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Abstract 

For earthquake disaster estimation of an urban area, numerical simulation of the seismic 

response for various structures is an alternative of the current estimation that uses empirical 

relations of structural damage probability for an estimated ground motion index. We need to 

focus on developing a more rational damage estimation method and the use of numerical 

simulation is a candidate. Since a variety of numerical methods of the seismic response 

analysis is available, construction of a suitable analysis model is a bottleneck to realize an 

estimation method based on simulating the seismic response for various structures. 

In view of quality and quantity of data which are available in a target urban area, this 

study is proposing a systematic methodology of automated model construction, based on a 

meta-modeling theory that produces a set of analysis models consistent with a continuum 

mechanics model or a solid element finite element model. This theory regards an analysis 

model as a genuinely mathematical approximation of a continuum mechanics model. 

Using a bridge structure as an example, this study is aimed at developing the 

following three: 1) consistent data conversion from a solid element solution to a beam 

element solution or vice versa; 2) construction of a simple consistent analysis model which 

shares the fundamental dynamic properties with a continuum mechanics model; and 3) 

development of a module that automatically de-codes and interprets a set of digital data of a 

structure and constructs consistent models for it. 

The consistent data conversion is done by converting displacement and stress 

functions of a target structure. The use of stress function is a key in order to make a beam 

element model (which does not need Poisson’s ratio) consistent with a solid element model 

(which needs Poisson’s ration). This conversion method contributes in promoting a solid 

element analysis since 1) cross sectional force or moment of a beam element model is more 

accurately computed for a given solid element solution, compared to an ordinary method 

which approximately computes surface integration of stress, and 2) a beam element solution 

could be used as a smart initial guess of a solid element solution for a conjugate gradient 

method (CG method) when it solves a large scale solid element model. 

According to the meta-modeling theory, a simple consistent model, such as a single 

mass spring model or a multi-mass spring model, is constructed for a bridge structure. 

Indeed, a consistent mass spring model (CMSM) or a consistent lumped mass model 

(CLMM) shares the same natural frequency and mode with a continuum mechanics model; 

the CLMM is the simplest as it has single mass and spring, which the CMSM has more than 

one mass and spring. It is found that a CMSM of two masses need to have an extra spring 

which an ordinary mass spring model does not have, so that the first and second natural 

frequencies and modes of the CMSM coincide with those of the solid element model. 

A prototype of an automated model construction module is developed. This prototype 

is able to use two sets of digital data (Auto CAD and GIS) of a bridge structure, and to 

generate a solid element model, a beam element model, a CMSM or a CLMM. The quality 

of these models of distinct fidelity is assured by comparing the fundamental properties and 

the synthesized response. Six different geometric types of simple bridge structures are used 

to check the performance of the module. The prototype is used to construct solid and beam 

element models for a part of freeway road network in Tokyo Metropolitan. 
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Chapter 1  

Introduction 

1.1 Background 

A methodology of a more reliable estimation of possible damage induced by an earthquake 

is to improve the accuracy of seismic response analysis using a model of higher fidelity; 

with the progress of computers, large scale computation that is needed for the analysis of a 

high fidelity model can be conducted [1, 2]. In civil engineering, however, the use of a 

structural element, such as a truss, beam, plate or shell, is standard [3, 4, 5, 6] and it is rare 

that solid element analysis is made even for a structure of complicated configuration [7, 8]. 

While there are several reasons for such a rare use of solid element analysis, a major reason 

is that it is believed the structural element analysis which is tuned with experimental results 

could produce a more accurate solution than the solid element analysis. 

On the other hand, it is a common practice to develop a set of different fidelity 

models at the beginning of an analysis of a complex structure [9, 10]. If a numerical model 

of desired fidelity could be constructed, we can choose a suitable analysis method for it. A 

model of higher fidelity is able to make a more accurate analysis of complicated response. 

However, it is not an easy task to construct a higher fidelity model for an actual structure 

using data and information of limited quality and quantity. 

In this study, we mainly force the following two issues related to the above 

mentioned facts: 1) the promotion of solid element analysis in civil engineering and 2) the 

development of consistent low fidelity models to assess the solid element analysis. A meta-

modeling theory [11, 12, 13, 14, 15] is being proposed to fulfill these two points. The 

essence of this theory is that there are structural mechanics modelings which are consistent 

with continuum mechanics modeling. A structure element analysis that stems from 

consistent structure mechanics modeling is a mathematical approximation of a solid 

element analysis that corresponds to continuum mechanics modeling. 

There holds a trade-off relation between the computational cost and the accuracy 

[12]. According to the meta-modeling, a solid element analysis that uses a model of high 

fidelity is an extreme case of high accuracy but high cost. A structure element analysis ends 

up with much less computational cost but with some loss of the accuracy. A key issue here 

is that the same physical problem is solved; due to difference in mathematical 

approximation, the physical problem is converted to different mathematical problems. The 

meta-model theory clarifies this point, and it is the choice of a user whether he employs a 

solid or structure element analysis considering the trade-off relation between the 

computational cost and the accuracy for solving the same physical problem. 

There is another difficulty in large scale numerical simulation. That is the 

laboriousness of modeling, when the number of structures and structure components 

analyzed is huge. The development of automated model construction, i.e., conversion of 

digital data available for a target structure to an analysis model which is directly input to a 

suitable seismic response analysis method, is thus required. In this study, the meta-modeling 
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theory is employed with automated modeling concept as a solution of automated model 

construction. 

1.2 Objective 

The objective of this study is to establish consistent seismic response analysis based on the 

meta-modeling theory. The target structure is bridge structure. The scope of this study is 

summarized as follows: 

 Develop the necessary tools for consistent dynamic analysis of a structure based on the 

meta-modeling theory, 

 Utilize the developed tools for a bridge structure and identify the advantages and 

disadvantages of the tools, 

 Develop modules for an automated model construction for large scale bridge structure, 

and 

 Investigate further possible improvement of the developed tools. 

1.3 Thesis structure 

The contents of this dissertation are as follows. First, the meta-modeling theory is explained 

in Chapter 2. According to the meta-modeling theory, new tools for consistent dynamic 

analysis of structure are developed in Chapter 3. Then, numerical experiments of applying 

the proposed tools to example problems are carried out in Chapter 4. Recommended 

possible improvements for developed tools are discussed in Chapter 5. Concluding re-

marks are made in Chapter 6. 
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Chapter 2  

Meta-Modeling Theory 

2.1 Overview 

The main hinge in promoting a solid element analysis in civil engineering is a less clear 

relation between structural mechanics [16] and (solid) continuum mechanics [17, 18, 19]. 

It is taken for granted that structural mechanics and continuum mechanics share many 

elements, but, in my eyes, the difference between them has not been clearly discussed. 

Recently, being proposed is a meta-modeling theory [11], which rigorously allocates 

structural mechanics as a mathematical approximation of continuum mechanics in the sense 

that structural mechanics solves a Lagrangian problem of continuum mechanics using 

suitable mathematical approximations. 

In order to relate different fidelity models which are constructed for one structure, 

we take advantage of the meta-modeling theory [11]. As for mechanical response, the meta-

modeling theory starts from continuum mechanics as the basic physics. By adding 

mathematical approximations, the meta-modeling theory derives another modeling such as 

beam theory or shell theory in a systematic manner. The key concept of the meta-modeling 

theory is that all the modelings solve the same physical problem of continuum mechanics 

but use different mathematical approximations; continuum mechanics modeling does not 

use any approximation. 

The contents of this chapter are as follows. First, the meta-modeling theory is briefly 

explained in Subsection 2.2. Then, in Subsection 2.3, we present the meta-modeling theory 

for a beam problem, clarifying a beam model that is consistent with continuum mechanics. 

The meta-modeling theory for a plate problem is presented at the end. 

2.2 Summary of meta-modeling theory 

In the meta-modeling theory, modeling means to create a mathematical problem for a target 

physical problem. There are many ways to develop a distinct mathematical problem, 

depending on the accuracy that is expected in solving the physical problem. The meta-

modeling theory delivers a set of consistent modelings which produce an approximate 

solution of the original modeling. As an example in structural problems, the meta-modeling 

theory uses continuum mechanics modeling as the basic modeling. Some of structure 

mechanics modelings are specified as consistent modeling of the continuum mechanics 

modeling. Then, those consistent structure mechanics modelings produce an approximate 

solution of the continuum mechanics modeling. 

For simplicity, we assume a homogeneous elastic body (𝑉 ) with an isotropic 

elasticity tensor and density, denoted by c  and ρ. If velocity and strain are denoted by v and 

ϵ respectively, the Lagrangian of 𝑉 is 

ℒ[𝐯, 𝛜] = ∫
1

2
𝜌𝐯 ∙ 𝐯 −

1

2
𝛜: 𝐜: 𝛜 d𝑣,

𝑉

 (2.1) 



 4 

where ∙ and : are the inner product and second-order contraction, respectively. We compute 

𝐯 = �̇�  and 𝛜 = 𝑠𝑦𝑚{𝛁𝐮} , using a displacement function 𝐮  which satisfies prescribed 

boundary and initial conditions; 𝑠𝑦𝑚 stands for the symmetric part of the second-order 

tensor, (( . )̇ ) and 𝛁( . ) being temporal and gradient of ( . ). 

Structure mechanics employs a one dimensional stress-strain relation [20] that is not 

validated in any experiment. That is, Young’s modulus, 𝐸, is used rather than the fourth-

order tensor 𝐜 as a material property of 𝑉. As an example, in the Cartesian coordinate of 

(𝑥1, 𝑥2, 𝑥3), the normal stress and strain component in the 𝑥1-direction are related as 

𝜎11 = 𝐸𝜖11, 

rather than 𝛔 = 𝐜: 𝛜 or 

𝜎11 = 𝑐1111𝜖11 +⋯ =
(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
𝜖11 +⋯, 

where 𝛔 is stress. 

According to the meta-modeling theory [11], we do not have to assume the one-

dimensional stress-strain relation, but we employ the following alternative Lagrangian:, 

ℒ∗[𝐯, 𝛜, 𝛔] = ∫
1

2
𝜌𝐯 ∙ 𝐯 − (𝛔: 𝛜 −

1

2
𝛔: 𝐜−1: 𝛔)  d𝑣,

𝑉

 (2.2) 

where 𝐜−1 is the inverse tensor of 𝐜; see Appendix A for index form of ℒ∗. Since the terms 

in the parenthesis in Eq. (2.2) equal 
1

2
𝛜: 𝐜: 𝛜, for 𝛔 satisfying 𝛜 = 𝐜−1: 𝛔, this Lagrangian is 

equivalent to the ordinary one of Eq. (2.1). It is easy to show that, if non-zero components 

of 𝛜 and 𝛔 are 𝜖11 and 𝜎11 only, the second term in the integrand of ℒ∗ becomes 𝜎11𝜖11 −
1

2
𝜎11
2 /𝐸, and the variation with respect to 𝜎11 is 

𝛿 (𝜎11𝜖11 −
1

2

𝜎11
2

𝐸
) =

𝛿𝜎11
𝐸

(𝐸𝜖11 − 𝜎11). 

As is seen, the one-dimensional stress strain relation is derived from the mathematical 

operation of taking variation, without making any assumption such as the one-dimensional 

stress-strain relation. 

The meta-modeling theory leads to consistent modeling which solves the variational 

problem of ℒ∗. If no approximation is made for 𝐮 (that produces 𝐯 and 𝛜) and 𝛔, it results 

in continuum mechanics modeling, and the governing equation for 𝐮 is the wave equation, 

i.e., 

𝜌(𝐱)�̈�(𝐱, 𝑡) − 𝛁 ∙ (𝐜(𝐱):𝛁𝐮(𝐱, 𝑡)) = 0. (2.3) 

If certain approximations are made for 𝐮 and 𝛔, it results in a consistent modeling that 

solves a different mathematical problem. However, this problem is to solve the same 

physical problem (that is described in terms of the variational problem) using the 

mathematical approximations. 
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2.3 Meta-modeling for beam 

According to the meta-modeling theory, a solution space of beam modeling is considered 

as a subset of a solution space of continuum mechanics of, {𝐮, 𝛔}; for the Lagrangian ℒ∗; 
see Fig. 2.2. For illustration, two functions, 𝑤  and 𝑠 , are used to determine non-zero 

components of 𝐮 and 𝛔 as follows: 

𝑢1 = −𝑧𝑤
′(𝑥, 𝑡), 𝑢3 = 𝑤(𝑥, 𝑡), 𝜎11 = 𝑧𝑠(𝑥, 𝑡), 

where, as shown in Fig. 2.1(a), the 𝑥1- or  𝑥3-axis is parallel or normal to the beam direction, 

respectively, and the bending moment produced by 𝜎11 acts around the 𝑥2-axis. Here, 𝑥 and 

𝑧 are used instead of 𝑥1 and 𝑥3, and prime stands for derivative with respect to 𝑥. Note that 

𝑤 and 𝑠 are function of 𝑥 and 𝑡. 

Substituting the approximated functions (in the beam modeling subset) into ℒ∗ and 

taking the variation of the resulting functional, we have 

 

(2.4) 

X 
Y 

Z 
𝑢 Deformation in x-direction (for beam) 

𝑤 Deflection in z-direction (for plate) 

𝐸, 𝜌 Young’s modulus and density 

𝐴, 𝐼 Area and second moment of inertia (for plate) 

𝐻0, 𝐻2 Height and second moment (for plate) 

 

Figure 2.1: Schematic view of geometry with coordinate system: (a) beam; and (b) plate. 

{𝐮𝑐 , 𝛔𝑐} 

{𝐮𝑠, 𝛔𝑠} 

Solution space of 

continuum model 

Solution space of 

structural model 

Figure 2.2: Solution space for structural and continuum model; solution space of structural model is 

subset of solution space of continuum model. 

(b) 

(a) 

Y X 

Z 

𝛿 (∫∫
𝜌𝐴

2
(�̇�)2 +

𝜌𝐴

2
(�̇�′)2 + 𝐼𝑠𝑤′′ +

𝐼

2𝐸
𝑠2 d𝑥d𝑡) 
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where 𝐴 = ∫d𝑦d𝑧  and 𝐼 = ∫ 𝑧2 d𝑦d𝑧 , and dot stands for derivative with respect to 𝑡 . 

Hence, 𝛿 ∫ℒ∗ d𝑡 = 0, leads to the governing equation of 𝑤, as 

𝜌𝐴�̈� − 𝜌𝐼�̈�′′ + 𝐸𝐼𝑤′′′′ = 0, (2.5) 

with 𝑠 = −𝐸𝑤′′; note that 𝑠 = −𝐸𝑤′′is directly derived from 𝛿 ∫ℒ d𝑡 = 0, and we do not 

have to make any assumption to relate 𝑤 and 𝑠. The initial and boundary conditions are 

respectively obtained as follows: 

 

(2.6) 

 

(2.7) 

If we ignore minor differences, there are four representative beam modelings, 

namely, Bernoulli-Euler beam, Rayleigh beam, Shear beam and Timoshenko beam [21, 22, 

23, 24, 25, 26, 27]. The difference in each beam modeling at dynamic state is identified 

easily from Table 2.1 [25]. The consistent beam modeling is actually Rayleigh beam [28]. 

Therefore, Rayleigh beam is consistent with continuum mechanics at dynamic state. 

Simultaneously, it is straightforward to show the consistency of Timoshenko beam 

modeling at dynamic state, as follows: Timoshenko beam model [22] uses the following 

non-zero components of 𝐮 and 𝛔: 

𝑢1 = −𝑧𝑤
′(𝑥, 𝑡), 𝑢3 = 𝑤(𝑥, 𝑡) + 𝑧𝜃(𝑥, 𝑡), 𝜎11 = 𝑧𝑠(𝑥, 𝑡), 𝜎31 = 𝑧𝑟(𝑥, 𝑡), 

where 𝜃  is rotation around the 𝑦 -axis and 𝑟  is a function of 𝑥  and 𝑡 . Note that 𝑧𝜃  is 

included in 𝑢3; this term is regarded as the second term of the Taylor series expansion of 

𝑢3 with respect to 𝑧, while 𝑤 is the first term of the expansion. 

Substituting the above approximated functions into ℒ∗ and solving 𝛿 ∫ℒ∗ d𝑡 = 0, 

we obtain 

 

(2.8) 

 

The governing equations of 𝑤 and 𝜃 are derived as follows: 

= ∫∫
𝜕

𝜕𝑡
(𝛿𝑤′𝜌𝐼�̇�′ + 𝛿𝑤𝜌𝐴�̇�) +

𝜕

𝜕𝑥
(𝛿𝑤′𝐼𝑠 − 𝛿𝑤(𝜌𝐼�̈�′ + 𝐼𝑠′))

+ 𝛿𝑤(𝜌𝐼�̈�′′ − 𝜌𝐴�̈� + 𝐼𝑠′′) + 𝛿𝑠𝐼 (𝑤′′ +
𝑠

𝐸
)  d𝑥d𝑡, 

 

{
𝑤 given or �̇�  = 0,

𝑤 given or �̇�′  = 0,
 

{
𝑤 given or 𝜌𝐼�̈�′ − 𝐸𝐼𝑤′′′  = 0,

𝑤′ given or 𝐸𝐼𝑤′′  = 0.
 

𝛿 (∫∫
𝜌𝐴

2
(�̇�)2 +

𝜌𝐼

2
(�̇�′)2 + �̇�2 + 𝐼(𝑠𝑤′ + 𝑟𝜃) +

𝐼

2𝐸
(𝑤′′)2+

𝐼

2𝐺
(𝜃′)2 d𝑥d𝑡) 

= ∫∫
𝜕

𝜕𝑡
(𝛿𝑤′𝜌𝐼�̇�′ + 𝛿𝑤𝜌𝐴�̇� + 𝛿𝜃𝐼�̇�) +

𝜕

𝜕𝑥
(𝛿𝑤′𝐼𝑠 − 𝛿𝑤(𝜌𝐼�̈�′ + 𝐼𝑠′) + 𝛿𝜃𝐼𝑟)

+ 𝛿𝑤(𝜌𝐼�̈�′′ − 𝜌𝐴�̈� + 𝐼𝑠′′) + 𝛿𝑠𝐼 (𝑤′′ +
𝑠

𝐸
)

+ 𝛿𝑟𝐼 (𝜃′ +
𝑟

2𝐺
)  d𝑥d𝑡 = 0. 
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𝜌𝐴�̈� − 𝜌𝐼�̈�′′ + 𝐸𝐼𝑤′′′′ = 0, 

𝜌𝐼�̈� − 2𝐺𝐼𝜃′′ = 0. 

where, 𝐺 is shear modulus of the beam material. 

 This set of the differential equations of 𝑤  and 𝜃  are similar to the governing 

equations of the Timoshenko beam model [25] It should be noted that no assumptions are 

made in deriving the governing equations of 𝑤 and 𝜃. Only a subset of the function space 

as described above is used in computing the Lagrangian. 

