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Abstract

This thesis proposes a framework for sampled-data control systems with a large class of samplers
and holds and, based on it, investigates the best achievable performance of sampled-data control
systems. This research is motivated by a simulation result that the best achievable performance
of sampled-data control systems does not always converge to that of continuous-time control
systems even if the sampling period approaches zero.

By introducing the notions of regular samplers and holds, we can treat a large class of
samplers and holds. These notions enable us to treat practical samplers and holds in a more

convenient way than the conventional notions of generalized samplers and holds. Moreover,

using a lifting technique and a matrix representation of an operator, some basic properties
of a sampled-data control system are derived. Especially, one property of them expresses a
relationship between a sampled-data control system and a continuous-time control system and
plays an important role in the subsequent analysis

Based on the prepared framework for sampled-data control systems, their best achievable
performance is studied. Here, the best achievable performance of sampled-data control systems
means the best performance obtained by adjustment of a discrete-time controller when a plant,
a sampling period, a sampler, and a hold are provided. This best achievable performance
can be improved by an appropriate choice of a sampling environment, that is, the triplet of
a sampling period, a sampler, and a hold. First, the theoretical bound for this improvement
is compared with the best achievable performance of continuous-time control systems. It is
shown that these two are not always equal. This means that the best achievable performance
of continuous-time control systems may not be recovered by sampled-data control systems

Next, supposing that a sequence of sampling environments is provided, we obtain a necessary

and sufficient condition in order that the best achievable performance of sampled-data control
systems for each environment converges to the theoretical bound. When the theoretical bound
is equal to the best achievable performance of continuous-time control systems, this convergence

means that the best achievable performance of sampled-data control systems converges to that

of continuous-time control systems. Simplification of the obtained condition is also considered.
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Preface

In this thesis, I study the best achievable performance of sampled-data control systems. Special
attention is paid on how this best performance depends on a choice of a sampling period.
a sampler, and a hold. One reason why I began this study is that I have been interested
in a relationship between control and information since I read Amari’s monograph [1] and
paper [2] and Ohara’s thesis [69]. (The contents of [69] was published in English as [70].) In
the monograph (1], Amari developed a differential-geometric theory on statistical estimation

he considered information

and test, which he named information geometry; in the paper 2

geometry of a system theory; in the thesis [69], Ohara applied information geometry to a control
system design. Because | wrote my master-course thesis on sampled-data control systems, it
was natural for me to consider how information is related to a sampled-data control system
A sampled-data control system is a system to control a continuous-time plant by means of
a discrete-time controller. If we are interested in its behavior only at sampling instants, this
system can be regarded as a discrete-time control system. Thus, we use the term of a sampled-
data control system when we are interested also in its intersample behavior and regard the

system as a hybrid one in the sense that it includes both continuous-time signals and discrete-

time signals. The time period with which the discrete-time controller works is called a sampling

period. Now, suppose that, for a provided sampled-data control system, its sampling period
is made smaller. Then, because more information can be used during a fixed time period in
order to control a plant, it is considered that a control performance can be improved with an
appropriate choice of a controller. I expected that I can capture the notion of information in
control by noticing this performance improvement. From this idea, I started the present study.

In addition to the interests mentioned above, I had another reason to begin the present

research. Since a lifting technique was introduced by Yamamoto [94, 9

a lot of papers have
been published on sampled-data control systems. Many of them are based on the following
idea. When a sampling period, a sampler, and a hold are chosen a priori in a sampled-data

control sy

tem, a lifting technique enables us to regard this system just as a discrete-time
control system taking into account its intersample behavior. Hence, we can apply here well-

established methodologies for discrete-time control systems, and this means that we can analyze

and synthesize a sampled-data control system considering its intersample behavior. Although
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this is a great progress, I somehow felt unsatisfied. This is because, if we consider a sampled-
data control system only along this approach, a theory on a sampled-data control system is just
a translation of an existing theory on a discrete-time control system. I rather wanted to consider
a unique characteristic of a sampled-data control system, which is not possessed by either a
continnous-time control system or a discrete-time control system. Then, what characterizes a
sampled-data control system? I noticed that in a sampled-data control system we can choose
a sampling period, a sampler, and a hold so as to get a good control performance, while we
cannot do this in a continuous-time or discrete-time control system. So this is one of characters
of a sampled-data control system. Considering in this way, [ found it interesting to investigate
how the best achievable performance of sampled-data control systems depends on a choice of a
sampling period, a sampler, and a hold.

Intuitively, it seems obvious that the best achievable performance of sampled-data control

stems as the sampling period approaches

systems approaches that of continuous-time control
sero. It is considered that a sampled-data controller is widely accepted as a substitute of a
continunous-time controller partly because this conjecture is believed to be correct. However,
this conjecture is not always correct as will be seen in Example 1.3. Considering that this is
a fundamental conjecture in the use of a sampled-data controller, we have to clarify why and
when this conjecture fails to hold.

This thesis investigates properties of the best achievable performance of sampled-data con-
trol systems and gives a necessary and sufficient condition in order that the best achievable
performance of sampled-data control systems converges to that of continuous-time control sys-
tems. From this result, it is seen that the mentioned convergence to the best continuous-time
control performance depends on any of a provided plant, a sampling period. a sampler, and
a hold. The obtained condition gives us some insight about what is important to improve
sampled-data control performance.

I was helped by many people while I did this research and compiled it into this thesis.

I am particularly thankful to Professor Hidenori Kimura in the University of Tokyo. Since
he came to the University of Tokyo in 1995, he has allowed me to work as his research associate.
In spite that he himself was always under the pressure of a horrible amount of works, he took
care to lighten my work load and let me concentrate on the research. Moreover, he gave me
a number of valuable comments on the research and encouraged me when I tended to lose
enthusiasm. He also carefully read the draft of this thesis and gave me many suggestions. |
can never imagine that I could accomplish this research without his help.

Thanks are due to Professor Seiichi Shin in the University of Tokyo. He was my advisor

ce from

while I was a doctoral-course student from 1993 to 1995. His unique viewpoints fi

any conventional ideas stimulated me a lot. Particularly, he suggested me to doubt whether

the best achievable performance of sampled-data control s

ems always converges to that of

Preface ix

continuous-time control systems.

I am grateful to Professor Shinji Hara in Tokyo Institute of Technology for his valuable

comments. Especially, he gave me an idea to try an anti-aliasing filter whose bandwidth depends
on the sampling period. In fact, with such a filter, it is often the case that the best achievable
performance of sampled-data control systems does not converge to that of continuous-time

control systems. Therefore, this comment was really a key point to develop the present theory

I wish to express my gratitude to Professor Yutaka Yamamoto in Kyoto University. He
gave me instructive advice not only on my research but also on my writing style, mathematical
reasoning, and manners as a researcher. Furthermore, I am obliged to Professors Hara and
Yamamoto for giving me a chance to talk about the present topic at the Second Asian Control
Conference in 1997.

I am indebted to Professor Hisaya Fujioka in Kyoto University for his comments on sampled-

data control systems and linear matrix inequalities. My thanks go to Professor Jacquelien M.

A. Scherpen in Delft University of Technology and Dr. Lubomir Baramov in the University of
Tokyo for reading my earlier papers on the present topic and giving me helpful suggestions.

I would like to express my appreciation to Professor Fumio Harashima in Tokyo Metropolitan
Institute of Technology and Professors Kokichi Sugihara and Tsunehiro Takeda in the University
of Tokyo. who were the members of the judging committee of my doctoral degree together with

Professors Kimura and Shin. Their comments given in the prelimina

'y presentation helped me
a lot to rewrite this thesis.

Acknowledgments are due to the members of the Fifth Laboratory for Information Physics,
Department of Mathematical Engineering and Information Physics, the University of Tokyo.
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me many comments and kindly did a lot of works to manage the laboratory in place of me.
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Chapter 1

Introduction

1.1. Background and Objectives

A Continuous-Time Control System and a Sampled-Data Control
System

Today's engineering cannot be discussed without mentioning digital techniques such as digi-
tal computation and digital signal processing. Control is not an exception. In a theoretical
world. researches on continuous-time controllers are still dominating because a system with
a continuous-time controller has a simple structure and is easy to be investigated. However,
in a practical world, most of controllers are realized as sampled-data ones. This is because a
sampled-data controller is constructed with digital techniques and can realize a more compli-
cated control law with higher precision than continuous-time controllers, which are based on
analog techniques.

Let us begin by showing an example of a continuous-time control system.

Example 1.1. We consider a system to control an inverted pendulum, which is often used for
a laboratory experiment of a control s

tem. This system is presented in Figure 1.1 (a). A
stick called a pendulum is connected to a cart by a free joint and the cart is driven by a motor
along a straight rail in both directions. By adjusting a voltage given to the motor, we can
change the velocity of the cart as we like. Moreover, a sensor attached to the free joint enables
us to measure the angle between the vertical line and the pendulum. Our purpose is to keep
the pendulum standing up vertically on the free joint by adjusting the voltage to the motor
based on the measured angle of the pendulum. This is a desired function of a controller to be
designed.

Figure 1.1 (b) shows an abstraction of the system of the inverted pendulum. The symbol
u(t) stands for the voltage given to the motor at the time ¢, whereas y(t) expresses the angle
of the pendulum at the time ¢.

The voltage u(t), which is really given to the motor, may be
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+/lpendulum

free joint

— cart —

QT ¢

voltage to 1.controller F—rle of

the motor the pendulum
(a)
Figure 1.1. A continuous-time control system to control an inverted pendulum:

(a) the appearance of the system; (b) its abstraction.

different from the voltage u/(t), which the controller intends to give, because a disturbance d(t)
comes in from the outside. The angle y(t) is also contaminated by a sensor noise n(t) and the
measured angle y/(t) is somewhat different from the real angle. Suppose that all the signals
u(t), y(t). ... are functions of a continuous time £. A symbol P stands for a mathematical model
that characterizes the dynamics from the actual voltage u(t) to the actual angle y(t). This P is
an object to be controlled and is called a plant. By neglecting nonlinearities and higher-order
dynamics included in the real dynamics, we describe the plant P in linear ordinary differential
equations of a finite order. This P can be regarded as an operator that maps a function u(t)
to a function y(t).

The block K is a controller to be designed. At least, a controller must make the pendulum
stand up on the free joint even if a small disturbance d(t) and a noise n(t) come in in
other words, a controller must make the system stable. In addition to it, a controller is usually
required to make the system to have a good performance. For example, it may be desired
that the system attenuates the effect of a disturbance d(t) and a sensor noise n(t); It may be
desired that the system is stabilized robustly against the dynamics neglected at modeling. Here,
suppose that the dynamics of K is described by means of differential equations just as P. This
description is appropriate when K is realized in an analog circuit for example. In such a case,
K is called a continuous-time controller and a constructed system is called a continuous-time
control system. O

A continuous-time control system has a simple structure in the sense that its two compo-
nents P and K are both expressed by differential equations. Because of this simplicity, a lot of

methods to design a controller K has been proposed. Among them, modern design methodolo-

gies like H*™ and H? are distinguished from the classical ones like PID in the sense that the best

1.1. Background and Objectives 3

achievable performance can be computed theoretically. This means that an engineer does not
have to repeat trial and error in vain; If the provided performance specification is impossible
to be achieved, he can say so. A problem here is that, if we try to construct a continuous-time
controller in a real world using an analog technique, it is difficult to realize a complicated con
trol law with a high precision. These days, control engineers are asked to solve more and more

complicated control problems. For instance, a plant to be controlled often has multiple inputs

and multiple outputs; several performance specifications such as disturbance attenuation and
robust stabilization are assigned simultaneously. In such a situation, controllers that accom-
plish the best achievable performance tend to be more complicated than the ones practically
realizable as continuous-time controllers. Then, it is questionable whether the best achievable
performance is really attained.

A remedy for this is to introduce a sampled-data controller. Since a sampled-data controller

is constructed based on digital techniques, it can realize a complicated control law with a high

precision.

Example 1.2. Let us consider to control the system of Example 1.1 using a sampled-data
controller. The resulting system typically looks like Figure 1.2 (a). Here, a controller is a
digital one frequently implemented in a digital computer. Since the input and the output of
this controller are digital signals, we need analog-to-digital (A/D) and digital-to-analog (D/A)
signal converters in order to connect this controller to our inverted pendulum. Moreover, since
analog-to-digital conversion is sensitive to a high-frequency noise, it is usual to cut such a noise
using a low-pass filter, which is called an anti-aliasing filter.

Figure 1.2 (b) shows an abstraction of the system in (a). Here, an analog signal is modeled
as a function of a continuous-time t and is called a continuous-time signal. A digital signal is
regarded as a sequence and is called a discrete-time signal. In this figure, a continuous-time
signal is presented by a solid arrow, whereas a discrete-time signal by a broken arrow. The plant
P is the same as in the previous example. The symbols F', S, K4, and H denote the system
components corresponding to an anti-aliasing filter, an analog-to-digital converter, a digital
controller, and a digital-to-analog converter, respectively. It is assumed that the operator F is
described in differential equations and has a low-pass property. The block S is called a sampler.
y"(k7)

with the symbols in the figure. See Figure 1.3 (a) for the operation of this typical S. Here,

There can be various sampling schemes. Typically. S is assumed to work as y/f[k|

7 > 0 is a time period chosen in advance and is called a sampling period. From now on, this
particular sampler is called the ideal sampler with the sampling period 7. The block Ky is called
a discrete-time controller. Tts operation is assumed to be expressed by difference equations while
that of a continuous-time controller is by differential equations. Finally, the block H is called
a hold. The most typical hold works as u'(k7 +t) := uj[k] for any k =0,1,... and 0 < t < 7.

See Figure 1.3 (b). This hold is called the zero-order hold with the sampling period 7. Just
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angle of

voltage to
the pendulum

the motor

d(t) u(t) | y(t)

i - K == I iy
u'(t) Rl el ly"(t)

(b)

Figure 1.2. A sampled-data control system to control an inverted pendulum:

(a) the appearance of the system; (b) its abstraction.
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like the sampler case, there can be many other types holds. A train of blocks F. S, K4, and H
is called a sampled-data controller. As in Example 1.1, the system components F, S, Ky, and

H can be regarded as operators.

0] vd[2]

I I i
0 T 27

(a) (b)
Figure 1.3. The operation of (a) the ideal sampler and (b) the zero-order hold
Samplers and holds different from the ideal sampler and the zero-order hold are called gen-

eralized samplers and holds, respectively. If we choose a generalized sampler and a generalized

hold appropriately for a provided plant, it is possible to improve a control performance beyond

the best performance achievable by the ideal sampler and the zero-order hold [55, 54]. However,
realization of these generalized devices is more difficult than the typical ones.
A drawback of a sampled-data controller is that it makes a system more complicated than

a continuous-time controller. Particularly in a sampled-data control system, both continuous-

time signals and discrete-time signals are included; one component is described in differential

equations and another is in difference equations. Because of this hybrid nature, synthesis and
analysis of a sampled-data control system have been difficult for a long time. Let us see this

next.

Synthesis and Analysis of a Sampled-Data Control System

Let us consider to synthesize a sampled-data control system for a provided plant P. We suppose
that a sampling period 7. an anti-aliasing filter F, a sampler S, and a hold H are given in some
way. What is considered here is to design a discrete-time controller Ky so that the resulting
system is stable and has a good performance. We mean this design of Ky by synthesis of a

5, 20], that

sampled-data control system. Two approaches have been taken to this problem |:

is,

(i) designing a controller in the continuous-time domain and discretizing it;

ii) discretizing a plant and designing a controller in the discrete-time domain
gafj gning
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(see Figure 1.4). Once Ky is obtained, we can construct a sampled-data controller by combining

it with a provided sampler and hold.

design in the
continuous-time domain

/i + K
(i)
discretization | (ii) (i) | discretization
|
|
' (ii) '
d - K4

design in the
discrete-time domain

Figure 1.4. Two conventional approaches for a synthesis of a sampled-data

ed plant; K is a

control system: P is a plant to be controlled; Py is a discret

continuous-time controller; Ky is a discrete-time controller to be obtained.

In the first approach (i), a continuous-time controller K is designed for a plant P just as

zed into K4. One way for

a design of a continuous-time control system and then K is discreti
this discretization is to put Ky := S'KH' using some sampler S’ and some hold H'. (It is
not necessary that S’ and H' are identical with S and H, respectively.) Another way is to
transform K by a bilinear transformation. In this approach (i), we can use well-established
methodologies to design a continuous-time controller K. Moreover, since we carry out a con-
troller design in the continuous-time domain, we can give a performance specification in a
natural way using concepts in the continuous-time domain. A problem of this approach is that,
even if a continunous-time controller K attains a desirable control performance, actually imple-
mented into the system is a sampled-data controller H K4SF. Therefore, when the dynamics of
a sampled-data controller is not close enough to that of the original continuous-time controller,
a designed sampled-data control system does not behave as expected; sometimes it even falls
unstable although a continuous-time control system made of P and K is stable. It is often said

s almost similar to

that if the sampling period 7 is “small enough,” the dynamics of HKqSF
that of K. However, this does not give an answer to a question like “What sampling period is

small enough?” or “What shall we do if the sampling period is not small enough?”
g F I

In the second approach (i), we modify the system diagram of Figure 1.2 (b) as in Figure 1.5

and define a discretized plant by Py SFPH. Then, both Py and K4, which constitute the

system, are expressed by difference equations. Let us call this type of system a discrete-

time control system. The structure of a discrete-time control system is as simple as that of

1.1. Background and Objectives 7

Py

+ Ky -

Figure 1.5. Interpretation of a sampled-data control system as a discrete-time

control system.

a continuous-time control system, whose components are described in differential equations.
Actually, design methodologies for a discrete-time control system have been developed almost
in a parallel way to those for a continuous-time control system [20, 40. 99]. Based on them, a

discrete-time controller Ky can be obtained. As far as the dynamics at the sampling instants

t = 0,7,27,... is concerned, no approximation is involved in this approach. Therefore. the
resulting sampled-data control system behaves exactly as expected at least at the sampling
instants. One disadvantage of this approach is that the intersample behavior of the system is
completely neglected. Indeed, it is reported that a sampled-data control system designed along

this approach sometimes behaves badly between the sampling instants, though its behavior at

sampling instants is good. This phenomenon is called ripples. Again, it is said that, if the
sampling period is “small enough,” such a phenomenon does not occur. However, this cannot
be a real answer as we have seen before. Another disadvantage is that it is not easy to translate
provided performance specification into terms of the discrete-time domain, where a controller
design is carried out. If this translation is not appropriate, it may happen that a designed
sampled-data control system does not satisfy the original performance specification given in
the continuous-time domain.

So far, we have seen how difficult synthesis of a sampled-data control system is. Similarly,

analysis of this system is not easy either. There are two approaches to analyze it. One is to

regard a sampled-data controller as an approximation of some continuous-time controller and
to analyze the continuous-time control system made of this continuous-time controller and the
provided plant. This is analogous to the synthesis approach (i). Another approach is to neglect

the intersample behavior of the provided sampled-data control system and to analyze it in the

discrete-time domain. This corresponds to the approach (ii) before. It is now obvious that
these approaches for analysis have problems. The first approach does not really analyze the

provided sampled-data control system. If the approximation by a continuous-time controller
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is not good, the performance of the continuous-time control system, which is analyzed, is
completely different from the real performance of the original sampled-data control system.
The second approach for analysis neglects the intersample behavior. Therefore, it is possible
to overlook a bad intersample behavior. Moreover, since analysis has to be carried out in the
discrete-time domain, it is not obvious what it means in the continnous-time domain.

