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Introduction

My dissertation focuses on functional specialization of cities, a modern, increasingly important form

of a system of cities, in which new technologies and varieties of goods and services are developed in
larger cities with the help of greater urban diversity and positive externalities, while in smaller cities

production based on technologies developed in the former cities are conducted, often characterized
as less skill-intensive, more routine economic activity (Duranton and Puga, 2005).

Except for the concluding chapter, the dissertation consists of three chapters, each corresponding
to an independently readable paper. In Chapter 1, a model of a system of cities is developed in order

to formalize the mechanism behind functional specialization of cities and then consider welfare impli-
cations of income redistribution across cities. Then, in Chapter 2, an implication of the specialization

for income inequality (skill premium) is investigated using a two-region model, which can be viewed
as a simplified and modified version of the model in the previous chapter more suitable for analysis

of skill premium. In Chapter 3, functional specialization of cities is interpreted as team production,
production by organizations with high-skilled managers supervising low-skilled workers at the top,

and policy implications are investigated, especially focusing on the allocation of creativity in light of
the increasing importance of knowledge and creativity in overall economic activity.

The followings are slightly more detailed summaries of the chapters.

Chapter 1: A Simple Model of Functional Specialization of Cities

This chapter develops a static equilibrium model of a system of cities in which ex ante identical

locations specialize in stages of production different in the degree of dependence on routine and
nonroutine local services sectors, the latter of which is tied to an agglomeration force due to (Dixit-

Stiglitz type) monopolistic competition. The model is simple in that the system is summarized by a
second-order difference/differential equation, which has a unique non-degenerate city size distribu-

tion with the comovement of income, population, factor prices, and urban diversity as observed for
the U.S. cities.

The model is an extension of Matsuyama’s (2013) to an urban context, and circular causation is
the key mechanism that induces a market equilibrium to exhibit functional specialization of cities. If

stages of production which demand for nonroutine services more than the other stages concentrate in
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a particular location, then a large number of differentiated firms enter the local nonroutine services
sector there. Since the larger number of varieties reduces the price index of non-routine services in

that location, the concentration of stages with higher skill intensities strengthens further.
Due to this circular causation, a market outcome results in an inefficient allocation (Matsuyama,

1995). In this sense, the modeling approach is in contrast to standard urban economics models of
a system of cities à la Henderson (1974) and Black and Henderson (1999) including Duranton and

Puga’s (2005) model of functional specialization of cities, where a market allocation is efficient thanks
to the existence of an institution, e.g., competitive city developers, that fixes sources of inefficiency.

Therefore, this chapter considers a simple income redistribution policy as a tool that corrects
inefficiency to some extent. Although introducing income redistribution makes makes the model

analytically intractable, a market equilibrium is still characterized by a difference/differential equation

easily solved with a numerical method and thus useful for further analyses.

Chapter 2: Comparative Advantage and Skill Premium of Regions

This chapter provides one explanation for why a positive correlation between the size and skill pre-
mium of a region emerges by providing a comparative advantage model with a continuum of mobile

heterogeneous individuals as well as a continuum of final goods sectors that are different in terms of
their skill intensities of intermediate goods. All individuals choose their occupations depending on

their productivity, and any occupation can freely migrate across regions. This location-occupation
choice then interacts with the regional comparative advantage in final goods sectors which depends

on the regional offer prices of two different types of intermediate goods, one of which features
(Dixit-Stiglitz type) monopolistic competition. Although regions are ex-ante identical, interactions

between individuals’ location-occupation choices and regional comparative advantage result in a self-
organized positive correlation between the skill premium and income of regions. The theory can also

accommodate the interpretation that the regional difference in skill premium is caused by specializa-
tion in task trade within firms, not industries.

The crucial difference of the model in this chapter from that in the previous chapter is that there is
individual heterogeneity: individuals are heterogeneous in productivity of producing a differentiated

good. Given that the specification follows Melitz (2003), the model can be view as an extension of
Matsuyama (2013) to a class of heterogeneous agents. In the model, circular causation is again the

key mechanism that induces a market equilibrium to exhibit a positive correlation between the size
and the skill premium of a region. In this sense, the current approach, i.e., functional specialization

of cities, differs from Davis and Dingel (2012) who resort to knowledge spillover as a mechanism of
the concentration of economic activity.
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Chapter 3: Team Production and the Allocation of Creativity across Global and Local
Sectors

This chapter develops a two-sector Ricardian comparative advantage model with team production
in order to obtain implications for policies encouraging team production in a sector with only low-

skilled agents to attract high-skilled agents to that sector. It is shown that team production changes
the nature of comparative advantage, providing a policy device for attracting creativity. It is also

shown that policy targets, reducing cost of communication within teams, reducing cost of learning
within team, and increasing productivity gain from such learning, should be carefully selected because

likelihoods of success in attracting creativity are different across the targets, and they exhibit some
non-monotonicity in the dynamics in the allocation of creativity.

The model is based on team production models developed by Garicano and Rossi-Hansberg
(2006a,b) who investigate how knowledge is used in the economy especially focusing on the emer-

gence of organizations. Similar to models of functional specialization of cities including Duranton
and Puga (2001) and Duranton and Puga (2005), there is an equilibrium where some location special-

izes in skill-intensive economic activity, while the other specializes in less skill-intensive one. Unlike
these studies, the primal focus of this chapter is on comparative statics of the allocation of skilled

agents with respect to policy-related parameters.
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Chapter 1

A Simple Model of Functional
Specialization of Cities

1.1 Introduction

In the urban economics literature, it is documented that the form of urban specialization has been
changing from traditional, sectoral to functional specialization (Duranton and Puga, 2005). Although

there is no clear-cut relationship between the population size and the number of executives and man-
agers of a city decades ago, we now observe the contrary. Meanwhile, the degree of sectoral spe-

cialization of cities, which is measured by a Gini specialization index, tends to decrease. As in the
trade literature such as Grossman and Rossi-Hansberg (2008), Duranton and Puga (2005) argue that

a decrease in the costs of remote management including improvements in information and commu-
nication technologies allows firms efficiently to fragment stages of production across cities, resulting

in functional specialization of cities.
Since larger cities are likely to be associated with higher living costs and a larger number of

varieties of goods and services, it is natural to guess that the modern form of urban specialization
should imply that skill intensity of cities is positively correlated with these variables. Figure 1.1

actually confirms these positive correlations. Panel (a)-(e) in the figure plot skill intensity, the market
size, the wage rate, the land value (as a proxy for the land rent), and urban diversity, respectively,

against the total employment size for Metropolitan Statistical Areas (hereafter, MSAs).1 Each of the

1 The data on the variables except for the last three are based on the May 2011 Occupational Employment Statistics
(hereafter, OES). Skill intensity of an MSA is defined as the share of detailed occupations listed in the Standard Occupa-
tional Classification System (hereafter, SOC), more than 20% of employments of which have a master’s degree or a higher
one, in the labor compensation of all detailed occupations reported by OES. The market size of an MSA is approximated by
the total labor compensation. The wage rate of an MSA is the median of annual wage rates of detailed occupations in the
MSA. The land value (per acre) is taken from Table A3 in Albouy and Ehrlich (2012). As for urban diversity and the estab-
lishment size, we calculate these as the total number of establishments and the number of employments per establishment,
respectively, of “Professional, Scientific, and Technical Services” (in the North American Industry Classification System),
using the 2011 Statistics U.S. Businesses (hereafter, SUSB).

1
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Figure 1.1: Correlations

panels also depicts a red line corresponding to the linear regression. Spearman’s rank correlation

coefficients of the panels are 0.650, 0.994, 0.503, 0.318, 0.937, and 0.471, respectively.
Are these positive correlations just an ad-hoc connection of the facts mentioned in the literature?

Answering to this question is the purpose of this chapter, and the answer is YES: it is shown that these
positive correlations are a general result of a market economy.

To this end, we extend Matsuyama’s (2013) international trade model to a spatial equilibrium
model of a system of cities with a continuum of stages of production in which ex ante identical loca-

tions specialize ex post in different sets of stages of production. Each stage of production differs in
the degree of dependence on routine and nonroutine local services sectors, characterized by perfect

competition and monopolistic competition á la Dixit and Stiglitz (1977), respectively, and those with
higher skill intensity, equivalently higher cost share of the nonroutine local services, benefit more

from varieties of nonroutine local services or urban diversity facilitating complex problem-solving
activities. Therefore, urban diversity acts as an agglomeration force, that ensures that concentration

into a particular location is sustainable despite being associated with a higher rental price of land

Here, we focus on the MSAs for which OES report non-military detailed occupations that cover more than 75% of the
total employments in order to reduce a sample selection bias in the correlation between the total employment size and skill
intensity. This results in the sample size of 303 in the cases which use OES only, i.e., Panel (a)-(c). The sample size of
Panel (d) is reduced to 160, because the definitions of MSAs in Albouy and Ehrlich (2012) are not exactly the same as in
our study, which focuses on MSAs listed in OES. The sample sizes for the case of Panel (e) and (f), which use both OES
and SUSB, are in the middle of the above two cases, 279 and 278, respectively.
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which constitutes production inputs together with labor and is also consumed by households. Spe-
cialization of cities then, by generating differences in the average skill intensity among cities, results

in a non-degenerate city size distribution. As in Matsuyama (2013), an equilibrium is characterized
as a single, second-order difference or differential equation which we call the fundamental equation.

Using the model, we show that an equilibrium with functional specialization of cities exists and is
unique in the sense that there exists a unique, non-degenerate size distribution of cities. Furthermore,

this equilibrium is shown to be characterized by the comovement of income, population, the wage
rate, the land rent, the average establishment size (in the monopolistic competition sector), and the

number of varieties of local nonroutine services, being actually observed for the U.S. metropolitan
areas (Figure 1.1). The analytical tractability of the model also allows us to derive the necessary and

sufficient condition for the size distribution of cities to obey a power law including Zipf’s law as a

special case.
It should be noted that an important feature of the model is the non-existence of large, competitive

city developers or local governments which are often introduced in standard urban economics models
such as Black and Henderson (1999) and Rossi-Hansberg and Wright (2007) among others. In those

models, developers or local governments act as a device internalizing technological externalities and
coordination failure associated with agents’ location choices, resulting in an efficient market outcome.

Therefore, there are two implications of the current modeling approach. The first is that the pos-
itive correlations need not be related with existence of active developers or local governments. As

a result, it is expected that functional specialization of cities tends to be characterized as the above
mentioned positive correlations in various countries with highly developed information and commu-

nication technologies irrelevant to whether countries have active developers or local governments.
The second is that without such developers or local governments, functional specialization of cities

is in general associated with an inefficient market outcome. In this case, there is room for policy
intervention, and relevant questions are “How can we improve welfare?”, “To what extent can we

improve welfare?”, and etc.
As for the second, this chapter focuses on a simple income redistribution policy scheme: the

central government levies a proportional income tax and redistributes the collected income across
cities as a lump-sum transfer. It is found that extending the model in such a way still results in a

set of equilibrium conditions which are characterized as a single, second-order difference/differential
equation. Although the model is no longer analytically solvable unlike the laissez-faire case, an

equilibrium is easily solved with a numerical method.
Given the form of income redistribution, we then ask what is the optimal tax rate, and to what

extent welfare is improved with the optimal tax rate. It is suggested that the optimal tax rate de-
creases as the economy is more characterized as monopolistic competition. Consistent with this

result, it is also found that the optimal tax rate is decreasing as the (constant) elasticity of substitution
between varieties decreases if a sufficiently large part of the economy exhibits monopolistic competi-

tion. When the importance of monopolistic competition is not sufficiently large, the optimal tax rate
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has an inverted-U-shape relationship between the elasticity of substitution. The associated welfare
gain from income redistribution is limited, e.g., less than about 2.3% increase in life-time utility in

the most of an empirically relevant range of parameters, consistent with Desmet and Rossi-Hansberg
(2013).

This chapter is related to three strands of literature. The first strand is the literature on the in-
ternational trade theory of Ricardian comparative advantage. We extend the Matsuyama’s (2013)

model to a regional context and also go a step further by conducting a welfare analysis of income
redistribution. He introduces monopolistic competition à la Dixit and Stiglitz (1977) into Dornbusch

et al. (1977), resulting in a model with symmetry break through endogenous comparative advantage.
He also develops a new method allowing us to characterize an equilibrium of the world with mul-

tiple and arbitrarily large number of countries as a second-order difference or differential equation,

the latter of which is analytically solvable. Our model has the same degree of analytical tractabil-
ity as in Matsuyama’s (2013) international case, even if we include migration across cities and an

immobile factor of land, that is used not only for production but also for consumption as in Pflüger
and Tabuchi (2010). The current urban application of Ricardo’s theory with endogenous compara-

tive advantage brings us a clear relationship between comparative advantage and agglomeration and
dispersion forces of economic activity.

The second strand of literature is the research on a system of cities. To our knowledge, this is
the first paper that, using a system of cities model with functional specialization, conducts a welfare

analysis of an income redistribution policy. Economic theories of the size distribution of cities range
from stochastic growth models to static deterministic ones. Some models of the former type such as

Eeckhout (2004) do not focus on the specialization of cities, whereas models such as Rossi-Hansberg
and Wright (2007) and Duranton (2007) (of the former type) and Hsu (2012) (of the latter type) fo-

cus on cross-city variation in industries. Recent studies by Behrens et al. (2014a) and Behrens et al.
(2014b) advance our understanding on the effects of heterogeneous agents and urban amenities on

the size distribution of cities, respectively. However, the main focus of the above studies is on the
positive side. While providing a model of a system of cities with functional specialization, Duranton

and Puga (2005) preclude the possibility of an income redistribution policy by introducing compet-
itive developers á la Henderson (1974). In addition, unlike their analysis, we do not focus on the

transformation of urban specialization and thus assume a single sector. This can be interpreted as
a situation where information and communication technologies are highly developed, resulting in a

costless pooling of stages of production across sectors, e.g., head quarters’ services tend to agglomer-
ate in the largest city in a country. From a different perspective, Desmet and Rossi-Hansberg (2013)

advances our understanding on welfare effects of efficiency, amenities, and frictions by applying the
Business Cycle Accounting method in the macroeconomics literature to the urban context, but an

optimal redistribution is not their scope of analysis.
The third is trade models which specify the production of goods as a continuum of intermediate

goods, stages of production or tasks. The current model does not include trade costs of stages of
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production for analytical tractability and thus heterogeneous trade costs, introduced by Grossman
and Rossi-Hansberg (2008). In this sense, the model specification is somewhat similar to previous

international trade models.2 Instead of heterogeneous trade costs, heterogeneity in skill intensity
allows the fraction of stages of production is determined endogenously, reflecting their skill intensities

and the comparative advantages of cities, the latter of which are in turn determined endogenously, i.e.,
a circular causation process.

The remainder of this chapter is organized as follows. We first provide the model in Section
1.2. In Section 1.3, we discuss the equilibrium properties including the welfare gain from functional

specialization. The model is then extended by introducing an income redistribution policy using an
income tax and lump-sum transfers across cities to analyze the optimal income redistribution policy

in Section 1.4. Finally, we conclude this chapter in Section 1.5.

1.2 The Model

In this section, we provide a simple spatial equilibrium model with a continuum of stages of produc-

tion with heterogeneity in skill intensity that are fragmented and outputs of which are traded across
cities and within firms. The economic agents consist of mobile workers, final good firms, and city-

specific local services firms, the last of which include monopolistically competitive and perfectly
competitive firms. Here, local services firms provide outsourcing services that are necessary for con-

ducting stages of production, and the variety effect introduced via monopolistic competition á la Dixit
and Stiglitz (1977) captures urban diversity. In the latter sense, we call the monopolistically compet-

itive sector the nonroutine sector and the other the routine sector. This stylized specification makes
clear the distinction between the two sectors in a way that the nonroutine sector conducts nonroutine

tasks that often require complex problem-solving activities which could be facilitated with the help
of local network. The model is essentially an application of Matsuyama’s (2013) framework to the

urban context.
In the following, we explain the optimization problems of the agents in order. For the sake of

convenience, we first assume that there are J ∈ N ex ante identical locations in the economy,3 each
of which is endowed with one unit of land. We subsequently modify this assumption by making J

diverge to infinity but making the measure of each location converges to zero in such a way that the

2 The current model differs from these studies in more respects. Unlike Grossman and Rossi-Hansberg (2008), each
task is not related to a particular production factor. Rather, all tasks use the same set of production inputs; the skill intensity
of each task is different from each other; and there is a continuous distribution of such skill intensity. In this sense, except
for the use of labor and land instead of labor and capital as production inputs, the specification of our model is close to
those of Dixit and Grossman (1982), Yi (2003), and Kohler (2004). However, the current model also shares the same
assumption with Grossman and Rossi-Hansberg (2008) as well as Feenstra and Hanson (1996) in that there is no vertical
linkage between different tasks or between intermediate inputs. Importantly, the current model differs from all these studies
in that it deals with an arbitrarily large number of locations rather than just two countries or a single small open economy.

3 In this chapter, we do not distinguish cities, regions, and locations and use these words interchangeably.
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total measure of locations is equal to unity, which allows us to consider the size distribution of cities.4

1.2.1 Workers

There is a unit mass of identical workers in the economy. Each worker is freely mobile across loca-

tions and thus decides her location as well as consumption of goods and services.
Suppose that a worker had already chosen her residence j ∈ {1,2, · · · ,J}, which is also her work-

place. Then, she solves the following utility maximization problem:

U j = max
c j,h j≥0

c1−α
j hα

j s.t. Pc j +R jh j =Wj + R̄ j, 0 < α < 1.

Her income consists of labor income Wj and subsidy R̄ j.5 Assuming that the land rents in a city are
received by the residents of that city as in Behrens et al. (2014b) and Michaels et al. (2013),6 R̄ j is

given by

R̄ j =
R j

N j
∀ j. (1.1)

She uses these sources of income to consume homogeneous tradeable good c j and housing h j, the

prices of which are P and R j, respectively.
The associated indirect utility function, together with free migration, then implies

Wj + R̄ j

Wj′ + R̄ j′
=

(
R j

R j′

)α
∀ j ̸= j′, (1.2)

which imposes a restriction on the relationship between income and land rent differentials.

1.2.2 Final Good Sector

The tradeable homogeneous final good is produced using a constant-returns-to-scale (CRS) Cobb-
Douglas production technology. More specifically, the production of one unit of the final good re-

4 Whether the distribution corresponding to a discrete J converges to that with J = ∞ as J increases itself is an important
research topic. However, answering such a question is beyond the scope of this chapter. In the following, we simply assume
that the case of J = ∞ can approximate the one with a large J, or we focus only on the limiting case.

5 We assume that each worker is endowed with one unit of time and supplies it inelastically. As discussed later, there
are two different sectors, the nonroutine and routine sectors, that mainly conduct nonroutine and routine tasks, respectively.
For simplicity, we assume that each worker has an equal ability to perform each type of task. Thus, in an equilibrium where
both sectors locate at almost every locations, wages rates within each location are equalized.

6 An equivalent specification is to introduce immobile, competitive land owners in each location. Although we can
consider an environment where land in each location is equally owned by all workers, this makes analytical characterization
infeasible, since the individual income then includes the economy-wide average land rent, a term independent of location
index j.
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quires to process a continuum of stages of production (hereafter, stages) {t : 0 ≤ t ≤ 1}:7

Y = exp
[∫ 1

0
ln(y(t))dt

]
, (1.3)

where Y and y(t) denote outputs of the final good and stage t, respectively. The equal weights and

unit mass of the stages imply that the total sales, which are equal to the economy-wide income E =

∑J
j=1(WjN j +R j) times the expenditure share (1−α) of the final good, are distributed to each stage

t.
Firms decide where each of these stages is performed. For each fixed stage t ∈ [0,1], a typical

firm decides the quantity y j(t) of production of stage t at a location j ∈ {1,2, · · · ,J}. Once the stage
has been processed at each location, outputs {y j(t)}J

j=1 are aggregated and transported without cost

to use them as a production input of the final good:8

y(t) =
J

∑
j=1

y j(t) ∀t. (1.4)

Furthermore, stage t is processed at location j with the help of the outsourcing services by local
nonroutine services Xn, j(t) and local routine services Xr, j(t). Its output y j(t) is given by9

y j(t) = Xn, j(t)γ(t)Xr, j(t)1−γ(t) ∀ j, t, (1.5)

where γ(t) ∈ [0,1] represents the skill intensity of stage t. In the following, we assume that γ(t) is
strictly monotonically increasing. For analytical convenience, we also assume that γ(t) is continu-

ously differentiable, i.e., γ′(t)> 0 for all t. We also assume that γ(0) = 0 and γ(1) = 1.
Therefore, letting Pn, j and Pr, j denote the prices of the nonroutine and routine services, respec-

tively, we can write the profit maximization of the final good firm as follows:

maxPY −
J

∑
j=1

∫
T j

[Pn, jXn, j(t)+Pr, jXr, j(t)]dt s.t. (1.3)− (1.5), and T j ⊆ [0,1],

where the control variables consist of the measurable set T j of stages processed at location j as well

7 In Matsuyama (2013), what we consider to be a continuum of stages of production here is interpreted as a continuum
of sectors, and the technology specified by (1.3) directly enters the utility function. However, in the regional context, this
interpretation is not favorable given the transition from sectoral specialization of cities to functional one argued by Duranton
and Puga (2005).

8 Transportation costs can be introduced by dividing goods and services into tradeable and non-tradeable parts with
CRS Cobb-Douglas composite technology, where the share parameter corresponding to the tradeable is interpreted as the
freeness of trade.

9The implicit assumption here is that either type of local services alone cannot be traded across locations. This exactly
corresponds to what we do when communicating with people in different locations. For example, sending an interesting
idea to your friend via e-mail breaks down to two stages: developing or formulating the idea, a nonroutine task, and writing
or sending an e-mail, a routine task. Although each task is not tradeable itself, the output, i.e., the combination of those
tasks, is now tradeable.
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as quantities (Y,{y(t)}t ,{y j(t),Xn, j(t),Xr, j(t)} j,t). Defining |T j| as the Lebesgue measure of T j, we
can see that if T j’s are all mutually exclusive, which is indeed the case, |T j| fraction of the total sales

(1−α)E is distributed to location j. In addition, γ(t) and 1−γ(t) fractions of the distribution (1−α)E
to stage t are distributed to the nonroutine and routine sectors, respectively. Thus, the nonroutine

sector at location j receives
∫
T j

γ(t)dt(1−α)E ≡ Γ j|T j|(1−α)E, where Γ j ≡ |T j|−1 ∫
T j

γ(t)dt is the
average skill-intensity of location j.

In addition, as we discuss in the next two subsections, we assume that the market structures of the
nonroutine and routine sectors are monopolistically and perfectly competitive, respectively.10 More

specifically, Xn, j(t) denotes the composite of a continuum of varieties {xn, j(v, t)}v∈[0,D j]. The quantity
of each variety is also a control variable, with the following technology:

Xn, j(t) =
[∫ D j

0
xn, j(v, t)

σ−1
σ dv

] σ
σ−1

∀ j, t ∈ T j,

where D j is the number of varieties produced at location j, which we call urban diversity, and σ > 1
is the elasticity of substitution between any two different varieties.

The profit maximization then implies the following demand for variety v from stage t processed
at location j:

xn, j(v, t) =
[

pn, j(v)
Pn, j

]−σ
Xn, j(t) ∀v, j, t ∈ T j,

where Pn, j is the price index of the nonroutine services at location j given by

Pn, j =

[∫ D j

0
pn, j(v)−

1
θ dv

]−θ
∀ j. (1.6)

Here, θ ≡ 1/(σ−1).

1.2.3 Nonroutine Local Service Sector

As mentioned in the previous subsection, the nonroutine local service sector is characterized by mo-
nopolistic competition á la Dixit and Stiglitz (1977), and each firm produces one variety. In addition,

as in Pflüger and Tabuchi (2010), we assume that production inputs consist of both labor and land.
More specifically, the fixed and marginal costs of production are both measured in terms of their

Cobb-Douglas composite with a cost share parameter β ∈ (0,1) for land.
Formally, variety-v firm at location j solves

π j(v) = max
pn, j(v),q j(v)

[
pn, j(v)−mRβ

jW
1−β
j

]
q j(v)−Rβ

jW
1−β
j f s.t. q j(v) =

∫
T j

xn, j(v, t)dt,

10 This stylized specification reflects our view of the nature of nonroutine services such as management, research and
development, and legal services as well as routine services such as line production based on previously developed blueprints.
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where q j(v) is the output of variety-v firm at location j, and m and f denote the shift parameters of
marginal and fixed costs, respectively.

