GHz. Solid
line shows the quadratic function fitting with the points from 0.6 GHz to 0.605
GHz. We used this result as the gain of 0.6-0.6025 GHz. Dotted line shows the
fitted function with the points from 0.601-0.606 GHz. We used the fit value at
the center point(0.6035 GHz) for the gain at this frequency. Connecting these
results, we obtain red solid line.

Figure 6.25: The overall view of the result of fitting which we explain in Fig.
6.24.
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Figure 6.26: The power before amplification by the LNBF. This result is obtained
by dividing the combined data which we calculated in procedure 3 by the gain
of the LNBF.
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Chapter 7

Result and Discussion

7.1 Estimation of the distribution of excess power

caused by HPDMs

The energy of the HPDMs which corresponds to the energy of the conversion
photons is,

ω =
mγ′√

1−
(
v
c

)2 ≃ mγ′

√
1 +

(v
c

)2
, (7.1)

where v is the velocity of the HPDMs in the frame of the Earth. If v = 0, we
obtain,

ω0 = mγ′ . (7.2)

Then the frequency of the conversion photon is,

f = 0.24 GHz

(
ω

µeV

)
, (7.3)

and for v = 0,

f0 = 0.24 GHz

(
mγ′

µeV

)
. (7.4)

We assume the isothermal dark matter halo, i.e. the velocity of the HPDMs
obeys Maxwell-Boltzmann distribution with the velocity dispersion v0,

f(v,vE) =
1

(πv20)
3/2

e−|v+vE |2/v20 , (7.5)

where vE is the velocity of the Earth with respect to the galactic halo. The
velocity dispersion v0 is argued by several authors [24] [25], and we set v0 =
220km/s which is the commonly used value. The earth speed relative to the
dark matter halo is described by

|vE| = v⊙ + vorb cos γ cos(Ωt), (7.6)
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where v⊙ = v0 + 12km/s is the solar system velocity around the galactic center,
vorb = 30km/s is the earth’s orbital velocity around the sun, γ ≃ 60◦ is the
inclination angle of the earth orbital plane with respect to the galactic plane,
Ω = 2π/year , and t is the elapsed time from June 2nd in years. Since our
experiments was conducted at the end of November, we set t ≃ 0.5. Therefore,
we obtain,

vE ≃ 217km/s. (7.7)

Inserting Eq. (7.7) and Eq. (7.1) into Eq. (7.5), we obtain the frequency
distribution F (f, f0) using Eq. (7.4) and Eq. (7.3). For example, we calculated
F (f, f0) for f0 = 12.4 up to f = f0 + 30 kHz. It is shown in Fig. 7.1 with a
binning of 5 kHz.

Although the receiver frequency is calibrated, if the frequency deviation is
smaller than the RBW, we cannot correct such a small shift. For example, even
if f0 corresponds to the lower edge of a bin of 5 kHz in a certain single sweep, f0
may correspond to the middle of the bin in another sweep because the frequency
correction is only possible in a step of 5kHz. However, we can estimate the effect.

Assuming that the distribution of the small frequency shift is uniform, the
number of single sweeps should uniformly distributes over the uncorrectable fre-
quency shift of,

∆fm = ∆f − RBW ×
[

∆f

RBW

]
. (7.8)

The distribution of N∆fm can be obtained from the time series of the peak shift
shown in Fig. 6.19, which is measured with a frequency resolution of 1kHz. The
distribution is, in fact, roughly consistent with the uniform distribution (Tab.
7.1).

For these reasons, we calculated the effective frequency distribution of the
power derived from HPDMs using F (f, f0) as follows:

Fave(f, f0) =
1

RBW

∫ RBW

0

F (f, f0 + f ′)df ′. (7.9)

This was done for various values of f0 and the result is shown in Fig. 7.2. The
effective distributions with any f0 have similar form, thus we decide to use the
distribution for f0 = 12.4 GHz for all values of f0.
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Figure 7.1: An example of the frequency distribution for f0 = 12.4 GHz.

Frequency shifts [kHz] Number of sweeps

0 ≦ ∆fm < 1 606
1 ≦ ∆fm < 2 536
2 ≦ ∆fm < 3 555
3 ≦ ∆fm < 4 441
4 ≦ ∆fm < 5 562

Table 7.1: Number of sweeps of each small frequency shifts.
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Figure 7.2: The expected effective distribution of HPDM signal.