A sampled-data controller is introduced to realize a complicated control law with a high
precision. Although the best achievable performance of continuous-time control systems can
be computed theoretically, an actual system is realized as a sampled-data control system in
many cases. Here, it is natural to conjecture that the best performance theoretically achievable

by continuous-time control systems can be asymptotically attained by sampled-data control

systems if the sampling period is chosen “small enough.” However, this conjecture is not easy

to be proven since synthesis and analysis of a sampled-data control system are not straightfor-
ward. Indeed, it is difficult to obtain the best achievable performance of sampled-data control
systems. [t is also difficult to analyze the performance of a provided sampled-data control
system considering intersample behavior without approximation.

Astrom et al. | wowed that, when a continuous-time plant having a relative degree larger

than two is discretized with a small sampling period, the plant gains an additional unstable
zero. This result is interesting because an unstable zero is considered to degrade the control
performance and thus it seems to be against our conjecture. Although the effects of unstable
zeros can be quantified in terms of integral-type constraints (See [37, 14] and the references
therein), direct relationships between unstable zeros and the best achievable performance are
not clear when the performance is measured by the £%-induced norm or the H*norm. Hence,

it could not be a help to prove whether our conjecture is correct or not.

Lifting-Based Approach to a Sampled-Data Control System

In these two decades, many researchers have tried to directly deal with a hybrid nature of a
sampled-data control system. Thompson et al. [88, 87] used a conic sector to capture this hybrid

investigated stability of a sampled-data control system in

nature. Francis and Georgiou |
detail. Leung et al. [64] analyzed this system assuming that a band-limited input is injected into
the system. Keller and Anderson [59] tried to handle the intersample behavior of a sampled-data
control system by discretizing the system with a smaller period than the controller period.
Difficulty in the treatment of a sampled-data control system was removed to a consider-
able degree by a so-called lifting technique, which was introduced by Yamamoto [94, 95. In
particular, it enables us to synthesize and analyze a sampled-data control system excluding ap-

proximation unlike the fir:

the system unlike the second approach. A basic idea of lifting is to chop a provided continuous-

time signal a(t) at each sampling instant ¢t = k7, k = 0,1,..., and to regard it as a sequence

approach before and taking into account the intersample behavior of
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of functional fragments {a[k|}?*,, where each a[k] is a function defined as a[k|(t)

for 0 <t < 7. See Figure 1.6. Note that this sequence can be considered as a discrete-time
signal, which takes a value in a functional space defined on [0.7). Doing so. we regard all the
continuous-time signals included in a sampled-data control system as discrete-time ones. Then,
a hybrid nature of the system is not a problem anymore and its synthesis and analysis become

much easier, namely, they can be done by applying techniques for discrete-time control systems

a(t)

afl)(t) al2)(t) a3)(t)
|

RN

0T
s 0 i p =

N

Figure 1.6. Lifting of a continuous-time signal a(t).

Along this line, existing methodologies for synthesis and analysis of control systems have

been translated so as to be applicable to sampled-data control systems. Since these new method-

ologies consider an intersample behavior of systems without any approximation, clearly they

are superior to conventional ones. This was done for the H>*-control by Bamieh et al. [11, 9],
Tadmor [86], Toivonen [89], Kabamba and Hara [56], Hayakawa et al. [48] and others; for the
H?-control by Chen and Francis [18, 19, 16], Khargonekar and Sivashankar [61]. Bamich and

Pearson [10], and Hagiwara and Araki [42] to name a few. The £'-control for sampled-data con-

trol systems was considered by Dullerud and Francis [28] and Bamieh et al. (8]. A sampled-data
robust stabilization was studied by Sivashankar and Khargonekar [83] and Dullerud and Glover
[29. 30, 31, 27]. Although many of these papers assumed the ideal sampler and the zero-order
hold for digital /analog signal conversion, a lifting-based approach is effective for a system with
a generalized sampler and hold. This was pursued in [45, 86, 53, 56, 5, 66] to name a few.
Especially, Tadmor [86] considered not only an optimal design of a discrete-time controller Ky
but also that of a sampler and/or a hold. (A closely related problem was considered by Sun
et al. [84].) Mirkin and Rotstein [66] considered lifting of a sampler and a hold, whereas most

of other papers have used lifting of a plant only. A multirate sampled-data control system is

a general

zation of a sampled-data control system and has been investigated for a long time
(63, 58, 6, 41, 67, 43, 33]. In a multirate system, each of a controller, a sampler, and a hold
may work with its own time period. Lifting can be used in order to analyze this system, too.

About this topic, there are the works of Voulgaris and Bamieh [93] and Chen and Qiu [21, 81].




10 Chapter 1. Introduction

The Best Achievable Performance of Sampled-Data Control Systems

Now let us consider our conjecture about the best achievable performance. From now on,
sometimes we use a shorter term, the best continuous-time control performance, in place of
the best achievable performance of continuous-time control systems. Similarly, we sometimes
say the best sampled-data control performance meaning the best achievable performance of
sampled-data control systems. In these terms, what we are interested in is whether the best
sampled-data control performance converges to the best continuous-time control performance as
the sampling period approaches zero. Since we have a lifting technique, we are ready to consider
this problem. Indeed, it is now possible to measure the performance of a sampled-data control
system and that of a continuous-time control system using the same performance indices such as
the £2-induced norm and the H?-norm. Moreover, we can obtain the best sampled-data control
performance with respect to these indices and compare it with the best continuous-time control
performance. Trentelmen and Stoorvogel [91] and Osburn and Bernstein [80] chose the H2-norm
as the performance index and proved that the best sampled-data control performance converges

to the best continuous-time control performance as the sampling period approaches zero. Hara

et al. [45] chose the £%-induced norm (or equivalently the H**-norm) as the performance index
and did the same thing in a special case. (Tadmor [86] considered a closely related problem,
on which we will comment in Remark 4.6.)

However, the above proofs treated only the situation that the ideal sampler and the zero-
order hold are used for a sampler and a hold, respectively, and the same anti-aliasing filter F'
is used for any sampling period 7. In a more general case, the best sampled-data performance
may not converge to the best continuous-time control performance. This is seen from the next

example.

Example 1.3. Here, we consider a robust stabilization problem both with a continuous-time
control scheme and with a sampled-data control scheme. As we saw in Example 1.1, an operator
P is a mathematical model of a controlled object and may be slightly different from the actual
one. Therefore, a controller needs to stabilize not only P but also a plant slightly different
from P. There are several approaches to handle this problem. One way to formulate it in the
context of the H*-control is the following.

Consider a system in Figure 1.7 (a), where a controlled object is expressed as the combina-
tion of P, A, and W. Here, the operator P expresses a nominal plant model and A stands for
uncertainty of our knowledge about the plant. Specifically, we suppose that it is known that A

is an element of the set

A(7) :={A: Ais a causal linear operator satisfying || 4| < v}

but it is not known which element it is. Here. v is some positive number and ||A|| denotes

the £%induced norm of the operator A (See Section 2.3.1 for its precise definition). The
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t2(t) w(t)

(a) (b)

Figure 1.7. Robust stabilization using a continuous-time controller: (a) a
continuous-time control system with a uncertain plant; (b) a system whose £2-

induced norm should be made small.

operator W is a known linear operator described in linear differential equations. This W is
introduced in order to tailor the uncertainty included in the plant. For example, if the plant
is not considered to be well-identified in a high-frequency range, we let W have a high gain
there. Then, the system composed of P, A, and W has a large uncertainty in this range. As
a consequence of the small-gain theorem, it can be shown that this system is stable for any
A € A(y) if and only if v ||T>—w|| < 1, where

w denotes the operator from w(t) to 2(t) in
Figure 1.7 (b) and ||7;.,|| its £2-induced norm. Therefore, in view of robust stabilization, the
best continuous-time control performance can be expressed by the infimum value of |
over all continuous-time controllers K that stabilize the system.

The things are almost the same about a sampled-data control system. Here, we consider a
system presented in Figure 1.8 (a), where the sampling period 7 and the operators P, S, F,
H, and W are provided in advance. It is proven that this system is stable for any element of
A(7) if and only if v || 5. || < 1, where T.., is an operator from w(t) to z(t) in Figure 1.8 (b)
[83]. Consequently, the best sampled-data control performance in this setting is the infimum
of [T, || over all discrete-time controllers Ky that stabilize the system.

Now, suppose that P is an unstable plant having a continuous-time transfer function 1/(s—
1). (See Section 2.3.1 for the definition of a transfer function.) Let W have a continuous-
time transfer function s + 1, which has a high gain in a high-frequency range. Then, we can

compute the best continuous-time control performance by transforming the problem into a

model-matching problem just as explained in Example 6.1.2 of [34]. In order to consider the

best sampled-data control performance, we choose S to be the ideal sampler with the sampling




(b)
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Figure 1.8. Robust stabilization using a sampled-data controller: (a) a sampled-

¥ y ks
data control system with a uncertain plant; (b) a system whose £*-induced norm

should be made small.
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period 7 and H to be the zero-order hold with the same sampling period 7. We consider two
cases regarding an anti-aliasing filter F. That is, in the first case, the transfer function of F is
chosen as 1/(7s + 1); in the other case as 1/(s + 1). Then, using an algorithm of Bamieh and
Pearson (9], for example, the best sampled-data control performance can be computed

The simulation results are presented in Figure 1.9. The solid line stands for the best sampled
data control performance when F has a transfer function 1/(7s+1). (The symbol F(s) denotes

the continuous-time tr

wsfer function of F.) It does not converge to the best continuous-time
control performance expressed by the dash-dot line even if the sampling period approaches zero
On the other hand, the broken line stands for the best sampled-data control performance with
the transfer function of F being 1/(s+1). This line does converge to the best continuous-time

control performance. I

The best achievable performances

s Sampled-data control
with F(s)

2.2

2.1 -

- With F(s)

2= —

Continuous-time control

1.9
0 0.05 0.1

Sampling period 7

Figure 1.9. The best sampled-data control performance does not always con-

verge to the best continuous-time control performance.

Gain of F (i.e., |[F(iw)|)
1

Frequency w

Figure 1.10. A gain plot of the first /” over frequencies
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If the continuous-time transfer function of F'is 1/(7s+1), its gain plot over frequencies looks
like Figure 1.10. It is a low-pass filter whose bandwidth is proportional to 1/7. This choice of a
filter seems quite reasonable considering an aliasing effect, which occurs at the ideal sampler S.
In order to see this, consider a continuous-time signal having high-frequency components beyond

the Nyquist frequency 7/7 and suppose that it is fed into the ideal sampler S. Sampled by the

ideal sampler, a distinction between the frequency w and its side-band frequencies w + 2wm
m=+1,+2,..., disappears. Because of this effect, the high-frequency components are folded
onto the low-frequency range and contaminate low-frequency components. Hence, it is often
said that high-frequency components exceeding the frequency 7/7 should be attenuated before
fed into the ideal sampler S. This is consistent with the above choice of the filter because this
filter has a low gain beyond the frequency 7 /7. However, the simulation result shows that the
best sampled-data control performance in this case does not converge to the best continuous-
time control performance even if the sampling period approaches zero. This means that our
fundamental conjecture about a sampled-data control system is not always correct. Since this
conjecture is considered to help the widespread use of sampled-data controllers, it is a pressing

need to clarify why such a non-converging phenomenon occurs and how it can be avoided.

generalized sampler

ideal anti-aliasing
sampler filter

Figure 1.11. Interpreting the pair of the ideal sampler S and an anti-aliasing

filter F" as a generalized sampler.

Moreover, it is seen from the above example that a choice of an anti-aliasing filter F' affects

convergence to the best continuous-time control performance. In this thesis, we combine an
anti-aliasing filter with the ideal sampler and regard them as one generalized sampler. See
Figure 1.11. Considering in this way, we can also say that convergence to the best continuous-
time control performance depends on a choice of a sampler. In fact, another simulation result
shows that if we use a generalized hold instead of the zero-order hold, the best sampled-data
control performance may or may not converge to the best continuous-time control performance.
This means that convergence depends on a choice of a hold, too. Hence, in order to investigate

this performance convergence issue, first we have to construct a framework to treat sampled-

data control systems with a large class of samplers and holds.
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Objectives of This Thesis

In this thesis, the following two problems are considered:

(i) Construction of a lifting-based framework for sampled-data control systems with a lar

class of samplers and holc

(ii) Investigation of the best sampled-data control performance, especially on its conve

to the best continuous-time control performance.

Seoblem (3 . : :

In Problem (i), our purpose is to construct a general, clear, useful framework for sampled-
data control systems. Here, special attention is paid on treatment of samplers and holds, which
have not been treated so seriously. A principal reason why we make this framework is to

provide a solid basis for the analysi

s of the best sampled-data control performance. However,
this framework is significant in its own right because it is believed to be useful for other advanced
problems on sampled-data control systems, too.

Although there are many studies on generalized holds they assumed

that the kernel functions of holds are defined on [0, ), where 7 is the sampling period. In other

words, a discrete-time signal received by a hold at the time ¢ = k

affects its output only
during k7 < t < (k+ 1)7. Therefore, the first-order hold, which is often quoted as an example

of generalized holds, i

not covered by their hold classes (Example 3.7). Similarly in the studies
on generalized samplers [86, 53, 66], it is assumed that samplers have kernel functions defined
on [0,

- A problem here is that treatment of the ideal sampler, which is the most important
sampler in practice, is difficult in their frameworks because its kernel function turns out to
be the delta function. This thesis shows that, by enlarging the domain of kernel functions
to [0,00), we can resolve these difficulties. Consequently, our framework obtains generality
regarding treatment of samplers and holds.

Furthermore, we try to make our framework clear for case of the subsequent analysis. For
this purpose, we consider lifting and lifting-based transfer functions of various system compo-

nents including samplers and holds, while it has been usual to consider lifting of continuous-time

plants only. Besides, we interpret the FR-operators of [4, 3, 42, 5] as matrix representations
of the above transfer functions (also see [96]). Since FR-operators are frequency responses of
L.

On the other hand, our matrix representations can be defined on |z| > 1. Hence, our represen-

a sampled-data control system in some sense, they are defined only on the unit circle

tations give more information on sampled-data control systems. Especially for samplers and

holds, relationships between their matrix representations and kernel functions are presented.
Based on this framework, three basic properties of sampled-data control systems are ob-
tained. They play an important role in the analysis of the best sampled-data control perfor-

mance. This fact shows usefulness of our framework.
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In the next part of this thesis, we consider Problem (ii) above, that is, we investigate the best
achievable performance of sampled-data control systems in relation with that of continuous-time
control systems. System performance is measured by the £%-induced norm as in Example 1.3.
Our main interest is concerned with obtaining a condition in order that the best sampled-data

control performance converges to the best continuous-time control performance.

One reason to consider this problem is that, as we saw previously, it is related to a fun-
damental conjecture about a sampled-data control scheme. That is, it is conjectured that the

sampled-data controllers, and based

best continuous-time control performance is recovered by
on this conjecture we accept a sampled-data controller as a substitute of a continuous-time
controller. However, this conjecture is not always correct as we have seen. Accordingly, there is
a need to clarify when it is correct and when it is not. Another reason to consider Problem (ii)
is that it is expected that by investigating this problem we can see what is important in sam-

plers and holds in order to improve control performance. If a condition for the performance

convergence is obtained, it may give an insight about how to choose a sampler and a hold.

Investigation is carried out by two steps. At the first step, we consider how much the best
sampled-data control performance can be improved by adjustment of a sampling environment

Here, the best sampled-data control performance means the optimal performance obtained by

choosing an appropriate discrete-time controller when a controlled plant and a sampling en-
vironment is provided. Moreover, a sampling environment is the triplet of a sampling period,
a sampler, and a hold. With this terminology, it is seen that the best sampled-data control
performance can be improved by appropriate adjustment of a sampling environment. Then,
does the best sampled-data control performance reach the best continuous-time control perfor-
mance by this adjustment? Against our intuition, it is shown that the former does not always
reach the latter. This is because a sampled-data controller cannot instantaneously respond
to its input, while a continuous-time controller possessing a nonzero direct feedthrough term
can respond. Therefore, when the best continuous-time control performance can be achieved
only with a continuous-time controller having nonzero direct feedthrough term, there exists a
gap between the best sampled-data control performance and the best continuous-time control
performance. At the second step, we consider the theoretical bound that the best sampled-data
control performance can reach by adjustment of a sampling environment and investigate what
environment we should choose to attain this theoretical bound. In particular, we suppose that
a sequence of sampling environments is provided and obtain a necessary and sufficient condition
in order that the best sampled-data control performance corresponding to each environment
converges to the theoretical bound. If we notice the plants that do not have a gap observed
at the first step, this condition is necessary and sufficient in order that the best sampled-data
control performance converges to the best continuous-time control performance. Not only a

general case but also special cases, where a provided sampling environment has some special
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structure, are considered. In these special cases, the necessary and sufficient condition above

can be modified so as to be tested easily.

1.2. Construction of This Thesis

This thesis is constructed as follows.

Chapter 2

The purpose of this chapter is to introduce notation and terminology utilized throughout this

thesis

and to present useful facts. Although the contents of Sections 2.1 2.5 are used thronghout

the subsequent chapters, Section

6 is given as a preparation for Section 4.4 particularly. Most
of the results presented in this chapter are more or less known in the control community.
6 are new.

However. the contents of Sections 1.4, and

Section 2.1 gives mathematical notation used in this thesis.
In Section 2.2

frequency-domain representations, i.

notions of continnous-time and discrete-time signals are presented and their

the Laplace transform and the z-transform, respectively,
are introduced.

A sampled-data control system is constructed by combination of four different types of op-
crators: a continuous-time operator, a discrete-time operator, a sampler-type operator, and
a hold-type operator. Section 2.3 explains these operators in turn. Subsection 2.3.1 discusses
continuous-time operators. After basic notions such as their linearity, causality, time-invariance,
and boundedness are defined, their transfer functions and state-space representations are intro-
duced. Moreover, important spaces of transfer functions are defined, that is, H> and RH>.
Subsection 2.3.2 talks about discrete-time operators almost in the same manner as the previous

subsection. Their basic notions, transfer functions, state-space representations, and important

spaces of their transfer functions are presented. A brief subsection 2.3.3 defines sampler-type
and hold-type operators.
Section 2.4 introduces the notion of lifting, which is a key idea for recent studies on sampled-

data control systems. This notion plays a fundamental role in Chapters 3 and 4. First, lifting

of a continuous-time signal is defined in Subsection 2.4.1. Using this concept, lifting of a

continuous-time operator is considered in Subsection

ispecially, a lifting-based transfer
function, a lifting-based state-space representation, and important spaces of transfer functions
are in turn explained with respect to continuous-time operators. Subsection 2.4.3 does a similar
thing regarding sampler-type and hold-type operators. Subsection 2.4.4 introduces the notion of
matrix representations of operators. Since lifting-based transfer functions are operator-valued,

their matrix representations are useful for their analysis.
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Although the purpose of this thesis is to investigate sampled-data control systems, they
are frequently discussed in comparison with continuous-time control systems. In Section 2.5,
a continuous-time control system is investigated. After its standard configuration is given,
parametrization of all stabilizing controllers (Youla parametrization) is presented with the help
of the notions of unimodularity and coprimeness. Moreover, we consider the best performances

achievable by two limited classes of continuous-time control systems, respectively.

