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ABSTRACT 

 

Because of the demand of the current specification, reinforcement congestion occurs in 

the beam column joint that causes difficulties during compaction and increases the 

construction time. As the result, poor quality of concrete is obtained. However, the 

specification of anchorages has not been changed for many years and was developed 

based on the simple arrangement of reinforcement bars so that there is a possibility to 

reduce the reinforcement congestion based on the mechanical behavior in the congested 

joint. Meanwhile, based on the experimental works, it is not easy to understand the 

behavior because complex cracks occur due to the complex arrangement of 

reinforcement bars and the loading history. 

 

Meanwhile, mechanical anchorage can be one way to reduce the reinforcement 

congestion. However, the use of mechanical anchorages is still limited because the 

behavior has not been well understood. If the mechanical anchorages are placed near the 

surface of the beam column joint, anchorage failure occurs in the beam column joint. To 

avoid this failure, additional reinforcement should be placed along the anchorages. 

However, the best or rational way to strengthen this anchorage system has not been 

found yet because the internal condition has not been well understood. Many 

experiments were necessary. It is inefficient and takes time. 

 

Simulation can be a beneficial tool to understand the behavior through the study of the 

internal stress and internal cracks. In this study, meso-scale analysis by 3D RBSM is 

proposed. The study by 3D meso-scale discrete analysis is useful since the 

reinforcement can be modeled in an accurate manner, i.e. ribs of a reinforcement bar 

and 3D shape of a reinforcement bar, local failure can be predicted precisely as the 

result of the discontinuous deformation of concrete and the interaction of concrete and 

the reinforcement at meso-scale level, and cracks can be simulated directly as the 

displacement between two elements. Based on the previous study, the simulation can 

simulate the local failure at the anchorages of beam column joints. However, the 

simulation system was not enough to simulate the beam column joint with complex 

arrangement of reinforcement bars, the meshing of a reinforcement bar was complex, 

and the constitutive models have not fixed yet. 

 

In RBSM, a little attention to the mesh size is necessary. The mesh size of simulation 

models should be selected in an appropriate way to represent the real cracking pattern of 
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concrete. Since in the normal concrete, microcracks occur at the interface between the 

mortar and aggregate or at the mortar between two aggregates, 10x10x10 – 20x20x20 

mm3 of mesh size is selected to represent the real cracking pattern in the normal 

concrete that is determined by the aggregate size and location. Based on this selected 

mesh size, the constitutive models will be decided. For other types of concrete, different 

mesh size and constitutive models should be decided to represent the real cracking 

pattern. 

 

In this study, the simulation system is developed by introducing a simple meshing of a 

reinforcement bar so that the computational time can be reduced. Furthermore, various 

shapes of reinforcement bars can be modeled, so that at this time the same model and 

reinforcement bars arrangement as the real condition can be modeled.  

 

A unified constutive models of RBSM is proposed based on the simulations in the 

material scale. Simulations of concrete under uniaxial compressive and tensile loading, 

and biaxial compressive loading are conducted to upgrade the constitutive models. A 

bi-linear model is introduced for the tension softening of normal springs of concrete 

elements. A new failure criterion of concrete is introduced. Furthermore, strain 

hardening region is also introduced for the normal springs of steel elements. Parametric 

studies are conducted to investigate the effect of each constitutive model on the 

macroscale behavior of the material. 

 

In order to investigate the applicability of RBSM in modeling bond between concrete 

and a reinforcement bar, simulations of tension stiffening model are conducted. Two 

numerical models having different yield strength of reinforcement are simulated. Based 

on the simulation results, as the load increases, cracks can propagate gradually because 

of the bond between concrete and the reinforcement bar. Furthemore, simulation results 

show a good agreement with the experimental results. 

 

By using the well-developed simulation system, some achievements have been obtained. 

First, by this simulation system, it can be understood how the loading position and the 

local shape of the reinforcement affect the local cracks in the corbel because the local 

shape of the reinforcement is modeled directly. Furthermore, a simple method to repair 

the damage corbel can be proposed. Second, by the simulation system, it can be 

understood how complicated cracks occur in the beam column joint with complex 

arrangement of reinforcement bars since three dimensional shape of reinforcement bars 
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is modeled directly. And last, by the simulation system, it can be understood how each 

reinforcement bar contributes to the failure behavior of the beam column joint with the 

mechanical anchorages. Furthemore, a failure process of the beam column joint with the 

mechanical anchorages is proposed through the study of the internal stress and cracks of 

simulation results. 

 

Some bearing pads of corbels were designed at the wrong position, at the edge of the 

corbel. Consequently, local failure, anchorage splitting failure occurs in the corbel 

because of this wrong detailing. This condition does not satisfy the specification code. 

By simulation, the cause of this local failure can be understood because the local shape 

of reinforcement bars is modeled directly. Different loading positions show different 

capacities. Local cracking in the edge causes the significant drop in capacity. By 

simulating the existing damage in the corbel, a simple method to repair the damage 

corbel can be proposed. Based on the simulation results, just by changing the loading 

position can be the simplest way to recover the capacity of the damage corbel. This kind 

of residucal capacity simulation can be conducted. 

 

Based on the simulation of a beam column joint with complex arrangement of 

reinforcement bars, since the complex arrangement of reinforcement bars is modeled as 

the same as the experimental specimen, the same cracking pattern as the experimental 

specimen can be simulated. Cracks parallel to the bending portion of anchorages can be 

simulated due to a moment that tends to open the beam column joint, since the bending 

shape of the reinforcement bar is modeled directly. Compression strut occurs due to a 

moment that tends to close the beam column joint. Simulation results show the same 

tendency as the experimental results. 

 

Based on the past researches of beam column joints with mechanical anchorages, since 

the internal stress condition and cracks have not been understood, many experiments 

were necessary to find a rational reinforcement arrangement in the beam column joint 

with mechanical anchorages. Based on experiments, there are two possible ways to 

strengthen this anchorage system, i.e. by placing stirrups along the anchorages, and by 

adding concrete block at the top surface of the beam column joint. Simulations are 

conducted based on the past experiments. Simulation results show the same tendency as 

experimental results. Furthemore, the surface cracks of numerical models are roughly 

the same as those of experimental specimens. Through the study of the internal stress 

and cracks of simulation results, the failure process of the beam column joint with 
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mechanical anchorages is proposed. First, bond works along the development length of 

anchorages. Second, diagonal cracks occur in the beam column joint. Third, cracks 

propagate to the surface of the beam column joint. Final Step is the opening of diagonal 

cracks. Furthermore, based on the simulation results, the meaning of stirrups along the 

development length has been understood, i.e. stirrups increase the bond performance 

along the development length of anchorages and restrict the opening of diagonal cracks. 

Meanwhile, the meaning of additional concrete block at the top surface of the beam 

column joint and reinforcement inside the concrete block is to increase the bond 

performance along the development length of anchorages and to restrict the crack 

penetration to the surface of the beam column joint. 
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In Japan, Yokohama National University conducted extensive investigations on the 

performance of mechanical anchorage in exterior and corner beam column joints. Kato 

et al. (2011) carried out experimental investigations on eight corner joint specimens, i.e. 

one specimen of corner joint with conventional bending anchorages and seven 

specimens of corner joints with mechanical anchorages. Seven specimens of corner 

joints with mechanical anchorages consist of four specimens with additional concrete 

block at the top surface of the beam column joint and three specimens in which the tails 

of the conventional bending anchorages were replaced with the mechanical anchorages. 

Just by replacing the tails of the conventional bending anchorages with mechanical 

anchorages caused brittle failure in the beam column joints. Meanwhile, a good 

performance was obtained if additional concrete block was placed at the top surface of 

beam column joints with mechanical anchorages. 

 

Yoshimura et al. (2012) carried out experimental investigations on six corner joint 

specimens in order to find the rational method or the best way to strengthen corner joint 

with mechanical anchorages. The same result as the previous researches was obtained 

that additional transverse reinforcement should be placed along the anchorages. 

 

However, since the internal stress condition, the internal cracking pattern, and the 

meaning of each reinforcement bar to the cracking patterns have not been well 

understood, a rational method to strengthen the mechanical anchorage system has not 

been obtained, so that numerical simulation can be a beneficial tool to reveal the 

internal conditions. Over the past few decades, the Finite Element Analysis (FEA) has 

been known as the powerful simulation method not only in civil engineering but also in 

other disciplines. Simulations of beam-column connections by Finite Element Analysis 

have been started since 2000 which were conducted by Baglin et al. (2000). 

 

Baglin et al. (2000) used SBETA, a nonlinear finite element analysis that was developed 

for the analysis of reinforced concrete structures under plane stress conditions in order 

to investigate the applicability of finite element analysis in modeling reinforced 

concrete beam-column connections. Reinforcement bars were modeled as line elements, 

called discrete bars, where an element representing the discrete bar is constraint at the 

boundary of the concrete element. A total of 19 simulations were conducted. The 

simulation results showed the same tendency as the experimental results and global 

failure could be predicted. However, the simulations were limited in 2D analysis so that 

cracks propagated in lateral direction could not be simulated. Furthermore, they 
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Hayashi et al. (2014) used 3D meso scale analysis by 3D RBSM in order to investigate 

the anchorage performance in a reinforced concrete. The simulations were done for 

reinforced concrete members with different types of anchorages, i.e. straight bar, 

mechanical anchorage, and conventional 180 degrees hooked bar. It was shown that 

different failure patterns can be predicted due to different anchorage systems (Fig. 

1.14). 

 

However, the simulation system was limited in which the model and the arrangement of 

reinforcement bars were simple, the meshing of a reinforcement bar was complex, and 

the constitutive models were not fixed yet. In this study, the target of the simulation is 

the beam column joint with complex arrangement of reinforcement bars and the 

complicated stress occurred in the beam column joint. Thus, the previous simulation 

system was not enough to simulate these complex behaviors. So at the first stage of this 

research, the simulation system must be improved. 

 

1.2 RESEARCH SIGNIFICANCE 

In using discrete analysis, RBSM, a good understanding in the heterogeneous properties 

of concrete must be obtained to be reflected in the simulation models. A little attention 

to the mesh size is necessary in RBSM. The mesh size of the simulation models should 

be selected in an appropriate way to represent the actual cracking pattern of concrete. 

Based on this mesh size, the constitutive models of simulation will be decided. The 

meaning of meso-scale analysis and element size will be explained in this study. So that, 

the first contribution of the present study is to gain the knowledge of the importance of 

the mesh size in the simulation models of 3D RBSM, in order to represent the real 

cracking pattern in the concrete.  

 

By using this 3D RBSM in the general applications, there is interest in obtaining of 

complete understanding on the structural behavior when local failure, local arrangement, 

or local loading conditions affect macroscopic behavior significantly. Through the study 

of the internal cracks and internal stress conditions, it can reveal details of the local 

responses of concrete and reinforcement and their interactions with cracking that were 

difficult to be investigated by the experimental works.  

 

By revealing the behavior of a reinforced concrete element through the study of internal 

cracks and internal stress condition, the mechanism of strengthening mechanical 

anchorages, particularly in a beam column joint, can be proposed. Furthermore, in the 
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future, a rational method to strengthen the beam column joint with mechanical 

anchorages can be achieved. Further implications of this study are to provide a tool for 

assessing the deteriorated structures relating to the anchorage parts and joints of 

structures, to retrofit deteriorated structure, and to predict the life span of the retrofitted 

structure. 

 

1.3 OBJECTIVE AND SCOPE OF STUDY 

The first objective of this research is to improve the simulation system of RBSM. A 

brief review on the relative task is given follows: 

1. Develop the algorithm of simple meshing of a reinforcement bar. The meshing 

technique of a reinforcement bar used by the previous researchers was very 

complex. As the result, a lot number of elements were necessary to model a beam 

column joint with complex arrangement of reinforcement bars. It will not be 

efficient for the simulation. 

2. Develop the algorithm to model any shapes of reinforcement bars. It is necessary 

because various shapes of reinforcement bars are used to simulate a beam column 

joint with complex arrangement of reinforcement bars. 

3. Improve the number of elements in the simulation system. In the past, the 

simulation system was limited with less than 300000 elements. 

Ultimately, the simulation system should be able to model the same model and the same 

reinforcement arrangement as the real condition of reinforced concrete members. 

 

The second objective of this research is to upgrade the constitutive models in the 

simulation system of RBSM. The improvements were done based on the simulations in  

the material scale. Here, the following simulations were conducted: 

1. Concrete element 

a. Compressive uniaxial simulation 

b. Tensile uniaxial simulation 

c. Biaxial simulation 

2. Concrete-steel interface: Tension stiffening stimulation 

The applicability of RBSM in material scale simulation was verified through the 

comparison with the experimental results. 

 

The third objective of this research is to reveal the behavior of reinforced concrete 

structures, i.e. corbels, a beam column joint with complex arrangement of reinforcement 

bars, and beam column joints with mechanical anchorages. The applicability of RBSM 
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to model in the structural scale will also be investigated through the comparison with 

the experimental results. The simulation must able to simulate its strong points. Those 

are: 

1. 3D RBSM should be able to simulate different failure pattern due to different 

loading position and the local reinforcement bars arrangement. 

2. 3D RBSM should be able to simulate different failure pattern due to different 

loading condition. In this case, cyclic load was applied to the numerical models. 

3. 3D RBSM should be able to simulate complex cracks in a beam column joint with 

complex arrangement of reinforcement bars. 

4. 3D RBSM should be able to simulate different behaviors due different local 

arrangements of reinforcement bars. 

 

The forth objective is to suggest an efficient method of retrofitting the damage structure 

members. 

 

The fifth objective is to propose the mechanism how to strengthen the beam column 

joint with mechanical anchorages through the study of internal stress condition and 

internal cracking pattern. 

 

1.4 RESEARCH STRATEGY 

Step 1: The first step of this research is to select an appropriate element size to represent 

the real cracking pattern, especially in the normal concrete. Step 2: Based on the 

selected element size, the simulation system was improved and the constitutive models 

of RBSM were upgraded. The applicability of the constitutive models was verified 

trough the comparison with the experimental results in material scale. Step 3: The 

simulation system was used to understand the behavior of reinforced concrete structures 

under different loading position, different local reinforcement bar arrangement and 

different loading condition. Step 4: Based on the study of the internal stress condition 

and crack propagations, a proposed retrofitting method and a proposed failure 

mechanism in a beam column joint with mechanical anchorages were raised.  

