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Preface

The theory of nonlinear partial differential equations has been developed as a
powerful mathematical tool to understand nonlinear phenomena in various fields
of science. In recent years problems in the setting of non-Euclidean metrics at-
tracts a great deal of attention. For example, analysis on a complex system is
expected to have important applications to study propagation of chemicals in
human bodies. Also, a crystalline curvature flow is proposed as a mathemat-
ical model of crystal growth that involves anisotropic curvatures and surface
facets. These examples are known to have not only non-Euclidean structures
but also singularities in metrics. Several equations with singularities are posed
to describe these phenomena. In fact, there are already several known results on
Hamilton-Jacobi equations on spaces without differential structures such as net-
works and fractals. On the other hand, to understand the crystalline curvature
flow, it is known that we need to solve a very singular diffusion equation whose
diffusion coefficient contains a non-local term like the Dirac delta function.

We now point out that the aforementioned works only establish the existence
and uniqueness of solutions via the theory of viscosity solutions, but few of
them are concerned with stability of the solutions. Note that the stability of
solutions is a fundamental property of nonlinear equations as well as comparison
principles. Roughly speaking, it claims that a uniform limit of a sequence of
solutions to approximate equations is a solution of the original equation. It
is worth remarking that stability results play an important role in the study
of certain asymptotic problems including, as typical examples, homogenization
and large time behavior of solutions.

This thesis gathers our new results on the stability and its applications to
viscosity solutions of Hamilton-Jacobi equations on an abstract metric space and
very singular diffusion equations. We also consider some other related topics
such as a principle of Perron method to construct solutions and approximation
of a solution that can be viewed as a dual problem of the stability.

This thesis consists of five main chapters. The first is an overview and the
other four are devoted to details on each topic.

During my Ph.D. program I have met a number of researchers who support
my mathematical work. My first and greatest gratitude goes to my supervisor,
Professor Yoshikazu Giga, who guides me to the field of nonlinear partial dif-
ferential equations. His erudition and insight about mathematics always inspire
me very much. Without his consistent advice and encouragement, this thesis
could have never been completed. I also send my gratitude to my colleagues
Tokinaga Namba and Tatsuya Miura, with whom I have often discussed the
theory of nonlinear partial differential equations and talked abound research
problems. In addition, it is my great honer visiting Professor Juan Manfredi,
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Professor Piotr Rybka and Professor Antonio Siconolfi in short stays, where
some of my works were completed. They all spared time hearing my talks and
I learned a lot through the discussion with them. I am grateful to Professor
Nao Hamamuki, Professor Hiroyoshi Mitake, Professor Norbert Požár, Profes-
sor Qing Liu and Professor Hung Tran. These young diligent researchers show
their interests in my work and give me a lot of advice to improve my papers. At
last, I thank Professor Hitoshi Ishii, Professor Mi-Ho Giga, Professor Jin Feng,
Professor Katsuyuki Ishii, Professor Fabio Camilli, Professor Italo Capuzzo Dol-
cetta, Professor Cyril Imbert, Professor Emmanuelfor Nick Barron, Professor
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on my work.
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Chapter 1

Overview

1.1 Nonlinear partial differential equations un-

der non-Euclidean metrics

Hamilton-Jacobi equations are basic subjects in the theory of nonlinear partial
differential equations, especially in viscosity solutions theory. Let us introduce
two different forms of Hamilton-Jacobi equations. One is the linear growth
Hamilton-Jacobi equation

∂tu+ c(x)|Du| = 0 in (0,∞)×RN , (1.1.1)

where c is a positive function on RN . The other one is the quadratic Hamilton-
Jacobi equation

∂tu+
1

2
|Du|2 = V (x) in (0,∞)×RN , (1.1.2)

where V is a real-valued function on RN . The first equation (1.1.1) appears
in surface evolution; we will explain it later. On the other hand, the second
equation (1.1.2) is a typical partial differential equation describing a classical
mechanics with conservative force; see [3]. We remark that both equations can
be written in the common form

∂tu+H(x,Du) = 0 in (0,∞)×RN . (1.1.3)

Here, H is a real-valued function on RN ×RN and it is called a Hamiltonian;
in (1.1.1), H(x, p) = c(x)|p| while H(x, p) = |p|2/2− V (x) in (1.1.2).

A notion of viscosity solutions was introduced by Crandall and Lions in
[20] and [7] as weak solutions of the Hamilton-Jacobi equations. The theory of
viscosity solution was then extended to second order differential equations; see
[18] and [6].

Now, let us consider an equation of the form

∂tu− |Du| div Du

|Du| = 0 in (0,∞)×RN , (1.1.4)

called a (level set) mean curvature flow equation. We remark that this equation
has a singularity at Du = 0 and thus the general results in [6] cannot be applied
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directly. Such equations were first studied independently by Evans-Spruck [8]
and by Chen-Giga-Goto [4]. They established a comparison principle by in-
troducing new notions of solutions so that singularity can be handled. Their
notions in [8] and [4] are slightly different but it turns out they are equivalent
[11].

We remark that the Hamilton-Jacobi equation (1.1.1) and the mean cur-
vature flow equation (1.1.4) share a geometric background concerning surface
evolution [11]. Imagine a moving curve Γt by the law V = aκ+ c on Γt, where
V denotes a normal velocity, κ is the mean curvature of Γt and a ≥ 0 is a
given constant. When the curve is given as a level set of a function u, i.e.
Γt = {x ∈ RN | u(t, x) = 0}, the function u satisfies the mean curvature flow
equation (1.1.4) if a = 1 and the Hamilton-Jacobi equation (1.1.1) if a = 0.

In these years nonlinear equations under a singular metrics are proposed. Let
us explain two directions which this thesis discusses. One is Hamilton-Jacobi
equations on generalized spaces such as topological networks and post-critically
finite fractals. It is often presented as a Hamilton-Jacobi equation on a metric
space (X, d) and the viscosity-like solution is called a metric viscosity solution.
Consider the equation

∂tu+H(x, |Du|) = 0 in (0,∞)×X . (1.1.5)

Here, H is a continuous convex Hamiltonian defined on X ×R+. A Hamilton-
Jacobi equation on a general metric space was first studied in [17] and it inspired
the further works [22], [2] and [10].

The other direction is crystalline curvature flow

V = κγ + c on Γt, (1.1.6)

where κγ is an anisotropic curvature related to the norm γ with singularity,
say γ is the L∞ norm. This kind of flow was proposed by Angenent, Gurtin
and Taylor; see, e.g., [1], [25] and [26]. The corresponding level-set equation of
planer crystalline curvature flow becomes

∂tu− γ(Du)[div∇γ(Du)− c] = 0 (1.1.7)

and moreover when the curve Γt is given by the graph of a function h the
equation will be

∂th− (1 + |hx|)[2δ(hx)hxx + c] = 0. (1.1.8)

Here, δ is the Dirac delta function and the equations (1.1.7) and (1.1.8) are
classified into very singular diffusion equations. The theory of viscosity solutions
of such equations is introduced in the series of papers by Giga-Giga [12], [13],
[14] and [16].

1.2 Abstract of each chapter

Chapter 2 is an introduction to a metric viscosity solution: The goal is to con-
struct a proper notion of a solution to the Hamilton-Jacobi equation of the form
(1.1.5) on a complete metric space (X, d) in spirit of Giga-Hamamuki-Nakayasu
[17], which studies an Eikonal equation. Although the gradient Du of the un-
known function u is not well-defined in spaces without tangent vector structure
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such as networks and fractals, the quantity corresponding to the modulus of
gradient |Du| can be characterized by a maximum of directional derivatives

|Du|(x, t) := sup {|ws(0)| | w(s, t) = u(ξ(s), t), ξ ∈ Lip(R), |ξ′| ≤ 1, ξ(0) = x} .

This method is available at least to subsolutions and by defining the notion of
supersolution based on optimality we establish a unique existence theorem for
the Cauchy problem of the equation (1.1.5). In addition we will investigate the
relationship between the metric viscosity solution of this chapter and the clas-
sical viscosity solution introduced by Crandall-Lions [7] when X is a Euclidean
space. This chapter is based on [22].

In Chapter 3 we study the stability of a metric viscosity solution and its
application to the Hamilton-Jacobi equation (1.1.5). We consider the notion of
metric viscosity solutions by Gangbo-Swiech [9] and [10], which is based on the
characterization of the modulus of gradient |Du| by the local slope

|∇u|(t, x) := lim sup
y→x

|u(t, y)− u(t, x)|
d(y, x)

.

In Section 3.3 we will show that the stability of the Gangbo-Swiech solutions
holds under an assumption on maxima of the sequence of solutions. The ad-
ditional condition always holds when the space X is locally compact and con-
versely the locally compactness is essential. In Section 3.4 we study the large
time behavior of solutions to the convex coercive Hamilton-Jacobi equations
following the argument in Namah-Roquejoffre [24] as an application of the sta-
bility. Let u = u(t, x) be a solution of the equation (1.1.5) on a compact metric
space including Sierpinski gasket. We will show that the function u(t, x) + ct
converges to a function v = v(x) uniformly as t → ∞ with c := supxH(x, 0)
and that v is a solution of the limit stationary equation

H(x, |Dv|) = c in X .

In Chapter 4 we consider the (additive) eigenvalue problem of the form

H(x,Du) = c in TN

for a Hamiltonian H : TN ×RN → R. This kind of eigenvalue problem appears
in studies on the homogenization problem and on the large time behavior of
solutions and it is important to measure the eigenvalue from application point
of view. It is well-known by Contreras-Iturriaga-Paternain-Paternain [5] that if
the Hamiltonian is convex, then eigenvalues have the inf-sup type representation
formulas

c = inf
u∈C1(TN )

sup
∇u

H = inf
u∈Lip(TN )

sup
∇u

H.

Here, ∇u denotes the graph of differential of u in the classical sense. It is
known that the problem results in approximation of a Lipschitz continuous
viscosity solution u with smooth functions un and Friedrichs mollifier justify it
in the convex Hamiltonian case. In this work we will show the same result for
quasiconvex Hamiltonians by replacing the Jensen’s inequality in the proof of
previous work with a fundamental inequality for quasiconvex functions. We will
also give another new proof in this chapter. As an analogue of the fact that the
stability of viscosity solution can be transformed to the problem on the graph of
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differentials, we establish the approximation of a viscosity solution on the level
of the graph, which is a stronger result. Namely, one is able to show that if a
sequence of (xn, pn) ∈ ∇un converges, then the limit (x, p) is in the graph of
the Clarke’s generalized gradients ∂u. This chapter is based on [23].

In Chapter 5 we study a one-dimensional very singular diffusion equation of
the form

ut = a(ux)[(W
′(ux))x + σ(t, x)], (1.2.1)

where W is a convex function not necessarily differentiable at some point on R

and σ is a sufficiently smooth function. Note that this equation can be derived
when the planer curve moved by crystalline curvature flow and that it requires
a technique to study it since the equation contains a non-local quantity δ(ux)
caused by the lack of the smoothness of W . The idea by Giga-Giga [12] to solve
it is to consider the energy functional

Φ[f ] =

∫

(W (fx)− σf)dx

and to view the equation (1.2.1) as

ut + F (t, ux,−∇Φ[u]) = 0

with some continuous function F . The authors of [12] introduced a generalized
solution of this equation by combining the theories of viscosity solutions and
subdifferentials. The case when σ does not depend on the spatial variable x
was studied in [12] and [13] while a comparison principle was established in [16]
when σ depends on x. In this work we study the stability analysis of a solution
of the very singular diffusion equation (1.2.1) with spatially inhomogeneous σ.
We point out that the difficulty of this problem lies on the restriction of test
functions of the viscosity solutions. In other words, the test functions must
be in the domain of the subdifferential of Φ and it must be flat at points on
which the slope is singular. Moreover, in the spatially inhomogeneous case,
the very singular diffusion term cannot be calculated explicitly. In this work we
investigate the corresponding obstacle problem and find an effective region which
determines the quantity of the non-local curvature. As a result we construct by
the Perron method a solution of the Cauchy problem with a periodic boundary
condition. This chapter is based on [15].
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Chapter 2

Metric viscosity solutions

for Hamilton-Jacobi

equations

2.1 Introduction

This chapter studies Hamilton-Jacobi equations of evolution type defined in
a general metric space (X , d). One of the most simple problem is the fully
nonlinear equation of the form

∂tu+ |Du| = f(x) in X × (0, T ) (2.1.1)

for a given bounded continuous function f and an unknown function u = u(x, t)
on X × (0, T ) with T > 0; let ∂tu denote the derivative with respect to the
time variable t and |Du| formally denote the modulus of gradient in the space
variable x with R+ = [0,∞) values in the sense of [13]. That is,

|Du|(x, t) := sup
ξ∈Lip1

x(X )

{|ws(0)| | w(s, t) = u(ξ(s), t)} , (2.1.2)

where Lip1
x(X ) is the set of all absolutely continuous curves ξ : R → X satisfying

|ξ′|(t) := lim
s→t

d(ξ(s), ξ(t))

|s− t| ≤ 1 a.e. t

and ξ(0) = x. Note that the metric derivative |ξ′| is defined for an absolutely
continuous curve ξ in a metric space; see [2, Chapter 1]. However, since a metric
space has no tangent space structure in general, the quantity corresponding to
the derivative ξ′ and the gradient Du is not well-defined.

Hamilton-Jacobi equations are fundamental in various fields of mathematics
and physics and there are many works studying the equation including (2.1.1).
We point out that the theory of viscosity solutions is successful for Hamilton-
Jacobi equations defined on a Euclidean space, which is introduced by Crandall
and Lions [17, 4]. This theory is extended to Banach spaces [5, 6, 7, 8]; this
extension is expected to be useful for discussing an optimal control problem
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with respect to partial differential equations; we refer the reader to [9] and
itself studies a resolvent problem of Hamilton-Jacobi equations in generalized
spaces. Hamilton-Jacobi equations also appear in the optimal transport theory
[19, Chapter 7, 22, 30] and the equation in Wasserstein spaces is studied by
Gangbo, Nguyen and Tudorascu [10]. We also note that study on Hamilton-
Jacobi equations on a space with junctions such as a network helps considering
the LWR model of traffic flows; see [16] and [18]. Such a problem on a space
with junctions is studied in [15, 14].

In order to handle Hamilton-Jacobi equations in such generalized spaces,
Giga, Hamamuki and Nakayasu introduced a notion of a viscosity solution of
Eikonal equation in [13]. We study time evolution equations in the present work.

We establish a unique existence theorem for an initial value problem of the
Hamilton-Jacobi equation. Consider the value function of an optimal control
problem

U(x, t) = inf
ξ∈Lip1

x(X )

{
∫ t

0

f(ξ(r))dr + u0(ξ(t))

}

,

where u0 is a bounded uniformly continuous function. Then, this value function
U formally solves the Hamilton-Jacobi equation (2.1.1) with an initial condition
U(x, 0) = u0(x). It is remarkable that the value function U satisfies

U(x, t) = inf
ξ∈Lip1

x(X )

{

∫ h

0

f(ξ(r))dr + U(ξ(h), t− h)

}

,

which is called a dynamic programming principle; see, e.g. [3].
We define a notion of a subsolution and a supersolution based on the dynamic

programming principle: A function u is a subsolution if w(h) := u(ξ(h), t − h)
satisfies

−w′(h) ≤ f(ξ(h))

in the viscosity sense for all curves ξ called admissible while u is a supersolution
if there exists an admissible curve ξ such that

−w′(h) ≥ f(ξ(h))

holds in the viscosity sense with some function w approximating h 7→ u(ξ(h), t−
h); see Definition 2.2.7. Then, we have the unique existence theorem easily.
However, it is not clear how this definition relates to the original equation (2.1.1).
We show that our subsolution is equivalent to a subsolution of (2.1.1) in the
sense of [13]. However, it seems to be difficult to show the similar statement for
a supersolution.

We point out that closely related topics have studied by Ambrosio and Feng
[1] and of Gangbo and Swiech [11, 12]. They study the Hamilton-Jacobi equa-
tions including (2.1.1) in a complete geodesic metric space. However, our theory
is applicable to any spaces with metric structure.

This chapter is organized as follows. In Section 2.2 we prepare to handle
generalized Hamilton-Jacobi equations in a metric space and define a class of
admissible curves and a sub- and supersolution based on the dynamic program-
ming. In Section 2.3 we prove some equivalent conditions for a subsolution and
a supersolution. The unique existence theorem will be shown in Section 2.4.
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2.2 Definition of solutions

Consider the Hamilton-Jacobi equation of the form

∂tu+H(x, |Du|) = 0 in X × (0, T ) (2.2.1)

with a function H = H(x, p) : X ×R+ → R satisfying:

(A1) H = H(x, p) is a continuous function in X ×R+.

(A2) H is convex and nondecreasing with respect to the variable p for each
x ∈ X .

Define the function

L(x, v) = sup
p∈R+

(pv −H(x, p)) ∈ R ∪ {∞} for (x, v) ∈ X ×R+.

We then see that

Proposition 2.2.1. Assume (A1) and (A2). Then, the function L = L(x, v) is
lower semicontinuous in X ×R+ and it is also convex and nondecreasing with
respect to the variable v for each x ∈ X . In addition, the equations

H(x, p) = sup
v∈R+

(pv − L(x, v)) for all (x, p) ∈ X ×R+, (2.2.2)

H(x, |p|) = sup
v∈R

(pv − L(x, |v|)) for all (x, p) ∈ X ×R (2.2.3)

hold.

Proof. Since (A1) shows that (x, v) 7→ pv −H(x, p) is continuous for each p ∈
R+, we see that the supremum L is lower semicontinuous. We also see that
v 7→ L(x, v) is convex and nondecreasing since v 7→ pv − H(x, p) is affine and
nondecreasing for each (x, p) ∈ X ×R+.

Show the equation (2.2.3). First we easily see that

L(x, |v|) = sup
p∈R

(pv −H(x, |p|))

and hence
H(x, |p|) ≥ pv − L(x, |v|) (2.2.4)

for all x ∈ X , p, v ∈ R. Therefore, it suffices to show that the equality of (2.2.4)
holds for some v ∈ R. Note that p 7→ H(x, |p|) is convex in R by (A2). Thus,
for each p ∈ R there exists v ∈ R such that

H(x, |q|) ≥ v(q − p) +H(x, |p|) for all q ∈ R,

which implies

pv −H(x, |p|) ≥ sup
q∈R

(vq −H(x, |q|)) = L(x, |v|).

We hence have (2.2.3). The equation (2.2.2) follows from (2.2.3).

We will also assume:
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(A3) cH(p) := supx∈X H(x, p) <∞ for each p ∈ R+.

(A4) infx∈X H(x, 0) > −∞ and

lim inf
p→∞

inf
x∈X

H(x, p)

p
> 0.

(A5) L is continuous on DL := {(x, v) ∈ X × R+ | L(x, v) < ∞}. A map
x 7→ VL(x) := sup{v ∈ R+ | (x, v) ∈ DL} is lower semicontinuous on X .

Remark 2.2.2. The condition (A3) implies that

(A3)’ L(x, v) ≥ −cH(0) > −∞ for all (x, v) ∈ X×R+ and ℓ(v) := infx∈X L(x, v)
satisfies

lim inf
v→∞

ℓ(v)

v
= ∞. (2.2.5)

Indeed, by definition we have

L(x, v) ≥ pv −H(x, p) ≥ pv − cH(p) for all p ∈ R+,

which shows L(x, v) ≥ −cH(0) and lim infv→∞ ℓ(v)/v ≥ p.
We also see that the condition (A4) implies that

(A4)’ there exists VL > 0 such that supx∈X L(x, VL) <∞
if (A2) holds. Indeed, note that there exist V > 0 and P ∈ R+ such that
H(x, p) ≥ pV for all (x, p) ∈ X × [P,∞) and that H(x, p) ≥ H(x, 0) ≥
infx∈X H(x, 0) =: C. Hence, we see that

L(x, v) = max{sup
p≤P

(pv −H(x, p)), sup
p≥P

(pv −H(x, p))}

≤ max{(Pv − C), sup
p≤P

p(v − V )},

and so L(x, V ) ≤ PV − C <∞.
We point out that the assumptions (A3) and (A4) can be replaced by (A3)’

and (A4)’ since we need only (A3)’ and (A4)’ on the main part of this chapter.

Example 2.2.3. Consider the Hamiltonian of the form

H(x, p) = σ(x)h(p) − f(x),

where h is a continuous, convex, nondecreasing, nonconstant function on R+;
σ and f are bounded continuous functions on X with infx σ > 0. Then the
conditions (A1)–(A5) are fulfilled. The Lagrangian L becomes

L(x, v) = σ(x)l

(

v

σ(x)

)

+ f(x)

with l(v) = supp∈R+
(pv − h(p)). Typical examples of such h and l include

h(p) =
1

2
p2, l(v) =

1

2
v2,

and

h(p) = p, l(v) =

{

0 if v ≤ 1,

∞ if v > 1.
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We introduce a class of trajectories.

Definition 2.2.4. Let AC (I,X ) denote the set of all absolutely continuous
curves in X defined on an interval I of R.

A curve ξ ∈ AC ([0,∞),X ) is called admissible if there are finitely many 0 ≤
r1 ≤ · · · ≤ rn <∞ such that |ξ′| = vI a.e. on I and r 7→ L(ξ(r), vI ) is continuous
on I with some constant vI ∈ R+ for each I = [0, r1], [r1, r2], · · · , [rn,∞) .

Let A(X ) be the set of all admissible curves and let Ax(X ) = {ξ ∈ A(X ) |
ξ(0) = x} for x ∈ X .

Remark 2.2.5. 1. Consider a constant curve ξ(r) = x for a fixed point x ∈ X .
Since |ξ′| = 0, we see that Ax(X ) is nonempty for all x ∈ X .

2. For each ξ ∈ AC (R,X ) with ξ(0) = x take ξ̂ ∈ AC ((L−, L+),X ) in the

next proposition. Set ξ̃(r) = ξ̂(VLr) for 0 ≤ r ≤ L+/VL and ξ̃(r) = ξ̂(L+)
for r ≥ L+/VL with VL > 0 in (A4)’. Then, |ξ̃′| = VL a.e. on [0, L+/VL)
and |ξ̃′| = VL on [L+/VL,∞). Since L(·, VL) and L(·, 0) are continuous by
(A4)’ and (A5), we see that ξ̃ ∈ Ax(X ).

Proposition 2.2.6. For ξ ∈ AC (R,X ) set

τξ(h) =

∫ h

0

|ξ′|dr for h ∈ R. (2.2.6)

Then, there exists a curve ξ̂ ∈ AC ((L−, L+),X ) such that

ξ = ξ̂ ◦ τξ, |ξ̂′| = 1 a.e. in (L−, L+) (2.2.7)

with L± := limh→±∞ τξ(h).

This is a well-known fact on the absolutely continuous curves. We refer the
reader to [2, Lemma 1.1.4] for its proof.

