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Abstract

In the present dissertation, we consider the approximate controllability and inverse source

problems for fractional diffusion equations. In Chapter 1, we consider the fractional diffusion

equation with homogeneous boundary data and prove the approximate controllability via dis-

tributed control on an arbitrarily given subdomain. In Chapter 2, we prove the approximate

controllability by Dirichlet boundary data. To this end, we also consider the regularity of

the solution with non-homogeneous boundary value. The main tool in these two chapters

is the transposition method, which is the application of integration by parts. In Chapter 3,

we prove the stability of the inverse problem of determining the time-dependent factor in a

source term or a coefficient of reaction term from the one-point observations.

The contents in Chapters 1 and 3 are based on the collaborations with Professor Masahiro

Yamamoto and Professor Yavar Kian respectively. Especially, Chapter 1 is the author’s

accepted manuscript of an article published as the version of record in Applicable Analysis

c⃝25 Oct 2013 (http://www.tandfonline.com/doi/full/10.1080/00036811.2013.850492).
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Chapter 1

Approximate Controllability

1.1 Introduction

In this chapter, we consider the controllability for the fractional diffusion equation which

evolves in a bounded domain in the Euclidean space.

Let Ω be a bounded domain in Rd with smooth boundary ∂Ω. We consider the following

initial value/boundary value problem of fractional differential equation:
∂α
t u+ L u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(1.1.1)

In (1.1.1), u = u(x, t) is the state to be controlled and f = f(x, t) is the control which is

localized in a subdomain ω of Ω. Here the Caputo fractional derivative ∂α
t is defined by

∂α
t h(t) :=

1

Γ(1− α)

∫ t

0

(t− τ)−αdh

dτ
(τ)dτ (1.1.2)

for 0 < α < 1 (see [20] and [28] for example). Moreover L denotes a symmetric and

uniformly elliptic operator, which is specified later and T > 0 is a fixed value. If ∂α
t u is

replaced by ∂tu, then (1.1.1) is a classical diffusion equation.

Equation (1.1.1) is called a fractional diffusion equation and regarded as a model of

anomalous diffusion in heterogeneous media. Adams and Gelhar [1] pointed out that the

field data in a highly heterogeneous aquifer cannot be described well by the classical diffusion

equation. Hatano and Hatano [17] applied the continuous-time random walk (CTRW) as a

microscopic model of the diffusion of ions in heterogeneous media. From the CTRW model,

one can derive equation (1.1.1) as a macroscopic model. For the derivation, see Gorenflo and

Mainardi [16], Metzler and Klafter [25] and Roman and Alemany [34] for example.

As for mathematical treatments of fractional diffusion equations and fractional calculus,

we can refer to many literature. As monographs of fractional calculus, see Kilbas, Srivastava

and Trujillo [20], Podlubny [28] and Samko, Kilbas and Marichev [38] for example. These
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books mainly deal with basic properties of fractional derivatives and ordinary differential

equations of fractional orders. As for mathematical works concerned with partial differential

equations with time fractional derivatives, see the following literature and the references

therein; Gejji and Jafari [15] solved equation (1.1.1) with 0 < α ≤ 2 in a one-dimensional or

two-dimensional bounded domain. Agarwal [3] solved equation (1.1.1) in a one-dimensional

bounded domain by means of finite sine transform and presented some numerical results

for it. Luchko [22, 23] considered a diffusion equation in a multi-dimensional bounded

domain and showed the unique existence of the solution to (1.1.1) with f = 0 using Fourier’s

method—constructing the solution by eigenfunction expansion. In the same way, Sakamoto

and Yamamoto [36] established the regularity and qualitative properties of solution to (1.1.1),

and discussed some inverse problems.

In spite of the importance, there are very few works on control problems, especially

the controllability for fractional differential equations. The purpose of this chapter is to

discuss the approximate controllability where we are requested to steer a given initial state

u0 = u0(x) to a prescribed target function u1(x) in time T by means of the control f = f(x, t)

which is distributed on ω b Ω. We say that equation (1.1.1) is approximately controllable

if for any u1 ∈ L2(Ω) and ε > 0, there exists a control f ∈ C∞
0 (ω × (0, T )) such that the

solution u to (1.1.1) satisfies

∥u(·, T )− u1∥L2(Ω) ≤ ε.

If for any u1 ∈ L2(Ω), there exists f such that

u(·, T ) = u1,

then (1.1.1) is said to be exactly controllable. It is known that equation (1.1.1) is approx-

imately controllable for arbitrary T > 0 and subdomain ω b Ω if α = 1 (see Fattorini

[11] for example). In this article, assuming that 0 < α < 1, we will show the approximate

controllability of equation (1.1.1) for arbitrarily given ω b Ω and T > 0. To this end, for

the solution u of (1.1.1), the value of u(·, T ) should make sense in L2(Ω). Therefore, we will

show in Section 1.3 that u ∈ C([0, T ];L2(Ω)) with an appropriate regularity of f .

Here we refer to the literature of control theory. As for works of control problems, see

Coron [9], Micu and Zuazua [26] and Russell [35] for example. Sakawa [37] represented the

solution of a classical diffusion equation by the Green function and proved the approximate

controllability. Fattorini [12] studied equations in a Hilbert space and considered the ap-

proximate controllability for heat equations as an application. As for boundary control for

classical diffusion equations, see MacCamy, Mizel and Seidman [24], Russell [35], Schmidt

and Weck [39] and the references therein. In order to prove the approximate controllability

for (1.1.1), we consider the dual system and show a weak type of unique continuation (see

Sections 1.3 and 1.4). See also Dolecki and Russell [10] and Triggiani [41] which discuss the

relation between controllability and observability.

The remainder of this chapter is composed of four sections. In Section 1.2, we define

the solution of initial value/boundary value problem (1.1.1) and state our main results. In
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Section 1.3, we study the fundamental properties—the unique existence and regularity of

the solution to (1.1.1), and we reduce the proof of the main result to the case of the zero

initial value. In Section 1.4, we discuss the dual system and prove a weak type of unique

continuation property. Thanks to the non-local property of ∂α
t u, the dual system is rather

different from the original system (1.1.1) and we need an independent analysis. In Section

1.5, we complete the proof of the main results.

1.2 Main result

In this section, we define the solution of the fractional diffusion equation and state our main

result.

Let us denote by L2(Ω) a usual L2-space equipped with the scalar product (·, ·) and by

H l(Ω) and Hm
0 (Ω), l,m ∈ N, the Sobolev spaces (see Adams [2] for example). We define the

differential operator L by

L u(x) = −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x)

)
+ c(x)u(x), x ∈ Ω, (1.2.1)

where the coefficients satisfy the following:

aij = aji, aij ∈ C1(Ω), 1 ≤ i, j ≤ d, c ∈ C(Ω), c(x) ≥ 0, x ∈ Ω, (1.2.2)

and there exists a constant µ > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2, x ∈ Ω, ξ ∈ Rd. (1.2.3)

Henceforth we always regard L as the operator L in L2(Ω) whose domain D(L) is H2(Ω)∩
H1

0 (Ω). That is, we understand that u(·, t) ∈ D(L) means u(·, t) ∈ H2(Ω)∩H1
0 (Ω) for t ≥ 0.

Thus we are now ready to define a solution to (1.1.1).

Definition 1.2.1. We call a function u a solution to (1.1.1) if the following conditions are

satisfied:

(a) ∂α
t u(·, t) + Lu(·, t) = f(·, t) holds in L2(Ω) for almost all t ∈ (0, T ).

(b) u ∈ C([0, T ];L2(Ω)) and limt→0 ∥u(·, t)− u0∥L2(Ω) = 0.

Our main result is stated as follows:
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Theorem 1.2.1. Let 0 < α < 1. Then equation (1.1.1) is approximately controllable for

arbitrarily given T > 0 and an arbitrary subdomain ω in Ω. That is,

{u(·, T ); f ∈ C∞
0 (ω × (0, T ))} = L2(Ω),

where u is the solution to (1.1.1) and the closure on the left-hand side is taken in L2(Ω).

By Proposition 1.3.1 in Section 1.3, we know that the solution u exists uniquely and

u(·, T ) ∈ L2(Ω) and so the statement of the theorem is well-defined.

Fattorini [11] showed that approximate controllability for classical diffusion equations is

independent of T > 0. As is shown in the above theorem, fractional diffusion equations have

the same property. The rest part of the chapter is devoted to the proof of Theorem 1.2.1.

1.3 Regularity of the solution to (1.1.1)

For the proof of Theorem 1.2.1, we first have to show that the assertion in the theorem

makes sense, that is, we will show that equation (1.1.1) possesses a unique solution u ∈
C([0, T ];L2(Ω)).

In order to state the result, we prepare the notation. Since L is a symmetric and uniformly

elliptic operator, the spectrum of L is composed entirely of eigenvalues and we can number

them with multiplicities:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .

By φn ∈ H2(Ω) ∩H1
0 (Ω), we denote an orthonormal eigenfunction corresponding to λn:

Lφn = λnφn, n = 1, 2, · · · .

The eigenfunction φn is uniquely determined up to the factors ±1. Then it is known that

the sequence {φn}n∈N is an orthonormal basis in L2(Ω).

Moreover we define the Mittag-Leffler function by

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants. We can directly verify that Eα,β(z) is an

entire function of z ∈ C (see [20] and [28] for example).

Henceforth C denotes the generic constant which is independent of f in (1.1.1), but may

depend on α and the coefficients of the operator L.

Then we can state the unique existence of the solution to (1.1.1) as follows:

Proposition 1.3.1. Let 0 < α < 1 and u0 ≡ 0 in (1.1.1).
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(i) Suppose that f ∈ Lp(0, T ;L2(Ω)) with p ≥ 2 and p > 1/α. Then there exists a unique

solution u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) to (1.1.1) such that

∥u∥L2(0,T ;H2(Ω)) ≤ C∥f∥Lp(0,T ;L2(Ω)), (1.3.1)

∥u(·, t)∥L2(Ω) ≤ Ctα−1/p∥f∥Lp(0,T ;L2(Ω)). (1.3.2)

Moreover we represent u as

u(x, t) =
∞∑
n=1

(∫ t

0

(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)dτ

)
φn(x). (1.3.3)

(ii) Suppose that f ∈ C∞
0 (ω × (0, T )). Then the solution u given by (1.3.3) further be-

longs to C∞([0, T ];H2(Ω) ∩ H1
0 (Ω)). Moreover the series in (1.3.3) is convergent in

Cm([0, T ];H2(Ω)) and satisfies

∥∂m
t u(·, t)∥H2(Ω) ≤ Ctα∥∂m

t f∥L∞(0,T ;H2(Ω)) (1.3.4)

for any m = 0, 1, 2, . . . .

Remark 1.3.1. Since we have C∞
0 (ω × (0, T )) ⊂ C∞

0 (Ω× (0, T )) by the zero extension, we

apply Proposition 1.3.1 to see the unique existence of the solution u ∈ C([0, T ];L2(Ω)) to

(1.1.1) with f ∈ C∞
0 (ω× (0, T )). By the above proposition, the source term f needs not very

smooth. In other words, as space of controls, we can take any function space X satisfying

C∞
0 (ω × (0, T )) ⊂ X ⊂ Lp(0, T ;L2(Ω)),

so that the approximate controllability holds. Indeed, by X ⊂ Lp(0, T ;L2(Ω)) and Proposi-

tion 1.3.1, the value u(·, T ) with f ∈ X belongs to L2(Ω). Moreover, since C∞
0 (ω× (0, T )) ⊂

X , we have

{u(·, T ); f ∈ C∞
0 (ω × (0, T ))} ⊂ {u(·, T ); f ∈ X} ⊂ L2(Ω).

Applying Theorem 1.2.1, we find that

{u(·, T ); f ∈ X} = L2(Ω).

In order to prove Proposition 1.3.1, we show the following lemmata.

Lemma 1.3.2. Let 0 < α < 1 and β ∈ R be arbitrary and µ satisfy πα/2 < µ < πα. Then

there exists a constant C = C(α, β, µ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z|
≤ C, µ ≤ | arg(z)| ≤ π.
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In particular, we have

|Eα,β(−η)| ≤ C

1 + |η|
for η ≥ 0. The proof of Lemma 1.3.2 can be found on p. 35 in [28].

Now we are ready to prove Proposition 1.3.1.

Proof of Proposition 1.3.1. (i). Noting that f ∈ Lp(0, T ;L2(Ω)) ⊂ L2(Ω × (0, T )), we

apply Theorem 2.2 (i) in [36] to see that there exists a unique solution u ∈ L2(0, T ;H2(Ω)∩
H1

0 (Ω)) to (1.1.1) given by (1.3.3) with the estimate

∥u∥L2(0,T ;H2(Ω)) ≤ C∥f∥L2(Ω×(0,T )) ≤ C∥f∥Lp(0,T ;L2(Ω)).

Next we prove that u ∈ C([0, T ];L2(Ω)) and estimate (1.3.2). A straightforward calcula-

tion yields that

∥u(·, t)∥L2(Ω) =

∥∥∥∥∥
∞∑
n=1

(∫ t

0

(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)dτ

)
φn

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∫ t

0

(
∞∑
n=1

(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)φn

)
dτ

∥∥∥∥∥
L2(Ω)

≤
∫ t

0

∥∥∥∥∥
∞∑
n=1

(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)φn

∥∥∥∥∥
L2(Ω)

dτ

=

∫ t

0

(
∞∑
n=1

|(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)|2
)1/2

dτ.

Noting that |τα−1Eα,α(−λnτ
α)| ≤ Cτα−1 by Lemma 1.3.2, we have

∥u(·, t)∥L2(Ω) ≤ C

∫ t

0

(
∞∑
n=1

|(f(·, t− τ), φn)|2
)1/2

τα−1dτ = C

∫ t

0

∥f(·, t− τ)∥L2(Ω)τ
α−1dτ.

Now we take q ∈ [1,∞) so that 1/p+1/q = 1. Then we see that tα−1 ∈ Lq(0, T ) by p > 1/α.

