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Abstract

Scalar topology has provided computational tools that analyze and vi-

sualize data for scientific and engineering tasks. Scalar topology became

popular in visualization, since exploring the topology of isocontours allows

us to understand the singularities, which are characterized as the topological

transitions of isocontours. In case of terrain datasets, for instance, a loop-

shaped isocontour shrinks to a point at the local maxima of height values.

For multivariate data, on the other hand, isocontours generalize to fibers –

inverse images of multivariate function values – and therefore the generalized

topology is known as fiber topology.

In contrast to the maturity of the single scalar case, establishing com-

putational techniques for multivariate topology has long faced challenges.

Especially, the number of degrees of freedom for tracking a fiber is greater

than one. Indeed, existing techniques for the single scalar case are not di-

rectly extensible since they relied on the uniqueness of the number of data

values. In fact, tracking a fiber has been accomplished by sorting the sam-

pling points with respect to their scalar value. Unfortunately, this strategy is

not directly applicable to the fiber tracking for multiple degrees of freedom.

Therefore, this thesis aims at the method of extracting singular fibers

at which topological changes occur, and the applications of the method to

visualizing multivariate data. To find the singular fibers, tracking the fibers

with multiple degrees of freedom is necessary. To over come this problem,

the data values are quantized. The target is multivariate data in the form

of R3 → R2, where the domain is a 3D sampling space and the range con-

sists of two variables at the 3D samples. The advantages of studying this

form are that it is the simplest situation with non-trivial topology, and that

their singular fibers are well studied. Furthermore, it can be extended to

higher dimensional cases by accumulating specific knowledge for handling

multiple variables. The central idea of this work is to track the topological

changes of fibers and identify the associated topological types on the basis of

singular fiber theory. The advantage of this approach is that one can under-

stand singularity of fibers, with their connectivity across different function
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values. This information benefits mathematicians for understanding multi-

variate functions, and data analysts for selecting a handful of features from

an overwhelming amount of them.

The contributions are threefold. Firstly, the singular fibers are extracted

and their topological shapes are identified. This permits the characteriza-

tion of the topological changes in the fibers. To do so, connectivities between

fibers are extracted in the interior of data and on the boundary, and these

two types of connectivities are investigated for identifying the detailed types

of singularities. Unfortunately, fibers in practical datasets can have a large

number of critical points in fibers. This fact makes it difficult to directly em-

ploy the original classification in the mathematical theory of singular fibers.

To deal with such non-ideal behavior, we firstly identify topology transitions

of fibers such as birth and split, and then further identify the topological

shapes of singular fibers if they meet the theoretical classification in mathe-

matics.

Secondly, the proposed approach is applied to the mathematical study of

the fiber topology in analytic functions. A visualization interface for domain

experts is demonstrated. When exploring fiber topology, domain experts

have relied on manual visualization, which does not fully facilitate them to

understand complicated topologies. In contrast, the proposed interface can

provide intuitive understanding by taking advantage of user interactions. Es-

pecially, it can show the connectivity between fibers, their topological shapes,

and their geometrical configuration in the domain. Such visualization can

respect the conventional methods among domain experts, while offering new

tools for providing further insight. For evaluating the interface, a user study

was conducted, in which experts and learners of fiber topology verified the

usability of the proposed exploration interface.

Finally, the proposed approach is applied to time-varying scalar fields,

in order to extract the time-evolution of local extrema. Existing techniques

cannot respect the continuity of local extrema in time, when deciding the

importance of them for selection. In contrast, the proposed scheme overcomes

this problem by setting the time as a variable to track the temporal behaviors

of the fiber, and simplifies the obtained multivariate topology. An evaluation

is given by applying it to fluid simulation datasets.

The entire work is evaluated by discussing the effect of quantizing the

data values and the effectiveness of the approach. On one hand, the effect of
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quantization is investigated by comparison between the visualization results

with different resolutions. On the other hand, the effectiveness is given a dis-

cussion on generalizing the dimensions and on the degeneracies of topological

changes.
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Chapter 1

Introduction

Nowadays, the spatiotemporal distribution of variables is analyzed in various

scientific and engineering tasks. Often, such distribution not only has high

complexity and ever-increasing resolution [MCC+99, GDS+06], but also has

a large number of variables [WB97, DOL03]. For instance, a climate dataset

can contain as variables many physical quantities, including temperature,

pressure, and humidity. Such data, which has multiple variables, is called

multivariate data, and is widely analyzed in a large number of research areas.

In order to assist the exploration of a single variable, the topology of inverse

images, in short fiber topology, is widely used. Fiber topology can provide

both local and global information of a distribution. (See Figure 1.1.)

Although the analysis of fiber topology has primarily been applied to

scalar data, fiber topology is inherent also in multivariate data. Given the im-

portance of finding correlations between variables, extending the techniques

for scalar data to multivariate data is pursued, in order to extract local and

global information of distribution. This chapter starts by introducing how

fiber topology has been applied in the context of visualization. Then, ex-

planation is given for the motivation and objectives to extract, explore, and

apply fiber topology for visualizing multivariate data.
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1.1 Fiber Topology in Visualization

In order to understand the distribution of data values, visualization tech-

niques for directly showing the distribution, such as isocontouring [LC87,

Nie03] and volume rendering [DCH88] are widely used. Here, datasets easily

have such a complexity that finding useful information is difficult without

selecting informative parts from the entire data. One common tool for such

a selection is fiber topology, which has offered efficient computational tools.

Fiber topology regards spatiotemporal distribution of values, which are

either scalar or multivariate, as a function f : D(M)→ R(M). Here, D(M)

is the domain manifold such as the 3D space, in which the sampling points

are distributed. R(M) is the range manifold such as a 1D space, representing

the data values. In this thesis, both D(M) and R(M) are Euclidean spaces of

some dimensions, since this is the situation for most data analysis. An inverse

image of f is called a fiber, and fiber topology refers to the connectivity

of the points in the inverse image f−1(r) of some value r ∈ R(M), and

the connectivity of the inverse images across different function values. As

depicted in Figure 1.1, fiber topology provides a way to encode and decode

singularity and topology of inverse images.

We further introduce the fiber topology-based visualization in the follow-

ing manner. We begin with the scalar topology, which has matured in visu-

alization and has various applications. Secondly, we introduce the recently

developed multivariate topology, which is the main topic of this thesis. Here,

the topological analysis are generalized to multivariate functions. Roughly

speaking, the research on multivariate cases follows the history of its scalar

counter part, as depicted in Figure 2.1, and described in the followings.
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Figure 1.1: Fiber topology in univariate data provides the singularity and the
topology of inverse images. Both the singularity and the topology benefits us
for understanding data. As an example, we take the exploration of a terrain
data. While the singularity describes the local features such as locations
corresponding to local extrema or saddles, the global informations such as
the configuration of the mountains is not apparent. Topology complements
the exploration by encoding that two peaks are connected at a saddle.
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Figure 1.2: An example for the Reeb space of a function f(x, y, z) = (f1, f2),
as an extension of Figure 1.1. A point in the Reeb space corresponds to
a connected component of a fiber. The connectivities of the points encode
the connectivities of the fibers. Here, fibers are drawn as the red curves in
the labelled figures. The yellow surfaces are the isosurfaces of a data value
f1, rendered in the 3D domain. On the other hand, the green surfaces are
the isosurfaces of f2, and the fibers can be identified as the intersections of
the isosurfaces of f1 and f2. With a low f2 value, only a single connected
component exists, for each function value. At points in the blue curve, the
component is splitting to two. In the upper part of the Reeb space, two
points exist for a pair of value (f1, f2). This corresponds to the fact that two
connected components exist for such a pair.
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1.1.1 Fiber Topology for Scalar Functions

For the analysis of a scalar field, one often tracks the isosurface evolution ac-

cording to the scalar field value. Exploring such an inverse image of the scalar

function allows us to effectively encode the singularities in the scalar field.

This has often been accomplished by characterizing the topological transi-

tions of such isosurfaces with the graph representations such as Reeb graphs

[Ree46]. Indeed, studies on the topology of isosurface attracted not only

learners in mathematics, but also researchers in the field of scientific visualiza-

tion since we can enjoy a lot of benefits from it, for systematic exploration of

isosurfaces [BPS97, CSA03] and transfer function design [TTF04, WDC+07],

for example. Thus, tracking the inverse image of the scalar field function has

been one of the promising approaches to investigating important features

embedded in the given 3D scalar fields.

1.1.2 Fiber Topology for Multivariate Functions

However, extending scalar topology to the multivariate case is not straight-

forward. It is challenging firstly in the sense of the underlying mathematics,

and secondly of the development of computational tools.

From the mathematical perspective, the difficulty is that the interac-

tions of fibers are more complex than those in scalar topology. Indeed, in

mathematical studies for fiber topology, the smallest interesting case maps 3-

manifolds to 2-manifolds, and more recent work [Sae04] maps 4-manifolds to

3-manifolds. Given that visualization researchers are interested in arbitrary

dimensionality of the target manifold, i.e. an arbitrary number of variables

to be analyzed, necessary mathematics inevitably involves spaces of higher

dimension, which are beyond the capability of visual perception.

On the other hand, from the perspective of developing computational

tools, the study has begun only recently. Although the Reeb graph [Ree46]
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was extended to Reeb space [EHP08] in 2008, its practical computation

[CD14] has become available only in 2013. Still, direct application of this

new computational tool is currently not fully developed. While in the scalar

case the nodes and edges of a Reeb graph directly correspond to features

such as the boundary of objects, suitable features that can be analyzed with

the Reeb space are to be found. In this thesis, we set the singularity of

fibers as the features. For further explanation, we begin with explaining our

motivations and challenges.

1.2 Motivations and Challenges

As we have seen in the preceding section, fiber topology had the ability to

efficiently encode the distribution of data values, for scalar data. Technically,

the following challenges exist for analyzing fiber topology of multivariate

data.

The most important challenge is the degree of freedom. In the scalar

case, although data consisted of discrete samples, the connectivities of fibers

between interpolated values could be fully computed. The computation was

achieved by locating the sampling points in a 3D mesh, which defined the

linear interpolation of data values. Then, the connectivity of the fibers was

tracked along the edges of the 3D mesh. Here, this one-dimensional tracking

could extract the connectivities between fibers of neighboring scalar values,

since the neighborhoods were also one-dimensional manifolds.

In the multivariate case, however, the tuple of variables varies in multiple

degrees of freedom. Hence, as depicted in Figure 1.2, the connectivity of

fibers forms a space of multiple dimensions, which is the Reeb space. There-

fore, tracking the connectivity among fibers should also be done in multiple

degrees of freedom. Here, the conventional approach in the scalar topology

analysis fails. For an explanation, recall that the approach in scalar topology
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was to track the sampling points, along the edges of a 3D mesh. However,

such a traversal is a one-dimensional motion in the multi-dimensional neigh-

borhood of data values. Therefore the multi-dimensional connectivity of

fibers cannot be fully obtained. To overcome this problem, Carr and Duke

[CD14] quantized the data values. Here, thanks to the quantization, we can

track the connectivity between fibers having neighboring data values. This is

achieved by tracking the data values in the range along the directions of each

axis of the data values. However, the challenge remains as to how we should

extract the information of fibers other than their connectivity, and how we

should treat the quantized data values, instead of the row values that were

conventional in visualization techniques based on fiber topology.

Additionally, we find the following challenges. Firstly, as opposed to the

continuous analytic functions, the discrete model of fiber topology requires

a strategy to handle the behavior in numerical data, such as errors in data

values. While mathematical study defined a classification with ideal assump-

tions, it is rarely valid in numerical situations. Secondly, suitable applications

should be found. Although the scalar topology has found various applica-

tions, the extension of their problems has not been found. Indeed, this

is a mathematically involved problem and researchers in visualization and

mathematics are collaborating to resolve this situation [STS+14]. Handling

realistic datasets differs from analytic functions, in the sense that overwhelm-

ing amount of topological features exists, often due to the complex physical

setup, or/and due to the noise in measurements. Therefore, special care must

be taken for reducing the features shown to the user.

1.3 Objectives

The objectives of this thesis are to extract, and apply fiber topology for

multivariate functions f : Rn → Rm. We choose multivariate functions
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n = 3 and m = 2, since it is the simplest yet interesting case considering

fiber topology. The central idea is to analyze the connectivity of the fibers via

the Reeb space (Figure 1.2), which is an extension of the Reeb graph. While

Carr and Duke [CD14] approximated the Reeb space with the joint contour

net, extracting the singularity of the fibers has remained as a challenge. We

extract the singularity of fibers as the singular fibers [Sae04], and apply them

to visualization. In the next section, we explain the contributions of the work.

1.4 Contributions

The present work has the following major contributions:

• Extracting singular fibers

• A user interface for studying singular fibers

• Simplifying the time-evolution of local extrema

We extract the topology of fibers [SSC+] and apply them to exploring mul-

tivariate data [SSC+] and real datasets.

Firstly, in Chapter 3 we characterize topological features as singular

fibers [Sae04]. We not only identify the original classification in mathematics

[Sae04], but also additional topological features introduced by the boundaries

of the domain. Here, it is worth mentioning that we asked our collaborators

to extend the classification, which led to a new result in mathematics [SY14].