In order to define a notion of a solution, we recall a notion of a superdiffer-
ential and a subdifferential in the viscosity sense. For a continuous function w
defined on an open set W in RN define the superdifferential D+w(x) and the
subdifferential D−w(x) at x ∈W as below:

D+w(x) := {Dϕ(x) | ϕ is a C 1 supertangent of w at x},
D−w(x) := {Dϕ(x) | ϕ is a C 1 subtangent of w at x},

where we say that ϕ is a C 1 supertangent (resp. subtangent) of w at x if there
exists a neighborhood U ⊂W of x such that ϕ ∈ C 1(U) and

max
U

(w − ϕ) = (w − ϕ)(x). (resp. min
U

(w − ϕ) = (w − ϕ)(x).)

As an analogue we define a suitable set of a superdifferential and a subdifferential
for a piecewise continuous function w defined on an interval I in R at h ∈ I:
Set

D+,rw(h) := {ϕ′(h+ 0) | ϕ is a piecewise C 1 right supertangent of w at h},
D−,rw(h) := {ϕ′(h+ 0) | ϕ is a piecewise C 1 right subtangent of w at h},
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where we say that ϕ is a piecewise C 1 right supertangent (resp. subtangent) of
w at h if there exists r > 0 such that ϕ is piecewise C 1 on [h, h+ r) and

max
[h,h+r)

(w − ϕ) = (w − ϕ)(h). (resp. min
[h,h+r)

(w − ϕ) = (w − ϕ)(h).)

We define a notion of a subsolution and a supersolution of the equation
(2.2.1). Let Q := X × (0, T ).

Definition 2.2.7. Let u be an arcwise continuous function in Q; for every
ξ ∈ AC (R,X ) the function (s, t) 7→ u(ξ(s), t) is continuous in R× (0, T ).

We call u a subsolution of (2.2.1) if for each (x, t) ∈ Q and every ξ ∈ Ax(X )
the inequality

−p ≤ L(ξ(h), |ξ′|(h+ 0)) (2.2.8)

holds with w(s, t) := u(ξ(s), t) for all p ∈ D+,rw(h) and all h ∈ [0, t).
We call u a supersolution of (2.2.1) if for each (x, t) ∈ Q and ε > 0 there

exist ξ ∈ Ax(X ) and a continuous function w such that

w(0) = u(x, t), w(h) ≥ u(ξ(h), t− h)− ε (2.2.9)

and the inequality
−p ≥ L(ξ(h), |ξ′|(h+ 0)) (2.2.10)

holds for all p ∈ D−,rw(h) and all h ∈ [0, t).

Remark 2.2.8. The definition of admissible curves ξ nearly means that |ξ′| is
piecewise constant and h 7→ L(ξ(r), |ξ′|(r)) is piecewise continuous. This nota-
tion is useful in combining two curves; if ξ ∈ Ax(X ) and ξ̄ ∈ Aξ(h)(X ) with

h ∈ [0,∞), then the curve ξ̃ defined by ξ̃(r) = ξ(r) for 0 ≤ r ≤ h and
ξ̃(r) = ξ̄(r−h) for r ≥ h belongs toAx(X ). Reflecting these piecewise conditions
we need test all piecewise C 1 functions in Definition 2.2.7.

2.3 Remarks on the solution

The definition of a subsolution and a supersolution is based on a sub- and
superoptimality principle. For simplicity write

L[ξ](r) := L(ξ(r), |ξ′|(r)).

The following propositions are valid:

Proposition 2.3.1. For an arcwise continuous function u on Q the following
conditions are equivalent:

(i) u is a subsolution of (2.2.1).

(ii) u satisfies a suboptimality principle: For each (x, t) ∈ Q and each ξ ∈
Ax(X ) the inequality

u(x, t) ≤
∫ h

0

L[ξ]dr + u(ξ(h), t− h) for all h ∈ [0, t) (2.3.1)

holds.
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Proposition 2.3.2. For an arcwise continuous function u on Q the following
conditions are equivalent:

(i) u is a supersolution of (2.2.1).

(ii) u satisfies a superoptimality principle: For each (x, t) ∈ Q and ε > 0 there
exists ξ ∈ Ax(X ) such that the inequality

u(x, t) ≥
∫ h

0

L[ξ]dr + u(ξ(h), t− h)− ε for all h ∈ [0, t) (2.3.2)

holds.

Proof of Proposition 2.3.1. First show (ii) ⇒ (i). Fix (x, t) ∈ Q, ξ ∈ Ax(X )
and a piecewise C 1 right subtangent of w(h) := u(ξ(h), t−h) at h ∈ [0, t). Note
that by considering ξ̃(r) = ξ(r + h) in the suboptimality we have

w(h) = u(ξ(h), t− h) ≤
∫ θ

0

L[ξ̃]dr + u(ξ̃(θ), t − h− θ)

=

∫ h+θ

h

L[ξ]dr + w(h+ θ)

for all θ ∈ [0, t− h). We hence obtain

ϕ(h)− ϕ(h+ θ) ≤ w(h)− w(h+ θ) ≤
∫ h+θ

h

L[ξ]dr,

which implies (2.2.8) with p = ϕ′(h + 0) since L[ξ] is piecewise continuous.
Therefore, u is a subsolution.

Next show (i) ⇒ (ii). Fix (x, t) ∈ Q and ξ ∈ Ax(X ), and let w(h) :=

u(ξ(h), t−h). Note that
∫ h

0 L[ξ]dr is piecewise C
1 on [0, t) since L[ξ] is piecewise

continuous. Therefore,

ℓ(h) := w(h) +

∫ h

0

L[ξ]dr

satisfies D+,rℓ(h) ⊂ [0,∞) for all h ∈ [0, t) since (2.2.8) holds for all

p ∈ D+,rw(h) = D+,rℓ(h)− L(ξ(h), |ξ′|(h+ 0)).

We now claim that ℓ(0) ≤ ℓ(h) for each h ∈ [0, t). Suppose, on the contrary,
that ℓ(0) > ℓ(h) at some h ∈ (0, t). Since ℓ(0) > ℓ(0)− c > ℓ(h) holds for some
positive number c, the function

ℓ(r) +
c

h
r

attains a maximum over [0, h] at some r∗ ∈ [0, h). Hence, −c/h ∈ D+,rℓ(r∗). In
view of D+,rℓ(h) ⊂ [0,∞) we have c ≤ 0, which contradicts to c > 0. Therefore,
we see that ℓ(0) ≤ ℓ(h) and so (2.3.1) holds for all h ∈ [0, t).
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Proof of Proposition 2.3.2. First show (ii) ⇒ (i). For (x, t) ∈ Q and ε > 0 take
ξ ∈ Ax(X ) such that (2.3.2) holds. Set

w(h) := u(x, t)−
∫ h

0

L[ξ]dr.

so that (2.2.9) holds. Since L[ξ] is piecewise continuous, w is piecewise C 1 and

w′(h+ 0) = −L(ξ(h), |ξ′|(h+ 0)) for all h ∈ [0, t),

which shows that u is a supersolution. Indeed, for each piecewise C 1 right
subtangent ϕ of w at some h ∈ [0, t), we see that

ϕ(h)− ϕ(h+ θ) ≥ w(h)− w(h + θ) =

∫ h+θ

h

L[ξ]dr

for all θ > 0 small enough, which implies (2.2.10) with p = ϕ′(h+0). Therefore,
u is a supersolution.

Next show (i) ⇒ (ii). For each (x, t) ∈ Q and ε > 0 take ξ ∈ Ax(X ) and a

continuous function w such that (2.2.9) and (2.2.10) hold. Note that
∫ h

0 L[ξ]dr
is piecewise C 1 on [0, t) since L[ξ] is piecewise continuous. Therefore,

ℓ(h) := w(h) +

∫ h

0

L[ξ]dr

satisfies D−,rℓ(h) ⊂ (−∞, 0] for all h ∈ [0, t) since (2.2.10) holds for all

p ∈ D−,rw(h) = D−,rℓ(h)− L(ξ(h), |ξ′|(h+ 0))

We now claim that ℓ(0) ≥ ℓ(h) for each h ∈ [0, t). Suppose, on the contrary,
that ℓ(0) < ℓ(h) at some h ∈ (0, t). Since ℓ(0) < ℓ(0) + c < ℓ(h) holds for some
positive number c, the function

ℓ(r) − c

h
r

attains a minimum over [0, h] at some r∗ ∈ [0, h). Hence, c/h ∈ D−,rℓ(r∗).
In view of D−,rℓ(h) ⊂ (−∞, 0] we have c ≤ 0, which contradicts to c > 0.
Therefore, we have ℓ(0) ≥ ℓ(h) so that

w(0) ≥ w(h) +

∫ h

0

L[ξ]dr,

which yields (2.3.2) by (2.2.9) for all h ∈ [0, t).

Next let us consider relationship between a solution by Definition 2.2.7 and
another one based on the characterization of the modulus of gradient (2.1.2).
Set

LC 1
x(X ) = {ξ ∈ AC ([0,∞),X ) | |ξ′| ≤ 1, ξ(0) = x, |ξ′| is piecewise constant}.
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Definition 2.3.3 (Metric viscosity solution). Let u be an arcwise continuous
function on Q.

We call u a metric viscosity subsolution of (2.2.1) if for each (x, t) ∈ Q and
every ξ ∈ LC 1

x(X ) the inequality

q +H(x, |p|) ≤ 0 (2.3.3)

holds for all (p, q) ∈ D+
s,tw(0, t) with w(s, t) = u(ξ(s), t), where

D+
s,tw(s, t) := {(ϕs, ϕt)(s, t) | ϕ is a C 1 supertangent of w at (s, t)}.

We then have

Proposition 2.3.4. Assume (A1)–(A5) and let u be an arcwise continuous
function on Q. Then, the following conditions are equivalent:

(i) u is a subsolution of (2.2.1).

(ii) u is a metric viscosity subsolution of (2.2.1).

(iii) u satisfies a suboptimality principle.

Proof. The statement (i) ⇔ (iii) has already shown in Proposition 2.3.1.
Show (iii) ⇒ (ii). Fix (x, t) ∈ Q, ξ ∈ LC 1

x(R,X ) and a C 1 supertangent ϕ
of w(s, t) = u(ξ(s), t) at (0, t). In order to prove (2.3.3) we should show

q + |p|v − L(x, v) ≤ 0 (2.3.4)

for all v ∈ R+. Note that (2.3.4) is trivial for v > VL(x), i.e. L(x, v) = ∞ and
we only need to show (2.3.4) for all v < VL(x) since letting v → VL(x) yields
(2.3.4) at v = VL(x). Take σ(r) = ±vr so that ξ ◦ σ is v-Lipschitz. We now
observe that

ϕ(0, t)− ϕ(σ(h), t − h) ≤ u(x, t)− u(ξ(σ(h)), t− h)

≤
∫ h

0

L[ξ ◦ σ]dr

≤
∫ h

0

L(ξ(σ(r)), v)dr

for all h ∈ [0, t) small enough. Since v < VL(x) it follows from (A5) that
r ∈ [0, t) 7→ L(ξ(σ(r)), v) is continuous at 0. Therefore, we have

−pσ′(0) + q ≤ L(x, v)

which yields (2.3.4) and so (2.3.3) holds.

Next show (ii) ⇒ (iii). First note that for any ξ̂ ∈ LC 1
x(X ) the function

w(s, t) = u(ξ̂(s), t) satisfies

q +H(ξ(s), |p|) = sup
v∈R

{q + pv − L(ξ(s), |v|)} ≤ 0 (2.3.5)

for all (p, q) ∈ D+
s,tw(s, t) and all (s, t) ∈ R × (0, T ). Fix (x̂, t̂) ∈ Q and

ξ ∈ Ax̂(X ). Take ξ̂ ∈ LC 1
x̂(X ) and τ = τξ satisfying (2.2.6), (2.2.7). We show

that

w(0, t̂) ≤ w(τ(h), t̂ − h) +

∫ h

0

L(ξ̂(τ(r)), τ ′(r))dr for all h ∈ [0, t̂) (2.3.6)
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Note that τ ′ is piecewise constant and L[ξ ◦ τ ] is piecewise continuous. Let us
take an interval I = (a, b) with [a, b] ⊂ [0, t̂) on which τ ′ is constant v ∈ R+

and r 7→ L(ξ̂(τ(r)), v) is continuous. By (2.3.5)

q + pv − L(ξ̂(s), v) ≤ 0 for all (p, q) ∈ D+
s,tw(s, t), (s, t) ∈ J × (0, T ),

where J = τ(I) if v > 0 or J = R if v = 0. By a classical result on viscosity
solutions,

w(s, t) ≤ w(λ(h)) +

∫ h

0

L(ξ̂(s+ vr), v)dr

for all (s, t) ∈ J × (0, T ) and 0 ≤ h < h∗ := sup{h ∈ [0,∞) | λ(h) ∈ J × (0, T )}
with λ(h) = (s + vh, t − h). Note that h∗ ≥ (b − a) ∧ t. Letting s → τ(a),
t = t̂− a, h→ (b− a) ∧ t = b− a, we have

w(τ(a), t̂ − a) ≤ w(τ(b), t̂ − b) +

∫ b

a

L(ξ̂(τ(r)), v)dr.

Combining such an inequality shows (2.3.6), which implies (2.3.1).

Remark 2.3.5. Unfortunately, we have no idea of a notion corresponding to
“metric viscosity supersolutions” which is equivalent to the supersolution of
Definition 2.2.7 at the present stage. It would contain “for each point (x, t)”,
“existence of a curve ξ” and “existence of an approximation w of u(ξ(·), ·)”.
However, it is difficult to find suitable dependence. Any arguments about the
equivalence does not work well for any choice of the dependence.

Remark 2.3.6. It is a natural question, from a partial differential equations point
of view, to ask how our notion of solutions for the evolutionary equations relates
to the solutions for stationary equations introduced in the previous work [13,
Definition 2.1]. For simplicity, consider the stationary equation |Dv| = f(x) in
X with an unknown function v and a given non-negative continuous function f .
Then, u(x, t) := v(x)− ct is expected to be a solution of the evolutionary equa-
tion ∂tu+ |Du| = f(x)− c in X × (0, T ). Indeed, Proposition 2.3.4 immediately
shows that if v is a metric viscosity subsolution of the stationary equation in
the sense of [13], then u is a metric viscosity subsolution. On the other hand,
the assertion is still open that if f(a) = 0 at some a ∈ X , and v is a metric
viscosity supersolution of |Dv| = f(x) in X \ {a}, then u is a supersolution of
the evolutionary equation.

At the end of this section we study the relationship between our definition of
solutions and the classical notion of viscosity solutions introduced by Crandall
and Lions [4]. Hereafter, let X be the Euclidean space RN with the standard
Euclidean norm.

Proposition 2.3.7. Assume (A1)–(A5). Then, being a subsolution of (2.2.1)
is equivalent to being a viscosity subsolution of (2.2.1) in Crandall-Lions sense
and a supersolution of (2.2.1) is a viscosity supersolution of (2.2.1) in Crandall-
Lions sense.

This proposition can be proved by a similar argument to in [3, Section III.3],
which considers optimal control problems.
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Proof. First note that Ax(X ) in the statements of Proposition 2.3.1 and 2.3.2
can be replaced by the set of all broken-lines starting from x; say Lx(X ). Indeed,
for each ξ ∈ Ax(X ) there exists a sequence of ξn ∈ Lx(X ) such that |ξ′n − ξ′| ≤
1/n on some closed set En with |[0, t] \ En| ≤ 1/n in view of Lusin’s theorem.
Here, |E| is the Lebesgue measure of E. Note moreover that we may assume
|ξ′n| = |ξ′| a.e. since |ξ′| is piecewise constant. We then easily see that ξn
converges to ξ uniformly on [0, t] and

∫ t

0

L[ξn]dr =

∫ t

0

L(ξn(r), |ξ′|(r))dr →
∫ t

0

L[ξ]dr.

Therefore, our notion of sub- and supersolutions equivalent to the sub- and
superoptimality for Lx(X ), respectively.

Now, [3, Proposition II.5.18] implies that satisfying the suboptimality is
equivalent to that u solves ∂tu + Du · v ≤ L(x, |v|) in Crandall-Lions sense
for all v ∈ RN and so u is a viscosity subsolution of (2.2.1) since H(x, |p|) =
supv∈RN (p · v − L(x, |v|)) for all p ∈ RN .

In order to show the relationship between the notions of subsolutions, let u
satisfy the superoptimality principle. Fix a C1 subtangent ϕ of u at (x, t) ∈ Q
and suppose that ϕt+H(x, |Dϕ|) =: −θ < 0 at (x, t) with θ > 0. We may assume
that (u − ϕ)(x, t) = maxB(x,r0)×[t−r0,t+r0]

(u − ϕ) and ϕt +H(x, |Dϕ|) ≤ −θ/2
in B(x, r0)× (t− r0, t+ r0) by taking r0 > 0 small enough. Here, B(x, r) is the
open ball with center x and radius r > 0 and B(x, r) is its closure. For each
ε > 0 take the curve ξε ∈ Lx(X ) satisfying (2.3.2). Let hε be the first exit time
of ξε from the ball B(x, r0). We then see that

ϕ(x, t) ≥
∫ h

0

L[ξε]dr + ϕ(ξε(h), t− h)− ε for all h ∈ [0, hε].

By putting h = hε, we have
∫ hε

0

ℓ(|ξ′ε|)dr ≤
∫ hε

0

L[ξε]dr ≤ ϕ(x, t)− ϕ(ξε(hε), t− hε) + ε

≤ C(|ξε(hε)− x|+ hε) + ε ≤ 2Cr0 + ε.

Here, C is the Lipschitz constant of ϕ. Also,
∫ hε

0

|ξ′ε|dr ≥ |ξε(hε)− x| = r0 > 0.

Therefore, we see by Lemma 2.4.4 that lim infε→0 hε > 0. Now, since ϕ satisfies
∂tϕ+Dϕ · v ≤ L(x, |v|)− θ/2 for all v ∈ RN , [3, Proposition II.5.18] shows

ϕ(x, t) ≤
∫ h

0

L[ξε]dr + ϕ(ξε(h), t− h)− θh/2 for all h ∈ [0, hε].

Hence, we have 0 ≤ ε − θhε/2. In particular, hε → 0 as ε → 0 but this
contradicts to lim infε→0 hε > 0.

On the other hand, it is unclear whether a Crandall-Lions supersolution
satisfies the superoptimality in general settings. We need additional regularity
condition for the solution. Indeed, if a bounded Lipschitz continuous function
u on Q solve (2.2.1) in Crandall-Lions sense then u satisfies our definition of
solutions since u is equal to the value function starting from u(·, 0), which is the
unique solution of (2.2.1).
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2.4 Unique existence theorem

We study the initial value problem of (2.2.1) with

u|t=0 = u0 on X , (2.4.1)

where we assume that

(A6) u0 is bounded and uniformly continuous on X ; there exists a modulus ωu0

such that

|u0(x) − u0(y)| ≤ ωu0
(d(x, y)) for all x, y ∈ X .

Here, a modulus ω is a function of the class C (R+,R+) with ω(0) = 0.
The main purpose of this section is to establish a unique existence theorem

for (2.2.1) and (2.4.1).

Definition 2.4.1. An arcwise continuous function u on X × [0, T ) is called a
solution of the initial value problem (2.2.1) and (2.4.1) if u is both a subsolution
and a supersolution of (2.2.1), and satisfies

u(0, x) = u0(x) for all x ∈ X . (2.4.2)

Consider the cost functional to the initial value problem (2.2.1) and (2.4.1);

Ct[ξ] :=

∫ t

0

L[ξ]dr + u0(ξ(t))

for t ∈ [0, T ] and ξ ∈ Ax(X ). Define the value function U by

U(x, t) = inf
ξ∈Ax(X )

Ct[ξ] for (x, t) ∈ X × [0, T ].

We will show that the value function is a unique solution of (2.2.1) and (2.4.1).
We first show a regularity of the value function.

Lemma 2.4.2. Assume (A1)–(A6). Then the value function U satisfies

−cH(0)t+ inf u0 ≤ U(x, t) ≤ tL(x, 0) + u0(x) (2.4.3)

for all (x, t) ∈ X × [0, T ].

Proof. Let (x, t) ∈ X × [0, T ]. Since ξ0(r) = x is of Ax(X ), we have

Ct[ξ0] = tL(x, 0) + u0(x) <∞.

For each ξ ∈ Ax(X ), the assumptions imply that

Ct[ξ] =

∫ t

0

L[ξ]dr + u0(ξ(h)) ≥ −cH(0)t+ inf u0 > −∞.

Therefore, we have (2.4.3).

Proposition 2.4.3. Assume (A1)–(A6). Then the value function U is bounded
and arcwise uniformly continuous on X × [0, T ], i.e. for each ξ ∈ Lip1(X ) the
function w(s, t) = u(ξ(s), t) is uniformly continuous in R× [0, T ].
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Proof. First note that (2.4.3) implies

−|cH(0)|T + inf u0 ≤ U(x, t) ≤ T | supL(x, 0)|+ supu0. (2.4.4)

In particular, U is a bounded function.
Fix ξ ∈ AC (X ). In order to show continuity of (s, t) 7→ U(ξ(s), t) let us

estimate U(ξ(s), t) − U(ξ(s̄), t̄) for s, s̄ ∈ R, t, t̄ ∈ [0, T ]. Let ε > 0. By the
definition of U(ξ(s̄), t̄) there exists a curve ξ̄ ∈ Aξ(s̄)(X ) such that

U(ξ(s̄), t̄) ≥
∫ t̄

0

L[ξ̄]dr + u0(ξ̄(t̄))− ε. (2.4.5)

We now construct a curve ξ̃ ∈ Aξ(s)(X ) such that

ξ̃(r) = ξ̄(r − r0) for r ≥ r0

with some r0 ≥ 0. Note that for such a curve

U(ξ(s), t) ≤
∫ t

0

L[ξ̃]dr + u0(ξ̃(t))

=

∫ r0

0

L[ξ̃]dr +

∫ t−r0

0

L[ξ̄]dr + u0(ξ̄(t− r0)).

(2.4.6)

Set

ξ̃(r) =

{

ξ̂(τ(s) + VL
τ(s̄)−τ(s)
|τ(s̄)−τ(s)|r) for 0 ≤ r ≤ |τ(s̄)− τ(s)|/VL =: r1

ξ(s̄) for r1 ≤ r ≤ r1 + |t̄− t| =: r0

with ξ̂ and τ = τξ taken by Proposition 2.2.6. Then, noting that |ξ̃′| = VL on

[0, r1] and |ξ̃′| = 0 on [r1, r0], we have

R1 :=

∫ r0

0

L[ξ̃]dr ≤
∫ r0

0

L(ξ̃(r), VL)dr ≤ r0 sup
x
L(x, VL) (2.4.7)

The inequalities (2.4.5)–(2.4.7) yields

U(ξ(s), t)− U(ξ(s̄), t̄) ≤ R1 −R2 +R3 + ε, (2.4.8)

where

R2 :=

∫ t̄

t−r0

L[ξ̄]dr, R3 := u0(ξ̄(t− r0))− u0(ξ̄(t̄)).

Now noting that

t− r0 = t− |τ(s̄)− τ(s)|/VL − |t̄− t| ≤ t̄,

we hence see that
R2 ≥ −cH(0)(t̄− t+ r0). (2.4.9)

We also have

R3 ≤ ωu0

(

∫ t̄

t−r0

|ξ̄′|dr
)

. (2.4.10)
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holds in any cases. Combining (2.4.7)–(2.4.10), we have

U(ξ(s), t)− U(ξ(s̄), t̄) ≤r0 sup
x
L(x, VL) + cH(0)(t̄− t+ r0)

+ ωu0

(

∫ t̄

t−r0

|ξ̄′|dr
)

+ ε.