Therefore by Hölder’s inequality, we have

∥u(·, t)∥L2(Ω) ≤ C∥f∥Lp(0,t;L2(Ω))

(∫ t

0

τ q(α−1)dτ

)1/q

≤ Ctα−1/p∥f∥Lp(0,T ;L2(Ω)).

Thus we have proved estimate (1.3.2). Moreover the above calculation also indicates that

the series in (1.3.3) is convergent in C([0, T ];L2(Ω)).

(ii). Since f ∈ C∞
0 (ω × (0, T )), we also have

f ∈ C∞([0, T ];H2(Ω) ∩H1
0 (Ω)) = C∞([0, T ];D(L)).
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Therefore we have

∥∂m
t u(·, t)∥H2(Ω) ≤ C∥∂m

t u(·, t)∥D(L)

= C

∥∥∥∥∥ ∂m

∂tm

∞∑
n=1

(∫ t

0

(f(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)dτ

)
φn

∥∥∥∥∥
D(L)

= C

∥∥∥∥∥
∞∑
n=1

(∫ t

0

(∂m
t f(·, t− τ), φn)τ

α−1Eα,α(−λnτ
α)dτ

)
φn

∥∥∥∥∥
D(L)

= C

∥∥∥∥∥
∫ t

0

(
∞∑
n=1

(∂m
t f(·, t− τ), φn)τ

α−1Eα,α(−λnτ
α)φn

)
dτ

∥∥∥∥∥
D(L)

≤ C

∫ t

0

∥∥∥∥∥
∞∑
n=1

(∂m
t fn(t− τ)τα−1Eα,α(−λnτ

α)φn

∥∥∥∥∥
D(L)

dτ

= C

∫ t

0

(
∞∑
n=1

λ2
n|(∂m

t f(·, t− τ), φn)|2|τα−1Eα,α(−λnτ
α)|2
)1/2

dτ

≤ C

∫ t

0

(
∞∑
n=1

λ2
n|(∂m

t f(·, t− τ), φn)|2
)1/2

τα−1dτ

= C

∫ t

0

∥∂m
t f(·, t− τ)∥D(L)τ

α−1dτ ≤ C∥∂m
t f∥L∞(0,T ;D(L))

(∫ t

0

τα−1dτ

)
≤ Ctα∥∂m

t f∥L∞(0,T ;H2(Ω)).

Similarly to (i), we have proved estimate (1.3.4) and the convergence of the series in (1.3.3)

in Cm([0, T ];H2(Ω)).

Remark 1.3.2. We conclude this section with the reduction of Theorem 1.2.1 to the case

of u0 = 0. Let u(f, u0) be the solution of (1.1.1) and assume that

{u(f, 0)(·, T ); f ∈ C∞
0 (ω × (0, T ))} = L2(Ω). (1.3.5)

Let u0, u1 ∈ L2(Ω) be arbitrary. By (1.3.5), noting u(0, u0)(·, T ) ∈ L2(Ω) by Theorem 2.1 in

[36], for any ε > 0 we can choose fε ∈ C∞
0 (ω × (0, T )) such that

∥u(fε, 0)(·, T )− (u1 − u(0, u0)(·, T ))∥L2(Ω) < ε.

Noting that u(fε, u0) = u(0, u0) + u(fε, 0) by the linearity, we have

∥u(fε, u0)(·, T )− u1∥L2(Ω) < ε,

Thus for the proof of Theorem 1.2.1, it suffices to assume that u0 = 0.
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1.4 Solution of the Dual System

In this section, for the proof of the theorem we study the dual system for (1.1.1).

Let us consider the following initial value/boundary value problem:
Dα

t v + L v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),

I1−α
T− v(·, T ) = v0 in Ω.

(1.4.1)

Here Dα
t and IνT− denote the backward Riemann-Liouville derivative and integral, which are

defined by

Dα
t v(t) := − 1

Γ(1− α)

d

dt

∫ T

t

(τ − t)−αv(τ)dτ (1.4.2)

for α ∈ (0, 1) (see pp. 69-71 in [20] for example) and

IνT−v(t) :=
1

Γ(ν)

∫ T

t

(τ − t)ν−1v(τ)dτ

for ν > 0 respectively. Note that in particular, if 0 < α < 1, then we can rewrite Dα
t v(t) by

Dα
t v(t) = − d

dt
I1−α
T− v(t). (1.4.3)

The third equation in (1.4.1) means that

I1−α
T− v(x, T ) := lim

t→T

1

Γ(1− α)

∫ T

t

(τ − t)−αv(x, τ)dτ = v0(x), 0 < α < 1.

We define the solution to (1.4.1) similarly to (1.1.1).

Definition 1.4.1. We call v a solution to (1.4.1) if

(a’) Dα
t v(·, t) + Lv(·, t) = 0 holds in L2(Ω) for almost all t ∈ (0, T ).

(b’) I1−α
T− v ∈ C([0, T ];L2(Ω)) and limt→T ∥I1−α

T− v(·, t)− v0∥L2(Ω) = 0.

We first show fundamental results for (1.4.1).

Proposition 1.4.1. Let v0 ∈ L2(Ω). Then (1.4.1) possesses a unique solution v and v is

represented by

v(x, t) =
∞∑
n=1

(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn(x) (1.4.4)

and there exists a constant C > 0 such that

∥Dα−1
t v∥C([0,T ];L2(Ω)) ≤ C∥v0∥L2(Ω). (1.4.5)

Moreover
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(i) v ∈ C([0, T );H2(Ω) ∩H1
0 (Ω)) and Dα

t v ∈ C([0, T );L2(Ω)), and

∥v(·, t)∥H2(Ω) + ∥Dα
t v(·, t)∥L2(Ω) ≤ C(T − t)−1∥v0∥L2(Ω). (1.4.6)

(ii) Let q ∈ R satisfy 1 < q < 1/(1 − α). Then v ∈ Lq(0, T ;L2(Ω)) and there exists a

constant C > 0 such that

∥v∥Lq(0,T ;L2(Ω)) ≤ C∥v0∥L2(Ω). (1.4.7)

If we further assume v0 ∈ H2(Ω) ∩ H1
0 (Ω), then v ∈ Lq(0, T ;H2(Ω) ∩ H1

0 (Ω)) and

satisfies

∥Dα
t v∥Lq(0,T ;L2(Ω)) + ∥v∥Lq(0,T ;H2(Ω)) ≤ C∥v0∥H2(Ω). (1.4.8)

(iii) v : [0, T ) → L2(Ω) is analytically extended to ST := {z ∈ C; Re z < T}.

Remark 1.4.1. We note that (1.4.1) has a character of a backward problem in time, that

is, a value at t = T is given. Therefore the regularity of the solution is worse at t = T and

the analytic extension is impossible over T .

As is seen in the next section, the following proposition plays an essential role in the

proof of Theorem 1.2.1.

Proposition 1.4.2. Let v0 ∈ L2(Ω) and let ω b Ω be an arbitrary subdomain. If a solution

v ∈ C([0, T );H2(Ω) ∩H1
0 (Ω)) to (1.4.1) vanishes in ω × (0, T ), then v = 0 in Ω× (0, T ).

For the proof of the above propositions, we state the following lemma.

Lemma 1.4.3. For λ, α > 0 and positive integer m ∈ N, we have

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0. (1.4.9)

Proof. Since Eα,β(z) is an entire function of z, equation (1.4.9) can be obtained by termwise

differentiation.
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Proof of Proposition 1.4.1. The proof is composed of five steps.

Step 1. We first show the uniqueness of the solution to (1.4.1) within the class given in

Definition 1.4.1. It is sufficient to prove that system (1.4.1) has only a trivial solution under

the initial condition v0 = 0.

Let v be a solution to (1.4.1) with v0 = 0. By taking the inner product (·, ·) of (1.4.1)

with φn and by setting vn(t) = (v(·, t), φn), we obtain

Dα
t vn(t) = −λnvn(t), a.e. t ∈ (0, T ). (1.4.10)

Since Dα−1
t v ∈ C([0, T ];L2(Ω)), we see that I1−α

T− vn(t) = (I1−α
T− v(·, t), φn) is continuous in

t ∈ [0, T ]. Moreover,

|I1−α
T− vn(t)|2 ≤

∞∑
n=1

|I1−α
T− vn(t)|2 =

∥∥I1−α
T− v(·, t)

∥∥2
L2(Ω)

→ 0 as t → T.

Therefore we have

I1−α
T− vn(T ) = 0. (1.4.11)

Due to the existence and uniqueness of the ordinary fractional differential equation (see p.122

in [28] for example), (1.4.10) and (1.4.11) yield that

vn(t) ≡ 0, n = 1, 2, · · · .

Since {φn}n∈N is a complete orthonormal system in L2(Ω), we have

v = 0 in Ω× (0, T ).

Thus we have proved the uniqueness of the solution to (1.4.1).

In the rest four steps, we will show that v given by (1.4.4) satisfies the assertions of

Proposition 1.4.1.

Step 2. Second, we prove that condition (b’) in Definition 1.4.1 and estimate (1.4.5) hold.

We set

vN(x, t) =
N∑

n=1

(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn(x).

By termwise integration, we have

I1−α
T− vN(·, t) =

1

Γ(1− α)

∫ T

t

(τ − t)−αvN(·, τ)dτ

=
1

Γ(1− α)

∫ T

t

(τ − t)−α

(
N∑

n=1

(v0, φn)(T − τ)α−1Eα,α(−λn(T − τ)α)φn

)
dτ

=
1

Γ(1− α)

N∑
n=1

(v0, φn)

(∫ T

t

(τ − t)−α(T − τ)α−1Eα,α(−λn(T − τ)α)dτ

)
φn
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=
N∑

n=1

(v0, φn)I
1−α
T−

(
(T − t)α−1Eα,α(−λn(T − t)α)

)
φn

=
N∑

n=1

(v0, φn)Eα,1(−λn(T − t)α)φn

in L2(Ω) (see p.78 in [20] for example). Moreover, for any t ∈ [0, T ] and M,N ∈ N with

M > N , by Lemma 1.3.2, we have

∥∥I1−α
T− vN(·, t)− I1−α

T− vM(·, t)
∥∥2
L2(Ω)

=

∥∥∥∥∥
M∑

n=N+1

(v0, φn)Eα,1(−λn(T − t)α)φn

∥∥∥∥∥
2

L2(Ω)

=
M∑

n=N+1

|(v0, φn)Eα,1(−λn(T − t)α)|2

≤ C2

M∑
n=N+1

|(v0, φn)|2 → 0 as N,M → ∞.

That is,
∑∞

n=1(v0, φn)Eα,1(−λn(T − t)α)φn converges to I1−α
T− v(·, t) in L2(Ω) uniformly in

t ∈ [0, T ]. Therefore

I1−α
T− v ∈ C([0, T ];L2(Ω)).

Similarly, by Lemma 1.3.2, we have

∥I1−α
T− v(·, t)∥2L2(Ω) =

∞∑
n=1

|(v0, φn)Eα,1(−λn(T − t)α)|2 ≤ C2

∞∑
n=1

|(v0, φn)|2 = C2∥v0∥2L2(Ω),

that is,

∥I1−α
T− v∥C([0,T ];L2(Ω)) ≤ C∥v0∥L2(Ω).

Furthermore we have

∥I1−α
T− v(·, t)− v0∥2L2(Ω) =

∞∑
n=1

|(v0, φn)|2(Eα,1(−λn(T − t)α)− 1)2,

lim
t→T

(Eα,1(−λn(T − t)α)− 1) = 0, n ∈ N,
∞∑
n=1

|(v0, φn)|2(Eα,1(−λn(T − t)α)− 1)2 ≤ (C + 1)2
∞∑
n=1

|(v0, φn)|2 < ∞, 0 ≤ t ≤ T.

Therefore the Lebesgue theorem yields

lim
t→T

∥∥I1−α
T− v(·, t)− v0

∥∥
L2(Ω)

= 0.

Step 3. Third, we prove that condition (a’) in Definition 1.4.1 and (1.4.6) hold. For

simplicity, we set

I1−α
T− v(·, t) =

∞∑
n=1

(v0, φn)Eα,1(−λn(T − t)α)φn =:
∞∑
n=1

hn(t).
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Then each hn is continuously differentiable in [0, T ). For any t ∈ [0, T − δ] with arbitrarily

fixed δ > 0, by Lemma 1.4.3, we have∥∥∥∥∥
∞∑

n=N+1

dhn

dt
(t)

∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥
∞∑

n=N+1

λn(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn

∥∥∥∥∥
2

L2(Ω)

=
∞∑

n=N+1

|λn(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)|2

≤
∞∑

n=N+1

|(v0, φn)|2λ2
n(T − t)2α−2

(
C

1 + λn(T − t)α

)2

= C2(T − t)−2

∞∑
n=N+1

|(v0, φn)|2
(

λn(T − t)α

1 + λn(T − t)α

)2

(1.4.12)

≤ C2δ−2

∞∑
n=N+1

|(v0, φn)|2 → 0 as N → ∞.

Hence
∑∞

n=1
dhn

dt
(t) converges in L2(Ω) uniformly in t ∈ [0, T − δ]. By (1.4.3) and Lemma

1.4.3, we have

Dα
t v(·, t) = − d

dt
I1−α
T− v(·, t) = − d

dt

∞∑
n=1

hn(t) = −
∞∑
n=1

dhn

dt
(t)

= −
∞∑
n=1

λn(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn = −Lv(·, t)

in L2(Ω) and

Dα
t v = −Lv ∈ C([0, T );L2(Ω)),

which yields

v ∈ C([0, T );H2(Ω) ∩H1
0 (Ω)).

Similarly to (1.4.12), we have

∥Dα
t v(·, t)∥L2(Ω) = ∥Lv(·, t)∥L2(Ω) =

∥∥∥∥∥−
∞∑
n=1

dhn

dt
(t)

∥∥∥∥∥
L2(Ω)

≤ C(T − t)−1∥v0∥L2(Ω)

for 0 ≤ t < T , which implies estimate (1.4.6).

