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ABSTRACT

Because of the demand of the current specification, reinforcement congestion occurs in
the beam column joint that causes difficulties during compaction and increases the
construction time. As the result, poor quality of concrete is obtained. However, the
specification of anchorages has not been changed for many years and was developed
based on the simple arrangement of reinforcement bars so that there is a possibility to
reduce the reinforcement congestion based on the mechanical behavior in the congested
joint. Meanwhile, based on the experimental works, it is not easy to understand the
behavior because complex cracks occur due to the complex arrangement of

reinforcement bars and the loading history.

Meanwhile, mechanical anchorage can be one way to reduce the reinforcement
congestion. However, the use of mechanical anchorages is still limited because the
behavior has not been well understood. If the mechanical anchorages are placed near the
surface of the beam column joint, anchorage failure occurs in the beam column joint. To
avoid this failure, additional reinforcement should be placed along the anchorages.
However, the best or rational way to strengthen this anchorage system has not been
found yet because the internal condition has not been well understood. Many

experiments were necessary. It is inefficient and takes time.

Simulation can be a beneficial tool to understand the behavior through the study of the
internal stress and internal cracks. In this study, meso-scale analysis by 3D RBSM is
proposed. The study by 3D meso-scale discrete analysis is useful since the
reinforcement can be modeled in an accurate manner, i.e. ribs of a reinforcement bar
and 3D shape of a reinforcement bar, local failure can be predicted precisely as the
result of the discontinuous deformation of concrete and the interaction of concrete and
the reinforcement at meso-scale level, and cracks can be simulated directly as the
displacement between two elements. Based on the previous study, the simulation can
simulate the local failure at the anchorages of beam column joints. However, the
simulation system was not enough to simulate the beam column joint with complex
arrangement of reinforcement bars, the meshing of a reinforcement bar was complex,

and the constitutive models have not fixed yet.

In RBSM, a little attention to the mesh size is necessary. The mesh size of simulation

models should be selected in an appropriate way to represent the real cracking pattern of
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concrete. Since in the normal concrete, microcracks occur at the interface between the
mortar and aggregate or at the mortar between two aggregates, 10x10x10 — 20x20x20
mm’ of mesh size is selected to represent the real cracking pattern in the normal
concrete that is determined by the aggregate size and location. Based on this selected
mesh size, the constitutive models will be decided. For other types of concrete, different
mesh size and constitutive models should be decided to represent the real cracking

pattern.

In this study, the simulation system is developed by introducing a simple meshing of a
reinforcement bar so that the computational time can be reduced. Furthermore, various
shapes of reinforcement bars can be modeled, so that at this time the same model and

reinforcement bars arrangement as the real condition can be modeled.

A unified constutive models of RBSM is proposed based on the simulations in the
material scale. Simulations of concrete under uniaxial compressive and tensile loading,
and biaxial compressive loading are conducted to upgrade the constitutive models. A
bi-linear model is introduced for the tension softening of normal springs of concrete
elements. A new failure criterion of concrete is introduced. Furthermore, strain
hardening region is also introduced for the normal springs of steel elements. Parametric
studies are conducted to investigate the effect of each constitutive model on the

macroscale behavior of the material.

In order to investigate the applicability of RBSM in modeling bond between concrete
and a reinforcement bar, simulations of tension stiffening model are conducted. Two
numerical models having different yield strength of reinforcement are simulated. Based
on the simulation results, as the load increases, cracks can propagate gradually because
of the bond between concrete and the reinforcement bar. Furthemore, simulation results

show a good agreement with the experimental results.

By using the well-developed simulation system, some achievements have been obtained.
First, by this simulation system, it can be understood how the loading position and the
local shape of the reinforcement affect the local cracks in the corbel because the local
shape of the reinforcement is modeled directly. Furthermore, a simple method to repair
the damage corbel can be proposed. Second, by the simulation system, it can be
understood how complicated cracks occur in the beam column joint with complex

arrangement of reinforcement bars since three dimensional shape of reinforcement bars
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is modeled directly. And last, by the simulation system, it can be understood how each
reinforcement bar contributes to the failure behavior of the beam column joint with the
mechanical anchorages. Furthemore, a failure process of the beam column joint with the
mechanical anchorages is proposed through the study of the internal stress and cracks of

simulation results.

Some bearing pads of corbels were designed at the wrong position, at the edge of the
corbel. Consequently, local failure, anchorage splitting failure occurs in the corbel
because of this wrong detailing. This condition does not satisfy the specification code.
By simulation, the cause of this local failure can be understood because the local shape
of reinforcement bars is modeled directly. Different loading positions show different
capacities. Local cracking in the edge causes the significant drop in capacity. By
simulating the existing damage in the corbel, a simple method to repair the damage
corbel can be proposed. Based on the simulation results, just by changing the loading
position can be the simplest way to recover the capacity of the damage corbel. This kind

of residucal capacity simulation can be conducted.

Based on the simulation of a beam column joint with complex arrangement of
reinforcement bars, since the complex arrangement of reinforcement bars is modeled as
the same as the experimental specimen, the same cracking pattern as the experimental
specimen can be simulated. Cracks parallel to the bending portion of anchorages can be
simulated due to a moment that tends to open the beam column joint, since the bending
shape of the reinforcement bar is modeled directly. Compression strut occurs due to a
moment that tends to close the beam column joint. Simulation results show the same

tendency as the experimental results.

Based on the past researches of beam column joints with mechanical anchorages, since
the internal stress condition and cracks have not been understood, many experiments
were necessary to find a rational reinforcement arrangement in the beam column joint
with mechanical anchorages. Based on experiments, there are two possible ways to
strengthen this anchorage system, i.e. by placing stirrups along the anchorages, and by
adding concrete block at the top surface of the beam column joint. Simulations are
conducted based on the past experiments. Simulation results show the same tendency as
experimental results. Furthemore, the surface cracks of numerical models are roughly
the same as those of experimental specimens. Through the study of the internal stress

and cracks of simulation results, the failure process of the beam column joint with



mechanical anchorages is proposed. First, bond works along the development length of
anchorages. Second, diagonal cracks occur in the beam column joint. Third, cracks
propagate to the surface of the beam column joint. Final Step is the opening of diagonal
cracks. Furthermore, based on the simulation results, the meaning of stirrups along the
development length has been understood, i.e. stirrups increase the bond performance
along the development length of anchorages and restrict the opening of diagonal cracks.
Meanwhile, the meaning of additional concrete block at the top surface of the beam
column joint and reinforcement inside the concrete block is to increase the bond
performance along the development length of anchorages and to restrict the crack
penetration to the surface of the beam column joint.
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Chapter One
INTRODUCTION

1.1 BACKGROUND AND PROBLEM STATEMENT

The Japanese seismic design code is gradually becoming more stringent. Satisfying the
latest demands of the code means placing a large amount of reinforcement which results
in reinforcement congestion. Such congestion is a particular problem in beam column
joints, where reinforcement bars from many directions come together. As the space
between reinforcement bars becomes smaller, it becomes difficult to ensure proper
compaction of concrete and adequate anchoring of reinforcement (Fig.1.1). One of the
reasons for the reinforcement congestion is that the design specification detailing the
reinforcement does not specify anchorage performance in consideration of the precise of
the multidirectional reinforcement arrangement. Furthermore, the design specifications
(JSCE 2007 and ACI 318-11) were developed based on the simple arrangement of
reinforcement bars and have not been changed for many years (Fig.1.2). The behaviors
of anchorages in a congested beam column joint have not been studied. The reduction of
reinforcement congestion is possible based on the mechanical behavior. However, based
on the experimental works done by Japan Railway (2012), the behaviors of beam
column joint with multidirectional reinforcement arrangement are not easy to be
understood because complex cracks occur depending on reinforcement arrangement and

loading history (Fig.1.3).

Meanwhile, mechanical anchorage can be one way to reduce the reinforcement
congestion in the beam column joint by introducing simpler detail of anchorages and
shorter length of anchorages, compared with conventional 90 or 180 degree hooked bars

(Fig.1.4). However, the use of mechanical anchorages is still limited in the concrete

Fig. 1.1 Reinforcement congestion at beam column joint
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Fig. 1.2 Design specification detailing reinforcement

Fig. 1.3 Experiment of beam column joint with complex arrangement of

reinforcement bars (Japan Railway 2012)

members with thin concrete cover (JSCE 2007) because the bond performance and the

stress transfer between concrete and reinforcement bars have not been well understood.

When this new technology is applied, just by changing from the conventional 90 or 180
degree hooked bars to the mechanical anchorages, the reinforcement arrangement
becomes simpler, but local failure occurs in the beam column joint due to the local
stresses from the anchorage plates, that cause brittle failure (Fig.1.5.a). To avoid this
condition, additional local reinforcement bars, i.e. stirrups, should be placed along the
anchorages (Fig.1.5.b). Many experiments of beam column joints with mechanical
anchorages were necessary to be conducted in order to study the potential of using

mechanical anchorages in a beam column joint, the behaviors of mechanical anchorages,
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Fig. 1.5 Experiments of beam column joint with mechanical anchorages
(Yoshimura et al. 2012)

and to make the reinforcement arrangement in the beam column joint with mechanical
anchorages as simple as possible (Wallace et al. 1998, Chen et al. 2007, Kato et al. 2011,
and Yoshimura et al. 2012).

Wallace et al. (1998) conducted experiment tests of beam column joints in order to
investigate the potential of using mechanical anchorages as the anchorage system in
exterior and corner beam column joints. Two exterior joint specimens and five corner
joint specimens were investigated in this study through the comparison between
conventional bending anchorages and mechanical anchorages. They concluded that
through the experimental studies, the use of headed reinforcement in place of standard
hooks within exterior or corner beam column joints is a viable option. However,
additional transverse reinforcement is required to ensure that the heads are adequately
restrained and additional studies are needed to identify how much concrete cover is
needed as the replacement of the additional transverse reinforcement bars in case of

corner beam column joints.

Chun et al. (2007) conducted further studies to investigate the influence of some
parameters, i.e. the anchorage type, the size and arrangement of the beam bars and the
heads, and the detailing provided for the roof joints. A total of 14 specimens of exterior
and corner joint specimens were tested under cyclic loading. First conclusion of their
studies is that locating the heads of the column reinforcement bars above the location of
top flexural reinforcement bars of beam leads to the improvement of load-displacement
relationship because of the confinement provided by an additional horizontal layer of
transverse reinforcement. Furthermore, they also concluded that U-shape bars were

effective to restrain the bar.



In Japan, Yokohama National University conducted extensive investigations on the
performance of mechanical anchorage in exterior and corner beam column joints. Kato
et al. (2011) carried out experimental investigations on eight corner joint specimens, i.e.
one specimen of corner joint with conventional bending anchorages and seven
specimens of corner joints with mechanical anchorages. Seven specimens of corner
joints with mechanical anchorages consist of four specimens with additional concrete
block at the top surface of the beam column joint and three specimens in which the tails
of the conventional bending anchorages were replaced with the mechanical anchorages.
Just by replacing the tails of the conventional bending anchorages with mechanical
anchorages caused brittle failure in the beam column joints. Meanwhile, a good
performance was obtained if additional concrete block was placed at the top surface of

beam column joints with mechanical anchorages.

Yoshimura et al. (2012) carried out experimental investigations on six corner joint
specimens in order to find the rational method or the best way to strengthen corner joint
with mechanical anchorages. The same result as the previous researches was obtained

that additional transverse reinforcement should be placed along the anchorages.

However, since the internal stress condition, the internal cracking pattern, and the
meaning of each reinforcement bar to the cracking patterns have not been well
understood, a rational method to strengthen the mechanical anchorage system has not
been obtained, so that numerical simulation can be a beneficial tool to reveal the
internal conditions. Over the past few decades, the Finite Element Analysis (FEA) has
been known as the powerful simulation method not only in civil engineering but also in
other disciplines. Simulations of beam-column connections by Finite Element Analysis
have been started since 2000 which were conducted by Baglin et al. (2000).

Baglin et al. (2000) used SBETA, a nonlinear finite element analysis that was developed
for the analysis of reinforced concrete structures under plane stress conditions in order
to investigate the applicability of finite element analysis in modeling reinforced
concrete beam-column connections. Reinforcement bars were modeled as line elements,
called discrete bars, where an element representing the discrete bar is constraint at the
boundary of the concrete element. A total of 19 simulations were conducted. The
simulation results showed the same tendency as the experimental results and global
failure could be predicted. However, the simulations were limited in 2D analysis so that

cracks propagated in lateral direction could not be simulated. Furthermore, they
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Fig. 1.6 Finite element model and crack propagations of simulation results
(Baglin et al. 2000)

concluded that “modeling of the deformation due to crack growth and dislocation was

inhibited by the smeared crack approach” (Fig. 1.6).

Hegger et al. (2004) used ATENA, a nonlinear finite analysis that also was developed
for the analysis of reinforced concrete structures under plane stress condition in order to
examine the effects of different parameters on the behavior and strength of beam
column joints. 10 x 10 mm of element size was used for modeling the beam column
joints and a coarser mesh was used for modeling the beams and the columns.
Reinforcement bars were also modeled as discrete bar model in which full bond was
assumed between the reinforcement bar and the concrete. A total of 15 simulations of
exterior beam column joints and interior beam column joints were simulated. The
simulation results showed that there is a good agreement of load-deflection curves with
experimental results, but the simulations were limited in 2D analysis and local failures
were difficult to be observed (Fig. 1.7).
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Fig. 1.7 Finite element model and failure types of simulation results
(Hegger et al. 2004)
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Sagbas et al. (2011) used Vector2 which was developed by The University of Toronto in
order to investigate the effectiveness of finite element modeling procedures in
accurately capturing the nonlinear cyclic response of beam-column subassemblies.
However, the same limitations were encountered in this study, i.e. the simulations were

limited in 2D analysis and local failures were difficult to be observed (Fig. 1.8).

Eligenhausen et al. (2008) and Sasmal et al. (2011) used finite element analysis in
three-dimensional modeling of beam column joints. However, reinforcement bars were

limited as the line elements.

Based on the previous explanations, there are some limitations to model a beam column
joint by using finite element analysis:

- Some simulations were limited in two-dimensional modeling

- Smeared crack approach inhibited the crack growth and dislocation

- Complex local failures that usually occurs in a beam column joint were difficult to

be observed.

Author et al. (2013) has also used program Com3, a three-dimensional finite element
analysis program that was developed by The University of Tokyo, in order to simulate a
beam column joint with complex arrangement of reinforcement bar. Three-dimensional
modeling of beam column joint including the three-dimensional shape of a
reinforcement bar was simulated. Perfect bond between a reinforcement bar and
concrete was assumed in this study. The same tendency of load-displacement
relationship as experimental result was predicted. When the displacement is relatively

small, the same cracks as experimental results can be simulated. However, as the



Fig. 1.9 Finite element model and final failure modes of simulation results
(Eddy et al. 2013)

displacement increases, complex cracks occur in the beam column joint. As the result,

global failure can be predicted, but local cracks were difficult to be observed (Fig. 1.9).

Meanwhile, discrete analysis method might be a suitable simulation since cracks can be

modeled directly as the displacement between two elements. Cundal et al. (1971, 1974,
and 1979) is the first among all who proposed a discrete numerical model, called
Distinct Element Method, in order to analysis rock mechanics problems and behavior of
granular assemblies. Williams and Mostoe (1987) continued more study on Distinct
Element Method. Furthermore, various discrete analysis methods were applied in other
fields.

In concrete field, as transpired from their recent researches that failure due to distributed
cracking could not be simulated adequately in a continuum manner (Bazant 1986),
Zubelewicz and Bazant (1987) proposed a discrete approach which directly simulated
from the microstructure. Concrete in two dimensions was modeled as a random
arrangement of perfectly rigid particles separated by interface elements. In 1990, Bazant
et al. introduced a modification and refinement of the previous approach, called random
particle model. In this model, two adjacent particles were assumed to interact only in the

axial direction in which shear and moment interactions in the contact zone are neglected
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and a particle was assumed to be elastic rather than rigid.

Schalangen and Van Mier (1992) proposed a triangular latticed model which consists of
bar elements that can transfer normal force and bending moment. Once the combination

of normal force and bending moment exceeds the capacity, the bar element is removed.

Meguro and Hakuno (1989) upgraded Distinct Element Method that was proposed by
Cundal et al. (1971), called Modified Distinct Element Method (MDEM). In this model,

concrete is represented as circular particle elements and non-linear springs.

In this study, the simulation is carried out by meso-scale analysis of reinforced concrete
members by a 3D discrete element analysis, called Rigid Body Spring Model (RBSM),
which was proposed by Kawai et al. (1978). In RBSM, each rigid body connects with
another rigid by springs. This approach has been applied by some researchers in order to

study the behavior of reinforced concrete members.

Bolander et al. (1998, 1999, 2000, and 2002) applied 2D RBSM not only to reinforced
concrete members but also to prestressed concrete members. Reinforced bars were
assumed as line elements. Furthermore, the application of RBSM was extended to the
simulation of fiber reinforced concrete and shrinkage phenomena by using 3D RBSM
(Bolander et.al. 2004, 2006, 2008, and 2010). Line elements were adopted for modeling
the fiber.

Fig. 1.10 Fiber reinforced concrete model by 3D RBSM (Bohlander et al. 2008)
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Fig. 1.11 3D meso scale analysis of mortar and concrete by RBSM (Nagai et al. 2005)

Our research group has used 3D RBSM to simulate various kinds of reinforced concrete
members (Nagai et al. 2005, Inoue et al. 2011, Ikuta et al. 2012, and Hayashi et al.
2014).

Nagai et al. (2005) were the first that carried out the 3D meso scale analysis of mortar
and concrete by RBSM in order to evaluate the behavior of concrete quantitatively. It
was concluded that the analysis predicts well the uniaxial compressive and tensile
strength relationship of both mortar and concrete. Furthermore, the analysis could
simulate the failure crack pattern of concrete under uniaxial compressive stress
condition, uniaxial tensile stress condition, and biaxial compressive stress condition
(Fig. 1.11).

Fig. 1.12 3D meso scale analysis of T-headed bar of anchorage in a reinforced concrete
member with thin concrete cover by RBSM (Inoue et al. 2011)



Fig. 1.13 3D meso scale analysis of beam column joints with different bending radius of
anchorage bars by RBSM (Ikuta et al. 2012)

Inoue et al. (2011) were the first in our research group that conducted 3D meso scale
analysis by RBSM in order to investigate the behavior of reinforced concrete members.
Furthermore, the simulations were carried out in order to study the mechanical behavior
of a T-headed bar of anchorage which was used in a reinforced concrete member with
thin concrete cover. It was showed that 3D RBSM can simulate the splitting cracks and
different failure patterns depending on the concrete cover thickness which are the same

as the experimental observations (Fig. 1.12).