It talks about a model-matching

The last section 2.6 is given as a preparation for Section 4
problem including continuous-time, sampler-type, and hold-type operators. By generalizing
techniques for a usual model-matching problem, which includes continuous-time operators only,
we can consider the above problem. In particular, inner-outer factorization, Hankel norms, and

Nehari’s theorem are generalized so as to be applicable on operator-valued functions.

Chapter 3

This chapter gives a framework for sampled-data control systems with a large class of generalized

samplers and holds. The contents here are important not only as a preparation for the analy

in Chapter 4 but also in their own right. Since the framework given here is considered to

it would be useful for other

be more general and clearer than the other existing frameworks,

sampled-data control problems than the one considered in this thesis.

In the introductory section 3.1, problems of the existing frameworks for sampled-data control
systems are discussed.

Section 3.2 introduces regular samplers and holds and investigates their properties. They
are defined as special types of sampler-type and hold-type operators, respectively, and are more
general than the conventional generalized samplers and holds. Properties of regular samplers
and holds are obtained especially on their transfer functions, state-space representations, and

matrix representations.

its standard

In Section 3.3, the notion of a sampled-data control system is introduced. Afte
structure is explained, the notions of a sampling environment, input-output stability of the
system, and the best achievable performance of the system are presented.

Section 3.4 is devoted to derivation of basic properties of sampled-data control systems.
Three theorems are stated with respect to the systems. In particular, the last theorem es-

rstem and a corresponding

tablishes a new relationship between a sampled-data control s
continuous-time control system. This theorem plays an essential role in the next chapter.

chapter.

The proof of this theorem is given in Section 3.5. Section 3.6 is a conclusion of this
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Chapter 4

This is a main chapter of this thesis and deals with the properties of the best sampled-data

control performance.

Section 4.1 reviews the experimental result in Example 1.3 and restate the result using the

notions introduced in the preceding chapters. Then, the importance of this study is discussed.

Section 4.2 gives a theoretical bound about how much the best sampled-data control per-
formance can be improved by adjustment of an sampling environment, which is the triplet of
a sampling period, a sampler, and a hold. It is remarkable that this bound is not necessarily
equal to the best continuous-time control performance.

In Section 4.3, we obtain a necessary and sufficient condition in order that a provided
sequence of sampling environments guarantees that the best sampled-data control performance
converges to its theoretical bound for all plants. Moreover, we notice a class of plants with
which the best continuous-time control performance is equal to the theoretical bound of the
best sampled-data control performance. Then, the condition above is shown to be necessary
and sufficient in order that the best sampled-data control performance converges to the best
continuous-time control performance for all plants in this class.

In Section 4.4, the condition obtained in the previous section is equivalently modified into
a couple of simpler conditions. One condition means the Hankel norm of some function ap-
proaches zero; the other condition means that side-band-frequency components of a sampler
and a hold decrease in some precisely defined sense. This simplification is carried out by apply-
ing techniques for a model-matching problem, which are introduced in Section 2.6. Moreover,

it is shown that these conditions can be further simplified when a provided sampler and hold

have special structures.

Finally, this chapter is concluded by Section 4.5.

Chapter 5

For both of Chapters 3 and 4, related problems that require further research are described.

Significance of the problems and possible approaches are stated, too. This chapter concludes

this thesis.
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Chapter 2
Preliminaries

This chapter prepares concepts which are utilized throughout this thesis and summarizes useful
results. Sections 2.1-2.5 work as a basis of the whole thesis. However, Section 2.6 is a prepara-
tion for Section 4.4 in particular. Therefore, it is possible to skip it first and come back at need.
Although most of the results are known in the control community, contents of Sections 2.4.3,

4.4, and 2.6 are new contributions.

In Section 2.1, mathematical notation is given. In Section 2.2, continuous-time and discrete-

time signals are defined together with their frequency-domain representations. Section 2.3 intro-
duces four types of operators that compose a sampled-data control system altogether; namely,
a continuous-time operator, a discrete-time operator, a sampler-type operator, and a hold-type
operator. Here, especially about a continuous-time operator and a discrete-time operator, their

| transfer functions, state-space representations, and associated Hardy spaces are presented. Sec-

tion 2.4 introduces a lifting technique as a preparation for Chapters 3 and 4. Lifting is a key
notion in the recent studies on sampled-data control systems. In relation to lifting, the no- !

tions of lifting-based transfer functions, lifting-based state-space representations, and matrix

representations of operators are given. Section 2.5 talks about continuous-time control systems,
which are frequently compared with sampled-data control systems in this thesis. The contents
of Section 2.6 are utilized in Section 4.4. Here, a model-matching problem on continuous-time,
sampler-type, and hold-type operators is considered. Inner-outer factorization, Hankel norms,

and Nehari's theorem are generalized so as to be applicable to this problem.

2.1. Mathematical Concepts

The following mathematical notions are used in this thesis.

The imaginary unit is denoted by i. The symbols R and C stand for the fields of real numbers

and complex numbers, respectively. Let C. denote CU {oo}. Introduce topology into C. by

letting fundamental neighborhoods of oo be the sets of the form {s € C, : [s| > p or s = 0o}

21
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R

for p > 0. The set C,, is defined to be {s € C, : Res > 0ors = oo}. Let D, be the set

{z€C.:|z| > porz=oc} for p> 0. Espec ially, D, is simply written as D.

For a positive integer n, the symbol C" denotes the Euclid space of n-dimensional column
vectors composed of complex numbers. The Euclid norm is expressed by || -[|>. The zero vector
is denoted by 0. The zero matrix and the zero operator is expressed by O. The identity matrix
or the identity operator is expressed by I. When there is a need to show its size, I, is used to
mean the n x n-identity matrix.

< conjugate of

Suppose A is a vector, a matrix, a function, or an operator. Then, the comples
A is denoted by A. When A is a vector or a matrix, conjugate is taken componentwise. When

A is a function of a real number f, its conjugate A is defined by A(t) := A(t). When A is a

function of a complex number s, A is defined by A(s) := A(5). When A is an operator and the

complex conjugate is defined in its domain and range, A is defined as an operator Aa := Aa. In
cach case, A is called real if A = A. This definition applies also when A is an operator-valued

function.
spose matrix or an adjoint operator

Al

The asterisk (*) stands for a complex-conjugate-t
M is expressed as M. The maximum

depending on the context. The transpose of a mat
and minimum singular values of a matrix M are written as (M) and a(M), respectively. Here,
the maximum singular value of M, i.e., (M), is defined as the nonnegative square root of the
maximum eigenvalue of the semi-positive definite matrix M*M; the minimum singular value
of M, i.e., a(M), is the nonnegative square root of the minimum eigenvalue of M*M. When a
matrix M is provided, the operation to multiply M is defined. With a slight abuse of notation,
this operator is denoted by the same symbol M. Then, the induced norm of a multiplication
operator M is equal to a(M).

In general, the norm of a normed space X is written as | - ||x. For an operator P mapping

a normed space X to a normed space Y. its induced norm is given by

fioe
IPllxoy = eup APl
zeX
|||l x #0

If |P|lx_y is finite, P is called bounded. When the spaces X and Y are clear from the

context, we sometimes use a simplified symbol || - |lina to express an induced norm.

Now, important spaces (£2)", (£?)", and £*[0,7)" are introduced in turn. Here, n is a
positive integer.

The symbol (#2)" denotes the Hilbert space of one-sided square-summable sequences each
aqy[k]}22, belongs to ()™ if aq[k] € C"

term of which belongs to C". That is, a sequence aq =
fork=101,., and
e )
> llaalk]l; < co.
k=0

The square root of the left-hand side is the norm of aq and is written as ||ag4||e.
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= »2n .
'he space (£%)" is the Hilbert space of Lebesgue-square-integrable functions mapping [0, oc)

to C". Namely, a function a(t) belongs to (£%)" if a(t) € C" for 0 < t < oo and

/ [la(®)]|3dt < oc

0

The square root of the left-hand side above gives the norm of @ and is denoted by ||al|z2.

Sl Bl g re B - " " : ,

Finally, £2[0,7)" is the Hilbert space of Lebesgue-square-integrable functions mapping [0,
to C". Here, 7 is some positive number. We present its inner product explicitly for the later
use:

(£.9)c2p0

/ ft)*g(t)dt for f,g e L£20,7)".
Jo

VI P

a fear of confusion, we write the above spaces simply as 2,

The norm in £2[0,7)"

Unless there

is defined as || f|| z210

, and £2[0,7),

respectively, dropping the dimension n.

2.2. Continuous-Time and Discrete-Time Signals

This section introduces mathematical notions about continuous-time and discrete-time signals.
The formulation presented here is standard in the literature on the H*-control. Further details
are found in [34, 26, 40, 99, 62| for example.

In order to introduce the notion of a continuous-time signal, we need the continuous-time
truncation operator /Iy, where 7" > 0. Let n be a positive integer. For a function a(t)
that maps [0,00) to C", a function IIpa is defined by (IIpa)(t) := a(t) for 0 < t < T and
(IIya)(t) :=0for T < t.

A function a(t) is called a continuous-time signal if it maps [0, 00) to C" and its trun-

cation ITya is Lebesgue square integrable for each T > 0, that is,
T 1 2
/ la(t)[2dt < oo
Jo

To write a continuous-time signal, we use t for its independent variable, which is called the
time, and express dependence on ¢ by parentheses. Here, we allowed a continuous-time signal
to take a complex value for simplicity of mathematical treatment. However, in a practical

system, a continuous-time signal takes real values only.

pecially, a continuous-time signal that belongs to the space £* is important in connection

with the Laplace transform introduced next.

For a continuous-time signal a(t), its Laplace transform a(s) is defined as
o~
a(s) ;:/ a(t)e=* dt.
Jo

For s where this integral converges, a(s) becomes a function of s. This a(s) is sometimes

called a frequency-domain representation of the signal a(t). In contrast. the original a(t) is
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a time-domain representation. In the following, we usually use s for the independent variables

of frequency-domain functions.
Here, the Hardy space H? becomes important. A C"-valued function @(s) belongs to H? if

) is analytic in Res > 0 and fulfills

e P G
sup - / [|l@a(e + iw)||zdw < oo.
a>0 27 J—o0 id

w2, is defined as the square root of the

The norm of a in this space, which is written as
left-hand side of the above formula. The following fact known as the Paley-Wiener theorem is

, Theorem 11.9] [82, Theorem 19.2].

significant for our use [50, p. 131] [:

Proposition 2.1. A function belongs to H? if and only if this function is the Laplace transform
= ||z

of a function in £2. Moreover, for a function a(t) that belongs to £?, there holds ||al|

isomorphism that maps £2 onto H*.

Therefore, the Laplace transform is an isometric
Next, we introduce notions on discrete-time signals. The discussion goes almost in parallel
with the case of continuous-time signals. First, the discrete-time truncation operator 7y,
where K is a positive integer, is required. For a one-sided C"-valued sequence aq = {aa[k]}3%.
we define mxag to be a sequence (mxaq)k] = aqlk] for 0 < k < K and (7gaq)[k] = O for
K <k.
A one-sided C"-valued sequence aq = {aq[k]}32, is called a discrete-time signal if mxaq

square-summable for each K =1,2,..., that is,

K-1

> llaak]|[3 < oo

k=0
In order to differentiate a discrete-time signal from a continuous-time one, we put a suffix “d”
and use square brackets to express dependence on the independent variable k. The variable k
7. Here, 7is a

runs over all nonnegative integers 0,1, ... and it is related to the time ¢ by £ =
fixed positive number called a sampling period. Therefore, a discrete-time signal is a signal
that has values only at discrete time points t = 0,7,27,....

Similarly to the case of a continuous-time signal, a discrete-time signal belonging to the
space £* is important when we consider its frequency-domain representation.

For a discrete-time signal ag = {aq[k]};2,, its 2-transform a(z) is a formal series
o0
k
ay(z) = Z aqlk]z*.
k=0

In the case of discrete-time signals, this a4(z) is considered to be a frequency-domain repre-

st with the continuous-time signal case, we use ““” in

sentation of a signal. For a clear contra

place of “~" to express the z-transform and use the variable z in place of s.
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A function ag(z) belongs to H?

A discrete-time counterpart to ‘H? is the Hardy space

if aq(z) is analytic at any and satisfies

/ [|aq(re)||2

The square root of the left-hand side above is adopted as the norm of $% The next fact is a

sup
r>1

source of significance of this space $? [32, p. 8] [82, Theorem 17.

Proposition 2.2. A function belongs to $° if and only if it is the z-transform of some sequence

in (2. Moreover, for any sequence in {*, say aq, there holds, ||ag||r = ||aq||s:-

This proposition means that the z-transform is an isometric isomorphism mapping ¢* onto §

We close this section by giving properties of H?, which induce characteristics of kernel

functions of samplers and holds in the next chapter. Here, we consider the scalar case.

Proposition 2.3. Let a(s) be any scalar function that belongs to H* and let 6 and 7 be any

positive numbers. Then, the following properties hold.

(a) In the half plane Res > 8, the function value a(s) converges to zero uniformly as |s
approaches infinity.
(b) Let B be any bounded closed set contained in the open half plane Res > 0. Then, the

o0

infinite series Y00 |a(s +i2wm/7)|* converges uniformly for all s € B.

2 of Theorem 11.3 in . Property (b) is proven

For the proof of Property (a). see Corollary
in Appendix A.
In

continuous-time signal case and the discrete-time signal case.

1, we summarize the notions introduced in this section with comparing the

Table 2

Table 2.1. Notions about continuous-time and discrete-time signals: (a) Their
typical time-domain representations; (b) The Hilbert spaces in the time domain;

(¢) Their typical frequency-domain representations; (d) The Hardy spaces in the

frequency domain.

Signals (a) (b) (c) (d)
continuous-time signal a(t) Vo a(s) H?
discrete-time signal aylk] g2 aq(z) 9
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2.3. System Component Operators

Having introduced notions on signals, we next present notions on operators that stand for
system components. Since a sampled-data control system includes both continuous-time signals

and discrete-time signals, this system is constructed of four types of system components:

a component whose input and output are continuous-time signals;

a component whose input and output are discrete-time signals;

a component whose input is a continuous-time signal and whose output is a discrete-time
signal;
(iv) a component whose input is a discrete-time signal and whose output is a continuous-time

signal.
In order to express these components, we prepare the following four types of operators:

(i) a continuous-time operator;
(ii) a discrete-time operator;
(iii) a sampler-type operator:
(iv) a hold-type operator.
In this section, these types of operators are introduced in turn and, at the same time,
spaces and norms related to them are defined. The formulation for continuous-time operators
and discrete-time operators are standard again in the H>-control theory. For example, see

[34, 26, 40, 99,

2.3.1. Continuous-Time Operators

An operator mapping a continuous-time signal to a continuous-time signal is called a continuous-
time operator. A continuous-time operator P is called linear if there hold P(aa) = a(Pa)

and P(a+
continuous-time operator P is said to be causal if II;(Pa) = P(IIra) for any continuous-time

= Pa-+ Pb for any continuous-time signals a and b and any complex number a. A

signal @ and any T > 0; in a word, if the output of P in the interval [0,T) only depends on
its input in [0,7) for each T > 0. Furthermore, for a continuous-time signal a, consider its
translation @y, which is defined as ar(t) := a(t —T) for t > T and ay(t) := 0 otherwise. With
this notation, suppose that a continuous-time operator P satisfies by = Pay whenever b = Pa
and T > 0. Then, this P is called continuous-time time-invariant. If the above equality
holds for T = ¢r, where £ is any positive integer and 7 is some fixed positive number, P is

called T-periodic.

2.3. System Component Operators

Suppose that P maps £?, which is a space of special continuous-time signals, into £2. Then,

the £2-induced norm of P can be defined as

i |Pal| 2

Bl |Pallc
acc? el
all 2 £0

If P has a finite £*-induced norm, it is called £2-bounded or simply bounded. The £?

induced norm pla

/s a central role in the H>-control theory because || || works as an index of
the system performance when P represents a controlled system. Usually, a small value of || P|
means a good system performance. Therefore, we let the symbol || - ||, which has no subscript
imply the £%-induced norm unless it is specified in other way.

Next, we introduce the notion of a transfer function, which is a frequency-domain represen-
tation of a continuous-time operator.

Let us consider a continuous-time operator P whose operation is described as

N>

;
(Pa)(t) = Da(t) 4 /“ Bl —n)alr)dr, £>0, (2.

with some matrix D and a function P(t). If

P(s)

T /1 P(t)e*'dt (
i

is well-defined for some s € C,, this function P(s) is called the continuous-time transfer

function of P. From a property of the Laplace transform, we can derive b = Pa when b = Pa.
Moreover, the transfer function of an operator PQ, which means successive operation of @ and
then P, is equal to the function product P(s)Q(s). When b(t) is the derivative of a(t) with

respect to t. there holds b(s) = sa(s) — a(+0). Because of this, it is considered that s itself

corresponds to the derivation with respect to t.

Now, the set of transfer functions is introduced. The Hardy space H™ is the space of n x (-
matrix-valued functions that are analytic and bounded in Re s > 0. We do not explicitly write
the dimensions n and ¢ because they are usually clear from the context. The norm in the space
H> is defined by

[|1Plsee == sup @{P(s)}.
Res>0

Although an element of H* is not always expressed as in ble to associate an

2). it is poss
operator on £2 with each element of H> as follows. Suppose that an H>-function P(s) is pro-
vided. If a(t) belongs to £2, its Laplace transform @(s) belongs to H? by Proposition 2.1, which
implies that the function product P(s)a(s) is an element of H2. Again, by Proposition 2.1,
there is a unique b € £? such that E(s) = f’(

5). Now, this correspondence between a and b
induces an operator on £2. Also in this case, the H™-function P(s) is called the continuous-

time transfer function of this newly defined operator. This terminology is consistent with
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the original definition of this word because the operator defined from P(s) is identical to the
P in (2.1) especially when P(s) can be represented as in (2.2). An operator defined from an
H>®-function as above is shown to be linear, causal, time-invariant, and bounded. Furthermore,
from the isomorphism between £? and H? (Proposition 2.1), the next relationship is derived

[26, pp. 22-23] [99. Theorem 4.4 and Remark 4.2].

tion 2.4. Consider a function P(s) in H> and write as P the corresponding operator

Propos
on L% Then, there holds
1]} = [| Pllnee-

Next, some subsets of H> are introduced.

The first subset is RH>®. It is defined as the subset of H> that consists of real rational
functions only. The set RH™ is closely related to a state-space representation of a continuous-
time operator.