Furthermore, we newly developed a hierarchical identification algorithm of

singular fibers that firstly identifies all of them, and then further categorizes

theoretically ideal ones. Fiber topology is extracted by analyzing the Reeb

space [EHP08] through its approximation by the joint contour net [CD14].

Secondly, in Chapter 4, we apply the approach to an interface for mathe-

matical studies. With our interface, the user can analyze fiber topology in

functions that are too complex to analyze manually. This interface respects
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and extends the conventional manual visualization by the domain experts.

Finally, we apply fiber topology to analyzing realistic data, which are the

local extrema in time-varying scalar fields. In contrast to the existing meth-

ods that make use of topology, which had difficulty tracking the connectivity

of fibers along the temporal axis, the presented approach tracks such con-

nectivity by making use of our singular fiber extraction scheme in Chapter

3.

1.5 Organization

As shown in Figure 1.3, the remainder of the thesis is organized as follows. In

Chapter 2, the related work is presented. Then, we present the contributions

of this work, which are divided into 3 chapters. Chapter 3 presents the

proposed extraction and identification scheme for singular fibers. Chapter 4

introduces the proposed interface for studying fiber topology in mathematics.

Chapter 5 presents our idea of applying fiber topology to real world datasets,

which are the visualization of local extrema in time-varying scalar fields. We

evaluate the work in Chapter 6. The conclusion and future work are presented

in Chapter 7.
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Applications

Extracting Singular Fibers
(Chapter 3)

A User Interface for Studying Singular Fibers
(Chapter 4)

Related Work

(Chapter 2)

Introduction

(Chapter 1)

Discussion

(Chapter 6)

Conclusion and Future Work

(Chapter 7)

Simplifying the Time-Evolution of Local Extrema 
(Chapter 5)

Figure 1.3: The organization of this thesis.
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Chapter 2

Related Work

This chapter presents the related work. Firstly, we introduce how fiber topol-

ogy has been applied to visualizing scientific data, in terms of scalar fields and

multivariate fields. Then, we explain the conventional methods which relate

to the proposed application of fiber topology to visualizing time-evolution of

critical points.

2.1 Fiber Topology in Scalar Fields

Analysis of scalar field is an active research area in scientific visualization.

There exist various computational tools for understanding the spatiotempo-

ral distribution of data values, including isocontouring [Nie03] and volume

rendering [DCH88]. Discrete data is often complex since it is full of features

due to noise and complexity of the phenomena. To deal with the enor-

mous amount of singularities, a promising approach is topological analysis

[Ede09, PPF+09].

2.1.1 Fiber Singularities

Weber et al. [WSHH02, WSH03] proposed approaches to emphasize the iso-

surfaces of critical values to efficiently explore useful features in scalar fields.

Note that isosurfaces can be regarded as singular fibers in scalar fields [Sae04].
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2.1.2 Fiber Tracking: Reeb Graphs and Contour Trees

Bajaj et al. [BPS97] proposed contour tree, which represents the topology of

contours as a graph with nodes encoding critical points such as local extrema

and saddles, and edges encoding the connectivity of contours. Contour trees

are not only useful for describing differential features such as local extrema

and saddles, but also for extracting structural information like inclusion of

a small hill in a mountain. While contour trees are defined for simple do-

mains, i.e. a finite space without holes, they can be extended also for non-

simple domains. Their general counter part is Reeb graphs [Ree46], which

are not necessarily trees but still graphs. Reeb graph was originally intro-

duced to describe the structure of terrains [Ree46]. Applications of Reeb

graph as a computational tool originate in the description of the terrain

[BR63, FM67]. A variety of applications then appeared in image processing

[SC86] and GIS [TIS+95]. In scientific visualization, examples include de-

signing transfer functions of volume rendering [FTAT00, WSHH02] and 3D

shape model retrieval [HSKK01]. Van Kreveld et al. [vKvOB+97] proposed

an algorithm for 2D and 3D scalar fields. The complexity is O(M logM)

and O(M2), where M is the number of elements in a simplicial mesh, for

2D and 3D, respectively. Tarasov and Vyalyi [TV98] reduced the complexity

to O(M logM) for the 3D case. Eventually, Carr et al. [CSA03] simplified

the algorithm and made it work for arbitrary dimension. As mentioned in

Section 1.2, the computation of contour trees is based on tracking contours

along the scalar values. This is done by sorting the sampling points according

to the scalar values, and then iterating through the sampling points. Note

that this is not directly extensible to multivariate topology, where one has

to track the fiber in multiple directions of multiple variables, instead of a

unique direction in the conventional case of scalar fields. Later, Pascucci et

al. [PSBM07] proposed an algorithm for constructing Reeb graphs, which are
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the generalization of contour trees.

Contour tree was then enhanced with additional informations such as iso-

surface genera [PCM02] and spatial embeddings [TTF04, TFT05, TTFN05],

topology on boundaries [CS09] and employed as visual metaphors of the

given datasets [WBP07]. Since then, contour trees were used for seman-

tic segmentation of the entire 3D scalar field [CS03], then extended to por-

tray topological complexity in a time-varying data set by counting connected

components as isovalue and time varied, then presenting the information as

a color map for visual analysis [KRS03]. These approaches have also been

used to reduce very high dimensional data to two or three for visualization

[TFO09, OHJ+11, GBPW10].

2.2 Fiber Topology in Multivariate Data

Usually, multivariate functions in the visualization community are multivari-

ate datasets, for which each field value is sampled at spatiotemporal coordi-

nates. Multivariate functions are usually more difficult to analyze than scalar

fields, so fewer effective techniques are known [FH09]. Various approaches

have been attempted, including combining several techniques such as iso-

contouring and arrows [Tre00], multi-dimensional transfer function design

[KKH01], and information theory [BDSW13].

Subsequently, topology came into the roll. Bachthaler and Weiskopf

[BW08] extended conventional scatterplots to the continuous version, pro-

jecting smooth density within the domain onto the range. Lehmann and

Theisel [LT10] extended this work by identifying discontinuities as impor-

tant features, and it is clear at present that these features are identical to

the boundaries identified by singular fiber topology.

An alternate approach to multifields analyzes contour trees of individual

fields, then compares the features of each [SWC+08], but this is not the
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same as those analyzing the Reeb space. Equally, Edelsbrunner et al. [EH04]

extracted the Jacobi set from discrete samples of two scalar field functions,

but did not extract the entire Reeb space. Instead, the Reeb space was

formulated later [EHP08], and can now be seen to be identical to the Stein

factorization [Lev85]: in neither case was a practical computation given.

The Jacobi set has since been simplified [BWN+13, SN11] and applied

to ridge-valley extraction [NB13]. However, in these cases, the Jacobi set is

illustrated in the R2 → R2 case, where the Jacobi set divides the domain

into regions. For higher dimensions, the region is actually separated into

regions by the singular fibers which pass through points of the Jacobi Set.

In the R2 → R case, the Jacobi set is the set of critical points (extrema and

saddles), but the critical contours must be extracted to identify features of

uniform topological behavior. Correspondingly, in the R3 → R2 case we are

considering, the Jacobi set is a set of 1-manifold structures, as can be seen in

Bremer et al. [BBD+07, Fig. 5(a)]. It then follows that not only the Jacobi

set needs to be computed to support the mathematical workflow, but also

the Reeb space.

More recently, Carr and Duke approximated the Reeb space with the

Joint Contour Net (JCN) [CD14]. Here, each dimension of the range space

is partitioned into intervals of fixed height and width (i.e. pixels) and pro-

jected onto the graph of the function. Each pixel corresponds therefore to a

quantized approximation of a fiber, and this permits extraction of the fiber

components and their relationships.

The advantage of the JCN is that it explicitly encodes the connectivity

of fiber components as a graph structure, albeit approximately. We therefore

use it to extract the fiber topology of the function R3 → R2 within the

original finite 3D domain and separately for the restriction to the boundary.

Visually, Duke et al. [DCK+12] arranged JCNs aesthetically in 3D space

for arbitrary dimension of the range space, and applied it to the analysis of
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real datasets. In this application, however, it is better to keep the connection

with the range, and this requires a new layout algorithm.

2.3 Fiber Topology in Time-Varying Scalar

Fields

In the scientific visualization community, isocontouring has been applied to

investigate the distribution of data values in time-varying scalar fields [MS09].

Another approach for time-varying scalar fields in scientific visualization is

activity detection. Computer vision [Bal82] has independently developed

methods to track time-varying features in 2D domains, and they were applied

for tracking features [SSZC94, ADM92, VV92]. However, the features of

interest have distinct behaviors such as appearing, splitting, merging, or

disappearing, which do not happen in computer vision. For the sake of

such specific feature extraction in scientific visualization, Silver and Wang

[SW97, SW98] tracked features that are defined as regions in the domain

that satisfied predefined criteria. The features in different time steps were

checked for their overlaps to determine their continuity over time. However,

this resulted in the disconnections of features that move fast, without an

overlap.

Recently, topological analysis has been used for tracking objects. Bremer

et al. [BBD+07] visualized the critical points in time-varying scalar fields, and

simplified the results. In their approach, contours that lasted long can be

misleadingly removed if their spatial persistency was small. This happened

as the algorithm did not extract the connectivity of the critical points. In

contrast, approaches based on Reeb graphs [JSW03, SB06] could obtain the

life span of the critical points, but the topology of the fibers was still tracked

only for spatial axes and not time. In comparison, our approach interpolates

the scalar values in all of the spatiotemporal directions. In addition, in the
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Reeb graph based approach mentioned above, the user had to select the

isovalue to be visualized. Therefore, the life spans of contours were not pre-

computed. Our approach does not have this problem, since the JCN explicitly

maintains the correspondence between all critical points across different time

steps.

Furthermore, visualization techniques are known for visualizing flow fields,

although they are not directly related to fiber topology. Therefore, reviewing

them in the context of fiber topology is misleading, and we choose to give a

concise review in Chapter 5 together with their own context and necessary

background on time-varying 2D scalar field visualization. In the succeed-

ing Chapter 3, we will introduce the supporting technique: the proposed

approach for extracting and identifying the singular fibers from multi-fields.
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Figure 2.1: Work on extracting fiber topology and singularity at the same
time together with their correspondence.
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Chapter 3

Extracting Singular Fibers

This chapter presents the definition of the types and the shapes of fibers,

as well as the detection scheme of the topological shapes of the fibers. We

start by introducing mathematical backgrounds that are necessary for under-

standing fiber topology, and the limitations in visualizing numerical datasets.

After them, the visualization-specific classification and detection follow.

3.1 Singular Fibers

Singular fiber theory [Sae04] studies mappings from manifolds of arbitrary

dimension to other manifolds of dimension less than the domain, often exactly

one dimension less than the domain. We consider a common case in multi-

field data analysis: simple manifolds, with small dimensions of functions f :

R3 → R2, as this is challenging, but can still be displayed in a 3D interface,

and develops intuition for higher-dimensional cases. Refer to [STS+14] for a

formal introduction to the mathematical backgrounds.

We assume that a function f : R3 → R2 where f consists of 2 scalar func-

tions f1 and f2. The function value f(x) refers to the vector (f1(x), f2(x)).

For any point c in R2, the fiber of f at c is defined as the inverse image

f−1(c). A fiber component refers to a connected component of a fiber.

As an example, consider Figure 3.1. Here, the planes are isosurfaces of
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Figure 3.1: A singular fiber of a bivariate function. Isosurfaces of temper-
ature are horizontal planes, while isosurfaces of pressure are curved sheets
perpendicular to the planes. Fibers (i.e. inverse images) of the function are
curves obtained by intersecting isosurfaces of temperature and pressure.
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temperature, while the blue stacked curves belong to isosurfaces of pressure.

For a particular pressure and temperature, we find the fiber by intersecting

the pressure isosurface and temperature isosurface. Since these isosurfaces

are 2-manifolds, most of the fibers are 1-manifolds embedded in R3, and we

will see similarities to familiar contour lines. Indeed, readers familiar with

2D time-varying scalar field may regard it as a special case where f2 is the

time axis.

Exploring the example in Figure 3.1, each non-empty fiber consists of

one or more disjoint components. In this example, most fiber components

are arcs or loops: arcs intersect the boundary twice, and are called boundary

fiber components, while loops are in the interior of domain and are called

interior fiber components.

We refer to this distinction as the topological shape of the fiber component,

and to the set of topological shapes of fiber components as the topological

shape of the fiber.

Fiber components whose topological shape is not an arc or loop are sin-

gular, and fibers with any singular component are also singular. The red

fiber component in Figure 3.1 is such an example, and Figure 3.3 lists more

examples. Any fiber consisting only of arcs or loops is then called regular.

As with isocontours, different range values give fibers with different topo-

logical shape, and singular fibers are found at values where topological shape

changes. Unlike isocontour analysis, the value varies in 2D, so we cannot

discuss changes as a single sweep through a 1D range. We instead take any

path through the range: the topological shape must change smoothly along

the path, and, for example, can change from a single loop to two loops at a

singular point where the fiber takes on a figure-8 shape, as for example when

crossing the blue curve in Figure 3.2. In this case, the fiber is of type V in

Figure 3.3.