 A consistent model of a target continuum problem selects a subset of a function 

space of continuum mechanics, in order to obtain an approximate solution. The model is 

automatically validated in the framework of continuum mechanics. According to the meta-

modeling theory, Rayleigh and Timoshenko beam modelings solve the same problem as 

the continuum model at dynamic state without employing Poisson’s ration (𝜈), unlike 

continuum modeling; 𝐺 is used for Timoshenko beam modeling. It was explained in the 

beginning of this section that an assumption of the one-dimensional stress–strain relation, 

made by the Rayleigh beam model does not match the tensorial relation of elasticity that is 

observed in experiments. According to the meta-modeling theory, we can explain that 

Rayleigh and Timoshenko beam modeling solve the same Lagrangian problem of 

continuum mechanics, using a special subset of the function space that happens to eliminate 

the contribution of ν in the governing equations. In other words, the comparison of a 

Rayleigh or Timoshenko beam element analysis with a solid element analysis is meaningful 

at dynamic state, and Bernoulli-Euler and shear beam modelings are consistent only at 

quasi-static state; see Table 2.1. 

2.4 Meta-modeling for plate 

Similar to a beam problem, we can allocate a suitable subset of the function space of 

continuum mechanics, {𝐮, 𝛔} , for ℒ∗ , in order to obtain consistent plate governing 

equations; see list of related references [29, 30, 31, 32]. Here, we set non-zero components 

of 𝐮 and 𝛔 as 

𝑢1 = −𝑧𝑤,𝑥(𝑥, 𝑦, 𝑡), 𝑢2 = −𝑧𝑤,𝑦(𝑥, 𝑦, 𝑡), 𝑢3 = 𝑤(𝑥, 𝑦, 𝑡), 

𝜎11 = 𝑧𝑠𝑥𝑥(𝑥, 𝑦, 𝑡), 𝜎22 = 𝑧𝑠𝑦𝑦(𝑥, 𝑦, 𝑡), 𝜎12 = 𝑧𝑠𝑥𝑦(𝑥, 𝑦, 𝑡), 

Beam model Governing equation 

Bernoulli-Euler 𝜌𝐴�̈� + 𝐸𝐼𝑤′′′′ = 0 

Rayleigh 𝜌𝐴�̈� − 𝜌𝐼�̈�′′ + 𝐸𝐼𝑤′′′′ = 0 

Shear 𝜌𝐴�̈� −
𝜌𝐼

𝑘𝐺
�̈�′′ + 𝐸𝐼𝑤′′′′ = 0 

Timoshenko 𝜌𝐴�̈� − (𝜌𝐼 +
𝜌𝐼

𝑘𝐺
) �̈�′′ +

𝜌2𝐼

𝑘𝐺
�̈̈� + 𝐸𝐼𝑤′′′′ = 0 

 

Table 2.1: Governing equations of four beam models. 
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where, as shown in Fig. 2.1(b), the 𝑥1- or  𝑥2-axis is on the plate plane, 𝑥3-axis is normal 

to the surface of plate, and (𝑥1,  𝑥2,  𝑥3)  is replaced by (𝑥, 𝑦, 𝑧). We write an in-plane 

displacement component of plate using the gradient of 𝑤 as 

(𝑢1, 𝑢2) = −𝑧𝛁𝑤, 

and in-plane stress components as 

(𝜎11, 𝜎22, 𝜎12) = 𝑧(𝑠11, 𝑠22, 𝑠12), 

Using a two-dimensional second-order tensor 𝐬. Here, 𝑤 and 𝐬 are function of 𝑥, 𝑦 and 𝑡. 

 Substituting the approximated functions in the plate subset into ℒ∗and taking the 

variation of the resulting functional, we have 

 

(2.9) 

 

Here, 𝐻0  and 𝐻2  are ∫d𝑧  and ∫ 𝑧2 d𝑧 . The same symbol 𝐜−1  is used for in-plane 

components of 𝐬 , and 𝛁𝛁w  and 𝛁 ∙ (𝛁 ∙ 𝐬)  are a second-order tensor and a scalar, 

respectively. 

We can derive the governing equations of 𝑤 and 𝐬 from vanishing of this variation. 

The expression of 𝐬 is as follows; 

𝐜−1: 𝐬 = −𝛁𝛁w, (2.10) 

meanwhile 𝐜−1 is for in-plane components and components of this tensor can be expressed 

as the following three-by-three matrix: 

1

𝐸
[

1 −𝑣 0
−𝑣 1 0

0 0
1 + 𝑣

2

]. 

Here, 𝐜−1 is analogous to the elasticity tensor of two-dimensional state of plane stress. If 

we consider the inverse tensor of 𝐜−1 , the components of inverse matrix are different from 

the corresponding components of the original 𝐜. Just like a beam problem, we do not have 

to make an assumption of plane stress state, but it is automatically derived from ℒ∗ when 

suitable approximations are made for the functions. 

 The governing equation of consistent plate model can be obtained from expressions 

of 𝑤 and 𝐬 as  

𝜌𝐻0�̈� − 𝜌𝐻2𝛁
2�̈� +

𝐻2𝐸

1 − 𝑣2
𝛁4𝑤 = 0. (2.11) 

𝛿 (∫∫
𝜌𝐻2
2
|𝛁�̇�|2 +

𝜌𝐻0
2
�̇�2 +𝐻2 (𝐬: 𝛁𝛁w+

1

2
𝐬: 𝐜−1: 𝐜)  d𝑠d𝑡) 

= ∫∫
𝜕

𝜕𝑡
(𝛁𝛿𝑤 ∙ 𝜌𝐻2𝛁�̇� + 𝛿𝑤𝜌𝐻0�̇�) + 𝛁 ∙ (𝛁𝛿𝑤 ∙ 𝐻2𝐬 − 𝛿𝑤(𝜌𝐻2𝛁�̈� + 𝛁 ∙ 𝐬))

+ 𝛿𝑤(𝜌𝐻2𝛁
2�̈� − 𝜌𝐻0�̈� + 𝐻2𝛁 ∙ (𝛁 ∙ 𝐬))

+ 𝛿𝑠: (𝛁𝛁w+ 𝐜−1: 𝐬) d𝑠d𝑡. 
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The initial and boundary conditions are respectively obtained as 

 
(2.12) 

 

(2.13) 

 The governing equations of the consistent plate model, Eq. (2.11), match with 

Kirchhoff-Love plate modeling [29, 30] that includes −𝜌𝐻2𝛁
2�̈� in addition to an ordinary 

plate model. According to the meta-modeling theory, Kirchhoff-Love plate modeling solves 

the same problem as the continuum modeling at dynamic state. Thus, the comparison of a 

Kirchhoff-Love plate element analysis with a solid element analysis is meaningful. 

{
𝛁𝑤 given or 𝜌𝐻2𝛁

2�̇�  = 0,

𝑤′ given or 𝜌𝐻0�̇�
′  = 0,

 

{
𝐧. 𝛁𝑤 given or 𝛁 ∙ (𝐻2(𝐜

−1)−𝟏: 𝛁𝛁w)  = 0,

𝑤 given or 𝐧. (𝜌𝐻2𝛁�̈� − (𝐜
−1)−𝟏𝛁2(𝛁 ∙ 𝐬)) .
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Chapter 3  

Development of New Tools 

3.1 Conversion between solid element solution and beam element 

solution based on meta-modeling 

3.1.1 Overview 

In civil engineering, it is believed that the structural element analysis which is tuned with 

experimental results can produce a more accurate solution than the solid element analysis. 

We have to accept that tuning a non-linear structural element with the experimental results 

is not a difficult task and the tuned structural element has high accuracy in predicting the 

structural responses. Nevertheless, the tuned structural element cannot guarantee high 

accuracy in computing responses which are not observed via experiment. This makes a clear 

contrast with the solid element analysis that computes structural responses at any point with 

more or less uniform accuracy. It is certainly true that measurement is made for key parts 

of a structure or a structural element. However, the uniform accuracy of the solid element 

analysis has been overlooked, unlike the fact that it only needs cheap and small material 

sample tests. 

The complexity of the data conversion between solid element model and structural 

element model is another drawback, which prevents frequent usage of solid element model 

in actual civil engineering practices. An ordinary conversion method discussed in section 

4.1, provides a temporary solution for the data conversion between the solid element model 

and the structural element model [1]. Established structural design processes are mainly 

based on cross-sectional forces [16, 33], such as axial force, shear force and bending 

moment. The outputs of solid element analysis, i.e., nodal forces and displacements, need 

to be efficiently converted to the structural element forces, which can be used for the 

structural design. This may lead to frequent usage of solid element models in the field of 

civil engineering. 

In this section, we seek to develop a method of converting a solid element solution 

to a structural element solution [13], based on the meta-modeling theory. As it will be 

explained later in this section, the most suitable beam element solution is found for a given 

solid element solution, by minimizing the distance between them. This conversion method 

will contribute to promoting the solid element analysis since i) cross sectional force or 

moment is more accurately computed for a given solid element solution, compared to an 

ordinary method which merely computes surface integration of stress [12, 13, 15]; and ii) a 

structural element solution could be used as smart initial guess of solid element analysis for 

a large scale model [15]. 

3.1.2 Meta-modeling theory for 1D structure 

In this section, we explicitly explain the meta-modeling theory of a one-dimensional (1D) 

structural theory, i.e., bar (or truss) and beam which are coupled. The meta-modeling theory 
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requests to solve a variational problem of ℒ∗ of Eq. (2.2), by using a suitable subset of 

continuum mechanics’ function space. Denote this space by 𝑆, i.e., 

𝑆 = {𝑢1(𝐱), 𝑢2(𝐱), 𝑢3(𝐱), 𝜎11(𝐱), 𝜎22(𝐱), 𝜎33(𝐱), 𝜎23(𝐱), 𝜎31(𝐱), 𝜎12(𝐱)}, 

where 𝐱 stands for a three-dimensional coordinate. As for truss theory, we choose the 

following subset: 

𝑆𝑇 = {𝑢1(𝑥1), 0,0, 𝜎(𝑥1), 0,0,0,0,0}; 

the axis of the truss is chosen in the 𝑥1-direction. A non-zero component of 𝛜 = 𝑠𝑦𝑚{𝛁𝐮} 
for 𝐮 in 𝑆𝑇  is the normal strain component in the 𝑥1- direction, i.e., 𝜖 = 𝑢1′ with prime 

standing for the derivative with respect to 𝑥1. Hence, 𝛿ℒ∗ = 0 with respect to 𝜎 yields 𝜎 =
𝐸𝜖, and then 𝛿ℒ∗ = 0 with respect to 𝑢1 yields 

(𝐴𝐸𝑢1
′)′ = 0, 

where 𝐴 is the area of cross section of the truss axis (or the 𝑥1- direction). 

As a more general case, we consider that bending in the 𝑥2- and 𝑥3- directions is 

coupled with the above uniaxial deformation of truss theory. Again, according to the meta-

modeling theory, we only choose a subset of 𝑆  to approximately solve the variational 

problem of ℒ∗ of Eq. (2.2). The chosen subset is 

𝑆𝑇𝐵 = {𝑢1(𝑥1) − 𝑥2𝑢2
′(𝑥1) − 𝑥3𝑢3

′(𝑥1), 𝑢2(𝑥1), 𝑢3(𝑥1), 𝜎(𝑥1), 0,0,0,0,0}. 

For 𝐮 in 𝑆𝑇𝐵, a non-zero component of strain is the normal strain in the 𝑥1-direction, 

i.e., 𝜖 = 𝑢1
′ − 𝑥2𝑢2

′′ − 𝑥3𝑢3′′ . Hence, 𝛿ℒ∗ = 0  with respect to 𝜎  yields 𝜎 = 𝐸(𝑢1
′ −

𝑥2𝑢2
′′ − 𝑥3𝑢3′′), and 𝛿ℒ = 0 with respect to 𝑢1, 𝑢2 and 𝑢3 yields 

(𝐴𝐸𝑢1
′)′ = 0, (𝐸𝐼2𝑢2

′′)′′ = 0, (𝐸𝐼3𝑢3
′′)′′ = 0 

where 𝐼2  and 𝐼3  are the second-order moments of inertia in the 𝑥2- and 𝑥3- directions, 

respectively. 

3.1.3 Development of the tool 

Based on meta-modeling, a beam element solution (which includes a truss element in it) is 

regarded as an approximate numerical solution of a variational problem of ℒ∗ of Eq. (2.2). 

It is natural to make the conversion from a solid element solution to a beam element 

solution, by finding a set of functions in the function space of 𝑆 that is close to the solid 

element solution. It should be noted that the converted beam element solution does not 

satisfy the discretized governing equations, even though the solid element solution does. 

A L2 norm is used as distance in the function space of 𝑆. That is, denoting by 

(𝐮s, 𝛔s) and (𝐮c, 𝛔c) a beam and a solid element solution, respectively, we define 

𝑁(𝐮𝑠, 𝛔𝑠) =
|𝐮s − 𝐮c|2

|𝐮c|2
+
|𝛔s − 𝛔c|2

|𝛔c|2
, (3.1) 

where |∙|2 is the L2 norm which is computed by integrating vector or tensor norm of 𝐮 or 

𝛔, over 𝑉, i.e., 
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|𝐮|2 = ∫ 𝐮 ∙ 𝐮 d𝑣, |𝛔|2 = ∫𝛔 ∙ 𝛔 d𝑣 .
𝑉

 
𝑉

 

A solid element solution (𝐮𝐜, 𝛔𝐜)  is now expressed in terms of generalized nodal 

displacement as follows: 

𝑢𝑖
𝑐 =∑𝑢𝑖

𝛼𝜂𝛼(𝑥)

𝛼

, 𝜎𝑖𝑗
𝑐 =∑𝑐𝑖𝑗𝑘𝑙𝑢𝑘

𝛼𝜂,𝑖
𝛼 (𝑥)

𝛼

, 

where 𝑢𝜶 and 𝜂𝛼 are the 𝛼𝑡ℎ nodal displacement and shape function, and 𝜂,𝑖
𝛼 stands for the 

𝑖-th component of 𝜂𝛼’s gradient, 𝛁𝜂𝛼. In terms of discretized 𝑤 and 𝜃2, a uniaxial beam 

element solution is expressed as 

𝑢1
𝑠 =∑  − 𝑥3 (𝑤

𝛼
d𝜉𝑤

𝛼  

d𝑥1
+ 𝜃2

𝛼
d𝜉𝜃

𝛼

d𝑥1
),    

𝛼

 

𝑢3
𝑠 =∑  (𝑤𝛼𝜉𝑤

𝛼 + 𝜃2
𝛼𝜉𝜃

𝛼),

𝛼

                       

𝜎11
𝑠 =∑  − 𝐸𝑥3

𝛼

(𝑤𝛼
d2𝜉𝑤

𝛼  

d𝑥1
2 + 𝜃2

𝛼
d2𝜉𝜃

𝛼

d𝑥1
2 ), 

where 𝜉𝑤
𝛼  and 𝜉𝜃

𝛼 are the 𝛼-th beam element shape function for vertical displacement and 

rotation. Minimization of Eq. (3.1) with respect to 𝑤𝛼 and 𝜃2
𝛼 results in 

∑{[
𝐴𝑤
𝛼𝛽

𝐵𝑤
𝛼𝛽

𝐴𝜃
𝛼𝛽

𝐵𝜃
𝛼𝛽] [

𝑤𝛽

𝜃2
𝛽 ] − [

𝐶𝑤,𝑖
𝛼𝛽

𝐷𝑤
𝛼𝛽

𝐶𝜃,𝑖
𝛼𝛽

𝐷𝜃
𝛼𝛽
] [
𝑢𝑖
𝛽

𝑢3
𝛽
]}

𝛽

= [
0

0
], (3.2) 

where, 

𝐴𝑤
𝛼𝛽
= ∫(𝐼2

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝑤
𝛽

d𝑥1
+ 𝐴𝜉𝑤

𝛼𝜉𝑤
𝛽
+𝑊𝐸2𝐼2

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝑤
𝛽

d𝑥1
2
)  d𝑥1, 

𝐵𝑤
𝛼𝛽
= ∫(𝐼2

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝜃
𝛽

d𝑥1
+ 𝐴𝜉𝑤

𝛼𝜉𝜃
𝛽
+𝑊𝐸2𝐼2

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝜃
𝛽

d𝑥1
2
)  d𝑥1, 

𝐶𝑤,𝑖
𝛼𝛽
= −∫(𝛿𝑖1𝑥3

d𝜉𝑤
𝛼

d𝑥1
𝜂𝛽 +𝑊𝐸𝑐11𝑖𝑗𝑥3

d2𝜉𝑤
𝛼

d𝑥1
2

d𝜂𝛽

d𝑥𝑗
)  d𝑣, 

𝐷𝑤
𝛼𝛽
= ∫𝜉𝑤

𝛼𝜂𝛽 d𝑣. 

It should be noted that from 𝜉𝑤
𝛼  → 𝜉𝜃

𝛽
 (where “→” is a replacement symbol), 

𝐴𝑤
𝛼𝛽
→ 𝐴𝜃

𝛼𝛽
 , 𝐵𝑤

𝛼𝛽
→ 𝐵𝜃

𝛼𝛽
 , 𝐶𝑤,𝑖

𝛼𝛽
→ 𝐶𝜃,𝑖

𝛼𝛽
,  𝐷𝑤

𝛼𝛽
→ 𝐷𝜃

𝛼𝛽
, 

with, 

𝐴 =  ∫d𝑥d𝑦,        𝐼2 = ∫𝑥3
2 d𝐴,         𝑊 =

|𝐮𝒄|2

|𝛔𝒄|2
 , 𝛿𝑖1 − 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟

′𝑠 𝑑𝑒𝑙𝑡𝑎. 
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In a similar fashion, the case of biaxial bending in beam can be treated, the non-zero 

components which are 𝑢1
𝑠, 𝑢2

𝑠, 𝑢3
𝑠 and 𝜎11

𝑠 ; the beam element analysis computes 𝑢2
𝑠 = 𝑣 , 

𝑢3
𝑠 = 𝑤  and determines 𝑢1

𝑠 = 𝑢 − 𝑥3𝑤
′ − 𝑥2𝑣

′  and 𝜎11
𝑠 =  𝐸(𝑢′ − 𝑥3𝑤

′′ − 𝑥2𝑣
′′ ) . In 

terms of discretized 𝑤, 𝑣, 𝑢, 𝜃3 and 𝜃2, a beam element solution is expressed as 

𝑢1
𝑠 =∑[𝑢𝛼𝜉𝛼(𝑥) − 𝑥3 (𝑤

𝛼
d𝜉𝑤

𝛼  

d𝑥1
+ 𝜃2

𝛼
𝑑𝜉𝜃

𝛼

𝑑𝑥1
) − 𝑥2 (𝑣

𝛼
d𝜉𝑤

𝛼  

d𝑥1
+ 𝜃3

𝛼
d𝜉𝜃

𝛼

d𝑥1
)]

𝛼

, 

𝑢2
𝑠 =∑  (𝑣𝛼𝜉𝑤

𝛼 + 𝜃3
𝛼𝜉𝜃

𝛼)

𝛼

, 𝑢3
𝑠 =∑  (𝑤𝛼𝜉𝑤

𝛼 + 𝜃2
𝛼𝜉𝜃

𝛼),

𝛼

 

𝜎11
𝑠 =∑𝐸 [𝑢𝛼

d𝜉𝛼

d𝑥1
− 𝑥3 (𝑤

𝛼
d2𝜉𝑤

𝛼  

d𝑥1
2 + 𝜃2

𝛼
d2𝜉𝜃

𝛼

d𝑥1
2 ) − 𝑥2 (𝑣

𝛼
d2𝜉𝑤

𝛼  

d𝑥1
2 + 𝜃3

𝛼
d2𝜉𝜃

𝛼

d𝑥1
2 )] ,

𝛼

 

where 𝜉𝛼 is the beam element shape function for axial displacement. Minimization of Eq. 