Step 4. Fourth, we prove (1.4.7) and (1.4.8). Direct calculations yield

∥v(·, t)∥2L2(Ω) =
∞∑
n=1

|(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)|2 ≤ C2(T − t)2(α−1)∥v0∥2L2(Ω),

which implies

∥v(·, t)∥qL2(Ω) ≤ Cq(T − t)q(α−1)∥v0∥qL2(Ω).

12



Moreover since q < 1/(1− α), we have

∥v∥qLq(0,T ;L2(Ω)) =

∫ T

0

∥v(·, t)∥qL2(Ω)dt ≤ Cq∥v0∥qL2(Ω)

∫ T

0

(T − t)q(α−1)dt ≤ CqC∥v0∥qL2(Ω).

Hence we have

∥v∥Lq(0,T ;L2(Ω)) ≤ C∥v0∥L2(Ω).

If v0 further belongs to H2(Ω) ∩H1
0 (Ω), then we have

∥Dα
t v(·, t)∥2L2(Ω) = ∥Lv(·, t)∥2L2(Ω) =

∞∑
n=1

λ2
n|(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)|2

≤ C2(T − t)2(α−1)

∞∑
n=1

λ2
n|(v0, φn)|2 ≤ C(T − t)2(α−1)∥v0∥2H2(Ω).

Therefore we can show (1.4.8) similarly to (1.4.7).

Step 5. Finally, we prove the assertion (iii). It follows that (T − t)α−1Eα,α(−λn(T − t)α) is

analytic in ST because Eα,α(−λnz) is an entire function (see Section 1.8 in [20] and [28] for

example). Therefore
∑N

n=1(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn is analytic in ST . If we fix

δ > 0 arbitrarily, then for z ∈ C with Re z ≤ T − δ, we have∥∥∥∥∥
∞∑

n=N+1

(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)φn

∥∥∥∥∥
2

L2(Ω)

=
∞∑

n=N+1

|(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)|2

≤
∞∑

n=N+1

|(v0, φn)|2|T − z|2α−2

(
C

1 + λn|T − z|α

)2

≤ C2δ2α−2

∞∑
n=N+1

|(v0, φn)|2 → 0 as N → ∞.

That is, v(·, z) =
∑∞

n=1(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)φn is uniformly convergent in

any compact subset of ST . Hence v is also analytic in ST .

Proof of Proposition 1.4.2. Since v(x, t) = 0 in ω× (0, T ) and v : [0, T ) → L2(Ω) can be

analytically extended to ST , we have

v(x, t) =
∞∑
n=1

(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)φn(x) = 0, x ∈ ω, t ∈ (−∞, T ). (1.4.13)
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Let {µk}k∈N be the set of all the eigenvalues of L. We note that {µk}k∈N is numbered without

multiplicities. By {φkj}1≤j≤mk
we denote an orthonormal basis of ker(µk −L). Then we can

rewrite (1.4.13) by

∞∑
k=1

(
mk∑
j=1

(v0, φkj)φkj(x)

)
(T − t)α−1Eα,α(−µk(T − t)α) = 0, x ∈ ω, t ∈ (−∞, T ). (1.4.14)

Moreover, for any z ∈ C with Re z = ξ > 0 and N ∈ N, noting that φkj, 1 ≤ j ≤ mk,

1 ≤ k ≤ N are orthonormal, we have∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)φkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

L2(Ω)

=
N∑
k=1

(
mk∑
j=1

|(v0, φkj)|2
)
e2ξ(t−T )(T − t)2α−2|Eα,α(−µk(T − t)α)|2

≤ C2e2ξ(t−T )(T − t)2α−2∥v0∥2L2(Ω),

that is, ∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)φkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
L2(Ω)

≤ Ceξ(t−T )(T − t)α−1∥v0∥L2(Ω).

The right-hand side of the above is integrable over t ∈ (−∞, T );∫ T

−∞
eξ(t−T )(T − t)α−1dt =

∫ ∞

0

e−ξηηα−1dη =
Γ(α)

ξα
.

Hence the Lebesgue dominant convergence theorem yields that∫ T

−∞
ez(t−T )

(
∞∑
k=1

mk∑
j=1

(v0, φkj)φkj(x)(T − t)α−1Eα,α(−µk(T − t)α)

)
dt

=
∞∑
k=1

mk∑
j=1

(v0, φkj)φkj(x)

(∫ T

−∞
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)dt

)

=
∞∑
k=1

mk∑
j=1

(v0, φkj)

zα + µk

φkj(x), x ∈ Ω, Re z > 0. (1.4.15)

For the calculation on (1.4.15), see p.21 in [28]. By (1.4.14) and (1.4.15), we have

∞∑
k=1

mk∑
j=1

(v0, φkj)

zα + µk

φkj(x) = 0, x ∈ ω, Re z > 0,
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that is,
∞∑
k=1

mk∑
j=1

(v0, φkj)

η + µk

φkj(x) = 0, x ∈ ω, Re η > 0. (1.4.16)

By using analytic continuation in η, equality (1.4.16) holds for η ∈ C \ {−µk}k∈N. Then we

can take a suitable circle which includes −µℓ and does not include {−µk}k ̸=ℓ. By integrating

(1.4.16) on the circle, we have

vℓ(x) :=

mℓ∑
j=1

(v0, φℓj)φℓj(x) = 0, x ∈ ω.

Since (L − µℓ)vℓ = 0 in Ω and vℓ = 0 in ω, the unique continuation result for an elliptic

operator (see Isakov [19], Nirenberg [27] and Protter [30] for example) implies vℓ = 0 in Ω

for each ℓ ∈ N. Since {φℓj}1≤j≤mℓ
is linearly independent in Ω, we see that (v0, φℓj) = 0 for

1 ≤ j ≤ mℓ, ℓ ∈ N. This implies v = 0 in Ω× (0, T ).

1.5 Proof of Main Result

In this section, we prove Theorem 1.2.1 using Propositions 1.4.1 and 1.4.2. For convenience

of calculation, we introduce the notation of fractional integrals for α > 0;

Iα0+f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ,

IαT−f(t) :=
1

Γ(α)

∫ T

t

(τ − t)α−1f(τ)dτ.

In particular, we have

∂α
t f(t) = I1−α

0+ f ′(t) and Dα
t f(t) = − d

dt
I1−α
T− f(t)

if 0 < α < 1. The following lemma holds.

Lemma 1.5.1. Let α > 0 and 1 < p, q < ∞ satisfy 1/p+ 1/q ≤ 1 + α. If f ∈ Lp(0, T ) and

g ∈ Lq(0, T ), then ∫ T

0

Iα0+f(t)g(t)dt =

∫ T

0

f(t)IαT−g(t)dt.

For the above lemma, see p. 34 in [38] for example.

Now we are ready to prove Theorem 1.2.1.

15



Proof of Theorem 1.2.1. Let uf be the solution to (1.1.1) for f ∈ C∞
0 (ω × (0, T )) and

u0 = 0, and v be the solution to (1.4.1) for v0 ∈ L2(Ω). We first prove that∫
Ω

uf (·, T )v0dx =

∫ T

0

∫
ω

fvdxdt. (1.5.1)

holds for every f ∈ C∞
0 (ω × (0, T )) and v0 ∈ H2(Ω) ∩H1

0 (Ω).

Since the first equation in (1.1.1) holds in C∞([0, T ];L2(Ω)) by Proposition 1.3.1 and v

belongs to Lq(0, T ;H2(Ω) ∩ H1
0 (Ω)) with some q > 1 by Proposition 1.4.1 (ii), we can see

that

0 =

∫ T

0

∫
Ω

(∂α
t uf + L uf − f)vdxdt

=

∫ T

0

∫
Ω

(∂α
t uf )vdxdt+

∫ T

0

∫
Ω

(L uf )vdxdt−
∫ T

0

∫
Ω

fvdxdt. (1.5.2)

In terms of Lemma 1.5.1, we calculate the first term on (1.5.2) as follows;∫ T

0

∫
Ω

(∂α
t uf )vdxdt =

∫ T

0

∫
Ω

I1−α
0+

∂uf

∂t
· vdxdt =

∫ T

0

∫
Ω

∂uf

∂t
I1−α
T− vdxdt

=

∫
Ω

uf · I1−α
T− vdx

∣∣∣∣t=T

t=0

−
∫ T

0

∫
Ω

uf ·
∂

∂t
I1−α
T− vdxdt

=

∫
Ω

uf (·, T )v0dx+

∫ T

0

∫
Ω

uf (D
α
t v)dxdt. (1.5.3)

Here we have used the integration in t by parts and initial conditions in (1.1.1) and (1.4.1).

In terms of uf ∈ C∞([0, T ];H2(Ω)∩H1
0 (Ω)) and v ∈ Lq(0, T ;H2(Ω)∩H1

0 (Ω)) by Propositions

1.3.1 and 1.4.1, we apply the Green formula to the second term on (1.5.2) to have∫ T

0

∫
Ω

(L uf )vdxdt =

∫ T

0

∫
Ω

uf (L v)dxdt+

∫ T

0

∫
∂Ω

(
uf

∂v

∂νL
− ∂uf

∂νL
v

)
dσdt

=

∫ T

0

∫
Ω

uf (L v)dxdt, (1.5.4)

where
∂u

∂νL
(x) :=

d∑
i,j=1

aij(x)
∂u

∂xi

(x)νj(x)

and ν(x) = (ν1(x), . . . , νd(x)) is the outward unit normal vector to ∂Ω at x. In the above

calculation, we have used boundary conditions in (1.1.1) and (1.4.1). We substitute (1.5.3)

and (1.5.4) into (1.5.2) and have

0 =

(∫
Ω

uf (·, T )v0dx+

∫ T

0

∫
Ω

uf (D
α
t v)dxdt

)
+

∫ T

0

∫
Ω

uf (L v)dxdt−
∫ T

0

∫
ω

fvdxdt

=

∫
Ω

uf (·, T )v0dx+

∫ T

0

∫
Ω

uf (D
α
t v + Lv) dxdt−

∫ T

0

∫
ω

fvdxdt
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=

∫
Ω

uf (·, T )v0dx−
∫ T

0

∫
ω

fvdxdt.

Thus (1.5.1) holds for f ∈ C∞
0 (ω × (0, T )) and v0 ∈ H2(Ω) ∩H1

0 (Ω).

Let f ∈ C∞
0 (ω × (0, T )) be fixed. Then the mapping

v0 7→
∫
Ω

uf (·, T )v0dx−
∫ T

0

∫
ω

fvdxdt

is a linear and bounded functional on L2(Ω) by (1.4.7). Hence the density argument implies

that (1.5.1) holds for any v0 ∈ L2(Ω).

In order to prove the density of {uf (·, T ); f ∈ C∞
0 (ω× (0, T ))} in L2(Ω), we have to show

that if v0 ∈ L2(Ω) satisfies ∫
Ω

uf (·, T )v0dx = 0 (1.5.5)

for any f ∈ C∞
0 (ω × (0, T )), then v0 = 0. This can be shown as follows. By (1.5.5) and

(1.5.1), we have ∫ T

0

∫
ω

fvdxdt = 0

for any f ∈ C∞
0 (ω × (0, T )). Then by the fundamental lemma of the calculus of variations,

we have

v(x, t) = 0, (x, t) ∈ ω × (0, T ).

By Proposition 1.4.2, we have

v(x, t) = 0, (x, t) ∈ Ω× (0, T ).

By the uniqueness of the solution to (1.4.1),

v0(x) = 0, x ∈ Ω.

Thus we have completed the proof.
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Chapter 2

Non-homogeneous Boundary Value

Problem

2.1 Introduction

Let Ω be a bounded domain of Rd with smooth boundary Γ = ∂Ω. We consider the following

initial value/boundary value problem of partial differential equation with non-homogeneous

boundary value: 
∂α
t u+ L u = f in Ω× (0, T ),

u = g on Γ× (0, T ),

u(·, 0) = u0 in Ω.

(2.1.1)

In (2.1.1), u = u(x, t) is the state to be controlled and g = g(x, t) is the control which is

localized on a subboundary Γ0 of Γ. The functions f = f(x, t) and u0 = u0(x) are given

in Ω× (0, T ) and Ω respectively. Here L is given by (1.2.1) with the coefficients satisfying

(1.2.2) and (1.2.3) and ∂α
t denotes the Caputo derivative (see (1.1.2)).

The aim of this chapter is to study the boundary control problem for fractional diffusion

equations. We say that equation (2.1.1) is approximately controllable for T and Γ0 if for any

u1 ∈ L2(Ω) and ε > 0, there exists a control g supported in Γ0× (0, T ) such that the solution

u of (2.1.1) satisfies

∥u(·, T )− u1∥L2(Ω) ≤ ε.

We can refer to [9] and [35] for the general theory of control problems for partial differential

equations. These works deal with controllability of equations with integer order and the

relations with other concepts—observability, stabilizability, pole assignability, etc. There

are various works about control problems for equations with integer orders. In particular,

for the boundary control of heat equations, see MacCamy, Mizel and Seidman [24], Sakawa

[37], Schmidt and Weck [39], Washburn [42] and the references therein. As for the control

problems of fractional diffusion equations by interior control, we can refer to Fujishiro and

Yamamoto [13]. However, to the author’s best knowledge, there are few works on the control
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problems for fractional diffusion equations, especially the controllability by the boundary

control.

The remainder of this chapter is composed of four sections. In Section 2.2, we state

the main result. In Section 2.3, we represent the solution by eigenfunction expansion to

show its unique existence and regularity for smooth g. In Section 2.4, we study the dual

system of (2.1.1) and prove their properties—regularity, analyticity and weak type of unique

continuation. In particular, unique continuation property plays an essential role in the proof

of our main result. In Section 2.5, we complete the proof of our main result.

2.2 Main result

In this section, we prepare the settings and state our main results.

