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Abstract

Quasi-Monte Carlo integration is an equal weight rule for numerical integration.
Among other things, Dick proved that QMC rules using good digital nets achieve
the rate of convergence O(n−α+ϵ) for every ϵ > 0 for a integrand which has
mixed partial derivatives of order α for each variable. Later, Yoshiki, Matsumoto
and others proved analogical results for smooth functions using dyadic digital
nets. This thesis is devoted to develop these studies for b-adic digital nets for
an integer b ≥ 2, and investigate weighted function spaces of smooth functions
which achieve tractability with very fast convergence.

The first contribution of this thesis is to extend the study by Matsumoto,
Saito and Matoba. They considered a discretized version of Dick’s results for
dyadic digital nets. In particular, they defined a practically computable crite-
rion WAFOM for dyadic digital nets. We extend the study to the b-adic case.
Moreover, we give upper and lower bounds on WAFOM as a generalization of
the works of Matsumoto and Yoshiki. Furthermore, we give a MacWilliams-type
identity on weight enumerator polynomials for the metric function we consider,
by which we can compute the minimum distance as well as WAFOM.

The second contribution of this thesis is, beyond the existence result given
as the first contribution, to give an explicit construction algorithm for low-
WAFOM digital nets. We use Niederreiter-Xing sequences and Dick’s interlacing
construction.

The third contribution of this thesis is to give formulas and bounds for b-
adic Walsh coefficients of smooth functions. First we establish a formula in
which b-adic Walsh coefficients of smooth functions are expressed in terms of
those derivatives. Furthermore, we give bounds on b-adic Walsh coefficients for
α times continuously differentiable functions. These results for the dyadic case
recover results for smooth functions by Yoshiki. In particular, we obtain a class
of infinitely differentiable functions whose Walsh coefficients decay sufficiently
fast as WAFOM works well. This part is a joint work with Takehito Yoshiki.

The last contribution of this thesis is to prove accelerating convergence and
tractability for a weighted normed space of non-periodic smooth functions whose
L1-norms of the higher order derivatives of the integrand grow at most exponen-
tially. The growth of the L1-norms of the higher order derivatives is controlled
by a weight sequence u. First we show that this space achieves accelerating
convergence for all s, which is the number of variables, and u considered. Ac-
celerating convergence roughly means that the integration error converges as
O(q(logn)p) for some q ∈ (0, 1) and p > 1. Second we establish the notions of
tractability which correspond to accelerating convergence: accelerating conver-
gence with polynomial tractability (AC-PT) and accelerating convergence with
strong tractability (AC-ST). Roughly speaking, AC-PT (resp. AC-ST) holds if
accelerating convergence holds and the number of function evaluation to guar-
antee the error depends only polynomially on s (resp. is independent of s). We
show that AC-ST holds for the space if weights u decay sufficiently fast.

i



Acknowledgments

First of all, I would like to express the deepest appreciation to my supervisor
Prof. Takashi Tsuboi for sincere encouragement and tremendous support during
my doctoral program. I am also grateful to Prof. Makoto Matsumoto for many
helpful discussions and comments. I would like to thank my sub supervisor
Prof. Shigeo Kusuoka and members of our seminar.

In Chapter 4, I would like to thank Prof. Harald Niederreiter for helpful
comments and letting us know about the best known t-values for (t, s)-sequences.
In Chapter 6, I am grateful to Prof. Josef Dick for many helpful discussions and
comments. I would also like to thank Dr. Takashi Goda and Mr. Takehito
Yoshiki for valuable discussions and comments.

I was supported by the Program for Leading Graduate Schools, MEXT,
Japan and Grant-in-Aid for JSPS Fellows Grant number 15J05380.

Finally, I would like to give express my deep gratitude to my family for their
warm support and encouragement.

ii



Contents

1 Introduction 1

2 Notation and definitions 7
2.1 Walsh functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Digital nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 WAFOM over abelian groups for quasi-Monte Carlo point sets 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 WAFOM over a finite abelian group . . . . . . . . . . . . . . . . 16
3.4 MacWilliams identity over an abelian group . . . . . . . . . . . . 18
3.5 Estimation of WAFOM . . . . . . . . . . . . . . . . . . . . . . . 21

4 An explicit construction of point sets with large minimum Dick
weight 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Formulas for the Walsh coefficients of smooth functions and
their application to bounds on the Walsh coefficients 38
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Integral formula for the Walsh coefficients of smooth functions . 39
5.3 The Walsh coefficients of smooth functions . . . . . . . . . . . . 42
5.4 Another formula for the Walsh coefficients . . . . . . . . . . . . . 49
5.5 The Walsh coefficients of Bernoulli polynomials . . . . . . . . . . 50
5.6 Walsh coefficients of functions in Sobolev spaces . . . . . . . . . 55
5.7 The Walsh coefficients of smooth periodic functions . . . . . . . . 59

6 Accelerating convergence and tractability of multivariate inte-
gration for infinitely differentiable functions 60
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Function spaces and embeddings . . . . . . . . . . . . . . . . . . 62
6.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iii



6.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



Chapter 1

Introduction

Multivariate integration appears in many applications including finance, physics
and computer graphics [18, 19, 26, 30, 31]. In the univariate case, there are many
known integration rules such as trapezoidal rule and Simpson’s rule. If the num-
ber of variables increases, however, the problem generally becomes difficult. For
example, if we use the product of univariate integration rules, the computational
cost grows exponentially on the number of variables.

Monte Carlo (MC) integration and Quasi-Monte Carlo (QMC) integration
are successful methods for multivariate numerical integration. Both rules ap-
proximate the integration value by the average of function values. MC inte-
gration uses sample points taken independently and randomly, whereas QMC
integration uses well-designed sample points. Of course, how to design point
sets is a central issue of QMC integration. We restrict ourselves to integration
on the s-dimensional unit cube [0, 1)s since functions on general domains can be
transformed to functions on the unit cube. There are two construction schemes
which mainly have been investigated: lattices, see e.g., [49] and digital nets, see
e.g., [38, 14]. In this thesis we focus on QMC integration using digital nets.
Hereafter we often identify point sets with the QMC rule using the point sets.

It is well-known that the integration error by MC rules probabilistically
converges to zero as O(1/

√
n), where n is the number of function values we use.

This rate of convergence is independent of the dimension but is considered to
be slow; in order to reduce the error by a factor of 10, we need 100 times as
many points. One advantage of QMC integration is that the rate of convergence
is faster than O(1/

√
n) for sufficiently smooth integrands. The first success in

QMC integration is the Koksma-Hlawka inequality in [27, 24], which states that
if a function f : [0, 1]s → R has bounded variation then the integration error of
f is bounded by∣∣∣∣∣

∫
[0,1]s

f(x) dx− |P |−1
∑
x∈P

f(x)

∣∣∣∣∣ ≤ ∥f∥totD∗(P ),

where ∥f∥tot is the total variation of f in the sense of Hardy and Krause and
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D∗(P ) is a measure of disuniformity of P called star-discrepancy. From this
inequality, we can adopt the star-discrepancy as a criterion of point sets for
QMC integration. There are many known point sets and sequences whose star-
discrepancy decays as D∗(P ) ∈ O(n−1(log n)s−1), see [38, Chapter 3] and the
references therein. Thus the convergence rate of QMC integration using low-
discrepancy point sets is faster than that of MC integration for functions whose
variation is finite. Recently, it has been known that we can improve the rate of
convergence if we require integrands to have much smoothness. Among other
things, Dick introduced a class of digital nets named “higher order digital nets”,
and proved that QMC rules using good higher order digital nets achieve the rate
of convergence O(n−α+ϵ) for a integrand which has mixed partial derivatives of
order α for each variable. Later, Yoshiki, Matsumoto and others developed
Dick’s works for smooth (i.e., infinitely differentiable) functions [34, 35, 58].
This thesis is devoted to develop these studies for b-adic digital nets for an
integer b ≥ 2, and investigate weighted function spaces of smooth functions
which achieve tractability with very fast convergence.

Let us recall numerical integration using digital nets. The first construction
of digital nets was provided by Sobol’ [51] and Faure [16]. Niederreiter [37]
gave the notion of (t,m, s)-nets over Zb, which consist of bm points in [0, 1)s

and which satisfy some geometrical condition. Here the value t governs the
quality of (t,m, s)-nets (it was also proved in [37] that the star-discrepancy of
a (t,m, s)-net is roughly bounded by a constant times bt−m and so smaller t is
better), and Zb is a cyclic group with b elements, which we identify with the set
{0, 1, . . . , b − 1}. The general framework of digital nets are defined also in [37]
as an explicit construction of (t,m, s)-nets. The construction of digital nets are
based on linear algebra over Zb and one important property is that digital nets
have the structure of a group with respect to the digit-wise summation modulo
b. Many constructions of digital nets with small t-values are known, see [14]
and the references therein.

Beyond these studies, how to exploit the smoothness of the integrand was
shown by Dick [8, 9, 10]. We now recall Dick’s results in more detail. Key
tools to analyze the integration error of QMC rules using digital nets are Walsh
functions and Walsh coefficients, which were first introduced by Walsh [57], see
also [17, 5]. Let k be a nonnegative integer whose b-adic expansion is k =
κ1b

a1−1 + · · · + κvb
av−1 where κi and ai are integers with 0 < κi ≤ b − 1,

a1 > · · · > av ≥ 1. For k = 0 we assume that v = 0 and a0 = 0. The b-adic
k-th Walsh function walk(x) is defined as

walk(x) := ω
∑v

i=1 κiξai

b ,

for x ∈ [0, 1) whose b-adic expansion is given by x = ξ1b
−1 + ξ2b

−2 + · · · , which
is unique in the sense that infinitely many of the digits ξi are different from b−1.
We also consider s-dimensional Walsh functions. For k = (k1, . . . , ks) ∈ Ns

0 and
x = (x1, . . . , xs) ∈ [0, 1)s, the b-adic k-th Walsh function walk(x) is defined as

walk(x) :=
s∏

j=1

walkj (xj).
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For f : [0, 1)s → C, we define the k-th Walsh coefficient of f as

f̂(k) :=

∫
[0,1)s

f(x)walk(x) dx.

It is well-known that the Walsh system {walk | k ∈ Ns
0} is a complete orthonor-

mal basis in L2[0, 1)s. Hence we have a Walsh series expansion

f(x) ∼
∑
k∈Ns

f̂(k)walk(x)

for any f ∈ L2[0, 1]s. We can now give the integration error for a digital net
P . If f is given by Walsh series (this assumption is satisfied if f : [0, 1]s → R
has continuous mixed partial derivatives up to order 1 for each variable), the

integration error of f for a digital net P is given by
∑

k∈P⊥\{0} f̂(k), where

P⊥ := {k ∈ Ns
0 | walk(x) = 1 for all x ∈ P} is the dual net of P . Hence

the QMC error of P is bounded by
∑

k∈P⊥\{0} |f̂(k)|, and thus we would like
to know the bound on Walsh coefficients. Analogous to the well-known result
that the decay of Fourier coefficients reflects the smoothness of the function,
Dick proved that the decay of Walsh coefficients also reflects it. More pre-
cisely, he defined a metric function µα(k) = a1 + · · · + amin(α,v) for the one-
dimensional case and µα(k) =

∑s
j=1 µα(kj) for the s-dimensional case. He

proved that the k-th Walsh coefficient of a function f : [0, 1]s → R which has
square-integrable mixed partial derivatives up to order α for each variable is
bounded by Cb,s,α∥f∥α,sb−µα(k) where Cb,s,α is a positive constant which de-
pends on b, α and s and ∥f∥α,s is a norm of Sobolev type which uses all mixed
partial derivatives up to order α for each variable. The above argument implies
the following Koksma-Hlawka type inequality for a digital net P :∣∣∣∣∣

∫
[0,1]s

f(x) dx− |P |−1
∑
x∈P

f(x)

∣∣∣∣∣ ≤ Cb,s,α∥f∥α,s
∑

k∈P⊥\{0}

b−µα(k). (1.1)

Since the term WFα(P ) :=
∑

k∈P⊥\{0} b
−µα(k) depends only on P , it can be

used as a criterion for the quality of digital nets for numerical integration. Dick
introduced the notion of higher order digital nets and gave the construction
of them of which the criterion is sufficiently small to achieve “higher order
convergence” of order n−α+ϵ.

As a discretized version of Dick’s results, Matsumoto, Saito and Matoba
introduced the notion of WAFOM [34]. They considered a metric µ∞(k) =
a1 + · · · + av and µ∞(k) =

∑s
j=1 µ∞(kj) instead of µα and a criterion named

WAFOM WF(P ) :=
∑

k∈P⊥\{0} b
−µ∞(k) (more precisely, a truncated summa-

tion of WF(P )) instead of WFα(P ) for dyadic (i.e., b = 2) digital nets. The
decay of Walsh coefficients of order O(b−µ∞(k)) was not known at this moment.
They showed only a discrete version of (1.1) with some error due to the dis-
cretization. One advantage of WAFOM is that it is computable in a reasonable
time and thus we can search for good digital nets with respect to WAFOM
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by computer, see [34, 22, 21] for numerical experiments. One important result
is that lowest-WAFOM decays “accelerating” as O(n−C logn) for some positive
constant C [35]. The word “accelerating” means that the exponent log n of n
increases as n increases.

More recently, Yoshiki established a result for smooth functions in [58].
He introduced “dyadic difference” of a function and gave a formula in which
dyadic Walsh coefficients are given by dyadic differences multiplied by con-
stants. Moreover he established a formula for dyadic Walsh coefficients of
smooth functions expressed in terms of those derivatives. In particular, he
gave a function space of smooth functions whose Walsh coefficients decay as
|f̂(k)| ≤ 2s/p∥f∥Y,p2

−µ∞,Y(k), where ∥f∥Y,p is given by the supremum of all
Lp-norms of the mixed partial derivatives, µ∞,Y(k) = a1 + · · · + av + v and
µ∞,Y(k) =

∑s
j=1 µ∞,Y(kj). This result gives a Koksma-Hlawka type inequality

as ∣∣∣∣∣
∫
[0,1]s

f(x) dx− |P |−1
∑
x∈P

f(x)

∣∣∣∣∣ ≤ 2s/p∥f∥Y,p

∑
k∈P⊥\{0}

2−µ∞,Y(k)

for a dyadic digital net P . Considering that we achieve accelerating convergence
for the lowest WAFOM-values and that Yoshiki’s criterion

∑
k∈P⊥\{0} b

−µ∞,Y(k)

is smaller than WAFOM, the space introduced by Yoshiki is a function space
of smooth functions which achieve accelerating convergence whereas it is not
explicitly written in [58].

We have reviewed about Koksma-Hlawka type inequalities and the rate of
convergence so far. Another important issue is the dependence on the number
of variables s since s can be hundreds or more in computational applications.
This is related to the notion of tractability if we require no exponential depen-
dence on s. Let us briefly recall the notion of tractability (see [41, 42, 43] for
more information). Let n(ε, s) be the information complexity, i.e., the mini-
mal number n of function values which approximate the s-variate integration
within ε. An integration problem is said to be tractable if n(ε, s) does not
grow exponentially on ε nor s. In particular, two notions of tractability has
been mainly considered: polynomial tractability, i.e., n(ε, s) ≤ Cε−τ1sτ2 , and
strong polynomial tractability, i.e., n(ε, s) ≤ Cε−τ1 for τ1, τ2 ≥ 0. A common
way to obtain tractability is to consider weighted function spaces introduced by
Sloan and Woźniakowski [50]. Weighted spaces mean that the dependence on
the successive variables can be moderated by weights.

Now we are ready to explain the contributions of this thesis. The first
contribution of this thesis is to extend the studies in [34] on WAFOM for dyadic
digital nets. We extend the notions of the Dick weight and WAFOM over a
general finite abelian group G. We give a lower bound on WAFOM of order
N−C′

G(logN)/s and an upper bound on lowest WAFOM of orderN−CG(logN)/s for
given (G,N, s) if (logN)/s is sufficiently large, where C ′

G and CG are constants
depending only on the cardinality of G and N is the cardinality of quadrature
rules in [0, 1)s. These bounds generalize the bounds given for G = F2 in [35,
59]. Furthermore, we give a MacWilliams-type identity on weight enumerator
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polynomials for the Dick weight, by which we can compute the minimum Dick
weight as well as WAFOM. This part is based on [54].

The second contribution of this thesis is to give an explicit construction
algorithm for low-WAFOM digital nets. In [35] and its generalization given
as the first contribution of this thesis, only the existence of low-WAFOM point
sets was proved. We construct low-WAFOM digital nets using Niederreiter-Xing
sequences and Dick’s interlacing construction. This part is based on [53].

The third contribution of this thesis is to give formulas and bounds for b-adic
Walsh coefficients of smooth functions. First we establish a formula in which
the b-adic Walsh coefficients of smooth functions are expressed in terms of those
derivatives as

f̂(k) = (−1)v
∫ 1

0

f (v)(x)W (k)(x) dx,

where the function W (k)(·) : [0, 1)→ C is given by the iterated integral of Walsh
functions as in Definition 5.2.1. This formula is a generalization of the formula
for the dyadic Walsh coefficients of smooth functions in [58], however our method
is different from that in [58]. Our main idea is first separating the interval [0,1) to
appropriate intervals on which particular Walsh functions take constant values,
and then applying integration by parts iteratively. Furthermore, we give bounds
on the b-adic Walsh coefficients for α times continuously differentiable functions.
Our bounds for the dyadic case recover results for smooth functions in [58]. Our
assumption is somewhat stronger than that of [10]. Instead, we obtain bounds
asymptotically better with respect to α than results in [10]. In particular, we
obtain a class of infinitely smooth functions whose Walsh coefficients decay as
|f̂(k)| ∈ O(b−µ∞(k)). This result gives a Koksma-Hlawka type inequality with
respect to b-adic WAFOM. This part is based on [55], a joint work with Takehito
Yoshiki.

The last contribution of this thesis is to prove accelerating convergence and
tractability for a weighted normed space of non-periodic smooth functions

Fs,u :=

{
f ∈ C∞[0, 1]s

∣∣∣∣∣ ∥f∥Fs,u
:= sup

(α1,...,αs)∈Ns
0

∥f (α1,...,αs)∥L1∏s
j=1 u

αj

j

<∞

}
with a sequence of positive weights u = {uj}j≥1. Here f (α1,...,αs) is defined as
f (α1,...,αs) := (∂/∂x1)

α1 · · · (∂/∂xs)
αsf . The space Fs,1/2 is a space considered

by Yoshiki (we note that he considered more general ANOVA-type function
spaces in [58]). It is easy to check that all functions in Fs,u are analytic from
Taylor’s theorem. This space can be regarded as a Sobolev space of infinite
order [15]. First we show that Fs,u achieves accelerating convergence for all s
and u considered. Accelerating convergence roughly means that the integra-
tion error converges as O(q(logn)p) for some q ∈ (0, 1) and p > 1. Note that

q(logn)p = n−(log q−1)(logn)p−1

, hence the exponent (log n)p−1 of n increases as
n increases (which is why we call this accelerating convergence). Second we es-
tablish the notions of tractability which correspond to accelerating convergence:
accelerating convergence with polynomial tractability (AC-PT) and accelerat-
ing convergence with strong tractability (AC-ST). Roughly speaking, AC-PT
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(resp. AC-ST) holds if accelerating convergence holds and n(ε, s) depends only
polynomially on s (resp. is independent of s). We define the Walsh spaceWs,a,b

into which Fs,u is embedded and prove that the notions of AC-PT and AC-PT
are equivalent forWs,a,b and that AC-PT holds forWs,a,b iff the weights a grow
polynomially fast. These results enable us to show that AC-ST holds for Fs,u

if weights u decay sufficiently fast. This part is based on [52].
Finally, we remark that this thesis is based on the following papers:

• [54], see Chapter 3,

• [53], see Chapter 4,

• [55], see Chapter 5,

• [52], see Chapter 6.
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Chapter 2

Notation and definitions

Throughout this thesis, we use the following notation. Let N be the set of
positive integers and N0 := N ∪ {0}. Let b be an integer greater than 1. Let
Zb = Z/bZ be the residue class ring modulo b. We identify Zb with the set
{0, 1, . . . , b − 1} ⊂ Z. Let ωb = exp(2π

√
−1/b). For a set S, we denote by

|S| the cardinality of S. For a group or a ring R and positive integers s and
n, we denote by Rs×n the set of s × n matrices with components in R. The
operators ⊕ and ⊖ denote the digitwise addition and subtraction modulo b,
respectively. That is, for k, k′ ∈ N0 whose b-adic expansions are k =

∑∞
i=1 κib

i−1

and k′ =
∑∞

i=1 κ
′
ib

i−1 with κi, κ
′
i ∈ Zb for all i, ⊕ and ⊖ are defined as

k ⊕ k′ =
∞∑
i=1

ηib
i−1 and k ⊖ k′ =

∞∑
i=1

η′ib
i−1,

where ηi = κi + κ′
i (mod b) and η′i = κi − κ′

i (mod b), respectively. In case of
vectors in Ns

0, the operators ⊕ and ⊖ are applied componentwise. We define
f (n1,...,ns) := ∂n1+···+nsf/∂xn1

1 · · · ∂xns
s .

In this chapter, we introduce notions including Walsh functions and digital
nets and consider QMC integration using digital nets.

2.1 Walsh functions

In this section, we introduce Walsh functions and Walsh coefficients, which are
widely used in analyzing QMC integration. More information of the Walsh
analysis can be found in the books [45, 20].

We first give the definition of Walsh functions for the one-dimensional case
and then generalize it to the higher-dimensional case.

Definition 2.1.1. Let b ≥ 2 be a positive integer. We denote the b-adic expan-
sion of k ∈ N0 by k = κ1 + κ2b + · · · + κib

i−1 with κ1, . . . , κi ∈ Zb. Then the
k-th b-adic Walsh function bwalk : [0, 1)→ {1, ωb, . . . , ω

b−1
b } is defined as

bwalk(x) := ωκ1ξ1+···+κiξi
b ,
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for x ∈ [0, 1) whose b-adic expansion is given by x = ξ1b
−1 + ξ2b

−2 + · · · , which
is unique in the sense that infinitely many of the ξi are different from b− 1.

Definition 2.1.2. Let b ≥ 2 and s be positive integers. Let x = (x1, . . . , xs) ∈
[0, 1)s and k = (k1, . . . , ks) ∈ Ns

0. Then the k-th b-adic Walsh function

bwalk : [0, 1)
s → {1, ωb, . . . , ω

b−1
b } is defined as

bwalk(x) :=
s∏

j=1

bwalkj (xj).