(3.1) with respect to 𝑢𝛼, 𝑣𝛼, 𝑤𝛼, 𝜃𝑦
𝛼  and 𝜃𝑧

𝛼 results in 

∑

{
 
 
 

 
 
 

[
 
 
 
 
 
 𝐴𝑤

𝛼𝛽
𝐵𝑤
𝛼𝛽

𝐸𝑤
𝛼𝛽

𝐹𝑤
𝛼𝛽

0

𝐴𝜃
𝛼𝛽

𝐵𝜃
𝛼𝛽

𝐸𝜃
𝛼𝛽

𝐹𝜃
𝛼𝛽

0

𝐸𝑤
𝛼𝛽

𝐹𝑤
𝛼𝛽

𝐺𝑤
𝛼𝛽

𝐻𝑤
𝛼𝛽

0

𝐸𝜃
𝛼𝛽

𝐹𝜃
𝛼𝛽

𝐺𝜃
𝛼𝛽

𝐻𝜃
𝛼𝛽

0

0 0 0 0 𝐾𝛼𝛽]
 
 
 
 
 
 

[
 
 
 
 
 
𝑤𝛽

𝜃2
𝛽

𝑣𝛽

𝜃3
𝛽

𝑢𝛽 ]
 
 
 
 
 

−

[
 
 
 
 
 
 
 𝐶𝑤,𝑖

𝛼𝛽
0 𝐷𝑤

𝛼𝛽

𝐶𝜃,𝑖
𝛼𝛽

0 𝐷𝜃
𝛼𝛽

𝐽𝑤,𝑖
𝛼𝛽

𝐷𝑤
𝛼𝛽

0

𝐽𝜃,𝑖
𝛼𝛽

𝐷𝜃
𝛼𝛽

0

𝐿𝑖
𝛼𝛽

0 0 ]
 
 
 
 
 
 
 

[

𝑢𝑖
𝛽

𝑢2
𝛽

𝑢3
𝛽

]

}
 
 
 

 
 
 

𝛽

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

. (3.3) 

Here, 

𝐸𝑤
𝛼𝛽
= ∫(𝐼32

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝑤
𝛽

d𝑥1
+𝑊𝐸2𝐼32

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝑤
𝛽

d𝑥1
2
)  d𝑥1, 

𝐹𝑤
𝛼𝛽
= ∫(𝐼32

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝜃
𝛽

d𝑥1
+𝑊𝐸2𝐼32

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝜃
𝛽

d𝑥1
2
)  d𝑥1, 

𝐺𝑤
𝛼𝛽
= ∫(𝐼3

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝑤
𝛽

d𝑥1
+ 𝐴𝜉𝑤

𝛼𝜉𝑤
𝛽
+𝑊𝐸2𝐼3

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝑤
𝛽

d𝑥1
2
)  d𝑥1, 

𝐻𝑤
𝛼𝛽
= ∫(𝐼3

d𝜉𝑤
𝛼

d𝑥1

d𝜉𝜃
𝛽

d𝑥1
+ 𝐴𝜉𝑤

𝛼𝜉𝜃
𝛽
+𝑊𝐸2𝐼3

d2𝜉𝑤
𝛼

d𝑥1
2

d2𝜉𝜃
𝛽

d𝑥1
2
)  d𝑥1, 

𝐽𝑤,𝑖
𝛼𝛽
= −∫(𝛿𝑖1𝑥2

d𝜉𝑤
𝛼

d𝑥1
𝜂𝛽 +𝑊𝐸𝑐11𝑖𝑗𝑥2

d2𝜉𝑤
𝛼

d𝑥1
2

d𝜂𝛽

d𝑥𝑗
)  d𝑣, 

𝐾𝛼𝛽 = ∫(𝐴𝜉𝛼𝜉𝛽 +𝑊𝐸2
d𝜉𝛼

d𝑥1

d𝜉𝛽

d𝑥1
)  d𝑥1, 

𝐿𝑖
𝛼𝛽
= ∫(𝛿𝑖1𝜉

𝛼𝜂𝛽 +𝑊𝐸𝑐11𝑖𝑗
d𝜉𝛼

d𝑥1

d𝜂𝛽

d𝑥𝑗
)  d𝑣, 

from 𝜉𝑤
𝛼  → 𝜉𝜃

𝛽
, 
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𝐸𝑤
𝛼𝛽
→ 𝐸𝜃

𝛼𝛽
, 𝐹𝑤

𝛼𝛽
→ 𝐹𝜃

𝛼𝛽
, 𝐺𝑤

𝛼𝛽
→ 𝐺𝜃

𝛼𝛽
, 𝐻𝑤

𝛼𝛽 → 𝐻𝜃
𝛼𝛽
, 𝐽𝑤,𝑖

𝛼𝛽 → 𝐽𝜃,𝑖
𝛼𝛽,  𝐷𝑤

𝛼𝛽 → 𝐷𝜃
𝛼𝛽
, 

with, 

𝐼3 = ∫𝑥2
2 d𝐴,   𝐼32 = ∫𝑥3𝑥2 d𝐴.    

Equation (3.3), which is supposed to be used to obtain beam solution field, can be 

modified considering a symmetry of cross-section. Symmetry of the cross-section causes 

𝐼32 to be zero, then 

𝐸𝑤
𝛼𝛽
= 0,      𝐹𝑤

𝛼𝛽
= 0, 𝐸𝜃

𝛼𝛽
= 0, 𝐹𝜃

𝛼𝛽
= 0. 

The uniaxial or biaxial beam displacement field can be obtained by solving Eq. (3.2) 

or (3.3). The force field of the beam can be found by using the displacement field via Eq. 

(3.4). Figure 3.1 shows the procedure of the conversion method which produces the beam 

displacement field with the consistent beam force field. 

 Axial force along 𝑥1 = 𝐸𝐴𝑢1
′ 

(3.4) 

 Bending moment about 𝑥2 = −𝐸𝐼2𝑢3
′′ 

 Bending moment about 𝑥3 = −𝐸𝐼3𝑢2
′′ 

 Shear force along 𝑥3 = −𝐸𝐼2𝑢3
′′′ 

 Shear force along 𝑥2 = −𝐸𝐼3𝑢2
′′′ 

3.1.4 Numerical verification of the tool 

Non- prismatic members are widely used in steel portal frames to create well distributed 

stresses in the structure so that the utilization of steel can be optimized [24]. A 

straightforward technique used earlier to analyze a tapered beam is to divide it into a number 

of uniform elements [34], even though it is inefficient. The governing differential equations 

for tapered members with variable coefficients and closed solutions cannot be derived 

except for a few special cases [35]. 

This is a straightforward problem for meta-modeling based conversion method 

which is being proposed in this section. The typical conversion method merely computes 

surface integration of solid element nodal forces to estimate the beam shear force and the 

nodal displacement is averaged to estimate the beam displacement. The integration is not 

easy when the element configuration is not uniform, and the accuracy is often lost when the 

cross section of interest has only a few (or zero) nodes on it. The beam solution space that 

is obtained from the Bernoulli-Euler beam modeling has a clear relationship between each 

component of the solid element solution; see Eq. (3.4). 

A tapered circular cantilever beam is tested for uniaxial bending in this numerical 

validation test. The parameters for this example are shown in Fig. 3.2; the parameters are 

for the loading, dimensions and material properties of the problem. 
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3.1.4.1 Results and discussion 

The relative difference in converting a solid element solution to a beam element solution 

according to the proposed method is shown in Fig. 3.3(a); an analytical solution is used for 

the reference. Distance in the beam solution space is used for the analytical beam solution 

and the converted beam solution, and this difference is negligible. As for the function, the 

largest difference occurs near the fixed end of the cantilever, which is expected due to 

violation of the Bernoulli-Euler assumption near to the fixed end. Figure 3.3(a) does not 

include results at the fixed end of the cantilever due to a presence of zero in analytical beam 

solution. 

Figure 3.3(b) shows the relative difference of vertical displacement component of 

the converted solution, compared with that obtained by the finer beam element model. 

According to the flow chart that is presented in Fig. 3.1, the objective of this conversion is 

a solution of finer beam element model that is obtained from the given solid element 

Figure 3.1: Flow chart of meta-modeling based conversion method. 
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Solve solid element problem and obtain converged 

nodal displacements and stresses of solid elements 

 

Set the number of beam elements for conversion 

Obtain beam displacement by minimization of Eq. 

(3.1)  

Has accuracy reached 
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Calculate the beam forces from Eq. (3.4)  

Figure 3.2: Schematic view of tapered circular cantilever member. 
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solution. The finer beam element model contains 100 beam elements in this problem. The 

number of the beam elements in the target problem is reduced while keeping the same level 

of accuracy according to Fig. 3.3(b). Depending on the type of the problem, the level of 

accuracy for a beam element solution is fixed; the level mainly depends on the level of 

accuracy of the given solid element solution. For a given level of accuracy, an acceptable 

number of beam elements is determined. A user has freedom to choose the number, 

depending on the accuracy level that is required. As shown in this example, the acceptable 

number of the beam elements is 10 to 100; see Fig. 3.3(b). 

Figure 3.3(c) shows the distribution of the bending moment obtained by the 

proposed method and that of the analytical solution. The distribution is smooth over an 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3: Data conversion of tapered circular cantilever member: (a) absolute percentage 

differences compared with beam analytical solution; (b) absolute percentage differences of 

displacement compared with finer beam element model solution; (c) bending moment diagram 

(about y-axis); and (d) shear force diagram (along z-direction). 

 

Location (mm) Proposed method Typical method 

400 0.01 3.30 

800 0.25 1.91 

1200 0.11 0.66 

1600 0.26 2.50 

 

Table 3.1: Absolute percentage difference compared with analytical shear force 
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entire target domain of the beam model except near the fixed end. The accuracy of 

computing the bending moment is clearly seen in this figure. 

A distribution of shear force is presented in Fig. 3.3(d). This diagram includes shear 

force distribution that is obtained by the proposed method, a typical method which uses 

integration, and an analytical solution that solves the Bernoulli-Euler beam problem.  There 

is a difference between the bending moment computed by the proposed method and the 

analytical solution at the fixed end of the cantilever; this difference is due to the violation 

of the beam assumption near the fixed end. The comparison of the distribution of the two 

methods of converting a solid element solution with the analytical solution is displayed in 

Table 3.1. As shown in this table, the accuracy of the proposed method is higher than the 

typical method. We should mention that the typical method only produces cross-section 

wise conversion; see Fig. 3.3(d). The proposed conversion method has a capability to 

estimate cross sectional forces for the whole domain of the model, since it converts the 

solution or the displacement and force functions unlike the typical method. 

3.2 Construction of consistent lumped mass model (CLMM) based on 

meta-modeling 

3.2.1 Overview 

Lumped mass model is popular on account of its simplicity and conservative prediction of 

the response; see references [8, 9, 10, 36, 37, 38, 39]. As for a typical lumped mass model, 

the target structure is discretized with a set of beam elements. A lumped mass for each node 

of the model is estimated from the portion of the weight of the target structure, which is 

called “tributary area consideration”. There are mainly two ways to estimate the stiffness 

of a spring in a lumped mass model, namely, a static method and a geometric method. The 

static method uses an arbitrary static load applied to a single layer of the full (3D) finite 

element model. This is similar to a pushover analysis [5]. The geometric method considers 

the geometric shape of the cross-section, in order to calculate the sectional moment of 

inertia and shear coefficients. 

In constructing a lumped mass model as explained above we do not consider the 

consistency of the model with the physical problem or with other more sophisticated 

models. This is mainly because it is easy to tune the lumped mass model, in order to 

reproduce observed or synthesized dynamic response; tuning is usually applied to the 

stiffness of the springs. According to our view point, simplicity does not have to destroy 

consistency. Even though a set of models of different fidelity is available, each model ought 

to solve the same physical problem (that is a Largrangian problem of continuum 

mechanics). In order to relate a lumped mass model, we propose a methodology based on 

the meta-modeling theory [11, 14] in this section. 

3.2.2 Development of the tool 

According to the meta-modeling theory explained in Chapter 2, a lumped mass model 

which is consistent with a continuum mechanics model is obtained by substituting 

approximate functions of displacement to the modified Lagrangian; see Appendix B for the 

definition of the approximate functions. As a simple example, we consider a pier of a 

bridge. We regard the pier as a cantilever, and choose approximate functions that 
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correspond to the beam at quasi-static state. Functions which correspond to the beam at 

dynamic state can be used as other approximate functions; see Section 5.1. 

According to the meta-modeling theory, the approximate displacement functions of 

the following form are used: 

{𝑢1 , 𝑢2 , 𝑢3} = 𝑈(𝑡){−𝑧𝑤
′(𝑥), 0,𝑤(𝑥)}, (3.5) 

where 𝑢1 , 𝑢2  and 𝑢3  are displacement components in the 𝑥1 -, 𝑥2 - and 𝑥3 -directions, 

respectively, with (𝑥1, 𝑥2, 𝑥3) being the Cartesian coordinate. For simplicity, we replace 

(𝑥1, 𝑥2, 𝑥3) with (𝑥, 𝑦, 𝑧) when we consider approximate functions; for instance, the 𝑥3 

component, 𝑢3(𝑥1 , 𝑥2 , 𝑥3), is approximated as 𝑤(𝑧), and 𝑈(𝑡) is the amplitude of the 

displacement mode that is caused by the horizontal force at the top. Then, 𝑤 is a solution 

of the following beam problem: 

{

(𝐸𝐼𝑤′′)′′        = 0          0 < 𝑥 < 𝐿,
(𝑤,𝑤′)    = (0,0)  𝑥 = 0,
(𝑤,𝑤′′)  = (1,0)  𝑥 = 𝐿.

 (3.6) 

Note that the coordinate 𝑥 is chosen in the vertical direction and, for simplicity, 𝑧 is taken 

in the horizontal direction which lays on the bending plane of the pier; 𝐸  is Young's 

modulus and 𝐼 is the second moment of area with respect to the 𝑧-direction, and 𝐿 is the 

height. The function of 𝑤 is determined since Eq. (3.6) has a unique solution. Substituting 

𝐮 of Eq. (3.5) and the corresponding 𝛔, we calculate the modified Lagrangian as 

ℒ =
1

2
𝑀�̇�2(𝑡) − 

1

2
𝐾𝑈2(𝑡), (3.7) 

where 

{𝑀,𝐾} = ∫{𝜌(𝐴𝑤2 + 𝐼(𝑤′)2), 𝐸𝐼(𝑤′′)2}  d𝑥 (3.8) 

with 𝐴 being the cross-sectional area of the pier. 

It should be emphasized that, while ∫ 𝜌𝐴𝑤2 d𝑥 is usually used as a mass of the pier, 

the meta-modeling theory yields ∫𝜌𝐼(𝑤′)2 d𝑥 as additional mass, which accounts for the 

effect of angular momentum. While Bernoulli-Euler beam theory neglects it, Shear beam 

modeling includes this angular momentum effect. Therefore, the lumped mass modeling as 

given by the Lagrangian of Eq. (3.7) is in accordance with the Shear beam modeling that is 

known to be more accurate than Bernoulli-Euler beam modeling. 

Besides translation, we can readily include rotation in the consistent lumped mass 

modeling. We use other approximate displacement functions, 

{𝑢1 , 𝑢2 , 𝑢3} = 𝛩(𝑡){−𝑧ℎ
′(𝑥), 0, ℎ(𝑥)}, (3.9) 

where 𝛩(𝑡) is the amplitude of displacement mode that is induced by rotational force at the 

top, and ℎ is a solution of the following beam problem: 

{

(𝐸𝐼ℎ′′)′′        = 0          0 < 𝑥 < 𝐿,
(ℎ, ℎ′)     = (0, 0) 𝑥 = 0,
(ℎ′, ℎ′′′)  = (1, 0) 𝑥 = 𝐿.

 (3.10) 
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The modified Lagrangian is computed in the same form as Eq. (3.7) if {𝑀,𝐾} of Eq. (3.8) 

are computed by using ℎ instead of 𝑤. 

The modified Lagrangian for coupling of translation and rotation is readily obtained 

by substituting the sum of 𝐮 given by Eqs. (3.5) and (3.9). That is, 

ℒ =
1

2
𝑀𝑈�̇�

2(𝑡) − 
1

2
𝐾𝑈𝑈

2(𝑡) + 
1

2
𝑀𝛩�̇�

2(𝑡) − 
1

2
𝐾𝛩𝛩

2(𝑡) + 𝑀𝑈𝛩�̇�(𝑡)�̇�(𝑡)

− 𝐾𝑈𝛩𝑈(𝑡)𝛩(𝑡) , 
(3.11) 

where {𝑀𝑈, 𝐾𝑈} and {𝑀𝛩, 𝐾𝛩} are given by Eq. (3.8) using 𝑤 and ℎ, respectively, and 

{𝑀𝑈𝛩, 𝐾𝑈𝛩} = ∫{𝜌(𝐴𝑤ℎ + 𝐼𝑤
′ℎ′), 𝐸𝐼𝑤′′ℎ′′}  d𝑥. (3.12) 

As it is seen, the coupling between translation and rotation naturally appears via {𝑀𝑈𝛩, 𝐾𝑈𝛩} 
of Eq. (3.12). 

In substituting the sum of 𝐮 given by Eqs. (3.5) and (3.9), we have to pay attention 

to coupling of translation and rotation. For instance, at 𝑥 = 𝐿, we have 

𝑢3 = 𝑈 + 𝛩ℎ(𝐿),     
𝜕𝑢3
𝜕𝑥1

= 𝑈𝑤′(𝐿) + 𝛩; 

recall that 𝑤(𝐿) = 1 and ℎ′(𝐿) = 1. The right side of the above equations is the quantity 

that can be measured. Therefore, the measured data should be compared with  {𝑈 +
𝛩ℎ(𝐿), 𝑈𝑤′(𝐿) + 𝛩}, rather than {𝑈, 𝛩}. 

3.2.3 Numerical verification of the tool 

Before employing the developed CLMM for the seismic response analysis, we have to 

check the quality of the model. To this end, we employ a solid element model which is 

developed by using ADVC [40, 41]. A selected pier geometry of simple bridge for this 

quality check is shown in Fig. 3.4. This simple bridge includes only one pier with 7.5 m 

height and bridge deck acts as rigid body in both the longitudinal and transverse directions 

of the bridge. The rotation degree of freedom of the bridge deck also prevents in this simple 

model. The construction of the CLMM is described in the next paragraphs. 