Ikuta et al. (2012) were the first in our research group that used 3D meso scale analysis
by RBSM in order to investigate the behavior of beam column joints with simple
arrangement of reinforcement bars. Different internal stress conditions and failure

patterns can be simulated due to different bending radius of anchorage bars (Fig. 1.13).

Fig. 1.14 3D meso scale analysis of reinforced concrete members by different types of
anchorages by RBSM (Hayashi et al. 2012)
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Hayashi et al. (2014) used 3D meso scale analysis by 3D RBSM in order to investigate
the anchorage performance in a reinforced concrete. The simulations were done for
reinforced concrete members with different types of anchorages, i.e. straight bar,
mechanical anchorage, and conventional 180 degrees hooked bar. It was shown that
different failure patterns can be predicted due to different anchorage systems (Fig.
1.14).

However, the simulation system was limited in which the model and the arrangement of
reinforcement bars were simple, the meshing of a reinforcement bar was complex, and
the constitutive models were not fixed yet. In this study, the target of the simulation is
the beam column joint with complex arrangement of reinforcement bars and the
complicated stress occurred in the beam column joint. Thus, the previous simulation
system was not enough to simulate these complex behaviors. So at the first stage of this

research, the simulation system must be improved.

1.2 RESEARCH SIGNIFICANCE

In using discrete analysis, RBSM, a good understanding in the heterogeneous properties
of concrete must be obtained to be reflected in the simulation models. A little attention
to the mesh size is necessary in RBSM. The mesh size of the simulation models should
be selected in an appropriate way to represent the actual cracking pattern of concrete.
Based on this mesh size, the constitutive models of simulation will be decided. The
meaning of meso-scale analysis and element size will be explained in this study. So that,
the first contribution of the present study is to gain the knowledge of the importance of
the mesh size in the simulation models of 3D RBSM, in order to represent the real

cracking pattern in the concrete.

By using this 3D RBSM in the general applications, there is interest in obtaining of
complete understanding on the structural behavior when local failure, local arrangement,
or local loading conditions affect macroscopic behavior significantly. Through the study
of the internal cracks and internal stress conditions, it can reveal details of the local
responses of concrete and reinforcement and their interactions with cracking that were

difficult to be investigated by the experimental works.

By revealing the behavior of a reinforced concrete element through the study of internal
cracks and internal stress condition, the mechanism of strengthening mechanical

anchorages, particularly in a beam column joint, can be proposed. Furthermore, in the

11



future, a rational method to strengthen the beam column joint with mechanical
anchorages can be achieved. Further implications of this study are to provide a tool for
assessing the deteriorated structures relating to the anchorage parts and joints of
structures, to retrofit deteriorated structure, and to predict the life span of the retrofitted

structure.

1.3 OBJECTIVE AND SCOPE OF STUDY

The first objective of this research is to improve the simulation system of RBSM. A

brief review on the relative task is given follows:

1. Develop the algorithm of simple meshing of a reinforcement bar. The meshing
technique of a reinforcement bar used by the previous researchers was very
complex. As the result, a lot number of elements were necessary to model a beam
column joint with complex arrangement of reinforcement bars. It will not be
efficient for the simulation.

2. Develop the algorithm to model any shapes of reinforcement bars. It is necessary
because various shapes of reinforcement bars are used to simulate a beam column
joint with complex arrangement of reinforcement bars.

3. Improve the number of elements in the simulation system. In the past, the
simulation system was limited with less than 300000 elements.

Ultimately, the simulation system should be able to model the same model and the same

reinforcement arrangement as the real condition of reinforced concrete members.

The second objective of this research is to upgrade the constitutive models in the
simulation system of RBSM. The improvements were done based on the simulations in
the material scale. Here, the following simulations were conducted:

1. Concrete element

a. Compressive uniaxial simulation
b. Tensile uniaxial simulation
c. Biaxial simulation

2. Concrete-steel interface: Tension stiffening stimulation
The applicability of RBSM in material scale simulation was verified through the

comparison with the experimental results.

The third objective of this research is to reveal the behavior of reinforced concrete
structures, i.e. corbels, a beam column joint with complex arrangement of reinforcement

bars, and beam column joints with mechanical anchorages. The applicability of RBSM
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to model in the structural scale will also be investigated through the comparison with

the experimental results. The simulation must able to simulate its strong points. Those

are:

1. 3D RBSM should be able to simulate different failure pattern due to different
loading position and the local reinforcement bars arrangement.

2. 3D RBSM should be able to simulate different failure pattern due to different
loading condition. In this case, cyclic load was applied to the numerical models.

3. 3D RBSM should be able to simulate complex cracks in a beam column joint with
complex arrangement of reinforcement bars.

4. 3D RBSM should be able to simulate different behaviors due different local

arrangements of reinforcement bars.

The forth objective is to suggest an efficient method of retrofitting the damage structure

members.

The fifth objective is to propose the mechanism how to strengthen the beam column
joint with mechanical anchorages through the study of internal stress condition and

internal cracking pattern.

1.4 RESEARCH STRATEGY

Step 1: The first step of this research is to select an appropriate element size to represent
the real cracking pattern, especially in the normal concrete. Step 2: Based on the
selected element size, the simulation system was improved and the constitutive models
of RBSM were upgraded. The applicability of the constitutive models was verified
trough the comparison with the experimental results in material scale. Step 3: The
simulation system was used to understand the behavior of reinforced concrete structures
under different loading position, different local reinforcement bar arrangement and
different loading condition. Step 4: Based on the study of the internal stress condition
and crack propagations, a proposed retrofitting method and a proposed failure

mechanism in a beam column joint with mechanical anchorages were raised.
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1.5 ORGANIZATION OF CONTENTS

Chapter 1 explains the background and problem of reinforcement congestion in the
beam column joint that caused by the demanding in the current specification. By
experimental works, it is not easy to understand the behaviors of beam column joints
with complex arrangement of reinforcement bars because of complex cracks behavior in
the beam column joints. Meanwhile, mechanical anchorage can be a beneficial tool to
reduce the reinforcement congestion. However, to strengthen this system, many
experimental works are necessary. It is inefficient and it takes time. Thus, in this study,
numerical simulation can be a beneficial tool to understand the behavior. Literature
reviews of numerical simulation are presented and meso-scale analysis by 3D RBSM is
proposed. In this chapter, the significances of this research have been represented. In
order to achieve the objective and scope in this study, some research strategies are

presented.

Chapter 2 describes the mechanical model of the three-dimensional RBSM in detail.
Equations that are used to make local stiffness matrix and global stiffness matrix will be
described, including the equilibrium equation of RBSM. As described above, a little
attention to the mesh size is necessary to represent the cracking pattern in the concrete.
In this chapter, the heterogeneous property of concrete will also be explained, and based
on this property, an appropriate size of meshing will be determined. In other words, the
reason in determining the mesh size will be described. The concept of the mesh
arrangement of concrete elements and steel elements is provided, including the
improvement of the simulation system that has been achieved so that the simulation can

model the same model and the same reinforcement arrangement with the real condition.

Chapter 3 mentions the constitutive models of all elements that will be used in this study,
1.e. concrete elements, steel elements, and interface interface-concrete elements.

Constitutive models were developed based on the simulations in material scale.

Chapter 4 shows the simulation results of concrete in the material scale to confirm the
constitutive models that will be used in the simulation. Results of simulations of
uniaxial compressive test, uniaxial tensile test, and biaxial compressive stress will be
shown in this chapter. The results are compared with those of equations in the
specification code and the experimental results. Furthermore, the effect of various types
of failure criterion of concrete on the behavior of concrete material will be revealed in

this chapter. The applicability of RBSM to simulate Poisson’s Ratio effect will be
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checked.

Chapter 5 shows the reliability of RBSM in modeling the bond between the concrete
and a reinforcement bar. In this chapter, tension stiffening simulations were conducted
to confirm the applicability of RBSM in modeling the bond behavior. 2 simulations
were conducted based on the experiment done by Shima et al. (1987), i.e. low yield
strength of reinforcement bar and normal yield strength of reinforcement bar.
Macroscopic responses, microscopic responses, and strain distributions along the
reinforcement bar of simulation results will be compared with those of experimental
results. In addition, the effect of tensile strength reduction of normal springs at the
interface between concrete elements and steel elements, and modeling strain hardening
region in the constitutive model of springs of steel elements on the tension stiffening

behavior of a reinforced concrete member will be explained in this chapter.

Chapter 6 shows the simulations of corbels by 3D RBSM. By well-developed
simulation system, RBSM is used to explain how the loading condition and local
arrangement of reinforcement affect significantly the local cracks and furthermore affect
the macroscopic response. The simulation results will be compared with the
experimental results. Simulation can simulate well the damage that occurred in the field
observation because of the ability of simulation to model the local arrangement of
reinforcement directly. Furthermore, simulation can propose the effective way to
recover the capacity of the corbel by considering directly the existing damage in the

corbel.

Chapter 7 shows the simulation of a beam column joint with complex arrangement of
reinforcement bars by 3D RBSM. RBSM can simulate complex cracks in the beam
column joint with complex arrangement of reinforcement bars because the same
arrangement of reinforcement bars as the experimental specimen was modeled.

Different cracking pattern can be simulated due to different loading condition.

Chapter 8 describes the simulations of beam column joints with mechanical anchorages.
Based on the experimental work, the knowledge how to arrange the reinforcement bars
in beam column joint with mechanical anchorages has not been well known yet so that
many experiments were done. Based on the simulation results, each reinforcement bar
has contribution to the cracks formation in the beam column joint. Furthermore, the

importance to place concrete block at the top of a beam column joint or stirrups along
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the anchorages of a beam column joint with mechanical anchorages will be explained in
this chapter. Since the opening of diagonal cracks affects the failure pattern of the beam
column joints with mechanical anchorages significantly, the effect of using plain bars or
deformed bars as the stirrups on the failure behavior of the beam column joint will also

be explained.
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Chapter TWO
METHOD OF SIMULATION

2.1 RIGID BODY SPRING MODEL
In this study, the simulations are carried out by a three dimensional RBSM, proposed by

Kawai et al. (1978). In RBSM, a three dimensional reinforced concrete model is
meshed into rigid bodies. Each rigid body consists of six degree of freedoms, i.e. three
translational degrees of freedom and three rotational degrees of freedom at some points
within its interior and connects with other rigid bodies by three springs, i.e. two shear

springs and one normal spring.

2.2 MECHANICAL MODEL OF THREE-DIMENSIONAL RBSM
Mechanical behavior of 3D RBSM is shown in Fig. 2.1. In this study, the computational

point (X, Ye, Z;) Where the degrees of freedom of an element are located, is defined as

follows:

X Xyt X+ Xy

Xc m

VitYyzt - +yit o+ Ym 2.1)
Ye = m

Zi+ zZy ozt 7y
Z; = m

where m is the number of node composing an element and Xx;, y;, and z; are the

coordinates of the nodes in an element.
6DOF

Fig.2.1 Mechanical model of 3D RBSM
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Meanwhile, the point of a face of an element where springs are located, is defined as

follows:

Xp Xy X+ o+ Xy

Xef = n
Vi+ Yooy e+ (2.2)
Yef =
n
zZi+ 2z, + otz + 0+ 27y
Zef = n

where n is the number of node composing a face and x;, yj, and z; are the coordinates of

the nodes in a face.

When an element has small displacement [u;, vi, wi, 041, 01, 0], the springs at a

face in an element will be displaced:

u=1uq— 0 wl (y(:f - ycel) + 0 Vl(Zcf - Zcel)

v=v1— 0 (Zef = Zeer) + 0, (Xep — Xeen) 23)
w=w;— 0 vl(XCf ~ Xce1) + 0 ul (y6f - ycel)

Elongations of normal and shear spring are calculated and expressed as follows

d = Bu, 2.4)

T _ T_
Wehere d = [ 051, 05, 0] and ue =[ uy, vi, Wi, 0w, 0y1, 0wi Uz, vo, Wa, 0,

0 v2, 0 w2]. The transformation matrix B is written as:

K11 K12 Ki3Ki 4 Ki5Ki6Ki7 KigKioKi10K111 K112 (2.5)
B = KZ1K22K23K24K25K26K27K28K29K210K211K212
K31K32K33K34K35K36K37K38K39K310K311K312

22



Ki = -€s1x K2 = -€1y Kiz = -€s1,
Ka1 = -€0x K2 = -€51y Ky =-€5,

K31 = -Cnx K32 = -Cny K33 = -Cnz

Kis= esly(Zcf"Zcel)' eslz(}’cf"}’cel)
Ky = esZy(Zcf"Zcel)' esZz(ch"Ycel)

Kss= eny(Zcf"Zcel)' enZ(ny"ycel)

Kis= eslz(ch"Xcel)' eslx(Zcf"Zcel)
Kys = esZz(ch"Xcel)' est(Zcf"Zcel)

Kss = enz(ch"Xcel)' enx(Zcf"Zcel)

Kis= eslx(ch"Ycel)' esly(xcf"xcel)
Ko = est(ch"Ycel)' es2y(xcf"xcel)

Ks6 = enx(ch"Ycel)' eny(ch"Xcel)

Ki7 = esx Kig = esiy Ki9 = €512
K27 = exx Kag = €51y K29 = €52,
K37 = enx K3 = eny K39 = €n,

Kio= eslz(ch‘YceZ)‘ esly(Zcf"Zce2)
Koio= esh(}’cf"}’ceﬁ)' esZy(Zcf"ZceZ)

Ksi0= enz(ch‘YceZ)' eny(Zcf"ZceZ)

Kin= eslx(Zcf"Zce2)' eslz(ch"XceZ)
Ko = est(Zcf"ZceZ)' esZz(ch"Xce2)

I<311 = enx(Zcf"ZceZ)' enz(ch"XceZ)

Kin= esly(xcf"xceZ)‘ eslx(ch"YceZ)
Ko = eszy(xcf"xce2)' est(ch"YceZ)

K312 = eny(xcf"xceZ)' enx(ch"YceZ)
where ¢;; is direction cosine in i axis on j axis.

By applying the principal of virtual work, the local equilibrium relation expressed in
global coordinate is expressed as,
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k,Au, = Af, (2.6)

where the stiffness associated with interconnected face k. is given as

k., = BTDB 2.7)
where

kg, 0 0 (2.8)
D= [ 0 ksz O]

0 0 k,

in which k,, ky;, and kg, are the normal and shear spring stiffness, The local stiffness of
kn, k1, and ks2 can be calculated as,

A
o= R,
A (2.9)
ks = kssp m
A
ks, = kssp m
where,

k _ (1 - ﬁelem)Eelem
nsp (1 + ﬁelem)(l - 27~9elem)

k — Eelem (2-10)
Ssp (1 + ﬁelem)

where h; and h, are length of perpendicular lines from the element computational point
to the face springs are set. The A is an area of the face. E¢jem and vejem are the modulus of

elasticity and poison’s ration, respectively, which are calculated as follow.

Eeleml hl + Eelemz hz

Eelem - hl + hz
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19elemlhl + 19elem2hZ (2-11)

19elem - h1 + h2

2.3  MEANING OF ELEMENT SIZE IN MESO-SCALE ANALYSIS
In this study, the target of simulation is for normal concrete where the target

compressive strength varies from 15 MPa to around 50 MPa, and concrete is a
heterogeneous material that consists of water, cement, fine aggregate, and coarse
aggregate. It is well understood that in a normal concrete microcracks occur at the
interface between the mortar and aggregate or at the mortar between two aggregates
when a concrete is loaded because these regions are weaker than aggregates (Fig. 2.2a).
This heterogeneous property of normal concrete is different compared with fiber

reinforced mortar that cracks usually occur in the mortar (Fig. 2.2b).

Based on these physical behaviors of cracks, a little attention of mesh size is necessary
in RBSM since in RBSM a reinforced concrete member is meshed into rigid bodies that
a rigid body is not allowed to be deformed and deformation of a reinforced concrete
member depends on the movements or displacements of rigid bodies. To represent the
real physical behaviors of cracks in a normal concrete, it is suitable that an aggregate
should be represented as a rigid body since very small deformation can be assumed in
aggregates. Cracks between aggregates determine mostly the deformation of a

reinforced concrete member in macro scale so that forces, i.e. normal forces and shear

forces, that cause the cracks opening and cracks closing are represented by normal

Aggregate Mortar

Re-bar

Re-bar

Cracks

Fig.2.2a Normal concrete Fig.2.2b Fiber reinforced mortar

Fig.2.2 Cracks propagation of concrete
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springs and shear springs in RBSM (Fig. 2.3). Based on this description, author decided
that 10x10x10 — 20x20x20 mm’ of mesh size is the most appropriate element size in
this study to consider the aggregate size and location. After the appropriate mesh size
that will be used in this study is chosen, constitutive models of springs will be decided

based on the behavior at this size.

Based on the explanation above, it is well understood that in case of fiber reinforced
mortar and high strength concrete, the same mesh size and constitutive models as
normal concrete can’t be applied. In case of fiber reinforced mortar because of the
absence of aggregate, the physical behavior of cracks is straighter rather than zigzag
shape found in normal concrete. Meanwhile in case of high strength concrete, cracks
can penetrate into the aggregate. Furthermore, finer mesh is more appropriate in both

cases and different constitutive models should be determined (Figs. 2.4 and 2.5).

It can be concluded that in RBSM, mesh size should be determined based on the actual
cracking behavior in concrete. Furthermore, based on this mesh size, the appropriate

constitutive model should be chosen.

Aggregate

Mortar

Cracks

Cracks

Aggregate

Mortar

Cracks Cracks

Fig.2.4 Representation of real cracks behavior of high strength concrete into mesh size
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] Cracks Cracks
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Fig.2.5 Representation of real cracks behavior of fiber reinforced mortar into mesh size

24  MESH CONSTRUCTION

As the propagation of cracks in reinforced concrete is one of the most important factors
in investigating the behavior of reinforced concrete members, the mesh arrangement of
the model in RBSM is important. In order to prevent cracks propagated in a
non-arbitrary direction, a random geometry, called Voronoi Diagram, is used for the
element meshing. The concrete element size is modeled approximately 10° to 20° mm?®
that is similar to the aggregate size as described above, while the size of the steel
element is set according to the geometric complexity of the reinforcement bar
arrangement. The geometry of steel elements is modeled in an accurate manner, by
modeling a 3D arrangement of reinforcement bar, to propetly account for the interlock

between the reinforcement bar and concrete.