Since we shall always use Walsh functions in a fixed base b, we omit the sub-
script and simply write walk or walk in this paper. Some important properties of
Walsh functions, used in this paper, are described below, see [14, Appendix A.2]
for the proof.

Proposition 2.1.3. The following holds true:

1. For all k ∈ Ns
0, we have∫ 1

0

walk(x) dx =

{
1 if k = 0,

0 otherwise.

2. For all k, l ∈ Ns
0, we have∫
[0,1)s

walk(x)wall(x) dx =

{
1 if k = l,

0 otherwise.

3. For all k,k′ ∈ Ns
0 and x ∈ [0, 1)s, we have

walk⊕k′(x) = walk(x)walk′(x),

walk⊖k′(x) = walk(x)walk′(x).

4. The system {walk | k ∈ Ns
0} is a complete orthonormal system in L2[0, 1)s

for any positive integer s.

We define Walsh coefficients as follows.

Definition 2.1.4. Let k ∈ Ns
0 and f : [0, 1)s → C. The k-th Walsh coefficient

of f is defined as

f̂(k) :=

∫
[0,1)s

f(x)walk(x) dx.

The Walsh series of the function f is given by

f(x) ∼
∑
k∈Ns

0

f̂(k)walk(x)

for any f ∈ L2[0, 1)s.

We note that the notation f̂ is used as discrete Fourier coefficients and F(f)
is used as Walsh coefficients in Chapter 3.
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2.2 Digital nets

In this thesis, we consider the discretized setting as well as the non-discretized
setting. By abuse of notation, the words “digital net”, “dual net” and “Dick
weight” are used in the two settings. The discretized setting was first consider
in [34] for b = 2 and will be generalized in Chapter 3 for b ≥ 2. We also
consider the discretized setting in Chapter 4. In this section, we consider the
non-discretized setting.

We introduce digital nets in [0, 1)s. The definition of digital nets over finite
rings is given in [29]. we adopt an equivalent definition of digital nets, which is
proposed as digital nets with generating matrices in [13, Definition 4.3].

For a positive integer m and a non-negative integer k with its b-adic expan-
sion k =

∑∞
i=1 κib

i−1, we define the m-digit truncated vector trm(k) ∈ Zm
b as

trm(k) = (κ1, κ2, . . . , κm)⊤.

Definition 2.2.1. Let G1, . . . , Gs ∈ Zl×d
b be l × d matrices over Zb with d ≤ l.

Let 0 ≤ k < bd. For 1 ≤ j ≤ s and 1 ≤ i ≤ l, define yi,k.j ∈ Zb as

(y1,k,j , . . . , yl,k,j)
⊤ = Gjtrd(k).

Then we define

xk,j =
y1,k,j
b

+
y2,k,j
b2

+ · · ·+ yl,k,j
bl
∈ [0, 1)

for 1 ≤ j ≤ s. In this way we obtain the k-th point xk = (xk,1, . . . , xk,s). We
define P = P (G1, . . . , Gs) := {x0, . . . ,xbd−1} (P is considered as a multiset)
and call it a d-dimensional digital net over Zb with precision l, or simply a
digital net.

The dual net of a digital net plays an important role in the subsequent
analysis, which is defined as follows.

Definition 2.2.2. For positive integers d, l with d ≤ l, let P = P (G1, . . . , Gs)
be a d-dimensional digital net over Zb with precision l. The dual net of P ,
denoted by P⊥ = P⊥(G1, . . . , Gs), is defined as

P⊥ := {k = (k1, . . . , ks) ∈ Ns
0 | G⊤

1 trl(k1) + · · ·+G⊤
s trl(ks) = 0}.

By easy calculation, we have the following.

Lemma 2.2.3. Let P be a digital net with generating matrices G1, . . . , Gs.
Then we have

P⊥ = {k ∈ Ns
0 | walk(x) = 1 for all x ∈ P}.

The next lemma, which is a slight generalization of [14, Lemma 4.75] to our
context, connects a digital net with Walsh functions.
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Lemma 2.2.4. Let P be a digital net over Zb and P⊥ its dual net. Then we
have

|P |−1
∑
x∈P

walk(x) =

{
1 if k ∈ P⊥,

0 otherwise.

From now on, we consider integration using QMC algorithms over digital
nets. Assume that f is given by Walsh series and that P is a digital net. Then
we have

|P |−1
∑
x∈P

f(x)− I(f) = |P |−1
∑
x∈P

∑
k∈Ns

0

f̂(k)walk(x)− I(f)

=
∑
k∈Ns

0

f̂(k)|P |−1
∑
x∈P

walk(x)− I(f)

=
∑

k∈P⊥

f̂(k)− f̂(0)

=
∑

k∈P⊥\{0}

f̂(k).

Hence we have ∣∣∣∣∣|P |−1
∑
x∈P

f(x)− I(f)

∣∣∣∣∣ ≤ ∑
k∈P⊥\{0}

|f̂(k)|. (2.1)
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Chapter 3

WAFOM over abelian
groups for quasi-Monte
Carlo point sets

3.1 Introduction

A strong analogy between coding theory and QMC point sets is well known
(see, e.g., [4, 38, 48]). In coding theory, the minimum Hamming weight is
used for a criterion for linear codes. Analogically, Niederreiter-Rosenbloom-
Tsfasman (NRT) weight is a criterion for digital nets in QMC theory [36, 44].
More precisely, the minimum NRT weight is essentially equivalent to t-value and
gives an upper bound on the star-discrepancy, which are important criteria for
QMC point sets. In this chapter, as a generalization of [34], we consider the Dick
weight µ on “codes over Zb” and connect them to a criterion WAFOM of digital
nets over Zb for QMC integration. Furthermore, we establish a MacWilliams-
type identity for the Dick weight, which gives a computable formula of the
minimum Dick weight and WAFOM.

As we have seen in Chapter 1, higher order convergence results for digital
nets, i.e., Err(f ;P) converges faster than N−1, has been established. For a
given integer α > 1, Dick gave quadrature rules for α-smooth integrands which
achieve Err(f ;P) ∈ O(N−α+ε) [9]. He introduced a weight which gives a bound
on a criterion WFα(P) (he did not give a name and we use the name in [34])
for a digital net P over a finite field with cardinality b, and proved a Koksma-
Hlawka type inequality Err(f ;P) ≤ Cb,s,α∥f∥α,s ·WFα(P), where ∥f∥α,s is a
norm of f for a Sobolev space and Cb,s,α is a constant depend only on b, s, and
α. Later he improved the constant factor of the lowest WFα for digital nets
over a finite cyclic group [10].

As a discretized version of Dick’s method, Matsumoto, Saito and Matoba
introduced the Dick weight µ and a related criterion WAFOM WF(P ) for an F2-
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digital net P [34]. One remarkable merit of WAFOM is that WAFOM is easily
computable by the inversion formula [34, (4.2)], which is easier to implement
than the formula of WFα derived from [3, Section 4]. Using this merit, they
executed a random search of low-WAFOM point sets and showed that such point
sets perform better than some standard low-discrepancy point sets. There are
several studies on low-WAFOM point sets. The existence of low-WAFOM point
sets was shown by Matsumoto and Yoshiki [35].

In this chapter, as a generalization of [34] we propose the Dick weight and
WAFOM for digital nets over Zb and for subgroups of Gs×n where G is a fi-
nite abelian group. WAFOM over Zb is also a discretized version of Dick’s
method and thus satisfies a Koksma-Hlawka type inequality. Moreover, we give
a MacWilliams-type identity of weight enumerator polynomials for the Dick
weight. Using this identity we obtain a computable formula of the minimum
Dick weight as well as WAFOM, which is a generalization of the inversion for-
mula for WAFOM in the dyadic case. Furthermore, we give generalizations of
known properties of WAFOM over F2 in [35] and [59]. More precisely, we give a
lower bound on WAFOM and prove the existence of low-WAFOM point sets. In
particular, we improve some of the results in [35]. These results imply that there
exist positive constants C,D,D′ and F depending only on b and independent
of s, n and N such that N−C logN/s ≤ min{WF(P ) | P is a digital net, |P | ≤
N} ≤ FN−D(logN)/s+D′

, if (logN)/s is sufficiently large.
These results are similar to the works of Dick, but there is no implication

between them. Dick fixed the smoothness α, while our method requires n-
smoothness on the function where n is as above. Thus, in our case, the function
class is getting smaller for n being increased.

The rest of this chapter is organized as follows. In Section 3.2, we introduce
the necessary background and notation, such as the discretization scheme of
QMC integration and the discrete Fourier transform. In Section 3.3, we define
the Dick weight and WAFOM over a general finite abelian group G, and prove a
Koksma-Hlawka type inequality in the case that G is cyclic. In Section 3.4, we
define the weight enumerator polynomial, give the MacWilliams-type identity
for the Dick weight, and give a computable formula of WAFOM. In Section 3.5,
we give a lower bound on WAFOM, prove the existence of low-WAFOM point
sets, and study the order of WAFOM.

3.2 Preliminaries

In this chapter we use the following notation. We denote by O the zero matrix.
We denote by e the base of the natural logarithm.

3.2.1 Discretized QMC in base b

In this subsection, we explain discretized QMC in base b. This discretization is
a straightforward generalization of the b = 2 case in [34].

12



Let s be a positive integer. Let P ⊂ [0, 1)s be a point set in an s-dimensional
unit cube with finite cardinality |P| = N , and let f : [0, 1)s → R be an integrable
function. Recall that quasi-Monte Carlo integration by P is an approximation
value

IP(f) :=
1

N

∑
x∈P

f(x)

of the actual integration

I(f) :=

∫
[0,1)s

f(x) dx.

The QMC integration error is Err(f ;P) := |IP(f)− I(f)|.
Here, we fix a positive integer n, which is called the degree of discretiza-

tion or the precision. We consider an n-digit discrete approximation in base b.
We associate a matrix B := (bi,j) ∈ Zs×n

b with a point xB = (x1
B , . . . , x

s
B) =

(
∑n

j=1 b1,jb
−j , . . . ,

∑n
j=1 bs,jb

−j) ∈ [0, 1)s, and with an s-dimensional cube IB :=∏s
i=1 Ii ⊂ [0, 1)s, where each edge Ii := [xi

B, x
i
B + b−n) is a half-open interval

with length b−n. We define n-digit discrete approximation fn of f as

fn : Zs×n
b → R, B := (bi,j) 7→

1

Vol(IB)

∫
IB

f(x) dx.

Let P be a subset of Zs×n
b . We define n-th discretized QMC integration of f by

P as

IP,n(f) :=
1

|P |
∑
B∈P

fn(B)

and define the n-th discretized QMC integration error as

Err(f ;P, n) := |IP,n(f)− I(f)|.

For each B ∈ P , we take the center point of the cube IB . Let P ⊂ [0, 1)s be the
set of such center points given by P . By a slight extension of [34, Lemma 2.1],
if f is continuous with Lipschitz constant K then we have |IP,n(f) − IP(f)| ≤
K
√
sb−n. We take n large enough so that K

√
sb−n is negligibly small compared

to the order of QMC integration error |IP(f)−I(f)| by P. Then we may regard
the n-th discretized QMC integration error Err(f ;P, n) as an approximation of
the QMC integration error Err(f ;P ).

As point sets, in this chapter we consider subgroups of Zs×n
b as well as digital

nets. The definition of digital nets over finite rings is given in [29]. we adopt
an equivalent definition of digital nets, which is proposed as digital nets with
generating matrices in [13, Definition 4.3].

Definition 3.2.1. Let C1, . . . , Cs ∈ Zn×d
b be matrices and let X1, . . . , Xd ∈

Zs×n
b be defined by the j-th row of Xi is the transpose of the i-th column of Cj.

Assume that X1, . . . , Xd are a free basis of Zs×n
b as a Zb-module. For an integer

k with 0 ≤ k ≤ bd − 1, we define a matrix xk ∈ Zs×n
b as xk =

∑d
i=1 κi−1Xi,
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where k = κ0 + κ1b
1 + · · · + κd−1b

d−1 (0 ≤ κi ≤ b − 1) is the b-adic expansion
of k. We call the set {x0, . . . ,xbd−1} the digital net generated by the matrices
C1, . . . , Cs.

It is easy to see that digital nets become subgroups of Zs×n
b .

3.2.2 Discrete Fourier transform

In this subsection, we recall the notion of character groups and the discrete
Fourier transform. We refer to [47] for general information on character groups.
Let G be a finite abelian group. Let T := {z ∈ C | |z| = 1} be the multiplicative
group of complex numbers of absolute value one.

Definition 3.2.2. We define the character group of G by G∨ := Hom(G,T ),
namely G∨ is the set of group homomorphisms from G to T .

There is a natural pairing • : G∨ ×G→ T, (h, g) 7→ h • g := h(g).
We can see that Z∨

b is isomorphic to Zb as an abstract group. Throughout
this chapter, we identify Z∨

b with Zb through a pairing • : Zb×Zb → T, (h, g) 7→
h • g := ωhg

b , where hg is the product in Zb.
Let R be a commutative ring containing C. Let f : G → R be a function.

We define the discrete Fourier transform of f as below.

Definition 3.2.3. The discrete Fourier transform of f is defined by f̂ : G∨ →
R, h 7→ 1

|G|
∑

g∈G f(g)(h • g). Each value f̂(h) is called a discrete Fourier

coefficient.

We assume that P ⊂ G is a subgroup. We define P⊥ := {h ∈ G∨ | h • g =
1 for all g ∈ P}. Since P⊥ is the kernel of the restriction map G∨ → P∨, we
have |P⊥| = |G|/|P |. We recall the orthogonality of characters.

Lemma 3.2.4. Suppose that P ⊂ G is a subgroup and g ∈ G. Then we have

∑
h∈P⊥

h • g =

{
|P⊥| if g ∈ P ,

0 if g /∈ P .

This lemma implies the Poisson summation formula and the Fourier inversion
formula.

Theorem 3.2.5 (Poisson summation formula).

1

|P |
∑
g∈P

f(g) =
∑

h∈P⊥

f̂(h).

Proof. ∑
h∈P⊥

f̂(h) =
∑

h∈P⊥

1

|G|
∑
g∈G

f(g)(h • g)
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=
∑
g∈G

1

|G|
f(g)

∑
h∈P⊥

h • g

=
1

|G|
∑
g∈P

f(g) · |P⊥| (∵ Lemma 3.2.4)

=
1

|P |
∑
g∈P

f(g).

Theorem 3.2.6 (Fourier inversion formula). For a complex-valued function

f : G→ C, we have f(g) =
∑

h∈G∨ f̂(−h)(h • g) for any g ∈ G. Moreover, if f

is real-valued, we have f(g) =
∑

h∈G∨ f̂(h)(h • g).

Proof. By Lemma 3.2.4, we have
∑

h∈G∨ h•g = 0 if g ̸= 0 and
∑

h∈G∨ h•g = |G|
if g = 0. Thus we have∑

h∈G∨

f̂(−h)(h • g) =
∑

h∈G∨

1

|G|
∑
g′∈G

f(g′)((−h) • g′)(h • g)

=
1

|G|
∑
g′∈G

f(g′)
∑

h∈G∨

(h • (g − g′))

= f(g),

which proves the complex-valued case. If f is real-valued, we have f̂(−h) = f̂(h),
and thus the complex-valued case implies the real-valued case.

3.2.3 Walsh coefficients and discrete Fourier coefficients

In this subsection, we see the relationship between Walsh coefficients and dis-
crete Fourier coefficients. As a corollary, we prove that the n-digit discrete
approximation fn of f is essentially equal to the appropriate approximation of
the Walsh series of f . Let A = (ai,j) ∈ Zs×n

b . We define maps ϕi : Zs×n
b → N0

as ϕi(A) =
∑n

j=1 ai,jb
j−1 and ϕ : Zs×n

b → Ns
0 as ϕ(A) = (ϕ1(A), . . . , ϕs(A)).

Note that ϕi(A) < bn holds for all 1 ≤ i ≤ s and A ∈ Zs×n
b . In this chapter, we

denote by F(f)(k) the k-th Walsh coefficient.

Lemma 3.2.7. Let f : [0, 1)s → R and A = (ai,j) ∈ Zs×n
b . Then we have

F(f)(ϕ(A)) = f̂n(A).

Proof. Since ϕi(A) < bn holds for all 1 ≤ i ≤ s, for all x = (x1, . . . , xs) ∈ IB we
have

bwalϕ(A)(x) =
s∏

i=1

bwalϕi(A)(xi) =
s∏

i=1

ω
ai,1bi,1+···+ai,nbi,n
b = B •A.

Therefore we have

F(f)(ϕ(A)) =
∫
[0,1)s

f(x)bwalϕ(A)(x) dx
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=
∑

B∈Zs×n
b

∫
IB

f(x)bwalϕ(A)(x) dx

=
∑

B∈Zs×n
b

∫
IB

f(x)(B •A) dx

=
∑

B∈Zs×n
b

(B •A)
∫
IB

f(x) dx

=
∑

B∈Zs×n
b

(B •A) ·Vol(IB)fn(B)

=
∑

B∈Zs×n
b

(B •A) · b−snfn(B) = f̂n(A),

which proves the lemma.

Let f ∼
∑

k∈Ns
0
F(f)(k)bwalk be the Walsh expansion of a real valued

function f : [0, 1)s → R. Lemma 3.2.7 implies that considering n-digit dis-
crete approximation fn of f is as same as considering the Walsh polynomial∑

k<bn F(f)(k) · bwalk, where k = (k1, . . . , ks) < bn means that ki < bn holds
for every i = 1, . . . , s, namely we have the following.

Proposition 3.2.8. Let f : [0, 1)s → R. For B ∈ Zs×n
b , we have fn(B) =∑

k<bn F(f)(k)bwalk(xB).

Proof.

fn(B) =
∑

A∈Zs×n
b

f̂n(A)B •A (∵ Theorem 3.2.6)

=
∑

A∈Zs×n
b

F(f)(ϕ(A))bwalϕ(A)(xB) (∵ Lemma 3.2.7)

=
∑
k<bn

F(f)(k)bwalk(xB).

3.3 WAFOM over a finite abelian group

In this section, we expand the notion of WAFOM defined in [34], more precisely,
we define WAFOM over a finite abelian group with b elements.

First, we evaluate the n-th discretized QMC integration error of f with its
discrete Fourier coefficients. Let P ⊂ Zs×n

b be a subgroup. We have I(f) =

f̂n(O) by the definition of the discrete Fourier inversion, and we have IP,n(f) =∑
A∈P⊥ f̂n(A) by the Poisson summation formula (Theorem 3.2.5). Hence we

have

Err(f ;P, n) = |IP,n(f)− I(f)| =

∣∣∣∣∣∣
∑

A∈P⊥\{O}

f̂n(A)

∣∣∣∣∣∣ ≤
∑

A∈P⊥\{O}

|f̂n(A)|,
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and thus we would like to bound the value |f̂n(A)|. Dick gives an upper bound
of the k-th b-adic Walsh coefficient F(f)(k) for n-smooth function f (for the
definition of n-smoothness, see [9] or [14, §14]).

Theorem 3.3.1 ([14], Theorem 14.23). There is a constant Cb,s,n depending
only on b, s and n such that for any n-smooth function f : [0, 1)s → R and any
k ∈ Ns it holds that

|F(f)(k)| ≤ Cb,s,n∥f∥n,s · b−µn(k),

where ∥f∥n,s is a norm of f for a Sobolev space and µn(k) is the n-weight of k,
which are defined in [14, (14.6) and Theorem 14.23], see also Chapter 1.

Instead of µn, we define the Dick weight µ on dual groups of general finite
abelian groups below, which is a generalization of the Dick weight over F2 defined
in [34]. Actually, µ is a special case of µn ◦ ϕ. More precisely, if G = Zb and
α ≥ n hold, then we have µ = µα ◦ ϕ as a function from (Z∨

b )
s×n(≃ Zs×n

b ) to
N0.

Definition 3.3.2. Let G be a finite abelian group and let A ∈ (G∨)s×n. The
Dick weight µ : (G∨)s×n → N0 is defined as

µ(A) :=
∑
i,j

j × δ(ai,j),

with δ(h) = 0 for h = 0 and δ(h) = 1 for h ̸= 0.

We obtain the next corollary.

Corollary 3.3.3. There exists a constant Cb,s,n depending only on b, s and n
such that for any n-smooth function f : [0, 1)s → R and any A ∈ (Zb)

s×n it
holds that

|f̂n(A)| ≤ Cb,s,n∥f∥n · b−µ(A).

Proof. This is the direct corollary of Theorem 3.3.1, Lemma 3.2.7, and the
equality µ(A) = µn ◦ ϕ(A).

By the above corollary, we have a bound on the n-th discretized QMC inte-
gration error

Err(f ;P, n) := |I(f)− IP,n(f)| ≤ Cb,s,n∥f∥n ×
∑

A∈P⊥\{O}

b−µ(A),

for a subgroup P of Zs×n
b .

Hence, as a generalization of [34], we define a kind of figure of merit (the
Walsh figure of merit or WAFOM).

Definition 3.3.4. Let s, n be positive integers. Let G be a finite abelian group
with b elements. Let P ⊂ Gs×n be a subgroup of Gs×n. We define the Walsh
figure of merit of P by

WF(P ) :=
∑

A∈P⊥\{O}

b−µ(A).
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In order to stress the role of the precision n, we sometimes denote WFn(P )
instead of WF(P ).

Then, as we have seen, we have the Koksma-Hlawka type inequality

Err(f ;P, n) := |I(f)− IP,n(f)| ≤ Cb,s,n∥f∥n ×WF(P )

for a subgroup P ⊂ Zs×n
b . This shows that WF(P ) is a quality measure of the

point set P for quasi-Monte Carlo integration when G = Zb.

3.4 MacWilliams identity over an abelian group

In this section, we assume that s, n are positive integers. Recall that G is a
finite abelian group and G∨ its character group. We consider an abelian group
Gs×n. Let P ⊂ Gs×n be a subgroup.