 As explained in the preceding section, a lumped mass model requires two 

parameters, namely, an equivalent mass and a stiffness coefficient [42, 43, 44]. According 

to the meta-modeling theory, lumped mass modeling is to use the approximate displacement 

functions of Eq. (3.5); recall that 𝑈(𝑡) is an unknown function. The modified Lagrangian 

yields an ordinary differential equation for 𝑈(𝑡), and the mass and stiffness are computed 

by using 𝑤(𝑥). 

As for this bridge structure, we use quasi-static beam theory to determine 𝑤 , 

assuming that the pier provides stiffness and the deck moves like a rigid body. That is, 

setting the 𝑥1- and 𝑥2-axes parallel and normal to the bridge direction, respectively, and 

setting the 𝑥3-axis as the vertical direction, we use approximate functions of the following 

form: 

{𝑢1 , 𝑢2 , 𝑢3} = {
𝑈(𝑡){−𝑥𝑤′(𝑧),0,𝑤(𝑧)}  0 < 𝑧 < 𝐻,

𝑈(𝑡){−𝑥𝑤′(𝐻),0,𝑤(𝐻)}         𝐻 < 𝑧 < 𝐻 + 𝑇,
 (3.13) 
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where 𝑥 = 𝑥1 and 𝑧 = 𝑥3; 0 < 𝑧 < 𝐻 is for a pier and 𝐻 < 𝑧 < 𝐻 + 𝑇 is for a deck; 𝐻 and 

𝑇  are the height of the pier and the thickness of the deck, respectively. Note that the 

displacement function of the above ensures that the deck moves as a rigid body. Posing 

suitable boundary conditions, we can determine 𝑤. For instance, we choose 

𝑤(0) = 0,𝑤′(0) = 0,𝑤(𝐻) = 1,𝑤′(𝐻) = 0, 

which interprets the boundary conditions at 𝑧 = 0 and 𝑧 = 𝐻 as the zero displacement with 

the zero rotation and the unit displacement with the zero rotation, respectively. Here, setting 

𝑤(𝐻) = 1 means that 𝑈(𝑡) is the displacement of the pier top as well as the movement of 

the whole deck. 

The approximate function 𝑤 , which is selected according to quasi-static beam 

theory, is fully determined by solving the boundary value problem. When it is given, the 

modified Lagrangian becomes 

          ℒ =
1

2
𝑀�̇�2(𝑡) − 

1

2
𝐾𝑈2(𝑡), (3.14) 

where 

𝑀 = 𝑀𝑑 +∫ 𝜌(𝐴𝑤2 + 𝐼(𝑤′)2) d𝑧
𝐻

0

, (3.15) 

                   𝐾 = ∫ 𝐸𝐼(𝑤′′)2 d𝑧
𝐻

0

, (3.16) 

with 𝐴  and 𝐼  being the cross section area and the second moment of inertia of pier, 

respectively. 𝑀𝑑 is the lumped mass of the deck. In this experiment, it is 252827 kg. 

In the same manner, we can construct a lumped mass model in the transverse 

direction. The approximate functions are 

{𝑢1 , 𝑢2 , 𝑢3} = {
𝑈(𝑡){−𝑦𝑤′(𝑧),0,𝑤(𝑧)}  0 < 𝑧 < 𝐻,

𝑈(𝑡){−𝑦𝑤′(𝐻),0,𝑤(𝐻)}         𝐻 < 𝑧 < 𝐻 + 𝑇.
 

The solid model is constructed based on the same geometric configuration as shown 

in Fig. 3.4, except part(b), the same material properties presented in Table 3.2 are used; for 

part(b), the density and Young’s modulus are changed as 14,555.14 kg/m3 and 25,000 GPa; 

the density of the part (b) is changed, in order to account for the mass of the deck which is 

included in the span and simplified in the model, and the stiffness of the part (b) is changed, 

as well, in order to allow rigid body motion. 

3.2.3.1 Results and discussion 

Natural frequencies of the lumped mass model and the equivalent solid model are 

calculated, and the results are summarized in Table 3.3. Note that, due to the symmetry, the 

natural frequency of the lumped mass model in the longitudinal direction coincides with 

that in the transverse direction. Comparison of the natural frequencies ensures that the 

differences of the natural frequencies are less than 0.175%. Therefore, we conclude that the 

quality of the consistent lumped mass model is within an acceptable level. 

Linear elastic seismic responses of the two models are compared for further 

inspection of the quality of the CLMM. For a given set of ground motion data, the maximum 
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displacements are computed for the CLMM and the solid model; 20 ground motions are 

used in both the longitudinal and transverse directions. The relative differences of the 

maximum displacements of the CLMM with respect to that of the solid model are presented 

in Fig. 3.5(a) and (b), for the ground motions in the longitudinal and transverse directions, 

respectively. As is seen, there are some differences. This is mainly because the CLMM 

accounts for the 1st bending mode only, while the solid model a few modes. The maximum 

difference occurs at the 12th input ground motion in the transverse direction; see Fig. 3.6(a) 

for the ground motion. The difference in the time series response of displacement is shown 

in Fig. 3.6(b). Since the maximum difference is 0.065 mm, we conclude that the quality of 

the CLMM remains within an acceptable level, just like the quality check in terms of the 

natural frequency. 

A A 

B 

B 

C C 

A - A  & C - C 

B - B 
16m 

1m 

1m 

1m 

1.3m 

Skeleton of pier 

Part(b) 

Part(c) Part(a) 

Y 

X 

(a) 

(b) 

(c) 

h 

Figure 3.4: The geometry of simple bridge pier: (a) cross section of bridge pier; (b) cross section 

of A-A; and (c) cross section of B-B. 

Density of pier (Concrete) 2400kg/m3 

Density of deck (Steel) 7800kg/m3 

Young’s modulus (Concrete) 25GPa 

Young’s modulus (Steel) 200GPa 

Damping ratio ( Concrete) 5% 

 

Table 3.2: Material properties and lumped mass 

information. 

Model Transverse / (Hz) Longitudinal / (Hz) 

Lumped mass 3.426 3.426 

Solid 3.420 3.421 

 

Table 3.3: Natural frequency results of both solid element and 

lumped mass models in both directions. 
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It is taken for granted that for such a ground motion as stimulates higher modes, a 

lumped mass model that accounts for the first model only fails to provide an accurate 

seismic response. It is thus needed to improve the model so that it is able to take into 

consideration the effects of higher modes on the responses. We explain this improvement 

of the lumped mass model which uses modal analysis in Chapter 5. 

 

3.3 Construction of consistent mass spring model (CMSM) based on 

meta-modeling 

3.3.1 Overview 

There are some limitations of the CLMM which was developed in this chapter. They are; 

1) working with only single mass point, 2) applicable to limited geometric shape and 3) 

dependence of accuracy of response based on location of mass point in the system. It is 

surely desirable that a lumped mass model that has the same fundamental dynamic 

 
(a) 

 
(b) 

Figure 3.5: Percentage difference of maximum displacement between solid element analysis 

and lumped mass analysis: (a) along transverse direction; and (b) along longitudinal direction. 

 

 
(a) 

 
(b) 

Figure 3.6: Case 12 (verification of CLMM): (a) input ground motion along transverse 

direction; and (b) absolute difference between solid element analysis and lumped mass model 

analysis along transverse direction. 
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characteristics as more sophisticated models is constructed for any arrangement of mass 

points. To overcome these limitations of the CLMM a new consistent mass spring model 

(CMSM) is proposed in this subsection. 

Proposed CMSM contains two mass points with three springs which will be 

discussed in this subsection later. The displacement response of this CMSM is independent 

of locations of mass points in the system. In this subsection, first we clarify approximations 

which are made in deriving governing equation for a mass spring system from a continuum 

mechanics theory. Numerical verification of developed CMSM is carried out by 

considering both beam theory solution and solid element solutions with enough results 

presented at the end of this section. 

3.3.2 Development of the tool 

A mass spring model is a set of masses and linear springs, and the direction of the mass 

movement is fixed. As the simplest case, we study a mass spring model which consists of 

two masses. We seek to construct a mass spring model which shares the same fundamental 

dynamic characteristics as continuum mechanics; this model is called consistent mass 

spring model (CMSM). 

3.3.2.1 General formulation 

According to the meta-modeling theory, we consider an approximate displacement function 

of the following form: 

𝐮(𝐱, 𝑡) = ∑𝑈𝛼(𝑡)𝛟𝛼
2

𝛼=1

(𝐱), (3.17) 

where 𝑈𝛼(𝑡)  is displacement of the α-th mass point and 𝛟𝛼  is the corresponding 

displacement mode. 

By definition, the displacement is required to satisfy the following two 

requirements: 

A1)  𝛟𝛼(𝐱𝛼) is a unit vector. 

A2)  𝛟𝛼(𝐱𝛽) vanishes for 𝛼 ≠ 𝛽. 

Here, 𝐱𝛼 is the location of the α-th mass point. We substitute Eq. (3.17) into Eq. (2.1), and 

obtain 

ℒ = ∑
1

2
𝑚𝛼𝛽�̇�𝛼�̇�𝛽 −

2

𝛼,𝛽=1

1

2
𝑘𝛼𝛽𝑈𝛼𝑈𝛽, (3.18) 

where 

𝑚𝛼𝛽 = ∫𝜌𝛟𝛼𝛟𝛽 d𝑣 and
𝑉

 𝑘𝛼𝛽 = ∫𝛁𝛟𝛼: 𝐜: 𝛁𝛟𝛽 d𝑣.
𝑉

 (3.19) 

Since a Lagrangian of a conventional mass spring model of two masses is in the form of 
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1

2
(∙)(�̇�1)

2
+
1

2
(∙)(�̇�2)

2
−
1

2
(∙)(𝑈2 − 𝑈1)2 −

1

2
(∙)(𝑈2)2 

with (∙) being a suitable scalar, ℒ of Eq. (3.18) becomes the above, if the following two 

requirements are satisfied: 

B1)  𝑚12 = 0.  

B2)  𝑘12 + 𝑘22 = 0. 

It is readily seen that finding two functions 𝛟1 and 𝛟2 which satisfy the four conditions of 

A1, A2, B1 and B2 is generally not possible. 

3.3.2.2 General formulation for 𝓛∗ 

When 𝐜  is isotropic, we can construct a consistent mass spring system using Young's 

modulus only. We introduce 𝛔 whose non-zero component is 𝜎11 only; we choose the 𝑥1-

axis as the longitudinal direction for a structure like a bar or a beam. Substitution of Eq. 

(3.17) and 𝜎11 = 𝑆𝜙𝜎 into Eq. (2.2) leads 

ℒ∗ = ∑
1

2
𝑚𝛼𝛽�̇�𝛼�̇�𝛽 −

2

𝛼,𝛽=1

∑𝑆𝑎𝛼𝑈𝛼

𝛼

+
𝑏

2𝐸
𝑆2, (3.20) 

where 

𝑎𝛼 = ∫𝜙𝜎(𝛁𝛟𝛼)11 d𝑣,
𝑉

 𝑏 = ∫ (𝜙𝜎)2 d𝑣.
𝑉

 (3.21) 

It follows from 𝛿ℒ∗ = 0 with respect to 𝑆 that 

𝑆 =∑
𝐸

𝑏
𝑎𝛼𝑈𝛼,

𝛼

 (3.22) 

and ℒ∗ becomes 

ℒ∗ = ∑
1

2
𝑚𝛼𝛽�̇�𝛼�̇�𝛽

2

𝛼,𝛽=1

−
𝐸

2𝑏
𝑎𝛼𝑎𝛽𝑈𝛼𝑈𝛽 . (3.23) 

Note that only 𝐸 appears in this ℒ∗, unlike ℒ with 𝑘𝛼𝛽 that is computed by using 𝐜. 

3.3.2.3 Utilization of dynamic modes 

Dynamic modes ought to be used in constructing a mass spring model, so that it shares the 

same dynamic fundamental characteristics with a continuum model. We suppose that two 

dynamic modes {𝛙𝛼, 𝜔𝛼} (𝛼 = 1 or 2), are given; 𝛙𝛼 is a mode shape and 𝜔𝛼 is a natural 

frequency. Recall that the dynamic mode satisfies 

𝜌(𝜔𝛼)2𝛙𝛼 +𝛁 ∙ (𝐜: ∇𝛙𝛼) = 0, (3.24) 

and 

∫𝜌𝛙𝛼 ∙ 𝛙𝛽 d𝑣 = 0,
𝑉

     ∫𝛁𝛙𝛼: 𝐜: 𝛁𝛙𝛽 d𝑣 = 0,
𝑉

 (3.25) 
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for 𝜔𝛼 ≠ 𝜔𝛽. 

For simplicity, we use ℒ  of Eq. (2.1), and, substituting 𝐮 = ∑𝑢𝛼𝛙𝛼  into it, we 

obtain 

ℒ = ∑
1

2
𝑚𝛼(�̇�𝛼)

2
−

2

𝛼,𝛽=1

1

2
𝑘𝛼(𝑈𝛼)2, (3.26) 

where 

𝑚𝛼 = ∫𝜌𝛙𝛼 ∙ 𝛙𝛽 d𝑣,
𝑉

 𝑘𝛼 = ∫𝛁𝛙𝛼: 𝐜: 𝛁𝛙𝛽 d𝑣.
𝑉

 (3.27) 

Due to the orthogonality, Eq. (3.25), {𝛙𝛼} does not produce cross terms. Furthermore, due 

to Eq. (3.24), it is readily seen that 𝑚𝛼 and 𝑘𝛼 of Eq. (23) satisfy 

(𝜔𝛼)2𝑚𝛼 = 𝑘𝛼, (3.28) 

for 𝛼 = 1 and 2. 

Now, we seek to find suitable linear combinations of {𝛙𝛼}  that satisfy the 

requirements A1 and A2. To this end, we consider the following combination: 

𝛟𝛼 =∑𝑡𝛼𝛽𝛙𝛼 , (3.29) 

where 𝑡𝛼𝛽 is a component of two-by-two matrix. It is readily seen that this matrix can be 

determined when 𝛙1 and 𝛙2 do not change the direction and are parallel to each other. 

3.3.3 Numerical verification of the tool with beam theory solution 

Simple cantilever beam with uniform cross-section is used for this numerical verification 

of the tool with the beam theory solution; see Fig. 3.7(a) for geometric and material 

properties of numerical test. Linear isotropic elasticity is assumed. In this discussion two 

mass points (𝑀1  and 𝑀2 ) are located at 2m and 0.8m distance from the fixed end of 

cantilever respectively. It should be emphasized that the frequency response of CMSM does 

not depend on the locations of mass points. A schematic view of the CMSM with third 

spring which connects the first mass to the ground is shown in Fig. 3.7(b). The stiffness 

coefficients, 𝐾1, 𝐾2 and 𝐾3, are computed as follows: 

𝐾1 = 𝑘
22 + 𝑘12, 𝐾2 = (−𝑘

12) and  𝐾3 = 𝑘
11 + 𝑘12. 

where 𝑘𝛼𝛽 ’s are computed according to Eq. (3.19). The parameters of the CMSM are 

summarized in Tables 3.4 and 3.5. Input ground motion which is rich between 0Hz to 5Hz 

in frequency domain is shown in Fig. 3.9. This numerical verification test contains two 

cases considering contributed dynamic mode shapes (𝛙𝛽) of the cantilever problem to 

CMSM; see Fig. 3.10 for the first three dynamic mode shapes of cantilever problem. First 

case uses first and second dynamic modes while second case uses second and third. 

3.3.3.1 Results and discussion 

Calculated displacement mode shapes (𝛟𝛼) in both cases are displayed in Fig. 3.11(a) and 

(b). Table 3.6 and 3.7 show the frequency response of each case with beam theory solution. 
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As is seen, the natural frequencies of the CMSM coincide with those of the beam element 

model. Time series of displacement responses of two mass points for selected time interval 

in both cases are shown in Fig. 3.12 and 3.13. These results of CMSM are well matching 

with the frame solution but not at all in the second case; see Fig. 3.13(a) and (b). It is clear 

that we need to select major dynamic modes considering input ground motion to construct 

2m 

Figure 3.7: Schematic views: (a) a prismatic cantilever member; and (b) a consistent mass spring 

system consisting of two mass points. 
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Figure 3.8: Schematic view of a non-prismatic 3D cantilever member (Uniform thickness t = 

0.05m). 
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Figure 3.9: Input ground motion for prismatic cantilever member: (a) in time domain; and (b) 

in frequency domain. 
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the CMSM to obtain better results for displacement response. The relative errors of 

maximum displacement between beam and CMSM model are presented in Table 3.8. 

The base shear and bending moment of the cantilever beam is computed. There are 

two approaches for computing this force. The first approach is conventional, and the base 

shear, 𝐹, is computed as the product of the stiffness and displacement, as 

𝐹(𝑡) =  𝐾1𝑈
2(𝑡) + 𝐾3𝑈

1(𝑡). (3.30) 

And the bending moment, 𝑀, is computed as the product of the force acting on mass point 

and the distance between mass point and base (𝑋𝛼), as 

𝑀(𝑡) =  𝑋2𝐾1𝑈
2(𝑡) + 𝑋1𝐾3𝑈

1(𝑡). (3.31) 

The second approach uses the displacement function and the resulting force. The shear force 

and bending moment are computed as follows: 

𝐅(𝑡) =∑𝑢𝛼(𝑡) (𝐸𝐼(𝛙′′′
(𝐱))

𝛼
), (3.32) 

𝐌(𝑡) =∑𝑢𝛼(𝑡) (𝐸𝐼(𝛙′′
(𝐱))

𝛼
), (3.33) 

Where 𝐸 is Young’s modulus and 𝐼 = ∫ 𝑧2 d𝑦d𝑧. When 𝐱 = 𝟎, it corresponds to the base 

of the beam. This computation is logical in the sense that the present CMSM is essentially 

the same as the modal analysis [42, 43, 44], and is able to compute local responses by using 

the approximate displacement, i.e., 𝐮 = ∑𝑢𝛼𝛙𝛼. 

The base shears and bending moment computed by using Eqs. (3.30), (3.31), (3.32) 

and (3.33) are presented in Figs. 3.14 and 3.15 for case 1. It is displayed for the time interval 

selected from the full response. The base shear and bending moment computed by using 

the beam element model are also presented as the reference. As is seen from Table 3.9, the 

relative errors of the first approach are much higher than those of the second approach. It 

should be noted that, according to the definition of the spring constants, Eq. (3.19), the 

shear force and bending moment given by Eqs. (3.30) and (3.31) respectively are regarded 

as an average of forces acting in the beam; see Appendix C for more detailed explanation. 

However, both the methods give huge relative errors for base shear and bending moment 

estimation in case 2 due to poor selection of dynamic modes for construction process of the 

CMSM; see Table 3.9. 

3.3.4 Numerical verification of the tool with solid element solution 

A non-prismatic 3D cantilever beam with uniform thickness is employed, as a simple 

example of constructing a CMSM from a solid element model; see Fig. 3.8 for geometric 

configuration and material properties of the beam. Linear isotropic elasticity is assumed. A 

solid element model is constructed for this beam. We consider dynamic response in the y- 

and z-directions and call as case 1 and 2, respectively. Dynamic modes, {𝛙𝛼, 𝜔𝛼}, are 

computed for these cases, separately. 