Note that

r1 = |τ(s̄)− τ(s)|/VL =
1

VL

∣

∣

∣

∣

∫ s̄

s

|ξ′|dr
∣

∣

∣

∣

≤ |s̄− s|
VL

→ 0

as |s̄− s| → 0. Therefore, if we show

lim
δ↓0

sup
|s̄−s|+|t̄−t|≤δ

∫ t̄

t−r0

|ξ̄′|dr = 0, (2.4.11)

the proof is completed.
By (2.4.4) and (2.4.8) we observe that

∫ t̄

t−r0

L(ξ̄(r), |ξ̄′|(r))dr

≤ r0 sup
x
L(x, VL) +R3 + ε− U(ξ(s), t) + U(ξ(s̄), t̄)

≤ 4 sup |u0|+ 1 + (Lip[ξ]/VL + 1)| sup
x
L(x, VL)|+ T | sup

x
L(x, 0)|+ |cH(0)|T,

for ε < 1, |s̄− s|+ |t̄− t| < 1 and hence

∫ t̄

t−r0

ℓ(|ξ̄′|)dr ≤ C <∞

holds with some constant C independent of s̄, s, t̄, t. Therefore, the next lemma
shows (2.4.11).

Lemma 2.4.4. Let {vn} be a sequence of nonnegative, Lebesgue measurable
functions vn defined on [0, sn] with sn ↓ 0 such that

∫ sn

0

ℓ(vn(r))dr ≤ C for n ∈ N

holds for some constant C. Then,

∫ sn

0

vn(r)dr → 0 as n→ ∞.

Proof. Note that (2.2.5) implies that for every largeM > 0 there exists VM ≥ 0
such that ℓ(v) ≥Mv holds for all v ≤ VM . We now observe that

∫ sn

0

ℓ(vn(r))dr =

∫

[0,sn]∩{vn≥VM}

ℓ(vn(r))dr +

∫

[0,sn]∩{vn<VM}

ℓ(vn(r))dr

≥M

∫

[0,sn]∩{vn≥VM}

vn(r)dr − cH(0)sn.
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We also see by this that
∫ sn

0

vn(r)dr =

∫

[0,sn]∩{vn≥VM}

vn(r)dr +

∫

[0,sn]∩{vn<VM}

vn(r)dr

≤ 1

M

∫

[0,sn]∩{vn≥VM}

ℓ(vn(r))dr +
cH(0)

M
sn + VMsn

≤ C

M
+
cH(0)

M
sn + VMsn.

Therefore,

lim sup
n→∞

∫ sn

0

vn(r)dr ≤
C

M

for all M > 0, and so letting M → ∞ implies the conclusion.

Theorem 2.4.5. Assume (A1)–(A6). Then the value function U is a solution
of (2.2.1), (2.4.1).

Proof. First show that U is a subsolution. Fix (x, t) ∈ Q and ξ ∈ Ax(X ). Since
there exists ξ̄ ∈ Aξ(h)(X ) for h ∈ [0, t] and ε > 0 such that

U(ξ(h), t− h) ≥
∫ t−h

0

L[ξ̄]dr + u0(ξ̄(t− h))− ε,

taking ξ̃(r) = ξ(r) for 0 ≤ r ≤ h, ξ̃(r) = ξ̄(r − h) for r ≥ h implies that

U(x, t) ≤
∫ t

0

L[ξ̃]dr + u0(ξ̃(t))

=

∫ h

0

L[ξ]dr +

∫ t−h

0

L[ξ̄]dr + u0(ξ̄(t− h)).

Combining these two inequalities yields

U(x, t) ≤
∫ h

0

L[ξ]dr + U(ξ(h), t− h) + ε.

Since ε is arbitrary, U satisfies a suboptimality and hence U is a subsolution by
Proposition 2.3.1.

To prove that U is a supersolution, for (x, t) ∈ Q and ε > 0 take ξ ∈ Ax(X )
such that

U(x, t) ≥
∫ t

0

L[ξ]dr + u0(ξ(t)) − ε.

Since ξ̃(r) = ξ(r + h) belongs to Aξ(h)(X ) for h ∈ [0, t], we have

U(ξ(h), t− h) ≤
∫ t

h

L[ξ]dr + u0(ξ(t)).

Combining these two inequalities yields

U(x, t) ≥
∫ h

0

L[ξ]dr + U(ξ(h), t− h)− ε.

Therefore, U satisfies a superoptimality and hence U is a supersolution by
Proposition 2.3.2.

Since it is clear that U satisfies (2.4.2) by definition, we see that U is a
solution.
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Remark 2.4.6. This proof also shows that a dynamic programming principle is
valid for the value function:

U(x, t) = inf
ξ∈Ax(X )

{

∫ h

0

L[ξ]dr + U(ξ(h), t− h)

}

for all h ∈ [0, t].

This condition also indicates that the value function satisfies a semigroup prop-
erty.

We show a comparison theorem.

Theorem 2.4.7. Assume (A1)–(A6). Assume that arcwise continuous func-
tions u and v on X × [0, T ) are a subsolution and a supersolution, respectively.
Then, the inequality

sup
Q

(u− v) ≤ sup
x∈X

(u(x, 0)− v(x, 0)) (2.4.12)

holds.

Proof. Fix (x, t) ∈ Q, ε > 0 and ξ ∈ Ax(X ) such that

v(x, t) ≥
∫ h

0

L[ξ]dr + v(ξ(h), t− h)− ε for all h ∈ [0, t].

Note that L[ξ] is piecewise continuous on [0, t]. Since (s, t) 7→ v(ξ(s), t) is
continuous on [0, t]× [0, T ) by the arcwise continuity of v, letting h→ t we have

v(x, t) ≥
∫ t

0

L[ξ]dr + v(ξ(t), 0)− ε

We also see that

u(x, t) ≤
∫ h

0

L[ξ]dr + u(ξ(h), t− h) for all h ∈ [0, t),

which implies

u(x, t) ≤
∫ t

0

L[ξ]dr + u(ξ(t), 0).

Combining the inequalities, we obtain

u(x, t)− v(x, t) ≤ u(ξ(t), 0)− v(ξ(t), 0) + ε

≤ sup
x∈X

(u(x, 0)− v(x, 0)) + ε.

Since ε is arbitrary, the proof is complete.

In view of Theorem 2.4.5 and Theorem 2.4.7, the value function U is a unique
solution of (2.2.1) and (2.4.1).
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Chapter 3

On asymptotic behaviors of

metric viscosity solutions

3.1 Introduction

In this chapter we study stability of a solution of Hamilton-Jacobi equations on
a generalized space. Let (X, d) be a general complete geodesic metric space and
let H be a continuous function on X × R+ called a Hamiltonian. Consider a
Cauchy problem of a Hamilton-Jacobi equation of the form

∂tu+H(x, |Du|) = 0 in (0,∞)×X (3.1.1)

with the initial condition u|t=0 = u0 and a corresponding stationary equation
of the form

H(x, |Dv|) = c in X (3.1.2)

with some c ∈ R.
The theory of Hamilton-Jacobi equations on generalized spaces have been

developing in these years. For example, [17] and [3] study a stationary equations
on topological networks and post-critically finite fractals including the Sierpinski
gasket. In order to cover them a metric viscosity solution is posed, which means
a theory of viscosity solutions on a general metric space. A notion of metric
viscosity solution was first introduced by Giga-Hamamuki-Nakayasu [11] to the
stationary equation (3.1.2) in a spirit of [17]. It was attempted to apply this
idea to the evolutionary equation (3.1.1) in [15]. Afterwards some different
notions of metric viscosity solutions were proposed by several authors; see, e.g.,
[1], [8] [9]. In particular, the metric viscosity solution by Gangbo-Swiech [8],
[9] is apparently compatible with stability argument. In fact, the authors of [8]
construct a solution of (3.1.1) by Perron method while the other materials show
a representation formula of a metric viscosity solution.

The main aim of the present work is to establish a general stability result for
the Gangbo-Swiech solutions. Roughly speaking, the stability is the proposition
claiming that the semilimit of a family of viscosity solutions is a viscosity solu-
tion; see [2, Theorem A.2]. At least in the classical theory of viscosity solutions
the stability is a fundamental property to derive some asymptotic behavior of
the solution. Large time asymptotics of a viscosity solution of Hamilton-Jacobi
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equations is studied by Namah-Roquejoffre [16] and Fathi [6] independently.
Another aim of this chapter is to establish, as a consequence of the stability, a
large time asymptotic behavior of the solution on a singular space such as the
Sierpinski gasket. Based on the argument in [16] we will show that the solution
u(t, x) + ct of (3.1.1) goes to a function v as t → ∞ and v is a solution of the
stationary problem (3.1.2) with some constant c ∈ R.

We restrict ourselves to the case when the metric space X is compact but
the Sierpinski gasket can be handled. Let us extend H to X × R as an even
function H(x, p) = H(x, |p|). The basic assumptions on the Hamiltonian are:

(A1) H is continuous.

(A2) H is convex in the second variable.

(A3) H is coercive in the sense of

lim
p→∞

inf
x
H(x, p) = ∞.

(A4) supxH(x, 0) <∞.

Set c := supxH(x, 0); otherwise the stationary equation (3.1.2) has no solution.
We first show that the stationary equation has at least one solution. Then, a
standard barrier method implies that there exist upper and lower semilimits u(x)
and u(x) of u(t, x)+ct as t→ ∞ as real-valued functions. As a result the stability
argument yields that u and u are a subsolution and a supersolution of the limit
equation. Next note that for each x ∈ A := {x ∈ X | H(x, 0) = supxH(x, 0)}
the solution u(t, x) + ct is non-increasing since ut+ c ≤ 0 and so u = u on A by
Dini’s theorem. We see that u = u by a comparison principle for the stationary
equation. This means that u(t, x) + ct converges to a solution u = u of the
stationary equation locally uniformly.

In order to justify this argument we will establish solvability of (3.1.2) and
a comparison principle for Gangbo-Swiech solutions of (3.1.2), which are new.
The authors of [16] invoke a result by Lions-Papanicolaou-Varadhan [14]. The
argument is based on the ergodic theory but in this work we will follow a direct
approach via Perron method by Fathi-Siconolfi [7].

3.2 Definition of Gangbo-Swiech solutions

In this section we review the definition of metric viscosity solutions proposed by
Gangbo and Swiech; see [8] and [9]. Let (X, d) be a complete geodesic metric
space.

For a real-valued function u on an open subset Q of the spacetime R ×X
define the upper local slope and lower local slope

|∇+u|(t, x) := lim sup
y→x

[u(t, y)− u(t, x)]+
d(y, x)

,

|∇−u|(t, x) := lim sup
y→x

[u(t, y)− u(t, x)]−
d(y, x)
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and the local slope

|∇u|(t, x) := lim sup
y→x

|u(t, y)− u(t, x)|
d(y, x)

.

It is easy to see that |∇−u| = |∇+(−u)|.
We next introduce smoothness classes for functions on a metric space.

Definition 3.2.1. We denote by C(Q) the set of all functions u on Q such that
u is locally Lipschitz continuous on Q and ∂tu is continuous on Q. We also set

C1
(Q) := {u ∈ C(Q) | |∇+u| = |∇u| and they are continuous},

C1(Q) := {u ∈ C(Q) | |∇−u| = |∇u| and they are continuous}.

Lemma 3.2.2. Let u(t, x) := a(t)φ(d(x, y)2) + b(t) with y ∈ X, φ ∈ C1(R+),
φ′ ≥ 0, a, b ∈ C1(R). Then, u ∈ C1(R×X) and moreover

|∇−u|(t, x) = |∇u|(t, x) = 2a(t)φ′(d(x, y)2)d(x, y).

See [1] or [8] for the proof.
We consider a Hamilton-Jacobi equation of the form

F (z, |Du|, ∂tu) = 0 in Q. (3.2.1)

Here, z = (t, x), and F = F (z, p, q) ∈ C (Q × R ×R) is even and convex in p
and strictly increasing in q. Set

Fr(z, p, q) :=

{

supp′∈B F (z, p+ rp′, q) if r ≥ 0

infp′∈B F (z, p+ rp′, q) if r ≤ 0

for r ∈ R, where B := [−1, 1]. Note that (z, p, q, r) 7→ Fr(z, p, q) is continuous
since (z, p, q, r, p′) 7→ F (z, p+ rp′, q) is continuous and B is compact. Also, it is
easy to check r 7→ Fr(z, p, q) is non-decreasing.

For a function u defined on Q with values in the extended real numbers
R̄ := R ∪ {±∞}, we take its upper and lower semicontinuous envelope u∗ and
u∗.

Definition 3.2.3 (Metric viscosity solutions of (3.2.1)). Let u be an R̄-valued
function on Q.

We say that u is a metric viscosity subsolution (resp. supersolution) of (3.2.1)

when for every ψ = ψ1+ψ2 with ψ1 ∈ C1(Q) (resp. ψ1 ∈ C1
(Q)) and ψ2 ∈ C(Q),

if u∗−ψ (resp. u∗−ψ) attains a zero local maximum (resp. minimum) at a point
z = (t, x) ∈ Q, i.e. (u∗ − ψ)(z) = maxBR(z)(u

∗ − ψ) = 0 (resp. (u∗ − ψ)(z) =
minBR(z)(u∗ − ψ) = 0) for some R > 0, then

F−|∇ψ2|∗(z)(z, |∇ψ1|(z), ∂tψ(z)) ≤ 0 (resp. F|∇ψ2|∗(z)(z, |∇ψ1|(z), ∂tψ(z)) ≥ 0.)

We say that u is a metric viscosity solution of (3.2.1) if u is both a metric
viscosity subsolution and a metric viscosity supersolution of (3.2.1).
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By a similar way we also define a notion of metric viscosity solutions for a
stationary equation of the form

H(x, |Dv|) = 0 in U (3.2.2)

with U ⊂ X open. Here, H = H(x, p) ∈ C (U×R) is even and convex in p. Note
that one is able to define the local slopes |∇−v|, |∇+v|, |∇v| and smoothness

C(U), C1
(U), C1(U) for a function v on U .

Definition 3.2.4 (Metric viscosity solutions of (3.2.2)). Let v be an R̄-valued
function on U .

We say that v is a metric viscosity subsolution (resp. supersolution) of (3.2.2)

when for every ψ = ψ1+ψ2 with ψ1 ∈ C1(U) (resp. ψ1 ∈ C1
(U)) and ψ2 ∈ C(Q),

if v∗−ψ (resp. v∗−ψ) attains a zero local maximum (resp. minimum) at a point
x ∈ U , then

H−|∇ψ2|∗(x)(x, |∇ψ1|(x)) ≤ 0 (resp. H|∇ψ2|∗(x)(x, |∇ψ1|(x)) ≥ 0.)

We say that v is a metric viscosity solution of (3.2.2) if v is both a metric
viscosity subsolution and a metric viscosity supersolution of (3.2.2).

These notions satisfies the following natural propositions.

Proposition 3.2.5 (Consistency). If u is a metric viscosity subsolution of
(3.2.1) in I×U with an open interval I and u is of the form u(t, x) = v(x), then
v is a metric viscosity subsolution of (3.2.2) in U with H(x, p) := F (0, x, p, 0).

Conversely, if v is a metric viscosity subsolution of (3.2.2) in U , then
u(t, x) := v(x) is a metric viscosity subsolution of (3.2.1) in R × U with
F (t, x, p, a) := H(x, p).

Proposition 3.2.6 (Transitive relation). Assume that F = F (z, p, q), G =
G(z, p, q) satisfy G ≤ F and let u be a metric viscosity subsolution of (3.2.1).
Then, u is a metric viscosity subsolution of G(z, |Du|, ∂tu) = 0 in Q.

Proposition 3.2.7 (Locality). Let Q1 and Q2 be two open subsets of (0,∞)×X.
If u is a metric viscosity subsolution of (3.2.1) in Q1 and is a metric viscosity
subsolution of (3.2.1) in Q2, then u is a metric viscosity subsolution of (3.2.1)
in Q = Q1 ∪Q2

Proposition 3.2.8 (Change of variable). Let φ be a C1 diffeomorphism from
an interval I to an interval J . If u is a metric viscosity subsolution of (3.2.1)
in I × U , then v(s, x) := u(φ−1(s), x) is a metric viscosity subsolution of

F (x, |Dv|, φ′vs) = 0 in J × U .

Proposition 3.2.9 (Composition). Let a be a non-zero constant and b = b(t) be
a C1 function on an interval I. If u is a metric viscosity subsolution of (3.2.1)
in I × U , then v(t, x) := au(t, x) + b(t) is a metric viscosity subsolution of

F (x,
|Dv|
a

,
vt − b′(t)

a
) = 0 in I × U .
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Proposition 3.2.10 (Strong solutions). Let ψ1 ∈ C1
(Q) and ψ2 ∈ C(Q). If

ψ = ψ1 + ψ2 satisfies

F|∇ψ2|∗(z)(z, |∇ψ1|(z), ∂tψ(z)) ≤ 0 for all z ∈ Q,

then ψ is a metric viscosity subsolution of (3.2.1).

The proofs are straightforward so we omit them. For the proof of Proposition
3.2.10 see [9, Lemma 2.8].

3.3 Stability results

Let A be a topological space. For a family of functions {u(·; a)}a∈A defined on
Q take its upper and lower semicontinuous envelopes

u∗(z; a) := lim sup
(z′,a′)→(z,a)

u(z′; a′), u∗(z; a) := lim inf
(z′,a′)→(z,a)

u(z′; a′).

The functions u∗(·; a) and u∗(·; a) are respectively called the upper and lower
semilimit of {u(·; a)} at a ∈ A. Also note that u∗(·; a) is upper semicontinuous
and that for each (z, a) there exists a sequence (zj , aj) such that

(zj , aj , u(zj; aj)) → (z, a, u∗(z; a)).

One of the main results of this section is:

Lemma 3.3.1 (Stability). Let F = F (z, p, q; a) ∈ C (Q ×R ×R × A) and let
u = u(·; a) be a family of metric viscosity subsolutions (resp. supersolution) of
(3.2.1) with F = F (·; a). Assume that a ∈ A satisfies for each z ∈ Q

lim sup
a′→a

sup
Br(z)

u(·; a′) ≤ sup
Br(z)

u∗(·; a) (resp. lim inf
a′→a

inf
Br(z)

u(·; a′) ≤ inf
Br(z)

u∗(·; a))

(3.3.1)
for all r > 0 small enough. Then, the upper (resp. lower) semilimit u := u∗(·, a)
(resp. u := u∗(·, a)) is a metric viscosity subsolution (resp. supersolution) of
(3.2.1) with F = F (·; a).
Remark 3.3.2. An sufficient condition of the assumption (3.3.1) is that the
metric space X is locally compact. Indeed, since B := Br(z) is compact for
small r, we are able to take a sequence of maximum points za′ of u(·; a′) and
assume that za′ converges to some z̄ ∈ B as a′ → a by taking a subsequence if
necessary. Then,

lim sup
a′→a

sup
B
u(·; a′) = lim sup

a′→a
u(za′ ; a

′) ≤ u∗(z̄; a) ≤ sup
B
u∗(·; a).

We also point out that if the assumption is removed, then the lemma may
be false in general; see [11].

A direct consequence of Lemma 3.3.1 is:

Corollary 3.3.3 (Stability under extremum). Let F = F (z, p, q) ∈ C (Q×R×
R). Let S be a family of metric viscosity subsolutions (resp. supersolutions)
of (3.2.1). Then u(z) := supv∈S v(z) (resp. u(z) := infv∈S v(z)) is a metric
viscosity subsolution (resp. supersolutions) of (3.2.1).
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Proof. Set A = S with the indiscrete topology and trivial families {F}v∈S and
{U(·; v) = v}v∈S . Note that U∗(z; v) = u∗(z) and lim supv′→v supBr(z) U(·; v′) =
supBr(z) U

∗(·; v) = supBr(z) u
∗. Therefore, by applying Lemma 3.3.1 we see that

u is a metric viscosity subsolution of (3.2.1).

Our proof of Lemma 3.3.1 is inspired by [8]. First recall Ekeland’s variational
principle of a classical version [4], [5].

Lemma 3.3.4 (Ekeland’s variational principle). Let (X, d) be a complete metric
space and let F : X → R̄ be a upper semicontinuous function bounded from above
(resp. below) satisfying D(F ) := {F > −∞} (resp. D(F ) := {F < +∞}) is not
empty. Then, for each x̂ ∈ D(F ), there exists x̄ ∈ X such that d(x̂, x̄) ≤ 1,
F (x̄) ≥ F (x̂) (resp. F (x̄) ≤ F (x̂)) and x → F (x) − md(x̄, x) attains a strict
maximum (resp. minimum) at x̄ with m := supF − F (x̂) (resp. m := inf F −
F (x̂)).

See [5] for the proof.

Proof of Lemma 3.3.1. Fix ψ = ψ1 + ψ2 with ψ1 ∈ C1(Q) and ψ2 ∈ C(Q) such
that u − ψ attains a zero maximum at ẑ = (t̂, x̂) over BR(ẑ) ⊂ Q with some
R > 0, i.e.

(u− ψ)(ẑ) = sup
BR(ẑ)

(u − ψ) = 0. (3.3.2)

Set ψ̃2(z) := ψ2(z) + d(x̂, x)2 + (t− t̂)2 with z = (t, x) and ψ̃ = ψ1 + ψ̃2.
Take a subsequence aj → a and a sequence of points zj = (tj , xj) ∈ BR(ẑ)

such that zj → ẑ and uj(zj) = u(zj; aj) → u(ẑ) = u∗(ẑ; a), where uj := u(·; aj).
We see by Ekeland’s variational principle (Lemma 3.3.4) that there exists wj =

(sj , yj) ∈ BR(ẑ) such that z = (t, x) 7→ ((uj)
∗ − ψ̃)(z) − mjd(yj , x) attains

maximum at wj over BR(ẑ) with

mj := sup
BR(ẑ)

((uj)
∗ − ψ̃)− ((uj)

∗ − ψ̃)(zj) ≥ 0

Note that

lim sup
j→∞

mj = lim sup
j→∞

sup
BR(ẑ)

((uj)
∗ − ψ̃)− (u− ψ̃)(ẑ)

and so mj → 0 by the assumptions (3.3.1) and (3.3.2). We also observe that

((uj)
∗ − ψ̃)(wj) ≥ (uj − ψ̃)(zj)−mjd(yj , xj) ≥ (uj − ψ̃)(zj)− 2Rmj

and that the last term converges to (u− ψ̃)(ẑ) as j → ∞. Therefore,

lim sup
j→∞

d(x̂, yj)
2 + (sj − t̂)2 ≤ lim sup

j→∞
((uj)

∗ − ψ)(wj)− (u− ψ̃)(ẑ)

≤ lim sup
j→∞

sup
BR(ẑ)

((uj)
∗ − ψ)− (u − ψ̃)(ẑ)

and it follows from (3.3.1) and (3.3.2) that wj = (sj , yj) → ẑ = (t̂, x̂).
Now, since uj is a metric viscosity subsolution,

F−rj (wj , |∇ψ1|(wj), ∂tψ̃(wj); aj) ≤ 0.
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Here, rj is some non-negative number such that

rj ≤ |∇ψ2|∗(wj) +mj + 2d(x̂, yj) + 2|sj − t̂|

and so lim sup rj ≤ |∇ψ2|∗(ẑ). Since (z, p, q, r; a) → Fr(z, p, q; a) is continuous
and r → Fr(z, p, q; a) is non-decreasing, we see that

F−|∇ψ2|∗(ẑ)(ẑ, |∇ψ1|(ẑ), ∂tψ(ẑ); a) ≤ 0.