We are interested in the weight enumerator polynomial of P⊥

WP⊥(x, y) :=
∑

A∈P⊥

xM−µ(A)yµ(A) ∈ C[x, y],

where M := n(n+ 1)s/2.
Let R := C[xi,j(h)], where xi,j(h) is a family of indeterminates for 1 ≤ i ≤ s,

1 ≤ j ≤ n, and h ∈ G∨. We define functions fi,j : G
∨ → R as fi,j(h) = xi,j(h)

and f : (Gs×n)∨ = (G∨)s×n → R as

f(A) :=
∏

1≤i≤s
1≤j≤n

fi,j(ai,j) =
∏

1≤i≤s
1≤j≤n

xi,j(ai,j).

Now the complete weight enumerator polynomial of P⊥, in a standard sense
[32, Chapter 5], is defined by

GWP⊥(xi,j(h)) :=
∑

A∈P⊥

∏
1≤i≤s
1≤j≤n

xi,j(ai,j),

and similarly, the complete weight enumerator polynomial of P is defined by

GW ∗
P (x∗i,j(g)) :=

∑
B∈P

∏
1≤i≤s
1≤j≤n

x∗i,j(bi,j)

in R∗ := C[x∗i,j(g)] where x∗i,j(g) is a family of indeterminates for 1 ≤ i ≤ s,
1 ≤ j ≤ n, and g ∈ G. We note that if we substitute

xi,j(0)← xj , xi,j(h)← yj for h ̸= 0, (3.1)

we have an identity

GWP⊥(xi,j(h))|above substitution = WP⊥(x, y).
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A standard formula of the Fourier transform tells that, if f1 : G1 → R,
f2 : G2 → R are functions and f1f2 : G1×G2 → R is their multiplication at the
value, then

f̂1f2 = f̂1f̂2

holds. This implies that

f̂(B) =
∏

1≤i≤s
1≤j≤n

f̂i,j(bi,j) =
1

|G|sn
∏

1≤i≤s
1≤j≤n

∑
h∈G∨

fi,j(h)(h • bi,j).

Hence, by the Poisson summation formula (Theorem 3.2.5), we have

GWP⊥(xi,j(h)) =
∑

A∈P⊥

f(A)

= |P⊥|
∑
B∈P

f̂(B)

=
1

|P |
∏

1≤i≤s
1≤j≤n

∑
h∈G∨

fi,j(h)(h • bi,j).

Thus we have the MacWilliams identity below, which is a variant of Generalized
MacWilliams identity [32, Chapter 5 §6]:

Proposition 3.4.1 (MacWilliams identity).

GWP⊥(xi,j(h)) =
1

|P |
GW ∗

P (substituted),

where in the right hand side every x∗i,j(g) is substituted by

x∗i,j(g)←
∑

h∈G∨

(h • g)xi,j(h).

We consider specializations of this identity. First, we consider a specializa-
tion GWP⊥(x1, . . . , xn, y1, . . . , yn) of GWP⊥(xi,j(h)) obtained by the substitu-
tion

xi,j(0)← xj , xi,j(h)← yj for h ̸= 0.

We have

∑
h∈G∨

(h • g)xi,j(h)

∣∣∣∣∣
above substitution

= (0 • g)xj +
∑

h∈G∨\{0}

(h • g)yj

= xj − yj +
∑

h∈G∨

(h • g)yj

= xj − yj +

{
byj (if g = 0)

0 (otherwise)
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=

{
xj + (b− 1)yj (if g = 0)

xj − yj (otherwise)
,

where we use Lemma 3.2.4 for the third equality. Thus, we have the following
formula.

Corollary 3.4.2.

GWP⊥(x1, . . . , xn, y1, . . . , yn) =
1

|P |
∑
B∈P

∏
1≤i≤s
1≤j≤n

(xj + η(bi,j)yj),

where η(bi,j) = b− 1 if bi,j = 0 and η(bi,j) = −1 if bi,j ̸= 0.

Second, we consider the specialization (3.1) of GWP⊥ . We have already seen
that GWP⊥ |(substitution (3.1))= WP⊥(x, y) holds. Since

WP⊥(x, y) = GWP⊥(x1, . . . , xn, y1, . . . , yn)

follows, Corollary 3.4.2 implies the following formula:

Theorem 3.4.3.

WP⊥(x, y) =
1

|P |
∑
B∈P

∏
1≤i≤s
1≤j≤n

(xj + η(bi,j)y
j),

where η(bi,j) = b− 1 if bi,j = 0 and η(bi,j) = −1 if bi,j ̸= 0.

Using Theorem 3.4.3, we can compute WF(P ) and δP⊥ , the minimum Dick
weight of P⊥. The minimum Dick weight of P⊥ is defined as

δP⊥ := min
B∈P⊥\{O}

µ(B),

which is used for bounding WAFOM (see Section 3.5.3). First, we introduce
how to compute WF(P ). The following formula to compute WAFOM is a
generalization of [34, Corollary 4.2] ,which treats the case G = F2.

Corollary 3.4.4. Let P ⊂ Zs×n
b be a subgroup. Then we have

WF(P ) = −1 + 1

|P |
∑
B∈P

∏
1≤i≤s
1≤j≤n

(1 + η(bi,j)b
−j).

Proof.

WF(P ) =
∑

A∈P⊥\{O}

b−µ(A)

20



= −1 +
∑

A∈P⊥

b−µ(A)

= −1 +WP⊥(1, b−1)

= −1 + 1

|P |
∑
B∈P

∏
1≤i≤s
1≤j≤n

(1 + η(bi,j)b
−j).

The merit of Theorem 3.4.3 and Corollary 3.4.4 is that the number of sum-
mation depends only on |P | linearly, not |P⊥| = bsn/|P |. We can calculate
weight enumerator polynomials by sn times multiplication between an integer
polynomial with a binomial, and |P | times addition of such polynomials of degree
n(n + 1)/2. In the case of computing WAFOM, we need sn times of multipli-
cation of real numbers and |P | times of summation of such real numbers, thus
we need O(sn|P |) times of operations of real numbers. On the other hand, to
calculate weight enumerator polynomials based on the definition, we need |P⊥|
times of summations of monomials, and to calculate weight WAFOM based on
the definition, we need |P⊥| times of summations of real numbers.

For QMC, the size |P | cannot exceed a reasonable number of computer
operations, so |P⊥| = bsn/|P | can be large if sn is sufficiently large. This
implies that the computational complexity of calculating weight enumerator
polynomials or WAFOM using Theorem 3.4.3 or Corollary 3.4.4 is smaller if sn
is large.

Second, we introduce how to compute δP⊥ . The minimum Dick weight δP⊥

is equal to the degree of leading nonzero term of −1 +WP⊥(1, y), namely:

Lemma 3.4.5. Let WP⊥(1, y) = 1 +
∑∞

i=1 aiy
i. Then we have δP⊥ = min{i |

ai ̸= 0}.

Thus we can obtain the minimum Dick weight of P⊥ by calculating the
weight enumerator polynomial of P⊥.

Remark 3.4.6. Because of Lemma 3.5.15 in Section 3.5.5, in order to compute
δP⊥ it is sufficient to compute WP⊥(1, y) only up to degree δP⊥ ≤ d2/(2s) +
3d/2 + s.

3.5 Estimation of WAFOM

The following arguments from Section 3.5.1 to Section 3.5.4 are generalizations
of [35] which deals with the case G = F2, and arguments in Section 3.5.5 are
generalizations of [59], which deals with the case G = F2. The methods for
proofs are similar to [35] and [59]. In this section, we suppose that s and n are
positive integers and that G is a finite abelian group.
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3.5.1 Geometry of the Dick weight

Recall that G is a finite abelian group with b ≥ 2 elements, G∨ its character
group. The Dick weight µ : (G∨)s×n → N0 induces a metric

d(A,B) := µ(A−B) for A,B ∈ (G∨)s×n

and thus (G∨)s×n can be regarded as a metric space.
Let Ss,n(m) := |{A ∈ (G∨)s×n | µ(A) = m}|, namely Ss,n(m) is the cardi-

nality of the sphere in (G∨)s×n with center 0 and radius m. A combinatorial
interpretation of Ss,n(m) is as follows. One has s × n dice. Each die has b
faces. For each value i = 1, . . . , n, there exist exactly s dice with value 0 on
one face and i on the other b − 1 faces. Then, Ss,n(m) is the number of ways
that the summation of the upper surfaces of s×n dice is m. This combinatorial
interpretation implies the following identity:

n∏
k=1

(1 + (b− 1)xk)s =
∞∑

m=0

Ss,n(m)xm.

You can also see this identity from Theorem 3.4.3 for P = {O}, x ← 1, and
y ← x. Note that the right hand side is a finite sum. It is easy to see that
Ss,n(m) is monotonically increasing with respect to s and n, and Ss,m(m) =
Ss,m+1(m) = Ss,m+2(m) = · · · holds.

Definition 3.5.1. Ss(m) := Ss,m(m).

We have the following identity between formal power series:

∞∏
k=1

(1 + (b− 1)xk)s =
∞∑

m=0

Ss(m)xm. (3.2)

For any positive integer M , we define

Bs,n(M) := {A ∈ (G∨)s×n | µ(A) ≤M}, vols,n(M) := |Bs,n(M)|,

namely Bs,n(M) is the ball in Gs×n with center 0 and radius M , and vols,n(M)

is its cardinality. We have vols,n(M) =
∑M

m=0 Ss,n(m), and thus vols,n(M) in-
herits properties of Ss,n(m), namely, vols,n(M) is also monotonically increasing
with respect to s and n, and vols,M (M) = vols,M+1(M) = vols,M+2(M) = . . .
holds.

Definition 3.5.2. vols(M) := vols,M (M).

3.5.2 Combinatorial inequalities

Lemma 3.5.3.

vols,n(M) ≤ vols(M) ≤ exp(2
√
(b− 1)sM).
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Proof. We have already seen the first inequality. We prove the next inequality
along [33, Exercise 3(b), p.332], which treats only S = 1 and b = 2 case. If
M = 0 it is trivial, and so we assume that M > 0. Define a polynomial with
non-negative integer coefficients by

fs,M (x) :=
M∏
k=1

(1 + (b− 1)xk)s.

Since fs,M (x) has only non-negative coefficients, from Identity (3.2) we have∑M
m=0 Ss(m)xm ≤ fs,M (x) (x ∈ (0, 1)). Hence we have

vols(M) =

M∑
m=0

Ss(m) ≤
M∑

m=0

Ss(M)xm−M ≤ fs,M (x)/xM (x ∈ (0, 1)).

By taking the logarithm of the both sides and using the well-known inequality
log(1 +X) ≤ X, for all x ∈ (0, 1) we have

vols,n(M) ≤ s
M∑
k=1

log(1 + (b− 1)xk) +M log(1/x)

< s(b− 1)
M∑
k=1

xk +M log

(
1 +

1− x

x

)
< s(b− 1)

x

1− x
+M

1− x

x
.

By comparison of the arithmetic mean and the geometric mean, the last ex-
pression attains the minimum value 2

√
(b− 1)sM when s(b − 1)x/(1 − x) =

M(1− x)/x holds, namely x = (1 +
√

(b− 1)s/M)−1 ∈ (0, 1).

Lemma 3.5.4.

Ss,n(M) ≤ Ss(M) ≤ exp(2
√

(b− 1)sM).

Proof. It follows from Lemma 3.5.3 and the inequality Ss(M) ≤ vols(M).

3.5.3 Bounding WAFOM by the minimum weight

Definition 3.5.5. Let P ⊂ Gs×n be a subgroup. The minimum Dick weight of
P⊥ is defined by

δP⊥ := min
B∈P⊥\{O}

µ(B)

The next lemma bounds WF(P ) by the minimum weight of P⊥.
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Lemma 3.5.6. For a positive integer M , define

Cs,n(M) :=
∑

A∈(G∨)s×n\Bs,n(M−1)

b−µ(A) =
∞∑

m=M

Ss,n(m)b−m

and

Cs(M) :=
∞∑

m=M

Ss(m)b−m.

Then we have

WFn(P ) =
∑

A∈P⊥\{O}

b−µ(A) ≤ Cs,n(δP⊥) ≤ Cs(δP⊥).

Proof. The last inequality is trivial, so it suffices to prove the first inequality.
Since P⊥\{O} ⊂ (G∨)s×n\Bs,n(δP⊥ − 1) holds, we have

WFn(P ) =
∑

A∈P⊥\{O}

b−µ(A) ≤
∑

A∈(G∨)s×n\Bs,n(δP⊥−1)

b−µ(A)

= Cs,n(δP⊥).

We shall estimate Cs(⌈M ′⌉) (C for the Complement of the ball) for rather
general real number M ′: from Lemma 3.5.4 it follows that

Cs(⌈M ′⌉) =
∞∑

m=⌈M ′⌉

Ss(m)b−m

≤
∞∑

m=⌈M ′⌉

b−me2
√

(b−1)sm

= b−⌈M ′⌉e2
√

(b−1)s⌈M ′⌉ +
∞∑

m=⌈M ′⌉+1

b−me2
√

(b−1)sm. (3.3)

First, we estimate the second term of the above. The function

exp(2
√
(b− 1)sm)b−m = exp(2

√
(b− 1)sm−m log b)

is monotonically decreasing with respect to m if

d

dm

(
2
√
(b− 1)sm−m log b

)
≤ 0 ⇐⇒ 2(b− 1)s

2
√
(b− 1)sm

− log b ≤ 0

⇐⇒
√

(b− 1)s

m
≤ log b

⇐⇒ m ≥ (log b)−2(b− 1)s,
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hence we assume that M ′ ≥ (log b)−2(b− 1)s. Then, we have

∞∑
m=⌈M ′⌉+1

b−me2
√

(b−1)sm

≤
∫ ∞

m=⌈M ′⌉
e−m log be2

√
(b−1)sm dm

=

∫ ∞

m=⌈M ′⌉
exp

−(log b)(√m− √(b− 1)s

log b

)2

+
(b− 1)s

log b

 dm

≤
∫ ∞

m=M ′
exp

−(log b)(√m− √(b− 1)s

log b

)2

+
(b− 1)s

log b

 dm

=

∫ ∞

x=
√
M ′

exp

−(log b)(x− √(b− 1)s

log b

)2

+
(b− 1)s

log b

 2x dx.

In order to bound the last integral from above, for a positive number c we assume
that

√
M ′ ≥ (1+c)

√
(b− 1)s/ log b or equivalentlyM ′ ≥ (1+c)2(log b)−2(b−1)s.

This assumption is stronger than the previous assumption M ′ ≥ (log b)−2(b −
1)s. Then, on the domain of integration x ≥

√
M ′ ≥ (1+ c)

√
(b− 1)s/ log b, we

have cx ≤ (1 + c)(x−
√
(b− 1)s/ log b). Hence the estimation continues:

∞∑
m=⌈M ′⌉+1

b−me2
√

(b−1)sm

≤
∫ ∞

x=
√
M ′

exp

−(log b)(x− √(b− 1)s

log b

)2

+
(b− 1)s

log b


× 2

1 + c

c

(
x−

√
(b− 1)s

log b

)
dx

=
1 + c

c

1

log b

− exp

−(log b)(x− √(b− 1)s

log b

)2

+
(b− 1)s

log b

∞

x=
√
M ′

=
1 + c

c

1

log b
exp

−(log b)(√M ′ −
√
(b− 1)s

log b

)2

+
(b− 1)s

log b


=

1 + c

c

1

log b
exp(−(log b)M ′ + 2

√
(b− 1)sM ′)

=
1 + c

c

1

log b
b−M ′

e2
√

(b−1)sM ′
.

Second, we consider the first term of (3.3). We have already proved that
exp(2

√
(b− 1)sm)b−m is monotonically decreasing if m ≥ (log b)−2(b−1)s, and
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thus the assumption M ′ ≥ (log b)−2(b− 1)s implies

b−⌈M ′⌉e2
√

(b−1)s⌈M ′⌉ ≤ b−M ′
e2
√

(b−1)sM ′
.

Therefore we have

Cs(⌈M ′⌉) ≤ b−⌈M ′⌉e2
√

(b−1)s⌈M ′⌉ +
∞∑

m=⌈M ′⌉+1

b−me2
√

(b−1)sm

≤ b−M ′
e2
√

(b−1)sM ′
+

1 + c

c

1

log b
b−M ′

e2
√

(b−1)sM ′

=

(
1 +

1 + c

c

1

log b

)
b−M ′

e2
√

(b−1)sM ′
.

Now we proved:

Proposition 3.5.7. Let c be a positive real number. Let M ′ be a real number
with M ′ ≥ (1 + c)2(log b)−2(b− 1)s. Then we have the following bound

Cs,n(⌈M ′⌉) ≤ Cs(⌈M ′⌉) ≤
(
1 +

1 + c

c

1

log b

)
b−M ′

e2
√

(b−1)sM ′
.

3.5.4 Existence of low-WAFOM point sets

We denote the probability of the event A by Prob[A]. Let pb be the smallest
prime factor of b. Let d be a positive integer. Choose d matrices B1, . . . , Bd ∈
Gs×n independently and uniformly at random. Let P = ⟨B1, . . . , Bd⟩ ⊂ Gs×n be
the G-linear span of B1, . . . , Bd, namely P = {g1B1+· · ·+gdBd | g1, . . . , gd ∈ G}
where g ∈ G acts on B = (bij) by gB = (gbij). Note that |P | ≤ bd.

Remark 3.5.8. If G = Zb, by the theory of invariant factor decomposition,
we can say that there exist matrices B′

1, . . . , B
′
d such that P ′ := ⟨B′

1, . . . , B
′
d⟩

includes P and becomes a free Zb-module of rank d. Thus if G = Zb, we can
replace “subgroup P” in this subsection with a “digital net P ,” since in this
subsection we consider only the existence of a subgroup which has large minimum
Dick weight, and P ⊂ P ′ implies that δP⊥ ≤ δP ′⊥ .

First, we evaluate Prob[perpL], where we define perpL as the event that
B1, . . . , Bd are all perpendicular to L ∈ (G∨)s×n.

Lemma 3.5.9. Let L ∈ (G∨)s×n be a nonzero matrix. Then we have Prob[L ⊥
B] ≤ 1/pb. Especially we have Prob[perpL] ≤ p−d

b .

Proof. We consider the map (L•) : Gs×n → C, B 7→ L • B. Then we have the
surjective group homomorphism Gs×n → Im(L•), and thus |Im(L•)| divides
Gs×n. Moreover, since L is nonzero, |Im(L•)| is larger than 1. Hence we have
|Im(L•)| ≥ pb. Therefore we have Prob[L ⊥ B] = |Im(L•)|−1 ≤ 1/pb, and
especially we have Prob[perpL] = Prob[L ⊥ B]d ≤ p−d

b .
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Let M be a positive integer. We evaluate the probability of the event that
δP⊥ ≥M . We have

Prob[δP⊥ ≥M ] = 1− Prob[δP⊥ ≤M − 1]

= 1− Prob[∃L ∈ Bs,n(M − 1)\{O} s.t. L ∈ P⊥]

= 1− Prob[∃L ∈ Bs,n(M − 1)\{O} s.t. L ⊥ B1, . . . , L ⊥ Bd]

= 1− Prob[∪L∈Bs,n(M−1)\{O}perpL]

≥ 1−
∑

L∈Bs,n(M−1)\{O}

Prob[perpL]

≥ 1− (vols,n(M − 1)− 1) · pb−d

> 1− vols,n(M − 1) · pb−d.

This shows:

Proposition 3.5.10. If vols,n(M −1) ≤ pb
d holds, then there exists a subgroup

P ⊂ Gs×n with |P | ≤ bd satisfying δP⊥ ≥M .

By Lemma 3.5.3, the condition of this proposition is satisfied if it holds that

e2
√

(b−1)s(M−1) ≤ pb
d ⇐⇒ M ≤ (log pb)

2d2

4(b− 1)s
+ 1. (3.4)

Therefore we have the following sufficient condition on the existence of M .

Proposition 3.5.11. If M ≤ (log pb)
2d2/(4(b− 1)s) + 1 holds, then Inequality

(3.4) is satisfied, and hence there exists a subgroup P ⊂ Gs×n with |P | ≤ bd

satisfying δP⊥ ≥M .

From now on, we define αb := (log pb)/2 and M ′ := A2d2/((b − 1)s) where
A ≤ αb and we take M to be ⌊M ′ + 1⌋ so that P with |P | ≤ bd and δP⊥ ≥
M exists. Then, by Proposition 3.5.7, we have the following upper bound of
WF(P ):

Proposition 3.5.12. Let αb := (log pb)/2. Take a real number A with A ≤ αb

and an arbitrary real number c > 0. Then for any positive integers s, n, and
d ≥ (1 + c)(b − 1)s/(A log b), there exists a subgroup P ⊂ Gs×n with |P | ≤ bd

satisfying

WFn(P ) ≤
(
1 +

1 + c

c

1

log b

)
b−A2d2/((b−1)s)e2Ad.

Proof. Define M ′ := A2d2/((b−1)s) and M := ⌊M ′+1⌋. By Proposition 3.5.11,
there exists a subgroup P ⊂ Gs×n with |P | ≤ bd and δP⊥ ≥ M . For this P ,
from Lemma 3.5.6 and Proposition 3.5.7 we have

WF(P ) ≤ Cs(M)

= Cs(⌈M ′⌉)
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≤
(
1 +

1 + c

c

1

log b

)
b−M ′

e2
√

(b−1)sM ′

=

(
1 +

1 + c

c

1

log b

)
b−A2d2/((b−1)s)e2Ad,

which proves the proposition.

In particular, take A = αb and we have the next theorem.

Theorem 3.5.13. Let αb := (log pb)/2 and take an arbitrary real number c > 0.
Then for any s, n, and d ≥ (1 + c)(b − 1)s/(αb log b), there exists a subgroup
P ⊂ Gs×n with |P | ≤ bd satisfying

WF(P ) ≤
(
1 +

1 + c

c

1

log b

)
b−α2

bd
2/((b−1)s)e2αbd.

Applying Theorem 3.5.13 to the case G = F2, we can improve [35, Theorem 2
and Remark 5].

Corollary 3.5.14. Let α := α2 = (log 2)/2 and take an arbitrary real number
c > 0. Then for any n and d ≥ (1 + c)s/(α log 2), there exists a linear subspace
P ⊂ Fs×n

2 with dimP ≤ d satisfying

WF(P ) ≤
(
1 +

1 + c

c

1

log 2

)
2−α2d2/se2αd.

3.5.5 A lower bound on WAFOM

In this subsection, we show a lower bound on WAFOM(P ), as a generalization
of [59]. The next lemma gives an upper bound on the minimum Dick weight of
P⊥ for given P ⊂ Gs×n, which implies a lower bound of WAFOM(P ).