 

 

 

 

 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.15 Organization of contents 

-  The problem of reinforcement congestion in beam 

column joints and the application of mechanical 

anchorages to reduce the congestion 

- The behavior has not been understood well by 

experiment 

- Numerical simulation is a beneficial tool 

- Meso-scale analysis by 3D RBSM is proposed 

Chapter 1 

-  Mechanical model of 3D RBSM is described 

-  Mesh size is decided 

- Simpe mesh of re-bar and any shape of re-bar are 

introduced 

Chapter 2 

 

- Unified constitutive models were proposed

Chapter 3 

 

- Simulations at material 

scale of concrete are 

conducted 

- Parametric study 

Chapter 4  

- Tension stiffening models to 

check the applicability to 

simulate bond 

- Parametric study 

Chapter 5 

 

Simulations at structural scale: 

1. Corbel and damaged corbel 

2. Joint with complex re-bars 

3. Joint with mechanical 

anchorages

Chapter 6, 7, and 8 

Conclusions 
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1.5 ORGANIZATION OF CONTENTS 

Chapter 1 explains the background and problem of reinforcement congestion in the 

beam column joint that caused by the demanding in the current specification. By 

experimental works, it is not easy to understand the behaviors of beam column joints 

with complex arrangement of reinforcement bars because of complex cracks behavior in 

the beam column joints. Meanwhile, mechanical anchorage can be a beneficial tool to 

reduce the reinforcement congestion. However, to strengthen this system, many 

experimental works are necessary. It is inefficient and it takes time. Thus, in this study, 

numerical simulation can be a beneficial tool to understand the behavior. Literature 

reviews of numerical simulation are presented and meso-scale analysis by 3D RBSM is 

proposed. In this chapter, the significances of this research have been represented. In 

order to achieve the objective and scope in this study, some research strategies are 

presented. 

 

Chapter 2 describes the mechanical model of the three-dimensional RBSM in detail. 

Equations that are used to make local stiffness matrix and global stiffness matrix will be 

described, including the equilibrium equation of RBSM. As described above, a little 

attention to the mesh size is necessary to represent the cracking pattern in the concrete. 

In this chapter, the heterogeneous property of concrete will also be explained, and based 

on this property, an appropriate size of meshing will be determined. In other words, the 

reason in determining the mesh size will be described. The concept of the mesh 

arrangement of concrete elements and steel elements is provided, including the 

improvement of the simulation system that has been achieved so that the simulation can 

model the same model and the same reinforcement arrangement with the real condition. 

 

Chapter 3 mentions the constitutive models of all elements that will be used in this study, 

i.e. concrete elements, steel elements, and interface interface-concrete elements. 

Constitutive models were developed based on the simulations in material scale.   

 

Chapter 4 shows the simulation results of concrete in the material scale to confirm the 

constitutive models that will be used in the simulation. Results of simulations of 

uniaxial compressive test, uniaxial tensile test, and biaxial compressive stress will be 

shown in this chapter. The results are compared with those of equations in the 

specification code and the experimental results. Furthermore, the effect of various types 

of failure criterion of concrete on the behavior of concrete material will be revealed in 

this chapter. The applicability of RBSM to simulate Poisson’s Ratio effect will be 
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checked. 

 

Chapter 5 shows the reliability of RBSM in modeling the bond between the concrete 

and a reinforcement bar. In this chapter, tension stiffening simulations were conducted 

to confirm the applicability of RBSM in modeling the bond behavior. 2 simulations 

were conducted based on the experiment done by Shima et al. (1987), i.e. low yield 

strength of reinforcement bar and normal yield strength of reinforcement bar. 

Macroscopic responses, microscopic responses, and strain distributions along the 

reinforcement bar of simulation results will be compared with those of experimental 

results. In addition, the effect of tensile strength reduction of normal springs at the 

interface between concrete elements and steel elements, and modeling strain hardening 

region in the constitutive model of springs of steel elements on the tension stiffening 

behavior of a reinforced concrete member will be explained in this chapter. 

 

Chapter 6 shows the simulations of corbels by 3D RBSM. By well-developed 

simulation system, RBSM is used to explain how the loading condition and local 

arrangement of reinforcement affect significantly the local cracks and furthermore affect 

the macroscopic response. The simulation results will be compared with the 

experimental results. Simulation can simulate well the damage that occurred in the field 

observation because of the ability of simulation to model the local arrangement of 

reinforcement directly. Furthermore, simulation can propose the effective way to 

recover the capacity of the corbel by considering directly the existing damage in the 

corbel. 

 

Chapter 7 shows the simulation of a beam column joint with complex arrangement of 

reinforcement bars by 3D RBSM. RBSM can simulate complex cracks in the beam 

column joint with complex arrangement of reinforcement bars because the same 

arrangement of reinforcement bars as the experimental specimen was modeled. 

Different cracking pattern can be simulated due to different loading condition. 

 

Chapter 8 describes the simulations of beam column joints with mechanical anchorages. 

Based on the experimental work, the knowledge how to arrange the reinforcement bars 

in beam column joint with mechanical anchorages has not been well known yet so that 

many experiments were done. Based on the simulation results, each reinforcement bar 

has contribution to the cracks formation in the beam column joint. Furthermore, the 

importance to place concrete block at the top of a beam column joint or stirrups along 
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the anchorages of a beam column joint with mechanical anchorages will be explained in 

this chapter. Since the opening of diagonal cracks affects the failure pattern of the beam 

column joints with mechanical anchorages significantly, the effect of using plain bars or 

deformed bars as the stirrups on the failure behavior of the beam column joint will also 

be explained. 

 

REFERENCES 

American Concrete Institute (ACI) Committee 318., “Building Code Requirements for 

Structural Concrete and Commentary,” ACI 318M-08 Farmington Hills, MI, 2008. 

 

American Concrete Institute (ACI) Committee 352., “Building Code Requirements for 

Structural Concrete and Commentary,” ACI 352R-02 Farmington Hills, MI, 2002 

 

Baglin, P.S., and Scott, R.H., “Finite Element Modeling of Reinforced Concrete 

Beam-Column Connections,” ACI Structural Journal, 97(90), pp. 886-894, 2000. 

 

Bazant, Z.P., “Mechanics of Distributed Cracking,” Applied Mechanic Rev.,” ASME, 

4(5), pp.675-705, 1986. 

 

Bazant, Z.P., Tabbara, M.R., Kazemi, M.T., and Cabot, G.P., “Random Particle Model 

for Fracture of Aggregate of Fiber Composites,” Journal of Engineering Mechanics, 

116(8), pp.1686-1705, 1990. 

 

Bolander, J. E., and Berton, S., “Simulation of Shrinkage Induced Cracking in Cement 

Composite Overlays,” Cement & Concrete Composites, 26, pp.861-971, 2004. 

 

Bolander, J. E., Choi, S., and Duddukuri, S. R, “Fracture of Fiber-reinforced Cement 

Composites: Effects of Fiber Distribution,” Internationl J. Fracture, 154, pp.73-86, 

2008. 

 

Bolander, J. E., Hong, G. S., and Yoshitake, K., “Structural Concrete Analysis Using 

Rigid-Body-Spring Networks,” Computer-Aided Civil and Infrastructure Engineering, 

15, pp.120-133, 2000. 

 

Bolander, J. E., and Hong, G. S., “Rigid-Body-Spring Network Modeling of 

Presetressed Concrete Members,” ACI Structural Journal, 99(5), pp.595-603, 2002. 



18 
 

Bolander, J. E., Le, B. D., “Modeling Crack Development in Reinforced Concrete 

Structures Under Service Loading,” Construction and Building Materials, 13, pp.23-31, 

1999. 

 

Bolander, J. E., and Saito, S., “Fracture Analysis Using Spring Networks with Random 

Geometry,” Engineering Fracture Mechanics, 61, pp. 569-591, 1998. 

 

Bolander, J. E., Yoshitake, K., and Thomure, J., “Stress Analysis Using Elastically 

Uniform Rigid-Body-Spring Networks,” Journal of Structural Mechanics and 

Earthquake Engineering JSCE, 633(I-49), pp.25-32, 1999. 

 

Chun, S. C., Lee, S. H., Kang, T. H. K., Oh, B., and Wallace, J. W., “Mechanical 

Anchorage in Exterior Beam-Column Joints Subjected to Cyclic Loading,” ACI 

Structural Journal ,104(12), pp. 102-112, 2007. 

 

Cundal, P. A., “A Computer Model for Simulating Progressive, Large-scale Movements 

in Blocky Rock Systems,” Proc. Symp. Int. Soc. Rock Mech., Nancy 2, No.8, 1971. 

 

Cundal, P. A., “BALL-A Program To Model Granular Media Using The Distinct 

Element Method,” Technical Note, Advanced Technology Group, Dames & Moore, 

London, 1978. 

 

Cundal, P. A., Strack, O.D.L, “A Discrete Numerical Model for Granular 

Subassemblies,” Geeeotechnique, 29(1), pp. 47-65, 1979. 

 

Eddy, L., and Nagai, K., “A Study of The Behavior of A Beam Column Joint with 

Complex Arrangement of Reinforcing Bars by Finite Element Enalysis,” International 

Symposium on New Technologies for Urban Safety of Mega Cities in Asia (USMCA), 

Hanoi, Vietnam, 2013. 

 

Eligehausen, R., Genesio, G., Ozboly, J., and Pampanin, S., “3D Analysis of Seismic 

Response of RC Beam-column Exterior Joints Before and After Retrofit,” Proc. of the 

International Conference on Repairing, Retrofit and Rehabilitation ICRRRR, Cape 

Town, South Africa, 2008. 

 

 



19 
 

Hayashi, D., and Nagai, K., “Investigating the Anchorage Performance of RC by Using 

Three-dimensional Discrete Analysis,” Engineering Computations, 30(6), 815-824, 

2013. 

 

Hegger, J., Sherif, A., and Roeser, W., “Nonlinear Finite Element Analysis of 

Reinforced Concrete Beam-Column Connections,” ACI Structural Journal, 101(59), pp. 

604-611, 2004. 

 

Ikuta, K.; Nagai, K.; Hayashi, D., “Numerical Simulation of Beam-Column Joint with 

Simple Reinforcement Arrangement by Three-dimensional RBSM,” International 

Symposium of New Technologies for Urban Safety Mega Cities in Asia (USMCA), 2012. 

 

Inoue, Yu, and Nagai, K., “Numerical Simulation of Fracture Pattern and Bond 

Performance of Anchorage in Reinforced Concrete." Procedia Engineering14 (2011), 

1165-1173, 2011. 

 

Japan Society of Civil Engineers., “Recommendations for Design, Fabrication and 

Evaluation of Anchorages and Joints in Reinforcement Bars,” Concrete Library 128, 

2007. (in Japanese) 

 

Kato, F., Kiyohara, T., Tasai, A., and Kusunoki, K., ”Experimental Study of Knee Joints 

with Mechanical Anchorage,” Proceedings of Japan Concrete Institute, 33(2), 2011. (in 

Japanese) 

 

Kawai, T., “New Discrete Models and Their Application to Seismic Response Analysis 

of Structure,” Nuclear Engineering and Design, 48, 207-229. 1978. 

 

Meguro, K., Hakuno, M., “Fracture Analyses of Concrete Structures by The Modified 

Distinct Element Method,” Structural Eng./Earthquake Eng. Japan Society of Civil 

Engineers, 6(2), pp.113-124. 1989. 

 

Nagai, K., Sato, Y., and Ueda, T., ”Mesoscopic Simulation of Failure of Mortar and 

Concrete by 3D RBSM,” J. Adv. Conc. Technol., 3(3), 385-402, 2005. 

 

 

 



20 
 

Nam, J. W., Abell, M. P., Lim, Y. M., and Bolander. J. E., “Strength Degradation of 

Fiber-reinforced Cement Composites Exposed to Simulated Environments,” ACI 

Special Publication SP-272-10, pp.189-204, 2010. 

 

 

Sagbas, G., Vecchio, J.F., and Chsristopoulos, C., “Computational Modeling of the 

Seismic Performance of Beam-Column Subassemblies,” Journal of Earthquake 

Engineering. 15, 640-663, 2011.  

 

Sasmal, S., Novak, B., and Ramanjaneyulu, K., “Numerical Analysis of Fiber 

Composite-steel Plate Upgraded Beam-column Sub-assemblages under Cyclic Loading,” 

Composite Structures, 93(2), pp.599-610, 2011. 

 

Schalangen, E., Van Mier, J., G., M., “Simple lattice model for numerical simulation of 

fracture concrete materials and structutres,” Material and Structures, 25, pp.534-542. 

1992. 

 

Wallace, J. W., McConnell, S. W., Gupta, P., and Cole, P.A., “Use of Headed 

Reinforcement in Beam-Column Joints Subjected to Earthquake Loads,” ACI Structural 

Journal, 95(54), pp. 590-902, 1998. 

  

Williams, J.R., Mustoe, G.G.W., “Modal Methods for The Analysis of Discrete Systems,” 

Computer and Geotechnics, 4(1), pp.1-19, 1987. 

  

Yoshimura, M., Kiyohara, T., Tasai, A., and Kusunoki, K., “Experimental Study of 

Performance Improvement of Knee Joints with Mechanical Anchorage,” Proceedings of 

Japan Concrete Institute, 34(2), 2012. (in Japanese) 

 

Zubelewicz, A., and Bazant, Z.P., “Interface Element Modeling of Fracture in Aggregate 

Composites,” Journal of Engineering Mechanics American Society of Civil Engineers 

113(11), pp.1619-1630. 1987. 

 

 

 

 

 



21 
 

Chapter TWO 

 METHOD OF SIMULATION 
 
 

2.1  RIGID BODY SPRING MODEL 
In this study, the simulations are carried out by a three dimensional RBSM, proposed by 

Kawai et al. (1978). In RBSM, a three dimensional reinforced concrete model is 

meshed into rigid bodies. Each rigid body consists of six degree of freedoms, i.e. three 

translational degrees of freedom and three rotational degrees of freedom at some points 

within its interior and connects with other rigid bodies by three springs, i.e. two shear 

springs and one normal spring.  

 

2.2 MECHANICAL MODEL OF THREE-DIMENSIONAL RBSM 
Mechanical behavior of 3D RBSM is shown in Fig. 2.1. In this study, the computational 

point (xc, yc, zc) where the degrees of freedom of an element are located, is defined as 

follows: 

 

xୡ ൌ
xଵ ൅ xଶ ൅ ⋯൅ x୧ ൅ ⋯൅ x୫

m
 

 

yୡ ൌ
yଵ ൅ ଶݕ ൅ ⋯൅ y୧ ൅ ⋯൅ ୫ݕ

m
 

(2.1)

zୡ ൌ
ଵݖ ൅ ଶݖ ൅ ⋯൅ ୧ݖ ൅ ⋯൅ ୫ݖ

m
 

 

 

where m is the number of node composing an element and xi, yi, and zi are the 

coordinates of the nodes in an element. 