In the past, our research group has conducted 3D RBSM to study the behavior of
reinforced concrete members. However, the simulations were limited in the small size of
reinforced concrete members with simple reinforcement arrangement. Meanwhile, to
simulate a beam column joint with multidirectional reinforcement arrangement, larger
size of model is needed and the behavior is significantly affected by the reinforcement
arrangement which cannot be simplified, so that the simulation was needed to be

updated. Simulation has been developed so that 3D RBSM can model the same model

~A_Concrete
bv‘- T
YAV IO [0 ﬁ

Fig.2.6 Mesh arrangement of concrete and reinforcement bars (a) Cross section; (b)
Model of 3D rebar; (¢) Model of 3D mechanical anchorage
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and the same reinforcement arrangement as the real condition by simplifying the
algorithm of the element meshing of a reinforcement bar in the simulation. Mesh
arrangement of concrete and steel at meso-scale in this study is shown in Fig.2.6.
Meanwhile, Fig.2.7 shows various shapes of reinforcement bars that have been
developed. For the 3D Voronoi meshing, the software QHULL is used.

To model a 3D reinforced concrete member, two types of elements are used, i.e.
concrete elements and steel elements. The properties of the springs are determined so
that the elements, when combined together, enable to predict the behaviour of the model
as accurate as that of the experimental result. In this study, the simulation system,
developed by Nagai et al. (2005), is used.

Fig.2.7 3D model of various shapes of reinforcement bars (a) Spiral; (b) Deformed and
plain bars of stirrup; (¢) Conventional 90 or 180 degree hooked bars; (d) Mechanical
anchorages
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2.5 CONCLUSIONS
1. In this chapter, the concept of selecting mesh size in RBSM is proposed so that

rational cracks propagation can be reflected in simulation models that represents
the real cracking pattern in concrete. Since the target of this study is normal
concrete, 10x10x10 — 20x20x20 mm® of mesh size of simulation models is selected
to represent the actual cracking propagation in a normal concrete that cracks
propagate between 2 aggregates.

2. Simulation has been developed so that 3D RBSM can model the same model and
the same reinforcement arrangement as the real condition by simplifying the

algorithm of the element meshing of a reinforcement bar.
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Chapter THREE
CONSTITUTIVE MODEL

3.1. CONCRETE MODEL
In this study, a constitutive model for the concrete at the meso scale is developed

because the constitutive model in the macro scale cannot be applied to meso scale

analysis.

In the analysis, because of the original characteristics of RBSM, the values of the
material properties at the meso level given to the elements are different from the
material properties of the object analyzed at the macroscopic level. The material
properties for the elements were determined in such way as to give the correct
macroscopic properties. In discrete analysis, the shape and fineness of elements affect

analysis results (Nagai et al. 2005).

Since crack direction may affect the crack pattern, the size of each concrete element is
approximately 10x10x10 — 20x20x20 mm®, similar to the maximum aggregate size. The
assumption was made to represent the fracture behavior in normal concrete that cracks
occur between 2 aggregates because the mortar is weaker than aggregate and it can be
assumed that aggregates as rigid bodies in which deformation of aggregates at the meso

scale level is very small particularly in normal concrete, subjected to loads.

In the elastic analyses, the relationship between the macroscopic and mesoscopic
Poisson’s ratios and the effect of the mesoscopic Poisson’s ratio on the macroscopic
elastic modulus have been confirmed by Nagai et al. (2005). The same concepts were

adopted, represented in Eqns. 3.1 and 3.2

Dotom = —24.89* + 31.993 — 16.492 + 4.289 (3.1)
Eotem = (—33.791em” + 17.0910m° — 4.139¢10m> + 032791 + 1)E (3.2)

where E and v are the macroscopic elastic modulus and Poisson’s ratio of component of

the analysis object, respectively.
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The material characteristics of each component are presented by means of modeling
springs. In normal spring, compressive and tensile stresses (0) are developed. Shear
springs develop shear stress (t). The elastic modulus of normal spring (kns, and kgp) was
presented in the previous chapter. For calculation of shear stress on 3D analysis, a
resultant value of strains generated in two shear springs in adopted as a shear strain in

the constitutive model presented in this chapter. The strains and stresses are calculated

as follows.
*Thth,
O (3.3)
y = —
hy + h,
0= knpspe
T= ksspy

where ¢ and v are the strain of normal and shear springs, respectively. 6 , and 0 s are

the normal and shear relative displacement of elements of those springs, respectively.

In this study, the constitutive model of concrete element has been developed based on
the some simulations in the material scale level that will be presented at the next chapter.
The constitutive models for the normal and shear springs of the concrete elements are

shown in Fig. 3.1.

The constitutive models of a normal spring and a shear spring of concrete element, used
in this study, are shown in Figure 3. Basically, the concept of the concrete model is
same as the original simulation developed by Nagai et al. (2005) where the compressive
failure is not allowed at the meso-scale. In tension zone, crack, between 2 rigid bodies,
occurs when the tensile stress of the normal spring exceeds the tensile strength of the
concrete (f;). After exceeding the tensile strength (f;), the tensile stress of a normal
spring is assumed to decrease bi-linearly, depending on the crack width, to zero at the
maximum crack width (w,,.,), which is assumed 0.3 mm (see Fig. 3.1.a). Meanwhile, an
elasto-plastic behavior is assumed for the shear spring of concrete element (see Fig.
3.1.b) with the 1, is calculated based on Eq. 3.4.
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Fig. 3.1 Constitutive models of concrete elements

Tmax = i(1-6ftelem2(_0- + ftelem)o'4 + 0-15ftelem) if (U = 3ftelem)
Tmax = i(1-6ftelem2(_3ftelem + ftelem)o'4 + 0-15ftelem) if (U < 3ftelem) (3-4)

Furthermore, when fracture occurs in the normal spring, the calculated shear stress is
reduced according to the reduction of the normal stress. As the result, shear spring
cannot carry the stress when the crack width of the normal spring reaches w,,, (see Fig.
3.1.d).

In next chapter, a parametric study is also done to examine the effect of parameters in
constitutive models through simulations both in material scale and in structural scale.
For constitutive models of concrete, a parametric study will be done not only for the

constitutive model of normal springs but also for the constitutive model of shear spring.
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3.2. STEEL MODEL
The geometry of steel elements is modeled in an accurate manner to properly account

for the interlocking between the reinforcement and concrete. In this study, the strain
hardening region is introduced so that the normal springs of steel elements are assumed
to behave as the same as the actual steel (Fig. 3.2). Meanwhile, the shear springs are

assumed to be perfectly elastic.

The constitutive model of the normal spring used in this simulation is represented by the

following equations (adopted from Shima et al. 1987).

o=Ec if (e<egy)
o=f, if (&) <e<égg)

- 3.5
o=f,+ (1 B eT) (1'01fu - fy) if (¢ > &sn) o

where

ko :0.032(400/f;)"

o :stress (MPa)

& :strain

Jfy  :yield strength (MPa)
fu :tensile strength (MPa)

&g - initial strain of hardening, assumed 1.5%

As the comparison, the effect of modeling strain hardening region will be investigated
through the simulation of tension stiffening and simulation of structural scale, i.e.

simulation of beam column joint with mechanical anchorage (Fig. 3.3).

3.3. CONCRETE-STEEL INTERFACE
At concrete-steel interface, the constitutive model of a normal spring and a shear spring

is considered to be the same as that of the concrete element. To consider the interface as
a weak region, the tensile strength of the interface elements is assumed to be half of that
of concrete elements in this study. Fig.3.4 shows constitutive model of the interface

elements.
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Fig. 3.4 Constitutive models of concrete-steel interface
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3.4. CONCLUSIONS
Constitutive models have been improved based on the some simulations in the material

scale of concrete, and bond between concrete and steel.
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Chapter FOUR
SIMULATION OF CONCRETE AT MATERIAL SCALE

4.1 INTRODUCTION

In this chapter, three-dimensional simulations of concrete are conducted. The purpose of
this study is for the prediction of the behavior of concrete, especially in uniaxial
compression, uniaxial tension, and biaxial compression. The modified Newton-Raphson
method is used as the convergence algorithm nonlinear analysis. Convergence criterion
and the maximum iteration number are set to 10~ and 400 in this study. Displacement of

loading boundary is controlled in the analysis.

4.2 OVERVIEW OF EXPERIMENT STUDIES OF BIAXIAL STRENGTH OF
CONCRETE BY KUPFER ET AL (1969)
As the initial step, it is necessary to check the reliability of 3D RBSM in simulating
biaxial stress condition since the target of this study is the simulation of beam column
joint where biaxial stress condition exists in this region which develops because of the
combination of concrete compressive stresses and reinforcement bars tensile stresses.
The reliability of 3D RBSM will be checked through the comparison with the
experimental results done by Kupfer et al. (1969). Kupfer et al. (1969) conducted
experimental studies of the biaxial strength of concrete by introducing a new testing
apparatus by using “brush bearing plate”. These plates consist of a series of closely
spaced small steel bars with 3 x 5 mm of cross section and from 100 to 140 mm of
length variation which are flexible enough so that concrete can deform without any
restraint due to friction between the plates and concrete that can increase the apparent

strength of the test piece.

The dimension of the concrete specimens in these experimental studies was 20x20x5
cm and the target of uniaxial compressive strength of concrete 190, 315, and 590 kg/cm?.
The maximum aggregate size was 15 mm. As described above, the length of the small
steel bars in the brush bearing plate were varied. To test concrete with higher

compressive strength, shorter steel bars were used to prevent buckling of the steel bars.

To verify the applicability this new apparatus, 20x20x5 cm of concrete specimens were
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tested under uniaxial compression condition with and without brush bearing plates.
Furthermore, the compressive strength of the concrete with brush bearing plates should
be equal to that of without bearing plates in order to prove that the boundary condition

had no additional restraint to the specimens.

In the experiment, the ratio of 61/c, was maintained constant throughout the test. The
experimental results show that the compressive strength of concrete increased
approximately 16 percent under biaxial compressive stress. Meanwhile, the tensile
strength of concrete under biaxial tensile stress was equal to that of uniaxial tensile
stress. Furthermore, the results did not change significantly with different compressive

strength of concrete.

4.3 DETAIL OF NUMERICAL MODELS
4.4.1  Numerical Models

In total of eight numerical models with different tensile strength of springs were
simulated under uniaxial compressive loading and biaxial compressive loading. Four
numerical models were simulated under uniaxial compressive loading and other four
numerical models were simulated under biaxial compressive loading. By setting the
tensile strength of springs in meso-scale, the uniaxial compressive strength and uniaxial
tensile strength of concrete in macro-scale were obtained. The relationship between the
compressive strength and the tensile strength which was obtained at the same tensile

strength of springs will be compared with that of JSCE (2007) equation.

f, = 0.23f.%/°
(4.1)

Meanwhile, the biaxial compressive strength of simulation results will be compared

with that of experimental results done by Kupfer et al. (1969).

442  Geometry of Numerical Models

Figs. 4.1 and 4.2 show the geometry of the simulation models for uniaxial test and
biaxial test, respectively. The dimension of simulation model for uniaxial test is
150x150x300mm, and the dimension of simulation model for biaxial test is

400x400x100 which is twice than that of experimental specimens done by Kupfer et al.

37



150

A
()
b
AastiSvanvARiNg
_ 150 c 150
= A Y \ianiy. '
= .
=) <
= &
150 150
/ N

Fig.4.1 Geometry of numerical model of uniaxial test (Units: mm)

(1969). The tensile strengths of springs are set in 0.5 MPa increments from 2 MPa to
3.5MPa which represents the range of strength of normal concrete. Numbers of
elements of uniaxial models and biaxial models are 6750 elements and 16000 elements,

respectively.

4.43  Boundary condition

Figs. 4.3 and 4.4 show the boundary condition of simulation models for uniaxial test
and biaxial test, respectively. In case of uniaxial test, fixed condition in all directions is
assumed at the bottom of the models. Monotonic displacement-loading is applied at the
top of the models. Displacement is increased by 0.002 mm at each loading step. 600
steps of loading displacement-loading are applied in the simulation of uniaxial
compression test. Meanwhile, 200 steps of loading displacement-loading are applied in

the simulation of uniaxial tension test.

In case of biaxial test, steel plates were modeled located at the four sides of the
numerical models which are the same as experimental specimens. The stiffness of the
steel plates was assumed rigid enough, so that the deformation of the steel plates will be
prevented. In order to model frictionless between the steel plates and the models, forces
are transferred only through normal springs between the steel plates and the models. To

check the applicability of this boundary condition, the same concept as experimental
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Fig.4.2 Geometry of numerical model of biaxial test (Units: mm)

tests is adopted that the uniaxial compressive strength of concrete with steel plates
should be equal to that of without steel plates. Fixed in all directions is assume at the
bottom side of models. Monotonic displacement-loading is applied to the left side, top
side, and top side. The ratio of 6,/0, was maintained constant throughout the simulation
which is the same as the experimental tests. 600 steps of loading displacement-loading

are applied.

150

Fig.4.3 Boundary condition of numerical model of uniaxial test (Units: mm)
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Fig.4.4 Boundary condition of numerical model of biaxial test (Units: mm)

As described before, in order to check whether the boundary condition may affect the
simulation results, uniaxial compressive loading test is conducted for this numerical
model with and without the steel plates. The simulation was conducted by setting 2 MPa
of tensile strength of springs. Fig. 4.5 shows the stress-strain relationship of simulation
results. The stress-strain relationship of simulation result with bearing plates does not
differ significantly with that of without bearing plate. It can be concluded that
frictionless condition can be obtained by setting no shear stress between the steel plates

and concrete.
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Fig.4.5 Uniaxial compressive strength with and without steel plates

4.4 RESULT AND DISCUSSION
4.4.1  Uniaxial Compression and Tension Test

Figs. 4.6 and 4.7 show the stress-strain relationships of uniaxial compression and
tension test of numerical models, respectively, by setting different tensile strength of
springs, i.e. 2 MPa, 2.5MPa, 3 MPa, and 3.5 MPa.

The stress of stress-strain relationships was determined based on the load which was
applied on the top surface of models divided by the area of the top surface of the
numerical models. The strain of stress-strain relationships was calculated based on the
displacement which was applied on the top surface of models divided by the initial
length of the numerical models. The maximum stresses of numerical models were

predicted at a strain between 0.12% until 0.3%.
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Fig.4.6 Simulation results of uniaxial compressive stress-strain relationship of concrete
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Fig.4.7 Simulation results of uniaxial tensile stress-strain relationship of concrete
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Table.4.1 Uniaxial compressive and tensile strength of simulation predictions

frof springs Simulation Prediction JSCE equation
(MPa) Comp.strength Tensile strength Comp.strength Tensile strength
(MPa) (MPa) (MPa) (MPa)
2 24.96 2.06 25.6 2
2.5 36.90 2.57 35.8 2.5
3 47.68 3.08 47 3
3.5 60.01 3.58 59.25 3.5
4
=
A
g
=3 /’"
o
=
£ /
s 2 X
5
[
IR X : Simulation result
=
<
E — : JSCE equation
0 | |
0 10 20 30 40 50 60 70

Uniaxial Compressive Strength (MPa)

Fig.4.8 Relationship of compressive and tensile strength of concrete

Table.4.1 and Fig.4.8 show the relationship of the uniaxial compressive and tensile
strength at the same tensile strength of springs, compared with that of JSCE equation.
The simulation results are in a good agreement with the relationship of uniaxial
compressive strength and uniaxial tensile strength proposed by JSCE equation.
Furthermore, Figs.4.9 and 4.10 show the surface cracks of numerical models after

failure in case of uniaxial compressive loading and uniaxial tensile loading,

respectively.
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(a) f; =2 MPa (b) fi=2.5 MPa (c) fi=3 MPa (d) f; =3.5 MPa
Fig.4.9 Surface cracks after failure in case of uniaxial compressive loading (Def. X5)

(a) f; =2 MPa (b) fi=2.5 MPa (c) fi=3 MPa (d) f; =3.5 MPa
Fig.4.10 Surface cracks after failure in case of uniaxial tensile loading (Def. X5)

e=0.1% e =0.2% £ =0.3% € =0.4%
(a) f;=2 MPa
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Fig.4.11 Internal stress and internal cracking in case of uniaxial compressive loading
(Deformation X 10)
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Fig.4.11 shows the internal stress and internal cracking of numerical models subjected
to uniaxial compressive loading. When the load is relatively small, no cracks occur in
the numerical models. As the load increases, the slopes of the stress-strain relationships
changes as the result of the formation of microcracks in the numerical models.
Furthermore, splitting cracks which are parallel to the loading direction are predicted.
After failure, diagonal shear cracks were predicted in the numerical models as the result

of the interaction of the normal stress and the shear stress in the models.

4.42  Biaxial Compression Test

Figs. 4.12, 4.13, 4.14, and 4.15 show the stress-strain relationships of biaxial
compression tests of numerical models when the tensile strength of springs is 2 MPa,
2.5MPa, 3 MPa, and 3.5 MPa, respectively. The stress of stress-strain relationships was
determined based on the load which was applied on the top surface of models divided
by the area of the top surface of the numerical models. In this study, the stress applied
on the top surface of models is equal to the stress applied on the left side or the right
side of the models. The strain of stress-strain relationships was calculated based on the
displacement which was applied on the top surface of models divided by the initial
length of the numerical models. Table 4.2 shows the biaxial compressive strength of

concrete, predicted by the simulation results.

— : Uniaxial (25.0 MPa)
40 -+ : Biaxial (33.0 MPa)

- |
30 R 32%

SN T

10 -+

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%
Strain (%)

Compressive Stress
(MPa)

Fig.4.12 Biaxial compressive strength of concrete (tensile strength of spring 2 MPa)
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Fig.4.13 Biaxial compressive strength of concrete (tensile strength of spring 2.5 MPa)
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Fig.4.14 Biaxial compressive strength of concrete (tensile strength of spring 3 MPa)

120
100

80 69%
60 ...." — A 4

40 /

A -
20 = — : Uniaxial (60.0 MPa)
0 s | e : Biaxial (100.3 MPa)

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%
Strain (%)

Compressive Stress
(MPa)

Fig.4.15 Biaxial compressive strength of concrete (tensile strength of spring 3.5 MPa)
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Table.4.2 Biaxial compressive strength of simulation results

f;of springs Uniaxial Biaxial Ratio
(MPa) Compressive Compressive (Biaxial/Uniaxial)
Strength (MPa) Strength (MPa)
2 24.96 33.03 1.32
2.5 36.90 50.87 1.38
3 47.68 73.85 1.55
3.5 60.01 101.23 1.69

Based on the simulation results, the strength of concrete subjected to equal biaxial
compressive stresses increases approximately by 32%-69% depending on the
compressive strength of concrete. Higher compressive strength of concrete shows
higher strength increase. Meanwhile, in the experimental results conducted by Kuper et
al. (1969), the compressive strength subjected to equal biaxial stress increases by 16%
which is not depended on the compressive strength of concrete. In case of smaller
compressive strength of concrete, i.e. 2 MPa and 2.5 MPa, simulation results are almost
the same as the experimental results. However in case of higher compressive strength of
concrete, i.e. 3 MPa and 3.5 MPa, simulation results overestimate compared with

experimental results.