Returning briefly to scalar fields, we see that the critical values divide the
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Figure 3.2: A typical hand-drawn fiber visualization: red and blue curves
indicate singular values in the range. At the blue curve, a fiber component
splits into two. At the red curve, a fiber component becomes a point and
disappears. The topological shapes of fibers are represented by icons.
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Type Color Topological change

0a

0b

I

II

III

IV

V

VI

VII

Figure 3.3: Topology of non-degenerate fiber components, after Saeki and
Yamamoto [SY14]. For f : R3 → R2, topological changes to fibers must be
one of these possibilities or their converses, barring degeneracy. These are
the same changes as for isolines in f : R2 → R1, i.e. scalar critical points in a
scalar field. However, since there are two range variables, these changes occur
across linear boundaries in the range rather than in a strict linear sequence.
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Figure 3.4: A degenerate fiber in a Reeb space. On the left, topological
shapes of fibers shown in the range. On the right, the Reeb space, expanded
along a virtual dimension z for the visual clarity. Above, three fiber compo-
nents merge simultaneously at three singular points, along the singular values
indicated by the blue line. Below, a perturbation to the function resolves the
component to non-degenerate ones.
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range interval into a set of intervals with different topology. We can track

components separately, using overlapping intervals corresponding to edges of

the Reeb graph. This has been formalized [CSA03] by defining edges to be

the equivalence class of topologically similar contours that are adjacent to

each other.

Applying the same logic here (shown in Figure 3.2), a region where all

topological shapes consist of one loop must be divided from a region with two

loops by a curve along which singular fibers of figure-8 shape occur (shown

in blue) and by a curve along which one of the loops disappears (shown in

red). This is again similar to the Reeb graph: at a critical point, one contour

breaks into two, and the critical point is the boundary between having one

contour and having two. At some higher isovalue, the two contours may either

reconnect, or one may disappear entirely at a local maximum. In Figure 3.2,

the red curve carries the semantics of a local extremum (i.e. extinction), while

the blue curve carries the semantics of a saddle point (i.e. separation).

Singular fiber theory [Sae04] classifies singular fibers, and this classifica-

tion gives the possible topological shapes in a fiber. In the past, singular

fiber theory has assumed a function defined over the infinite domain without

boundary, and it is only recently that it has been extended to deal with be-

havior at the boundary of a finite domain [SY14]. This is accomplished by

classifying the topological shape not only of a fiber, but also of its restriction

to the boundary of the finite domain, and was developed in part to support

the application we describe, but the proof is beyond the scope of this thesis.

This classification is shown in Figure 3.3, and is the basis of our classifi-

cation of singular fibers for visual display. Excluding degeneracies and cases

involving boundaries, there are in fact two possibilities: birth and split, and

the parallel with contours in the plane is apparent.

As with scalar analysis (Morse theory), the singular fiber theory assumes

the functions to be stable, i.e. the topology of their fibers does not alter even
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if a small perturbation is applied. Therefore, if the function is not stable, the

topology of fibers can be different from those classified in [Sae04, SY14], and

such fiber components are said to be degenerate. In particular, more than

two fiber components can merge to one at a function value. An example is

given in Figure 3.4.

The list in Figure 3.3 is not always easy to interpret in practice, as multi-

ple topological changes can occur in a single fiber, especially for degenerate

data. As a result, plotting a function of any complexity can lead to topolog-

ical boundaries overlapping visually, requiring skilled interpretation of the

interactions. We do not claim to resolve such situations, merely to accel-

erate the process of identifying them and manually resolving them through

perturbation.

Note that the set of singular points is the Jacobi set of a function [EH04].

In addition, the Reeb space [EHP08], also known as the Stein factorization

[Lev85] in mathematics, is the result of contracting each fiber component to

a single point. Finally, note that the joint contour net [CD14] is a quantized

approximation of the Reeb space, and will be discussed in more detail later.

3.2 Detecting Fiber Topology

As stated, we detect the singular fibers for stable functions.

3.2.1 Representing Fibers with the Joint Contour Net

Recall that the JCN is a tessellated approximation of the Reeb space. Each

node in it corresponds to a class of fibers defined by the Euclidean product

of intervals in the range. In the R3 → R2 case, these are rectangles in

the range: i.e. pixels, and the JCN can be computed using rasterization

algorithms [CD14]. A schematic picture of the process is given in Figure 3.5.

The resulting cubic lattice is then subdivided into six tetrahedra per cell
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Figure 3.5: The construction of JCN for a function f : R3 → R2.
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and rasterized to compute the JCN, using colored fragments in the frame-

buffer to represent slabs.

3.2.2 Identifying Singular Fibers

As seen in Section 3.1, the key task in singular fiber theory is to identify

singular fibers and the topological changes that occur at them, as shown in

Figure 3.3. We observe that each regular fiber component is represented by

a single point in the Reeb space that is locally homeomorphic to a disk.

In the JCN, a node corresponding to regular fibers will be adjacent to

exactly four other nodes: one each above, below, to the left and to the right,

in the R2 range. Any node that does not have exactly these four neighbors

is therefore presumed to be singular.

Even further, a singular fiber component’s shape is deduced. Being in-

spired by Figure 3.3, we refer to the change in the number of components

and the number of endpoints. Notice that we can determine whether a fiber

component (i.e. node in the JCN) has a split (merge) or birth (death), as

shown in Figure 3.6. More precisely, a fiber component where a split (merge)

occurs will have at least two neighbors in at least one direction, while a fiber

at which a new component is born (or dies) will have no neighbors in at

least one direction. To discriminate the topological changes on the boundary

of the domain, we construct not only the JCN for the entire domain (the

interior JCN), but also the JCN of the function restricted to the boundary

(the boundary JCN).

Then, the JCN is constructed. Following the rasterization algorithm of

Carr and Duke [CD14], we construct the interior JCN by rasterizing all of

the triangles for every tetrahedra in the tessellation. We accelerate the pro-

cess by the hardware acceleration, while this was not discussed by Carr and

Duke [CD14]. When constructing the JCN with a common graphics API

such as OpenGL, a special attention must be taken to avoid degeneracy in
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(a)

Figure 3.6: Identifying topological change (in red) from the JCN. (a)
Split/merge of a fiber component.
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(b)

Figure 3.6: Identifying topological change (in red) from the JCN. (b)
Birth/death of a fiber component.
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rasterization. In most graphics cards, if a triangle projects itself as a line or

a point, the result is not drawn into the framebuffer and the JCN construc-

tion fails. To address this problem, we not only rasterize the triangle, but its

boundaries, as line segments. Similarly, the line segment might be degenerate

in the rasterization to find itself as a point. We therefore also rasterize the

three points of every triangles. The triangle is then successfully rasterized as

either line segments or a point, even in degenerate cases. Further, we group

together two triangle fragments in the same pixel to form one JCN node, if

the two triangles are both incident to a common tetrahedron as specified in

the literature [CD14].

Note that a node can be regarded as a set of triangles. Likewise, the

boundary JCN is constructed by rasterizing all the triangles on the boundary.

Each node in the interior/boundary JCNs, then, corresponds to a slab (or

more precisely, the set of tetrahedra/triangles that encloses a fiber component

in the domain/boundary). For each fiber component that is encoded as an

interior JCN node, i, its topology on boundary is obtained by referring to

boundary JCN nodes, which are the set {j | a triangle in j and another in i

share an incident tetrahedron}.

We iterate through the interior JCN nodes to determine the fiber com-

ponent’s topological shape: for each node, we consult the decision tree in

Figure 3.7. The idea of the tree is to classify fiber components to three cate-

gories: singular ones with/without a critical point on boundary, and regular

ones. The singular ones are further classified to “birth,” “birth and split,”

and “split.” In this way, any non-degenerate singular fiber component with

a pattern in Figure 3.3 can be classified.

More complex non-degenerate singular fiber components have compo-

nents being born or merged at multiple critical points. Unfortunately, dis-

criminating these cases against cases in Figure 3.3 was not achieved, as this

requires investigating the number of critical points. This requires a separate
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work, since no critical point extraction algorithm is consistent with the ap-

proximation in the JCN, to the best of the author’s knowledge. In practice,

though, our identification results satisfied the users in Section 4.5.

The results of the approach is presented in Chapter 4, while detailed

evaluation of the results is given in Chapter 6.
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Chapter 4

A User Interface for Studying
Singular Fibers

It is often assumed that mathematics supports visualization with concepts

and equations to build upon. Yet there are also possibilities where compu-

tation can assist the development of mathematics. Many mathematicians

construct visual representations by hand, which can be time-consuming and

difficult, even for experts, especially in higher dimensions. Where the math-

ematical field is used to develop tools for analysis and visualization, there is

therefore double value in building specialized tools for mathematical visual-

ization.

One field where this is true is fiber topology – the multi-field counter-

part of scalar Morse theory. Like in Morse theory, mathematicians study

the relations between a function and the singularity of its fibers (i.e. inverse

images), but for multi-fields, and formed the singular fiber theory. In the ad-

vancements of this theory, manual visualization has supported obtaining and

communicating significant results. Therefore, semi-automatic visualization is

advantageous both for experts and for learners to investigate phenomena that

are too complex for manual visualization. As with the scalar case, topology

of fibers in multi-fields is now being applied to data analysis and visualization

[CD14]. Here again, manual visualization helps one communicate the mathe-
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matical results to non-specialists, and develop the intuition of novices to the

field. Therefore, there is considerable advantage in developing visualization

systems for it.

Although work exists on extracting topological features from multi-fields,

an effective visualization system to support and communicate the mathemat-

ical study is yet challenging to develop. Indeed, the topological interactions

and features are more complex than in the scalar case: the smallest yet

interesting case maps 3-manifolds to 2-manifolds.

This chapter therefore reports a user interface (Figure 4.1) developed in

collaboration with a leading expert in fiber topology. Here, rather than de-

ploying novel techniques for general-purpose data, the primary focus is on

supporting existing mathematical workflow and conventions, with departures

from these conventions deliberately limited. The user interface visualizes the

complex topology of fibers for the class of functions f : R3 → R2. Interest-

ingly, the Reeb space analysis in Chapter 3 provides necessary information.

Additionally, we visualize the Reeb space in 3D, by a newly developed layout

algorithm.

In the remainder of this chapter, Section 4.1 characterizes the mathe-

matical workflow in singular fiber theory, and identifies bottlenecks where

machine visualization can accelerate tasks. Section 4.2 discusses the design

of the application, and Section 4.3 the new techniques required. Finally, Sec-

tion 4.4 gives some implementation details, Section 4.5 discusses the use of

the interface.

4.1 Tasks for Studying Singular Fibers

With the mathematical preliminaries given already in Chapter 3, the question

is on how to support mathematical development of singular fiber theory. As

with any application, this requires understanding the workflow into which
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(a)

Figure 4.1: Singular fibers of the tangle cube function f(x, y, z) = (−x4 −
y4−z4 +5(x2 +y2 +z2)−10, z). (a) The domain space view, with isosurfaces
of individual axis function shown in yellow and green with their intersection
along the current fiber shown in red. Here, the fiber is actually a singular
fiber.
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(b)

Figure 4.1: Singular fibers of the tangle cube function f(x, y, z) = (−x4 −
y4−z4 +5(x2 +y2 +z2)−10, z). (b) The range space view, with a cross mark
at the function value defining the current fiber. Critical function values are
shown in different colors according to the topological types of their fibers.
Arranged around this window are thumbnails of the domain space that pop
up when a value is selected.
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(c)

Figure 4.1: Singular fibers of the tangle cube function f(x, y, z) = (−x4 −
y4 − z4 + 5(x2 + y2 + z2) − 10, z). (c) The Reeb space window shows the
connectivity of connected components in the fiber, constructed by using a
3D layout of the joint contour net.
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Investigate Function

Pose Question on
 Function

Synthesize
Function

Proposed WorkflowConventional Workflow

Analyze
Function

Visualize
Fibers

Draw Fibers

Perturb Function

Analyze
Function

Visualize
Fibers

Draw Fibers

Perturb Function

Figure 4.2: A typical workflow for studying singular fibers using manual visu-
alization. A mathematician poses a question on a function, then investigates
the function by manual analysis and sketching, perturbing the function if de-
generacies are found. The investigation continues until the function has been
explored, then a new function is selected, often by modifying the previous
function. The process then iterates.
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the application will fit, as shown in Figure 4.2.

Characteristically, this workflow starts when a mathematician poses a

question about the topological structure of a function, then investigates the

function using manual visualization. As shown in Figure 4.2, this starts with

synthesizing a suitable function, and posing a question about its structure.

After that, the mathematician chooses some fibers of interest and sketches

them in space. Viewing these fibers then gives insight into the topological

changes in the function, and allows selection of new fibers. These are in

turn sketched, and the mathematician gradually fills in a sketch similar to

that shown in Figure 3.2, until they are satisfied that they have adequately

explored the function’s topology.

A new function is then selected and the process starts over, gradually

building up an understanding of the complete set of possible topological

behavior. In practice, however, new functions are chosen by modifying an

existing function slightly, either by perturbation or in some other fashion.

