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QMC integration is one of the methods for numerical integration (see [5, 12,
15] for example). We approximate the integration value I(f) =

∫
[0,1)s

f(x) dx

of a function f by the average

IP (f) =
1

|P |
∑
x∈P

f(x)

over a finite point set P . Using QMC integration, we can calculate integration
values efficiently in a high dimension s.

In the case s = 1, we have many efficient methods for numerical integration.
However we can not obtain efficient methods in the case s > 1 by applying the
methods of the case s = 1. In fact, we consider the multidimensional rectangle
rule T s

P (f) = 1
ns

∑
1≤j≤s,0≤tj≤n−1 f((

tj
n )

s
j=1), which is the average over the

point set P = {( tjn )
s
j=1}1≤j≤s,0≤tj≤n−1 with its cardinality N = ns. In this

case, the integration error |I(f)−T s
P (f)| is of order O(N− 1

s ) for N . For large s

the convergence N− 1
s to 0 is very slow as N → ∞. This phenomenon is called

the curse of dimensionality (see [5, Chapter 1]).
One method to avoid curse of dimensionality is Monte Carlo (MC) method.

We approximate I(f) by the average IP (f) over a point set P chosen uniformly
randomly with its cardinality N . The average of integration error |I(f)−IP (f)|
is of order O(N− 1

2 ) for a square integrable function f . But this method gives

us the probabilistic error bound. Further the convergence rate O(N− 1
2 ) is still

slow for some applications and does not reflects regularities of integrands f (see
[9, 12] for more information about MC).

Quasi-Monte Carlo (QMC) integration is a deterministic method, which
approximate I(f) using a deterministically chosen point set P . QMC gives
us a fast convergence rate of integration error reflecting regularities of inte-
grands. In the classical theory, the order of the integration error is known to
be O(N−1 logs−1 N) for functions f whose partial derivatives are continuous
(see [5, 12]). This order is faster than that of MC. Further, when we consider
QMC for smoother functions, we can obtain the higher order convergence com-
pared with O(N−1 logs−1 N). We study about QMC for smooth functions in
this thesis.

1 The main idea to analyze QMC integration
error

We consider the QMC integration error

Err(f ;P ) := IP (f)− I(f)

over a finite point set P in [0, 1)s for an integrable function f : [0, 1)s → R.
Our main goal is to find a point set P satisfying |Err(f ;P )| is small for a set of
functions f . We often assume that a set of functions is a function space, which
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we denote by H here. We consider the worst case error of H by a point set P

wce(H;P ) := sup
f∈H,∥f∥H≤1

|Err(f ;P )|,

where ∥f∥H is the norm of H. Then we have the following inequality:

|Err(f ;P )| ≤ wce(H;P )∥f∥H .

If we can find a point set P = P0 with wce(H;P ) small, we can expect that
|Err(f ;P0)| is small for any f ∈ H.

Since it is difficult to analyze the structure of wce(H;P ), we often treat an
upper bound w(H;P ) on wce(H;P ). Using w(H;P ), we obtain the following
form of inequalities

|Err(f ;P )| ≤ w(H;P )∥f∥H . (1)

We call an inequality (1) a Koksma-Hlawka type inequality (see [5, 8]).
In QMC analysis, we often use a special class of point sets. In particular

we assume that point sets are digital nets [12] in this thesis. A digital net is a
point set which is identified with Zb-module (Zb)

m. We write Zb = Z/Zb.

Definition 1.1 (digital net over Zb). Let n,m ≥ 1, b ≥ 2 be integers with n ≥ m.
Let 0 ≤ h < bm be an integer and C1, . . . , Cs be n×m matrices over the finite
group Zb. We write the b-adic expansion h =

∑m
j=1 hjb

j−1 and take a vector

h = (h1, . . . , hm) ∈ (Zm
b )⊤, where hj is considered to be an element in Zb. For

1 ≤ i ≤ s, we define the vector (yh,i,1, . . . , yh,i,n) = h · (Ci)
⊤ and a real number

xi(h) =
∑

1≤j≤n yh,i,jb
−j ∈ [0, 1), where yh,i,j is considered to be an element of

{0, . . . , b − 1} ⊂ Z. Then we define a digital net P by {x0, · · · , xbm−1} where
xh = (xi(h))1≤i≤s. We call {Ci}si=1 generating matrices of a digital net P .

From now on, we use the symbol N0 = N ∪ {0}. We define the dual net P⊥

[4, 13] of a digital net P , which is essential to analyze QMC integration error
by P :

Definition 1.2 (dual net). Let {Ci}si=1 be generating matrices of a digital net
P . We define a dual net P⊥ as follows;

P⊥ := {k = (k1, . . . , ks) ∈ Ns
0 | C⊤

1 k⃗1 + · · ·+ C⊤
s k⃗s = 0 ∈ Zm

b },

where k⃗i = (κi,1, . . . , κi,n)
⊤ for ki with b-adic expression ki =

∑
j≥1 κi,jb

j−1.
Here κi,j is considered to be an element of Zb.