The profit maximization then implies the optimal pricing rule specified by pn, j(v)= (1+θ)mRβ
jW

1−β
j ,

and substituting this into (1.6) and taking the ratio across two different locations, j and j′, we obtain

Pn, j

Pn, j′
=

(
R j

R j′

)β(Wj

Wj′

)1−β( D j

D j′

)−θ
∀ j ̸= j′. (1.7)

1.2.4 Routine Local Service Sector

Unlike the nonroutine local service sector, the routine sector is characterized by perfect competition

with a CRS Cobb-Douglas production technology:

max
Hr, j, Lr, j

Pr, jH
β
r, jL

1−β
r, j −R jHr, j −WjLr, j.

Note that the production of routine services also requires both labor and land. For simplicity, we
assume the same cost share parameter β as in the nonroutine sector.11

The profit maximization then implies

Pr, j

Pr, j′
=

(
R j

R j′

)β(Wj

Wj′

)1−β
∀ j ̸= j′. (1.8)

1.2.5 Equilibrium

We now define a market equilibrium. Since the locations are ex ante identical by assumption, the
symmetric configuration always exists. However, this configuration does not seem robust to exoge-

nous shocks to the economy, and thus, we focus on another type of equilibrium, which is the only
equilibrium other than the symmetric one and which is unique at least in the limiting case J → ∞,

which is of general interest.
Specifically, we define an equilibrium with rankings. Without loss of generality, assume that

0 < |T1| < |T2| < · · · < |T j−1| < |T j| < · · · < |TJ|, i.e., as j increases, the associated market share
increases. It is then immediately demonstrated that there must exist an increasing sequence {Tj}J

j=0

of thresholds such that T j = (Tj−1,Tj] for all j ∈ {1,2, · · · ,J}; T0 = 0; and TJ = 1 under free migration
and free entry into the nonroutine sector. That is, if cities are different, we observe a perfect sorting

of stages of production,12 and the higher the location index j is, the higher the average skill intensity
Γ j is. Note that this configuration of the equilibrium is consistent with the argument advanced by

11 More precisely, there are two reasons why we introduce this assumption. The first is for simplicity. Without this
assumption, we cannot obtain the analytical solution discussed later. The second is to make clear the distinction between
the two local services sectors. With this assumption, the nonroutine sector differs from the routine one in one way, market
structure.

12 Section .1 explains why the economy exhibits a perfect sorting in equilibrium.
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Duranton and Puga (2001) that cities sort themselves into specialized cities, some of which host the
research and development sectors testing prototype products, while others host the production sectors

producing goods in a stylized manner. It should, however, be noted that in our model, there is no per-
fect specialization with respect to the service sectors in the sense that every city hosts both nonroutine

and routine service sectors. Stated differently, the important characteristic that distinguishes one city
from another is its average skill-intensity.

Therefore, we call the equilibrium on which we focus a sorting equilibrium and define it as
follows:

Definition 1.1. A sorting equilibrium is a set of prices (P,{Pn, j,Pr, j,R j,Wj} j,{pn, j(v)}v, j), quanti-

ties (Y,{c j,h j,Hr, j,Lr, j} j,{y(t)}t{y j(t),Xn, j(t),Xr, j(t)} j,t ,{xn, j(v, t)}v,t, j,{q j(v)}v), transfers {R̄ j} j,

populations {N j} j, diversities {D j} j, and a sequence {Tj}J
j=0 of thresholds such that

1. workers maximize their utility by choosing quantities and locations;

2. firms maximize their profits;

3. markets clear:

(Land) R j = (1−α)β|T j|E +α(WjN j + R̄ jN j), (1.9)

(Labor) WjN j = (1−α)(1−β)|T j|E; (1.10)

4. there is free entry into the nonroutine local service sectors; and

5. thresholds {Tj}J
j=0 are consistent with comparative advantage:

(
Pn, j+1

Pn, j

)γ(Tj)(Pr, j+1

Pr, j

)1−γ(Tj)

= 1, (1.11)

where Pn, j+1/Pn, j < 1 and Pr, j+1/Pr, j > 1 for all j.

Here, the market clearing conditions, i.e., (1.9) and (1.10), are evident from the specifications of
the utility and production technologies presented in the previous subsections.13 The conditions that

Pn, j+1/Pn, j < 1 and Pr, j+1/Pr, j > 1 imply that location j+1, compared to location j, has a comparative
advantage in the nonroutine service sector and thus has a comparative advantage in stages with higher

skill intensity. The threshold Tj here is the stage for which locations j and j + 1 have the same
comparative advantage, i.e., both locations j and j+1 have the same unit cost of producing stage Tj

output.

13The market clearing condition for the final good is PY = E, where P denotes the price index of the final good. We omit
this condition from the definition because we do not use it in deriving analytical results presented in the next section.
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1.3 Equilibrium Properties

In this section, we first consolidate the equilibrium conditions presented in the previous section to

obtain an equation governing the equilibrium of the economy in Subsection 1.3.1. We then prove the
existence and uniqueness of a sorting equilibrium in Subsection 1.3.2, which has clear and empirically

valid predictions about the relationships between the city size and some variables. The relation of our

model to the size distribution of cities is also derived in Subsection 1.3.3.

1.3.1 Fundamental Equation

For a given J, we first show that the equilibrium system of the economy reduces to the following
fundamental equation:(

Tj+1 −Tj

Tj −Tj−1

)α(1−β)+β−(1−α)(1−β)θγ(Tj)

=

(
Γ j+1

Γ j

)θγ(Tj)

∀ j ∈ {1,2, · · · ,J−1},

with T0 = 0 and TJ = 1. Given the definition of Γ j, i.e., Γ j = |Tj−Tj−1|−1 ∫ Tj
Tj−1

γ(t)dt, the fundamental

equation is a second-order difference equation with two boundary conditions.
For this purpose, we start with the result that consolidating market clearing conditions (1.9) and

(1.10) along with the distribution of land rents, (1.1), yields

R j+1

R j
=

Wj+1N j+1 +R j+1

WjN j +R j
=

|T j+1|
|T j|

∀ j. (1.12)

That is, given the ordering of |T j|, the higher the market share |T j| is, the higher the land rent R j and
regional income WjN j +R j ≡ E j are. In addition, it is also implied that differentials of land rent R j

and market share |T j| are equal. That R j < R j+1 is simply because both locations have the same area
of land while income concentrates in location j+1.

This result is then combined with the free-migration condition (1.2) to obtain

N j+1

N j
=

(
|T j+1|
|T j|

)1−α
∀ j, (1.13)

which states that the ordering of population N j is the same as the market share |T j|, and that the
differential of population N j is less than proportional to that of the market share |T j| or, using (1.12),

the land rent R j or local income E j. The latter is interpreted as the spatial equilibrium imposing some
upper bound on the population differential. As a result, the ordering of the wage rate Wj is also the

same as |T j| because the labor market clearing condition (1.10) implies that the differential of labor
compensation WjN j is equal to that of the market share |T j|:

Wj+1

Wj
=

(
|T j+1|
|T j|

)α
∀ j. (1.14)
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That Wj < Wj+1 is interpreted as a differential compensating the disparity in the cost of living, i.e.,
R j < R j+1. The spatial equilibrium (1.2) limits the degree of the wage differential, allowing the

comovement between the wage rate and population.
These results immediately imply that a higher market share |T j| is associated with more severe

market competition, which is a dispersion force, in the sense that the unit production cost and thus the
price Pr, j of the routine local services is higher in that location. More specifically, substituting (1.12)

and (1.14) into (1.8), we obtain

Pr, j+1

Pr, j
=

(
|T j+1|
|T j|

)α(1−β)+β
∀ j. (1.15)

Another important implication of this result is that a location with a higher market share |T j|
exhibits comparative advantage in the production of nonroutine services. This can be seen from the
determination of urban diversity, a factor that generates comparative advantage in nonroutine services.

Substituting (1.7), (1.12), (1.14) and (1.15) into (1.11), we obtain(
R j+1

R j

)β(Wj+1

Wj

)1−β
=

(
D j+1

D j

)θγ(Tj)

, or
(
|T j+1|
|T j|

)α(1−β)+β
=

(
D j+1

D j

)θγ(Tj)

for all j. That is, if a sorting equilibrium exists, more severe market competition, i.e., higher wage
rage and land rent, in a location with a higher market share |T j| are associated with greater urban

diversity D j, leading the location to exhibit comparative advantage in the production of nonroutine
services. We here observe an agglomeration force represented by urban diversity D j. Therefore, we

can see that in this model, there is a close relationship between these agglomeration and dispersion
forces through regional comparative advantage, which is a result of the fragmentation of production

stages across locations. In a sorting equilibrium, if it were to exist, regional disparities would emerge
as a balance between the agglomeration and dispersion forces,14 and this balance would be affected

by functional specialization of locations reflecting the function γ(t) and, thus, the distribution of the
skill intensities in the economy.

Finally, by utilizing the free-entry condition for the nonroutine sector, we can derive the fun-
damental equation. First, note that the free entry, π j(v) = 0 for all v and j, together with the

optimal pricing rule, implies that the output q j(v) of each variety v at location j is constant, i.e.,
q j(v) = f/(θm) ≡ q for all v and j. Then, the market clearing condition for the nonroutine sector

yields D j pn, jq = (1−α)Γ j|T j|E, or taking the ratio of this equation, we obtain

D j+1

D j
=

Γ j+1

Γ j

|T j+1|
|T j|

(
pn, j+1

pn, j

)−1

=
Γ j+1

Γ j

(
|T j+1|
|T j|

)(1−α)(1−β)
∀ j.

14 Note that the equality between agglomeration and dispersion forces holds at a threshold Tj. Since
R j+1/R j,W j+1/W j,D j+1/D j > 1 and γ(t) is increasing in t, compared with location j, location j + 1 has comparative
advantage in stage t > Tj due to dominance of agglomeration force over dispersion force implying lower unit costs of
conducting more skill-intensive tasks.
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To avoid this arbitrariness of the finiteness of J, we investigate the distribution of cities in a sorting
equilibrium. We accomplish this by making J diverge to infinity while limiting the total measure of

cities to unity.15 Then, applying the Matsuyama’s (2013) method to the fundamental equation,16

we obtain the following boundary value problem for a second-order ordinary differential equation

(ODE):

Φ′′

Φ′ =
θγ′(Φ)Φ′

G(Φ)
with Φ(0) = 0 and Φ(1) = 1, (1.16)

where

G(Φ)≡ α(1−β)+β− (1−α)(1−β)θγ(Φ).

Each city is characterized by the stage t that it hosts because as J diverges to infinity, |T j| converges
to zero or, stated differently, T j converges to a point that characterizes one of the cities. Here, Φ(t)

is the Lorenz curve of the market share that corresponds to ∑ j
k=1 |Tk| for some j. Thus, given the

uniformity of stage t, Φ′(t) corresponds to |T j|, the market share of a location. In the following,

given the one-to-one correspondence between a city and a stage, we call the city that hosts stage t city
t. We assume that G(1)> 0 in order to focus on a meaningful case.17

1.3.2 Existence and Uniqueness of Endogenous Rankings

In order to prove the existence of a sorting equilibrium in the limiting case, it suffices to show that

there exists a solution to the fundamental equation (1.16). Importantly, we can obtain a unique so-
lution to the fundamental equation analytically, which also implies the uniqueness of a sorting equi-

librium. The economic interpretation of this result is as follows: although cities may differ, the
associated variations in city characteristics are limited to a range that is consistent with the unique

distribution. Since cities are ex ante identical, we cannot identify which stage of production each city
specializes in ex post.18

More specifically, we obtain the inverse function of the Lorenz curve (let H : z → t denote the

15Note that the unit endowment of land is fixed for each location.
16 Essentially, the method involves interpreting 1/J as a differential dt when J is sufficiently large and then applying the

asymptotic expansion. Here, it is crucial that as J diverges to infinity, each city hosts only one stage of production in the
limit and thus is characterized by t.

17 Intuitively, this assumption implies that the magnitude of market competition, i.e., the power α(1−β)+β appearing
in the fundamental equation, is larger than that of the agglomeration force, (1−α)(1− β)θγ(t), net of the effect of the
average skill intensity Γ j, thus resulting in “bounded” city sizes. It can be easily shown that as G(1) converges to zero from
above, the max-min ratio of population diverges to infinity.

18 This resembles the implication of a stochastic process that is specified by a Markov chain with a non-degenerate
unique invariant distribution. That is, the realization of a random variable varies randomly in a manner that is consistent
with the invariant distribution. Importantly, this uniqueness of the sorting equilibrium allows us to conduct the numerical
exercises discussed later. If we have a cross-sectional dataset of cities, we can calibrate the model.
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function, i.e., H(z)≡ Φ−1(z)):

H(z) =
∫ z

0 G(u)
1

(1−α)(1−β) du∫ 1
0 G(u)

1
(1−α)(1−β) du

∀z ∈ [0,1]. (1.17)

For a given γ(t), this equation yields a unique inverse Lorenz curve H(z). Given that H ′(z) > 0 and
H ′′(z)< 0 for all t, Φ(t) is unique and has a property: Φ′(t)> 0 and Φ′′(t)> 0.

Then, using this result and normalizing the economy-wide income E to unity without loss of
generality, we can establish the following proposition:

Proposition 1.1. Suppose that γ′(t) > 0 and G(1) > 0. Then, a sorting equilibrium, characterized

by a Lorenz curve of the market size Φ(t), exists and is unique. In addition, this equilibrium has the

following properties: The market share E(t) of city t is given by Φ′(t), and population N(t), land

rent R(t), wage rate W (t), diversity D(t) and the average establishment size ζ(t) (in the nonroutine

sector) in city t are given by

N(t) =
Φ′(t)1−α∫ 1

0 Φ′(t)1−αdt
,

R(t) = [α(1−β)+β]Φ′(t),

W (t) = (1−α)(1−β)
∫ 1

0
Φ′(t)1−αdtΦ′(t)α,

D(t) =
θ

(1+θ) f
1−α

[α(1−β)+β]β

[
(1−α)(1−β)

∫ 1

0
Φ′(t)1−αdt

]−(1−β)
γ(Φ(t))Φ′(t)(1−α)(1−β),

ζ(t) =
(1+θ) f

θ
(1−β)[α(1−β)+β]β

[
(1−α)(1−β)

∫ 1

0
Φ′(t)1−αdt

]−β
Φ′(t)(1−α)β

for all t ∈ [0,1]. Therefore, as t increases, i.e., as a location specializes in a more nonroutine stage of

production, the values of all of these variables increase.

Proof. The market share Φ′(t) is simply a definition. Population function N(t) follows if we apply

the asymptotic expansion to (1.13):

N(t +∆t)
N(t)

=

[
1+

Φ′′(t)
Φ′(t)

∆t +o(|∆t|)
]1−α

= 1+(1−α)
Φ′′(t)
Φ′(t)

∆t +o(|∆t|).

Arranging this result and making ∆t converge to zero, we obtain

N′(t)
N(t)

= (1−α)
Φ′′(t)
Φ′(t)

∀t,

which, together with the normalization, i.e.,
∫ 1

0 N(t)dt = 1, implies the desired result of N(t). The

land rent function R(t) follows immediately from the land and labor market clearing conditions,
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where |T j| is now replaced with Φ′(t). The wage function W (t) also follows from the labor market
clearing condition with |T j| replaced with Φ′(t) and the population function N(t). The diversity

function D(t) derives from the market clearing condition for nonroutine services, i.e., D j pn, jq =

(1−α)Γ j|T j|= (1−α)
∫ Tj

Tj−1
γ(t)dt, together with the results for the land rent and wage rate functions.

Here,
∫ Tj

Tj−1
γ(t)dt is replaced with γ(Φ(t))Φ′(t). The establishment size function ζ(t) is given by the

consistency, i.e., the labor compensation calculated by W (t)D(t)ζ(t) must be equal to the market size
(1−α)Φ′(t) times the skill-intensity γ(Φ(t)) times the labor share 1−β. The statement that all of

these functions are increasing in t follows from the result that γ′(t),Φ′(t),Φ′′(t)> 0.

As argued in the previous subsection, the result that R′(t)> 0 derives from competition in the land
rental markets. The comovement between W (t) and N(t) is an implication of spatial equilibrium, and

comparative advantage leads to the result that D′(t)> 0. ζ′(t)> 0 because the differential of the wage
rate times the number of firms in the nonroutine sector is less than proportional to that of the market

size of the sector.19

1.3.3 Size Distribution of Cities

As has been argued in the literature, the upper tail of the population size of cities in the United States

is well approximated by a power law or, more specifically, a Pareto distribution with a coefficient of
one, the so-called Zipf’s law (Gabaix and Ioannides, 2004; Gabaix, 2009). Economic mechanisms

resulting in Zipf’s law have also been proposed, ranging from random growth models such as Rossi-
Hansberg and Wright (2007) and Duranton (2007) to static models such as Hsu (2012) and Behrens

et al. (2014a).
The purpose of this subsection is therefore to relate our model to the size distribution of cities.

More specifically, we derive the necessary and sufficient condition under which the associated sorting
equilibrium exhibits a power law including Zipf’s law as a special case. The next proposition states

that this is equivalent to identifying the functional form of γ(t) guaranteeing that the size distribution
of cities obeys a power law.20

19 This is easily understood in the discrete version. Using the market clearing condition W jD jζ j =(1−α)(1−β)Γ j|T j|E,
we get

W j+1

W j

D j+1

D j

ζ j+1

ζ j
=

Γ j+1

Γ j

|T j+1|
|T j|

.

Then, using the differentials derived in the previous subsection, we obtain

ζ j+1

ζ j
=

(
|T j+1|
|T j|

)(1−α)β
∀ j.

20 One might interpret this kind of approach as searching for a knife-edge condition and thus conclude that the result
presented below is not robust compared with previous theories. Testing the model, however, is not a purpose of this chapter.
Proposition is simply used for calibration of the model (Subsection 1.3.4).
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Proposition 1.2. The size distribution of cities in the sorting equilibrium is characterized by a trun-

cated Pareto distribution if and only if γ(t) is given by

γ(t) =

{
a−{aη − [aη − (a−1)η] t}

1
η if η ∈

(
− 1

(1−α)(1−β) ,0
)
∪ (0,+∞)

a− exp{lna− [lna− ln(a−1)] t} if η = 0,

where

a ≡ α(1−β)+β
(1−α)(1−β)θ

> 1.

Furthermore, if η =−α/[(1−α)(1−β)], the size distribution of cities is consistent with Zipf’s law.

Proof. Only the essence is discussed here. The first part of the proposition is proven in four steps:
The first step is to notice, from Proposition 1.1, that N(t) obeys a power law if and only if Φ′(t) obeys

a power law.
The second step is to show that Φ′(t) follows a power law if and only if λ defined by λ ≡

G(Φ(t))−1 obeys a power law. In order to prove this statement, we begin by differentiating t =

H[Φ(t)] with respect to t to obtain 1 = H ′[Φ(t)]Φ′(t). Using (1.17), we then obtain

Φ′(t) ∝ G(Φ(t))−
1

(1−α)(1−β) .

The third step is to prove that λ obeys a power law if and only if

γ′
[
γ−1(B(λ))

]
∝ λη̃, B(λ)≡ α(1−β)+β−λ−1

(1−α)(1−β)θ
. (1.18)

Here, η̃ is defined by η̃ = η− 1. In order to validate this statement, we first note that the density
function fZ(z) of z = Φ(t) is given by fZ(z) = fT [H(z)]H ′(z) = H ′(z), where the first equality uses

the relationship between t and z, i.e., t = H(z), and the second uses the uniformity of stage t. Then,
using the relationship between λ and z given by λ = G(z)−1 and the density function fZ(z), we obtain

the density function fΛ(λ) of λ as follows:

fΛ(λ) = fZ
[
γ−1(B(λ))

] ∂
∂λ

γ−1(B(λ)) ∝
λ−

[
1

(1−α)(1−β)+2
]

γ′ [γ−1(B(λ))]
.

The final step is to show that (1.18) holds if and only if γ(t) is given by the one specified in the

proposition.
The second part of the proposition is demonstrated using the results discussed above and the fact

that a random variable X1 given by X1 = Xω
2 (ω > 0), where X2 follows a Pareto distribution with

coefficient δ > 0, obeys a Pareto distribution with coefficient δ/ω.
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α β σ ã η
0.095 0.085 5.877 1.022 -0.561

Table 1.1: Calibrated Parameters

1.3.4 Welfare Gain from Functional Specialization

Benchmark

As a numerical exercise, we compute the sorting equilibrium and the welfare gain from functional
specialization for an example of parameter values, where the welfare gain is defined as the difference

in log-utility between the laissez-faire case described in the previous subsections and the case where
there are continuum of locations all of which hosts the whole range of stages of production and the

same number of workers.
For this purpose, we specify the functional form of γ(t) as follows:

γ(t) =

{
ã−{ãη − [ãη − (ã−1)η] t}

1
η if η ̸= 0,

ã− exp{ln ã− [ln ã− ln(ã−1)] t} if η = 0,

where ã > 1 is a parameter that is different from a in Proposition 20. Thus, instead of assuming
an exact power law, here we consider a slightly general γ(t) that includes an exact power law as a

special case. Based on a guess that the upper tail of market sizes E(t) = Φ′(t) of MSAs is well
approximated by a power law, we expect that the above specification would successfully match the

data.21 A benchmark set of parameter values we use is presented in Table 1.1, which is obtained by
the calibration described in Appendix .7.

Figure 1.2 depicts the equilibrium Lorenz curve Φ(t) and the associated profiles of population
N(t), the wage rate W (t), the land rent R(t), urban diversity D(t), and the average establishment ζ(t).
As predicted by Proposition 1.1, all functions are monotonically increasing in t.

Letting Ū and Ūs denote utilities in the laissez-faire and symmetric cases, respectively, the welfare

gain is given by22

lnŪ − lnŪs =

{
ln
[

E(t)/N(t)
R(t)α

]
− ln

(
1

Rα
s

)}
− (1−α)(lnP− lnPs) ,

where the first and the second terms represent the effects of the differences in the land-rent-adjusted
average income and the price index of the final good, respectively. Variables with subscript A cor-

21 Note that since the population N(t) of city t is proportional to the market size E(t) of city t (Proposition 1.1), if the
distribution of population is closed to a power law, then the market size is also close to the power law.

22Since both the total population and the measure of the continuum of locations are normalized to unity, the population
size of each location in the symmetric case is equal to unity. In addition, given the normalization of the economy-wide
income, i.e., E = 1, the per capita income of each location is also equal to one. Therefore, the symmetric outcome is
equivalent to full agglomeration, i.e., workers and stages of production all concentrate in a single location.
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Figure 1.2: Lorenz Curve Φ(t) and Profiles, N(t), W (t), R(t), D(t), ζ(t)

respond to those in the symmetric case. Note that spatial equilibrium implies that the rent-adjusted
income E(t)/[N(t)R(t)α] is independent of t. Here, the price index is further decomposed as follows:

lnP− lnPs =
∫ 1

0
β[lnR(t)− lnRs]Φ′(t)dt +

∫ 1

0
(1−β)[lnW (t)− lnWs]Φ′(t)dt

−
∫ 1

0
θ [γ(Φ(t)) lnD(t)−Γs lnDs]Φ′(t)dt,

where

Rs = α(1−β)+β, Ws = (1−α)(1−β),

Ds =
θ(1−α)Γs

(1+θ) f
R−β

s W−(1−β)
s , Γs ≡

∫ 1

0
γ(z)dz.

Table 1.2 reports that the welfare gain from functional specialization is about 1.6% of the utility

level in the symmetric case, implying about 40% increase in life-time utility with log utility and the
discount factor of 0.96.

The decomposition shows that the effect of the final good price slightly dominates that of the
rent-adjusted income. In each of the two effects, increases in land rents due to agglomeration play

important roles, i.e., reduce the rent-adjusted income and increase the price index of the final good.
However, a much larger positive effect, 18.8% increase in utility, is generated by urban diversity, i.e.,
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Item Value (%)
Welfare Gain 1.6

Rent-adjusted Income -8.7
Final Good Price 10.3

Land Rent -7.8
Wage Rate -0.7
Urban Diversity 18.8

Table 1.2: Welfare Gain from Functional Specialization: Benchmark

Note: The welfare effect of each item is measured in terms of % increase in utility from the symmetric case.

agglomeration increases the number of varieties of professional services.