 

 

 

 

 

 

 

6DOF 

6DOF

3 SPRINGS

Fig.2.1 Mechanical model of 3D RBSM 
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Meanwhile, the point of a face of an element where springs are located, is defined as 

follows: 

 

xୡ୤ ൌ
xଵ ൅ xଶ ൅ ⋯൅ x୨ ൅ ⋯൅ x୬

n
 

 

yୡ୤ ൌ
yଵ ൅ ଶݕ ൅⋯൅ y୨ ൅ ⋯൅ ୬ݕ

n
 

(2.2)

zୡ୤ ൌ
ଵݖ ൅ ଶݖ ൅ ⋯൅ ୨ݖ ൅ ⋯൅ ୬ݖ

n
 

 

 

where n is the number of node composing a face and xj, yj, and zj are the coordinates of 

the nodes in a face. 

 

When an element has small displacement [u1, v1, w1, θu1, θv1, θw1], the springs at a 

face in an element will be displaced: 

 

u ൌ 1ݑ െθ
w1

ቀy݂ܿ െ yܿ݁1ቁ ൅θ
v1
൫z݂ܿ െ zܿ݁1൯ 

 

v ൌ 1ݒ െθ
u1
൫z݂ܿ െ 1൯݁ܿݖ ൅θ

w1
൫x݂ܿ െ xܿ݁1൯ 

(2.3)

w ൌ 1ݓ െθ
v1
൫x݂ܿ െ xܿ݁1൯ ൅θ

u1
ቀy݂ܿ െ yܿ݁1ቁ 

 

 

Elongations of normal and shear spring are calculated and expressed as follows 

 

d ൌ Bݑ௘ (2.4)

 

Wehere dT = [δs1, δs2, δn] and ue
T=[ u1, v1, w1, θu1, θv1, θw1, u2, v2, w2, θu2, 

θv2, θw2]. The transformation matrix B is written as: 

 

B ൌ ൥
ଵଵܭ
ଶଵܭ
ଷଵܭ

ଵଶܭ
ଶଶܭ
ଷଶܭ

ଵଷܭ
ଶଷܭ
ଷଷܭ

ଵସܭ
ଶସܭ
ଷସܭ

ଵହܭ
ଶହܭ
ଷହܭ

ଵ଺ܭ
ଶ଺ܭ
ଷ଺ܭ

ଵ଻ܭ
ଶ଻ܭ
ଷ଻ܭ

ଵ଼ܭ
ଶ଼ܭ
ଷ଼ܭ

ଵଽܭ
ଶଽܭ
ଷଽܭ

ଵଵ଴ܭ
ଶଵ଴ܭ
ଷଵ଴ܭ

ଵଵଵܭ
ଶଵଵܭ
ଷଵଵܭ

ଵଵଶܭ
ଶଵଶܭ
ଷଵଶܭ

൩ 

(2.5)
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K11 = -es1x K12 = -es1y K13 = -es1z 

K21 = -es2x K22 = -es1y K23 = -es2z 

K31 = -enx K32 = -eny K33 = -enz 

 

K14 = es1y(zcf-zce1)- es1z(ycf-yce1) 

K24 = es2y(zcf-zce1)- es2z(ycf-yce1) 

K34 = eny(zcf-zce1)- enz(ycf-yce1) 

 

K15 = es1z(xcf-xce1)- es1x(zcf-zce1) 

K25 = es2z(xcf-xce1)- es2x(zcf-zce1) 

K35 = enz(xcf-xce1)- enx(zcf-zce1) 

 

K16 = es1x(ycf-yce1)- es1y(xcf-xce1) 

K26 = es2x(ycf-yce1)- es2y(xcf-xce1) 

K36 = enx(ycf-yce1)- eny(xcf-xce1) 

 

K17 = es1x K18 = es1y K19 = es1z 

K27 = es2x K28 = es1y K29 = es2z 

K37 = enx K38 = eny K39 = enz 

 

K110 = es1z(ycf-yce2)- es1y(zcf-zce2) 

K210 = es2z(ycf-yce2)- es2y(zcf-zce2) 

K310 = enz(ycf-yce2)- eny(zcf-zce2) 

 

K111 = es1x(zcf-zce2)- es1z(xcf-xce2) 

K211 = es2x(zcf-zce2)- es2z(xcf-xce2) 

K311 = enx(zcf-zce2)- enz(xcf-xce2) 

 

K112 = es1y(xcf-xce2)- es1x(ycf-yce2) 

K212 = es2y(xcf-xce2)- es2x(ycf-yce2) 

K312 = eny(xcf-xce2)- enx(ycf-yce2) 

 

where eij is direction cosine in i axis on j axis. 

By applying the principal of virtual work, the local equilibrium relation expressed in 

global coordinate is expressed as, 
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݇௘∆ݑ௘ ൌ ∆ ௘݂ (2.6)

 

where the stiffness associated with interconnected face ke is given as 

 

݇௘ ൌ (2.7) ܤܦ்ܤ

 

where 

 

D ൌ ൥
݇௦ଵ
0

0 0
݇௦ଶ 0

0 0 ݇௡

൩ 

(2.8)

 

in which kn, ks1, and ks2 are the normal and shear spring stiffness, The local stiffness of 

kn, ks1, and ks2 can be calculated as, 

 

݇௡ ൌ ݇௡௦௣
ܣ

݄ଵ ൅ ݄ଶ
 

 

݇௦ଵ ൌ ݇௦௦௣
ܣ

݄ଵ ൅ ݄ଶ
 

(2.9)

݇௦ଶ ൌ ݇௦௦௣
ܣ

݄ଵ ൅ ݄ଶ
 

 

 

where, 

 

݇௡௦௣ ൌ
ሺ1 െ ௘௟௘௠ܧ௘௟௘௠ሻߴ

ሺ1 ൅ ௘௟௘௠ሻሺ1ߴ െ ௘௟௘௠ሻߴ2
 

 

݇௦௦௣ ൌ
௘௟௘௠ܧ

ሺ1 ൅ ௘௟௘௠ሻߴ
 

(2.10)

 

where h1 and h2 are length of perpendicular lines from the element computational point 

to the face springs are set. The A is an area of the face. Eelem and νelem are the modulus of 

elasticity and poison’s ration, respectively, which are calculated as follow. 

 

௘௟௘௠ܧ ൌ
௘௟௘௠ଵ݄ଵܧ ൅ ௘௟௘௠ଶ݄ଶܧ

݄ଵ ൅ ݄ଶ
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2.5 CONCLUSIONS 
1. In this chapter, the concept of selecting mesh size in RBSM is proposed so that 

rational cracks propagation can be reflected in simulation models that represents 

the real cracking pattern in concrete. Since the target of this study is normal 

concrete, 10x10x10 – 20x20x20 mm3 of mesh size of simulation models is selected 

to represent the actual cracking propagation in a normal concrete that cracks 

propagate between 2 aggregates.  

2. Simulation has been developed so that 3D RBSM can model the same model and 

the same reinforcement arrangement as the real condition by simplifying the 

algorithm of the element meshing of a reinforcement bar. 
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Chapter THREE 

 CONSTITUTIVE MODEL 
 
 

3.1. CONCRETE MODEL 
In this study, a constitutive model for the concrete at the meso scale is developed 

because the constitutive model in the macro scale cannot be applied to meso scale 

analysis. 

 

In the analysis, because of the original characteristics of RBSM, the values of the 

material properties at the meso level given to the elements are different from the 

material properties of the object analyzed at the macroscopic level. The material 

properties for the elements were determined in such way as to give the correct 

macroscopic properties. In discrete analysis, the shape and fineness of elements affect 

analysis results (Nagai et al. 2005).  

 

Since crack direction may affect the crack pattern, the size of each concrete element is 

approximately 10x10x10 – 20x20x20 mm3, similar to the maximum aggregate size. The 

assumption was made to represent the fracture behavior in normal concrete that cracks 

occur between 2 aggregates because the mortar is weaker than aggregate and it can be 

assumed that aggregates as rigid bodies in which deformation of aggregates at the meso 

scale level is very small particularly in normal concrete, subjected to loads. 

 

In the elastic analyses, the relationship between the macroscopic and mesoscopic 

Poisson’s ratios and the effect of the mesoscopic Poisson’s ratio on the macroscopic 

elastic modulus have been confirmed by Nagai et al. (2005). The same concepts were 

adopted, represented in Eqns. 3.1 and 3.2 

 

௘௟௘௠ߴ ൌ െ24.8ߴସ ൅ ଷߴ31.9 െ ଶߴ16.4 ൅ ߴ4.28  (3.1)

௘௟௘௠ܧ ൌ ൫െ33.7ߴ௘௟௘௠
ସ ൅ ௘௟௘௠ߴ17.0

ଷ െ ௘௟௘௠ߴ4.13
ଶ ൅ ௘௟௘௠ߴ0.327 ൅ 1൯(3.2) ܧ

 

where E and ν are the macroscopic elastic modulus and Poisson’s ratio of component of 

the analysis object, respectively. 
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The material characteristics of each component are presented by means of modeling 

springs. In normal spring, compressive and tensile stresses (σ) are developed. Shear 

springs develop shear stress (τ). The elastic modulus of normal spring (knsp and kssp) was 

presented in the previous chapter. For calculation of shear stress on 3D analysis, a 

resultant value of strains generated in two shear springs in adopted as a shear strain in 

the constitutive model presented in this chapter. The strains and stresses are calculated 

as follows. 

 

ε ൌ
௡ߜ

݄ଵ ൅ ݄ଶ
 

γ ൌ
௦ߜ

݄ଵ ൅ ݄ଶ
 

(3.3)

ߪ ൌ 	݇௡௦௣ߝ 

߬ ൌ 	݇௦௦௣γ 

 

where εand γare the strain of normal and shear springs, respectively. δn andδs are 

the normal and shear relative displacement of elements of those springs, respectively. 

 

In this study, the constitutive model of concrete element has been developed based on 

the some simulations in the material scale level that will be presented at the next chapter. 

The constitutive models for the normal and shear springs of the concrete elements are 

shown in Fig. 3.1.  

 

The constitutive models of a normal spring and a shear spring of concrete element, used 

in this study, are shown in Figure 3. Basically, the concept of the concrete model is 

same as the original simulation developed by Nagai et al. (2005) where the compressive 

failure is not allowed at the meso-scale. In tension zone, crack, between 2 rigid bodies, 

occurs when the tensile stress of the normal spring exceeds the tensile strength of the 

concrete (ft). After exceeding the tensile strength (ft), the tensile stress of a normal 

spring is assumed to decrease bi-linearly, depending on the crack width, to zero at the 

maximum crack width (wmax), which is assumed 0.3 mm (see Fig. 3.1.a). Meanwhile, an 

elasto-plastic behavior is assumed for the shear spring of concrete element (see Fig. 

3.1.b) with the τmax is calculated based on Eq. 3.4.  
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(a) Normal spring  (b) Shear spring 

 

 

 

 

 

 

 

 

 

 (c) Failure criterion (d) Shear reduction factore 

Fig. 3.1 Constitutive models of concrete elements 

 

߬௠௔௫ ൌ േ൫1.6 ௧݂௘௟௘௠
ଶሺെߪ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯ ݂݅ ሺߪ ൒ 3 ௧݂௘௟௘௠ሻ 

߬௠௔௫ ൌ േ൫1.6 ௧݂௘௟௘௠
ଶሺെ3 ௧݂௘௟௘௠ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯ ݂݅ ሺߪ ൏ 3 ௧݂௘௟௘௠ሻ (3.4)

 

Furthermore, when fracture occurs in the normal spring, the calculated shear stress is 

reduced according to the reduction of the normal stress. As the result, shear spring 

cannot carry the stress when the crack width of the normal spring reaches wmax (see Fig. 

3.1.d).   

 

In next chapter, a parametric study is also done to examine the effect of parameters in 

constitutive models through simulations both in material scale and in structural scale. 

For constitutive models of concrete, a parametric study will be done not only for the 

constitutive model of normal springs but also for the constitutive model of shear spring.  
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3.2. STEEL MODEL 
The geometry of steel elements is modeled in an accurate manner to properly account 

for the interlocking between the reinforcement and concrete. In this study, the strain 

hardening region is introduced so that the normal springs of steel elements are assumed 

to behave as the same as the actual steel (Fig. 3.2). Meanwhile, the shear springs are 

assumed to be perfectly elastic. 

 

The constitutive model of the normal spring used in this simulation is represented by the 

following equations (adopted from Shima et al. 1987). 

 

σ ൌ 																			ߝ௦ܧ 																							 ݂݅ ሺߝ ൏ ௬ሻߝ               

σ ൌ ௬݂																						 																							 ݂݅ ሺߝ௬ ൏ ߝ ൏ ௦௛ሻߝ          

σ ൌ ௬݂ ൅ ቀ1 െ ݁
ഄೞ೓షഄ

ೖ ቁ ൫1.01 ௨݂ െ ௬݂൯ ݂݅ ሺߝ ൐ ௦௛ሻߝ     
(3.5)

 

where 

k   : 0.032(400/fy)
1/3 

σ  : stress ( MPa) 

ε : strain 

fy : yield strength (MPa) 

fu : tensile strength (MPa) 

εsh : initial strain of hardening, assumed 1.5% 

 

As the comparison, the effect of modeling strain hardening region will be investigated 

through the simulation of tension stiffening and simulation of structural scale, i.e. 

simulation of beam column joint with mechanical anchorage (Fig. 3.3). 

 

3.3. CONCRETE-STEEL INTERFACE 
At concrete-steel interface, the constitutive model of a normal spring and a shear spring 

is considered to be the same as that of the concrete element. To consider the interface as 

a weak region, the tensile strength of the interface elements is assumed to be half of that 

of concrete elements in this study. Fig.3.4 shows constitutive model of the interface 

elements.  
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Fig. 3.2 Constitutive models of normal springs of steel elements  

(with strain hardening region) 

Fig. 3.3 Constitutive models of normals spring of steel elements 

(without strain hardening region) 

(a)  Normal spring (b) Shear reduction factor 

Fig. 3.4 Constitutive models of concrete-steel interface 
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3.4. CONCLUSIONS 
Constitutive models have been improved based on the some simulations in the material 

scale of concrete, and bond between concrete and steel. 
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Chapter FOUR 

 SIMULATION OF CONCRETE AT MATERIAL SCALE 
 
 

4.1 INTRODUCTION 

In this chapter, three-dimensional simulations of concrete are conducted. The purpose of 

this study is for the prediction of the behavior of concrete, especially in uniaxial 

compression, uniaxial tension, and biaxial compression. The modified Newton-Raphson 

method is used as the convergence algorithm nonlinear analysis. Convergence criterion 

and the maximum iteration number are set to 10-5 and 400 in this study. Displacement of 

loading boundary is controlled in the analysis. 

 

 

4.2 OVERVIEW OF EXPERIMENT STUDIES OF BIAXIAL STRENGTH OF 

CONCRETE BY KUPFER ET AL (1969) 

As the initial step, it is necessary to check the reliability of 3D RBSM in simulating 

biaxial stress condition since the target of this study is the simulation of beam column 

joint where biaxial stress condition exists in this region which develops because of the 

combination of concrete compressive stresses and reinforcement bars tensile stresses. 