Figs.4.16 and 4.17 show internal cracks and surface cracks of numerical models after
failure. The simulation results predict that major cracks parallel to the loading condition
occur. This behavior is in a good agreement with experiments done by Kupfer et al.
(1969).
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(a) f, =2 MPa (b) f, =2.5 MPa

(c) fi =3 MPa (d) f; =3.5 MPa
Fig.4.17 Surface cracks after failure in case of biaxial compressive loading (Def. X 10)

4.5 POISSON’S RATIO
Fig. 4.19 shows the lateral deformation and the Poisson’s ration of numerical models

subjected to uniaxial compressive loading when the tensile strength of springs is 2 MPa,
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2.5MPa, 3 MPa, and 3.5 MPa, respectively. Fig. 4.20 shows the lateral deformation and
the Poisson’s ration of numerical models subjected to uniaxial tensile loading when the
tensile strength of springs is 2 MPa, 2.5MPa, 3 MPa, and 3.5 MPa, respectively. Lateral
strains are calculated by the relative deformation between elements A and B in Fig. 4.18

and Poisson’s ratio is calculated by dividing the lateral strain by the axial strain of

concrete.
S
2
e
’:'\"!s'é
e
[l
Fig.4.18 Middle cross section of numerical models
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Fig.4.19 Lateral deformation and Poisson’s ratio under uniaxial compression

Stress-strain curves
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Fig.4.20 Lateral deformation and Poisson’s ratio under uniaxial tension

When the load is relatively small, the simulation results predict the value of Poisson’s
ratio is predicted in the range of 0.15-0.25 subjected to uniaxial compressive loading.
As the load increases, around 80%-90% of its capacity, because of the beginning of the
formation the splitting cracks that are parallel to the loading direction, the Poisson’s
ratio increases. When the numerical models are loaded with uniaxial tensile loading, the
simulation results predict that the Poisson’s ratios are almost constant until the loads

reach the maximum load.

4.6 EFFECT OF MESH ARRANGEMENT

The mesh arrangement may affect the simulation results because in this study the
voronoi points were introduced randomly. In order to check whether the mesh
arrangement may affect the simulation results, 5 numerical models with different
arrangement will be investigated through the comparison of stress-strain relationship,
internal stress, and surface cracks. Numerical models will be loaded by uniaxial
compressive loading and uniaxial tension loading. Fig.4.21 shows the cross section of
numerical models with different mesh arrangements. Simulations are conducted only for

2.5 MPa of tensile strength of springs.

52



-
:‘;" ST
Tenins

ST
o8

DLy

v‘-Q.
[ 3 ._'A"
- .1 (A \“

),
22 ege‘ﬁvl-
A AT

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5
Fig.4.21 Numerical models with different mesh arrangements

40
A
o
a 30 4
Q ~
<
z £ /
2 E 20 — : Model 1
!a ~ = : Model 2
g —— : Model 3
S 10 — : Model 4
——: Model 5
0 T T
0.00% 0.10% 0.20% 0.30%

Strain (%)
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Fig.4.23 Stress-strain relationship of uniaxial tensile loading with different mesh
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(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5
Fig.4.24 Surface cracks after failure in case of uniaxial compressive loading with

different mesh arrangement (Def. X5)

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5
Fig.4.25 Surface cracks after failure in case of uniaxial tensile loading with different

mesh arrangement (Def. X 5)

Figs. 4.22 and 4.23 show the stress-strain relationships of numerical models with
different mesh arrangement subjected to uniaxial compressive and tensile loading,
respectively. Based on the stress-strain relationships either in case of uniaxial
compressive loading or uniaxial tensile loading, there is no significant difference of
macroscopic response. Small difference is predicted at approximately 80% of the
ultimate load. Figs. 4.24 and 4.25 show the surface cracks of numerical models with
different mesh arrangement subjected to uniaxial compressive and tensile loading,
respectively. Diagonal shear cracks that usually occur are predicted in all numerical
models subjected to uniaxial compressive loading. Local cracking patterns are slightly

different due to different mesh arrangement.

4.7 EFFECT OF FAILURE CRITERION OF CONCRETE
Before proposing constitutive models of concrete elements, some parametric studies

were conducted to examine the effect of parameters on the concrete behavior subjected
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to uniaxial compressive loading, uniaxial tensile loading, and biaxial loading. In this
chapter, a parametric study is conducted for the constitutive model of the failure
criterion of concrete. The effect of this constitutive model will be investigated. Fig. 4.26
shows different failure criteria of concrete that becomes a parametric study in this
chapter. The study will be done for all cases of tensile strength of springs, i.e. 2MPa, 2.5
MPa 3MPa, 3.5 MPa. Nagai et al. (2005) signifies constitutive model that proposed by
Nagai et al. (2005) (Eq.4.2). The proposed constitutive model will be signified by
Proposal (Eq.4.3). Trial signifies the proposed constitutive model without capping in
compression (Eq.4.4).

Tmax = i(O-SftelemZ'S(_O- + ftelem)o'4 + 0-15ftelem)
4.2)

Tmax = i(1-6ftelem2(_0- + ftelem)o'4 + 0-15ftelem) if (G = 3ftelem)
Tmax = i(1-6ftelem2(_3ftelem + ftelem)OA + 0-15ftelem) if (U < 3ftelem) (4-3)

Tmax = i(1-6ftelem2(_0- + ftelem)o'4 + 0-15ftelem) (4-4)

50 ~ 50
- = Nagai et al. (2005) = Nagai et al. (2005)
S — Proposal — Prgposal
& = Trial 46 o T_ Trial 40
s £ ~u
@» 20 2 P 30
8 BAY : \\
W 20 S
= — @ X
]
] — \
7 ToN g 1o
z =
—_— 7
ray

\ B

30 25 20 -15 -10 -5 0 5 10 30 25 20 -15 -10 -5 0 5 10
Normal Stress (MPa) Normal Stress (MPa)
(a) f;=2 MPa (b) f; =2.5 MPa

55



QO (oA}
— Nagai et al. (2005)| °° T~ v
Proposal 70 76
E = Trial n ;'«: N n
\ ASAv) o0
e 50 = 50
c ~ oY S | |=Nagai ez al. (2005) \\ﬂ
w AN w
2 40 2 Proposal -r\
= Neo £ | |—Trial 30\
;‘ 20 N ;‘ 20 \
7 HS 7 \‘
0 0
30 25 20 <15 -0 5 0 5 10 30 25 20 <15 <10 -5 0 510
Normal Stress (MPa) Normal Stress (MPa)
(¢) f. =3 MPa (d) f, =3.5 MPa
Fig.4.26 Different failure criteria of concrete
50 - 50
= Nagai et al. (2005)
= Proposal @
w wn
g 40 Trial g 40
= @
»n
v =30 2 =30 / \
z & = e
¢s / : N $ 2
=20
‘E‘_ f N \ 5 NN\
o 10 = Nagai et al. (2005)
8 10 S~— N @] — Proposal
— Trial
0 - -
0 0.00% 0.10% 0.20% 0.30% 0.40% 0.50%
0.00% 0.10% 0.20% 0.30% 0.40% 0.50%
Strain (%) Strain (%)
(a) f, =2 MPa (b) f,=2.5 MPa
70 70
2 60 2 60 o]
g g N\
7] -—-\ ~N 7] \
2 =40 2 =40
o R - R
g2 s g2 s / N
5} 30 o 230
= = = = / \ \
= NG = N
E 20 / — N E 20 N
e = Nagai et al. (2005) e / = Nagai et al. (2005)
o 10 = Proposal © o = Proposal
0 = Trial 0 = Trial
0.00% 0.10% 0.20% 0.30% 0.40% 0.50% 0.00% 0.10% 0.20% 0.30% 0.40% 0.50%
Strain (%) Strain (%)
(¢) f. =3 MPa (d) f, =3.5 MPa

Fig.4.27 Uniaxial compressive stress-strain relationships of concrete with different

failure criteria
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Table 4.3 Uniaxial compressive strength of concrete with different failure criteria

Tensile strength of | Nagai et al. (2005) Proposal Trial
springs (MPa)
2 11.64 24.96 27.27
2.5 19.63 36.90 40.26
3 29.52 47.68 53.68
3.5 40.04 60.01 67.51
4 4
—_ = Nagai et al. (2005) —_ = Nagai et al. (2005)
33 = Proposal n‘f = Proposal
= —— Trial > 3 = Trial
g g
: saf
i / s |
% 1 % 1
= ’ K =
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Fig.4.28 Uniaxial tensile stress-strain relationships of concrete with different failure

criteria

Figs. 4.27 and 4.28 show the stress-strain relationships of simulation results when the
numerical models are loaded with uniaxial compressive and tensile load, respectively
with different failure criteria. Table 4.3 shows the uniaxial compressive strength of
concrete with different failure criteria. Based on the uniaxial tensile stress-strain

relationships of simulation results, the failure criterion of concrete does not affect the
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behavior of uniaxial tensile stress-strain of concrete in macroscopic level. On the other
hand, the failure criterion of concrete affects significantly the behavior of uniaxial
compressive stress-strain of concrete in macroscopic response. By increasing the failure
criterion of concrete, it is well understood that uniaxial compressive stress of concrete
will increase because the failure of concrete will be delayed and simulation results
predict the same tendency. However, simulation results predict that the uniaxial
compressive strength of failure criterion without capping in compression increases only

by 10% compared with that of with capping in compression.

Figs. 4.29, 4.30, and 4.31 show the stress-strain relationships of simulation results
when the numerical models are loaded with biaxial compressive load with different
failure criteria, i.e. failure criterion model-1, failure criterion model-2, and failure
criterion model-3., respectively. By increasing the failure criterion of concrete, the
biaxial compressive strength also increases which is the same phenomenon as the
uniaxial compression because the failure of concrete will be delayed. Furthermore, by
capping the failure criterion in compression zone causes earlier failure of concrete
which results the biaxial compressive strength is lower compared with in case of failure
criterion without capping in compression zone. The simulation predicts that strengths of
concrete under biaxial compression vary from 30 percent to 42 percent larger than that
of the uniaxial compression strength in case of failure criterion model-1. In case of
failure criterion model-2, the strengths of concrete under biaxial compression vary from
32 percent to 69 percent larger than that of the uniaxial compression strength and in
case of failure criterion model-3, the strengths of concrete under biaxial compression
vary from 62 percent to more than 84 percent larger than that of the uniaxial

compression strength.
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Fig.4.29 Stress-strain relationship of uniaxial and biaxial compression of failure
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Fig.4.30 Stress-strain relationship of uniaxial and biaxial compression of failure

criterion model-2
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Fig.4.31 Stress-strain relationship of uniaxial and biaxial compression of failure

criterion model-3
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Fig.4.33 Increasing ratio of biaxial compressive strength compared with uniaxial

compressive strength with different failure criterion

Fig.4.32 shows the relationship of compressive and tensile strength of concrete with
different failure criterion of concrete. Based on this relationship, proposal model and
trial model show a good agreement with JSCE equation. Furthermore, Nagai et al.
(2005) model shows an underestimate result. Meanwhile Fig.4.33 shows the increasing
ratio of biaxial compressive strength compared with uniaxial compressive strength with
different failure criterion. Based on this increasing ratio, Nagai et al. (2005) model
shows the closest result with the experimental result and the proposal model is higher
than Nagai et al. (2005) model. The Trial model shows the highest increasing ratio of
biaxial compressive strength. Thus, based on these reasons, in this study the proposal
model is selected because Nagai et al. (2005) model shows an underestimate result in
case of uniaxial compressive strength and trial model shows the highest increasing ratio
of biaxial compressive strength.

4.8 EFFECT OF TENSION SOFTENING OF CONCRETE

In this chapter, a parametric study is also conducted for the constitutive model of the
tension softening of concrete of normal springs. Two types of constitutive models of
tension softening concrete, i.e. linear softening of concrete and bi-linear softening of
concrete, will be investigated through the simulation of uniaxial compression and
uniaxial tension. The simulation is conducted only in case of 2.5 MPa of tensile strength

of springs. Fig. 4.34 shows the constitutive model of linear and bi-linear softening of
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Fig.4.36 Stress-strain relationship of uniaxial tension loading with different tension

softening of concrete

Figs. 4.35 and 4.36 show stress-strain relationships of uniaxial compression and tension
with different tension softening of concrete. Both stress-strain relationships show that
the constitutive model of tension softening of concrete of normal springs affects the
softening of concrete after exceeding the maximum load of uniaxial compressive and
tensile load. In addition, the constitutive model of tension softening of normal springs of

concrete doesn’t change the strength of uniaxial compression and tension.

(a) Linear model (Hayashi et al. 2013) (b) Bi-linear model

Fig.4.37 Surface cracks after failure of uniaxial compression with different tension

softening of concrete
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(a) Linear model (Hayashi et al. 2013) (b) Bi-linear model

Fig.4.38 Surface cracks after failure of uniaxial tension with different tension softening

of concrete

CONCLUSIONS

1.

The constitutive models of concrete elements were proposed based on the
simulation in material scales, i.e. uniaxial compression and tension, and biaxial
compression

By using the proposed constitutive models, the simulation results of uniaxial
compression and tension show a good agreement with the JSCE equation. However,
simulation results overestimate the concrete strength under biaxial compressive
loading.

Under uniaxial compressive loading, when the displacement is relatively small, no
cracks occur in the numerical models. As the results, the stress increases linearly and
Poisson’s ratio keeps constant. As the load increases, around 80-90% of its capacity,
splitting cracks which are parallel to the loading direction occur that changes the
slope of the stress-strain relationships and Poisson’s ratio increases. Ultimately,
diagonal cracks occur in the numerical models after failure. Meanwhile, under
uniaxial tensile loading, simulation results show that the stress increases linearly and
Poisson’s ratio keeps constant until its capacity.

Based on the study of mesh arrangement of numerical models, the simulation results
don’t change significantly. The same behaviors are predicted in all numerical
models with different mesh arrangement. Some differences of local cracking may
occur which are caused by the different mesh arrangement.

Based on the parametric study of failure criterion of concrete, failure criterion of

concrete affects significantly to the behavior of uniaxial compression. Meanwhile,
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the behavior of uniaxial tension doesn’t change with different failure criterion of
concrete.

6. Based on the parametric study of the tension softening of concrete, the tension
softening concrete of normal springs affect significantly the behavior of the uniaxial
tension and the softening of the uniaxial compression . On the other hand, the

behavior of uniaxial compression does not change until the maximum load.
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Chapter Five
SIMULATION OF TENSION STIFFENING

5.1 INTRODUCTION

The deformation behavior of reinforced concrete members is affected by many factors.
One of the important factors, affecting the deformation of reinforce concrete, is the
constitutive laws of bond between concrete and steel reinforcement, due to the
stretching of the anchored bars in the connections of reinforced concrete members and
the tension stiffening effect in the reinforced concrete members. Popov (1984) described
that very large contribution made to the tip deflection by the fixed-end rotation of the
beam caused by the fixed-end rotation of the beam caused by a pullout of the bars from
the anchorage zone. In the other hand, the tension stiffening effect influences the
stiffness of the reinforced concrete members as the stiffness of the members is
decreased by the propagation of cracks. Since the bond behavior of deformed bars is
more complicated than that of plain bars, the tension stiffening effect in reinforced

concrete, reinforced with a deformed bar, will be mainly discussed.

The behavior of the tension stiffening effect in the reinforced concrete members can be
defined by the capability of the concrete to develop tensile stress away from the crack
section by the presence of bond between concrete and the reinforcement bar. When a
reinforced concrete member is loaded by an axial tensile force, the tensile stress,
working both in the concrete and in the reinforcement bar, will vary along the member
and the stresses are different each other, depending on their modulus elasticity.
Furthermore, the equilibrium at any section of the reinforced concrete member can be

expressed generally by Eq. 5.1.
P =A 0. + A0, (5.1)

As the tensile force increases, the first crack occurs when the tensile stress, working in
the concrete, exceeds the tensile capacity of the concrete and the force will be fully
resisted by the reinforcement bar at the cracked section. Furthermore, the force is
gradually transferred to the concrete at each side of the crack by the presence of bond
between concrete and reinforcement bar. As the result, new cracks will occur at a certain

distance from the previous crack when the tensile force increases. Furthermore,
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Fig.5.1 Tension stiffening

although at the crack section the tensile force is fully resisted by the reinforcement bar,
concrete between cracks is still able to develop tensile stress by the occurrence of the
bond between concrete and reinforcement bar. Eventually, it can be concluded that the
propagation of cracks and the bond behavior between concrete and the reinforcement
bar play important roles in the behavior of the tension stiffening effect in the reinforced

concrete members (Fig. 5.1).

In order to study the tension stiffening effect in the reinforced concrete members, there
are two alternatives i.e. experimental works in laboratories and computational numerical
simulations. Through experimental works, the bond behavior and the tension stiffening
effect in the reinforced concrete have been well established. Goto et al. (1971)
successfully studied the propagation of cracks, i.e. internal cracks, primary cracks,
secondary cracks, and longitudinal cracks formed around the deformed bar, when a
reinforced concrete member is loaded by an axial tensile force. In the other hand, Shima
et al. (1987) successfully modeled the bond behavior in a massive concrete by a unique
bond-slip-strain relationship and the tension stiffening effect in the reinforced concrete
by the concept of average stress-strain relationships of concrete and the reinforcement

bar.

Hayashi et al. (2012) has modeled the anchorage of reinforcement in reinforced
concrete beam-column joints by using a 3-dimensional RBSM, but the analysis was
limited in the uniaxial tests and without yielding of the bar. In the other hand, Ikuta et al.
(2012) has modeled the anchorage of reinforcement in L beam-column joints However,

the accuracy of RBSM in modeling the bond behavior between concrete and the steel
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reinforcement has not been clarified yet, so that further studies are needed. In this study,
by modeling the tension stiffening effect in the reinforced concrete by a 3-dimensional
RBSM is one way to study the bond behavior between concrete and the steel
reinforcement. Eventually, the purpose of this study is to simulate the tension stiffening

effect in the reinforced concrete by 3-dimensional discrete model.