We first note that by the linearity, we can assume u0 ≡ 0 and f ≡ 0 without loss of

generality (see Remark 1.3.2):
∂α
t u+ L u = 0 in Ω× (0, T ),

u = g on Γ× (0, T ),

u(·, 0) = 0 in Ω.

(2.2.1)

Henceforth we mainly consider (2.2.1) instead of (2.1.1).

Next we prepare the notations. Let L2(Γ) be the usual L2-space with the scalar prod-

uct ⟨·, ·⟩ and Hs(Γ), s ∈ R, be the Sobolev spaces on Γ. As in the previous chapter, let

L : L2(Ω) → L2(Ω) be the differential operator L with its domain H2(Ω) ∩ H1
0 (Ω) and

{(λn, φn)}n∈N be the eigen system for L (see Section 1.3). The operator ∂νL : Hs(Ω) →
Hs−3/2(Γ), s > 3/2, is defined as

∂νLu(x) :=
∂u

∂νL
(x) =

d∑
i,j=1

aij(x)
∂u

∂xi

(x)νj(x),

where ν(x) = (ν1(x), . . . , νd(x)) is the outward unit normal vector to Γ at x. In particular,

∂νLφn belongs to L2(Γ) since φn ∈ H2(Ω). Now we are ready to state the following result;

Theorem 2.2.1. Let 0 < α < 1 and 0 < θ < 1/4. If g ∈ C∞
0 (Γ× (0, T )), then there exists

a unique solution u ∈ C∞([0, T ];H2(Ω)) to (2.2.1) such that

∥u(·, t)∥L2(Ω) ≤ Ctαθ∥g∥L∞(0,T ;L2(Γ)), (2.2.2)

∥∂m
t u(·, t)∥H2(Ω) ≤ C

(
tα(θ−1)+1∥∂m+1

t g∥L∞(0,T ;L2(Γ)) + ∥∂m
t g(·, t)∥H3/2(Γ)

)
(2.2.3)

for m = 0, 1, 2, . . . . Moreover we represent u as

u(x, t) = −
∞∑
n=1

(∫ t

0

⟨g(·, t− τ), ∂νLφn⟩ τα−1Eα,α(−λnτ
α)dτ

)
φn(x), (2.2.4)

and the series is convergent in Cm([0, T ];H2(Ω)) for any m ∈ N.
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By the above theorem, equation (2.2.1) has a unique solution u ∈ C∞([0, T ];H2(Ω)) for

any g ∈ C∞
0 (Γ0× (0, T )) (g is regarded as a function on Γ× (0, T ) by the zero extension). In

particular, the value u(·, T ) at time t = T makes sense in L2(Ω) and we are ready to state

the following result;

Theorem 2.2.2. Let 0 < α < 1. Then equation (2.2.1) is approximately controllable for

arbitrarily given T > 0 and an arbitrary relatively open subset Γ0 of Γ. That is,

{ug(·, T ); g ∈ C∞
0 (Γ0 × (0, T ))} = L2(Ω),

where ug is the solution to (2.2.1) and the closure on the left-hand side is taken in L2(Ω).

2.3 Proof of Theorem 2.2.1

For the representation of the solution to (2.2.1), we study the following elliptic boundary

value problem; {
L u = 0 in Ω,

u = g on Γ,
(2.3.1)

where g is given on Γ.

In order to describe the regularity of the solution of (2.3.1), we first consider the fractional

power of the operator L, which is represented as follows;

D(Lθ) =

{
u ∈ L2(Ω);

∞∑
n=1

λ2θ
n |(u, φn)|2 < ∞

}
,

Lθu =
∞∑
n=1

λθ
n(u, φn)φn, u ∈ D(Lθ),

where θ > 0. Then D(Lθ) is a Hilbert space equipped with the norm ∥ · ∥D(Lθ) defined by

∥u∥D(Lθ) := ∥Lθu∥L2(Ω) =

(
∞∑
n=1

λ2θ
n |(u, φn)|2

)1/2

, u ∈ D(Lθ).

The domain D(Lθ) with 0 ≤ θ ≤ 1 is expressed by using the Sobolev spaces with norm

equivalence;

D(Lθ) =

{
H2θ(Ω), 0 ≤ θ < 1/4,

H2θ
D (Ω), 1/4 < θ ≤ 1,

C−1∥u∥H2θ ≤ ∥u∥D(Lθ) ≤ C∥u∥H2θ , u ∈ D(Lθ), (2.3.2)

where Hs
D(Ω) := {u ∈ Hs(Ω) | γ0u = 0} and the operator γ0 : Hs(Ω) → Hs−1/2(Γ) maps

a function u to its restriction u|Γ to the boundary Γ for s > 1/2. Note that henceforth C
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denotes the generic constant which may depend on α and the coefficients of the operator L.

For the details of D(Lθ) and the Sobolev spaces with fractional powers, see Fujiwara [14]

and Yagi [43] for example.

For g ∈ H3/2(Γ), by using the trace theorem and lifting and applying the well known

results for the elliptic boundary value problems with homogeneous data (see Theorems 8.1

and 9.8 in Agmon [4] for example), we see that (2.3.1) has a unique solution u ∈ H2(Ω)

satisfying

∥u∥H2(Ω) ≤ C∥g∥H3/2(Γ).

In the following, we will discuss (2.3.1) for non-smooth g by the transposition method. To

this end, we consider the dual system;{
L v = f in Ω,

v = 0 on Γ,
(2.3.3)

where f is given in Ω. It is well known that for any f ∈ L2(Ω), (2.3.3) possesses a unique

solution v ∈ H2(Ω) satisfying

∥v∥H2(Ω) ≤ C∥f∥L2(Ω). (2.3.4)

In particular, ∂νLv belongs to H1/2(Γ). By −s ⟨·, ·⟩s, s ≥ 0, we denote the duality paring in

H−s(Γ) and Hs(Γ). Now we can define the solution of (2.3.1) in a weaker sense.

Definition 2.3.1. A function u is called a weak solution of (2.3.1) if

(u, f) + −1/2 ⟨g, ∂νLvf⟩1/2 = 0 (2.3.5)

holds for any f ∈ L2(Ω), where vf is the unique solution of (2.3.3).

According to Chapter 2 of Lions and Magenes [21], we see that for g ∈ L2(Γ), (2.3.1) has

a unique weak solution u ∈ H1/2(Ω) satisfying

∥u∥H1/2(Ω) ≤ C∥g∥L2(Γ).

Let Λ : L2(Γ) → H1/2(Ω) be the linear operator which maps g to the unique weak solution

u of (2.3.1). Then we have

∥Λg∥H1/2(Ω) ≤ C∥g∥L2(Γ).

In particular, for any 0 ≤ θ < 1/4, Λg belongs to D(Lθ) and satisfies

∥Λg∥D(Lθ) ≤ C∥Λg∥H2θ(Ω) ≤ C∥Λg∥H1/2(Ω) ≤ C∥g∥L2(Γ). (2.3.6)

where we have used (2.3.2). By substituting f = λnφn and u = Λg in (2.3.5), we obtain

λn(Λg, φn) = −⟨g, ∂νLφn⟩ , n = 1, 2, . . . . (2.3.7)
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For the proof of Theorem 2.2.1, we also recall the notation of fractional integrals and

state some formulae. A straightforward calculation yields

Iα0+
[
tν
]
=

Γ(ν + 1)

Γ(ν + α + 1)
tν+α

for ν > −1 and α > 0. By the analyticity of Mittag-Leffler functions, we have

I1−α
0+

(
tα−1Eα,α(−λtα)

)
= Eα,1(−λtα), t > 0. (2.3.8)

for 0 < α < 1, which is a particular case of (1.100) in [28]. Moreover from Lemma 1.5.1, it

follows that ∫ t

0

Iα0+f(t− τ)g(τ)dτ =

∫ t

0

f(t− τ)(Iα0+g)(τ)dτ. (2.3.9)

Now we are ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Step 1. First we show that u in (2.2.4) is a unique solution of

(2.2.1). Since the uniqueness can be shown similarly to Theorem 2.1 in [36], it is sufficient

to confirm that equation (2.2.1) is satisfied.

By (2.3.7) and Lemma 1.4.3, we have

u(x, t) = −
∞∑
n=1

(∫ t

0

⟨g(·, t− τ), ∂νLφn⟩ τα−1Eα,α(−λnτ
α)dτ

)
φn(x)

=
∞∑
n=1

(∫ t

0

(Λg(·, t− τ), φn)λnτ
α−1Eα,α(−λnτ

α)dτ

)
φn(x) (2.3.10)

= −
∞∑
n=1

(∫ t

0

(Λg(·, t− τ), φn) ·
∂

∂τ

(
Eα,1(−λnτ

α)
)
dτ

)
φn(x).

Since g ∈ C∞
0 (Γ× (0, T )), the integration by parts yields

u(x, t) =
∞∑
n=1

(
(Λg(·, t), φn) +

∫ t

0

∂

∂τ
(Λg(·, t− τ), φn) · Eα,1(−λnτ

α)dτ

)
φn(x)

= Λg(x, t)−
∞∑
n=1

(∫ t

0

(
(∂tΛg)(·, t− τ), φn

)
Eα,1(−λnτ

α)dτ

)
φn(x).

We set

w(x, t) := u(x, t)− Λg(x, t)

= −
∞∑
n=1

(∫ t

0

(
(∂tΛg)(·, t− τ), φn

)
Eα,1(−λnτ

α)dτ

)
φn(x). (2.3.11)

Then by (2.3.8) and (2.3.9), we have

w(x, t) = −
∞∑
n=1

(∫ t

0

(
(∂tΛg)(·, t− τ), φn

)
· I1−α

0+

(
τα−1Eα,α(−λnτ

α)
)
dτ

)
φn(x)
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= −
∞∑
n=1

(∫ t

0

(
(I1−α

0+ ∂tΛg)(·, t− τ), φn

)
τα−1Eα,α(−λnτ

α)dτ

)
φn(x)

= −
∞∑
n=1

(∫ t

0

(
(∂α

t Λg)(·, t− τ), φn

)
τα−1Eα,α(−λnτ

α)dτ

)
φn(x).

By Theorem 2.2 in [36] (or Proposition 3.1 in [13]), w solves
∂α
t w + Lw = −∂α

t Λg in Ω× (0, T ),

w = 0 on Γ× (0, T ),

w(·, 0) = 0 in Ω.

By substituting w = u− Λg, we see that u(·, 0) = 0 and

∂α
t u(·, t) + L u(·, t) = 0

holds in L2(Ω) for almost every t ∈ (0, T ). Moreover since w ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω)), we

have

γ0u = γ0(w + Λg) = γ0(Λg) = g.

Step 2. Next we prove that the function u given by (2.2.4) satisfies estimates (2.2.2)-(2.2.3).

Using representation (2.3.10),

∥u(·, t)∥L2(Ω) =

∥∥∥∥∥
∞∑
n=1

(∫ t

0

λn(Λg(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)dτ

)
φn

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∫ t

0

(
∞∑
n=1

λn(Λg(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)φn

)
dτ

∥∥∥∥∥
L2(Ω)

≤
∫ t

0

∥∥∥∥∥
∞∑
n=1

λn(Λg(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)φn

∥∥∥∥∥
L2(Ω)

dτ

=

∫ t

0

(
∞∑
n=1

∣∣λn(Λg(·, t− τ), φn)τ
α−1Eα,α(−λnτ

α)
∣∣2)1/2

dτ

=

∫ t

0

(
∞∑
n=1

λ2θ
n |(Λg(·, t− τ), φn)|2 ·

∣∣λ1−θ
n τα−1Eα,α(−λnτ

α)
∣∣2)1/2

dτ. (2.3.12)

By Lemma 1.3.2, we have

|λ1−θ
n τα−1Eα,α(−λnτ

α)| ≤ λ1−θ
n τα−1 · C

1 + λnτα
= C · (λnτ

α)1−θ

1 + λnτα
· ταθ−1 ≤ Cταθ−1. (2.3.13)

Applying (2.3.6) and (2.3.13) to (2.3.12), we obtain

∥u(·, t)∥L2(Ω) ≤ C

∫ t

0

(
∞∑
n=1

λ2θ
n |(Λg(·, t− τ), φn)|2

)1/2

ταθ−1dτ
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= C

∫ t

0

∥Λg(·, t− τ)∥D(Lθ)τ
αθ−1dτ ≤ C

∫ t

0

∥g(·, t− τ)∥L2(Γ)τ
αθ−1dτ

≤ C

(∫ t

0

ταθ−1dτ

)
∥g∥L∞(0,T ;L2(Γ)) ≤ Ctαθ∥g∥L∞(0,T ;L2(Γ)).

Thus we have proved estimate (2.2.2).

In order to show (2.2.3), we estimate w = u− Λg. By (2.3.11),

∥Lw(·, t)∥L2(Ω) =

∥∥∥∥∥
∞∑
n=1

λn

(∫ t

0

(
(∂tΛg)(·, t− τ), φn

)
Eα,1(−λnτ

α)dτ

)
φn

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∫ t

0

(
∞∑
n=1

λn

(
(∂tΛg)(·, t− τ), φn

)
Eα,1(−λnτ

α)φn

)
dτ

∥∥∥∥∥
L2(Ω)

≤
∫ t

0

∥∥∥∥∥
∞∑
n=1

λn

(
(∂tΛg)(·, t− τ), φn

)
Eα,1(−λnτ

α)φn

∥∥∥∥∥
L2(Ω)

dτ

≤
∫ t

0

(
∞∑
n=1

λ2θ
n

∣∣((∂tΛg)(·, t− τ), φn

)∣∣2 · |λ1−θ
n Eα,1(−λnτ

α)|2
)1/2

dτ. (2.3.14)

Similarly to (2.3.13), we have

|λ1−θ
n Eα,1(−λnτ

α)| ≤ λ1−θ
n · C

1 + λnτα
= C · (λnτ

α)1−θ

1 + λnτα
· τα(θ−1) ≤ Cτα(θ−1). (2.3.15)

Applying (2.3.6) and (2.3.15) to (2.3.14), we obtain

∥Lw(·, t)∥L2(Ω) ≤ C

∫ t

0

(
∞∑
n=1

λ2θ
n

∣∣((∂tΛg)(·, t− τ), φn

)∣∣2)1/2

τα(θ−1)dτ

= C

∫ t

0

∥(∂tΛg)(·, t− τ)∥D(Lθ)τ
α(θ−1)dτ

≤ C

∫ t

0

∥(∂tg)(·, t− τ)∥L2(Γ)τ
α(θ−1)dτ ≤ C

(∫ t

0

τα(θ−1)dτ

)
∥∂tg∥L∞(0,T ;L2(Γ))

≤ Ctα(θ−1)+1∥∂tg∥L∞(0,T ;L2(Γ)).