The reliability of 3D RBSM will be checked through the comparison with the 

experimental results done by Kupfer et al. (1969). Kupfer et al. (1969) conducted 

experimental studies of the biaxial strength of concrete by introducing a new testing 

apparatus by using “brush bearing plate”. These plates consist of a series of closely 

spaced small steel bars with 3 x 5 mm of cross section and from 100 to 140 mm of 

length variation which are flexible enough so that concrete can deform without any 

restraint due to friction between the plates and concrete that can increase the apparent 

strength of the test piece.  

 

The dimension of the concrete specimens in these experimental studies was 20x20x5 

cm and the target of uniaxial compressive strength of concrete 190, 315, and 590 kg/cm2. 

The maximum aggregate size was 15 mm. As described above, the length of the small 

steel bars in the brush bearing plate were varied. To test concrete with higher 

compressive strength, shorter steel bars were used to prevent buckling of the steel bars.  

 

To verify the applicability this new apparatus, 20x20x5 cm of concrete specimens were 
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tested under uniaxial compression condition with and without brush bearing plates. 

Furthermore, the compressive strength of the concrete with brush bearing plates should 

be equal to that of without bearing plates in order to prove that the boundary condition 

had no additional restraint to the specimens.  

 

In the experiment, the ratio of σ1/σ2 was maintained constant throughout the test. The 

experimental results show that the compressive strength of concrete increased 

approximately 16 percent under biaxial compressive stress. Meanwhile, the tensile 

strength of concrete under biaxial tensile stress was equal to that of uniaxial tensile 

stress. Furthermore, the results did not change significantly with different compressive 

strength of concrete. 

 

 

4.3 DETAIL OF NUMERICAL MODELS 

4.4.1 Numerical Models 

In total of eight numerical models with different tensile strength of springs were 

simulated under uniaxial compressive loading and biaxial compressive loading. Four 

numerical models were simulated under uniaxial compressive loading and other four 

numerical models were simulated under biaxial compressive loading. By setting the 

tensile strength of springs in meso-scale, the uniaxial compressive strength and uniaxial 

tensile strength of concrete in macro-scale were obtained. The relationship between the 

compressive strength and the tensile strength which was obtained at the same tensile 

strength of springs will be compared with that of JSCE (2007) equation. 

 

௧݂ ൌ 0.23 ௖݂
ଶ/ଷ 

(4.1) 

 

Meanwhile, the biaxial compressive strength of simulation results will be compared 

with that of experimental results done by Kupfer et al. (1969).  

 

4.4.2 Geometry of Numerical Models 

Figs. 4.1 and 4.2 show the geometry of the simulation models for uniaxial test and 

biaxial test, respectively. The dimension of simulation model for uniaxial test is 

150x150x300mm, and the dimension of simulation model for biaxial test is 

400x400x100 which is twice than that of experimental specimens done by Kupfer et al. 
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Fig.4.5 Uniaxial compressive strength with and without steel plates 

 

4.4 RESULT AND DISCUSSION 

4.4.1 Uniaxial Compression and Tension Test 

Figs. 4.6 and 4.7 show the stress-strain relationships of uniaxial compression and 

tension test of numerical models, respectively, by setting different tensile strength of 

springs, i.e. 2 MPa, 2.5MPa, 3 MPa, and 3.5 MPa.  

The stress of stress-strain relationships was determined based on the load which was 

applied on the top surface of models divided by the area of the top surface of the 

numerical models. The strain of stress-strain relationships was calculated based on the 

displacement which was applied on the top surface of models divided by the initial 

length of the numerical models. The maximum stresses of numerical models were 

predicted at a strain between 0.12% until 0.3%. 
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Fig.4.6 Simulation results of uniaxial compressive stress-strain relationship of concrete  

 

 

 

Fig.4.7 Simulation results of uniaxial tensile stress-strain relationship of concrete  
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Table.4.1 Uniaxial compressive and tensile strength of simulation predictions 

ft of springs 

(MPa) 

Simulation Prediction JSCE equation 

Comp.strength 

(MPa) 

Tensile strength 

(MPa) 

Comp.strength 

(MPa) 

Tensile strength 

(MPa) 

2 24.96 2.06 25.6 2 

2.5 36.90 2.57 35.8 2.5 

3 47.68 3.08 47 3 

3.5 60.01 3.58 59.25 3.5 

 

 
Fig.4.8 Relationship of compressive and tensile strength of concrete 

 

Table.4.1 and Fig.4.8 show the relationship of the uniaxial compressive and tensile 

strength at the same tensile strength of springs, compared with that of JSCE equation. 

The simulation results are in a good agreement with the relationship of uniaxial 

compressive strength and uniaxial tensile strength proposed by JSCE equation. 

Furthermore, Figs.4.9 and 4.10 show the surface cracks of numerical models after 

failure in case of uniaxial compressive loading and uniaxial tensile loading, 

respectively. 
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Fig.4.11 shows the internal stress and internal cracking of numerical models subjected 

to uniaxial compressive loading. When the load is relatively small, no cracks occur in 

the numerical models. As the load increases, the slopes of the stress-strain relationships 

changes as the result of the formation of microcracks in the numerical models. 

Furthermore, splitting cracks which are parallel to the loading direction are predicted. 

After failure, diagonal shear cracks were predicted in the numerical models as the result 

of the interaction of the normal stress and the shear stress in the models. 

 

4.4.2 Biaxial Compression Test 

Figs. 4.12, 4.13, 4.14, and 4.15 show the stress-strain relationships of biaxial 

compression tests of numerical models when the tensile strength of springs is 2 MPa, 

2.5MPa, 3 MPa, and 3.5 MPa, respectively. The stress of stress-strain relationships was 

determined based on the load which was applied on the top surface of models divided 

by the area of the top surface of the numerical models. In this study, the stress applied 

on the top surface of models is equal to the stress applied on the left side or the right 

side of the models. The strain of stress-strain relationships was calculated based on the 

displacement which was applied on the top surface of models divided by the initial 

length of the numerical models. Table 4.2 shows the biaxial compressive strength of 

concrete, predicted by the simulation results. 

 

 

Fig.4.12 Biaxial compressive strength of concrete (tensile strength of spring 2 MPa) 
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Fig.4.13 Biaxial compressive strength of concrete (tensile strength of spring 2.5 MPa) 

 

  

Fig.4.14 Biaxial compressive strength of concrete (tensile strength of spring 3 MPa) 

 

 

Fig.4.15 Biaxial compressive strength of concrete (tensile strength of spring 3.5 MPa) 
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Table.4.2 Biaxial compressive strength of simulation results 

ft of springs 

(MPa) 

Uniaxial 

Compressive 

Strength (MPa) 

Biaxial 

Compressive 

Strength (MPa) 

Ratio 

(Biaxial/Uniaxial) 

2 24.96 33.03 1.32 

2.5 36.90 50.87 1.38 

3 47.68 73.85 1.55 

3.5 60.01 101.23 1.69 

 

Based on the simulation results, the strength of concrete subjected to equal biaxial 

compressive stresses increases approximately by 32%-69% depending on the 

compressive strength of concrete. Higher compressive strength of concrete shows 

higher strength increase. Meanwhile, in the experimental results conducted by Kuper et 

al. (1969), the compressive strength subjected to equal biaxial stress increases by 16% 

which is not depended on the compressive strength of concrete. In case of smaller 

compressive strength of concrete, i.e. 2 MPa and 2.5 MPa, simulation results are almost 

the same as the experimental results. However in case of higher compressive strength of 

concrete, i.e. 3 MPa and 3.5 MPa, simulation results overestimate compared with 

experimental results.  

 

Figs.4.16 and 4.17 show internal cracks and surface cracks of numerical models after 

failure. The simulation results predict that major cracks parallel to the loading condition 

occur. This behavior is in a good agreement with experiments done by Kupfer et al. 

(1969). 
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(a) Stress-strain curves  (b) Poisson’s Ratio 

Fig.4.20 Lateral deformation and Poisson’s ratio under uniaxial tension 

 

When the load is relatively small, the simulation results predict the value of Poisson’s 

ratio is predicted in the range of 0.15-0.25 subjected to uniaxial compressive loading. 

As the load increases, around 80%-90% of its capacity, because of the beginning of the 

formation the splitting cracks that are parallel to the loading direction, the Poisson’s 

ratio increases. When the numerical models are loaded with uniaxial tensile loading, the 

simulation results predict that the Poisson’s ratios are almost constant until the loads 

reach the maximum load. 

 

4.6 EFFECT OF MESH ARRANGEMENT 

The mesh arrangement may affect the simulation results because in this study the 

voronoi points were introduced randomly. In order to check whether the mesh 

arrangement may affect the simulation results, 5 numerical models with different 

arrangement will be investigated through the comparison of stress-strain relationship, 

internal stress, and surface cracks. Numerical models will be loaded by uniaxial 

compressive loading and uniaxial tension loading. Fig.4.21 shows the cross section of 

numerical models with different mesh arrangements. Simulations are conducted only for 

2.5 MPa of tensile strength of springs.  
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to uniaxial compressive loading, uniaxial tensile loading, and biaxial loading. In this 

chapter, a parametric study is conducted for the constitutive model of the failure 

criterion of concrete. The effect of this constitutive model will be investigated. Fig. 4.26 

shows different failure criteria of concrete that becomes a parametric study in this 

chapter. The study will be done for all cases of tensile strength of springs, i.e. 2MPa, 2.5 

MPa 3MPa, 3.5 MPa. Nagai et al. (2005) signifies constitutive model that proposed by 

Nagai et al. (2005) (Eq.4.2). The proposed constitutive model will be signified by 

Proposal (Eq.4.3). Trial signifies the proposed constitutive model without capping in 

compression (Eq.4.4).  

 

߬௠௔௫ ൌ േ൫0.3 ௧݂௘௟௘௠
ଶ.ହሺെߪ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯  

 (4.2)

߬௠௔௫ ൌ േ൫1.6 ௧݂௘௟௘௠
ଶሺെߪ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯ ݂݅ ሺߪ ൒ 3 ௧݂௘௟௘௠ሻ 

߬௠௔௫ ൌ േ൫1.6 ௧݂௘௟௘௠
ଶሺെ3 ௧݂௘௟௘௠ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯ ݂݅ ሺߪ ൏ 3 ௧݂௘௟௘௠ሻ (4.3)

 

߬௠௔௫ ൌ േ൫1.6 ௧݂௘௟௘௠
ଶሺെߪ ൅ ௧݂௘௟௘௠ሻ

଴.ସ ൅ 0.15 ௧݂௘௟௘௠൯  (4.4)

   

 (a) ft =2 MPa (b) ft =2.5 MPa 
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 (c) ft =3 MPa (d) ft =3.5 MPa 

Fig.4.26 Different failure criteria of concrete  

 

  

 (a) ft =2 MPa (b) ft =2.5 MPa 

  

 (c) ft =3 MPa (d) ft =3.5 MPa 

Fig.4.27 Uniaxial compressive stress-strain relationships of concrete with different 

failure criteria  
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Table 4.3 Uniaxial compressive strength of concrete with different failure criteria 

Tensile strength of 

springs (MPa) 

Nagai et al. (2005) Proposal Trial 

2 11.64 24.96 27.27 

2.5 19.63 36.90 40.26 

3 29.52 47.68 53.68 

3.5 40.04 60.01 67.51 

 

  

 (a) ft =2 MPa (b) ft =2.5 MPa 

  

 (c) ft =3 MPa (d) ft =3.5 MPa 

Fig.4.28 Uniaxial tensile stress-strain relationships of concrete with different failure 

criteria  

 

Figs. 4.27 and 4.28 show the stress-strain relationships of simulation results when the 

numerical models are loaded with uniaxial compressive and tensile load, respectively 

with different failure criteria. Table 4.3 shows the uniaxial compressive strength of 

concrete with different failure criteria. Based on the uniaxial tensile stress-strain 

relationships of simulation results, the failure criterion of concrete does not affect the 
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behavior of uniaxial tensile stress-strain of concrete in macroscopic level. On the other 

hand, the failure criterion of concrete affects significantly the behavior of uniaxial 

compressive stress-strain of concrete in macroscopic response. By increasing the failure 

criterion of concrete, it is well understood that uniaxial compressive stress of concrete 

will increase because the failure of concrete will be delayed and simulation results 

predict the same tendency. However, simulation results predict that the uniaxial 

compressive strength of failure criterion without capping in compression increases only 

by 10% compared with that of with capping in compression. 

 

Figs. 4.29, 4.30, and 4.31 show the stress-strain relationships of simulation results 

when the numerical models are loaded with biaxial compressive load with different 

failure criteria, i.e. failure criterion model-1, failure criterion model-2, and failure 

criterion model-3., respectively. By increasing the failure criterion of concrete, the 

biaxial compressive strength also increases which is the same phenomenon as the 

uniaxial compression because the failure of concrete will be delayed. Furthermore, by 

capping the failure criterion in compression zone causes earlier failure of concrete 

which results the biaxial compressive strength is lower compared with in case of failure 

criterion without capping in compression zone. The simulation predicts that strengths of 

concrete under biaxial compression vary from 30 percent to 42 percent larger than that 

of the uniaxial compression strength in case of failure criterion model-1. In case of 

failure criterion model-2, the strengths of concrete under biaxial compression vary from 

32 percent to 69 percent larger than that of the uniaxial compression strength and in 

case of failure criterion model-3, the strengths of concrete under biaxial compression 

vary from 62 percent to more than 84 percent larger than that of the uniaxial 

compression strength. 
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 (c) ft =3 MPa (d) ft =3.5 MPa 

Fig.4.29 Stress-strain relationship of uniaxial and biaxial compression of failure 

criterion model-1 

 

  

 (a) ft =2 MPa (b) ft =2.5 MPa  

  

 (c) ft =3 MPa (d) ft =3.5 MPa  

Fig.4.30 Stress-strain relationship of uniaxial and biaxial compression of failure 

criterion model-2 

 

0

10

20

30

40

50

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

0

10

20

30

40

50

60

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

0

10

20

30

40

50

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

: Uniaxial (25.0 MPa)
: Biaxial (33.0 MPa)

0

10

20

30

40

50

60

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

0

20

40

60

80

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

0

20

40

60

80

100

120

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

C
om

p
re

ss
iv

e 
S

tr
es

s 
(M

P
a)

Strain (%)

  : Uniaxial (36.7 MPa) 
 : Biaxial (50.9 MPa) 

  : Uniaxial (47.7 MPa)
 : Biaxial (73.9 MPa)   : Uniaxial (60.0 MPa) 

 : Biaxial (100.3 MPa) 

32% 
38% 

55%
69% 

  : Uniaxial (29.5 MPa)
 : Biaxial (38.8 MPa) 

31%
42% 

  : Uniaxial (40.1 MPa) 
 : Biaxial (56.7 MPa) 



60 
 

  

 (a) ft =2 MPa (b) ft =2.5 MPa 

  

 (c) ft =3 MPa (d) ft =3.5 MPa  

Fig.4.31 Stress-strain relationship of uniaxial and biaxial compression of failure 

criterion model-3 

 

Fig.4.32 Relationship of compressive and tensile strength of concrete with different 

failure criterion of concrete 
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Fig.4.33 Increasing ratio of biaxial compressive strength compared with uniaxial 

compressive strength with different failure criterion 

 

Fig.4.32 shows the relationship of compressive and tensile strength of concrete with 

different failure criterion of concrete. Based on this relationship, proposal model and 

trial model show a good agreement with JSCE equation. Furthermore, Nagai et al. 