Lemma 3.5.15. Suppose that s and n are positive integers. Let P ⊂ Gs×n be a
subgroup with |P | ≤ bd. Let q, r be nonnegative integers which satisfy d = qs+ r
and 0 ≤ r < s. Then we have the following:

1. δP⊥ ≤ sq(q + 1)/2 + (q + 1)(r + 1) ≤ d2/2s+ 3d/2 + s.

2. Let C be an arbitrary positive real number greater than 1/2. If d/s ≥
(
√
C + 1/16 + 3/4)/(C − 1/2) holds, then we have δP⊥ ≤ Cd2/s.

Proof. We define a subgroup Q := {A = (aij) ∈ (G∨)s×n | aij = 0 if (q + 2 ≤
j ≤ n) or (j = q+1 and r+2 ≤ i ≤ s)}. We have |Q| = bqs+r+1 = bd+1. There
is a Z-module isomorphism P⊥/(P⊥ ∩Q) ≃ (P⊥ +Q)/Q, and thus we have

|P⊥ ∩Q| = |P
⊥| · |Q|

|P⊥ +Q|
≥ bsn−d · bd+1

|(G∨)s×n|
= b,

especially there exists a non-zero matrix A′ ∈ (P⊥ ∩Q). Therefore we have

δP⊥ ≤ µ(A′) ≤ max{µ(A) | A = (aij) ∈ Q} = sq(q + 1)/2 + (q + 1)(r + 1),
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where the last equality holds if the components of A is as follows:{
aij = 0 if (q + 2 ≤ j ≤ n) or (j = q + 1 and r + 2 ≤ i ≤ s)

aij ̸= 0 if (1 ≤ j ≤ q) or (j = q + 1 and 1 ≤ i ≤ r + 1)
.

In particular, since q ≤ d/s and r + 1 ≤ s, we have

δP⊥ ≤ sq(q + 1)/2 + (q + 1)(r + 1)

≤ d

2

(
d

s
+ 1

)
+

(
d

s
+ 1

)
s =

d2

s

(
1

2
+

3s

2d
+

s2

d2

)
,

which proves the first statement.
Let C be a real number greater than 1/2 and we assume d/s ≥ (

√
C + 1/16+

3/4)/(C − 1/2). Then we have 1/2 + 3s/2d+ s2/d2 ≤ C. Thus we obtain

δP⊥ ≤ d2

s

(
1

2
+

3s

2d
+

s2

d2

)
≤ Cd2/s,

which proves the second statement.

The above lemma gives a lower bound of WF(P ).

Theorem 3.5.16. Suppose that s and n are positive integers. Let G be a
finite abelian group with b ≥ 2 elements. Let P ⊂ Gs×n be a subgroup with
|P | ≤ bd. Let C be an arbitrary positive real number greater than 1/2. If
d/s ≥ (

√
C + 1/16 + 3/4)/(C − 1/2) holds, then we have

WFn(P ) ≥ b−Cd2/s.

Proof.

WFn(P ) =
∑

A∈P⊥\{O}

b−µ(A) ≥ b−δ
P⊥ ≥ b−Cd2/s.

3.5.6 Order of WAFOM

In this subsection, we consider the order of WF(P ) where P is a subgroup of
Gs×n with |P | = bd.

We fix the base b. Let D := αb = (log pb)/2. We fix a positive integer
E satisfying E > (b − 1)/(D log b). Let c be the real number such that E =
(1 + c)(b − 1)/(D log b) (by the assumption that E > (b − 1)/(D log b), c is
positive). Note that c, D and E depend only on b.

We assume that d/s ≥ E. Then, by Proposition 3.5.12, there exists a sub-
group P ⊂ Gs×n with |P | ≤ bd satisfying

WFn(P ) ≤
(
1 +

1 + c

c

1

log b

)
b−D2d2/((b−1)s)e2Dd.

Moreover, by Theorem 3.5.16, for every P with |P | ≤ bd we have WFn(P ) ≥
b−Cd2/s where C = (1/2+ 3/(2E) + 1/E2). Thus we have the following lemma.
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Lemma 3.5.17. If d/s ≥ E, we have

−Cd2/s ≤ min{logb(WFn(P )) | P ⊂ Gs×n subgroup, |P | ≤ bd}

≤ −D2d2/((b− 1)s) + 2Dd/ log b+ logb

(
1 +

1 + c

c

1

log b

)
.

Especially, let N = bd and we have the following.

Theorem 3.5.18. Let G be a finite abelian group with |G| = b. Let P ⊂ Gs×n

be a subgroup with |P | ≤ N . Let c, C, D, and E are constants as Lemma 3.5.17,
which depend only on b. Suppose that (logN)/s ≥ E. Then we have

N−C(logN)/s ≤ min{WFn(P ) | P ⊂ Gs×n subgroup, |P | ≤ N}

≤
(
1 +

1 + c

c

1

log b

)
N−D2(logN)/((log b)(b−1)s)+2D/ log b.
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Chapter 4

An explicit construction of
point sets with large
minimum Dick weight

4.1 Introduction

In the previous chapter, as a generalization of [35] we proved the existence of
digital nets whose minimum Dick weight is large. However, the proof was not
constructive. Throughout this chapter we assume that b = p is prime. In this
chapter, we give a construction algorithm of digital nets over Fp = Zb whose
minimum Dick weight is large.

We use the same notation P ⊂ Zs×n
b , P⊥ and δP⊥ as in Chapter 3. In

this chapter, using Niederreiter-Xing sequences and Dick’s construction, we ex-
plicitly construct a linear subspace P ⊂ Zs×n

b of dimension m which achieves

δP⊥ ≥ ⌊m/11s⌋(m/2+8
√
(s⌊m/11s⌋ − 2)/3+ s/2+8)+ 1 when s⌊m/11s⌋ ≥ 2

for each m. This is the same order as m2/s. This implies that we can explicitly
construct point sets with low WAFOM.

The rest of this chapter is organized as follows. In Section 4.2.1, we recall the
definition of higher order digital nets and Dick’s construction. In Section 4.2.2,
we recall results on Niederreiter-Xing sequences. In Section 4.3, we show our
main results using Dick’s construction and Niederreiter-Xing sequences.

4.2 Preliminaries

In this section, we recall existing definitions and theorems necessary to prove
our results. Let s, n,m be positive integers. Let Fm

p denote the set of row vectors
of dimension m over Fp.
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4.2.1 Higher order digital nets

To define higher order digital nets, we recall digital nets with generating matrices
C1, . . . , Cs ∈ Fn×m

p . We define a map Φ(C1, . . . , Cs) : Fm
p → Fs×n

p by c 7→
(C1c

T , . . . , Csc
T )T , namely the i th row of Φ(C1, . . . , Cs)(c) is cC

T
i . We define

P (C1, . . . , Cs) ⊂ Fs×n
p as the image of the map Φ(C1, . . . , Cs). P (C1, . . . , Cs)

is called a digital net with generating matrices C1, . . . , Cs , or shortly, a digital
net.

Definition 4.2.1 (Higher order digital nets). [9][14, Definition 15.2]. Let
s, α, n,m ∈ N, let 0 < β ≤ min (1, αm/n) be a real number and let 0 ≤ t ≤ βn be

an integer. Let C1, . . . , Cs ∈ Fn×m
p . We define c

(i)
j ∈ Fm

p as the j th row vector of
the matrix Ci for 1 ≤ j ≤ n and 1 ≤ i ≤ s. If, for all 1 ≤ di,v1 < · · · < di,1 ≤ n,
where 0 ≤ vi ≤ m and 1 ≤ i ≤ s, with

s∑
i=1

min (vi,α)∑
j=1

di,j ≤ βn− t

the vectors
c
(1)
d1,v1

, . . . , c
(1)
d1,1

, . . . , c
(s)
ds,vs

, . . . , c
(s)
ds,1

are linearly independent over Fp, then the digital net with generating matrices
C1, . . . , Cs is called a higher order digital (t, α, β, n ×m, s)-net over Fp or for
short, a digital (t, α, β, n×m, s)-net over Fp.

For α = β = 1 and n = m, we obtain a (classical) digital (t,m, s)-net in base
p, which is compatible with Definition 4.2.7.

We state an equivalent definition in terms of the dual space using the Dick
α-weight with precision n [11, §2].
Definition 4.2.2 (Dick α-weight with precision n). Let p be a prime and s, n
be positive integers. Let α ∈ N ∪ {∞}. We define µα,n : Fn

p → Z by

µα,n(a) =

{
0 (if a = 0)

i1 + · · ·+ imin (α,v) (otherwise)
,

where a = (a1, . . . , an) ∈ Fn
p and i1, . . . , iv are defined as follows: The non-zero

components of a are ai1 , ai2 , . . . , aiv , with n ≥ i1 > i2 > · · · > iv ≥ 1.
Let A ∈ Fs×n

p . Let a(i) ∈ Fn
p be the i th row of the matrix A for 1 ≤ i ≤ s.

We define the Dick α-weight with precision n of A by

µα,n(A) :=
s∑

i=1

µα,n(a
(i)).

For any non-zero linear subspace P of Fs×n
p , we define the minimum distance

δα,n(P ) := min
A∈P\{0}

µα,n(A).

In particular, we are interested in the case α =∞ and we define δP := δ∞,n(P ).
The next theorem characterizes higher order digital nets.
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Theorem 4.2.3. [11, Theorem 3]. Given matrices C1, . . . , Cs ∈ Fn×m
p generate

a digital (t, α, β, n×m, s)-net over Fp if and only if

δα,n(P (C1, . . . , Cs)
⊥) ≥ βn− t+ 1.

To prove our results, we need the following construction by Dick.

Definition 4.2.4 (Dick’s construction). [14, 15.2]. Let d ∈ N, let C1, . . . , Csd

be the generating matrices of a digital (t′,m, sd)-net over Fp (in the sense of
(t,m, s)-net, see Definition 4.2.1 and the comment below Definition 4.2.1). Let

c
(i)
j be the j-th row vector of Ci for 1 ≤ j ≤ m and 1 ≤ i ≤ sd. We define

the matrices Di ∈ Fdm×m
p for 1 ≤ i ≤ s as below: Let d

(i)
j be the j-th row

vector of Di for 1 ≤ j ≤ dm and 1 ≤ i ≤ s. We define d
(i)
l = c

(v)
u whenever

l = (u− i)d+ v for 1 ≤ l ≤ dm with (i− 1)d+ 1 ≤ v ≤ id and 1 ≤ u ≤ m; that
is, the row vectors of Di from top to bottom are

c
((i−1)d+1)
1 , . . . , c

(id)
1 , c

((i−1)d+1)
2 , . . . , c

(id)
2 , . . . , c((i−1)d+1)

m , . . . , c(id)m .

Theorem 4.2.5. [14, Theorem 15.7]. Let d ∈ N, let α ∈ N ∪ {∞}, and let
C1, . . . , Csd be the generating matrices of a digital (t′,m, sd)-net over Fp. Then
the matrices D1, . . . , Ds defined as above are generating matrices of a higher
order digital (t, α,min(1, α/d), dm×m, s)-net over Fp with

t ≤ min(d, α) ·min

(
m, t′ +

⌊
s(d− 1)

2

⌋)
.

Remark 4.2.6. Theorem 4.2.3 and Theorem 4.2.5 are proved for finite α in
the references. The case α = ∞ reduces to the finite case, since α ≥ n implies
µα,n = µn,n.

4.2.2 (t,m, s)-nets and (t, s)-sequences

For our construction, we need good (t,m, s)-nets. In this section, we recall
the definition of (t,m, s)-nets and (t, s)-sequences and known theorems (see the
recent survey [39] for details).

Definition 4.2.7 ((t,m, s)-nets). Let b ≥ 2, m ≥ 1, 0 ≤ t ≤ m, and s ≥ 1 be
integers. A point set P = {x0, . . . ,xbm−1} ⊂ [0, 1)s is called a (t,m, s)-net in
base b if for all nonnegative integers d1, . . . , ds with d1 + · · · + ds = m − t the
elementary intervals

s∏
i=1

[
ai
bdi

,
ai + 1

bdi

)
contain exactly bt points for all choices of 0 ≤ ai < bdi (ai ∈ Z) for 1 ≤ i ≤ s.

If a given (t,m, s)-net is a digital net, we call it a digital (t,m, s)-net. (t, s)-
sequences are analogs of (t,m, s)-nets.
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Definition 4.2.8 ((t, s)-sequences). Let b ≥ 2, t ≥ 0, and s ≥ 1 be integers.
A sequence x0,x1, . . . of points in [0, 1)s is a (t, s)-sequence in base b if for all
integers k ≥ 0 and m > t the points xn with kbm ≤ n < (k + 1)bm form a
(t,m, s)-net in base b.

Theorem 4.2.9. [40, Lemma 8.2.13]. Let q be a prime power and s ≥ 1 be an
integer. If there exists a digital (t, s)-sequence over Fq, then for every integer
m ≥ max(t, 1) there exists a digital (t,m, s+ 1)-net over Fq.

Let dq(s) be the least value of t for which there exists a digital (t, s)-sequence
over Fq.

Theorem 4.2.10. [40, Theorem 8.4.4]. For any prime power q and any di-
mension s ≥ 1, we have

dq(s) ≤
3q − 1

q − 1
(s− 1)− (2q + 4)(s− 1)1/2

(q2 − 1)1/2
+ 2.

Remark 4.2.11. The proof of this theorem uses algebraic function fields with
many rational places which are constructed by explicit extensions of algebraic
function fields, and thus constructive [40, §8.4].

Remark 4.2.12. There are tables of the value dq(s) provided by the database
at http: // mint. sbg. ac. at launched by Schürer and Schmid [46], which lists
some better values of dq(s) than those given by Theorem 4.2.10 for some (s, q).

4.3 Main result

Theorem 4.3.1. Let s,m be positive integers and c be a positive real number.
We put d := ⌊ m

(2c+1)s⌋ and s′ := sd−1. We assume that s′ ≥ 1. If there exists a

(t′, s′)-sequence with a nonnegative integer t′, then there exists a linear subspace
P ⊂ Fs×dm

p of dimension m satisfying

δP⊥ ≥ d

(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1.

Proof. By assumption and Theorem 4.2.9, there exists a (min(t′,m),m, s′ +1)-
net (namely a (min(t′,m),m, sd)-net) over Fp.

By Theorem 4.2.5, from this digital net we can construct a higher order
digital (t,∞, 1, dm×m, s)-net P over Fp with

t ≤ dmin(m,min(t′,m) + ⌊s(d− 1)/2⌋)
≤ d(t′ + s(d− 1)/2).

Therefore, by Theorem 4.2.3, we have

δP⊥ ≥ 1 · dm− t+ 1
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≥ d(m− t′ − s(d− 1)/2) + 1

≥ d(m− t′ −m/(4c+ 2) + s/2) + 1

(
∵ sd ≤ s · m

(2c+ 1)s
=

m

2c+ 1

)
= d

(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1.

Remark 4.3.2. d = ⌊ m
(2c+1)s⌋ implies m ≥ (2c+ 1)sd. Moreover, the assump-

tion s′ = sd − 1 ≥ 1 implies that the integer d must be positive, thus we have
m ≥ (2c+ 1)s.

The next lemma extends Theorem 4.3.1 to arbitrary precision.

Lemma 4.3.3. Let s,m, n be positive integers. Then we have

max{δP⊥ | P ⊂ Fs×n
p ,dimP = m} ≥ max{δP⊥ | P ⊂ Fs×(n+1)

p , dimP = m}.

Proof. There is a linear subspace Q ⊂ Fs×(n+1)
p of dimension m such that

δQ⊥ = max{δP⊥ |P ⊂ Fs×(n+1)
p , dimP = m}.

We define a map pr : Fs×(n+1)
p → Fs×n

p by cutting off the right-end column. We

have dimQ⊥ = s(n + 1) − m and dimpr(Q⊥) ≥ sn − m, and hence we have
dimpr(Q⊥)⊥ ≤ m. Therefore

max{δP⊥ | P ⊂ Fs×n
p ,dimP = m} ≥ δpr(Q⊥)

≥ δQ⊥

= max{δP⊥ | P ⊂ Fs×(n+1)
p , dimP = m}.

The next corollary is an extension of Theorem 4.3.1 to arbitrary precision n.

Corollary 4.3.4. Let s,m, n be positive integers and c be a positive real number.
We put d := ⌊ m

(2c+1)s⌋ and s′ := sd−1. We assume that s′ ≥ 1. If there exists a

(t′, s′)-sequence with a nonnegative integer t′, then there exists a linear subspace
P ⊂ Fs×n

p of dimension m satisfying

δP⊥ ≥
(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1.

Proof. We may assume n > dm, since this corollary follows directly from The-
orem 4.3.1 and Lemma 4.3.3 if n ≤ dm. We consider P of Theorem 4.3.1. Let
P ′ be its image by the composition of two inclusions P ⊂ Fs×dm

p ⊂ Fs×n
p , where

the latter inclusion is given by supplementing 0 column vectors on the right side
(n− dm of 0 column vectors). Then we have

δP ′⊥ ≥ min(δP⊥ , dm+ 1)

= min

(
d

(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1, dm+ 1

)
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≥ d

(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1,

where the last inequality holds because

(dm+ 1)−
(
d

(
4c+ 1

4c+ 2
m− t′ + s/2

)
+ 1

)
= d(m/(4c+ 2) + t′ − s/2)

≥ d((2c+ 1)s/(4c+ 2) + t′ − s/2) (∵ Remark 4.3.2)

= dt′

≥ 0.

We use the explicit bound on (t, s)-sequences of Theorem 4.2.10 and we
obtain the following explicit bound on δP⊥ .

Corollary 4.3.5. Let s,m, n be positive integers. We put cp := (3p−1)/(p−1)
and d := ⌊ m

(2cp+1)s⌋. If sd ≥ 2 and m ≤ sn, then there exists a linear subspace

P ⊂ Fs×n
p of dimension m satisfying

δP⊥ ≥ d

(
m/2 +

(2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
+ s/2 + 2cp − 2

)
+ 1.

Proof. By Theorem 4.2.10, there exists a (t′, sd− 1)-sequence with

t′ ≤ cp(sd− 2)− (2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
+ 2.

Therefore, by Corollary 4.3.4, there exists a linear subspace P ⊂ Fs×n
p of di-

mension m satisfying

δP⊥ ≥ d

(
4cp + 1

4cp + 2
m− t′ + s/2

)
+ 1

≥ d

(
4cp + 1

4cp + 2
m−

(
cp(sd− 2)− (2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
+ 2

)
+ s/2

)
+ 1

= d

(
4cp + 1

4cp + 2
m− cpsd+ 2cp +

(2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
− 2 + s/2

)
+ 1

≥ d

(
4cp + 1

4cp + 2
m− cp ·

m

2cp + 1
+ 2cp +

(2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
− 2 + s/2

)
+ 1

≥ d

(
m/2 +

(2p+ 4)(sd− 2)1/2

(p2 − 1)1/2
+ s/2 + 2cp − 2

)
+ 1.

In particular, in the case p = 2 we obtain the next corollary.

Corollary 4.3.6. Let s,m be positive integers. We put d := ⌊m/11s⌋. If
sd ≥ 2 and m ≤ sn, then there exists a linear subspace P ⊂ Fs×n

2 of dimension
m satisfying

δP⊥ ≥ d
(
m/2 + 8

√
(sd− 2)/3 + s/2 + 8

)
+ 1.
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Note that the right hand side is of order m2/s when m increases faster than
s, namely, if m/s→∞.

We shall give an upper bound on WF(P ) for P of Corollary 4.3.6, by using
an upper-bound formula of WF(P ) by δP⊥ given by Matsumoto and Yoshiki
[35]. We recall:

Proposition 4.3.7. [35, Proposition 1]. Let M be a positive integer, c a positive
real number. Assume M ≥ (1+c)2(log 2)−2s. Then we have the following bound

Cs,n(M) :=
∑

A∈Fs×n
2

µ(A)≥M

2−µ(A) <
1 + c

c

1

log 2
2−Me2

√
sM .

We consider P in Corollary 4.3.6, namely P is an m-dimensional subspace
P ⊂ Fs×n

2 which satisfies δP⊥ ≥ d(m/2 + 8
√
(sd− 2)/3 + s/2 + 8) + 1 where

d := ⌊m/11s⌋. We put M := d(m/2 + 8
√

(sd− 2)/3 + s/2 + 8) + 1 and
c := (log 2)(M/s)1/2 − 1, then the assumption of Proposition 4.3.7 is satisfied.
Therefore we have

WF(P ) =
∑

A∈P⊥\{0}

2−µ(A)

≤ Cs,n(M) (∵ P⊥\{0} ⊂ {A ∈ Fs×n
2 |µ(A) ≥M})

<
1 + c

c

1

log 2
2−Me2

√
sM .

This shows:

Corollary 4.3.8. Let s,m be positive integers. We put d := ⌊m/11s⌋. If
s⌊m/11s⌋ ≥ 2, then P of Corollary 4.3.6 satisfies

WF(P ) <
1 + c

c

1

log 2
2−Me2

√
sM ,

where M := d(m/2+8
√
(sd− 2)/3+ s/2+8)+1 and c := (log 2)(M/s)1/2− 1.

We remark on the asymptotic behavior of this bound when m/s → ∞.
Then M is of order m2/s, and c is of order (M/s)1/2 and thus is of order m/s.
Thus, the coefficient of the right hand side 1+c

c monotonously decreases and

converges to 1. This implies that WF(P ) is of order O(2−Me2
√
sM ) for M being

of order m2/s, which is comparable with the nonconstructive bound given in
[35, Theorem 1]. and the previous chapter.
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Chapter 5

Formulas for the Walsh
coefficients of smooth
functions and their
application to bounds on
the Walsh coefficients

5.1 Introduction

Throughout this chapter we use the following notation: We assume that k is
a nonnegative integer whose b-adic expansion is k = κ1b

a1−1 + · · · + κvb
av−1

where κi and ai are integers with 0 < κi ≤ b− 1, a1 > · · · > av ≥ 1. For k = 0
we assume that v = 0 and a0 = 0.