While this process is well understood, it has several difficulties. First,

without a great deal of experience, manual visualization of the topology is

laborious. Second, the functions chosen are normally polynomials, as these

are simpler to analyze. This leads to exploration of a subset of the full space

of possible functions, since not all functions are polynomial, and polynomials

over degree four cannot be solved in closed form. Third, the functions chosen

are characteristically analytical and have relatively few topological features,

both due to their polynomial definitions and the need to restrict the com-

plexity: in comparison, data-driven problems may have tens of thousands of

topological features.

As a result, computational tools for analysis and visualization have the

potential to accelerate the process of mathematical discovery, and to sup-

plement existing manual visualizations with additional information not cur-

rently exploited.
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In particular, the tasks that need to be supported are:

• Drawing the fibers

• Perturbing the function

In the following subsections, we explain these two tasks and how computa-

tional visualization can help.

4.1.1 Drawing the Fibers

As shown in Figure 3.2, manual visualization of topological shapes is based

on plotting the characteristics of the fibers in the range of the function, to

help understand the configuration of fibers. In addition, isosurfaces of the

two scalar functions are sometimes drawn, in order to get insight into fiber

changes with respect to the function values.

These steps, however, are non-trivial, as they require solving for roots of

a polynomial function. Moreover, by conceptualizing and visualizing single

points in the function space, the mathematician is in effect sampling the

space. Thus, while the topological shape of a fiber may be apparent, the

relationship with nearby fibers depends on understanding which loops or

components map to other components.

In short, this analysis depends on understanding the Reeb space [Lev85,

EHP08]. Although singular fiber theorists have considered the concept [HS13],

sketching the topology has not been a common strategy when understanding

a function. Part of the reason for this is that the Reeb space is itself difficult

to visualize and analyze, especially for complex data. Since recent work has

enabled computational approximation of the Reeb space [CD14], we have

added to the application the ability to visualize the Reeb space directly, as

well as its relationship with the conventional range diagram.
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4.1.2 Perturbing the Function

As noted above, singular fiber theory, like Morse theory, is most straightfor-

ward if no degenerate fiber components exist, and this is usually handled by

adding small perturbations to the function to destroy the degeneracies. In

practice, this occurs frequently since polynomials with complex behavior are

relatively easy to define, but polynomials with multiple roots commonly have

degenerate fibers. As a result, the first iteration of the workflow commonly

starts with a polynomial with degenerate fibers which is progressively edited

until the degeneracies are eliminated.

Given that the functions studied are usually polynomials, the normal

strategy for perturbation is to add another polynomial to the original func-

tion, so that the new function is slightly different from the original one.

Unfortunately, it is hard in practice to find a suitable additive polynomial

that destroys degeneracies but does not otherwise alter the function signifi-

cantly. As a result, degeneracies are difficult to eliminate systematically, and

a considerable amount of trial and error is required in practice.

Thus, one of the key features of any application for this branch of mathe-

matics is the ability to apply perturbations to the data and show the resulting

topology immediately, with the option of removing the perturbation and try-

ing again.

4.2 The User Interface

As we have seen in the previous sections, while mathematical development of

singular fiber theory is well advanced, it is strongly dependent on manual vi-

sualization of functions, and these manual visualizations are the bottleneck

in terms of time. This motivates the development of visualization inter-

faces which accelerate and improve this process, but these interfaces must

support the workflow of the mathematician, and in particular the iterative
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examination and perturbation of functions, using the existing conventions of

range-based visualizations.

The principal design decision, therefore, is that at least one view must

show the conventional range diagram: i.e. a 2-D rendering of the fibers and

the boundaries of topological change. Secondly, since interpreting this dia-

gram relies on being able to understand the relationship between the fibers

and the function, a view is required in which the fibers are drawn in the do-

main. And thirdly, since comprehension of the Reeb space is at the heart of

the mathematicians’ task, a third view should show the Reeb space. We will

call these views the range view, the domain view and the Reeb space view,

respectively, as shown in Figure 4.3.

As shown in Figure 4.3 again, other supporting GUI components are avail-

able for interacting with these views. The user can start/end perturbing the

function by checking/un-checking the check box on the left. The user defines

the function by inputting equation in the text field. The color of fibers can be

changed by clicking buttons and specifying colors with an operation system-

specific color picker. Here, the buttons represent the topological shapes of

a fiber component. The shapes are categorized as they were in Figure 3.7,

so that the user can understand the topological shapes of fibers by taking

advantage of our fiber detection algorithm. The user can also perform screen

captures of the views from the menubar.

We start with the domain view, as it is the simplest, then the range view

and Reeb space view, omitting discussion of function perturbation until the

basic role of each window has been covered.

4.2.1 The Domain View

Mathematical exploration of multivariate topology depends on being able to

see the topology of individual fibers, and the domain view is present for this

purpose. As described in Section 3.1, a fiber may conveniently be described
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as the intersection of isosurfaces of two different functions, and this approach

is commonly used already.

The first view, therefore, shows a single fiber by displaying one transpar-

ent isosurface for each of the two functions in contrasting colors, and showing

their intersection in a third color. In Figure 4.3, these colors are yellow, green

and red respectively, but these choices are arbitrary and other possibilities

could be chosen.

As usual for renderings of 3D data, this view can be rotated, while this

should primarily be understood as a passive view in which the results of

choices made in the range view are displayed.

4.2.2 The Range View

Since mathematicians already depict fiber topology in the range space, this

view is the heart of the application. Ideally, this view would be identical to

the diagram shown in Figure 3.2, with boundaries between regions of different

topological shape, and each region or boundary neatly labelled with an iconic

representation of the topology. In practice, however, once functions become

arbitrarily complex (as shown in Figure 3.4), it is easy to overload the visual

representation. Moreover, if boundaries overlap each other, it can become

difficult to identify which icon belongs to which boundary.

Instead, we choose to represent the topological changes along the bound-

aries with the color coding shown in Figure 3.3, by providing inset windows

showing the fibers at a particular pixel, and by allowing the user to select a

pixel to be shown in detail in the domain view. Thus, by interacting with the

range view, the user can understand topological changes directly, by seeing

how the fiber topology changes across a boundary directly.

Secondly, while color coding is generally to be avoided unless there are

only a few distinct colors, in this case, there are exactly seven possible topo-

logical changes (Figure 3.3), making color coding a viable option. Moreover,
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the topological change across a boundary is consistent along the length of the

boundary, meaning that a uniformly colored line gives reliable information

to the user.

Once the choice has been made to represent topological changes (i.e. sin-

gular fibers) with color, remaining pixels must be monochrome, but intensity

can still be used to represent further information, and here we choose to use

intensity to represent the multiplicity of the function – i.e. the number of

distinct fiber components that make up a fiber. Thus, black indicates re-

gions with no fibers because no domain point takes on those values. Dark

grey corresponds to one fiber component (i.e. a simple arc or a loop), while

lighter grey indicates regions of greater topological complexity.

Since it is only possible to show a single fiber at a time in the domain

view, the range view also acts as a selection panel in which the parameters

of the fiber are chosen, and the currently selected fiber is shown as a cross

in the view. Interestingly, this view can then be seen as a projection of the

graph of the function akin to that used in the work on continuous scatterplots

[BW08].

While the range plot can extend to the boundaries of the view, a further

refinement was added: inset views. In essence, the iconic representations in

Figure 3.2 are thumbnail sketches of representative fibers, and are used as

visual anchors for mathematical reasoning. Since these images are generated

for the domain view, it is straightforward to compute thumbnails for any

desired choice and pin them to the window for reference, as shown in Figure

4.1, using menu commands on a pop-up menu. To avoid having too much

visual complexity, these are placed inside the boundary of the range window,

with lines indicating their location in the range: inset placement will be

discussed in Section 4.3.1.
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4.2.3 The Reeb Space View

In addition to the range view, the Reeb space view is also provided, to

allow the user to see the relationships between the sheets whose overlap is

displayed in the range. Although the range view can be seen as a simple

projection of the Reeb space view, there are two reasons why it should not

be subsumed into the Reeb space view. First, the range view reproduces the

existing mathematical convention for reference. Second, the range view is

also used to choose fibers to display in the domain view, a task that would

be needlessly complicated if there were free-form rotation.

Against this, it is clear that the Reeb space view gives additional infor-

mation beyond that is represented in the range view. As with the domain

view, rotation is supported, although user interaction is at present limited.

4.2.4 Function Perturbation

While the views so far described provide the functionality of drawing the sin-

gular fiber topology, the task of perturbing the function needs to be added,

and at this point a problem arises: in which view should function perturba-

tion (i.e. visual editing) be performed? To see why this is a problem, consider

a degenerate fiber in which three loops occur, as in Figure 3.4. Eliminating

one of these loops implies editing function values along the loop, i.e. changing

values according to where they are in the domain. Moreover, values near the

loop will also need to be changed to ensure continuity.

Logically, therefore, function perturbation belongs in the domain view,

and this requires a choice of how to edit fibers. Since the goal is to shift the

values on a fiber which lies along the intersection of two isosurfaces, a simple

approach is to move either isosurface to destroy the fiber. This is achieved by

letting the user select a control point on either isosurface and drag it along

the normal of the isosurface at that point. Once the user is confident that
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sufficient perturbation has been performed, the function values are updated

as described in Section 4.3.3 and the topology of the function is recomputed

and redrawn.

4.3 Techniques

In order to support the mathematical workflow, we would ideally compute

the Reeb space of the function together with all of the singular fibers. Then,

a fiber component is equivalent to a point in the Reeb space. Unfortunately,

no practical algorithm has yet been reported for correct computation of the

Reeb space, although an algorithm was reported for computing the Jacobi

set [EH04].

Instead of this, we therefore approximate the topology of fibers by com-

puting the Joint Contour Net (JCN) [CD14], as discussed in Section 3.2.1.

Although the JCN can be used to approximate the Reeb space, it does not

identify the singular fibers, nor classify their topological shapes. We therefore

implement an approximate classification based on local relationships between

nodes in the JCN, as described in Section 3.2.2.

Other tasks required include placement of the insets in the range view

(Section 4.3.1), rendering the isosurfaces and fibers in the domain view (Sec-

tion 4.3.2), editing the function in the domain view to remove degeneracies

(Section 4.3.3), and laying the JCN out in the Reeb space view (Section

4.3.4).

4.3.1 Placing Inset Views

We saw in Section 4.2.2 the need for insets of fibers in the range view. As

the session continues, however, multiple insets accumulate, and it is necessary

to keep them organized. We reserve the outer border of the range view for

insets, and use the center for the actual range. Then, where should the insets
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be placed for maximum clarity?

We note that insets are just labels, reducing the problem to a question of

label placement. For this, we apply a standard technique [BKSW07], which

arranges large annotation labels outside a central content area with minimal

overlap.

Once these insets have been placed, a leader line is drawn from each inset

to its range value. Since the leader lines are hard to distinguish from singular

fiber curves, we show the insets with an optional black boundary, as seen in

Figure 4.1.

4.3.2 Extracting Isosurfaces and Fibers

Rendering the domain view is straightforward, as what is required is to draw

isosurfaces of the two scalar functions, plus the fiber at their intersection.

The latter is extracted by extracting the level set of the f2 from the patches

of marching tetrahedra for f1.

4.3.3 Perturbing the Function

As we have seen, one of the key tasks in visualizing singular fibers is to per-

turb the existing function to remove degeneracies. Doing so requires iden-

tifying fibers where multiple topological changes occur simultaneously, and

changing the function slightly so that these changes are spread out over mul-

tiple fibers. In practice, what this implies is choosing one fiber component in

the domain view, and modifying it so that any change to it occurs at different

function values.

For this, we observe that the change must be localized in space so as not

to affect the other fiber components in the fiber. While it is theoretically pos-

sible to select a fiber and adjust neighboring values automatically, a simpler

approach adds or subtracts a small function with limited spatial support. If

this is performed at a singular point in the domain where two components
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touch, then the singular point will have its value changed, and will instead

occur at another values.

Moreover, it is not necessary to displace the singular point with respect

to both functions. Instead, it suffices to do so for a single function: i.e. we

want to locally displace one of the isosurfaces used to define the fiber.

Once the problem is stated thus, the solution is straightforward. We

allow the user to select any point on either isosurface and drag it inwards

or outwards (i.e. constrained to the isosurface’s normal vector). Dragging

it outwards expands the isosurface (adds value), while dragging it inwards

contracts the isosurface (subtracts value).

In either case, the change is accomplished by adding a small radial basis

function (RBF), the amplitude of which is governed by the distance of the

drag, and the radius of which is a small distance chosen as an initial parame-

ter: in this implementation 50% of the size of the domain. In our experiment,

the radius was large enough for avoiding unintended change to the topology.

4.3.4 3D Layout of the Reeb space

In the Reeb space view (Section 4.2.3), we show the Reeb space in 3D to

allow the user to understand the relationships between fiber components.

Ideally, this would involve a canonical layout algorithm for the nodes of the

JCN, which represent quantized fibers. Each node has its (x, y) coordinates

fixed by the two function values, leaving the z coordinate available to the

layout algorithm. Unfortunately, configurations exist in which the sheets

in the Reeb space are guaranteed to have intersections, making a canonical

crossing-free algorithm impossible.