We locate two mass points at 2 m and 1 m distance from the fixed end. First two 

dynamic mode shapes, {𝛙𝛼}, and approximate displacement functions, {𝛟α}, in the z-

direction are displayed in Figs. 3.16 and 3.17, respectively. The parameters of the CMSM 
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are summarized in Tables 3.10 and 3.11. The ground motion which is rich between 5 Hz to 

10 Hz in frequency domain is used as input for this test in both cases; see Fig. 3.18. 

3.3.4.1 Results and discussion 

Tables 3.12 and 3.13 present two natural frequencies of the CMSM in the both cases, 

together with those of the original solid element model. As is seen, the natural frequencies 

of the CMSM coincide with those of the solid element model. 

Time series of displacement responses are compared with those of the original solid 

element model; see Fig. 3.19 for displacement responses of the time interval selected from 

the full response. It is seen that the response of CMSM in case 1 matches well with that of 

the solid element model but not in case 2. The difference in the responses is due to the fact 

that the CMSM uses only the first two modes. However, when input ground motion does 

not contain higher mode components, the difference is small such as in case 1. The relative 

errors of maximum displacement between solid and CMSM model are presented in Table 

3.14. 

The base shear of the cantilever beam is computed. Both the approaches are used 

for computing this force at the base. The second approach has been modified for solid 

element as follows. 

𝐅(𝑡) =∑𝑢𝛼(𝑡)∫𝐧 ∙ (𝐜(𝐱): 𝛁𝛙𝛼(𝐱)) ds, (3.34) 

where 𝐱 = 𝟎 corresponds to the base of the beam, 𝐧 is the unit normal on base, and the 

surface integration is made on the base. 

The base shears computed by using Eqs. (3.30) and (3.34) are presented in Fig. 3.20 

for case 1. It is displayed for the time interval selected from the full response. The base 

shear computed by using the solid element model is also presented as the reference. As is 

seen from Table 3.15, the relative errors of the first approach are much higher than those of 

the second approach as we expected. However, both the methods give huge relative errors 

for base shear estimation in case 2 due to higher mode effect; see Table 3.15. 
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Stiffness 

parameter 

Value / (Nm) 

Case 1 Case 2 

𝐾1 920247.663 1633730.561 

𝐾2 53363.412 -270718.518 

𝐾3 -47299.143 436623.125 
 

 

Mass 

parameter 

Value / (kg) 

Case 1 Case 2 

𝑀1 8.535 6.674 

𝑀2 180.219 29.267 

𝑀12 21.373 4.441 
 

 

Selected mode 
Frequency / (Hz) 

CMSM Beam 

First 2.607 2.607 

Second 16.337 16.337 
 

 

Selected mode 
Frequency / (Hz) 

CMSM Beam 

Second 16.337 16.337 

Third 45.743 45.743 
 

 
Case Location Error / % 

1 
𝑀1 0.733 

𝑀2 0.599 

2 
𝑀1 99.943 

𝑀2 96.485 
 

 

Case Force type 
Error / (%) 

1st approach 2nd approach 

1 
Shear force 127.895 0.927 

Bending moment 856.889 0.987 

2 
Shear force 91.281 94.215 

Bending moment 92.415 95.234 
 

  

Table 3.4: CMSM stiffness parameters of prismatic cantilever member. 

Table 3.5: CMSM mass parameters of prismatic cantilever member. 

Table 3.6: Natural frequency of CMSM and prismatic cantilever beam model (case 1). 

Table 3.7: Natural frequency of CMSM and prismatic cantilever beam model (case 2). 

Table 3.8: Relative error for maximum displacement between prismatic cantilever beam 

and CMSM models. 

Table 3.9: Relative error for maximum resulting force at base of prismatic cantilever member 

between beam and CMSM models. 



 30 

 

 

  

 
Figure 3.10: First three dynamic modes of the 2D cantilever problem. 

 

 
(a) 

 
(b) 

Figure 3.11: Developed approximate displacement modes: (a) case 1; and (b) case 2. 

 

 
(a) 

 
(b) 

Figure 3.12: Displacement of prismatic cantilever member in case 1: (a) at M1 location; and 

(b) at M2 location. 
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(a) 

 
(b) 

Figure 3.13: Displacement of prismatic cantilever member in case 2: (a) at M1 location; and 

(b) at M2 location. 

 
(a) 

 
(b) 

Figure 3.14: Resulting forces of prismatic cantilever problem from 1st approach in case 1: (a) 

base shear along y-direction; and (b) base bending moment around z-axis. 

 

 
(a) 

 
(b) 

Figure 3.15: Resulting forces of prismatic cantilever problem from 2nd approach in case 1: (a) 

base shear along y-direction; and (b) base bending moment around z-axis. 
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Stiffness 

parameter 

Value / (Nm) 

Case 1 Case 2 

𝐾1 6185.093 1218.625 

𝐾2 28847.112 2976.364 

𝐾3 -3678.061 -719.650 
 

 

Mass 

parameter 

Value / (kg) 

Case 1 Case 2 

𝑀1 8.803 9.758 

𝑀2 48.206 45.169 

𝑀12 6.987 5.814 
 

 

Selected mode 
Frequency / (Hz) 

CMSM Solid 

First 1.623 1.623 

Second 5.669 5.668 
 

 

Selected mode 
Frequency / (Hz) 

CMSM Solid 

First 0.455 0.455 

Second 2.151 2.150 
 

 
Case Location Error / (%) 

1 
𝑀1 3.241 

𝑀2 2.940 

2 
𝑀1 12.85 

𝑀2 11.36 
 

 

Case 
Error / (%) 

1st approach 2nd approach 

1 16.923 3.744 

2 94.133 71.393 
 

Table 3.10: CMSM stiffness parameters of non-prismatic cantilever member. 

Table 3.11: CMSM mass parameters of non-prismatic cantilever member. 

Table 3.12: Natural frequency of CMSM and solid non-prismatic cantilever member 

model along y-direction (case 1). 

Table 3.13: Natural frequency of CMSM and solid non-prismatic cantilever member 

model along z-direction (case 2). 

Table 3.14: Relative error for maximum displacement between solid non-prismatic 

cantilever member and CMSM models. 

Table 3.15: Relative error for maximum base shear between solid non-prismatic 

cantilever member and CMSM models. 
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1st mode (𝛙1)  2nd mode (𝛙2) 

 
(a) 

 

 

 

 
(b) 

Figure 3.16: First two dynamic modes of non-prismatic cantilever member along z-direction 

(case 2). 

 

1st mode (𝛟1)  2nd mode (𝛟2) 

 
(a) 

 

 

  

 
(b) 

Figure 3.17: Developed approximate displacement modes of non-prismatic cantilever member 

along z-direction (case 2). 

 

 
(a) 

 
(b) 

Figure 3.18: Input ground motion for non- prismatic cantilever member: (a) in time domain; 

and (b) in frequency domain. 
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(a) 

 
(b) 

Figure 3.19: Displacement of non-prismatic cantilever at M1 location: (a) along y-direction 

(case 1); and (b) along z-direction (case 2). 

 
(a) 

 
(b) 

Figure 3.20: Base shear force of non-prismatic cantilever along z-direction in case 1: (a) 1st 

approach; and (b) 2nd approach. 
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Chapter 4  

Numerical Experiments 

4.1 Overview 

The main aim of this chapter is implementations of the developed tools for practical 

numerical experiments in order to assess their capabilities in static and dynamic analysis. 

Most of the numerical experiments presented in this chapter discuss about a seismic 

response analysis of a bridge structure, which is the objective of this dissertation. When it 

comes to a large scale numerical experiment such as a bridge structure, automated process 

is introduced to overcome laboriousness of manual modeling since the number of target 

structures and structure components is huge. 

 The contents of this chapter are as follows. First, the rigorous conversion tool of 

solid and beam element solutions is employed to calculate beam cross-sectional forces from 

the solid element solution and estimate an initial guess for a CG method from the beam 

element solution in Section 2. Then, in Section 3, the CLMM is used with an automated 

construction process to obtain a seismic response for a freeway bridge structures. In Section 

4, implementation of the CMSM is studied for single- and multi-span bridge structures 

under seismic loads in a consistent manner. Implementation of the meta-modeling based 

consistent models for quality assurance of the automated high fidelity bridge structures are 

studied at the end of this chapter. 

4.2 Implementation of rigorous conversion of solid and beam element 

solution 

4.2.1 Calculation of cross-sectional force from solid element solution 

 

4.2.1.1 Biaxial bending in cantilever member 

Biaxial bending in a beam or a column is commonly encountered in a structural analysis 

[46]. Prediction of bidirectional bending by the typical method is not a straightforward task 

due to coupling of the biaxial bending with an axial force. Decoupling of the biaxial bending 

moment needs curve fitting technique which is an extension of the typical method. The 

proposed meta-modeling based conversion method can handle this problem without any 

further modification. This is a good example showing the wide range of applicability of this 

proposed rigorous conversion method. 

Cantilever with uniform square (200mm×200mm) cross-section is used in this 

numerical experiment. Figure 4.1 shows the problem setting of this numerical experiment 

with material data. Three displacement boundary conditions are located at the right end of 

cantilever system; these are 5mm, -5mm and -10mm along x, y and z directions 

respectively. 
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Results and discussion 

According to Fig. 3.1, the aim is to obtain finer converged beam element solution from the 

given solid element solution space. Numerical validation of this method shows that there is 

an acceptable range of beam elements for the solid element to beam element conversion 

which mainly depends on the level of convergence of the given solid element space and 

form of work. The acceptable range of the beam elements for this numerical experiment is 

10 to 100. In this numerical experiment 100 beam elements are employed to estimate the 

finer beam element solution space from the given solid element solution. 

The beam forces which are consistent with obtained beam displacements are shown 

in Figs. 4.2(a), (b), (c) and (d) respectively. The biaxial bending moments in the cantilever 

that are obtained from the proposed meta-modeling based conversion method, are shown in 

Fig. 4.2(a). The proposed and typical conversion methods are employed to obtain beam 

shear forces (𝜏𝑥𝑦 , 𝜏𝑥𝑧) as seen in Fig. 4.2(b) and (c). Obtained beam axial forces in the both 

ways are presented in Fig. 4.2(d). Absolute percentage differences of predicted shear forces 

and axial force results by using the typical method, compared to the proposed method are 

shown in Table 4.1. 

The proposed meta-modeling based conversion method [13] has the capability to 

provide the biaxial bending moment which is complicated to provide in the typical method. 

The proposed conversion method decouples the biaxial bending in displacement space but 

the typical method decouples it in force space which is more complicated to solve. 

Prediction of shear forces and axial force in the both ways gives marginally different 

solutions; see Table 4.1. Calculated shear forces from the proposed method have some 

deviation at the fixed end due to complex stress behavior at the fixed end of the cantilever. 

This shear force deviation at the fixed end of cantilever cannot be observed from the 

shear force diagrams, because the amount of deviation is very small as compared with the 

overall value of shear force in the beam domain. Nevertheless, the solid element solution 

space of biaxial bending can be efficiently converted to the beam element solution space, 

with including bidirectional bending by using the proposed conversion method. 

4.2.1.2 Ramp tunnel 

Construction of long tunnels has increased rapidly due to higher demand of public 

transportation. These long tunnels need a ramp tunnel, which connects the main tunnel 

located under-ground to ground level. However, a ramp tunnel has a complicated structural 

behavior which cannot be accurately estimated from 2D model. A detailed analysis model 

of the ramp tunnel which is used in this numerical experiment, and large-scale numerical 

computation for the 3D ramp tunnel in seismic response analysis are well described in past 

works [1, 2]. 3D data conversion for one of the main tunnel parts that is shown in Fig. 

4.4(b), is considered under this numerical experiment. This is a real field application where 

the meta-modeling based conversion method is directly applied to obtain beam solution 

field. 

A target frequency range of 0Hz to 6Hz is selected for this analysis. A direction of 

input ground motion is shown in Fig. 4.4 which is parallel to the selected main tunnel. An 

input ground motion to a bedrock is shown in Fig. 4.3(a). Material properties and boundary 

conditions of the tunnel system were well described in the past studies [1, 2]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2:  Data conversion of uniform cantilever member: (a) bending moment diagram; (b) 

shear force diagram (along z-direction); (c) shear force diagram (along y-direction); and (d) axial 

force diagram (along x-direction). 

 

Location (mm) Axial force  Shear force (𝜏𝑥𝑦) Shear force (𝜏𝑥𝑧) 

400 2.09 1.88 1.09 

800 1.53 2.14 1.59 

1200 2.58 1.60 2.17 

1600 2.61 2.15 3.86 
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Figure 4.1: Schematic view of uniform cantilever member for data conversion. 

Table 4.1: Comparison of results (uniform cantilever member) between typical 

method and proposed method  (
 Abs(PM−TM)×100

PM
). 
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Results and discussion 

Conversion results which are presented in this numerical experiment belong to the solid 

result field of the 1650th time step out of 5000 time steps in the numerical analysis. A 

converged beam element solution is obtained from flow chart which is shown in Fig. 3.1. 

Beam bending moments which are consistent with the obtained beam displacement field 

are shown in Figures 4.3(b) and (c). Beam axial forces and shear force are calculated by 

using the both proposed and typical methods and results are presented in Table 4.2, 4.3 and 

4.4, Figs. 4.3(d), (e) and (f). 

In this numerical experiment, the main tunnel part of ramp tunnel acts as a rod rather 

than a beam due to the input ground motion direction. This can be seen clearly from the 

results of axial force and shear force diagrams; see Figs. 4.3(d), (e) and (f). The shear force 

and bending moment results are very small compared to section capacity of the main tunnel, 

though the proposed method shows the capability to obtain those results in acceptable level. 

A rapid change is observed due to behavior of the input ground motion in the 

obtained beam force field results between 400m and 500m along the main tunnel axis. The 

proposed conversion method shows potential to estimate this type of local change 

effectively. 

Absolute percentage difference of the typical method when compared with the 

proposed method in shear force shows a huge difference that cannot be observed in the axial 

load; see Table 4.2. It is already mentioned that the shear force in the main tunnel part is 

very small compared to the cross-sectional shear force capacity of the main tunnel. Results 

from Table 4.3 and 4.4, clearly indicate that the direct differences are not large and they are 

within a reasonable range. The meta-modeling based conversion method shows that it has 

the ability to detect beam solution from solid solution, in real practical problem effectively. 

4.2.2 Meta-modeling based initial guess for conjugate gradient (CG) method 

Meta-modeling could be used as new initial guess of a conjugate gradient (CG) method [47, 

48, 49, 50, 51, 52] of solid element analysis; we have not found any study which seeks to 

apply physics based meta-modeling to an initial guess. The basic idea of this is to use a 

solid element solution converted from a beam element solution as an initial solution of the 

CG method. 

To explain the above idea clearly, we denote by 𝐮𝑠  and 𝐮𝑐  the beam element 

solution and the converted solid element solution, respectively. The distance function in 

Eq. (3.1) can adjust for this task as follows: 

𝑁(𝐮𝑐 , 𝛔𝑐) =
|𝐮𝑠 − 𝐮𝑐|2

|𝐮𝑠|2
+
|𝛔𝑠 − 𝛔𝑐|2

|𝛔𝑠|2
. (4.1) 

Following an identical process as in Sec. 3.1.3, we can obtain similar expression as Sec. 

3.1.3. Here definition of 𝑊 needs to be changed as follows: 

𝑊 =
|𝐮𝑠|2

|𝛔𝑠|2
 . 
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Since 𝐮𝑠 is regarded as an approximate solution of the continuum mechanics problem, it is 

expected that 𝐮𝑐 which is converted from 𝐮𝑠 will serve as a good initial solution of the CG 

method; see Appendix D for CG algorithm. 

Frame problem with lateral loading and cantilever beam with biaxial bending are 

discussed under this section to cover applications of the meta-modeling based initial guess 

for CG method. Here, the cantilever and frame problems are constructed in beam element 

and solid element solutions are obtained from the proposed CG method. These numerical  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.3:  Data conversion of ramp tunnel structure: (a) Input ground motion on bed rock; 

(b) bending moment (about z-axis); (c) bending moment (about y-axis); (d) axial force (along 

x-direction); (e) shear force (along y-direction); and (f) shear force (along z-direction). 
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Location / (m) Axial force Shear force (𝜏𝑥𝑦) Shear force (𝜏𝑥𝑧) 

400 5.40 8.57 3.79 

500 5.63 60.57 23.39 

600 2.16 55.29 14.37 
 

 

Location / (m) Proposed method / (kN) Typical method / (kN) 

400 -109.21 -105.22 

500 -23.15 -30.22 

600 -36.88 -32.24 
 

 

Location/ (m) Proposed method / (kN) Typical method / (kN) 

400 59.66 65.25 

500 1.27 3.21 

600 1.45 3.25 
 

Figure 4.4: Ramp tunnel structure: (a) ramp tunnel; (b) selected main tunnel part; and (c) 

uniform cross-section of main tunnel. 

Selected main tunnel part from 

ramp tunnel 

410m 

Z 

Y X 

x = 721m  

x = 331m  

Input wave direction 

0.53m  

11.77m  

(c)  (a)  

(b)  

Table 4.2: Comparison of results (ramp tunnel structure) between typical method and 

proposed method  (
 𝐴𝑏𝑠(𝑃𝑀−𝑇𝑀)×100

𝑃𝑀
). 

Table 4.3: Shear force of main tunnel part (𝜏𝑥𝑦) in each method at selected 

locations along x-axis. 

Table 4.4: Shear force of main tunnel part (𝜏𝑥𝑧) in each method at selected 

locations along x-axis. 
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experiments show the implementations of the meta-modeling based initial guess for the CG 

method with its advantages. 

Figure 4.5: Schematic view of frame: (a) cross-section of frame; and (b) cross-section of A-A, 
B-B & C-C. 
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Figure 4.6: Approximated displacement (z–direction) for solid element system from equivalent 

beam element system (cantilever problem). 

Figure 4.7: Relative residual in each iteration for both CG methods (cantilever problem). 
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The frame and cantilever problem with uniform square cross-section are used in 

these numerical experiments. Figures. 4.1 and 4.5 show the problem settings of these 

numerical experiments with material data. Only one displacement boundary condition is 

located at the top left end of frame system; that is 10mm along x direction and the bottom 

of frame is fully fixed. In the cantilever system, three displacement boundary conditions 

are located at the right end of cantilever system; these are -5mm, 5mm and -10mm along x, 

y and z directions respectively and the left end of cantilever beam is fully fixed. 

4.2.2.1 Results and discussion 

The initial guesses for the target solid element problems which are shown in Figs. 4.1 and 

4.5, are constructed from the equivalent beam element systems by minimizing the 

expression in Eq. (4.1). The converted solid element displacement solutions are shown in 

Fig. 4.6 and 4.8. Performance of the proposed CG method is compared with the ordinary 

CG method that uses initial guess as zero vector. It shows that, the proposed CG method is 

2.62 and 1.92 times faster than the ordinary CG method for the cantilever and frame 

problem which includes around 50,000 and 80,000 degrees of freedom (dof) respectively. 