Therefore, u is a subsolution.

Another goal of this section is a principle to construct a metric viscosity
solution by the Perron method.

Proposition 3.3.5 (Perron method). Let F = F (z, p, q) ∈ C (Q × R × R)
and let g be an R̄-valued function on ∂Q. Let S denote the set of all metric
viscosity subsolutions (resp. supersolution) v of (3.2.1) satisfying v∗ ≤ g (resp.
v∗ ≤ g) on ∂Q. Then, u(z) := supv∈S v(z) (resp. u(z) := infv∈S v(z)) is a
metric viscosity solution of (3.2.1).

Perron method for construction of a viscosity solution to Hamilton-Jacobi
equations was first presented by H. Ishii [13]. Actually, the authors of [8] have
already established a similar result for metric viscosity solutions ([8, Theorem
7.6]). However, let us give a proof since we have slightly improved the result to
apply it directly to construction of a solution of the limit equation (3.1.2). We
remark that the function

u(x) :=

{

+∞ if x ∈ Q

g(x) if x ∈ ∂Q

is a supersolution of (3.2.1).

Proof. We only show that u is a supersolution since being a subsolution is due

to Corollary 3.3.3. Fix ψ = ψ1 + ψ2 with ψ1 ∈ C1
(Q) and ψ2 ∈ C(Q) such that

u∗ −ψ attains a zero minimum at ẑ := (t̂, x̂) over BR(ẑ) ⊂ Q with some R > 0.
Set ψ̃2(z) := ψ2(z)− d(ẑ, z)2 and ψ̃ = ψ1 + ψ̃2. Suppose by contradiction that

F|∇ψ2|∗(ẑ)(ẑ, |∇ψ1|(ẑ), ∂tψ(ẑ)) < 0.

Since (z, p, q, r) 7→ Fr(z, p, q) is continuous and r 7→ Fr(z, p, q) is non-decreasing,
we may assume that ψ̃ = ψ1 + ψ̃2 is a subsolution of

F|∇ψ̃2|∗(z)
(z, |∇ψ1|(z), ∂tψ̃(z)) ≤ 0 for all z ∈ BR(ẑ)

by taking R small enough. Recalling Proposition 3.2.10, we see that ψ̃ is a
metric viscosity subsolution of (3.2.1) in BR(ẑ). Now observe that

(u − ψ̃)(z) ≥ (u∗ − ψ̃)(z) ≥ d(ẑ, z)2 ≥ R2

4
=: m > 0

for all z ∈ BR(ẑ) \BR/2(ẑ). Construct a new function

w(z) =

{

max{ψ̃(z) +m/2, u(z)} if z ∈ BR(ẑ),

u(z) otherwise.
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Then, w is equal to u on Q \ BR/2(ẑ) and so it is a subsolution of (3.2.1) in
Q \ BR/2(ẑ). It follows from Proposition 3.2.9 and Corollary 3.3.3 that w is a
subsolution of (3.2.1) in BR(ẑ). Therefore, Proposition 3.2.7 shows that w is
a subsolution of (3.2.1) in Q and so w ∈ S. In particular, u(ẑ) ≥ w(ẑ) but
w(ẑ) = ψ(ẑ) +m/2 = u(ẑ) +m/2. Since m > 0, we obtain a contradiction and
conclude that u is a supersolution.

3.4 Application to large time behavior

We study large time asymptotic behaviors of solutions of the Hamilton-Jacobi
equation (3.1.1) with a Hamiltonian H satisfying (A1)–(A4) on a compact
geodesic metric space (X, d). First note uniqueness of the constant c such that
(3.1.2) admits a solution.

Proposition 3.4.1. Assume (A1), (A2) and that X is compact. Let c ∈ R be
a constant such that (3.1.2) admits a real-valued continuous solution. Then,

c = max
x∈X

H(x, 0). (3.4.1)

Proof. By the assumption (A2) it is enough to show that

sup
x∈X

inf
p∈R+

H(x, p) ≤ c ≤ sup
x∈X

H(x, 0). (3.4.2)

It is easy to show the second inequality of (3.4.2). Indeed, since a solution v
attains a minimum at some point x̂ ∈ X , we have H0(x̂, 0) = H(x̂, 0) ≥ c,
which implies supx∈X H(x, 0) ≥ c. In order to prove the first inequality of
(3.4.2), fix x̂ ∈ X . Let us consider the function v(x) − nd(x, x̂)2/2 and take
its maximum point xn for each n = 0, · · · . Now, since v(xn) − nd(xn, x̂)

2/2 ≥
v(x̂), we have d(xn, x̂)

2 ≤ 2(max v − v(x̂))/n. Therefore, xn → x̂ as n → ∞.
Since u is a subsolution, H0(xn, nd(xn, x̂)) = H(xn, nd(xn, x̂)) ≤ c. Hence,
infp∈R+

H(xn, p) ≤ c and sending n → ∞ yields infp∈R+
H(x̂, p) ≤ c. We now

obtained the inequalities (3.4.2).

Remark 3.4.2. It is a problem whether the inequalities (3.4.2) holds even if we
remove the compactness assumption. One can show them by a similar argument
to the proofs in Section 3.3 using Ekeland’s variational principle provided p 7→
supx∈X H(x, p) is continuous.

In view of this proposition we hereafter define c by (3.4.1). Now we are able
to state the main theorem of large time behavior.

Theorem 3.4.3 (Large time behavior). Assume (A1)–(A4), u0 ∈ Lip(X) and
that X is compact. Let u be a Lipschitz continuous solution of (3.1.1) with
u|t=0 = u0 on [0,∞) ×X. Then, u(t, x) + ct converges to a function v locally
uniformly as t→ ∞ in X and v is a solution of (3.1.2).

In order to prove this theorem we first establish regularity, existence and
comparison results for the stationary equation (3.1.2). Set

A := {x ∈ X | H(x, 0) = c}.
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Proposition 3.4.4 (Lipschitz continuity of solutions of (3.1.2)). Assume (A1),
(A3) and (A4). Then, real-valued continuous solutions of (3.1.2) are equi-
Lipschitz continuous.

Proof. Note that there exists a constant L ∈ R+ such that H(x, p) ≥ c for all
x ∈ X and p ≥ L by (A3). Fix a real-valued continuous solution v. Consider the
function v(x)−v(y)−2L

√

d(x, y)2 + ε2 for x, y ∈ X and take its maximum point

xε with respect to x for each ε > 0. Note that x 7→ v(y) + 2L
√

d(x, y)2 + ε2 is
of C1(X) by Lemma 3.2.2. Hence, we see that

H0

(

xε,
2Ld(xε, y)

√

d(xε, y)2 + ε2

)

= H

(

xε,
2Ld(xε, y)

√

d(xε, y)2 + ε2

)

≤ c.

Therefore, we see that 2Ld(xε, y)/
√

d(xε, y)2 + ε2 ≤ L and so xε → y as ε→ 0.
Now, for each x, y ∈ X , we have

v(x) − v(y)− 2L
√

d(x, y)2 + ε2 ≤ v(xε)− v(y)− 2L
√

d(xε, y)2 + ε2

Sending ε→ 0 yields
v(x)− v(y)− 2Ld(x, y) ≤ 0,

which means that all subsolutions of (3.1.2) is 2L-Lipschitz continuous.

Theorem 3.4.5 (Existence of a solution of (3.1.2)). Assume (A1), (A3) and
(A4). Then, there exists at least one Lipschitz continuous solution of (3.1.2)
whenever A is non-empty.

Proof. Define

S(x, y) := sup{w(x) | w ∈ C (X) is a subsolution of (3.1.2) with w(y) = 0}.

Note that the constant w ≡ 0 is a subsolution of (3.1.2). Also Proposition 3.4.4
ensures that the solutions of (3.1.2) are equi-Lipschitz continuous and hence
v := S(·, y) is a Lipschitz continuous function on X . Now, Corollary 3.3.3
implies that v is a subsolution of (3.1.2) in X while Proposition 3.3.5 shows
that v is a supersolution of (3.1.2) in X \ {y}. Since H(x, p) ≥ H(x, 0) = c for
x ∈ A, we see that v = S(·, y) is a solution for every y ∈ A 6= ∅.

Theorem 3.4.6 (Comparison principle for (3.2.2)). Let U be an open subset
of X such that U is compact. Assume (A1), (A2) and that H(x, 0) < 0 for all
x ∈ U . Let u be a subsolution and v be a supersolution of (3.2.2) such that
u∗ < +∞ and v∗ > −∞. If u∗ ≤ v∗ on ∂U , then u∗ ≤ v∗ in U .

Proof. First note that we may assume u∗(x0) 6= −∞ and v∗(x0) 6= +∞ at some
x0 ∈ U ; otherwise the conclusion holds. Fix θ ∈ (0, 1) and consider the upper
semicontinuous function defined by

Φ(x, y) := θu∗(x) − v∗(y)−
1

2ε
d(x, y)2

for ε > 0. Thanks to the compactness of U , we are able to take a maximum
point (xε, yε) ∈ U × U of Φ. It follows from Φ(xε, yε) ≥ Φ(x0, x0) that

1

2ε
d(xε, yε)

2 ≤ θu∗(xε)− v∗(yε)− θu∗(x0) + v∗(x0)

≤ θ supu∗ − inf u∗ − θu∗(x0) + v∗(x0) < +∞.
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Hence, d(xε, yε) → 0 and so we may assume that xε and yε converge to a same
point x̄ ∈ U by taking a subsequence. Let us consider the case when x̄ ∈ U .
Then, since u and v are a subsolution and a supersolution,

H(xε,
1

θε
d(xε, yε)) ≤ 0,

H(yε,
1

ε
d(xε, yε)) ≥ 0.

By the convexity of H the second inequality yields

(1− θ)H(yε, 0) + θH(yε,
1

θε
d(xε, yε)) ≥ 0

Hence,

(1− θ)H(yε, 0) + θH(yε,
1

θε
d(xε, yε))− θH(xε,

1

θε
d(xε, yε)) ≥ 0.

Sending ε → 0 yields (1 − θ)H(x̄, 0) ≥ 0. Since H(x̄, 0) < 0 and θ < 1, we
obtain a contradiction. Therefore, x̄ ∈ ∂U . We now observe that

θu∗(xε)− v∗(yε) ≥ Φ(xε, yε) ≥ sup
x∈U

Φ(x, x) = sup
U

(θu∗ − v∗).

Hence, we see that supU (θu
∗ − v∗) ≤ (θu∗ − v∗)(x̄) ≤ sup∂U (θu

∗ − v∗). Sending
k → 1 implies supU (u

∗ − v∗) ≤ sup∂U (u
∗ − v∗).

Corollary 3.4.7 (Comparison principle for (3.1.2)). Assume that X is compact.
Let u be a subsolution and v be a supersolution of (3.1.2) such that u∗ < +∞
and v∗ > −∞. If u∗ ≤ v∗ on A, then u∗ ≤ v∗ on X.

Proof. It follows from the definition of A that H(x, 0)− c < 0 for all x ∈ U :=
X \A. Therefore, Theorem 3.4.6 implies u∗ ≤ v∗ in X \A.

We will also require a comparison principle for the evolution equation (3.1.1).

Theorem 3.4.8 (Comparison principle for (3.1.1)). Assume (A1) and that X
is compact. Let u be a subsolution and v be a supersolution of (3.1.1) such that
u∗ < +∞ and v∗ > −∞. If u∗|t=0 ≤ v∗|t=0, then u

∗ ≤ v∗ on (0,∞)×X.

One is able to prove this theorem with the same idea as in [9, Proof of
Proposition 3.3] and so we omit the proof.

Before starting the proof of Theorem 3.4.3, let us explain that the initial
value problem (3.1.1) and u|t=0 = u0 admits a unique Lipschitz continuous
solution. We will construct a solution by Perron method while the uniqueness
is a direct consequence of the comparison principle (Theorem 3.4.8). Let Lip[u0]
denote the Lipschitz constant of u0 and set K = maxx∈X |H(x,Lip[u0])|. First
note that u(t, x) := u0(x) + Kt and u(t, x) := u0(x) − Kt are a Lipschitz
continuous supersolution and subsolution on [0,∞)×X , respectively. We then
can construct a continuous solution u such that u ≤ u by using Proposition
3.3.5 and Theorem 3.4.8. Take a constant L ∈ R+ such that H(x, p) ≥ c for all
x ∈ X and p ≥ L. Then, we see that |u(t, x)−u(s, y)| ≤ K|t−s|+Ld(x, y) by a
similar argument to the proof of Propositiont:liplhj. Actually, this is a standard
argument and we refer the reader to [10].

We are now able to prove the main theorem stated at the top of this section.
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Proof of Theorem 3.4.3. Take the solution v0 of (3.1.2) in Theorem 3.4.5. Not-
ing that u0 and v0 are bounded since X is compact, we are also able to see that
v0−M ≤ u0 ≤ v0+M for some largeM > 0. Recall Propositions 3.2.5 and 3.2.9,
which imply that v0− ct±M are solutions of (3.1.1). We then see by a compar-
ison principle for (3.1.1) (Theorem 3.4.8) that v0 − ct−M ≤ u ≤ v0 − ct+M .
Thus, the upper and lower semi-limits

v(x) := sup
(tj ,xj)→(∞,x)

lim sup
j

{u(tj , xj) + ctj},

v(x) := inf
(tj ,xj)→(∞,x)

lim inf
j

{u(tj , xj) + ctj}

can be defined as a bounded function on X since v0 −M ≤ v ≤ v ≤ v0 +M .
We next note that Propositions 3.2.8 and 3.2.9 show the function

wλ(t, x) := u

(

t

λ
, x

)

+ c
t

λ

is a solution of

λ∂tw
λ +H(x, |Dwλ|) = c in (0,∞)×X

for each λ > 0. Since

v(x) = sup
(tj ,xj ,λj)→(t,x,0)

lim sup
j

wλj (tj , xj),

v(x) = inf
(tj ,xj ,λj)→(t,x,0)

lim inf
j

wλj (tj , xj)

for all t > 0 and x ∈ X , i.e. v and v are respectively nothing but the upper
and lower semilimit of wλ as λ→ 0, the stability result (Proposition 3.3.1) and
Proposition 3.2.5 shows that v and v are a subsolution and a supersolution of
(3.1.2), respectively.

We next claim that v = v on the set A. Indeed, for each x ∈ A, u(t, x) + ct
converges to some v(x) since ∂tu+ c ≤ 0 and so it is a decreasing sequence. We
also obtain that u is equi-Lipschitz continuous. By connecting these two facts,
we see that v ≤ v ≤ v on A.

Finally, the comparison principle (Theorem 3.4.7) shows that v ≤ v on the
whole space X . Thus, we can conclude that u(t, x) + ct converges to some
function v = v = v which is a solution of (3.1.2).

Remark 3.4.9. The convexity assumption (A2) is used only to guarantee a com-
parison principle holds for the stationary equation (3.1.2). It is possible to
weaken the condition. For instance, let us consider the specific Hamiltonian
H(x, p) =

√

|p|, which is not convex. One easily see that the equation (3.1.2)
is equivalent to |Dv| = c2. Since a comparison principle for the convex Hamil-
tonian |Dv| = c2 implies a comparison principle

√

|Dv| = c, the same behavior

of the solution must occur to the Hamiltonian H(x, p) =
√

|p|. This scheme
works for quasiconvex Hamiltonians H(x, p) = h(|p|) + f(x) with h : R+ → R

such that h(p)− λp is non-decreasing for some λ > 0.

Let us introduce the functions φ−, φ∞ ∈ C(X) by

φ−(x) := inf
t>0

(u(x, t) + ct),

φ∞(x) := min{S(x, y) + φ−(y) | y ∈ A},
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where the function S is defined in the proof of Theorem 3.4.5. Note by Theorem
3.4.5 and Corollary 3.3.3 the function φ∞ is a solution of (3.1.2).

We then have

Theorem 3.4.10 (Asymptotic profile). limt→∞(u(x, t) + ct) = φ∞(x) for all
x ∈ X.

The proof can be done similar to [12], so we omit it.
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Chapter 4

Minimax formula of the

additive eigenvalue for

quasiconvex Hamiltonians

4.1 Introduction

It is well-known that the additive eigenvalue for a Hamilton-Jacobi equation has
an inf-sup type representation formula if the Hamiltonian is continuous, convex
and coercive. In this article we will introduce two approaches to this problem.
One is similar to known arguments using Jensen’s inequality directly to the
Hamiltonian while the other one invokes Clarke’s generalized gradient. Both
of these two approaches will derive the representation formula under a weaker
assumption on the Hamiltonian. We now stress that the latter approach is rather
new as far as the author knows and using a crucial lemma on convergence of
mollifications of Lipschitz continuous functions (Lemma 4.1.2), whose proof will
be given in Section 4.4.

For simplicity, we consider first-order Hamilton-Jacobi equations in the pe-
riodic setting of the form

H(x,Du) = a in TN := RN/ZN (4.1.1)

with a parameter a ∈ R. Here, H = H(x, p) : TN × RN → R is a function
called a Hamiltonian satisfying the following conditions:

(A1) (Continuity) H is continuous on TN ×RN .

(A2) (Convexity) H is convex in the variable p ∈ RN for each x ∈ TN .

An (additive) eigenvalue is a unique constant a ∈ R such that (4.1.1) admits
a viscosity solution u ([12]) with Lipschitz continuity; Du denotes a gradient
of the unknown function u = u(x). Then, the eigenvalue a = c, if exists, will
satisfy the representation formulas

c = inf
u∈C1(TN )

sup
∇u

H, (4.1.2)

c = inf
u∈Lip(TN )

sup
∇u

H, (4.1.3)
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where ∇u is the graph of the classical gradients (also denoted by ∇u) of u, i.e.

∇u := {(x, p) ∈ TN ×RN | u(y) = u(x) + p · (y − x) + o(|y − x|) as y → x}.

Note that Lipschitz continuous functions u ∈ Lip(TN ) are differentiable almost
everywhere by Rademacher’s theorem and ∇u ∈ L∞(TN ).

This kind of expression (the right-hand side of (4.1.2)) was found as a
variational formula of Mañé’s critical value with respect to the correspond-
ing Lagrangian by Contreras-Iturriaga-Paternain-Paternain [13]. On the other
hand, this is a pure partial differential equations problem. In view of this, the
above minimax formula was established by Fathi in the context of weak KAM
(Kolmogorov-Arnold-Moser) theory powered by the viscosity solution theory;
see [15, Section 6]. We remark that the additive eigenvalue problem (4.1.1) also
appears in solving homogenization problems [20] and long time behaviors [22].
It is also known that the minimax formula is useful for computing the additive
eigenvalue numerically [18]. This work will provide natural extensions for these
theories.

In this article we extend the representation formula for general quasiconvex
Hamiltonians (see (A2’) below) instead of the convexity assumption (A2) with
two different proofs.

(A2’) (Quasiconvexity) H is quasiconvex in the variable p ∈ RN for each x ∈
TN , i.e. H(x, θp + (1 − θ)q) ≤ max{H(x, p), H(x, q)} for all p, q ∈ RN ,
0 ≤ θ ≤ 1 and x ∈ TN .

We remark that the quasiconvexity is sometimes called level-set convexity since
(A2’) is equivalent to the condition that the sublevel sets {p ∈ RN | H(x, p) ≤ a}
are convex for all a ∈ R and x ∈ TN .

Recently several authors study homogenization problems with quasiconvex
Hamiltonians; see [16] and [1]. In fact, the authors of [1] mention some relation
between the eigenvalue and the minimax expression and [1, Proposition 6.2]
will immediately show one of the representations (4.1.3). Indeed, we can show
(4.1.3) easily in view of Propositions 4.2.1 and 4.4.1. On the other hand, to
show (4.1.2) need more advanced calculations such as Lemmas 4.1.1 and 4.1.2
below, and there seem to be no results on it as far as the author knows. We
also point out that the authors of [24] posed a Hamiltonian of the form

H(x, p) = H2
ε (x, p) = σ

(x

ε

) p

ps
tanh

(

ps
p

)

with a positive continuous function σ, a constant ps > 0 and a parameter
ε > 0. This Hamiltonian is quasiconvex (A2’) as well as non-coercive. Long
time behavior and homogenization for this Hamiltonian have been studied in
[17] and [19].

In order to explain the main idea of one of the proofs, let us review the
known proof under the assumptions (A1) and (A2). This proof is inspired by
[6], [18, Proposition 2.2] and [21, Subsection 4.2]. First, it is easy to show
the inequalities infu∈Lip sup∇uH ≤ c ≤ infu∈C1 sup∇uH . We hence claim
infu∈C1 sup∇uH ≤ infu∈Lip sup∇uH . Now, for u ∈ Lip(TN ) take mollifications
un := u ∗ ηn ∈ C∞(TN ) with the standard Friedrichs mollifier ηn. Then, we
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observe that

H(x,∇un(x)) = H

(

x,

∫

TN

∇u(x− y)ηn(y)dy

)

≤
∫

TN

H(x,∇u(x − y))ηn(y)dy

≤
∫

TN

H(x− y,∇u(x− y))ηn(y)dy + αn ≤ sup
∇u

H + αn

for all x ∈ TN and therefore we will have the desired inequality. Here, we
have invoked the convexity (A2) so that Jensen’s inequality yields the first
inequality; the second equality follows from the continuity (A1) with some error
term αn > 0 such that αn → 0.

Our idea of the proof is to use another Jensen-like inequality for quasiconvex
functions stated below.

Lemma 4.1.1 (Fundamental inequality for quasiconvex functions). Let f be a
lower semicontinuous function defined on RN . Then, f is quasiconvex on RN

if and only if

f

(
∫

Ω

Xdµ

)

≤ ess sup
Ω

f ◦X

for all measure spaces (Ω, µ) with µ(Ω) = 1 and all RN -valued integrable func-
tions X on Ω.

In view of this inequality, we can improve the proof for the representation
formula. In fact, this lemma has already been proved by Barron, Jensen, Liu
and Wang; see [7] (in one-dimensional setting) and [8]. We will give a short
proof in Section 4.3. We also point out that a discrete version of Lemma 4.1.1
is studied in [14].

The other proof is one using the generalized gradients of Lipschitz functions
u defined by

∂u := cop∇u,
i.e. ∂u ⊂ {(x, p) ∈ TN ×RN} is the closed convex hull with respect to p of the
closure of the classical gradients ∇u. This is nothing but Clarke’s gradients;
see [9] and [10]. Also note that ∂u is compact since ∇u ∈ L∞(TN ). Now,
the quasiconvexity of H implies that infu∈Lip sup∇uH = infu∈Lip sup∂uH . The
remaining inequality infu∈C1 sup∇uH ≤ infu∈Lip sup∂uH can be shown by a
graph convergence of the standard mollifications of Lipschitz functions stated
below. The proof will be given in Section 4.4.