In this chapter, we focus on the decay of the Walsh coefficients of smooth
functions. There are several studies for the decay of the Walsh coefficients. Fine
considered the Walsh coefficients of functions which satisfy a Hölder condition in
[17]. Dick proved the decay of the Walsh coefficients of functions of smoothness
α ≥ 1 in [8, 9] and studied it in more detail in [10]: It was proved that if a
function f has α− 1 derivatives for which f (α−1) satisfies a Lipschitz condition,
then |f̂(k)| ∈ O(b−a1−···−amin(α,v)) [9]. Dick also proved that this order is the
best possible. That is, for f of smoothness α, if there exists 1 ≤ r ≤ α such
that f̂(k) decays faster than b−a1−···−ar for all k ∈ N0 and v ≥ r, then f is a
polynomial of degree at most r − 1 [10, Theorem 20].

Recently, Yoshiki gave a method to analyze the dyadic (i.e., 2-adic) Walsh
coefficients in [58]. He introduced dyadic differences of (maybe discontinuous)
functions and gave a formula in which the dyadic Walsh coefficients are given
by dyadic differences multiplied by constants. Dyadic differences of a smooth
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function are expressed in terms of derivatives of the function. This enabled
him to establish a formula for the dyadic Walsh coefficients of smooth functions
expressed in terms of those derivatives. From this formula, he obtained a bound
on the dyadic Walsh coefficients for α times continuously differentiable functions
for α ≥ 1.

In this chapter, we establish a formula in which the b-adic Walsh coefficients
of smooth functions are expressed in terms of those derivatives as

f̂(k) = (−1)v
∫ 1

0

f (v)(x)W (k)(x) dx,

where the function W (k)(·) : [0, 1) → C is given by the iterated integral of
Walsh functions as in Definition 5.2.1. This formula is a generalization of the
formula for the dyadic Walsh coefficients of smooth functions in [58], however
our method is different from that in [58]. Our main idea is first separating the
interval [0,1) to appropriate intervals on which particular Walsh functions take
constant values, and then applying integration by parts iteratively. We also
establish another formula for the Walsh coefficients to use all of the smoothness
of functions.

Furthermore, we give bounds on the b-adic Walsh coefficients for α times
continuously differentiable functions. Our assumption is somewhat stronger
than that of [10]. Instead, we obtain bounds asymptotically better with re-
spect to α than results in [10]. Our bounds for the dyadic case recover results
for smooth functions in [58]. Moreover, we obtain a class of infinitely smooth

functions whose Walsh coefficients decay as |f̂(k)| ∈ O(b−a1−···−av ). We also
obtain improved bounds on the Walsh coefficients for functions in periodic and
non-periodic reproducing kernel Hilbert spaces which are considered in [10].

The rest of this chapter is organized as follows. We give two formulas for
the Walsh coefficients of smooth functions in Sections 5.2 and 5.4. Bounds on
the Walsh coefficients of smooth functions and Bernoulli polynomials are given
in Sections 5.3 and 5.5, respectively. In Section 5.6 (resp. Section 5.7), we give
a bound on the Walsh coefficients of functions in non-periodic (resp. periodic)
reproducing kernel Hilbert spaces.

5.2 Integral formula for the Walsh coefficients
of smooth functions

We introduce further notation which is used throughout this chapter. For k > 0,
let k′ = k − κvb

av−1. Let v(k) := v be the number of non-zero digits of k.
In this section, we define the function W (k)(·) and establish a formula in

which the Walsh coefficients of smooth functions are expressed in terms of
W (k)(·) and derivatives of the functions.

Definition 5.2.1. For k ∈ N0, we define functions W (k)(·) : [0, 1] → C recur-
sively as

W (0)(x) := 1,
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W (k)(x) :=

∫ x

0

walκvbav−1(y)W (k′)(y) dy,

and the integral value of W (k)(·) as

I(k) :=

∫ 1

0

W (k)(x) dx.

By definition, W (k)(x) is continuous for all k ∈ N0. Note that we have

W (k)(x) =

∫ x

0

W (k′)(y) dy for x ∈ [0, b−av ]

since we have walκvbav−1(y) = 1 for all y ∈ [0, b−av ). We show the periodicity
of W (k)(·) in the next lemma.

Lemma 5.2.2. Let k ∈ N0. Let x ∈ [0, 1) and x = cb−av+x′, where 0 ≤ c < bav

is an integer and 0 ≤ x′ < b−av is a real number. Then we have

W (k)(x) =
1− ωcκv

b

1− ωκv

b

W (k)(b−av ) + ωcκv

b W (k)(x′).

In particular, W (k)(·) is a periodic function with period b−av+1 if v > 0.

Proof. We prove the lemma by induction on v. If v = 0, trivially the result
holds. Hence we now assume that the claim holds for v − 1. Then W (k′)(·) is
periodic with period b−av−1+1 and in particular with period b−av if v > 1, and
W (k′)(·) is constant if v = 1. Hence we have

W (k)(x) =

c−1∑
i=0

∫ (i+1)b−av

ib−av

walκvbav−1(y)W (k′)(y) dy

+

∫ cb−av+x′

cb−av

walκvbav−1(y)W (k′)(y) dy

=
c−1∑
i=0

ωiκv

b

∫ b−av

0

W (k′)(y) dy + ωcκv

b

∫ x′

0

W (k′)(y) dy

=
1− ωcκv

b

1− ωκv

b

W (k)(b−av ) + ωcκv

b W (k)(x′).

Now we are ready to show a formula for the Walsh coefficients. For n ∈
N0, we define two symbols kn> and kn≤ as kn> :=

∑v
i=n+1 κib

ai−1 and kn≤ :=∑min(n,v)
i=1 κib

ai−1, respectively. Note that kn≤ + kn> = k.

Theorem 5.2.3. Let k ∈ N0. Assume that f ∈ Cα[0, 1] for a positive integer
α. Then for an integer 0 ≤ n ≤ min(α, v) we have

f̂(k) = (−1)n
∫ 1

0

f (n)(x)walkn
>
(x)W (kn≤)(x) dx.
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Proof. We prove the formula by induction on n. For n = 0, the result holds by
the definition of the Walsh coefficients. Hence assume now that n > 0 and that
the result holds for n− 1. We have walkn−1

>
(x) = walkn

>
(x)walκnban−1(x) for all

x ∈ [0, 1) and

walkn
>
(x) = walkn

>
(ib−an+1) for x ∈ [ib−an+1, (i+ 1)b−an+1)

for each integer 0 ≤ i < ban−1. Hence we have

f̂(k) = (−1)n−1

∫ 1

0

f (n−1)(x)walkn−1
>

(x)W (kn−1
≤ )(x) dx

= (−1)n−1
ban−1−1∑

i=0

walkn
>
(ib−an+1)×

∫ (i+1)b−an+1

ib−an+1

f (n−1)(x)walκnban−1(x)W (kn−1
≤ )(x) dx

= (−1)n−1
ban−1−1∑

i=0

walkn
>
(ib−an+1)

([
f (n−1)(x)W (kn≤)(x)

](i+1)b−an+1

ib−an+1

−
∫ (i+1)b−an+1

ib−an+1

f (n)(x)W (kn≤)(x) dx

)

= (−1)n
ban−1−1∑

i=0

walkn
>
(ib−an+1)

∫ (i+1)b−an+1

ib−an+1

f (n)(x)W (kn≤)(x) dx

= (−1)n
∫ 1

0

f (n)(x)walkn
>
(x)W (kn≤)(x) dx,

where we use the induction assumption for n − 1 for the first equality and
W (kn≤)(ib

−an+1) = W (kn≤)((i + 1)b−an+1) = 0 by Lemma 5.2.2 for the fourth
equality, respectively. This proves the result for n.

Now we consider the s-variate case. For a function f : [0, 1)s → R, let
f (n1,...,ns) := (∂/∂x1)

n1 · · · (∂/∂xs)
nsf be the (n1, . . . , ns)-th derivative of f .

Considering coordinate-wise integration, we have the following.

Theorem 5.2.4. Let k = (k1, . . . , ks) ∈ Ns
0. Assume that f : [0, 1]s → R has

continuous mixed partial derivatives up to order αj in each variable xj. Let nj

be integers with 0 ≤ nj ≤ min(αj , v(kj)) for 1 ≤ j ≤ s. Then we have

f̂(k) = (−1)n1+···+ns

∫
[0,1)s

f (n1,...,ns)(x)
s∏

j=1

wal
kj

nj
>
(xj)W (kj

nj

≤ )(xj)dx.
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5.3 The Walsh coefficients of smooth functions

Let f ∈ Cα[0, 1] and p, q ∈ [1,∞] with 1/p + 1/q = 1. By Theorem 5.2.3 for
n = min(α, v) and Hölder’s inequality, we have

|f̂(k)| ≤
∫ 1

0

∣∣∣f (min(α,v))(x)wal
k
min(α,v)
>

(x)W (k
min(α,v)
≤ )(x)

∣∣∣ dx
≤ ∥f (min(α,v))∥Lp∥W (kα≤)(·)∥Lq . (5.1)

Thus, it suffices to bound ∥W (kα≤)(·)∥Lq to bound |f̂(k)|. We give bounds on
∥W (kα≤)(·)∥L∞ for the non-dyadic case, ∥W (kα≤)(·)∥Lq for the dyadic case and

|f̂(k)| in Sections 5.3.1, 5.3.2 and 5.3.3, respectively.
We introduce a function µ as follows. For k ∈ N0, we define

µ(k) :=

{
0 for k = 0,

a1 + · · ·+ av for k ̸= 0.
(5.2)

For k = (k1, · · · , ks) ∈ Ns
0, we define µ(k) :=

∑s
j=1 µ(kj).

For subsequent analysis, we give the exact values of I(k) and W (k)(b−av ) in
the next lemma.

Lemma 5.3.1. For k ∈ N0, we have the following.

(i) I(k) =
b−µ(k)∏v

i=1(1− ωκi

b )
,

(ii) W (k)(b−av ) =
b−µ(k)∏v−1

i=1 (1− ωκi

b )
.

(iii) Let x ∈ [0, 1) and x = cb−av + x′ where 0 ≤ c < bav is an integer and
0 ≤ x′ < b−av is a real number. Then we have

W (k)(x) = (1− ωcκv

b )I(k) + ωcκv

b W (k)(x′).

Here, the empty products
∏0

i=1 and
∏−1

i=1 are defined to be 1.

Proof. By Lemma 5.2.2 we have

I(k) =
bav−1∑
i=0

∫ (i+1)b−av

ib−av

W (k)(x) dx

=

bav−1∑
i=0

∫ b−av

0

(
1− ωiκv

b

1− ωκv

b

W (k)(b−av ) + ωiκv

b W (k)(x)

)
dx

=
W (k)(b−av )

1− ωκv

b

b−av

bav−1∑
i=0

(1− ωiκv

b ) +
bav−1∑
i=0

ωiκv

b

∫ b−av

0

W (k)(x) dx
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=
W (k)(b−av )

1− ωκv

b

. (5.3)

Furthermore, W (k)(b−av ) is computed as

W (k)(b−av ) =

∫ b−av

0

W (k′)(x) dx

= b−avI(k′), (5.4)

where we use the fact that W (k′)(·) is periodic with period b−av , which fol-
lows from Lemma 5.2.2, in the last equality. Using equations (5.3) and (5.4)
iteratively, we have (i) and (ii). Combining (5.3) and Lemma 5.2.2, we have
(iii).

In the following, we consider two cases in order to bound ∥W (k)(·)∥L∞ : the
non-dyadic case and the dyadic case. We define two positive constants mb and
Mb as

mb := min
c=1,2,...,b−1

|1− ωc
b| = 2 sin(π/b),

Mb := max
c=1,2,...,b−1

|1− ωc
b| =

{
2 if b is even,

2 sin((b+ 1)π/2b) if b is odd.

5.3.1 Non-dyadic case

The following lemmas are needed to bound supx′∈[0,b−av ] |W (k)(x′)|.

Lemma 5.3.2. Let A,B be complex numbers and r be a positive real number.
Then we have supx∈[0,r] |Ax+B| = max(|B|, |rA+B|).

Proof. We have

sup
x∈[0,r]

|Ax+B| =
√

sup
x∈[0,r]

|Ax+B|2 =
√

sup
x∈[0,r]

(|A|2x2 + 2Re(AB)x+ |B|2).

Since |A|2x2 + 2Re(AB)x + |B|2 is a convex function on [0, r], its maximum
value occurs at its endpoints.

Lemma 5.3.3. Let a and 1 ≤ κ ≤ b− 1 be positive integers. Then we have

sup
c′=0,1,...,ab

∣∣∣∣∣∣
c′−1∑
i=0

(1− ωiκ
b )

∣∣∣∣∣∣ ≤ ab.

Proof. Since
∑ab−1

i=0 ωiκ
b = 0, we have

sup
c′=0,1,...,ab

∣∣∣∣∣∣
c′−1∑
i=0

(1− ωiκ
b )

∣∣∣∣∣∣ = sup
c′=0,1,...,ab

∣∣∣∣∣c′ +
ab−1∑
i=c′

ωiκ
b

∣∣∣∣∣
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≤ sup
c′=0,1,...,ab

(
c′ +

ab−1∑
i=c′

∣∣ωiκ
b

∣∣) = ab.

We now have an upper bound on supx′∈[0,b−av ] |W (k)(x′)|.

Lemma 5.3.4. Let k be a positive integer. If b > 2, then we have

sup
x′∈[0,b−av ]

|W (k)(x′)| ≤ b−µ(k)

mv−1
b

b

b−Mb

(
1−

(
Mb

b

)v)
.

Proof. We prove the lemma by induction on v. If v = 1, we have

sup
x′∈[0,b−a1 ]

|W (k)(x′)| = sup
x′∈[0,b−a1 ]

∣∣∣∣∣
∫ x′

0

W (0)(y) dy

∣∣∣∣∣
= sup

x′∈[0,b−a1 ]

|x′| = b−a1 = b−µ(k).

Hence the lemma holds for v = 1.
Thus assume now that v > 1 and that the result holds for v − 1. Let

x′ ∈ [0, b−av ] be a real number and x′ = c′b−av−1 +x′′ where 0 ≤ c′ < b−av+av−1

is an integer and 0 ≤ x′′ < b−av−1 is a real number. Then by Lemma 5.3.1 (iii)
we have

|W (k)(x′)| =

∣∣∣∣∣
∫ x′

0

W (k′)(y) dy

∣∣∣∣∣
=

∣∣∣∣∣∣
c′−1∑
i=0

∫ b−av−1

0

(
(1− ω

iκv−1

b )I(k′) + ω
iκv−1

b W (k′)(y)
)
dy

+

∫ x′′

0

(
(1− ω

c′κv−1

b )I(k′) + ω
c′κv−1

b W (k′)(y)
)
dy

∣∣∣∣∣
≤

∣∣∣∣∣∣b−av−1

c′−1∑
i=0

(1− ω
iκv−1

b )I(k′) + x′′(1− ω
c′κv−1

b )I(k′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
c′−1∑
i=0

ω
iκv−1

b

∫ b−av−1

0

W (k′)(y) dy + ω
c′κv−1

b

∫ x′′

0

W (k′)(y) dy

∣∣∣∣∣∣ .
(5.5)

We evaluate the supremum of the first term of (5.5). Note that the first term

of (5.5) is equal to |b−av−1
∑c′

i=0(1 − ω
iκv−1

b )I(k′)| if x′′ = b−av−1 . By Lemmas
5.3.2, 5.3.3 and 5.3.1 (i), we have

sup
0≤c′<b−av+av−1

x′′∈[0,b−av−1 ]

∣∣∣∣∣∣b−av−1

c′−1∑
i=0

(1− ω
iκv−1

b )I(k′) + x′′(1− ω
c′κv−1

b )I(k′)

∣∣∣∣∣∣
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= sup
0≤c′≤b−av+av−1

∣∣∣∣∣∣b−av−1

c′−1∑
i=0

(1− ω
iκv−1

b )I(k′)

∣∣∣∣∣∣
≤ b−av−1

b−µ(k′)

mv−1
b

b−av+av−1

=
b−µ(k)

mv−1
b

.

We move on to the evaluation of the second term of (5.5). We have

sup
c′,x′′

∣∣∣∣∣∣
c′−1∑
i=0

ω
iκv−1

b

∫ b−av−1

0

W (k′)(y) dy + ω
c′κv−1

b

∫ x′′

0

W (k′)(y) dy

∣∣∣∣∣∣
= sup

c′,x′′

∣∣∣∣∣∣
c′−1∑
i=0

ω
iκv−1

b

∫ b−av−1

x′′
W (k′)(y) dy +

c′∑
i=0

ω
iκv−1

b

∫ x′′

0

W (k′)(y) dy

∣∣∣∣∣∣
= sup

c′,x′′

∣∣∣∣∣1− ω
c′κv−1

b

1− ω
κv−1

b

∫ b−av−1

x′′
W (k′)(y) dy +

1− ω
(c′+1)κv−1

b

1− ω
κv−1

b

∫ x′′

0

W (k′)(y) dy

∣∣∣∣∣
≤ sup

x′′

∣∣∣∣Mb

mb
(b−av−1 − x′′) +

Mb

mb
x′′
∣∣∣∣ · sup

y∈[0,b−av−1 ]

|W (k′)(y)|

≤ Mb

mb
b−av−1 · b

−µ(k′)

mv−2
b

b

b−Mb

(
1−

(
Mb

b

)v−1
)

≤ b−µ(k)

mv−1
b

Mb

b−Mb

(
1−

(
Mb

b

)v−1
)
,

where we use the induction assumption for v − 1 in the forth inequality and
b · b−av−1 ≤ b−av in the last inequality.

By summing up the bounds obtained on each term of (5.5), we have

sup
x′∈[0,b−av ]

|W (k)(x′)| ≤ b−µ(k)

mv−1
b

+
b−µ(k)

mv−1
b

Mb

b−Mb

(
1−

(
Mb

b

)v−1
)

=
b−µ(k)

mv−1
b

b

b−Mb

(
1−

(
Mb

b

)v)
.

Using the above lemma, we obtain an upper bound on ∥W (k)(·)∥L∞ .

Proposition 5.3.5. Let k ∈ N0. If b > 2, we have

∥W (k)(·)∥L∞ ≤ b−µ(k)

mv
b

(
Mb +

bmb

b−Mb

(
1−

(
Mb

b

)v))min(1,v)

.

Proof. The case k = 0 is obvious. We assume that k > 0. Let x ∈ [0, 1) and
x = cb−av + x′, where 0 ≤ c < bav is an integer and 0 ≤ x′ < b−av is a real
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number. By Lemmas 5.3.1 and 5.3.4, we have

|W (k)(x)| = |(1− ωcκv

b )I(k) + ωcκv

b W (k)(x′)|
≤Mb|I(k)|+ sup

x′∈[0,b−av ]

|W (k)(x′)|

≤ b−µ(k)

mv
b

(
Mb +

bmb

b−Mb

(
1−

(
Mb

b

)v))min(1,v)

,

which proves the proposition.

5.3.2 Dyadic case

In this subsection, we assume that b = 2. In the dyadic case, we can obtain
the exact values of ∥W (k)(·)∥L1 and ∥W (k)(·)∥L∞ . First we show properties of
W (k)(x) for the dyadic case.

Lemma 5.3.6. Let k ∈ N0. Assume that b = 2 and x1, x2 ∈ [0, 1). Then we
have the following.

(i) Assume that x1 + x2 is a multiple of 2−av+1. Then we have W (k)(x1) =
W (k)(x2).

(ii) Assume that x1 + x2 is a multiple of 2−av and not a multiple of 2−av+1.
If k ̸= 0, then we have W (k)(x1) +W (k)(x2) = W (k)(2−av ).

(iii) The function W (k)(x) is nonnegative.

Proof. We prove the lemma by induction on v. The results hold for v = 0 since
W (0)(x) = 1 for all x ∈ [0, 1). Hence assume now that v > 0 and that the
results hold for v − 1.

First we assume that x1 + x2 is the multiple of 2−av+1. Since W (k)(·) has a
period 2−av+1 by Lemma 5.2.2, we can assume that x1, x2 ∈ [0, 2−av+1]. Then
we can assume that x1 ∈ [0, 2−av ] and that x2 = 2−av+1 − x1. Now we prove
that W (k)(x1) = W (k)(x2). By the induction assumption of (i) for v − 1, we
have W (k′)(y) = W (k′)(2−av+1 − y) for all y ∈ [0, 2−av+1]. Hence we have

W (k)(x2) = W (k)(2−av+1)−
∫ 2−av+1

x2

wal2av−1(y)W (k′)(y) dy

= 0−
∫ 2−av+1

x2

(−1)W (k′)(2−av+1 − y) dy

=

∫ x1

0

W (k′)(y) dy

= W (k)(x1),

which proves (i) for v.
Second we assume that x1 + x2 is a multiple of 2−av and not a multiple

of 2−av+1. Similar to the first case, we can assume that x1, x2 ∈ [0, 2−av ] and
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that x2 = 2−av − x1. By the induction assumption of (i) for v − 1, we have
W (k′)(y) = W (k′)(2−av − y) for all y ∈ [0, 2−av ]. Hence we have

W (k)(x1) +W (k)(x2) =

∫ x1

0

W (k′)(y) dy +

∫ x2

0

W (k′)(y) dy

=

∫ x1

0

W (k′)(y) dy +

∫ x2

0

W (k′)(2−av − y) dy

=

∫ x1

0

W (k′)(y) dy +

∫ 2−av

2−av−x2

W (k′)(y) dy

=

∫ 2−av

0

W (k′)(y) dy

= W (k)(2−av ),

which proves (ii) for v.
Finally we prove that W (k)(x) is nonnegative. By the induction assumption

of (iii) for v−1, W (k′)(x) is nonnegative. For x ∈ [0, 2−av ], we have W (k)(x) =∫ x

0
W (k′)(y)dy, and thus W (k)(x) is nonnegative for x ∈ [0, 2−av ]. Hence by (i)

for v and Lemma 5.2.2, W (k)(x) is nonnegative for x ∈ [0, 1).

Now we are ready to consider ∥W (k)(·)∥Lq for 1 ≤ q ≤ ∞.
First we consider ∥W (k)(·)∥L1 . By Lemmas 5.3.1 (i) and 5.3.6 (iii), we have

∥W (k)(·)∥L1 =

∫ 1

0

|W (k)(x)| dx =

∫ 1

0

W (k)(x) dx = 2−µ(k)−v.

Second we consider ∥W (k)(·)∥L∞ . If k = 0, we have ∥W (k)(·)∥L∞ = 1.
We assume that k > 0. Considering the symmetry and the non-negativity of
W (k)(x) given by Lemma 5.3.6, we have

∥W (k)(·)∥L∞ = sup
x∈[0,2−av ]

|W (k)(x)| dx

= sup
x∈[0,2−av ]

∣∣∣∣∫ x

0

W (k′)(y) dy

∣∣∣∣
=

∫ 2−av

0

W (k′)(y) dy

= W (k)(2−av ) = 2−µ(k)−v+1.