5.2 OVERVIEW OF EXPERIMENTAL STUDIES BY SHIMA ET AL

Shima et al. (1987) has successfully modeled the tension stiffening effect in the
reinforced concrete by the concept of average stress-strain relationships of concrete and
the reinforcement bar. The method to determine the average stress-strain relationships of
concrete and the reinforcement bar is as follows. As strains were measured along the
reinforcement bar, average strain can be calculated by dividing the integration of strain
distribution along the reinforcement bar by the length of the specimen. At each
measured point, stress can be calculated by the strain-stress relationship of a bare bar.
The same concept with the average strain was applied. The average stress can be
calculated by dividing the integration of stress distribution along the reinforcement bar
by the length of specimen. The load carried by a reinforcement bar is calculated by
multiplying the average stress by its cross section. Finally, total load resisted by
concrete can be calculated by subtracting total load by total load resisted by the
reinforcement bar and the average stress of concrete can be calculated by dividing the

total load resisted by concrete by concrete sectional area.

Based on this model, it was found that when a bar at crack section yields, the steel
stresses outside the crack section should be lower than the yield strength. As the result,
the average stress-strain of steel should have lower yielding point than the yielding

point of bare bar.

In this study, the simulation was conducted for two experimental specimens conducted
by Shima et al. (1987), low yield strength of reinforcement bar and normal yield
strength of reinforcement bar. The dimension of the experimental specimen is shown in
Fig.5.2.

A steel bar is arranged in the center of concrete prism for the tension test. A deformed
bar having diameter of 19 mm was used. In order to measure strain, strain gages were
places at an interval of 10 ribs at two opposite sides of the reinforcement bar. The

length of specimen was determined as long as possible depending on the experimental
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Fig.5.2 Experimental specimen

limitations since higher accuracy will be obtained in case of longer specimen.

5.3 DETAIL OF NUMERICAL MODELS

5.3.1 Numerical Models

Simulations were conducted for experiments conducted by Shima et al. (1987). The
purpose of the experiments was to obtain the average stress strain relationship in the
post yield of a bar in concrete since at that time the stiffness of reinforcement bars in
reinforced concrete was assumed as same as that of bare bar. Furthermore, this

assumption was inapplicable for the post-yield range of reinforcement bars.

In the experiments, the specimens with different concrete strength, reinforcement ratio,
yield strength of reinforcement bars, and curing condition were tested under uniaxial
tensile loading. In this study, the effect of the yield strength of reinforcement bars is the

main focus.

Numerical models are listed in Table 5.1. Two numerical models, with different yield

strength of reinforcement bars, were modeled.

Table 5.1 Detail of numerical models

Material Properties of Concrete Re-bar Number
Case | Parameter | Compression | Tension | Elasticity | Yield | Elasticity of
fe(MPa) | f;(MPa) | E;(MPa) | 5 (MPa) | E; (MPa) | Elements
1 Yield 25 1.5 25500 350 190000 93422
strength
2 Yield 25 1 25500 610 190000 93422
strength
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Fig.5.3 Geometry of numerical models (Units: mm)

5.3.2  Geometry of Numerical Models

Fig.5.3 shows the geometry of the numerical models. The same dimensions, as the
experimental specimens, were modeled. The reinforcement arrangement of numerical
models was modeled as the same as that of experimental specimens. A deformed bar of
19 mm was used as the main reinforcement located at the center of concrete prism. The
material properties of numerical models are the same as those of experimental

specimens

5.3.3  Boundary Condition

Fig.5.4 shows the boundary condition of numerical models. A 150 mm of un-bonded
length was modeled at both sides of the numerical models to eliminate the confinement
near the loaded end and the fixed end. Monotonic displacement-loading is applied to the
steel element at the loaded end face. Displacement is increased by 0.0015 mm at each
loading step. 1000-2000 steps of displacement-loading are applied in the simulated.

Meanwhile, fixed in all direction was assumed at the steel element at the fixed end.

Loading-end

Fixed-end
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5.4 DISCUSSION AND RESULTS
54.1  Load-displacement Relationships

The results of tension stiffening can be presented in macroscopic response, i.e.
load-average strain relationship, and in microscopic response, i.e. average stress-strain
of reinforcement and average stress-strain of concrete. The simulation results are
compared with the experimental results, conducted by Shima et al. (1987). Fig.5.5
shows the simulation results compared with the experimental results in case of normal

yield strength and low yield strength.

Based on the load-average strain relationship, the tensile stiffness of a reinforced
concrete element is higher than that of a bare bar both normal yield strength case and
low yield strength case. Therefore, the tension stiffening effect of reinforced concrete
can be simulated well by using RBSM, as the result of the presence of bond between
reinforcement bar and concrete. Furthermore, since the yield strength of numerical
model 1 is lower than that of numerical model 2, simulation predicts that the capacity of
numerical model 1 is lower than that of numerical model 2 which is the same tendency

as the experimental results.

Based on the average stress-strain of reinforcement bar, it was predicted that the
yielding point of the average stress-strain relationship of reinforcement is lower than
that of the bare bar in both cases. It is well known that when a reinforcement bar at
crack section yields, the stress of reinforcement bar between 2 cracks should be less
than that of the bare-bar. Furthermore, it is predicted that the yielding point of the
average stress-strain relationship of reinforcement in normal yield strength case is
higher than that of in low yield strength case. Simulation predicts that the yielding point
begins at the average strain around 0.07 % and 0.28% in case of low and normal yield
strength, respectively. The same tendency was observed in the experiment. However,
the yielding point of the average stress-strain relationship of reinforcement in low yield

strength case of simulation results is predicted higher than that of experimental results.
Simulations results also predict that there is no yield plateau in the average stress-strain

of reinforcement which is wusually found in the stress-strain relationship of a

reinforcement bar.
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Load-average strain relationship
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Fig.5.5 Load-average strain and average stress-average strain relationships with
different yield strength of reinforcement bar
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Moreover, it is revealed from the average stress-strain relationship of concrete that the
concrete still can resist the tensile load in the post cracking range. Eventually, the
load-average strain, the average stress-strain relationship of reinforcement bar and the
average stress-strain relationship of concrete of simulation results are roughly the same

as those of experimental results.

5.4.2  Strain profile, internal cracks, and surface cracks

Fig.5.6 shows the internal cracks and strain profiles of the simulation results compared
with the strain profile obtained from the experimental results in case of normal yield
strength. Meanwhile, Fig.5.7 shows the internal cracks and strain profiles of the
simulation results compared with the strain profile obtained from the experimental

results in case of normal yield strength.

When the load is relatively small, at the average strain of 0.015%, both cases show that
small amount of cracks occurs in the numerical models. Furthermore, at the location of
the formation of cracks, the strain of the reinforcement bar is higher than other locations.
It indicates that at the location of cracks, the force is fully resisted by the reinforcement
bar and simulation can simulate this behavior. As the load increases, at the average
strain of 0.044%, new cracks are formed at the certain distances from the previous
cracks in both cases because of the occurrence of bond between concrete and the
reinforcement bar. It can be concluded that simulation can simulate the propagation of
cracks gradually as the load increases because of bond between concrete and the

reinforcement bar.

Simulation result predicts that yielding occurs at a certain location when the average
strain is still lower than the yield strain of a bare bar. Furthermore, when a
reinforcement bar yields at a certain location, stresses at other locations are lower than
the yield stress. As the result, the average stress is lower than the yield stress of a bare

bar.

In case of numerical model 1, the reinforcement bar yields earlier than numerical model
2 because of lower yield strength of reinforcement bar. Simulation results predict that
the reinforcement bar yields at average strain 0.07% and 0.25% in numerical model 1

and 2, respectively.
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Load-displacement relationship
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d. Average strain 0.25%
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Fig.5.6 Strain profile and internal cracks in case of low yielding strength
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Load-displacement relationship
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Fig.5.7 Strain profile and internal cracks in case of normal yielding strength
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5.5 EFFECT OF TENSILE STRENGTH REDUCTION OF INTERFACE
ELEMENTS
As described in the previous chapter, in order to consider the interface as a weak region,
the tensile strength of the interface elements is assumed to be half of that of concrete
elements. In this chapter, the assumption of this tensile strength reduction will be
investigated through the parametric studies. Three types of tensile strength of interface
elements will be simulated, i.e., no reduction of tensile strength (=f; concrete), half of
the tensile strength of concrete elements (=0.5 X f, concrete), very small value of tensile
strength (= zero) (Fig.5.8). The yield strength of the reinforcement bar is 350 MPa.
Fig.5.9 shows the load-average strain, average stress-strain relationship of

reinforcement bar, and average stress-strain relationship of concrete.

Based on the load-average strain relationships, simulation results predict that the
stiffness in a reinforced concrete member slightly increases as the tensile strength of the
interface elements increases before and after cracking. In addition, based on the average
stress-strain relationship of concrete, the tensile strength and the stiffness of concrete
slightly increase as the tensile strength of the interface elements is higher. As the result,
it is well known that if the concrete strength is higher, the yielding point of the average
stress-strain relationship of reinforcement bar is lower. It can be concluded that the

tensile strength of the interface elements contributes to the concrete strength.
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Fig.5.8 Constitutive models of interface elements with different tensile strength
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Load-average strain relationship
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Fig.5.9 Load-average strain and average stress-average strain relationships with
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Fig.5.10 shows the strain profiles with different tensile strength of interface elements.
Since the tensile strength of interface elements slightly affects the load-average strain

relationships, the strain profile along the reinforced concrete member does not change
significantly.
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Fig.5.10 Strain profile and internal cracks in case of low yielding strength with different

tensile strength of interface elements
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5.6 EFFECT OF MODELING STRAIN HARDENING REGION OF STEEL
ELEMENTS

In the previous study by Hayashi et al. (2012), strain hardening region of steel elements

has not been introduced and a bilinear model was assumed. In this study, the strain

hardening region is introduced (Fig. 5.11). The constitutive model of the normal spring

used in this simulation is represented by the following equations (adopted from Shima et
al. 1987).

o=Ee if (e<gy)
oc=f if (&, <e&<eég)

ES —&

h 52
o=f,+(1—e % )(L01f,—£,) if (¢> &) (5-2)

where

k = 0.032(400/fy)"?

c :stress ( MPa)

€ :strain

fy  :yield strength (MPa)
fu :tensile strength (MPa)

&g - initial strain of hardening, assumed 1.5%

The effect of modeling this strain hardening region will be investigated through the
simulation of tension stiffening effect. Fig.5.12 shows the load-average strain, average
stress-strain relationship of reinforcement bar, and average stress-strain relationship of

concrete with and without strain hardening region of steel elements.

Ag Ao
oy Oy
€ e
&y Esh &y
(a) With strain hardening (b) Without strain hardening

(Hayashi et al. 2012)

Fig.5.11 Constitutive models of steel elements
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Load-average strain relationship
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without strain hardening region of steel elements.
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Fig.5.13 Strain profile with and without strain hardening region

Based on the load-average strain relationship and the average strain-stress relationship
of the reinforcement bar, the difference occurs after the yielding point of the average
stress-strain relationship of the reinforcement bar. The load carried by the reinforced
concrete is lower in case of without strain hardening region. Furthermore, after the
reinforcement bar yields at the crack section, yield plateau is found in the average

stress-strain relationship of reinforcement bar if strain hardening region is not modeled.

In order to understand this difference, Fig.5.13 shows the strain profile with and without
modeling strain hardening region. Before yielding, at average strain of 0.044%, no
difference of strain profile is predicted in both cases. As the load increases, at average
stress of 0.25%, because of no strain hardening region, the strain jumps up dramatically
after yield has occurred at both loading-end and fixed-end which indicates the failure of
the reinforcement bar. In addition, strains are localized after yielding occurred.
Meanwhile, since strain hardening region is modeled, the reinforcement bar can still

carry more load.

CONCLUSIONS

1  In this chapter, the applicability of RBSM to simulate the bond behavior between
concrete and reinforcement bar is investigated through the simulation of tension
stiffening effect. When the displacement is relatively small, small amount of cracks
occur in the numerical models. As the displacement increases, new cracks are
formed at the certain distance from the previous cracks because of the bond

between the concrete and the reinforcement bar. It can be concluded that RBSM
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can simulate the bond behavior in a reinforced concrete member.

2 Simulation results also show that the yielding point of average stress-strain of
reinforcement bar of low yield strength is lower than that of high yield strength. In
case of low yield strength of reinforcement bar, the reinforcement bar yield just
after the cracking started. The simulation results show in a good agreement with
that of simulation result.

3 By the parametric study of the tensile strength of the interface element between
concrete and the reinforcement bar, by increasing the tensile strength of the
interface element between concrete and the reinforcement bar affects slightly the
strength and stiffness of concrete in average stress-strain of concrete relationship.
As the result the stiffness of load-average strain relationship and the yielding point
of average stress-strain of reinforcement bar will be affected slightly.

4 The strain hardening region in the constitutive model of a reinforcement bar is
introduced in this study that affects the average stress-strain relationship of a
reinforcement bar. The absence of the strain hardening region causes the yield
plateau in the average stress-strain of the reinforcement bar after the yielding point.

Furthermore, strain localization will occur.
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Chapter Six

ANALYSIS AND RESIDUAL CAPACITY OF RESIDUAL RC
CORBEL FAILED BY ANCHORAGE SPLITTING FAILURE

6.1 INTRODUCTION
Corbel is a short cantilever member that comes out from a column, a wall, or a bridge

pier, to sustain a load, originating from a gantry girder or a precast concrete beam. A
corbel is generally built monolithically with a column or a wall, and is characterized by
a low shear span-to-depth ratio. To transfer a load from a beam to a corbel, a bearing
pad is usually installed on the corbel. However, for the easiness of the construction,
some bearing pads were installed in the wrong position, at the free end of corbels. The

position of the bearing does not satisfy the requirement in the design code (JSCE 2007).

Based on the filed observation (Singapore, 2012), several corbels were found to be
failed at a lower capacity than their expected capacity due to the faulty design of
bearing pads positions. Bearing pads were found to be extended to the edge of the
corbel. Meanwhile, based on the experimental results, conducted by Kriz and Raths
(1965), several failure mechanisms can be classified into (see Fig.6.1):
1. Flexural tension failure
This failure occurs when flexural reinforcement bars yield excessively. The
tendency that the flexural cracks become very wide signifies this type of failure. In
addition, concrete crushing occurs at the sloping end of the corbel.
2. Diagonal splitting failure
This failure occurs along the diagonal compression strut after the occurrence of
flexural cracks.
3. Sliding shear failure
This failure is characterized by a series of short and step diagonal cracks. The corbel
separates from the column face as these cracks interconnect.
4. Anchorage splitting failure
This failure occurs when a load is applied to the edge of the corbel, at the position of
the bending portion of the anchorage.
5. Bearing failure
If the bearing plates are too small or too flexible, the concrete may crush underneath

the bearing plates.
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Fig. 6.1 Failure mechanisms in corbels (a) Flexural tension failure; (b) Diagonal
splitting failure; (c) Sliding shear failure; (d) Anchorage splitting failure; (¢) Crushing

due to bearing; (f) Horizontal tension failure

6. Horizontal tension
If the outer face of the corbel is too shallow and an adverse horizontal load is also

introduced.

Based on this classification, such failure can be classified the anchorage splitting failure.
Meanwhile, few cracks, either diagonal compression cracks or flexural cracks, occur in
the corbel. Based on this behavior, if the location of bearing pad is moved to the straight
portion of the flexural reinforcement of the corbel, there is still a possibility that the
corbel is still able to resist the load, although a local failure occurs. Furthermore, the
option to move the bearing pad to the straight portion of the flexural reinforcement
might be a simple way for recovering the capacity of a corbel failed by the anchorage

splitting failure. However, how much load that a corbel is still able to resist after a local
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failure occurs, which is called residual capacity, has not been investigated.

In order to study the residual capacity of a reinforced concrete corbel failed by an
anchorage splitting failure, there are 2 alternatives, i.e. experimental works and
computational numerical simulations. Through experimental works, the real
load-displacement relationship and surface cracks can be obtained easily. However, the
internal cracks and the internal stress are difficult to be observed. Our research group
has conducted a meso-scale analysis of reinforced concrete members by a
3-dimensional discrete element analysis, called RBSM. The study on a reinforced
concrete member at the meso-scale, in which the local re-bar arrangement is considered
by modeling the rib of re-bar, is useful for the precise evaluation of its behavior, since at
this level, cracks occur as the result of the interlock mechanism between concrete and

re-bar.

Eventually, the purpose of this study is to study the residual capacity of a reinforced
concrete corbel failed by an anchorage splitting failure, both by experimental work and
numerical simulation. Based on this finding, an efficient method to retrofit the damage
corbel will be proposed based on the study of internal stress and internal cracks

condition.

6.2 EXPERIMENTAL PROGRAMS

6.2.1. Experimental specimens

To study the residual capacity of a corbel failed by an anchorage splitting failure, 3
reinforced concrete corbels were loaded with different loading positions (see Table 6.1).
The specimens were reinforced with reinforcement bars. The column segment was
reinforced by four longitudinal deformed bars of 16 mm and six lateral ties of 10 mm.
Deformed bars of 13 mm, that were used as the flexural reinforcements of the corbel,
were bent through 90 degree at the edge of the corbels. Two deformed bars of 10 mm
were used as the lateral ties of the corbel. The distance between the top surface of the
concrete and the top surface of the outer stirrups, of all specimens was 20 mm. Fig. 6.2
shows the dimension and the reinforcement bars arrangement of the experimental

specimens.

For the recognition of the variable in each specimen, the following notations were used.
EC signifies the specimen with bearing pads installed and loaded on the edge of the

corbel. The purpose of corbel EC is to verify the occurrence of the anchorage splitting
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Fig. 6.2 Experimental specimens
cracks. MC signifies the specimen with bearing pads installed and loaded on the straight
portion of the flexural reinforcement of the corbel. Corbel MC was intended as the
control specimen. RCC signifies the specimen for investigating the residual capacity of
a corbel. To study the residual capacity the corbel, corbel EC, after being failed by the
anchorage splitting failure, was re-used as corbel RCC. Before the specimen was
re-loaded on the straight portion of flexural reinforcement of the corbel, the specimen

was un-loaded.

6.2.2. Material properties

(1) Concrete

A concrete compressive strength of 40 MPa was used for mix design, using maximum
20 mm of coarse aggregate size. Standard compressive cylinder tests and standard split
cylinder tests were conducted to determine the values of the compressive strength and
the splitting tensile strength of the concrete, respectively. The compressive strengths and

the splitting tensile strengths of the concrete specimens are listed in Table 6.1.
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Table 6.1 Detail of experimental specimens

Reinforcement bars Strength of Concrete
Shear Column Corbel Comp.  Tension

Parameter  a,(mm) Longitudinal Transverse Longitudinal Transverse f'.(MPa) f; (MPa)

EC Loadingon 125 4-D16 6-D10  2-D13 2-D10  45.52 2.66
Edge Pad

MC Loading on 220 4-D16 6-D10  2-D13 2-D10  41.89 2.81
Middle Pad

RCC Residual 220 4-D16 6-D10  2-D13 2-D10  45.52 2.66
Capacity

(2) Reinforcement Materials

Deformed bars of 16 mm, 13 mm, and 10 mm were used. The yield strengths of
deformed bars of 16 mm and 13 mm are same in both diameters, i.e. 490MPa and the
yield strength of deformed bars of 10 mm is 390 MPa.