Lemma 4.1.2 (Convergence of mollifications). Let u ∈ Lip(TN ) and let un ∈
C∞(TN ) be the standard mollification u ∗ ηn. If a sequence (xn, pn) ∈ ∇un
converges to (x, p) ∈ TN ×RN , then (x, p) ∈ ∂u.

In our arguments, the quasiconvexity (A2’) is essential. We point out that
the authors of [2] and [3] obtain partial results on homogenization for Hamilto-
nians without convexity such as

H(x, p) = (|p|2 − 1)2 − V (x)

with a bounded function V . Representation formula for such Hamiltonians is
an open problem.
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This chapter is organized as follows. In Section 4.2 we give a complete
statement of our main result on the minimax formula. We prove it in Section 4.3
by using the fundamental inequality for quasiconvex functions (Lemma 4.1.1)
while we give another proof in Section 4.4 with the generalized gradient and
Lemma 4.1.2. The contexts of Sections 4.3 and 4.4 are independent so the
reader can skip Section 4.3.

4.2 Minimax formula

In this section we give a rigorous definition of the viscosity solutions and the
eigenvalues of the Hamilton-Jacobi equations (4.1.1) and a complete statement
of the main theorem on the minimax formula. First, define the graphs of su-
perdifferentials D+u and subdifferentials D−u for a function u by

D+u := {(x, p) ∈ TN ×RN | u(y) ≤ u(x) + p · (y − x) + o(|y − x|) as y → x},
D−u := {(x, p) ∈ TN ×RN | u(y) ≥ u(x) + p · (y − x) + o(|y − x|) as y → x}.

Note that the superdifferentials and the subdifferentials can be characterized
by smooth functions touching u from above or below; see [11, Section 2]. A
function u ∈ Lip(TN ) is called a viscosity subsolution, a viscosity supersolution
or a viscosity solution of the Hamilton-Jacobi equation (4.1.1) with a ∈ R if

sup
D+u

H ≤ a, inf
D−u

H ≥ a, sup
D+u

H ≤ a ≤ inf
D−u

H,

respectively. A subeigenvalue, a supereigenvalue or an eigenvalue of the additive
eigenvalue problem (4.1.1) is a constant a ∈ R such that there exists at least
one viscosity subsolution, supersolution or solution of (4.1.1), respectively. We
now define the upper critical value and lower critical value c± ∈ R ∪ {±∞} by

c+ = c+(H) := inf{a ∈ R | a is a subeigenvalue of (4.1.1)},
c− = c−(H) := sup{a ∈ R | a is a supereigenvalue of (4.1.1)}.

For later convenience we prepare several notations: Let B(x, r) denote the
open ball with center x and radius r > 0 and let B(x, r) denote its closure. For
the graphs G = ∇u, ∂u,D±u ⊂ TN × RN and a point x ∈ TN , set G(x) :=
{p ∈ RN | (x, p) ∈ G}. A modulus is a non-negative function ω defined on
[0,∞) with limr→0 ω(r) = 0.

The following propositions give basic properties of the critical values.

Proposition 4.2.1 (Characterization and rough estimates).

c+(H) = inf
u∈Lip(TN )

sup
D+u

H, c−(H) = sup
u∈Lip(TN )

inf
D−u

H, (4.2.1)

min
x∈TN

H(x, 0) ≤ c±(H) ≤ max
x∈TN

H(x, 0). (4.2.2)

Proof. We only show the equation and inequalities for the upper critical value
c+(H) since a symmetric argument shows a proof for the lower critical value
c−(H). The proof is not so difficult; for a subeigenvalue a ∈ R, since there
exists a Lipschitz subsolution, infu∈Lip(TN ) supD+uH ≤ a. We also see that
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Lipschitz functions u ∈ Lip(TN ) themselves are a subsolution of the equation
(4.1.1) with a = supD+uH . Therefore, (4.2.1) holds. Moreover, u = 0 is a
subsolution of (4.1.1) with a = maxx∈TN H(x, 0). For a subeigenvalue a ∈ R

and the subsolution u ∈ Lip(TN ) of (4.1.1), since (x, 0) ∈ D+u at a maximum
point x ∈ TN of u, we have minx∈TN H(x, 0) ≤ a. We have shown (4.2.2).

Proposition 4.2.2 (Monotonicity of critical values). Let H1 and H2 be two
Hamiltonians such that H1 ≤ H2 on TN × RN . Then, c±(H1) ≤ c±(H2),
respectively.

The proof is trivial so we omit it.

Proposition 4.2.3 (Upper and lower critical values). Assume that H satisfies
(A1). Then, c−(H) ≤ c+(H). Moreover, if

(A3) (Coercivity) H is coercive in the variable p ∈ RN uniformly in x ∈ TN ,
i.e.

lim inf
|p|→∞

inf
x∈TN

H(x, p) = +∞,

then c−(H) = c+(H) and they are a unique eigenvalue of (4.1.1).

This is a well-known fact; we refer the reader to [20], [16] and [19]. Under the
assumptions (A1) and (A3) the unique eigenvalue c = c(H) := c+(H) = c−(H)
is called critical value of (4.1.1).

The generalized effective Hamiltonian introduced in the author’s previous
work [19] is nothing but the upper critical value c+:

Proposition 4.2.4. Assume that H satisfies (A1) and let Hn be a sequence of
Hamiltonians satisfying (A1) and (A3). If Hn converges to H in the sense of

lim inf
n

inf
TN×RN

(Hn −H) ≥ 0, lim sup
n

sup
TN×B(0,R)

(Hn −H) ≤ 0 for all R > 0,

then c(Hn) → c+(H).

Proof. Consider the specific approximation Hn(x, p) = H(x, p) + |p|/n for n =
1, · · · . Since Hn ≥ H , we see by Proposition 4.2.2 that c(Hn) = c+(Hn) ≥
c+(H), which immediately yields lim infn c(Hn) ≥ c+(H). In order to the op-
posite inequality, fix a subeigenvalue a and take the Lipschitz continuous sub-
solution u of (4.1.1). Note that the closure of D+u is compact by the Lipschitz
continuity. Hence, Hn becomes coincident to H on D+u for sufficiently large
n. Therefore, c(Hn) = c+(Hn) ≤ a, which shows lim supn c(Hn) ≤ c+(H). For
general approximations one can show by the same arguments as in [19, Theorem
4.1] that c(Hn) is a convergent sequence and that the limit does not depend on
the choice of the approximations. Finally, we have limn c(Hn) = c+(H).

We state our main result.

Theorem 4.2.5 (Minimax formulas). Assume (A1) and (A2’) (not (A2)).
Then,

c+(H) = inf
u∈Lip(TN )

sup
∇u

H = inf
u∈C∞(TN )

sup
∇u

H.

In particular, if (A3) holds, then they are nothing but the critical value c(H)
(the unique eigenvalue of (4.1.1)).
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Some inequalities hold unconditionally.

Proposition 4.2.6.

inf
u∈Lip(TN )

sup
∇u

H ≤ inf
u∈Lip(TN )

sup
D+u

H = c+(H) ≤ inf
u∈Lip(TN )

sup
∂u

H

≤ inf
u∈C∞(TN )

sup
∇u

H.

Proof. These inequalities follow from the well-known orders ∇u ⊂ D+u ⊂ ∂u
for u ∈ Lip(TN ) and ∇u = D+u = ∂u for u ∈ C1(TN ); see [5, Lemma II.1.8
and Subsection II.4.1].

4.3 Proof with fundamental inequality for qua-

siconvex functions

Lemma 4.1.1 will result in the fundamental property of convex sets with prob-
ability measures by the level-set convexity of f :

Lemma 4.3.1 (Fundamental inclusion for convex sets). Let C be a closed subset
of RN . Then, C is convex if and only if

e :=

∫

Ω

Xdµ ∈ C

for all measure spaces (Ω, µ) with µ(Ω) = 1 and all RN -valued integrable func-
tions X on Ω satisfying X ∈ C µ-a.e. on Ω.

Proof. The “if” part is easy; for x, y ∈ C and 0 ≤ θ ≤ 1, set Ω = {±1},
ν({−1}) = θ, ν({1}) = 1 − θ, X(−1) = x, X(1) = y. Then, since

∫

ΩXdµ =
θx+ (1− θ)y, we have θx+ (1 − θ)y ∈ C.

We show the “only if” part. Suppose conversely that e /∈ C. Then, by the
hyperplane separation theorem (see, e.g., [23, Theorem 11.4]) one is able to find
a vector v ∈ RN such that

v · x ≤ a < v · e for all x ∈ C

with some a ∈ R. Since X ∈ C µ-a.e.,

v · e = v ·
∫

Ω

Xdµ =

∫

Ω

v ·Xdµ ≤
∫

Ω

adµ = a,

which is contradicts to v · e > a. Therefore, e ∈ C.

Proof of Lemma 4.1.1. The “if” part is easy as Lemma 4.3.1. We show the
“only if” part. First note that we may assume that ess sup f ◦X = sup f ◦X
since Ω̃ := {f ◦X ≤ ess supΩ f ◦X} satisfies ess supΩ f ◦X = supΩ̃ f ◦X and

µ(Ω \ Ω̃) = 0. Set E := X(Ω̃) and take its closed convex hull coE. Then,
Lemma 4.3.1 shows that

∫

Ω̃
Xdµ ∈ coE and therefore

f

(
∫

Ω

Xdµ

)

= f

(
∫

Ω̃

Xdµ

)

≤ sup
coE

f = sup
E
f = sup

Ω̃

f ◦X = ess sup
Ω

f ◦X

Here, the middle equation follows from the quasiconvexity assumption of f .
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Remark 4.3.2. We can easily prove the standard Jensen’s inequality by applying
Lemma 4.3.1 to the closed convex set {(x, y) | y ≥ f(x)} for a convex function
f .

We are now able to show Theorem 4.2.5.

Proof of Theorem 4.2.5 using Lemma 4.1.1. It is enough to show

inf
u∈C∞(TN )

sup
∇u

H ≤ inf
u∈Lip(TN )

sup
∇u

H. (4.3.1)

Fix u ∈ Lip(TN ) and take the standard mollifications un := u ∗ ηn ∈ C∞(TN ).
Note that H is uniformly continuous on TN×B(0, R) with R := ess supTN |∇u|;
there is a modulus ω such that |H(x, p)−H(y, q)| ≤ ω(|x− y|+ |p− q|) for all
x, y ∈ TN and p, q ∈ B(0, R). Fix (x, p) ∈ ∇un. Then, we can calculate that

H(x, p) = H(x,∇un(x)) = H

(

x,

∫

TN

∇u(x− y)ηn(y)dy

)

≤ ess sup
y∈spt(ηn)

H(x,∇u(x − y))

≤ sup
∇u

H + ess sup
y∈spt(ηn)

ω(|y|).

Here, we have used the quasiconvexity (A2’) and Lemma 4.1.1 in order to obtain
the first inequality. Taking a limit with respect to n, we have sup∇un

H(x, p) ≤
sup∇uH , which implies (4.3.1). We have obtained all inequalities to show The-
orem 4.2.5.

This proof also shows approximation of viscosity solutions, whose convex
versions have been established in [6] and [5, Section II.5].

Proposition 4.3.3 (Approximation of viscosity solutions). Assume (A1) and
(A2’). Let u ∈ Lip(TN ) and let un ∈ C∞(TN ) be the standard mollification u ∗
ηn. If u is a viscosity subsolution of (4.1.1), then un are a viscosity subsolution
of H(x,Dun) = a+ ω(1/n) in TN with some modulus ω.

4.4 Proof with generalized gradients

We begin with:

Proposition 4.4.1. Assume (A1) and (A2’). Then,

inf
u∈Lip(TN )

sup
∇u

H = inf
u∈Lip(TN )

sup
D+u

H = inf
u∈Lip(TN )

sup
∂u

H.

Proof. This is true since

sup
∇u

H = sup
∇u

H = sup
cop ∇u

H = sup
∂u

H (4.4.1)

for all u ∈ Lip(TN ). In order to obtain the second equality, we need the
quasiconvexity assumption (A2’).

Remark 4.4.2. This proof also implies [1, Lemma 2.1].
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We prove Lemma 4.1.2 in order to show the remaining inequality in Theorem
4.2.5

inf
u∈C∞(TN )

sup
∇u

H ≤ inf
u∈Lip(TN )

sup
∂u

H. (4.4.2)

The proof, which uses Jensen’s inequality to distance functions from convex sets,
is due to A. Siconolfi. A similar technique appears in [16]. We first prepare:

Lemma 4.4.3 (Continuity of generalized gradients). Let u ∈ Lip(TN ). Then,
for each x ∈ TN there exists a modulus ωx such that

d(∂u(x), p) ≤ ωx(|y − x|) for all (y, p) ∈ ∂u. (4.4.3)

This lemma means that the the generalized gradients ∂u is upper semicon-
tinuous as a set-valued function. The proof is easy since ∂u is compact (see,
e.g., [10, Proposition 2.1.5] and [4, Proposition 1.4.8]) but we prove it for com-
pleteness.

Proof. Fix arbitrary ε > 0. Since ∂u and {x}×{p | d(∂u(x), p) = ε} are disjoint
compact sets, ∂u and B(x, δ)×{p | d(∂u(x), p) ≥ ε−δ} have empty intersections
for some small δ > 0. Therefore, every (y, p) ∈ ∂u with |y − x| < δ satisfies
d(∂u(x), p) < ε− δ < ε.

Proof of Lemma 4.1.2. First note that the set ∂u(x) is non-empty closed convex
and hence d(∂u(x), ·) is a (Lipschitz) continuous convex function on RN . We
observe by Jensen’s inequality that

d(∂u(x), q) = d(∂u(x),∇un(y)) = d

(

∂u(x),

∫

TN

∇u(y − z)ηn(z)dz

)

≤
∫

TN

d(∂u(x),∇u(y − z))ηn(z)dz

for all (y, q) ∈ ∇un. By Lemma 4.4.3 we have

d(∂u(x), pn) ≤
∫

TN

d(∂u(x),∇u(xn − z))ηn(z)dz

≤
∫

TN

ωx(|xn − z − x|)ηn(z)dz ≤ sup
z∈spt ηn

ωx(|xn − z − x|).

This shows that d(∂u(x), pn) → 0 and therefore p ∈ ∂u(x).

Lemma 4.1.2 yields another proof of Theorem 4.2.5.

Proof of Theorem 4.2.5 using Lemma 4.1.2. It is enough to show (4.4.2). Fix
u ∈ Lip(TN ) and take the standard mollifications un := u∗ηn ∈ C∞(TN ). Also
take a maximum point (xn, pn) ∈ ∇un of H so that H(xn, pn) = sup∇un

H .
Now, note that the sequence (xn, pn) has an accumulation point (x, p) ∈ TN ×
B(0, ess supTN |∇u|) since u is Lipschitz continuous. We then see by Lemma
4.1.2 that (x, p) ∈ ∂u and therefore

inf
u∈C∞(TN )

sup
∇u

H ≤ sup
∇un

H = H(xn, pn) → H(x, p) ≤ sup
∂u

H.

Since u ∈ Lip(TN ) is arbitrary, we can obtain the desired inequality (4.4.2).
We now have obtained all the equations in Theorem 4.2.5.
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Remark 4.4.4. This proof is a bit longer than the proof in Section 4.3 but may
give a deeper observation. For example, there is a question that if un ∈ C∞

converges to u ∈ Lip uniformly, then a sequence (xn, pn) ∈ ∇un has an accumu-
lation point belonging to ∂u. This is an open problem concerned with stability
of viscosity solutions. We also remark that one is able to prove Proposition 4.3.3
by combining Lemma 4.1.2 and the equation (4.4.1).
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Chapter 5

Viscosity solutions for

one-dimensional singular

diffusion equations

5.1 Introduction

In this chapter we study a one-dimensional nonlinear degenerate parabolic equa-
tion whose diffusion effect is very strong at particular slopes of unknown func-
tions. We are in particular interested in an equation, where the driving force
term is spatially inhomogeneous. A typical example is a quasilinear equation

ut = a(ux)[(W
′(ux))x + σ(t, x)], (5.1.1)

where W is a given convex function on R but may not be of class C 1(R) so
that its derivative W ′ may have jump discontinuities and σ is a given Lipschitz
function depending on the space variable x as well as the time variable t; here a
is a given nonnegative continuous function, and ut and ux denote the time and
the space derivative of an unknown function u = u(t, x).

In order to explain the motivation of this work, let us consider an evolution
law of a curve Γt ⊂ R2 moved by an anisotropic curvature flow

V =M0(n)(κγ0 + σ) on Γt, (5.1.2)

where V is the normal velocity of the evolving curve in the direction of the
normal vector n and let the mobility M0 and the surface energy density γ0 be
positive functions on the unit circle; the term κγ0 called a nonlocal curvature is
the first variation of surface energy. We note that if γ0 is the constant 1, then κγ0
is nothing but usual curvature κ; the quantity κγ0 formally equals ((γ0)θθ+γ0)κ
if one writes γ0 as a function of the argument θ of n = (cos θ, sin θ). The equation
(5.1.2) appears in crystal growth as an equation to describe the interface of two
phases; see, e.g., [2].

If the curve Γt is given as a graph of a function u = u(t, x), the equation

53



(5.1.2) then becomes of the form (5.1.1) with

a(p) =M(p,−1), M(p, q) =
√

p2 + q2M0

(

(p, q)
√

p2 + q2

)

,

W (p) = γ(p,−1), γ(p, q) =
√

p2 + q2γ0

(

(p, q)
√

p2 + q2

)

.

Assume that the Frank diagram F :=
{

(p, q) ∈ R2 | γ(p, q) ≤ 1
}

is convex so
that W is a convex function. If F has a smooth (C 2) boundary ∂F , the theory
of (5.1.2) is well developed [6], [9], [16]. Indeed, since W is C 2(R), we are able
to apply the classical theory of viscosity solutions [7] to the equation (5.1.1). We
are concerned with the case that ∂F is of class C 2 except finitely many points.
A typical example of F is a polygon so that W is a piecewise linear function.
For examples if γ is a crystalline energy of the form

γ(p, q) = |p|+ |q|,

then W ′′(p) is twice the Dirac delta function δ and so the equation (5.1.1)
formally becomes

ut = a(ux)[2δ(ux)uxx + σ],

which is not a classical partial differential equation.
Admissible curves such as polygons moving by a crystalline energy with no

driving force have been studied by Taylor [19, 20] and by Angenent and Gurtin
[1]. For the evolution law of graphs (5.1.1) a notion of solutions is introduced
by adapting the subdifferential theory [10] (σ = 0) and [11]. Elliott, Gardiner
and Schätzle [8] study relationship between the solutions in the sense of [10] and
admissible curves. When σ is independent of x, the theory of viscosity solutions
to (5.1.1) and (5.1.2) is established in a series of papers [12], [13], [14].

The goal of the present work is to establish a global-in-time existence theo-
rem of a viscosity solution for a class of equations including (5.1.1) with a given
continuous periodic initial condition. Our result is a generalization of [12, Sec-
tion 8, 9] to the equation with spatially inhomogeneous driving force. Notion of
viscosity solutions to (5.1.1) with σ depending on x is introduced in [15], where
a comparison theorem is established. The authors of [15] also show some exis-
tence results by showing that a special semi-explicit variational solution studied
in [17] is a viscosity solution but their initial data is very restrictive. We also
point out that in a recent paper by Chambolle and Novaga [4] the authors es-
tablish short-time existence for (5.1.2) by time-discrete implicit scheme, which
is introduced in [5], [3]. Our argument based on the theory of viscosity solu-
tions is completely different from theirs and can be applied to a fully nonlinear
equation.

Following [15], let us consider an energy functional which formally equals

Φ[f ] =

∫

T

(W (fx)− σf)dx

for a smooth function f ; we assumed a periodic boundary condition so that T =
R/ωZ with ω > 0. Let ∂0Φ[f ] be the canonical restriction of the subdifferential
∂Φ[f ] in the Hilbert space H := L2(T), i.e.

∂0Φ[f ] = arg min {‖λ‖H | λ ∈ ∂Φ[f ]} .
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As mentioned in [11], the above minimizing problem is equivalent to an obstacle
problem: The condition λ ∈ −∂Φ[f ] holds if and only if λ is of the form λ = ξ′

such that ξ ∈ ∂W (fx) + Z a.e. on T, where Z is a primitive function of σ, i.e.
Zx = σ. Therefore, we minimize

{
∫

T

|ξ′|2dx | ξ ∈ ∂W (fx) + Z a.e. on T

}

. (5.1.3)

There might be a chance that there is no such ξ satisfying ξ ∈ ∂W (fx) +Z a.e.
on T. We need to require special structure to guarantee the existence of such
ξ. A sufficient condition is that f is flat (facet) on a nontrivial interval (called a
faceted region) containing each fixed point x whenever ∂W has a jump at fx(x).
Such a function f is called a faceted function and we see that (5.1.3) admits a
unique minimizer ξ̄ for a faceted function f since the problem is convex. It is
natural to guess that ξ̄′ gives a candidate for the value of the nonlocal curvature

ΛσW (f)(x) = (W ′(fx))x + σ(x).

Based on this observation we establish a notion of viscosity solutions to (5.1.1).
We prove the existence theorem by Perron’s method, which is standard in

the theory of viscosity solutions for regular equations; we refer the reader to
[18], [7]. In our problem, however, it is necessary to modify a smooth faceted
test function keeping its property. In the previous work [12] it suffices to modify
the test function outside the faceted region. However, this method heavily relies
on the fact that the nonlocal curvature ΛσW (f) is constant on a faceted region
when σ is independent of x.

The main idea to solve this problem is to find a small effective region which
determines the quantity of the nonlocal curvature. We construct a modification
as in the previous work [12] using the effective region instead of the faceted
region. Then the argument works well for our setting with the spatially inho-
mogeneous driving force term σ.

This chapter is organized as follows. In Section 5.2 we recall the definition
of faceted functions and the nonlocal curvature ΛσW and define generalized solu-
tions for the equations. In Section 5.3 we describe how to construct an effective
region and modifications for test functions. In Section 5.4 we prove Perron type
existence theorems and Section 5.5 is devoted to proving the existence theorem
for periodic initial data.

5.2 Definition of solutions

In this section we recall some notions of functions and the nonlocal curvature ΛσW
introduced in [15, Section 2] and define generalized solutions for fully nonlinear
equations of the form

ut + F (t, ux,Λ
σ
W (u)) = 0 in Q := (0, T )× U , (5.2.1)

where T > 0 and U is an open set in R. We assume the following conditions
throughout this paper.

(W) Assume W is a convex function on R with values in R of class C 2 outside
a closed discrete set P and that its second derivative W ′′ is bounded in
any compact set except all points in P .
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(S) The continuous function σ = σ(t, x) on [0, T ]× U is Lipschitz continuous
in x uniformly with respect to t, i.e. there exists a constant L such that

|σ(t, x) − σ(t, y)| ≤ L|x− y| for all t ∈ [0, T ), x, y ∈ U .

(F1) F is continuous on [0, T ]×R×R with values in R.

(F2) F (t, p,X) ≤ F (t, p, Y ) for all t ∈ [0, T ], p ∈ R, X ≥ Y .