In this example 𝜆 is fixed to 1 × 10−8. Figures 4.7 and 4.9 show relative residual in each 

iteration for the both CG methods. 

According to this result, it is clear that the amount of iterations drastically reduces 

in the proposed CG method as compared to the ordinary CG method; see Figs. 4.7 and 4.9. 

Figure 4.9: Relative residual in each iteration for both CG methods (frame problem). 
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Figure 4.8: Approximated displacement (x-direction) for solid element system from 

equivalent beam element system (frame problem). 
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We hope this positive effect may become larger with a target problem size (dof). If we can 

create pre-condition from the meta-modeling theory, it is more effective than the meta-

modeling based initial guess. Currently, we are working on developing the meta-modeling 

based pre-condition for the CG method; see Chapter 5. 

4.3 Automated construction of consistent lumped mass model for road 

network 

It is excessively difficult to create a manual modeling for a large scale numerical 

simulations, because of huge number of structure and components. Automated construction 

process [14] is introduced to overcome this laborious work in this section. The quality of 

an analysis model that is produced by the automated model construction must be examined. 

In general, there is a trade-off relation between the accuracy and the complexity of the 

model. A more complicated model produces a more accurate estimate, but it ought to be 

difficult to examine the quality of all model components. In developing automated model 

construction, we have to pay full attention to this trade-off relation. 

The author proposes a methodology of automated construction which accounts for 

the model quality. The key point of the proposed methodology is to construct a set of 

consistent models for one structure. The consistent model means that the model is used to 

solve the same problem of the target structure response, by using different mathematical 

approximations; the fidelity of the model becomes higher as less approximations are made. 

Suitable mathematical approximations are made, so that approximate solutions of different 

accuracy are obtained for each of the consistent models. The model quality is more easily 

examined for a simpler consistent model. Comparing the analysis results with the simpler 

model, the quality of which is examined, we are able to examine the quality of a more 

complicated model. By repeating this comparison, we will realize the quality check of a 

most complicated model of a target structure. 

This numerical experiment is aimed at developing an automated model construction 

for a consistent lumped mass model (CLMM), which is the fundamental model for the 

seismic response analysis. The lumped mass model is the simplest as it consists of only two 

parameters as explained in the preceding section [42, 43]. A road network, which consists 

of numerous bridges, is chosen as a target structure in this experiment. 

4.3.1 Decoding of GIS data 

The following two types of GIS data are used for automated modeling: 1) 2D GIS data that 

include 2D polygon data about road network configurations; and 2) 3D GIS data of ground 

surface elevation. Information about how polygons are connected to form a structure is not 

included in the 2D GIS data. Thus, the 3D GIS data and the attribute tables in the 2D GIS 

data are used to guess the connection of neighboring polygons, so that the configuration of 

a structure is identified. 

A decoding program is developed for each of these GIS data. It creates a separate 

file which includes a set of connected polygons for a particular segment of a road network. 

The segment is specified according to class information of the road network; there are four 

main classes as shown in Table 4.5. Figure 4.10 presents a typical example of the segment 

that is created by the decoding classes. Light green and yellow in Fig. 4.10 represents the 

whole road network and the target part of the network, respectively. As is seen, there are 
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no flaws in the segment. Detailed manual inspection is made to examine this segment by 

comparing it with photos provided by Google Earth. 

The decoded GIS data need to be interpreted in order to construct an analysis model. 

As an example, the interpretation of the configuration and elevation of the center line of the 

road network is presented. First, the plane configuration of the line is interpreted by using 

the 2D GIS data, as follows:  

I. Convert vector data of polygons to raster data. 

II. Apply thinning to identify the center line [53]. 

III. Prune line segments shorter than 10m. 

IV. Separate line segments at each junction, removing complexity at junctions. 

Next, the elevation of the center line is estimated by using the difference between the profile 

and the terrain data that are stored in the 3D GIS data. Noises of estimated elevation data 

are removed. 

In Fig. 4.11, we present an example of the decoding procedures explained above. 

The target is a segment of a highway road network, the most part of which is bridges, though 

the tunnel sub-class is excluded; see Fig. 4.11(a). The ramp part of the segment, the 

configuration of which changes in a short distance, is removed due to the poor resolution 

of the profile elevation data which are available for this area; see Fig. 4.11(b). 

4.3.2 Parameter estimation  

This task needed for the automated construction of the lumped mass model is the automated 

computation of 𝑀  and 𝐾  by using Eq. (3.15) and (3.16), inputting the decoded and 

interpreted data of the target structure; for instance, 𝑀𝑑   is computed from the volume 

calculation of the solid CAD model of the deck. The CLMM is automatically constructed 

for the first segment of the road network which includes 14 piers; see Fig. 4.11(c) and Fig. 

4.12. That is, the values of 𝑀 and 𝐾 are computed in the both transverse and longitudinal 

directions of each pier. Symmetrical geometry of the pier, as shown in Fig. 3.4, provides 

identical values of 𝑀 and 𝐾 for the both directions. The computed values of 𝑀 and 𝐾 for 

the selected segment are presented in Fig. 4.13(a) and (b), respectively. 

The detailed procedures of computing the values of 𝑀  and 𝐾  are itemized as 

follows: 

I. The interval of piers is fixed as 20 m along the center line due to lack of pier location 

information in GIS data that is used; see Fig. 4.12 for the frame and solid CAD 

models of this segment. 

II. A steel girder bridge deck is used to estimate the mass of deck for this experiment. 

III. Fix connection is used for the connection between the deck and the pier, to satisfy 

the posed boundary conditions. 

The material properties used are summarized in Table 3.2. The total mass of the deck in 

each span is lumped to the fix connected frame in both the longitudinal and transverse 

directions, so that the segment is analyzed individually or fully ignoring coupling with 

neighboring segments. 
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4.3.3 Response analysis 

In view of the quality check results of CLMM, we presume that automated lumped mass 

models have similar quality. We thus proceed to make a seismic response analysis of the 

highway road, as shown in Fig. 4.11(c), using all the models. Linear elastic seismic response 

is computed in the both longitudinal and transverse directions for selected segments of the 

highway road; see Fig. 4.12. A set of ground motions is used; these ground motion data are 

selected from K-NET [54] database by considering following criteria: 

I. the location of earthquake epicenter that lay between longitude 135o ~ 145o and 

latitude 30o ~ 40o, 

II. the depth of  epicenter from surface that less than 60km, 

III. the magnitude of earthquake that more than 5.0 and 

IV. the earthquakes occurred since 1996 till now.  

There are 616 surface ground motion records that fulfill the above requirements. The peak 

accelerations of selected ground motion records in the NS and EW directions are presented 

in Fig. 4.14(a) and (b), respectively; the three highest peak accelerations that belong to the 

80th, 208th and 91st ground motion records among the selected 616 ground motions are 

highlighted in red, blue and green, respectively, in these figures. 

Both the NS and EW components of each record are input to the highway segment 

separately, and the seismic responses are calculated around 1,200 times for each lumped 

mass model of the pier. The maximum drift ratio of the pier is used as an index of the 

seismic response [55, 56] and they are plotted in Fig. 4.15(a) and (b) for the longitudinal 

and transverse directions, respectively. The highlighted results in Figs. 4.15(a) and (b) show 

the drift ratio computed for the three ground motions highlighted in Fig. 4.14(a) and (b). As 

for these highlighted results, there is no any unexpected change or intuitively unexpected 

behavior. We emphasize that smooth variation of the results is well understood, due to the 

nature of the linear analysis as well as the smooth variation of the input parameters of the 

piers, which are shown in Fig. 4.13(a) and (b). While this is a necessary condition, this 

result of no intuitively unexpected behavior suggests that the automatically constructed 

lumped mass model is good enough to be used for the seismic response analysis of the 

bridge piers. 

The automated model construction will be extended to a larger part of the road 

network. Actually, it would be a straightforward task, since the programs of decoding and 

interpreting the GIS data and constructing a lumped mass model are already developed; the 

decoding and interpretation programs need to be improved, in order to be applied to 

segments of a more complicated configuration, such as a ramp. The methodology of the 

automated model construction can be extended from the simplest lumped mass model to a 

more sophisticated model according to the meta-modeling theory; an eventual goal is a full 

solid element model for non-linear finite element analysis. 
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Figure 4.10: Example of decoding of GIS data to 
identify road network configuration: (a) 
extraction of general road; (b) extraction of main 
local road; and (c) extraction of highway. 
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Highway 

National road 
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Tunnel 
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Surface 

  

Table 4.5: Main and sub classes of road network. 
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Figure 4.11: Example of applying decoding 
procedures to GIS data: (a) exclusion of 
highway main-class tunnel sub-class; (b) 
exclusion of highway main-class tunnel and 
ramp part; (c) extraction of 2D centreline 
arrangement; and (d) arrangement of 3D 
centreline. 
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4.4 Implementation of CMSM for bridge structure 

4.4.1 Single-span simple bridge structure 

4.4.1.1 Problem setting 

A CMSM model is constructed for a single span bridge structure, and it is exposed to time 

history analysis. Ground motion is input in the longitudinal direction of the bridge, and the 

response in the same direction is computed. Input ground motion for this example is shown 

in Fig. 3.9 which is rich in low frequency. The deck structure of this bridge acts as rigid 

body in both the longitudinal and transverse directions of the bridge due to provided 

boundary conditions for it. Two mass points of the CMSM are located along the pier axis; 

see Fig. 4.16. Table 4.6 shows material properties of both pier and deck structures. Linear 

isotropic elasticity is assumed. 

First, the solid element model is constructed to obtain the first two dynamic modes 

in the longitudinal direction. In Fig. 4.17, the mode shapes, 𝛙1 and 𝛙2, are displayed. Next, 

the CMSM parameters are estimated by using the computed first two dynamic modes in the 

longitudinal direction of the bridge. The results are summarized in Tables 4.7 and 4.8. 

Finally, time history analysis is conducted for the both solid element model and CMSM to 

obtain the deck structure displacement response and the resulting shear force at the pier 

base by inputting the target ground motion in the longitudinal direction of the bridge. The 

base shear force of the CMSM is estimated by employing Eq. (3.34). 

4.4.1.2 Results and discussion 

Developed approximate displacement functions of the CMSM, 𝛟1 and 𝛟2, are displayed 

in Fig. 4.18. It is clear that these displacements fulfill the requirement A1 that is discussed 

in section 3.3. The first two natural frequencies of the CMSM match those of the solid 

element model, as expected; see Table 4.9. 

Figure 4.12: CAD model for selected highway segment: (a) frame CAD model; and (b) solid 
CAD model. 
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The deck displacement in the longitudinal direction of the bridge computed from 

the solid element model and the displacement of the first mass point of the CMSM are 

shown in Fig. 4.19 for the time interval selected from the full response. They are in good 

agreement since input ground motion is rich in the first two natural frequencies. The relative 

 
(a) 

 
(b) 

Figure 4.13: Lumped mass parameters for each pier along both directions: (a) mass (M); and (b) 

stiffness (K). 

 

 
(a) 

 
(b) 

Figure 4.14: Peak acceleration of selected ground motions: (a) along WE direction; and (b) along 

NS direction. 

 

 
(a) 

 
(b) 

Figure 4.15: Drift ratio in each pier: (a) along transverse direction; and (b) along longitudinal 

direction. 
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error of the CMSM estimation is around 3.75%. In this case, this simple bridge structure 

vibrates mainly in the first dynamic mode. 

It is clear that a CMSM is able to make accurate estimate of displacement, by 

identifying major dynamic modes of a target structure subjected to given ground motion; 

these modes are included into the construction process of the CMSM. According to Eq. 

(3.34), a displacement field which is computed by the CMSM leads to accurate estimate of 

the base shear force, as well. As shown in Fig. 4.20, the relative error of estimating the base 

shear is around 4.92%. 

4.4.2 Multi-span continuous bridge structures 

4.4.2.1 Problem setting 

As a more realistic example, a CMSM is constructed for a multi-span continuous bridge 

structure. Three structures with different types of pier arrangement are studied; see Fig. 

4.21 and Table 4.10. Like the previous case, the longitudinal and transverse directions are 

considered separately. The CMSM for the transverse direction includes two dynamic modes 

while that for the longitudinal direction uses only first mode. This is because in the 

longitudinal direction, the first mode has a much lower natural frequency than other modes. 

Tie connection is used for the connection between the pier and the deck in this 

problem. This is the simplest connection, and more sophisticated connection could be used 

if more detailed information is available for the connection. A spring of 2 GNm spring 

constant in the longitudinal direction is attached at the left end of the deck in cases 1 and 2, 

while no spring is attached at the right end; see Fig. 4.21 where the left and right ends are 

designated by A and B, respectively. 

Table 4.11 shows the material properties of the both pier and deck. Linear isotropic 

elasticity is assumed. The cross-section of the deck is shown in Fig. 4.22, and the 

geometrical properties of this cross section are summarized in Table 4.12. Configuration of  

60m  

20m  

Fixed condition at base of pier 

Allowed to move along x- and z-

direction only 

Tie connection  

10m  

M
1

  

M
2
 

𝑡 = 2m 

𝜉 = 5% 
t  

Figure 4.16: Single span simple bridge model for CMSM. 
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an actual pier and approximate pier is displayed in Fig. 4.23. The ground motion displayed 

in Fig. 3.9 is employed. 

First, instead of a solid element model, we construct a simpler frame element model, 

in order to obtain first two dynamic mode shapes in the transverse direction (𝛙𝑧
1 and 𝛙𝑧

2)  

1st mode (𝛙1)  2nd mode (𝛙2) 

 

 

 

 

 

 
(a) 

 

 

  

 
(b) 

Figure 4.17: First two dynamic modes of single-span simple bridge structure along longitudinal 

direction of bridge. 
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Figure 4.18: Developed approximate displacement modes of single-span simple bridge 

structure along longitudinal direction of bridge. 
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and first dynamic mode shape in the longitudinal direction (𝛙𝑥
1); see Fig. 4.24(a) for 𝛙𝑧

1 

and 𝛙𝑧
2  of case 1. Approximate displacement functions (𝛟𝑧

1  and 𝛟𝑧
2) of case 1 for the 

transverse direction are shown in Fig. 4.24(b). Second, we determine locations of mass 

points along the deck axis, considering target locations of response output from the model; 

see Fig. 4.21. Third, CMSM parameters are computed from the dynamic mode shapes and 

the mass points’ locations. 

Table 4.6: Material data of single-span simple bridge model. 

Item E / (GPa) ρ / (Kgm-3) ν 

Pier 192 2400 0.2 

Deck 200 7200 0.3 
 

Table 4.7: CMSM stiffness parameters for single-span simple bridge structure. 

Stiffness parameter Value / (GNm) 

𝐾1 11.750 

𝐾2 9.514 

𝐾3 -3.974 
 

Table 4.8: CMSM mass parameters for single-span simple bridge structure. 

Mass parameter Value / (ton) 

𝑀1 14465.321 

𝑀2 -191.797 

𝑀12 494.655 
 

Table 4.9: Natural frequency of single-span simple bridge structure along longitudinal direction. 

Model type 1st mode / (Hz) 2nd mode / (Hz) 

Lumped mass 1.502 33.004 

Solid 1.503 33.001 
 

  

Figure 4.19: Displacement of single-span 

simple bridge deck (M1) along x-direction. 

Figure 4.20: Base shear of single-span simple 

bridge pier base along x-direction. 
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4.4.2.2 Results and discussion 

Natural frequencies of the CMSM’s in the longitudinal and transverse directions are 

presented in Tables 4.13 and 4.14, respectively; the natural frequencies of the original frame 

element models are presented, too. As is seen, the natural frequencies of the CMSMs 

coincide with those of the frame element models. 

Time series of displacement responses of the CMSM is compared with that of the 

original frame element model; see Figs. 4.25(a) and (b) for case 1. It is seen that the response 

of the CMSM matches well with that of the frame element model. Relative errors of the 

maximum displacement in the longitudinal and transverse directions of the CMSM are 

presented in Tables 4.15 and 4.16, respectively. As is seen, the maximum relative error in 

all the cases is 2.637%. 

Next, shear force and bending moment at the base of the fourth pier (P4) are 

estimated; see Fig. 4.21 for the location of P4. Equations (3.32) and (3.33) are used to 

estimate base shear, 𝐅 , and the bending moment 𝐌  that acts on the base P4 (𝐱 = 𝟎) 

respectively. In Figs. 4.26 and 4.27, respectively, 𝐅 and 𝐌 are presented for the longitudinal 

and transverse directions. Relative errors of the maximum resultant force are summarized 

in Tables 4.17 and 4.18. As is seen, the maximum relative error in all the cases is 4.514%, 

and it is clear that the CMSM can be used to approximately estimate structural seismic 

responses. 

Case 1

P1 P2 P3 P4 P5 P6 P7

400mM1 M2

Equal length span = 50m

M1

P1 P2 P3 P4 P5 P6 P7

400mM1 M2
Case 3

Equal length span = 50m

M1

Case 2

P1 P2 P3 P4 P5 P6 P7

400mM1 M2

M1

Equal length span = 50m

- Transverse direction - Longitudinal direction

Y

X

A B

A B

A B

Figure 4.22: Cross-section of bridge deck in multi-span bridge models. 

Figure 4.21: Geometric and mass points’ information about multi-span bridge models. 

𝜉 = 5% 
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Pier ID 
Height / (m) 

Case 1 Case 2 Case 3 

1 22 25 8 

2 26.3 25 16 

3 27.1 25 24 

4 26.3 25 32 

5 26.1 25 24 

6 30.2 25 16 

7 30.1 25 8 

 

Beam parameter Value 

Area 25.850 m2 

Izz 22.009 m4 

Iyy 895.726 m4 

Ixy 0.000 m4 

J 7.393 m4 

 

Item E / (GPa) ρ/ (Kgm-3) ν 

Pier 24 2400 0.2 

Deck 200 3000 0.3 

 

Figure 4.23 Pier structure: (a) actual geometry; and (b) approximate geometry for beam model 
of multi-span bridge models. 

(a) (b) 
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t 
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b 
b 𝑡 = 2m 

𝑏 = 10m 

Table 4.10: Pier height data of multi-span bridge models. 

Table 4.11: Material data of multi-span bridge models. 

Table 4.12: Beam properties of uniform deck part in multi-span bridge models. 
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Figure 4.24: Multi-span bridge model along transverse direction of bridge (case 1): (a) first two 
dynamic modes; and (b) developed approximate displacement modes. 

Table 4.13: Natural frequency of multi-span bridge 

models along longitudinal direction of bridge. 

Case Mode ID 
Frequency / (Hz) 

Frame CMSM 

1 1 1.345 1.345 

2 1 1.377 1.377 

3 1 1.836 1.836 

 

Table 4.14: Natural frequency of multi-span bridge 

models along transverse direction of bridge. 