In general, a continuous-time state-space representation of a continuous-time operator

P:arbis

x(t) = Az(t) + Ba(t), z(0) =0,
b(t) = Cx(t) + Da(t),

where A, B, C, and D are real matrices and (t) is a continuous-time signal. Sometimes the
above representation is briefly written as (A4, B,C, D). A continuous-time state-space represen-
tation is called strictly proper if its “D”-matrix is equal to the zero matrix. For one operator
P, its state-space representation is not unique. A state-space representation of P is called
minimal if the dimension of @(t) is the achievable minimum. In general. if a continuous-time
operator P has a continuous-time state-space representation, it is linear, causal, time-invariant
and real. Moreover, the transfer function of P is P(s) = D+ C(sl — A)~' B. Now, there holds

the following property.

Proposition 2.5. A continuous-time operator P has a continuous-time state-space represen-

tation if and only if it has a transfer function P(s), which is real and rational.

Proof. The “only if” part is easy from the above expression of a transfer function. In order
to show the “if” part, construct a control or an observer canonical form [57, Section 6.1] for a
provided real rational function. m}
If a transfer function P(s) has a strictly proper state-space representation, it is also called
strictly proper. It is seen that P(s) is strictly proper if and only if P(s) is real and rational
and satisfies P(o0o) = O. The next proposition shows a relationship between a state-space

representation and RH™. It is proven by slight modification of the proof of the previous

proposition.
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Proposition 2.6. A continuous-time operator P is bounded and has a continuous-time state

space representation, if and only if it has a continuous-time transfer function P(s) belonging

to RH™.

Proof. [if] By the previous proposition, a continuous-time operator P has a continuous-time
state-space representation. Moreover, if P € RH™, P has to be bounded, as we have seen
before Proposition 2.4.

[only if] By the previous proposition again, P is a real rational function. Suppose it has a
pole in Res > 0 or at s = oo. Then, there exists a function @ € ‘H? such that Pa does not
belong to H?. This contradicts with the assumption that P is bounded. Hence, P cannot have

a pole in Res > 0 or at s = oo, which means P € RH™.

Next, consider a real function Q(s) that is analytic in Res > 0 and is continuous in C .,
We write the set of such functions as Ag. By definition, RH™ ¢ Az ¢ H>. For any function

Q(s) in Ag, its H>-norm is attained on the imaginar Kis, that is.

QI = supa{Q(i

It is proven as a consequence of the maximum modulus theorem.

This set Ag is a variant of the disc algebra, which is the set of functions analytic in [z| < 1

and continuous in [z| < 1. In the work of Dullerud [29, 27|, which derived a nonconservative
robust stability condition for a sampled-data control system, the set Ap played a key role. A

property of Ag which is important in this thesis is as follows.

Proposition 2.7. A function Q(s) defined in C,, belongs to Ay, if and only if there
functional sequence {Q;}32,, Q; € RH>, such that [|Q — Qj|lx= — 0 as j — o

It is proven by a slight modification of the proof of Proposition 20.4.3 of [23]. Another proof is

presented below.

Proof. The

the functions

[ part is easily proven by definition. In order to prove the “only if” part, define

Q'(w) :== Q(s)

Tl Q,(w) == Q'(pw),

where 0 < p < 1. As p approaches unity, Q,(w) converges to Q'(w) uniformly on |w| = 1, which

implies that so does in [w| < 1 due to the maximum modulus theorem. Expanding Q' (w) to
3

the T

rational functions uniformly in [w| < 1 and, hence, so can be Q'(w). Transforming them back

aylor series around the origin, we can see that each (2;,(::-) can be approximated by real

to the s-domain, we see the claim holds. | ]
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2.3.2. Discrete-Time Operators
We can discuss discrete-time operators analogously to continuous-time operators.
An operator that maps a discrete-time signal to a discrete-time signal is called a discrete-

time operator. A discrete-time operator is expressed by a capital letter with a suffix b 4

like Py, in this thesis. Linearity of a discrete-time operator is defined similarly to the case
of continuous-time operators. A discrete-time operator Py is called causal if mx(Pyaq) =
% (7 aq) for any discrete-time signal aq and any positive integer K. With K being a positive
integer, let agk be a discrete-time signal such that aqk[k] = aglk — K| for k > K and

ayklk] = 0 for 0 < k < K. Then, a discrete-time operator Py is said to be discrete-time

time-invariant if by = Pyay implies by x = Pyaq g for any K =1,
Recall that 2 is the space of certain special discrete-time signals. Suppose that a discrete-

time operator Py maps % into £%. In this case, we can define the £%-induced norm of P

as o
| Pallez—e2 : sup I 'Ia'(ﬂﬂ.
agcf? laalle
fladll 270

If P, has a finite induced norm, it is called £2-bounded or just bounded.

Next, we consider a frequency-domain representation of a discrete-time operator. While
the Laplace transform was used in the continuous-time case, the z-transform is used this time.
Let P be a linear causal time-invariant discrete-time operator. Then, there exists a matrix

sequence { Py}, such that there holds by = Pyaq if and only if

k
balk] = Y Pus—caall] fork=0,1,....
=0
Here, consider a formal series with an indeterminate z
o
Fy(z) = z Piz
k=0

Then, we can see that (2.3) is equivalent to by = Pyag, where @g and by are the z-transforms of

ag and by, respectively. When the series Py(z) converges for some z € C,, this function f’(,(z) is
called the discrete-time transfer function of P;. Although the same symbol “*" is used to
express the z-transform, distinction should be clear from the context. Furthermore, note that

we use different symbols " and “~7 to distinguish between a discrete-time transfer function

and a continuous-time transfer function. Similarly to the continuous-time operator case, a
transfer function of an operator composition P3Qq, where both Py and Qq are discrete-time
operators, is equal to Py(z)Qa(2).

Finally, a Hardy space of transfer functions is introduced. Let $> be the Hardy space of

_valued functions that are analytic and bounded in D. The dimensions n and £ are

n x {-matri
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suppressed in this symbol because they are often obvious from the context. The norm of H>

is defined as

|| Pil|gy := supa{Ps(z)

pecially when Py

is continuous in DU {|z| = 1}, the maximum modulus theorem implies
3 = 5
|| Pyl := sup 7{Pa(z)}.
Jz|=1

Corresponding to Proposition 2.4, there holds the next proposition. For its proof, Proposi

tion is used [20, Lemma 4.3.

Proposition 2.8. Suppose that a discrete-time operator Py has a discrete-time transfer func-

tion belonging to $H°°. Then, there holds

[1Pa]

e = || Pllg.

Define RH™ as the subset of > that consists of real rational functions only. It has a close
relationship to a state-space representation of a discrete-time operator.

In general, suppose that a discrete-time operator Py : @q — by can be represented as

x4k + 1] = Azy[k] + Baqglk], x4[0] = 0,
balk] = Caalk] + Daglk]

with real matrices A, B. C. and D and a discrete-time signal @4[k]. Then, this is called a
dis

ete-time state-space representation of P;. The above state-space representation is
sometimes denoted by (A, B,C, D). If the dimension of x4 is the achievable minimum, the
representation is called minimal. If the “D"-matrix is equal to zero, the representation is
called strictly proper. It is easy to see Py(z) = D + C(zI — A)"'B. Moreover, there holds

the next property. Its proof is similar to the continuous-time case.

Proposition 2.9. A discrete-time operator Py has a discrete-time state-space representation

if and only if it has a discrete-time transfer function Py(2), which is real and rational.

A discrete-time transfer function Py(2) is called strictly proper. if it has a strictly proper state-
space representation. Now the relationship between MH™ and a state-space representation is

presented.

Proposition 2.10. A discrete-time operator Py is bounded and has a discrete-time state-space

representation, if and only if it has a discrete-time transfer function Py(z) belonging to RH™.
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2.3.3. Sampler-Type and Hold-Type Operators

An operator that maps a continuous-time signal to a discrete-time signal is called a sampler-

type operator. When a sampled-type operator S maps L% into €2, we can think of its induced

norm L
o [[Salle
||S||g2—e2 := sup 8
acc? llalle2
all 2 #
If || S]| is finite, we say S is bounded.

Similarly, an operator that maps a discrete-time signal to a continuous-time signal is called
a hold-type operator. When a hold-type operator H maps % into £?, the induced norm of

H is defined as

||H aq||e
||H||z—c2 = sup .
agetr  ||aalle
(aall 20

If this value is finite, H is said to be bounded.
At this moment. we cannot consider a transfer function for a sampler-type operator or a

of the next section.

hold-type operator. This is one of the tasks

Here, we summarize the notation introduced in this section.

Table 2.2. The four types of operators and related symbols: (a) Their induced
norms: (b) Their transfer functions; (c¢) The Hardy spaces that their transfer
functions belong to; (d) The real rational subsets of the Hardy spaces.

Operator types (a) (b) (c) (d)
continuous-time operator S 2 A0
e Sap L .
sampler-type operator Sl r2.pe
(c.-t. sig. — d.-t. sig.) (ISl c2—e2
hold-type operator | H 22
(d-t. sig. > c-t. sig.) G
discrete-type operator (12l 5.(2) H RH

(d.-t. sig. — d.-t. sig.)

2.4. Lifting of Signals and System Component Operators

In Section 2.3, we have seen four types of operators. A sampled-data control system is composed

of these four types of operators; namely, a controlled plant is a continuous-time operator, a
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alo(t) al1)(t) al2](t) a[3](t)

a(t)
‘ 0 U] e 0 T O T

0 7 2r 3r 4r 0 1 2 3

Figure 2.1. Li

ng of a continuous-time signal a(t).

discrete-time controller is a discrete-time operator, a sampler is a sampler-type operator, and a

hold is a hold-type operator. Because of this hybrid nature of a sampled-data control system,
it has been difficult to analyze and synthesize this system considering its intersample behavior.

A lifting technique was introduced by Yamamoto [94, 95] and was developed by Bamich
and Pearson [9] as a remedy for this situation. Its basic idea is to chop a continuous-time
signal at each sampling time and regard it as a discrete-time signal whose value is a function
on [0,7). See Figure 2.1, which is the same as Figure 1.6. In this way, we can treat all the
four types of operators above as discrete-time operators by regarding their inputs and outputs

as discrete-time signals. Then, analysis and synthesis of a sampled-data control system can be

done easily with techniques for disc

e-time systems.

In this section. lifting of a continuous-time signal is discussed first and, then, lifting of the
four types of operators is considered in succession. These notions are essential for discussions
in Chapters 3 and 4. On lifting of continuous-time signals and continuous-time operators, we

basically follow [9]. More information can be obtained from recent books [20, 27].

2.4.1. Lifting of Continuous-Time Signals

We need some preparation first. Let 7 be a positive number and let n be a positive integer.
Recall that £2[0,7) is the space of all functions that map [0,7) to C" and are Lebesgue square
integrable. Here, consider a functional sequence a = {a[k]}>, such that each a[k] is a function
belonging to £2[0,7) and there holds

x

> llafkllfZeqo,r) < co-

k=0

The set of all such sequences is written as (2 It is actually a Hilbert space. The square

root of the left-hand side of the above inequality is adopted as the norm of @ in this space and

is written as ||al|

Now, lifting of a continuous-time signal is defined together with the lifting operator 1V,
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Definition 2.11. Let W, be an operator that maps a continuous-time signal a(t) to a func-
tional sequence @ = {@[k]}32, such that each a[k] is a function defined on 0 < ¢ < 7 by

a[k|(t) := a(kr +t). This operator W, is called the lifting operator with respect to the

sampling period 7. Here. the sequence @ = W a is lifting of a signal a. O

The idea of lifting is illustrated in Figure 2.1. Note that W; is invertible. On the other hand,

1
it is casy to see that each a[k] belongs to £2[0,7) for any continuous-time signal a. Especially,

when and only when a belongs to £, its lifting @ belongs to l‘é,m_,). It is not difficult to see

that this correspondence is isometric, that is, ||al[z2 = ||a]|e,

a discrete-time signal. There-

Once a continuous-time signal is lifted, it can be regarded a
fore, it is possible to consider its z-transform just like a normal discrete-time signal.
Definition 2.12. Consider a continuous-time signal a and its lifting @. Then, the z-transform

of a is defined to be

O

It is reasonable to use the symbol “*” because this @(z) is defined in the same way as the 2-

transform of normal discrete-time signals. However, note that, for each complex number z with

gives a function in £%[0,7) instead of a finite-dimensional

which this series converges, this a(
vector.

Just like the case of normal discrete-time signals, we consider a Hardy space of z-transforms.

Let us say an £2[0, 7)-valued function to be analytic at z, € C, if a scalar function (£, a(2))c2p0,7)

. (Analyticity and related properties of operator-valued

is analytic at z = zo for any f € £*[0,
pp. 183-189].) Here, suppose that a(z) is an

functions are discussed in [49, pp. 92 ¢

Va1

-valued function that is analytic in D and satisfies

1
sup - %Ha(rv")Hi;(, ydw < oo.
r>1 27 . 3

The set of all such functions is denoted by $%, 0.7)° The norm in the space 2&'[“1) is defined to

ed as [|al|g2,

20,

be the square root of the left-hand side of the above inequality and is expre
Then, in fact, the z-transform is isometric isomorphism from /.é”h) to 532521(;.7)- This result is

found in [85, pp. 184-185] [9, Theorem 2 (i)] [2

7, Proposition 2.9].
In summary, we have the next.
Proposition 2.13. The lifting operator W, is an isometric isomorphism that maps £? onto

2
Cerpor):
for any a € L%, there holds

The z-transform is an isometric isomorphism mapping €za .y onto s ). Namely,

[lallez = [|@lle ls2,

c2(0,m) £2(0,r)

where @ := W, a and a(z) is the z-transform of a.
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2.4.2. Lifting of Continuous-Time Operators

Next, lifting of a continuous-time operator is introduced. Again, 7 is a positive number.

Definition 2.14. For a continuous-time operator P, its lifting is an operator composition
W.PW .
Suppose that P is a continuous-time operator and satisfies b = Pa for continuous-time signals
a and b. Let n, and n, be the dimensions of a and b, respectively. Then, we have b

. TSR o i 2 e ;i L ; ; n
(W, PW")a writing @ := W,a and b := W, b. Therefore, W, PW, ! maps an £2[0, 7)""-valued

sequence to an £2[0,

"-valued sequence and it resembles a discrete-time operator in the sense
that it maps a sequence to a sequence. A difference from a normal discrete-time operator
is that both input signal and output signal take their values in functional spaces instead of
finite-dimensional vector spaces.
Now, suppose that P is linear, causal, and 7-periodic. Then, b = (W, PW,")a can be
expressed as
-~ k
blk] = 3" Piall]
=0
using an appropriate sequence of operators { P}, where each Py is an operator from £?[0,7)"
to £2[0,7)"™.

Definition 2.15. For a 7-periodic continuous-time operator P, its lifting-based transfer

function is the formal series

o
= ok
P(z) Z Pz i
k=0 f
where {P}72, is an operator sequence defined as above. (]

Note that this is completely parallel to the definition of transfer functions of normal discrete-
P(z b= Pa.
2

From now on, we call a bounded linear operator from £2[0,7)" to £2[0,7)" a large operator

time operators. Just like the case of discrete-time operators, b( wheneve

in short, where n and ¢ are positive integers. This name comes from the fact that such an

operator is represented as a matrix with infinite numbers of rows and columns when certain

o 3 . ‘ : a0 : 5
bases are taken in £2[0,7)" and £2[0,7)", respectively. Using this terminology, a lifting-based

transfer function P(z) is a large-operator-valued function. The magnitude of a large operator
to L]0, B

||, henceforth. Moreover, the Hardy space ${° is defined to be the

n

is measured by the induced norm from £2[0,7 ) his norm || - ||z210.5)—c2
,7)—L2

is simply written as ||

space of large-operator-valued functions that are analytic and uniformly bounded in D. Here,

a large-operator-valued function P(z) is said to be analytic at z = z; if a scalar function
(g, l’(z)f)t.v“,v,,) is analytic at z
H° is defined by

2o for any f € £2[0,7)" and any g € £2[0,7)". The norm of

([Pl = sup | P(z)]|1..
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secially when P € ${° is continuous in DU{|z| = 1}, the maximum modulus theorem implies

[|P]lgze := sup |P(2)||L-
2|=1

Just as we did in Section 2.3, we are interested in operators whose lifting-based transfer

, which

functions belong to $°. In fact, by noting the isometry between £, €7, s and f]zl!‘,,

was claimed in Proposition 2.13, we have the following result (85, p. 189] [9, Theorem 2 (ii)]

. Proposition 2.10 (ii)] [97].

Proposition 2.16. Suppose that a continuous-time operator P has its lifting-based transfer

function in $°. Then, P has a bounded £*-induced norm and satisfies (1Pl = (| Pllsge-

Moreover, we can consider an analogue of RH* and RH™. Let RH{® be the subspace of
§° that consists of real rational functions only. This space is related to a sort of state-space

representations. Suppose that we can express an operation of P : a b as

@alk + 1) = Azqlk] + Balk], =4[0] =0, (2.4a)
blk] = Cza[k] + Dalk] (2.4b)

using an n,-dimensional-vector-valued sequence z4[k] and writing @ := W;a and b := W.b.
Here, A is a real matrix and B, C, and D are real operators mapping £2[0,7)" to C™, C"*

ny

to £2[0,7)"™, and £2[0,7)™ to £2[0,7)™, respectively. Then, this is called a lifting-based

s/

ate-space representation of . Sometimes this representation is denoted by (\ B,C D).
It is derived that P(z) = DGzl e i) IB in this case. Now, the next proposition easily

follows.

Proposition 2.17. A continuous-time operator P is bounded and has a lifting-based state-

space representation, only if P has a lifting-based transfer function in RHT.

Proof. If P has a lifting-based state-space representation, it is clear from the above expression
of P(z) that P(2) is real and rational. Suppose P(z) has a pole in D or on [z| = 1. Then,
there exists a € y)i‘lt»,:) such that P(z)a(z) does not belong to 5’)“51[“”. This means P is not
bounded because of Proposition 2.13. Hence, P(z) does not have a pole in D or on [z| = 1.
From this, P € RH° follows. m}

In contrast to the cases of RH™ and |H™, a continuous-time operator having a transfer
function in RH{® does not necessarily have a lifting-based state-space representation. This is
because a control or an observer canonical form is not well-defined for R$7°-functions. For
more details, see [66].

When P has a continuous-time state-space representation, it also has a lifting-based state-
space representation. Here, we present the explicit form of its lifting-based state-space repre-

sentation for the later use [9].
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Proposition 2.18. Suppose that a continuous-time operator P : a + b has a continuous-time
state-space representation

&(t) = Az(t) + Ba(t). =(0)=0,

b(t) = Cz(t) + Da(t),

where A, B, C', and D are finite-dimensional real matrices. Then, P has a lifting-based state-

space representation as well and it is given by

Balk] : / A0 Balk](t)dt,
Jo

(Cx(kr))(t) := CeMa(kT),

(Da[k))(t) := Da[k](t) + /“'(‘(- A1) Ba[k)(r)dr

in the notation of (2.4). Moreover, P(z) has a pole at z = z; only if zy is expressed as zy = e

with sq being a pole of P(s).

2.4.3. Lifting of Other Types of Operators

Lifting of sampler-type and hold-type operators can be considered in a similar way.

