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 How many items can we remember for a short period of time? Working memory (WM) 

is a mental function or functions underpinning such short time storage of memory. An important 

property of WM is its limited capacity, which means that there is a maximum number of items we 

are able to retain. Several studies have tried to estimate the maximum amount. Although, Miller 

(1956) first proposed that the maximum capacity as 7 ± 2 items, a following study by Cowan 

(2001) argued that it is more limited to approximately 4. Up to the present date, the latter view is 

widely accepted. In addition, this storage system does not seem to be limited to a unique source 

of information. The multi-component model of WM proposes that we have separated capacities 

of WM for visuo-spatial and auditory domains (Baddeley & Hitch, 1974).  

 

The Multi-Component Model of Working Memory 

 

The multi-component model of WM was proposed originally by Baddeley and Hitch 

(1974), and has been well accepted. They proposed that WM consists of three parts: the 

phonological loop, the visuo-spatial sketchpad and the central executive. The phonological loop 

and the visuo-spatial sketchpad are slave systems controlled by the central executive, dedicating 

themselves just to store information. The phonological loop retains auditory information, and 

the visuo-spatial sketchpad retains visual and spatial information. Each storage system has its 

own limited capacity. The central executive is an attentional system which manipulates the two 

slave functions. 

 The separation between the phonological loop and the visuo-spatial sketchpad has 

been supported by a large number of studies. For example, research using a dual task paradigm 

(i.e. a method combining two cognitive tasks to access their interference) showed that the 

performance of a visual memory task is disrupted by irrelevant visual inputs or a spatial tracking 

task, but not by irrelevant auditory inputs (e.g. an unattended speech). Similarly, a verbal 

memory task is not disrupted by visual or spatial tasks (Baddeley & Lieberman, 1980; Logie, 

1986; Fougnies & Marois, 2011). 

 

Further Functional Separations in the Visuo-Spatial Sketch Pad 

 

Baddeley and Lieberman (1980) suggested that the visuo-spatial sketchpad is a unitary 

system. However, Logie (Logie, 1986; 1995; Logie & Marchetti, 1991) challenged this view and 

argued that the visuo-spatial sketchpad is comprised of separate components dedicated for 
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visual and spatial information, respectively. In order to test this assumption, Logie and Marchetti 

(1991) inserted a secondary task (visual or spatial) during the retention interval of visual and 

spatial mnemonic tasks, and found that the visual task produced a larger interruption in the 

visual memory task than in the spatial memory task, and vice versa for the spatial task. These 

results indicate that the visuo-spatial sketchpad does not consist of a single system. Several 

studies utilizing dual task paradigm have replicated this visuo-spatial WM separation (Tresch, 

Sinnamon, & Seamon, 1993; Della Sala, Gray, Baddeley, Allamano, & Wilson. 1999; Klauer & Zhao 

2004). Moreover, some neuropsychological cases have also supported this view (Farah, 

Hammond, Levine, & Calvanio. 1988; Hanley, Young, & Pearson.1991). For instance, a patient 

who had brain damage in tempro-occipital regions, the right temporal lobe, and the right 

inferior frontal lobe showed a disability in visual but not in spatial memory, whereas the 

opposite pattern was found in another patient who had damage in the right frontal area. These 

cases indicated that cortical regions underpinning visual and spatial WM are independent from 

each other.  

Although many empirical findings in support of the visuo-spatial WM separation have 

been repeatedly reported and the theory seems to be now widely accepted, this theory is still not 

free from controversies (Luck, 2008). Moreover, the studies putatively supporting this view have 

a critical methodological issue. That is, almost all of the previous research has employed dual 

task paradigms, which combined a memory task and a concurrent non-memory task (e.g. a 

passive viewing of visual material during spatial memory task). Thus, strictly speaking, they have 

not reported direct evidence for the dissociation of two memory systems. To my knowledge, 

Wood (2011) was the first researcher that combined visual and spatial memory tasks and 

examined the visuo-spatial WM separation hypothesis more directly. In this study, it was shown 

that color and spatial WMs does not produce interference, thus supporting the hypothesized 

dissociation. However, he also found that shape and spatial WMs interfered with each other, 

indicating that two WM systems share the same storage resource. Since shape has been treated 

as a type of visual information, the result could undermine the visuo-spatial WM separation 

proposed by Logie (1995). Thus, more investigation is needed to clarify this issue. 

 

The Role of Attention in WM Maintenance 

 

Another line of argument that seems to be critical for the visuo-spatial separation 

hypothesis comes from the research on the relation between attention and visuo-spatial WM. 
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The recent literature on WM indicates that attention plays a crucial role for visuo-spatial WM 

processing (Awh, Vogel, & Oh, 2006). For example, Vogel, McCollough and Machizawa (2005) 

utilized an event related component (ERP) measurement and showed that selective attention 

works as a filter at the encoding stage of visual WM, which bounces unnecessary stimuli and let 

only the relevant items proceed into the WM storage. In addition, many studies have indicated 

that attention contributes to WM maintenance too (van Dijk, van der Werf, Mazaheri, Medendorp, 

& Jensen, 2010; Chun, 2011). If so, different types of attentional system might underpin different 

types of WM maintenance. It should be noted that attention can be dissociated into two different 

sub-systems; namely, visual and spatial attention (Scolari, Ester, & Serences, 2014). Spatial 

attention selects specific location and facilitates the processing of items presented in that 

location (Posner & Cohen, 1984). In contrast, visual attention (i.e. feature- and object-based 

attention) enhances processing of task-relevant features or objects regardless of their spatial 

location (Maunsell & Treue, 2006; Scolari et al., 2014). This distinction between attentional 

systems seems to correspond to the proposed visuo-spatial WM separation. Thus it has been 

argued that the same domain structure might underlies the organization of both attentional and 

WM sub-systems (Barnes, Nelson, & Reuter-Lorenz, 2001). Studies so far, however, have not 

reached a consensus on this issue. 

 On the one hand, many studies seem to support the correspondence between specific 

attentional and WM subdomains. First, Awh and his colleagues proposed the attention-based 

rehearsal theory of spatial WM, arguing that sustained spatial attention is the underlying 

mechanisms of spatial WM retention (Awh, Jonides, & Reuter-Lorenz, 1998; Awh & Jonides, 

2001). Second, Luck and his colleagues argued that a visual WM contents including single visual 

features as well as multi-feature conjunctions are retained by an object-based system (Luck & 

Vogel, 1997; Vogel, Woodman & Luck, 2001), and spatial attention does not play any specific role 

for its maintenance (Zhang, Johnson, Woodman, & Luck, 2013). In addition, another line of 

evidence has also suggested that the role of spatial attention is limited to spatial WM 

maintenance (Woodman, Vogel, & Luck, 2001; Oh & Kim, 2004; Woodman & Luck, 2004) In the 

same vein, Barnes et al. (2001) suggested that object-based attention contributes to visual WM 

retention, but not to spatial WM.  

 On the other hand, some studies questioned that such correspondences truly exist. 

Wheeler and Treisman (2002) refuted the object-based retention theory of visual WM (Luck & 

Vogel, 1997; Vogel et al., 2001) and proposed that spatial attention is necessary for visual object 

WM. They argued that single features are stored in each separate storage systems, but the 



12 
 

maintenance of integrated objects need spatial attention. Indeed, Wood (2011) found that object 

and spatial WMs interfered with each other, supporting this claim.  

 Furthermore, some recent studies have casted a doubt even on the role of spatial 

attention in spatial WM maintenance (Awh et al.,1998; Awh & Jonides, 2001). Belopolsky and 

Theeuwes (2009) and Chan, Hayward, and Theeuwes (2009) have reported counterevidence for 

this theory, and argued that spatial attention plays no functional role for spatial WM 

maintenance. Given that the attention-based rehearsal theory of spatial WM has been well 

accepted among researchers (Awh et al., 2006), these findings, if they are true, could undermine 

the foundation of the theory of domain specific correspondence between attention and WM. 

Therefore, further accumulation of evidence for this problem is needed. 

 

The Current Dissertation 

 

As I briefly reviewed so far, currently there is no comprehensive understanding about 

how the visuo-spatial WM sub-domains are separated, and how attention is related for their 

maintenance. The current dissertation focused on these two important issues, and provided 

evidence by carefully re-examining two critical previous findings. The first one was the 

shape-spatial WM interference observed by Wood (2011), and the second the controversy about 

the spatial attention rehearsal theory of spatial WM (Awh et al. 1998; Awh & Jonides, 2001). 

Study 1 aimed to re-examine the shape-spatial WM interference observed by Wood 

(2011). For this aim, I used a dual task paradigm which combined a shape and spatial WM task. 

First, I tested whether some methodological confounds found in Wood’s study (Wood, 2011) 

could account for the observed interference. Moreover, in case this possibility is discarded, I 

estimated the size of interference and evaluate its functional significance in relation to the 

visuo-spatial separation hypothesis. 

 Study 2 examined the attention-based rehearsal theory of spatial WM (Awh et al. 1998; 

Awh & Jonides, 2001), which assumes that spatial attention is continuously allocated to the 

remembered positions during the retention interval of spatial WM. To test this assumption, I 

utilized behavioral and ERP indices of spatial attention. In this regard, it should be noted that to 

show the effect of spatial attention is not a sufficient evidence for proving its functional 

significance in WM maintenance. For example, spatial attention could be observed even when it 

was produced as a mere after-effect of the WM encoding process. Thus, to test this possibility I 

inserted an attention-demanding visual search task during the spatial WM retention interval, 
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and assessed how the load change in visual search affected the allocation of spatial attention and 

the performance of the spatial WM task. If spatial attention plays a crucial role in WM 

maintenance and is deprived by visual search, an impairment in the spatial WM performance 

should be expected.   
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Abstract 

 

Whether visuo-spatial WM consists of a common storage resource or of multiple subsystems has 

been a controversial issue. Logie (1995) suggested that it can be divided into visual (for color, 

shape, objects, etc.) and spatial (for location) WM. However, a recent study reported evidence 

against this hypothesis. Using a dual task paradigm, Wood (2011) showed interference between 

shape and spatial working memory capacities, suggesting that they share a common resource 

limitation. I re-examined this finding controlling possible confounding factors, including the way 

to present spatial location cues, task order, and type of WM load to be manipulated. The same 

pattern of results was successfully reproduced, but only in a highly powered experiment (N = 90), 

and therefore the size of interference was estimated to be quite small (d = 0.24). Thus, these data 

offer a way to reconcile seemingly contradicting previous findings. On the one hand, some part of 

the storage system is genuinely shared by shape and spatial WM systems, confirming the report 

of Wood (2011). On the other hand, the amount of the overlap is only minimal, and therefore the 

two systems should be regarded as mostly independent from each other, supporting the classical 

visuo-spatial separation hypothesis. 

  



18 
 

  

  



19 
 

It is well accepted that WM is separated into two systems, namely, phonological (the 

phonological loop) and visual information storages (the visuo-spatial sketchpad; Baddeley & 

Hitch, 1974). More controversial is the next assumption that the latter can be further divided 

into two substructures for visual (colors, shapes, object etc.) and spatial (location) information 

processing (Logie, 1995), which are usually referred as visual and spatial WM, respectively. 

Evidence for this visuo-spatial separation hypothesis has been mixed so far (Luck, 

2008). On the one hand, dual task experiments have provided some supportive data. In a typical 

dual task paradigm, a cognitive task is inserted during the retention interval of a WM task, thus 

participants have to perform the task and WM maintenance simultaneously. Studies found that 

the interference between the two tasks became significantly larger when they were related to the 

same domain (e.g. visual task and visual WM) than when they were related to different domains 

(Logie & Marchetti, 1991; Tresch et al., 1993; Woodman et al, 2001; Woodman & Luck, 2004). For 

example, Tresch et al. (1993) found that spatial WM performance was selectively disrupted by a 

movement discrimination task (i.e. a spatial cognitive task) but not by a color discrimination task 

(i.e. a feature-based visual cognitive task), whereas the opposite pattern of results was obtained 

for a shape WM task. 

Other studies have suggested that a more nuanced argument might be required for this 

issue. For example, Wheeler and Treisman (2002) hypothesized that keeping spatial information 

may not be necessary for maintaining simple features (e.g. “blue” or “triangle”) but critical for 

conjunctive objects (e.g. “blue triangle”; see, however, Zhang et al., 2012). Furthermore, using a 

change detection task in which the test display was either exactly the same as the memorized 

one or differed from it in one item, Jiang, Olson, and Chun (2000) reported that performances of 

simple feature WM tasks (i.e. color or shape) were impaired when item locations were changed 

between to-be-remembered and to-be-matched stimuli, even though the spatial information was 

totally task-irrelevant. Although these studies did not directly test the visuo-spatial WM 

separation hypothesis, they suggested that the proposed dichotomy might be rather simplistic 

and further investigations were required. 

 Wood (2011) tackled this problem by investigating the dual task paradigm again, but 

now in a thoroughly systematic way. In addition, he investigated the consequences of directly 

combining two WM tasks. This was a notable attempt, since the majority of the previous studies 

that had utilized the dual task paradigm had only focused on the interference between a WM and 

a cognitive task (e.g. a movement discrimination task; Tresch et al. 1993), which does not 

examine the interferences between two WM tasks and therefore might not be a direct test of the 
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visuo-spatial separation hypothesis. In contrast, Wood (2011) combined spatial WM tasks with 

various types of visual WM tasks with the following basic design. White dots appeared on a 

computer screen at the beginning of each trial, and participants were requested to remember 

their locations. Next, items with simple color, shape, or conjunctive features were presented, and 

participants had to remember their identities, too. After a brief blank, a test array was presented, 

which could be matched with either the spatial WM locations or the visual WM items that were 

remembered previously. In most of the experiments, the so-called “single probe” task was 

adopted to test visual WM, where only one to-be-matched item is presented on the test display. 

The number of to-be-remembered locations and items were manipulated to examine whether 

and when interference occurred between the two domains. 