Since u = w + Λg, we have

∥u(·, t)∥H2(Ω) ≤ ∥w(·, t)∥H2(Ω) + ∥Λg(·, t)∥H2(Ω) ≤ C∥Lw(·, t)∥L2(Ω) + C∥g(·, t)∥H3/2(Γ)

≤ C
(
tα(θ−1)+1∥∂tg∥L∞(0,T ;L2(Γ)) + ∥g(·, t)∥H3/2(Γ)

)
.

Similarly we can also show

∥∂m
t u(·, t)∥H2(Ω) ≤ C

(
tα(θ−1)+1∥∂m+1

t g∥L∞(0,T ;L2(Γ)) + ∥∂m
t g(·, t)∥H3/2(Γ)

)
for any m ∈ N.
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Moreover the above estimates also indicate the convergence of the series in (2.3.11) in

Cm([0, T ];H2(Ω)). Hence we see that (2.2.4) is convergent in Cm([0, T ];H2(Ω)) and con-

sequently u ∈ Cm([0, T ];H2(Ω)) for m = 0, 1, 2, . . . . Thus the proof of Theorem 2.2.1 is

completed.

2.4 Dual System

In this section, we prove some properties of the solution to (1.4.1), which we have studied

also in the previous chapter. In order to prove Theorem 2.2.2, we also need more results

for it—especially the unique continuation property from the subboundary Γ0 (Proposition

2.4.2). To this end, we also prove the analyticity of ∂νLv in Proposition 2.4.1.

Proposition 2.4.1. Let 0 < α < 1, 0 < θ < 1/4 and r ∈ (1,∞) satisfy r(1− αθ) < 1. Let

v ∈ C([0, T );H2(Ω) ∩ H1
0 (Ω)) be the solution of (1.4.1) for v0 ∈ L2(Ω). Then ∂νLv belongs

to Lr(0, T ;L2(Γ)) with the estimate;

∥∂νLv∥Lr(0,T ;L2(Γ)) ≤ C∥v0∥L2(Ω) (2.4.1)

Moreover ∂νLv : [0, T ) → L2(Γ) is analytically extended to ST := {z ∈ C; Re z < T}.

Proposition 2.4.2. Let Γ0 be open in Γ and v ∈ C([0, T );H2(Ω) ∩H1
0 (Ω)) be the solution

of (1.4.1) corresponding to v0 ∈ L2(Ω). If ∂νLv = 0 on Γ0 × (0, T ), then v = 0 in Ω× (0, T ).

Proof of Proposition 2.4.1. We first prove ∂νLv ∈ Lr(0, T ;L2(Γ)) and estimate (2.4.1).

By 0 < θ < 1/4 and the boundedness of the operator ∂νL : Hs(Ω) → Hs−3/2(Γ), s > 3/2, we

have

∥∂νLv(·, t)∥2L2(Γ) ≤ ∥∂νLv(·, t)∥2H1/2−2θ(Γ) ≤ C∥v(·, t)∥2H2−2θ(Ω) ≤ C∥v(·, t)∥2D(L1−θ)

= C
∞∑
n=1

λ2−2θ
n |(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)|2

= C
∞∑
n=1

|(v0, φn)|2 · |λ1−θ
n (T − t)α−1Eα,α(−λn(T − t)α)|2.

By Lemma 1.3.2, we have

|λ1−θ
n (T − t)α−1Eα,α(−λn(T − t)α)| ≤ λ1−θ

n (T − t)α−1 · C

1 + λn(T − t)α

≤ C · (λn(T − t)α)1−θ

1 + λn(T − t)α
· (T − t)αθ−1 ≤ C(T − t)αθ−1.
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Therefore we have

∥∂νLv(·, t)∥L2(Γ) ≤ C(T − t)αθ−1

(
∞∑
n=1

|(v0, φn)|2
)1/2

= C(T − t)αθ−1∥v0∥L2(Ω).

Hence we obtain

∥∂νLv∥Lr(0,T ;L2(Γ)) ≤ C∥v0∥L2(Ω).

Next we prove the analyticity of ∂νLv(·, t) in t ∈ ST . Since ∂νL : H2(Ω) → L2(Γ) is

bounded, we have

∂νLv(·, t) =
∞∑
n=1

(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)∂νLφn (2.4.2)

and the series in (2.4.2) is convergent in L2(Γ). We note that Eα,α(−λnz) is an entire function

(see Section 1.8 in [20] for example). Therefore each (T −z)α−1Eα,α(−λn(T −z)α) is analytic

in z ∈ ST and so is their linear combination
∑N

n=1(v0, φn)(T−z)α−1Eα,α(−λn(T−z)α)∂νLφn.

If we fix δ > 0 arbitrarily, then for z ∈ C with Re z ≤ T − δ, we have∥∥∥∥∥
N∑

n=M

(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)∂νLφn

∥∥∥∥∥
2

L2(Γ)

≤ C

∥∥∥∥∥
N∑

n=M

(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)φn

∥∥∥∥∥
2

H2(Ω)

≤ C

∥∥∥∥∥
N∑

n=M

(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)φn

∥∥∥∥∥
2

D(L)

= C

N∑
n=M

|λn(v0, φn)(T − z)α−1Eα,α(−λn(T − z)α)|2

≤ C

N∑
n=M

|(v0, φn)|2|T − z|−2

(
λn|T − z|α

1 + λn|T − z|α

)2

≤ Cδ−2

N∑
n=M

|(v0, φn)|2 → 0 as M,N → ∞.

That is, (2.4.2) is uniformly convergent in {z ∈ C; Re z ≤ T −δ}. Hence ∂νLv is also analytic

in ST .

Proof of Proposition 2.4.2. Since ∂νLv = 0 in Γ0 × (0, T ) and ∂νLv : [0, T ) → L2(Ω) can

be analytically extended to ST , we have

∂νLv(x, t) =
∞∑
n=1

(v0, φn)(T − t)α−1Eα,α(−λn(T − t)α)∂νLφn(x) = 0, x ∈ Γ0, t ∈ (−∞, T ).

(2.4.3)
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Let {µk}k∈N be all spectra of L without multiplicities and we denote by {φkj}1≤j≤mk
an

orthonormal basis of Ker(µk − L). By using these notations, we can rewrite (2.4.3) by

∞∑
k=1

(
mk∑
j=1

(v0, φkj)∂νLφkj(x)

)
(T − t)α−1Eα,α(−µk(T − t)α) = 0, x ∈ Γ0, t ∈ (−∞, T ).

(2.4.4)

Let 0 < θ < 1/4 be fixed. Then for any z ∈ C with Re z = ξ > 0 and N ∈ N, we repeat the

similar calculation as in the previous proof and obtain∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)∂νLφkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

L2(Γ)

≤

∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)∂νLφkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

H1/2−2θ(Γ)

≤ C

∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)φkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

H2−2θ(Ω)

≤ C

∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)φkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

D(L1−θ)

= C

N∑
k=1

(
mk∑
j=1

|(v0, φkj)|2
)
e2ξ(t−T )

∣∣µ1−θ
k (T − t)α−1Eα,α(−µk(T − t)α)

∣∣2 .
By Lemma 1.3.2, we have

∣∣µ1−θ
k (T − t)α−1Eα,α(−µk(T − t)α)

∣∣ ≤ µ1−θ
k (T − t)α−1 · C

1 + µk(T − t)α

≤ C · (µk(T − t)α)1−θ

1 + µk(T − t)α
· (T − t)αθ−1

≤ C(T − t)αθ−1.

Therefore we have∥∥∥∥∥
N∑
k=1

(
mk∑
j=1

(v0, φkj)∂νLφkj

)
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
L2(Γ)

≤ Ceξ(t−T )(T − t)αθ−1∥v0∥L2(Ω).

The right-hand side of the above is integrable on (−∞, T );∫ T

−∞
eξ(t−T )(T − t)αθ−1dt =

Γ(αθ)

ξαθ
.
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Hence the Lebesgue theorem yields that

∫ T

−∞
ez(t−T )

(
∞∑
k=1

mk∑
j=1

(v0, φkj)∂νLφkj(x)(T − t)α−1Eα,α(−µk(T − t)α)

)
dt

=
∞∑
k=1

mk∑
j=1

(v0, φkj)∂νLφkj(x)

(∫ T

−∞
ez(t−T )(T − t)α−1Eα,α(−µk(T − t)α)dt

)

=
∞∑
k=1

mk∑
j=1

(v0, φkj)

zα + µk

∂νLφkj(x), a. e. x ∈ Γ, Re z > 0. (2.4.5)

By (2.4.4) and (2.4.5), we have

∞∑
k=1

mk∑
j=1

(v0, φkj)

zα + µk

∂νLφkj(x) = 0, a. e. x ∈ Γ0, Re z > 0,

that is,
∞∑
k=1

mk∑
j=1

(v0, φkj)

η + µk

∂νLφkj(x) = 0, a. e. x ∈ Γ0, Re η > 0. (2.4.6)

By using analytic continuation in η, we may assume (2.4.6) holds for η ∈ C \ {−µk}k∈N.
Then we can take a suitable disk which includes −µℓ and does not include {−µk}k ̸=ℓ. By

integrating (2.4.6) in the disk, we have

mℓ∑
j=1

(v0, φℓj)∂νLφℓj(x) = 0, a. e. x ∈ Γ0.

By setting ṽℓ :=
∑mℓ

j=1(v0, φℓj)φℓj, we have

(L− µℓ)ṽℓ = 0 in Ω and ∂νL ṽℓ = 0 on Γ0.

Therefore the unique continuation result for eigenvalue problem of elliptic operator (see

Corollary 2.2 in [39] for example) implies

ṽℓ(x) =

mℓ∑
j=1

(v0, φℓj)φℓj(x) = 0, x ∈ Ω

for each ℓ ∈ N. Since {φℓj}1≤j≤mℓ
is linearly independent in Ω, we see that

(v0, φℓj) = 0, 1 ≤ j ≤ mℓ, ℓ ∈ N.

This implies v = 0 in Ω× (0, T ).
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2.5 Proof of Theorem 2.2.2

In this section, we complete the proof of Theorem 2.2.2 by using the results which we have

proved in Sections 2.3 and 2.4.

Let ug be the solution to (2.2.1) for g ∈ C∞
0 (Γ0× (0, T )), and v be the solution to (1.4.1)

for v0 ∈ L2(Ω). We first prove that∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt = 0 (2.5.1)

holds for any g ∈ C∞
0 (Γ0 × (0, T )) and v0 ∈ H2(Ω) ∩H1

0 (Ω).

Since the first equation in (2.2.1) holds in C∞([0, T ];L2(Ω)) and v ∈ Lq(0, T ;H2(Ω) ∩
H1

0 (Ω)) by Theorem 2.2.1 and Proposition 2.4.1 respectively, we can see that

0 =

∫ T

0

∫
Ω

(∂α
t ug + L ug)vdxdt =

∫ T

0

∫
Ω

(∂α
t ug)vdxdt+

∫ T

0

∫
Ω

(L ug)vdxdt. (2.5.2)

We calculate the first term on the right-hand side of (2.5.2) as follows;∫ T

0

∫
Ω

(∂α
t ug)vdxdt =

∫ T

0

∫
Ω

I1−α
0+

∂ug

∂t
· vdtdx =

∫ T

0

∫
Ω

∂ug

∂t
· I1−α

T− vdtdx

=

∫
Ω

ug · I1−α
T− vdx

∣∣∣∣t=T

t=0

−
∫
Ω

∫ T

0

ug ·
∂

∂t
I1−α
T− vdtdx

=

∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Ω

ug(D
α
t v)dxdt.

Here we have used the integration in t by parts and the initial condition in (2.1.1). In terms

of ug ∈ C∞([0, T ];H2(Ω)) and Lv ∈ Lq(0, T ;L2(Ω)) by Theorem 2.2.1 and Proposition 2.4.1,

we apply the Green formula to the second term on the right-hand side of (2.5.2) and have∫ T

0

∫
Ω

(L ug)vdxdt =

∫ T

0

∫
Ω

ug(L v)dxdt+

∫ T

0

∫
Γ

(
ug

∂v

∂νL
− ∂ug

∂νL
v

)
dσdt

=

∫ T

0

∫
Ω

ug(L v)dxdt+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt.

In the above calculation, we have used boundary conditions in (2.2.1) and (1.4.1). Therefore

we have

0 =

{∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Ω

ug(D
α
t v)dxdt

}
+

{∫ T

0

∫
Ω

ug(L v)dxdt+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt

}
=

∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Ω

ug(D
α
t v + L v)dxdt+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt

=

∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt.
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Thus (2.5.1) holds for g ∈ C∞
0 (Γ0 × (0, T )) and v0 ∈ H2(Ω) ∩H1

0 (Ω).

Let g ∈ C∞
0 (Γ0 × (0, T )) be fixed. Then the mapping

v0 7→
∫
Ω

ug(·, T )v0dx+

∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt

is a linear and bounded functional by (2.4.1). Hence the density argument implies that

(2.5.1) holds for any v0 ∈ L2(Ω).