7.2 Estimation of upper limit of the excess power

7.2.1 Fitting

We searched for possible excess power derived from HPDMs in the spectrum
shown in Fig. 6.26. However, the baseline of the spectrum was distorted, thus
we fitted a quadratic function with the points around the frequency f0 to obtain
the baseline. We used 50 points with the center at f0 for fitting a quadratic
function and a peak arising from HPDMs (Fig. 7.3). We computed the fitting
with f0 at every RBW bin and estimated the excess power of the best fit P and
its error ∆P (Fig. 7.4). Note that, we used Eq. (5.9) for estimating the standard
error of the power with RBW 5kHz bin. Eq. (5.9) means that the standard error
of power P̄N , combination of N sweeps, is

σP̄N
=

2.57× 10−2 × P̄N√
N

. (7.10)

If there were excess power derived from HPDMs, the value of P at the frequency
which corresponds to the mass of HPDMs would be significantly larger than the
value of ∆P . There were actually some points which gave large value of P/∆P .
However, they were also observed even with a setup which is not for the search
for HPDMs (as is explained in detail in appendix C). Therefore, we concluded
they are spurious.
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We calculated the distribution of P/∆P (Fig. 7.5). The filled area means the
fitting result including the narrow spurious peaks. We excluded these points for
search for the excess power derived from HPDMs, accordingly.

Moreover, we excluded connecting points of the sequence of sub-sweeps from
the object of the analysis because of the rough correction of the discontinu-
ities. Taking the frequency shifts into account, there are 8points which should
be excluded from the object of the analysis at every connection point of the
sub-sweeps. Around 0.65GHz, for example, we excluded the frequency range of
0.64992-0.64996 GHz.
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Figure 7.3: An example of the fitting a quadratic function and a peak derived
from HPDMs.
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Figure 7.4: The result of fitting versus frequency. Vertical axis shows the value
of P/∆P .
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Figure 7.5: The distribution of P/∆P . The filled corresponds to the fitting result
of the narrow spurious peaks.

7.2.2 Recalculation of the standard error

From the result described in Fig. 7.5(excluding the filled area), we used the
following Gaussian function for fitting:

N√
2πσ2

exp

(
−(P/∆P − µ)2

2σ2

)
, (7.11)
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where µ is mean of the distribution of P/∆P . We used σ as a fitting parame-
ter. Here, it had been confirmed that the power of a certain bin influenced the
neighboring bins by FFT. As a result of the influence, the standard error ∆P was
made smaller than the true value1 (see appendix D).

On the basis of the effect, we corrected the standard error and recalculated
the distribution of P/∆′

P for recalculated error ∆′
P (Fig. 7.7).

This distribution is consistent with the Gaussian of mean 0, and standard
error 1. According to the Gaussian distribution, the expected number which
exceeds 4σ is about 6.3. In this result, the number was 8 which was not signif-
icantly larger than the expected number. Fig. 7.9 and Fig. 7.10 shows the 8
spectra which exceeds 4σ. Furthermore, there is no entry which exceeds 5σ.

As a result, no significant excess was seen for any f0 except the spurious peaks
which have nothing to do with the HPDMs as explained in appendix C. Therefore,
we calculated an upper limit of the excess power PDM at 95% confidence level
(C.L.) for f0 at every RBW bin. They are shown in Fig. 7.8.
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Figure 7.6: We fitted gaussian with the histgram of Fig. 7.5

1By fitting the Gaussian function with the distribution of P/∆P , we obtained the fitting
result of σ = 1.1275± 0.002497 (Fig. 7.6). It is significantly larger than one, which is expected
when there is no excess power.

89



 1

 10

 100

 1000

 10000

 100000

-10 -8 -6 -4 -2  0  2  4  6  8  10

en
tr

ie
s/

1*
(P

/∆
’ P

)

P/∆’P

fit
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Figure 7.8: 95% C. L. upper limit of excess power derived from HPDMs.
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Figure 7.9: The spectra which exceed 4 σ
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Figure 7.10: The spectra which exceed 4 σ

7.3 Upper limit of mixing parameter χ

In order to calculate upper limit of mixing parameter χ, let us recall the discussion
of Sect. 3.2. Using Eq. (3.14) we can easily calculate the upper limit of χ from
upper limit of the power of the electromagnetic wave derived from HPDMs Plimit,

χ95%C.L. = 4.5×10−14

(
2× PDM,95%C.L.