2 Previous results about QMC

In the classical theory, many researchers studied the integration error of a func-
tion with continuous partial derivatives up to first order in each variable (they
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also treat wider function spaces, see [6, 7]). For these functions, the following
Koksma-Hlawka type inequality holds;

|Err(f ;P )| ≤ D∗(P )∥f∥KH ,

where the norm ∥f∥KH is defined using partial derivatives of f and D∗(P ) is
called a star-discrepancy. There are also many constructions of P whose D∗(P )
is of order O(N−1 logs−1 N) in terms of the cardinality N of a point set P (see
[5, 12]). This order is known to be best possible up to powers of logN (see [1]).

Recently, an extension to smooth functions was shown in [2, 3, 5]. Consider
functions f whose mixed partial derivatives up to order α in each variable are
continuous, which we call an α-smooth function here (they also treat wider
function spaces in [2, 3, 5]). For these functions f and a digital net P over Zb,
the following Koksma-Hlawka inequality holds;

|Err(f ;P )| ≤ Cs,b,αWα(P )∥f∥α, (2)

where Cs,b,α is a constant depending on b, s, α and the norm ∥f∥2α is defined as∑α
i=0

∣∣∣ ∫ 1

0
f (i)(x) dx

∣∣∣2 + ∫ 1

0

∣∣∣f (i)(x)
∣∣∣2 dx for s = 1 (see [3] for the complete form

of the norm). Here Wα(P ) is defined as follows;

Wα(P ) :=
∑

k∈P⊥\{0}

b−µα(k),

where µα(k) is the weight function of k = (ki)
s
i=1 ∈ Ns

0;

µα(k) =

s∑
i=1

(ai,1 + · · ·+ ai,min(α,Ni))

for b-adic expansion ki =
∑Ni

j=1 κi,jb
ai,j , (κi,j ̸= 0, ai,1 > · · · > ai,Ni).

The construction method of digital nets whose Wα(P ) ∈ O(N−α logαs N) in
terms of the cardinality N of a point set P is known. (see [2, 3]). This order
O(N−α logαs N) is also known to be best possible up to powers of logN (see
[14]). See also [3] for more background on higher order QMC rules.

It is important to obtain an optimal order of integration error, and point
sets which attain its order. But we can not take the cardinality N large enough
in some applications. Thus we also have to find good point sets P for small N .
Walsh figure of merit (WAFOM) is introduced for that purpose.
WAFOM is defined for a digital net over Z2 [10], then Suzuki generalized
WAFOM for a digital net over Zb in [16]. Let P be a digital net over Zb.
WAFOM(P ) is defined as the approximation of Wn(P ) for large n;

WAFOM(P ) :=
∑

k=(ki)si=1∈P⊥\{0},ki<bn

b−µ∞(k) =
∑

k=(ki)si=1∈P⊥\{0},ki<bn

b−µn(k).

Here we define that µ∞(k) is the weight function of k = (ki)
s
i=1 ∈ Ns

0;

µ∞(k) =

s∑
i=1

(ai,1 + · · ·+ ai,Ni),
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which can be seen as the limitation of µα(k). Notice that µ∞(k) = µn(k) for k
with ki < bn.
WAFOM depends on n, which is the parameter of a digital net P and also the
smoothness of a function f . For n-smooth functions f , the following ‘discretized’
Koksma-Hlawka inequality holds:

|Err(fn;P )| ≤ WAFOM(P )∥f∥n.

Here fn is the discretized function of f , which satisfies that |f − fn| ∈ O(b−n)
if f is Lipschitz continuous (see [10, 16] for the definition of fn). When we take
n large enough, |Err(fn;P )− Err(f ;P )| can be ignored for n-smooth functions
f . Thus WAFOM(P ) is an approximate bound on |Err(f ;P )| for n-smooth
functions f .
The merit of WAFOM is the computable formula [10, 16]. It enables us to
calculate WAFOM in O(ns|P |) arithmetic operations. Thus we can find a digital
net P with small WAFOM(P ) by computer search.

3 Main results of this thesis

In this thesis we unveiled the important properties of WAFOM(P ) for a digital
net P over Z2. And we make the new Koksma-Hlawka inequality for α smooth
functions.

【 Main Result 1 】 : Existence of Higher Order Conver-
gent Quasi-Monte Carlo Rules via Walsh Figure of Merit

The content including the following content has already appeared in [11].
We show the existence of digital nets over Z2 with small WAFOM values.