Robustness

How does this result depend on the elasticity σ of substitution and the distribution of skill intensities
of stages of production? In order to answer this question, fixing the share parameters, α and β, and

ã, a parameter less crucial than η in determining the distribution of skill intensity, we compute the
welfare gain for each pair (σ,η) or (σ,Γs) given the one-to-one correspondence between η and Γs.

Since G(1)> 0 in Proposition 1.1 must hold, we need the following restriction to σ:

σ > max
{

1,
1

α(1−β)+β

}
≈ 5.817.

The upper bound for σ is set to 10 which corresponds to the upper bound of the typical range of
the elasticity of substitution in the literatures (Anderson and van Wincoop, 2004). The lower and

upper bounds, -0.685 and 9.210, for η are set in such a way that the average skill intensity Γs belongs
to a range [0.1,0.9], which covers the benchmark case, 0.882. Figure 1.3 depicts the density of

skill intensity for three values of the average skill intensity Γs, showing that as Γs increases, the
composition of production processes shifts toward those with higher skill intensity.

Figure 1.4 depicts the welfare gain and its decomposition for each pair (σ,Γs) of the elasticity
of substitution and the average skill intensity as well as the benchmark case represented as a point

(5.877,0.882). Although the absolute magnitude of each decomposed term changes significantly
depending on parameter values, its relative magnitude is the same as in the benchmark case, and

the magnitude of the overall welfare gain is robustly high, e.g., in a large region of (σ,Γs), the total
welfare gain is more than 1%, implying 25% increase in life-time utility.

Numerical comparative statics also shows that for a fixed average skill intensity Γs, an increase
in the elasticity σ of substitution reduces the welfare gain from functional specialization; and that

for a fixed elasticity σ of substitution, there is an inverted-U-shaped relationship between the average
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Figure 1.3: Density Function of Skill Intensity: Γs = 0.2,0.5,0.8

skill intensity Γs and the overall welfare gain. The former result is interpreted that as an increase in
the elasticity σ of substitution weakens the urban diversity effect, resulting in a lower overall welfare

gain. The other effects, i.e., rent-adjusted income, land rent, and wage rate, are all in the opposite
direction reflecting weaker market competition. The latter result is simply because as the density of

skill intensity concentrates on either the upper or lower corners, i.e., Γs → 1 or Γs → 0, heterogeneity
across production processes with respect to skill intensity disappears, leading to less benefit from

specialization or trade. This interpretation is supported by the result that each decomposed term has
the same inverted-U-shaped relationship. However, we note that the absolute magnitude of each effect

is strengthened when the density of skill intensity is skewed to the right.

1.4 Welfare Analysis of Income Redistribution Policy

Unlike standard urban economics models of a system of cities à la Henderson (1974) and Black
and Henderson (1999), there is no competitive city developers or local governments that are often

though of as an institution that internalizes technological externalities and coordinates agents’ location
choices. This implies that a market outcome is in general inefficient in the model. More specifically,

given that there is no technological externalities, coordination failure among firms determining the
location of stages of production and potential entrants into the monopolistic competition (non-routine
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Figure 1.4: Welfare Gain from Functional Specialization

Note: Panels show the welfare effects in terms of % increase in utility from the symmetric case. A darker color within a
fixed panel means a higher welfare gain. Colors in different panels are not comparable. The point (5.877,0.882)
represents the benchmark case. For a given triplet (α,β, ã), there is a negative relationship between η and the average skill
intensity Γs.

services) sector could be a source of inefficiency in the model (Matsuyama, 1995).23 Simultaneity of

these choices generates circular causation allowing inefficient concentration of economic activity:24 If
stages of production with higher skill intensities concentrate in a particular location, then the demand

for non-routine services increases, leading to more entrants into the non-routine services sector there.
Since the larger number of varieties reduces the price index of non-routine services in that location,

the concentration of stages with higher skill intensities strengthens further.
Given the above inefficiency, this section considers a simple income redistribution policy, where

the government levies a proportional income tax on workers and then redistributes the revenue across
cities with a lump-sum transfer. Under this policy, a market equilibrium is determined such that

workers and firms optimally choose locations of residence and production, and potential firms in the

23 As discussed in Dixit and Stiglitz (1977) and more recently argued by Dhingra and Morrow (2012) in a class of models
with heterogeneous firms à la Melitz (2003), monopolistic competition with a constant elasticity of substitution is itself not
a source of inefficiency. The optimal allocation requires a “social markup” that finances fixed costs of production of a
variety, and the social markup coincides with the “private” markup exactly with a constant elasticity of substitution.

24 Although free migration is itself not a source of inefficiency, it could affect the degree of inefficiency due to coordina-
tion failure, since migration changes prices based on which firms make their decisions.
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monopolistic competition sector enter the market if it is profitable to enter the market. The motivation
of this focus is to evaluate effectiveness of a simple, feasible income redistribution in improving

welfare instead of designing a skill-intensity-dependent tax or subsidy system that is complicated and
seems infeasible in reality due to the government’s imperfect knowledge of firms’ technologies.

For this purpose, we describe the specific form of the policy is described in Subsection 1.4.1 and
then show that the equilibrium is still characterized as a first-order difference/differential equation as

in the laissez-faire case in Subsection 1.4.2. Finally, we conduct numerical comparative statics of the
optimal tax rate and welfare in Subsection 1.4.3.

1.4.1 Income Redistribution Policy Rule

We begin with a finite number of locations J. Let Eb, j and Ea, j denote before- and after- tax regional
income, respectively, i.e., Eb, j = N j(Wj + R̄ j) =WjN j +R j. Then, let us introduce a government that

implements the following income redistribution policy rule:2526

Ea, j = (1− τ)Eb, j +
τE
J

∀ j,

where τ ∈ [0,1] is the proportional income tax rate; the case where τ = 0 corresponds to the laissez-

faire economy described and analyzed in the previous sections. That is, by levying a tax on individu-
als’ incomes Eb, j that are distributed by the market, the policy makes the equilibrium outcome more

equalized than in the laissez-faire case. In addition, the lump-sum transfers among cities make this
dispersion effect more effective because as individuals concentrate in a city, the per capita lump-sum

transfer within the city, i.e., τE/(JN j), decreases.
In order to reflect this government policy rule, the land market clearing and free-migration condi-

tions should be modified as

R j = (1−α)β|T j|E +αEa, j,

Ea, j+1/N j+1

Ea, j/N j
=

(
R j+1

R j

)α
,

25 The government here cannot control the distribution of population across cities directly. Instead, the choice variable
of the government is the income tax rate τ only. For a given tax rate, the population distribution of cities is implicitly
determined by free migration expressed as the equalization of utility across cities. This is in contrast to the analysis in
Pflüger and Tabuchi (2010) where the government controls the population distribution across (two) locations, and lump-
sum transfers are automatically implied by the free-migration condition.

26 An optimal allocation would be attained by the benevolent central government choosing taxes and subsidies in such
a way that they depend on the distribution of economic activity including stages of production and workers. Therefore,
although the location-dependent per-capita net transfer introduced by the central government is partially consistent with
this view, an optimal allocation cannot be inferred from the policy. The purse here is to provide an example of how to
analyze a model with income redistribution and to quantify the welfare gain from a simple income redistribution scheme.
A more detailed analysis is a future work, which requires more complicated mathematics such as variational calculus.
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where Ea, j/N j represents the after-tax per capita income at location j, implying

R j+1

R j
=

(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1 ,

N j+1

N j
=

(1−α)(1− τ)|T j+1|+ τJ−1

(1−α)(1− τ)|T j|+ τJ−1

{
(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1

}−α

, ∀ j.

1.4.2 Modified Fundamental Equation

Using the modified equilibrium conditions, we obtain the following modified fundamental equation:

(
|T j+1|
|T j|

)1−β[1+θγ(Tj)]{(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1

}[α(1−β)+β][1+θγ(Tj)]

×
[
(1−α)(1− τ)|T j+1|+ τJ−1

(1−α)(1− τ)|T j|+ τJ−1

]−(1−β)[1+θγ(Tj)]

=

(
Γ j+1

Γ j

)θγ(Tj)

∀ j ∈ {1,2, · · · ,J−1}.

Replacing J−1 with ∆t as J becomes sufficiently large and using the method of asymptotic expan-
sion, we obtain the fundamental equation in the limiting case:

g(Φ,Φ′)Φ′′ = θγ′(Φ)Φ′,

where

g(Φ,Φ′) ≡ 1−β[1+θγ(Φ)]

Φ′ +
[α(1−β)+β][1+θγ(Φ)]

Φ′+ τ̃1
− (1−β)[1+θγ(Φ)]

Φ′+ τ̃2
,

τ̃1 ≡ ατ
(1−α)[β+α(1−β)(1− τ)]

, τ̃2 ≡
τ

(1−α)(1− τ)
.

With τ = 0, this fundamental equation reduces to the one in the laissez-faire case.

This case is clearly complicated relative to the previous one, and thus we must resort to a nu-
merical method such as the fourth-order Runge-Kutta method. It should also be noted that a solution

to this ODE is not necessarily a sorting equilibrium because, unlike in the previous case, we do not
have any analytical characterization stating that Φ(t) is a positive, strictly convex function. Instead,

after solving the fundamental equation numerically, we need to check whether the function Φ(t) has
this property.27 However, an advantageous property of this ODE is that it is very easy to check the

27 Using the land rent and wage rate functions stated in the next subsection, we have

PL(t) ∝
[
(1−α)(1− τ)+ τ/Φ′(t)

]−(1−β){
(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ

}α(1−β)+β for all t ∈ [0,1],

which implies that the price PL(t) of the routine good and thus market competition are increasing in t if (Φ′(t) > 0 and)
Φ′′(t) > 0 for all t ∈ [0,1]. Then, the argument in Subsection 1.3.1 suggests that if a solution to the fundamental equation
exists, we should have a D(t) that is increasing in t, which is the implication of endogenous comparative advantage of
cities with higher t in the nonroutine sector. That is, if a solution to the fundamental equation exists and if Φ′(t) > 0 and
Φ′′(t)> 0 for all t ∈ [0,1], the solution is actually a sorting equilibrium.
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uniqueness of a solution for a given set of parameters. This is because we know that Φ(t) is a Lorenz
curve, and thus, Φ′(0) must be less than one. In addition, we have boundary conditions, Φ(0) = 0 and

Φ(1) = 1. Therefore, by simply discretizing the interval (0,1) and using each point as an initial guess
for Φ′(0), we can obtain all the possible solutions to the ODE with the help of forward shooting.

1.4.3 Optimal Income Tax Rate

Benchmark

For the benchmark set of parameter values in Table 1.1, it was verified that for each τ ∈ [0,1], there is

a unique solution to the fundamental equation that has the property Φ′(t),Φ′′(t)> 0 for all t, implying
that the solution is actually a sorting equilibrium.

Given the unique solution, the equilibrium utility is then calculated by

lnŪ = ln
[

Ea(t)
N(t)R(t)α

]
− (1−α) lnP ∀t ∈ [0,1],

where

Ea(t) = [1−α(1− τ)]−1[(1−α)(1− τ)Φ′(t)+ τ],

lnP =
∫ 1

0
[β lnR(t)+(1−β) lnW (t)−θγ(Φ(t)) lnD(t)]Φ′(t)dt,

R(t) = [1−α(1− τ)]−1{(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ
}
,

W (t) = (1−α)(1−β)
Φ′(t)
N(t)

,

N(t) = ec0
[
(1−α)(1− τ)Φ′(t)+ τ

]{
(1−α) [α(1−β)(1− τ)+β]Φ′(t)+ατ

}−α
,

D(t) =
θ

(1+θ) f
(1−α)γ(Φ(t))Φ′(t)R(t)−βW (t)−(1−β)

for all t ∈ [0,1], where ec0 is computed by integrating N(t) over [0,1] and using the normalization

condition, i.e.,
∫ 1

0 N(t)dt = 1. The implication of spatial equilibrium is that the first term in the above
equation is independent of location or task t such that utility is equalized across locations.28

Panel (a) in Figure 1.5 then depicts the consequent relationship between tax rate τ and the natural
logarithm of the equilibrium utility lnŪ , which contains a unique peak at the optimal income tax rate

of about 0.6%.29 Therefore, the laissez-faire outcome, i.e., the case of τ = 0, is not efficient. Its
allocation is Pareto-dominated by the sorting equilibrium with a positive but sufficiently low income

tax rate. The optimal tax rate achieves about 0.09% higher equilibrium utility as reported in Table

28 Using the normalization condition on the population size, i.e.,
∫ 1

0 N(t)dt = 1, it is easily shown that
Ea(t)/[N(t)R(t)α] = [1−α(1− τ)]−(1−α)e−c0 for all t ∈ [0,1].

29 This small number is not a computational error as suggested by Panel (a) in Figure 1.5 and Figure 1.6, the latter of
which shows the optimal tax rate for each pair (σ,Γs) of the elasticity of substitution and the average skill intensity.
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Figure 1.5: Income Tax τ and the Equilibrium Utility (ln): Benchmark
Note: The vertical axes of all panels are measured in terms of utility. For ease of visualization, the horizontal axis covers

only a part of τ, i.e., [0,0.05]. For higher τ’s, the relative magnitude of each term does not change.

Item Value (%)
Welfare Gain 0.09

Rent-adjusted Income 3.63
Final Good Price -3.53

Land Rent 3.18
Wage Rate 0.24
Urban Diversity -6.95

Table 1.3: Welfare Gain from Optimal Income Redistribution Policy: Benchmark

Note: The welfare effect of each item is measured in terms of % increase in utility from the laissez-faire case.

1.3, which corresponds to about 2.25% increase in life-time utility with log utility and the discount
factor of 0.96.

The unique peak is a result of the combination of two relationships: (i) the welfare effect of the
land-rent-adjusted income is monotonically increasing in the tax rate τ; and (ii) the welfare effect

of the final good price is monotonically decreasing in the tax rate τ. Panel (a) and (b) in Figure 1.5
suggest that for a sufficiently low tax rate, the former effect dominates, while the latter does for a

sufficiently high tax rate. As the decomposition of the welfare effect of the final good price shows
(Panel (c) in Figure 1.5), the latter relationship derives from the fact that the welfare effect of urban

diversity increases as the spatial distribution of economic activity concentrates, i.e., as the tax rate τ
decreases. The wage rate and the land rent both become lower when economic activity is dispersed,

i.e., τ is higher, suggesting that the former relationship simply reflects the relationship between the
welfare effect of the land rent and the tax rate. The decomposition of the welfare gain from the

optimal income tax reported in Table 1.3 confirms such relative magnitudes of welfare effects.
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Robustness

Numerical comparative statics shows that the laissez-fair outcome is inefficient in the most of an
empirically plausible parameter range. The left panel in Figure 1.6 depicts the optimal income tax

rate corresponding to each pair (σ,Γs) of the elasticity of substitution and the average skill intensity
in percentage terms.30 It shows that the optimal tax rate is positive in the range, implying that the

laissez-fair is characterized as excess agglomeration. This result agree with the one reported by
Pflüger and Tabuchi (2010), who, using a New Economic Geography model, argue that with land use

in both consumption and production, the spatial configuration is characterized by either efficient or
excess agglomeration.

Although the optimal tax rate changes depending on parameter values, we observe systematic
variations: For a fixed elasticity σ of substitution, the optimal tax rate is monotonically decreasing in

the average skill intensity Γs and approaching to zero as Γs increases to one; and, for a fixed average
skill intensity Γs, the optimal tax rate is monotonically increasing in the elasticity σ of substitution if

Γs is sufficiently high and has an inverted-U-shaped relationship otherwise (the right panel in Figure
1.6). The former result is interpreted as the combination of two key results. On one hand, if the

average skill intensity Γs is sufficiently close to unity, the density of skill intensity is highly skewed
to the right (Figure 1.3), making almost every production processes to use inputs produced by the

monopolistically competitive sector and thus suggesting that the laissez-faire is close to an efficient
allocation.31 On the other hand, as the average skill intensity Γs decreases, production technology ex-

hibits constant returns more, and, given limited land areas generating a dispersion force, it is implied
that the optimal allocation is more dispersed than the laissez faire.

The first part of the latter result is interpreted in a similar way to the former case. That is, as

the elasticity σ of substitution decreases, production technology exhibits constant returns to a greater
extent, favoring more dispersed economic activity as the optimal. In the second part, where the

average skill intensity Γs is not close to unity, the laissez-faire outcome is distant from an efficient
allocation, implying more room for income redistribution. This is especially relevant for lower σ
which is associated with a greater concentration of economic activity and thus sever negative effects
of higher land rents on welfare. Then income redistribution can mitigate those negative effects even

if losing opportunities urban diversity provides. This interpretation is consistent with the result that
the region of the elasticity of substitution, where the optimal tax rate is decreasing in σ, expands as

the average skill intensity Γs decreases (the left panel of Figure 1.6). The analysis here suggests that

30 We note that the analysis here is not exhaustive in the sense that we focus on a range of (σ,Γs), where computational
errors associated with numerical solutions to the modified fundamental equation and numerical integration used when
calculating equilibrium utility are sufficiently small such that the objective function, i.e., equilibrium (log) utility as a
function of the income tax rate τ, is relatively well approximated with cubic spline interpolation, an approximation method
used together with the golden section search when computing the optimal tax rate.

31 If γ(t) = 1 for all t ∈ [0,1], there is no specialization of cities, and the associated market outcome is equivalent to an
autarkic outcome.Then, according to the literature (Dixit and Stiglitz, 1977; Dhingra and Morrow, 2012), an equilibrium
allocation is efficient.
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Figure 1.6: Optimal Income Tax Rate, 100× τ (%)

Note: Left panel: A darker color means a higher tax rate; The point (5.877,0.882) represents the benchmark case in which
case the optimal tax rate is about 0.6%; In the south east region, computational errors are relatively large due to a smaller
role of monopolistic competition implying equilibrium utility is less elastic with respect to parameters (σ,Γs). Right
panel: The range of σ above 8 is excluded because computational errors are relatively large.

the optimal income tax rate is determined by the interplay between two opposing components: the

distance of production technology from the dominance of monopolistic competition in terms of the
distribution of skill intensity and that from the dominance of constant returns to scale in terms of the

elasticity of substitution.

The above results then provide an important implication for a modern developed economy: As
Michaels et al. (2013) shows, we observe an increasing importance of interactive activities in devel-

oped countries such as the United States. In our model, this change in the nature of economic activity
can be interpreted in two ways, i.e., a right shift of the density of skill intensity or an increase in the

degree of product differentiation. The comparative statics then suggests that the desirable income
redistribution policies are not necessarily the same in both case.

As for the welfare gain from income redistribution, numerical results show that the relative mag-
nitude of each decomposed effect is the same as in the benchmark case, implying that although the

absolute magnitude of each effect varies depending on parameter values, a positive overall welfare
gain from income redistribution is a result of weakened negative effects of land rents compensating

lower urban diversity. Panel (a) in Figure 1.7 shows the overall welfare gain from the optimal income
redistribution policy, measured in terms of the increase in the equilibrium utility from the laissez-faire,

is positive but limited to a similar degree as the benchmark case,32 being in contrast to decomposed

32This result is consistent with that in Desmet and Rossi-Hansberg (2013) who use a totally different, neo-classical
framework with Marshallian externalities in both production and preference, showing that eliminating efficiency differences
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Figure 1.7: Welfare Gain from Optimal Income Redistribution Policy and Optimal Tax Rate τ

Note: Panels show the welfare effects of an optimal tax in terms of % increase in utility from the laissez-faire. A darker
color within a fixed panel means a higher welfare gain or a higher tax rate. Colors in different panels are not comparable.
The point (5.877,0.882) represents the benchmark case. For a given triplet (α,β, ã), there is a negative relationship
between η and the average skill intensity Γs.

effects, Panel (b)-(f), which vary widely depending on parameter values. However, signs and relative
magnitudes of those effects are the same as in the benchmark case. We also note that the welfare gain

from income redistribution has the same property as that from functional specialization, i.e., gains
tend to be larger when the distribution of skill intensity is close to a uniform.

1.5 Conclusion

To formalize functional specialization of cities, this chapter develops a static equilibrium model of

a system of cities in which ex ante identical locations specialize ex post in different sets of stages
of production, resulting in a unique, non-degenerate size distribution of cities with the comovement

of income, population, the wage rate, the land rent, the average establishment size in the the non-
routine local services sector, and urban diversity as observed for the U.S. cities. The model is fairly

tractable in that the necessary and sufficient condition for the city size distribution to obey a power

across cities results in 1.2% increase in the U.S.
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law is analytically obtained. The analysis then takes a step further to analyses of welfare gains from
functional specialization and optimal income redistribution. Even if focusing on a static environment,

the welfare gain from functional specialization is large, but that from income redistribution is limited.
The latter analysis also provides an important implication of an increasing importance of interactive

activities in a modern developed economy for desirable income redistribution.
Given its simplicity, we hope that the model serves as a tool for further analyses of issues related

to specialization in a system of cities. Although not pursued in this chapter, the model seems to be
easily extended to introduce externalities both in preference and production, elements often employed

by recent quantitative studies such as Desmet and Rossi-Hansberg (2013). In addition, the model
can also accommodate exogenous amenity or productivity differentials, which are also assumed in

previous studies, at least in two extreme cases: the ordering of cities in terms of skill intensity is

exactly the same as in the case of exogenous differentials; or it is exactly the contrary. The former
case is used as an approximation if exogenous amenities are important in determining the city size

distribution, e.g., Behrens et al. (2014b), while the latter could be used if interested in the “first nature
v.s. second nature” type of argument. Intermediate cases are complicated to analyze because there

are multiple distribution in equilibrium.
In addition to the above extensions, conducting an empirical analysis is also one direction of

future research. Examples include investigating the model’s prediction for rankings of variables more
rigorously by controlling individual heterogeneity and differences across cities in the composition of

industries so as to ask whether the rankings are still observed under an environment consistent with
the model.

In any case, extensions allow us to more deeply understand the relationship between optimal
income redistribution and the above elements as well as that between comparative advantage and

agglomeration and dispersion forces.
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.1 Why the ordering, 0 = T1 < T2 < · · ·< TJ = 1, holds

The following argument shows that the ordering of thresholds assumed in the text is only the relevant

case.

1. Suppose without loss of generality that |T j| < |T j+1| for all j.33 Then, we can show that

T j ∩T j′ = /0 for all j ̸= j′. This is because if T j ∩T j′ ̸= /0 for some j ̸= j′, then it must hold that

Pj(t)
Pj′(t)

=

(
Pn, j

Pn, j′

)γ(t)( Pr, j

Pr, j′

)1−γ(t)
= 1 ∀t ∈ T j ∩T j′ .

Since γ(t) is strictly increasing, this is possible only if

Pn, j

Pn, j′
=

Pr, j

Pr, j′
= 1.

However, this contradicts the fact that |T j| ̸= |T j′ |, given that

Pr, j

Pr, j′
=

(
R j

R j′

)β(Wj

Wj′

)1−β
=

(
|T j|
|T j′ |

)α(1−β)+β
.

2. Furthermore, it holds that ∪ jT j = [0,1]. This is simply due to the fact that for any fixed t ∈ [0,1],
there exists j that minimizes the costs of processing stage t.

3. Therefore, we can say that there exists a sequence of thresholds {Tj}, implying that we can use
the condition for comparative advantage, i.e., Condition 5 in the definition of an equilibrium.

It is then implied that Γ j < Γ j+1 for all j.

4. Since T j ∩T j′ = /0 for any j ̸= j′ and it must hold that |T j| < |T j+1| and Γ j < Γ j+1 for all j,
the sequence {Tj} must be increasing. Otherwise, there exists j < j′, i.e., |T j| < |T j′ |, such

that Γ j > Γ j′ , which contradicts |T j| < |T j′ | under the assumption that (1−α)(1−β)θγ(t) <
α(1−β)+β for all t ∈ [0,1].

.2 Derivation of the Fundamental Equation

Reproduce the fundamental equation corresponding to the discrete case:(
Tj+1 −Tj

Tj −Tj−1

)α(1−β)+β−(1−α)(1−β)θγ(Tj)

=

(
Γ j+1

Γ j

)θγ(Tj)

, (19)

33 Of course, it is possible that |T j|= |T j′ | for some j and j′. However, if a shock to the economy is drawn from some
continuous distribution, such a case occurs with probability zero.



32

where

Γ j ≡
1

Tj −Tj−1

∫ Tj

Tj−1

γ(t)dt.