10−23W

) 1
2
(
0.3GeV/cm3

ρHP

) 1
2
(

1m2

Ae × µ∆ × µθ

) 1
2

(√
2/3

α

)
.

(7.12)
where PDM,95%C.L. is the upper limit of the excess power which we estimeted in
Sect. 7.2, µ∆ represents the deterioration by the irregularity of the plane mirror,
and µθ represent the deterioration by the incorrectness of the relative positions
between the plane mirror and the parabolic antenna. Both of them, we discussed
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in Sect. 6.1. In Eq. (7.12), factor two for PDM,95%C.L. reflects the fact that the
receiver can receive only a certain axis of polarization wave.

The error of the relative positions is estimated to be 0.2◦ as argued in Sect.
6.1. Moreover, the emission angle is not completely perpendicular to the surface
of the plane mirror as argued in Sect. 3.2. The emission angle is estimated to
be ≃ |v∥|/c where v∥ is the component of v parallel to the surface of mirror.
According to Eq. (7.5), HPDMs are expected to have velocity about 10−3c.
Therefore the emission angle is estimated to be not more than 10−3 radian, i.e.
≃ 0.057◦. Therefore, we estimated the total error of the emission angle to be
0.21◦. It deteriorates the gain of the dish by the factor of 0.862.

On the other hand, the deviation of irregularity of the plane mirror is esti-
mated to be not more than 1 mm. It deteriorates the gain of the dish by the
factor of 0.930.

Eventually, we summarized the total deterioration of the dish gain in Tab.
7.2. Therefore, the effective area of the dish deteriorates to be 1.42m2

Inserting the effective area of the dish and PDM,95%C.L. into the Eq. (7.12), we
obtain the upper limit of χ as shown in Fig. 7.11. The abscissa is transformed
from the frequency f0 into hidden photon mass mγ′ using Eq. (7.4).

Causation of deterioration Degrees of deterioration

Irregularity of the plane mirror 0.930
Emission angle 0.862

Total 0.802

Table 7.2: Estimation of the deterioration of the dish gain
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Figure 7.11: Upper limit on χ at 95% confidence level. The filled region with
light-red denotes allowed region of HPDM. Note that, no upper limits were given
for the mass corresponding to the connecting points between sub-sweeps because
of the rough correction of the discontinuities shown in Tab. 6.5. Taking the
frequency shifts into account, There are 8 points at every connecting points.
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Chapter 8

Conclusion

We have searched for the hidden photon cold dark matter in the frequency range
of about 12 GHz which corresponds to the hidden photon mass of 5×10−5eV by
using dish antenna method. The experimental apparatus is mainly constructed
with the parabolic antenna and the plane mirror. We want to emphasize that
there are two important achievements in our experiment. First, this is the world’s
first experimental search for HPDMs using a dish antenna. Second, using an
auxiliary plane mirror, we enabled the use of a parabolic antenna instead of the
originally proposed spherical antenna for the search of HPDMs.

In this experiment, we searched for excess emission of electromagnetic wave
derived from the HPDMs. In the measurement, we found no significant excess of
the power and we set the 95% confidence upper limits of mixing parameter χ as
shown in Fig. 7.11 and Fig. 8.1. We set the upper limit of 2.0×10−12−8.0×10−12

to the mixing angle χ for the hidden photon mass between 49.1865 and 53.3195
µeV (except the connecting points of the sub-sweeps). This is currently the most
stringent constraint in this hidden photon mass region.

The advantage of this method is that the same apparatus can be used in a
broadband range of hidden photon masses by using a suitable receiver.
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Figure 8.1: Upper limit on mixing parameter χ at 95% confidence level set by
this experiment (filled red region). Note that, Note that, no upper limits were
given for the mass corresponding to the connecting points between sub-sweeps
because of the rough correction of the discontinuities shown in Tab. 6.5. Taking
the frequency shifts into account, There are 8 points at every connecting points.
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Appendix A

Input from eccosorb

In order to derive the equation, we start from the description an antenna param-
eter. In the field of radio astronomy, it is useful to define so-called ”beam solid
angle” given by,

ΩA =

∫ ∫
4π

Pn(θ, ϕ)dω, (A.1)

where Pn(θ, ϕ) is the normalized power pattern defined as,

Pn(θ, ϕ) =
1

Pmax

P (θ, ϕ). (A.2)

If a receiving antenna with a normalized power pattern Pn(θ, ϕ) is pointed at
a brightness distribution Bν(θ, ϕ) in the sky, then the output of the total power
is,

Ptot =
1

2
Ae

∫ ∫
Bν(θ, ϕ)Pn(θ, ϕ)dΩ, (A.3)

where Ae is the (effective) area of the antenna (so-called effective aperture).
The factor 1/2 arises from the reason that the LNBF receives a certain axis of
polarization wave, but it can not receive another one.