The discrete set P in (W) is either a finite set or a countable set having
no accumulation point in R. If P is nonempty, P is of form {pj}mj=1, {pj}∞j=1,

{pj}−∞
j=−1 or {pj}∞j=−∞, where {pj} is a strictly increasing sequence pj < pj+1

with limj→∞ pj = ∞ and limj→−∞ pj = −∞, and m is a positive integer.
We often let σ(t) denote the function σ(t)(x) = σ(t, x) for t ∈ [0, T ). We
say that a family of a functions σt on U is equi-Lipschitz continuous if there
exists a constant L such that |σt(x) − σt(y)| ≤ L|x − y| for all t and x, y ∈ U .
Our assumption (S) is equivalent to saying that σ(t) on U is equi-Lipschitz
continuous.

5.2.1 Faceted functions

We first define a notion of a faceted function.

Definition 5.2.1 (Faceted function). A function f ∈ C 1(U) is faceted at a point
x̂ ∈ U with slope p ∈ R (or p-faceted at x̂) if there exists a closed nontrivial
finite interval I = [cl, cr] ⊂ U containing x̂ (i.e. cl, cr ∈ U satisfy cl < cr and
cl ≤ x̂ ≤ cr) such that

f ′(x) = p for all x ∈ I,

f ′(x) 6= p for all x ∈ J \ I

with some neighborhood J = (bl, br) ⊂ U of I. The closed interval I is called a
faceted region of f containing x̂. We say that a function f is P -faceted at x̂ if
f is p-faceted at x̂ for some p ∈ P and let

C 2
P (U) :=

{

f ∈ C 2(U) | f is P -faceted at x̂ whenever f ′(x̂) ∈ P
}

.

We also define the left transition number χl = χl(f, x̂) and the right transi-
tion number χr = χr(f, x̂) for a p-faceted function f at x̂ by

χl =

{

+1 if f ′ < p on (bl, cl),

−1 if f ′ > p on (bl, cl),

χr =

{

+1 if f ′ > p on (cr, br),

−1 if f ′ < p on (cr, br).

Let R(f, x̂) = [cl, cr] denote a maximal closed interval containing x̂ on which
f ′ is constant, i.e.

cl := inf{x ∈ U | f ′(y) = f ′(x̂) for all y ∈ [x, x̂]},
cr := sup{x ∈ U | f ′(y) = f ′(x̂) for all y ∈ [x̂, x]}.

The interval R(f, x̂) is nothing but the faceted region if f is a P -faceted function
at x̂.
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Remark 5.2.2. We note that a p-faceted function f at x̂ agrees with an affine
function

ℓp(x) := p(x− x̂) + f(x̂)

on I = R(f, x̂) and that

χl =

{

+1 if f > ℓp on (bl, cl),

−1 if f < ℓp on (bl, cl),

χr =

{

+1 if f > ℓp on (cr, br),

−1 if f < ℓp on (cr, br).

5.2.2 Nonlocal curvature with a nonuniform driving force

We next recall the definition of the nonlocal curvature for a smooth faceted
function. Assume (W) and that

σ is a Lipschitz function on U . (5.2.2)

For f ∈ C 2
P (U) and x̂ ∈ U define the nonlocal curvature ΛσW (f)(x̂) as below.

On one hand, if f ′(x̂) /∈ P , we set

ΛσW (f)(x̂) =W ′′(f ′(x̂))f ′′(x̂) + σ(x̂)

as expected. On the other hand, if p := f ′(x̂) ∈ P , i.e. f is p-faceted at x̂, the
definition is more involved since it is based on the obstacle problem (5.1.3).

Let Z be a primitive function of σ and let

∆ = |∂W (p)| = lim
q↓p

W ′(q)− lim
q↑p

W ′(q).

We also take the faceted region I = R(f, x̂) = [cl, cr] and the transition numbers
χl = χl(f, x̂), χr = χr(f, x̂). We note that

Z ∈ C 1,1(I), ∆ > 0, I is a nontrivial closed interval and χl, χr ∈ [−1, 1].
(5.2.3)

For later convenience we have defined K for χl, χr whose values are in [−1, 1]
not necessarily in {±1}. Let K = KZ,∆,I

χlχr
be the set of all ξ ∈ H 1(I) satisfying

an obstacle condition

Z(x)−∆/2 ≤ ξ(x) ≤ Z(x) + ∆/2 for all x ∈ I

and a boundary condition

ξ(cl) = Z(cl)− χl∆/2, ξ(cr) = Z(cr) + χr∆/2.

We now consider the functional J = JZ,∆,Iχlχr
on L2(I) defined by

J [ξ] =

{

∫

I |ξ′(x)|2dx if ξ ∈ K,

∞ otherwise.

It is easy to see that K is a closed convex set with respect to H 1 norm and thus
J admits a unique minimizer denoted by ξ̄ = ξZ,∆,Iχlχr

.
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An equivalent condition to being a minimizer of the obstacle problem is
known. Assume (5.2.3). For ξ ∈ K define the upper coincidence set D+ and
the lower coincidence set D− by

D± = D±(ξ) = {x ∈ I | ξ(x) = Z(x)±∆/2}.

We say that ξ satisfies concave-convex condition if ξ is concave outside the upper
coincidence set D+ and convex outside the lower coincidence set D−.

Proposition 5.2.3 (Characterization of minimizer). A function ξ ∈ K is the
minimizer of J if and only if ξ satisfies the concave-convex condition.

This proposition is proved in the same way as in [15, Proposition 2.2], which
shows the equivalence with the assumption χl, χr = ±1, and so we omit it.
Noting that Proposition 5.2.3 in particular implies that the minimizer of the
obstacle problem ξ̄ belongs to C 1,1(I), so we define

ΛZ
′

χlχr
(x; I,∆) = ξ̄′(x) for x ∈ I.

The reason we write Z ′ instead of Z is that the derivative ξ̄′ depends on Z only
through its derivative. Proposition 5.2.3 also shows that restriction of ξ̄ is also
a minimizer of an obstacle problem on the restricted domain:

Corollary 5.2.4. Let M = [cl, cr] ⊂ I be a nontrivial closed interval. Then,

ξZ,∆,Iχlχr
= ξZ,∆,Mχ′

l
χ′

r
on M .

with
χ′
l = 2(ξ̄(cl)− Z(cl))/∆, χ′

r = 2(ξ̄(cr)− Z(cr))/∆.

Definition 5.2.5 (Nonlocal curvature). Assume (W) and (5.2.2). Let f ∈
C 2
P (U) and x̂ ∈ U .

(i) If f ′(x̂) /∈ P , then define

ΛσW (f)(x̂) =W ′′(f ′(x̂))f ′′(x̂) + σ(x̂).

(ii) If f is P -faceted at x̂, then define

ΛσW (f)(x̂) = Λσχlχr
(x̂; I,∆)

with ∆ = |∂W (p)|, I = R(f, x̂), χl = χl(f, x̂), χr = χr(f, x̂).

We prepare several propositions on the nonlocal curvature.

Proposition 5.2.6 (Comparison). Assume (W) and (5.2.2). Let f, g ∈ C 2
P (U)

and x̂ ∈ U . If maxU (f − g) = (f − g)(x̂), then

ΛσW (f)(x̂) ≤ ΛσW (g)(x̂).

Proposition 5.2.7 (Continuity with respect to σ and x). Assume (W) and
let f ∈ C 2

P (U) and x̂ ∈ U . Let y, yk ∈ R(f, x̂) and equi-Lipschitz continuous
functions σ, σk on U satisfy yk → y and σk → σ uniformly. Then

Λσk

W (f)(yk) → ΛσW (f)(y).

58



Proposition 5.2.8 (Continuity with respect to I). Assume (5.2.2), χl, χr =
±1, ∆ > 0. Let nontrivial intervals I = [cl, cr], I

k = [ckl , c
k
r ] of U satisfy Ik → I,

i.e. ckl → cl and c
k
r → cr, and let y ∈ I, yk ∈ Ik satisfy yk → y. Then

Λσχlχr
(yk; Ik,∆) → Λσχlχr

(y; I,∆).

Proposition 5.2.6–5.2.8 are immediate consequence of [15, Theorem 2.8, 2.9,
2.12].

5.2.3 Admissible functions and definition of a generalized

solution

We recall a natural class of test function.

Definition 5.2.9 (Admissible function). Let I and J be open intervals in R.
An admissible function on Q := J × I is a function ϕ of the form

ϕ(t, x) = f(x) + g(t) on Q (5.2.4)

with some functions f ∈ C 2
P (I) and g ∈ C 1(J). Let AP (Q) be the set of all

admissible functions on Q.

We are now able to define a generalized solution in the viscosity sense for
the singular parabolic equation (5.2.1). For a real-valued function u recall the
upper semicontinuous envelope and the lower semicontinuous envelope

u∗(t, x) := lim
ε↓0

sup{u(s, y) | (s, y) ∈ Q, |s− t|+ |y − x| < ε},

u∗(t, x) := lim
ε↓0

inf{u(s, y) | (s, y) ∈ Q, |s− t|+ |y − x| < ε}

for (t, x) ∈ Q.

Definition 5.2.10 (Viscosity solution). A real-valued function u on Q is a
viscosity subsolution of (5.2.1) in Q if u∗ <∞ in [0, T )× U and

ϕt(t̂, x̂) + F (t̂, ϕx(t̂, x̂),Λ
σ(t̂)
W (ϕ(t̂, ·))(x̂)) ≤ 0 (5.2.5)

whenever (t̂, x̂) ∈ Q and ϕ ∈ AP (Q) satisfy

max
Q

(u∗ − ϕ) = (u∗ − ϕ)(t̂, x̂). (5.2.6)

A real-valued function u on Q is a viscosity supersolution of (5.2.1) in Q if
u∗ > −∞ in [0, T )× U and

ϕt(t̂, x̂) + F (t̂, ϕx(t̂, x̂),Λ
σ(t̂)
W (ϕ(t̂, ·))(x̂)) ≥ 0 (5.2.7)

whenever (t̂, x̂) ∈ Q and ϕ ∈ AP (Q) satisfy

min
Q

(u∗ − ϕ) = (u∗ − ϕ)(t̂, x̂). (5.2.8)

If u is both a subsolution and a supersolution, u is called a viscosity solution.
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Hereafter we suppress the word “viscosity”. A function ϕ satisfying (5.2.6)
or (5.2.8) is called a test function of u at (t̂, x̂).

The following propositions are easily derived.

Proposition 5.2.11 (Smooth solution and viscosity solution). We assume (W),
(S), (F2). If ϕ ∈ AP (Q) of the form (5.2.4) with f ∈ C 2

P (U) and g ∈ C 1(0, T )
satisfies (5.2.5) (resp. (5.2.7)) for each (t̂, x̂) ∈ Q, then ϕ is a subsolution (resp.
supersolution) of (5.2.1) in Q.

Proof. We only show that ϕ is a subsolution. Fix ψ ∈ AP (Q) of the form

ψ(t, x) = f̃(x) + g̃(t) on Q

with f̃ ∈ C 2
P (U) and g̃ ∈ C 1(0, T ), and suppose that

ϕ(t, x)− ψ(t, x) = f(x)− f̃(x) + g(t)− g̃(t)

attains a maximum at a point (x̂, t̂) ∈ Q. We then see that f ′(x̂) = f̃ ′(x̂) and
g′(t̂) = g̃′(t̂). Moreover, Proposition 5.2.6 yields

Λ
σ(t̂)
W (f)(x̂) ≤ Λ

σ(t̂)
W (f̃)(x̂).

Therefore, we have

g̃′(t̂) + F (t̂, f̃ ′(x̂),Λ
σ(t̂)
W (f̃)(x̂)) ≤ g′(t̂) + F (t̂, f ′(x̂),Λ

σ(t̂)
W (f)(x̂)) ≤ 0

by (F2) and (5.2.5).

Proposition 5.2.12 (Addition by affine functions). Let u be a subsolution
(resp. supersolution) of (5.2.1) in Q and a, b ∈ R. Then v(t, x) = u(t, x)−ax−b
is a subsolution (resp. supersolution) of

vt + F (t, vx + a,ΛσWa
(v)) = 0 in Q,

where Wa(p) =W (p+ a).

In order to show the existence of a solution by Perron’s method we define
a local version of the notion of solutions. We say that a function ϕ ∈ C (Q) is
locally admissible at a point (t̂, x̂) ∈ Q if ϕ is admissible on J × I with some
bounded open intervals I and J such that t̂ ∈ J ⊂ (0, T ) and x̂ ∈ I ⊂ U .

Definition 5.2.13. A real-valued function u on Q is a subsolution in the local
sense of (5.2.1) in Q if u∗ < ∞ in [0, T ) × U and (5.2.5) holds for all locally
admissible ϕ ∈ C (Q) at (t̂, x̂) ∈ Q satisfying (5.2.6). A supersolution in the
local sense is defined by replacing u∗ < ∞ by u∗ > −∞, the inequality (5.2.5)
by (5.2.7) and the equality (5.2.6) by (5.2.8) as before.

Lemma 5.2.14. A real-valued function u on Q is a subsolution (resp. superso-
lution) of (5.2.1) in Q if and only if u is a subsolution (resp. supersolution) in
the local sense of (5.2.1) in Q.

These facts can be shown by the same argument as in [12, Section 6].
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5.3 Effective region and canonical modification

In this section we construct an upper and lower modification f#,ε and f#,ε for
a faceted function f and a small number ε > 0. These modifications play an
important role in order to prove a Perron type existence theorem in the next
section.

Definition 5.3.1. Let f ∈ C (U) ∩ C 2
P (U1) satisfy f ′(x̂) = 0 with an open

interval U1 = (al, ar) ⊂ U and x̂ ∈ U1. Let

p1 = sup{p ∈ P ∪ {−∞} | p < 0} ∈ [−∞, 0),

p2 = inf{p ∈ P ∪ {∞} | p > 0} ∈ (0,∞].

Consider the case (i) f ′(x̂) = 0 /∈ P . We then define M = [dl, dr] by

dl = dr = x̂, i.e. M = {x̂}

and set
f#,ε(x) = f#(x) = f(x) + (x− x̂)4 for x ∈ U .

Let us note that there exists an open neighborhood U2 = (bl, br) ⊂ U1 of x̂ such
that

p1
2
< f ′(x) <

p2
2

for all x ∈ U2, (5.3.1)

dl +
3
√
p1

2
≤ bl < dl, dr < br ≤ dr +

3
√
p2

2
. (5.3.2)

Consider the case (ii) f ′(x̂) = 0 ∈ P , i.e. f is P -faceted at x̂. Take the
faceted region [cl, cr] = R(f, x̂) and the minimizer of the obstacle problem ξ.
Define M = [dl, dr] by

dl = max{x ≤ x̂ | x ∈ D−(ξ) ∪ {cl}},
dr = min{x ≥ x̂ | x ∈ D+(ξ) ∪ {cr}}.

Take an open interval U2 = (bl, br) ⊂ U1 ∩ J such that (5.3.1) and (5.3.2) hold,
where J is the neighborhood of R(f, x̂) appearing in Definition 5.2.1. Define
f#,ε for each ε > 0 as below: First set

f#,ε(x) = f(x) = f(x̂) for x ∈M = [dl, dr].

If dl ∈ D−(ξ), set

f#,ε(x) = f(x) + (x− dl)
4 for x ∈ U , x ≤ dl.

If dl /∈ D−(ξ), that is dl = cl and dl ∈ D+(ξ), set

f#,ε(x) =











f(dl) = f(x̂) for x ∈ [dl − ε, dl],

f(x+ ε) for x ∈ [bl, dl − ε],

f(x) + f(bl + ε)− f(bl) for x ∈ U , x ≤ bl.

If dr ∈ D+(ξ), set

f#,ε(x) = f(x) + (x− dr)
4 for x ∈ U , x ≥ dr.
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f#

x̂
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ξ
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Z +∆/2

Z −∆/2

f

Figure 5.1: Construction ofM and f# = f#,ε (case dl ∈ D−(ξ) and dr ∈ D+(ξ))

If dr /∈ D+(ξ), that is dr = cr and dr ∈ D−(ξ), set

f#,ε(x) =











f(dr) = f(x̂) for x ∈ [dr, dr + ε],

f(x− ε) for x ∈ [dr + ε, br],

f(x) + f(br − ε)− f(br) for x ∈ U , x ≥ br.

We call the function f#,ε an upper canonical modification of f at x̂ with an
effective region M and a canonical neighborhood U2. By a similar way we are
able to construct a lower canonical modification f#,ε with an effective region M
and a canonical neighborhood U2: Let −f#,ε be an upper canonical modification
of −f at x̂.

The figures below illustrate how to construct the effective region M and
the upper canonical modification f# = f#,ε when f is P -faceted at x̂ and
χl = χr = −1. While Figure 5.1 indicates the case dl ∈ D−(ξ) and dr ∈ D+(ξ),
Figure 5.2 shows the cases dl ∈ D−(ξ) and dr /∈ D+(ξ).

The upper and lower canonical modification fulfills

Proposition 5.3.2. Assume (W). Let U1 = (al, ar) ⊂ U be an open interval.
For f ∈ C (U) ∩ C 2

P (U1) and x̂ ∈ U1 satisfying f ′(x̂) = 0, let f ε be an upper
canonical modification f#,ε (resp. lower canonical modification f#,ε) with ef-
fective region M = [dl, dr] and a canonical neighborhood U2 = (bl, br) and let
s = 1 (resp. s = −1). Let y, yε ∈M , yk ∈ U and equi-Lipschitz functions σ, σk
satisfy yε → y, yk → y and σk → σ uniformly. Then the conditions

f ε ∈ C (U) ∩ C 2
P (U2), (5.3.3)
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Figure 5.2: Construction ofM and f# = f#,ε (case dl ∈ D−(ξ) and dr /∈ D+(ξ))

sf ε > sf on U \M , (5.3.4)

inf
U\U2

s(f ε − f) > 0, (5.3.5)

f ε(y) = f(y) = f(x̂), (5.3.6)

lim
k
(f ε)′(yk) = (f ε)′(y), (5.3.7)

(f ε)′(y) = f ′(y) = f ′(x̂) = 0, (5.3.8)

lim sup
k

sΛσk

W (f ε)(yk) ≤ sΛσW (f ε)(y) (5.3.9)

hold for all ε > 0 small enough, and

ΛσW (f ε)(yε) → ΛσW (f)(y) as ε→ 0, (5.3.10)

sΛσW (f)(y) ≤ sΛσW (f)(x̂) (5.3.11)

hold.

Proof. We only consider the case f ε = f#,ε and s = 1. Since it is easy to verify
the conditions (5.3.3)–(5.3.11) in the case (i) f ′(x̂) = 0 /∈ P , we only consider
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the case (ii) f is P -faceted at x̂. The conditions (5.3.3)–(5.3.8) are shown by
the definition of the canonical modification.

Show (5.3.9). Take a subsequence kj such that

Λ
σkj

W (f#,ε)(ykj ) → lim sup
k

Λσk

W (f#,ε)(yk).

Since Proposition 5.2.7 implies

Λ
σkj

W (f#,ε)(ykj ) → ΛσW (f#,ε)(y)

provided that ykj ∈ Rε = [cεl , c
ε
r] := R(f#,ε, x̂) for each j, we may assume that

ykj /∈ Rε. Also it is enough to consider the case ykj < cεl . Hence,

Λ
σkj

W (f#,ε)(ykj ) =W ′′((f#,ε)′(ykj ))(f
#,ε)′′(ykj ) + σkj (ykj )

→ σ(y).

Since ykj → y ∈M ⊂ Rε, we observe that

y = cεl = dl ∈ D−(ξ
ε),

where ξε is the minimizer of the obstacle problem ξZ,∆,R
ε

χ′

l
χ′

r
with a primitive Z

of σ, ∆ = |∂W (0)|, Rε =, χ′
l = χl(f

#,ε, x̂), χ′
r = χr(f

#,ε, x̂). Noting that
ξε − Z +∆/2 attains zero minimum at y, we have

σ(y) ≤ ΛσW (f#,ε)(y),

and hence

lim sup
k

Λσk

W (f ε)(yk) = lim
j

Λ
σkj

W (f ε)(ykj ) ≤ ΛσW (f#,ε)(y).

Show (5.3.10). Write R = R(f, x̂), χl = χl(f, x̂), χr = χr(f, x̂) so that
ξ = ξZ,∆,Rχlχr

. Also note that χ′
l and χ′

r are independent of ε. It follows from
Corollary 5.2.4 that

ΛσW (f)(y) = Λσχlχr
(y;R,∆) = Λσχ′

l
χ′

r
(y;M,∆).

Since Rε →M as ε→ 0, we see by Proposition 5.2.8 that

ΛσW (f#,ε)(yε) = Λσχ′

l
χ′

r
(yε;R

ε,∆) → Λσχ′

l
χ′

r
(y;M,∆) = ΛσW (f)(y).

Since y /∈ D−(ξ) for all y ∈ [x̂, dr), we see that ξ is concave on [x̂, dr] by the
concave-convex condition of ξ. By a similar argument we see that ξ is convex
on [dl, x̂]. Therefore we obtain (5.3.11) for all y ∈M .

5.4 Stability results

In this section we show Perron type existence theorem. Let U be an open set
in R and Q = (0, T )× U .

Theorem 5.4.1 (Perron type existence). Assume (W), (S), (F1), (F2). Let
u− and u+ respectively be a subsolution and a supersolution of (5.2.1) satisfying

u− ≤ u+ in Q, (u−)∗ > −∞, (u+)∗ <∞ on [0, T )× U . (5.4.1)
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(1) Then, there exists a solution u of (5.2.1) satisfying

u− ≤ u ≤ u+ in Q. (5.4.2)

(2) Moreover, if
σ(t, x + ω) = σ(t, x) (5.4.3)

u−(t, x+ ω) = u−(t, x), u+(t, x+ ω) = u+(t, x) (5.4.4)

for all (t, x) ∈ Q with ω > 0 and U = R, then there exists a solution u of
(5.2.1) satisfying (5.4.2) and

u(t, x+ ω) = u(t, x) for all (t, x) ∈ Q. (5.4.5)

We divide the main part of the proof into two lemmas.

Lemma 5.4.2. Assume (W), (S), (F1), (F2). Let S be a nonempty family of
subsolutions (resp. supersolutions) of (5.2.1). Define

u(t, x) = sup{v(t, x) | v ∈ S} (resp. v(t, x) = inf{v(t, x) | v ∈ S})

for (t, x) ∈ Q. Assume that u∗ <∞ (resp. v∗ > −∞) in [0, T )× U . Then u is
a subsolution (resp. supersolution) of (5.2.1).

Lemma 5.4.3. Assume (W), (S), (F1), (F2). Let S be the set of all subsolu-
tions u of (5.2.1) satisfying v ≤ u+ in Q with a supersolution u+ of (5.2.1). If
u ∈ S is not a supersolution of (5.2.1) and satisfies u∗ > −∞ in [0,∞)×U , then
there exist a function v ∈ S and a point (s, y) ∈ Q such that u(s, y) < v(s, y).

We first show the Perron type existence theorems under the assumption that
Lemma 5.4.2 and 5.4.3 hold.