(2005) model shows an underestimate result. Meanwhile Fig.4.33 shows the increasing 

ratio of biaxial compressive strength compared with uniaxial compressive strength with 

different failure criterion. Based on this increasing ratio, Nagai et al. (2005) model 

shows the closest result with the experimental result and the proposal model is higher 

than Nagai et al. (2005) model. The Trial model shows the highest increasing ratio of 

biaxial compressive strength. Thus, based on these reasons, in this study the proposal 

model is selected because Nagai et al. (2005) model shows an underestimate result in 

case of uniaxial compressive strength and trial model shows the highest increasing ratio 

of biaxial compressive strength. 

 

4.8 EFFECT OF TENSION SOFTENING OF CONCRETE 

In this chapter, a parametric study is also conducted for the constitutive model of the 

tension softening of concrete of normal springs. Two types of constitutive models of 

tension softening concrete, i.e. linear softening of concrete and bi-linear softening of 

concrete, will be investigated through the simulation of uniaxial compression and 

uniaxial tension. The simulation is conducted only in case of 2.5 MPa of tensile strength 

of springs. Fig. 4.34 shows the constitutive model of linear and bi-linear softening of 
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concrete. 

 
 

 

 

 

 

 

 

 

 

 

 (a) Linear model (Hayashi et al. 2013) (b) Bi-linear model 

Fig.4.34 Constitutive model of normal spring of concrete 

 

 

Fig.4.35 Stress-strain relationship of uniaxial compression with different tension 

softening of concrete 
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the behavior of uniaxial tension doesn’t change with different failure criterion of 

concrete. 

6. Based on the parametric study of the tension softening of concrete, the tension 

softening concrete of normal springs affect significantly the behavior of the uniaxial 

tension and the softening of the uniaxial compression . On the other hand, the 

behavior of uniaxial compression does not change until the maximum load. 
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Chapter Five 

 SIMULATION OF TENSION STIFFENING 
 
 

5.1 INTRODUCTION 

The deformation behavior of reinforced concrete members is affected by many factors. 

One of the important factors, affecting the deformation of reinforce concrete, is the 

constitutive laws of bond between concrete and steel reinforcement,  due to the 

stretching of the anchored bars in the connections of reinforced concrete members and 

the tension stiffening effect in the reinforced concrete members. Popov (1984) described 

that very large contribution made to the tip deflection by the fixed-end rotation of the 

beam caused by the fixed-end rotation of the beam caused by a pullout of the bars from 

the anchorage zone. In the other hand, the tension stiffening effect influences the 

stiffness of the reinforced concrete members as the stiffness of the members is 

decreased by the propagation of cracks. Since the bond behavior of deformed bars is 

more complicated than that of plain bars, the tension stiffening effect in reinforced 

concrete, reinforced with a deformed bar, will be mainly discussed. 

 

The behavior of the tension stiffening effect in the reinforced concrete members can be 

defined by the capability of the concrete to develop tensile stress away from the crack 

section by the presence of bond between concrete and the reinforcement bar. When a 

reinforced concrete member is loaded by an axial tensile force, the tensile stress, 

working both in the concrete and in the reinforcement bar, will vary along the member 

and the stresses are different each other, depending on their modulus elasticity. 

Furthermore, the equilibrium at any section of the reinforced concrete member can be 

expressed generally by Eq. 5.1. 

 

P ൌ ௖ߪ௚ܣ ൅ ௦ (5.1)ߪ௦ܣ

 

As the tensile force increases, the first crack occurs when the tensile stress, working in 

the concrete, exceeds the tensile capacity of the concrete and the force will be fully 

resisted by the reinforcement bar at the cracked section. Furthermore, the force is 

gradually transferred to the concrete at each side of the crack by the presence of bond 

between concrete and reinforcement bar. As the result, new cracks will occur at a certain 

distance from the previous crack when the tensile force increases. Furthermore, 
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although at the crack section the tensile force is fully resisted by the reinforcement bar, 

concrete between cracks is still able to develop tensile stress by the occurrence of the 

bond between concrete and reinforcement bar. Eventually, it can be concluded that the 

propagation of cracks and the bond behavior between concrete and the reinforcement 

bar play important roles in the behavior of the tension stiffening effect in the reinforced 

concrete members (Fig. 5.1). 

 

In order to study the tension stiffening effect in the reinforced concrete members, there 

are two alternatives i.e. experimental works in laboratories and computational numerical 

simulations. Through experimental works, the bond behavior and the tension stiffening 

effect in the reinforced concrete have been well established. Goto et al. (1971) 

successfully studied the propagation of cracks, i.e. internal cracks, primary cracks, 

secondary cracks, and longitudinal cracks formed around the deformed bar, when a 

reinforced concrete member is loaded by an axial tensile force. In the other hand, Shima 

et al. (1987) successfully modeled the bond behavior in a massive concrete by a unique 

bond-slip-strain relationship and the tension stiffening effect in the reinforced concrete 

by the concept of average stress-strain relationships of concrete and the reinforcement 

bar.  

 

Hayashi et al. (2012) has modeled the anchorage of reinforcement in reinforced 

concrete beam-column joints by using a 3-dimensional RBSM, but the analysis was 

limited in the uniaxial tests and without yielding of the bar. In the other hand, Ikuta et al. 

(2012) has modeled the anchorage of reinforcement in L beam-column joints However, 

the accuracy of RBSM in modeling the bond behavior between concrete and the steel 

 

Crack 

Bond 

 

Fig.5.1 Tension stiffening 
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reinforcement has not been clarified yet, so that further studies are needed. In this study, 

by modeling the tension stiffening effect in the reinforced concrete by a 3-dimensional 

RBSM is one way to study the bond behavior between concrete and the steel 

reinforcement. Eventually, the purpose of this study is to simulate the tension stiffening 

effect in the reinforced concrete by 3-dimensional discrete model. 

 

5.2 OVERVIEW OF EXPERIMENTAL STUDIES BY SHIMA ET AL 

Shima et al. (1987) has successfully modeled the tension stiffening effect in the 

reinforced concrete by the concept of average stress-strain relationships of concrete and 

the reinforcement bar. The method to determine the average stress-strain relationships of 

concrete and the reinforcement bar is as follows. As strains were measured along the 

reinforcement bar, average strain can be calculated by dividing the integration of strain 

distribution along the reinforcement bar by the length of the specimen. At each 

measured point, stress can be calculated by the strain-stress relationship of a bare bar. 

The same concept with the average strain was applied. The average stress can be 

calculated by dividing the integration of stress distribution along the reinforcement bar 

by the length of specimen. The load carried by a reinforcement bar is calculated by 

multiplying the average stress by its cross section. Finally, total load resisted by 

concrete can be calculated by subtracting total load by total load resisted by the 

reinforcement bar and the average stress of concrete can be calculated by dividing the 

total load resisted by concrete by concrete sectional area. 

 

Based on this model, it was found that when a bar at crack section yields, the steel 

stresses outside the crack section should be lower than the yield strength. As the result, 

the average stress-strain of steel should have lower yielding point than the yielding 

point of bare bar.  

 

In this study, the simulation was conducted for two experimental specimens conducted 

by Shima et al. (1987), low yield strength of reinforcement bar and normal yield 

strength of reinforcement bar. The dimension of the experimental specimen is shown in 

Fig.5.2.  

 

A steel bar is arranged in the center of concrete prism for the tension test. A deformed 

bar having diameter of 19 mm was used. In order to measure strain, strain gages were 

places at an interval of 10 ribs at two opposite sides of the reinforcement bar. The 

length of specimen was determined as long as possible depending on the experimental 
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limitations since higher accuracy will be obtained in case of longer specimen.  

 

5.3 DETAIL OF NUMERICAL MODELS 

5.3.1 Numerical Models 

Simulations were conducted for experiments conducted by Shima et al. (1987). The 

purpose of the experiments was to obtain the average stress strain relationship in the 

post yield of a bar in concrete since at that time the stiffness of reinforcement bars in 

reinforced concrete was assumed as same as that of bare bar. Furthermore, this 

assumption was inapplicable for the post-yield range of reinforcement bars.  

 

In the experiments, the specimens with different concrete strength, reinforcement ratio, 

yield strength of reinforcement bars, and curing condition were tested under uniaxial 

tensile loading. In this study, the effect of the yield strength of reinforcement bars is the 

main focus. 

 

Numerical models are listed in Table 5.1. Two numerical models, with different yield 

strength of reinforcement bars, were modeled.  

 

 

 

Table 5.1 Detail of numerical models 

 

Case 

 

Parameter 

Material Properties of Concrete Re-bar Number 

of 

Elements

Compression 

f′c (MPa) 

Tension

ft (MPa)

Elasticity

Es (MPa)

Yield 

fy (MPa)

Elasticity 

Es (MPa) 

1 Yield 

strength 

25 1.5 25500 350 190000 93422 

2 Yield 

strength 

25 1 25500 610 190000 93422 

 

 

250 

D19 

2700

20
0 

Fig.5.2 Experimental specimen 



 

 

5.3.2

Fig.5

expe

mode

19 m

mate

speci

 

5.3.3

Fig.5

lengt

near 

steel 

loadi

Mean

 

 

 

 

 

 

 

 

 

 

 

 

250 

2 Geome

5.3 shows t

rimental sp

els was mod

mm was used

erial proper

imens 

3 Bounda

5.4 shows t

th was mod

the loaded 

element at

ing step. 10

nwhile, fixe

250

200 

Fixed-e

try of Nume

the geomet

pecimens, w

deled as the

d as the ma

rties of nu

ary Conditio

the boundar

deled at both

end and the

t the loaded

000-2000 s

ed in all dire

Fig.5.3 G

end

erical Mode

try of the n

were modele

e same as th

ain reinforce

umerical m

on 

ry condition

h sides of th

e fixed end. 

d end face. D

steps of dis

ection was a

3000

300

Geometry of

Fig.5.4 B

70 

els 

numerical m

ed. The rei

hat of exper

ement locat

models are 

n of numer

he numerica

Monotonic

Displaceme

splacement-

assumed at 

0

00

f numerical

Boundary co

models. Th

inforcement

rimental spe

ted at the ce

the same 

rical models

al models to

c displacem

ent is increa

-loading are

the steel ele

l models (Un

ondition 

Loa

e same dim

t arrangeme

ecimens. A 

enter of con

as those 

s. A 150 m

o eliminate 

ent-loading

ased by 0.0

e applied in

ement at the

nits: mm) 

ading-end 

mensions, a

ent of num

deformed b

ncrete prism

of experim

mm of un-bo

the confine

g is applied t

0015 mm at

n the simu

e fixed end.

200 

250 

20D19 

as the 

erical 

bar of 

m. The 

mental 

onded 

ement 

to the 

t each 

ulated. 

  

250

00



71 
 

5.4 DISCUSSION AND RESULTS 

5.4.1 Load-displacement Relationships 

The results of tension stiffening can be presented in macroscopic response, i.e. 

load-average strain relationship, and in microscopic response, i.e. average stress-strain 

of reinforcement and average stress-strain of concrete. The simulation results are 

compared with the experimental results, conducted by Shima et al. (1987). Fig.5.5 

shows the simulation results compared with the experimental results in case of normal 

yield strength and low yield strength.  

 

Based on the load-average strain relationship, the tensile stiffness of a reinforced 

concrete element is higher than that of a bare bar both normal yield strength case and 

low yield strength case.  Therefore, the tension stiffening effect of reinforced concrete 

can be simulated well by using RBSM, as the result of the presence of bond between 

reinforcement bar and concrete. Furthermore, since the yield strength of numerical 

model 1 is lower than that of numerical model 2, simulation predicts that the capacity of 

numerical model 1 is lower than that of numerical model 2 which is the same tendency 

as the experimental results.  

 

Based on the average stress-strain of reinforcement bar, it was predicted that the 

yielding point of the average stress-strain relationship of reinforcement is lower than 

that of the bare bar in both cases. It is well known that when a reinforcement bar at 

crack section yields, the stress of reinforcement bar between 2 cracks should be less 

than that of the bare-bar. Furthermore, it is predicted that the yielding point of the 

average stress-strain relationship of reinforcement in normal yield strength case is 

higher than that of in low yield strength case. Simulation predicts that the yielding point 

begins at the average strain around 0.07 % and 0.28% in case of low and normal yield 

strength, respectively. The same tendency was observed in the experiment. However, 

the yielding point of the average stress-strain relationship of reinforcement in low yield 

strength case of simulation results is predicted higher than that of experimental results.  

 

Simulations results also predict that there is no yield plateau in the average stress-strain 

of reinforcement which is usually found in the stress-strain relationship of a 

reinforcement bar.  
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Load-average strain relationship 

  

 

Average stress-strain of reinforcement bar 

  

 

Average stress-strain of concrete 

  

 (a) fy = 350MPa  (b) fy = 610MPa 

Fig.5.5 Load-average strain and average stress-average strain relationships with 

different yield strength of reinforcement bar 
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Moreover, it is revealed from the average stress-strain relationship of concrete that the 

concrete still can resist the tensile load in the post cracking range. Eventually, the 

load-average strain, the average stress-strain relationship of reinforcement bar and the 

average stress-strain relationship of concrete of simulation results are roughly the same 

as those of experimental results. 

 

5.4.2 Strain profile, internal cracks, and surface cracks 

Fig.5.6 shows the internal cracks and strain profiles of the simulation results compared 

with the strain profile obtained from the experimental results in case of normal yield 

strength. Meanwhile, Fig.5.7 shows the internal cracks and strain profiles of the 

simulation results compared with the strain profile obtained from the experimental 

results in case of normal yield strength.  

 

When the load is relatively small, at the average strain of 0.015%, both cases show that 

small amount of cracks occurs in the numerical models. Furthermore, at the location of 

the formation of cracks, the strain of the reinforcement bar is higher than other locations. 

It indicates that at the location of cracks, the force is fully resisted by the reinforcement 

bar and simulation can simulate this behavior. As the load increases, at the average 

strain of 0.044%, new cracks are formed at the certain distances from the previous 

cracks in both cases because of the occurrence of bond between concrete and the 

reinforcement bar. It can be concluded that simulation can simulate the propagation of 

cracks gradually as the load increases because of bond between concrete and the 

reinforcement bar. 