Since this exact problem arose in work on contour trees, and required

separate work to resolve [HSCS11], we can identify that this is a subtask

beyond the scope of the present thesis. Thus, like the solution used by Duke

et al. [DCK+12], a heuristic layout is called for, based on a spring layout
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Figure 4.3: The interface consists of a set of three views, each showing a dif-
ferent aspect of the function under study. We put optional GUI components
for interacting with these three views.

Vertical Direction

f
1
/ f

2

Figure 4.4: For controlling the 3D layout of the interior JCN in the Reeb
space view, each node in the JCN moves vertically. The motion is controlled
with the repulsive forces from other nodes having the same quantized (f1, f2)
value (in red), and the attracting forces from the adjacent nodes (in green).
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algorithm, shown in Figure 4.4. The popular force-directed graph layout

algorithm [FR91] in 2D works fine for the 3D layout of the Reeb space in

our experiments, but with a few modifications. We constrain the layout to

leave the (x, y) coordinates fixed, and initialize all nodes greedily so that two

regular or birth fiber component connected in the interior JCN with an edge

have the same z value, where such a set of nodes is called a sheet in this

thesis. The z values are determined evenly, and then normalized. We set the

z value of the other nodes to the mean of those of the adjacent nodes.

To apply the forces, we set ki for each interior JCN node i, replacing the

“area” in the original equation [FR91] with 1:

ki = Ci

√
1

#{vertices having the quantized f value (f1(i), f2(i))}
, (4.1)

where f1(i) and f2(i) denote the corresponding function value for the JCN

node. Ci is experimentally set to control the layout for each internal JCN

node i, as mentioned later in this Section. Then, further following the for-

mulation in the original algorithm, the attractive force Fa(d) = d2/ki and

the repulsive force Fr(d) = −k2
i /d are applied as illustrated in Figure 4.4.

Here, d is the distance to a node having the same quantized (f1, f2) value,

and an adjacent node, respectively. Either Fa or Fr is calculated for each of

the nodes, and summed up. Since the one-directional approaching of nodes

inevitably increases Fr without a limit, we set a maximum value for its mag-

nitude. 1 works fine in our experiment, and to balance the two forces, the

maximum magnitude 1 is also set for Fa. In Equation 4.1, we set

Ci =
#{nodes in sheet i}

maxj(#{nodes in sheet j})
, (4.2)

where sheet i is the sheet containing node i, and maxj is the maximum

number of all of the sheets in the interior JCN. By setting Ci to this value,

nodes with a small sheet can have greater repulsive force: otherwise such

nodes will lie close to their neighbors having the same f value, since the
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repulsive force is small for nodes in a small sheet. The nodes moves in

the z direction by s (min(max(−1,
∑

Fr), 1)−min(max(−1,
∑

Fa), 1)), for

each time step, where s is initially set to 1 and multiplied by 0.9 before

every 100 iterations. In this way, the layout is first controlled to solve the

global clutters, and then gradually more local clutters. The display sets an

independent coordinate: it takes the (f1, f2, z) values as input, and the z

values are normalized for each time step.

4.4 Implementation

In the previous sections, we described the interface and algorithmic issues

for this application. We have implemented it in C++ using Qt for the in-

terface, CGAL for tessellating the domain space, Boost for handling graph

data structures, OpenGL for rendering, and again OpenGL for the rasteriza-

tion step in the JCN construction. The functions were sampled at a domain

resolution of 50× 50× 50, although this can easily be varied.

Although performance is not the principal concern in this implementa-

tion, we give some typical figures for computation times. For every example

in the Figures, the computation for the sampling, rasterization, and JCN

construction ended within 2–3 minutes in total. However, the topological

shape detection with the decision tree in Figure 3.7 took 15 minutes (Figure

4.1) to 2 hours (Figure 4.5, bottom). We later found that the memory layout

for the JCN was inefficient, taking more than 95% of the time for access, and

are working to fix the problem. These times were recorded on a laptop PC

with Intel Core i7 CPU with 2 cores (2GHz, 256KB L2 cache per and 4MB

L3 cache), 8GB RAM, and an Intel HD Graphics 4000 GPU (1024 VRAM).

We report that errors in fiber type detection can be found: this however

was expected given the quantization implicit in the JCN. Additional errors

might result from calculation errors in the function values, creating small
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singularities in the domain. In practice, however, these merely change the

local structure of the JCN, and that of the Reeb space visualization, without

a significant impact on the global structure. Even such errors were topolog-

ically consistent: e.g. simultaneous birth and split of a fiber in a pixel were

sometimes separated to a sequence of birth and split fibers in neighboring 2

pixels. In the following experiments, the errors did not affect the users’ task.

4.5 Outcomes

More important than the computational speed is the question of whether

the interface supports the desired interactions by the user. We assess this

by illustrating how the application supported a user’s tasks in Section 4.5.1,

and by reporting feedback provided by some indicative users in Section 4.5.2.

It is the nature of this type of application that the initial target audience is

small and highly specialized – i.e. audience including a specific research group

headed by one of the collaborators. Moreover, although tasks have been

defined in Section 4.1, these tasks are hard to measure quantitatively, and

it is more important to understand whether the target group feels that the

application is successful in supporting their research. We therefore recruited

two graduate students and 4 experienced researchers. Of the latter, 2 were

collaborators, 1 a member in a collaborator’s group. We demonstrated the

application to them, and collected their feedback when done.

4.5.1 Task Support

To demonstrate that the application supports the desired tasks, we focus on

the two principal tasks from Section 4.1: drawing the fibers, and perturbing

the function.

Figure 4.5 demonstrates how a professional mathematician (not a collab-

orator) used the interface for understanding the fibers in a particular func-
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(a)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (a) The original function f(x, y, z) = (x2, y2 + z2) in the
domain view.
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(b)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (b) The original function f(x, y, z) = (x2, y2 + z2) in the
range view.
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(c)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (c) The original function f(x, y, z) = (x2, y2+z2) in the Reeb
space view.
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(d)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (d) The perturbed function f(x, y, z) = (x2, y2 + z2 + x) in
the domain view.
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(e)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (e) The perturbed function f(x, y, z) = (x2, y2 + z2 + x) in
the range view.
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(f)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (f) The perturbed function f(x, y, z) = (x2, y2 + z2 + x) in
the Reeb space view.
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(g)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (g) The function perturbed with the RBF interface, displayed
in the domain view.
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(h)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (h) The function perturbed with the RBF interface, displayed
in the range view.
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(i)

Figure 4.5: The expert in Section 4.5.1 used the interface to investigate how a
perturbation can alter the function on top, f(x, y, z) = (x2, y2 + z2). Firstly,
he changed the equation to f(x, y, z) = (x2, y2 + z2 + x), on the middle, by
applying perturbation, which is the traditional technique in the field. He
ended up deforming the isosurface directly with the RBF interface, as shown
on the bottom. (i) The function perturbed with the RBF interface, displayed
in the Reeb space view.
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tion: f(x, y, z) = (x2, y2+z2). Here, the cross-mark in the range view defines

the isosurfaces and fiber to be shown. As the user drags the cross-mark across

colored boundaries, the fiber changed its topological shape. The interface

satisfied the user for investigating the fibers of f(x, y, z) = (x2, y2 + z2), by

helping him find a few topological deformations to the fibers. Note that this

would have been time-consuming with manual visualization. After under-

standing the original function, he deformed it to investigate the possible de-

formations. He first used the traditional technique: perturbing the function

with equation. He altered the input equation to f(x, y, z) = (x2, y2 +z2 +x).

Then, he moved the cross-mark around in the range to see and understand

the configurations of the fibers in the domain.

After that, he interacted with the RBF perturbation. In contrast to the

traditional perturbation on equations, the deformation immediately showed

how the fibers can be modified. He reported such a visual indication is indeed

useful for understanding the various possible deformation, which had been

difficult to do manually. He also reported that the 3D Reeb space view was

useful for understanding the connectivity of the fiber components, compared

with the Range view.

The user also set inset views to remind himself of the topology. He re-

ported that interactions in the domain view with other two views is signifi-

cantly more intuitive, compared with traditional techniques.

4.5.2 Informal User Study

All participants agreed that the interface successfully provided an intuitive

means for analyzing the singular fibers.

The graduate students commented that the domain was useful in elucidat-

ing cases where the fibers were knotted, and for understanding complicated

merging/splitting of fiber components. An experienced researcher reported

that drawing the isosurfaces of the coordinate functions f1 and f2 enabled
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him to investigate the relationships between the two functions. For an exam-

ple of such relationships, he referred to whether the combination f = (f1, f2)

would become a stable map. Here, a stable map is a map that contains only

non-degenerate fibers. The experienced researchers felt that the rapid dis-

play of the overall configuration of the range was useful in understanding the

global features of a function. This is especially useful since the interface can

show how the local features, such as topological shapes, relate to each other.

In particular, such relations included the number of fiber components. The

experienced researcher in Section 4.5.1 and the primary researcher reported

that the Reeb space view was useful for understanding the connectivity of

the fiber components. However, when the Reeb space included visual clutter

due to its complexity, the participants preferred the range window to identify

the connectivity of the fiber components. A particular problem was that the

2-manifolds in the Reeb space were sometimes located too close to each other,

which makes the structure of the Reeb space difficult for the participant to

see.

Solving degeneracies also got attention of the participants. The gradu-

ate students reported that our interface let them imagine various ways of

solving a degeneracy. In contrast, the principal researcher supported the

use of the interface for the following reasons. First, it simplifies understand-

ing the topological shape of a degenerate fiber by showing the decomposed

non-degenerate singular fibers. Secondly, generating specific examples for il-

lustrations becomes considerably easier, which is a classic visualization task.

Thirdly, he expects the interface to be useful in studying singularity theory,

where it is often important to guess how a perturbation changes the singular

points.

The participants also felt that while the interface was useful, they wanted

us to enhance the usabilities. In particular, improved performance was es-

sential for the interface to become practical. Also, the participants found
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that the interaction in the RBF perturbation should become more intuitive.

The participants further demanded the specification of function values in the

range view, instead of mouse click in the window. Indeed, an experienced

researcher reported that specifying a pixel with a mouse was a difficult task.

Notwithstanding this, they felt that the application would reduce the diffi-

culty of their study. We are currently making our efforts to solve the above

mentioned problems.

In addition, we tested our interface for mathematical studies in [STS+14].

A prototype of our interface had visually verified the theoretical prediction

[IS09] about degeneracy in a mapping under the study. (The result is shown

in the work by Saeki et al. [STS+14, Figure 17]) This shows that our in-

terface can visually check the soundness of certain mathematical predictions

and results. Although rigorous verifications are still necessary, visual check-

ing reduces the amount of such a task in certain situations. For example,

when the predictions or results are inconsistent with the visualization results,

a mathematician can focus on the investigation of this inconsistency to ac-

celerate the verification process. Further, the experienced researcher in the

task support demonstration (Section 4.5.1) reported that the interface had

a potential to lead to a new direction of mathematical theories by providing

visual instincts that were difficult to obtain before.

In summary, both experienced and relatively novice participants found

the interface of value, albeit in different ways. Since the intent was to support

both analytic and learning tasks, the feedback confirmed the application’s

value of the application, while identifying directions for further development.
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Chapter 5

Simplifying the Time-Evolution
of Local Extrema

In this chapter, we simplify the time-evolution of local extrema in scalar

fields. Existing simplification techniques have not taken into account the

temporal continuity of local extrema, as reviewed in Section 2.3. In contrast,

we obtain temporal continuity by analyzing fiber topology. This is based

on our Reeb space analysis in Chapter 3. Evaluation is given by analyzing

fluid simulation datasets. Before proceeding, however, recall that the pre-

ceding chapters focused on the analysis of multi-fields, but not time-varying

scalar fields. Therefore, first we explain our contributions in the context of

analyzing the time evolution of local extrema.

5.1 Analyzing the Time-Evolution of Local

Extrema

The time-evolution of local extrema is analyzed in a variety of applications

[LHL+98, LBM+06, TFTH13]. For example, in the study of magnetic fusion

plasma, flows of ions and electrons are analyzed as 2D distribution of elec-

trostatic potential [LHL+98]. There, local extrema correspond to vortices.

The vortices are found in both macroscopic and microscopic scales, and their
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complex interactions are studied theoretically and experimentally [KKSA10].

Speculations have remained about physical processes in fluids. In case

of magnetic fusion plasma, for instance, zonal flow structures can be formed

[LHL+98]. Physicists have described the phenomena with a 2D turbulence

model [HM78], but the details of the structure formation processes are still

unclear. For a further illustration, consider a 2D fluid with anisotropic vor-

tices that are lengthened along the vertical direction. One hypothesis may

be the elimination of small vortices along that direction, while another may

be the mergers of such small vortices along the same direction.