Proof of Theorem 5.4.1. we shall show the part (1). Let S be the set of all
subsolutions v of (5.2.1) satisfying v ≤ u+ in Q. Note that S is not empty since
u− ∈ S. Define

u(t, x) = sup{v(t, x) | v ∈ S} for (t, x) ∈ Q.

We then have u− ≤ u ≤ u+ in Q, which implies u∗ ≥ (u−)∗ > −∞ and u∗ ≤
(u+)∗ <∞ on [0, T )× U . We hence see that u is a subsolution by Proposition
5.4.2. We next claim that u is a supersolution. If u were not a supersolution,
Proposition 5.4.3 would imply that there exist v ∈ S and (s, y) ∈ Q such that
u(s, y) < v(s, y), which contradicts the maximality of u. Therefore, we conclude
that u is a solution.

It remains to show (5.4.5). Note that for v ∈ S the periodicity conditions
(5.4.3) and (5.4.4) imply that ṽ(t, x) = v(t, x± ω) ∈ S. Hence, we see that

u(t, x+ ω) = sup{v(t, x+ ω) | v ∈ S} = sup{v(t, x) | v ∈ S} = u(t, x).

The proof is now complete.

We next show the lemmas. We note that being a subsolution is equivalent
to being a subsolution in the local sense by Lemma 5.2.14.
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Proof of Lemma 5.4.2. We only show that u is a subsolution (in the local sense).
Fix a point (t̂, x̂) ∈ Q and a locally admissible test function ϕ ∈ C (Q) at (t̂, x̂)
such that (5.2.6) holds. Our goal is to show (5.2.5). Since ϕ is locally admissible,
there exist f ∈ C 2

P (U1) and g ∈ C 1(I) with open intervals U1 and J such that

ϕ(t, x) = f(x) + g(t) on Q1 := J × U1,

R(f, x̂) ⊂ U1 ⊂ U, t̂ ∈ J ⊂ (0, T ).
(5.4.6)

We may assume that

(u∗ − ϕ)(t̂, x̂) = 0, ϕx(t̂, x̂) = 0

Therefore, the desired inequality (5.2.5) becomes

g′(t̂) + F (t̂, 0,Λ
σ(t̂)
W (f)(x̂)) ≤ 0, (5.4.7)

which we should show.
We now let ψ ∈ C (Q) be an AP (Q2) function such that

ψ = ϕ on K, ψ > ϕ on Q \K, inf
Q\Q2

(ψ − ϕ) > 0 (5.4.8)

with a closed set K and an open set Q2 satisfying

(x̂, t̂) ∈ K ⊂ Q2 ⊂ Q.

The function ψ is to be determined later. By the definition of the upper semi-
continuous envelope there exists a sequence {(tk, sk)}k∈N ⊂ Q2 such that

(tk, xk, u(tk, xk)) → (t̂, x̂, u∗(t̂, x̂)) as k → ∞.

By the definition of u there exists {vk}k∈N ⊂ S such that

vk(tk, xk) > u(tk, xk)− 1/k

and so
vk(tk, xk) → u∗(t̂, x̂) as k → ∞.

Taking a maximizer (sk, yk) of v
∗
k − ψ on Q2, we observe that

((vk)
∗ − ψ)(tk, xk) ≤ ((vk)

∗ − ψ)(sk, yk) ≤ (u∗ − ψ)(sk, yk)

for each k. Sending k → ∞ yields

(u∗ − ψ)(t̂, x̂) ≤ (u∗ − ψ)(s̄, ȳ),

where
(s̄, ȳ) = lim

k→∞
(sk, yk) ∈ Q2

by taking a subsequence if necessary. We see that (s̄, ȳ) ∈ K and (sk, yk) ∈ Q2

for sufficiently large k. We also note that

max
Q

((vk)
∗ − ψ) = ((vk)

∗ − ψ)(sk, yk),

i.e. ψ is a test function of vk at (sk, yk) by the last inequality of (5.4.8).
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Let f#,ε be an upper canonical modification of f at x̂ with effective region
M and canonical neighborhood U2 ⊂ U1 for ε > 0. We then see that

ψ(x, t) = f#,ε(x) + g(t) + (t− t̂)2

is an admissible function on a set Q2 = J×U2 ⊂ Q1 and that (5.4.8) holds with
K = {t̂}×M by Proposition 5.3.2. By the above argument we have vεk ∈ S and
(sεk, y

ε
k) ∈ Q2 such that

(sεk, y
ε
k) → (t̂, yε) ∈ {t̂} ×M as k → ∞

and ψ is a test function of vεk at (sεk, y
ε
k). Since v

ε
k is a subsolution, we have

g′(sεk) + 2(sεk − t̂) + F (sεk, (f
#,ε)′(yεk),Λ

σ(sεk)
W (f#,ε)(yεk)) ≤ 0. (5.4.9)

Proposition 5.3.2 implies that

lim
k→∞

(f#,ε)′(yεk) = f ′(x̂),

lim
ε→0

lim sup
k→∞

Λ
σ(sεk)
W (f#,ε)(yεk) ≤ Λ

σ(t̂)
W (f)(x̂).

Therefore, it follows from (5.4.9) that (5.4.7) holds by (F1) and (F2).
We conclude that u is a subsolution.

Proof of Lemma 5.4.3. Since u is not a supersolution, there exist (x̂, t̂) ∈ Q and
a locally admissible test function ϕ ∈ C (Q) at (t̂, x̂) such that (5.2.6) and

ϕt(t̂, x̂) + F (t̂, ϕx(t̂, x̂),Λ
σ(t̂)
W (ϕ(t̂, ·))(x̂)) < 0 (5.4.10)

hold. Since ϕ is locally admissible, there exist f ∈ C 2
P (U1) and g ∈ C 1(J) with

open intervals U1 and J such that (5.4.6) holds with Q1 := J × U1. We may
assume that

(u∗ − ϕ)(t̂, x̂) = 0, ϕx(t̂, x̂) = 0

by Proposition 5.2.12 with a = ϕx(t̂, x̂) = f ′(x̂) and b = u∗(x̂, t̂) − f ′(x̂)x̂.
Therefore, the inequality (5.4.10) becomes

g′(t̂) + F (t̂, 0,Λ
σ(t̂)
W (f)(x̂)) < 0. (5.4.11)

Take a lower canonical modification f#,ε of f at x̂ for ε > 0 with effective
region M and canonical neighborhood U2 ⊂ U1. Set

ψ(x, t) = f#,ε(x) + g(t)− (t− t̂)2.

We now claim that

ψt(t, x) + F (t, ψx(t, x),Λ
σ(t)
W (ϕ(t, ·))(x)) < 0, (5.4.12)

i.e.
g′(t)− 2(t− t̂) + F (t, (f#,ε)

′(x),Λ
σ(t)
W (f#,ε)(x)) < 0 (5.4.13)

for all (t, x) in some neighborhood of K := {t̂} ×M choosing ε small enough.
Indeed, since Proposition 5.3.2 implies that

λε(t, x) := Λ
σ(t)
W (f#,ε)(x)
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is lower semicontinuous at each point of the compact set K, we see that for
every m > 0 there exists an open set Q3 ⊃ K on which the inequality

λε(t, x) > min
K

λε −m

holds. Choose yε ∈M such that (t̂, yε) is a minimum point of λε onK = {t̂}×M .
Proposition 5.3.2 implies that

Λ
σ(t)
W (f#,ε)(x) > Λ

σ(t̂)
W (f)(x̂)−m

for all (t, x) ∈ Q3 with small ε and m. Since Proposition 5.3.2 also implies that

|(f#,ε)′(x)| < m,

it follows from (5.4.9) that (5.4.13) and so (5.4.12) holds on Q3 by (F1) and
(F2).

We next claim that ψ < (u+)∗ in Q3. First note that ψ ≤ ϕ ≤ u ≤ u+ and
so ψ ≤ (u+)∗. If ψ(t, x) = (u+)∗(t, x) at some point (t, x) ∈ Q3, then ψ would
be a test function of the supersolution u+ at (t, x). Hence,

ψt(t, x) + F (t, ψx(t, x),Λ
σ(t)
W (ψ(t, ·))(x)) ≥ 0,

which contradicts to (5.4.12).
Take a bounded open set Q4 such that K ⊂ Q4 and Q4 ⊂ Q3. Letting

σ1 = infQ4
((u+)∗ − ψ) > 0, we have

ψ + σ1 ≤ (u+)∗ in Q4.

Since f#,ε < f on U2 \M by Proposition 5.3.2, we also have

ψ + σ2 ≤ u∗ in Q3 \Q4

with σ2 = infQ3\Q4
(u∗ − ψ) > 0. Define a function v by

v(t, x) =

{

max{ψ(t, x) + σ, u(t, x)} for (t, x) ∈ Q3,

u(t, x) for (t, x) /∈ Q3.

with σ = min{σ1, σ2}. We show that this function v is a desirable function in
the statement of this lemma.

Note that v ≥ u. In addition, since (u∗−ψ)(t̂, x̂) = 0, there exists (s, y) ∈ Q4

such that (u− ψ)(s, y) < σ, which implies

v(s, y) > u(s, y).

Since

ψ(t, x) + σ ≤
{

(u+)∗(t, x) if (t, x) ∈ Q4,

u∗(t, x) if (t, x) ∈ Q3 \Q4,

and u ≤ u+ in Q, we have

v = u on Q \Q4,

v ≤ u+ in Q.

Noting that ψ is a subsolution of (5.2.1) in Q3, we see that v is a subsolution
of (5.2.1) in Q3 by Lemma 5.2.12 and 5.4.2. Therefore, if we admit the next
lemma, we have w ∈ S and so the proof is finished.
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Lemma 5.4.4. Assume (W), (S), (F1), (F2). Let u be a subsolution of (5.2.1)
in Q. Let w be a function defined on Q such that w ≥ u in Q, w = u in Q \N2,
and w is a subsolution of (5.2.1) in N1 with open rectangle sets N1 = J1 × I1,
N2 = J2 × I2 satisfying N2 ⊂ N1, N1 ⊂ Q. Then w is a subsolution of (5.2.1)
in Q.

In the classical setting, say P = ∅, this is easy to prove; if a function is
a solution in two domains, then it is a solution in their union. However, this
assertion on locality of solutions is not true for our equation (5.2.1) in general.

Proof. Fix a point (t̂, x̂) ∈ Q and a locally admissible test function ϕ ∈ C (Q)
of w at (t̂, x̂), i.e. maxQ(w

∗ −ϕ) = (w∗ −ϕ)(t̂, x̂). Since ϕ is locally admissible,
there exist f ∈ C 2

P (U1) and g ∈ C 1(J) with open intervals U1 and J such that
(5.4.6) holds. We may assume that

(w∗ − ϕ)(t̂, x̂) = 0, ϕx(t̂, x̂) = 0

by Proposition 5.2.12 with a = ϕx(t̂, x̂) = f ′(x̂) and b = w∗(x̂, t̂)− f ′(x̂)x̂. We
should show (5.4.7).

It is enough to consider the case

(t̂, x̂) ∈ N2, ϕ(t̂, x̂) > u(t̂, x̂);

otherwise, ϕ is a test of the subsolution u and so we have (5.4.7). We may also
assume that f is P -faceted at x̂ and R(f, x̂) is not contained by I1; otherwise,
(5.4.7) holds since w is a subsolution in N1.

Let f# = f#,ε be a upper canonical modification of f at x̂ with effective
region M and canonical neighborhood U2 ⊂ U1. Set

ψ(x, t) = f#(x) + g(t) + (t− t̂)2.

We then observe that

ψ > ϕ ≥ w∗ ≥ u∗ in Q \ {t̂} ×M .

Let us assume for the moment that ψ(t̂, x0) = u∗(t̂, x0) at some x0 ∈M . Then,
since ψ is a test function of the subsolution u at (t̂, x0), we have

g′(t̂) + F (t̂, (f#)′(x0),Λ
σ(t̂)
W (f#)(x0)) ≤ 0.

Proposition 5.3.2 yields (5.4.7) by (F2). Therefore, we have

ψ > u∗ in Q (5.4.14)

We now take a faceted function whose faceted region is contained in I1; set

f̃#(x) =











f#(x) + k|x− cl|3(|x− cl| − 1) for x ∈ U , x ≤ cl

f#(x) for x ∈ [cl, cr]

f#(x) + k|x− cr|3(|x− cr| − 1) for x ∈ U , x ≥ cr,

where I2 ⊂ [cl, cr] ⊂ I1 and k > 0. Note that

ψ̃(t, x) := f̃#(x) + g(t) + (t− t̂)2
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is locally admissible in N1. Taking k small enough, we have

ψ̃ > u∗ for (t, x) ∈ Q

by (5.4.14). Noting that

w = u in Q \N2, ψ̃ = ψ in I1 × [cl, cr] ⊃ N2,

we see that maxQ(w
∗ − ψ̃) = (w∗ − ψ̃)(t̂, x̂). Since ψ̃ is a test function,

g′(t̂) + F (t̂, (f̃#)′(x̂),Λ
σ(t̂)
W (f̃#)(x̂)) ≤ 0.

Note that Proposition 5.2.6 yields

Λ
σ(t̂)
W (f̃#)(x̂) ≤ Λ

σ(t̂)
W (f#)(x̂).

Therefore, we have

g′(t̂) + F (t̂, (f#)′(x̂),Λ
σ(t̂)
W (f#)(x̂)) ≤ 0,

which gives (5.4.7).

5.5 Existence theorem for periodic initial data

In this section we prove an existence theorem for the equation (5.2.1) with
periodic boundary condition and initial condition. In order to utilize the Perron
type existence theorem (Theorem 5.4.1) we construct a subsolution u− and a
supersolution u+ with given initial data; for a general strategy; see [16].

Lemma 5.5.1 (Existence of sub- and supersolutions). Assume (W), (S), (F1),
(F2) with U = R. Also assume that u0 is a bounded and uniformly continuous
function on R and σ is bounded. Then, there exist an upper semicontinuous
function u+ and an lower semicontinuous function u− on Q such that u+ and
u− respectively are a supersolution and a subsolution of (5.2.1) in Q and

u−(0, x) = u0(x) = u+(0, x), u−(t, x) ≤ u0(x) ≤ u+(t, x)

holds for all (t, x) ∈ Q. Moreover, if

u0(x+ ω) = u0(x), (5.5.1)

then u± can be taken so that it is spatially periodic with period ω, i.e. (5.4.4)
holds.

We show this existence theorem as in [12, Section 9].

Lemma 5.5.2 ([12, Lemma 9.5]). For each δ ∈ (0, 1/2) and M > 0 there exists
V = Vδ,M ∈ C 2

P (R) such that

V ≥ 0, V ′′ ≥ 0 in R, V (0) = 0, V (x) ≥M for |x| > δ, (5.5.2)

V ′(x) =

{

q for x ≤ −1,

q′ for x ≥ 1
(5.5.3)

with some q, q′ /∈ P .
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We need to show

Lemma 5.5.3. Let V ∈ C 2
P (R) be such that V ′′ ≥ 0 and (5.5.3) holds with

some q, q′ /∈ P . Then for B ∈ R large enough

V +(t, x) = Bt+ V (x) (5.5.4)

is a supersolution of (5.2.1) in (0, T )×R.

Proof. We first claim that

C := sup
{

|Λσ(t)W (V )(x)| | (t, x) ∈ Q
}

<∞. (5.5.5)

Note that V ′(x) ∈ [q, q′] for x ∈ R and

sup
R

|V ′′| = sup
[−1,1]

|V ′′| <∞.

Moreover, we have

sup
p∈[q,q′]\P

|W ′′(p)| <∞, sup
Q

|σ| <∞.

Therefore, for each (t, x) ∈ Q with V ′(x) /∈ P we observe that

|Λσ(t)W (V )(x)| ≤ |W ′′(V ′(x))||V ′′(x)| + |σ(t, x)|
≤ sup

p∈[q,q′]\P

|W ′′(p)| sup
R

|V ′′|+ sup
Q

|σ| <∞. (5.5.6)

We shall show that

cp := sup
{

|Λσ(t)W (V )(x)| | (t, x) ∈ Q, V ′(x) = p
}

<∞

for each p ∈ P . Indeed, since a faceted region R = {x ∈ R | V ′(x) = p} is a

bounded closed interval, Proposition 5.2.7 implies that (t, x) 7→ Λ
σ(t)
W (V )(x) is

continuous on [0, T ]× R, and so cp < ∞. We note that the number of faceted
regions of V is finite, i.e. P ∩ [q, q′] is finite by (W). Hence we have

sup
{

|Λσ(t)W (V )(x)| | (t, x) ∈ Q, V ′(x) ∈ P
}

= sup
p∈P∩[q,q′]

cp <∞. (5.5.7)

Combining (5.5.6) and (5.5.7), we obtain (5.5.5). Moreover, we see that

F (t, V ′(x),Λ
σ(t)
W (V )(x)) ≥ inf

[0,T ]×[q,q′]×[−C,C]
F =: −B0 > −∞.

Therefore, V + in (5.5.4) is a supersolution of (5.2.1) for B ≥ B0.

Proof of Lemma 5.5.1. Let δ be a modulus of continuity of u0; δ is a continuous
nondecreasing function on [0,∞) with δ(0) = 0 such that

|u0(x) − u0(y)| ≤ δ(|x − y|) for x, y ∈ R.

By Lemma 5.5.2 and 5.5.3 take Vδ = Vδ,M ∈ C 2
P (R) and Bδ ≥ 0 for small δ and

M = maxu0 − minu0 satisfying (5.5.2) and that V +
δ (t, x) = Bδt + Vδ(x) is a

supersolution of (5.2.1). Define

u+ε,ξ(t, x) := V +
δ(ε)(t, x− ξ) + u0(ξ) + ε
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for small ε > 0 and ξ ∈ R. Note that u+ε,ξ is a supersolution of (5.2.1) and

u+ε,ξ(t, x) ≥ Vδ(ε)(x− ξ) + u0(ξ) + ε.

On the case |ξ − x| ≤ δ(ε) we observe that

u+ε,ξ(t, x) ≥ u0(ξ) + ε ≥ u0(x);

on the other case
u+ε,ξ(t, x) ≥M + u0(ξ) ≥ u0(x).

Therefore, Lemma 5.4.2 implies that

u+(t, x) := inf
ε>0,ξ∈R

u+ε,ξ(t, x)

is an upper semicontinuous supersolution of (5.2.1) satisfying u+ ≥ u0. More-
over, since

u+ε,x(0, x) = u0(x) + ε→ u0(x) as ε→ 0,

we have u+(0, x) = u0(x) for all x ∈ R. Under the assumption that u0 is
periodic we see that

u+(t, x+ ω) = inf
ε>0,ξ∈R

(V +
δ(ε)(t, x+ ω − ξ) + u0(ξ) + ε)

= inf
ε>0,ξ∈R

(V +
δ(ε)(t, x− ξ) + u0(ξ + ω) + ε) = u+(t, x).

The same proof is valid for existence of a subsolution u−.

Combining Theorem 5.4.1 and 5.5.1 we have

Theorem 5.5.4 (Existence theorem for periodic initial data). Assume (W),
(S), (F1), (F2) and (5.4.3) with U = R and ω > 0. Let u0 be a continuous
function satisfying (5.5.1). Then there exists a solution u of (5.2.1) satisfying
(5.4.5) and

u(0, x) = u0(x) for all x ∈ R.

72



Bibliography

[1] S. Angenent and M. E. Gurtin, Multiphase thermomechanics with inter-
facial structure. II. Evolution of an isothermal interface, Arch. Rational
Mech. Anal. 108 (1989), no. 4, 323–391.

[2] J. W. Barrett, H. Garcke and R. Nürnberg, Numerical computations of
faceted pattern formation in snow crystal growth, Phys. Rev. E 86 (2012),
no. 1, 011604.

[3] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean
curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 (2006), no.
1, 109–152.

[4] A. Chambolle and M. Novaga, Existence and uniqueness for planar
anisotropic and crystalline curvature flow, Variational Methods for Evolv-
ing Objects, Adv. Stud. Pure Math., to appear.

[5] A. Chambolle, An algorithm for mean curvature motion, Interfaces Free
Bound. 6 (2004), no. 2, 195–218.

[6] Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity so-
lutions of generalized mean curvature flow equations, J. Differential Geom.
33 (1991), no. 3, 749–786.

[7] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. 27
(1992), no. 1, 1–67.

[8] C. M. Elliott, A. R. Gardiner and R. Schätzle, Crystalline curvature flow
of a graph in a variational setting, Adv. Math. Sci. Appl. 8 (1998), no. 1,
425–460.

[9] L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J.
Differential Geom. 33 (1991), no. 3, 635–681.

[10] T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature,
World Congress of Nonlinear Analysts ’92, 47–56, de Gruyter, Berlin, 1996.

[11] M.-H. Giga and Y. Giga, A subdifferential interpretation of crystalline mo-
tion under nonuniform driving force, Discrete Contin. Dynam. Systems
1998, Added Volume I, 276–287.

[12] , Evolving graphs by singular weighted curvature, Arch. Rational
Mech. Anal. 141 (1998), no. 2, 117–198.

73



[13] , Stability for evolving graphs by nonlocal weighted curvature, Comm.
Partial Differential Equations 24 (1999), no. 1-2, 109–184.

[14] , Generalized motion by nonlocal curvature in the plane, Arch. Ra-
tion. Mech. Anal. 159 (2001), no. 4, 295–333.

[15] M.-H. Giga, Y. Giga and P. Rybka, A comparison principle for singular
diffusion equations with spatially inhomogeneous driving force for graphs,
Arch. Ration. Mech. Anal. 211 (2014), no. 2, 419–453.

[16] Y. Giga, Surface evolution equations: a level set approach, Birkhäuser Ver-
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Appendix A

Introduction to the theory

of viscosity solutions

A.1 Extended real numbers

In this section we introduce a notion of so-called extended real numbers. It is
a central concept of calculus to take a limit of real-valued functions. However,
the limit may become very large or small. In order to describe this situation we
invoke a notion of infinity and the extended real numbers. A point is that the
order and topological properties of the real numbers can be naturally extended
to the extended real numbers. We refer the readers to Bourbaki’s textbook [2]
for detail.

Let R denote the set of all real numbers and let ±∞ be the positive and
negative infinity. All real numbers and ±∞ are called extended real numbers.
Define

R̄ := R ∪ {±∞}.
We extend the order relation ≤ to the extended real numbers R̄ by

a ≤ +∞, −∞ ≤ b for all a, b ∈ R̄.

Intervals of R̄ are

(a, b) := {c ∈ R̄ | a < c < b},
(a, b] := {c ∈ R̄ | a < c ≤ b},
[a, b) := {c ∈ R̄ | a ≤ c < b},
[a, b] := {c ∈ R̄ | a ≤ c ≤ b}

for a, b ∈ R̄. Note that R̄ itself can be written as [−∞,∞] while R = (−∞,∞).
We also define the induced order topology, i.e. all (a,+∞] and [−∞, b) are the
basis of the family of open sets in R̄.

The set of the extended real numbers has rich topological structures.

Proposition A.1.1 (Compactness of R̄). The extended real numbers construct
a compact space R̄.
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Consequently, each closed subset of R̄ is compact, and it attains its supre-
mum and infimum as shown later.

Proposition A.1.2. Let an and bn be two sequences in R̄ such that an → a ∈ R̄

and bn → b ∈ R̄. If an ≤ bn for all n, then a ≤ b.