Case Mode ID 
Frequency / (Hz) 

Frame CMSM 

1 
1 1.938 1.938 

2 3.112 3.111 

2 
1 2.066 2.068 

2 3.182 3.183 

3 
1 2.317 2.317 

2 3.713 3.715 

 

𝑢𝑧𝑧 
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(a) 

 
(b) 

Figure 4.25: Displacement results of multi-span bridge model in case 1: (a) CMSM model of 

longitudinal direction at M1 point; and (b) CMSM model of transverse direction at M1 mass 

point. 

 

 
(a) 

 
(b) 

Figure 4.26: Resultant force of multi-span bridge model at base of P4 in case 1 (CMSM model 

of longitudinal direction): (a) base shear along x-direction; and (b) bending moment about z-

axis. 

 

 
(a) 

 
(b) 

Figure 4.27: Resultant force of multi-span bridge model at base of P4 in case 1 (CMSM model 

of transverse direction): (a) base shear along z-direction; and (b) bending moment about x-axis. 
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Table 4.15: Relative error for maximum displacement between frame and CMSM 

model along longitudinal direction (CMSM model for longitudinal direction). 

Case Location Error / (%) 

1 M1 2.067 

2 M1 2.015 

3 M1 0.930 

 

Table 4.16: Relative error for maximum displacement between frame and CMSM 

model along transverse direction (CMSM model for transverse direction). 

Case Location Error / (%) 

1 
M1 0.191 

M2 1.667 

2 
M1 2.227 

M2 2.227 

3 
M1 2.637 

M2 2.637 

 

Table 4.17: Relative error for maximum resulting force at base of P4 between frame and 

CMSM model along longitudinal direction (CMSM model for longitudinal direction). 

Case Force type Error / (%) 

1 
Shear 3.634 

BM 3.523 

2 
Shear 3.886 

BM 3.541 

3 
Shear 4.322 

BM 3.832 

 

Table 4.18: Relative error for maximum resulting force at base of P4 between frame and 

CMSM model along transverse direction (CMSM model for transverse direction). 

Case Force type Error / (%) 

1 
Shear 4.514 

BM 4.231 

2 
Shear 3.995 

BM 3.537 

3 
Shear 3.895 

BM 3.324 

 (BM – Bending moment) 
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4.5 Implementation of meta-modeling based consistent models for 

quality assurance of automated high fidelity bridge structure  

4.5.1 Set of multi-span bridge structures 

4.5.1.1 Problem setting 

Three straight (SC) and three curved (CC) multi-span bridge structures with different types 

of pier arrangement are studied in this numerical experiment for the quality assurance of 

the automated model; see Fig 4.28 and Tables 4.20 and 4.21 for the geometric arrangement 

of these bridge structures. The continuous deck structures of target bridges are only allowed 

to move in the longitudinal direction of the bridge, the piers are fixed to the ground at the 

pier base, and tie connection is used for the connection between the pier and the deck. Tie 

connection is the simplest, and more sophisticated connection could be used if more 

detailed information is available for the connection. 

Four consistent models are developed for each bridge structure. They are (1) a 

CLMM, (2) a CMSM, (3) a frame model, and (4) a solid element model. First, the 

automated construction module is used to develop a solid element model and a frame 

models separately; see Appendix E for the automated construction processes. Then, a 

CLMM is constructed from the frame model; see Sec. 3.2 for the construction of CLMM. 

The deck structures of the target bridges are not considered as a rigid body, when responses 

in the transverse direction is studied, due to the pre-posed boundary conditions for the deck 

structure. Hence, a CLMM is constructed only for the responses in the longitudinal 

direction. Next, a CMSM is constructed from the solid element model. Unlike the CLMM, 

the CMSM is constructed for both the longitudinal and transverse directions; see Sec. 4.3 

and Figs. 4.30 and 4.31 for construction of CMSM. 

Table 4.19 shows the material properties of the pier and the deck structures. Linearly 

isotropic elasticity is assumed. The configuration of the pier is displayed in Fig. 4.29(a), 

and the cross-section of the deck is shown in Fig. 4.21(b). Frequency and time domain 

analyses are conducted for the target bridge structures, in order to check the consistency of 

the developed models and the applicability of the consistent low fidelity model for quality 

assurance process of the automated solid element model. The ground motion displayed in 

Fig. 3.9 is employed. 

4.5.1.2 Results and discussion 

Natural frequencies of the CLMM’s in the longitudinal direction are presented in Table 

4.22; the natural frequencies of the first mode of the frame models are presented, too. As is 

seen, the natural frequencies of the CLMM’s do not have a good agreement with those of 

the frame models, except for the cases of SC_1 and SC_2. This is due to the contribution 

of stiffness from the deck structure to the first mode in the longitudinal direction; in the 

current CLMM, the deck structure is assumed to be a rigid body. Figure 4.32 shows the 

axial strain distribution in the first mode in the longitudinal direction for SC_2 and CC_3. 

These two models are, respectively, the best and the worst, in comparison of the frequency 

with that of the frame models. It is clear that the deck structure of CC_3 generates more 

axial strain than that of SC_2, which induces stiffer responses for the first mode in the 

longitudinal direction. When the target structure becomes complicated such as case CC_3, 

the current CLMM cannot perform well; we need to improve it in the future by considering 

a deformable deck structure. 
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Natural frequencies of the CMSM’s in the transverse and longitudinal directions are 

presented in Tables 4.23 and 4.25, respectively; the natural frequencies of the original solid 

element models are presented, too. As is seen, the natural frequencies of the CMSM’s 

coincide with those of the solid element models, as expected. 

First three natural frequencies of the frame model and the solid element model in 

the transverse and longitudinal directions are presented in Tables 4.24 and 4.26, 

respectively. It is seen that there is good agreement of the natural frequencies in the 

longitudinal direction but less agreement is observed for the natural frequency in the 

transverse direction. Figures 4.33 and 4.34 show the distribution of normal strain 

component in the longitudinal direction (or axial strain) along the deck axis, for the first 

three modes of the solid element model in the longitudinal and transverse directions, 

respectively. In this study, the axial strain distribution of the modes in the longitudinal 

direction is similar to that of the frame model that is based on the beam theory; the 

distribution is nearly parallel to the cross-section of the deck along the deck structure axis; 

see Fig. 4.33. It is clearly seen in Fig. 4.34 that the axial strain distribution of the modes in 

the transverse direction cannot be well obtained by using the frame model and that plate or 

shell element models should be used so that strain distribution in both longitudinal and 

transverse directions is captured. 

Based on the above observation, we conduct time history analyses only for the 

longitudinal direction of each bridge structure. Responses of the CLMM’s, CMSM’s and 

frame models are compared with those of the solid element model; see Figs. 4.35 and 4.36 

for the case of SC_2 and CC_3, respectively. It is seen that the responses of the CMSM and 

frame model matches well with those of the solid element model, but that the response of 

CLMM’s does not match well except the case of SC_2. Figures 4.37(a) and (b) show input 

ground motion in the frequency domain and the natural frequency of each model of the case 

of SC_2 and CC_3 are designated. The natural frequency of the CLMM of CC_3 shifts to 

the peak amplitude range of the input ground motion, which causes a larger difference in 

displacement response; see Figs. 4.36(c) and 4.37(b). The natural frequencies of all the 

modes of the case of SC_2, which is the simplest bridge structure, coincide with each other; 

see Fig. 4.37(a). Relative errors of the maximum displacement in the longitudinal direction 

of the each model are presented in Table 4.27. As is seen, the maximum error is 16.049% 

for CLMM’s of the case of CC_3.  

We need to choose a suitable consistent model of low fidelity for the quality 

assurance of a model of higher fidelity (solid element model) that is constructed in an 

automated manner. The model of low fidelity is used as a reference, in examining the 

response of the target structure of complex configuration. In this study, a pair of a CMSM 

and a frame model are for such quality assurance of the automated solid element model for 

all the six bridge structures; the responses in the longitudinal direction are used. 
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Figure 4.28: Geometric and mass points’ information about multi-span bridge structures: (a) 

straight continuous (SC); and (b) curved continuous (CC). 

(b) 

(a) 

Item E / GPa ρ / Kgm-3 ν 

Pier 24 2400 0.2 

Deck 200 2000 0.3 

 

Table 4.19: Material data of multi-span bridge structures (SC & CC). 
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Figure 4.29: Multi-span bridge models (SC & CC): (a) pier geometry; and (b) deck cross-section 

geometry. 

Pier ID 
Height / m 

SC_1 SC_2 SC_3 

1 22.0 25.0 8.0 

2 26.3 25.0 16.0 

3 27.1 25.0 24.0 

4 26.3 25.0 32.0 

5 26.1 25.0 24.0 

6 30.2 25.0 16.0 

7 30.1 25.0 8.0 

 

Pier ID 
Height / m 

CC_1 CC_2 CC_3 

1 22 25.0 8.0 

2 26.3 25.0 14.0 

3 27.1 25.0 20.0 

4 26.3 25.0 26.0 

5 26.1 25.0 32.0 

6 30.2 25.0 26.0 

7 30.1 25.0 20.0 

8 26.3 25.0 14.0 

9 22.0 25.0 8.0 

 

Table 4.20: Pier height data of straight bridge models (SC). 

Table 4.21: Pier height data of curved bridge models (CC). 
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Figure 4.30: Solid bridge model along transverse direction of bridge (SC_1): (a) first two 

dynamic modes; and (b) developed approximate displacement modes. 

Figure 4.31: Solid bridge model along transverse direction of bridge (CC_1): (a) first two 

dynamic modes; and (b) developed approximate displacement modes. 
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Table 4.22: Natural frequency of multi-span bridge structure (CLMM and frame element models) 

along longitudinal direction. 

Case ID 
Frequency / (Hz) 

Difference / (%) 
CLMM Frame (1st mode) 

SC_1 0.614 0.623 1.444 

SC_2 0.665 0.673 1.189 

SC_3 1.504 1.620 7.160 

CC_1 0.628 0.690 8.985 

CC_2 0.656 0.711 7.735 

CC_3 1.398 1.610 13.167 
 

Z 

Y 

X 

(a) 

(b) 

Figure 4.32: Axial strain contours plot of deck structure (frame element model) for first mode 

along longitudinal direction of bridge: (a) SC_2; and (b) CC_3. 
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Table 4.23: Natural frequency of multi-span bridge structure (CMSM and solid element models) 

along transverse direction. 

Case ID 

Frequency / (Hz) 
Difference / (%) 

CMSM Solid 

1st mode 2nd mode 1st mode 2nd mode 1st mode 2nd mode 

SC_1 1.625 2.610 1.624 2.610 0.062 0.000 

SC_2 1.752 2.703 1.752 2.702 0.000 0.037 

SC_3 2.191 3.882 2.190 3.881 0.046 0.026 

CC_1 1.541 2.152 1.540 2.151 0.065 0.046 

CC_2 1.692 2.254 1.692 2.253 0.000 0.044 

CC_3 1.894 3.131 1.893 3.130 0.053 0.032 
 

Table 4.24: Natural frequency of multi-span bridge structure (frame and solid element models) 

along transverse direction. 

Case ID Mode ID 
Frequency / (Hz) 

Difference / (%) 
Frame Solid 

SC_1 

1 1.989 1.624 22.475 

2 3.540 2.610 35.632 

3 6.193 4.835 28.087 

SC_2 

1 2.103 1.752 20.051 

2 3.625 2.702 34.160 

3 6.231 4.873 27.868 

SC_3 

1 2.326 2.190 6.210 

2 4.339 3.881 11.801 

3 6.814 5.936 14.785 

CC_1 

1 1.710 1.540 11.039 

2 2.611 2.151 21.385 

3 4.310 3.514 22.652 

CC_2 

1 1.884 1.692 11.348 

2 2.732 2.253 21.261 

3 4.349 3.526 23.341 

CC_3 

1 1.999 1.893 5.599 

2 3.370 3.130 7.668 

3 5.064 4.571 10.785 
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Table 4.25: Natural frequency of multi-span bridge structure (CMSM and solid element models) 

along longitudinal direction. 

Case ID 
Frequency / (Hz) 

Difference / (%) 
CMSM Solid (1st mode) 

SC_1 0.630 0.630 0.000 

SC_2 0.680 0.680 0.000 

SC_3 1.640 1.640 0.000 

CC_1 0.713 0.712 0.140 

CC_2 0.730 0.730 0.000 

CC_3 1.624 1.623 0.062 
 

Table 4.26: Natural frequency of multi-span bridge structure (frame and solid element models) 

along longitudinal direction. 

Case ID Mode ID 
Frequency / (Hz) 

Difference / (%) 
Frame Solid 

SC_1 

1 0.623 0.630 1.111 

2 3.691 3.750 1.573 

3 3.810 3.880 1.804 

SC_2 

1 0.673 0.680 1.029 

2 3.717 3.785 1.796 

3 3.828 3.902 1.896 

SC_3 

1 1.620 1.640 1.220 

2 3.789 3.884 2.446 

3 3.985 4.088 2.520 

CC_1 

1 0.690 0.712 3.090 

2 3.720 3.699 0.568 

3 3.826 3.896 1.797 

CC_2 

1 0.711 0.730 2.602 

2 3.736 3.734 0.054 

3 3.837 3.907 1.792 

CC_3 

1 1.610 1.623 0.801 

2 3.783 3.752 0.826 

3 3.950 4.056 2.613 
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Figure 4.33: Strain contours plot of solid element deck structure along x-direction for 

longitudinal direction mode shapes (SC_1): (a) 1st mode shape; (b) 2nd mode shape; and (c) 3rd 

mode shape. 
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Figure 4.34: Strain contours plot of solid element deck structure along x-direction for transverse 

direction mode shapes (SC_1): (a) 1st mode shape; (b) 2nd mode shape; and (c) 3rd mode shape. 
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(c) 

Figure 4.35: Displacement results of deck structure (SC_2): (a) solid and frame element models; 

(b) solid element model and CMSM; and (c) solid element model and CLMM. 
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(a) 
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(c) 

Figure 4.36: Displacement results of deck structure (CC_3): (a) solid and frame element models; 

(b) solid element model and CMSM; and (c) solid element model and CLMM. 
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Table 4.27: Relative difference for maximum displacement between solid and other models along 

longitudinal direction. 

Case ID 
Difference / (%) 

CLMM CMSM Frame 

SC_1 5.945 1.027 1.708 

SC_2 0.204 1.145 1.792 

SC_3 14.797 1.403 4.234 

CC_1 5.059 2.230 4.365 

CC_2 4.457 1.313 2.770 

CC_3 16.049 1.953 3.875 
 

 

  

 
(a) 

 
(b) 

Figure 4.37: Input ground motion in frequency domain with natural frequencies of solid element 

model (1st mode along longitudinal direction of bridge), frame element model (1st mode along 

longitudinal direction of bridge), CMSM and CLMM: (a) SC_2; and (b) CC_3.  
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4.5.2 Part of freeway bridge structure in Tokyo metropolitan 

4.5.2.1 Problem setting 

A junction part which is selected from a freeway road network in the Tokyo metropolitan 

area is used for the quality assurance of a solid element model that is constructed in an 

automated manner; see Fig 4.38 for the selected part. A frame model consisting of beam 

elements is also constructed in an automated manner. The solid element model and the 

frame model, which are described in CAD format, are shown in Fig. 4.39; see Appendix E 

for the automated construction process. Figure 4.40 presents the selected junction part for 

frequency analysis; the solid element model is shown in Fig. 4.40(a), the frame model with 

the cross-section information, Fig 4.40(b), and the FEM frame element model, Fig. 4.40(c). 

Tie connection is used for the connection between the pier and the deck in this 

problem. This is the simplest connection; a more sophisticated connection could be used if 

more detailed information is available for the connection. Fixed conditions are assigned at 

the base of each pier and free conditions are used at the both ends of the deck structure. 

Table 4.19 shows the material properties of the both pier and deck structures. Linearly 

isotropic elasticity is assumed. 

This study is limited to the quality assurance of the automated solid element model 

due to the complexity of the target structure; the complexity is easily seen in the difference 

in the elevation of the each part of the deck structure. This study further narrows down by 

considering only the first mode shape in the longitudinal direction of the junction part, due 

to plate-like behaviors of the deck structure in the transverse direction and a possibility of 

surface contact between the parallel deck structure in the both transverse and longitudinal 

directions except the first mode shape in the longitudinal direction. 

4.5.2.2 Results and discussion 

Figures 4.41(a) and (b) show the displacement distribution of the frame and solid element 

models, respectively, for the first mode in the longitudinal direction of the junction part. 

There is a 14.855% difference in the frequency between the frame model and the solid 

element model, which cannot be neglected. The reason of this difference is understood in 

view of Fig. 4.42, which displays the axial displacement component of both the frame 

model (Fig. 4.42(a)) and the solid element model (Fig. 4.42(b)). The axial displacement 

distribution is different near the connecting part, due to the inconsistency of the treatment 

of the connection between the deck structure and the pier for the frame model and the solid 

element model.  

Figure 4.43 shows behavior of the connection between the deck structure and the 

pier structure for the solid element and frame models. Distributed connection condition (or 

continuity of displacement and traction across the interface of the connection) is used for 

the solid element model, while the single point connection condition (or continuity of cross 

sectional displacement/angle and force/moment) is used for the frame model. The 

distributed connection condition of the solid element model increases the stiffness of the 

junction, which induces higher natural frequency than the frame model. 

The quality assurance of the automated solid element model for a complicated 

structure as a freeway junction part is conducted by using the complete consistency that 

corresponds to the automated frame model. There is an inconsistency issue in the current 
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automated frame model due to improper treatment of the connection and the boundary 

condition which need to be addressed in the future. In addition, we have to introduce a more 

sophisticated structure element, such as plate or shell element, for the automation process 

in order to resolve the other issue that is related to the mode in the transverse direction. 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

Figure 4.38: Automated CAD model construction: (a) freeway network near imperial palace in 

Tokyo (Japan); and (b) selected part for demonstration. 

N 
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Figure 4.39: Constructed CAD models for selected freeway part: (a) solid CAD model; and (b) 

frame CAD model. 
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(b) 

N 

Figure 4.40: Selected part for frequency analysis: (a) solid CAD model; (b) frame CAD model 

with assigned cross-sections; and (c) developed FEM frame model.  

(a) 

N 

Tie condition at connection between 

freeway deck and pier structures 

N 

Tie condition at connection between 

freeway deck and pier structures 

(c) 



 74 

 

 

 

 

  

1.0 

0.0 

0.5 

𝑢𝑥𝑥 

(a) 

(b) 

Figure 4.41: First mode shape along longitudinal direction of selected freeway junction part: (a) 

solid element model; and (b) frame element model. 
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Figure 4.42: Displacement vector component along x-direction for pier structures of selected 

freeway junction part (1st mode shape along longitudinal direction): (a) solid element model; 

and (b) frame element model. 
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Figure 4.43: Tie condition behavior between deck and pier structures (P_1001): (a) solid 

element model; and (b) frame element model. 
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Chapter 5  

Possible Improvements for Developed Tools 

5.1 Use of modal analysis for consistent lumped mass modeling 

(CLMM) 

Approximate displacement functions which can be used to construct a consistent lumped 

mass model (CLMM) are found by using a modal analysis [42, 43, 44]. Modal analysis 

means solving the following eigenvalue problem of 𝑤: 

{
𝜔2𝐴𝑤 + (𝐸𝐼𝑤′′)′′  = 0          0 < 𝑥 < 𝐿,
(𝑤,𝑤′)                = (0,0) 𝑥 = 0,
(𝑤, 𝑤′′)              = (1,0) 𝑥 = 𝐿.