In the limit, i.e., J → ∞, each location specializes in a single stage of production. Therefore, each
location is characterized by its stage t ∈ [0,1]. So, let Φ(t) denote the income Lorenz curve, i.e., Φ(t)

is equal to the accumulated income of locations that belong to [0, t].
Using this Lorenz curve, we then have the following approximation:

Tj+1 −Tj

Tj −Tj−1
=

Φ(t +∆t)−Φ(t)
Φ(t)−Φ(t −∆t)

, (20)

where t and ∆t correspond to j/J and 1/J, respectively. Using the asymptotic expansion, the right
hand side is expressed by

Φ(t +∆t)−Φ(t)
Φ(t)−Φ(t −∆t)

= 1+
Φ′′(t)
Φ′(t)

∆t +o(|∆t|), (21)

where o(·) denotes the little o, i.e., as |∆t| → 0, o(|∆t|)/|∆t| → 0.

We also have the following approximation:

Γ j+1 =

∫ Φ(t+∆t)
Φ(t) γ(τ)dτ

Φ(t +∆t)−Φ(t)
= γ(Φ(t))+

1
2

γ′(Φ(t))Φ′(t)∆t +o(|∆t|),

Γ j =

∫ Φ(t)
Φ(t−∆t) γ(τ)dτ

Φ(t)−Φ(t −∆t)
= γ(Φ(t))− 1

2
γ′(Φ(t))Φ′(t)∆t +o(|∆t|).

Then,

Γ j+1

Γ j
= 1+

γ′(Φ(t))Φ′(t)
γ(Φ(t))

∆t +o(|∆t|). (22)

Thus, substituting (20)-(22) into (19), we obtain[
1+

Φ′′(t)
Φ′(t)

∆t +o(|∆t|)
]α(1−β)+β−(1−α)(1−β)θγ(Φ(t))

=

[
1+

γ′(Φ(t))Φ′(t)
γ(Φ(t))

∆t +o(|∆t|)
]θγ(Φ(t))

=⇒ 1+[α(1−β)+β− (1−α)(1−β)θγ(Φ(t))]
Φ′′(t)
Φ′(t)

∆t +o(|∆t|)

= 1+θγ(Φ(t))
γ′(Φ(t))Φ′(t)

γ(Φ(t))
∆t +o(|∆t|)

=⇒ [α(1−β)+β− (1−α)(1−β)θγ(Φ(t))]
Φ′′(t)
Φ′(t)

+
o(|∆t|)

∆t
= θγ′(Φ(t))Φ′(t)+

o(|∆t|)
∆t

=⇒ [α(1−β)+β− (1−α)(1−β)θγ(Φ(t))]
Φ′′(t)
Φ′(t)

= θγ′(Φ(t))Φ′(t) (∆t → 0)
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.3 Derivation of the Inverse Lorenz Curve H

As in the text, let H : z → t denote the inverse Lorenz curve, i.e., H(z) ≡ Φ−1(z). By definition, it

satisfies

t = H(Φ(t)),

which in turn implies that

1 = H ′(Φ(t))Φ′(t)≡ H ′(z)Φ′(t). (23)

Meanwhile, integrating the fundamental equation, we obtain

Φ′(t) ∝ [α(1−β)+β− (1−α)(1−β)θγ(z)]−
1

(1−α)(1−β) . (24)

Substituting (24) into (23), we then obtain

H ′(z) ∝ [α(1−β)+β− (1−α)(1−β)θγ(z)]
1

(1−α)(1−β)

=⇒ H(z) = c0 + c1

∫ z

0
G(u)

1
(1−α)(1−β) du, (25)

where c0 and c1 are undetermined constants. Using the boundary conditions, H(0) = Φ(0) = 0 and
H(1) = Φ(1) = 1, c0 and c1 are then determined by

c0 = 0,

c1 =

[∫ 1

0
G(u)

1
(1−α)(1−β) du

]−1

,

implying the desired expression:

H(z) =
∫ z

0 G(u)
1

(1−α)(1−β) du∫ 1
0 G(u)

1
(1−α)(1−β) du

∀z ∈ [0,1].

.4 Proof of Proposition 2

Here, we only show that (i) γ′[γ−1(B(λ))] ∝ λη̃ if and only if γ(t) is given as in Proposition 2; and that
(ii) the size distribution of cities is consistent with Zipf’s law if and only if η =−α/[(1−α)(1−β)].
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.4.1 Determination of the Functional Form of γ(t)

Define x by

x ≡ α(1−β)+β−λ−1

(1−α)(1−β)θ
,

with which we can rewrite γ′[γ−1(B(λ))] ∝ λη̃ as follows:

γ′[γ−1(x)] ∝ (a− x)−η̃, or
1

γ′[γ−1(x)]
∝ (a− x)η̃.

Defining a function g by t = g(x) = γ−1(x), we can interpret this as

g′(x) = c1(a− x)η̃, c1 > 0. (26)

Note that the function g must satisfy

g(0) = 0 and g(1) = 1 (27)

since γ(0) = 0 and γ(1) = 1.

Now, suppose that η̃ =−1. We then obtain

t = g(x) = c0 − c1 ln(a− x) and thus γ(t) = a− exp
(

c0 − t
c1

)
. (28)

Using the terminal condition (27), it is immediate to obtain

c0 =
lna

lna− ln(a−1)
and c1 = [lna− ln(a−1)]−1 ,

which together with (28) imply the desired result for η = η̃+1 = 0.

As for the case of η̃ ̸=−1, we can apply the similar method and obtain the desired result.

.4.2 Determination of the Constraint on the Parameters for Zipf’s Law

Under the assumption that η ̸= 0, the density function of λ is given by

fΛ(λ) ∝ λ−
[

1
(1−α)(1−β)+η+1

]
.

This implies that λ obeys a Pareto distribution with coefficient of 1/[(1−α)(1−β)]+η.

Then, since Φ′(t) is related with λ by

Φ′(t) ∝ λ
1

(1−α)(1−β) ,
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Φ′(t) obeys a Pareto distribution with coefficient of (1−α)(1−β)η+1.
Furthermore, since N(t) ∝ Φ′(t)1−α, N(t) obeys a Pareto distribution with coefficient of (1−

β)η+1/(1−α).
Finally, the definition of Zipf’s law, i.e., a Pareto distribution with unit coefficient, pins down the

desired value of η.

.5 Derivation of the Modified Fundamental Equation

Reproduce the modified fundamental equation:

(
|T j+1|
|T j|

)1−β[1+θγ(Tj)]{(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1

}[α(1−β)+β][1+θγ(Tj)]

×
[
(1−α)(1− τ)|T j+1|+ τJ−1

(1−α)(1− τ)|T j|+ τJ−1

]−(1−β)[1+θγ(Tj)]

=

(
Γ j+1

Γ j

)θγ(Tj)

∀ j ∈ {1,2, · · · ,J−1},

which contains

|T j+1|+ τ̃iJ−1

|T j|+ τ̃iJ−1 , i = 1,2.

Because, replacing J−1 with ∆t, we have

|T j+1|+ τ̃iJ−1 = Φ(t +∆t)−Φ(t)+ τ̃i∆t =
[
Φ′(t)+ τ̃i

]
∆t +

1
2

Φ′′(t)∆t2 +o(|∆t|)

|T j|+ τ̃iJ−1 = Φ(t)−Φ(t −∆t)+ τ̃i∆t =
[
Φ′(t)+ τ̃i

]
∆t − 1

2
Φ′′(t)∆t2 +o(|∆t|),

with the help of the asymptotic expansion, we can approximate the above term as follows:

|T j+1|+ τ̃iJ−1

|T j|+ τ̃iJ−1 = 1+
Φ′′(t)

Φ′(t)+ τ̃i
∆t +o(|∆t|).
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Then, substituting the following approximations into the modified fundamental equation,(
|T j+1|
|T j|

)1−β[1+θγ(Tj)]

=

[
1+

Φ′′(t)
Φ′(t)

∆t +o(|∆t|)
]1−β[1+θγ(Φ(t))]

= 1+{1−β[1+θγ(Φ(t))]} Φ′′(t)
Φ′(t)

∆t +o(|∆t|),(
|T j+1|+ τ̃1J−1

|T j|+ τ̃1J−1

)[α(1−β)+β][1+θγ(Tj)]

=

[
1+

Φ′′(t)
Φ′(t)+ τ̃1

∆t +o(|∆t|)
][α(1−β)+β][1+θγ(Φ(t))]

= 1+[α(1−β)+β][1+θγ(Φ(t))]
Φ′′(t)

Φ′(t)+ τ̃1
∆t +o(|∆t|),(

|T j+1|+ τ̃2J−1

|T j|+ τ̃2J−1

)−(1−β)[1+θγ(Tj)]

=

[
1+

Φ′′(t)
Φ′(t)+ τ̃2

∆t +o(|∆t|)
]−(1−β)[1+θγ(Φ(t))]

= 1− (1−β)[1+θγ(Φ(t))]
Φ′′(t)

Φ′(t)+ τ̃2
∆t +o(|∆t|),(

Γ j+1

Γ j

)θγ(Tj)

=

[
1+

γ′(Φ(t))Φ′(t)
γ(Φ(t))

∆t +o(|∆t|)
]θγ(Φ(t))

= 1+θγ(Φ(t))
γ′(Φ(t))Φ′(t)

γ(Φ(t))
∆t +o(|∆t|),

and rearranging the result, we obtain the modified fundamental equation.

.6 Derivation of Profiles

.6.1 Land Rent R(t)

From the text, we have

R j+1

R j
=

|T j+1|+ τ̃1J−1

|T j|+ τ̃1J−1 ,

J

∑
j=1

R j =
(1−α)[α(1−β)(1− τ)+β]+ατ

1−α(1− τ)
,

where we invoke the normalization of the total income, i.e., E = 1, as in the text.
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Using the asymptotic expansion, the former can be written as follows:

R(t +∆t)
R(t)

= 1+
Φ′′(t)

Φ′(t)+ τ̃1
∆t +o(|∆t|)

=⇒ 1
R(t)

R(t +∆t)−R(t)
∆t

=
Φ′′(t)

Φ′(t)+ τ̃1
+

o(|∆t|)
∆t

=⇒ R′(t)
R(t)

=
Φ′′(t)

Φ′(t)+ τ̃1
(∆t → 0)

=⇒ lnR(t) = c0 + ln[Φ′(t)+ τ̃1]

=⇒ R(t) = c̃0[Φ′(t)+ τ̃1].

Integrating the last expression, we then obtain

∫ 1

0
R(t)dt =

J

∑
j=1

R j =
(1−α)[α(1−β)(1− τ)+β]+ατ

1−α(1− τ)
= c̃0

[∫ 1

0
Φ′(t)dt + τ̃1

]
= c̃0(1+ τ̃1)

c̃0 =
(1−α)[α(1−β)(1− τ)+β]

1−α(1− τ)
,

where the last equality of the first line uses the fact that Φ(0) = 0 and Φ(1) = 1.

Therefore, we have

R(t) =
(1−α)[α(1−β)(1− τ)+β]

1−α(1− τ)
[Φ′(t)+ τ̃1]

= [1−α(1− τ)]−1{(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ
}
.

.6.2 Population N(t)

From the text, we have

N j+1

N j
=

|T j+1|+ τ̃2J−1

|T j|+ τ̃2J−1

(
|T j+1|+ τ̃1J−1

|T j|+ τ̃1J−1

)−α

,

which is in turn approximated as follows:

N(t +∆t)
N(t)

=

[
1+

Φ′′(t)
Φ′(t)+ τ̃2

∆t +o(|∆t|)
][

1+
Φ′′(t)

Φ′(t)+ τ̃1
∆t +o(|∆t|)

]−α

=

[
1+

Φ′′(t)
Φ′(t)+ τ̃2

∆t +o(|∆t|)
][

1−α
Φ′′(t)

Φ′(t)+ τ̃1
∆t +o(|∆t|)

]
= 1+

[
Φ′′(t)

Φ′(t)+ τ̃2
−α

Φ′′(t)
Φ′(t)+ τ̃1

]
∆t +o(|∆t|).
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Integrating both sides, arranging the result and taking the limit (∆t → 0), we then obtain

N′(t)
N(t)

=
Φ′′(t)

Φ′(t)+ τ̃2
−α

Φ′′(t)
Φ′(t)+ τ̃1

=⇒ lnN(t) = ĉ0 + ln[Φ′(t)+ τ̃2]−α ln[Φ(t)+ τ̃1]

=⇒ N(t) = eĉ0
[
Φ′(t)+ τ̃2

][
Φ′(t)+ τ̃1

]−α
, or

N(t) = ec0
[
(1−α)(1− τ)Φ′(t)+ τ

]{
(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ

}−α
,

where c0 satisfies

eĉ0 = ec0(1−α)(1− τ){(1−α)[α(1−β)(1− τ)+β]}−α .

Here, c0 should be consistent with the normalized total population, i.e.,
∫ 1

0 N(t)dt = 1.

.6.3 Wage Rate W (t)

From the labor market clearing condition in the text, we have

Wj+1N j+1

WjN j
=

|T j+1|
|T j|

,

J

∑
j=1

WjN j = (1−α)(1−β),

where we invoked the normalization of the total income, i.e., E = 1.

Defining the local labor income M j by M j =WjN j, we can approximate the above first equation
as follows:

M(t +∆t)
M(t)

= 1+
Φ′′(t)
Φ′(t)

∆t +o(|∆t|).

Therefore, we have

M′(t)
M(t)

=
Φ′′(t)
Φ′(t)

=⇒ lnM(t) = c0 + lnΦ′(t)

=⇒ M(t) = c̃0Φ′(t),

where c̃0 is determined by integrating both sides and using the above result:

∫ 1

0
M(t)dt =

J

∑
j=1

WjN j = (1−α)(1−β) = c̃0

∫ 1

0
Φ′(t)dt = c̃0.
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This implies that

M(t) =W (t)N(t) = (1−α)(1−β)Φ′(t) =⇒ W (t) = (1−α)(1−β)
Φ′(t)
N(t)

.

.6.4 Urban Diversity D(t)

Reproduce the market clearing condition for the nonroutine service sector:

D j pn, jq = (1−α)Γ j|T j|= (1−α)
∫ Tj

Tj−1

γ(t)dt,

where

pn, j = (1+θ)mRβ
jW

1−α
j , q =

f
θm

.

This suggests that

D(t)
(1+θ) f

θ
R(t)βW (t)1−βdt = (1−α)γ(Φ(t))Φ′(t)dt

=⇒ D(t) =
θ

(1+θ) f
(1−α)γ(Φ(t))Φ′(t)R(t)−βW (t)−(1−β).

.6.5 After-tax Local Income Ea(t)

From the text, we have

Ea, j = (1− τ)Eb, j + τJ−1 = (1− τ)(WjN j +R j)+ τJ−1,

where the normalization of the total income, i.e., E = 1, is used.
This then suggests that

Ea(t)dt = (1− τ)[W (t)N(t)+R(t)]dt + τdt

= (1− τ)[M(t)+R(t)]dt + τdt

=⇒ Ea(t) = (1− τ)[M(t)+R(t)]+ τ.

Substituting

M(t)+R(t) = (1−α)(1−β)Φ′(t)+ [1−α(1− τ)]−1{(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ
}

= [1−α(1− τ)]−1[(1−α)Φ′(t)+ατ]
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into the above equation, we obtain

Ea(t) = [1−α(1− τ)]−1[(1−α)(1− τ)Φ′(t)+ τ].

.6.6 Natural Logarithm of the Price Index lnP of the Final Good

In a sorting equilibrium, each location t specializes in a stage of production with skill intensity of
z = Φ(t). Then, the Cobb-Douglas technology implies that

lnP =
∫ 1

0
ln[P(Φ−1(z))]dz,

where P(t) denotes the location-t unit cost of processing stage with z = Φ(t). The change of the
variable then implies

lnP =
∫ 1

0
ln[P(t)]Φ′(t)dt.

Meanwhile, the unit cost P(t) of processing a stage with skill intensity of Φ(t) is given by

P(t) = Pn(t)γ(Φ(t))Pr(t)1−γ(Φ(t)).

Substituting the unit costs, Pn(t) and Pr(t), of local service sectors

Pn(t) = (1+θ)mR(t)βW (t)1−βD(t)−θ,

Pr(t) = R(t)βW (t)1−β

into the equation, it follows that

P(t) = [(1+θ)m]γ(Φ(t))R(t)βW (t)1−βD(t)−θγ(Φ(t)),

which, with the help of normalization, (1+θ)m = 1, becomes

P(t) = R(t)βW (t)1−βD(t)−θγ(Φ(t)).

Therefore, we have

lnP =
∫ 1

0
[β lnR(t)+(1−β)W (t)−θγ(Φ(t))D(t)]Φ′(t)dt.
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.7 Calibration

In this section, we calibrate the model to the U.S. data. We describe our procedure and the data we use

in Subsection .7.1 and .7.2, respectively. The result of the calibration is then presented in Subsection
.7.3. Our purpose is not testing the model. Instead, we simply intend to pick up an example of values

of parameters used as a benchmark in numerical exercises conducted in Subsections 1.3.4 and 1.4.3

in such a way that the model roughly matches the data.

.7.1 Procedure

In order to compute the equilibrium numerically, we need to specify the values of the parameters
(α,β,σ, ã,η). The first two are calibrated independently, and the other by matching the model with

the U.S. data in terms of the upper tail of the distribution of market sizes of MSAs. Without loss of
generality, f = 1 and (1+θ)m = 1.

Expenditure Share α of Land

Let A, B, and C denote the expenditure share of land, housing (excluding land), and goods and ser-

vices, respectively, i.e., A+B+C = 1. According to Davis and Ortalo-Magne (2011), the housing
expenditure (including land) A+B = 0.24. In addition, Albouy and Ehrlich (2012) report that the

one-third of housing costs are due to land, implying A = 1/3× (A+B). Since there is no housing in
the model, the expenditure share α of land is then calculated by α = A/(A+C)≈ 0.095.

Cost Share β of Land

Valentinyi and Herrendorf (2008) report sectoral income shares of land, structures, and equipments,
the summation of which corresponds to the capital share. Let Â, B̂, and Ĉ denote the income shares

of land, structures and equipments, and labor, respectively, i.e., Â+ B̂+ Ĉ = 1. If we focus on the

services sector, Â = 0.06, and Ĉ = 0.65 according to Table 5 in Valentinyi and Herrendorf (2008).
Since production factors in our model consist of land and labor only, we can calculate β by β =

Â/(Â+Ĉ)≈ 0.085.

Other Parameters (σ, ã,η)

The elasticity σ = 1/θ+1 of substitution is calibrated in such a way that the model can exactly match

the natural logarithm of the observed max-min ratio of the market size, which is given by

ln
[

Φ′(1)
Φ′(0)

]∣∣∣∣
data

=
1

(1−α)(1−β)
ln
[

α(1−β)+β
α(1−β)+β− (1−α)(1−β)θ

]
.
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Parameter Meaning Restriction Target Source
α Expenditure share of land (0,1) Expenditure share of land Albouy and Ehrlich (2012)

Davis and Ortalo-Magne (2011)
β Cost share of land (0,1) Cost share of land Valentinyi and Herrendorf (2008)
σ Elasticity of substitution (max{1, [α(1−β)+β]−1},+∞) Max-Min ratio of labor compensation Occupational Employment Statistics
ã Parameter of γ(t) (1,+∞) Distribution of labor compensations Occupational Employment Statistics
η Parameter of γ(t) (−∞,+∞) do. do.

Table 4: Restrictions on and Targets of the Calibrated Parameters

As for (ã,η), we solve the following constrained minimization problem in a brute force manner

with a discretized parameter space:

min
ã,η

max
i∈{1,2,··· ,N̂}

∣∣F̂(mi)−F(mi; ã,η)
∣∣ s.t. ã > 1,

where F̂ and F are the distribution functions of the natural logarithm of the market size for the data

and the model, respectively. N̂ is the sample size of MSAs, and mi is the actual normalized market size
of ith MSA. Table 4 summarizes the restrictions on and targets of the calibrated parameters, where

the lower bound for the elasticity σ of substitution takes account of the assumption that G(1) > 0 in

Proposition 1.1.

.7.2 Data

The data that we use in the calibration are taken from the May 2011 Occupational Employment Statis-

tics compiled by the Bureau of Labor Statistics, which reports the number of employments and the

average annual wage rates for occupations listed in the 2010 Standard Occupational Classification

System for each of the Metropolitan Statistical Areas (MSAs). We then exploit the equivalence be-

tween the normalized market size of an MSA and the normalized total labor compensation due to the
constancy of the labor cost share 1−β in order to construct the distribution of the natural logarithm

of the market size from the data on labor compensation. Focusing on the upper tail of the distribution
results in the sample size of 342 MSAs which is not particularly different from those in previous

studies such as Rossi-Hansberg and Wright (2007). The implied max-min ration of market sizes is
5.304.

.7.3 Result

The results of the calibration are reported in Table 1.1. The elasticity σ of substitution falls in the

typical range, [5,10], in the (international) literatures such as Anderson and van Wincoop (2004). As

shown in Figure 8, the model replicates the observed distribution of the natural logarithm of market
sizes with the maximal deviation of 2.0%.
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Figure 8: Cumulative Distribution Function of the Normalized Market Size
Note: The cumulative distribution of the data is constructed using labor compensations of the top 342 MSAs.

Source: May 2011 Occupational Employment Statistics.



Chapter 2

Comparative Advantage and Skill
Premium of Regions1

2.1 Introduction

This chapter provides one explanation for why a positive correlation between the size and skill pre-
mium of a region emerges by providing a comparative advantage model with a continuum of mobile

heterogeneous individuals as well as a continuum of final goods sectors that are different in terms of
their skill intensities of intermediate goods. All individuals choose their occupations depending on

their productivity, and any occupation can freely migrate across regions unlike footloose entrepreneur
models such as Forslid and Ottaviano (2003). This location-occupation choice then interacts with

the regional comparative advantage in final goods sectors which depends on the regional offer prices
of two different types of intermediate goods, one of which features monopolistic competition à la

Dixit and Stiglitz (1977). Although regions are ex-ante identical, interactions between individuals’
location-occupation choices and regional comparative advantage result in a self-organized positive

correlation between the skill premium and income of regions. The theory can also accommodate the
interpretation that the regional difference in skill premium is caused by specialization in task trade

within firms, not industries.
The basic mechanism is simple: Since regions are ex-ante identical in their environment includ-

ing land, some initial shock or history which reallocates the economy’s expenditure across regions
unevenly results in a cross-region variation in land rents. Free migration of workers is then asso-

ciated with a compensating differential, i.e., wage rates in regions with higher land rents must be
associated with higher wage rates in order for workers to reside in such regions. Because of cross

variation in factor prices, regions with higher prices have no comparative advantage in producing
non-differentiated intermediate goods. However, by making the average productivity of high-skilled

1The content of this chapter was published in a journal (Nagamachi, 2013).
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workers higher through sorting, higher land rents give such regions a comparative advantage in pro-
ducing skill-intensive intermediate goods. Reflecting this regional comparative advantage, final goods

sectors relocate across regions, and such relocation of industries makes the initial reallocation of ex-
penditures sustainable. Thus, a positive correlation between skill premium and the size of regions is

observed.
This chapter is related to at least two lines of research. The first concerns trade models with

Ricardian comparative advantage. The current model is an application of Matsuyama (2013) to the
regional context. His model is basically an extension of Dornbusch et al. (1977), where the compara-

tive advantage of countries is determined endogenously through firms’ entry into a monopolistically
competitive sector and the number of countries is increased arbitrarily. Although one of his moti-

vations is to construct a theory of income distribution across a large number of countries, I focus

on a two-region case. Unlike the international economy, the regional economy is more complicated
in that individuals are mobile across regions, which makes it difficult to derive the distribution of

regional income explicitly. In addition to individuals’ mobility, the current model differs from Mat-
suyama’s (2013) in that individuals choose their occupations, to be either workers or entrepreneurs;

that there are two types of intermediate goods sectors, one of which is characterized by monopolistic
competition; and that land, which is one of the usual elements in the urban economics literature, is

introduced.
The second line of research involves models of the spatial sorting of individuals. Amongst these,

Davis and Dingel (2012) is the most related in the sense that it shares the same motivation and the
assumption of identical cities or regions and zero trade costs of some goods. Although both studies

feature a self-organized positive correlation between the skill premium and the size of regions, the
key mechanism is quite different. In their paper, knowledge exchange works as an agglomeration

force, while this force is regional specialization in different industries or tasks in mine.
The remainder of this chapter is organized as follows: I first introduce the model in Section 2.2.

I summarize the basic mechanism working through general equilibrium and conduct a numerical
exercise in order to verify it in Section 2.3. In Section 2.4, I conclude this chapter.