Eq. (A.1) is convenient when the input power is isotropic. For example, let us
consider the situation that a parabolic antenna which has the beam solid angle
is in a box, and the box is ”black” at the frequency of interest. If hν ≪ kT 1, the
input power of black body radiation (with frequency bandwidth ∆ν) from the
box is,

Bν =
2kT1

λ2
∆ν, (A.4)

where T1 is the temperature of the box. It is equal in any direction, so we get
the output power by inserting Eq. (A.1) and Eq. (A.4) into Eq. (A.3),

Ae
kT1

λ2
∆νΩA, (A.5)

1The situation which we focused on is that the frequency is about 12GHz and temperature
is about 300K or 77K. The frequency is equal to about 5×10−6eV, the temperatures are equal
to 2.6× 10−2 and 6.6× 10−3. So the situation meets the condition.

98



On the other hand, according to the Nyquist theorem, output noise power from
the circuit including the LNBF (with frequency bandwidth ∆ν),

kT2∆ν. (A.6)

where T2 is the temperature of the circuit.
If they are in thermal equilibrium, i.e. T1 = T2(= T ), we find,

Ae
kT

λ2
∆νΩA = kT∆ν, (A.7)

thus,

AeΩA = λ2 (A.8)

This equation is independent of temperature, so the equation is valid even if
they are not in thermal equilibrium.

Now, let us come back to the discussion about the eccosorb measurement.
The view angle of the LNBF corresponds roughly to the solid angle. So if we set
the eccosorb so that it can cover the entire visual field of the LNBF, the LNBF
collects a total power of

W = Ae
kT1

λ2
∆νΩA. (A.9)

According to Eq. (A.8), we find,

W = kT∆ν. (A.10)
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Appendix B

Dish gain and free-space path
loss

In this appendix, we derive the formulas of Dish gain and free-space path loss.
At first, let us consider ideal lossless isotropic antenna. According to Eq.

(A.9), the isotropic antenna has ΩA = 4π. So, we find the effective aperture of
the antenna,

Ae,isotropic =
λ2

4π
. (B.1)

In the field of radio astronomy, it is general to define the dish gain as,

Gd =
4πAe

λ2
. (B.2)

It has the same meaning of the effective aperture normalized by Ae.isotropic.
On the other hand, let us consider the situation that an isotropic antenna

for reception and another isotropic antenna for transmission are separated by a
distance d. The power of the signal from the transmission antenna Pt is weakened
by the propagation broadening. The received power per unit area is,

Pt

4πd2
. (B.3)

On the other hand, the effective aperture of isotropic antenna is represented by
Eq. (B.1) . Then we find the total received power.

Pd =
Pt

4πd2
× λ2

4π
= Pt

(
λ

4πd

)2

(B.4)

By comparison with the transmission power Pt, the degree of weakening can be
calculated by Pd / Pt This weakening is defined as free-space path loss,

Ls =

(
λ

4πd

)2

(B.5)
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Appendix C

The source of the narrow peaks

In our experiment, several narrow peaks were found. The bandwidth of the peaks
is roughly same as the bandwidth HPDMs may have. We investigated the origin
of these peaks.

We defined it a peak if there are three or more consecutive sweep points which
have more than three-sigma excess above the baseline.

In Fig. 7.4, there are some peaks which satisfy the selection condition in the
nine frequency ranges shown in Tab. C.1.

The peak around 1050 MHz is the signal from the signal generator discussed
in Sect. 6.2. Therefore, we excluded this frequency range for the investigation.

There is a peak in the sub-sweep of 1450 to 1500 MHz, but it was recorded
only two times in the 2700-times sub-sweeps. The sub-sweep spectra when the
peak arose are shown in the center of Fig. C.1. Sub-sweep spectra just before
and immediately after the sub-sweep with the peak are also shown above and
below the spectrum in question, respectively. It is very unlikely for the HPDM
signal to appear in a certain moment and go off quickly. Therefore, there is no
possibility that this peak is derived from HPDMs.