 

Simulation result predicts that yielding occurs at a certain location when the average 

strain is still lower than the yield strain of a bare bar. Furthermore, when a 

reinforcement bar yields at a certain location, stresses at other locations are lower than 

the yield stress. As the result, the average stress is lower than the yield stress of a bare 

bar.  

 

In case of numerical model 1, the reinforcement bar yields earlier than numerical model 

2 because of lower yield strength of reinforcement bar. Simulation results predict that 

the reinforcement bar yields at average strain 0.07% and 0.25% in numerical model 1 

and 2, respectively. 

 

 



 

 

Load

 

a. Av

b. Av

c. Av

1

2

3

L
oa

d
 (

k
N

)

0

0

0

0

0

0

0

0

0

d-displacem

Average strai

Average strai

Average strai

0

100

200

300

0.0%

a
b
c

0.00%

0.10%

0.20%

0

0.00%

0.10%

0.20%

0

0.00%

0.10%

0.20%

0

ment relation

in 0.015% 

in 0.044% 

in 0.070% 

0.5%

Average S

d e

500

500

500

nship 

%

Strain

1000

1000

1000

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0%

1500

1500

1500

Crack Wid

 : 0.1 m

    : 0.3 m

 : 1 mm

Strain: 

  : Yield

 : Strai

2000

2000

2000

dth: 

mm 

mm 

m 

d strain 

in hardening

2500

2500

2500

g strain 

0

0

0



 

d. Av

e. Av

Strai

Average strai

Average strai

in profile of

Fig.5.6 

0.00%

1.00%

2.00%

0

0.00%

1.00%

2.00%

0

in 0.25% 

in 0.50% 

f experimen

Strain profi

500

500

(Def

nt: 

ile and inter

1000

1000

75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formation ×

 

 

 

 

 

 

 

 

rnal cracks i

 

1500

0 150

×10) 

in case of lo

0 2000

00 200

ow yielding

0 250

00 25

 

g strength 

00

500



 

Load

a. A

b. Av

c. Av

10

20

30

L
oa

d
 (

k
N

)

0

0

0

d-displacem

Average stra

Average strai

Average strai

0

00

00

00

0.0%

a
b

c

0.00%

0.20%

0.40%

0

0.00%

0.20%

0.40%

0

0.00%

0.20%

0.40%

0

ment relation

ain 0.015% 

in 0.044% 

in 0.28% 

0.5%
Average S

d
e

500

500

500

nship 

train

1000

1000

1000

76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0%

1500

1500

0 1500

Crack W

 : 0.

    : 0.3

 : 1 m

  : Yi

 : Str

2000

0 2000

0 200

Width: 

1 mm 

3 mm 

mm Strain: 

eld strain 

rain harden

0 2500

0 250

00 25

ning strain 

0

00

00



 

d. Av

e. Av

Strai

Average strai

Average strai

in profile of

Fig.5.7 St

0.00%

1.00%

2.00%

0

0.00%

1.00%

2.00%

0

in 0.39% 

in 0.50% 

f experimen

train profile

500

500

(Def

nt: 

e and interna

1000

1000

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formation ×

 

 

 

 

 

 

 

al cracks in

 

0 150

0 150

×10) 

n case of nor

00 200

00 200

rmal yieldin

00 25

00 25

 

 

ng strength 

500

500



78 
 

 

5.5 EFFECT OF TENSILE STRENGTH REDUCTION OF INTERFACE 

ELEMENTS 

As described in the previous chapter, in order to consider the interface as a weak region, 

the tensile strength of the interface elements is assumed to be half of that of concrete 

elements. In this chapter, the assumption of this tensile strength reduction will be 

investigated through the parametric studies. Three types of tensile strength of interface 

elements will be simulated, i.e., no reduction of tensile strength (=ft concrete), half of 

the tensile strength of concrete elements (=0.5×ft concrete), very small value of tensile 

strength (= zero) (Fig.5.8). The yield strength of the reinforcement bar is 350 MPa. 

Fig.5.9 shows the load-average strain, average stress-strain relationship of 

reinforcement bar, and average stress-strain relationship of concrete. 

 

Based on the load-average strain relationships, simulation results predict that the 

stiffness in a reinforced concrete member slightly increases as the tensile strength of the 

interface elements increases before and after cracking. In addition, based on the average 

stress-strain relationship of concrete, the tensile strength and the stiffness of concrete 

slightly increase as the tensile strength of the interface elements is higher. As the result, 

it is well known that if the concrete strength is higher, the yielding point of the average 

stress-strain relationship of reinforcement bar is lower. It can be concluded that the 

tensile strength of the interface elements contributes to the concrete strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) ft interface = ft concrete (b) ft interface = 0.5×ft concrete (c) ft interface = 0 

Fig.5.8 Constitutive models of interface elements with different tensile strength 
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Load-average strain relationship 

 

 

Average stress-strain of reinforcement bar 

 

Average stress-strain of concrete 

 

Fig.5.9 Load-average strain and average stress-average strain relationships with 

different tensile strength reduction of interface elements 
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5.6 EFFECT OF MODELING STRAIN HARDENING REGION OF STEEL 

ELEMENTS 

In the previous study by Hayashi et al. (2012), strain hardening region of steel elements 

has not been introduced and a bilinear model was assumed. In this study, the strain 

hardening region is introduced (Fig. 5.11). The constitutive model of the normal spring 

used in this simulation is represented by the following equations (adopted from Shima et 

al. 1987). 

 

σ ൌ 																										ߝ௦ܧ 																												 ݂݅ ሺߝ ൏ ௬ሻߝ                           

σ ൌ ௬݂																													 																												 ݂݅ ሺߝ௬ ൏ ߝ ൏ ௦௛ሻߝ                     

σ ൌ ௬݂ ൅ ቀ1 െ ݁
ഄೞ೓షഄ

ೖ ቁ ൫1.01 ௨݂ െ ௬݂൯						 ݂݅ ሺߝ ൐ ௦௛ሻߝ     
(5.2)

 

where 

k = 0.032(400/fy)1/3 

σ  : stress ( MPa) 

ε : strain 

fy : yield strength (MPa) 

fu : tensile strength (MPa) 

εsh : initial strain of hardening, assumed 1.5% 

  

The effect of modeling this strain hardening region will be investigated through the 

simulation of tension stiffening effect. Fig.5.12 shows the load-average strain, average 

stress-strain relationship of reinforcement bar, and average stress-strain relationship of 

concrete with and without strain hardening region of steel elements. 

(a) With strain hardening  (b) Without strain hardening 

     (Hayashi et al. 2012) 

Fig.5.11 Constitutive models of steel elements 
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Load-average strain relationship 

 

Average stress-strain of reinforcement bar 

 

Average stress-strain of concrete 

 

Fig.5.12 Load-average strain and average stress-average strain relationships with and 

without strain hardening region of steel elements. 
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Fig.5.13 Strain profile with and without strain hardening region 

 

Based on the load-average strain relationship and the average strain-stress relationship 

of the reinforcement bar, the difference occurs after the yielding point of the average 

stress-strain relationship of the reinforcement bar. The load carried by the reinforced 

concrete is lower in case of without strain hardening region. Furthermore, after the 

reinforcement bar yields at the crack section, yield plateau is found in the average 

stress-strain relationship of reinforcement bar if strain hardening region is not modeled.  

 

In order to understand this difference, Fig.5.13 shows the strain profile with and without 

modeling strain hardening region. Before yielding, at average strain of 0.044%, no 

difference of strain profile is predicted in both cases. As the load increases, at average 

stress of 0.25%, because of no strain hardening region, the strain jumps up dramatically 

after yield has occurred at both loading-end and fixed-end which indicates the failure of 

the reinforcement bar. In addition, strains are localized after yielding occurred. 

Meanwhile, since strain hardening region is modeled, the reinforcement bar can still 

carry more load. 

 

CONCLUSIONS 

1 In this chapter, the applicability of RBSM to simulate the bond behavior between 

concrete and reinforcement bar is investigated through the simulation of tension 

stiffening effect. When the displacement is relatively small, small amount of cracks 

occur in the numerical models. As the displacement increases, new cracks are 

formed at the certain distance from the previous cracks because of the bond 

between the concrete and the reinforcement bar. It can be concluded that RBSM 

a. Average strain 0.044% (before yielding) 

b. Average strain 0.25% (after yielding) 
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can simulate the bond behavior in a reinforced concrete member. 

2 Simulation results also show that the yielding point of average stress-strain of 

reinforcement bar of low yield strength is lower than that of high yield strength. In 

case of low yield strength of reinforcement bar, the reinforcement bar yield just 

after the cracking started. The simulation results show in a good agreement with 

that of simulation result. 

3 By the parametric study of the tensile strength of the interface element between 

concrete and the reinforcement bar, by increasing the tensile strength of the 

interface element between concrete and the reinforcement bar affects slightly the 

strength and stiffness of concrete in average stress-strain of concrete relationship. 

As the result the stiffness of load-average strain relationship and the yielding point 

of average stress-strain of reinforcement bar will be affected slightly. 

4 The strain hardening region in the constitutive model of a reinforcement bar is 

introduced in this study that affects the average stress-strain relationship of a 

reinforcement bar. The absence of the strain hardening region causes the yield 

plateau in the average stress-strain of the reinforcement bar after the yielding point. 

Furthermore, strain localization will occur.  

 

REFERENCES 

Hayashi, D., Nagai, K., and Suryanto, B.: Investigating the Effects of Reinforcement 

Arrangement on the Anchorage of Reinforcement Using the Three-dimensional Discrete 

Analysis, Proceedings of the 4th Bond in Anchorage Conference, 2012, pp. 185-192. 

 

 Kawai, T.: New Discrete Models and Their Application to Seismic Response Analysis 

of Structure, Nuclear Engineering and Design, 48, 1978, 207-229. 

 



86 
 

Chapter Six 

ANALYSIS AND RESIDUAL CAPACITY OF RESIDUAL RC 
CORBEL FAILED BY ANCHORAGE SPLITTING FAILURE 

6.1 INTRODUCTION 
Corbel is a short cantilever member that comes out from a column, a wall, or a bridge 

pier, to sustain a load, originating from a gantry girder or a precast concrete beam. A 

corbel is generally built monolithically with a column or a wall, and is characterized by 

a low shear span-to-depth ratio. To transfer a load from a beam to a corbel, a bearing 

pad is usually installed on the corbel. However, for the easiness of the construction, 

some bearing pads were installed in the wrong position, at the free end of corbels. The 

position of the bearing does not satisfy the requirement in the design code (JSCE 2007). 

 

Based on the filed observation (Singapore, 2012), several corbels were found to be 

failed at a lower capacity than their expected capacity due to the faulty design of 

bearing pads positions. Bearing pads were found to be extended to the edge of the 

corbel. Meanwhile, based on the experimental results, conducted by Kriz and Raths 

(1965), several failure mechanisms can be classified into (see Fig.6.1): 

1. Flexural tension failure  

This failure occurs when flexural reinforcement bars yield excessively. The 

tendency that the flexural cracks become very wide signifies this type of failure. In 

addition, concrete crushing occurs at the sloping end of the corbel. 

2. Diagonal splitting failure 

This failure occurs along the diagonal compression strut after the occurrence of 

flexural cracks.  

3. Sliding shear failure 

This failure is characterized by a series of short and step diagonal cracks. The corbel 

separates from the column face as these cracks interconnect. 

4. Anchorage splitting failure 

This failure occurs when a load is applied to the edge of the corbel, at the position of 

the bending portion of the anchorage. 

5. Bearing failure 

If the bearing plates are too small or too flexible, the concrete may crush underneath 

the bearing plates. 
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6. Horizontal tension 

If the outer face of the corbel is too shallow and an adverse horizontal load is also 

introduced. 

 

Based on this classification, such failure can be classified the anchorage splitting failure. 

Meanwhile, few cracks, either diagonal compression cracks or flexural cracks, occur in 

the corbel. Based on this behavior, if the location of bearing pad is moved to the straight 

portion of the flexural reinforcement of the corbel, there is still a possibility that the 

corbel is still able to resist the load, although a local failure occurs. Furthermore, the 

option to move the bearing pad to the straight portion of the flexural reinforcement 

might be a simple way for recovering the capacity of a corbel failed by the anchorage 

splitting failure. However, how much load that a corbel is still able to resist after a local 

 

 
 

 

Fig. 6.1 Failure mechanisms in corbels (a) Flexural tension failure; (b) Diagonal 

splitting failure; (c) Sliding shear failure; (d) Anchorage splitting failure; (e) Crushing 

due to bearing; (f) Horizontal tension failure 
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failure occurs, which is called residual capacity, has not been investigated. 

In order to study the residual capacity of a reinforced concrete corbel failed by an 

anchorage splitting failure, there are 2 alternatives, i.e. experimental works and 

computational numerical simulations. Through experimental works, the real 

load-displacement relationship and surface cracks can be obtained easily. However, the 

internal cracks and the internal stress are difficult to be observed. Our research group 

has conducted a meso-scale analysis of reinforced concrete members by a 

3-dimensional discrete element analysis, called RBSM. The study on a reinforced 

concrete member at the meso-scale, in which the local re-bar arrangement is considered 

by modeling the rib of re-bar, is useful for the precise evaluation of its behavior, since at 

this level, cracks occur as the result of the interlock mechanism between concrete and 

re-bar. 

 

Eventually, the purpose of this study is to study the residual capacity of a reinforced 

concrete corbel failed by an anchorage splitting failure, both by experimental work and 

numerical simulation. Based on this finding, an efficient method to retrofit the damage 

corbel will be proposed based on the study of internal stress and internal cracks 

condition. 

 

6.2 EXPERIMENTAL PROGRAMS 

6.2.1. Experimental specimens 

To study the residual capacity of a corbel failed by an anchorage splitting failure, 3 

reinforced concrete corbels were loaded with different loading positions (see Table 6.1). 

The specimens were reinforced with reinforcement bars. The column segment was 

reinforced by four longitudinal deformed bars of 16 mm and six lateral ties of 10 mm. 

Deformed bars of 13 mm, that were used as the flexural reinforcements of the corbel, 

were bent through 90 degree at the edge of the corbels. Two deformed bars of 10 mm 

were used as the lateral ties of the corbel. The distance between the top surface of the 

concrete and the top surface of the outer stirrups, of all specimens was 20 mm. Fig. 6.2 

shows the dimension and the reinforcement bars arrangement of the experimental 

specimens. 

 

For the recognition of the variable in each specimen, the following notations were used. 