In order to prove the density of {ug(·, T ); g ∈ C∞
0 (Γ0 × (0, T ))} in L2(Ω), we will show

that

{ug(·, T ); g ∈ C∞
0 (Γ0 × (0, T ))}⊥ = {0}. (2.5.3)

This can be shown as follows.

Let v0 belong to the left-hand side of (2.5.3), then (2.5.1) yields∫ T

0

∫
Γ0

g
∂v

∂νL
dσdt = −

∫
Ω

ug(·, T )v0dx = 0

for any g ∈ C∞
0 (Γ0 × (0, T )). By the fundamental lemma of the calculus of variations, we

have
∂v

∂νL
(x, t) = 0, (x, t) ∈ Γ0 × (0, T ).

By Proposition 2.4.2, we have

v0(x) = 0, x ∈ Ω.

Thus we have shown (2.5.3) and the proof of Theorem 2.2.2 is completed.
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Chapter 3

Inverse Source Problem

3.1 Introduction

Let Ω be a bounded domain of Rd, d = 1, 2, 3, with C2 boundary ∂Ω. We set Σ = ∂Ω×(0, T )

and Q = Ω × (0, T ). We consider the following two initial-boundary value problem (IBVP

in short) for the fractional diffusion equation
∂α
t u(x, t) +Au(x, t) = f(t)R(x, t), (x, t) ∈ Q,

Bσu(x, t) = 0, (x, t) ∈ Σ,

u(x, 0) = 0, x ∈ Ω

(3.1.1)

and 
∂α
t v(x, t) +Av(x, t) + f(t)q(x, t)v(x, t) = 0, (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = v0(x), x ∈ Ω

(3.1.2)

with 0 < α < 1. Here we denote by ∂α
t the Caputo fractional derivative with respect to t

(see (1.1.2)). The differential operator A is defined by

Au(x, t) := −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x, t)

)
,

where the coefficients satisfy

aij = aji, 1 ≤ i, j ≤ d, and
d∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2, x ∈ Ω, ξ ∈ Rd

for some µ > 0. Moreover Bσ is defined as

Bσu(x) = (1− σ(x))u(x) + σ(x)∂νAu(x), x ∈ ∂Ω,

where

∂νAu(x) =
d∑

i,j=1

aij(x)
∂u

∂xi

νj(x)
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and ν = (ν1, . . . , νd) is the outward normal unit vector to ∂Ω. Here σ is a C2 function on

∂Ω satisfying

0 ≤ σ(x) ≤ 1, x ∈ ∂Ω.

For the regularity of aij, we assume{
aij ∈ C1(Ω) if σ ≡ 0,

aij ∈ C2(Ω) if σ ̸≡ 0.

Note that the regularity for aij depends on whether σ ≡ 0 or not, which is due to condition

(3.2.3) in the next section.

In this chapter, we consider the inverse problem which consists of determining the function

{f(t)}t∈(0,T ) in (3.1.1) and (3.1.2) from the observation of the solution at a point x0 ∈ Ω for

all t ∈ (0, T ).

The partial differential equations with time fractional derivatives such as (3.1.1) and

(3.1.2) are proposed as new models describing the anomalous diffusion phenomena. In partic-

ular, the fractional diffusion equation can be used as a model for the diffusion of contaminants

in a soil. Therefore the inverse problem considered in this chapter means the determination

of the time evolution of pollution source in (3.1.1) and reaction rate of pollutants in (3.1.2)

respectively. In this chapter, we consider such problems assuming the boundedness of the

time-dependent parameter {f(t)}t∈(0,T ) (see (3.2.1)).

The remainder of this chapter is composed of four sections. In Section 3.2, we state our

main results. In Section 3.3, we study the forward problem for the IBVPs (3.1.1) and (3.1.2)

and prove the unique existence and regularity of the solutions. In Sections 3.4 and 3.5, we

complete the proof of our main results—Theorems 3.2.1 and 3.2.2 respectively.

3.2 Main results

By L2(Ω), we denote the usual L2-space equipped with the inner product (·, ·) and the norm

∥ · ∥ := ∥ · ∥L2(Ω). Moreover Hs(Ω), s ∈ R, and Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, are the Sobolev

spaces (see Adams [2] for example).

For the time dependent parameter {f(t)}t∈(0,T ), we always assume

f ∈ L∞(0, T ). (3.2.1)

For other given functions in (3.1.1), we suppose

R ∈ Lp(0, T ;H2(Ω)),
8

α
< p ≤ ∞ and BσR = 0 on Σ. (3.2.2)

On the other hand, in the IBVP (3.1.2), we suppose{
q ∈ L∞(0, T ;H2(Ω)) (and ∂νq = 0 on Σ if σ ̸≡ 0),

v0 ∈ H4(Ω) and Bσv0 = Bσ(Av0) = 0 on ∂Ω.
(3.2.3)
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Assuming these conditions, we prove in Section 3.3 that the IBVPs (3.1.1) and (3.1.2)

admit unique solutions u, v ∈ C([0, T ];H2(Ω)) with ∂α
t u ∈ Lp(0, T ;Hs(Ω)) and ∂α

t v ∈
L∞(0, T ;Hs(Ω)) for some s > d/2. Therefore, using the Sobolev embedding theorem (see

Theorem 9.8 in Chapter 1 of [21] for example), for any x0 ∈ Ω, we see that

∂α
t u(x0, ·) ∈ Lp(0, T ) and ∂α

t v(x0, ·) ∈ L∞(0, T ).

Then our main results can be stated as follows;

Theorem 3.2.1. Let condition (3.2.2) be fulfilled and ui be the solution of (3.1.1) for f =

fi ∈ L∞(0, T ), (i = 1, 2). We assume that there exist x0 ∈ Ω and δ > 0 such that

|R(x0, t)| ≥ δ, a.e. t ∈ (0, T ). (3.2.4)

Then there exists a constant C > 0 depending on p, T , Ω, δ and ∥R∥Lp(0,T ;H2(Ω)) such that

∥f1 − f2∥Lp(0,T ) ≤ C∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥Lp(0,T ), (3.2.5)

∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥Lp(0,T ) ≤ C∥f1 − f2∥L∞(0,T ). (3.2.6)

In particular, if we take p = ∞ in (3.2.2), then

C−1∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥L∞(0,T ) ≤ ∥f1 − f2∥L∞(0,T )

≤ C∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥L∞(0,T ).

Theorem 3.2.2. Let condition (3.2.3) be fulfilled and vi be the solution of (3.1.2) for f =

fi ∈ L∞(0, T ) with ∥fi∥L∞(0,T ) ≤ M (i = 1, 2). We assume that there exist x0 ∈ Ω and δ > 0

such that

|q(x0, t)v2(x0, t)| ≥ δ, a.e. t ∈ (0, T ). (3.2.7)

Then there exists a constant C > 0 depending on M , T , Ω, δ and ∥q∥L∞(0,T ;H2(Ω)) such that

C−1∥∂α
t v1(x0, ·)− ∂α

t v2(x0, ·)∥L∞(0,T ) ≤ ∥f1 − f2∥L∞(0,T )

≤ C∥∂α
t v1(x0, ·)− ∂α

t v2(x0, ·)∥L∞(0,T ). (3.2.8)

In Theorem 4.4 of Sakamoto and Yamamoto [36], a similar problem to Theorem 3.2.1

is considered, but our result is more applicable in the point of view that the factor R(x, t)

is also allowed to depend on t. Moreover, we may assume less regularity for R in Theorem

3.2.1. The arguments of Theorem 3.2.2 can also be applied to parabolic equations in order to

consider the result of Theorem 1.1 in [8] with observations of the solution at a point x0 ∈ Ω

when Ω ⊂ Rd, d = 1, 2, 3.

For such inverse problems with α = 1, we can also refer to Section 1.5 of Prilepko,

Orlovsky and Vasin [29], Cannon and Esteva [7] and Saitoh, Tuan and Yamamoto [31, 32],
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for example. In our main results, we assume conditions (3.2.4) and (3.2.7), which means

that the observation point cannot be far from the source. On the other hand, in [7] and

[31, 32], the determination of time dependent factor in the source term is considered without

assuming such conditions and the logarithmic type and Hölder type estimates are proved

respectively. However, the results for fractional diffusion equations without these conditions

have not been obtained yet. Here we restrict ourselves to the case with assumptions (3.2.4)

and (3.2.7), and show the Lipschitz type stability.

Let us remark that the results of this chapter can be extended to the case d ≥ 4. For

this purpose additional conditions such as more regularity for aij and ∂Ω are required. In

order to avoid technical difficulties, we only treat the case d ≤ 3.

3.3 Forward problem

This section is devoted to the proof of unique existence and regularity of the solution of the

IBVPs (3.1.1) and (3.1.2).

Proposition 3.3.1. Let conditions (3.2.1) and (3.2.2) be fulfilled. Then the IBVP (3.1.1)

admits a unique solution u ∈ C([0, T ];H2(Ω)) satisfying

Au ∈ C([0, T ];H2γ(Ω)) and ∂α
t u ∈ Lp(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1− 1/(pα). Moreover we have

∥Au∥C([0,T ];H2γ(Ω)) + ∥∂α
t u∥Lp(0,T ;H2γ(Ω)) ≤ C∥fR∥Lp(0,T ;H2(Ω)). (3.3.1)

with C > 0 depending on Ω, T and γ

Proposition 3.3.2. Let conditions (3.2.1) and (3.2.3) be fulfilled. Then the IBVP (3.1.2)

admits a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1. Moreover, we have

∥Av∥C([0,T ];H2γ(Ω)) + ∥∂α
t v∥L∞(0,T ;H2γ(Ω)) ≤ C∥v0∥H4(Ω) (3.3.2)

with C depending on Ω, T , ∥f∥L∞(0,T ), ∥q∥L∞(0,T ;H2(Ω)) and γ.

If all coefficients are independent of time variable t, then we can apply eigenfunction

expansion and the problems can be reduced to ordinary differential equations of fractional

order (e.g. [36]). However, since we consider the determination of the time dependent factor

of coefficients, we apply fixed point theorem to show the unique existence of the solutions to

(3.1.1) and (3.1.2) as in Beckers and Yamamoto [5].

In order to prove these results, we consider the IBVPs with more general data in the

next subsections.
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3.3.1 Intermediate results

We introduce the following IBVPs
∂α
t u(x, t) +Au(x, t) = F (x, t), (x, t) ∈ Q,

Bσu(x, t) = 0, (x, t) ∈ Σ,

u(x, 0) = 0, x ∈ Ω,

(3.3.3)


∂α
t v(x, t) +Av(x, t) + p(x, t)v(x, t) = F (x, t), (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = 0, x ∈ Ω,

(3.3.4)

and 
∂α
t v(x, t) +Av(x, t) + p(x, t)v(x, t) = 0, (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = v0(x), x ∈ Ω.

(3.3.5)

We also consider the following conditions

F ∈ Lp(0, T ;H2(Ω)),
8

α
< p ≤ ∞ and BσF = 0 on Σ (3.3.6)

and {
1) p ∈ L∞(0, T ;H2(Ω)) (and ∂νp = 0 on Σ if σ ̸≡ 0),

2) v0 ∈ H4(Ω) and Bσv0 = Bσ(Av0) = 0 on ∂Ω.
(3.3.7)

Note that if we set F (x, t) = f(t)R(x, t), then conditions (3.2.1) and (3.2.2) are equivalent

to (3.3.6). Similarly, if we assume p(x, t) = f(t)q(x, t), then conditions (3.2.1) and (3.2.3)

are equivalent to (3.3.7). Now let us consider the following intermediate results.

Lemma 3.3.3. Let condition (3.3.6) be fulfilled. Then the IBVP (3.3.3) admits a unique

solution u ∈ C([0, T ];H2(Ω)) satisfying

Au ∈ C([0, T ];H2γ(Ω)) and ∂α
t u ∈ Lp(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1− 1/(pα). Moreover we have

∥Au∥C([0,T ];H2γ(Ω)) + ∥∂α
t u∥Lp(0,T ;H2γ(Ω)) ≤ C∥F∥Lp(0,T ;H2(Ω)) (3.3.8)

with C > 0 depending on Ω, T and γ.

Lemma 3.3.4. Let F ∈ L∞(0, T ;H2(Ω)) satisfy BσF = 0 and condition 1) of (3.3.7) be

fulfilled. Then the IBVP (3.3.4) admits a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1. Moreover, we have

∥Av∥C([0,T ];H2γ(Ω)) + ∥∂α
t v∥L∞(0,T ;H2γ(Ω)) ≤ C∥F∥L∞(0,T ;H2(Ω)) (3.3.9)

with C depending on Ω, T , ∥p∥L∞(0,T ;H2(Ω)) and γ.
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Lemma 3.3.5. Let condition (3.3.7) be fulfilled. Then the IBVP (3.3.5) admits a unique

solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1. Moreover, we have

∥Av∥C([0,T ];H2γ(Ω)) + ∥∂α
t v∥L∞(0,T ;H2γ(Ω)) ≤ C∥v0∥H4(Ω) (3.3.10)

with C depending on Ω, T , ∥p∥L∞(0,T ;H2(Ω)) and γ.

From these three lemmata we deduce easily Propositions 3.3.1 and 3.3.2.

3.3.2 Preliminary

We define the operator A as A+1 in L2(Ω) equipped with the boundary condition Bσh = 0;{
D(A) := {h ∈ H2(Ω); Bσh = 0 on ∂Ω},
Ah := Ah+ h, h ∈ D(A).

(3.3.11)

Then A is a selfadjoint and strictly positive operator with an orthonormal basis of eigen-

functions (ϕn)n≥1 of finite order associated to an increasing sequence of eigenvalues (λn)n≥1.

We can define the fractional power Aγ, γ ≥ 0, of A by

D(Aγ) :=

{
h ∈ L2(Ω);

∞∑
n=1

λ2γ
n |(h, ϕn)|2 < ∞

}
,

Aγh :=
∞∑
n=1

λγ
n(h, ϕn)ϕn, h ∈ D(Aγ).