When a physicist intends to understand the time-evolution of local ex-

trema, a straightforward and common approach is to animate static visual

metaphors, such as isocontours or colormaps. However, temporal continuity

of a local extremum is interpreted by human eyes, and therefore analyses

tend to focus on features that stand out. Such analyses can be easily misled

by a naive configuration of visualization parameters such as the number of

contour lines or the choice of a colormap. Alternatively, one would under-

stand the time-evolution of local extrema by visualizing the Fourier spectra

or the autocorrelation of the time-varying scalar field. The problem here,

however, is that such analyses do not provide the spatial locations of local

extrema in the domain, and thus neither the locations of the vortices. As a

consequence, the positions of vortices remain unknown, let alone events such

as birth/death/merge/split events [SW97, LBM+06] of vortices. Therefore,

sophisticated visualization techniques are necessary.

5.2 Objectives

As mentioned above, the time-evolution of local extrema awaits further anal-

ysis with a visualization technique that respects the temporal continuities of

the local extrema. In order to cope with the vast amount of local extrema, it
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is necessary to focus on the informative parts of a time-evolution. We refer

to this act of focusing as simplification. When conducting simplification, the

temporal continuities of local extrema should be taken into account, in order

to understand the dynamics of fluids. Therefore, such continuities should

be explicitly extracted and encoded in the feature extraction process. When

visualizing the dynamics of fluids, interactions of vortices are often classified

into birth, death, merge, and split events [SW97, LBM+06]. Indeed, the

phenomena of plasma in the previous section can be understood as merg-

ers of vortices, in certain cases [KKSA10]. Interestingly, it is often assumed

that such temporal events of vortices are identical to those of contours. This

motivates us to analyze the topology of isocontours in time-varying scalar

fields.

However, dealing with critical points in realistic datasets is not straight-

forward. Indeed, techniques for simplifying critical points that continue

over time are not fully developed. Our idea is to utilize our formulation

in Chapter 3, which was based on fiber topology of function f = (f1, f2).

When extracting the time-evolution of critical points from a time-varying

2D scalar field f1(x, y, t) : R2 × R → R, one can define an auxiliary func-

tion f2(x, y, t) = t. In this way, the evolution of the 2D scalar field can

be expressed as f : R2 × R → R × R, which is identical to f : R3 → R2.

Therefore, the time-varying 2D scalar field with the auxiliary function f2 is

a special case of our target function f : R3 → R2. Currently, techniques are

not available for exploring the local extrema that are interpolated along the

time axis. Although we can find several techniques on showing and simpli-

fying the critical points in 2D scalar fields, they cannot be directly applied

to our objective since the temporal snapshots of the 2D scalar field are not

interpolated over time. Therefore the simplification process has been applied

individually for each time step, without fully tracking the evolution of the

critical points over time. (See Section 5.3 for a comprehensive comparison
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with existing techniques.) To summarize, the existing methods for tracking

the time-evolution of critical points did not fully retain the temporal contin-

uation of such points. Such methods limit the analysis of the time-evolution

of critical points, in the sense that visualization results were not based on an

actual interpolation.

The goal of this chapter is to simplify the time-evolution of local extrema

in 2D scalar fields, and to visualize the results. Regarding this chapter, the

contribution is twofold. The first is to extract the time-evolution of local

extrema, which encodes the temporal continuities of them. The second is to

simplify their temporal transitions by cutting off local temporal trajectories

of critical points. We directly visualize the time-evolution of critical points.

As mentioned in Section 1.2, identifying the local extrema from the structure

of the JCN is a challenge. We overcome this problem by replacing the data

values with the quantized values in the JCN, and extract the local extrema

from these values. The time-evolution of local extrema is simplified with the

recently developed Reeb skeleton [CCDGb], which describes the global struc-

ture of Joint Contour Net by grouping similar JCN nodes. By eliminating

these groups, we can eliminate corresponding local extrema in a topologically

consistent manner.

The remainder of this chapter is organized as follows. Section 5.3 clarifies

the relation of our technique with existing ones. In Section 5.4, we intro-

duce our mathematical formulation. There, we make clear the relationship

between the time-varying scalar fields and local extrema. We also review the

types of topological reductions that are applicable to time-varying 2D scalar

field. In Section 5.5, we introduce how we extract and simplify the Jacobi

set. Finally, we evaluate our method in Section 5.6.
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5.3 Visualization Techniques for Tracking the

Time-Evolution of Local Extrema

Chapter 2 included a review for analyzing time-varying scalar fields, in the

context of topological analysis. Now, our contribution is clarified from the

viewpoint of visualizing the time-evolution of local extrema by introducing

the background. Therefore, we next review related techniques from the vi-

sualization for the time-evolution of local extrema.

In the literature, we find two major categories of techniques for extracting

the time-evolution of local extrema. The first extracts local extrema for each

time step separately, while the second extracts the time-evolution of local

extrema as continua such as curves.

First, we compare our approach with the first category, which is tech-

niques extracting local extrema for each time step. Bremer et al. [BBD+07]

encoded the critical points in the Morse-Smale complex [EHZ03, BHEP04],

for each time step. By taking advantage of the Morse-Smale complexes, they

simplified the configuration of critical points by removing small ridge/ravine

lines and their associated critical points, for each time step. They also pointed

out the fact that the time-evolution of critical points becomes the Jacobi set

by considering an auxiliary function f2(x, y, t) = t, as we did in Section

5.2. However, they did not propose a method to extract the Reeb space.

Takeshima et al. developed a hybrid wind tunnel [TFTH13] as a visual anal-

ysis tool for comparing actual flow and its measurement-integrated simula-

tion. They visualized the actual flow with a fog generator physically, and

the simulation result with an image showing topological features such as the

critical points and the ridge/ravine lines. For animating the results, topolog-

ical features were extracted in each time step using Takahashi et al.’s method

[TIS+95]. Although simplification was not mentioned by Takeshima et al.,

the time-evolution of critical points could potentially be simplified by sim-
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plifying the surface network for each time step. Finally, the continuity of

critical points was defined as the overlaps of the vortical regions.

Kettner et al. [KRS03] developed the Safari interface to let the user

find interesting time step. They plotted the number of contours in a 2D

histogram of time and the scalar value, so that the user can effectively find

interesting phenomena. Later, Fujishiro et al. [FOTT08] developed T-Map,

which was a time-series of pixel glyphs indicating the topological complexity

of isosurfaces. This enabled the user to effectively find the time steps of

interest.

In contrast to the techniques mentioned so far, we actually extract and

analyze the Reeb space thanks to the JCN, in order to trace the temporal

connectivity of fibers, and then simplify it. In our approach, the temporal

behaviors of critical points are defined by actually interpolating the scalar

values linearly over the tetrahedra that are obtained by tessellating the 3D

domain (which consists of the 2D spatial and the 1D temporal domain).

Now, we compare our approach with the second category, i.e. techniques

for extracting the time-evolution of local extrema as spatiotemporal trajec-

tories. As mentioned in Chapter 2, Edelsbrunner et al. [EHMP04] extracted

the time-evolution of critical points from time-varying scalar fields together

with the Reeb graphs for every time step. As with our approach, the time-

evolution of critical points was identified as the Jacobi set of multi-field

f = (f1, f2), by setting an auxiliary function f2(x, y, t) = t. The types of

topological changes were also identified. Another important advantage in

the approach by Edelsbrunner et al. [EHMP04] is their Jacobi set extrac-

tion algorithm [EH04]. As opposed to our approach, this approach does not

require the quantization of function values, and therefore can extract the

full details of singularity. However, their algorithm does not explicitly en-

code the connectivity of non-singular fiber components between consecutive

time steps. In contrast, our JCN based approach utilizes such information
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for selecting important local extrema. Unfortunately, their visualization re-

sults were not presented, possibly due to an overwhelming amount of critical

points. Indeed, the simplification of extracted features is necessary for ex-

ploring the time-evolution, in order to cope with such overwhelming amount

of critical points. Sohn and Bajaj [SB06] proposed a similar approach, which

connects the nodes of Reeb graphs across different time steps. The corre-

spondence between these nodes (i.e. contours) were identified by the overlaps

of the corresponding contours in neighboring time steps, rather than inter-

polating the connectivity of fibers. In addition, they did not track critical

points, but isocontours at a scalar value specified by the user. Shafii et

al. [SDHH12] tracked the time-evolution of critical points to visualize the

effect of smoothing scientific data. Rather than tracking the whole fiber

topology, they attached the associate types of topological changes over the

entire period of time, as labels to the initial contour tree. Even in these ap-

proaches, extraction and simplification of the critical points respecting their

temporal continuity remained as an untackled problem. In contrast, we can

interpolate the fiber topology with respect to the time, and can simplify the

time-evolution of local extrema while respecting their temporal continuity.

5.4 Mathematical Formulation

In this section, we explain how a scalar field can be viewed as a multi-field,

and how we formulate the simplification based on fiber topology.

5.4.1 Time-varying Scalar Fields and Their Jacobi Set

Now we explain how the time-evolution of critical points becomes the Jacobi

set. Actually, a time-varying scalar field over a 2D domain, f1 : R3 → R1,

can be understood as a multivariate data where each time step is represented

with an isochron, i.e. an isosurface of an auxiliary function f2(x, y, t) := t.
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Figure 5.1: The Jacobi set in a time-varying scalar field. The local maxima,
local minima, saddles are indicated in red, blue, and green, respectively.
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See Figure 5.1, where the local maxima and local minima (in red and blue,

respectively) are points where the fiber becomes a point, which is the birth

of the fiber of f = (f1, f2). Further, the saddles (in green) are points where

fiber components meet to become a single fiber component. Thus, we see

that the critical points are actually the Jacobi set from the viewpoint of fiber

topology.

The difference to the general case of multivariate data is that one of the

coordinate functions (in this case f2) is always a plane. One consequence is

that every plane becomes one single connected component without a loop.

5.4.2 Simplification through Modifying Fiber Topol-
ogy

Gay and Kirby [GK11] discuss how the death and birth fibers can be removed

from generic smooth maps. As we have seen the correspondence between

death / birth fibers to the local extrema in the above section, we can build on

their analysis to address our problem of simplifying the local extrema. Figure

5.2 lists the possible topological transitions that can be used for simplifying

the Jacobi set in the Reeb space, baring degeneracies.

The swallowtail is a pattern where a curve of critical (or singular) val-

ues will go under topological change. There, two cusp points and another

fiber type appear or disappear. Bhatia et al. [BWN+13] studied this as the

simplification of Jacobi set. However, implementation details were not given.

The merge is a pattern where two cusps are resolved to form two curves

of critical values. To the best of the author’s knowledge, this is not studied

in the context of simplifying the Jacobi set.

The eye is a pattern in which a merge and a birth curve will disappear to-

gether with two cusps connecting them. Chattopadhyay et al.’s simplification

through Reeb skeleton [CCDGb] is similar to this, although the connection

to the mathematical theory was not given.
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Figure 5.2: Topological changes in the range (and the Reeb space) that
correspond to simplification, for a stable function. The blue curves indicate
the image of merge fibers, while red curves indicate that of birth fibers.
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This time, we choose eliminating the eyes for simplifying the local ex-

trema, as it is the only one which will actually remove a connected component

of critical points, rather than merely reducing the points in it.

5.4.3 Persistency

As with common topological simplification techniques [CSvdP04, BBD+07],

we utilize persistency to control the complexity of the topology in the display.

In this strategy, a persistency value is set to specify whether a feature (in

this case a local extremum) is to be shown or not to the user. Here, a

persistency value is a real number for each feature. In the simplest form

of the simplification technique with persistency, features with persistency

value less than the user-specified threshold are hidden from the visualization

results, while those greater are shown. While the persistency should be

calculated according to the interest of the user, we set it to the volume of

the sheet, in this work. Alternatively we also tried the duration of the local

extrema, but this resulted in removing many separate local extrema at the

same persistency threshold. This is due to the fact that most local extrema

had similar durations represented with quantized time durations, resulting

in having several identical time steps.

5.5 Simplifying Local Extrema

On the basis of the formulation in Section 5.4, we extract and simplify the

time-evolution of local extrema in 2D scalar fields. Recall that the time-

evolution can be regarded as the birth-fibers in f = (f1(x, y, t), f2(x, y, t)) :

R3 → R2, where the domain consists of the 2D space and time. Here,

f1 is the original scalar field, and f2(x, y, t) = t the time. We obtain the

topology of fibers through analyzing the Reeb space. The obtained topology

is simplified by removing the eyes. The simplification is controlled by a single
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persistency value: each eye has a persistency value, and it is shown if and

only if its persistency value is below the user-specified threshold.

5.5.1 Obtaining the Connectivity of Fibers

To analyze the Reeb space, we find two approaches in the literature: Jacobi

set extraction [EH04, EHMP04] and the Joint Contour Net (JCN) [CD14].

We choose the JCN for the following reasons.

On one hand, as mentioned in Chapter 2, the local extrema can be ex-

tracted as the Jacobi set [EH04] without quantization, and the time-varying

Reeb graph encodes the temporal continuity of the local extrema with the

Reeb graph for each time step [EHMP04]. To restate the conclusion in Chap-

ter 2, however, these techniques do not offer the Reeb space. Indeed, while

they provided the mathematical conditions to find the topology of fibers

between two time steps [EHMP04], the actual computation for investigation

was not given. As a result, the connectivity, and thus also the time-evolution,

of the fiber components are not available. In particular, the image of merge-

fibers can intersect between two time steps, and this information is not rep-

resented in the time-varying Reeb graph. Our simplification in Section 5.4

cannot be established without such connectivity of fibers.