2.2 The Model

The economy consists of two ex-ante identical regions: Region 1 and Region 2. Each region is

endowed with one unit of land, which is owned by a competitive landowner outside the economy. In-
dividuals, the mass of which is normalized to unity, are ex-ante heterogeneous in their entrepreneurial

productivity, and they choose their occupation, to be a worker or entrepreneur, depending on their
productivity as well as their residential choice. There is a [0,1]-continuum of final goods sectors,

each of which is different in its share parameters of two types of intermediate goods: labour- and
skill- intensive intermediate goods.
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2.2.1 Final Goods Sectors

Competitive final goods sectors exist on a [0,1] interval. Each sector s ∈ [0,1] uses a Cobb-Douglas
production technology with constant returns to scale, inputs of which are local differentiated skill-

intensive intermediate goods and local homogeneous labour-intensive intermediate goods. γ(s) ∈
[0,1] is the share parameter of the former, and γ′(s)> 0.

The location of each sector s is determined through competition, resulting in the price P(s) of
sector-s final good which is equal to the lowest unit cost of production. Letting χ j(s) and S j ⊆ [0,1]

denote the unit cost of production of sector s active in Region j and the set of sectors active in Region
j, respectively, it holds that P(s) = χ j(s) if s ∈ S j.

Formally, a typical firm in sector s residing in Region j, i.e., s ∈ S j, solves

max
{Mi, j(s)}i∈{E,L}{mi, j(φ,s)}φ

P(s)ME, j(s)γ(s)ML, j(s)1−γ(s)

−
∫ ∞

0
pE, j(φ)mE, j(φ,s)NE, jg∗j(φ)dφ−PL, jML, j(s)

s.t.

ME, j(s) =
[∫ ∞

0
mE, j(φ,s)

σ−1
σ NE, jg∗j(φ)dφ

] σ
σ−1

.

mE, j(φ,s) is the sector-s demand for a variety of skill-intensive intermediate goods produced locally

by a firm with productivity φ (hereafter variety-φ skill-intensive intermediate good).2 NE, j is the
mass of skill-intensive intermediate goods or entrepreneurs in Region j. g∗j(φ) denotes the density

function of productivity conditional on location. These differentiated goods are aggregated to ME, j(s)

by technology with constant elasticity σ > 1 of substitution. ML, j(s) is the sector-s demand for

homogeneous labor-intensive intermediate goods produced locally. Prices are denoted by pE, j(φ)
and PL, j for variety-φ skill-intensive intermediate good and homogeneous labor-intensive intermediate

goods, respectively.
Profit maximization implies the following demand for variety-φ skill-intensive good:

mE, j(φ,s) =
[

pE, j(φ)
PE, j

]−σ
ME, j(s), (2.1)

where PE, j is the price index of Region- j skill-intensive intermediate goods defined by

PE, j ≡ N−θ
E, j

[∫ ∞

0
pE, j(φ)−

1
θ g∗j(φ)dφ

]−θ
, θ ≡ 1/(σ−1). (2.2)

2 Subscripts E and L are used when making it explicit that variables or parameters with subscripts E and L are specific
to the skill- and labor- intensive intermediate goods sectors, respectively. Subscript E is used because the skill-intensive
intermediate goods are produced by entrepreneurs.
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2.2.2 Labour-intensive Intermediate Goods Sectors

The local labour-intensive intermediate goods sector in each region is competitive. Firms can access
a Cobb-Douglas production technology with constant returns to scale, the inputs of which consist of

workers’ labour services LL, j and land TL, j.

max
LL, j,TL, j

PL, jBLβL
L, jT

1−βL
L, j −WjLL, j −R jTL, j, B ≡ β−βL

L (1−βL)
−(1−βL),

where βL ∈ (0,1) and R j are the share parameter of labour and land price in Region j.

2.2.3 Skill-intensive Intermediate Goods Sectors

The local skill-intensive intermediate goods sector is characterized by monopolistic competition à

la Dixit and Stiglitz (1977), where each entrepreneur produces one variety of goods using workers’
labour services and land as production inputs. Specifically, each entrepreneur must rent f units of

land for her office and then use workers’ labour services and land as variable inputs.
Therefore, the income π j(φ) of an entrepreneur residing in Region j with productivity φ is given

by her sales net of input costs:

π j(φ) = max
pE, j(φ),qE, j(φ)

[
pE, j(φ)−W βE

j R1−βE
j φ−1

]
qE, j(φ)−R j f

s.t.

qE, j(φ) =
∫
S j

mE, j(φ,s)ds =
∫
S j

[
pE, j(φ)

PE, j

]−σ
ME, j(s)ds,

where qE, j(φ) is the output of variety-φ skill-intensive intermediate good produced in Region j.

Here, it is assumed that the unit cost of production is some amount of the Cobb-Douglas composite
of workers’ labour services and land, in which βE governs the labour cost share.

The associated optimal pricing rule is then pE, j(φ) = (1+θ)W βE
j R1−βE

j φ−1. Substituting this into
(2.2) results in

PE, j = (1+θ)W βE
j R1−βE

j

(
φ̃ jNθ

E, j

)−1
, (2.3)

where φ̃ j is the average productivity in Region j defined by

φ̃ j =

[∫ ∞

0
φ

1
θ g∗j(φ)dφ

]θ
. (2.4)

In the following, I assume that the entrepreneurial productivity φ follows a Pareto distribution

with coefficient δ and a lower bound φ. Under the assumption that δ > 1/θ, the individual variable
profit πV

j (φ) and output q j(φ) are expressed as functions of the productivity ratio φ/φ̃ j and the average
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variables as in Melitz (2003):

πV
j (φ) =

(
φ
φ̃ j

) 1
θ

πV
j (φ̃ j), πV

j (φ̃ j) = θW βE
j R1−βE

j φ̃−1
j N−(1+θ)

E, j

∫
S j

ME, j(s)ds, (2.5)

q j(φ) =
(

φ
φ̃ j

)σ
q j(φ̃ j), q j(φ̃ j) = N−(1+θ)

E, j

∫
S j

ME, j(s)ds.

2.2.4 Individuals

Individuals are ex-ante heterogeneous in their entrepreneurial productivity φ. Depending on this

productivity, each individual chooses her occupation and location freely in order to maximize her
utility. Let U j(φ) and e j(φ) denote the utility and income of an individual having the productivity of

φ and residing in Region j.

Occupational Choice

Suppose that an individual chooses to reside in Region j. Then she chooses the occupation which

maximizes her income. Thus, her income e j(φ) is given by e j(φ) = max{π j(φ),Wj}. This suggests
that there exists a cut-off level φ∗

j such that

Wj = σ−1Ã jφ∗
j

1
θ −R j f , (2.6)

where Ã j denotes the per-capita market size of the skill-intensive intermediate goods sector in Region

j normalized by the regional average productivity, i.e., αΓ j|S j|E/NE, j divided by φ̃
1
θ , which is derived

in Appendix .1.2.

For the given income e j(φ) as well as the given location j, each individual then consumes final
goods and housing services:

U j(φ) = max
{c j(s,φ)}s∈[0,1],h j(φ)

exp
[

α
∫ 1

0
ln(c j(s,φ))ds

]
h j(φ)1−α, α ∈ (0,1),

s.t.∫ 1

0
P(s)c j(s,φ)ds+R jh j(φ) = e j(φ),

where α is the expenditure share of the consumption goods. c j(s,φ) and h j(φ) denote the quantities
of goods and housing services, respectively, consumed by an individual with φ residing in Region j.

Residential Choice

Finally, each individual chooses her location in order to maximize her utility.

The following result then states that if both regions host a positive measure of production activi-
ties, or, stated more weakly, if there exists a threshold φ̄ such that entrepreneurs with productivity of
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φ̄ are indifferent between the two location choices, the sorting of entrepreneurs is always associated:3

Proposition 2.1. Suppose that there exists φ̄ such that φ̄ > max j{φ∗
j} and

u(φ̄) =
π2(φ̄)/(PαR1−α

2 )

π1(φ̄)/(PαR1−α
1 )

=
π2(φ̄)/π1(φ̄)
(R2/R1)1−α = 1.

Then, if R1 < R2, it holds that (
R2

R1

)1−α
<

Ã2

Ã1
<

R2

R1
, and

π2(φ)/π1(φ) is monotonically increasing in a well-defined region. Or, if R1 = R2, it must hold that

Ã1 = Ã2 and thus u(φ) = 1 for all φ ≥ φ.

2.3 Equilibrium Analysis

2.3.1 Basic Mechanism

In the following, I focus on the case where regions are ex-post heterogeneous. Specifically, without

loss of generality, I focus on equilibria in which the land rent in Region 2 is greater than that in
Region 1, i.e., R1 < R2. Therefore, given Proposition 2.1, an interior equilibrium is associated with

a unique threshold φ̄ such that φ̄ > max j{φ∗
j} and there is a spatial sorting of entrepreneurs. In this

case, individuals with φ higher than or equal to φ̄ reside in Region 2 and work as entrepreneurs. Those
with φ less than φ̄ but higher than or equal to φ∗

1 reside in Region 1 and also work as entrepreneurs.

Workers consist of individuals with φ less than φ∗
1. Since workers’ income is independent of φ, the

following free-migration condition or compensated differential for workers must be satisfied:

W1

PαR1−α
1

=
W2

PαR1−α
2

, or
W2

W1
=

(
R2

R1

)1−α
, (2.7)

which states that utility levels are equalized across regions.

In order to compute an equilibrium, I use the next result which is obtained immediately:

Proposition 2.2. Suppose an asymmetric interior equilibrium exists. Then, the spatial distribution of

final goods sectors is summarized by a threshold S1 ∈ (0,1) such that S1 = [0,S1) and S2 = [S1,1].

The implication of this result for the computation of an equilibrium is that the system of an equi-

librium can be now interpreted as a fixed-point problem of S1. The discussion, which is described in
Appendix .1, proceeds in two steps. (i) Given the spatial distribution S1, the system of an equilibrium

is consolidated into two simultaneous equations with two unknowns: the ratio of φ̄ to φ∗
1 and the ratio

3 The proof is straightforward and is thus omitted.
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of φ∗
1 to φ. All other variables except S1 are given as functions of these two and S1. (ii) The rest of

the computation is to search for an S1 that is consistent with the comparative advantage of regions.

Stated differently, S1 must be a solution to the nonlinear equation

χ2(S1)

χ1(S1)
=

(
PL,2

PL,1

)1−γ(S1)(PE,2

PE,1

)γ(S1)

= 1 (2.8)

and the Region 2-1 ratio χ2(s)/χ1(s) of offer prices must be decreasing in s. If the latter condition

does not hold, all ss greater than or equal to S1 reside in Region 1, not Region 2, clearly contradicting
the assumption.

The intuitive mechanism which can work in the model is summarized as follows: Suppose that
some shock hits the economy consisting of two ex-ante identical regions in a way that expenditures

concentrate on one of the regions (here Region 2), i.e., |S1|< |S2|. Since both regions have the same
amount of land, it then holds that the land rent in Region 2 becomes higher than in Region 1, i.e.,

R1 < R2.4 Because of the free migration of workers or the compensating differential, i.e., (2.7), the
wage rate in Region 2 also becomes higher than that in Region 1, i.e., W1 < W2. Thus, unit costs or

prices of non-differentiated goods are higher in Region 2 than in Region 1, i.e., PL,1 < PL,2.5 Instead,
because of the sorting of entrepreneurs, i.e., (2.3), Region 2 has a comparative advantage in producing

skill-intensive intermediate goods, i.e., PE,1 > PE,2. Reflecting these regional advantages, the spatial
distribution of final goods sectors settles down in such a way that the reallocation of expenditures

caused by the initial shock is actually preserved as an equilibrium outcome.

2.3.2 Numerical Exercise

In order to verify the mechanism in the previous subsection, I resort to a numerical exercise. The
result shows that an equilibrium with such a mechanism actually exists. It is also verified that the

equilibrium is unique in the sense that there is only one interior sorting equilibrium with the assumed

regional rankings of variables.
In this exercise, parameters are set as follows: the elasticity of substitution σ between skill-

intensive intermediate goods is set to 3. The expenditure share α of final goods is set to 0.7. The
lower bound φ of the Pareto distribution of entrepreneurial productivities is set to 1. The coefficient δ
of the Pareto distribution is set to 4.2. The labour share parameter of the labour-intensive intermediate
goods sector is set to 0.6. The same number is used for the labour share in variable costs of the skill-

intensive intermediate goods sector. The fixed requirement f of land is set to 1. This value is chosen
in a way that the demand of entrepreneurs for land does not substantially affect land prices, and these

prices are mainly determined by housing expenditures and housing demands associated with variable

4 Strictly speaking, this relationship between the two rankings holds only if expenditures are the most important deter-
minant of land rents, as suggested by the land market clearing condition (18) derived in Appendix .1.

5 Note that the price of homogeneous labour-intensive intermediate goods is a weighted geometric mean of the wage
rate and land rent.
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Figure 2.1: Region 2-1 Ratio Utility Conditional on Choosing to Become an Entrepreneur (The Upper
Panel) and Entrepreneurs’ and Workers’ Incomes (The Lower Panel)

inputs. As for the specification of γ(s), I simply assume that γ(s) = s for s ∈ [0,1].

The equilibrium is summarized by Figures 2.1 and 2.2. The lower panel of Figure 2.1 depicts
the relationship between the entrepreneurial productivity φ and the wage and entrepreneurs’ profit

schedules for each region. As already mentioned, the wage schedule is flat since workers’ income
is independent of their entrepreneurial productivity φ. Meanwhile, entrepreneurs’ income π j(φ) is

monotonically increasing in φ. That W1 <W2 is implied by the free-migration condition for workers
together with the ranking R1 < R2. As for π j(φ), it is not always the case that π1(φ) < π2(φ) for all

φ. What is important here is that u(φ) is monotonically increasing in φ (Proposition 2.1) and that
u(φ) = 1 at φ̄, which are shown in the upper panel of Figure 2.1.

Figure 2.2 shows that the Region 2-1 ratio χ2(s)/χ1(s) of offer prices is monotonically decreasing
in s, and there actually exists a threshold S1 which summarizes the spatial distribution of final goods

sectors. Since |S j| is proportional to the regional GDP, the result that |S1|< |S2| implies that the size

of Region 2 is greater than that of Region 1 in terms of income. Importantly, the monotonicity of
χ2(s)/χ1(s) is the consequence of two results: PL,2/PL,1 > 1 and PE,2/PE,1 < 1. The former result is
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simply due to the fact that R1 < R2 and W1 < W2 as discussed before. The latter result suggests that

there actually exists a case where the cost-reducing effect of product differentiation and sorting on
the aggregate price level dominates the cost push because of higher land rents and thus higher wage

rates.6

2.4 Conclusion

A positive correlation is observed between skill premium and the size of regions, which are measured
by the income ratio of high-skilled and low-skilled workers and regional income, respectively. This

chapter theoretically investigates one possible explanation for this fact by providing a model with het-
erogeneous individuals and final and intermediate goods sectors, in which ex-ante identical regions

specialize in different sectors, and interactions between individuals’ location-occupation choices and
regional comparative advantage result in the positive correlation between the skill premium and in-

come of regions. The theory can also accommodate the interpretation that the regional difference in
skill premium is caused by specialization in task trade, not industries. Although perfect sorting fea-

6 It should be noted that the numerical exercise also shows that in equilibrium, Region 1 has a greater number of
entrepreneurs than Region 2, i.e., NE,1 >NE,2. This suggests that for the theory considered in this chapter, what is important
for Region 2 to have a comparative advantage in producing skill-intensive goods is not the number of entrepreneurs, but the
average productivity.
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turing the equilibrium itself is not a crucial element of the theory, filling the gap between the model
and reality could be an important direction for future research.
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.1 Equilibrium System as a Fixed-Point Problem of S1

In this section, I show that the equilibrium system of an equilibrium of interest is summarized as a

fixed-point problem of S1.

.1.1 Number of Entrepreneurs, Conditional Densities, and Average Productivities

First of all, given the Pareto distribution g(φ) of entrepreneurial productivity φ and the ranking of

thresholds, i.e., φ∗
1 < φ̄, the number {NE, j}2

j=1 of entrepreneurs in each region, densities {g∗j} of pro-
ductivity conditional on sorting, and average productivities {φ∗

j}2
j=1 of regions are given as functions

of thresholds (φ∗
1, φ̄):

NE,1 = G(φ̄)−G(φ∗
1) =

(
φ∗

1
−δ − φ̄−δ

)
φδ, (9)

NE,2 = 1−G(φ̄) =
(φ

φ̄

)δ
, (10)

g∗1(φ) =
1

NE,1
1{φ∗

1 ≤ φ < φ̄}g(φ) =
(

φ∗
1
−δ − φ̄−δ

)−1
1{φ∗

1 ≤ φ < φ̄}δφ−(δ+1), (11)

g∗2(φ) =
1

NE,2
1{φ̄ ≤ φ}g(φ) = φ̄δ1{φ̄ ≤ φ}δφ−(δ+1), (12)

φ̃1 =

(
δ

δ−1/θ

)θ
[
(φ∗

1/φ̄)
1
θ−δ −1

(φ∗
1/φ̄)−δ −1

]θ

φ̄, or
(

δ
δ−1/θ

)θ
[

1− (φ̄/φ∗
1)

1
θ−δ

1− (φ̄/φ∗
1)

−δ

]θ

φ∗
1,

(13)

φ̃2 =

(
δ

δ−1/θ

)θ
φ̄, (14)

where 1{·} is the indicator function which is equal to one if the statement in the braces is true and

zero otherwise.

.1.2 Factor Prices as Functions of Three Thresholds (φ∗
1, φ̄,S1)

Next, Ã j is computed as a function of thresholds (φ∗
1, φ̄,S1) with the help of market clearing condi-

tions: the Cobb-Douglas preference suggests that the economy-wide expenditure for final goods is

given by αE, where E denotes the economy-wide income excluding land rents. If the S j set of indus-
tries locates in Region j, equal weights of industries in preference and the production technology of

the final goods sectors then imply that two market clearing conditions, one for the final goods and the
other for the skill-intensive intermediate goods, are consolidated into∫

S j

PE, jME, j(s)ds = αΓ j|S j|E, or
∫
S j

ME, j(s)ds = P−1
E, jαΓ j|S j|E,
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where Γ j ≡ |S j|−1 ∫
S j

γ(s)ds, implying that αΓ j|S j|E =
∫
S j

αEγ(s)ds, the sum of expenditures for
the skill-intensive intermediate goods in Region j, which in turn is related to consumers’ demand.

Substituting (2.3) into this equation, I get∫
S j

ME, j(s)ds = (1+θ)−1
(

W βH
j R1−βH

j

)−1
φ̃ jNθ

E, jαΓ j|S j|E.

Finally, substituting this equation into (2.5) results in

πV
j (φ̃) = σ−1 αΓ j|S j|E

NE, j
,

which gives

Ã j =
αΓ j|S j|E

φ̃
1
θ
j NE, j

. (15)

That is, Ã j is the normalized average market size of skill-intensive intermediate goods in Region j.

Note that given (9)-(14) and Proposition 2.2, Ã j is a function of three thresholds (φ∗
1, φ̄,S1).

This derivation of Ã j is useful for the computation of factor prices {(Wj,R j)}2
j=1 in relating labour

and land market clearing conditions with thresholds (φ∗
1, φ̄,S1), to which I turn next.

Since the sales of an entrepreneur with productivity φ are Ã jφ
1
θ and since the variable profit

πV
j (φ) = σ−1Ã jφ

1
θ , the variable cost is equal to (1+θ)−1Ã jφ

1
θ . Thus the Cobb-Douglas technology

implies that the associated variable labour and land costs are given by βh(1+ θ)−1Ã jφ
1
θ and (1−

βH)(1+θ)−1Ã jφ
1
θ , respectively. Factor market clearing conditions, which aggregate these firm-level

costs, then pin down factor prices and the spatial distribution of workers.

The labour market clearing condition for each region is given as follows:

NE, j

∫ ∞

φ
βH(1+θ)−1Ã jφ

1
θ g∗j(φ)dφ+βLα(1−Γ j)|S j|E =Wjλ jNW ,

where λ j ∈ (0,1) denotes the share of Region j in workers, and NW the total number of workers,

i.e., NW = G(φ∗
1) = 1 − (φ/φ∗

1)
δ. Together with (2.4) and (15), the first term becomes βH(1 +

θ)−1αΓ j|S j|E, i.e., the clearing condition simplifies to

βH(1+θ)−1αΓ j|S j|E +βLα(1−Γ j)|S j|E =Wjλ jNW for all j = 1,2. (16)

The second term on the left-hand side is the demand from the labour-intensive sector, where the total
sales α(1−Γ j)|S j|E are derived in a similar way as in the case of the skill-intensive intermediate

goods sector, and the Cobb-Douglas technology then implies that a βL fraction of these must be
distributed to workers.

Thus, noting that NW is a function of φ∗
1 and that both Γ j and |S j| are functions of S1, the labour
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market clearing condition together with the free-migration condition for workers, i.e., (2.7), gives the
wage rate and the spatial distribution of workers as functions of two thresholds (φ∗

1,S1) and the land

rents ratio R2/R1:

W1 =
β̃1A1

(1−λ2)NW
, W2 =W1

(
R2

R1

)1−α
, λ2 =

β̃2A2

β̃1A1

β̃2A2

β̃1A1
+
(

R2
R1

)1−α , λ1 = 1−λ2,

where

A j ≡ α|S j|E, β̃ j ≡ Γ j
βH

1+θ
+(1−Γ j)βL.

As for the land market clearing condition, an argument similar to that in the case of the labour

market gives land prices as a function of three thresholds (φ∗
1, φ̄,S1): the demands for land consists

of not only those from firms in both skill-intensive and labour-intensive sectors but also those from
individuals, i.e., (1−α)E j, where E j is Region- j income excluding land rents given by

E j = NE, j

∫ ∞

φ
π j(φ)g∗j(φ)dφ+Wjλ jNW =

θ
1+θ

αΓ j|S j|E −R j f NE, j +Wjλ jNW . (17)

Noting that the demands from the skill-intensive sector are further divided into those related to

variables costs and those related to fixed costs, the market clearing condition is specified by

R j = NE, j

∫ ∞

φ
(1−βH)(1+θ)−1Ã jφ

1
θ g∗j(φ)dφ+R j f NE, j +(1−βL)(1−Γ j)α|S j|E +(1−α)E j,

= (1−βH)(1+θ)−1αΓ j|S j|E +R j f NE, j +(1−βL)(1−Γ j)α|S j|E +(1−α)E j,

where the second equation follows from the definitions of φ̃ j and Ã j, i.e., (2.4) and (15). Together

with the labour market clearing condition (16) and equation (17) for the local income E j, this equation
is solved for R j in order to interpret R j as a function of three thresholds (φ∗

1, φ̄,S1):

R j =
1

1−α f NE, j
η jA j, where η j ≡ Γ j

1−αβH +(1−α)θ
1+θ

+(1−Γ j)(1−αβL). (18)

Given this result, wage rates {Wj}2
j=1 and the spatial distribution {λ j}2

j=1 of workers are now func-
tions of three thresholds (φ∗

1, φ̄,S1).

.1.3 Productivity Thresholds (φ∗
1, φ̄) as Functions of S1

I now show that two productivity thresholds (φ∗
1, φ̄) are functions of S1. For this purpose, two con-

ditions are used: one is for φ∗
1 and the other for φ̄. The first condition states that an individual with

productivity φ∗
1 is indifferent between becoming a worker and working as an entrepreneur in Region
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1, i.e., (2.6) with j = 1. Together with (13) and (15), this reduces to

W1 +R1 f
σ−1αΓ1|S1|E/NE,1

δ
δ−1/θ

1− (φ̄/φ∗
1)

−(δ− 1
θ )

1− (φ̄/φ∗
1)

−δ φ∗
1 = 1.

Further, substituting the labour and land market clearing conditions, (16) and (18), into this equation
results in

δ
δ−1/θ

σ
Γ1

1− (φ̄/φ∗
1)

−(δ− 1
θ)

1− (φ̄/φ∗
1)

−δ

[
β̃1NE,1

(1−λ2)NW
+η1

f NE,1

1−α f NE,1

]
= 1.