Despite his effort for an inclusive examination, the results of Wood (2011) only added 

further complications to the issue. In Experiment 2, he found that increasing the number of 

spatial cues did not disrupt the performance of the color, but did interfere with the shape and 

object (color-shape conjunction) tasks. No previous theories and studies are fully consistent with 

these new data. Firstly, these data clearly contradict the traditional hypothesis of visuo-spatial 

WM separation, which would have predicted no interference between visual (including shape) 

and spatial WM (Tresch et al., 1993; cf. Woodman et al., 2001). Secondly, based on the theory of 

Wheeler and Treisman (2002), overloading spatial WM would have been predicted to deplete the 

capacity for spatial information maintenance, and therefore interfere with object but not simple 

feature (e.g. shape) WM. On the other hand, the data of Jiang et al. (2000) would have suggested 

that spatial WM load would generally affect the visual information maintenance and therefore 

interact with both shape and color WM. 

What are the causes of these discrepancies? The first possibility is the differences in 

task designs, especially between the change detection and single probe tasks. Wood (2011) 

reported that the interference between color (i.e. a feature) and spatial WM was found only in 

the change detection, but not in the single probe task. He therefore speculated that in the change 

detection task, but not in the single probe task, spatial configural information is employed to 

retain not only spatial, but also visual WM including simple features. In accordance with this 

hypothesis, Jiang et al. (2002) utilized the change detection paradigm and observed impairments 

even in feature WM performance (i.e. color and shape) when the locations of items were changed 

during a trial, lending some credibility to the argument. This is, however, not sufficient to 

account for the interference between shape and spatial WM found in Wood (2011), because the 

interference was detected not only in the change detection, but also in the single probe task. 
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In order to reconcile the shape-spatial WM interference reported by Wood (2011) with 

the previous literature, the current study tried to replicate this finding while controlling some 

possibly confounding factors observed in the original study. My hypothesis was that these factors 

might have caused the discrepancy, and therefore a clear conclusion could be obtained if they 

were fully controlled. The first factor was related to a specific methodological detail Wood 

adopted, which has already been discussed in some previous studies (Woodman & Luck, 2001; 

Lecerf & Ribaupierre, 2005). That is, since multiple white dots appeared simultaneously on the 

computer screen in Wood (2011), the participants might have encoded them as a shape formed 

by these white dots rather than separate spatial locations. If this was the case, the observed 

shape-spatial interference could be interpreted as having occurred between two shape WM 

tasks. I examined this possibility in Experiment 1a, 1b, and 1c. Next, I also examined the effect of 

task order (Experiment 2) and types of WM load to be manipulated (Experiment 3). These 

factors were not, or only minimally manipulated in the original study. To foreshadow the results, 

none of the controls altered the results. Moreover, no statistically significant evidence of 

between-domain interference was found in any of these experiments, seemingly disconfirming 

the observations of Wood (2011). Importantly, however, I found a very small, but consistent 

trend of interference in all experiments regardless of the different settings, suggesting the 

obtained null results were simply due to under-powered designs. Therefore, I conducted an 

omnibus test including four of these experiments and found a small, but statistically significant 

effect. I also conducted another replication following the design of Wood (2011) more precisely 

(Experiment 4), in which I collected data from 90 participants to sufficiently increase statistical 

power. A significant effect of interference was observed again, but its effect size remained to be 

quite small. I concluded that, although there was an overlap between spatial and shape WM 

processing, the size of this effect was small, and therefore the two systems should be regarded as 

mostly independent from each other. 
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Experiment 1 

 

The purpose of Experiment 1a, 1b, and 1c was to test whether the results of 

Experiment 2 in Wood (2011) were due to the specific methods that the study adopted for the 

spatial WM cue presentation or data analysis. Sequential cue presentation was used in 

Experiment 1a and 1b, and simultaneous cue presentation in Experiment 1c. I examined the 

interaction between task type and load manipulation as a measure of interference in all three 

experiments. 

 

 

Experiment 1a 

 

Methods 

Participants. Thirty volunteers (male: 15; female: 15; mean age: 19.93 years, SD: 2.00 years) 

participated in the experiment. They provided informed consent before commencing the 

experiment and were compensated monetarily. 

 

Stimuli and Procedure. All stimuli were presented on a black screen of a 17 inch CRT monitor, 

and E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA, USA) was used to program the 

experiment. The viewing distance was about 60 cm. 

At the beginning of a trial, 2 alphabet letters (white, bold, and 45 point Courier New 

font) were randomly selected and presented for 1,000 ms at the center of the screen. Participants 

had to pronounce these letters repeatedly for articulately suppression until they responded to 

the test array (see below), in order to prevent the spatial and shape stimuli from being 

verbalized. To confirm if participants correctly followed this instruction, I recorded their voices 

all through the experiment by a voice recorder. Participants were informed about this recording 

procedure beforehand. After the letter presentation, the word “Ready” (white, bold, and 45 point 

Courier New font) appeared for 500 ms at the center of the screen, followed by a 500 ms blank 

and then a spatial memory array. 

 Unlike Wood (2011), the spatial memory array was presented in a sequence. A 5 × 5 

grid (width 17.6° × length 14.7°) with white borders appeared for 400 ms at the center of the 

screen, and consecutively white dots (2.2° × 2.2°) were randomly presented one by one, each for 

300 ms, in one of the cells in the grid. The white dots in one trial never appeared in the same cell. 
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There was no interval between dot presentations, thus the entire presentation time changed 

according to the set size of the memory array; they were 300, 900 and 1,500 ms for the set size 1, 

3, and 5, respectively. Participants had to remember all locations, but not the order of 

presentation. This spatial memory task was followed by a 800 ms blank and the shape memory 

array (Figure 1-1A). 

 The shape memory array consisted of 4 white shapes randomly selected from 7 

distinguishable items (star, square, pentagon, triangle, diamond, spiral and cross, see Figure 

1-1D), all of which had a size of 3.2° × 3.2°. They remained on the screen for 500 ms. The 

locations were fixed on the corners of a width 10.1° × length 6.1° rectangle appearing on the 

center of the screen. The participants had to remember the shapes but not their locations. After 

the shape memory array, the word “Test” (white color, bold, 45 point Courier New font) appeared 

for 1,000 ms, and was followed by the memory test. 

 Two different versions of WM test were used; that is, one for the spatial and another for 

shape memory, each occurring with a probability of 50%. Note that participants had to retain 

both spatial and shape information in all trials, since the selection of test type was totally 

random. For testing spatial WM, a white dot appeared in one of the 5 × 5 grid cells. In half of 

trials (i.e. 25% of all trials), the dot appeared at one of the locations where the to-be-memorized 

items had been presented previously (the same condition), and in one of the remaining locations 

in the rest of trials (the different condition). For assessing shape WM, a shape was selected from 

the aforementioned 7 shapes (see Figure 1-1D) and presented at the center of the screen. It 

matched with one of the to-be-memorized shape items in half of the trials (the same condition) 

but not in the rest (the different condition). In both versions, participants had to answer whether 

the test item matched with one of the items retained in memory, by pressing the “f” or “j” key on 

the keyboard (the key-response correspondence was counterbalanced across participants). The 

test item remained on the screen until the response. A 300 ms blank was inserted as inter-trial 

interval before the next trial started. 

 The experiment comprised 30 blocks, each of which contained 12 trials, thus the total 

number of trials was 360. At the end of each block, accuracy rates of spatial and shape memory 

test were presented on the monitor. Participants conducted 2 practice blocks with trial-by-trial 

accuracy feedback before starting the experiment. 
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Figure 1-1. Schematic diagrams of the experimental procedures used in Experiment 1a (A), 1b (B) 

and 1c (C). In all experiments, a trial consisted of the instruction of articulatory suppression, spatial 

WM memory cues, first blank, shape WM memory array, second blank, and the test probe. Spatial WM 

was tested in the half of trials, and shape WM in the rest of trials. The load size of spatial WM 

randomly changed from 1, 3 to 5, but that of the shape WM was fixed to 4. The only difference 

between Experiment 1a and 1b was the way to present spatial WM memory cues. The total time to 

present spatial WM cues changed in accordance with the number of the load in Experiment 1a, 

whereas fixed to 1,500 ms in Experiment 1b. Figure (D) shows the shape stimuli which were used for 

the shape WM task in Experiment 1a, 1b, 1c, 2, and 4. 
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Results and Discussion 

The results of Experiment 1a showed no evidence of interference between shape and 

spatial WM. Whereas higher spatial WM load significantly impaired the spatial WM score, it did 

not affect the shape WM performance (Figure 1-2A). I conducted a within-subject ANOVA on the 

accuracy data with the two factors, spatial WM load size (1, 3, or 5) and test type (spatial or 

shape). In addition to a significant main effects of spatial WM load size and test type (F(2, 58) = 

25.63, p < .001, ηp2 = .47, F(1, 29) = 24.03, 24.03, p < .001, ηp2 = .45, respectively), the interaction 

between the two factors was also significant (F(2, 58) = 16.79 p < .001, ηp2 = .37). Post hoc 

analyses showed that, as spatial WM load increased, accuracy in the spatial WM task decreased 

significantly (92.8%, 85.7%, and 79.3% for the load1, 3, and 5, respectively; for each difference, 

ps < .001), but shape WM performance did not (80.1%, 79.0%, and 78.8% for the load1, 3, and 5, 

respectively. ps >.995 for the difference between each load size.). Finally, note that the 

insensitivity of shape WM score to the change of spatial WM load was apparently not due to a 

floor effect, because the mean performance in all conditions (around 80%) was far better than 

what would have been expected based on random guesses (50%). 

 

 

 
 

Figure 1-2. The results for Experiment 1a (A), 1b (B) and 1c (C). The broken lines with empty 

squares and the solid lines with filled circles indicate the accuracy (% correct) of the spatial and the 

shape WM test trials, respectively. In all experiments, as the spatial WM load size increased, the 

performance of the spatial WM clearly decreased; the shape WM performance were, however, almost 

constant. The error bars indicate the standard errors of the mean. 
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Experiment 1b 

 The procedure of Experiment 1b was almost the same as Experiment 1a, except that it 

adopted an alternative way to present the spatial cue sequence. In this experiment, the 

presentation interval was fixed to 1,500 ms (Figure 1-1B). This procedure eliminated the 

influence of the difference of interval length between conditions, and made it possible to test 

more precisely whether the consumption of spatial WM capacity disrupted the shape WM 

processing. 

 

Method  

Participants. Thirty-three volunteers (male: 18; female: 15; mean age: 19.53 years old, SD: 1.76) 

participated. They provided informed consent before the experiment and were compensated 

monetarily. 

 

Stimuli and Procedures. The procedure of Experiment 1b was different from Experiment 1a 

only in the way spatial WM cues were presented. The total duration of spatial cue presentation 

was fixed to 1,500 ms regardless of the load size. The presentation period was divided into 5 

time slots, each of which lasted 300 ms. The appropriate number of slots (1, 3, or 5) was 

randomly chosen according to the load condition, and spatial memory cues (white dots) were 

presented at the selected slots (Figure 1-1B). 

 

Results and Discussion  

Replicating Experiment 1a, Experiment 1b again showed an absence of interference 

between spatial and shape WM. I conducted a within-subject ANOVA on accuracy with the two 

factors spatial WM load size (1, 3, or 5) and test type (spatial or shape; Fig 1-2B). The main 

effects of spatial WM load size and test type were significant (F(2, 64) = 50.10, p < .001, ηp2 = .61, 

F(1,32) = 29.49, p < .001, ηp2 = .48, respectively). In addition, the interaction between the two 

factors was also significant (F(2, 64) = 23.29, p < .001, ηp2 = .42). Post-hoc analyses showed that, 

as spatial WM load increased, the accuracy in the spatial WM task decreased significantly (95.1%, 

87.1%, and 81.0% for load 1, 3, and 5, respectively, for each difference, ps < .001). By contrast, 

the accuracy did not decrease in the shape WM task (82.9%, 81.7%, and 81.7%, for load 1, 3, and 

5, respectively. p = .80, p = .83, and ps > .995 for the difference between load 1 - 3, 1 - 5, and 3 - 5, 

respectively). 
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Experiment 1c 

 In contrast to the first two experiments, spatial location cues were presented 

simultaneously for 500 ms in Experiment 1c (Figure 1-1C). The rest of the procedure remains 

exactly the same. 

 

Method. 

Participants. Twenty-one volunteers (male: 8; female: 13; mean age: 21.0 years old, SD: 3.28) 

participated. They provided informed consent before the experiment and were compensated 

monetarily. 

 

Stimuli and Procedures. The only change from the procedures of Experiment 1a and 1b to 1c 

was that the spatial WM cues were presented simultaneously for 500 ms (Figure 1-1C). The rest 

of the procedure remained exactly the same as in the two preceding experiments. 

 

Results and Discussion  

The results of Experiment 1c proved that the cue presentation method is not the critical 

factor determining the between-domain WM interference (Figure 1-2C). Again, a within-subject 

ANOVA on accuracy was conducted with the two factors spatial WM load size (1, 3, or 5) and test 

type (spatial or shape; Figure 1-2C). Significant main effects of spatial WM load size and test type 

were confirmed (F(2, 40) = 30.06, p < .001, ηp2 = .60, F(1,20) = 33.15, p < .001, ηp2 = .62, 

respectively). Critically, the interaction between the two factors reached significance (F(2, 40) = 

14.60, p < .001, ηp2 = .42. Post-hoc analyses also showed the same results as the preceding two 

experiments. Spatial WM load increase significantly impaired the spatial WM task accuracy 

(95.3%, 86.3%, and 81.5% for load 1, 3, and 5, respectively, for the comparison between load 1 - 

3, 1 - 5, ps < .001 and 3 - 5, p = .008). The accuracy of shape WM task, however, was not affected 

by the load manipulation (82.9%, 82.4%, and 80.7%, for load 1, 3, and 5, respectively. p > .995, p 

= .72, and p = .932 for the difference between load 1 - 3, 1 - 5, and 3 - 5, respectively). 

In sum, Experiments 1a, 1b, and 1c collectively provided results that were inconsistent 

with those of Wood (2011), showing no interference between shape and spatial WM 

performance and therefore suggesting that the storage resource was not shared between the two 

WM domains. In addition, since the data showed the same trend across the three experiments 

regardless of the spatial WM cue presentation method, the simultaneous presentation of spatial 

WM cues adopted in Wood (2011) was not the cause of the discrepancy. 
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Experiment 2 

 

 The objective of Experiment 2 was to examine another possible confounding factor, 

namely the effect of task order, which was fixed (i.e. spatial then shape) in both Wood’s (2011) 

previous experiments and Experiment 1 of the current study. Thus, in this new experiment I 

tested whether the same pattern of results as in Experiments 1a, 1b and 1c could be observed 

even when the task order was reversed (i.e. shape then spatial). 