EC signifies the specimen with bearing pads installed and loaded on the edge of the 

corbel. The purpose of corbel EC is to verify the occurrence of the anchorage splitting 
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Table 6.2 Detail of numerical models ______________________________________________________________________  
   Strength of Concrete  Maximum Load    ___________________  __________________ 
  Shear Compression Tension Number of EXP  ANA 
Case Parameter av(mm) f′c (MPa)  ft (MPa) elements (kN) (kN) _____________________________________________________________________________________ 
EC Loading on 125 45.52 2.66 318494  428 328 
 Edge Pad 
MC Loading on 220 41.89 2.81 318448  229 199 
 Middle Pad  
RCC Residual 220 45.52 2.66 318747  409 301 
 Capacity ____________________________________________________________________________________ 

 

6.3 DETAILS OF NUMERICAL MODELS  

6.3.1 Numerical models 

Table 6.2 shows the numerical models that were conducted in order to study the 

residual capacity of a corbel failed by an anchorage splitting failure. The same notations 

with experiment specimens were used. 3 numerical models, with different positions of 

bearing pads, were modeled. 

 

6.3.2 Geometry of numerical models 

The same dimensions, as experimental specimens, were modeled. However, for the 

simplification of the models and in order to reduce the computational time, only one 

side of the corbels was modeled and the stirrups in the column segment were not 

modeled. Fig.6.4 shows the geometry of the numerical models. 

 

6.3.3 Boundary conditions 

Fig.6.5 shows the boundary conditions of numerical models. Fix condition in all 

direction is assumed at the top and the bottom of the column segment. Monotonically 

displacement-load controlled was applied on the bearing pad of the corbel. The 

displacement-load increases 0.016 mm for every step of load. 200 steps of 

displacement-load were applied in the simulation. The boundary condition in the 

column segment is different with the experimental test setup. However, it has been 

confirmed that this boundary condition does not affect the simulation results, i.e. 

load-displacement relationships and crack patterns. 

 

In order to introduce the residual capacity analysis in the numerical simulation of 

Corbel RCC, 2 bearing pads were modeled in case of corbel RCC, i.e. an edge bearing 
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which was measured by a LVDT, located at the bearing pad of the corbel. It should be 

emphasized that the displacement that was measured by the LVDT is not the relative 

displacement between 2 points of measurement, i.e. the top surface and the bottom 

surface of the specimens. Furthermore, the rigid body movement of specimens is 

included into this measurement. Experimental results are shown until the peak load 

because the measurements were not stable in the post peak due to the brittle failure. 

Meanwhile, the load and the displacement of the load-displacement relationships of the 

numerical models were determined based on the load and the displacement which were 

applied on the bearing pad. 

 

The maximum loads of the numerical models are roughly the same as those of 

experimental specimens, i.e. approximately 13-17% difference. In case of corbel EC, 

the simulation prediction is underestimate by 13%, and in case of corbel MC, the 

simulation prediction is underestimate by 17%. The initial stiffness of the experimental 

results is lower than that of simulation results. Crushing gypsum layer located at the 

bearing pad causes the rigid body movement of the specimens. Since the LVDT is 

located only at the bearing pad position, the rigid body movement of the specimen is 

included in the displacement measurement. 

 

Both experimental and numerical results show that the maximum load of corbel EC is 

reduced by approximately 45 % of reduction ratio compared with that of corbel MC. It 

can be concluded that the position of the bearing pad is important. When the load is 

applied on the edge of the corbel, the load capacity of the corbel will be reduced 

significantly. 
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Chapter SEVEN 

 SIMULATION OF BEAM COLUMN JOINT WITH COMPLEX 
ARRANGMENT OF REINFORCEMENT BARS 

 

7.1 INTRODUCTION 

Reinforcement congestion, at a beam column joint, can cause difficulties during 

compaction of concrete, resulting poor quality of construction. To reduce the 

reinforcement congestion in a beam column joint, a comprehensive study of the 

behavior of a beam column joint is needed. However, the behavior of a beam column 

joint has not been clarified well. Many aspects are involved in a relatively small 

dimension of beam column joint.  

 

In order to study the behavior of a beam column joint, there are 2 alternatives, i.e. 

experimental works and computational numerical simulations. Through experimental 

works, the real load-displacement relationship and surface cracks can be obtained easily. 

However, the internal cracks and the internal stress are difficult to be observed. Our 

research group has conducted a meso-scale simulation of reinforced concrete members 

by a 3-dimensional discrete element analysis, called RBSM. The study on a reinforced 

concrete member at the meso-scale, in which the local re-bar arrangement is considered 

by modeling the rib of re-bar, is useful for the precise evaluation of its behavior, since at 

this level, cracks occur as the result of the interlock mechanism between concrete and 

re-bar. Moreover, Ikuta et al. (2012) successfully simulated different crack patterns with 

different bending radius of re-bars of L-shaped beam column joint with simple 

arrangement of re-bars by RBSM. Meanwhile, the applicability of RBSM in modeling a 

beam column joint with a complex reinforcement arrangement has not been investigated. 

In this study, by modelling a complex reinforcement arrangement, the applicability of 

RBSM in predicting the beam column joint failure is investigated.  Thus, the 

simulation results are compared with the experimental observations. 
 
7.2 DETAIL OF NUMERICAL SIMULATION 

7.2.1 Numerical models 

Simulation was conducted for an experiment of a beam column joint, done by Japan 

Railway. Dimensions, reinforcements, and material properties of numerical model and 

experimental specimen are the same. Table 7.1 shows the dimension and material 

properties of the beam column joint. Fig. 7.1 shows the geometry of the numerical  
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Table 7.2 Maximum load of the experimental specimen and numerical model 

Case Experiment(Pexp) Simulation(Pana) Pexp/Pana 

Open 160.3 kN 114.2 kN 71% 

Close 272.3 kN 217.9 kN 75% 

 

 

Fig. 7.5 Load-displacement relationship 

 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Load-displacement relationships 

Fig. 7.5 shows the load-displacement relationship of simulation result, compared with 

the experimental observation. Table 7.2 shows the maximum load of the experimental 

specimen and numerical model. The load and the displacement of the load-displacement 

relationship of numerical model were determined based on the load and the 

displacement which were applied to the pin, located at the end of the beam. The 

maximum loads of numerical model are roughly the same as those of experimental 

specimen, i.e. approximately 25-29% difference. 

 

Both experimental and simulation results show that the maximum load of open case is 

lower than that of close case. Furthermore, the failure behavior of the beam column 

joint will be described below.  
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7.3.4 Surface cracks 

Fig. 7.7 shows the surface cracks of the numerical model, compared with experimental 

specimen at failure. Large width of cracks occurs parallel to the bending portion of the 

anchorages and on the re-entrant corner of beam column joint in case of open case. On 

the other hand, large width of cracks occurs at the end of the anchorages in case of close 

case. The experimental specimen shows the same behavior.  

 

CONCLUSIONS 

1 Same tendency of load-displacement relationship with experiment was predicted. 

Maximum load in open case is lower than that of in close case 

2 Different failure patterns can be predicted by RBSM due to different loading 

conditions. When the beam column joint is loaded to a moment that tends to close 

the beam column joint, cracks which are perpendicular to the bending portion of the 

anchorages occur that is caused by the diagonal compressive stresses perpendicular 

to the bending portion of the anchorages. In addition, since the interface between 

concrete and reinforcement bar is a weak region, this region can open easily when 

the beam column joint is loaded under this close moment. On the other hand, when 

the beam column joint is loaded to a moment that tends to open the beam column 

joint, cracks parallel to the bending portion of the anchorages occur. Since cracks at 

the end of the anchorages open easily due to the close moment, these parallel cracks 

can open easily without any restriction. Compressive stresses which are parallel to 

the bending portion of anchorages also occur under this open moment. 

3 Simulation results predict that complicated stresses occur in a beam column joint 

with complex arrangement of reinforcement bars. 
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In this study, a meso-scale analysis of reinforced concrete member by 3D discrete 

element analysis, called 3D RBSM, was conducted. The study by 3D meso-scale 

discrete analysis is useful since the reinforcement arrangement can be modeled in an 

accurate manner, i.e. the rib of a reinforcement bar and the 3D model of a reinforcement 

bar, local failure can be predicted precisely as the result of the discontinous deformation 

of concrete and the the interaction of concrete and a reinforcement bar at meso-scale 

level, and cracks can be introduced directly as the displacement between 2 elements. 

Moreover, Wang et al. (2014) successfully simulated different crack patterns due to 

different anchorage systems of knee-joint by 3D RBSM. Eventually, the purpose is to 

investigate the effect of the local reinforcement arrangement, especially the arrangement 

of stirrups along the anchorage, on the failure process of beam column joints by 3D 

discrete model, through the comparison with experimental results. Capacity, cracking 

pattern, and local internal stress condition of simulation results will be investigated. In 

addition, by revealing the failure process will be proposed by the simulation considering 

the local stress and the crack propagation.  

 

8.2 OVERVIEW OF EXPERIMENTAL STUDIES BY YOKOHAMA NATIONAL 

UNIVERSITY 

Yokohama National University in Japan conducted many experiments in order to find 

the best location of local reinforcements in a beam column joint with mechanical 

anchorages through the studies done by Kiyohara et al. (2011), Kato et al. (2011), and 

Yoshimura et al. (2012). Figs 8.2, 8.3, and 8.4 shows the experimental specimens that 

were conducted Kiyohara et al. (2011), Kato et al. (2011), and Yoshimura et al. (2012)m 

respectively. Experimental results showed that just by changing the local arrangement 

of reinforcement bars affects the local failure significantly.  
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used for modeling all stirrups. Plain bars of 10 mm were used as the stirrups of both 

column and beam. Meanwhile, since local reinforcement arrangement affects the 

macroscopic behavior significantly, deformed bars of 13 mm were used as the stirrups at 

the position of anchorage plates and along the anchorage in the beam column joint. 

Material properties of reinforcement bars of each model are shown in Table 8.2. The 

material properties of numerical models are the same as those of experimental 

specimens. 
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8.3.3 Boundary conditions 

Boundary conditions of numerical models are shown in Fig. 8.8 As the comparison, the 

detail of the experimental setup is shown in Fig. 8.9 Steel plates were modeled located 

at the end of the beam and the column. The stiffness of the steel plates was assumed 

rigid enough, so that deformation of the steel plates will be prevented. In order to model 

the hinged condition, a pin element is introduced, located in the steel plates. 

Furthermore, in a pin element, forces are transferred only through normal springs of the 

pin element. 

Cyclic load was applied to the experimental specimens. However, since brittle failure 

was observed only when the beam column joint was loaded by a moment that tends to 

close the beam column joint and the stirrups arrangement may affect significantly on the 

anchorage performance under this load, only push load case will be discussed in this 

study. Monotonically displacement controlled was applied to the pin located at the end 

of the column and fix condition was assumed at the pin, located at the end of the beam. 

The displacement increases 0.1 mm for each step of load, and 1000 steps were applied. 
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8.4 RESULTS AND DISCUSSION 

8.4.1 Load-displacement relationships 

Load-displacement relationships of experimental specimens are compared with those of 

numerical models, in case of AL2, BL1, BL2, and FL5. Fig. 8.10 and Fig. 8.11 show 

the load-displacement relationships of experimental specimens and numerical models, 

respectively, in case of AL2, BL1, BL2, and FL5. The load of load-displacement 

relationships, both experimental specimens and numerical models, was determined 

based on the load which was applied to the pin, located at the end of the column. 

Meanwhile, the displacement of load-displacement relationships, both experimental 

specimens and numerical models, was calculated based on the drift angle. Table 8.1 

shows the maximum loads of experimental specimens and numerical models. 

 

The maximum loads of numerical models were roughly the same as those of 

experimental specimens, i.e. approximately 5-10% difference. In case of AL2, the 

simulation underestimated by 10%, in case of BL1, the simulation underestimated by 

5%, in case of BL2, the simulation underestimated by 10%, and in case of FL5, the 

simulation underestimated by 5%. Thus, the maximum loads of numerical models 

coincide well with those of experimental specimens. 

 

 

Fig. 8.10 Load-displacement relationships of experimental specimens 
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Fig. 8.11 Load-displacement relationships of numerical models 

 

Based on the load-displacement relationship of simulation results, the same tendency as 

the experimental results was predicted. The maximum load of BL1 is higher than that of 

AL2. The maximum load of FL5 is higher than that of BL1. The maximum load of BL2 

is higher than that of FL5. Simulation results predict that the load decreases 

significantly after the maximum load in case of AL2 and BL1. Meanwhile, in case of 

BL2 and FL5 the load does not decrease significantly. 

 

In case of AL2, BL1, FL5, the load slightly dropped before the peak load approximately 

at the displacement of 6-10 x 10-3 rad. In case of AL2, the load dropped earlier than BL1 

and FL5. Furthermore, in case of BL1, the load dropped earlier than FL5. The same 

tendency as experimental results was predicted. 
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(a) AL2  (b) BL1 

  

(c) BL1  (d) FL5 

 

 

 

 

 

Fig. 8.19 Strain measurements of simulation results and experimental results 

 

Simulation results show in a good agreement with the experimental results. Simulation 

results predict that the strain at point A is lower than that of point B, because of the bond 

along the development length. Simulation results and experimental results show that in 

case of AL2, the reinforcement bars do not yield either at the point A or point B. 

Meanwhile, other cases show that the reinforcement bars yield at the point A. Based on 

the simulation results, in case of BL1 and FL5 (flexural failure cases), after 

reinforcement bar yields, the strain jumps dramatically to the strain hardening region. 
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8.5 EFFECT OF MODELING RIB OF STIRRUPS IN THE BEAM COLUMN 

JOINT PORTION 

As described before, the diagonal cracks affect significantly the behavior of beam 

column joint with mechanical anchorages. To confirm this behavior, parametric studies 

are conducted that stirrups in the beam column joint portion are modeled with plain 

reinforcement bars. It is well understood that in case of plain reinforcement bars, slip 

occur easily between concrete and a reinforcement bar because the bond is determined 

only by the friction between the concrete and reinforcement bar. If the slip occurs easily, 

diagonal cracks can open easier. The simulation was conducted for BL1 and BL2.  

 

Fig. 8.20 shows load-displacement relationships of BL1 and BL2 with different types of 

stirrups. In case of BL1, the load-displacement relationships change significantly. 

Furthermore, the capacity of BL1 will be lower if stirrups inside the beam column joint 

were modeled as the plain bars. The load drops slightly at the same displacement. It 

indicates that the bonds between concrete and reinforcement bar are similar in both 

cases and diagonal cracks occur at the same displacement. As the displacement 

increases, the load increases in both cases. However, if stirrups inside the beam column 

joint are modeled as the deformed bars, the load increases more than plain bars case. 

 

 

 

Fig. 8.20 Load-displacement relationships of BL1 and BL2 with different types of 

stirrups 
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8.6 EFFECT OF MODELING STRAIN HARDENING REGION OF STEEL 

ELEMENTS 

In this chapter, the effect of modeling train hardening region of steel elements on the 

beam column joint behavior is investigated. As described in the previous section, if the 

strain hardening region is not modeled, the strain will jump dramatically after yield has 

occurred and it may affect the behavior inside the beam column joint. The simulation 

was conducted for BL1.  