Definition 2.19. A lifting of a sampler-type operator S is SW'. A lifting of a hold-type

operator H is W, H. |
Suppose by = Sa, where a is a continuous-time signal and by is a discrete-time signal. Writing
a := W,a, we have by = (SW;')a. In the sense that both @ and by are sequences, STV,
resembles a discrete-time operator. Similarly, W, H can be regarded as a discrete-time operator
because its input and output are sequences.
Suppose that a sampler-type operator S has the following representation, that is. there

exists an operator sequence {Si }72, such that there holds

k

balk] = Y Sk—call]

=0
whenever by = (SW, ")a. Here, each Sy is an operator from £2[0,7)" to C™ with the dimen-
sions of @ and by being n, and ny, respectively.
Definition 2.20. If a sampler-type operator S has the representation above, its lifting-based

transfer function is the formal series

2
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Suppose that a hold-type operator H has an operator sequence {Hy}32, such that b=
(W, H)ay implies
k
Blk] = 3 He_caalt].

=0

Here, each Hy is an operator from C™ to £%[0,7)™ with the signal dimensions of a4 and b

being n, and ny, respectively.
Definition 2.21. If a hold-type operator H has a representation of the above form, its lifting-

based transfer function is the formal series
H(z) = Z Hyz*.
k=0

E]

In the previous subsection. we introduced the term “large operator,” which means an oper-
ator from £2[0,7)" to £2[0, )¢, where n and £ are positive integers. Correspondingly, let us call
an operator from £2[0,7)" to C! as a flat operator and an operator from C" to £2[o, )’ as a
tall operator. These names come from matrix representations of these operators. If we take
0,7)" and L?[0, z

a tall operator as infinite-dimensional matrices. A flat operator has a matrix representation

bases in the spaces £ respectively, we can represent a flat operator and

with an infinite number of columns and a finite number of rows, that is, a “flat” representation.
On the other hand, a matrix representation of a tall operator has a finite number of columns
and an infinite number of rows, which means its shape is “tall.” Using these terms, S(z) is a
flat-operator-valued function while H(z) is a tall-operator-valued function.

Let us write the induced norm from £*[0,7)" to C* as || - ||, which is a norm of a flat
operator. Likewise, the induced norm from C" to £*o, )" is written as || - ||, which works as
a norm of a tall operator.

Furthermore, define the Hardy space ${° to be the set of flat-operator-valued functions
analytic and uniformly bounded in D. Here, a flat-operator-valued function S(z) is called

analytic at z = z if a scalar function ©*S(2)f is analytic at z = zo for any f € £*[0,7)" and

any v € €. In a similar way, a Hardy space 5 is defined. Namely, it is defined to be the set

of tall-operator-valued functions analytic and uniformly bounded in D. A tall-operator-valued
function H(z) is called analytic at z = zo, if a scalar function (g, H(2)u)c2p,r) s analytic for

any u € C" and any g € £%[0,7 ). For the spaces H® and HF, their norms are defined as
11819 = sup 15(=) s
2€D
“”Hﬁ”,‘ = sup Hn(l)H I
2€D

ralued functions

Note that all of these definitions are analogous to those of large-operator

discussed in the previous subsection.
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Now the next proposition is derived from the isometry between £2,

0,7)°
which is established in Proposition 2.13.

Proposition 2.22. Suppose that a sampler-type operator S has a lifting-based transfer func-
tion that belongs to $°. Then, S has a finite induced norm and satisfies ||S||z2 ez = ||S||g-
Here, || - ||c2—.e2 stands for the induced norm from £2? to 2. ‘
Similarly, suppose that a hold-type operator H has a lifting-based transfer function belong-
ing to §F. Then, H has a finite induced norm and there holds |[H||p—.c2 = ||H||sg. Here,

|[ - ||¢2—c2 denotes the induced norm from ¢* to £

Corresponding to RH®, the spaces RHY and ROT are defined. The space RHYY is defined
as the subspace of H° that consists of real rational functions only. The space RHT is defined
to be the subspace of 3 that is composed of real rational functions only. As is expected, the
spaces RO and RHF have relationships to state-space representations.

First, let us define lifting-based state-space representations of sampler-type and hold-type

operators. Suppose that a sampler-type operator S : a — by has a representation:

zalk + 1] = Azq[k] + Balk], =z40]=0,
balk] = Czy[k] + Dalk],

2.5b)

where A and C are real matrices and B and D are real flat operators. This is a lifting-based
state-space representation of a sampler-type operator S. On the other hand, suppose that
an operation of a hold-type operator H : a4 — b is represented as (2.5) with A and B being
real matrices and C' and D being real tall operators this time. Then, this is a lifting-based
state-space representation of a hold-type operator H. Both representations are sometimes
written as (l B.C. Ia).

Now, we have the next proposition. Note that the “if” part holds, too, this time unlike the

case of RHT.

Proposition 2.23. A sampler-type operator S is bounded and has a lifting-based state-space
representation, if and only if it has a lifting-based transfer function belonging to RO .
Likewise, a hold-type operator H is bounded and has a lifting-based state-space represen-

tation, if and only if it has a lifting-based transfer function belonging to RHY .

Proof. The “only if” part can be shown similarly to Proposition 2.17. Let us consider the

o

part. Just as in [57, Section 6.1], we can construct the observer canonical form in the sampler-

type operator case and the control canonical form in the hold-type operator case. Thus, S
or H has a lifting-based state-space representation. Moreover, by Proposition 2.22, S or H is

bounded. )
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So far. we have considered lifting of continuous-time operators, sampler-type operators, and
hold-type operators. There is no need to introduce lifting of discrete-time operators because
their inputs and outputs are already discrete-time signals. However, it is also possible to
consider that lifting of a discrete-time operator is this discrete-time operator itself. In this
sense, by “a lifting-based transfer function of a discrete-time operator” we mean its usual
discrete-time transfer function.

Now, all the four types of operators can be considered as discrete-time ones by a lifting
technique and can be treated in the same framework. Especially, we do not have to be so
nervous about distinguishing these four types of lifting-based transfer functions. This is a

consequence of the next proposition.

Proposition 2.24. Suppose that an operator I is either continuous-time, sampler-type, hold-
type, or discrete-time and has a lifting-based transfer function. Suppose similarly regarding an

operator () and, moreover, assume that the operator composition PQ is well-defined. Then, a

lifting-based transfer function of PQ exists and is equal to P(2)Q(z).

In order to prove this, just formally follow the proof of (PQ)*(z) = P(z)Q(z) for discrete-time
operators P and Q@

In spite of the above result, we still continue to use symbols like 5%, H%°, HF, || - Il Il - ll¥.
and || - ||+ making clear distinction between them. This is only to help readers’ understanding
when such detailed distinction is required.

The lifting-based notions introduced in this section are summarized in the table.

Table 2.3. Lifting-based notions concerning the four types of operators: (a)
Typical representations of their lifting-based transfer functions; (b) Values of
the lifting-based transfer functions: (¢) The Hardy spaces that the lifting-based
transfer functions belong to; (d) The real rational subspaces of the Hardy spaces.

Operator types — (a) O, R
T U AR T
oot g i o) o Sl Ay o o PR
M RO BB B g o W IR
discrete-type operator 5.(2) matrix 7% RO

(d--t — (I:-\. sig.)

€ =, a{))

2.4. Lifting of Signals and System Component Operators 11

2.4.4. Matrix Representations of Operators

In this subsection, with the help of two families of operators, we consider matrix representations

of large operators, flat operators, and tall operators. It will be seen in the succeeding chapters

that this notion is useful to investigate these operators.

Definition 2.25. Let n be some positive integer. For each complex number s € C and for
cach integer m, we define a tall operator £3, : v € C* i~ f € £2[0,7)" by
1

v

On the other hand, a flat operator E3,: g € £

(s+i2mm/T)t

f(t):

v for0<t<.

[0,7)" = u € C" is defined as

1 il
o= en\TrREmTmt g (B A

-

The accent marks of E; and Ej symbolize their operations. Namely, [‘:',‘” maps a finite-

dimensional space to an infinite-dimensional one. Its associated accent mark expresses “from a

small thing to a large thing.” Conversely, the accent mark of EZ, represents that this operator

makes a large thing small. (The idea of this notation is adopted from [66].)

These operators have the following properties.
Proposition 2.26. For any s € C and any integers m and ¢, we have I:,‘;‘” B = 6u4l, where

Om.e Is Kronecker’s delta. On the other hand, a series of large operators 30

converges to the identity, that is, for any f € £*[0,7)",

E}, strongly

| M
Jim_ ,,,Z\, BB f =0.

£2[0,7)

For any real number w and any integer m, (Biwy* = £ and \I/:f‘;\\| =

“m “m "

B9l =1.

Proof. The first assertion is easily shown. The second assertion is proven by the fact that
for any function in £2[0,7) its Fourier series converges to the original function in the norm

of £2[0,7) [82, pp. 91 92]. The equality (Ei)* = Eis

m m

is easy to prove. Finally,

becanse

foiw (|2 _ (fiw i =t W Poiw 2
1B vllzzp0.) = (En v, Ev) oy = (v, B B v) c2p0.7) = ||vlf3
for any v € C". Besides, ||E¥|/+ = ||E)||r follows from a property of adjoint operators. [
- MR iy Dis e DN e it ~o0 fos fos 3
By the third assertion of Proposition 2.26, we can write f = >0 FES ES f for any

f € £2[0,7)". This is equivalent to expanding a function f € £2[0,7)" with respect to a
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stizem/m)tyoe . which is not orthogonal in general. Noting that

functional basis {(1//7)e
cach E2, f is a finite-dimensional vector, let the expansion f = ¥%_ . B35 (E3, f) correspond

to an infinite-dimensional vector

Using this correspondence, we can represent a large operator L, a flat operator F', and a tall

operator 1" as infinite-dimensional matrices:

(2.6a)

(2.6b)

(2.6¢)

respectively. The above matrices are referred to as matrix representations of the operators
L. F. and T, respectively. Because of the shapes of these matrices, these operators are called

“large.” “flat,” and “tall,” respectively.
Let us consider the case that s = iw for a real w. Note the basis {(1/y/7)el@2mm/nt}oe
is orthonormal in this case. This implies that correspondence between f = Y

and

is isometric, where the norm of the above vector is defined as (32 ||

“ £12)'/2. Now, the

next proposition is derived from this isometry.
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Proposition 2.27. For a large operator L, a flat operator F, and a tall operator T, consider
their matrix representations (2.6) with s = iw, where w is a real number. Then, any finite-
dimensional submatrices of these matrix representations have maximum singular values that
are smaller than or equal to ||L||v, ||F||r, and ||T||x, respectively. Especially for L. there hold
|E“Llle < ||Lll, and ||LE“||x < ||L

m =
Furthermore, there hold

IZIE < X (EWLIR< Y 3 a(BoLEP)?
= ==l

Ll < X LB < Y S a(B
= e

IFIE < Y &(FE TG < 3 a(Bw

Since values of lifting-based transfer functions are either large operators, flat operators.
or tall operators, matrix representations of lifting-based transfer functions can be considered
Here, we have the next proposition, which is important in Chapters 3 and 4. For its proof, see

Appendix B.

Proposition 2.28. Let P be a continuous-time operator having a continuous-time state-space

representation:

&
Il

Ax(t) + Baf(t), z(0)'=0;
b(t) = Cz(t) + Dalft),
with @ and b being an input and an output of P, respectively. Moreover, let s be a complex

number such that none of s-+i2em/7, m = 0,+1,..., is a pole of P(s), which is the continuous-

, and

time transfer function of P. Then, for the lifting-based transfer function of P, i.e., P(z

any integers m and ¢, there holds

E2 P(e)E; = f’(

Especially when s is equal to iw with a real number w, there holds
T ~(. i2rm
||P(e“")||, = sup n{l’(qu : )}
m=0,%1 T

In a matrix form. the consequence of this proposition is expressed as




44 Chapter 2. Preliminaries
Note that only its diagonal blocks are nonzero. This structure originates from continuous-time
time-invariance of P. If P is 7-periodic but not necessarily time-invariant, the off-diagonal

blocks are nonzero in general

As is seen so far, the form of s + i2mm/7 often appears in relation with a matrix rep-
resentation. Especially when s is represented as iw and w is interpreted as a frequency, the

m = 41,42, ..., are associated with it. They are called the side-band

m

frequencies w +2
frequencies of w.
Matri

his co-workers under the name of “FR-operators” [4, 3, 42, 44, 5]. (Also see [96].) Our notion

representations of lifting-based transfer functions were heavily used by Araki and

is more general than theirs in the point that we allow s to be a general complex number while
they restricted s to be a pure imaginary number. This difference becomes essential in the proof

of Theorem 3.34, which is important to derive the results of Chapter 4.

2.5. Continuous-Time Control Systems

Throughout this thesis, continuous-time control systems play an important role. In Chapter 3,
a framework for sampled-data control systems are constructed so that it corresponds to a
framework for continuous-time control systems. In Chapter 4, the best achievable performance
of sampled-data control systems are investigated in comparison with that of continuous-time
control systems. In order to prepare for the later use, we introduce several notions about
continuous-time control systems and derive their relevant properties.

Figure 2

of two continuous-time operators G and K, which exchange continuous-time signals shown

shows a continuous-time control system considered in this thesis. It consists

by arrows. Any signal can be multi-dimensional. This configuration is quite standard in the

‘H>-control literature [34, 26, 40, 99, 62]

w(m G z(t)
b(t) _} fc}
P —}ym \
e \ alt
K L é-a( )
() || ¥'(®)

Figure 2.2. A continuous-time control system.

A continuous-time operator G is called a generalized plant and stands for an object
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desired to be controlled. We assume that G has a continuous-time state-space representation:

a(t) = Ax(t) + Biw(t) + Byu(t), =(0) =0, (2.7a)
z(t) = Ciz(t) + Dyyw(t) + Dyyu(t),

y(t) = Coz(t) + Dyyw(t) + Dypu(t).

Here, it is assumed that (A, B,) is stabilizable and (C5, A) is detectable, which means that

there exist real matrices F' and L such that A + ByF and A + LC, possess their eigenvalues
only in Res < 0. The signal w(t) is an exogenous input consisting of command signals,

disturbances, and sensor noises, for example; u(t) is a control input; z(t) is an output desired

to be attenuated by control like tracking errors; y(t) is a measured output; () is an internal

state of G. The dimensions of w(t), u(t), 2(t), y(t). and x(t) are denoted by 7y, 1y, 15, 1y,

and n,, respectively. As usual, G is divided into four operators G, G5, Gy, and G, so that
z =G w+Ghu,

Yy =Ghw+ Gpu.

Note that no assumption is made on strict properness of G.

A continuous-time operator K is called a continuous-time controller and its purpose is
to control G so that the system exhibits a desirable behavior. A continuous-time controller K
is chosen from the set K. Here, K consists of operators that have continuous-time state-space
representations and have n,-dimensional inputs and n,-dimensional outputs.

With respect to a continuous-time control system in Figure 2.2, input-output stability is
the most important property that is desired to be possessed. In order to define this notion, we
need the fictitious inputs a(t) and b(t) together with the continuous-time transfer functions of
Gy and K, i.e., Gy(s) and K(s).

Definition 2.29. A continuous-time control system in Figure 2.2 is called input-output sta-

ble or just stable if a function det{/—G,(s)K(s)} takes a nonzero value at least at one s € C,,

and all the nine operators from w(t). b(t), a(t) to z(t), y(t), w'(t) have bounded £*-induced

norms., ]

In addition to input-output stability, a continuous-time system is desired to have a good
performance. In the framework for the H>-control theory, a system performance is measured
by the £%induced norm of the operator from w(t) to z(t) and its small value is considered to

show a good performance. Now, let us define the lower fractional transform by

F(G,K) =G +GpK(I —GyuK)'Gy.
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Then, the best achievable performance of continuous-time control systems (or the best
continuous-time control performance in short) with respect to a provided G is expressed

as
inf ||F(G, K)||. (2.8
Iil»‘k I ) (2:8)

Here, the symbol || - || stands for the £*induced norm though we adopt the convention that

the value of this norm is equal to infinity if the evaluated system is not input-output stable.

Example 2.30. Recall a continuous-time control system presented in Figure 1.7 (b). Here, P
is a controlled plant and W is a weight to show how an amount of plant uncertainty depends

on frequency. In Example 1.3, it is desired to reduce the L£2-induced norm of the operator

from w(t) to z(t) for the sake of robust stability. Now, let us represent this system in a
standard configuration of a continuous-time control system. Assume that both P and PW are

continuous-time operators having continuous-time state-space representations and put

O~ L
ot

Go=

Then, the operator F(G, K) is equal to the operator from w(t) to z(t). This means that

infgex ||F(G, K)|| implies the best achievable performance in the sense of robust stability. O

Remark 2.31. We have assumed stabilizability of (A, B;) and detectability of (C, A) in the
state-space representation of G, i.e., (2.7). As is seen below, this assumption is mild enough
and also simplifies the treatment of our system.

Without loss of generality, we can assume stabilizability of (A, [B; B,]) and detectability of

([T 7", A) in the state-space representation of G, i.e., (2.7). Indeed, it suffices to consider
a minimal state-space representation of G. Then, in this situation, it can be proven that
(A, By) is stabilizable and (Cy, A) is detectable if and only if there exists K € K with which
the system consisting of G and K is input-output stable. Hence, as far as we are concerned
with stabilization of G, the above assumption is mild enough. See Lemma A.4.2 of [40] for the
proof of this result. (There, only the case of Dy, = O is considered. However, its generalization
is straightforward.)

Next, assume stabilizability of (A, By) and detectability of (Ca, A). Then, it can be shown
that a continuous-time control system is input-output stable if and only if the four operators
from b(t), a(t) to y(t). w'(t) are bounded. This means that we do not have to care about the
whole G but only Ga, to inspect the stability of the system. The proof of this claim is found
in Lemma A.4.3 of [40]. (el

ssumption, there always exists a continuous-

As is stated in this remark, under our standing ¢

time controller K € K that stabilizes the system. From this fact the next proposition follows.

2.5. Continuous-Time Control Systems A7

Proposition 2.32. For any generalized plant G, the best continuous-time control performance

is finite, that is,

inf || F(G, K)|| < oo
KeK

Using a strong tool called the Youla parametrization [98, 24], we can parametrize all
continuous-time controllers K that stabilize the system and analyze the infimum of (2.8). We
introduce this parametrization following [24], [92, Chapters 4 and 5], and [34, Chapter 4].

First, we need the notions of unimodularity and coprimeness. Recall that RH™ is the set

of all real rational functions analytic and bounded in Res > 0.

Definition 2.33. A function A(s) is called unimodular in RH™ if both A(s) and A(s)"!
belong to RH™. ]

Definition 2.34. Let ,Y(a) and M(s) be elements of RH™. If there exist two functions X,
Y € RH™ such that XM — YN is unimodular in RH™, the pair (N, M) is called right
coprime in RH™.

V(s) and M(s) belong to RH™. If there
Y is unimodular in RH*, the pair (M,N)

On the other hand, suppose that two functions !
exist two functions X, Y € RH™ such that MX — ]

is called left coprime in RH™,

Definition 2.35. Suppose that a real rational function A(s) is provided and it is expressed
as A = NM~' = M 'N, where (N, M) is right coprime in RH™ and (M, N) is left coprime
in RH*. Then, the pair (N, M) is called a right-coprime factorization of A(s) in RH>,

while the pair (M, N) is called a left-coprime factorization of A(s) in RH>. O
Especially, the following type of coprime factorizations is important.