Finally, using (9), the first condition is written as follows

δ
δ−1/θ

σ
Γ1

1− (φ∗
1/φ̄)δ− 1

θ

1− (φ∗
1/φ̄)δ


β̃1

1−λ2

1

1−
(

φ
φ∗

1

)δ +η1
f

1−α f
[

1−
(

φ∗
1

φ̄

)δ
](

φ
φ∗

1

)δ


×

[
1−

(
φ∗

1
φ̄

)δ
]( φ

φ∗
1

)δ
= 1. (19)

If I define x and y by x ≡ φ∗
1/φ̄ ∈ (0,1) and y ≡ φ/φ∗

1 ∈ (0,1), respectively, this equation adds a

restriction to the relationship between x and y for a given S1. Note that λ2 is a function of (φ∗
1, φ̄,S1)

and that (φ∗
1, φ̄) corresponds to (x,y) equivalently for any given lower bound φ of productivity.

The second condition is u(φ̄) = 1, where φ̄ is assumed to be greater than max j{φ∗
j}, or

σ−1Ã2φ̄
1
θ −R2 f

σ−1Ã1φ̄
1
θ −R1 f

=

(
R2

R1

)1−α
.

After some calculations which use (9), (10), (15), and (18), this equation is restated as follows:

δ−1/θ
δ

Γ2
η2σ

(xy)−δ−α f
f −1

δ−1/θ
δ

1
x1/θ−xδ

Γ1
η1σ

1−α f (1−xδ)yδ

f yδ −1
=

 1−α f (xy)δ

1−α f (1−xδ)yδ

η2
η1

1−S1
S1

α

, (20)

which adds another restriction to the relationship between x and y for a given S1.
Therefore, for a given S1, there are two unknowns, x and y, and two equations, (19) and (20).

This system of equations, if solved, implies that x and y are obtained as functions of S1. Of course,
there might exist multiple solutions for the system, and thus it is more appropriate to state that the

system gives x and y as correspondence of S1. However, in the numerical computation considered in

this chapter, the system actually gives a unique solution.
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.1.4 Determination of S1 through Comparative Advantage

In the above discussion, S1 is fixed at some point. Stated differently, I considered an interior sorting
equilibrium where the spatial distribution of final goods industries is fixed in a particular manner.

Thus, finally, I discuss how to pin down the value of S1.
The condition which determines the value of S1 is the comparative advantage condition, i.e., (2.8),

which states that prices of final goods sector S1, if posted by two regions, are equalized. Focusing on
the case considered in the numerical analysis, i.e., βH = βL, this condition is written as follows:

χ2(S1)

χ1(S1)
=

(
R2

R1

)1−αβ
[

Nθ
E,2φ̃2

Nθ
E,1φ̃1

]−γ(S1)

= 1.

Since all the ratios in parentheses and brackets are functions of S1, as discussed above, this is a single
equation determining the value of S1. Thus, the computation of an equilibrium can be interpreted

as a fixed-point problem with respect to S1, which nests a system of nonlinear equations for (x,y).
Once the value of S1 which satisfies the above equation is found, the values of the other variables are

computed. Without loss of generality, the economy-wide income E excluding land rents is normalized
to unity.



Chapter 3

Team Production and the Allocation of
Creativity across Global and Local
Sectors

3.1 Introduction

Functional specialization of cities is a modern view of how a system of cities works in economic
activity. As reported by Duranton and Puga (2005), specialization of cities have been transforming

from sectoral to functional one. In this form of specialization, larger cities specialize in skill-intensive,

non-routine production processes such as management and research and development, while smaller
cities in less skill-intensive, more routine ones including line production as an example which are

easily replicated by applying ideas and methods developed by the former cities.
Important questions are then how the allocation of creativity is determined; and how policy mak-

ers can shift creativity to cities which have functioned as places where routine, repetitive production
processes are conducted. Given the increasing importance of non-routine tasks in economic activity

(Michaels et al., 2013), creativity and knowledge are clues to understanding urban economic activity
and disparities.1 However, without a comparative advantage in skill-intensive, non-routine production

processes, those cities are increasingly faced with difficulties in regional economic development.
Given the above concern about local cities, I focus on the role of team production in attract-

ing creativity, especially connecting creativity to local advantages such as scenery, culture, history,
weather and etc. Here, team production is a set of production processes in which the high- and the

low-skilled are consolidated in teams, and the former work as managers developing ideas and finding
solutions to complex problems in production and the latter as workers mainly conducting production

under managers’ supervision, respectively. Although this type of team production is observed in the

1 The fact reported by Moretti (2012) that employment multipliers of creative occupations are relatively large also
supports this line of thinking.
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whole range of economic activity,2 relating it to local advantages provides important implications for
policies aiming at attracting creativity given that larger cities have a comparative advantage in skill-

intensive activities in industries mainly characterized by the second nature, i.e., those less dependent
of local advantages.

Therefore, in order to obtain policy implications, I build a stylized two-sector Ricardian compara-
tive advantage model with team production á la Garicano and Rossi-Hansberg (2006b), in which there

are two types of agents: those with higher labor productivity (or knowledge in this chapter) and those
with lower productivity. Here, the global (local) sector is defined as a sector in which the high-skilled

(the low-skilled) have a comparative advantage in production. In both sectors, team production is
allowed, providing a device of connecting one high-skilled agent as a manager to some low-skilled

agents as workers and allowing for managers to leverage their knowledge more effectively than self-

employment.3 Although there is no cities or space in the model for simplicity, I assume that there
is another type of team production in the local sector in addition to that common across sectors un-

der an interpretation that global and local sectors correspond to larger and smaller cities, respectively.
Specifically, in the local-sector-specific team production, the high-skilled can learn about local advan-

tages through communications with low-skilled workers within teams who are more knowledgeable
about local advantages than managers. The cost and benefit of such learning, the latter is specified as

an increase in productivity of managers, are then compared by the high-skilled, who are less willing
to learn about local advantages and thus simply tend to apply knowledge applicable to the global

sector to the local economic activity when the cost is relatively high.
The implications consist of the following two: The first is that team production changes the nature

of comparative advantage. Stated differently, for the relative price level at which the high-skilled do
not work in the local sector in the self-employment economy, they optimally choose to work in the

local sector via team production. With sufficiently low costs of communication and learning or a
sufficiently large productivity gain, the high-skilled still choose to work in the local sector even at the

price level at which the low-skilled are willing to work in the global sector in the self-employment
economy.

The second is that policy targets should be selected carefully when supporting team production
in the local sector in the two senses: First, in general, likelihoods of success in attracting creativity

to the local sector are different across policy targets. Reducing communication cost within teams is
most effective in the sense that the likelihood is far greater than the other options, reducing cost of

learning about local advantages and increasing productivity gain from such learning. This is simply
because the other two options are specific to local team production associated with learning. Second,

there is a non-monotonic relationship between improvements in policy targets and the allocation of

2 Actually, functional specialization of cities can be interpreted from the view point of team production. The high-skilled
in larger cities as managers and the low-skilled in smaller cities as workers are consolidated in a line of production system
(through either trade within firms or outsourcing).

3 This implies that the low-skilled who are less knowledgeable than the high-skilled cannot become managers since
there is no benefit from forming a team the manager of which is an l agent, a person with the lowest knowledge.
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creativity. More specifically, the fraction of the high-skilled who choose to work in the local sector
has an inverted-U-shaped relationship with improvements in the policy targets. Thus, continuing

improvements in the targets first succeed to attract creativity, and then their effects become limited.
This is because as the relative price of local good decreases due to the increasing relative supply of

local good due to improvements in the targets, the low-skilled exit from the local sector, resulting
in an equilibrium where local good is produced by team production only. This then implies that

improvements in the targets, which are specific to team production, propagate across all economic
activities in the local sector, resulting an increase in the relative supply increasing faster than the

relative demand.
This chapter is related to three lines of research. The first is models of team production. There

is a strand of literature of team production stressing economic activity in the modern knowledge

economy including a seminal paper by Garicano and Rossi-Hansberg (2006a). The model in this
chapter is an extension of their simplest form described in Garicano and Rossi-Hansberg (2006b) to

multiple sectors and additional form of team production. Unlike this line of research, the focus is on
the allocation of creativity or high-skilled agents not in income inequalities.

The second is the literature of urban specialization, especially that with the focus on functional
specialization such as Duranton and Puga (2005) and Michaels et al. (2013) among others. In this

chapter, functional specialization of cities is interpreted as a form of team production, and the model
is designed for its relation to local advantages, which provides a new perspective in this literature.

The third is the strand of the literature of knowledge creation including Berliant and Fujita (2012)
among others. Unlike their research stressing collaborations between creative people, the current

focus is on those between high-skilled and low-skilled agents.
The remaining structure of this chapter is organized as follows: In Section 3.2, I describe the

structure of the model including the forms of team production considered in this chapter. In Section
3.3, I then derive possible scenarios of the allocation of creativity when policy-related parameters

consisting of communication cost in the local sector, cost of within-team learning about local ad-
vantages, and productivity gain from such learning are improved. Likelihoods of those scenarios are

quantified by resorting simulations in Section 3.4. In the final section, Section 3.5, I conclude this
chapter.

3.2 The Model

3.2.1 Environment

I consider a closed two-sector economy consisting of two types of economic agents. The sectors

consist of a local ℓ sector and a global g sector, and homogeneous goods, ℓ good and g good, are pro-

duced in both sectors. The difference between the two sectors is discussed later. The economic agents
consist of low-skilled l and high-skilled h, each is endowed with one unit of time. The differences
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between the two are productivities. Specifically, letting ℓi and gi denote i-agent labor productivity per
unit of time in sector ℓ and g, respectively, I assume that h agents have absolute advantages in both

sectors and a comparative advantage in g sector: ℓl < ℓh; gl < gh; and gl/ℓl < gh/ℓh. The agents are
assumed to be competitive, and thus i agents can earn her income of gi (pℓi) if she worked in sector

g (ℓ), where p denotes the relative price of ℓ good. For simplicity, I assume that the number of each
type of agents is fixed, and specifically the relative supply of l agents is given by a parameter ρ > 1.

In the following, I introduce team production, production activity by one manager and workers,
into the above Ricardian model. More specifically, there are two types of team production. One of

the two is allowed in both ℓ and g sectors, while the other is allowed only in ℓ sector, which is the
difference between the two sectors.

3.2.2 Team Production

In order to introduce team production, I resort to the framework developed by Garicano and Rossi-
Hansberg (2006b). In this framework, producing goods is equivalent to solving problems arising in

production activity, and agents’ productivities, ℓi and gi, are interpreted as their knowledge allowing
them to solve a fraction of problems they are faced with, i.e., ℓi,gi ∈ (0,1). More specifically, each

agent draws one problem per unit of time, and each problem is characterized by some level of knowl-
edge required to solve it. If the agent is sufficiently knowledgeable, then she can solve the problem.

Therefore, given one unit time endowment and productivities, i agents can solve gi (ℓi) problems in g

(ℓ) sector, by the law of large numbers, resulting in (expected) self-employment income of gi (pℓi) if

they worked in g (ℓ) sector.4

Common Form

Instead of self-employment, agents are allowed to form a team consisting of one manager and n

workers. For expositional purpose, assume for a moment that the economy consists of a single sector

k, where agents’ productivities are given by kl and kh, and 0 < kl < kh < 1. Then, suppose that an h

agent and nk l workers are to form a team in the sector. Team production then allows agents to conduct

the following production processes: First, l workers draw and try to solve problems by themselves.
In total, klnk problems are solved by nk l workers, implying (1− kl)nk problems are left unsolved.

Second, workers pass (1−kl)nk unsolved problems to their manager with communication cost ck per
unit of problems. Finally, the manager with knowledge of kh suggests how to fix those problems to

her workers if she knows, i.e., if kh is higher than the required level, and the suggested workers solve
the related problems. Therefore, in total, the team as a whole can solve khnk problems.

Note that in the above example, team size nk is determined by the time constraint of the manager:
time for communications is limited to unity, i.e., ck(1− kl)nk = 1. This implies the total output of

the team is given by khnk = kh/(ck(1− kl)). Note also that an agent cannot become a manger of
4 There is no complementarity between sectors, and thus agents will specialization in one of two sectors.
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a team with workers who are more knowledgeable than him or those who have the same level of
knowledge. In the former case, the total output klnk must be distributed among one l manger and nk h

workers. However, this output is smaller than the sum of outputs associated with self-employment of
all members, i.e., kl +nkkh, implying someone will be unwilling to participate in this team. A similar

argument is also applied to the latter case.
The remaining question is then how this revenue is distributed among members in the team. In

order to think about this problem, I assume that the relative supply ρ of l agents is sufficiently large,
resulting in excess supply of l agents compared with the number of workers demanded by h managers.

Specifically, even if all h agents become managers, the supply of l workers is less than the demand
which is equal to nk times the number of h agents: nk = 1/(ck(1− kl))< ρ.5

Given the above assumption, the wage rate wl of l workers is determined by their outside option

value, i.e., income kl of self-employment since l workers cannot become managers. The zero-profit
condition then determines the income wh of h managers: khnk = wh + klnk, or wh = (kh − kl)nk =

(kh − kl)/(ck(1− kl)). In order to focus on a meaningful case, I assume that this income level is
greater than that associated with self-employment, i.e., (kh − kl)/(ck(1− kl))> kh.

In sum, communication cost ck must be some intermediate level. In the rest of this chapter, I
assume that this condition is satisfied for both g and ℓ sectors:

1
ρ(1−gl)

< cg <
gh −gl

gh(1−gl)
;

1
ρ(1− ℓl)

< cℓ <
ℓh − ℓl

ℓh(1− ℓl)
. (3.1)

ℓ-specific Form: Learning about Local Advantages

In addition to the common form of team production, I also introduce another type of team production
in ℓ sector. The difference from the common one is that within this type of team, an h agent can learn

about local advantages, e.g., scenery, culture, history, weather and etc., from l workers. This learning
is then reflected in a productivity gain a ∈ (1, ā) of h manager’s productivity, where ā ≡ ℓ−1

h , i.e., h

manager’s productivity increases from ℓh to aℓh. An interpretation is as follows: h manager can apply
their knowledge well-suitable to activities in g sector to those in ℓ sector and can still earn income

more than l agents do. However, with learning about local advantages, the quality of output increases
further. Rather than simply designing a conventional building in a beautiful scenery, designing a

building in accord with such nature makes the place more valuable. Such activities involve some
arts and thus require more knowledge and creativity. It is assumed that it is prohibitively costly for l

agents to conduct this kind of learning.
Learning described above of course costs to some extent. Here, I assume that an h manager

incurs iceberg-type cost τ > 1 when learning. Specifically, with learning, passing (1− ℓl)nℓ unsolved

5 Note that this inequality provides some lower bound for communication cost ck. Although communication cost less
than this lower bound generates theoretically interesting equilibrium outcomes as shown by Garicano and Rossi-Hansberg
(2006b), I do not consider such situation since it seems the most natural case that the high-skilled or creative people have
bargaining power in the wage determination.
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problems in a team requires the manager τcℓ(1− ℓl)nℓ units of time (not cℓ(1− ℓl)nℓ units).
Given the above cost and benefit of learning, team size and output are given by 1/[τcℓ(1− ℓl)]

and aℓh/[τcℓ(1− ℓl)], respectively.

3.2.3 l-agent Choice

Since l agents cannot become a manager, each of them works for h managers either in g or ℓ sector

or for herself, i.e., self-employment. In addition, noting that l agents have no bargaining power, wage
rates are equalized across the above options. Therefore, l agents simply choose which sector they

work for.
This environment is exactly the same as in a simple Ricardian model. That is, letting p∗l ≡ gl/ℓl ,

l agents choose g sector if p < p∗l and ℓ sector otherwise. This optimal choice implies that wl = gl if
p < p∗l , and wl = pℓl otherwise.

3.2.4 h-agent Choice

In addition to self-employment, which generates income of gh or pℓh depending on sectors, h agents

can become the manager of a team in either g or ℓ sector. In addition, if an h agent chose to form a
team in ℓ sector, then she must also choose which type of team she forms. For notational convenience,

let gs and ℓs denote self-employment in g sector and that in ℓ sector, respectively. Also let g, ℓw/, and
ℓw/o denote teams in g sector, those with learning in ℓ sector, and those without learning in ℓ sector,

respectively. Therefore, h agents choose one of {gs, ℓs,g, ℓw/, ℓw/o}. Note that for a chosen form
f ∈ {g, ℓw/, ℓw/o} of a team, productivity z f and team size n f are determined, implying that the wage

rate wh, f of h manager is given by wh, f = (z f −wl)n f .
Since the wage rate wh, f of managers depends on the wage rate wl of l workers which in turn

depends on the relative price p, h-agent choice should be discussed conditional on the level of the
relative price p.

Indifference Curves: p < p∗l

If p < p∗l , then the wage rate wl of l workers is given by wl = gl . Due to comparative advantage,

h agents also choose gs if they chose self-employment. However, note that gs is never chosen by h

agents when p < p∗l . This is simply because wh,g > gs, which holds under (3.1).

Therefore, h agents are effectively faced with three options: g, ℓw/, or ℓw/o. It is convenient to
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provide equations associated with indifference curves (or income equalization):

Iℓw/∼ℓw/o :
paℓh −gl

τcℓ(1− ℓl)
=

pℓh −gl

cℓ(1− ℓl)
=⇒ p =

gl

ℓh

τ−1
τ−a

(τ ̸= a) (3.2)

Ig∼ℓw/ :
gh −gl

cg(1−gl)
=

paℓh −gl

τcℓ(1− ℓl)
=⇒ p =

gl

aℓh

[
1+ τ

cℓ(1− ℓl)

cg(1−gl)

gh −gl

gl

]
(3.3)

Ig∼ℓw/o :
gh −gl

cg(1−gl)
=

pℓh −gl

cℓ(1− ℓl)
=⇒ p =

gl

ℓh

[
1+

cℓ(1− ℓl)

cg(1−gl)

gh −gl

gl

]
. (3.4)

For notational convenience, let pℓw/∼ℓw/o denote the relative price corresponding to the indifference

curve associated with ℓw/ ∼ ℓw/o. In a similar manner, I use similar notations for the other cases.
When emphasizing that the relative price is a function of some parameter θ, I use the expression like

pℓw/∼ℓw/o(θ).

Indifference Curves: p > p∗l

If p > p∗l , then the wage rate wl of l workers is given by wl = pℓl . Due to comparative advantage, h

agents also choose gs if they chose self-employment. In this case, preferring g to gs is not necessarily

the case since the choice is dependent on the relative price p.
Therefore, h agents are effectively faced with four options: gs, g, ℓw/, or ℓw/o. It is convenient to

provide equations associated with indifference curves (or income equalization):6

Iℓw/∼ℓw/o :
paℓh − pℓl

τcℓ(1− ℓl)
=

pℓh − pℓl

cℓ(1− ℓl)
=⇒ τ =

aℓh − ℓl

ℓh − ℓl
, (3.5)

Ig∼ℓw/ :
gh − pℓl

cg(1−gl)
=

paℓh − pℓl

τcℓ(1− ℓl)
=⇒ p =

gh

ℓl +(aℓh − ℓl)
cg(1−gl)
τcℓ(1−ℓl)

, (3.6)

Ig∼ℓw/o :
gh − pℓl

cg(1−gl)
=

pℓh − pℓl

cℓ(1− ℓl)
=⇒ p =

gh

ℓl +(ℓh − ℓl)
cg(1−gl)
cℓ(1−ℓl)

, (3.7)

Igs∼ℓw/ : gh =
paℓh − pℓl

τcℓ(1− ℓl)
=⇒ p = gh

τcℓ(1− ℓl)

aℓh − ℓl
, (3.8)

Igs∼ℓw/o : gh =
pℓh − pℓl

cℓ(1− ℓl)
=⇒ p = gh

cℓ(1− ℓl)

ℓh − ℓl
, (3.9)

Igs∼g : gh =
gh − pℓl

cg(1−gl)
=⇒ p =

gh

ℓl
[1− cg(1−gl)] (3.10)

Since parameters of interest are learning cost τ, productivity gain a, communication cost cℓ, I

summarize h-agent choice in (θ, p) coordinate for each θ ∈ {τ,a,cℓ} below, which is used when
conducting comparative statics with some initial parameter set. In the following, I assume that the

6 For example, first, compare ℓw/ and ℓw/o. Second, compare the winner of the first step with g. Finally, compare the
winner of the second step with gs.
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Figure 3.3: h-agent Choice in
(τ, p) Coordinate, Pattern 3,
cℓ
cg
> c∗1, τ̂2 < 1

initial parameters satisfy the following:

1 < cg(1−gl)+ cℓ(1− ℓl)
ℓl

ℓh − ℓl
. (3.11)

That is, communication costs (cg,cℓ) are not too small. Given this assumption, there exists a range of
gs of some positive measure in (θ, p) coordinate, which becomes clear soon. Stated differently, this

condition is expressed as pg∼gs < pgs∼ℓw/o , where pg∼gs and pgs∼ℓw/o are given by (3.10) and (3.9),
respectively.

h-agent Choice in (τ, p) Coordinate

It is found that h-choice in (τ, p) coordinate exhibits one of three patterns depicted in Figure 3.1-

3.3. As mentioned in the last paragraph, there exists an area of gs due to pg∼gs < pgs∼ℓw/o . The
thresholds τ̂1, τ̂2, and τ̂3 are given by (3.5), substituting pg∼gs into (3.6), and substituting p∗l into

(3.6), respectively:

τ̂1 ≡ aℓh − ℓl

ℓh − ℓl
,

τ̂2 ≡ aℓh − ℓl

ℓl

1− cg(1−gl)

cℓ(1− ℓl)
,

τ̂3 ≡ gl

ℓl

aℓh − ℓl

gh −gl

1−gl

1− ℓl

cg

cℓ
.

Given (3.11), τ̂3 < τ̂2 < τ̂1.
There are two relationships which are used to distinguish these three patterns. The first is about
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the level of the ratio cℓ/cg of communication costs. If cℓ/cg < c∗1, where the threshold c∗1 is given by

c∗1 ≡
gl

ℓl

aℓh − ℓl

gh −gl

1−gl

1− ℓl
,

then the case corresponds to Pattern 1. Otherwise, Pattern 2 or 3 is relevant. The crucial difference

between Pattern 1 and Pattern 2 and 3 is that pg∼ℓw/(1) < p∗l in the former case,7 while the contrary
holds in the latter cases.8 The intuition is that, other things being equal, a lower communication cost

cℓ in ℓ sector makes h agents more likely to choose ℓw/ or ℓw/o, and for cℓ/cg less than one, a threshold

price pg∼ℓw/(1) become lower than p∗l . This distinction becomes important when deriving the relative
supply curve. In Pattern 1, τ̂3 > 1, implying τ̂2 > 1. In other cases, whether τ̂2 > 1 or not depdens on

cases, which are discussed in the second relationship below.
The second relationship is about the level of τ̂2 which is the intersection of three areas, gs, g, and

ℓw/. Pattern 2 and 3 correspond to cases with τ̂2 > 1 and τ̂2 < 1, respectively. This distinction also
becomes important when deriving the relative supply curve.

h-agent Choice in (a, p) Coordinate

It is found that without the upper bound ā for productivity gain a, h-choice in (a, p) coordinate
exhibits only one pattern depicted in Figure 3.4.9 As mentioned, there exists an area of gs due to

pg∼gs < pgs∼ℓw/o . The thresholds â1, â2, and â3 are given by solving (3.5) for a, substituting pg∼gs into
(3.6), and substituting p∗l into (3.6), respectively:

â1 ≡
(

1− ℓl

ℓh

)
τ+

ℓl

ℓh
,

â2 ≡ ℓl

ℓh

[
1+ τ

cℓ(1− ℓl)

1− cg(1−gl)

]
,

â3 ≡ ℓl

ℓh

[
1+ τ

cℓ(1− ℓl)

cg(1−gl)

gh −gl

gl

]
,

and the ranking 1 < â1 < â2 < â3 holds.

h-agent Choice in (cℓ, p) Coordinate

It is found that without the lower bound for ℓ-sector communication cost cℓ, h-choice in (cℓ, p) coor-
dinate exhibits one of two patterns depicted in Figure 3.5-3.6.10 As mentioned, there exists an area of

gs in both patterns due to pg∼gs < pgs∼ℓw/o . The thresholds ĉℓ,1, ĉℓ,2, and ĉℓ,3 in Pattern 1 are given by
7 Note that pg∼ℓw/(1) is the value of the relative price corresponding to the indifference curve Ig∼ℓw/ evaluated at τ = 1.
8 I simply omit the knife-edge case, i.e., cℓ/cg = c∗1.
9 The upper bound of a is taken into account when conducting comparative statics. For the summary of h-choice in

(a, p) coordinate, it is convenient to omit the upper bound for a for a moment.
10 As in the previous case, for the summary of h-choice in (cℓ, p) coordinate, it is convenient to omit the lower bound for

cℓ for a moment.
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Figure 3.4: h-agent Choice in (a, p) Coordinate

substituting pg∼gs into (3.7), substituting p∗l into (3.7), and substituting pℓw/∼ℓw/o given by (3.5) into

(3.7), respectively:

ĉℓ,1 ≡ ℓh − ℓl

ℓl(1− ℓl)
[1− cg(1−gl)],

ĉℓ,2 ≡ gl

ℓl

ℓh − ℓl

gh −gl

1−gl

1− ℓl
cg,

ĉℓ,3 ≡ a−1
τ−a

gl

gh −gl

1−gl

1− ℓl
cg,

and the ranking 0 < ĉℓ,3 < ĉℓ,2 < ĉℓ,1 holds. The thresholds c̃ℓ,1 and c̃ℓ,2 in Pattern 2 are given by

substituting pg∼gs into (3.6) and substituting p∗l into (3.6), respectively:

c̃ℓ,1 ≡ aℓh − ℓl

ℓl

1− cg(1−gl)

τ(1− ℓl)
,

c̃ℓ,2 ≡ gl

ℓl

aℓh − ℓl

gh −gl

1−gl

1− ℓl

cg

τ
,

and the ranking 0 < c̃ℓ,2 < c̃ℓ,1 holds.
Pattern 1 and 2 correspond to the case where τ̂1 < τ and the one where τ̂1 > τ, respectively. Given

the indifference curve Iℓw/∼ℓw/o in (3.5), the former case is associated with a relative higher learning
cost, making h agent to prefer ℓw/o to ℓw/ if p > p∗l , while the contrary holds in Pattern 2. In the case

of p < p∗l , the dominance of ℓw/ over ℓw/o again applies to Pattern 2, while some mixed result holds
in Pattern 1 because pℓw/∼ℓw/o < p∗l , where pℓw/∼ℓw/o is given by (3.2).