For other seven peaks, we investigated whether the peaks are derived from
HPDMs or not in the following ways:

• In order to shield the receiver from the possible radio wave of HPDM origin,
we set an aluminum plate of 220 mm× 300 mm in front of the receiver with
gap of 30mm.

• We detached the receiver from the parabolic antenna and set the receiver
outside of the apparatus.

In these conditions and the setup for the HPDM search, we conducted the
measurements for the seven frequency ranges with RBW=1kHz. The results are
shown in Fig. C.2 and the Fig. C.3. All the peaks arose even in the setup with
the shield and detached receiver. Furthermore, the power of these peaks got
maximized when we pointed the receiver toward the FFT analyzer. Therefore,
the source of these peaks were not HPDMs, but the FFT analyzer.
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Frequency range for investigation [MHz]

603.9 to 604.3 MHz
699.4 to 700.75 MHz
939.45 to 939.85 MHz
950.0 to 950.4 MHz

(1050 MHz)
1199.95 to 1200.35 MHz
1371.9 to 1372.1 MHz
1450 to 1500 MHz

1563.8 to 1564.2 MHz

Table C.1: Frequency ranges which have the peaks. 1050 MHz corresponds to
the frequency of the reference signal from the signal generator.
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Figure C.1: Two figures of the center show the peaks at about 1478MHz. How-
ever, the peaks did not arise in the sub-sweep spectra just before and immediately
after these two sub-sweeps as shown in the above and below figures. The times
shown in the figures represent the start and finish time of the single sweep.
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Figure C.2: Spectra under three different setups. The red line was measured with
the setup for the HPDM search. The blue line was measured with the shield in
front of the receiver. The black line was measured detaching the receiver from
the parabolic antenna.
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Figure C.3: Spectra under three different setups. We show the figures in the
same manner as Fig. C.2. For the spectrum around 1372 MHz shown in the
upper left, the peak of black line is much larger than the others. Therefore, we
show the other lines separately in the upper right.
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Appendix D

Power averaging

We examined how a peak of single frequency is broadened in calculating FFT.
We connected the signal generator and the FFT analyzer directly. The output
frequency of the signal generator was set to 35 MHz, and output power was set
to -40dBm. The setting values of the FFT analyzer was same as the setup for
search for HPDMs except that center frequency was set to 35 MHz (Fig. D.1).
We calculated the ratio of the power in a bin adjacent to the peak to the total
power based on the result of this measurement, and we obtained the ratio value
≃ 0.074.

This means that they have a correlation, and a power of a certain bin was
averaged by the both side bins. As a result, standard error is made small, for
example, the standard error of the n-th bin σPn is averaged by neighboring bins
as follows;

σ′
Pn

=
√

0.0742 × σ2
Pn−1

+ (1− 2× 0.074)2 × σ2
Pn

+ 0.0742 × σ2
Pn+1

. (D.1)

Assuming that the standard error of respective bins are equal, σ′
Pn

is about
0.86 times as large as σPn .

The effect accordingly broadens the distribution of P/∆P like the one seen in
Fig. 7.6. If a power of a bin is larger than the baseline accidentally, the power
of the neighboring two bins become large by the correlation, therefore these bins
look more similar to the HPDM signal described in Fig. D.1.

We made Monte Carlo simulations to estimate to what extent the distribution
of P/∆P is modified by the above effect, and to compare it with the result of
HPDM search (Sect. 7.2). For the simulation, we supposed a simple model in
which there is no distortion of baseline (Fig. D.2). We conducted two simulations.
In the first simulation, random power is given to each 5kHz bin with a mean zero
and the standard error estimated in Chap. 5. Then, we allow the power of
each bin to spill over into the neighboring bins as estimated above in the second
simulation. The distributions of P/∆P computed from the two simulations are
shown in Fig. D.3. In the second case, the distribution was broadened. We fitted
the Gaussian in the same way which we explained in Sect. 7.2, and the result
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of the fitting was σ = 1.1277± 0.00185. This corresponds to the standard error
which we calculated in Sect. 7.2.
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Figure D.1: The signal of the frequency 35MHz from the signal generator

Figure D.2: The virtual input for estimating to what extent the distribution of
P/∆P
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Figure D.3: The comparison of the distributions of P/∆P
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