On the other hand, the Reeb space can be approximated with the JCN

[CD14], as we have done in Chapter 3. In contrast to the above mentioned

Jacobi set extraction, the continuity of the fiber components can be obtained.

The Reeb Skeleton [CCDGb] describes the eyes. We simplify the local

extrema, instead of the set of fibers in the original work [CCDGb, CCDGa].

We assume that the input data is a time series of scalar fields. Each scalar

field is given as a 2D grid-sample of scalar values with the sampling positions

being identical for every time step. As we did in Chapter 3, we tesselate the

3D space, which consists of the 2D space and time in this chapter. Delaunay

triangulation is employed for tessellating the 3D space into a set of tetrahedra.
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Note that the JCN construction [CD14] assumes linear interpolation of data

values within each tetrahedron.

5.5.2 Constructing the Joint Contour Net

We construct the JCN with the rasterization algorithm [CD14], as in Chap-

ter 3. Here, a strategy is necessary that locates the local extrema in the

domain. We achieve this by obtaining the inverse mapping, which maps each

JCN node (lying in the range) to the corresponding sampling points (in the

domain).

To do so, we start the JCN construction with finding the destination of

the sampling points in the framebuffer. Here, we need to guarantee that we

find the sampling point p in the quantized data value fr(p) ∈ R2 as we have

obtained above, which may not be the case if we only rasterize the triangles.

Since we also rasterize all the points in the triangles as described in Chapter

3, this holds: i.e. p is always mapped to fr(p) after the rasterization.

5.5.3 Simplifying the Jacobi Set through Reeb Skele-
ton Simplification

In order to identify the Jacobi set segments that are to be simplified, we

first calculate the persistency of each Reeb skeleton node, and map it to

each Jacobi set segment. Each Reeb skeleton node has a set of JCN nodes,

each of which becomes active if a Reeb skeleton node containing the JCN

node becomes active. A Jacobi set segment becomes active if one of its

containing tetrahedra are active, i.e. a JCN node containing the tetrahedron

is active. For each regular Reeb skeleton node, we define its persistency as

the persistency of the sum of the birth node. As discussed in Section 5.4.3,

we choose the time-integral volume as the persistency. This is achieved in

the following manner. For each local extremum in a time step, we find the

closest enclosing contour containing the saddle, as in Figure 5.1. The idea
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is to give the persistency as the volume swept by the enclosing contour. We

approximate the volume with active cell count [CDD06], i.e. the number of

tetrahedra touching the volume. The active tetrahedra are obtained for each

JCN node. To do so, we record the tetrahedra when they are projected in

the JCN construction algorithm, and create a mapping from each JCN node

to the tetrahedra.

5.5.4 Extracting the Jacobi Set

Although an algorithm for extracting the Jacobi set [EH04] exists, it does

not take into the account the quantization of the values. Therefore, it is

not applicable to our approach. Indeed, for tetrahedra that are degenerate,

i.e. more than two of its vertices are mapped to the same function value

(f1, f2), locally checking for the deviations of values cannot determine the

singular fiber type such as birth.

We therefore find the local extrema by checking the graph structure of the

JCN. Recall that each of the JCN node corresponds to a fiber component.

Here, since f2(x, y, t) is the time, each fiber component is a contour of some

scalar value f1(x, y, t), in a single time step t. Therefore, we find a local

extremum by finding a birth fiber. We model the image of a local extremum,

as a JCN node i that has no adjacent node of function value (f1(i)+1, f2(i)),

where fj(i) denotes the function value of the JCN node i.

Edelsbrunner et al. [EH04] showed that the local extrema move only along

the edges of tetrahedra. Although Edelsbrunner et al. did not quantize the

function values but instead perturbed them, the location of local extrema can

approximate our quantized version. Therefore, we approximate the local ex-

trema by the edges of tetrahedra: for each local extremum node i of the JCN,

we find the set of local extrema (in our sense) as a set of tetrahedron edges

e: f−1(i) = {e | e is incident to a tetrahedron point which is mapped to i}.

A remaining problem is that the set f−1(i) can have multiple edges as its
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elements. Our experiments in Section 5.6 indeed suffered from this problem,

but yet the visualization results were practical.

5.6 Results and Evaluation

We tested our approach by simplifying the local extrema with a few plasma

fluid datasetsand an analytic function. The datasets were obtained by cour-

tesy of Dr. Shinya Maeyama from the Japan Atomic Energy Agency.

Firstly, we evaluated the effectiveness of our approach with a simple fluid

dataset where two local extrema merge to one. Secondly, we analyzed a

larger dataset with vortices of varying sizes. Finally, we evaluated the effect

of quantization, with an analytic function as the ground truth. There, we

provide two measures such as the number of local extrema and their conti-

nuity for quantitative analysis.

5.6.1 A Simple Fluid Dataset

Figure 5.3 shows a simple dataset: two local extrema merging to one. Here,

we learned that the local extrema in the original dataset were captured in the

JCN, and our persistency indeed corresponds to the scale in this example. In

Figure 5.3, we varied the persistency threshold from 0 to 1. In Figure 5.3 (d)

and Figure 5.3 (e), we increased the persistency to 0.05, and observed that

the two major local extrema became omitted. This accounted to the fact

that the two relatively small vortices merged to a large vortex in the dataset.

We therefore concluded that varying our persistency indeed corresponded to

varying the scale of the physical phenomena.

However, the local extrema during the merging event of the two local

extrema were lost in the results. For an explanation, we found that the

fibers became significantly complex during the merging events in the fluid

simulation dataset, and separated themselves to many small fiber compo-
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nents. Even worse, merging events tended to have a rapid change in the

scalar values. Indeed, such a merging of local extrema corresponds to a cusp,

which contains a cubic term in the canonical equation, as shown in [STS+14].

Therefore, the Reeb space had many small 2D sheets that are connected with

each other. Then, the quantized approximation with the JCN should have

often lost such small details. Consequently, the local extrema were not cap-

tured.

5.6.2 A Fluid Dataset with Abundant Vortices

Figure 5.4 shows the visualization results of a plasma turbulent fluid with

more vortices. Here, the dataset had 64 × 64 spatial resolution for 20 time

steps, and the data values were quantized to 128 values in the JCN. As we

raised the threshold, local extrema with small persistency disappeared from

the simplification as seen in Figure 5.4 (a–f). Some local extrema in the

original dataset Figure 5.4 (g–h) were not captured. These corresponded

to the limitation of the approximation of the Reeb space with its quantized

JCN. These results indicate that the user would indeed be able to select the

local extrema of interest by controlling the threshold, which corresponds to

the size of local extrema, or the scale of vortices in fluids.

5.6.3 An Analytic Function

Finally, we show the effect of the choice of the quantization level. Figure 5.5

shows how a choice of the quantization level affects the results. As a ground

truth, we chose an analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 −

y2), and investigated how well our system extracts the local extrema in this

dataset. In the figure, (a) and (b) shows the actual configuration of local

extrema in the domain and the range, respectively.

Here, in order to visualize such an effect, we have chosen two indices that

provide an overview for understanding the effect of the different resolutions
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(a)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (a) The original
local extrema in the domain.
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(b)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (b) The original
local extrema, plotted to the range.
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(c)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (c) The extracted
local extrema, in the domain.
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(d)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (d) The extracted
local extrema, plotted to the range.
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(e)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (e) The extracted
local extrema with persistency value 0.05, in the domain.
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(f)

Figure 5.3: A simple fluid dataset. Two local extrema merged to one. Note
that the two local extrema had an identical scalar value. (f) The extracted
local extrema with persistency value 0.05, plotted to the range.
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(a)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (a) The domain. The persistency
threshold was 0.
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(b)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (b) The range. The persistency
threshold was 0.
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(c)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (c) The domain. The persistency
threshold was 0.2.
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(d)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (d) The range. The persistency
threshold was 0.2.
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(e)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (e) The domain. The persistency
threshold was 0.85.

91



(f)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (f) The range. The persistency
threshold was 0.85.
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(g)

Figure 5.4: The original Jacobi set (a–b), and the simplified versions (c–h).
s is the scalar value f1, and t is the time. (g) The original Jacobi set in the
domain.

93



(h)

Figure 5.4: The simplified Jacobi set (a–f) and the original Jacobi set (g–h).
s is the scalar value f1, and t is the time. (h) The original Jacobi set, plotted
to the range
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of the quantization. The first index is the number of local extrema. In

general, a small number of local extrema corresponds to less duplication.

In fact, our approach tends to capture redundant local extrema, since it

identifies the local extrema as the inverse image of birth nodes in the JCN.

The second index is the connectivity ratio. This index is calculated as the

ratio of an local extrema edge et,t+1 in tetrahedron to connect to another local

extrema edge et+1,t+2 in the next time step. Here, note that we omit checking

the previous edge et−1,t, since otherwise we double-count the connection.

We also integrated this view into the interface for providing the user with

an opportunity to find the quantization levels that are appropriate for the

investigation of a user specified dataset.

The results are shown in Figure 5.6, where a color glyph with dark red

indicates low value, and that with light red indicates the opposite. Here, we

can see that the number of local extrema decreased when the quantization

level of the scalar value increased. We also found that the difference in the

quantization of time were not significant for the chosen analytic function.

Similarly, the connectivity ratio decreased by raising the resolution of the

scalar value, f1. This happened as the precision of the captured local ex-

trema increased. Such a precise extraction necessarily reduces the volume

of the inverse image of local extrema, as can be seen in Figure 5.5. The

smaller volume of inverse image causes the captured local extrema, which is

actually tetrahedra edges, to become fewer. Here, since most of the edges

are connected inside the inverse image, the connectivity ratio tended to be

higher in larger inverse images, or smaller quantization levels.

Further evaluation is found in Chapter 6, as an evaluation as a whole for

the proposed fiber topology extraction approach.
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(a)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(a) The original local extrema in red, in the domain. For reference, saddles
were shown in green.
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(b)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(b) The original local extrema in red, in the range. For reference, saddles
were shown in green.
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(c)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(c) The extracted local extrema in the domain, with the scalar resolution of
128 levels, and the time resolution of one level per time step.
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(d)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(d) The extracted local extrema in the range, with the scalar resolution of
128 levels, and the time resolution of one level per time step.
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(e)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(e) The extracted local extrema in the domain, with the scalar resolution of
256 levels, and the time resolution of one level per time step.

100



(f)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(f) The extracted local extrema in the range, with the scalar resolution of
256 levels, and the time resolution of one level per time step.
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(g)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(g) The extracted local extrema in the domain, with the scalar resolution of
512 levels, and the time resolution of one level per time step.
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(h)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(h) The extracted local extrema in the range, with the scalar resolution of
512 levels, and the time resolution of one level per time step.
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(i)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(i) The extracted local extrema in the domain, with the scalar resolution of
512 levels, and the time resolution of three levels per time step.
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(j)

Figure 5.5: An analytic function f1(x, y, t) = (2x3 + t(−3x + x2)− x4 − y2).
(j) The extracted local extrema in the range, with the scalar resolution of
512 levels, and the time resolution of three levels per time step.
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Figure 5.6: The effect of quantization, visualized as color glyphs. Here, the
image on the top shows the number of the extracted local extrema. In con-
trast, the image on the bottom shows the connectivity of the local extrema.
For both of the indices, dark red indicates low value, and light red the op-
posite. The horizontal axis represents the quantizations of the scalar value,
which are 16, 32, 64, 128, 256, or 512. On the other hand, the vertical axis
represents the resolutions of time per a time step, which are 1, 2, and 3.
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Chapter 6

Discussion

In this chapter, we discuss the effectiveness of our approach to extracting

singular fibers and to visualizing them. Especially, we provide a few analyses

on the effect of quantization to the feature extraction, as Section 6.1. Then

in Section 6.2, we classify errors that may exist in extracted singular fibers.

Furthermore, miscellaneous evaluations are given in Section 6.3.

6.1 Resolution of the Quantization

Here, we discuss how the resolution of the JCN impacts our approach. Figure

6.3 and Figure 6.5 shows the visualization results with different resolutions

of the range. Recall that, in Figure 5.3 of Chapter 5, the merging of birth

fibers (or local extrema) were not captured. The reason for this was the

quantization by the JCN. More precisely, the topology of fibers were not

represented in the JCN due to a low resolution for describing them. While

higher resolutions should succeed in representing the topology in detail, how

the resolution actually affect the results is presented below.
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6.1.1 The Resolution and Identification of the Topo-
logical Shapes of Singular Fibers

Figure 6.1 shows the effect of resolution on detecting the topological shapes

of singular fibers. Here, the function in Figure 4.1 (the tangle cube function

f(x, y, z) = (−x4 − y4 − z4 + 5(x2 + y2 + z2)− 10, z)) is used. The color was

chosen to show a typical behavior of a miss-identification. Here, the singular

fibers were given blue colors except of the miss-identified 8-shaped singular

fiber (in red). Surrounding the red pixels are the singular fibers where four

fiber components merge to one at once. This reflects the fact that although

the equation constricts that four components merge at once, in our numeric

system some two components merge together before merging with other two.