Thus we have ∥W (k)(·)∥L∞ ≤ 2−µ(k)−v+min(1,v) for all k ∈ N0.
Finally we consider ∥W (k)(·)∥Lq . By Hölder’s inequality, we have

∥W (k)(·)∥Lq =

(∫
[0,1)s

|W (k)(x)| · |W (k)(x)|q−1 dx

)1/q

≤ (∥W (k)(·)∥L1∥W (k)(·)∥q−1
L∞ )1/q
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≤ 2−µ(k)−v+(1−1/q)min(1,v).

We have shown the following proposition.

Proposition 5.3.7. Let b = 2. For k ∈ N0 and 1 ≤ q ≤ ∞, we have

∥W (k)(·)∥Lq ≤ 2−µ(k)−v+(1−1/q)min(1,v),

and the equality holds if q = 1 or q =∞.

5.3.3 Bounds on the Walsh coefficients of smooth func-
tions

For a positive integer α and k ∈ N0, we define

µα(k) := µ(kα≤) =


0 for k = 0,

a1 + · · ·+ av for 1 ≤ v ≤ α,

a1 + · · ·+ aα for v ≥ α,

(5.6)

as in [10]. By (5.1), Proposition 5.3.5 and Proposition 5.3.7, we obtain the
following bound on the Walsh coefficients of smooth functions.

Theorem 5.3.8. Let f ∈ Cα[0, 1] and k ∈ N0. If b > 2, we have

|f̂(k)| ≤ ∥f (min(α,v))∥L1

b−µα(k)

m
min(α,v)
b

×

(
Mb +

bmb

b−Mb

(
1−

(
Mb

b

)min(α,v)
))min(1,v)

.

If b = 2, for 1 ≤ p ≤ ∞ we have

|f̂(k)| ≤ ∥f (min(α,v))∥Lp · 2−µα(k)−min(α,v)+min(1,v)/p.

The s-variate case follows in the same way as the univariate case.

Theorem 5.3.9. Let k = (k1, . . . , ks) ∈ Ns
0. Assume that f : [0, 1]s → R has

continuous mixed partial derivatives up to order αj in each variable xj. Let
nj := min(αj , v(kj)) for 1 ≤ j ≤ s. Then, if b > 2, we have

|f̂(k)| ≤ ∥f (n1,...,ns)∥L1

s∏
j=1

b−µαj
(kj)

m
nj

b

×

(
Mb +

bmb

b−Mb

(
1−

(
Mb

b

)nj
))min(1,v(kj))

.

If b = 2, for 1 ≤ p ≤ ∞ we have

|f̂(k)| ≤ ∥f (n1,...,ns)∥Lp ×
s∏

j=1

2−µαj
(kj)−nj+min(1,v(kj))/p.
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As a corollary, we give a sufficient condition for a infinitely smooth function
that its Walsh coefficients decay with order O(b−µ(k)).

Corollary 5.3.10. Let f ∈ C∞[0, 1]s and rj > 0 be positive real numbers for
1 ≤ j ≤ s. Assume that there exists a positive real number D such that

∥f (n1,...,ns)∥L1 ≤ D
s∏

j=1

r
nj

j

holds for all n1, . . . , ns ∈ N0. Then for all k ∈ Ns
0 we have

|f̂(k)| ≤ Db−µ(k)
s∏

j=1

(rjm
−1
b )v(kj)C

min(1,v(kj))
b ,

where Cb is a constant defined as

Cb =

2 for b = 2,

Mb +
bmb

b−Mb
for b ̸= 2.

In particular, if rj = mb holds for all 1 ≤ j ≤ s, then |f̂(k)| ∈ O(b−µ(k)) holds.

5.4 Another formula for the Walsh coefficients

In this section, we give another formula for the Walsh coefficients. For this
purpose, we introduce functions Wj(k)(·) and their integration values Ij(k) for
j, k ∈ N0.

Definition 5.4.1. For j, k ∈ N0, we define functions Wj(k)(·) : [0, 1]→ C and
complex numbers Ij(k) recursively as

W0(k)(x) := W (k)(x),

Ij(k) :=

∫ 1

0

Wj(k)(x),

Wj+1(k)(x) :=

∫ x

0

(Wj(k)(x)− Ij(k)) dy.

We note that Wj(k)(0) = Wj(k)(1) = 0 for all j, k ∈ N0 with (j, k) ̸= (0, 0).
We now establish another formula for the Walsh coefficients of smooth func-

tions.

Theorem 5.4.2. Let k, r ∈ N0 and f ∈ Cv+r[0, 1]. Then we have

f̂(k) =
r∑

i=0

(−1)v+iIi(k)

∫ 1

0

f (v+i)(x) dx

+ (−1)v+r

∫ 1

0

f (v+r)(x)(Wr(k)(x)− Ir(k)) dx.
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Proof. We prove the theorem by induction on r. We have already proved the
case r = 0 in Theorem 5.2.3. Thus assume now that r ≥ 1 and that the result
holds for r − 1. By the induction assumption for v − 1, we have

f̂(k) =
r−1∑
i=0

(−1)v+iIi(k)

∫ 1

0

f (v+i)(x) dx

+ (−1)v+r−1

∫ 1

0

f (v+r−1)(x)(Wr−1(k)(x)− Ir−1(k)) dx

=
r−1∑
i=0

(−1)v+iIi(k)

∫ 1

0

f (v+i)(x) dx

+ (−1)v+r−1

(
[f (v+r−1)(x)Wr(k)(x)]

1
0 −

∫ 1

0

f (v+r)(x)Wr(k)(x) dx

)
=

r∑
i=0

(−1)v+iIi(k)

∫ 1

0

f (v+i)(x) dx

+ (−1)v+r

∫ 1

0

f (v+r)(x)(Wr(k)(x)− Ir(k)) dx,

where we use Wr(k)(0) = Wr(k)(1) = 0 in the third equality. This proves the
result for r.

5.5 The Walsh coefficients of Bernoulli polyno-
mials

In this section, we analyze the decay of the Walsh coefficients of Bernoulli poly-
nomials.

For r ≥ 0, we denote Br(x) the Bernoulli polynomial of degree r and br(x) =
Br(x)/r!. For example, we have B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x+
1/6 and so on. Those polynomials have the following properties: For all r ≥ 1
we have

b′r(x) = br−1(x) and

∫ 1

0

br(x) dx = 0, (5.7)

and for all r ∈ N0 we have

br(1− x) = (−1)rbr(x), (5.8)

see [1, Chapter 23]. We clearly have b′0(x) = 0 and
∫ 1

0
b0(x) = 1.

The Walsh coefficients of Bernoulli polynomials are given as follows. If r < v,
then by Theorem 5.2.3 and (5.7) we have

b̂r(k) = (−1)v
∫ 1

0

b(v)r (x)W (k)(x) dx = 0.
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If r ≥ v, then by Theorem 5.4.2 and (5.7) we have

b̂r(k) =
r−v∑
i=0

(−1)v+iIi(k)

∫ 1

0

b(v+i)
r (x) dx

+ (−1)r
∫ 1

0

br
(r)(x)(Wr−v(k)(x)− Ir−v(k)) dx

= (−1)rIr−v(k).

Now we proved:

Lemma 5.5.1. For positive integers k and r, we have

b̂r(k) =

{
0 if r < v,

(−1)rIr−v(k) if r ≥ v.

In the following, we give upper bounds on ∥Wj(k)(·) − Ij(k)∥L∞ , |Ij(k)|
and ∥Wj(k)(·)∥L∞ , which give bounds on the Walsh coefficients of Bernoulli
polynomials and smooth functions. First we compute Wj(k)(·) and Ij(k).

Lemma 5.5.2. Let k, j ∈ N0. Let x ∈ [0, 1) and x = cb−av + x′ with c ∈ N0

and x′ ∈ [0, b−av ). Then we have

(i) Wj(k)(x) =
1− ωcκv

b

1− ωκv

b

Wj(k)(b
−av ) + ωcκv

b Wj(k)(x
′),

(ii) Ij(k) =
Wj(k)(b

−av )

1− ωκv

b

.

Proof. We prove the lemma by induction on j. We have already proved the case
j = 0 in Lemmas 5.2.2 and 5.3.1. Thus assume now that j ≥ 1 and that the
result holds for j − 1. Then we have

Wj(k)(x) =

∫ x

0

(Wj−1(k)(y)− Ij−1(k)) dy

=
c−1∑
i=0

∫ b−av

0

(
−ωiκv

b

1− ωκv

b

Wj−1(k)(b
−av ) + ωiκv

b Wj−1(k)(y)

)
dy

+

∫ x′

0

(
−ωcκv

b

1− ωκv

b

Wj−1(k)(b
−av ) + ωcκv

b Wj−1(k)(y)

)
dy

=
c−1∑
i=0

ωiκv

b Wj(k)(b
−av ) + ωcκv

b Wj(k)(x
′)

=
1− ωcκv

b

1− ωκv

b

Wj(k)(b
−av ) + ωcκv

b Wj(k)(x
′),

where we use the induction assumption for j−1 in the second and third equalities
and the definition of Wj(k)(·) in the third equality. This proves (i) for j.

Now we compute Ij(k). Replacing W (k)(x) to Wj(k)(x) in (5.3), we have
Ij(k) = Wj(k)(b

−av )/(1− ωκv

b ), which proves (ii) for j.
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The following lemmas give bounds on ∥Wj(k)(·) − Ij(k)∥L∞ , |Ij(k)| and
∥Wj(k)(·)∥L∞ for the non-dyadic case.

Lemma 5.5.3. Let j ∈ N0. If b ̸= 2, for any positive integer k we have

∥Wj(k)(·)− Ij(k)∥L∞ ≤ b−µ(k)−jav

mv+j
b

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.

Proof. Let x ∈ [0, 1) and x = cb−av + x′ with c ∈ N0 and x′ ∈ [0, b−av ). First
assume that j = 0. Then it follows from Lemmas 5.3.1 and 5.3.4 that

|W0(k)(x)− I0(k)| = |−ωcκv

b I(k) + ωcκv

b W (k)(x′)|
≤ |I(k)|+ sup

x′∈[0,b−av ]

|W (k)(x′)|

≤ b−µ(k)

mv
b

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
,

which proves the case j = 0.
Now we assume that j > 0. Then it follows from Lemma 5.5.2 that

|Wj(k)(x)− Ij(k)| =
∣∣∣∣1− ωcκv

b

1− ωκv

b

Wj(k)(b
−av ) + ωcκv

b Wj(k)(x
′)− Wj(k)(b

−av )

1− ωκv

b

∣∣∣∣
=

∣∣∣∣ −1
1− ωκv

b

Wj(k)(b
−av ) +Wj(k)(x

′)

∣∣∣∣
=

∣∣∣∣ −1
1− ωκv

b

(Wj(k)(b
−av )−Wj(k)(x

′))−
ωκv

b

1− ωκv

b

Wj(k)(x
′)

∣∣∣∣
≤ 1

mb

∣∣∣∣∣
∫ b−av

x′
(Wj−1(k)(y)− Ij−1(k)) dy

+ωκv

b

∫ x′

0

(Wj−1(k)(y)− Ij−1(k)) dy

∣∣∣∣∣
≤ 1

mb
(b−av − x′) sup

y∈[0,b−av ]

|Wj−1(k)(y)− Ij−1(k)|

+
1

mb
x′ sup

y∈[0,b−av ]

|Wj−1(k)(y)− Ij−1(k)|

≤ b−av

mb
∥Wj−1(k)(·)− Ij−1(k)∥L∞ .

Using the case j = 0 and this evaluation inductively, we have the case j > 0.

Lemma 5.5.4. Let j and k be positive integers. If b > 2, then we have

|Ij(k)| ≤
b−µ(k)−jav

mv+j
b

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.
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Proof. By Lemmas 5.5.2 and 5.5.3, we have

|Ij(k)| = |Wj(k)(b
−av )/(1− ωκv

b )|

≤ 1

mb

∫ b−av

0

|Wj−1(k)(y)− Ij−1(k)| dy

≤ b−av

mb
∥Wj−1(k)(y)− Ij−1(k)∥L∞

≤ b−µ(k)−jav

mv+j
b

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.

Lemma 5.5.5. Let j and k be positive integers. If b > 2, then we have

∥Wj(k)(·)∥L∞ ≤ b−µ(k)−jav

mv+j
b

Mb

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.

Proof. Let x ∈ [0, 1) and x = cb−av + x′, where 0 ≤ c < bav is an integer and
0 ≤ x′ < b−av is a real number. Then we have

Wj(k)(x) =
1− ωcκv

b

1− ωκv

b

Wj(k)(b
−av ) + ωcκv

b Wj(k)(x
′)

=
1− ωcκv

b

1− ωκv

b

(Wj(k)(b
−av )−Wj(k)(x

′)) +
1− ω

(c+1)κv

b

1− ωκv

b

Wj(k)(x
′)

=
1− ωcκv

b

1− ωκv

b

∫ b−av

x′
(Wj−1(k)(y)− Ij−1(k)) dy

+
1− ω

(c+1)κv

b

1− ωκv

b

∫ x′

0

(Wj−1(k)(y)− Ij−1(k)) dy.

Thus we have

|Wj(k)(x)| ≤

∣∣∣∣∣1− ωcκv

b

1− ωκv

b

∫ b−av

x′
(Wj−1(k)(y)− Ij−1(k)) dy

∣∣∣∣∣
+

∣∣∣∣∣1− ω
(c+1)κv

b

1− ωκv

b

∫ x′

0

(Wj−1(k)(y)− Ij−1(k)) dy

∣∣∣∣∣
=

Mb

mb
b−av∥Wj−1(k)(·)− Ij−1(k)∥L∞

≤ b−µ(k)−jav

mv+j
b

Mb

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.

We also consider the dyadic case.

Lemma 5.5.6. Let k be a positive integer and j ∈ N0. If b = 2, then we have
the following.

(i) ∥Wj(k)(x)− Ij(k)∥L∞ ≤ 2−j(av+1)−µ(k)−v,
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(ii) |Ij(k)| ≤ 2−j(av+1)−µ(k)−v,

(iii) ∥Wj(k)(·)∥L∞ ≤ 2−j(av+1)−µ(k)−v+1.

(iv) If j is odd, then Ij(k) = 0.

Proof. Lemma 5.3.1 and Proposition 5.3.7 imply (ii) and (iii) for j = 0.
Since W0(k)(x) and I0(k) are nonnegative, we have

∥W0(k)(x)− I0(k)∥L∞ ≤ max (|∥W0(k)(·)∥L∞ − I0(k)|, |0− I0(k)|)
≤ 2−µ(k)−v,

and thus (i) for j = 0 holds.
For the proof for the case j > 0, we note that parts of proofs of Lemmas

5.5.3, 5.5.4 and 5.5.5 are valid even in the dyadic case: For b = 2 we have

|Wj(k)(x)− Ij(k)| ≤
b−av

mb
∥Wj−1(k)(·)− Ij−1(k)∥L∞ ,

|Ij(k)| ≤
b−av

mb
∥Wj−1(k)(y)− Ij−1(k)∥L∞ ,

|Wj(k)(x)| ≤
Mb

mb
b−av∥Wj−1(k)(·)− Ij−1(k)∥L∞ .

Combining these inequalities and the case j = 0, we have (i), (ii) and (iii) for
j > 0.

Now we assume that j is odd and prove Ij(k) = 0. By Lemma 5.5.1, we
have

b̂v+j(k) = (−1)v+jIj(k).

Hence it suffices to show b̂v+j(k) = 0. Since j is odd, by (5.8) we have bv+j(x) =
(−1)v+1bv+j(1−x). Furthermore, walk(x) = (−1)vwalk(1−x) holds for all but
finitely many x ∈ [0, 1), since we have wal2ai−1(x) = −wal2ai−1(1 − x) for
x ∈ [0, 1)\{l/2ai | 0 ≤ l < 2ai} and walk(x) =

∏v
i=1 wal2ai−1(x). Hence we have

b̂v+j(k) =

∫ 1
2

0

bv+j(x)walk(x) dx+

∫ 1

1
2

bv+j(x)walk(x) dx

=

∫ 1
2

0

bv+j(x)walk(x) dx+

∫ 1
2

0

bv+j(1− x)walk(1− x) dx

=

∫ 1
2

0

bv+j(x)walk(x) dx−
∫ 1

2

0

bv+j(x)walk(x) dx

= 0.

Now we are ready to analyze the decay of the Walsh coefficients of Bernoulli
polynomials. For a positive integer α and k ∈ N0, we define

µα,per(k) =


0 for k = 0,

a1 + · · ·+ av + (α− v)av for 1 ≤ v ≤ α,

a1 + · · ·+ aα for v ≥ α,

(5.9)

54



as in [10]. By Lemmas 5.5.1, 5.5.4 and 5.5.6, we have the following bound on
the Walsh coefficients of Bernoulli polynomials.

Theorem 5.5.7. For positive integers k and r, we have

|b̂r(k)|



= 0 if r < v,

= 0 if r ≥ v, r − v is odd and b = 2,

≤ 2−µr,per(k)−r if r ≥ v, r − v is even and b = 2,

≤ b−µr,per(k)

mr
b

cb,v if r ≥ v and b ̸= 2,

where cb,v := 1 +
bmb

b−Mb

(
1−

(
Mb

b

)v)
.

5.6 Walsh coefficients of functions in Sobolev
spaces

In this section, we consider functions in the Sobolev space

Hα := {f : [0, 1]→ R | f (i): abs. conti. for i = 0, · · · , α− 1, f (α) ∈ L2[0, 1]}

for which α ≥ 1 as in [10]. The inner product is given by

⟨f, g⟩α =

α−1∑
i=0

∫ 1

0

f (i)(x) dx

∫ 1

0

g(i)(x) dx+

∫ 1

0

f (α)(x)g(α)(x) dx.

and the corresponding norm in Hα is given by ∥f∥Sob,α :=
√
⟨f, f⟩α. The space

Hα becomes a reproducing kernel Hilbert space (see [2] for general information
of reproducing kernel Hilbert space). The reproducing kernel for this space is
given by

K(x, y) =
α∑

i=0

bi(x)bi(y)− (−1)αb̃2α(x− y),

where

b̃α(x− y) :=

{
bα(|x− y|), α : even,
(−1)1x<ybα(|x− y|), α : odd,

where we define 1x<y is 1 for x < y and 0 otherwise, see [6, Lemma 2.1]. We
have

f(y) = ⟨f,K(·, y)⟩α

=
α∑

i=0

∫ 1

0

f (i)(x) dx bi(y)− (−1)α
∫ 1

0

f (α)(x)̃bα(x− y) dx, (5.10)
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which implies that

f̂(k) =
α∑

i=0

∫ 1

0

f (i)(x) dx b̂i(k)− (−1)α
∫ 1

0

f (α)(x)

∫ 1

0

b̃α(x− y)walk(y) dy dx.

(5.11)

However, we have already proved two formulas for the Walsh coefficients: For
f ∈ Cα[0, 1], in the case α ≥ v we have Theorem 5.4.2 for r = α − v, which is
written as

f̂(k) =
α∑

i=v

(−1)iIi−v(k)

∫ 1

0

f (i)(x) dx

+ (−1)α
∫ 1

0

f (α)(x)(Wα−v(k)(x)− Iα−v(k)) dx, (5.12)

and in the case α < v we have Theorem 5.2.3 for n = α, which is written as

f̂(k) = (−1)α
∫ 1

0

f (α)(x)walkα
>
(x)W (kα≤)(x) dx. (5.13)

In this section, we show that Formulas (5.12) and (5.13) are also valid for f ∈ Hα

and give an upper bound for the Walsh coefficients of functions in Hα.

5.6.1 Formula for the Walsh coefficients of functions in
Sobolev spaces

First we consider the case α ≥ v. The following lemma is needed to show that
(5.12) is also valid for f ∈ Hα.

Lemma 5.6.1. Assume α ≥ v. Define functions h1, h2 : [0, 1]→ C as

h1(x) := −
∫ 1

0

b̃α(x− y)walk(y) dy,

h2(x) := Wα−v(k)(x)− Iα−v(k).

Then h1(x) = h2(x) holds for all x ∈ [0, 1].

Proof. For f ∈ Cα[0, 1] both formulas (5.11) and (5.12) hold. Furthermore, by
Lemma 5.5.1, the first term of each formula is equal. Hence we have∫ 1

0

f (α)(x)h1(x) dx =

∫ 1

0

f (α)(x)h2(x) dx

for all f ∈ Cα[0, 1]. It is well known that if h : [0, 1] → C is continuous and∫ 1

0
g(x)h(x) = 0 holds for all continuous functions g ∈ C0[0, 1], then h(x) = 0

holds. Thus it suffices to show that h1 and h2 are continuous.
By definition, h2 is continuous. Now we prove that h1 is continuous. Fix

ϵ > 0. Since bα(z) is uniformly continuous on z ∈ [0, 1], there exists δ1
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such that |bα(z) − bα(z
′)| < ϵ/2 for all z, z′ ∈ [0, 1] with |z − z′| < δ1. Let

δ2 = min
(
4−1ϵ(maxz∈[0,1] |bα(z)|)−1, δ1

)
. We fix x ∈ [0, 1] and prove |h1(x) −

h1(x
′)| ≤ ϵ for all x′ ∈ [0, 1] with |x − x′| < δ2. Without loss of generality, we

can assume that x < x′. Then we have∣∣∣∣∫ 1

0

b̃α(x− y)walk(y) dy −
∫ 1

0

b̃α(x
′ − y)walk(y) dy

∣∣∣∣
≤

(∫ x

0

+

∫ x′

x

+

∫ 1

x′

)∣∣∣̃bα(x− y)− b̃α(x
′ − y)

∣∣∣ dy
≤ x max

y∈[0,x]
|bα(x− y)− bα(x

′ − y)|+ (x′ − x) max
y∈[x,x′]

(|bα(y − x)|+ |bα(x′ − y)|)

+ (1− x′) max
y∈[x′,1]

|bα(y − x)− bα(y − x′)|

< xϵ/2 + 2δ2 max
z∈[0,1]

|bα(z)|+ (1− x′)ϵ/2

< ϵ,

which implies the continuity of h1.