6.2.3. Test setup and measurements

The corbels were loaded on the column segment in an upside-down position using a
Universal Test Machine (UTM). Meanwhile, the corbels were seated on steel roller
supports at different positions, depending on the position of the bearing pads. Thin layer
of gypsum was used between the bearing plates and the specimen to ensure the stability
during loading. Load was applied at a constant rate of 0.0084 mm per second. At each
step of load, the total load was measured by using a load cell and relative displacements
of bearing pads were measured by using Linear Voltage Differential Transducers
(LVDTs). Fig. 6.3 shows the detail of the test setup.

Load
Cell

LVDTs

Strain

Roller
Support

Fig. 6.3 Experimental setup
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Table 6.2 Detail of numerical models

Strength of Concrete Maximum Load
Shear Compression Tension Number of EXP ANA
Case Parameter a,(mm) f. (MPa) f; (MPa) elements (kN) (kN)
EC Loadingon 125 45.52 2.66 318494 428 328
Edge Pad
MC Loading on 220 41.89 2.81 318448 229 199
Middle Pad
RCC Residual 220 45.52 2.66 318747 409 301
Capacity

6.3 DETAILS OF NUMERICAL MODELS

6.3.1 Numerical models

Table 6.2 shows the numerical models that were conducted in order to study the
residual capacity of a corbel failed by an anchorage splitting failure. The same notations
with experiment specimens were used. 3 numerical models, with different positions of

bearing pads, were modeled.

6.3.2 Geometry of numerical models

The same dimensions, as experimental specimens, were modeled. However, for the
simplification of the models and in order to reduce the computational time, only one
side of the corbels was modeled and the stirrups in the column segment were not

modeled. Fig.6.4 shows the geometry of the numerical models.

6.3.3 Boundary conditions

Fig.6.5 shows the boundary conditions of numerical models. Fix condition in all
direction is assumed at the top and the bottom of the column segment. Monotonically
displacement-load controlled was applied on the bearing pad of the corbel. The
displacement-load increases 0.016 mm for every step of load. 200 steps of
displacement-load were applied in the simulation. The boundary condition in the
column segment is different with the experimental test setup. However, it has been
confirmed that this boundary condition does not affect the simulation results, i.e.

load-displacement relationships and crack patterns.

In order to introduce the residual capacity analysis in the numerical simulation of

Corbel RCC, 2 bearing pads were modeled in case of corbel RCC, i.e. an edge bearing
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pad and a middle bearing pad. The same load pattern with experiment was applied. As
the initial load, the load was applied on the edge bearing pad. After the load reached the
maximum load, the load was un-loaded until the force was zero. After the un-loaded
process was completed, the loading position was moved and applied on the middle
bearing pad.

6.4 RESULTS AND DISCUSSION

6.4.1. Load-displacement relationships

Fig.6.6 and Fig.6.7 show the load-displacement relationships of experimental
specimens and numerical models, respectively. Table.2 shows the maximum loads of
experimental specimens and numerical models. The load of load-displacement
relationships of experimental specimens was calculated based on the total load which
was measured by a load cell. The displacement of load-displacement relationships of

experimental specimens was determined based on the average relative displacement,
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Fig. 6.6 Load-displacement relationships of Fig. 6.7 Load-displacement relationships of
experimental specimens numerical models
which was measured by a LVDT, located at the bearing pad of the corbel. It should be
emphasized that the displacement that was measured by the LVDT is not the relative
displacement between 2 points of measurement, i.e. the top surface and the bottom
surface of the specimens. Furthermore, the rigid body movement of specimens is
included into this measurement. Experimental results are shown until the peak load
because the measurements were not stable in the post peak due to the brittle failure.
Meanwhile, the load and the displacement of the load-displacement relationships of the
numerical models were determined based on the load and the displacement which were

applied on the bearing pad.

The maximum loads of the numerical models are roughly the same as those of
experimental specimens, i.e. approximately 13-17% difference. In case of corbel EC,
the simulation prediction is underestimate by 13%, and in case of corbel MC, the
simulation prediction is underestimate by 17%. The initial stiffness of the experimental
results is lower than that of simulation results. Crushing gypsum layer located at the
bearing pad causes the rigid body movement of the specimens. Since the LVDT is
located only at the bearing pad position, the rigid body movement of the specimen is

included in the displacement measurement.

Both experimental and numerical results show that the maximum load of corbel EC is
reduced by approximately 45 % of reduction ratio compared with that of corbel MC. It
can be concluded that the position of the bearing pad is important. When the load is
applied on the edge of the corbel, the load capacity of the corbel will be reduced

significantly.
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In case of corbel RCC, both experimental and numerical results show that the maximum
load of corbel RCC is higher than that of corbel EC. The results show that the capacity
of a corbel can be recovered when the loading position is moved to the straight portion
of the flexural reinforcements of the corbel. Although the capacity of the corbel cannot
be fully recovered, both experimental and numerical results show that the residual
capacity of the corbel is still very large, i.e. 95% by experimental observation and 85%
by numerical prediction. Initial damage may cause that the capacity of the corbel could
not be fully recovered. Furthermore, the option to move the bearing pad to the straight
portion of the flexural reinforcements can be a simple way for recovering the capacity
of a corbel failed by an anchorage splitting failure. However, the site condition should

be considered whether the position of the bearing pad can be moved.

6.4.2. Internal cracks of simulation results

Fig.6.8, Fig.6.9, and Fig.6.10 show the internal cracks of corbel EC, corbel MC, and
corbel RCC respectively. Yellow color, orange color, and red color indicate the crack
face with crack width of 0.03 mm, 0.1 mm, and 0.3 mm, respectively. Generally, the
crack propagations of the numerical models are roughly the same as those of the

experimental specimens.

a — C
100 - c

Load (kN)

0 05 1 1.5 2 25
Displacement (mm)

(2) 0.28 mm (b) 0.74 mm

Crack Width:
:0.03 mm
:0.1 mm

B :03mm

(d) 1.47 mm (e) 2.35 mm

Fig.6.8 Internal cracks of numerical model of corbel EC
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Fig.6.9 Internal cracks of numerical model of corbel MC

In case of corbel EC, when the load is relatively small, flexural cracks occur at the
corbel-column interface (Fig.6.8.a). As the load increases, diagonal cracks occur,
propagating from the position of the bearing pad to the sloping end of the corbel
(Fig.6.8.b). In addition, simulation result can provide more detail information how the
anchorage splitting cracks occur. In the early stage of the formation of the anchorage
splitting cracks, cracks occur along the bending portion of the flexural reinforcements of
the corbel (Fig.6.8.c). As the result, the stiffness of the load-displacement relationship is
reduced dramatically. As the load increases, cracks propagate along the anchorage
(Fig.6.8.d and Fig.6.8.e).

In case of corbel MC, when the load is relatively small, flexural cracks occur at the
corbel-column interface (Fig.6.9.a). As the load increases, diagonal cracks, propagating
from the position of the bearing pad to the sloping end of the corbel (Fig.6.9.b). When
the load reaches the maximum load, no other type of cracks occurs in the corbel, beside
the flexural cracks and diagonal cracks (Fig.6.9.c). Based on the simulation results,
cracks occur in the column segment as the result of the simplification of the models, i.e.

no stirrup of column was modeled.
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Fig.6.10 Internal cracks of numerical model of corbel RCC

In case of corbel RCC, when the load of the corbel is un-loaded, the process of the
closing of cracks can be simulated well (Fig.6.10.a, Fig.6.10.b, and Fig.6.10.c). When
the loading position is moved and re-loaded on the middle bearing pad, new diagonal
cracks occur in the corbel, propagating from the position of the new bearing pad to the

sloping end of the corbel.

6.4.3. Crack patterns after failure
Fig.6.11, Fig.6.12, and Fig.6.13 show the crack patterns of the experimental specimens,

compared with the numerical models at failure. The displacement of the models is
enlarged by 10 times. Simulation results can predict the crack patterns at failure as well

as those of experimental results.

96



(a) Prediction (b) Observation
Fig.6.11 Failure pattern of corbel EC

(a) Prediction (b) Observation
Fig.6.12 Failure pattern of corbel MC

Based on the crack pattern of corbel EC, flexural cracks, anchorage splitting cracks, and
diagonal cracks propagating from the position of the bearing pad to the sloping end of
the corbel occur in the numerical models and experimental specimens. In case of corbel
MC, flexural cracks and diagonal cracks, propagating from the position of the bearing
pad to the sloping end of the corbel occur in both numerical models and experimental
specimens. Furthermore, flexural cracks, anchorage splitting cracks, anchorage splitting
cracks, previous and new diagonal cracks occur in both numerical models and

experimental specimens in case of corbel RCC.
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(a) Prediction (b) Observation
Fig.6.13 Failure pattern of corbel RCC

6.5 CONCLUSIONS
1. Based on the experimental results, the capacity of the corbel is reduced by

approximately 45% of reduction ratio when the load is applied on the edge of the
corbel. On the other hand, when a corbel failed by an anchorage splitting failure is
re-loaded on the straight portion on the flexural reinforcements of the corbel, the
corbel is still able to resist the load. It was observed that the residual capacity of
the corbel is still very large, i.e. 95%. The option to move the bearing pad to the
straight portion of flexural reinforcements of the corbel can be a simple way for
recovering the capacity of a corbel failed by the local failure. However, the
condition in construction site should be considered in practice.

2.  Different failure pattern can be simulated due to different position of bearing pad
by RBSM. The analysis could explain well the failure mechanism due to different

position of bearing pad.
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Chapter SEVEN

SIMULATION OF BEAM COLUMN JOINT WITH COMPLEX
ARRANGMENT OF REINFORCEMENT BARS

7.1 INTRODUCTION

Reinforcement congestion, at a beam column joint, can cause difficulties during
compaction of concrete, resulting poor quality of construction. To reduce the
reinforcement congestion in a beam column joint, a comprehensive study of the
behavior of a beam column joint is needed. However, the behavior of a beam column
joint has not been clarified well. Many aspects are involved in a relatively small

dimension of beam column joint.

In order to study the behavior of a beam column joint, there are 2 alternatives, i.e.
experimental works and computational numerical simulations. Through experimental
works, the real load-displacement relationship and surface cracks can be obtained easily.
However, the internal cracks and the internal stress are difficult to be observed. Our
research group has conducted a meso-scale simulation of reinforced concrete members
by a 3-dimensional discrete element analysis, called RBSM. The study on a reinforced
concrete member at the meso-scale, in which the local re-bar arrangement is considered
by modeling the rib of re-bar, is useful for the precise evaluation of its behavior, since at
this level, cracks occur as the result of the interlock mechanism between concrete and
re-bar. Moreover, Ikuta et al. (2012) successfully simulated different crack patterns with
different bending radius of re-bars of L-shaped beam column joint with simple
arrangement of re-bars by RBSM. Meanwhile, the applicability of RBSM in modeling a
beam column joint with a complex reinforcement arrangement has not been investigated.
In this study, by modelling a complex reinforcement arrangement, the applicability of
RBSM in predicting the beam column joint failure is investigated. Thus, the

simulation results are compared with the experimental observations.

7.2 DETAIL OF NUMERICAL SIMULATION
7.2.1 Numerical models

Simulation was conducted for an experiment of a beam column joint, done by Japan
Railway. Dimensions, reinforcements, and material properties of numerical model and
experimental specimen are the same. Table 7.1 shows the dimension and material

properties of the beam column joint. Fig. 7.1 shows the geometry of the numerical
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Table 7.1 Dimension and material properties of numerical model

Dimension Number Concrete Reinforcements
) ) of Compressive Tensile Modulus of | Yield
Model | Width | Height | Length .
Element Strength Strength(JSCE) | Elasticity | Stress
mm mm mm
MPa MPa MPa MPa
1 400 1500 1900 | 690741 21.1 1.75 190000 365

Steel
Plates

Fig. 7.1 Geometry and boundary condition of numerical model (Units: mm)

model. 690741 elements were used to model the beam column joint. As the comparison,

Fig. 7.2 shows the detail of the experimental specimen.

7.2.2 Boundary conditions

Fig. 7.3 shows the boundary condition of the numerical model. Steel plates were
modeled located at the end of the beam and the column. The stiffness of the steel plates
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Fig. 7.2 Detail of experimental specimen
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Fig. 7.3 Boundary condition of numerical model

was assumed rigid enough, so that the deformation of the steel plates will be prevented.
In order to model the hinged condition, a pin element is introduced, located in the steel
plates. Furthermore, in a pin element, forces are transferred only through normal springs
of the pin element. Cyclic load of displacement control, pull load and push load
alternately, was applied to the pin, located at the end of the beam. Fig. 7.4 shows the
experimental setup.

<, -

Fig. 7.4 Experifnental setup
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Table 7.2 Maximum load of the experimental specimen and numerical model

Case Experiment(Peyp) Simulation(P,y,) Pexp/Pana
Open 160.3 kN 114.2 kN 71%
Close 272.3 kN 217.9 kN 75%
300
— : Simulation OPEN
— : Experiment
200

Load (kN)

NI

CLOSE

Displacement (cm)

Fig. 7.5 Load-displacement relationship

7.3 RESULTS AND DISCUSSION
7.3.1 Load-displacement relationships

Fig. 7.5 shows the load-displacement relationship of simulation result, compared with
the experimental observation. Table 7.2 shows the maximum load of the experimental
specimen and numerical model. The load and the displacement of the load-displacement
relationship of numerical model were determined based on the load and the
displacement which were applied to the pin, located at the end of the beam. The
maximum loads of numerical model are roughly the same as those of experimental

specimen, i.e. approximately 25-29% difference.
Both experimental and simulation results show that the maximum load of open case is

lower than that of close case. Furthermore, the failure behavior of the beam column

joint will be described below.
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7.3.2 Internal cracks
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Fig. 7.6 Internal cracks

Fig. 7.6.a shows the internal cracks of the beam column joint in case of open case.
When the load is relatively small, at displacement of 2.875mm, flexural cracks occur on
the re-entrant corner of beam column joint (@). As the load increases, at displacement
of 17.25 mm, typical diagonal cracks, roughly parallel to the bending portion of the
anchorages, occur ). At displacement of 57.5 mm, large width of cracks occurs
parallel to the bending portion of the anchorages and on the re-entrant corner of beam
column joint ( @ ). Fig. 7.6.b shows the internal cracks of the beam column joint in
case of close case. When the load is relatively small, at displacement of 2.875 mm,

flexural cracks occur outside the bending portion of the bar anchorages and at the end of

the anchorages (@ ).

As the load increases, at displacement of 17.25 mm, typical diagonal cracks, roughly
perpendicular to the bending portion of the anchorages occur ). At displacement of
57.5 mm, large width of cracks occurs at the end of the anchorages ( ). Based on
this observation, it can be concluded that the anchorage of beam reinforcements

influences the behavior of beam column joint.
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7.3.3 Internal stress
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Fig. 7.7 Internal stresses of open case

Fig. 7.7 shows the internal stresses of beam column joint when is loaded by a moment
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that tends to open the beam column joint. Simulation results predict that complicated
stresses, i.e. local compressive and tensile stresses, developed inside a beam column

joint with complex arrangement of reinforcement bars.
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Fig. 7.8 Internal stresses of close case
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Furthermore, based on the internal stresses of the reinforcement bars, compressive
stresses and tensile stresses also may occur in one reinforcement bar and simulation can

predicts these behaviours.

When the displacement is relatively small, compressive stresses which are parallel to
the bending portion of the anchorage bars, develop in a beam column joint (@ ). As
the load increases, cracks that are parallel to the bending portion of the anchorages
occur in the beam column joint ( @ ). As cracks at the end of the anchorages open

easier, these parallel cracks can open easily without any restrictions and are connected

Q).

Fig. 7.9 shows the internal stresses of beam column joint when is loaded by a moment
that tends to close the beam column joint. Diagonal compressive stresses which are
perpendicular to the bending portion of the anchorages occur in the beam column joint
(@). When the diagonal stresses exceed the capacity, some local cracks will occur
that causes the diagonal cracks perpendicular to the bending portion of the anchorages.
In addition, cracks are open easily at the end of the anchorage, because the weak region

between concrete and reinforcement bar (@ ).

Fig. 7.9 Surface cracks (Deformation X 3)
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7.3.4 Surface cracks

Fig. 7.7 shows the surface cracks of the numerical model, compared with experimental
specimen at failure. Large width of cracks occurs parallel to the bending portion of the
anchorages and on the re-entrant corner of beam column joint in case of open case. On
the other hand, large width of cracks occurs at the end of the anchorages in case of close

case. The experimental specimen shows the same behavior.

CONCLUSIONS

1 Same tendency of load-displacement relationship with experiment was predicted.
Maximum load in open case is lower than that of in close case

2 Different failure patterns can be predicted by RBSM due to different loading
conditions. When the beam column joint is loaded to a moment that tends to close
the beam column joint, cracks which are perpendicular to the bending portion of the
anchorages occur that is caused by the diagonal compressive stresses perpendicular
to the bending portion of the anchorages. In addition, since the interface between
concrete and reinforcement bar is a weak region, this region can open easily when
the beam column joint is loaded under this close moment. On the other hand, when
the beam column joint is loaded to a moment that tends to open the beam column
joint, cracks parallel to the bending portion of the anchorages occur. Since cracks at
the end of the anchorages open easily due to the close moment, these parallel cracks
can open easily without any restriction. Compressive stresses which are parallel to
the bending portion of anchorages also occur under this open moment.

3 Simulation results predict that complicated stresses occur in a beam column joint

with complex arrangement of reinforcement bars.
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Chapter EIGHT

SIMULATION OF BEAM COLUMN JOINT WITH
MECHANICAL ANCHORAGE

8.1 INTRODUCTION

Reinforcement congestion in a beam column joint can cause difficulties during
compaction and, consequently, a poor quality of concrete is obtained. One way to
reduce the reinforcement congestion is by using mechanical anchorage by introducing a
simpler anchorage and a shorter length of the anchorage (see Fig. 8.1.). However, the
use of the mechanical anchorage is still limited in the reinforced concrete members with

thin concrete cover because the performance has not been well understood (JSCE 2007).