 

 

Method 

Participants. Twenty-five volunteers (male: 9; female: 16; mean age: 21.40 years old, SD: 3.50) 

participated. They provided informed consent before the experiment and were compensated 

monetarily. 

 

Stimuli and Procedures. The procedure of Experiment 2 was identical to that of Experiment 1b 

except that the order of the spatial and shape WM item presentation was reversed (Figure 1-3A). 

 

 

Results and Discussion 

 Experiment 2 replicated the absence of interference between shape and spatial WM 

systems, regardless of the order of shape and spatial WM task assignments (Figure 1-4A). Again, 

I conducted a within-subject ANOVA with the two factors spatial WM load size (1, 3, or 5) and 

test type (spatial or shape). The main effect of load size, F (2, 48) = 12.63, p < .001, ηp2 = .35, and 

test type, F(1,24) = 127.54, p < .001, ηp2 = .84 were both significant. Importantly, the interaction 

between the two factors was also significant, F (2, 48) = 5.69, p = .006, ηp2 = .19. Post hoc 

analyses showed that, as spatial load size increased, the spatial WM task became difficult 

(accuracy 97.0%, 93.2%, and 88.2% for load 1, 3 and 5, respectively; each difference, except 

between load 1 and 3, was significant, ps < .001), whereas there was no significant difference in 

the shape WM task (73.2%, 72.0%, and 71.2%, for load 1, 3, and 5, respectively. p = .98, p = .27, 

and p > .995 for the each difference between load 1 - 3, 1 - 5, and 3 - 5, respectively.). Moreover, 

the data suggested that the inversion of task order made the spatial WM task much easier 

compared to the previous two experiments, probably due to a shorter retention interval. In 

addition, there might have been a ceiling effect especially in the load 1 and 3 conditions. Thus, 
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the smaller effect size of the interaction observed in the current experiment compared to 

Experiment1 might be a mere consequence of this ceiling effect. 

 

 
 

Figure 1-3. Schematic diagrams of the experimental procedure used in Experiment 2 (A) and 3 (B). 

Experiment 2 was exactly the same as Experiment 1b except that the task order was reversed. In 

Experiment 3, the load size of shape WM was manipulated (2, 4 and 6) instead of the spatial WM 

(fixed to 7). Figure (C) shows the shape stimuli which were used for the shape WM task in Experiment 

3. 
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Figure 1-4. The results for Experiment 2 (A) and 3 (B). The broken lines with empty squares and the 

solid lines with filled circles indicate the accuracy (% correct) of the spatial and the shape WM test 

trials, respectively. In Experiment 2, although the spatial WM accuracy apparently diminished along 

with the increment of load size, the shape WM did not. In contrast, the results of Experiment 3 

indicated that the shape WM performance sharply fell as the load size increased, whereas the spatial 

WM did not. The error bars indicate the standard errors of the mean. 
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Experiment 3 

 

 In Experiment 3 I manipulated the shape, but not the spatial WM load size. The load 

size for shape WM in the previous experiments in the current study was always set to 4. Thus, 

one might argue that an alternative interpretation for the results of Experiments 1a, 1b, 1c, and 2 

would be that the shape WM impairment was absent because the shape WM reservoir was not 

completely occupied by the shape items, and therefore there was still room for spatial WM. This 

account, however, seems unlikely because many studies have proved that a load of 4 items fills 

up shape WM capacity quite sufficiently (e.g. Cowan, 2001). Nevertheless, I examined this 

alternative hypothesis, directly manipulating the shape WM load to confirm that there remained 

no extra space for additional spatial WM. 

 In addition, the results of Experiment 2 suggested that the shape-first, location-second 

task order apparently made the spatial WM task easier than in the previous two experiments, 

and I suspected that it might have produced a ceiling effect (see Figure 1-4A). This would 

become quite problematic in Experiment 3, because the aim of this experiment was to test the 

effect of shape WM load on spatial WM performance, and therefore the latter should remain 

sufficiently sensitive to the effect of interference. Thus, in Experiment 3, I employed the same 

settings as in Experiment 2 but increased the maximum number of item for spatial WM from 5 to 

7. 

 

 

Method 

Participants. Twenty-two volunteers (male: 9; female: 13; mean age: 21.55 years old, SD: 3.51) 

participated. They provided informed consent before the experiment and were compensated 

monetarily. 

 

Stimuli and Procedures. The procedure of Experiment 3 was entirely the same as Experiment 2, 

except for the load size manipulation (Figure 1-3B). The shape WM load changed among 2, 4, and 

6, and that for spatial WM was always fixed to 7. In previous experiments, the shapes were 

selected from 7 items, but I added 4 more alternatives in Experiment 4 (i.e. eleven in total; see 

Figure 1-3C), because the maximum load size now increased to 6. When the load size was 4, the 

locations of presentation on the screen were the same as the previous experiments. When it was 

2, the two shapes were presented at locations 5° horizontally right or left from the central 
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fixation. Finally, when it was 6, the locations of 4 shapes were the corners of a width 13.1° × 

length 6.1° transparent rectangle appearing on the center of the screen, and the remaining 2 

shapes were presented at the midpoint of the top and bottom sides of the rectangle (i.e. vertically 

3.05° up and down from the fixation). 

 

Results and Discussion. 

 Experiment 3 confirmed again the absence of the shape-location interference in WM 

regardless of which load size was manipulated (Figure 1-4B). I conducted a within-subject 

ANOVA on the accuracy, with the two factors shape WM load size (2, 4, or 6) and test type 

(spatial or shape). In addition to the significant main effects of shape WM load size and test type, 

(F (2, 42) = 49.14, p < .001, ηp2 = .70, F(1,21) =  9.64, p =.005, ηp2 = .31, respectively), the 

interaction between the two factors reached significance, F (2, 42) = 25.36, p < .001, ηp2 = .55. 

Post hoc analyses showed that, as the shape load size increased, the shape WM performance was 

more and more impaired (83.0%, 68.1%, and 62.1% for load 2, 4 and 6, respectively; for the 

difference between load 4 - 6: p = .01 and for others: ps < .001), whereas there was no significant 

difference in spatial WM performance (79.5%, 76.6% and 75.2%, for load 2, 4 and 6, respectively. 

p = .33, p = .20, and p = .98 for the each difference between load 2 - 4, 2 - 6, and 4 - 6, 

respectively.). 

 Thus, my data so far suggested no interference between the two working memory 

systems, being inconsistent with the findings in Wood (2011). Importantly, however, there was a 

small, but consistent tendency for the change in the WM load to slightly impair the other, 

load-unrelated WM performance (i.e. shape WM task in Experiment 1 to 3, and spatial WM in 

Experiment 4; see Figures 1-2A, 1-2B, 1-2C, 1-4A and 1-4B), even though they did not reach 

statistical significance in each separate experiment. Since the trend was always in the same 

direction, I suspected that these null results might have been simply due to statistically 

underpowered designs. Therefore, I additionally conducted a mixed 4 x 3 x 2 ANOVA on the 

pooled data across Experiment 1a, 1b, 1c, and 2. Experiment 3 was excluded because it adopted 

different ways of load manipulation. Data from 109 participants were included. The factors were 

experiment (i.e. Experiment 1a, 1b, 1c, or 2; between-subject), spatial WM load (1, 3, or 5; 

within-subject) and test type (spatial or shape; within-subject). This additional analysis revealed 

a small, but statistically reliable between-domain interference. As in the separate analyses, a 

significant interaction between spatial WM load and test type was found (F(1.87, 196.71) = 54.97, 

p < .001, ηp2 = .34). Also, post-hoc analyses again showed a decrement of spatial WM as a 
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function of the spatial WM load increase (95.1%, 88.1%, and 82.5% for load 1, 3, and 5, 

respectively. ps < .001 for each difference between the load sizes). In addition and most critically, 

the shape WM performance showed a statistically significant change between load 1 and 5 

conditions (79.8%, 78.7%, and 78.1% for load 1, 3, and 5, respectively; p = .27, d = 0.16, p = .045, 

d = 0.24, and p > .995, d = 0.086, for the difference between load 1-3, 1-5, and 3-5, respectively). 

Thus, there was a small but significant performance impairment in the load-unrelated task, 

suggesting that spatial and shape WM share, if only to a small extent, a part of their storage 

systems. 

 It should be noted that the procedure of Experiment 1-3 lacked the zero load condition 

that was included in the original study of Wood (2011). This absence of base-line condition 

prevented this study from examining the amount of interference that was produced by 

performing the dual task itself (i.e. performance difference between single and dual task). Wood 

(2011) called this index the “dual task interference”, and used it for examining whether shape 

and spatial WM systems share their resource. In this sense, my previous experiments did not 

replicate the original study. Moreover, although my experiments tested whether increase of load 

size in one WM task decreased performance of the other, this design has a fundamental problem. 

Strictly speaking, the absence of effect is not enough to affirm the absence of interference, 

according to the principal of testing null hypothesis. For this reason, I replicated the same 

procedure as Wood (2011) in the next experiment, involving zero-load condition, in order to 

assess robustness of the small shape-spatial WM interference that was observed by the 

comprehensive analysis.  
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Experiment 4 

 

 In Experiment 4, I examined the robustness of the small interference effect observed in 

the abovementioned omnibus analysis. This time I used a design which followed that of Wood 

(2011) more precisely. The original study differed from my previous experiments in terms of that 

(1) it included zero load conditions, (2) it manipulated spatial and shape WM loads within the 

same experiment, and most critically (3) it calculated a measure of interference called “combined 

dual-task interference” with the following equation; 

 

Combined dual-task interference = [(% correct on color/shape/object memory task 

when performed alone) – (% correct on color/shape/object memory task when 

performed concurrently with spatial memory task)] + [(% correct on spatial memory 

task when performed alone) – (% correct on spatial memory task when performed 

concurrently with color/shape/object memory task)]. 

 

I adopted all these factors in Experiment 4. The only difference from the original study was the 

way to present spatial WM cues, which were shown simultaneously in the original but 

sequentially in the current experiment. Note that my Experiment 1 already showed that this 

difference was irrelevant for the results. I collected data from 90 participants to achieve a 

sufficiently high statistical power to detect any subtle effects. Assuming the abovementioned 

combined dual-task interference as a key measurement, a sample size of 90 was calculated to be 

sufficient to detect a relatively small effect size (assuming Cohen’s d = 0.3) with a 80% statistical 

power in a two-tailed paired t test. 

 

Method 

Participants. Ninety five volunteers were recruited (male: 53; female: 42; mean age: 24.9 years 

old, SD: 7.63), but data from five participants were discarded because they showed performance 

below the chance level (50%) in one of the conditions. Consequently, data of 90 participants 

were used. They provided informed consent before the experiment and were compensated 

monetarily. 

 

Stimuli and Procedures. Following Experiment 2 of Wood (2011), I manipulated both spatial 

and shape WM load within experiment; the spatial WM load was set to 0, 3, or 9 locations and 
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shape load was 0 or 4. The basic design was similar to Experiment 1b except that the total time 

period for spatial cue presentation was fixed to 2,700 ms. The period was divided into 9 slots, 

each of which lasted 300 ms. The appropriate number of slots (0, 3, or 9) was randomly chosen 

according to the load condition, and spatial memory cues (white dots) were presented at 

selected slots (Figure 1-5A). When the shape load was 0, four “filler” objects were presented to 

equalize the perceptual demand across conditions. When spatial load was 0, only the grid was 

presented with no cues. The rest of the procedure remained exactly the same as Experiment 1b. 

 

Results and Discussion 

 I firstly analyzed my data following the methods described in Wood (2011). In sum, I 

successfully replicated most of the results reported in the study. First, a within-subject ANOVA 

was conducted for shape WM performance and showed a small but significant main effect of the 

spatial WM load increase (F(2, 178) = 9.36, p < .001, ηp2 = .095). Second, another ANOVA was 

done for the spatial WM scores with the factors spatial (3 and 9) and shape WM load size (0 and 

4), and revealed significant main effects of spatial (F(1, 89) = 136.90, p < .001, ηp2 = .61) and 

shape WM load (F(1, 89) = 977.07, p < .001, ηp2 = .92). I only failed to replicate an interaction 

between these two load factors (F(1, 89) = 1.76, p = .19, ηp2 = .019), which had been significant in 

the original study. These results are depicted in Figure 1-5C together. Third, the “combined 

dual-task interference” was calculated following the equation introduced in the Introduction 

section of the current experiment, and data was compared between 3 and 9 spatial WM load 

sizes using a two-tailed paired t-test (Figure 1-5B). A small but significant difference was found 

(t(89) = 2.31, p = .023; Cohen’s d = 0.24), which was also a successful replication of Wood (2011). 

Thus, the results of Experiment 4 demonstrated the robustness of the between-domain 

interference, confirming the report of Wood (2011). In addition, the effect size was very small, 

suggesting that separate analyses in Experiment 1a to 3 did not have sufficient power to detect it. 
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Figure 1-5. The experimental procedure (A) and results (B, C) for Experiment 4, which was an exact 

replication of Experiment 2 of Wood (2011), except that the spatial cue presentation was conducted 

sequentially instead of simultaneously. The load size of spatial WM randomly changed from 0, 3, to 5, 

and that of the shape was also manipulated (0 and 4) randomly. Figure 5B depicts the “combined dual 

task interference” scores, which were calculated following Wood (2011) (see text for the details), as a 

function of spatial WM load. On the other hand, Figure 5C shows the whole structure of the data, as I 

did in other experiments of the current study. In Figure 5C, the dotted line with empty diamonds and 

the broken line with empty squares show the accuracy (%) correct of the spatial WM test trials when 

the shape WM load size was 0 and 4, respectively. The solid line with filled circles indicate the 

accuracy of the shape WM test trials. Figures (B) and (C) illustrate small but significant 

between-domain interference. 
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General Discussion of Study 1 

 

 The objective of the current study was to investigate the validity of the hypothesis that 

visual and spatial WM have two independent, separated storage systems. For this aim, I 

re-examined the results of the shape-location dual task experiment reported in Wood (2011), 

which provided putative evidence against the hypothesis. I considered several possibly 

confounding factors detected in the original study to account for the discrepancy. I tested 

whether the cue presentation procedure (Experiment 1a, 1b, and 1c), order of tasks (Experiment 

2), and the type of working memory that was manipulated (Experiment 3) affected the 

interference effect. None of these factors had impact on the results, thus excluding the possibility 

that the results of Wood (2011) were confounded with some uncontrolled factors. However, I 

also failed to replicate the findings of Wood (2011) in all experiments. When each experiment 

was separately analyzed, I found no evidence of shape-location interference. I found, however, 

an insignificant, but consistent trend of mean accuracy impairment in the load-unrelated WM 

tasks, which suggested the possibility that the experiments had too little power to detect the 

target effect. Therefore, I first re-analyzed my own data combining those from Experiment 1a, 1b, 

1c, and 2, and obtained a statistically significant effect in the load-unrelated task. Moreover, an 

additional, direct replication of Wood (2011) with a sufficiently large data set (N = 90) 

confirmed the effect again, suggesting that the interference truly exists, but is so small that it 

could not be detected in separate experiments due to low statistical power. 