The following result follows now from the above lemma, Lemma 5.5.1 and
(5.11).

Proposition 5.6.2. Assume α ≥ v. Then for f ∈ Hα we have

f̂(k) =

α∑
i=v

(−1)iIi−v(k)

∫ 1

0

f (i)(x) dx

+ (−1)α
∫ 1

0

f (α)(x)(Wα−v(k)(x)− Iα−v(k)) dx.

Now we treat the case α < v. Note that walkα
>
(x)W (kα≤)(x) is continuous

since W (kα≤)(x) equals 0 on the set where walkα
>
(x) is not continuous. In the

same way as the case α ≥ v, we have the following.

Proposition 5.6.3. Assume α < v. Then we have

−
∫ 1

0

b̃α(x− y)walk(y) dy = walkα
>
(x)W (kα≤)(x).

In particular, for f ∈ Hα we have

f̂(k) = (−1)α
∫ 1

0

f (α)(x)walkα
>
(x)W (kα≤)(x) dx.

5.6.2 Upper bound on the Walsh coefficients of functions
in Sobolev spaces

In this subsection, we give a bound on the Walsh coefficients of functions in Hα.
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By Propositions 5.6.2 and 5.6.3, for f ∈ Hα we have

|f̂(k)| ≤
α∑

i=v

|Ii−v(k)|
∣∣∣∣∫ 1

0

f (i)(x) dx

∣∣∣∣+Nα

∫ 1

0

|f (α)(x)| dx,

where Nα = ∥Wα−v(k)(·) − Iα−v(k)∥L∞ if α ≥ v and Nα = ∥W (kα≤)(·)∥L∞

otherwise. Thus, by Propositions 5.3.5 and 5.3.7 and Lemmas 5.5.3, 5.5.4 and
5.5.6, we have the following.

Theorem 5.6.4. Let α and k be positive integers. Assume f ∈ Hα. If b > 2,
we have

|f̂(k)| ≤
α∑

i=v

∣∣∣∣∫ 1

0

f (i)(x) dx

∣∣∣∣ b−µi,per(k)

mi
b

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
+

∫ 1

0

|f (α)(x)| dxb
−µα,per(k)

mα
b

(
Mb +

bmb

b−Mb

(
1−

(
Mb

b

)v))
,

and if b = 2, we have

|f̂(k)| ≤
∑

v≤i≤α
i=v mod 2

∣∣∣∣∫ 1

0

f (i)(x) dx

∣∣∣∣ b−µi,per(k)

2i
+

∫ 1

0

|f (α)(x)| dxb
−µα,per(k)

2α−1
,

where for v > α the empty sum
∑α

i=v is defined to be 0.

For an integer i with v ≤ i ≤ α, µi,per(k) ≥ µα(k) holds for all k ∈ N0

by the definitions of µi,per(k) and µα(k). Thus, applying Hölder’s inequality to
Theorem 5.6.4, we obtain the following corollary.

Corollary 5.6.5. Let α and k be positive integers. Then, for all f ∈ Hα, we
have

|f̂(k)| ≤ b−µα(k)Cb,α,q∥f∥p,α,

where ∥f∥p,α :=
(∑α

i=0

∣∣∣∫ 1

0
f (i)(x) dx

∣∣∣p + ∫ 1

0
|f (α)(x)|p dx

)1/p
, 1/p + 1/q = 1,

and

Cb,α,q :=

(
α∑

i=1

1

miq
b

(
1 +

bmb

b−Mb

)q

+
1

mαq
b

(
Mb +

bmb

b−Mb

)q
)1/q

for b > 2 and C2,α,q := (
∑α

i=1 2
−iq + 2−(α−1)q)1/q for b = 2.

Remark 5.6.6. This corollary can be generalized to tensor product spaces, for
which the reproducing kernel is just the product of the one-dimensional kernel,
as [14, Section 14.6].
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5.7 The Walsh coefficients of smooth periodic
functions

As [10], we consider a subset of the previous reproducing kernel Hilbert space,
namely, let Hα,per be the space of all functions f ∈ Hα which satisfy the condi-

tion
∫ 1

0
f (i)(x) dx = 0 for 0 ≤ i < α. This space also has a reproducing kernel,

which is given by

Kα,per(x, y) = bα(x)bα(y) + (−1)α+1b̃2α(x− y),

and the inner product is given by

⟨f, g⟩α,per =
∫ 1

0

f (α)(x)g(α)(x) dx,

see [56, (10.2.4)]. We also have the representation

f(y) = ⟨f,Kα,per(·, y)⟩α,per

=

∫ 1

0

f (α)(x) dx bα(y) + (−1)α+1

∫ 1

0

f (α)(x)̃bα(x− y) dx

and

f̂(k) =

∫ 1

0

f (α)(x) dx b̂α(k) + (−1)α+1

∫ 1

0

f (α)(x)

∫ 1

0

b̃α(x− y)walk(y) dx dy.

By the condition
∫ 1

0
f (i)(x) dx = 0 for 0 ≤ i < α and Propositions 5.6.2 and

5.6.3, we have the following.

Lemma 5.7.1. Let α and k be positive integers. Assume f ∈ Hα,per. If α ≥ v,
then we have

f̂(k) = (−1)α
∫ 1

0

f (α)(x)Wα−v(k)(x) dx.

If α < v, then we have

f̂(k) = (−1)α
∫ 1

0

f (α)(x)walkα
>
(x)W (kα≤)(x) dx.

This lemma, Propositions 5.3.5 and 5.3.7 and Lemmas 5.5.4 and 5.5.6 imply
the following bound.

Theorem 5.7.2. Let α and k be positive integers. Assume f ∈ Hα,per. If b > 2,
then we have

|f̂(k)| ≤
∫ 1

0

|f (α)(x)| dxb
−µα,per(k)

mα
b

Mb

(
1 +

bmb

b−Mb

(
1−

(
Mb

b

)v))
.

If b = 2, then we have

|f̂(k)| ≤
∫ 1

0

|f (α)(x)| dxb
−µα,per(k)

2α−1
.
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Chapter 6

Accelerating convergence
and tractability of
multivariate integration for
infinitely differentiable
functions

6.1 Introduction

In this chapter we approximate the integral on an s-dimensional unit cube∫
[0,1)s

f(x) dx

by the algorithm which uses n function values of the form

An,s(f) :=

n∑
i=1

wif(ti) for wi ∈ R, ti ∈ [0, 1)s.

One classical issue is the optimal rate of convergence with respect to n. Another
important issue is the dependence on the number of variables s, since s can be
hundreds or more in computational applications. The latter issue is related to
the notion of tractability if we require no exponential dependence on s.

A large number of studies have been devoted to numerical integration on the
unit cube for various function spaces. One typical case is that functions are only
finitely many times differentiable, e.g., functions with bounded variation, peri-
odic functions in the Korobov space and non-periodic functions in the Sobolev
space, see [38, 49, 42, 14] and references therein. For these cases, it is known
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that the rate of convergence is O(n−α) for some α > 0 and thus we have poly-
nomial convergence. Another interesting case is that functions are smooth, i.e.,
infinitely differentiable. Dick [7] gave reproducing kernel Hilbert spaces based
on Taylor series which achieve a convergence of O(n−α) with α > 0 arbitrarily
large and the spaces were later generalized in [60]. It was proved in [12, 28]
that exponential convergence holds for the Korobov space of periodic functions
whose Fourier coefficients decay exponentially fast. Exponential convergence
means that the integration error converges as O(qn

p

) for some q ∈ (0, 1), p > 0.
Note that exponential convergence was also shown for Hermite spaces on Rs

with exponentially fast decaying Hermite coefficients [25].
In this chapter we focus on a weighted normed space of non-periodic smooth

functions

Fs,u :=

{
f ∈ C∞[0, 1]s

∣∣∣∣∣ ∥f∥Fs,u := sup
(α1,...,αs)∈Ns

0

∥f (α1,...,αs)∥L1∏s
j=1 u

αj

j

<∞

}
(6.1)

with a sequence of positive weights u = {uj}j≥1. It is easy to check that all
functions in Fs,u are analytic from Taylor’s theorem. This space is motivated by
the results by Yoshiki [58] and can be regarded as a Sobolev space of infinite or-
der [15]. The space Fs,u is closely related to the notion of WAFOM. We observe
that generalized WAFOM works well for the space Fs,u, see Remark 6.6.1.

The first purpose of this chapter is to show that Fs,u achieves accelerat-
ing convergence for all s and u considered. Accelerating convergence roughly
means that the integration error converges as O(q(logn)p) for some q ∈ (0, 1) and

p > 1. Note that q(logn)p = n−(log q−1)(logn)p−1

, hence the exponent (log n)p−1 of
n increases as n increases (which is why we call this accelerating convergence).
We remark that accelerating convergence was first observed in [35] as the de-
cay of the lowest-WAFOM value and that [35] and [58] imply the accelerating
convergence result for Fs,1/2.

We also consider tractability for Fs,u. Let us briefly recall the notion of
tractability (see [41, 42, 43] for more information). Let n(ε, s) be the informa-
tion complexity, i.e., the minimal number n of function values which approxi-
mate the s-variate integration within ε. An integration problem is said to be
tractable if n(ε, s) does not grow exponentially on ε nor s. In particular, two
notions of tractability has been mainly considered: polynomial tractability, i.e.,
n(ε, s) ≤ Cε−τ1sτ2 , and strong polynomial tractability, i.e., n(ε, s) ≤ Cε−τ1 for
τ1, τ2 ≥ 0. A common way to obtain tractability is to consider weighted func-
tion spaces introduced by Sloan and Woźniakowski [50]. Weighted spaces mean
that the dependence on the successive variables can be moderated by weights.
Our weights u play the same role. For tractability results for spaces of smooth
functions, see also [23].

The second purpose of this chapter is to establish the notions of tractability
which correspond to accelerating convergence: accelerating convergence with
polynomial tractability (AC-PT) and accelerating convergence with strong
tractability (AC-ST). Roughly speaking, AC-PT (resp. AC-ST) holds if accel-
erating convergence holds and n(ε, s) depends only polynomially on s (resp. is
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independent of s). We define the Walsh space Ws,a,b into which Fs,u is em-
bedded and prove that the notions of AC-PT and AC-PT are equivalent for
Ws,a,b and that AC-PT holds for Ws,a,b iff the weights a grow polynomially
fast. These results enable us to show that AC-ST holds for Fs,u if weights u
decay sufficiently fast.

The rest of this chapter is organized as follows. In Section 6.2, we give
necessary background including the Dick weight, definitions of our function
spaces and embeddings among them. In Section 6.3, we give precise definitions
of the notions of accelerating error convergence and tractability used in this
chapter. In Section 6.4, we present Theorem 6.4.1 and Corollary 6.4.2, which are
the summary of all results in this chapter. Necessary and sufficient conditions
for Theorem 6.4.1 are given in Sections 6.5 and 6.6, respectively.

6.2 Function spaces and embeddings

In this subsection, we introduce function spaces Fs,u, Ws,a,b and W̃s,a,b consid-
ered in this chapter and give embeddings from Fs,u to Ws,a,b.

The space of smooth functions Fs,u is defined as in (6.1). Throughout this
chapter, we always assume that

u1 ≥ u2 ≥ · · · > 0. (6.2)

In the previous chapter, we have proved that Walsh coefficients of functions
in Fs,u decay sufficiently fast. In order to introduce the result, we define the
generalized Dick weight µ(a;k) for a ∈ Rs and k ∈ Ns

0 and a weight v(k) for
k ∈ N. We also define the modified Dick weight µ̃(a;k), which is modified not
to take negative values. Note that the Dick weight is originally defined as the
case of a = 0 in [34].

Definition 6.2.1. Let a = (a1, . . . , as) ∈ Rs and k = (k1, . . . , ks) ∈ Ns
0. We

denote the b-adic expansion of kj by kj =
∑∞

i=1 κj,ib
i−1 with κj,i ∈ Zb (this is

actually a finite sum). We define the generalized Dick weight µ(a;k) and the
modified Dick weight µ̃(a;k) as

µ(a;k) :=
s∑

j=1

∞∑
i=1

(i+ aj)h(κj,i),

µ̃(a;k) :=

s∑
j=1

∞∑
i=1

max(i+ aj , 1)h(κj,i),

where h(κ) = 0 for κ = 0 and h(κ) = 1 for κ ̸= 0. A weight v(kj) is defined as

v(kj) :=

∞∑
i=1

h(κj,i).

We now modify the decay of Walsh coefficients given in Corollary 5.3.10 as
follows.
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Theorem 6.2.2. Put mb := 2 sin(π/b) and Mb := 2 sin(⌊b/2⌋π/b). Assume
f ∈ Fs,u. Then it follows that

|f̂(k)| ≤ ∥f∥Fs,ub
−µ(0;k)

s∏
j=1

(m−1
b uj)

v(kj)D
min(1,v(kj))
b ,

where Db = 2 for b = 2 and Db = Mb + bmb/(b−Mb) otherwise.

This decay motivates us to define Walsh spaces Ws,a,b and W̃s,a,b of Walsh
series whose Walsh coefficients are controlled by the generalized (resp. modified)
Dick weight. Let a = (aj)j≥1 be a sequence of real-valued weights. Throughout
this chapter, we assume

a1 ≤ a2 ≤ a3 ≤ · · · , (6.3)

which corresponds to (6.2). We first define Ws,a,b as

Ws,a,b :=

f : [0, 1)s → R

∣∣∣∣∣∣ f(x) =
∑
k∈Ns

0

f̂(k)walk(x) and ∥f∥Ws,a,b
<∞


equipped with the norm

∥f∥Ws,a,b
:= sup

k∈Ns
0

|f̂(k)bµ(a;k)|

and W̃s,a,b as

W̃s,a,b :=

{
f ∈ Ws,a,b

∣∣∣∣∣ ∥f∥W̃s,a,b
:= sup

k∈Ns
0

|f̂(k)bµ̃(a;k)| <∞

}
.

Note that all Walsh series in Ws,a,b and W̃s,a,b converge. Indeed, for all X ∈
(−1, 1) and a positive integer l, we have

∑
k∈Ns

0

kj<bl ∀j

Xµ(a;k) =
∑
k∈Ns

0

kj<bl ∀j

s∏
j=1

l∏
i=1

X(i+aj)h(κj,i)

=
s∏

j=1

l∏
i=1

b−1∑
κj,i=0

X(i+aj)h(κj,i)

=

s∏
j=1

l∏
i=1

(1 + (b− 1)Xi+aj ),

and the rightmost product converges for l → ∞ if |X| < 1. This is also true
for the modified Dick weight with µ(a;k) and i + aj replaced by µ̃(a;k) and
max(i+ aj , 1). Hence we have∑

k∈Ns
0

Xµ(a;k) =

s∏
j=1

∞∏
i=1

(1 + (b− 1)Xi+aj ) for all |X| < 1, (6.4)
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∑
k∈Ns

0

X µ̃(a;k) =
s∏

j=1

∞∏
i=1

(1 + (b− 1)Xmax(i+aj ,1)) for all |X| < 1. (6.5)

Thus all functions in Ws,a,b and W̃s,a,b converge.
We now give embeddings from Fs,u to Ws,a,b. From Theorem 6.2.2 we have

|f̂(k)| ≤ ∥f∥Fs,u

s∏
j=1

D
min(1,v(kj))
b b−µ(− logb(m

−1
b uj);k)

≤ ∥f∥Fs,u

s∏
j=1

b−µ(− logb(Dbm
−1
b uj);k).

Thus we obtain continuous embeddings

Fs,u ⊂ Ws,u′′,b with ∥f∥Ws,u′′,b ≤
s∏

j=1

D
min(1,v(kj))
b ∥f∥Fs,u , (6.6)

Fs,u ⊂ Ws,u′,b with ∥f∥Ws,u′,b ≤ ∥f∥Fs,u , (6.7)

where u′ = (− logb(Dbm
−1
b uj))j≥1 and u′′ = (− logb(m

−1
b uj))j≥1. Note that all

functions in Fs,u are equal to their Walsh expansions, see [9, Section 3.3] or [14,
Theorem A.20]. Embedding (6.7) implies that good algorithms for Ws,u′,b are
also good for Fs,u. Thus we mainly consider Ws,a,b in the following sections.

The Walsh space W̃s,a,b is considered instead of Ws,a,b in Section 6.6, since
the modified Dick weight does not take negative values and thus easier to treat.
Actually, W̃s,a,b equals to Ws,a,b set-theoretically. Indeed, we have

µ(a;k) ≤ µ̃(a;k) ≤ µ(a;k) +

s∑
j=1

∑
i∈Nj

(1− (i+ aj))

for all k ∈ Ns
0, where Nj is defined as Nj := {i ∈ N | i+ aj ≤ 1}. Thus we have

Ws,a,b = W̃s,a,b set-theoretically and

∥f∥Ws,a,b
≤ ∥f∥W̃s,a,b

≤ b
∑s

j=1

∑
i∈Nj

(1−(i+aj))∥f∥Ws,a,b
. (6.8)

This inequality means that we can consider W̃s,a,b instead of Ws,a,b for accel-
erating convergence results. Furthermore, in Section 6.6.2, where we consider
tractability results, we shall assume some condition of weights which implies
that the constant factor of (6.8) is bounded independent of s.

6.3 Integration

Let H = Fs,u, Ws,a,b or W̃s,a,b. We consider multivariate integration

I(f) =

∫
[0,1)s

f(x) dx for all f ∈ H.
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Without loss of generality (see, e.g., [41, Section 4.2]), we can restrict ourselves
to approximating I(f) by linear algorithms An,s(f) of the form

An,s(f) =
n∑

i=1

wif(ti)

where wi ∈ R and ti ∈ [0, 1)s. For wi = n−1, we obtain quasi-Monte Carlo
(QMC) algorithms. They are stable and easy to implement and thus often used
in practical computations. The worst-case error of the algorithm An,s is defined
by

ewor(An,s,H) = sup
f∈H

∥f∥H≤1

|I(f)−An,s(f)|.

Let e(n, s,H) be the n-th minimal worst-case error,

e(n, s) = e(n, s,H) = inf
An,s : linear algorithm

ewor(An,s,H),

where the infimum is extended over all linear algorithms using n function values.
For n = 0, the zero algorithm is the best, and thus we have e(0, s,H) = 1. Hence
the integration problem is well normalized for all s.

We say that we achieve accelerating convergence for e(n, s) if there exist a
constant q ∈ (0, 1) and functions C,C1 : N → (0,∞) and p : N → (1,∞) such
that

e(n, s) ≤ C(s)q(logn/C1(s))
p(s)

for all n, s ∈ N. (6.9)

The right-hand side of (6.9) can be modified as C(s)n−(log q−1/C1(s)
p(s))(logn)p(s)−1

,
hence the exponent (logn)p(s)−1 of n increases as n increases (which is why we
call this accelerating convergence).

We say that we achieve uniform accelerating convergence (U-AC) for e(n, s)
if the function p(s) in (6.9) can be taken as a constant, i.e., p(s) = p > 0 for all
s.

For ε ∈ (0, 1), we define the information complexity of integration

n(ε, s) = n(ε, s,H) = min{n ∈ N | e(n, s,H) ≤ ε}

as the minimal number of function values needed to obtain an ε-approximation.
We note that if (6.9) holds, then for all s ∈ N and ε ∈ (0, 1) we have

n(ε, s) ≤

⌈
exp

(
C1(s)

(
logC(s) + log ε−1

log q−1

)1/p(s)

+

)⌉
, (6.10)

where (X)+ := max(X, 0) for X ∈ R. Furthermore, if (6.10) holds, then for all
s, n ∈ N we have

e(n+ 1, s) ≤ C(s)q(logn/C1(s))
p(s)

.

This means that (6.9) and (6.10) are essentially equivalent. Accelerating conver-
gence implies that asymptotically n(ε, s) increases of order exp(O((log ε−1)1/p(s)))
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with respect to ε. However, how does n(ε, s) depend on s? This, of course, de-
pends on C(s), C1(s) and p(s) and is the subject of tractability. Tractability
means that we control the behavior of C(s), C1(s) and p(s) and rule out the
cases for which n(ε, s) depends exponentially on s. In this chapter, we consider
following two notions of tractability.

We say that we have accelerating convergence with polynomial tractability
(AC-PT) if there exist real numbers w > 1, A, τ2 ≥ 0 and τ1 ∈ (0, 1) such that

n(ε, s) ≤ Aw(log ε−1)τ1 sτ2 for all s ∈ N, ε ∈ (0, 1). (6.11)

We say that we have accelerating convergence with strong tractability (AC-ST)
if we have AC-PT with τ2 = 0. We note that the notion of AC-PT and AC-
ST with τ1 = t (0 < t < 1) coincides with the notion of T-tractability with
T (x, y) = exp((log x)t)y, see [41, Section 8].

We give relations between these notions. First we note that the right-hand
side of (6.11) equals exp((logw)(log ε−1)τ1+log(Asτ2)). Applying the inequality
2τ1−1(Xτ1 +Y τ1) ≤ (X+Y )τ1 ≤ Xτ1 +Y τ1 for X,Y ≥ 0, we obtain that (6.11)
is equivalent to the fact that there exists B > 0 such that

n(ε, s) ≤ exp

(
B

(
log ε−1 +

(
(log(Asτ2))+

logw

)1/τ1
)τ1)

. (6.12)

Comparing (6.12) with (6.10), we obtain the following lemma.

Lemma 6.3.1. 1. Assume that (6.9) holds for C(s) = C ≥ 0, C1(s) = C1 >
0 and p(s) = p > 1. Then AC-ST holds with τ1 = 1/p.

2. Assume that AC-PT holds. Then U-AC holds with p = 1/τ1, logC(s) ∈
o(s) and C1(s) = 1.

6.4 Main results

In this section, we present the main results of this chapter. The following
theorem gives necessary and sufficient conditions on the weight sequence a for
the notions of U-AC, AC-PT and AC-ST for Ws,a,b.

Theorem 6.4.1. Consider integration defined over the Walsh spaceWs,a,b with
a weight sequence a satisfying (6.3). Then we have the following.

1. U-AC with p = 2 holds for all a considered, and U-AC with p > 2 does
not hold for any a considered.

2. AC-PT with τ1 ≤ 1/2 does not hold for any a considered.

3. Let 1/2 < t < 1 be a real number. The following are equivalent:

(a) The sequence a satisfies lim infj→∞ aj/j
(1−t)/(2t−1) > 0,

(b) we have AC-PT with τ1 = t,
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(c) we have AC-ST with τ1 = t.