When the mechanical anchorages are applied, the reinforcement arrangement becomes
simpler, but local failure occurs in the beam column joint due to the stress concentration
from the anchorages plates, resulting brittle failure (Yoshimura et al. 2007) when the
beam column joint is loaded by a moment that tends to close the beam column joint. In
order to strengthen this anchorage system, additional local reinforcement bars should be
added along the anchorages. Many experiments were necessary in order to find a
rational way strengthening this anchorage system. However, a rational method to
strengthen the mechanical anchorage system has not been found since the internal stress
condition and the internal cracking pattern have not been well understood. Finally, it
was concluded that the safest way to use this anchorage system is by adding concrete
block at the top of beam column joint. However, the additional concrete block at the top
beam column joint sometimes cannot be applied at the construction site. Simulation can
be a beneficial tool to reveal the failure process of the beam column joint with
mechanical anchorages in order to find a rational method to strengthen this system in

the future.

Fig. 8.1 Mechanical anchorage
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In this study, a meso-scale analysis of reinforced concrete member by 3D discrete
element analysis, called 3D RBSM, was conducted. The study by 3D meso-scale
discrete analysis is useful since the reinforcement arrangement can be modeled in an
accurate manner, i.e. the rib of a reinforcement bar and the 3D model of a reinforcement
bar, local failure can be predicted precisely as the result of the discontinous deformation
of concrete and the the interaction of concrete and a reinforcement bar at meso-scale
level, and cracks can be introduced directly as the displacement between 2 elements.
Moreover, Wang et al. (2014) successfully simulated different crack patterns due to
different anchorage systems of knee-joint by 3D RBSM. Eventually, the purpose is to
investigate the effect of the local reinforcement arrangement, especially the arrangement
of stirrups along the anchorage, on the failure process of beam column joints by 3D
discrete model, through the comparison with experimental results. Capacity, cracking
pattern, and local internal stress condition of simulation results will be investigated. In
addition, by revealing the failure process will be proposed by the simulation considering

the local stress and the crack propagation.

8.2 OVERVIEW OF EXPERIMENTAL STUDIES BY YOKOHAMA NATIONAL
UNIVERSITY
Yokohama National University in Japan conducted many experiments in order to find
the best location of local reinforcements in a beam column joint with mechanical
anchorages through the studies done by Kiyohara et al. (2011), Kato et al. (2011), and
Yoshimura et al. (2012). Figs 8.2, 8.3, and 8.4 shows the experimental specimens that
were conducted Kiyohara et al. (2011), Kato et al. (2011), and Yoshimura et al. (2012)m
respectively. Experimental results showed that just by changing the local arrangement

of reinforcement bars affects the local failure significantly.
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8.3 DETAIL OF NUMERICAL SIMULATION
8.3.1 Numerical models

Three numerical models with different stirrups arrangement and one numerical model
with additional concrete block at the top of beam column joints were simulated. Three
numerical models were conducted for experiments, carried out by Yoshimura et al.
(2012) and one numerical model was conducted for experiments done by Kato ef al.
(2011). In this study, the effect of the stirrups arrangement along the anchorage and

additional concrete block at the top of beam column joint is the main focus.

Table 8.1 Detail of numerical models

Case Parameter Material Properties of Concrete ~ Number Maximum Load
of elements
Compressive Tensile Elasticity ANA EXP
f'c(MPa)  f;(MPa) E, (MPz) (kN) (kN)
AL2 No stirrups 30.8 2.43 27900 756638 85.0 94.5
BL1 One stirrup (at the anchorage plates) 33.2 2.58 24200 766375 113.8 120.3
BL2 Four stirrups (at the anchorage plates 33.5 3.09 25800 805706 122.3 135.1

and along the anchorage)

FL5 Additional concrete block 342 2.86 28600 778079 112.0 118.8
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Fig. 8.5 Geometry of numerical models (Units: mm)

Numerical models are listed in Table 8.1. For the recognition of the variables in each
model, the numerical models have the same notations with the experimental specimens.
AL2 signifies that no stirrup was provided along the anchorage, BL1 signifies that
stirrups were provided only at the position of the anchorage plates, and BL2 signifies
that four stirrups were provided at the position of the anchorage plates and along the
anchorage. FL5 signifies that concrete block is added at the top of the beam column

joint.

8.3.2 Geometry of numerical models

Fig. 8.5 shows the geometry of the numerical models. The same dimensions, as the
experimental specimens, were modeled. As the comparison, the detail of experimental
specimens, conducted by Yoshimura et al. (2012) and Kato ef al. (2011), is shown in
Figs. 8.6 and 8.7, respectively. The reinforcement arrangement of numerical models was
modeled as the same as that of experimental specimens. Deformed bars of 19 mm and
22 mm were used as the main reinforcement of column and beam, respectively. For the

simplification of the model and in order to reduce the computational time, plain bar was
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used for modeling all stirrups. Plain bars of 10 mm were used as the stirrups of both
column and beam. Meanwhile, since local reinforcement arrangement affects the
macroscopic behavior significantly, deformed bars of 13 mm were used as the stirrups at
the position of anchorage plates and along the anchorage in the beam column joint.
Material properties of reinforcement bars of each model are shown in Table 8.2. The

material properties of numerical models are the same as those of experimental

specimens.
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Table 8.2 Material properties of reinforcement bars

Re-bars Function Numerical Yield Modulus of
Model Strength  Elasticity
MPa MPa
D22 Main reinforcement AL?2 377 183000
of column BL1-BL2 392 193000
FL5 395 196000
D19 Main reinforcement AL?2 435 184000
of beam BL1-BL2 458 199000
FL5 445 197000
D13  Stirrups at the BL1-BL2 806 193000
anchorage plates
D13  Stirrups alongthe =~ BL1-BL2 368 197000
anchorage
D10  Stirrups of beam AL2 363 203000
and column BLI-BL2 368 197000
FL5 368 183000
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Fig. 8.8 Boundary condition (Units: mm)
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8.3.3 Boundary conditions

Boundary conditions of numerical models are shown in Fig. 8.8 As the comparison, the
detail of the experimental setup is shown in Fig. 8.9 Steel plates were modeled located
at the end of the beam and the column. The stiffness of the steel plates was assumed
rigid enough, so that deformation of the steel plates will be prevented. In order to model
the hinged condition, a pin element is introduced, located in the steel plates.
Furthermore, in a pin element, forces are transferred only through normal springs of the
pin element.

Cyclic load was applied to the experimental specimens. However, since brittle failure
was observed only when the beam column joint was loaded by a moment that tends to
close the beam column joint and the stirrups arrangement may affect significantly on the
anchorage performance under this load, only push load case will be discussed in this
study. Monotonically displacement controlled was applied to the pin located at the end
of the column and fix condition was assumed at the pin, located at the end of the beam.

The displacement increases 0.1 mm for each step of load, and 1000 steps were applied.
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Fig. 8.9 Experimental setup (Units: mm)
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8.4 RESULTS AND DISCUSSION
8.4.1 Load-displacement relationships

Load-displacement relationships of experimental specimens are compared with those of
numerical models, in case of AL2, BL1, BL2, and FL5. Fig. 8.10 and Fig. 8.11 show
the load-displacement relationships of experimental specimens and numerical models,
respectively, in case of AL2, BL1, BL2, and FL5. The load of load-displacement
relationships, both experimental specimens and numerical models, was determined
based on the load which was applied to the pin, located at the end of the column.
Meanwhile, the displacement of load-displacement relationships, both experimental
specimens and numerical models, was calculated based on the drift angle. Table 8.1

shows the maximum loads of experimental specimens and numerical models.

The maximum loads of numerical models were roughly the same as those of
experimental specimens, i.e. approximately 5-10% difference. In case of AL2, the
simulation underestimated by 10%, in case of BL1, the simulation underestimated by
5%, in case of BL2, the simulation underestimated by 10%, and in case of FL5, the
simulation underestimated by 5%. Thus, the maximum loads of numerical models

coincide well with those of experimental specimens.
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Fig. 8.10 Load-displacement relationships of experimental specimens

117



150

100 A/y/’é\ N
— \
\\

Load (kN)

()]
(e
1

—  :AL2
—  :BL1
—_— :BL2
—_ :FL5

0 10 20 30 40 50
Displacement (X 10-3 rad)

Fig. 8.11 Load-displacement relationships of numerical models

Based on the load-displacement relationship of simulation results, the same tendency as
the experimental results was predicted. The maximum load of BL1 is higher than that of
AL2. The maximum load of FLS is higher than that of BL1. The maximum load of BL2
is higher than that of FLS5. Simulation results predict that the load decreases
significantly after the maximum load in case of AL2 and BL1. Meanwhile, in case of

BL2 and FL5 the load does not decrease significantly.

In case of AL2, BL1, FL5, the load slightly dropped before the peak load approximately
at the displacement of 6-10 x 10 rad. In case of AL2, the load dropped earlier than BL1
and FL5. Furthermore, in case of BL1, the load dropped earlier than FL5. The same

tendency as experimental results was predicted.
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a. Predicted failure pattern of AL2 b. Predicted failure pattern of AL2
(Deformationx3) (Deformationx3)

Top Surface

Top Surface

c. Observed failure pattern of AL2 d. Observed failure pattern of BL1

e. Predicted failure pattern of BL2 f. Predicted failure pattern of FL5
(Deformationx3) (Deformationx3)

Top Surface

g. Observed failure pattern of BL2 h. Observed failure pattern of FL5
Fig. 8.12 Surface cracks after failure
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8.4.2 Surface cracks after failure

Surface cracks of experimental specimens are compared with those of numerical models,
in case of AL2, BLI, and BL2. Fig. 8.12 shows surface cracks of both numerical
models and experimental specimens after failure. Generally, the crack patterns of

numerical models are roughly the same of those of experimental specimens.

In all cases, simulation results predicted that diagonal cracks, propagating from the
anchorage plates of top longitudinal bars of beam to the corner beam column joint
( ) and from the anchorage plates of middle longitudinal bars of the column to the
corner of beam column joint (), occurred in the numerical models. As the

comparison, the same cracks were observed in the experimental specimens.

In case of AL2 and BL1, simulation results predicted that damage occurred at the top
surface of numerical models which indicated the anchorage failure in the beam column
joint (@ ).However, the spalling of concrete at the top surface of numerical models,
could not be simulated as well as experimental specimens so that simulation could not

simulate well the sudden drop in capacity after exceeding the maximum load.

In case of BL2, the simulation result predicted that cracks, along the end of anchorage
plates and propagating from the anchorage plates of top longitudinal bars of the beam to
the side of the specimen, occurred at the top surface of numerical model (@ ). Fewer
cracks were predicted at the top surface of beam column joint in case of FLS5.
Meanwhile, the width of the flexural crack of BL2 and FL5 was predicted larger than
that of AL2 and BL1 that indicated the flexural failure in the beam column joint. The

same cracks were also observed in the experimental specimens (@ ).

8.4.3 Internal stress

Fig. 8.13 shows the internal stress distribution of numerical models at the displacement
of 0.006-0.01 rad, before slight drop of load is predicted. As described before, the
occurrence of the slight drop of load was earlier in case AL2 and BL1. Based in the
internal stress distribution in beam column joints, the compressive stresses along the
development length of BL2 and FLS5 are larger than AL2 and BL1 (@). Meanwhile
there is no significance difference of stress distribution along the development length
between AL2 and BLI1. Based on these behaviors, it is confirmed based on the
simulation results that in case of BL1 and FL5, the occurrence of the slight drop of load

is delayed because of the increase of the bond performance along the development
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Fig. 8.13 Internal stress of AL2, BL1, BL2 and FL5 at the displacement of 6-10x 10~ rad

length of anchorages which is caused by stirrups and addition concrete block at the top
of beam column joint

Fig. 8.14 shows the internal stress distribution of numerical models at the displacement
of 0.015 rad. It is confirmed based on the simulation results that diagonal cracks caused
the slight drop of load. Since the width of diagonal cracks of BL2 is small, there is no
slight drop of load. As the displacement increases, the load increases again after the
maximum load. In addition, cracks were also predicted along the end of the anchorage
plates, because the interface between anchorages plates and concrete is weak in tension.
These cracks, i.e. diagonal cracks and cracks along the anchorages are connected
together that cause the major cracks in beam column joint (@). As the results, when
diagonal cracks open wider, cracks along the anchorage plates also open wider. In case
of FL5, these cracks propagate to the additional concrete block (@).
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Fig. 8.14 Internal stress of AL2, BL1, BL2 and FLS5 at the displacement of 15x 107 rad

Fig. 8.15 shows the internal stress distribution of numerical models at the displacement
of 0.025 rad. Based in the stress distribution in the beam column joints, because of no
restriction along the anchorages, diagonal cracks open easier in case of AL2 and BL1.
As the results, diagonal compressive stresses are difficult to exist that causes the load
decreases significantly after exceeding the maxim load. Meanwhile, because the
restriction along the anchorages, diagonal compressive stresses still exist in the beam
column joint that causes the load does not decreases significantly. The same behavior
was predicted in case of FL5. The additional concrete block and reinforcement
arrangement inside the concrete block at the top of the beam column joint prevent
cracks to penetrate to the surface of the beam column joint. As the result, the diagonal
cracks cannot open easier and diagonal compressive stresses still exist in the beam

column joint.
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Fig. 8.15 Internal stress of AL2, BL1, BL2 and FLS5 at the displacement of 25% 10 rad

8.4.4 Internal stress cracks

Fig. 8.16 shows the internal stress and internal cracks of numerical models at the
displacement of 0.05 rad. As described before, diagonal cracks open easily in case of
AL2 and BL1. As the diagonal cracks opened easily, cracks at the top surface of the
beam column joint opened that caused damage. Furthermore, these cracks are connected
each other. In case of BL2, the confinement provided by stirrups along the anchorages
prevents diagonal cracks to open wider so that cracks at the top surface of beam column
joint are difficult to open. In case of FL5, additional concrete block and reinforcement
arrangement inside the concrete block at the top surface of beam column joint prevent

cracks to penetrate to the top surface of beam column joint.
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Fig. 8.16 Internal stress and internal cracks of numerical models at displacement of
50x10~ rad

Fig. 8.17 shows the failure process of the beam column joint with mechanical

anchorages. Based on the study of the internal study of the simulation results, the failure

processes of beam column joint with mechanical anchorages can be revealed as below.

1. Bond works along the development length of the anchorages. Bond can be
increased by the stirrups placed along the development length and concrete block at
the top surface of beam column joints.
Diagonal cracks propagate

3. Cracks propagate to the surface of beam column joint. The cracks propagation can
be restricted by the concrete block and reinforcement arrangement inside the
concrete block.

4. Diagonal cracks open. It can be restricted by placing stirrup along the development
length.
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Fig. 8.17 Failure process of beam column joint with mechanical anchorages based on

the simulation results.

8.4.5 Strain Profile

Fig. 8.19 shows the strain measurement of simulation results compared with the

experimental results. Fig. 8.18 shows the point measurement of the strain.
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Fig. 8.18 Point measurement of strain
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Fig. 8.19 Strain measurements of simulation results and experimental results

Simulation results show in a good agreement with the experimental results. Simulation
results predict that the strain at point A is lower than that of point B, because of the bond
along the development length. Simulation results and experimental results show that in
case of AL2, the reinforcement bars do not yield either at the point A or point B.
Meanwhile, other cases show that the reinforcement bars yield at the point A. Based on
the simulation results, in case of BL1 and FL5 (flexural failure cases), after

reinforcement bar yields, the strain jumps dramatically to the strain hardening region.
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8.5 EFFECT OF MODELING RIB OF STIRRUPS IN THE BEAM COLUMN
JOINT PORTION
As described before, the diagonal cracks affect significantly the behavior of beam
column joint with mechanical anchorages. To confirm this behavior, parametric studies
are conducted that stirrups in the beam column joint portion are modeled with plain
reinforcement bars. It is well understood that in case of plain reinforcement bars, slip
occur easily between concrete and a reinforcement bar because the bond is determined
only by the friction between the concrete and reinforcement bar. If the slip occurs easily,

diagonal cracks can open easier. The simulation was conducted for BL1 and BL2.

Fig. 8.20 shows load-displacement relationships of BL1 and BL2 with different types of
stirrups. In case of BLI1, the load-displacement relationships change significantly.
Furthermore, the capacity of BL1 will be lower if stirrups inside the beam column joint
were modeled as the plain bars. The load drops slightly at the same displacement. It
indicates that the bonds between concrete and reinforcement bar are similar in both
cases and diagonal cracks occur at the same displacement. As the displacement
increases, the load increases in both cases. However, if stirrups inside the beam column

joint are modeled as the deformed bars, the load increases more than plain bars case.
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Fig. 8.20 Load-displacement relationships of BL1 and BL2 with different types of

stirrups
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Fig. 8.21 Internal stresses of BL1 and BL2 with different types of stirrups at the
displacement of 15x 10~ rad
In case of BL2, the load drops slightly before the maximum load if stirrups inside the
beam column joint are modeled as the plain bars. It indicates that the diagonal cracks
open wider than the deformed bars case. As the displacement increases, the load
increases at the same level. After exceeding the maximum load, the load drops at the
displacement of 0.035 rad if plain bars were used as the stirrups inside the beam column
joint. It indicates that the diagonal cracks open easier if stirrups were modeled as the

plain bars. Furthermore, slip occurs easily if plain bars are used as the stirrups.

Fig.8.21 shows the internal stress distribution inside the beam column joints of BL1 and
BL2 in case of plain bar stirrups and deformed bar stirrups. The width of diagonal
cracks in case of plain bar stirrups is bigger than in case of deformed bar stirrups both
BL1 and BL2. Thus, it can be concluded that if plain bars are used as the stirrups in the
beam column joint, slip occur easily so that diagonal cracks can open -easily.
Furthermore, there are two functions of stirrups in the beam column joints, i.e. to give
the confinement effect in the beam column joint and to restrict the opening of diagonal
cracks.
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8.6 EFFECT OF MODELING STRAIN HARDENING REGION OF STEEL
ELEMENTS

In this chapter, the effect of modeling train hardening region of steel elements on the

beam column joint behavior is investigated. As described in the previous section, if the

strain hardening region is not modeled, the strain will jump dramatically after yield has

occurred and it may affect the behavior inside the beam column joint. The simulation

was conducted for BL1.

Fig. 8.22 shows the load displacement relationships of the numerical models. There is
no significance different of load-displacement relationships in case of BL1 with and

without modeling the strain hardening region.