Then, the critical question is how these results should be interpreted in the context of 

the visuo-spatial WM separation hypothesis. First, it should be noted that the performance 

interference itself does not guarantee that there is an overlap of storage capacity between 

spatial and shape WM. The same result might have been obtained due to an increase of 

non-specific task difficulty that is not specific to working memory storing. For example, 

Woodman et al. (2001) reported that the visual WM performance was generally deteriorated in a 

dual task paradigm, because of nonspecific masking or interruption of WM items triggered by 

the simple stimulus presentation in the alternative task. 

In order to obtain preliminary insights on this issue, I conducted two additional 

experiments with small data sets (N = 30 and 21, respectively). The first experiment tested 

whether simple presentations of location cue, without posing any spatial WM task, would cause 

an impairment of the concurrent shape WM task. The setting of Experiment 1b was adopted with 

the following modifications. Zero, three, or nine spatial location cues were presented, but spatial 
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WM task was never required (Figure 1-6A). The results showed no statistically significant 

interference. Moreover, the mean accuracy even improved from load zero to three and nine 

conditions (84.7, 85.9, and 85.2%, respectively; Figure 1-7A). The second additional experiment 

examined whether the interference could be caused by attentional processes not 

involving working memory storing. Participants were required to conduct a visual search task 

(Figure 1-6B), and asked to press a key if they found the target, after all search items had  

 

 
 

Figure 1-6. Schematic diagrams of the experimental procedure used in additional preliminary 

experiments explained in General Discussion. The experiment that examined whether perceptual 

masking caused the interference effect is shown in Figure (A), and the experiment that examined 

attentional processes in Figure (B; see General Discussion for details).  
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Figure 1-7. The results of additional preliminary experiments discussed in General Discussion, 

depicting the accuracy (% correct) of the shape WM performance (see General Discussion for details). 

The error bars indicate the standard errors of the mean. Figure (A) shows the result of the 

experiment that examined whether perceptual masking caused the interference effect. Figure (B) 

shows the result of the experiment that examined attentional processes. 

 

 

appeared (i.e. when the spatial grid disappeared). Search items were Landolt rings and 

the one that had an open part on the upper side was designated as target, which 

appeared randomly once in 7 trials. Set size was manipulated among zero, three and nine. 

The rest of the settings were the same as Experiment 1b. Results showed no significant 

effect of array size. In addition, a trend of shape WM improvement was observed again 

as the array size increased (84.8, 85.4, and 85.5% for array size zero, 3, and 9, 

respectively; Figure 1-7B). 

 Although the small sample sizes did not allow to draw definite conclusions, the present 

pattern of results, i.e. improvement of mean accuracy score as the numbers of location cues 

increased, has not been observed in my previous experiments, where the genuine spatial WM 

task was required. Thus, I speculated that the mere perceptual masking and attentional 

processes were probably not the cause of the between-task interference, and therefore the effect 

was possibly triggered by some processes related to working memory storing, suggesting that 

the two WM domains have an overlapping storage system. 

However, it is also important to point out that the size of the interference was quite 
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small across Experiments 1a to 4, and this observation makes me to hesitate to conclude that the 

two systems fully share their capacities. Presumably, the most straightforward way for 

measuring the interference between two storage systems is to test whether the maximum 

number of items that can be remembered remains the same, regardless of which item dimension 

is assigned to memorize (Zhang et al. 2012). If two (or more) WM domains have a fully 

interdependent storage system, then the maximum capacity should be unchanged and limited to 

the same amount, regardless of which working memory load was manipulated. Woodman and 

colleagues reported a good example of such examination in the visual domain (Woodman et al., 

unpublished data; cited in Zhang et al. 2012). They tested whether color and orientation WM 

shared a common system by comparing the performance between when participants had to 

remember six color or orientation items and when they were required to memorize three from 

each category. The results showed no significant difference between two conditions, suggesting 

that the two memory capacities overlap to a significant degree. Assuming that this type of result 

is the gold standard to demonstrate a full capacity overlap between WM domains, the small 

effect size I obtained in the current study seemed insufficient to state that spatial and shape WM 

systems fully shared their storage systems. 

This interpretation might solve some of the disparities observed in previous studies, 

including Wood (2011). As I have already discussed in Introduction, there has been a profound 

inconsistency among the previous studies on this issue. On the one hand, some dual task studies 

supported the distinction between visual and spatial cognitive systems by showing the absence 

of interference between them (Logie & Marchetti, 1991; Tresch et al. 1993; Woodman et al. 

2001; Woodman & Luck, 2004). On the other hand, other researchers proposed alternative 

hypotheses that conflicted with the idea of simple visuo-spatial separation (Jiang et al., 2000; 

Wheeler & Triesman, 2002). Finally, the results of Wood (2011) further deepened the problem, 

since none of the previous theories was consistent with the data. Possibly, one of the reasons for 

these inconsistent results was that some of the studies were simply underpowered to detect the 

between-domain interference, as shown in my Experiment 1a to 3. 

 In conclusion, whereas some parts of shape and spatial WM systems are overlapping, 

their capacities are mostly independent from each other. Thus, our data support the 

visuo-spatial WM separation hypothesis proposed by Logie (1995). Moreover, our results were 

in line with the argument proposed by Wheeler and Treisman (2002). They argued that keeping 

spatial information is necessary for WM maintenance of conjunctive objects (e.g. “blue triangle”), 

but not for simple features (e.g. “blue” or “triangle”). However, further research is required to 
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fully resolve the controversy. First, since the original visuo-spatial WM separation hypothesis 

maintains the independence of spatial WM capacity not only from the feature (e.g. shape) but 

also the object WM system (Logie, 1995), the object-spatial WM interference should also be 

examined. Second, Jiang et al. (2000) suggested that storing even simple features needs 

retention of their spatial relationship, and this seems to be incompatible with the current study. 

Jiang et al. (2002), however, utilized change detection tasks, the structure and processing of 

which could be significantly different from the single probe task I employed in the current study. 

Therefore, this task difference should also be investigated in future research. 

Another important concern would be the neural substrates underpinning this 

functional separation of WM systems. The First candidate would be the prefrontal cortex. Using 

electrophysiological recordings of neural activity in macaque monkeys, Wilson, Scalaidhe, and 

Goldman-Rakic (1993) suggested that visual and spatial WM could be separately implemented in 

the ventro- and dorso-lateral areas of the prefrontal cortex. This hypothesis was further 

supported by human imaging studies (Courtney, Ungerleider, Keil, & Haxby, 1996; Courtney, Petit, 

Maisog, Ungerleider, & Haxby, 1998.; cf. Mishkin, Ungerleider, & Macko, 1983). However, many 

other studies have provided evidence inconsistent with this simple dichotomy (Rushworth, 

Nixon, Eacott, & Passingham, 1997; Rao, Rainer, & Miller, 1997; Postle, Stern, Rosen, & Corkin, 

2000). For example, by utilizing lesion technique, Rushworth et al. (1997) found that the ventral 

prefrontal area, the inferior convexity in particular, was not important for working memory 

processing. In addition, Rao et al. (1997) showed that the neural populations in the prefrontal 

area which correlated with visual or spatial WM could not be separated simply. They found that 

many neurons showed activity related to both visual and spatial WM maintenance. Finally, 

Postle et al. (2000) tried to examine the abovementioned separation at the neural level in 

humans, but failed to replicate previous studies. Thus, this possibility still remains highly 

controversial. In contrast, the distinction between ventral visual and dorsal spatial pathway in 

the visual cortex has been largely accepted among researchers (Mishkin et al., 1983). If this 

visual pathway difference defines the WM separation, it indicated that the capacity limit of WM 

is generated in each visual processing domain. There has not been, however, yet any direct 

evidence to connect this pathway difference to the separation between WM domains. Further 

research is needed to shed light on this issue.  
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Study 2 

 

Reexamining the Attention Rehearsal Hypothesis of Spatial 

Working Memory Maintenance 
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Abstract 

 

It has been argued that the maintenance of spatial WM contents is carried out by sustained 

activity of selective spatial attention that focuses on the specific locations at which the WM items 

are presented (Awh et al., 1998). This attention-based rehearsal hypothesis, however, remains 

controversial (Belopolsky & Theeuwes, 2009; Chan et al., 2009). The current study examined this 

hypothesis using both behavioral and ERP measures of spatial attention. The behavioral 

experiment was an approximate replication of previous studies, whereas the ERP experiments 

further examined whether the retained attention, if it exists, was actively maintained or a mere 

passive after-effect of the encoding process. As in previous ERP studies, task-irrelevant probes 

were used to elicit the P1/N1 attention effect. Results showed that spatial attention was 

allocated to the to-be-remembered locations during the retention period, although this was not 

reliably detected by the behavioral index. Moreover, attention strength was unchanged even 

when a visual search task that presumably induced an additional workload was concurrently 

administered. These data might indicate that an active, top-down, and location-specific 

maintenance of spatial attention is in fact at work during spatial WM retention, although its 

functional significance is still not completely confirmed. 
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Attention is believed to play a critical role in the encoding and maintenance of WM 

(Awh, et al., 2006). More specifically, Awh and his colleagues proposed the so-called spatial 

attention rehearsal theory of spatial WM (Awh et al., 1998; Awh & Jonides, 2001), which argues 

that spatial information in WM is maintained by a persistent activity of spatial attention that is 

focused on the to-be-memorized spatial location. Putatively, this theory has been supported by 

three types of evidence. First, cortical regions or networks mediating spatial WM were highly 

overlapped with those of spatial attention. It has been found that both functions were related to 

the activation of the fronto-parietal network, which is dominant in the right hemisphere (Awh, 

Smith, & Jonides., 1995; Ikkai & Curtis, 2011). Second, attention-like facilitative effects on visual 

processing were observed during spatial WM maintenance. It is well known that spatial attention 

facilitates the processing of stimuli that appear around the center of its focus (Posner & Cohen, 

1984). If spatial attention plays a role in maintaining spatial WM, the same facilitative effect 

should be detected during spatial WM maintenance. Several studies using behavioral as well as 

neural measurements have confirmed this prediction (Awh et al., 1998; Awh et al., 2000; Jha, 

2002). Finally, it has been shown that deprivation of spatial attention during spatial WM 

maintenance impaired memory performance, indicating that attention plays a critical role for 

retaining WM items (Smyth & Scholey, 1994; Smyth, 1996; Awh et al., 1998; Oh & Kim, 2004; 

Woodman & Luck, 2004). Although these data seem to support the attention rehearsal 

hypothesis, there are some reasons not to accept it easily, especially regarding the second and 

third lines of evidence. 

 

 

Evidence showing the Attentional Facilitation Effect 

 

The facilitative, attention-like effect during spatial WM maintenance was firstly 

reported by Awh et al. (1998). A letter-like item was presented during a spatial WM retention 

interval (a “choice probe”, henceforth), and participants were required to identify the shape of 

this choice probe in addition to the concurrent spatial WM task. The behavioral performance for 

the probe identification task was improved when the choice probe was presented at the 

memorized, as compared to other non-memorized locations. Since this facilitative effect closely 

resembled that of spatial attention, it was considered as evidence that spatial attention was 

continuously focused on the memorized locations during WM maintenance. 

Furthermore, other studies confirmed the same facilitative effect by measuring neural 
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indices of spatial attention. Using an experimental paradigm similar to the behavioral one, Awh 

et al. (2000) recorded the P1 and N1 ERP components elicited by a task-irrelevant visual probe 

(an “ERP probe”, henceforth), which was presented during the spatial WM maintenance interval. 

P1 and N1 are commonly observed at posterior electrodes, showing their maximum amplitudes 

on the sites contralateral to the visual field where stimuli are presented. These ERP components 

are believed to reflect early perceptual processes of incoming stimuli, and spatial attention 

amplifies their amplitudes (Mangun, Hillyard & Luck, 1993; Hillyard, Vogel, & Luck, 1998). Awh 

et al. (2000) compared these ERPs amplitudes between a condition where the ERP probe was 

presented in the visual field that contained memorized locations (the on-target condition) and a 

condition where it appeared on the opposite visual field (the off-target condition). The results 

showed that the amplitudes of P1 and N1 were larger when the probe appeared on the 

memorized side, indicating the presence of spatial attention in spatial WM maintenance. 

Moreover, this attention-like ERP effect was replicated by Jha (2002), who also measured 

probe-evoked P1 and N1 with an additional manipulation of the presentation timing of the ERP 

probe between the early and late periods during the retention interval. Again, enhanced 

amplitudes of P1 and N1 were observed in both time ranges, indicating that spatial attention was 

focused on the memorized locations throughout WM maintenance. Finally, a functional magnetic 

resonance imaging (fMRI) study also replicated the same attention-like effect, showing that a 

possibly facilitative effect occurred in the early visual areas (Awh, Jonides, Smith, Buxton, Frank, 

Love, et al., 1999). 

According to these studies, it seems that the attentional facilitation effect during spatial 

WM maintenance is quite robust, having survived several tests of replication. There are, however, 

some issues that could still cast a doubt on these findings. First, Belopolsky and Theeuwes 

(2009) reported that they failed to replicate the attentional benefit reported by Awh et al. (1998). 