(3.3.12)

Then D(Aγ) is a Hilbert space with the norm ∥ · ∥D(Aγ) defined by ∥h∥D(Aγ) := ∥Aγh∥.
Since D(A) is continuously embedded into H2(Ω) with norm equivalence (see Theorem 5.4

in Chapter 2 of [21] for example), we see by interpolation that

D(Aγ) ⊂ H2γ(Ω),

C−1∥h∥H2γ(Ω) ≤ ∥h∥D(Aγ) ≤ C∥h∥H2γ(Ω), h ∈ D(Aγ)

for 0 ≤ γ ≤ 1.

In order to prepare for the arguments used in this chapter, we consider the following

Cauchy problem in L2(Ω);{
∂α
t u(t) + Au(t) = F (t), t ∈ (0, T ),

u(0) = 0.
(3.3.13)
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We define the operator valued function {SA(t)}t≥0 by

SA(t)h =
∞∑
n=1

(h, ϕn)Eα,1(−λnt
α)ϕn, h ∈ L2(Ω), t ≥ 0,

with Eα,β, α > 0, β ∈ R, the Mittag-Leffler function given by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
.

Recall that SA(t) ∈ W 1,1(0, T ;B(L2(Ω))) (e.g. [5] and [36]). Moreover, similarly to Theorem

2.2 in [36], for F ∈ L∞(0, T ;L2(Ω)), problem (3.3.13) admits a unique solution given by

u(t) =

∫ t

0

A−1S ′
A(t− s)F (s)ds. (3.3.14)

This solution is lying in L∞(0, T ;D(Aγ)) for 0 ≤ γ < 1, and, in view of Theorem 1 in [5],

we have

∥Aγ−1S ′
A(t)h∥ ≤ Ctα(1−γ)−1∥h∥, h ∈ L2(Ω), t > 0. (3.3.15)

In particular, the mapping t 7→ A−1S ′
A(t) belongs to Lq(0, T ;B(L2(Ω))) if q ∈ (1,∞) satisfy

q(1− α) < 1. Now we apply the following Young’s inequality to (3.3.14);

Lemma 3.3.6. Let f ∈ Lp(0, T ) and g ∈ Lq(0, T ) with 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1.

Then the function f ∗ g defined by

f ∗ g(t) :=
∫ t

0

f(t− s)g(s)ds

belongs to C[0, T ] and satisfies

|f ∗ g(t)| ≤ ∥f∥Lp(0,t)∥g∥Lq(0,t), t ∈ [0, T ].

Proof. Let f̃ and g̃ be defined by

f̃(t) :=

{
f(t), t ∈ (0, T ),

0, t /∈ (0, T ),
and g̃(t) :=

{
g(t), t ∈ (0, T ),

0, t /∈ (0, T ).

Then applying the Young’s inequality for functions on R (see Exercise 4.30 in Brezis [6] or

Appendix A in Stein [40] for example), we obtain the desired result.

Let p ∈ (1,∞] be as in (3.3.6). Noting that A and A−1S ′
A(t) commute, we see that for

F ∈ Lp(0, T ;D(A)),

Au(t) =

∫ t

0

A−1S ′
A(t− s)AF (s)ds.
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By p > 1/α and (3.3.15), the mapping t 7→ A−1S ′
A(t) belongs to Lq(0, T ;B(L2(Ω))) where

q ∈ [1,∞) satisfies 1/p + 1/q = 1. Therefore by Lemma 3.3.6, u belongs to C([0, T ];D(A))

and satisfies

∥Au(t)∥ ≤
∫ t

0

∥A−1S ′
A(t− s)∥∥AF (s)∥ds ≤ C

∫ t

0

(t− s)α−1∥F (s)∥D(A)ds (3.3.16)

≤ C

(∫ t

0

s(α−1)qds

)1/q

∥F∥Lp(0,t;D(A)) ≤ Ctα−1/p∥F∥Lp(0,T ;D(A)). (3.3.17)

Thus we can define the map H : Lp(0, T ;D(A)) → C([0, T ];D(A)) by

H(w)(t) :=

∫ t

0

A−1S ′
A(t− s)w(s)ds, w ∈ Lp(0, T ;D(A)). (3.3.18)

By using these estimates, we will show the unique existence of the solution applying the

fixed point theorem.

3.3.3 Proof of Lemmata 3.3.3-3.3.5

Proof of Lemma 3.3.3. Let A be the operator defined by (3.3.11), then the IBVP (3.3.3)

can be rewritten as {
∂α
t u(t) + Au(t) = u(t) + F (t), t ∈ (0, T ),

u(0) = 0,
(3.3.19)

where u(t) := u(·, t) and F (t) := F (·, t). Noting that F ∈ Lp(0, T ;D(A)) by (3.3.6), we see

from (3.3.14) that the solution u of (3.3.19) satisfies

u(t) = H(u)(t) +H(F )(t), t ∈ (0, T ),

where the map H is defined by (3.3.18). Therefore we will look for a fixed point of the map

G : C([0, T ];D(A)) → C([0, T ];D(A)) defined by

G(w)(t) := H(w)(t) +H(F )(t), w ∈ C([0, T ];D(A)), t ∈ (0, T ). (3.3.20)

By (3.3.16), for w ∈ C([0, T ];D(A)), we have

∥H(w)(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥w(s)∥D(A)ds ≤ C

(∫ t

0

(t− s)α−1ds

)
∥w∥C([0,T ];D(A))

=
Ctα

α
∥w∥C([0,T ];D(A)).

Repeating the similar calculation, we get

∥H2w(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥Hw(s)∥D(A)ds ≤
C

α

(∫ t

0

(t− s)α−1sαds

)
∥w∥C([0,T ];D(A))
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=
C(Γ(α)tα)2

Γ(2α + 1)
∥w∥C([0,T ];D(A)).

By induction, we have

∥Hnw(t)∥D(A) ≤
C (Γ(α)tα)n

Γ(nα + 1)
∥w∥C([0,T ];D(A)), w ∈ C([0, T ];D(A)). (3.3.21)

Therefore we obtain

∥Gn(w1)− Gn(w2)∥C([0,T ];D(A)) = ∥Hn(w1 − w2)∥C([0,T ];D(A))

≤ C (Γ(α)Tα)n

Γ(nα+ 1)
∥w1 − w2∥C([0,T ];D(A))

for w1, w2 ∈ C([0, T ];D(A)). Since Gn is a contraction for sufficiently large n ∈ N, G admits

a unique fixed point u ∈ C([0, T ];D(A)) ⊂ C([0, T ];H2(Ω)). Moreover we have

u = G(u) = Gn(u) = Hn(u) +
n∑

k=1

Hk(F )

for any n ∈ N. Now we estimate each Hk(F ). First, by (3.3.17), we have

∥H(F )(t)∥D(A) ≤ Ctα−1/p∥F∥Lp(0,T ;D(A)).

Next we apply (3.3.16) to have

∥H2(F )(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥H(F )(s)∥D(A)ds

≤ C

(∫ t

0

(t− s)α−1sα−1/pds

)
∥F∥Lp(0,T ;D(A))

=
CΓ(α)Γ(α + 1− 1/p)

Γ(2α + 1− 1/p)
t2α−1/p∥F∥Lp(0,T ;D(A))

≤ CΓ(α)t2α−1/p

Γ(2α + 1− 1/p)
∥F∥Lp(0,T ;D(A)).

Repeating the similar calculation,

∥H3(F )(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥H2(F )(s)∥D(A)ds

≤ CΓ(α)

Γ(2α + 1− 1/p)

(∫ t

0

(t− s)α−1s2α−1/pds

)
∥F∥Lp(0,T ;D(A))

=
CΓ(α)2t3α−1/p

Γ(3α+ 1− 1/p)
∥F∥Lp(0,T ;D(A)).

By induction, we obtain

∥Hk(F )∥C([0,T ];D(A)) ≤
CΓ(α)k−1T kα−1/p

Γ(kα + 1− 1/p)
∥F∥Lp(0,T ;D(A)).
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Therefore

∥u∥C([0,T ];D(A)) ≤ ∥Hn(u)∥C([0,T ];D(A)) +
n∑

k=1

∥Hk(F )∥C([0,T ];D(A))

≤ C (Γ(α)Tα)n

Γ(nα + 1)
∥u∥C([0,T ];D(A)) +

n∑
k=1

CΓ(α)k−1T kα−1/p

Γ(kα + 1− 1/p)
∥F∥Lp(0,T ;D(A))

and by taking sufficiently large n ∈ N, we obtain

∥u∥C([0,T ];D(A)) ≤ C∥F∥Lp(0,T ;D(A)) (3.3.22)

with C depending on T and Ω.

Now fix 0 ≤ γ < 1− 1/(pα). Then for all t ∈ (0, T ), we have Au(t) ∈ D(Aγ) with

Aγ(Au)(t) =

∫ t

0

Aγ−1S ′
A(t− s)(Au(s) +AF (s))ds

and by (3.3.15), we have

∥Aγ−1S ′
A(t)∥B(L2(Ω)) ≤ Ctµ−1,

where µ := α(1−γ). Since µ > 1/p, the mapping t 7→ Aγ−1S ′
A(t) belongs to L

q(0, T ;B(L2(Ω))

where q ∈ [1,∞) satisfies 1/p+ 1/q = 1. Therefore Au belongs to C([0, T ];D(Aγ)) and

∥Au(t)∥D(Aγ) =

∥∥∥∥∫ t

0

Aγ−1S ′
A(t− s) (Au(s) +AF (s)) ds

∥∥∥∥
≤ C

∫ t

0

(t− s)µ−1∥u(s)∥D(A)ds+ C

∫ t

0

(t− s)µ−1∥F (s)∥D(A)ds

≤ C

(∫ t

0

(t− s)µ−1ds

)
∥u∥C([0,T ];D(A)) + C

(∫ t

0

sq(µ−1)ds

)1/q

∥F∥Lp(0,t;D(A))

≤ CT µ∥u∥C([0,T ];D(A)) + CT µ−1/p∥F∥Lp(0,T ;D(A)) (3.3.23)

Combining this with (3.3.22), we have

∥Au(t)∥D(Aγ) ≤ C∥F∥Lp(0,T ;D(A)) ≤ C∥F∥Lp(0,T ;H2(Ω)).

Hence we deduce that Au ∈ C([0, T ];H2γ(Ω)) and

∥Au∥C([0,T ];H2γ(Ω)) ≤ C∥F∥Lp(0,T ;H2(Ω)).

By the original equation ∂α
t u = −Au+F , we see that ∂α

t u belongs to Lp(0, T ;H2γ(Ω)) with

the estimate;

∥∂α
t u∥Lp(0,T ;H2γ(Ω)) ≤ C∥Au∥Lp(0,T ;H2γ(Ω)) + C∥F∥Lp(0,T ;H2γ(Ω))

≤ C∥Au∥C([0,T ];H2γ(Ω)) + C∥F∥Lp(0,T ;H2(Ω))

≤ C∥F∥Lp(0,T ;H2(Ω)),

which implies (3.3.8). Thus we have completed the proof.
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For the proof of Lemma 3.3.4, we prepare the following fact;

Lemma 3.3.7. Let u, v ∈ H2(Ω) and d ≤ 3, then uv ∈ H2(Ω) with the estimate

∥uv∥H2(Ω) ≤ C∥v∥H2(Ω)

with C depending on ∥u∥H2(Ω).

For this lemma, see Theorem 2.1 in Chapter II of Strichartz [33].

Proof of Lemma 3.3.4. Similarly to Lemma 3.3.3, the IBVP (3.3.4) can be rewritten as{
∂α
t v(t) + Av(t) = (1− p(t))v(t) + F (t),

v(0) = 0,
(3.3.24)

where v(t) := v(·, t) and F (t) := F (·, t). Moreover p(t) denotes the multiplication operator

by p(x, t). Then we can see that the solution v of (3.3.24) is a fixed point of the map

K : C([0, T ];D(A)) → C([0, T ];D(A)) defined by

K(w)(t) := (H(1− p(t))w)(t) +H(F )(t), w ∈ C([0, T ];D(A)), t ∈ (0, T ).

Indeed, Lemma 3.3.7 and 1) of (3.3.7) yields that (1 − p)w belongs to L∞(0, T ;D(A)) and

satisfies

∥(1− p(t))w(t)∥D(A) ≤ C∥w(t)∥D(A)

with C depending on ∥p∥L∞(0,T ;H2(Ω)). Therefore we can see that K maps C([0, T ];D(A)).

Moreover, by the similar calculation to (3.3.21), we have

∥(H(1− p))n(w)∥C([0,T ];D(A)) ≤
C(Γ(α)tα)n

Γ(nα+ 1)
∥w∥C([0,T ];D(A)), w ∈ C([0, T ];D(A)) (3.3.25)

and

∥(H(1− p))n−1(HF )∥C([0,T ];D(A)) ≤
C(Γ(α)tα)n

Γ(nα + 1)
∥F∥L∞(0,T ;D(A)), F ∈ L∞(0, T ;D(A)).

(3.3.26)

By (3.3.25), we find

∥Kn(w1)−Kn(w2)∥C([0,T ];D(A)) ≤
C(Γ(α)Tα)n

Γ(nα + 1)
∥w1 − w2∥C([0,T ];D(A)),

w1, w2 ∈ C([0, T ];D(A)),

which implies that K admits a unique fixed point v ∈ C([0, T ];D(A)) ⊂ C([0, T ];H2(Ω)).

Then we have

v = K(v) = Kn(v) = (H(1− p(t)))n(v) +
n∑

k=1

(H(1− p(t)))k−1(HF ). (3.3.27)
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Repeating the argument in the proof of Lemma 3.3.3, we deduce from (3.3.25), (3.3.26) and

(3.3.27) that

∥v∥C([0,T ];D(A)) ≤ C∥F∥L∞(0,T ;D(A)) (3.3.28)

with C depending on T , Ω and ∥p∥L∞(0,T ;H2(Ω)).