 

Fig. 8.22 shows the load displacement relationships of the numerical models. There is 

no significance different of load-displacement relationships in case of BL1 with and 

without modeling the strain hardening region. 

 

Fig. 8.23 shows the strain measurement along the anchorage of BL1 with and without 

modeling the strain hardening region. Before the reinforcement bars yield, strain profile 

of BL1 without strain hardening region is same as that of BL1 with strain hardening 

region. After the reinforcement bars yield, there is no significant different of strain 

profile along the anchorages inside the beam column joint. Furthermore, at the location 

where the reinforcement bars yield, the strain jumps dramatically in case of BL1 

without modeling strain hardening region. As the load increases more, the strain 

localization occurs at the location where the yield occurs and there is still no difference 

of strain profile along the anchorages inside the beam column joint. 

 

 

Fig. 8.22 Load-displacement relationships of numerical models with and without strain 

hardening region 
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4. Based on simulation results, it is proposed that there are 2 scenarios to strengthen 

the beam column joint with mechanical anchorages. First is to restrict the opening of 

diagonal cracks in beam column joints. Second scenario is to restrict the crack 

penetration to the surface of the beam column joint so that diagonal cracks are 

difficult to open. 

5. Based on the parametric study of the types of stirrups inside the beam column joint, 

there are two functions of stirrups inside the beam column joint. First function is to 

provide the confinement effect and another function is to restrict the diagonal cracks 

in the beam column joints. 

 

REFERENCES 

Japan Society of Civil Engineers., “Recommendations for Design, Fabrication and 

Evaluation of Anchorages and Joints in Reinforcement Bars,” Concrete Library 128, 

2007. (in Japanese) 

 

Kato, F., Kiyohara, T., Tasai, A., and Kusunoki, K., ”Experimental Study of Knee Joints 

with Mechanical Anchorage,” Proceedings of Japan Concrete Institute, 33(2), 2011. (in 

Japanese) 

 

Kawai, T., “New Discrete Models and Their Application to Seismic Response Analysis 

of Structure,” Nuclear Engineering and Design, 48, 207-229. 1978. 

 

Nagai, K.; Sato, Y.; Ueda, T., “Mesoscopic Simulation of Failure of Mortar and 

Concrete by 3D RBSM,” J. Adv. Conc. Technol., 3(3), 385-402. 2005. 

 

Nagai, K., Hayashi, D., and Eddy, L., “Numerical Simulation of Failure of Anchorage 

with Shifted Mechanical Anchorage Bars by 3D Discrete Model,” J. Adv. in Structural 

Engineering 117:861-870. 2014. 

 

Wang, T., Eddy,L., and Nagai, K., “Numerical Simulation of Failure of Beam Column 

Joints with Mechanical Anchorage by 3D Discrete Analysis,” 6th Asia-Pacific Young 

Researchers and Graduates Symposium.2014. 

 

Yoshimura, M., Kiyohara, T., Tasai, A., and Kusunoki, K., “Experimental Study of 

Performance Improvement of Knee Joints with Mechanical Anchorage,” Proceedings of 

Japan Concrete Institute, Vol.34, No.2, 2012. (in Japanese) 



132 

Chapter NINE 

SUMMARY AND CONCLUSION 
 

 

In this study, numerical simulations of failures of beam column joints by 3D RBSM are 

conducted. In this chapter, contents of the study, achievements and tasks for the future 

are summarized with respect of each chapter. 

 

In Chapter 1, background, literature review, purpose, research significance and 

strategies are described.  

Because of the demanding in the specification, reinforcement congestion occurs in beam 

column joint that can increase construction time and cause difficulties during 

compaction. As the result, a poor quality of concrete is obtained. Meanwhile, the 

anchorage specification was developed based on the simple arrangement of 

reinforcement bars and has not been changed for many years. The reduction of 

reinforcement congestion is possible based on the mechanism in the congested joint. 

Based on the experimental works, it is not easy to understand the behavior because 

complex cracks occur in the beam column joint due to the complex arrangement of 

reinforcement and loading history. 

 

Mechanical anchorage can be the way to reduce the reinforcement congestion in the 

beam column joint. However, if it is placed near the surface of the beam column joint, 

local cracks will occur because of the local stress from the mechanical anchorages. To 

avoid this failure, additional reinforcement bars should be placed along the anchorages. 

Furthermore, many experiments are necessary to find the best or rational way to 

strengthen this system. It takes time and inefficient. 

 

Numerical simulation can be a beneficial way to understand the behavior through the 

study of the internal stress and internal cracks. Meso scale analysis is proposed in this 

study because cracks propagate in 3D domain, the 3D shape of a reinforcement bar is 

modeled directly, including the rib of the reinforcement bar, cracks occur because of the 

discontinuous of concrete and interaction between concrete and reinforcement bar at 

meso scale level, and cracks can be simulated directly. 

 

In chapter 2, the method of analysis is explained. In RBSM, a reinforced concrete 
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member is meshed into rigid bodies. Each rigid body consists of 6 degrees of freedom 

and connects to another rigid body by 3 springs. In order to prevent cracks propagate in 

non-arbitrary direction, random mesh is used for the concrete elements. In this chapter, 

the decision to choose 10x10x10 – 20x20x20 mm3 of mesh size is described because the 

limitation of this study is only for normal concrete. Furthermore, in the normal concrete, 

cracks propagate between aggregates and don’t penetrate into the aggregate. In order to 

represent the real cracking pattern in the normal concrete that is determined based on 

the aggregate size and location, 10x10x10 – 20x20x20 mm3 of mesh size is decided. 

Based on this mesh size, the constitutive models are decided. For different types of 

concrete, for example high strength concrete and fiber reinforced mortar, different mesh 

size and constitutive models should be applied and these types of concrete are not 

applicable in this study. 

 

In this chapter, various shapes of reinforcement bars are introduced in order to simulate 

the same model and reinforcement arrangement of the beam column joint with complex 

arrangement of reinforcement bars as the real condition 

 

In chapter 3, a unified constitutive model for spring at the selected mesh size is 

proposed because in the past studies, the simulations were conducted for simple pull out 

tests of reinforced concrete members. The constitutive models were determined in such 

a way to represent the material behavior in macro-scale. The bi-linear model for tension 

softening of concrete elements, new failure criterion of concrete elements, and strain 

hardening region for steel elements are proposed in this study. 

 

For the normal spring of concrete, in compression zone it behaves elastically. After the 

tensile stress exceeds the tensile strength of concrete, it has the softening part. An elasto 

plastic model is assumed for the shear spring of concrete, where the tau max is 

calculated based on the relationship of shear stress and normal stress. For normal spring 

of steel elements, its behavior is the same as the real stress-strain relationship of steel. In 

order to consider the interface between concrete and reinforcement bar as a weak region, 

the tensile strength of interface elements is reduced by half of that of concrete elements. 

 

To develop the constitutive models for the simulation, simulations of concrete at 

material scale were conducted, which are described in Chapter 4. Uniaxial compressive 

and tensile loading and biaxial compressive loading were applied to the concrete models. 

By setting different tensile strength of normal springs, different uniaxial compressive 
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and tensile strength are obtained at macro scale. Based on the new failure criterion of 

concrete, the simulation results show that the relationship of uniaxial compressive and 

tensile strength is in a good agreement with JSCE equation. In the biaxial compression 

test, the simulation is little overestimate but still with the same tendency as the 

experimental results that the compressive strength under biaxial compressive loading is 

higher than that of uniaxial compressive loading.  

 

In this chapter, parametric studies are also conducted. By varying the failure criterion of 

concrete, the failure criterion of concrete affects significantly the behavior of concrete 

under both uniaxial and biaxial compressive loading. However, it doesn’t affect the 

behavior of concrete under uniaxial tensile loading. Meanwhile, the tension softening of 

concrete affects the softening of concrete both under uniaxial compression and tensile 

loading. 

 

In order to check the applicability of simulation system to simulate the bond between 

concrete and a reinforcement bar, tension stiffening simulations were conducted with 

different yield strength of a reinforcement bar in Chapter 5. Simulation results are 

presented by load-displacement relationship, average stress-strain of the reinforcement 

bar, and average stress-strain of concrete. Based on the simulation results, as the load 

increases, cracks can propagate gradually because bond between concrete and 

reinforcement bar is simulated well. Furthermore, simulation results show that the 

yielding point of average stress-train of reinforcement bar is lower than that of bare bar 

which is a good agreement with the experimental results. In addition, the simulation 

results also predict that the average stress-train of reinforcement bar in case of low yield 

strength is lower than that of in case of high yield strength. In this chapter also, 

parametric studies of the tensile strength of the interface elements were conducted. The 

simulation results show that the tensile strength of the interface elements affects slightly 

the stiffness of the reinforced concrete member and increase the concrete strength in the 

average stress-strain relationship of concrete. The effect of modeling strain hardening 

region is explained in this chapter that the strain localization after the reinforcement bar 

yields will not occur. 

 

By this well-developed simulation system, some achievements have been obtained. In 

chapter 6, by this simulation system, how the local cracking occurred in the corbel that 

has wrong detailing of loading position has been understood because the local shape of 

the reinforcement bar is modeled directly. Simulation results show different capacity 
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between wrong detailing and correct detailing because of this local failure. Furthermore, 

by this simulation, how to repair the damage corbel by simulating directly the damage 

corbel has been proposed. After the failure occurs in the corbel, the loading position is 

moved into the middle and applied it. The simulation results show that the capacity can 

be recovered. This kind of residual performance can be simulated. 

 

In chapter 7, by this well-developed simulation system, how each rebar contributes to 

the complex cracks in the beam column joint with complex arrangement of 

reinforcement bars can be understood because the local shape of the reinforcement bars 

is modeled directly. 

 

In chapter 8, as described before, mechanical anchorage can be the way to reduce the 

reinforcement congestion in the beam column joint. To strengthen this system, 

additional reinforcement bars should be placed along the anchorage and the best or 

rational way has not been proposed yet. Based on the experimental works, by placing 

the stirrups along the development length and additional concrete block at the top 

surface of beam column joints are the example ways to achieve the flexural failures. By 

the simulation, the mechanism to strengthen this system has been understood through 

the study of internal stress and internal crack pattern. Simulation results show the same 

tendency as the experimental results in term of load-displacement relationships. The 

failure behavior of simulation results is also the same as that of experimental results. 

Based on the study of the internal stress of beam column joint with mechanical 

anchorages by simulation, the failure processes have been understood. First, bond works 

along the development length of the anchorages. Second, diagonal cracks occur in the 

beam column joint. Third, cracks propagate to the surface of the beam column joint. 

Finally, the diagonal cracks open. Furthermore, based on the simulation results, it has 

been understood, the mechanism of stirrups along the development length is by 

restricting directly the opening of diagonal cracks. Meanwhile, additional concrete 

block and reinforcement arrangement on the top surface of beam column joint restrict 

the cracks propagation to the surface of the beam column joints. 
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Appendix A 

FINITE ELEMENT ANALYSIS OF BEAM COLUMN JOINT 
WITH COMPLEX ARRANGEMENT OF REINFORCEMENT BARS 

 

A.1 INTRODUCTION 
By finite element analysis, Salem et al. (2004) simulated well the bond behavior of 

ribbed reinforcement bars. However, the three dimensional arrangement of 

reinforcement bars was not modeled and the applicability of the finite element analysis 

in predicting the failure behavior of a beam column joint with complex arrangement of 

reinforcement bars has not been investigated. In this chapter, by modeling directly a 

complex arrangement of reinforcement bars, the applicability of the finite element 

analysis in predicting the beam column joint failure will be studied. The simulation was 

carried out by 3D finite element analysis, COM3, developed by The University of 

Tokyo. In COM3, a three dimensional reinforced concrete member is meshed into solid 

elements. Furthermore, in this study, a beam column joint was meshed into plain 

concrete elements and steel elements. Details of the material models are discussed in the 

references (Maekawa et.al. (2003)). 

A.2 DETAIL OF NUMERICAL SIMULATION 

A.3.1 Numerical model 

In order to study the behavior of a beam column joint with complex arrangement of 

reinforcement bars, the finite element analysis was conducted for an experiment of a 

beam column joint, done by Japan Railway. Since the purpose of this research is to 

study the behavior of a beam column joint with complex arrangement of reinforcement 

bars, the dimensions, the reinforcement bars, including bending portion of the 

reinforcement bars, and the boundary condition were modeled in an accurate manner. 

Three dimensional shape of a reinforcement bar was modeled. However, for the 

simplification of the analysis model, the shape of a reinforcement bar is rectangular, 

with the same area as the circular shape of the actual reinforcement bar. Furthermore, 

the dimensions, the reinforcement bars of the beam column joint, and the boundary 

conditions of the analysis model, will be described below. 
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Table A.1 Maximum load of the experimental specimen and numerical model 

Case Experiment(Pexp) Simulation(Pana) Pana/Pexp 

Open 160.3 kN 229 kN 70% 

Close 272.3 kN 370 kN 73% 

 

Fig. A.7 shows the load-displacement relationship of simulation result, compared with 

that of experimental result. Table A.1 shows the maximum load of the experimental 

specimen and numerical model. The load and the displacement of the load-displacement 

relationship of numerical model were determined based on the load and the 

displacement applied to the steel frame located at the end of the beam. The maximum 

loads of numerical model are roughly the same as those of experimental specimen, i.e. 

approximately 27-30% difference. 

 

Both experimental and simulation results show that the maximum load of open case is 

lower than that of close case. In open case, the simulation predicts that the maximum 

load of the beam column joint is 229 kN at the displacement of 1.725 cm. Meanwhile, 

in close case, the simulation predicts that the maximum load of the beam column joint is 

370 kN at the displacement of 1.725 cm. Simulation results predict that the maximum 

loads of both cases occur earlier compared with the experimental results. After 

exceeding the maximum load, simulation results show that the load decreases 

significantly in close case and the load does decrease significantly in open case. The 

same tendency as the experimental results was predicted. Anchorage failure causes the 

drop of capacity after exceeding the maximum load in close case. Furthermore, to 

observe the failure behaviour of the beam column joint by numerical simulation, the 

crack patterns of the beam column joint are described below. 

 

A.3.2 Crack patterns 

In this study, the crack pattern obtained by the simulation is described below. The cracks 

are not associated with the discrete cracks, but represent the smeared cracks. 

Furthermore, the cracks depend on the magnitudes of strains and element sizes. 

 

A.3.2.1 Crack pattern in close case 

Fig. A.8 shows the crack patterns of the numerical model at the displacement of 0.288 

cm, 1.15 cm, and 1.75 cm in close case. 
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perpendicular to the cracks formed under the close load, occur. These typical 

diagonal cracks were also observed in the experimental specimens. 

4. The behavior of the beam column joint is difficult to be observed by finite 

element analysis, after complicated cracks occur inside the beam column joint 

portion. 
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