Using almost the same paradigm as the original study, they observed that the response for the 

choice probe presented at the memorized locations was not faster but rather slower than the 

response for non-memorized locations. They interpreted this result as an indication of inhibition, 

and concluded that spatial attention plays no role in spatial WM maintenance. 

Furthermore, there seems to be a methodological problem in one of the 

abovementioned ERP studies. In Awh et al. (2000), the ERP probe was a checker board which 

subtended the whole right or left hemi-field, and this might have weakened the sensitivity of ERP 

measurements to correctly detect the attentional effect. For the sake of argument, let us assume 

that spatial attention is not required to maintain spatial WM and imagine the case that the 
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participant vaguely directed her/his spatial attention to the whole right or left visual field where 

the memory cue was presented, but with no particular focus on the memorized locations. The 

ERP probe adopted in Awh et al. (2000) should be able to detect an attentional facilitation effect 

even in this case. Such an assumption of unfocused attention to the whole visual hemi-field is not 

so unrealistic in this case, because three memory cues and a test item were all presented on the 

same hemi-field. Therefore, it was highly probable that participants knew in which field the test 

item would appear, and they might have been expecting it during the maintenance period. In 

such situation, spatial attention could be vaguely allocated to the expected hemi-field, even 

without any significant role to maintain spatial WM locations. It should be noted that the other 

ERP study on this topic, namely Jha (2002), did not have this methodological problem. Since the 

ERP probe was not covering the whole hemi-field in this study, the expectancy problem found in 

Awh et al. (2000) was avoided, and therefore the attentional facilitation effect observed in Jha 

(2002) could be regarded as direct evidence of the spatial attention allocation during spatial WM 

maintenance. In summary, only Jha (2002) has provided convincing evidence that spatial 

attention is allocated precisely to the locations where spatial WM items were remembered. More 

investigations are needed to confirm this effect. 

 

 

Evidence showing the Attention Deprivation Effect 

 

It should be noted that even if spatial attention is directed at the to-be-remembered 

locations, it does not guarantee that it plays a functional role to maintain spatial WM contents. It 

could be the case that spatial attention is used in the encoding phase of the spatial WM task, and 

remains there only passively for a certain period of time. Thus, it is necessary to test the causal 

relationship between attention and WM maintenance by inducing, for example, a deprivation of 

spatial attention during the retention interval, and test whether it significantly impairs the 

spatial WM performance. For this purpose, Awh et al. (1998) inserted a color discrimination task 

during the spatial WM retention interval in order to jumble spatial attention. In one condition, 

participants were required to identify the color of a small disk, which was presented on the 

peripheral visual area so that attention needed to be shifted to the target locations (the 

shifting-attention condition). In another condition, the same color classification task was 

required, but the size of the disk was large enough to occlude all locations to be memorized, so 

that participants had no need to shift their attention (the static attention condition). The results 
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showed that the attention shift significantly impaired WM performance, indicating that spatial 

attention was crucial for spatial WM maintenance. In addition, Oh and Kim (2004) and Woodman 

and Luck (2004) used dual task paradigms, in which a difficult visual search was inserted during 

a spatial WM task, and examined whether an interference occurred between these two tasks was 

examined. The search task was supposed to be sufficiently difficult to induce a serial shift of 

attention among stimuli until the target was identified (Woodman, Vogel, & Luck, 2001; 

Woodman & Luck 2003). These studies also found that visual search significantly impaired the 

spatial WM performance and the size of interference increased as the search set size became 

larger, providing further evidence for the hypothesis. 

 These studies, however, are also not free from controversies. Chan et al. (2009) argued 

that the disruption of the WM performance reported in Awh et al. (1998) was not specifically 

due to the shift of spatial attention, but rather induced by a general increase of the task demand 

in the shifting-attention condition. In order to test this claim, Chan et al. (2009) used visual 

search as the secondary task and equalized the general task demand between the shifting- and 

static attention conditions by using completely the same stimuli. The only difference between 

two conditions was whether the search target appeared at the same location as the 

to-be-memorized spatial WM position (the static attention condition) or different locations (the 

shifting-attention condition). Surprisingly, they observed no difference in spatial WM 

performance between the two conditions, and thus argued that spatial attention does not play a 

crucial role in spatial WM maintenance. 

 

 

The Current Study 

 

Altogether, the evidence supporting the attention-based rehearsal hypothesis is still 

small and the results have been mixed. The goal of the current study was to re-examine the 

behavioral and ERP evidence of the rehearsal hypothesis by focusing on the facilitative attention 

effect that could prove whether spatial attention is allocated precisely on the memorized 

positions (Experiment 1), and on the attention deprivation effect that could indicate the 

functional role of spatial attention in the maintenance of spatial WM (Experiment 2).  

Experiment 1 was an approximate replication of previous studies on this topic. 

Although Awh et al (1999) and Belopolsky and Theeuwes (2009) used almost the same 

experimental procedure, their results significantly diverged. The exact reason of this discrepancy 
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is unknown, but it is possible that subtle differences in methodology or some innate instability of 

the effect (e.g. fluctuation of the results due to a relatively small effect size and low statistical 

power) lead to the divergence. Thus, a replication using approximately the same paradigm is 

informative. As in the previous studies, an object discrimination task was inserted during the 

spatial WM retention interval, and response time was compared between the on- and off-target 

conditions. In addition, the size of area within which both the to-be-memorized locations and the 

probe item would appear was manipulated, in order to assess the effect of distance between the 

choice probe and memorized locations. If the attentional facilitation effect gradually spread from 

the center of the attentional focus to peripheral regions, then the longer the distance became, the 

weaker the effect should be. To preview the results, no difference in response time between the 

conditions was observed in any distance conditions, showing a consistency with Belopolsky and 

Theeuwes (2009). There is, however, the possibility that the behavioral index used in 

Experiment 1 was not sensitive enough to detect the effect, and therefore I tested whether the 

result was replicable even when ERP measurements were used.  

The goal of Experiment 2 was twofold. Firstly, the attentional facilitation effect was 

tested again using ERP measurements. This was an approximate replication of the previous ERP 

studies on this issue (Awh et al. 2000; Jha, 2002). The P1 and N1 ERP components induced by the 

ERP probes were measured and their amplitudes were compared between the on- and off-target 

conditions. The possible confound of the expectancy effect observed in Awh et al. (2000) was 

avoided by using a small white dot as the ERP probe instead of one covering the whole 

hemi-field.  

The second purpose of Experiment 2 was to examine the functional significance of 

spatial attention for spatial WM rehearsal. As in the previous behavioral study (Awh et al., 1998), 

a difficult visual search task was inserted during the spatial WM retention interval. Previous 

research has shown that this type of visual search demands a serial deployment of attention 

(Woodman, et al., 2001; Woodman & Luck 2003). It was predicted that, if attention plays a 

crucial role in spatial WM maintenance, the attention deprivation induced by the visual search 

task should decrease the spatial WM score, especially as the search array size increased. 

Moreover, the amount of attention allocated to the memorized locations was measured by the 

P1/N1 components, and the correlation between the deficits in the spatial WM performance and 

the attention effect detected by ERP was also examined. Specifically, if attention is necessary for 

WM maintenance, the attentional effect on the ERP indices should remain the same regardless of 

the attentional demand in the visual search task, given that the WM task was correctly 
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performed. None of the previous studies investigated the attention effects in a dual task 

paradigm combining a spatial WM and visual search task. However, the use of ERP indices is 

highly effective in this paradigm, since a dual task is already highly demanding in terms of the 

task structure, and ERP measurement requires no additional task complexity. 
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Experiment 1 

 

The purpose of Experiment 1 was to replicate the behavioral experiments of Awh et al. 

(1998) and Belopolsky and Theeuwes (2009). The differences between the previous studies and 

the current one were as follows. First, although positions for presenting spatial cues were chosen 

from fixed slots in the previous studies (108 places in Awh et al, 1999; 36 or 108 in Belopolsky & 

Theeuwes, 2009), they were completely randomized in the current study. Second, letter-like 

stimuli were used as the choice probe in the previous studies, whereas letter L and inversed T 

were used in the current one. Finally, the size of the area in which all the WM cues, WM 

test-probes and choice probe were presented was manipulated between the whole-field and 

hemi-field conditions. This comparison was intended to roughly examine the effect of the 

distance between the WM cue (i.e. the memorized location) and the choice probe.  

 

Methods 

Participants. Thirty-three volunteers (male: 16; female: 17; mean age: 20.73 years with SD 2.61 

years) participated in the experiment. They provided informed consent before commencing the 

experiment and were compensated monetarily. The data of 6 participants were excluded because 

of excessive eye movements (see below for the criteria), thus 27 participants’ data were 

analyzed. 

 

Stimuli and Procedure. All stimuli were presented on a gray screen of a 17 inch CRT monitor. 

E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA, USA) was used to program the 

experiment. The viewing distance was about 60 cm.  

The sequence of events is illustrated in Figure 2-1. A fixation cross (0.7° × 0.7°) was 

presented at the center of the screen throughout a trial. At the beginning of a trial, a memory cue 

(black square, 1.1° × 1.1°) appeared for 200 ms. Participants had to memorize the exact location 

of the cue. To prevent verbal coding of locations, memory cue position was randomized in two 

rectangular regions (width 9.2° × length 13.3°) that were centered 5° to the left and right of the 

central fixation. During the 3,600 ms retention interval, a choice probe (white “L” or inverted “T”, 

1.1° × 1.1°) was presented for 200 ms in the rectangular regions. Participants were required to 

determine as fast as possible which shape was presented, by pressing keys on a standard 

keyboard (for key-response mapping, see below). A blank between the memory cue and choice 

probe was randomly selected from 800, 1200, 1600 ms. In 25% of trials, the location of the 



54 
 

choice probe was exactly the same as the memorized position (the on-target condition), and in 

different locations in the remaining 75% trials (the off-target condition). This biased ratio of 

on-/off-target conditions was set in order to prevent participant from predicting the location of 

the choice probe. At the end of trial, a test probe (tilted black cross, 1.1°× 1.1°) was presented in 

the rectangular regions until response. The test probe appeared at the memorized location in 

50% of the trials and at a different position (with at least 2° distance from the memorized 

location) in the remaining trials. Participants had to answer whether the test probe appeared at 

the memorized position by pressing a key. For this memory task, accuracy was emphasized 

rather than speed. Fourteen of the participants were instructed to press the “d” or “f” key for the 

choice task, and to press the “j” or “k” key for the memory task. The key-response mapping was 

reversed for the rest of participants. 

There were two conditions with regard to the size of the area in which stimuli were 

presented. In the whole-field condition, all stimuli were presented in two rectangular regions 

(Figure2-1A). On the other hand, in the hemi-field condition, stimuli appeared in either the left 

or right rectangular region (Figure2-1B). 

 Each of 64 blocks consisted of 12 trials. At the end of each bock, accuracy rates for the 

spatial WM and discrimination task were displayed on the screen. The experiment was divided 

into 2 sessions which were conducted on different days, and the presentation field conditions 

were administrated in different sessions. The order of stimulus presentation conditions was 

counterbalanced across participants. 

 For analysis, trials with ocular artifacts and trials with error responses in the choice 

probe and spatial WM tasks were discarded. Trials with response times over 3 standard 

deviations above the mean were also excluded. 

 

Electro-Oculogram Recording and Analysis. In order to exclude ocular artifacts, eye 

movement was monitored by vertical and horizontal electrooculograms (VEOG and HEOG). Data 

were recorded with a sampling rate of 500 Hz using a band-pass filter of 0.05 - 100 Hz (AC 

recording) with Neuroscan SynAmp2 System (Neuroscan Inc., Charlotte, NC, USA) and EasyCap 

electrodes (EasyCap GmbH, Herrsching, Germany). All electrode impedances were kept below 10 

kW. The VEOG was recorded from two electrodes above and below the left eye. The HEOG was 

recorded from two electrodes placed at the outer sides of the left and right eyes. A bipolar 

derivation was used for the EOGs. Data were epoched from -100 ms before the memory cue 

onset until the choice probe onset (i.e. 1000/1400/1800 ms after the memory cue onset). One 
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hundred-millisecond interval prior to the memory cue onset was used as baseline. Trials with 

eye movement or blinks (HEOG exceeding ±30 μV, VEOG exceeding ±75 μV) in the time range 

were discarded from analysis. These criteria have been commonly used in studies that need to 

control eye movements (e.g. Dell’Acqua, Sessa, Toffanin, Luria & Jolicoeur, 2010). One degree of 

saccard yield approximately 16 μV deflection (Lins, Picton, Berg & Scherg, 1993; Luck, 2005), 

thus the ±30 μV criterion ensures that eye movement is always less than 2°. The data of 6 

participants with rejection rates of 30% or higher were excluded.  
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Figure 2-1. Schematic diagrams of the experimental procedure in Experiment 1. A trial consisted of 

spatial WM memory cues, the first blank, a choice probe, the second blank, and a spatial WM test 

probe. The number of to-be-remembered location was fixed to one. For the choice probe task, a white 

L or inverted-T-shape was presented during the retention interval of spatial WM, and participants 

were required to identify the shape. The choice probe was presented either on the same location as 

the spatial WM memory cue (on-target condition) or other random locations (off-target condition). At 

the end of trial, participants answered whether the location of the test probe matched with the 

memory cue. The size of the area where stimuli were presented was also manipulated between the 

whole-field (A) and hemi-field (B) conditions. In the whole-field condition, all stimuli were presented 

in both visual fields and were limited to one of the visual fields in the hemi-field condition.  



57 
 

Results 

The results showed no attention facilitation effect for the remembered location 

regardless of the distance between the memory cue and the choice probe. The mean response 

time was analyzed using a repeated analysis of variance (ANOVA) with the factors field size 

(whole -/ hemi -field conditions) and choice probe location (on-/off-target conditions). There 

was no main effect or interaction; field size: F(1,26)= 0.49, p = .49, ηp2 = .02; choice probe 

location: F(1,26) = 0.34, p = .56, ηp2 = .01; the interaction between them: F(1,26)= .52, p =.48, ηp2 

= .02. These results are shown in Figure 2-2. 