Fig. 8.23 shows the strain measurement along the anchorage of BL1 with and without
modeling the strain hardening region. Before the reinforcement bars yield, strain profile
of BL1 without strain hardening region is same as that of BL1 with strain hardening
region. After the reinforcement bars yield, there is no significant different of strain
profile along the anchorages inside the beam column joint. Furthermore, at the location
where the reinforcement bars yield, the strain jumps dramatically in case of BL1
without modeling strain hardening region. As the load increases more, the strain
localization occurs at the location where the yield occurs and there is still no difference

of strain profile along the anchorages inside the beam column joint.
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Fig. 8.22 Load-displacement relationships of numerical models with and without strain

hardening region
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Fig. 8.23 Strain measurement along the anchorage with and without strain hardening

region

8.7 CONCLUSIONS
Through the 3D RBSM meso-scale simulations on beam column joint with mechanical

anchorages in this study, the following conclusions are made.

1.

RBSM can simulate the different failure pattern due to different local stirrups
arrangement. Based on the simulation results, the increase of the capacity of BL2 is
due to the increase if bond performance along the development length of anchorages
and confining diagonal stresses caused by stirrups.

It is confirmed based on the simulation results that when stirrups are provided along
the anchorage stirrups can restrict the opening of diagonal cracks. Therefore
diagonal compressive stresses still remain and avoid the cracking near the
anchorages. As the result, flexural failure occurs.

The failure process of beam column joints with mechanical anchorages has been
revealed through the study of internal stress and crack pattern of RBSM, i.e. bond
works along the development length, diagonal cracks occur, cracks propagate to the

surface of beam column joint, and diagonal cracks open.
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4. Based on simulation results, it is proposed that there are 2 scenarios to strengthen
the beam column joint with mechanical anchorages. First is to restrict the opening of
diagonal cracks in beam column joints. Second scenario is to restrict the crack
penetration to the surface of the beam column joint so that diagonal cracks are
difficult to open.

5. Based on the parametric study of the types of stirrups inside the beam column joint,
there are two functions of stirrups inside the beam column joint. First function is to
provide the confinement effect and another function is to restrict the diagonal cracks

in the beam column joints.
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Chapter NINE
SUMMARY AND CONCLUSION

In this study, numerical simulations of failures of beam column joints by 3D RBSM are
conducted. In this chapter, contents of the study, achievements and tasks for the future

are summarized with respect of each chapter.

In Chapter 1, background, literature review, purpose, research significance and
strategies are described.

Because of the demanding in the specification, reinforcement congestion occurs in beam
column joint that can increase construction time and cause difficulties during
compaction. As the result, a poor quality of concrete is obtained. Meanwhile, the
anchorage specification was developed based on the simple arrangement of
reinforcement bars and has not been changed for many years. The reduction of
reinforcement congestion is possible based on the mechanism in the congested joint.
Based on the experimental works, it is not easy to understand the behavior because
complex cracks occur in the beam column joint due to the complex arrangement of

reinforcement and loading history.

Mechanical anchorage can be the way to reduce the reinforcement congestion in the
beam column joint. However, if it is placed near the surface of the beam column joint,
local cracks will occur because of the local stress from the mechanical anchorages. To
avoid this failure, additional reinforcement bars should be placed along the anchorages.
Furthermore, many experiments are necessary to find the best or rational way to

strengthen this system. It takes time and inefficient.

Numerical simulation can be a beneficial way to understand the behavior through the
study of the internal stress and internal cracks. Meso scale analysis is proposed in this
study because cracks propagate in 3D domain, the 3D shape of a reinforcement bar is
modeled directly, including the rib of the reinforcement bar, cracks occur because of the
discontinuous of concrete and interaction between concrete and reinforcement bar at

meso scale level, and cracks can be simulated directly.

In chapter 2, the method of analysis is explained. In RBSM, a reinforced concrete
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member is meshed into rigid bodies. Each rigid body consists of 6 degrees of freedom
and connects to another rigid body by 3 springs. In order to prevent cracks propagate in
non-arbitrary direction, random mesh is used for the concrete elements. In this chapter,
the decision to choose 10x10x10 — 20x20x20 mm® of mesh size is described because the
limitation of this study is only for normal concrete. Furthermore, in the normal concrete,
cracks propagate between aggregates and don’t penetrate into the aggregate. In order to
represent the real cracking pattern in the normal concrete that is determined based on
the aggregate size and location, 10x10x10 — 20x20x20 mm’ of mesh size is decided.
Based on this mesh size, the constitutive models are decided. For different types of
concrete, for example high strength concrete and fiber reinforced mortar, different mesh
size and constitutive models should be applied and these types of concrete are not

applicable in this study.

In this chapter, various shapes of reinforcement bars are introduced in order to simulate
the same model and reinforcement arrangement of the beam column joint with complex

arrangement of reinforcement bars as the real condition

In chapter 3, a unified constitutive model for spring at the selected mesh size is
proposed because in the past studies, the simulations were conducted for simple pull out
tests of reinforced concrete members. The constitutive models were determined in such
a way to represent the material behavior in macro-scale. The bi-linear model for tension
softening of concrete elements, new failure criterion of concrete elements, and strain

hardening region for steel elements are proposed in this study.

For the normal spring of concrete, in compression zone it behaves elastically. After the
tensile stress exceeds the tensile strength of concrete, it has the softening part. An elasto
plastic model is assumed for the shear spring of concrete, where the tau max is
calculated based on the relationship of shear stress and normal stress. For normal spring
of steel elements, its behavior is the same as the real stress-strain relationship of steel. In
order to consider the interface between concrete and reinforcement bar as a weak region,

the tensile strength of interface elements is reduced by half of that of concrete elements.

To develop the constitutive models for the simulation, simulations of concrete at
material scale were conducted, which are described in Chapter 4. Uniaxial compressive
and tensile loading and biaxial compressive loading were applied to the concrete models.

By setting different tensile strength of normal springs, different uniaxial compressive
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and tensile strength are obtained at macro scale. Based on the new failure criterion of
concrete, the simulation results show that the relationship of uniaxial compressive and
tensile strength is in a good agreement with JSCE equation. In the biaxial compression
test, the simulation is little overestimate but still with the same tendency as the
experimental results that the compressive strength under biaxial compressive loading is

higher than that of uniaxial compressive loading.

In this chapter, parametric studies are also conducted. By varying the failure criterion of
concrete, the failure criterion of concrete affects significantly the behavior of concrete
under both uniaxial and biaxial compressive loading. However, it doesn’t affect the
behavior of concrete under uniaxial tensile loading. Meanwhile, the tension softening of
concrete affects the softening of concrete both under uniaxial compression and tensile

loading.

In order to check the applicability of simulation system to simulate the bond between
concrete and a reinforcement bar, tension stiffening simulations were conducted with
different yield strength of a reinforcement bar in Chapter 5. Simulation results are
presented by load-displacement relationship, average stress-strain of the reinforcement
bar, and average stress-strain of concrete. Based on the simulation results, as the load
increases, cracks can propagate gradually because bond between concrete and
reinforcement bar is simulated well. Furthermore, simulation results show that the
yielding point of average stress-train of reinforcement bar is lower than that of bare bar
which is a good agreement with the experimental results. In addition, the simulation
results also predict that the average stress-train of reinforcement bar in case of low yield
strength is lower than that of in case of high yield strength. In this chapter also,
parametric studies of the tensile strength of the interface elements were conducted. The
simulation results show that the tensile strength of the interface elements affects slightly
the stiffness of the reinforced concrete member and increase the concrete strength in the
average stress-strain relationship of concrete. The effect of modeling strain hardening
region is explained in this chapter that the strain localization after the reinforcement bar

yields will not occur.

By this well-developed simulation system, some achievements have been obtained. In
chapter 6, by this simulation system, how the local cracking occurred in the corbel that
has wrong detailing of loading position has been understood because the local shape of

the reinforcement bar is modeled directly. Simulation results show different capacity
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between wrong detailing and correct detailing because of this local failure. Furthermore,
by this simulation, how to repair the damage corbel by simulating directly the damage
corbel has been proposed. After the failure occurs in the corbel, the loading position is
moved into the middle and applied it. The simulation results show that the capacity can

be recovered. This kind of residual performance can be simulated.

In chapter 7, by this well-developed simulation system, how each rebar contributes to
the complex cracks in the beam column joint with complex arrangement of
reinforcement bars can be understood because the local shape of the reinforcement bars

is modeled directly.

In chapter 8, as described before, mechanical anchorage can be the way to reduce the
reinforcement congestion in the beam column joint. To strengthen this system,
additional reinforcement bars should be placed along the anchorage and the best or
rational way has not been proposed yet. Based on the experimental works, by placing
the stirrups along the development length and additional concrete block at the top
surface of beam column joints are the example ways to achieve the flexural failures. By
the simulation, the mechanism to strengthen this system has been understood through
the study of internal stress and internal crack pattern. Simulation results show the same
tendency as the experimental results in term of load-displacement relationships. The
failure behavior of simulation results is also the same as that of experimental results.
Based on the study of the internal stress of beam column joint with mechanical
anchorages by simulation, the failure processes have been understood. First, bond works
along the development length of the anchorages. Second, diagonal cracks occur in the
beam column joint. Third, cracks propagate to the surface of the beam column joint.
Finally, the diagonal cracks open. Furthermore, based on the simulation results, it has
been understood, the mechanism of stirrups along the development length is by
restricting directly the opening of diagonal cracks. Meanwhile, additional concrete
block and reinforcement arrangement on the top surface of beam column joint restrict

the cracks propagation to the surface of the beam column joints.
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Appendix A

FINITE ELEMENT ANALYSIS OF BEAM COLUMN JOINT
WITH COMPLEX ARRANGEMENT OF REINFORCEMENT BARS

A.1 INTRODUCTION
By finite element analysis, Salem et al. (2004) simulated well the bond behavior of

ribbed reinforcement bars. However, the three dimensional arrangement of
reinforcement bars was not modeled and the applicability of the finite element analysis
in predicting the failure behavior of a beam column joint with complex arrangement of
reinforcement bars has not been investigated. In this chapter, by modeling directly a
complex arrangement of reinforcement bars, the applicability of the finite element
analysis in predicting the beam column joint failure will be studied. The simulation was
carried out by 3D finite element analysis, COM3, developed by The University of
Tokyo. In COM3, a three dimensional reinforced concrete member is meshed into solid
elements. Furthermore, in this study, a beam column joint was meshed into plain
concrete elements and steel elements. Details of the material models are discussed in the
references (Mackawa et.al. (2003)).

A.2  DETAIL OF NUMERICAL SIMULATION

A.3.1 Numerical model

In order to study the behavior of a beam column joint with complex arrangement of
reinforcement bars, the finite element analysis was conducted for an experiment of a
beam column joint, done by Japan Railway. Since the purpose of this research is to
study the behavior of a beam column joint with complex arrangement of reinforcement
bars, the dimensions, the reinforcement bars, including bending portion of the
reinforcement bars, and the boundary condition were modeled in an accurate manner.
Three dimensional shape of a reinforcement bar was modeled. However, for the
simplification of the analysis model, the shape of a reinforcement bar is rectangular,
with the same area as the circular shape of the actual reinforcement bar. Furthermore,
the dimensions, the reinforcement bars of the beam column joint, and the boundary

conditions of the analysis model, will be described below.
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A.3.2 Geometry of numerical model

The dimensions of the analysis model are shown in Fig. A.1. Further, the material

properties of the concrete and reinforcement bars are shown in Table A.1. 67314

elements are used to model the beam column joint. The size of elements in the beam

column joint portion is approximately 1 cm’.

Table A.1 Material properties

Modulus of | Compressive Tensile Modulus of Yield
Material Elasticity Strength Strength Elasticity Strength
(MPa) (MPa) (MPa) (MPa) (MPa)
Concrete 22000 21.1 1.75
D25 (Beam Longitudinal Bar) 190000 383
D13 (Beam Longitudinal Bar) 190000 362
D16 (Beam Transversal Bar) 190000 368
D16 (Column Longitudinal Bar) 190000 365
D13(Column Transversal Bar) 190000 362
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Fig. A.1 Analysis model (Units: mm)
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Fig. A.2 Reinforcement bars of the analysis model

For the meshing simplification purpose in the numerical simulation, the shape of a
reinforcement bar is a rectangular where its area is the same as the actual reinforcement
bar. On the other hand, spiral stirrups of the column were simplified by increasing the
yield strength of the tied stirrups of the column, and tied stirrups of the beam were
simplified by enlarging the area of the tied stirrups of the beam. The bending portion of
hooked bar anchorages, located in the beam column joint was modeled in an accurate

manner. Fig. A.2 shows the reinforcement bars of the analysis model.

A.3.3 Boundary condition

Fig. A.3 shows the detail of the frame loading of the analysis model, which represents
the frame loading in the experimental set-up (Fig. A.4). Fix condition in all direction is

assumed as the boundary condition at the bottom of the steel frames. There are 3 hinges
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that are modeled as the boundary condition. To allow the rotation, a pin, located in the
middle of steel plates, is introduced as the connection between steel plates (Fig. A.5).
Furthermore, an interface element is introduced between the pin and the steel plates,
with a small value of shear stiffness, so that no shear force is transferred between the

steel plates and the pin.

2200

1350

950

725

Fig. A.3 Boundary condition of numerical Fig. A.4 Experimental setup

model

(a) Pin

Fig. A.5 Detail of hinge
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Fig. A.6 Load pattern of cyclic load

Cyclic load of displacement control, pull load and push load alternately, is applied to the
steel frame, located at the end of the beam. In addition, the applied load, pull load and
push load, is intended to examine the behavior of the beam column joint for a moment
that tends to open and close the right angle, respectively. The same load pattern as the

experiment is used in the simulation. Fig. A.6 shows the load pattern of the cyclic load.

A3 SIMULATION RESULTS
A.3.1 Load-displacement relationships
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Fig. A.7 Load-displacement relationship

140



Table A.1 Maximum load of the experimental specimen and numerical model

Case Experiment(Peyp) Simulation(P,y,) Pana/Pexp
Open 160.3 kN 229 kN 70%
Close 272.3 kN 370 kN 73%

Fig. A.7 shows the load-displacement relationship of simulation result, compared with
that of experimental result. Table A.1 shows the maximum load of the experimental
specimen and numerical model. The load and the displacement of the load-displacement
relationship of numerical model were determined based on the load and the
displacement applied to the steel frame located at the end of the beam. The maximum
loads of numerical model are roughly the same as those of experimental specimen, i.e.

approximately 27-30% difference.

Both experimental and simulation results show that the maximum load of open case is
lower than that of close case. In open case, the simulation predicts that the maximum
load of the beam column joint is 229 kN at the displacement of 1.725 cm. Meanwhile,
in close case, the simulation predicts that the maximum load of the beam column joint is
370 kN at the displacement of 1.725 cm. Simulation results predict that the maximum
loads of both cases occur earlier compared with the experimental results. After
exceeding the maximum load, simulation results show that the load decreases
significantly in close case and the load does decrease significantly in open case. The
same tendency as the experimental results was predicted. Anchorage failure causes the
drop of capacity after exceeding the maximum load in close case. Furthermore, to
observe the failure behaviour of the beam column joint by numerical simulation, the

crack patterns of the beam column joint are described below.

A.3.2 Crack patterns

In this study, the crack pattern obtained by the simulation is described below. The cracks
are not associated with the discrete cracks, but represent the smeared cracks.

Furthermore, the cracks depend on the magnitudes of strains and element sizes.
A.3.2.1 Crack pattern in close case

Fig. A.8 shows the crack patterns of the numerical model at the displacement of 0.288

cm, 1.15 cm, and 1.75 cm in close case.
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Fig. A.8 Crack patterns of the numerical model compared with experimental specimen

in close case

When the applied load is relatively small, at the displacement of 0.288 cm, flexural
cracks occur outside the bending portion of the anchorages, inside the beam column
joint portion. As the load increases, i.e. at the displacement of 1.15 cm, cracks occur
inside the bending portion of the anchorages. Furthermore, diagonal cracks, which are
roughly perpendicular to the bending portion of the anchorages, occur. Before the load
reaches the maximum load, large width of cracks occur at the end of the anchorages (1),
and may indicate the beginning of the anchorage failure. At the displacement of the
maximum load, i.e. 1.75 cm, more cracks occur inside the bending portion of the
anchorages. The same tendency of crack patterns was observed between the finite
element analysis and the experimental work. Diagonal cracks which are roughly
perpendicular to the bending portion of anchorages also occurred inside the bending

portion of anchorages in the experimental specimens.
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(a) 0.288 cm

(c) 1.75 cm (d) Experiment
Crack Width: <0.02 cm . 0.02cm-0.3cm

Fig. A.9 Crack patterns of the numerical model compared with experimental specimen

in open case

A.3.2.2 Crack pattern in open case

Fig. A.9 shows the crack pattern of the analysis model at the displacement of 0.288 cm,
1.15 cm, and 1.75 cm, under the opening load. When the applied load is relatively small,
at the displacement of 0.288 cm, flexural cracks occur on the re-entrant corner of the
beam column joint. As the load increases, i.e. at the displacement of 1.15 cm, cracks
occur inside the bending portion of the anchorages. Furthermore, diagonal cracks, which
are roughly perpendicular to the cracks formed in close case, occur. At the displacement
of the maximum load, i.e. 1.75 cm, more cracks occur inside the bending portion of the
anchorages. Based on the experimental result, typical diagonal cracks, which are
roughly perpendicular to the cracks formed in close case, also occurred inside the

bending portion of the anchorages of beam column joints.
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(a) Cracks of Front’s Surface (b) Cracks of 3-D Model

Crack Width: <0.02 cm . 0.02cm-0.3cm
Fig. A.10 Crack patterns of the numerical model at final step of load

A.3.2.3 Crack pattern at displacement of 2.3 cm in close case

Fig. A.10 shows crack patterns at the displacement of 2.3 cm in close case. Complicated
cracks occur inside the beam column joint portion of the numerical model, after loaded
by several loads of the open load and the closing load. However, the behavior of the
beam column joint is difficult to be observed by finite element analysis, when the

complicated cracks occur inside the beam column joint portion.

A4 CONCLUSIONS
Based on the results of the numerical study of the behavior of a beam column joint with

complex arrangement of reinforcement bars by finite element analysis, the following
conclusions are made.

1. Finite element analysis could simulate the global behavior of a beam column
joint with complex arrangement of reinforcement bars.

2. When the push load was applied (close-mode), after the load exceeds the
maximum load, the load decreases significantly because of the failure of the
anchorages. Diagonal cracks, which are roughly perpendicular to the bending
portion of anchorages, occur. These typical diagonal cracks were also observed
in the experimental specimens.

3. When the pull load was applied (open-mode), after the load exceeds the
maximum load, the load does not decrease significantly as cracks propagated

inside the beam column-joint portion. Diagonal cracks, which are roughly
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perpendicular to the cracks formed under the close load, occur. These typical
diagonal cracks were also observed in the experimental specimens.

4. The behavior of the beam column joint is difficult to be observed by finite
element analysis, after complicated cracks occur inside the beam column joint

portion.
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