3.3 Equilibrium

Given the agents’ optimal choices sumamrized in the previous section, a general equilibrium is de-

fined as a set of the relative price p, quantities, and shares of {gs, ℓs,g, ℓw/, ℓw/o} in h agents including
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the ℓ-sector share λh ∈ [0,1], the sum of shares of ℓw/ and ℓw/o, in h agents such that both g-good and

ℓ-good markets clear; and agents behave optimally.
For this purpose, in the following, I derive the relative supply of ℓ good in Subsection 3.3.1.

In Subsection 3.3.2, conducting comparative statics, I identity possible scenarios associated with a
decrease in learning cost τ or ℓ-sector communication cost or an increase in productivity gain a, all of

which seem to be related to some policy instruments and thus provide some implications for policy
targets.

3.3.1 Relative Supply Curve

In the following, I derive the relative supply curve of ℓ good for various values of three parameters:

τ, a, and cℓ. In doing so, I omit the lower and upper bounds imposed on these parameters for ease
of proposition. These restrictions will be considered when conducting comparative statics of the

equilibrium ℓ-sector share λh in h agents. In all cases, the behavior of l agents has common properties,
i.e., they choose g-sector self-employment gs or workers if p < p∗l ; otherwise, they choose ℓ-sector

self-employment ℓs or workers.

Decreasing Learning Cost τ

In order to derive the relative supply curve, it is sufficient to consider four phases: τ̂1 < τ; τ̂2 < τ < τ̂1;
τ̂3 < τ < τ̂2; and 1 < τ < τ̂3. Therefore, I derive the relative supply curve for each phase in the

following.

Phase: τ̂1 < τ

As the relative price p increases from zero to p∗h, a typical h-agent choice changes as follows: they
choose g, gs, and ℓw/o for p ∈ (0, pg∼gs), for p ∈ (pg∼gs , pgs∼ℓw/o), and for p ∈ (pgs∼ℓw/o , p∗h], respec-
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tively. For p = pg∼gs and for p = pgs∼ℓw/o , they are indifferent between g and gs and between gs and
ℓw/o, respectively.

Noting that the thresholds above are independent of τ, it holds that for all τ > τ̂1, the relative
supply curve is the same as depicted in Figure 3.7. sg denotes the the relative supply of ℓ good when

all h are g managers, and l agents are either ℓs or g worker, and sgs is defined by the relative supply
of ℓ good when all agents are self-employed and they specialize in the sectors for which they have

comparative advantages:

sg ≡
ℓl

gh
[ρcg(1−gl)−1], sgs ≡

ℓl

gh
ρ.

Phase: τ̂2 < τ < τ̂1

As the relative price p increases from zero to p∗h, a typical h-agent choice changes as follows: they
choose g, gs, and ℓw/ for p ∈ (0, pg∼gs), for p ∈ (pg∼gs , pgs∼ℓw/(τ)), and for p ∈ (pgs∼ℓw/(τ), p∗h],

respectively. For p = pg∼gs and for p = pgs∼ℓw/(τ), they are indifferent between g and gs and between
gs and ℓw/, respectively.

Therefore, the relative supply curve has three steps as in the previous case. However, the crucial
difference is that now the third step of the relative supply curve shifts downward as τ decreases from

τ̂1 to τ̂2 (Figure 3.8). More specifically, starting from the same one as in the previous phase, the
relative supply curve converges to a two-step functions, the height of the second step of which is

equal to pg∼gs . This is clear if we note that the height of the third step is given by pgs∼ℓw/(τ); and that
pgs∼ℓw/(τ) converges to pg∼gs as suggested by Figure 3.1 or 3.2.

Phase: τ̂3 < τ < τ̂2

As the relative price p increases from zero to p∗h, a typical h-agent choice changes as follows: they

choose g and ℓw/ for p ∈ (0, pg∼ℓw/(τ)) and for p ∈ (pg∼ℓw/(τ), p∗h], respectively. For p = pg∼ℓw/(τ),
they are indifferent between g and ℓw/.

Therefore, the relative supply curve has two steps as depicted in Figure 3.9. In addition, since
pg∼ℓw/(τ) decreases from pg∼gs to p∗l as suggested by Figure 3.1, the second step of the relative supply

curve shifts downward, starting from the same height as in the previous phase at τ= τ̂2 and converging
to the height of p∗l . In the latter limit, the relative supply curve becomes a one-step function.

Phase: 1 < τ < τ̂3

Although h-agent choice has the same pattern as in the previous phase, note an important difference,

that is, in the current case, the threshold price pg∼ℓw/(τ) < p∗l . This implies a relative supply curve,
Figure 3.10, with two steps where the quantity corresponding to the second jump is now given by sℓw/

(not sg), the relative supply of ℓ good when all h agents are ℓw/ managers (not g managers), and l
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Figure 3.7: τ̂1 < τ

Figure 3.8: τ̂2 < τ < τ̂1

Figure 3.9: τ̂3 < τ < τ̂2

Figure 3.10: 1 < τ < τ̂3

agents are either g-sector self-employment or ℓw/ workers such that g-manager demand for workers

is satisfied:

sℓw/ ≡
aℓh

gl

1
ρτcℓ(1− ℓl)−1

.

In Figure 3.10, the notation sℓw/(τ) stresses that the quantity sℓw/ depends on τ.
In addition, since sℓw/(τ) as well as pg∼ℓw/(τ) depends on τ, where the former is decreasing in τ,

the corner between the first and second steps shifts southeast as τ decreases.

Increasing Productivity Gain a

There are four phases in productivity gain a for the derivation of the relative supply curve: 1< a < â1;
â1 < a < â2; â2 < a < â3; and â3 < a. Given that a decrease in learning cost τ and an increase in
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Figure 3.11: 1 < a < â1

Figure 3.12: â1 < a < â2

Figure 3.13: â2 < a < â3

Figure 3.14: â3 < a

productivity gain a are close to a mirror-image relationship, it is guessed that the (shifts in) supply
curves corresponding to these phases have the same patterns. Actually, this is the case, and thus I

only report the resulting relative supply curves in Figure 3.11-3.14.

Decreasing Communication Cost cℓ: Pattern 1

Unlike the other two cases, the derivation of the relative supply curve for decreasing ℓ-sector commu-
nication cost cℓ requires case-by-case analysis: Pattern 1, where τ̂1 < τ, and Pattern 2, where τ < τ̂1,

which are discussed in order below.
In order to derive the relative supply curve for Pattern 1, it is necessary to consider four phases:

ĉℓ,1 < cℓ; ĉℓ,2 < cℓ < ĉℓ,1; ĉℓ,3 < cℓ < ĉℓ,2; and cℓ < cℓ < ĉℓ,3, where cℓ is given by cℓ ≡ 1/[ρ(1− ℓl)],
and it is assumed that cℓ < ĉℓ,3. Therefore, I derive the relative supply curve for each phase in the

following.
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Phase: ĉℓ,1 < cℓ

As the relative price p increases from zero to p∗h, h-agent choice changes as follows: they choose g, gs,
and ℓw/o for p ∈ (0, pg∼gs), for p ∈ (pg∼gs , pgs∼ℓw/o(cℓ)), and for p ∈ (pgs∼ℓw/o(cℓ), p∗h], respectively.

For p = pg∼gs and for p = pgs∼ℓw/o(cℓ), they are indifferent between g and gs and between gs and ℓw/o,
respectively.

Figure 3.15 shows the resulting relative supply curve. It has three steps, the third of which shifts
downward as cℓ decreases from a height of pgs∼ℓw/o(c

0
ℓ)) to that of pg∼gs , where c0

ℓ denotes some

starting level of cℓ.

Phase: ĉℓ,2 < cℓ < ĉℓ,1

As the relative price p increases from zero to p∗h, h-agent choice changes as follows: they choose g

and ℓw/o for p ∈ (0, pg∼ℓw/o(cℓ)) and for p ∈ (pg∼ℓw/o(cℓ), p∗h], respectively. For p = pg∼ℓw/o(cℓ), they

are indifferent between g and ℓw/o. Here, pg∼ℓw/o(cℓ) is increasing in cℓ, and, starting from pg∼gs at
cℓ = ĉℓ,1, it converges to p∗l as cℓ converges to ĉℓ,2.

Then, it is shown that the relative supply curve has two steps as depicted in Figure 3.16, the
second step of which shifts downward as cℓ decreases.

Phase: ĉℓ,3 < cℓ < ĉℓ,2

The h-agent choice is same as in the previous phase except that pg∼ℓw/o(cℓ) < p∗l , and pg∼ℓw/o(cℓ)

changes monotonically from p∗l to pℓw/∼ℓw/o as cℓ converges from ĉℓ,2 to ĉℓ,3.
The associated relative supply curve is depicted in Figure 3.17, where sℓw/o denotes the relative

supply of ℓ good when all h agents are ℓw/o managers, and l agents engage in either g-sector self-
employment or ℓw/o team such that g-manager demand for workers is satisfied:

sℓw/o ≡
ℓh

gl

1
ρτcℓ(1− ℓl)−1

> sℓw/ ,

where the inequality holds under a < τ which is implied by the current assumption that τ̂1 < τ. The

figure shows that the corner between the first and second steps shifts southeast since the corresponding
price level pg∼ℓw/o(cℓ) and the relative quantity sℓw/o(cℓ) are increasing and decreasing functions of cℓ.

Phase: cℓ < cℓ < ĉℓ,3

As the relative price p increases from zero to p∗h, h-agent choice changes as follows: they choose

g, ℓw/, and ℓw/o for p ∈ (0, pg∼ℓw/(cℓ)), for p ∈ (pg∼ℓw/(cℓ), pℓw/∼ℓw/o), and for p ∈ (pℓw/∼ℓw/o , p∗h],
respectively. For p = pg∼ℓw/(cℓ) and for p = pℓw/∼ℓw/o , they are indifferent between g and ℓw/ and

between ℓw/ and ℓw/o, respectively. Here, pg∼ℓw/(cℓ) is increasing in cℓ, and, starting from pℓw/∼ℓw/o

at cℓ = ĉℓ,3, it converges to p∗l ℓl(aℓh) as cℓ converges to zero.
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Figure 3.15: ĉℓ,1 < cℓ

Figure 3.16: ĉℓ,2 < cℓ < ĉℓ,1

Figure 3.17: ĉℓ,3 < cℓ < ĉℓ,2

Figure 3.18: (inf{cℓ}=)cℓ < cℓ < ĉℓ,3

The associated relative supply curve has therefore three steps (Figure 3.18). However, unlike
those discussed before, it is most complicated. Specifically, the corner between the first and second

steps and that between the second and third ones shift southeast and eastward, respectively, since
pℓw/∼ℓw/o , pg∼ℓw/(cℓ), sℓw/o(cℓ), and sℓw/(cℓ) are constant, increasing, decreasing, and decreasing in cℓ,

respectively. In addition, sℓw/o(cℓ)→ ∞ as cℓ ↓ cℓ.

Decreasing Communication Cost cℓ: Pattern 2

In the derivation of the relative supply curve for Pattern 2, there are three phases to consider: c̃ℓ,1 < cℓ;
c̃ℓ,2 < cℓ < c̃ℓ,1; and cℓ < cℓ < c̃ℓ,2, where the observed properties are similar to the last three phases

in the case of decreasing τ and increasing a as suggested by comparison between Figure 3.1, 3.4, and
3.6. Thus, I omit step-by-step derivations of the relative supply curves, which are depicted in Figure

3.19-3.21.
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Figure 3.19: c̃ℓ,1 < cℓ

Figure 3.20: c̃ℓ,2 < cℓ < c̃ℓ,1

Figure 3.21: (inf{cℓ}=)cℓ < cℓ < c̃ℓ,2

3.3.2 Possible Scenarios

In this chapter, I focus on the simplest case where agents’ preference is specified by a Cobb-Douglas
function with expenditure shares, αg and αℓ, of g and ℓ goods, i.e., αg +αℓ = 1, implying that the

relative demand for ℓ good is given by αp−1, where α ≡ αℓ/αg > 0. Depending on the ratio α of
expenditure shares, various equilibria are possible, and thus there are many “dynamics” of ℓ-sector

share λh in h agents when τ or cℓ decreases or when a increases.
Therefore focusing on equilibria with a certain property to avoid exhaustive analyses, I summarize

possible scenarios under the Cobb-Douglas demand structure. In the following subsection, I describe
the equilibria of interest, and then the results of comparative statics of λh with respect to τ, a, and cℓ
are summarized in order.
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Equilibrium of Interest

The equilibria of interest are those where the equilibrium relative price p is included in a range
(p∗l , pg∼gs), and all h agents engage in team production in g sector. Stated differently, I impose a set

of restrictions to initial parameters: First, α must satisfy

gl

gh
[ρcg(1−gl)−1]< α < [ρcg(1−gl)−1][1− cg(1−gl)]. (3.12)

Second, it must hold that max{τ̂2,1} < τ, which is equivalent to 1 < a < â2 given that τ > 1; or

ĉℓ,1 < cℓ if τ̂1 < τ and c̃ℓ,1 < cℓ otherwise.
The reason why I focus on this situation is that it to some extent resembles functional special-

ization of cities reported by the literature (Duranton and Puga, 2005). Relatively skilled agents tend
to participate in creative activity such as research and development, output of which are then, in a

world of functional specialization, distributed across cites as blue prints used for repetitive, routine
production activity such as line production. The preferred interpretation here is that this system of

production corresponds to team production in g sector.
In the following, instead of imposing the above restrictions rigorously, I first identify possible

scenarios under the assumption that the relative demand and supply curves intersect at an equilibrium
relative price p less than pg∼gs for changes in τ, a, and cℓ.11

τ-λh Dynamics

In order to identify possible scenarios of the dynamics of the ℓ-sector share λh in h agents when

learning cost τ decreases (hereafter, τ-λh dynamics), it is necessary to consider each of four phases
discussed in Subsection 3.3.1. In the following, I list the possible τ-λh dynamics for each phase (under

the assumption that 1 < τ̂3 < τ̂2 < τ̂1) and then summarize the possible scenarios in a whole range
(1,τ0] of τ by considering possibility that τ̂2 < 1; or τ̂3 < 1, where τ0 is an initial value of τ satisfying

max{τ̂2,1}< τ0.

Phase: τ̂1 < τ

Since the relative supply curve does not shift in this phase, the equilibrium does not change, implying
that λh = 0 for all τ > τ̂1 (Figure 3.22).

Phase: τ̂2 < τ < τ̂1

Since the relative supply curve shifts only above pg∼gs , the equilibrium is not affected, implying that
λh = 0 for all τ ∈ (τ̂2, τ̂1) (Figure 3.22).

11 For a more rigorous analysis, I resort to simulations in Section 3.4.
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Phase: τ̂3 < τ < τ̂2

In this phase, there exists some threshold of τ, above which the equilibrium does not change and
below which it is affected, resulting in a continuous increase in λh (Figure 3.23).

When λh > 0, the relative demand curve intersects the horizontal line of the second step, i.e.,
p = pg∼ℓw/(τ), where h agents are indifferent between g and ℓw/, and λh and 1− λh fractions of h

agents engage in ℓw/ and g teams, respectively. Therefore, the demand for l workers are the sum
of that λhNh/[τcℓ(1 − ℓl)] from ℓw/-team managers and that (1 − λh)Nh/[cg(1 − gl)] from g-team

managers. l agents not working for h managers (either in g or ℓw/) engage in self-production ℓs in ℓ

sector since p > p∗l .

The associated market clearing condition is thus expressed as follows:

s =
aℓhλh

τcℓ(1−ℓl)
+ ℓl

[
ρ− λh

τcℓ(1−ℓl)
− 1−λh

cg(1−gl)

]
gh(1−λh)
cg(1−gl)

= d(pg∼ℓw/(τ)) =⇒ λh =
d(pg∼ℓw/(τ))− sg

d(pg∼ℓw/(τ))+
1
τ

aℓh−ℓl
gh

cg(1−gl)
cℓ(1−ℓl)

+ ℓl
gh

,

where s and d(pg∼ℓw/(τ)) denote the relative supply and demand of ℓ good, respectively. Since

∂λh/∂τ ∝ −(1+α) < 0, a decrease in τ results in an increase in λh. In addition, as τ ↗ τ̂2, λh ↘ 0
since p ↗ pg∼gs , and thus d(pg∼ℓw/(τ))↘ sg.

Phase: 1 < τ < τ̂3

Focus on a case where τ ↑ τ̂3. Then, depending on α, the relative demand at p = p∗l might exceed
the relative supply sℓw/ . Specifically, if sℓw/(τ̂3) < d(p∗l ), then the equilibrium relative price p = p∗l ,

making l agents are indifferent between gs and ℓs. The excess demand d(p∗l )−sℓw/(τ̂3) is then satisfied

by l-agent self-production. As described, λh = 1 in this case.
On the other hand, if d(p∗l ) < sℓw/(τ̂3), then p = pg∼ℓw/(τ̂3)(= p∗l ), and h agents are indifferent

between g and ℓw/. Given the excess supply, some fraction of h agents are allocated to g, implying
λh ∈ (0,1).

As for τ decreasing to one, there are two and one τ-λh dynamics for sℓw/(τ̂3) < d(p∗l ) and for
sℓw/(τ̂3)> d(p∗l ), respectively, given that

∂
∂τ

[
sℓw/(τ)

d(pg∼ℓw/(τ))

]
∝ −[(gh −gl)+ρcg(1−gl)gl]< 0.

If sℓw/(τ̂3) < d(p∗l ), then there are two possible τ-λh dynamics as depicted in Figure 3.24. One

(solid line) is a case where the relative supply sℓw/(1) at τ = 1 is smaller than the relative demand
d(pg∼ℓw/(1)) at τ = 1, and the other (dashed line) is a case where the contrary holds. In the former

case, λh = 1 for all τ ∈ (1, τ̂3), while λh starts to decrease at some threshold of τ in the last case. The

latter fact follows from the result that the partial derivative of λh with respect to τ is positive, where
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λh is given by the relevant market clearing condition and specified as

λh =
(gh −gl)

cℓ(1−ℓl)
cg(1−gl)

+glρcℓ(1− ℓl)

(gh −gl)
cℓ(1−ℓl)
cg(1−gl)

+ 1
τ (gl +

aℓh
d(pg∼ℓw/

(τ)))
.

If d(p∗l ) < sℓw/(τ̂3), then λh starts from some positive share in (0,1) as mentioned above and
continuously decreases to some lower level given that ∂λh/∂τ > 0.

Summary: Possible Scenarios

Given the above results, I summarize the possible scenarios in the following proposition in which I
now consider possibility that τ̂2 < 1; or τ̂3 < 1, the latter of which is equivalent to cℓ/cg > c∗1.

Proposition 3.1 (Possible Scenarios in τ-λh Dynamics). Suppose that productivities of agents satisfy

the conditions on absolute and relative advantages; and that initial parameters satisfy (3.1) and

(3.11). In addition, focus on a case where the benchmark equilibrium is characterized as a relative

price p less than pg∼gs and h agents all engaging in team production in g sector. Then, possible

scenarios are as follows:

1. If cℓ/cg < c∗1, then there are three scenarios: Scenario 2, 3, and 4.

(a) Suppose that the relative demand for ℓ good at a price level of p∗l is less than the relative

output of ℓ good with learning cost of τ̂3 when all h agents are ℓw/ managers, and l agents

are either g-sector self-employed or ℓw/ workers, i.e., d(p∗l )< sℓw/(τ̂3) or equivalently

α <
ℓh

ℓl

a
ρτ̂3cℓ(1− ℓl)−1

.

Then, as learning cost τ decreases, the ℓ-sector share λh in h agents eventually starts to

increase, then jumps to some interior level, and finally starts to decrease (Scenario 2).

(b) Suppose that sℓw/(τ̂3)< d(p∗l ) and that the relative demand for ℓ good at a price level of

pg∼ℓw/(1) is less than the relative output of ℓ good with learning cost of unity when all h

agents are ℓw/ managers, and l agents are either g-sector self-employed or ℓw/ workers,

i.e., d(pg∼ℓw/(1))< sℓw/(1) or equivalently

α <
1

ρcℓ(1− ℓl)−1

[
1+

cℓ(1− ℓl)

cg(1−gl)

gh −gl

gl

]
.

Then, as learning cost τ decreases, the ℓ-sector share λh in h agents eventually starts to

increase, then jumps to unity, and finally starts to decrease (Scenario 3).
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(c) Suppose that sℓw/(τ̂3) < d(p∗l ) and that sℓw/(1) < d(pg∼ℓw/(1)). Then, as learning cost

τ decreases, the ℓ-sector share λh in h agents eventually starts to increase and jumps to

unity (Scenario 4).

2. If cℓ/cg > c∗1 and if τ̂2 > 1, then there are two scenarios: Scenario 0 and 1.

(a) Suppose that the relative demand for ℓ good at a price level of pg∼ℓw/(1) is less than the

relative output of ℓ good when all h (l) agents choose self-production in g (ℓ) sector, i.e.,

d(pg∼ℓw/(1))< sg, or equivalently,

α <
ρcg(1−gl)−1

1+ aℓh−ℓl
ℓl

cg(1−gl)
cℓ(1−ℓl)

.

Then, the ℓ-sector share λh in h agents is constant at λh = 0 for all possible learning costs

τ (Scenario 0).

(b) Suppose in contrast that d(pg∼ℓw/(1)) > sg. Then, as learning cost τ decreases, the ℓ-

sector share λh in h agents eventually starts and continues to increase (Scenario 1).

3. If cℓ/cg > c∗1 and if τ̂2 < 1, then there is one scenario: The ℓ-sector share λh in h agents is

constant at λh = 0 for all possible learning costs τ (Scenario 0).

Scenario 0-4 are illustrated in Figure 3.26-3.30.

a-λh and cℓ-λh Dynamics

Similar arguments are also applied to the other two dynamics, a-λh and cℓ-λh dynamics. Here, I report
the results only in the following propositions. As for a-λh dynamics, the upper bound ā ≡ ℓ−1

h for

productivity gain a is considered, while the lower bound cℓ for ℓ-sector communication cost cℓ, in
cℓ-λh dynamics, where cℓ ≡ 1/[ρ(1− ℓl)].

Proposition 3.2 (Possible Scenarios in a-λh Dynamics). Suppose that productivities of agents satisfy

the conditions on absolute and relative advantages; and that initial parameters satisfy (3.1) and

(3.11). In addition, focus on a case where the benchmark equilibrium is characterized as a relative

price p less than pg∼gs and h agents all engaging in team production in g sector. Then, possible

scenarios are as follows:

1. If ā < â2, then there are one scenario: The ℓ-sector share λh in h agents is constant at λh = 0

for all possible productivity gains a (Scenario 0).