 

 

Figure 2-2. The result of Experiment 1. The left figure shows the mean response times of the choice 

probe task in the whole-field condition. The right figure shows the hemi-field condition. The dark and 

light gray bars correspond to the response times in the on- and off-target conditions, respectively. 

Error bars indicate standard errors. 

 

Discussion 

Experiment 1 showed no evidence for attentional facilitation during spatial WM 

maintenance. The response time for the choice probe was never faster in the on-target condition 

compared to the off-target condition. This result indicated that spatial attention neither focused 

on the remembered location nor was vaguely directed thereto, thus it seems to be consistent 

with the argument of Belopolsky and Theeuwes (2009). That is, spatial attention has no 

functional role in the rehearsal of spatial WM. It was, however, still possible that the behavioral 

index used in Experiment 1 simply did not have a sufficient power to uncover the target effect. 

This possibility was tested in Experiment 2. 
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Experiment 2 

 

Experiment 2 had two purposes. The first one was to test whether spatial WM 

maintenance facilitates visual processing on the remembered location; that is, a reexamination of 

the results of Experiment 1 using ERP indices. The second goal was to examine whether spatial 

attention has a functional role in spatial WM maintenance. As in the previous ERP studies 

investigating this issue (Awh et al., 2000; Jha, 2002), the attention effect was measured as a 

possible increase of the P1/N1 amplitude evoked by the ERP probe. In addition, a difficult visual 

search task was inserted during the spatial WM retention interval before the ERP probe 

presentation, and the search array size was manipulated between 0, 6, and 8. It was expected 

that, if spatial attention has a functional role in spatial WM maintenance, (A1) the spatial WM 

performance should be impaired as the search array size increased, and moreover, (A2) the 

amount of attention deployed at the memorized locations, which were indexed by P1/N1, should 

not be changed regardless of the search demand, when the contents of WM were correctly 

retained. Finally, (A3) the attention effect should decrease when error trials in the spatial WM 

task were included in the ERP analysis, because a part of the errors should reflect the disruption 

of attention maintenance induced by the visual search. In contrast, if attention has no role in 

spatial WM maintenance, (B1) no impairment in the WM performance should be observed as the 

search array size increased, and (B2) the ERP attention effect should disappear when the visual 

search task was concurrently administered, because there should be no need to keep attention 

on the memorized locations when another attrition-demanding task was conducted. 

 

Methods 

Participants. Twenty-five volunteers (male: 17; female: 8; mean age: 23.28 years with SD 4.45 

years) participated in the experiment. They provided informed consent before commencing the 

experiment and were compensated monetarily. The data of 7 participants were excluded because 

of excessive eye movements (see below for the criteria), thus 18 participants’ data were 

analyzed. 

 

Stimuli and Procedure. The task procedure is shown in Figure 2-3. All stimuli were presented 

on a gray screen of a 17 inch CRT monitor. E-prime 2.0 (Psychology Software Tools, Inc., 

Sharpsburg, PA, USA) was used to program the experiment. The viewing distance was about 60 

cm. A fixation cross (0.7° × 0.7°) was continuously visible at the center of the screen throughout a 
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trial. The sequence of events is illustrated in Figure 5. 

 Participants performed a dual task of a spatial WM and a visual search task. Each trial 

began with two spatial memory cues (black square, 0.5° × 0.5°) that appeared consecutively and 

indicated the to-be memorized locations. Each cue was presented for 100 ms, and was separated 

by a 100 ms blank. The purpose of the sequential presentation was to discourage participants 

from forming a shape-based representation connecting the two locations (Woodman & Luck, 

2004; Study 1 of the current dissertation). Each memory cue was presented at a randomly 

selected location in the right or left rectangular region (width 2.9° × length 7.1°), with no 

appearance of two cues on the same side (e.g. when the first cue appeared in the left, the second 

was always in the right). The distance between the center of rectangle and fixation was 1.8°. The 

offset of the second memory cue was followed by a 500 ms blank, and then the visual search 

array was presented for 3,000 ms. Each search array was composed of 0, 6, or 8 items (black 

outlined square, 1° × 1°), each of which had a gap on one side. Search items appeared at random 

locations in 4 square regions (each 3.2° × 3.2°), and the distance between each item was at least 

1.6°. Each of the 4 square regions was allocated at each 4 corners of the screen, and the center of 

each area was 7° apart from the central fixation. That is, these search areas were arranged such 

that they never overlapped with the memory cue region. The number of items in each square 

was limited to 2 in all 3 load size conditions. Namely, when the load size was 6, 3 square areas 

were randomly selected from the 4 regions, and 2 items were presented in each of the areas. 

When the load size was 8, 2 items appeared in each of all 4 regions.  

 Participants were required to perform a visual search task looking for two possible 

target shapes that contained a gap on either top or bottom side. One of the targets was always 

presented in the 6 and 8 load size conditions. Distractor items had a gap on either left or right 

side. Participants were asked to find the target and discriminate on which side the target item 

had a gap, by pressing keys on a standard keyboard (for half of participants, “j” indicated the top 

and “k” indicated the bottom side. For the remaining participants, “d” for the top and “f” for the 

bottom side). Speeded response was emphasized. It should be noted that no search item 

appeared in the load 0 condition and participants were not required to press any key. 

 The offset of the visual search array was followed by a 1,400 ms blank and then by test 

probes for the spatial WM task. Two test probes (black square, 0.5° × 0.5°, the same as the 

memory cues) were presented simultaneously for up to 2,000 ms. On 50% of all trials, the test 

cues were shown at the same place as the initial memory cues. On the remaining 50% of trials, 

one of the cues was presented at a new place which differed at least 1.9° from the original 
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memory cue location. Participants had to make a response to discriminate whether one of the 

locations changed or not. Response accuracy was emphasized over speed. They responded in the 

spatial WM task by pressing a key on the keyboard (for the participants who used the “j” and “k” 

keys in the search task, “d” or “f” keys were used in the spatial WM task, with “d” indicating 

location change, and “f” indicating no change. For the remaining participants who used “j” and “k” 

keys in the spatial WM task, “j” indicated location change and “k” indicted no change). Each trial 

was followed by a 900-1000 ms inter-trial interval (ITI). 

 In two thirds of all trials, an ERP probe (white dot, 0.5° × 0.5°) was presented for 100 

ms during the blank period between the visual search and the test probe onset. The interval 

between the offset of the visual search array and the onset of the ERP probe was randomly taken 

from the time range between 700 and 800 ms. Participants were instructed to ignore the ERP 

probe. In the rest of trials, the ERP probe never appeared (the no-probe condition). There were 2 

conditions regarding the probe location. In the on-target condition, an ERP probe was presented 

at the same location as one of the memory cues. In the off-target condition, the ERP probe 

appeared in either of the two rectangular regions, but its location was at least 1.9° apart from the 

memorized positions. The ratio of on- to off-target condition was 1:1. 

 Each of 90 blocks consisted of 12 trials. At the end of each block, accuracy rates for the 

spatial WM and the visual search task were displayed on the screen. The experiment was divided 

into 2 sessions which were conducted on different days. All conditions were randomized in a 

trial-by-trial manner. 

 

Electroencephalogram Recording and Analysis 

Data Acquisition. Electroencephalogram (EEG) was recorded with a sampling rate of 500 Hz 

using a band-pass filter of 0.05 - 100 Hz (AC recording) by the Neuroscan SynAmp2 System 

(Neuroscan Inc., Charlotte, NC, USA) and EasyCap electrodes (EasyCap GmbH, Herrsching, 

Germany). Data were obtained from 20 electrodes (Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, PO3, PO4, P7, 

P8, PO7, PO8, POz, O1, O2 and two ear lobes). All electrode impedances were kept below 10 kΩ. 

The VEOG and HEOG were also recorded in order to exclude possible ocular artifacts. The 

positions of EOG electrodes were the same as Experiment 1. All electrodes except EOGs were 

referenced to an electrode on the tip of nose during recording, and re-referenced offline to the 

algebraic average of the two ear lobes. A bipolar derivation was used for EOGs. 

 

Artifact Rejection. In order to remove trials containing ocular artifacts, the following two-step 
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procedure for epoching and artifact rejection was applied. First, trials with possible eye 

movements during the entire retention interval were excluded from the analysis. In these trials, 

retinotopical topography could be largely altered between the period of spatial WM encoding 

and of the ERP probe presentation, and therefore the ERP attention effect calculated as the 

difference between the on- and off-target conditions could be invalidated. For this purpose, EEG 

data were epoched from -100 before to 5100 ms after the memory cue onset. The end of these 

epochs corresponded to 400-500 ms after the ERP probe onset. A 100 ms interval prior to the 

memory cue was used as baseline. Since the epoched time range was relatively long (5,200 ms), 

slow voltage changes, which were not necessarily related to an actual eye blink or eye movement 

were possibly counted as artifacts. In order to avoid this problem, a max-min algorithm was 

applied. The whole epoched range was separated into 75 ms bins and trials in which the 

difference between the maximum and the minimum VEOG amplitudes exceeded 75 μV in one of 

the bins were discarded. The same method was applied for the HEOG data but with an exclusion 

criterion of 30 μV, instead of 75 μV, which ensures that eye movement is always less than 2° (See 

Method section of Experiment 1 for details). Consequently, data of 7 participants with rejection 

rates over 30% were excluded from analysis. Trials with erroneous response in the visual search 

task were also rejected. After this exclusion procedure, epochs that corresponded to the ERP 

probe processing were extracted as the second step of the analysis. The time ranges from -100 

before to 400 ms after the ERP probe onset was epoched. Amplitudes were once again corrected 

to the 100 ms interval before the ERP probe onset as baseline. Finally, these segmented data 

were averaged separately for each condition to obtain ERP waveforms. Two different types of 

averaging were conducted. In the first one, trials with incorrect responses in the spatial WM task 

were excluded from the analysis. In the second one, all trials were included. 

 

Quantification of the Probe-Evoked ERP. Firstly, the data of the no-probe condition was 

subtracted from those in the condition where the ERP probe appeared in order to erase the 

after-effect of the memory cue and visual search processing on the ERP waveforms. Next, since 

both the P1 and N1 amplitudes showed their maximum at the PO7/8 electrode site contralateral 

to the visual field where the ERP probe was presented (Figure 2-5A), ERP waveforms recorded 

at these sites were calculated and submitted to statistical analyses. The amplitudes of P1 and N1 

were quantified as the mean amplitudes in the 80-120 ms and 140-180 ms time period after the 

ERP probe onset, respectively. 
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Figure 2-3. Schematic diagrams of the experimental procedure in Experiment 2. A trial consisted of 

spatial WM memory cues, the first blank, a visual search task, the second blank, a ERP probe, the third 

blank, and spatial WM test probes. At the encoding phase, two memory cues were presented 

sequentially separated by a 100 ms blank. Cues were always presented in different visual fields. The 

visual search task had 3 load conditions (0, 6, and 8). In the load 0 condition, search stimuli never 

appeared on the screen. In the load 6 and 8 conditions, search items appeared in the peripheral areas 

of the screen. Targets had a gap on the top or bottom side, and distractors had a gap on the left or 

right side. One of the items was always the target, and participants were required to identify which 

side of the target had the gap. The ERP probe (white dot) was presented in 2/3 of the trials. The ERP 

probe was presented at the locations either where the to-be-memorized cues appeared (the on-target 

condition) or other random places (the off-target condition). At the end of trial, two test cues were 

presented simultaneously, and participant had to answer whether their locations matched the 

remembered locations. Throughout a trial, participants were strictly instructed to fixate on the 

central cross. 
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Statistical Analyses. P1 and N1 data were separately analyzed by a repeated-measures ANOVA 

with the factors probe location (on-/off-target) and search array size (0, 6, and 8). Accuracy 

rates for the spatial WM task were also compared across conditions using repeated-measures 

ANOVAs with the same factors as the ERP analyses. Response time data for the visual search task 

was examined by a t-test between the load 6 and 8 conditions. When appropriate, the 

Greenhouse-Geisser correction was applied for nonsphericity, and Bonferroni correction for 

post-hoc pairwise comparison. 

 

Results 

Behavioral data 

The behavioral data showed a clear interference from the visual search task on the spatial WM 

performance, as shown in Figure 2-4A. The main effect of search load was significant, F(1.42, 

24.08) = 41.50, p < .001, ηp2 = .71. Post hoc pairwise comparisons showed that the accuracy in 

the load 0 condition (i.e. no visual search) was higher (91.50%) than both in the load 6 (84.56%, 

p < .001) and load 8 conditions (84.68%, p < .001). There was, however, no significant difference 

between the load 6 and 8 conditions (p > .99). Moreover, the response time in the load 8 

condition of the visual search task was significantly slower (954.58 ms) than in the load 6 

condition (1002.39 ms), t(17) = -6.20, p < .001, Cohen’s d = -1.46, indicating a serial attention 

deployment during the search. The response time data is shown in Figure 2-4B. 

 

 
 

Figure 2-4. Behavioral results in Experiment 2. (A) Spatial WM accuracy (%) in each search load 

conditions and (B) the mean response times (ms) in the load 6 and 8 conditions of the visual search 

task. Error bars indicate standard error. 
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ERP Data 

Analysis with Correct Trials of the Spatial WM Task. When only the correct trials of the spatial 

WM task were used to calculate the probe-evoked ERP waveforms, a clear attention facilitation 

effect was observed in the N1 amplitude. In addition, and most critically, this facilitation effect 

remained unchanged even when the concurrent visual search was conducted. The N1 amplitude 

showed a main effect of probe location, F(1, 17)= 5.46, p = .03, ηp2 =.24. but not of search load 

size, F(2, 34)= 1.50, p = .24, ηp2 =.08. Importantly, the interaction between the probe location and 

load size also did not reach significance; F(1.42, 24.11)= .09, p = .91, ηp2 =.006, indicating that the 

concurrent visual search performance did not affect the N1 attention effect. The on-target N1 

amplitude was consistently larger (-2.03 μV) than the offf-target (-1.61 μV) regardless of the 

visual search load size (see Figure 2-5D). On the other hand, the P1 amplitude showed no 

significant main effect or interaction; probe location: F(1, 17)= .12, p = .73, ηp2 =.007; load size: 

F(2, 34)= .76, p = .47, ηp2 = .04; interaction between them: F(1.44, 25.44)= .50, p = .56, ηp2 = .03. 

The ERP waveforms are shown in Figures 2-5B and D. 