 (5.1) 

Here, 𝜔 is the natural frequency. As is seen, this model is for the translation. Another modal 

analysis is made for the rotation, i.e., 

{
𝜔2𝐴ℎ + (𝐸𝐼ℎ′′)′′  = 0          0 < 𝑥 < 𝐿,
(ℎ, ℎ′)                = (0,0) 𝑥 = 0,
(ℎ, ℎ′′)              = (1,0) 𝑥 = 𝐿.

 (5.2) 

The same symbols, 𝑤 and ℎ, are used as those at quasi-static state; see Eqs. (3.6) and (3.10).  

For each eigenvalue of 𝜔 , the corresponding eigenfunction for 𝑤  or ℎ  is 

determined. The approximate displacement function is expressed in terms of the 

corresponding eigenfunctions as 

u3(𝑥, 𝑡) =∑𝑈𝛼(𝑡)𝑤𝛼(𝑥) +

𝛼

∑𝛩𝛽(𝑡)ℎ𝛽(𝑥)

𝛽

, (5.3) 

where 𝑤𝛼 and ℎ𝛽 are the 𝛼-th and 𝛽-th eigenfunctions for 𝑤 and ℎ. 

Substitution of 𝑢3  with corresponding 𝑢1 = −𝑧𝑢3
′  into the modified Lagrangian 

results in another lumped mass model. For simplicity, replacing the symbol {𝛩𝛽 , ℎ𝛼 } with 

{𝑈𝑁+𝛽 , 𝑤𝑁+𝛽 } with 𝑁 being the number of the modes used, we rewrite Eq. (5.3) as 

𝑢3(𝑥, 𝑡) =∑𝑈𝛼(𝑡)𝑤𝛼(𝑥)

𝛼

, (5.4) 

and calculate the modified Lagrangian, as  

ℒ =∑
1

2
𝑀𝛼𝛼(�̇�

𝛼(𝑡))
2
− 
1

2
𝐾𝛼𝛼(𝑈

𝛼(𝑡))2 + ∑
1

2
𝑀𝛼𝛽�̇�

𝛼(𝑡)�̇�𝛽(𝑡) − 
1

2
𝐾𝛼𝛽𝑈

𝛼(𝑡)𝑈𝛽(𝑡) , (5.5) 

where 

{𝑀𝛼𝛽 , 𝐾𝛼𝛽} =  ∫ {𝜌 (𝐴𝑤
𝛼𝑤𝛽 + 𝐼(𝑤𝛼)′ (𝑤𝛽)

′
) , 𝐸𝐼(𝑤𝛼)′′ (𝑤𝛽)

′′
}  d𝑥. (5.6) 
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Note that the integration of 𝑤𝛼𝑤𝛽 , (𝑤𝛼)′(𝑤𝛽)
′
 and (𝑤𝛼)′′ (𝑤𝛽)

′′
 does not vanish for 

𝛼 ≠ 𝛽, and hence coupling of different 𝑈𝛼 's always happens. 

 

5.2 Meta-modeling based pre-conditioning for conjugate gradient 

method (CG method) 

Meta-modeling could be used as new pre-conditioning of a conjugate gradient (CG) method 

[47, 48, 49, 51, 52] of solid element analysis; most of the pre-conditionings are based on 

mathematics, and we have not found any studies which seek to apply physics based meta-

modeling for pre-conditioning. The basic idea of this pre-conditioning is the use of a solid 

element solution converted from a beam element solution as an initial solution of the CG 

method. 

To explain the above idea clearly, we denote by [𝑢𝑠] and [𝑢𝑐] the beam element 

solution and the converted solid element solution, respectively. Since [𝑢𝑠] is regarded as an 

approximate solution of the continuum mechanics problem, it is expected that [𝑢𝑐] which 

is converted from [𝑢𝑠] will serve as a good initial solution of the CG method. 

As for the pre-conditioning, it is desirable to have the residual force, [𝑟𝑐], which 

corresponds to [𝑢𝑐]. However, it is not easy to find [𝑟𝑐], since [𝑢𝑠] is the exact solution of 

the beam problem and the corresponding residual force vanishes. [𝑟𝑐] must be computed 

by using [𝑢𝑐]. Note that even though [𝑢𝑠] is exact, there is no guarantee that the converted 
[𝑢𝑐] is exact, as well. 

It is of interest to seek a method of smartly computing [𝑟𝑐] when [𝑢𝑠] is not the 

exact solution and accompanies residual force, denoted by [𝑟𝑠]. We start to consider a 

differential equation as a linear transformation of a function, 𝐤[𝐮] = 𝐫(𝐱) for 𝐱 in 𝑉 with 

𝐤[𝐮] = 𝛁 ∙ (𝐜: 𝛁𝐮). Denoting a basis function by 𝜑𝛾, we can discretize this operator 

∫𝜑𝛾(𝐱) 𝐤[𝐮](𝐱) d𝑣 = ∫𝜑𝛾(𝐱) 𝐫(𝐱) d𝑣 

from which a discretized form of the linear transformation is derived, as 

[𝑘][𝑢] = [𝑟]; 

depending on the choice of 𝜑𝛾, the above discretized form corresponds to a solid element 

analysis or a beam element analysis. 

In the solid element analysis, 𝐮 is discretized in terms of the basic functions {𝜂𝛽} as 

𝐮 = ∑𝐮𝛽𝜂𝛽 with 𝐮𝛽 being components of [𝑢𝑐]. When 𝐫 is discretized in a similar form, as 

𝐫 = ∑𝐫𝛽𝜂𝛽, then, [𝑟𝑐] is given as a product of certain coefficients (which are computed by 

integrating 𝜂𝛽) and components of 𝐫𝛽. Note that [𝑟𝑐] is not given by 𝐫𝛽 since the basis 

functions {𝜂𝛽} are not orthonormal. 

Even though it is not mathematically rigorous, we may approximately find 𝐫 from 
[𝑟], considering that 𝐫 physically corresponds to a body force; it is a standard practice to a 

given distribute body force to nodal force or [𝑟]. Once a function 𝐫 is found, discretizing it 
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in terms of the basis functions is not a difficult task. However, we have to emphasize that 

this procedure is an approximation and not a rigorous conversion. 
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Chapter 6  

Concluding Remarks 

This dissertation presents an application of a meta-modeling theory to a bridge structure, in 

order to realize seismic structural response analysis that uses a set of consistent models. 

Such seismic structural response analysis can be used as a more rational estimation method 

of possible earthquake disaster for an urban area as compared to the current method that is 

based on fragility or vulnerability curve. Considering the quality and quantity of data that 

are available for a bridge structure, we develop a methodology based on the meta-modeling 

theory for the automated model construction. Gradually increasing the fidelity of an 

automated model, we are able to assure the model quality, since model validation is easier 

for a simpler model with a fewer parameters and a simpler model is used as reference in 

validating a more complicated model.  

Following are the three main achievements of this study: 1) the rigorous conversion 

from a solution of a solid element model to a solution of a beam element model or vice 

versa; 2) the construction of a simple analysis model which shares the fundamental dynamic 

properties with a solid element model; and 3) the development of modules that 

automatically decodes and interprets a set of digital data of a structure and constructs a set 

of consistent analysis models for seismic structural analysis. 

It is shown that the solution conversion method, which is based on the meta-

modeling theory, can be used as an alternative of an ordinary method of computing cross 

sectional forces of a solid element method, which integrates stress acting on a cross section, 

with laborious determination of the value of stress on the cross section. Further 

investigation is needed to ensure the potential usefulness of the solution conversion method. 

The solution conversion method should be applied to a two-dimensional structure such as 

plate and shell in the future. The solution conversion method may provide a possibility of 

improving the CG method, as it provides a beam element solution as an accurate initial 

solution of a solid element analysis. From the viewpoint of computational mechanics, the 

use of a structure element solution as pre-conditioning of the solver of the solid element 

analysis seems interesting as well as important. While there are numerous mathematical 

studies about pre-conditioning, as far as the author has studied, little research achievement 

is found to develop physics-based pre-conditioning, i.e., the use of a solution of an 

approximated problem; see Sec. 5.2. 

Simple models such as CLMM and CMSM are developed in this study. It is shown 

that both CLMM and CMSM are successfully constructed for different types of multi and 

single -span bridge structures. It is also shown that the constructed CMSM is consistent in 

the sense that it has the same natural frequencies of the first few modes and is able to 

compute dynamic response of displacement as well as force. This is due to the fact that the 

CMSM is constructed by applying purely mathematical approximations to the Lagrangian 

of continuum mechanics. It does not lose any physical meaning of an original continuum 

mechanics model but does solve the mathematical problem of the continuum mechanics 

model approximately. Current CLMM needs to be improved by introducing a deformable 

deck structure in its formulation, which will give complete consistency with the first mode 
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of the frame model of a bridge structure of arbitrary configuration. There is a possibility of 

constructing a more accurate CMSM by extending the number of the mass points. Also, 

there is a possibility of extending CMSM and CLMM to non-linear structure. At least, it is 

straightforward to apply the meta-modeling theory to incremental response of a non-linear 

elasto-plastic structure. 

The developed module of the automated model construction is able to use two sets 

of digital data (Auto CAD and GIS) of a target bridge structure and to generate a solid 

element model, a frame model, a CMSM or a CLMM. The module is tested with a set of 

multi-span bridge and a part of a freeway network in Tokyo metropolitan area successfully. 

The quality of these models of distinct fidelity is assured by comparing the fundamental 

properties and the synthesized response. These results highlight two necessary 

improvements required for the module: 1) need of consistency in connection and boundary 

condition treatment for frame element model; and 2) need of other structure element models 

such as plate and shell for this module. Those necessary improvements need to be 

implemented to this automated model construction module in future. 
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Appendix A  

Index Form of 𝓛∗ 

In terms of tensor components of a Cartesian coordinate system, (𝑥𝑖 for 𝑖 =  1, 2, 3), the ℒ∗ 
is expressed as 

ℒ∗ = ∫
1

2
𝜌𝑣𝑖𝑣𝑖 − (𝜎𝑖𝑗𝜖𝑖𝑗 −

1

2
𝜎𝑖𝑗𝑐𝑖𝑗𝑘𝑙

−1 𝜎𝑘𝑙)  d𝑣, 

where summation convention is employed for repeated indices. 
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Appendix B  

Definition of Approximate Function 

An exact solution lies in a function space of continuum mechanics, i.e., a set of three 

displacement component functions for three spatial variables and one temporal variable. 

When a suitable subset is defined for the function space of continuum mechanics, we can 

find the most proper function in this subset that is closest to the exact solution. This function 

in the subset is regarded as an approximate solution in the sense that it belongs to the subset 

and is closest to the exact solution.  

As an illustrative example, suppose that {𝑢1, 𝑢2, 𝑢3} = {𝑥1 + 𝜖𝑥2, 𝜖𝑥3, 𝜖𝑥2𝑥3} is an 

exact solution at quasi-static state, with 𝜖 ≪ 1. An approximate solution is {𝑢1, 𝑢2, 𝑢3} =
{𝑥1, 0, 0} as terms of the order of 𝜖 are dropped. This approximate function is regarded as a 

function in the subset of {𝑢1, 𝑢2, 𝑢3} = {𝑈(𝑥1),0, 0}, i.e., a subset of functions whose non-

zero component is 𝑢1 only and it depends on 𝑥1. 
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Appendix C  

Conventional Force Computation 

For simplicity, we consider a force acting on the spring that connects the first and second 

masses. That is, 𝐹(𝑡) = 𝐾2(𝑈
2(𝑡) − 𝑈1(𝑡)) . By definition, the spring constant 𝐾2  is 

expressed in terms of 𝑘∗𝛼𝛽 ’s, which is computed by using ∫ 𝛁𝛙𝛾: 𝐜: 𝛁𝛙𝛾 d𝑣 . This 

integration is the volume integration of the square of the mode gradient over 𝑉 (or the entire 

structure). More explicitly, denoting 𝛁𝛙𝛾 by 𝐰𝛾, we can rewrite the volume integration as 

∫ 𝛁𝛙𝛾: 𝐜: 𝛁𝛙𝛾 d𝑣 = ∫𝐰𝛾: 𝛔𝛾 d𝑣, 

where 𝛔𝛾 = 𝐜: 𝛁𝛙𝛾  is the stress field that is associated with the 𝛾 -th mode, 𝛙𝛾 . The 

volume integration is interpreted as the weighted average of this stress; the weight is the 

gradient of the mode. 
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Appendix D  

Conjugate Gradient (CG) Algorithm 

 

Algorithm 1. This algorithm is detailed below for solving 𝐀𝐱 = 𝐛 where 𝐀 is a real, 

symmetric, positive-definite matrix. The input vector (initial guess) 𝐱0  is constructed 

from equivalent beam system and 𝜆 is expected relative residual value of iteration. 

 𝐫0 ≔ 𝐛− 𝐀, 𝐩0 ≔ 𝐫0, 𝑘 ≔ 0. 

 For 𝑘 ≔ 1,…… , 𝑛 − 1 (𝑛 is maximum number of iterations) 

 𝛼𝑘 ≔ 
𝐫𝑘
𝑇𝐫𝑘

𝐩𝑘
𝑇𝐀𝐩𝑘

  

 𝐱𝑘+1 ≔ 𝐱𝑘 + 𝛼𝑘𝐩𝑘 

 𝐫𝑘+1 ≔ 𝐫𝑘 − 𝛼𝑘𝐀𝐩𝑘 

 if ||𝐫𝑘+1||2 /||𝐛||2 >  𝜆 then exit loop 

 𝛽𝑘 ≔ 
𝐫𝑘+1
𝑇 𝐫𝑘+1

𝐫𝑘
𝑇𝐫𝑘

  

 𝐩𝑘+1 ≔ 𝐫𝑘 + 𝛽𝑘𝐩𝑘 

 the result is 𝐱𝑘+1. 
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Appendix E  

Automated Construction of Solid Element Model 

and Frame Model for Bridge Structure 

 

The automated construction of a solid element model and a frame model is regarded as data 

conversion from a given set of digital data of a target bridge structure to a suitable analysis 

model of seismic structural response analysis. A key issue is that model could be a solid 

element model or a frame model. We develop modules for the automated construction, 

which is able to use AutoCAD data and GIS data and to construct a digital file which is 

used as input of data of the seismic structural response analysis.  

The processes of the automated construction are divided into the following three 

sub processes: 

I. Estimate global parameters of a target bridge structure; 

II. Estimate local parameters of components of the target structure; and 

III. Construct frame and solid models using the estimated global and local parameters. 

Note that the AutoCAD data consist of numerous files, each of which includes 

information about configuration and material properties of a structural component. GIS data 

are used to allocate the structure components in a unified manner, so that the components 

form a structure. Global and local parameters are thus introduced to relate information of 

the AutoCAD data to the whole structure that is specified by the GIS data. 

E.1 Estimation of global parameters 

Estimation of the global parameters from the corrected AutoCAD data are briefly explained 

in Figs. e.1 and e.2. The global parameters include the following three parameters: 

I. Pier location information with elevation information in the global coordinate; 

II. Freeway centerline information in the global coordinate; and 

III. Deck connectivity information for the full freeway network. 

 

E.2 Estimation of local parameters 

The local parameters estimation process is briefly explained in Fig. e.3. Estimated are the 

following three local parameters: 

I. Closed polygon information for each pier and deck structures in the local 

coordinate; 

II. Beam cross-sectional properties with geometric data for pier and deck structures in 

the local coordinate; and 

III. Node-connectivity data of frame model for pier structure. 
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E.3 Estimation of local parameters 

The estimated global and local parameters of a target bridge structure which is a part of a 

freeway network is arranged systematically, in order to construct a frame model and a solid 

element model. Digital files of these models are made in CAD format; see Figs. e.4 and e.5. 
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Start  

Corrected 

AutoCAD data 

(.dxf) 

Read AutoCAD data  

Pier location data 

available? 

End 

Modify .dxf file 

(Manually)  

Assign a pier ID per pier 

location 

Number of pier 

IDs = Number of 

pier locations? 

Modify .dxf file 

(Manually)  

Create approximated 

centre line from pier 

location data 

Is the freeway 

centreline data 

available? 

Ameliorated pier 

location information 

(.dat) 

Assign pier elevation for 

each pier location 

Pier 

elevation 

data 

Freeway centre line 

information (.dat) 

Yes 

Yes 

Yes 

No 

No 

No 

Figure e.1: Estimation of freeway global parameters: pier location information and centre line 

information of freeway network. 
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Figure e.2: Estimation of freeway global parameter: deck connectivity information of freeway 

network. 
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 Fig. e.6 
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Figure e.3: Estimation of freeway local parameters. 
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Node-connectivity data 

of frame model for pier 
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Calculate beam 
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Fig. e.7 and 8 

Fig. e.9 

 Fig. e.10 

 Fig. e.11 

Fig. e.12 
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Freeway ameliorated 

pier location and 

centerline 

information (.dat) 

Create freeway centreline and pier 

location on global scale 

Create local axis for each pier 

structure 

Create frame model of pier structure 

for each pier location 

Node-connectivity 

data of frame 

model (.dat) 

Create frame model to represent 

deck structure 

Deck connectivity 

information (.dat) 

Link members of frame model of 

full freeway with beam cross-

sectional properties for analysis 

Beam cross-

sectional 

properties of each 

member (.dat) 

  

End  

Figure e.4: Construction of frame CAD model for target freeway network. 

 Fig. e.13 

 Fig. e.13 

 Fig. e.14 

 Fig. e.14 
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Figure e.5: Construction of solid CAD model for target freeway network. 
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 Fig. e.13 

 Fig. e.13 

 Fig. e.15 

 Fig. e.16 
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8037 8040 8043 8036

8038 8041 8044

8039 8042 8045

Remove as deck structure

Remove as foundation structure

Pier structure

Foundation structure

Deck structure

Input line set

Figure e.6: Construction of individual data set for each pier cross-section. 

Figure e.7: Separation of geometric data by template matching method. 

Figure e.8: Example for separation of geometric data by template matching method. 
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Input line set

Closed polygon

Skeleton from thinning process

Flitted skeleton data

Input closed polygon

Centreline diagram

Node connectivity data

Mesh data

Figure e.9: Developed closed polygon for separated pier structure. 

Figure e.10: Thinning process for frame model construction. 

Figure e.11: Construction of node-connectivity data for frame model.  
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Input data Estimated cross-section data

XY

Z

Figure e.12: Estimation of geometric data of cross-sections for pier structure. 

Figure e.13: Construction of freeway’s centreline, pier locations and local axis 

for each pier location.  

Figure e.14: Construction of frame model. 
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XY

Z

XY

Z

Figure e.15: Construction of NURBS surfaces for each pier and deck structure. 

Figure e.16: Construction of volume for each member. 
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