Definition 2.36. Suppose that, for a provided real rational function A(s), there exist eight
functions N, M, X, Y. N, M, X, Y € RH™ satisfying

A(s) = N(s)M(s)™" = M(s)""N(s),
S e
N M||N x|

Then, this octet of functions is called a doubly-coprime factorization of A(s) in RH™.

In the following, we do not explicitly describe the considered function class RH> when we talk
about unimodularity and coprimeness. Note that, with respect to a doubly-coprime factor-
ization of A(s), (N, M) is a right-coprime factorization of A(s) and (,\;IA_V) is its left-coprime
factorization. In particular, the next proposition shows that, for any real rational function

A(s), there exists its doubly-coprime factorization.
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Proposition 2.37. Suppose that A(s) is a real rational function and let (N. M) and (M,N)
be any right-coprime factorization and any left-coprime factorization of A(s), respectively.
Suppose that X,Y € RH™ satisfy XM — YN = I. Then, there exists X,Y € RH> such that

Y| |M Y
N M||Nv x

U

Its proof is found in Theorem 4.1.60 of [92]. Reference [68] gave formulas to compute a doubly-
coprime factorization of a provided A(s) based on the state-space representations of A(s)

Let us go back to the issue of stabilizing controllers. First, we have the following result.
Proposition 2.38. Consider a continuous-time control system made of G and K € K. Let
(N, M) and (M.N) be any right-coprime factorization and any left-coprime factorization of
Gls), respectively. Let (Y,X) and (X,Y) be any right-coprime factorization and any left-
coprime factorization of K(s), respectively. The the following are equivalent:

(a) The considered system is input-output stable;

(b) The function XM — Y N is unimodular;

(¢) The function MX — NY is unimodular.

See Theorem 2 in [24] or Theorem 5.1.25 in [92] for its proof.

If we use the notion of doubly-coprime factorization, we can obtain a parametrization of
all stabilizing controllers, which is called the Youla parametrization. For its proof, see [24,
Theorem 3|, [92, Theorem 5.2.1], or [34, Theorem 4.4.1], for example.

Proposition 2.39. Suppose that a continuous-time control system is provided and a doubly-

coprime factorization of Gyy(s) is given in the form of Definition 2.36. Then, a continuous-time

controller K € K makes this continuous-time control system input-output stable if and only if

K is expressed as
K(s) = {X(s) — Q(s)N(s)} " {{¥ (s) — Q(s)M(s)}
with some Q € RH™ such that (l(\l{,\i(.s) - (2(.\)_{'(3)) is not constantly equal to zero.
From this parametrization, the next result follows. Its proof is found in [34, Theorem 4.5.1].

Proposition 2.40. Define

Ti(s) = Gui(s) + Gi2M(5)Y (5)G(s),

Ty(s) = Gra()M(s),  Ta(s) := M(s)Gar(s).
Then, all of Ty, Ty, and Ty belong to RH> and there holds

F(G, K)(s) = Ti(s) — Ta(s)Q(s)T(s),

where F(G, K)(s) is the continuous-time transfer function of (G, K).
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By this proposition. another expression for (2.8) is obtained, that is,

Iil‘llh“f[(;' K)|| L}‘I/I:IL‘ Ty — ToQT5]| 3.
det(X-QN)Z0
Note that the new expression is much easier to be treated because the free parameter Q is
included in an affine manner there.
Next, we consider the best achievable performance of continuous-time control systems re-
stricting K to be chosen from certain subsets of K. In Chapter 4, it is revealed that these
restricted performances are closely related to the best achievable performance of sampled-data

control systems.

In the following discussion, the next results are useful. See [92, Lemma 5 , Proposi-

tion 5.2.27| for their proofs.
Lemma 2.41. Let sy, sy, ..., s¢ be distinct points in C,, such that none is a pole of Gyy(s).
Moreover, let ny, n,, ... . ny be positive intege Then, there is a doubly-coprime factorization

uf(:y'._,_.(s) such that Y (s) and )"(,d are equal to zero at each s, j = 1,... ,{, with multiplicity

n; or more, respectively.

Proposition 2.42. Under the same assumptions as the previous lemma, let N, M, X, Y, N,
M, X}

K stabilizes G and satisfies R(.~,) = O at least with multiplicity n; for each j =1,... .( if and

be the doubly-coprime factorization given by the previous lemma. Then, a controller
only if K is expressed as

K(s) = {X(s) — Q(s)N(s)} {Y(s) — Q(s)M(s)}
with Q € RH™ such that Q(s;) = O at least with multiplicity n; for each j.

By the definition of a doubly-coprime factorization. we have XM —YN = I. Since f'x.cj) =@
the matrix .f(s,) is invertible. Hence, det(X — Q,i') # 0 is ensured by Q(s;) = O, and thus it
is not assumed explicitly this time.

We are particularly interested in the following subsets of K:

Ko := {Ko € K : Ko(c0) = 0},

Koo := {Koo € K : Koo(oc) = O with multiplicity two or more}
Let us consider Ky first. Under our standing assumption, that is, stabilizability of (A, B,)
and detectability of (C5, A), actually we can find in Ky a controller that input-output stabilizes
the system. (See the proof of Lemma A.4.2 in [40]. There, a stabilizing controller that belongs

to Ky is actually constructed.) This gives the following result.
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Proposition 2.43. For any generalized plant G, there holds
inf || F(G, Ky)|| < oo.
Ko€Ko
Now, note Ky C K. This implies

inf || F(G, Ko)|

KoeKo

|| F(G, K)|

inf
Kek
and the equality does not hold in general. However, for a special class of G, the equality holds.
Proposition 2.44. If at least one of Gy (s), {,’.“(3). and Gy, (s) is strictly proper, we have
inf ||F(G,Ky)| = inf ||F(G, K)||.
KoeKo Kek

The proof is found in Appendix C.
Next, we consider Kgg. As we see below, the best achievable performance does not change

even if the controller class is narrowed from Ky to Kgo. See Appendix C again for its proof.
Proposition 2.45. For any generalized plant G, there holds

inf || F(G, Koo)|| = inf || F(G, Ko)|-
Ko€Ko

Koo€Koo

2.6. A Model-Matching Problem on Periodic Operators

In this section, we consider a model-matching problem on periodic operators in order to prepare
for the investigation in Section 4.4, where a property of the best sampled-data control perfor-
mance is discussed in connection with such a problem. The contents of this section is a new
contribution. A model-matching problem on time-invariant continuous-time operators or time-
invariant discrete-time operators has been examined well. Especially, it is known that such a
problem can be solved with the help of inner-outer factorization and Nehari’s theorem (25, Sec-
tions 2.3 and 2.4] [34, Chapters 7 and 8]. In this section, these techniques are translated so as to
be applicable to our model-matching problem that includes periodic operators, particularly, a
sampler-type operator and a hold-type operator. These two problems are considerably different

valued

at the point that the conventional problem can be considered using properties of matrix
functions, while our problem requires those of operator-valued functions. Therefore, an at-
tention should be paid on the infinite-dimensional nature of operator-valued functions at the
translation.

Our model-matching problem considered here is as follows.

Problem. Let P be a bounded continuous-time operator having a continuous-time state-space

representation and let H be a hold-type operator whose lifting-based transfer function belongs
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to MHT. Moreover, assume that, with respect to a matrix representation of H(e'“7)

\H(e“T)
Hevzll (2.9)
H(ew7)

all the columns are independent for any w € [~ /7, 7/7). Under these conditions evaluate the

value of
irsx,f‘\l’ - HS||, (2.10)

where S varies over all sampler-type operators whose lifting-based transfer functions S(z) have
the form of 27'5"(z) with S’ € RHYF. 0O
Particularly in this section, we obtain an upper bound and a lower bound for the infimum
(2.10).

Proposition 2.17 ensures that our P has its lifting-based transfer function P(z) in RO
By assumption, our H has its lifting-based transfer function H(z) in RHT. With the help of
Proposition 2.16, we can rewrite the above infimum in the frequency domain:

inf ||P— 27" HS'|ge. (2:11)

S'emHFe

In the following, we mainly use this expression.

2.6.1. Inner-Outer Factorization

As our first step, we need the notion of inner-outer factorization for tall-operator-valued func-
tions H(z).
In general, suppose that A(2) is a function belonging to either RH, RHY, ROT, or RH™.

Here, with respect to this A(z), its conjugate A~(z) is defined as

A™(z

A function A™~(z) is well-defined for any z where A(1/2) is well-defined. Note that whenever A
. Note also that A™~(z) = A(2)* on |z| = 1. With this notation,
a function A(z) is called inner if A(z) is an element of RHT or RH™ and satisfies

is real and rational, so is A~(z
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for any 2 where both A(z) and A~(z) are well-defined. Moreover, A(z) is called outer if A(z)
is a square-matrix-valued function belonging to RH™ and det A(z) # 0 for any 2 in the set
DU {|z| = 1}. By definition, for an outer function A(z), both A(z) and A(z)"' belong to RH™.

Now. for a tall-operator-valued function H(z), which is the lifting-based transfer function of

the provided H in our problem, let us consider its factorization into a pair of an inner function
and an outer function. This pair is called an inner-outer factorization of H(z). First,
consider the conjugate of H(z). Since the function H(z) is real, rational, and tall-operator-
valued, its conjugate H™~(z) is real, rational, and fat-operator-valued. From this it follows that

a function product H~(z)H(z) is a real rational matrix-valued function. Since

= l/(o'-')'( i EYES )u((-")

=[+ {BqfEn) (BeaEen)) {BedEn)

H™>(e“")H(e™") = H(e"" )" H(e

the assumption that the matrix in (2.9) has independent columns implies that the function
H~(z)H(z) has a full rank at any points on |z| = 1. Therefore, using a spectral factorization
technique for usual discrete-time transfer functions [51] [34, Section 7.3], we can obtain an outer

function H°"(z)

such that

H (i z) = B 2 H(z)
for any z where H(z) and H™(z) are well-defined. In fact, this H°"(z) can be computed
via matrix manipulations based on the discrete-time state-space representation of H™>(z)H(z).

Furthermore, define a tall-operator-valued function
H%(z) = H(z) ().
Then, there holds
H™(2)H"™(2) = I.

Here, the function H™(z) belongs to RHT since H(z) is an element of RHT and HO )
belongs to |H™. Hence. H™(z) is inner. Now, it can be seen that the pair (H™, H°") is an

inner-outer factorization of H(z).

Using an inner-outer factorization of H(z), we can decompose the value of our concern

)

(2.11) into two parts. For a large-operator-valued function A(z), define

[[Allgge = esssup [|A(z)[|r-
1
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Similarly for a flat-operator-valued function, a tall-operator-valued function, and a matrix-

valued function, the norms || - [|gee, || - [|gse, and || - [|¢~ are defined by replacing || - ||y, in the

above definition by || - [|¢, || - ||+, and &{-}, respectively.

Then, we have the next proposition.

Proposition 2.46. With the notation introduced so far, there holds

m.nx{riul' [lzH™*P — §'|2, ||( — H™H™)P|2
§'enHF ,

R5; X e }

¥

< inf [|[P—z'HS|2

T SennE I Hy"

< inf 2B P — & + (I — HOH"™)P|2e.
SremnpE . =

This proposition means that the value of (2.11) converges to zero if and only if the following

2 i S e b e 5 ~p G112, ) fin~ 2
two terms converge to zero, that is, infg cqge [|2H™P — S HL’f and ||(I — H"H"™)P|ge.
Although the latter term does not include S', the former term still includes it. In fact, by
Nehari's theorem, we can show that the value of this former term is equal to the Hankel norm

of zH"™ P, which does not include S’. This is what we consider in the next subsection.

Proof. Since our P(z), H(z), and S'(z) are rational functions, they are not only analytic in D

but also continuous in DU {|z| = 1}. The maximum modulus theorem implies
|P— 2 HS g = | P — 27 HS|| gge;

in other words, the $H{*-norm (the supremum in D) is replaced by the £°-norm (the supremum

on |z| = 1). Next, consider an operator-valued function

[ g H ()

U(z) = s
() I— II“‘(:)II‘”“(:)]

Then, U~(2)U(z) = I holds in the domain where U(z) and U~(z) are well-defined. Note
that both of the two are well-defined on |z| = 1. Furthermore, since the range of U(z) is the
direct sum of the finite-dimensional vector space and £2[0, 7), its norm and inner product are
naturally introduced.

It is claimed that ||P — z7'"HS'||g= = supj,

NUP = 27 HS")lina with || - ||ina being an
appropriate induced norm. To show this, note U~(z) = U(z)* on |z| = 1. It can be derived on

|z] =1 that, for any f € £2[0,7),

lU(2){P(z) — = H(2)S'"()} fII*
= ({P(:) — 2 'H(2)S'(2)} f, U (R)U(2){P(2) - 2 'H(:)s'(:))f)
- |{P(2) — 2" H(2)5'(2)}f[|2200,7)s

£2[0,7)
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where the norm in the leftmost expression is the one appropriately defined in the range of
U(z). This equality means that ||P(z) — 27 'H(2)S"(2)||. = |U(2){P(z) — 2 'H(2)5"(2) }}ina

on |z| = 1. Our claim is proven.

Now, there holds

SHn~ P — fen s

1P = = B loge = sup 0P = =~ SV = 500 | iy 5

ind
Here, we have used H = H"H°" and H"H™ = [. Noting that zH"~P — H*"S' is a flat-

valued function, we conclude

operator-valued function and (I — H"™H"™)P is a large-operator-

that
max {H;Il'““l’ - II””‘.S"\@F. [|(Z — l’["‘l["‘\)[’\li]‘}
<P -2 H

< Hmp — Fong

B o+ (|1 — HE) B

i
Take the infimum moving S’ over RHY® in each expression. Then, since H°"'(z) has its inverse
in |H™, a function H°"S' moves all over RHY as S’ varies over RH'. Now, we have shown

the claim. (]

2.6.2. Hankel Norms and Nehari’s Theorem

Let @(z) be a real rational operator-valued function. It is assumed that @(z) is analytic in
p1 < |z| < pa, where 0 < p; < 1 < py. Especially in this section, we are interested in the
case that @(z) is a flat-operator-valued function or a matrix-valued function. In the following,
we define the Hankel norm of such a function @(z) and see that this norm is equal to the
ies over RHY or RH™ depending on the

function-type of @(z) and || - || stands for || - Hglx or | -

infimum of ||® — X|| by Nehari’s theorem, where X va

e

Let us consider the case that @(z) is a flat-operator-valued function first. That is, for each
z, a function value @(z) is a flat operator mapping CZIUAT)"" to C™ for some n, and ny. The
notion of Laurent expansion is successfully extended to the case of operator-valued functions
[49, p. 97]. Noting that @(z) is analytic in p, < |z| < ps, write its Laurent expansion there as

“ 1
k k k 5
Son L me (%)

=—00

&(

Here, each L* is a flat operator from £2[0, 7)™ to C™. Using this {L¥}, consider the operation

v VAR S IO 8
gl o | 2 STBLTA 1)

vg|\ || TR DS LB fs
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21 fa § 2 Y
where each f, belongs to £2[0,7)" and each v is an element of C™. The above operator

composed of L', L?, ... is called the Hankel operator with the symbol @ and is denoted by

I'p. Define the norm in its domain as (¥32, || £l/%2.,))'/* and define the norm in its range as

s well-defined. This norm

(372 [lwl3)'/2. Then, the induced norm of the Hankel operator I

is called the Hankel norm of ¢ and is denoted by ||®||y. By definition, there holds

2 k)2 9.1
@l < 37 I1£4)3- (2.12)
k=1
In the case that ¢(z) is matrix-valued, its Hankel operator and Hankel norm are defined
in the same way. Ouly the difference is that each L* is a matrix and each f; belongs to a
finite-dimensional vector space.

A main result in this subsection is now presented.

Proposition 2.47. Suppose that ®(z) is a real rational flat-operator-valued function, which

is analytic in py < |z| < py, where 0 < p; < 1 < py. Then, we have

inf _[|® — Zl|ge = [|9]|u-

ERGF ¥

If the two functions @ and X are not flat-operator-valued but matrix-valued, this result is well-
known now in the control community as Nehari's theorem [25, Section 2.4] [34, Sections 6.2

and 8.1] [40, Theorem 10.4.6] [99, Section 8.8]. That is, there holds the next.

Proposition 2.48. Suppose that @(z) is a real rational matrix-valued function, which is ana-
Iytic in 0 < p; < |z| < py, where py < 1 < py. Then, we have

o —[fl}ir

inf ||#-X
TeRH™

A flat-operator version of Nehari’s theorem, Proposition 2.47, is proven by reducing it to its
matrix counterpart, Proposition 2.48. See Appendix D for the proof. From this proof it can
also be seen that computation of the Hankel norm of a flat-operator-valued function @(z) can
be carried out by matrix manipulations and the same is true about computation of ¥(z) that
approximates @(z). Namely, these problems can be reduced to the corresponding problems on
matrix-valued functions.
Let us see the implication of Proposition 2.47 on our model-matching problem. By this
proposition, we have
inf |zH™P -S|

S'emHE

o = ll2H" P,

which simplifies the formula obtained in the previous section. Our final result is summarized as
follows. In Section 4.4. this proposition is utilized to simplify a condition for the convergence

of the best sampled-data control performance.
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Proposition 2.49. Suppose that P is a continuous-time operator having a continuous-time
state-space representation and H is a hold-type operator whose lifting-based transfer function

belongs to RHT . Suppose also that, with respect to the matrix representation of H(e'“7), i.e.,

E“ H{ewT)
Eg H(e™T)
E“H(e)

all the columns are independent for any w € |- 7/7). Then, there exists an inner-outer

factorization of H(z). Moreover, when we write this factorization as (H™, H™"), there holds

w)
L“

max {|[H™ P, (|1 - H"H")P|

< vinf | |[B=z 8812
SR :

< :”ump”fl + (I - ERH™) P

\i,‘ ;
2.6.3. A Dual Model-Matching Problem
So far, we have considered how to evaluate

inf [|[P—HS|
3

In Section 4.4 we need a corresponding result also on a problem that is dual to the above;
namely, the value of

h!ll”“, — HS||
is desired to be obtained. Here, it is assumed that P is a continuous-time operator having a
continuous-time state-space representation and that S is a sampler-type operator whose lifting-
based transfer function S(z) can be expressed as z7'S’(z) with S’ € RH°. Moreover, in the

above expression, H varies over all hold-type operators whose lifting-based transfer functions

belong to MHT. Using lifting-based transfer functions, we can write our new model-matching
problem as

inf [|P— 2 HS||ge.

HERDT
This expression resembles Equation (2.11) we have considered so far. Hence, by translating the
discussion so far in an appropriate way, we can obtain a result on this problem, too. In this
section, this result is presented briefly.

Some preparation is needed to state the result.
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For a real rational function A(z), A(z) is said to be co-inner if A~(z) is inner; A(2) is called

co-outer if

A~(2) is outer. For the above sampler-type operator S, consider its lifting-based

transfer function S(z). Assume that, in its matrix representation

S(en)Bie .., (2.13)

all the rows are independent for any w € |

7). Then, in fact, the function S(z) can be
factored as

’, 15“”1(:]5”‘( 2)

so that S™(z) is co-inner and S°"'(z) is co-outer. If we write S = 2z~ 'S’, this factorization
becomes S'(z) §(2)8™(z), and the pair ($°', $™) is said to be a co-inner-co-outer
factorization of S'. In order to obtain this factorization, compute a spectral factorization of
a matrix-valued function S'S™ (= SS~). This factorization gives a co-outer function S°* such
that S'S"™ = §o" 5o~ Then, define 5™ (z) := 5" (2)~18"(2) (= ut(2)~15(2)). It is easy

to see this function S™(z) is co-inner.