 

Analysis with All Trials. When both error and correct trials of the spatial WM task were 

included to the analysis, no evidence of attention disruption caused by the concurrent visual 

search task was found. Given that the spatial WM performance was impaired in the load 6 and 8 

conditions, this result was rather surprising. The N1 amplitude only showed a main effect of 

probe location; F(1, 17)= 5.13, p = .04, ηp2 = .23, but not of search load size or the interaction 

between them; load size: F(2, 34)= 1.59, p = .22, ηp2 = .09; their interaction: F(1.48, 25.15)= 0.09, 

p = .85, ηp2 = .05. The N1 amplitude in the on-target condition was consistently larger (-3.90 μV) 

than the off-target condition (-3.22μV), regardless of the visual search load size. Finally, the P1 

amplitude did not show any significant main effect or interaction; probe location: F(1, 17)= 0.04, 

p = .85, ηp2 =.002; load size: F(2, 34)= 0.83, p = .44, ηp2  = .05; interaction between them: F(2, 

34)= 3.14, p = .06, ηp2  =.16. The ERP waveforms are shown in Figure 2-5C and D. 
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Figure 2-5. ERP results in Experiment 2. (A) Interpolated voltage topographical maps for P1 (80-120 ms) 
and N1 (140-180 ms) in the load 0, 6, 8 conditions, when the ERP probe was presented in the left visual 
field. Note that the amplitudes were maximized at the contralateral tempro-occipital sites (PO7/8) in all 
load conditions. (B) ERP waveforms locked to the ERP probe onset in the load 0, 6, 8 conditions, when only 
correct trials of spatial WM task were averaged. Black lines correspond to the on-target, and gray lines to 
the off-target condition. The dotted lines on the x-axis of the rightmost figure indicate the time windows 
used in the analyses, corresponding to the P1, N1, 200-300 ms, and 300-400 ms time ranges. (C) ERP 
waveforms calculated from all trials including errors of the spatial WM task. (D) Difference waveforms 
obtained by subtracting the off-target from the on-target condition. Red, blue, and green lines correspond 
to the load 0, 6, and 8 conditions, respectively. The left figure shows the wave calculated only from correct 
trials of the spatial WM task, and the right from all trials including errors in the spatial WM task.   
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Discussion 

Experiment 2 provided rather conflicting results. As summarized below, the data might 

suggest that spatial attention was actively maintained at the to-be-memorized locations, 

although its functional significance was not proven.  

First, the N1 amplitude was clearly enlarged when the probe appeared on the 

remembered location as compared to other random positions, indicating that spatial attention 

was kept focusing on the memorized location during the maintenance period. In other words, 

the current experiment successfully replicated the findings of the previous ERP studies on this 

issue (i.e. Awh et al., 2000; Jha, 2002). An alternative explanation of this result might be that it 

was produced by the successive presentations of two stimuli (i.e. the memory cue and the ERP 

probe) on the same location. This interpretation, however, is quite unlikely because it is well 

known that when two stimuli are presented successively with a long interval (more than 300 ms) 

and they are only passively observed, the P1 and/or N1 amplitudes evoked by the second 

stimulus are reduced as compared to when the second stimulus appeared alone (Prime & Ward, 

2004; 2006), an observation that has been interpreted as evidence of inhibition of return. In 

contrast, when participants actively attended at the location where the first stimulus is 

presented, the P1 and/or N1 amplitudes elicited by the second stimulus become larger, 

indicating an attentional facilitation of the second stimulus processing (Mangunet al., 1993). 

Therefore, it is not probable that the enlarged N1 amplitude observed in the current experiment 

was induced by the successive presentation of stimuli. 

Second, the N1 attention effect measured as the difference between the on- and 

off-target conditions remained constant regardless of the attentional demand posed by the 

visual search task. Importantly, the visual search task robustly interfered with the WM task as 

evidenced by the WM performance impairment between the load 0 and 6, or the 0 and 8 

conditions. Therefore, the insensitivity of the N1 attention effect to the additional cognitive 

demand might suggest that spatial attention was actively maintained at the to-be-memorized 

locations and was protected from the interference caused by visual search. Although these first 

and second results seem to support the functional significance of spatial attention in WM 

maintenance, the rest of the data argued against it.  

In particular, the third finding of the current study casts a doubt on the functional 

significance of spatial attention in spatial WM maintenance. Although the visual search task 

interfered with the spatial WM performance, the magnitude of the impairment was not sensitive 

to the increase of search array size from 6 to 8. Note that the WM deficit caused by the mere 
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execution of the dual task, which was detected as the performance difference between the load 0 

and 6, or 0 and 8 conditions, could be due to an increase of a general cognitive demand, which is 

not specifically related to WM maintenance. Therefore, whether the WM performance was 

affected by the change of the array size between 6 and 8 was the most critical test to judge the 

functional significance of spatial attention. Thus, the current data seem to indicate that spatial 

attention has no causal effect on spatial WM maintenance. 

The fourth finding was also inconsistent with the prediction derived from the 

attention-based rehearsal hypothesis. As noted before, the N1 attention effect was robustly 

observed regardless of the visual search demand, indicating the active maintenance of spatial 

attention during WM maintenance. Surprisingly, the same pattern of results was also observed 

when the error trials of the spatial WM task were included in the analysis. These results suggest 

that the impairment in the accuracy data caused by visual search was not accompanied by the 

loss of active attention maintenance.  

 Altogether, Experiment 2 suggests that, although spatial attention was actively 

maintained at the to-be-memorized positions, its functional significance still needs further 

examinations. Before proceeding to the conclusion that spatial attention plays no critical role in 

spatial WM maintenance, an alternative interpretation has to be considered. That is, the visual 

search task might have failed to effectively deprive attention resource from the concurrent 

spatial WM task. It should be emphasized that the interpretations of the abovementioned third 

and fourth findings were strongly depending on the assumption that the increase of the visual 

search items should demand more attentional resource to perform it, and therefore it should 

disrupt the spatial attention used for the maintenance of spatial WM more severely. It is worth 

noticing that since the response time of visual search was slower in the load 8 than in 6 

condition, it was highly plausible that attention was serially deployed on each search items. 

However, the presence of serial search does not guarantee that it actually deprive the attention 

from the concurrent task. In fact, there are some reasons to support this alternative 

interpretation, which will be further discussed in General Discussion of Study 2. 
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General Discussion of Study 2 

 

 The current study aimed to verify the attention-based rehearsal theory of spatial WM, 

by re-examining two lines of evidence supporting this theory. The first one was the attentional 

facilitation effect during spatial WM maintenance, which indicates whether spatial attention was 

allocated on the to-be-memorized locations during spatial WM maintenance (Awh et al., 1998: 

Awh et al., 2000: Jha, 2002). The second one was the attentional deprivation effect on spatial WM 

performance, which suggests whether spatial attention plays a functional role in spatial WM 

maintenance (Awh et al. 1998; Oh & Kim, 2004; Woodman & Luck, 2004). Although these effects 

have been confirmed in several studies, others reported counter-evidence for both findings 

(Belopolsky & Theeuwes, 2009; Chan et al. 2009). In addition, a methodological concern was 

found in an ERP study that reported the attentional facilitation effect (Awh et al., 2000). 

Therefore, the current study re-examined these effects, using similar methods as previous 

studies, but avoiding possible confounding factors. 

The attentional facilitation effect was tested in Experiment 1 using behavioral indices, 

and Experiment 2 measuring attention-related ERP components. Experiment 1 failed to find the 

target effect, whereas Experiment 2 successfully confirmed it. The reason of the discrepancy 

between two experiments is unclear. Given the validity of the behavioral method established in 

the attention literature (e.g. Posner & Cohen, 1984), it might be the case that the target effect size 

was so small that the statistical power of the behavioral measures in Experiment 1 was too weak 

to detect it, possibly due to the noise in the item identification and response selection processes. 

This possibility might be applied to the discrepancy between Awh et al. (1998) and Belopolsky 

and Theeuwes (2009) too, because they also used the same behavioral index. In contrast, the 

ERP indices are thought to more directly reflect cognitive processing of stimulus without further 

complications. Thus, the ERP indices and the results of Experiment 2 are more reliable than 

those of Experiment 1. This result suggests that spatial attention might be continuously allocated 

on the to-be-memorized locations during spatial WM maintenance. 

In addition, Experiment 2 examined the functional role of attention in spatial WM 

maintenance. To this aim, a visual search task was interpolated during the retention interval of 

spatial WM, and the effect of attention deprivation on spatial WM maintenance and the spatial 

attention allocation on the to-be-memorized locations was examined. Data showed mixed results. 

First, it was found that the attention strength on N1 was unchanged regardless of the size of 

visual search demand, suggesting an active maintenance of spatial attention. However, 
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behavioral data showed that the increase of search items from 6 to 8 did not affect the 

performance of the spatial WM task. Moreover, the size of the N1 attention effect did not change 

even when the error trials of the spatial WM task were included in the analysis. These latter two 

findings reject the simple interpretation that spatial attention plays a critical role in the 

maintenance of spatial WM. 

 How can these results be integrated to give a logically consistent interpretation? As 

already noted in the Discussion section of Experiment 2, the findings that contradicted with the 

predictions from the rehearsal hypothesis suggests either that spatial attention is totally 

irrelevant to spatial WM maintenance, or that visual search might have failed to effectively 

deprive attention from the spatial WM maintenance. The first possibility seems difficult to 

reconcile with the active maintenance of spatial attention, given that attention resource is 

fundamentally limited and therefore should be effectively allocated to the cognitive processes 

that are relevant at the time. On the other hand, there are two possible theories that explain the 

co-existence of the successful visual search performance, that is, the failure of attention 

deprivation, and the active maintenance of attention during WM retention. The first one is the 

hierarchical structure theory of WM, the second one is the divided attention hypothesis. 

 

Hierarchical Models of WM  

 Recent studies proposed a hierarchical model of WM, which assumed that the items in 

WM are not always maintained in an equal status but in different statuses in a hierarchical 

structure. For instance, Cowan (1988) proposed two levels of hierarchy; activated long-term 

memory (aLTM) and focus of attention. aLTM stored information that was recently activated but 

irrelevant for the ongoing task (e.g. the contents of a TV program watched 5 minutes ago). aLTM 

system does not have a limited capacity, and therefore we can store as much information as we 

want inside it, but the contents could fade out passively as time passes. Attention has to be 

focused on the aLTM contents (i.e. focus of attention) in order to make the memory contents 

accessible by ongoing cognitive processes and to prevent them from the passive decay. This focus 

of attention has a limited capacity of 4 ± 1 items (Cowan, 2001).  

This and other models proposed in studies such as those of Oberauer (2002) and 

Unsworth and Engel (2007) share the concept that WM is composed by hierarchical layers, and 

that the highest layer needs focus of attention to retain the memory contents. Recent studies 

utilizing the multi-voxel pattern analysis of functional imaging and EEG data have supported this 

hypothesis by showing that only the contents in focus of attention could be decoded from the 
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neural activity (Lewis-Peacock & Postle, 2012; LaRocque, Lewis-Peacock, Drysdale, Oberauer, & 

Postle, 2013). 

If these hierarchical structure models could be applied to spatial WM too, it could 

explain the conflicting results of the current study. A possible account could be as follows. Firstly, 

the memory cues were stored and maintained in the highest layer of the structure, such as focus 

of attention. Then, when the visual search task was administrated and the location memory 

became relatively unimportant temporarily, the location information was sent to the other layer 

such as aLTM. After visual search was completed, the location memory was sent back to the 

highest layer again, to prepare for the test phase of the spatial WM task. If this was the case, it is 

not surprising to find that the attention effect seemed to be insensitive to the insertion of the 

visual search task, especially because the ERP probe was presented after the completion of the 

visual search task.  

 

Divided Attention  

An alternative possibility for accounting the complex results of the current study is 

divided attention. It has been proposed that we have an ability to split attention into 

approximately four different positions simultaneously (Sears & Pylyshyn, 2000; Eimer & Grubert, 

2014). In Experiment 2, participants were asked to retain only two locations, thus the other two 

attentional spots might have been available for the visual search task.  

Since it is not possible to distinguish these possibilities based only on the data from the 

current study, future research is necessarily required. One of the possible methods to clarify the 

issue is presenting the ERP probe when participants are actually performing the visual search 

task. If the attention effect was still confirmed in this setting, it will suggest that the location 

information is stored in the highest layer, and thus it would support the divided attention 

account. On the other hand, if the effect was not observed, it would support the hierarchical 

structure account.  

 

The Lasting Effect of Probe-Induced Attention 

The another concern found in Experiment 2 was that the attention effect between the 

on- and off-target conditions was observed only in the N1, but not P1 time range. In addition, 

ERP waveforms in Experiment 2 implied that this effect remained long after the N1 period and 

lasted until the end of the 400 ms epoched range (see Figures 2-5B and C). I conducted an 

additional analysis to confirm this lasting effect. The entire time period after post-probe 200 ms 
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was separated into two ranges (200-300 ms/ 300-400 ms in respect to the ERP probe onset), 

and applied a repeated-measure ANOVA with the factors of probe location and search load size. 

The significance alpha level was set to .025 in order to avoid the type I error of multiple 

comparison. The results showed that the attention effect was significant through the two time 

ranges. In addition, visual search insertion did not affect the effect. This trend was not affected by 

the inclusion of error trials. The averaged amplitudes in both the 200-300 ms and 300-400 ms 

range showed a significant main effect of probe location, when only correct trials were used; F(1, 

17)=12.74, p = .002, ηp2 = .43 for 200-300 ms and F(1, 17) = 11.87, p = .003, ηp2 = .41 for 300-400 

ms, and when error trials were involved; F(1, 17) = 11.385, p = .004, ηp2 = .40 for 200-300 ms, 

and F(1, 17) = 8.585, p = .009, ηp2 = .34, for 300-400 ms, respectively. Nevertheless, the 

interaction between probe location and search load size was not significant for both cases (p 

> .1). These results indicated that the attention effect sustained for at least 200 ms after the N1 

time period. Although it is difficult to identify the nature of this late effect after N1, it probably 

reflects a modulation induced by spatial attention on the memorized locations. Because first, it is 

the difference between the probe location conditions, and second, previous studies have shown 

that attention modulations can be observed within this time range too (Anllo-Vento, Luck, & 

Hillyard, 1998). Thus, the attentional facilitation was relatively long-lasting, possibly reflecting 

top-down re-entrant modulations (Zhang & Luck, 2009). 