A.2 Extreme values

In this section we study extreme values of a subset of the (extended) real num-
bers R̄ := R ∪ {±∞}. The extreme values consist of maximums, minimums,
supremums and infimums.

Definition A.2.1 (Maximum and minimum). Let A be a subset of R̄ and let
c ∈ R̄. We say that the number c is a maximum (resp. minimum) of A if c ∈ A
and a ≤ c (resp. a ≥ c) for all a ∈ A.

Remark A.2.2. The maximum is always unique for a subset A of R̄. Indeed,
if c and c̃ are two maximums of A, we see by the definition of maximums that
c̃ ≤ c and c ≤ c̃ so that c = c̃. The uniqueness of the minimum can be verified
by a symmetric argument.

However, existence of maximum and minimum may be false for some subsets.
In particular, the empty set ∅ does not attains its maximum and minimum.

We write maxA (resp. minA) to represent the unique maximum (resp. min-
imum) of a subset A when it exists.

The next proposition gives a sufficient condition for existence of a maximum
and a minimum.

Proposition A.2.3. Let A be a subset of R̄. If A is non-empty and compact,
then A attains its maximum and minimum. In particular, a non-empty closed
subset A of R̄ attains its maximum and minimum.

We remark that the maximum and minimum may be the infinity.
In order to define a notion of supremums and infimums we prepare:

Proposition A.2.4. Let A be a subset of R̄ and let UA (resp. LA) denote the
set of all b ∈ R̄ such that a ≤ b (resp. a ≥ b) for all a ∈ A. Then, UA (resp.
LA) attains its minimum (resp. maximum).

Proof. In view of Proposition A.2.3, it is enough to show that UA is non-empty
and closed. It is easy to check UA 6= ∅ since the infinity +∞ always belongs to
UA. In order to prove UA is closed, fix a sequence bn ∈ UA such that bn → b.
Since a ≤ bn for all a ∈ A, we have a ≤ b, i.e. b ∈ UA. Therefore, UA is
non-empty closed and so it attains its minimum.

We remark that UA = [minUA,+∞] and LA = [−∞,maxLA].

Definition A.2.5 (Supremum and infimum). Let A be a subset of R̄. The
minimum of UA (resp. maximum of LA), which exists uniquely, is called a
supremum (resp. infimum) of A. The supremum (resp. infimum) of A denoted
by supA (resp. inf A).

We remark that one is able to define the supremum and infimum for any
subset of R̄. The next proposition gives a principle to obtain the value of the
supremum or infimum.
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Proposition A.2.6. Let A be a subset of R̄.

• If A is empty, then supA = −∞ and inf A = +∞.

• If A is not empty, then supA = maxA and inf A = minA. In particular,
there exits sequences an ∈ A and bn ∈ A such an → supA and bn → inf A

We also define extreme values for an R̄-valued function f on a set X (and for
a family of the extended real numbers) by its image f(X) := {f(x) | x ∈ X}.
Write

max
X

f = max
x∈X

f(x) := max f(X), min
X

f = min
x∈X

f(x) := min f(X),

sup
X
f = sup

x∈X
f(x) := sup f(X), inf

X
f = inf

x∈X
f(x) := inf f(X).

Note that the inequality infX f ≤ f(x) ≤ supX f always holds for all x ∈ X .

Proposition A.2.7. Let f and g be two R̄-valued functions on a set X. If
f(x) ≤ g(x) for all x ∈ X, then supX f ≤ supX g and infX f ≤ infX g.

The next proposition will be convenient when one change the order of the
supremum and infimum operators.

Proposition A.2.8 (Max-min inequality). Let X and Y are two sets and let
f be an R̄-valued function f on the direct product X × Y . Then,

• supx∈X infy∈Y f(x, y) ≤ infy∈Y supx∈X f(x, y).

• supx∈X supy∈Y f(x, y) = supy∈Y supx∈X f(x, y) = supX×Y f .

• infx∈X infy∈Y f(x, y) = infy∈Y infx∈X f(x, y) = infX×Y f .

A.3 Semicontinuity

In this section we study some limits and semicontinuity of functions. This
enables us to have a deep argument about real-valued functions. Let X be a
topological space and R̄ denote R ∪ {±∞}.

The upper (resp. lower) limit of a function f : X → R̄ at a point x ∈ X is
defined by

lim sup
x′→x

f(x′) := inf
U∈Ux

sup
x′∈U

f(x′) (resp. lim inf
x′→x

f(x′) := sup
U∈Ux

inf
x′∈U

f(x′)).

Here, Ux represents the set of all open neighborhood of x.

Definition A.3.1 (Semicontinuity). A function f : X → R̄ is upper (resp.
lower) semicontinuous at a point x ∈ X if

lim sup
x′→x

f(x′) ≤ f(x) (resp. lim inf
x′→x

f(x′) ≥ f(x)),

i.e. there exists a sequence of open neighborhood Un of x such that

lim
n→∞

sup
x′∈Un

f(x′) ≤ f(x) (resp. lim
n→∞

inf
x′∈Un

f(x′) ≥ f(x)).

The function f is upper (resp. lower) semicontinuous if f is upper (resp. lower)
semicontinuous for all x ∈ X .
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We also define a sequential notion of semicontinuity.

Definition A.3.2 (Sequentially semicontinuity). A function f : X → R̄ is se-
quentially upper (resp. lower) semicontinuous at a point x ∈ X if

sup
xn→x

lim sup
n→∞

f(xn) ≤ f(x) (resp. inf
xn→x

lim inf
n→∞

f(xn) ≥ f(x)).

The function f is sequentially upper (resp. lower) semicontinuous if f is sequen-
tially upper (resp. lower) semicontinuous for all x ∈ X .

Proposition A.3.3. If a function f : X → R̄ is upper (resp. lower) semicontin-
uous at a point x ∈ X, then f is sequentially upper (resp. lower) semicontinuous
at x ∈ X.

If the space X is a metric space, then the converse holds: If a function
f : X → R̄ is sequentially upper (resp. lower) semicontinuous at a point x ∈ X,
then f is upper (resp. lower) semicontinuous at x ∈ X.

The definition of semicontinuity is two divided parts of continuity.

Proposition A.3.4. A function f : X → R̄ is both upper and lower semicon-
tinuous at a point x ∈ X if and only if f is continuous at x ∈ X.

A function f : X → R̄ is both sequentially upper and lower semicontinuous
at a point x ∈ X if and only if f is sequentially continuous at x ∈ X.

Several properties of continuity can be extended to semicontinuous functions.

Proposition A.3.5. A function f : X → R̄ is upper (resp. lower) semicontin-
uous if and only if the subset {f < a} (resp. {f > a}) of X is open for every
a ∈ R̄.

The extreme value theorem can be extended as follows.

Theorem A.3.6 (Extreme value theorem). If the space X is compact, then an
upper (resp. lower) semicontinuous function f : X → R̄ attains its maximum
(resp. minimum) over X.

If the space X is sequentially compact, then an sequentially upper (resp.
lower) semicontinuous function f : X → R̄ attains its maximum (resp. mini-
mum) over X.

Another important property of semicontinuity is that extremum operator
keeps the semicontinuity.

Proposition A.3.7. Let F be a family of upper (resp. lower) semicontinuous
functions g : X → R̄ at a point x ∈ X. Then, the function f : X → R̄ given by
f(x) := infg∈F g(x) (resp. f(x) := supg∈F g(x)) is upper (resp. lower) semicon-
tinuous at x ∈ X.

Proof. One is able to observe by Proposition A.2.8 that

lim sup
x′→x

f(x′) = inf
U∈Ux

sup
x′∈U

inf
g∈F

g(x′) ≤ inf
g∈F

inf
U∈Ux

sup
x′∈U

g(x′).

Since each g ∈ F is upper semicontinuous at x, we have

lim sup
x′→x

f(x′) ≤ inf
g∈F

g(x) = f(x).

Therefore, f is upper semicontinuous at x.
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Remark A.3.8. On the other hand, the supremum of upper semicontinuous func-
tions may not be upper semicontinuous in general. For instance, let fn : R → R̄

be such that fn(x) = 1 if x ≥ 1/n and fn(x) = 0 otherwise for n = 1, · · · . Then,
it is easy to see that the supremum f(x) := supn=1,··· fn(x) is given by fn(x) = 1
if x > 0 and fn(x) = 0 otherwise. However, this is not upper semicontinuous
at x = 0. The following proposition gives a sufficient conditions to be upper
semicontinuous.

Proposition A.3.9. Let A be a compact set and let F = F (x, a) : X×A→ R̄ be
an upper (resp. lower) semicontinuous function. Then, the function f : X → R̄

given by f(x) := supa∈A F (x; a) (resp. f(x) := infa∈A F (x; a)) is upper (resp.
lower) semicontinuous.

Remark A.3.10. According to Theorem A.3.6, the supremum in Proposition
A.3.9 is nothing but maximum.

Proof. Fix x ∈ X and take a sequence xn ∈ X such that xn → x and f(xn) →
lim supx′→x f(x

′). For each n one is able to take an ∈ A such that f(xn) =
F (xn; an). Since A is compact, there exists a subsequence nj such that anj

converges to some point a. We then see by the upper semicontinuity of F that

lim sup
j

F (xnj
; anj

) ≤ F (x, a) ≤ f(x)

and hence lim supj f(xnj
) = lim supx′→x f(x

′) ≤ f(x). Therefore, f is upper
semicontinuous at x.

We are able to construct corresponding semicontinuous functions for any
functions in view of Proposition A.3.7.

Definition A.3.11 (Semicontinuous envelope). For a function f : X → R̄, let
Uf (resp. Lf) denote the set of all upper (resp. lower) semicontinuous functions
g : X → R̄ such that f ≤ g (resp. f ≥ g) on X . Define the upper (resp.
lower) semicontinuous envelope f∗ (resp. f∗) of f by f∗(x) := infg∈Uf

g(x)
(resp. f∗(x) := supg∈Lf

g(x)).

Remark A.3.12. Even for a function f defined only on a subset F ⊂ X , by
extending f to X with the value −∞ (resp. +∞) we can construct the upper
(resp. lower) semicontinuous envelope f∗ (resp. f∗) defined on the whole X .

Proposition A.3.13. For a function f : X → R̄, we have
f∗(x) = lim supx′→x f(x

′) (resp. f∗(x) = lim infx′→x f(x
′)) for all x ∈ X. In

particular, there exits a sequence xn ∈ X such that (xn, f(xn)) → (x, f∗(x))
(resp. (xn, f(xn)) → (x, f∗(x))).

A.4 Definition of viscosity solutions

In this section we give a definition of viscosity solutions for a partial differential
equation of the generalized form

F (x, u,Du,D2u) = 0 in U . (A.4.1)

Here, U is an open subset of RN and let F : U ×R×RN × SN → R̄.
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Let u : U → R̄ and x ∈ U . A function φ is called a upper (resp. lower)
test function of u at x if there exists an open neighborhood B of x such that
φ ∈ C 2(B) and u∗ − φ (resp. u∗ − φ) attains a zero local maximum (resp.
minimum) at x, i.e.

(u∗ − φ)(x) = sup
B

(u∗ − φ) = 0 (resp. (u∗ − φ)(x) = inf
B
(u∗ − φ) = 0).

Let T+(u, x) (resp. T+(u, x)) denotes the set of all upper (resp. lower) test
functions φ of u : U → R̄ at x ∈ U . For an R̄-valued function u on U we define
the graph of super- and subdifferentials by

G+u := {(x, φ(x),Dφ(x),D2φ(x)) | x ∈ U, φ ∈ T+(u, x)},
G−u := {(x, φ(x),Dφ(x),D2φ(x)) | x ∈ U, φ ∈ T−(u, x)}.

Such notions of graphs shall be useful to argue properties of viscosity solutions
in view of set-valued analysis [1].

Definition A.4.1 (Viscosity solution). We say that an R̄-valued function u on
U is a viscosity subsolution (resp. supersolution) of (A.4.1) and solves F [u] ≤ 0
(resp. F [u] ≤ 0) in U in the viscosity sense if

sup
G+u

F∗ ≤ 0 (resp. inf
G−u

F ∗ ≥ 0),

i.e. for each x ∈ U and φ ∈ C 2(x) the inequality

F∗(x, φ(x),Dφ(x),D
2φ(x)) ≤ 0 (resp. F ∗(x, φ(x),Dφ(x),D2φ(x)) ≥ 0)

holds if u∗−φ (resp. u∗−φ) attains a zero local maximum (resp. minimum) at x.
We say that an R̄-valued function u on U is a viscosity solution of (A.4.1) and
solves F [u] = 0 in U in the viscosity sense if u is both a viscosity subsolution
and a viscosity supersolution of (A.4.1), i.e. supG+u F∗ ≤ 0 ≤ infG−u F

∗.

Remark A.4.2. Our definition allows the non-proper functions u ≡ ±∞ to be
always a viscosity solution of (A.4.1). This notation is convenient to state the
stability lemmas.

The viscosity solution is a weaker notion of solution than classical solution
with enough smoothness.

Proposition A.4.3 (Smooth solution). Assume that F : U×R×RN×SN → R̄

satisfies the elliptic condition, i.e.

F (x, v, p,X) ≥ F (x, v, p, Y ) for all X ≤ Y .

If a smooth function u ∈ C 2(U) satisfies

F ∗(x, u(x),Du(x),D2u(x)) ≤ 0 (resp. F∗(x, u(x),Du(x),D
2u(x)) ≥ 0)

for all x ∈ U , then u is a viscosity subsolution (resp. supersolution) of (A.4.1).

Lemma A.4.4. G+u = {(x, u(x),Du(x), X) | x ∈ U,X ≥ D2u(x)}.
The notion of viscosity solutions also has properties on locality.

Proposition A.4.5 (Locality). Let U1 and U2 be two open subsets of RN . If
a function u : U1 ∪ U2 → R̄ is a viscosity subsolution of (A.4.1) in both U1 and
U2, then u is a viscosity subsolution of (A.4.1) in U1 ∪ U2.
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A.5 Stability of viscosity solutions

The main purpose of this section is to establish some properties concerning
stability of a family of the viscosity solutions. Let A be a topological set of
indexes.

For a function f : X ×A→ R̄ with a topological space X , we sometimes let
f itself denote the family {f(·; a)}a∈A for simplicity.

Definition A.5.1 (Family of viscosity solutions). Let F : U ×R×RN × S
N ×

A→ R̄ and u : U ×A→ R̄. We say that u is a family of viscosity subsolutions
(resp. supersolutions or solutions) of (A.4.1) and solves F [u] ≤ 0 (resp. F [u] ≥ 0
or F [u] = 0) in U in the viscosity sense if for each a ∈ A the function ua = u(·; a)
solves Fa[ua] ≤ 0 (resp. Fa[ua] ≥ 0 or Fa[ua] = 0) in U in the viscosity sense
with Fa = F (·; a).

Consider the upper (resp. lower) semicontinuous envelope f := f∗ (resp. f :=

f∗) on X ×A. The function f(·; a) is called an upper (resp. lower) semilimit of
the family f at a. Note that the upper (resp. lower) semilimits are always upper
(resp. lower) semicontinuous and that (f(·; a))∗ ≤ f(·; a) (resp. (f(·; a))∗ ≥
f(·; a)) for all a ∈ A.

Proposition A.5.2 (Stability). Let F : U × R × RN × S
N × A → R̄ and

u : U ×A→ R̄. If u solves F [u] ≤ 0 in U in the viscosity sense, then the family
u solves F [u] ≤ 0 in U in the viscosity sense.

The statement of this proposition is very general and directly yields stability
results under uniform convergence and extremum which are standard statements
in the classical materials, e.g. [4].

Corollary A.5.3 (Stability under limit). Let Fn and un be a sequence of con-
tinuous functions respectively defined on U ×R×RN × S

N and U , and assume
that Fn and un converges to functions F and u uniformly. If each un solves
Fn[un] ≤ 0 (resp. Fn[un] ≥ 0) in U in the viscosity sense, then u is a viscosity
subsolution (resp. supersolution) of (A.4.1).

Corollary A.5.4 (Stability under extremum). Let S be a family of viscosity
subsolution (resp. supersolution) of (A.4.1) in U . Then, the supremum (resp.
infimum) u(x) := supv∈S v(x) (resp. u(x) := infv∈S v(x)) is a viscosity subsolu-
tion (resp. supersolution) of (A.4.1).

Proposition A.5.5 (Perron method). Let g be an R̄-valued function on ∂U .
Let S be the set of all viscosity subsolutions (resp. supersolutions) v of (A.4.1)
with v∗ ≤ g (resp. v∗ ≥ g) on ∂U . Then, u(x) := supv∈S v(x) (resp. u(x) :=
infv∈S v(x)) is a viscosity solution of (A.4.1).

We first prove the stability with respect to the semilimit of a sequence of
viscosity solutions (Proposition A.5.2). It is enough to prove G±u converges to
G±u as follows. Now, for a family u : U ×A→ R̄ we define the graphs

G±u = {(x, v, p,X, a) | a ∈ A, (x, v, p,X) ∈ G±u(·; a)}.

Lemma A.5.6. Let u : U × A → R̄. Then, for each (x̂, v̂, p̂, X̂, â) ∈ G+u
there exists a sequence (xj , vj , pj , Xj, aj) ∈ G+u such that (xj , vj , pj, Xj , aj) →
(x̂, v̂, p̂, X̂, â).
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Proof. Write u∞ := u(·; â). Let φ ∈ T+(u∞, x̂) be an upper text function
such that (v̂, p̂, X̂) = (φ(x̂),Dφ(x̂),D2φ(x̂)). We now have φ ∈ C 2(BR(x̂)) and
u∞ − φ attains a zero maximum at x̂ over BR(x̂) ⊂ U with some R > 0, i.e.
(u∞ − φ)(x̂) = supBR(x̂)(u∞ − φ) = 0. Set φ̃(x) := φ(x) + |x − x̂|2. Now
note that there exist a subsequence aj → â and a sequence xj ∈ U such that
xj → x̂ and u(xj ; aj) → u∗(x̂; â) = u∞(x̂). Set uj = (u(·; aj))∗; then the above
convergence implies uj(xj) → u∞(x̂) since uj ≤ u∗(·; aj). Take a maximum

point yj ∈ BR(x̂) of uj − φ̃ over BR(x̂) for each j. We then observe that

(uj − φ̃)(yj) ≥ (uj − φ̃)(xj) → (u∞ − φ)(x̂). (A.5.1)

Hence,
lim sup

j
|yj − x̂|2 ≤ lim sup

j
(uj − φ)(yj)− (u∞ − φ)(x̂)

≤ sup
BR(x̂)

(u∞ − φ)− (u∞ − φ)(x̂) = 0

and therefore yj → x̂. Moreover, uj(yj) → u∞(x̂) since lim infj uj(yj) ≥ u∞(x̂)
in view of (A.5.1). We now note that u∞(x̂) 6= ±∞ and so uj(yj) 6= ±∞ for j

large enough. Since uj − φ̃ − (uj − φ̃)(yj) attains the zero maximum at yj, we

see that (yj , uj(yj),D φ̃(yj),D
2φ̃(yj)) ∈ G+uj = G+u(·; aj). Also

(yj , uj(yj),D φ̃(yj),D
2φ̃(yj)) → (x̂, u∞(x̂),D φ̃(x̂),D2φ̃(x̂)) = (x̂, v̂, p̂, X̂).

The proof is complete.

Proof of Proposition A.5.2. Fix a ∈ A and (x, v, p,X) ∈ G+u(·; a). Then, in-
voking Lemma A.5.6 one is able to take sequences aj ∈ A and (xj , vj , pj , Xj) ∈
G+u(·; aj) such that (xj , vj , pj , Xj, aj) → (x, v, p,X, a). Since u(·; a) is a viscos-
ity subsolution, Fj(xj , vj , pj, Xj) ≤ 0 with Fj = (F (·; aj))∗. By the definition
of F we have

F (x, v, p,X) ≤ lim inf
j

Fj(xj , vj , pj, Xj) ≤ 0

and therefore u is a family of viscosity subsolutions.

Proof of Corollary A.5.3. Just set A = N in Proposition A.5.2.

Proof of Corollary A.5.4. Set A = S with the indiscrete topology and trivial
families {F}v∈S and {U(·; v) = v(·)}v∈S . Note that U∗(x; v) = u∗(x). There-
fore, by applying Proposition A.5.2 we see that u is a viscosity subsolution of
(A.4.1).

Proof of Proposition A.5.5. We only show that u is a supersolution since being
a subsolution is due to Corollary A.5.4. Fix φ ∈ T−(u, x̂), i.e. φ ∈ C 2(BR(x̂)
and u∗−φ attains a zero maximum at x̂ over BR(x̂) ⊂ U with some R > 0. Set
φ̃(x) = φ(x) − |x− x̂|2. Suppose by contradiction that

F ∗(x̂, φ(x̂),Dφ(x̂),D2φ(x̂)) < 0.

Since F ∗ is upper semicontinuous and φ̃ is enough smooth, we may see that φ̃
is a subsolution of (A.4.1) in BR(x̂) by taking R small enough. Note that φ̃ is
a viscosity subsolution in view of A.4.3. Now observe that

(u − φ̃)(x) ≥ (u∗ − φ̃)(x) ≥ |x− x̂|2 ≥ R2

4
=: m > 0
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for all x ∈ BR(x̂) \BR/2(x̂). Construct a new function

v(x) :=

{

max{φ̃(x) +m/2, u(x)} if x ∈ BR(x̂),

u(x) otherwise.

Then, v is equal to u on U \ BR/2(x̂) and so it is a subsolution of (A.4.1) in
U \ BR/2(x̂). It follows from Corollary A.5.4 that v is a subsolution of (A.4.1)
in BR(x̂). Therefore, Proposition A.4.5 shows that v is a subsolution of (A.4.1)
in U and so u ∈ S. In particular, u ≥ v. However, since φ̃(x̂) + m/2 =
u∗(x̂) + m/2 > u∗(x̂), we have v > u at some point. Therefore, we obtain a
contradiction and conclude that u is a viscosity supersolution of (A.4.1).
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1997.

[4] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. 27
(1992), no. 1, 1–67.

[5] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi
equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.

[6] S. Koike, A beginners guide to the theory of viscosity solutions, Mathemat-
ical Society of Japan, Tokyo, 2004.

84


	10
	01
	Preface
	Overview
	Nonlinear equations under non-Euclidean metrics
	Abstract of each chapter

	Metric viscosity solutions for Hamilton-Jacobi equations
	Introduction
	Definition of solutions
	Remarks on the solution
	Unique existence theorem

	On asymptotic behaviors of metric viscosity solutions
	Introduction
	Definition of Gangbo-Swiech solutions
	Stability results
	Application to large time behavior

	Minimax formula for quasiconvex Hamiltonians
	Introduction
	Minimax formula
	Proof with fundamental inequality for quasiconvex functions
	Proof with generalized gradients

	One-dimensional singular diffusion equations
	Introduction
	Definition of solutions
	Effective region and canonical modification
	Stability results
	Existence theorem for periodic initial data

	Introduction to the theory of viscosity solutions
	Extended real numbers
	Extreme values
	Semicontinuity
	Definition of viscosity solutions
	Stability of viscosity solutions