The Hankel operator and the Hankel norm are defined for a tall-operator-valued function

Nehari's theorem holds

@(z) by appropriate modification of the definitions in Subsection 2.6

in this setting, too. More precisely, Proposition 2.47 still holds even if @ is a real rational
tall-operator-valued operator and X' moves in the set RHTF.
We now present a result for our new model-matching problem, which is required in Sec-

tion 4.4.

Proposition 2.50. Suppose that P is a continuous-time operator having a continuous-time
state-space representation and that S is a sampler-type operator whose lifting-based transfer
function S(z) can be expressed as z7'S'(z) with ' € MHF. Assume that, with respect to
a matrix representation of S(e7) presented in (2.13), all the rows are independent for any
w € [-w/7,7/7). Then, with respect to the function S, its co-inner-co-outer factorization

(S°u, S can be found. Moreover, there holds

max {H:I”S““’\

< inf ||P-2z"'HS|3e
TERHT :

< ‘\il’S’“NHfl + 1P - SNNS”’)MX‘

||P(I — S™~

e
3
R

e
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Chapter 3

A General Framework for

Sampled-Data Control Systems

This chapter presents a framework for sampled-data control systems. The framework presented
here is general in the sense that a large class of samplers and holds can be treated in it; moreover,
this framework is clear in the sense that basic properties of sampled-data control systems are
derived in a natural way. Although one purpose of this chapter is to give a solid theoretical basis
for subsequent investigation, it is important in its own right. This is because this framework is
believed to be useful in order to solve other advanced sampled-data control problems than the
one considered here.

First, regular samplers and holds are defined. They are more general than the conventional
notions of generalized samplers and holds. Namely, the kernel functions of our samplers and
holds are defined on [0, 00), while those of conventional samplers and holds are only on [0,7),
where 7 is the sampling period. Several properties of regular samplers and holds are stated
on their transfer functions, state-space representations, and matrix representations. Next, a
sampled-data control system is introduced and the notion of a sampling environment is given
Moreover, stability and the best achievable performance of sampled-data control systems are

defined. Based on the constructed f

amework, three theorems are proven about properties of

sampled-data control systems. Especially, the last theorem is important in the next chapter
because it states a relationship between a sampled-data control system and a corresponding

continuous-time control system.

3.1. Introduction

In a sampled-data control system, which was introduced in Section 1.1, a sampler was used
for an analog-to-digital signal conversion and a hold was used for a digital-to-analog signal

conversion. As was stated in Section 1.1, the most typical sampler is the ideal sampler and the

89
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most typical hold is the zero-order hold. However, if we choose a more generalized sampler and

hold appropriately for a provided plant, it is possible to improve a control performance. Earlier

studies on this topic are [55, 54]. After the lifting technique was introduced by [94, 95|, lifting-

based approaches have been tried on this topic [45, 86. 53, 56, 5, 66]. However, the frameworks
used in these papers are not sufficient to analyze general configuration of sampled-data control
systems. The reason is as follows.

In many of these papers, a generalized hold H : g4 + g is assumed to have the form

q(kT +t):= H(t)gy[k] for0<t<7and k=01, (3.1)

Here, 7 is the sampling period, g4[k] is a discrete-time input to H, g(t) is the corresponding
continuous-time output, and H(t) is a certain provided function. In fact, even the first-order
hold. which is often quoted as an example of a generalized hold, cannot be modeled in this form.
Indeed, in (3.1), the output g(¢) during k7 < t < (k+1)7 depends only on g4[k]. However, the
output of the first-order hold during k7 < t < (k + 1)7 depends not only on g4[k] but also on
g4[k — 1]. Therefore, we have to use a more general form than (3.1).

The situation is similar as for generalized samplers. A generalized sampler S : p — p, is
typically assumed to have the form

kr
palk] = _/{A Skt —0p(t)dt fork=0,1,...., (3.2)

where p(t) is a continuous-time input to the sampler S, py[k| is its discrete-time output, and
S(t) is a provided function. In this form, the ideal sampler, which is the sampler most widely
used in practice, is not easily treated. If one likes to model the ideal sampler, he has to set S(t)
to be the delta function. This makes the subsequent mathematical treatment complicated.

Moreover, an anti-aliasing filter is modeled as a part of a plant in the existing frameworks.
An anti-aliasing filter is different from a plant in the sense that it has some design flexibility
although a plant is provided as fixed. Actually, we can improve control performance by choosing
an anti-aliasing filter appropriately. However, if the filter is regarded as a part of a plant, this
flexibility becomes implicit and gets difficult to be utilized.

Finally, many of the existing papers considered lifting of a plant only. They paid less
attention on a sampler and a hold. In order to see how the control performance depends on a
choice of a sampler and a hold, we have to treat these devices more seriously.

In this chapter, we construct a framework for sampled-data control systems so that these
problems are resolved.

In particular, by assuming that the functions S(t) and H(t) are defined on [0,00) (as
opposed to [0, 7)), we extend the class of samplers and holds. Our class includes the classes of
. 54, 45, 86, 5, 5. 66

hold in a natural way. Furthermore, this extension enables us to treat an anti-aliasing filter as

s subclasses and can model the ideal sampler and the first-order
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a part of a sampler (as opposed to a plant), which means that analysis and synthesis of the
filter can be formulated as those of a sampler.

Next, not only lifting of a controlled plant but also that of a sampler and a hold is considered.
Although this was already tried by Mirkin and Rotstein [66]. our class of a sampler and a hold
is more general than theirs. We obtain explicit formulas that express lifting-based transfer
functions of a sampler and a hold in terms of S(t) and H(t). These formulas are useful in the
subsequent chapters.

Finally, some important properties of sampled-data control systems are derived based on
the constructed framework. Here, the notions of a lifting-based transfer function and its matrix
representation play an important role. Especially, a property about a relationship between a
continuous-time control system and a sampled-data control system is shown. This is a new
result and works as a key when we compare the best achievable performance of these two types

of systems in the next chapter.
3.2. Regular Samplers and Holds
Before considering sampled-data control systems, we prepare our class of samplers and holds.

Our class is large enough to cover many practically important samplers and holds. Especially,

it includes the sampler and hold classes formerly proposed by [55, 54, 45, 86, 53, 56, 5, 66].

Next, we investigate properties of samplers and holds that belong to the presented class. The
obtained properties are utilized to derive nseful formulas on sampled-data control systems in
Section 3.4.

We need the following functional space to define our class of samplers and holds.

Definition 3.1. Suppose that a(t) is a real function such that e“a(t) belongs to £? for some

€ > 0. Let D be the space of all such functions. Here, € may vary depending on a € D O

With the help of this space, a considered class of samplers and holds is defined as follows.

n

Let the sampling period be 7. This is a positive number, which associates a discrete-time k

with a continuous-time t by t =

Definition 3.2. A sampler-type operator S : p — p, is called a regular sampler or simply L

a sampler if its operation is represented as
k7
palk] :/ S(kr — t)p(t)dt for k=0,1,... ‘
Jo

using a matrix-valued function S(¢) whose elements belong to D. Note that p(t) is a continuous-

time signal and p,[k] is a discrete-time signal.
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On the other hand, a hold-type operator H : g, +— g is said to be a regular hold or simply
a hold if it is represented as

k
qkr+t) =Y H(kr +t—

£=0

for k=0,1,... and t € [0,

with H(t) being a function every element of which belongs to D.
The functions S(t) and H(t) are called the kernel functions of S and H, respectively. [

We express kernel functions by putting underlines on the corresponding symbols of a sampler
and a hold.

I'he definitions above are different from (3.1) and (3.2), which are typical definitions of a
generalized sampler and hold in the literature. That is, in our definitions kernel functions are

defined on [0, o), while in the conventional definitions only on [0, 7). This means that our class

of samplers and holds includes the conventional classes as its subcla

Example 3.3. Define a sampler-type operator Si¥ so that it maps a continuous-time signal

p(t) to a discrete-time signal p, in accordance with
palkle=mikn) ford =012

Figure 3.1 shows how this works in the one-dimensional case. (This is essentially the same
figure as Figure 1.3.) This S is called the ideal sampler with the sampling period 7. It is
not a regular sampler because its kernel function turns out to be the delta function, which does

not belong to D.

Figure 3.1. The operation of the ideal sampler S.

In order to avoid this difficulty, consider a bounded continuous-time operator P that can be
described by a strictly proper state-space representation (A, B, C, Q). Without loss of generality
it can be assumed that the matrix A has all of its eigenvalues in Res < 0. Here, an operator

SP is a regular sampler. Indeed, its kernel function is Ce?'B. a
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Example 3.4. Let us consider a sampler-type operator S™ : p + p, that works as

p(k7)

p((k 1/2)7)

pylk] = TOR e O e O
Here, suppose p(—1/2) is equal to zero. This sampler picks up the input signal p not only at
t = k7 but also at t = (k—1/2)7. Let us call this operator the multirate sampler. By using

this sampler, we can deal with a certain type of multirate sampled-data control systems as will

be seen in Examples 3.26 and : Although the multirate sampler S™ is not a regular sampler,
the operator S P is a regular sampler by a proper choice of a continuous-time operator P just

as the previous example. In this case, the kernel function of S™ P is

CetB
1(t — 7/2)CeM*=7/2B
where 1(¢) := 1 for t > 0 and 1(#) := 0 for ¢t < 0. It is seen from this example that a kernel

function may not be square. )

Remark 3.5. In our framework, the ideal sampler Si¢ is always treated as in Example 3.3.

Practically, we do as follows.

In the recent sampled-data control studies, it is standard to assume that a continuous-time
operator F' that has a strictly proper state-space representation precedes the ideal sampler
3

P having a strictly proper state-space representation, and decompose SMF into a successive

One way to use the technique of Example is to prepare a bounded continuous-time operator

operation of SMP and P~'F. Since SMP is a regular sampler and P~'F is a continuous-time

operator with a state-space representation, their treatment is now easy.

There is another way when the operator F is bounded itself. This is often the case when

F'is an anti-aliasing filter. In this case, F' has a state-space representation whose “A”-matrix
has all of its eigenvalues in Res < 0. Then, it is possible to regard SMF as a regular sampler
This shows another possibility of our framework. That is, an anti-aliasing filter F' can be
treated as a part of a sampler in our framework. In the lifting-based studies so far, an anti-
aliasing filter was often modeled as a part of a plant. However, our formulation is considered to
be more natural than the conventional ones because of the following reasons. First, since both
anti-aliasing filter and sampler work to convert a continuous-time signal into a discrete-time
signal, it is appropriate to treat them in a combined way. Next, an anti-aliasing filter has some
design flexibility and can be designed in accordance with engineer’s preferences. At this point
an anti-aliasing filter is different from a plant because a plant is given to an engineer as fixed.
Once we regard an anti-aliasing filter as a part of a sampler, we can formulate a design problem
of this filter as that of a sampler. In addition, note that the kernel function of S F has the form

of CeM B and, thus, it is nonzero all over [0,00) in general. Therefore, this operator cannot be
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§ H2 (1)

(a) (b)

Figure 3.2. (a) The operation and (b) the kernel function of the zero-order hold
HES:

treated as a sampler in the conventional frameworks, where kernel functions are defined only

on [0,7). ]

Example 3.6. Let a hold-type operator H* maps a discrete-time signal g (k| to a continuous-
time signal q(t) as

q(km+1t) = qu[k] for0<t<rtand k=0.1,....
Figure 3.2 (a) illustrates its operation in the case that both g4[k] and g(t) are one-dimensional.

(This is almost the same figure as Figure 1.3 (b).) This operator H? is called the zero-order
hold with the sampling period 7. Its kernel function H?°(¢) turns out to be

I for0<t<T,
H?(t) =
Q dorg <t

This function is presented in Figure 3.2 (b). It is seen that the zero-order hold is a regular

hold. 0

Example 3.7. Consider a hold-type operator H® : g, — g such that

ey = ,’ﬁq(,u < i (1 B ;)q.i[kl-

Figure 3.3 (a) shows how this operator works in the one-dimensional case. This operator H®
is called the first-order hold. Its kernel function is obtained as
(144 foro<t<r,
”i”(/) =<(1- :)[ forr <&'= 27
O fordr < £
See Figure 3.3 (b) for the shape of this function. Because this kernel function takes a nonzero

value in 7 < ¢, the first-order hold cannot be modeled in the conventional frameworks. a
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H™(t)
2
1
0 t
T 2T
(a) o
(b)
Figure 3.3. (a) The operation and (b) the kernel function of the first-order hold
B,
HU (1)
44[0]
1
—1
0 T 27 37 0 T
(a) (b)

Figure 3.4. (a) The operation and (b) the kernel function of the triangular hold
.
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Example 3.8. For comparison, we define a rather artificial hold. Consider a hold-type opera

tor H" : g4 — q such that

alk]s for 0 << rand B=0,1,.....

Figure 3.4 (a) shows how its operation looks like. Let us call this operator the triangular

hold for convenience. The kernel function of the triangular hold H'" is as

(=50 for0<t<m,

H(t) =
O for 7 < t.
This function is depicted in Figure 3.4 (b). O

Example 3.9. Corresponding to the multirate sampler, we think of a multirate hold. Suppose

that H™ : q4 +— q works as

[In Onlgqlk] for0<t<r7/2

qlkT +t) =
[On IL)gulk] for

Ay

Here, n is the dimension of the output signal q(¢), I, denotes the n X n-identity matrix,
and O, stands for the n x n-zero matrix. This hold gives the upper half of g4[k] during
kT <t < (k+1/2)7 and then gives the lower half during (k + 1/2)7 <t < (k + 1)7. In this
sense, the output of this hold is switched not only at ¢ = k7 but also at t = (k+1/2)7. Therefore,

it is appropriate to call it the multirate hold. Its kernel function H"(t) is expressed as

[T Oal. for Ot <7/2,
H™ (t) = 0. I,] forr/2<t<r,
[Ox 04l fora=t,

O

As was stated before, the ideal sampler S (Example 3.3) and the zero-order hold HZ°
(

interesting property of them. This result is utilized in the next chapter.

Example 3.6) are most typically used in practice. Corollary 2 of [17] gave the following

Proposition 3.10. Let P be a bounded continuous-time operator having a strictly proper
continuous-time state-space representation. Then, for the ideal sampler Si* and the zero-order

hold H?® that have consistent dimensions, there holds

lim || ~ JPE3EP = 1.
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Remark 3.11. We assumed that kernel functions of a regular sampler S and a regular hold H,
i.e., S(t) and H(t), belong to D. Roughly speaking, this assumption requires these functions
to decrease exponentially or faster as ¢ goes to infinity. Although their exponential decrease is
assumed for technical reasons, it is reasonable to assume that these functions decrease by the
following reasons. First, if S(t) (resp. H(t)) converges to a nonzero value as t — 0o, S (resp.
H) must be unbounded, and thus it is irrelevant. Let us see this regarding S. Define p(t) := 1
for 0 <t < 7 and p(t) := 0 otherwise, where 1 is a vector whose elements are all equal to one.

If this continuous-time signal p(t) is given to S, the obtained output p,[k| is
palk] :/ S(kr — t)1dt.
Jo

Hence, if S(t) converges to a nonzero value, py[k] does not approach zero no matter how large
k becomes. In this sense, the effect of a nonzero input during 0 < t < 7 remains in the output
forever. Therefore S is unbounded. The proof is similar regarding H. Moreover, it is natural
to assume decrease of kernel functions considering realization of S and H as practical devices.
Indeed, decrease of a kernel function means that the effect of an input at some particular time

gradually decreases in the output as the time passes by. [

In Section 2.4, lifting-based transfer functions were considered for sampler-type and hold-
type operators. Let us pay special attention to regular samplers and holds and investigate their
lifting-based transfer functions.

By the definition of a regular sampler S : p — p,, there holds

kT k-1 o7
palk] :A S(kr — t)p(t) dt = Z/ S((k — &) — t)p(er + 1) dt.

=00
Here, define the flat operators Sg, k =0.1,..., by
SAf::/ S(kr — ) (1) dt (3.3)
Jo
for f € £%[0,7). Here, we adopt the convention S(t) = O for t < 0, which implies S, = O.
Moreover, write p := W,p, that is, p[f](t) := p(ft +t) for £ =0,1,.... Then, we have
k-1 ‘
palk] = Y S Bl (3.4)
=0

Therefore, the lifting-based transfer function of S is given by

with Sy defined in (3.3) (see Definition 2.20).
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A similar discussion is possible with respect to a regular hold H. Namely, define tall

operators Hy, k=0,1,..., by
(Hyv)(t) := H(kT + t)v, (3.5)

where v is a vector and ¢ runs over [0,7). Then, the operation of a regular hold H : g4 — q is
expressed as
k
alk] = 3" Hy-cqqld,
=0

where q := W, q. Hence, with Hy in (3.5), the lifting-based transfer function of H is defined as
q q g

in accordance with Definition 2.21.

Remark 3.12. There holds S, = O while Hy = O does not hold in general. We need the
equality Sy = O in order to guarantee causality of a sampler S. Indeed, if Sy # O, pylk|
depends on plk] by (3.4); in a word, the output of S at the discrete time k depends on the
future input given in k7 <t < (k + 1)7. |3,

From the explicit forms of Sy and Hy, the next proposition follows, which is about lifting-

based transfer functions of regular samplers and holds.

Proposition 3.13. For a regular sampler S, there exists 0 < py < 1 such that its lifting-based
transfer function S(z) is analytic in z € D,,.

Similarly for a regular hold H, we can choose 0 < py < 1 so that its lifting-based transfer
function H(z) is analytic in z € D,,.

2articularly, S belongs to HF° and H belongs to 5. Moreover, S(o0) = O.

Proof. By the definition of Sy (3.3) and the Schwarz inequality, there holds

- kT s
il < [ atstr —opar= [ a{s@ya (3.6)
o (k=1)r
Since each element of S(t) belongs to D, there exist € > 0 and V > 0 such that [5° e*!a{S(t)}? dt
< V2 Then, it is derived that

etk /k ﬁ{s(/)}'l(lf</h {S(1)}2 dt < V2
( = Ju : )

J(k=1)r nr

Combining this with (3.6), we obtain the bound ||Si|} < e 2*-VD7V2  Hence, S(z) =

S, Skz ¥ absolutely converges for [z7'| < ¢7. This means that there exists 0 < pp < 1
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is analytic and uniformly bounded in

such that S(z) is analytic in z € D,,,. In particular, S
D; hence S € HF. It is easy to see S(o0) = S, = O.