As this owes to calculation errors, the higher the resolution, the more we

find the errors as red pixels. For instance, resolution 32 × 32 (Figure 6.5 (a))

gave no rise to red pixel, while raising the resolutions to 64 × 64 ((b)) and

((c)) increased the number of red pixels, though slightly.

6.1.2 The Resolution of Time

We discuss how the resolution along the time axis changes the results. Figure

6.3 shows the results of increasing the JCN’s resolution for time. (Figure 6.2

shows the original local extrema in the data set.) We observed that increasing

the resolution reduced the duplications of local extrema extracted as the

inverse image of the JCN node. Although the continuity of local extrema

was extracted better at certain time steps, doing so lost some continuity in

other places of time steps. As a conclusion, while increasing the resolution

reduces the duplicates of local extrema, the continuity of local extrema was

not preserved nor enhanced.
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(a)

Figure 6.1: The images of singular fibers identified with different resolutions
for the tangle cube function f(x, y, z) = (−x4−y4−z4+5(x2+y2+z2)−10, z).
Red pixel shows a specific miss-identification, two fiber components merging
to one, while four components must merge to one according to the equation.
(a) Resolution of 64 × 64.
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(b)

Figure 6.1: The images of singular fibers identified with different resolutions
for the tangle cube function f(x, y, z) = (−x4−y4−z4+5(x2+y2+z2)−10, z).
Red pixel shows a specific miss-identification, two fiber components merging
to one, while four components must merge to one according to the equation.
(b) Resolution of 128 × 128.

110



(c)

Figure 6.1: The images of singular fibers identified with different resolutions
for the tangle cube function f(x, y, z) = (−x4−y4−z4+5(x2+y2+z2)−10, z).
Red pixel shows a specific miss-identification, two fiber components merging
to one, while four components must merge to one according to the equation.
(c) Resolution of 256 × 256.
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6.1.3 The Resolution of Scalar Field

Here, we discuss how the resolution along the scalar value axis changes the

results. Figure 6.5 shows the results of changing the JCN’s resolution for

scalar fields. (Again, Figure 6.2 shows the original local extrema in the data

set.) In the visualization results, we observed a trade-off between removing

the duplication of local extrema extraction vs. extracting the local extrema:

if we raise the resolution to resolve the duplication of local extrema in the

domain, the approach fails to capture local extrema. Figure 6.5 demonstrates

this trade-off. In Figure 6.5 (a–b), the resolution of the scalar value was low

(128 levels of quantization). Here, notice that the merging event of the

two local extrema were captured without a gap along the time axis ((a–b)).

However, due to the low resolution of the quantization of scalar values, the

proposed approach classified excessive tetrahedron edges in the domain as

local extrema, as in (b). The rest of Figure 6.5 further supports this trade-

off. In (c–d) we duplicated the resolution of quantization to 256, in the hope

to get rid of the redundancies of local extrema in (a–b). The finer resolution

actually reduced the redundancies, as in (c). However, the time-evolution of

local extrema was disconnected in the middle of the time. For verification,

we again raised the resolution to 512, and observed the same effect.

6.2 Classification for Errors in Extracted Sin-

gular Fibers

In this chapter, we classify possible errors in extracted singular fibers. Such

errors can occur in each phase of our singular fiber extraction, which were

explained in Chapter 3. There, the phases were sampling, tessellation, graph

construction, and singular fiber identification. Here, we argue these phases

in this order.

In the sampling phase, we determine the data value of each sampling
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(a)

Figure 6.2: Birth fibers merging. This is a focused view of Figure 5.3. (a)
The original birth fibers in the domain.
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(b)

Figure 6.2: Birth fibers merging. This is a focused view of Figure 5.3. (b)
The original birth fibers in the range.
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(a)

Figure 6.3: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (a) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being as large as
the number of time steps. The domain.
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(b)

Figure 6.3: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (b) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being as large as
the number of time steps. The range.
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(c)

Figure 6.4: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (c) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being twice as large
as the number of time steps. The domain.
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(d)

Figure 6.4: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (d) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being twice as large
as the number of time steps. The range.
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(e)

Figure 6.4: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (e) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being four times as
large as the number of time steps. The domain.
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(f)

Figure 6.4: Birth fibers merging, extracted with the proposed method. Here,
we vary the resolution of quantization along time. Focused view of Figure
5.3. (f) The birth fibers captured with the JCN, with the the scalar value
being quantized to 256 levels, and the resolution of time being four times as
large as the number of time steps. The range.
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(a)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (a) The birth fibers captured with the JCN, with the the
scalar value being quantized to 128 levels, and the resolution of time being
as large as the number of time steps. The domain.
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(b)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (b) The birth fibers captured with the JCN, with the
same configuration as in (c): the scalar value being quantized to 128 levels,
and the resolution of time being as large as the number of time steps. The
range.
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(c)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (c) The birth fibers captured with the JCN, with the the
scalar value being quantized to 256 levels, and the resolution of time being
as large as the number of time steps. The range.
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(d)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (d) The birth fibers captured with the JCN, with the
same configuration as in (e): the scalar value being quantized to 256 levels,
and the resolution of time being as large as the number of time steps. The
range.
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(e)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (e) The birth fibers captured with the JCN, with the the
scalar value being quantized to 512 levels, and the resolution of time being
as large as the number of time steps. The domain.

125



(f)

Figure 6.5: Birth fibers merging, extracted with the proposed approach.
Here, we vary the resolution of quantization for the scalar values. Focused
view of Figure 5.3. (f) The birth fibers captured with the JCN, with the
same configuration as in (e): the scalar value being quantized to 512 levels,
and the resolution of time being as large as the number of time steps. The
range.
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point in the domain. Errors in the obtained data values naturally cause er-

rors in extracted singular fibers. For analytic functions, small deviations in

an obtained function value may give rise to fiber topology that is different

from the equation. For realistic datasets, on the other hand, noise and errors

in sampling may give rise to fiber topology that is different from the actual

phenomenon. In fact, such faults in fiber topology may occur often, depend-

ing on the implementation of a sampling scheme. Fortunately, the errors in

sampling do not affect the large-scale configuration of fibers. In other words,

the deviations of fiber topology in one location does not alter the topology

of fibers that are located far away. Firstly, faults in fiber topology may cor-

respond to connected components being born, dying, splitting apart from

another component, or merging with another. If not, faults are deviations in

the topological shapes of fibers (including degeneracy).

In the tessellation phase, we partition the domain into a set of tetrahe-

dra, in order to determine the interpolation of the data values. While the

Delaunay tetrahedralization itself is a successful tessellation technique, dif-

ferent set of tetrahedra can give different interpolation of data values. This

inevitably results in different fiber topology, locally. In contrast, in a global

sense the topology is conserved across different interpolation results. (In-

deed, the topological transitions of large fiber components are identical, for a

domain with sufficiently large resolution of sampling points.) Note that this

is a problem that is universal in topology-based visualization techniques.

In the graph construction phase, errors can arise while we rasterize the

projection of the tetrahedra into the range. In fact, since rasterization is

primarily designed to maintain the aesthetics of displayed graphics, the ac-

curacy of pixel positions are not guaranteed. By this we mean that a sampling

point may not be projected to its quantized data value, and indeed a little

deviation is allowed by all of the popular implementations of rasterization.

Here again, we can improve the precision by raising the resolution of quanti-
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zation. However, attention must be payed to the fact that higher resolution

of quantization causes capturing more details of fiber topology. Here, they

may include abundant errors produced in the previous phases. However, once

the tetrahedra are projected into the range and then rasterized, the graph is

computed without an error since the JCN construction algorithm [CD14] is

combinatorial. (It is free of round-off errors.)

When we identify singular fibers, again there is no round-off errors since

the algorithm only investigates the graph structure. However, identifying

the topological shape of a fiber component is done without referring to the

domain, and therefore this does not give us the accurate topology for degen-

erate fibers. Fortunately, it was sufficient for the application in Chapter 4.

Indeed, the target users were mainly interested in non-degenerate fibers. Fur-

thermore, even the topological shapes of degenerate fibers could be visually

identified with our domain view. However, detailed topology of fibers in the

domain can benefit certain applications. Actually in Chapter 5, we have seen

that the degeneracy of birth fibers caused uncertainty in the identifications

of the local extrema’s location in the domain. For accurate identification of

topological shapes, we can consider further development in the future. What

will be necessary is the Reeb space together with the actual configuration of

fibers. This is challenging since the JCN quantizes the data values, making

the individual fibers unaccessible. Another problem for analyzing fibers is

that the errors in the rasterization makes it difficult to identify the exact

tetrahedra that corresponds to a JCN node.

6.3 Miscellaneous

In Chapter 3–5, singular fibers were extracted together with their topology.

In this sense, we fully extracted the fiber types that should appear in the-

ory. The function values were quantized but to a sufficiently detailed level.
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However, the configuration of fibers in domain is limited to the closure of

tetrahedra. Also, the extracted fiber topology is an approximation of the

actual one. This is due to the approximation of the Reeb space by the Joint

Contour Net. Nonetheless, in Chapter 4, we saw that it was sufficient for

applications to analytic functions. In contrast, dealing with a more realistic

data, including the simulation data in Chapter 5, the excessive amount of

topological features became crucial, making it difficult to identify the actual

Jacobi set captured in the JCN.

We solved the degeneracy in fiber topology by manual modification of

data. Although ideally the degeneracy should be canceled automatically,

manual modification proved to be useful indeed for application to mathemat-

ics. In the application to realistic datasets, the degeneracy were visualized

as-is, and we did not find a practical problem.

In addition, we should consider the strategy for generalizing the dimen-

sion of the range and the domain. Indeed, our original motivation to choosing

m = 3 and n = 2 for Rm → Rn was to start with a simple problem to obtain

knowledge for general m and n. The analysis of fiber topology via Reeb space

potentially generalizes to higher dimensions, since the topological shape of

fibers can be determined through the connectivity of fibers. However, to

determine the topological shapes, we had to assume that the fibers were

non-degenerate. The detection of topological shapes is a central problem in

application to mathematics. Although our manual exploration for degener-

ate fibers was practical for functions f : R3 → R2 in our user study, such

manual exploration of higher dimensional range and domain becomes diffi-

cult. Therefore, we have started a discussion to detecting degenerate fibers,

and ultimately its topological shapes and types.

Furthermore, one of our users requested that we generalize the domain to

manifolds, rather than a Euclidean space. Currently, the closest the interface

can offer is to show the domain locally, so it can be identified as a Euclidean
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space. This however increases the number of tasks for the user, and the

global structure of fiber topology is difficult to obtain.

When we consider the generalization of our application of realistic datasets,

two technical problems exist. The first is the generalization of the second

function, f2(x, y, t) = t. In the Jacobi set extraction, we rely on this as-

sumption. To get rid of the assumption, we should extract the Jacobi set

without calculation errors. Ultimately, if we were to extract the Reeb space

without quantizations of function values, then it should also be free of this

assumption. The second is the generalization of the dimensions of the range

and the domain. Although the simplification of the Reeb space via the Reeb

skeleton [CCDGb] generalizes, its relation with Jacobi set is not discussed.
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Chapter 7

Conclusion and Future Work

This thesis presented an approach to extract, identify, and explore multivari-

ate data, as multi-fields and time-varying scalar fields. The exploration of

the distribution of data values was achieved by characterizing the topological

transitions of the fibers with singular fibers, and showing them together with

the connectivity between fibers.

Indeed in Chapter 4, which explained the application of the proposed ap-

proach to facilitating tasks among mathematicians, participants confirmed

that the interface can provide new insights on fiber topology in functions.

Before this work, visualizing the singularity of fibers and the connectivity

between fibers had been a technique primarily for data analysts. Interest-

ingly, however, the work revealed that also mathematicians can find benefits.

In the near future, studies should be sought to obtain new mathematical

findings. Ultimately, such findings may offer new tools to the visualization

community.

In addition, the information of singular fibers with their connectivity was

also advantageous in analyzing real datasets. In this work, Chapter 5 sought

an application of multivariate fiber topology to real datasets as time-varying

scalar fields. The advantage of the present approach was to respect the

continuity of local extrema over time, by setting the time as an auxiliary

function. Such continuity enabled reducing the visual clutters in the results
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and distinguishing the size of physical phenomena, which were vortices in 2D

fluids.

However, in both situations, the quality of feature extraction relied on

the selection of quantization level. Especially, the identification of the exact

locations for local extrema could not be achieved in Chapter 5, since the

quantization introduced degeneracies of fibers. For extracting topology in

more details, and encoding it, a singular fiber extraction method without

quantizing data values should be necessary. In addition, ideally all the topo-

logical patters of the Reeb space in Figure 5.2 should be simplified with a

single coherent strategy. Here, the quantization of function values prevented

the extraction of the details of topology such as the position of a cusp in the

domain and its image in the range. Therefore, the present work has focused

only on the eye pattern.

Extension of the approach should also be sought. Such extension includes

handling high-dimensional manifolds. In addition, visualization of the Reeb

space such as the Reeb space view in Chapter 4 should be achieved so that

it will effectively inform the connectivity of complicated data.
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