 If this interpretation is correct, where was the spatial information in WM stored? The 

top-down re-entrant modulation means that location information was retained in other regions 

but not in visual cortex itself, and ERP probe onset triggered top-down signal (i.e. attention) 

from the area to visual cortex. One possible candidate for this region is aLTM in WM hierarchical 

layers. Recent studies, however, assume that the neural substrate of aLTM is the temporal 

strength change of synaptic connection at sensory cortex (Mongillo, Barak & Tsodyks, 2008; 

Erickson, Maramara & Lisman, 2010; Nee & Jonides, 2013; D’Esposito & Postle, 2014). Therefore, 

if spatial WM information is in aLTM, it should be also stored at visual cortex. This interpretation 

of the results is possible if the delay of ERP modulation reflects memory transition from aLTM to 

focus of attention. However, this interpretation is inconsistent with the top-down re-entrant 

explanation. Another candidate substrate for the store of spatial information is the superior 

colliculus. It has been argued that superior colliculus has an important role in spatial attention 

function (Ignashchenkova, Dicke, Haarmeier & Their, 2004; Katyal, Zughni, Greene & Ress, 2010), 

and that this area equips topographic map of space (Marino, Rodgers, Levy & Munoz, 2008; 

Katyal et al., 2010). Moreover, superior colliculus is anatomically separated from visual cortex. 
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Thus if spatial WM information was retained here, the delayed ERP enhancement can be 

understood in the context of top-down re-entrant modulation. Further research is warranted to 

clarify the implication of this finding. 

 

Limitation of the current study and next steps 

I should note here the limitation of the ERP probe method that was employed in this 

study. This procedure has been commonly used by previous studies examining the 

attention-based hypothesis (Awh et al., 2001; Jha, 2002). According to these studies N1 

enhancement effect in the current result could prove active maintenance of spatial attention. 

This technique, however, has an essential concern in that ERP probe measures attentional effect 

only at one time point (i.e. when ERP probe appeared). Therefore, strictly speaking, the current 

results show that spatial attention focused on the remembered place when ERP probe appeared, 

but cannot show that it was maintained thorough the retention interval. If we assume that 

spatial information was stored in different system from spatial attention (e.g. aLTM), and that 

participants expected ERP probe appearance and directed attention to the remembered place 

with the help of the memory right before onset of the probe, then the ERP probe method could 

detect the spatial attention effect. How can we avoid this problem when examining whether 

spatial attention persists during WM retention interval, and whether it has a functional role for 

its process, avoiding this problem?  

 A possible method to assess the significance of attention is to test whether spatial 

attention effect remains or not during interval between trials. In the current procedure, this 

could be achieved by presenting ERP probe during trial intervals. If the attentional effect 

disappears after the end of the trial, it would suggest that attention has some role in the WM 

maintenance process. On the other hand, if attention effect persists during the trial interval, this 

result would indicate that attention has no functional significance and that it is just a passive 

effect. Although, this technique has the same problem as the method used in the current study 2 - 

that is, the method can examine the attention effect only at one time point - the results obtained 

by using this method could yield suggestive evidence. 

 The other but more direct solution is time frequency analysis of EEG data. Recent 

studies using this method has revealed that attention induces gamma- and alpha-band 

oscillation at contra- and ipsi-lateral site to attended visual field, respectively (Gruber, Matthias, 

Muller, Keil & Elbert, 1999; Worden, Foxe, Wang, Simpson, 2000; Bollimunta, Mo, Schroeder, & 

Ding, 2011). It has been said that gamma wave has important role for attention (Rouhinen, 
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Panula, Palva & Palva, 2013) and alpha wave reflects inhibition of task irrelevant information 

(Klimesch, Sauseng & Hanslmayr, 2007). In addition, these synchronized activities have been also 

observed during WM maintenance process (vanDijk et al., 2010; Roux & Ulhaas, 2014). Analyzing 

the power fluctuation of each frequency in current EEG data might be informative, because it will 

make me able to access neural activities relating WM maintenance process, thorough the whole 

retention interval. Especially, examining the power change of these oscillations around the visual 

search insertion will offer numerous suggestions about functional role of attention in WM 

maintenance. This analysis has to be performed in future research. 

 To conclude, the current results might suggest that spatial attention is allocated on the 

memorized locations during the spatial WM retention interval, and this attention is maintained 

not passively but actively, protecting it from the demand from the other concurrent task. Note 

that I just obtained indirect evidence for the functional significance of spatial attention, and for 

its persistence though the WM retention interval. Thus further research is needed to clarify these 

problems. However, the findings in the current study were consistent with the attention-based 

rehearsal theory of spatial WM (Awh et al.,1998; Awh & Jonides, 2001). 
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The current dissertation examined two problems that are theoretically relevant for the 

understanding of the fundamental structure of the visuo-spatial WM mechanism; namely, the 

separation between visual and spatial WM systems and the role of attention in WM maintenance. 

These two topics are closely related to each other. Since it has been hypothesized that different 

sub-categories of attention (e.g. Scolari et al., 2014) might support corresponding different types 

of WM (Barnes et al., 2001), it is possible the limitation of WM capacity in each region is caused 

by that of attention. Evidence supporting this proposal, however, has been scarce and sometimes 

contradicting.  

As for the first issue, Wood (2011) recently reported interference between shape and 

spatial WM capacities. Since this finding could undermine the fundamental assumption of the 

visuo-spatial WM separation hypothesis (Logie, 1995), a detailed investigation was required. 

Study1 examined this problem using a dual task paradigm. First, I replicated the relevant 

experiment in Wood (2011) with strict controls on the several methodological concerns found in 

in the original study. The data failed to show the expected result in all three experiments (Exp. 1, 

2, and 3). I suspected, however, that these negative results might have resulted simply from the 

fact that the size of the target effect was small and therefore the sample size in each experiment 

was not sufficient to detect it. Thus I conducted another replication of the original experiment 

with an unusual big sample size (N = 90; Exp. 4), and succeeded to reproduce the significant 

interference. The estimated effect size, however, remained very small (Cohen’s d = 0.24). Thus, 

these results strongly suggested that shape and spatial WM capacities are mostly independent, 

and supported the visuo-spatial WM separation (Logie, 1995). 

The second topic of the dissertation was the role of attention in WM maintenance. 

Different theoretical accounts have been proposed on this topic, and no consensus has been 

achieved so far (Awh et al, 1998; Luck & Vogel, 1997; Wheeler & Treisman, 2002). Specifically, 

even the long-standing assumption of the critical role of spatial attention in spatial WM 

maintenance (Awh et al., 1998; Awh & Jonides, 2001) has been questioned recently (Belopolsky 

& Theeuwes, 2009; Chan et al., 2009). Thus, I tackled this problem in Study 2. 

The attention-based rehearsal theory of spatial WM predicts that spatial attention 

should be continuously focused on the remembered location during the retention interval (Awh 

et al., 1998; Awh & Jonides, 2009). Experiment 1 examined this prediction using a behavioral 

index of spatial attention, and failed to find the effect. Nevertheless, since this negative result 

could simply be due to the insensitivity of the measurement, Experiment 2 tested the same 

problem again using ERP (P1/N1) indices of spatial attention. A point of concern is that to 

observe the effect of spatial attention is not sufficient to prove its functional significance, because 
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spatial attention could remain at the remembered locations as a passive after-effect of the 

encoding process. Thus, I inserted a visual search task during the WM retention interval, and 

assessed how the manipulation of the search load size affected the WM performance and the 

allocation of spatial attention. Results showed a clear effect of attention at the remembered 

positions as compared to other spatial locations. In addition, the amount of attention was 

unchanged regardless of the search load size. These results might suggest that the spatial 

attention is not just a passive after-effect, but actively maintained during the WM retention 

interval. On the other hand, some inconsistencies with the theoretical predictions were also 

found, which suggested that the attention deprivation by visual search might have been 

insufficient in the current setting. To summarize, although the functional significance of attention 

was not completely confirmed, Study 2 might suggested an active and strong sustention of 

spatial attention in spatial WM maintenance, and current results were consistent with the 

attention-based rehearsal theory (Awh et al., 1998; Awh & Jonides, 2001). 

  

Relationship between Object and Spatial WM 

 

Given that Study 1 confirmed that feature and spatial WMs have mostly separated 

capacities, the next important question will be whether the WM for integrated objects shares the 

same storage resource with spatial WM. The clarification of this issue is of a huge theoretical 

importance, since if object and spatial WM do not share the common resource, it will provide 

strong counterevidence for Wheeler and Treisman (2002) hypothesis, which argued that spatial 

attention is necessary for maintaining integrated objects. Although Wood (2011) already 

reported interference between these two domains, two methodological concerns were found in 

his study. First, the effect size of the reported interference might have been small and thus 

functionally insignificant, as Study 1 in the current thesis has revealed for the shape-spatial 

interference. Second, since the task order was fixed in Wood (2011) (i.e. spatial then object), the 

object encoding always occurred during the maintenance of spatial WM, and therefore the 

interference could be caused by the encoding, but not the maintenance process of object WM. 

Thus, new experiments with strict controls on these factors are strongly required. 

In addition, this issue can also be evaluated by a more direct examination of spatial 

attention, especially its persistence and functional significance during object WM maintenance, 

as Study 2 in the current dissertation examined for spatial WM.  

  



79 
 

Relationship between Other Sub-Domains of Visual WM 

 

The next concern for the future investigation is whether other sub-domains of visual 

WM share the same storage resource. Woodman et al. (unpublished data in Zhang et al. 2012) 

has already shown that strong interference was observed when color and orientation WM tasks 

were concurrently administered, suggesting that different subdomains of visual WM could share 

a limited unitary resource. Nevertheless, the capacity sharing in other sub-domains of visual 

information (e.g. shape, face, and house) have not been examined so far. A systematic 

investigation of the WM interference across visual WM subdomains is required in future 

research, using the same dual task paradigm employed in Study 1 in the current thesis. Such 

investigations might shed a light on whether WM capacity is dissociated not only between visual 

and spatial categories, but also among subdomains of visual information. 

 In addition, if such independences are truly confirmed, it will evoke the discussion 

about the overlap between the attention and WM systems again. Suggesting evidence for this 

domain-specific overlap between attention and WM has been already accumulated. For example, 

using the fMRI technique, D’Esposito and his group showed that WM maintenance for face and 

house induced continuous activities in the visual area specialized for each information 

processing (i.e. the fusiform gyrus and parahippocampal area for face and house, respectively; 

Ranganath, Cohen, Dam, & D’Esposito, 2004), which closely resembled the effects caused by 

attention directed at each specific category (O’Craven, Downing, & Kanwisher, 1999). Therefore, 

it is quite possible that domain specific attention supports the maintenance of corresponding 

WM system. Similarly, Sreenivasan et al. examined the same problem in the face category 

(Sreenivasan, Katz, & Jha, 2007). Irrelevant probe (grayscale noise) was presented during the 

face WM retention interval, and ERP components corresponding to face processing (i.e. N170; 

Bentin, Allison, Puce, Perez, & McCarthy, 1996) were examined. The results showed that the 

irrelevant probe elicited a N170-like ERP waveform. Thus, the fact that a N170-like response was 

observed even though the probe was completely different from face possibly suggested that the 

face-related attention was retained during face WM maintenance, and modulated the cortical 

processing even towards probes quite dissimilar to face. However, to test whether attention is 

directed to the remembered information is not sufficient to prove its functional significance, as I 

have argued throughout the current thesis. Whether a deprivation of domain specific attention 

disturbs the corresponding WM maintenance should be examined in future studies too. 

 The current dissertation provided new data to clarify the important, but unsettled 
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issues in the research on visuo-spatial WM. These basic data are necessary to constitute the 

foundation for the further theoretical development in this research area. Since WM has been 

thought as the most primary function sustaining our mental life (Baddeley, 2003; 2010), a large 

number of studies have investigated its mechanisms, and a flood of findings has been produced 

so far. Nevertheless, many theoretical assumptions and arguments still remain controversial, and 

even seemingly well-accepted findings could sometimes be questioned by new data. In order to 

obtain a comprehensive understanding on this issue, it is necessary to conduct more systematic, 

detailed, and through examinations on various aspects of this cognitive function, and I believe 

that the current dissertation provided an example of such endeavor. Reliable scientific 

knowledge can be unveiled, only when these small, but strict steps are accumulated.  

 

 The format of WM representation 

 

 The Final open question is what space our brain represents WM contents in. Since 

attentional modulation is executed at sensory cortex (Kastner & Ungerleider, 2000), information 

in focus of attention might be organized at the same space as perception (e.g. spatial information 

represented in topographic space of visual cortex). Thus, if attention is a unique mechanism for 

WM maintenance, WM contents might be also expressed in this space. However, recent studies 

have revealed that there is different WM storage system than attention (i.e. aLTM). Given that 

WM contents can be retained by aLTM, how are they represented?  

According to recent studies, contents in aLTM might be represented in the same space as 

attention and perception. As I noticed above, it has been supposed that the neural mechanism of 

aLTM is temporal strength change of synaptic connection at sensory cortex. In this case, spatial 

memory in aLTM might be represented in topographic map of visual cortex. Moreover, if this 

hierarchical WM structure can be applied to other WM systems, color memory in aLTM might be 

stored in feature space of visual cortex, and phonological memory in aLTM might be retained in 

phonological map of auditory cortex.  

 Since the purpose of this dissertation was re-examination of the two psychological 

hypotheses (i.e. the visuo-spatial WM separation and the attention based rehearsal of spatial 

WM), the neural substrate of WM and how they represent WM contents are outstanding 

questions of this study. However, further study has to be conducted to investigate these problems. 

WM has been assumed as central function of our cognition, thus many researchers from 

psychologist to neuroscientist have taken keen interest in this cognitive system. In addition, 

many sophisticated techniques to analyze neural data have been developed recently (e.g. 
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multi-voxcel pattern analysis of functional imaging data). Future study employing these 

techniques will extend our knowledge for the neural mechanism of WM, and these findings will 

also offer new insight to psychological study intending to build functional model.  
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