Next we fix 0 ≤ γ < 1. Similarly to (3.3.23), we have

Av(t) ∈ D(Aγ), t ∈ (0, T )

and

∥Av(t)∥D(Aγ) ≤ C

∥∥∥∥∫ t

0

Aγ−1S ′
A(t− s) ((A(1− p(s))v)(s) +AF (s)) ds

∥∥∥∥
≤ C

∫ t

0

(t− s)µ−1
(
∥(1− p(s))v(s)∥D(A) + ∥F (s)∥D(A)

)
ds

≤ C

∫ t

0

(t− s)µ−1
(
∥v(s)∥D(A) + ∥F (s)∥D(A)

)
ds

with µ = α(1− γ). Therefore Av belongs to C([0, T ];H2γ(Ω)) and satisfies

∥Av∥C([0,T ];H2γ(Ω)) ≤ ∥Av∥C([0,T ];D(Aγ)) ≤ CT µ
(
∥v∥C([0,T ];D(A)) + ∥F∥L∞(0,T ;D(A))

)
≤ C∥F∥L∞(0,T ;D(A)) ≤ C∥F∥L∞(0,T ;H2(Ω)),

where we have used (3.3.28). Moreover, combining this with the original equation, we also

have ∂α
t v ∈ L∞(0, T ;H2γ(Ω)) and (3.3.9).

Proof of Lemma 3.3.5. We split the solution v of (3.3.5) into two terms v = w+v0 where

w solves 
∂α
t w(x, t) +Aw(x, t) + p(x, t)w(x, t) = F (x, t), (x, t) ∈ Q,

Bσw(x, t) = 0, (x, t) ∈ Σ,

w(x, 0) = 0, x ∈ Ω

(3.3.29)

with F (x, t) := −(A + p(x, t))v0(x). Then (3.3.7) implies F ∈ L∞(0, T ;D(A)) with the

estimate

∥F∥L∞(0,T ;H2(Ω)) ≤ C∥v0∥H4(Ω).

By Lemma 3.3.4, the IBVP (3.3.29) admits a unique solution w ∈ C([0, T ];H2(Ω)) satisfying

Aw ∈ C([0, T ];H2γ(Ω)) and ∂α
t w ∈ L∞(0, T ;H2γ(Ω)).

Moreover

∥Aw∥C([0,T ];H2γ(Ω)) + ∥∂α
t w∥L∞(0,T ;H2γ(Ω)) ≤ C∥F∥L∞(0,T ;H2(Ω)) ≤ C∥v0∥H4(Ω).

Therefore the IBVP (3.3.5) admits a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω)).

From the above estimate, we deduce (3.3.10).
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3.4 Proof of Theorem 3.2.1

In this section, we prove Theorem 3.2.1. To this end, we prepare the following lemmata with

Gronwall type inequalities;

Lemma 3.4.1. Let C, α > 0 and u, d ∈ L1(0, T ) be nonnegative functions satisfying

u(t) ≤ Cd(t) + C

∫ t

0

(t− s)α−1u(s)ds, t ∈ (0, T ),

then we have

u(t) ≤ Cd(t) + C

∫ t

0

(t− s)α−1d(s)ds, t ∈ (0, T ).

For the proof, see Lemma 7.1.1 p.188 of [18].

Lemma 3.4.2. We take 2 ≤ p ≤ ∞ and µ > 2/p. Let f ∈ L∞(0, T ) and u,R ∈ Lp(0, T ) be

non-negative functions satisfying the integral inequality

f(t) ≤ u(t) +

∫ t

0

(t− s)µ−1f(s)R(s)ds, a.e. t ∈ (0, T ). (3.4.1)

Then we have

∥f∥Lp(0,T ) ≤ C∥u∥Lp(0,T ), (3.4.2)

where the constant C depends on p, µ, T and ∥R∥Lp(0,T ).

Proof. We set d(t) := ∥f∥pLp(0,t). From equation (3.4.1), we have

|f(s)|p ≤ C|u(s)|p + C

∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)R(ξ)dξ

∣∣∣∣p ,
which implies

d(t) ≤ C∥u∥pLp(0,T ) + C

∫ t

0

∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)R(ξ)dξ

∣∣∣∣p ds. (3.4.3)

Now we estimate the right-hand side of the above. By the Cauchy-Schwarz inequality,∫ s

0

|f(ξ)R(ξ)|p/2dξ =

∫ s

0

|f(ξ)|p/2 · |R(ξ)|p/2dξ ≤
(∫ s

0

|f(ξ)|pdξ
)1/2(∫ s

0

|R(ξ)|pdξ
)1/2

,

that is,

∥fR∥Lp/2(0,s) ≤ ∥f∥Lp(0,s)∥R∥Lp(0,s).
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Therefore if p > 2, then Lemma 3.3.6 yields that∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)R(ξ)dξ

∣∣∣∣ ≤ (∫ s

0

ξr(µ−1)ds

)1/r

∥fR∥Lp/2(0,s) ≤ C∥f∥Lp(0,s)∥R∥Lp(0,s),

where r ∈ [1,∞) satisfies 2/p+ 1/r = 1. For p = 2, we also have∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)R(ξ)dξ

∣∣∣∣ ≤ sµ−1∥fR∥L1(0,s) ≤ C∥f∥L2(0,s)∥R∥L2(0,s).

Thus for any p ≥ 2, we have∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)R(ξ)dξ

∣∣∣∣ ≤ Cd(s), (3.4.4)

where C depends on T , p, µ and ∥R∥Lp(0,T ). By (3.4.3) and (3.4.4), we have

d(t) ≤ C∥u∥pLp(0,T ) + C

∫ t

0

d(s)ds, t ∈ (0, T ).

Hence by the Gronwall inequality, we have

d(t) ≤ C∥u∥pLp(0,T ), t ∈ (0, T )

with C depending on p, µ, T and ∥R∥Lp(0,T ). Thus we have proved (3.4.2).

Now we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let ui be the solutions to (3.1.1) corresponding to fi (i = 1, 2)

and set u := u1 − u2 and f := f1 − f2. Then u solves (3.1.1) and is given by

u(t) =

∫ t

0

A−1S ′
A(t− s)u(s) +

∫ t

0

A−1S ′
A(t− s)f(s)R(s)ds,

where u(t) := u(·, t) and R(t) := R(·, t).
First we estimate ∥u(t)∥D(A). Similarly to the calculation in (3.3.16), we have

∥u(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥u(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds

= C

∫ t

0

(t− s)α−1∥u(s)∥D(A)ds+ Cd(t), (3.4.5)

where we have set

d(t) :=

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds.
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Applying Lemma 3.4.1 to (3.4.5), we have

∥u(t)∥D(A) ≤ Cd(t) + C

∫ t

0

(t− s)α−1d(s)ds, 0 < t < T. (3.4.6)

Here for ν > 0, we note∫ t

0

(t− s)ν−1d(s)ds =

∫ t

0

(t− s)ν−1

(∫ s

0

(s− ξ)α−1|f(ξ)|∥R(ξ)∥D(A)dξ

)
ds

=

∫ t

0

(∫ t

ξ

(t− s)ν−1(s− ξ)α−1ds

)
|f(ξ)|∥R(ξ)∥D(A)dξ

= B(ν, α)

∫ t

0

(t− ξ)ν+α−1|f(ξ)|∥R(ξ)∥D(A)dξ (3.4.7)

where B(·, ·) is the Beta function. In particular, for ν = α, we have∫ t

0

(t− s)α−1d(s)ds = B(α, α)

∫ t

0

(t− s)2α−1|f(s)|∥R(s)∥D(A)ds

≤ TαB(α, α)

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds

≤ Cd(t).

Hence the following estimate follows from (3.4.6);

∥u(t)∥D(A) ≤ Cd(t), 0 < t < T. (3.4.8)

Next we estimate ∥Au(t)∥D(Aγ) for d/4 < γ < 1 − 2/(pα). Repeating the calculation in

(3.3.23), we find

∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1
(
∥u(s)∥D(A) + |f(s)|∥R(s)∥D(A)

)
ds, a.e. t ∈ (0, T )

where µ = α(1− γ). By (3.4.7) with ν = µ and (3.4.8), we obtain

∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1d(s)ds+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

= CB(µ, α)

∫ t

0

(t− s)µ+α−1|f(s)|∥R(s)∥D(A)ds

+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

≤ CT αB(µ, α)

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

≤ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds.
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Finally we estimate |Au(x0, t)| and complete the proof. Since γ > d/4, the Sobolev

embedding theorem yields

|Au(x0, t)| ≤ C∥Au(·, t)∥H2γ(Ω) ≤ C∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds.

(3.4.9)

From the original equation, we get

f(t)R(x0, t) = ∂α
t u(x0, t) +Au(x0, t), a.e. t ∈ (0, T ). (3.4.10)

Combining this with (3.2.4) and (3.4.9), we get

|f(t)| ≤ 1

δ
(|∂α

t u(x0, t)|+ |Au(x0, t)|)

≤ C|∂α
t u(x0, t)|+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds, a.e. t ∈ (0, T ) (3.4.11)

with C depending on δ, Ω and T . By Lemma 3.4.2, we see that

∥f∥Lp(0,T ) ≤ C∥∂α
t u(x0, ·)∥Lp(0,T ),

which implies (3.2.5). Moreover, by (3.4.9) and (3.4.10), we have

|∂α
t u(x0, t)| ≤ |f(t)R(x0, t)|+ |Au(x0, t)|

≤ C|f(t)|∥R(·, t)∥H2(Ω) + C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

≤ C∥f∥L∞(0,T )∥R(t)∥D(A) + C∥f∥L∞(0,T )

∫ t

0

(t− s)µ−1∥R(s)∥D(A)ds

≤ C∥f∥L∞(0,T )∥R(t)∥D(A) + C∥f∥L∞(0,T )T
µ−1/p∥R∥Lp(0,T ;D(A)), a.e. t ∈ (0, T ).

Therefore,

∥∂α
t u(x0, ·)∥Lp(0,T ) ≤ C∥f∥L∞(0,T )∥R∥Lp(0,T ;D(A)) + C∥f∥L∞(0,T )T

µ∥R∥Lp(0,T ;D(A))

≤ C∥f∥L∞(0,T ).

Thus we have proved (3.2.6).

3.5 Proof of Theorem 3.2.2

In this section, we prove Theorem 3.2.2. We first prepare the following generalized Gronwall’s

inequality;
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Lemma 3.5.1. Let µ, a, b > 0 and f ∈ L1(0, T ) be nonnegative function satisfying the

integral inequality

f(t) ≤ a+ b

∫ t

0

(t− s)µ−1f(s)ds, a.e. t ∈ (0, T ).

Then we have

f(t) ≤ aEµ,1

(
(bΓ(µ))1/µtµ

)
, a.e. t ∈ (0, T ).

For the proof, see Lemma 7.1.2 on p.189 of [18]. Now we are ready to prove Theorem

3.2.2.

Proof of Theorem 3.2.2. Let vi be the solutions to (3.1.2) corresponding to fi (i = 1, 2)

and set v := v1 − v2 and f := f2 − f1. Then v solves (3.3.4) with p(x, t) = f1(t)q(x, t) and

F (x, t) = f(t)q(x, t)v2(x, t). Recall that v is given by

v(t) =

∫ t

0

A−1S ′
A(t− s)((1− p(t))v)(s) +

∫ t

0

f(s)A−1S ′
A(t− s)R(s)ds,

where we have set v(t) := v(·, t) and R(t) := q(·, t)v2(·, t). Moreover, p(t) denotes the

multiplication operator by p(x, t) := f1(t)q(x, t).

First we estimate ∥v(t)∥D(A). Since (1− p(t))v(t), R(t) ∈ D(A) by (3.2.3), we repeat the

calculation in (3.3.23) to have

∥v(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥(1− p(t))v(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds

≤ C

∫ t

0

(t− s)α−1∥v(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|ds.

with C depending on Ω, M and ∥q∥L∞(0,T ;H2(Ω)). Then repeating the arguments used in

Theorem 3.2.1, we obtain

∥v(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1|f(s)|ds, 0 < t < T.

and from this estimate we also deduce that for any 0 ≤ γ < 1,

∥Av(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|ds, 0 < t < T,

where µ := α(1− γ). Therefore by taking γ ∈ (d/4, 1), we have

|Av(x0, t) + p(x0, t)v(x0, t)| ≤ C∥Av(·, t) + p(·, t)v(·, t)∥H2γ(Ω)

≤ C∥Av(·, t)∥H2γ(Ω) + C∥v(·, t)∥H2γ(Ω)

≤ C∥Av(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|ds. (3.5.1)
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From the original equation, we have

f(t)R(x0, t) = ∂α
t v(x0, t) +Av(x0, t) + p(x0, t)v(x0, t), a.e. t ∈ (0, T ). (3.5.2)

On the other hand, from (3.2.7), we deduce that

|R(x0, t)| ≥ c > 0, a.e. t ∈ (0, T )

with c depending on δ, Ω and T . Therefore, combining this with (3.5.1) and (3.5.2), we

obtain

|f(t)| ≤ C|∂α
t v(x0, t)|+ C|Av(x0, t) + p(x0, t)v(x0, t)|

≤ C∥∂α
t v(x0, ·)∥L∞(0,T ) + C

∫ t

0

(t− s)µ−1|f(s)|ds, a.e. t ∈ (0, T ).

Applying Lemma 3.5.1, we see that

|f(t)| ≤ C∥∂α
t v(x0, ·)∥L∞(0,T ).

Thus we have proved the second inequality in (3.2.8). Moreover, by (3.5.2), we have

|∂α
t v(x0, t)| ≤ |f(t)R(x0, t)|+ |Av(x0, t) + p(x0, t)v(x0, t)|

≤ |f(t)|∥R(·, t)∥D(A) + C

∫ t

0

(t− s)µ−1|f(s)|ds

≤ C

(
∥R∥L∞(0,T ;D(A)) +

T µ

µ

)
∥f∥L∞(0,T ).

Thus we have proved the first inequality in (3.2.8).
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