This theorem and (6.7) imply the following U-AC and AC-ST results for
Fs,u.

Corollary 6.4.2. Consider integration defined over Fs,u with a weight sequence
u satisfying (6.2). Then we have the following.

1. U-AC with p = 2 holds for all u considered.

2. Let 1/2 < t < 1 be a real number. If the weight sequence u satisfies
lim infj→∞ log(u−1

j )/j(1−t)/(2t−1) > 0, then we have AC-ST with τ = t.

The proof of Theorem 6.4.1 will be done as follows. First, Item 3 (iii)
clearly implies Item 3 (ii). In Section 6.5, we prove necessary conditions for
Theorem 6.4.1. More precisely, we prove the second part of Item 1, Item 2, and
that Item 3 (ii) implies Item 3 (i) in Theorems 6.5.3, 6.5.4 and 6.5.5, respectively.
In section 6.6, we give sufficient conditions for Theorem 6.4.1 by proving the
existence of good QMC algorithms on digital nets. Corollaries 6.6.7 and 6.6.12
imply the first part of Item 1 and that Item 3 (i) implies Item 3 (iii), respectively.

6.5 Lower bounds

We prove the following lower bound on e(n, s,Ws,a,b) along [12, Theorem 1],
which treats the Korobov space.

Lemma 6.5.1. Let A be a finite subset of Ns
0. Then for all n < |A| we have

e(n, s,Ws,a,b) ≥
(

max
k,k∗∈A

bµ(a;k⊖k∗)

)−1

.

Proof. Take an arbitrary algorithm An,s(f) =
∑n

i=1 wif(ti). Define g1(x) =∑
k∈A ckwalk(x) for ck ∈ C such that g1(ti) = 0 for all i = 1, 2, . . . , n. Since we

have n homogeneous linear equations and |A| > n unknowns ck, there exists a
nonzero vector of such ck’s, and we can normalize the ck’s by assuming that

max
k∈A
|ck| = ck∗ = 1 for some k∗ ∈ A.

Define the function

g2(x) := Cg1(x)walk∗(x) = C
∑
k∈A

ckwalk⊖k∗(x),

where C = (maxk,k∗∈A bµ(a;k⊖k∗))−1, and g2(x) := g2(x). Then we have

∥g2∥Ws,a,b
= Cmax

k∈A
|ckbµ(a;k⊖k∗)|

≤ Cmax
k∈A

bµ(a;k⊖k∗) ≤ C max
k,k∗∈A

bµ(a;k⊖k∗) = 1,
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where ∥ · ∥Ws,a,b
is naturally extended to complex-valued Walsh series. Note

that ∥g2∥Ws,a,b
= ∥g2∥Ws,a,b

since µ(a;k ⊖ k∗) = µ(a;k∗ ⊖ k) for all k.

We now define a real-valued function f(x) := (g2(x) + g2(x))/2. The norm
of f is bounded by

∥f∥Ws,a,b
≤ (∥g2∥Ws,a,b

+ ∥g2∥Ws,a,b
)/2 = ∥g2∥Ws,a,b

≤ 1.

Note that An,s(f) = 0 since f(ti) = 0 for all i. Furthermore, I(f) = Cck∗ = C.
Hence,

e(n, s,Ws,a,b) ≥ |I(f)−An,s(f)| = I(f) = C.

Since this holds for all wi and ti, we conclude that e(n, s) ≥ C, as claimed.

For a non-negative integer d, we now define

As,d = {k ∈ Ns
0 | kj < bd for all j = 1, 2, . . . , s}.

The cardinality of the set |As,d| is clearly bsd. If aj ≥ 0 holds for all j, then(
max

k,k∗∈A
bµ(a;k⊖k∗)

)−1

=

(
max
k∈A

bµ(a;k)
)−1

= b−
∑s

j=1

∑d
i=1(i+aj) = b−

∑s
j=1(d(d+1)/2+ajd),

where we use k ⊖ k∗ ∈ As,d for all k,k∗ ∈ As,d for the first equality. This
implies the following corollary.

Corollary 6.5.2. Let d ∈ N and assume aj ≥ 0 for all j. Then we have

e(n, s,Ws,a,b) ≥ b−
∑s

j=1(d
2/2+(aj+1/2)d) for all n < bsd.

We prove necessary conditions for U-AC and AC-PT for Ws,a,b in the fol-
lowing three theorems. We can assume aj ≥ 0 for all j without loss of generality
and so we do.

Theorem 6.5.3. For any a considered, U-AC with p > 2 for Ws,a,b does not
hold.

Proof. We will argue by contradiction. Suppose that U-AC with p > 2 holds.
Then (6.9) holds with p(s) = p. Taking s = 1, from Corollary 6.5.2 we obtain

b−(d2/2+(a1+1/2)d) ≤ e(bd − 1, 1) ≤ e(bd−1, 1) ≤ C(1)q((log b)(d−1)/C1(1))
p

for all positive integer d. Taking the logarithms we have

(log b)(d2/2 + (a1 + 1/2)d) ≥ − logC(1) + log q−1(C1(1)
−1 log b)p(d− 1)p.

However, this inequality does not hold for sufficiently large positive integer d
since p > 2. This is a contradiction.
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Theorem 6.5.4. For any a considered, AC-PT with τ1 = 1/2 for Ws,a,b does
not hold.

Proof. We will argue by contradiction. Suppose that AC-PT with τ1 = 1/2
holds. Then it follows from Lemma 6.3.1 that (6.9) holds with p(s) = 2,
logC(s) ∈ o(s) and C1(s) = 1. Let s and d be positive integers. Then it follows
from Corollary 6.5.2 that

b−(sd2/2+d
∑s

j=1(aj+1/2)) ≤ e(bsd − 1, s) ≤ e(b(s−1)d, s) ≤ C(s)q((log b)(s−1)d)2 .

Taking the logarithms we have

− logC(s) + log q−1(log b)2(s− 1)2d2 ≤ (log b)

sd2/2 + d
s∑

j=1

(aj + 1/2)


≤ (log b)

(
sd2/2 + sd(as + 1/2)

)
.

Considering the order of d, for all positive integer s we have

(log b)s/2 ≥ log q−1(log b)2(s− 1)2.

However, this inequality does not hold for sufficiently large positive integer s.
This is a contradiction.

Theorem 6.5.5. Consider integration defined over Ws,a,b. Assume (6.3) and
that AC-PT with 1/2 < τ1 < 1 holds. Put r := (1−τ1)/(2τ1−1). Then we have

lim inf
j→∞

aj
jr

> 0.

Proof. Similar to the proof of Theorem 6.5.4, we have

(log q−1)((log b)(s− 1)d)1/τ1 + o(s) ≤ (log b)(sd2/2 + sd(as + 1/2))

for all positive integers d and s, since AC-PT with 1/2 < τ1 < 1 holds. Let N
be a positive integer and take d := ⌈sr/N⌉. Then we obtain

(log q−1)(log b)1/τ1−1N−1/τ1s2r+1+o(s2r+1) ≤ N−2s2r+1/2+N−1sr+1as+sas.

Now we will argue by contradiction. Suppose that lim infj→∞ aj/j
r = 0.

Then there exists arbitrary large s such that as ≤ sr/N holds. For such s, we
have

(log q−1)(log b)1/τ1−1N−1/τ1s2r+1 + o(s2r+1) ≤ 3N−2s2r+1/2,

and thus
(log q−1)(log b)1/τ1−1N−1/τ1 ≤ 3N−2/2.

We have thus proved that this inequality holds for any positive integer N , but
this contradicts the assumption τ1 > 1/2.
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6.6 Upper bounds

In this section, motivated by [35] and its generalization given in Chapter 3, we
prove the existence of good QMC algorithms which achieve U-AC and AC-ST
in Sections 6.6.1 and 6.6.2, respectively. Such QMC algorithms are given by
digital nets.

From now on, we consider integration defined over W̃s,a,b using QMC algo-
rithms over digital nets (in the sense of Definition 2.2.1). That is, for a digital
net P , we use P (f) := |P |−1

∑
x∈P f(x), where we identify the digital net P and

the QMC algorithm on P . Applying (2.1) to our setting, we have the following
bound on the integration error:∣∣∣∣∣|P |−1

∑
x∈P

f(x)− I(f)

∣∣∣∣∣ ≤ ∑
k∈P⊥\{0}

|f̂(k)| ≤ ∥f∥W̃s,a,b

∑
k∈P⊥\{0}

b−µ̃(a;k).

(6.13)

Remark 6.6.1. WAFOM is defined as a truncated version of the sum on the
rightmost side of (6.13) for a = 0 in Chapter 3 and for a = 1 in [58, 21]. Note
that µ̃(a;k) = µ(a;k) in these cases. Thus the sum (and the sum with µ̃(a;k)
replaced by µ(a;k)) can be regarded as a non-discretized version of WAFOM
generalized by weights a and we can say that Fs,u, Ws,a,b and W̃s,a,b are func-
tion spaces for which WAFOM works well.

We now define the minimal weight of P⊥ by

δP⊥ := inf
k∈P⊥\{0}

µ̃(a;k).

Then the rightmost side of (6.13) is bounded by ∥f∥W̃s,a,b

∑
k b

−µ̃(a;k), where

the sum is extended over all k ∈ Ns
0 with µ̃(a;k) ≥ δP⊥ . This argument implies

the following lemma.

Lemma 6.6.2. Let P be a digital net. Then we have

ewor(P, W̃s,a,b) ≤
∑
k∈Ns

0

µ̃(a;k)≥δ
P⊥

b−µ̃(a;k). (6.14)

The right-hand side of (6.14) will be evaluated in the following sections.
We now prove a lemma which gives the existence of digital nets whose min-

imal weight is large. First we define

vols,a(M) := |{k ∈ Ns
0 | µ̃(a;k) ≤M}|.

Lemma 6.6.3. Let M be a real number and pb the smallest prime factor of b.
Let d and l ≥ M − a1 − 1 be positive integers. If vols,a(M) ≤ pb

d holds, then
there exists a d-dimensional digital net P over Zb with precision l satisfying
δP⊥ ≥M .
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Proof. Let G1, . . . Gs ∈ Zl×d
b be matrices. Recall

k ∈ P⊥(G1, . . . , Gs) ⇐⇒ G⊤
1 trl(k1) + · · ·+G⊤

s trl(ks) = 0.

Thus it follows that

|{(G1, . . . , Gs) ∈ (Zl×d
b )s | k ∈ P⊥(G1, . . . , Gs)\{0}, kj < bl ∀j}| ≤ bsdl/pb

d,

where pb is the smallest prime factor of b. Hence we have

|{(G1, . . . , Gs) ∈ (Zl×d
b )s | min

k∈P⊥(G1,...,Gs)\{0}
kj<bl ∀j

µ̃(a;k) > M}|

= bsdl − |{(G1, . . . , Gs) ∈ (Zl×d
b )s | min

k∈P⊥(G1,...,Gs)\{0}
kj<bl ∀j

µ̃(a;k) ≤M}|

≥ bsdl −
∑

0̸=µ̃(a;k)≤M

|{(G1, . . . , Gs) ∈ (Zl×d
b )s | k ∈ P⊥(G1, . . . , Gs)\{0}, kj < bl ∀j}|

> bsdl − vols,a(M)bsdl/pb
d.

Thus, if vols,a(M) ≤ pb
d holds, there exists (G1, . . . , Gs) ∈ (Zl×d

b )s with

inf
k∈P⊥(G1,...,Gs)\{0}

kj<bl ∀j

µ̃(a;k) ≥M. (6.15)

Furthermore, from the the assumption l ≥M − a1 − 1 we have

min{µ̃(a;k) | k ∈ Ns
0, kj ≥ bl ∃j} ≥ max(1, a1 + l + 1) ≥M. (6.16)

Combining (6.15) and (6.16), we obtain the result.

6.6.1 Accelerating convergence results

In this subsection, we prove accelerating convergence for Ws,a,b and W̃s,a,b.

Taking account of (6.8), we have only to consider W̃s,a,b.
First we prove a bound on vols,a(M) along [33, Exercise 3(b), p.332] and

its modifications in [35] and Chapter 3, which treat the case of a = 0. Since
vols,a(M) ≤ 1 holds if M < 1, we assume that M ≥ 1. We have

vols,a(M) =
∑
k∈Ns

0

µ̃(a;k)≤M

1 ≤
∑
k∈Ns

0

µ̃(a;k)≤M

X µ̃(a;k)−M ≤
∑
k∈Ns

0

X µ̃(a;k)−M

for all X ∈ (0, 1), and the mostright hand side is equal to
∏s

j=1

∏∞
i=1(1 + (b−

1)Xmax(i+aj ,1))/XM from (6.4). By taking the logarithm of the both sides and
using the well-known inequality log(1 + x) ≤ x, for all X ∈ (0, 1) we have

log vols,a(M) ≤
s∑

j=1

∞∑
i=1

(b− 1)Xmax(i+aj ,1) +M logX−1. (6.17)

71



We proceed to bound
∑∞

i=1 X
max(i+aj ,1). If aj ≥ 0, it is equal to Xaj+1/(1−

X). Otherwise, we have

∞∑
i=1

Xmax(i+aj ,1) =
∑

i : i+aj≤1

X1 +
∑

i : i+aj>1

Xi+aj

≤
∑

i : i+aj≤1

1 +

∞∑
i′=1

Xi′

= nj +X/(1−X),

where nj := |Nj | = |{i ∈ N | i+ aj ≤ 1}|. Thus, in both cases, we obtain

∞∑
i=1

Xmax(i+aj ,1) ≤ nj +
X

1−X
min(Xaj , 1).

Applying this inequality to (6.17), we have

log vols,a(M) ≤ (b− 1)
s∑

j=1

(
nj +

X

1−X
min(Xaj , 1)

)
+M logX−1

≤ (b− 1)

s∑
j=1

(
nj + (logX−1)−1 min(Xaj , 1)

)
+M logX−1.

(6.18)

Putting X = 1/ exp(
√
(b− 1)s/M) and using min(Xaj , 1) ≤ 1, we obtain

log vols,a(M) ≤ Ns + 2
√
(b− 1)sM,

where we define Ns := (b− 1)
∑s

j=1 nj . We have thus proved the following.

Lemma 6.6.4. For all M ≥ 0 we have

vols,a(M) ≤ exp
(
Ns + 2

√
(b− 1)sM

)
.

We note that Lemma 6.6.4 and the fact that vols,a(M) ≤ 1 if M < 1 implies

vols,a(M) ≤ exp
((

Ns + 2
√

(b− 1)s
)√

M
)
. (6.19)

Now we give a bound on the right-hand side of (6.14). From Lemma 6.6.4
we have∑

k∈Ns
0

µ̃(a;k)≥M

b−µ̃(a;k) ≤
∞∑
i=0

∑
k∈Ns

0

M+i≤µ̃(a;k)<M+i+1

b−(M+i)

≤
∞∑
i=0

vols,a(M + i+ 1)b−(M+i)
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≤
∞∑
i=0

exp
(
Ns + 2

√
(b− 1)s(M + i+ 1)

)
b−(M+i) (6.20)

for all M ≥ 0. We can easily check
√
x ≤ x/(2

√
B) +

√
B/2 for all x,B ≥ 0.

Applying this inequality, the right-hand side of (6.20) is bounded by

∞∑
i=0

exp
(
Ns +

√
(b− 1)s/B(M + i+ 1) +

√
(b− 1)sB

)
b−(M+i)

= b exp
(
Ns +

√
(b− 1)sB

) ∞∑
i=0

exp
((√

(b− 1)s/B − log b
)
(M + i+ 1)

)
.

Taking B as
√

(b− 1)s/B = (log b)/2, we obtain a bound on the right-hand
side of (6.14) by ∑

k∈Ns
0

µ̃(a;k)≥M

b−µ̃(a;k) ≤ Cs exp(−(log b)M/2),

where the positive constant Cs is defined by

Cs = exp (Ns + (log b)/2 + 2(b− 1)s/ log b) (1− exp(− log b/2))−1.

Hence Lemma 6.6.2 implies the following lemma.

Lemma 6.6.5. Let P be a digital net. Then we have

ewor(P, W̃s,a,b) ≤ Cs exp(−δP⊥(log b)/2).

Put C ′
s := Ns + 2

√
(b− 1)s. It follows from (6.19) that the condition of

Lemma 6.6.3 is satisfied if exp(C ′
s

√
M) ≤ pdb , which is equivalent to M ≤

(d log pb/C
′
s)

2. Therefore the following bound on the worst-case error follows
from Lemmas 6.6.3 and 6.6.4.

Theorem 6.6.6. Let d be a positive integer. Then there exists a d-dimensional
digital net P over Zb with precision l with l ≥ (log pb/C

′
s)

2d2 − 1− a1 such that

ewor(P, W̃s,a,b) ≤ Cs exp

(
− (log pb)

2 log b

2C ′
s
2 d2

)
. (6.21)

In particular, e(bd, s) is bounded by the right-hand side of (6.21). Thus we
have the following convergence result.

Corollary 6.6.7. Spaces Ws,a,b and W̃s,a,b achieve U-AC with p = 2 for all a
considered.
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6.6.2 Tractability results

We have proved accelerating convergence for Ws,a,b and W̃s,a,b, but this con-
vergence heavily depends on s. In this subsection, we prove a tractability result
under the assumption of a sufficient condition of Theorem 6.4.1. That is, let
r > 0 and we assume that the sequence a satisfies lim infj→∞ aj/j

r > 0. This
implies that there exist a positive real number a and a non-negative integer A
such that

aj ≥ ajr for all j > A. (6.22)

Hence hereafter we assume (6.22). Under this assumption, Nj is empty for
sufficiently large j. Hence the constant factor of (6.8) is independent of s and
thus we have only to consider W̃s,a,b. We also note that (b − 1)

∑∞
j=1 nj is

finite and we denote it by N . The following arguments are parallel to those in
Section 6.6.1.

First we prove a bound on vols,a(M) under the assumption (6.22). We need
the following lemma to bound

∑s
j=1 X

aj .

Lemma 6.6.8. For all 0 < X < 1, we have

s∑
j=1

Xajr ≤ r−1Γ(1/r)(a logX−1)−1/r,

where Γ(z) :=
∫∞
0

tz−1 exp(−t) dt is the Gamma function.

Proof. Since Xaxr

is a monotonically decreasing function of x, we have

s∑
j=1

Xajr ≤
∫ s

0

Xaxr

dx ≤
∫ ∞

0

exp(−axr logX−1) dx.

Substituting axr logX−1 = z, which implies dx = r−1(a logX−1)−1/rz(1−r)/r dz,
we have∫ ∞

0

exp(−axr logX−1) dx = r−1(a logX−1)−1/r

∫ ∞

0

z(1−r)/r exp(−z) dz

= r−1Γ(1/r)(a logX−1)−1/r,

which proves the lemma.

Combining (6.18) and Lemma 6.6.8, for all X ∈ (0, 1) we have

log vols,a(M) ≤ (b− 1)

 A∑
j=1

(
nj +

1

logX−1

)
+

s∑
j=A+1

Xarj

logX−1

+M logX−1

≤ (b− 1)

(
A

logX−1
+

r−1Γ(1/r)a−1/r

(logX−1)1+1/r

)
+N +M logX−1.
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Putting X = 1/ exp(M−r/(2r+1)) and using M ≥ 1, we obtain

log vols,a(M) ≤ c1M
(r+1)/(2r+1),

where c1 = (b − 1)(A + r−1Γ(1/r)a−1/r) + N + 1. We have thus proved the
following lemma.

Lemma 6.6.9. Assume (6.22). Then for all M ≥ 0 we have

vols,a(M) ≤ exp
(
c1M

(r+1)/(2r+1)
)
.

Note that the bound on vols,a(M) from this lemma is weaker than Lemma 6.6.4
with respect to M but independent of s instead.

In the following, we bound the the right-hand side of (6.14) along Sec-
tion 6.6.1. For M ≥ 0 we have

∑
k∈Ns

0

µ(a;k)≥M

b−µ(a;k) ≤
∞∑
i=0

exp(c1(M + i+ 1)(r+1)/(2r+1))b−(M+i). (6.23)

We can easily check an inequality

x(r+1)/(2r+1) ≤ r + 1

2r + 1
B−rx+

r

2r + 1
Br+1 for all x,B ≥ 0.

Applying this inequality, the right-hand side of (6.23) is bounded by

∞∑
i=0

exp

(
c1

r + 1

2r + 1
B−r(M + i+ 1) + c1

r

2r + 1
Br+1

)
b−(M+i)

= b exp

(
c1

r

2r + 1
Br+1

) ∞∑
i=0

exp

((
c1

r + 1

2r + 1
B−r − log b

)
(M + i+ 1)

)
.

Now we take B as

c1
r + 1

2r + 1
B−r =

log b

2
.

Thus we have a bound on the right-hand side of (6.14) as∑
k∈Ns

0

µ(a;k)≥M

b−µ(a;k) ≤ c2 exp(−M(log b)/2),

where the positive constant c2 is defined as

c2 = exp

(
log b

2
+

c1r

2r + 1

(
2c1(r + 1)

(2r + 1) log b

)(r+1)/r
)

1

1− exp(−(log b)/2)
.

Hence Lemma 6.6.2 implies the following lemma.
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Lemma 6.6.10. Assume (6.22). If P is a digital net, we have

ewor(P, W̃s,a,b) ≤ c2 exp(−δP⊥(log b)/2).

Now we prove the existence of good digital nets. By Lemma 6.6.9, the
condition of Lemma 6.6.3 is satisfied if exp(c1M

(r+1)/(2r+1)) ≤ pb
d, which is

equivalent to M ≤ (d log pb/c1)
(2r+1)/(r+1). Therefore we have the following

bound on the worst-case error independent of s.

Theorem 6.6.11. Let d be a positive integer and put c3 = (log pb/c1)
(2r+1)/(r+1).

Assume (6.22). Then there exists a d-dimensional digital net P over Zb with
precision l with l ≥ c3d

(2r+1)/(r+1) − 1− a1 such that

ewor(P, W̃s,a,b) ≤ c2 exp

(
−c3 log b

2
d(2r+1)/(r+1)

)
. (6.24)

In particular, e(bd, s) is bounded by the right-hand side of (6.24). Thus we
have the following tractability result.

Corollary 6.6.12. Assume (6.22). Then AC-ST with τ1 = (r + 1)/(2r + 1)
holds for Ws,a,b and W̃s,a,b.
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