Theorem 3.1. There are explicit constants E, C, D such that for any m ≥ 9s,
there is digital nets P of size N = 2m with

WAFOM(P ) ≤ E · 2−Cm2/s+Dm = E ·N−C(log2 N)/s+D.

The proof of this theorem is based on the idea that WAFOM(P ) is bounded
by the minimum weight δP⊥ of a digital net P ;

WAFOM(P ) ≤ C3 · 2−C1δP⊥+C2

√
sδ

P⊥ ,

where δP⊥ is defined as

δP⊥ := min
k=(ki)∈P⊥\{0},ki<2∞

µn(k).

Then we prove the existence of digital nets P with large minimum weight δP⊥ ≥
C4m

2/s by a probabilistic argument. Combining these, we obtain the result.
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【 Main Result 2 】 : A lower bound on WAFOM

The content including the following result has already appeared in [17]. We
show a lower bound on WAFOM for digital nets P over Z2;

Theorem 3.2. Let C ′ be an arbitrary real number greater than 1/2. If m/s ≥
(
√

C ′ + 1/16+3/4)/(C ′ − 1/2), then for any digital net P over Z2 with its size
N = 2m, we have

WAFOM(P ) ≥ 2−C′m2/s = N−C′ logN/s.

Combing the above theorem, we can see that O(N−A logN/s) is the optimal
order of WAFOM in terms of the size N , up to a constant A. This order beyonds
the order O(N−α logsα N) of integration errors for α-smooth functions with
fixed α. Since WAFOM(P ) approximately bounds on Err(f ;P ) for large enough
n, this result implies that there is a smooth function space whose functions f
satisfy Err(f ;P ) ∈ O(N−A logN/s). This order also gives us the criteria for
determining whether digital nets are good for QMC or not.

This theorem is also proved by using the minimum weight δP⊥ for a digital
net P over Z2. By the definition of WAFOM, we have that

WAFOM(P ) ≥ 2−δ
P⊥ .

Thus an upper bound on δP⊥ gives a lower bound on WAFOM. To obtain an
upper bound on δP⊥ , we need a subset W ⊂ {k = (ki) ∈ P⊥\{0} | ki < 2n}
such that P⊥ ∩W ̸= {O} for any digital net P with its cardinality N = 2m. If
we can find such a subset W , we obtain δP⊥ ≤ maxX∈W µ∞(X). The proof is
finished by making the subset W = W0 satisfying maxX∈W0 µ∞(X) = C ′m2/s.

【 Main Result 3 】 : An Efficient Approximation of
Walsh Figure of Merit with Derivation-sensitivity Parame-
ter

We show that WAFOM can be computed by the integration error of an
exponential function;

Theorem 3.3. There are explicit constants U,L such that

Ls ≤
Err(exp(−2

∑s
i=1 xi);P )

WAFOM∞(P )
≤ Us,

where WAFOM∞(P ) =
∑

k=(ki)∈P⊥\{0} 2
−µ∞(k) for any digital net P over Z2,

and the values of L and U are approximately 0.388 and 0.432.

Since it holds that |WAFOM∞(P ) −WAFOM(P )| ∈ O(2−n), WAFOM(P )
is approximated by Err(exp(−2

∑s
i=1 xi);P ) for large n. Thus we have only to

compute Err(exp(−2
∑s

i=1 xi);P ) instead of WAFOM(P ) in order to find low
WAFOM point sets.
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We also show that WAFOM is the worst case error for some smooth function
space by using this result. Further we treat the generalized versions of WAFOM
with ‘derivation-sensitivity parameters’.

The proof of this theorem is based on Walsh coefficients f̂(k), which is one of
the generalized Fourier coefficients (see Definition 3.4). The integration error for

a smooth function f by a digital net P can be written by Walsh coefficients f̂(k);

Err(f ;P ) =
∑

k∈P⊥\{0} f̂(k). In general it is difficult to calculate the explicit

value f̂(k) for f . But for an exponential function ga = exp(a
∑s

i=1 xi), ĝa(k) can
be calculated and we obtain the following estimate for g2 = exp(−2

∑s
i=1 xi);

Ls ≤ ĝ2(k)

2−µ∞(k)
≤ Us.

Combing these, we get the theorem.

【 Main Result 4 】 : Bounds on Walsh coefficients by
dyadic difference and a new Koksma-Hlawka type inequal-
ity for Quasi-Monte Carlo integration

The article including the following content is submitted (see [18]). We ana-
lyze the integration error for an α-smooth function by a digital net and make a
new Koksma-Hlawka inequality.