2. If â2 < ā < â3, then there are two scenarios: Scenario 0 and 1.
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(a) Suppose that the relative demand for ℓ good at a price level of pg∼ℓw/(ā) is less than the

relative output of ℓ good when all h (l) agents choose self-production in g (ℓ) sector, i.e.,

d(pg∼ℓw/(ā))< sg, or equivalently,

α <
ρcg(1−gl)−1

1+ 1
ℓl

cg(1−gl)
τcℓ

.

Then, the ℓ-sector share λh in h agents is constant at λh = 0 for all possible productivity

gains a (Scenario 0).

(b) Suppose in contrast that d(pg∼ℓw/(ā)) > sg. Then, as productivity gain a increases, the

ℓ-sector share λh in h agents eventually starts and continues to increase (Scenario 1).

3. If â3 < ā, then there are two scenarios: Scenario A1 and A2.

(a) Suppose that the relative demand for ℓ good at a price level of p∗l is less than the rela-

tive output of ℓ good with productivity gain of â3 when all h agents are ℓw/ managers,

and l agents are either g-sector self-employed or ℓw/ workers, i.e., d(p∗l ) < sℓw/(â3), or

equivalently,

α <
ℓh

ℓl

â3

ρτcℓ(1− ℓl)−1
.

Then, as productivity gain a increases, the ℓ-sector share λh in h agents eventually starts

to increase, then jumps to and continues to be some interior level (Scenario A1).

(b) Suppose in contrast that d(p∗l ) > sℓw/(â3). Then, as productivity gain a increases, the

ℓ-sector share λh in h agents eventually starts to increase, then jumps to and continues to

be unity (Scenario A2).

Proposition 3.3 (Possible Scenarios in cℓ-λh Dynamics). Suppose that productivities of agents satisfy

the conditions on absolute and relative advantages; and that initial parameters satisfies (3.1) and

(3.11). In addition, focus on a case where the benchmark equilibrium is characterized as a relative

price p less than pg∼gs and h agents all engaging in team production in g sector. Then, possible

scenarios are as follows:

1. If τ̂1 < τ and if ĉℓ,1 < cℓ, then there is one scenario: The ℓ-sector share λh in h agents is constant

at λh = 0 for all possible communication cost cℓ (Scenario 0).

2. If τ̂1 < τ and if ĉℓ,2 < cℓ < ĉℓ,1, then there are two scenarios: Scenario 0 and 1.

(a) Suppose that d(pg∼ℓw/o(cℓ)) < sg, then the ℓ-sector share λh in h agents is constant at

λh = 0 for all possible communication cost cℓ (Scenario 0).
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(b) Suppose in contrast that d(pg∼ℓw/o(cℓ))> sg. Then, as communication cost cℓ decreases,

the ℓ-sector share λh in h agents eventually starts and continues to increase (Scenario 1).

3. If τ̂1 < τ and if ĉℓ,3 < cℓ < ĉℓ,2, then there are two scenarios: Scenario 2 and 3.

(a) Suppose that d(p∗l )< sℓw/o(ĉℓ,2). Then, as communication cost cℓ decreases, the ℓ-sector

share λh in h agents eventually starts to increase, then jumps to some interior level, and

finally starts to decrease (Scenario 2).

(b) Suppose in contrast that d(p∗l ) < sℓw/o(ĉℓ,2). Then, as communication cost cℓ decreases,

the ℓ-sector share λh in h agents eventually starts to increase, then jumps to unity, and

finally starts to decrease (Scenario 3).

4. τ̂1 < τ and if cℓ < ĉℓ,3, then there are eight scenarios: Scenario 3-4 and C1-C6.

(a) Suppose that d(p∗l ) < sℓw/o(ĉℓ,2) and that d(pℓw/∼ℓw/o) < sℓw/(ĉℓ,3). Then, as communica-

tion cost cℓ decreases, the ℓ-sector share λh in h agents eventually starts to increase and

then repeats jumping to some level and decreasing twice (Scenario C1).

(b) Suppose that d(p∗l ) < sℓw/o(ĉℓ,2), that sℓw/(ĉℓ,3) < d(pℓw/∼ℓw/o), and that d(pg∼ℓw/(cℓ)) <

sℓw/(cℓ). Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents

eventually starts to increase, jumps to some interior level and then decreases, jumps to

unity, and finally starts to decrease (Scenario C2).

(c) If d(p∗l )< sℓw/o(ĉℓ,2), if sℓw/(ĉℓ,3)< d(pℓw/∼ℓw/o), and if sℓw/(cℓ)< d(pg∼ℓw/(cℓ)).

Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase, then jumps to some interior level and decreases continuously, and fi-

nally becomes constant (Scenario C3).

(d) If sℓw/o(ĉℓ,2)< d(p∗l ), if sℓw/o(ĉℓ,3)< d(pℓw/∼ℓw/o), and if d(pg∼ℓw/(cℓ))< sℓw/(cℓ),

Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase, then jumps to unity, and finally starts to decrease (Scenario 3).

(e) If sℓw/o(ĉℓ,2)< d(p∗l ), if sℓw/o(ĉℓ,3)< d(pℓw/∼ℓw/o), and if sℓw/(cℓ)< d(pg∼ℓw/(cℓ)),

Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase and jumps to unity (Scenario 4).

(f) If sℓw/o(ĉℓ,2)< d(p∗l ), if d(pℓw/∼ℓw/o)< sℓw/o(ĉℓ,3), and if d(pℓw/∼ℓw/o)< sℓw/(ĉℓ,3),

Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase, then jumps to unity, and finally starts to decrease with a downward

jump at some level of communication cost (Scenario C4).

(g) If sℓw/o(ĉℓ,2)< d(p∗l ), if d(pℓw/∼ℓw/o)< sℓw/o(ĉℓ,3), if sℓw/(ĉℓ,3)< d(pℓw/∼ℓw/o), and if d(pg∼ℓw/(cℓ))<

sℓw/(cℓ),
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Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase and then repeats jumping to unity, being constant for a while and then

decreasing twice (Scenario C5).

(h) If sℓw/o(ĉℓ,2)< d(p∗l ), if d(pℓw/∼ℓw/o)< sℓw/o(ĉℓ,3), if sℓw/(ĉℓ,3)< d(pℓw/∼ℓw/o), and if sℓw/(cℓ)<

d(pg∼ℓw/(cℓ)),

Then, as communication cost cℓ decreases, the ℓ-sector share λh in h agents eventually

starts to increase, jumps to and stay at unity, starts to decrease, and finally jumps to unity

(Scenario C6).

5. τ < τ̂1 and if c̃ℓ,1 < cℓ, then there is one scenario: Scenario 0.

6. τ < τ̂1 and if c̃ℓ,2 < cℓ < c̃ℓ,1, then there are two scenarios: Scenario 0 and 1.

(a) Suppose that d(pg∼ℓw/(cℓ)) < sg. Then, the ℓ-sector share λh in h agents is constant at

λh = 0 for all possible communication cost cℓ (Scenario 0).

(b) Suppose in contrast that d(pg∼ℓw/(cℓ)) > sg. Then, as communication cost cℓ decreases,

the ℓ-sector share λh in h agents eventually starts and continues to increase (Scenario 1).

7. τ < τ̂1 and if cℓ < c̃ℓ,2, then there are three scenarios: Scenario 2, 3 and 4.

(a) Suppose that d(p∗l ) < sℓw/(c̃ℓ,2). Then, as communication cost cℓ decreases, the ℓ-sector

share λh in h agents eventually starts to increase, then jumps to some interior level, and

finally starts to decrease (Scenario 2).

(b) Suppose that sℓw/(c̃ℓ,2) < d(p∗l ) and that d(pg∼ℓw/(cℓ)) < sℓw/(cℓ). Then, as communica-

tion cost cℓ decreases, the ℓ-sector share λh in h agents eventually starts to increase, then

jumps to unity, and finally starts to decrease (Scenario 3).

(c) Suppose that sℓw/(c̃ℓ,2) < d(p∗l ) and that sℓw/(cℓ) < d(pg∼ℓw/(cℓ)). Then, as communica-

tion cost cℓ decreases, the ℓ-sector share λh in h agents eventually starts to increase and

jumps to unity (Scenario 4).
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In Proposition 3.3, the following equivalences hold:

d(pg∼ℓw/o(cℓ))≶ sg ⇐⇒ α ≶ ρcg(1−gl)−1

1+ ℓh−ℓl
ℓl

ρcg(1−gl)

d(p∗l )≶ sℓw/o(ĉℓ,2) ⇐⇒ α ≶ ℓh

ℓl

1
ρĉℓ,2(1− ℓl)−1

d(pℓw/∼ℓw/o)≶ sℓw/o(ĉℓ,3) ⇐⇒ α ≶ τ−1
τ−a

1
ρĉℓ,3(1− ℓl)−1

d(pℓw/∼ℓw/o)≶ sℓw/(ĉℓ,3) ⇐⇒ α ≶ τ−1
τ−a

a
ρτĉℓ,3(1− ℓl)−1

d(pg∼ℓw/(cℓ))≶ sℓw/(cℓ) ⇐⇒ α ≶ 1
τ−1

[
1+

τ
ρ

1
cg(1−gl)

gh −gl

gl

]
d(pg∼ℓw/(cℓ))≶ sg ⇐⇒ α ≶ ρcg(1−gl)−1

1+ aℓh−ℓl
ℓl

ρ
τ cg(1−gl)

d(p∗l )≶ sℓw/(c̃ℓ,2) ⇐⇒ α ≶ ℓh

ℓl

a
ρτc̃ℓ,2(1− ℓl)−1

.

Scenario A1-A2 and Scenario C1-C6 are illustrated in Figure 3.31-3.32 and Figure 3.33-3.38,

respectively.

3.4 Numerical Experiment

As mentioned in the previous section, I assume that initial parameters satisfy (3.1), (3.11), (3.12),
and max{τ̂2,1} < τ when conducting comparative statics. Then I identify scenarios that actually

realize under these restrictions when learning cost τ decreases, when productivity gain a from learning
increases, and when ℓ-sector communication cost cℓ decreases.

However, since there are many possible scenarios in those dynamics, I resort to Monte Carlo sim-
ulation where a large number of random samples satisfying the above set of restrictions are generated,

and comparative statics is conducted for each sample. Given the set of restrictions, it is suffice to set
upper bounds for only two parameters: the relative supply ρ̄ of l agents and learning cost τ̄.

3.4.1 Algorithm

For each fixed set of upper bounds, ρ̄ and τ̄, the algorithm below is used to generate random samples

and conduct comparative statics.

Step 1: Generate samples of parameters (ℓl, ℓh,gl,gh,ρ,cg,cℓ,a,τ) of size of one million from the
uniform distribution over the subset of parameters satisfying the stated conditions:

(a) Generate ℓl at random such that 0 < ℓl < (1− ρ̄−1).

(b) Generate ℓh at random such that [ρ̄/(ρ̄−1)]ℓl < ℓh < 1.



CHAPTER 3. TEAM PRODUCTION AND THE ALLOCATION OF CREATIVITY ACROSS GLOBAL AND LOCAL SECTORS85

(c) Generate gh at random such that 0 < gh < 1.

(d) Generate gl at random such that 0 < gl < (ℓl/ℓh)gh.

(e) Generate ρ at random such that ℓh/(ℓh − ℓl)< ρ ≤ ρ̄.

(f) Generate a at random such that

1 < a < min
{
ℓ−1

h ,
ℓl

ℓh

(
1+ τ̄

gh

gl

ℓh − ℓl

ℓh

)}
.

(g) Generate cg at random such that

max
{

1
ρ(1−gl)

,
ℓh − ℓl

ℓh(1−gl)
,

1
1−gl

− τ̄
1−gl

ℓl

ℓh

ℓh − ℓl

aℓh − ℓl

}
< cg <

gh −gl

gh(1−gl)
.

(h) Generate cℓ at random such that

max
{

1
ρ(1− ℓl)

,
ℓh − ℓl

ℓl(1− ℓl)
[1− cg(1−gl)],

aℓh − ℓl

τ̄ℓl(1− ℓl)
[1− cg(1−gl)]

}
< cℓ <

ℓh − ℓl

ℓh(1− ℓl)
.

(i) Generate τ at random such that max{τ̂2,1}< τ ≤ τ̄.

Step 2: For each sample, construct equidistant grid points on the following closed interval of α
under which an equilibrium relative price p satisfies p∗l ≤ p ≤ pg∼gs :

gl

gh
[ρcg(1−gl)−1]≤ α ≤ [ρcg(1−gl)−1][1− cg(1−gl)],

and compute the share of each scenario in the grid points using Proposition 3.1-3.3.

Step 3: Compute the sample average of the share of each scenario.

Step 1 in the algorithm ensures that parameters satisfy the required conditions. For τ̄, I consider

three values: low (1.1), middle (1.5), and high (2.0).12 ρ̄ ranges from 2 to 20.

3.4.2 Results

Compared with the other two parameters, a decrease in ℓ-sector communication cost cℓ is most effec-
tive in shifting h agents from global to local sectors in the sense that the measure of Scenario 0, the

share of Scenario 0 in the samples, is lowest for most of the pair (ρ̄, τ̄) of the upper bounds for the
relative supply of l agents and learning cost. Figure 3.39 shows the measure of Scenario 0 in each dy-

namics for each (ρ̄, τ̄). It is clear that for most of (ρ̄, τ̄), the measure of Scenario 0 in cℓ-λh dynamics
is lower than those in the other two dynamics. This is mainly because unlike the other two dynamics,

12 Learning within ℓ team increases time cost of passing unsolved problems by 100× (τ−1)%. τ̄ gives the upper bound
for this increase, and “low,” “middle,” and “high” correspond to the maximal increase of 10%, 50%, and 100%, respectively.
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the measure of Scenario 0 decreases faster as ρ̄ increases. Although the measure of Scenario 0 in τ-λh

dynamics and that in a-λh dynamics decreases as τ̄ increases and decreases, respectively, the measure

of Scenario 0 in cℓ-λh dynamics is far smaller than the other dynamics.13

When focusing on ℓw/-specific parameters, i.e., τ and a, there is no clear ranking in the sense that

the measure of Scenario 0 tends to be higher in τ-λh dynamics when τ̄ is low, while the contrary holds
when τ̄ is high as shown in Figure 3.39. This suggests that an effective policy target related to local

team production depends on cases. When learning cost τ is likely to be high (the case of high τ̄),
team production with learning is relatively costly, making the effect of increasing productivity gain a

limited. Figure 3.39 also shows that there exists some threshold of τ̄ (conditional on the value of ρ̄)
below which increasing productivity gain a is more effective than lowering learning cost τ.

In addition to the measure of Scenario 0, I also report the measure of each scenario other than

Scenario 0 for each dynamics in Figure 3.40. The left, the center, and the right panels show measures
of scenarios in τ-λh, a-λh, and cℓ-λh dynamics, respectively, while the lower, the middle, and the

upper panels show measures of scenarios for low, middle, and high τ̄, respectively. Depending on
parameter values, any scenario can emerge, i.e., measures of all scenarios become positive in some

parameter range.
There are at least two properties common across all dynamics. The first is simply that as the

measure of Scenario 0 decreases due to changes in τ̄, then measures of other scenarios shift upward.
The second is that for lower ρ̄, intermediate λh, i.e., λh ∈ [0,1), is likely to happen, while the

corner equilibrium, i.e., λh = 1, does for higher ρ̄. More specifically, for low ρ̄, Scenario 2 (or
Scenario A1 in the case of a-λh dynamics) and Scenario 1 are likely to happen, while scenarios with

λh = 1 happen with zero probability for sufficiently low ρ̄. However, for high ρ̄, scenarios with λh = 1
become more likely to happen, and among those scenarios, Scenario 4 in τ-λh dynamics, Scenario

A2 in a-λh dynamics, and Scenario 3 in cℓ-λh dynamics are of measures comparable with those of
scenarios with λh ∈ [0,1).

The mechanism behind the second property is the result of general equilibrium effects of changing
relative supply ρ of l agents since individual choices do not directly depend on ρ. Further, the property

is simply due to increasing supply capacities of ℓ good by ℓ teams, i.e., sℓw/ and sℓw/o , relative to the
relative demand for ℓ good. Given the definitions, sℓw/ and sℓw/o are decreasing functions of ρ since the

supply for g good including that from self-employment of l agents, those not employed by h agents,
increases as the relative supply ρ of l agents increases. Thus, when ρ is relative large, the relative

demand for ℓ good is more likely to be higher than the supply, resulting in h agents all engaging in
team production in ℓ sector.

An important policy implication observed in Figure 3.40 is that when encouraging team produc-
tion in ℓ sector, i.e., reducing communication cost cℓ or learning cost τ or increasing productivity gain

a, effects on λh are likely to be non-monotonic, and thus a careful policy management is necessary.

13 More precisely, as τ̄ increases, the measure of Scenario 0 in cℓ-λh dynamics increases. However, the magnitude of this
change is small compared with those in the other two dynamics.
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More specifically, Scenario 2 (or Scenario A1) has the highest measure than those except for Sce-
nario 0.14 For example, reducing communication cost cℓ first succeeds at shifting h agents from g

to ℓ sectors and then fails. The mechanism behind this non-monotonicity is as follows: When λh is
increasing, the equilibrium relative price p of ℓ good is higher than p∗l , implying that l agents not em-

ployed by h managers in g sectors all engage in self-employment in ℓ sector, i.e., ℓs. Then, given that
l agents engaging in ℓs do not benefit from reduced communication cost cℓ, a lower communication

cost cℓ, by increasing the relative demand for ℓ good due to a decrease in the price p, requires some
h agents to fix the excess demand for ℓ good. In a phase where λh is decreasing (or constant in a-λh

dynamics), p < p∗l , and thus l agents not employed by h managers all engage in self-employment in
g sector (not ℓ sector), making a decrease in communication cost cℓ beneficial for all agents engaging

in ℓ-good production.

3.5 Conclusion

In this chapter, I introduce team production á la Garicano and Rossi-Hansberg (2006b) into a two-

sector Ricardian comparative advantage model in order to derive implications for policies encourag-
ing team production activity in local sectors and aiming at a shift of creativity from global to local

sectors. The policy-related parameters in the model consist of cost of communications within team
production in local sectors, cost of within-team learning about local advantages, and productivity gain

from such learning. The first implication is that team production changes the nature of comparative
advantage, or stated differently, team production could be a tool of shifting creativity from global

to local sectors. However, policy targets should be selected carefully since the three options above
are different in the likelyhood of success in shifting creativity, and the most likely case of success is

associated with non-monotone dynamics of the allocation of creativity, the second implication.
Given not only the stylized specification of the model but also non-monotonicity, several exten-

sions are worth pursuing in order to investigate the robustness of the implications and derive further
policy implications. Examples are to introduce a more general utility function such as CES, explicit

space (and competition between local governments), urban externalities, and continuous heterogene-
ity of agents.

14Note that Scenario A1 has no decreasing phase in a-λh because the relative demand and supply have the same elas-
ticity with respect to a. However, this phase can be interpreted as an ineffectiveness of policies aiming at an increase in
productivity gain a.
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Figure 3.22: Relative Quantities and τ-λh Dynamics, τ̂2 < τ

Figure 3.23: Relative Quantities and τ-λh Dynamics, τ̂3 < τ < τ̂2

Figure 3.24: Relative Quantities and τ-λh Dynamics, 1 < τ < τ̂3, sℓw/(τ̂3)< d(p∗l )

Figure 3.25: Relative Quantities and τ-λh Dynamics, 1 < τ < τ̂3, d(p∗l )< sℓw/(τ̂3)
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Figure 3.26: Scenario 0

Figure 3.27: Scenario 1

Figure 3.28: Scenario 2

Figure 3.29: Scenario 3 Figure 3.30: Scenario 4
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Figure 3.31: Scenario A1 Figure 3.32: Scenario A2

Figure 3.33: Scenario C1 Figure 3.34: Scenario C2

Figure 3.35: Scenario C3 Figure 3.36: Scenario C4

Figure 3.37: Scenario C5 Figure 3.38: Scenario C6
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Figure 3.39: Measure of Scenario 0

Note: Low, middle and high τ̄ correspond to values of 1.1, 1.5, and 2.0, respectively.
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Figure 3.40: Measures of Scenarios in Dynamics

Note: Low, middle and high τ̄ correspond to values of 1.1, 1.5, and 2.0, respectively.



Conclusion

As reported by previous researches, urban specialization has been transforming from traditional sec-

toral to functional specialization. The latter form of specialization is a system of cities, in which new
technologies and varieties of goods and services are developed in larger cities with the help of greater

urban diversity and positive externalities, while in smaller cities production based on technologies
developed in the former cities are conducted, often characterized as less skill-intensive, more routine

economic activity.
Given this motivating fact, the dissertation provides a simple model of functional specialization

of cities in Chapter 1 which formalizes mechanisms behind the specialization and also investigates
implications of such specialization for welfare and optimal income redistribution across cities. The

specialization is a result of the interplay between two counteracting forces, agglomeration and disper-
sion forces, the former and the latter of which correspond to urban diversity and market competition,

respectively. Chapter 2 then complements the analysis in Chapter 1 in a way that heterogeneous
agents not considered in Chapter 1 are introduced to show that a similar specialization emerges, be-

ing associated with income inequality in the form of skill premium. Finally, in Chapter 3, the role of
team production in attracting creativity, especially from the view point of smaller cities, is analyzed

in light of the increasing importance of knowledge and creativity in overall economic activity and
widening income inequalities suggested by previous researches and chapters. Although such orga-

nization changes the nature of comparative advantages of agents and could thus act as a device to
attract creativity, the associated effects on the allocation of creativity are likely to be very limited, and

even in a case of success in attracting creativity, a careful policy management is necessary due to the
non-monotonic effects of policies.
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Pflüger, Michael and Takatoshi Tabuchi, “The size of regions with land use for production,” Re-

gional Science and Urban Economics, November 2010, 40 (6), 481–489.

Rossi-Hansberg, Esteban and Mark L. J. Wright, “Urban Structure and Growth,” Review of Eco-

nomic Studies, 2007, 74 (2), 597–624.

Valentinyi, Akos and Berthold Herrendorf, “Measuring Factor Income Shares at the Sector Level,”
Review of Economic Dynamics, October 2008, 11 (4), 820–835.

Yi, Kei-Mu, “Can Vertical Specialization Explain the Growth of World Trade?,” Journal of Political

Economy, February 2003, 111 (1), 52–102.


	A Simple Model of Functional Specialization of Cities
	Introduction
	The Model
	Workers
	Final Good Sector
	Nonroutine Local Service Sector
	Routine Local Service Sector
	Equilibrium

	Equilibrium Properties
	Fundamental Equation
	Existence and Uniqueness of Endogenous Rankings
	Size Distribution of Cities
	Welfare Gain from Functional Specialization

	Welfare Analysis of Income Redistribution Policy
	Income Redistribution Policy Rule
	Modified Fundamental Equation
	Optimal Income Tax Rate

	Conclusion
	Why the ordering, 0=T1 < T2 < @let@token < TJ=1, holds
	Derivation of the Fundamental Equation
	Derivation of the Inverse Lorenz Curve H
	Proof of Proposition 2
	Determination of the Functional Form of (t)
	Determination of the Constraint on the Parameters for Zipf's Law

	Derivation of the Modified Fundamental Equation
	Derivation of Profiles
	Land Rent R(t)
	Population N(t)
	Wage Rate W(t)
	Urban Diversity D(t)
	After-tax Local Income Ea(t)
	Natural Logarithm of the Price Index lnP of the Final Good

	Calibration
	Procedure
	Data
	Result


	Comparative Advantage and Skill Premium of Regions
	Introduction
	The Model
	Final Goods Sectors
	Labour-intensive Intermediate Goods Sectors
	Skill-intensive Intermediate Goods Sectors
	Individuals

	Equilibrium Analysis
	Basic Mechanism
	Numerical Exercise

	Conclusion
	Equilibrium System as a Fixed-Point Problem of S1
	Number of Entrepreneurs, Conditional Densities, and Average Productivities
	Factor Prices as Functions of Three Thresholds (*1, , S1)
	Productivity Thresholds (*1, ) as Functions of S1
	Determination of S1 through Comparative Advantage


	Team Production and the Allocation of Creativity across Global and Local Sectors
	Introduction
	The Model
	Environment
	Team Production
	l-agent Choice
	h-agent Choice

	Equilibrium
	Relative Supply Curve
	Possible Scenarios

	Numerical Experiment
	Algorithm
	Results

	Conclusion