In order to analyze the integration error for an α-smooth function by a digital
net, we need the important tools:

Definition 3.4 (Walsh functions and Walsh coefficients). Let f : [0, 1)s → R
and k = (k1, . . . , ks) ∈ Ns

0. We define the k-th Walsh function walk by

walk(x) :=
s∏

i=1

(
exp(

2πi

b
)
)∑

j≥1 βi,jκi,j

,

where for 1 ≤ i ≤ s, we write the b-adic expansion of ki by ki =
∑

j≥1 κi,jb
j−1

and xi by xi =
∑

j≥1 βi,jb
−j, where for each i, infinitely many of the digits βi,j

are different from b − 1. By using Walsh functions, we define the k-th Walsh
coefficient f̂(k);

f̂(k) :=

∫
[0,1)s

f(x) · walk(x) dx,

where walk(x) denotes the complex conjugate of walk(x).

We see that the integration error Err(f ;P ) by a digital net P can be repre-

sented by Walsh coefficients f̂(k) as follows ([5, Chapter 15]);

Err(f ;P ) =
∑

k∈P⊥\{0}

f̂(k).
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Here we assume that we get an inequality of the form |f̂(k)| ≤ w(k)∥f∥, where
∥f∥ is a norm of f and w(k) is a weight function of k. Then we have a Koksma-
Hlawka type inequality as

|Err(f ;P )| ≤ w(Hα;P )∥f∥,

where
w(Hα;P ) =

∑
k∈P⊥\{0}

w(k).

For an α-smooth functions f , it is well known bounds [2, 5] on f̂(k);

|f̂(k)| ≤ Cb,s,αb
−µα(k)∥f∥α, (3)

where Cb,s,α, ∥f∥α, µα(k) are already seen in (2). Combining this inequality and
the above computation, we have the Koksma-Hlwaka inequality (2).

We improve the inequality (2) for a digital net over Z2: For k = (ki)
s
i=1 ∈ Ns

0

with its dyadic expansion ki =
∑Ni

j=1 2
ai,j , we have

|f̂(k)| ≤ 2
s
p · 2−µα(k)−

∑s
i=1 min(α,Ni) · ∥f (min(α,N1),...,min(α,Ns))∥Lp , (4)

where 1 ≤ p ≤ ∞ and ∥ · ∥Lp is the Lp norm. This bound (4) is better than (3)
under some condition. Using this bound, we have the following Koksma-Hlawka
inequality;

Theorem 3.5. For α ≥ 2, a digital net P over Z2 and an α-smooth function
f , we have

|Err(f ;P )| ≤ 2
s
p ·W ′

α(P ) · sup
ni≤α

∥f (n1,··· ,ns)∥Lp ,

where W ′
α(P ) =

∑
k∈P⊥\{0} 2

−µα(k)−
∑s

i=1 min(α,Ni).

This is the improved Koksma-Hlawka inequality obtained by the improved
bounds on Walsh coefficients. In fact, this inequality holds for α = ∞, though
(2) is not proven in the case α = ∞. Further, it happens that ∥f∥α is much larger
than sup(ni)si=1,ni≤α ∥f (n1,...,ns)∥Lp since ∥f∥α is the summation of sn positive

terms for large α . For example, when f = exp(−x), supni≤α ∥f (n1,...,ns)∥Lp =

(1− e−p)/p)1/p while ∥f∥α = ((α+1)(1− e−1)2 +(1− e−2)/2)1/2. In this case,
if we take α large enough, supni≤α ∥f (n1,...,ns)∥Lp/∥f∥n goes to 0.

The inequality (4) follows from the formula for the Walsh coefficients by
dyadic differences. Dyadic difference is defined as follows;

Definition 3.6 (dyadic difference). Let s, n, i ∈ N with i ≤ s. For a function
g : [0, 1)s → R, we define the dyadic difference ∂i,n(g) by

∂i,n(g)(x1, . . . , xs) :=
g(x1, . . . , xi ⊕ 2−n, . . . , xs)− g(x1, . . . , xi, . . . , xs)

2−n
.

Here we write z ⊕ 2−n := z + 2−n(−1)zn for z having dyadic expansion z =∑∞
j=1 zj2

−j, where infinitely many digits zj are 0.
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By dyadic differences, we can obtain the formula

̂∂i,ai,j+1f(k) = 2−ai,j−2f̂(k),

where k = (ki)
s
i=1, ki =

∑Ni

j=1 2
ai,j , ai,1 > · · · > ai,Ni . This is analogous to

the formula between Fourier coefficients and derivatives. The inequality (4) is
derived by replacing dyadic differences with derivatives.

The work of Main Result 1 was the collaboration with Professor Makoto
Matsumoto (Hiroshima University). And the study about Main Result 3 was
the collaboration work with Professor Makoto Matsumoto and Mr. Ryuichi
Ohori (Fujitsu Laboratories Ltd.), who was a Master course student at the
University of Tokyo. The author’s works were supported by the Program for
Leading Graduate Schools, MEXT, Japan.
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