In a similar way, the results on H can be derived. O

For notational convenience, let us introduce the following notation. Recall that RO is a
subspace of H° that consists of real rational functions only (Section 2.4.3).
Definition 3.14. Let z'${° denote the set of functions having the form of z~'A(z) with
A € H. Similarly, let 2 'RH denote the set of functions with the form of z~' A(z) for some
A€ Rop. 0
With this notation, the claim of Proposition 3.13 can be restated as S € = ‘)’),’-‘

Combining the above proposition 3.13 with Proposition 2.22, we can immediately obtain

the next result

Proposition 3.15. A regular sampler S has a finite induced norm and satisfies ||S|| 2.2 =

From Proposition 3.15 together with Proposition 2.23, it follows that, if a regular sampler S

S|lgg. Likewise, a regular hold H has a finite induced norm and satisfies ||H||a.c2 = || H||sz-

(resp. a regular hold H) has a lifting-based state-space representation, its lifting-based transfer
function S(z) (resp. H(z)) belongs to z 'R (resp. RHT). The converse is true in a slightly

stronger form. The result is summarized as follows.

Proposition 3.16. A sampler-type operator S is a regular sampler and has a lifting-based

state-space representation if and only if S has a lifting-based transfer function belonging to

2 'MOF. A hold-type operator H is a regular hold and has a lifting-based state-space repre-
At Pe OF 4 8 I T

sentation if and only if H has a lifting-based transfer function that belongs to RHT .

Proof. Let us prove the “only if” part for a sampler-type operator S. Suppose that S is a

regular sampler and has a lifting-based state-space representation. Then, by Proposition 3.15,

S is bounded. Applying Proposition 2.23, we see that S has a lifting-based transfer function
RO

Next, the “if” part is proven. If S has a lifting-based transfer function in z 'RHYF C RHY,

9

Let us write this state-space representation as (I B.é; [)) where A and C are real matrices

and B and D are real flat operators. Here, S(z) = P+ ("(:[ - \) 'B. Since S € z 1RG5,

D = O. Moreover, it can be assumed that A has its eigenvalues only in |z| < 1. (If it is not

belonging to

S is bounded and has a lifting-based state-space representation by virtue of Proposition 2.

the case, we can get rid of all the eigenvalues in |z| > 1 by obtaining a minimal state-space
representation of S.) Since B is a linear operator mapping L£2%[0,7) to a finite-dimensional vector
space, the Ricsz representation theorem implies that there exists a real function B € £2[0,7)
such that

Bfi— A B(r —t)f(t)dt for any f € £2[0,7).




ﬁwvm

SR L

70 Chapter 3. A General Framework for Sampled-Data Control Systems

Define a function S(t) by S(kr+t) := CA*B(t) for k = 0,1,... and 0 < ¢ < 7. Then, this S(t)
turns out to be the kernel function of S. Since all the eigenvalues of A are located in |z| < 1,
each element of S(t) belongs to D. Hence, S is a regular sampler.

As for a hold-type operator H the claim is proven similarly. ]

Here, we present an easily testable sufficient condition in order that a regular sampler and

a regular hold have their lifting-based state-space representations.

Proposition 3.17. Suppose that S is a regular sampler. If its kernel function S(t) has a
bounded support or if the Laplace transform of S(t) is rational, then S has a lifting-based
state-space representation.

Suppose that H is a regular hold. If its kernel function H(t) has a bounded support or if the

Laplace transform of H(t) is rational, then H has a lifting-based state-space representation.

Proof. Suppose that S(t) has a bounded support. Then, there exists ky > 0 such that S, = O

for any k > ko. This means that S(z) is equal to ’[_” o Skz ¥, which is rational. Next, suppose

that the Laplace transform of the kernel function S(#) is a rational function. Then, this Laplace
transform 5‘(.\) is expressed as D + C(sI — A)~' B using real matrices A, B, C, and D. In this

case, we have S(t) = D + Ce™B. Since S belongs to D by assumption, D must be a zero

matrix and we can assume A has its eigenvalues only in Res < 0 without loss of generality.
Define a flat operator B so that

Bf = /Yo'“ DBf(t)dt (3.7)
Jo

for any f € £2(0,7). Then, there hold Sy = CeA* "B for k = 1,2,... and Sy = O. This
implies that S(z) = C(zI — e*")"'B = 27'O(I — 2 '¢"") ' B; hence S € 2 'RHT.
The proof is similar for a hold. Especially, once we obtain the form H(t) = Ce B, define

tall operators C' and D by
(Co)(t) := CeAlTH0y and (f)u)(l) := Ce'Bu. (3.8)
Then, there holds H(z) = D + C(zI — eA")~'B. Hence, H € ROHT. (m]

Note that the above proof gives explicit forms for the lifting-based state-space representations
of S and H, when their kernel functions are represented as Ce*B. Namely, if S(t) = CeB,
the lifting-based state-space representation of S is (eA”, B, C,0), where B is as in (3.7); if
H(t) = Ce”" B, the lifting-based state-space representation of H is (47, B,C, [3) with € and
D being as in (3.8).

From Proposition 3.17, we can see that all the samplers and holds in Examples :

3.9 satisfy
S €z 'MHY and H € ROT. This suggests that many of practically important samplers and

holds can be covered by the classes z7'RH and RHT, respectively.
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In the case that a continuous-time operator P has a continuous-time state-space represen-
tation, an explicit formula can be obtained for a matrix representation of the lifting-based
transfer function of P (Proposition 2.18). A similar thing is possible with respect to a regular
sampler and a regular hold. Here, we need a tall operator B¢ and a flat operator E2 . which

were defined in Definition 2.25.

Proposition 3.18. Let S be a regular sampler and let S(z) be analytic in D, for 0 < ps < 1

Then, for any complex number s such that e” € D, , there holds

o>

X . o
S(en) i, = \/]T,,s'(s | "T"’)

form = 0,+1,+2 , where S(s) is the Laplace transform of the kernel function S(t).

Suppose that H is a regular hold and H(z) is analytic in D,, for 0 < pg < 1. Then, for any

complex number satisfving e*” € D, there holds

Por
. i i2mm
B e = H (s + )
nhen)= 2 g
form=0,4+1.+2...., where l?(s) is the Laplace transform of the kernel function H(t).

These formulas are quite useful to investigate sampled-data control systems and play an im-
portant role in the sequel. Similar formulas were presented in [4, 3, 5, 42] under the name
of “FR-operators.” However, their class of samplers and holds is smaller than ours and they

considered only the case that s is a pure imaginary number.
3.3. A Structure of Sampled-Data Control Systems
Figure 3.5 shows a sampled-data control system considered in this thesis. It is made of four

operators G, Ky, S, and H and signals connecting them. The signals shown by solid arrows are

continuous-time signals, while those shown by broken arrows are discrete-time signals. All the

B
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signals may be multi-dimensional. As is seen from the figure, G is a continuous-time operator,
Ky is a discrete-time operator, S is a sampler-type operator, and H is a hold-type operator.
This system configuration is quite standard in the recent sampled-data control literature (see

[9, 86, 20, 27 for example).

w(t) 2(t)
o t -
b(t (1) o :
)’(‘7 B ",,, ; u 0]
2 k] gyK][ (k] palk |p(t)s
q( )‘ - ‘Q.J[ b‘!(ll Ik, _P.t[ blzln I o Fp(I)O<

i a(t)
bylk] - aqlk]
Figure 3.5. A sampled-data control system.

A continuous-time operator G is a generalized plant and is defined exactly in the same way

as in Section 2.5. Especially, the dimension of the signals w(t), u(t), z(t), and y(t) are written

as My, Ny, N2, and ny,. Besides is divided into four operators so that

z =G w+ Ghu,

y = Gyw + Gpu.

A positive number 7 is associated with the sampled-data control system. An operator
S :p > p, is a regular sampler with this 7 being its sampling period. The dimension of its
input p(#) is denoted by n, and that of its output py[k] is denoted by n;f. On the other hand,

an operator H : g, +— q is a regular hold with 7 being its sampling period. The dimension of

d

its input gy[k| is written as nj

and that of its output g(t) is written as n,.

Here, some terminology is introduced.

Definition 3.19. Suppose that 7 is a positive number, S is a regular sampler with the sampling
period 7, and H is a regular hold with the sampling period 7. Then, the triplet (7, S, H) is

called a sampling environment. =

Definition 3.20. Suppose that a generalized plant G and a sampling environment (7, S, H)
are provided. If there hold n, = n, and n, = n,, G and (7. S. H) are said to be consistent
with each other. O

If a sampling environment is consistent with a provided G, then a sampler S and a hold H have

input- and output-signal dimensions that match those of G, so that S and H can be connected

3.3. A Structure of Sampled-Data Control Systems

to G. Once a sampling environment (7. S, H), which is consistent with G, is fixed. what is
left for us is only to choose Ky. In this sense, (7,5, H) prepares an environment to make a
sampled-data control system. This is the reason why (7, S, H) is called a sampling environment.

A discrete-time operator Ky is called a discrete-time controller. It is assumed to be
chosen from a set Ky. The set Ky is defined to be composed of all discrete-time operators
that have discrete-time state-space representations, u"';(lilnvlninnul input, and H‘J'(“lll(‘n\l()nul
output. Moreover, the operator composition HK4S is called a sampled-data controller as

a whole.

Remark 3.21. In view of design flexibility left to an engineer, a sampling environment (7. S, H)
is located between a plant G and a discrete-time controller Ky4. A plant G is provided to an
engineer as fixed; a discrete-time controller Ky can be chosen almost freely by an engineer,
though practically some constraints are posed on the choice of K4 because of a cost, technical

difficulty, and so on. On the other hand, a sampling environment (7, S, H) has some design

flexibility but it is not so flexible as a discrete-time controller Ky4. For example, a sampling
period 7 cannot be made too small because devices with a small sampling period cost much.
Moreover, we cannot assign a too complicated function to a sampler S and a hold H. This is
because 7 is chosen small usually and the operations of S and H are to integrate and interpolate

signals, respectively, in the time range shorter than 7. ]

Next, stability of this sampled-data control system is considered. The signals a(t). b(t).
aqlk], and by[k] are fictitious inputs introduced to define stability of this system. Here, we also

S(z),

need lifting-based transfer functions of G;

, S, H, and Ky, which are written as Gy(2

H(z), and K4(z), respectively. Note that SGy H Ky gives a matrix-valued function.

Definition 3.22. With respect to a sampled-data control system in Figure 3.5, suppose that
the function det(] — S.Ggglll\-d)"i takes a nonzero value at least at one point z € D, and all the
25 operators mapping w(t), b(t), a(t). aqlk], ba[k] to z(t), y(t), palk], qs[k]. q(t) are bounded
in respect of their appropriate induced norms. Then, this sampled-data control system is called
input-output stable or just stable. O
Remark 3.23. Just like the case of a continuous-time control system, it is conjectured that,
under some condition, we can decrease the number of operators whose stability should be
checked. A clue to consider this problem can be found in the work of Francis and Georgiou
[35]

order that the stability of some special sampled-data control systems can be checked by their

That is, using the notion of a non-pathological sampling period, they gave a condition in

observation at sampling instants only. It is expected that by generalizing this notion we can
obtain a condition to decrease the number of operators. The research is now proceeding in this

direction. (See [G.’;] for another attempt to generalize this notion.) i
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Usually, we want the system not only to be stable but also to possess a good performance.
In a standard formulation of a sampled-data $>®-control problem [11, 9, 86, 89, 56, 83, 48, 20,
the system performance is measured by the £%-induced norm of the operator that maps w(t)

to z(t). Using the symbol of the lower fractional transform F(-.-). which was introduced in

)

Section 2

. this norm is expressed as || F(G, HK4S)||. The symbol ||-|| denotes the induced
norm. Just as in Section 2.5, we define that this norm is equal to infinity when the considered
sampled-data system is not input-output stable. In a standard formulation, the smaller the
value of || F(G, HK4S)|| is, the better the system performance is. Hence, the best achievable
performance of sampled-data control systems (or the best sampled-data control

performance in short) with respect to a provided G and (7, S, H) is expressed as
inf ||F(G, HK4S9)||-
Ka€Ky

Unlike the case of a continuous-time control system, it is possible that this value is infinite.
In other words, there is a case that there exists no discrete-time controller Ky € Ky that
input-output stabilizes the system.

For an input-output stable sampled-data control system, a lifting-based transfer function is

well-defined for each of the 25 operators above.

Proposition 3.24. For an input-output stable sampled-data control system, each of the 25

operators that were used to define input-output stability has a lifting-based transfer function.

Moreover, there exists 0 < p < 1 such that these 25 lifting-based transfer functions together

with S(z), H(z) are analytic in D,,.
For its proof. see Appendix E. By this proposition, each of these 25 lifting-based transfer
functions belongs to either H7°, H°, HF, or H depending on its function type.

Let us formulate a sampled-data control system considered in Section 1.1 into the standard

form.

Example 3.25. In Example 1.3, robust stabilization by means of sampled-data control was
considered. The diagram of the considered system is redrawn in Figure 3.6. (This is essentially
the same figure as Figure 1.8 (b).) Here, P is a continuous-time operator having a continuous-
time state-space representation; W is an operator such that PW is a continuous-time operator
having a continuous-time state-space representation; F is a bounded continuous-time operator
having a strictly proper continuous-time state-space representation. This P stands for a plant
to be controlled; W is a weight to express how the amount of uncertainty included in the plant
model depends on the frequency; F' stands for an anti-aliasing filter. Suppose that a typical
sampler and hold are chosen here, that is, the ideal sampler Si and the zero-order hold H*

both having the sampling period 7. (See Examples 3.3 and 3.6 for definitions of these devices.)
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‘ e
L 1 H s Ky f--| 5'/“ b— F b

Figure 3.6. The system considered in Example 1.3. The £*-induced norm of
the operator from w(t) to z(t) should be reduced for robust stabilization of this

system.

It is desired to minimize the £%-induced norm of the operator from w(t) to z(t) for robust
stabilization.
Now, let us formulate this robust stability problem into the standard configuration intro-

duced above. This is achieved by putting a generalized plant G as

GaGh [5). o

o G PW P

and defining a sampler S to be SIF and a hold H to be HZ°. Then, since S = SEE S
S, H)

is a sampling environment. The operator from w(t) to z(t) is expressed by F(G, HK4S).

sampler and H = H? is a regular hold by Examples 3.3 and 3.6, the triplet (7

regula

Therefore, the best achievable performance in the sense of robust stability is exactly equal to

infx,ex, || F(G, HK4S)||, that is, the best achievable performance in the standard configuration.
#12 ) c )

a

In general, a system is called a multirate sampled-data control system if each of a
sampler, a hold, and a discrete-time controller works with its own time period and there is not
necessarily one unified sampling period. By adopting the least common multiple of the periods

rete-time controller as the unified sampling period, we can

of the sampler, the hold, and the dis
regard a multirate system as a usual single-rate sampled-data control system. In this case, the
sampler and the hold are interpreted to have general functions in the sense that they produce
33|

for earlier results on multirate sampled-data control systems, and see [93, 21, 81] for their

and receive multiple discrete-time signals in one sampling period. See [63, 58, 6, 41, 67, 43

lifting-based treatment.
Some types of multirate sampled-data control systems can be treated in our framework.
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Example 3.26. In the system in Figure 3.6, replace the ideal sampler S by the multirate
sampler S™ considered in Example 3.4. While the ideal sampler S samples the input signal
only at t = k7, this sampler S™ samples it also at t = (k— 1/2)7. In other words, this sampler
S works with the period 7/2. Since the included hold HZ and the discrete-time controller
K4 have the period 7, this system has two different time periods inside. Accordingly, this is a
special example of a multirate sampled-data control system. In particular, this system belongs
to a special class of multirate systems called two-delay control systems and is known to have

some interesting properties [67]. By putting S :

SPF and following the procedure of the

previous example, we can formulate this

ystem into the standard form again. O

Example 3.27. In the system in Figure 3.6, replace not only Si by S™ but also the zero-
order hold H?® by the multirate hold H™, which was considered in Example 3.9. The resulting
system is another example of a multirate sampled-data control system because a sampler and
a hold work with the period 7/2 while a discrete-time controller has the period 7. Just as
the preceding two examples, this system can be formulated into the standard form by putting

2EFand H = HPE O

Remark 3.28. Let us consider the sampled-data controller HKyS = H™ K4S™ F, which was

obtained in Example 3.27. By the definition of H™, its output during the time k7 <t < (k+1)7
is produced from the output of Ky at the time ¢t = k7. Moreover, the input signal that arrives
at S after t = k7 is not sent to Ky until ¢ = (k+ 1)7 because the kernel function of S, i.e., S(t),

is equal to zero in t < 0. In summary, the input si

gnal given to HK,S after t = k7 does not
affect the output of HK4S until t = (k + 1)7. However, in a general formulation of multirate
sampled-data control systems, it is allowed that the input to HK4S during kr <t < (k+ 1)7
is reflected in its output before t = (k+ 1)7 [6, 41, 43, 93, 21, 81]. In this sense, our framework
for sampled-data control systems do not cover general multirate systems. It is considered that
this problem is will be resolved if the kernel function S(t) is allowed to have a nonzero value in
t < 0. However, it is not clear how we can consistently extend our framework in this direction.

This is an interesting topic and left as a future research theme. 3]

At the end of this section, a relationship to the result of Mirkin and Rotstein [66] is discussed.
In their paper, they assumed that a sampler has the form of (3.2) and a hold is represented
as in (3.1). In our terminology, they allowed kernel functions to have nonzero values only in
[0,7). which means their samplers and holds are individually quite special compared with ours.
Nevertheless, the class of sampled-data controllers constructed from their samplers and holds
is the same as our corresponding class. This is a consequence of their main result Theorem 1

and is formally stated as follows.

Proposition 3.29. Suppose that a regular sampler S and a regular hold H have their lifting-

based state-space representations and a discrete-time controller K4 belongs to the set K4. Then,
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the sampled-data controller HK4S can be expressed as H'K}S' so that K} is a discrete-time
controller belonging to Ky and S' and H' are a regular sampler and a regular hold, respectively.

whose kernel functions have nonzero values only in [0, 7).

Proof. By assumption, each of Ky, S, and H has its lifting-based state-space representation
Moreover, the lifting-based state-space representation of S is strictly proper. This implies
that the sampled-data controller HKyS has a lifting-based state-space representation and it is
strictly proper. Specifically, H K4S has a lifting-based transfer function of the form

C(zl — Ay 'B=C{I+ (21 — A)'A}27'B,

where A is a matrix, B is a flat operator, and C is a tall operator. Now, define a discrete-

time operator K, a sampler-type operator S’, and a hold-type operator H' by giving their
lifting-based transfer functions as

Ki(z) :=I + (21 — A) ' 4, z'B, H'(z) :=C.

Then, it is easy to see that K}, S’, and H' are the desired operators. (]

Significance to define S(t) and H(t) on [0,00) rather than [0,7) is not lost because of this
result. Proposition 3.29 only claims that combination of a sampler, a discrete-time controller,
and a hold can be expressed by a combination of special devices whose kernel functions are

defined only on [0, However, in order to analyze a sampler and a hold themselves, it is

desirable that they can be expressed by a single operators, respectively, not by a combination

of multiple operators. Furthermore, it is possible to interpret an anti-aliasing filter as a part of

a sampler only when the kernel function S(t) is defined on [0,00) as we saw in anple 3.3.

3.4. Basic Properties of Sampled-Data Control Systems

In this section, some basic properties of sampled-data control systems are derived. These
properties are shown to be quite useful in the next chapter. By applying technical tools such as
lifting-based transfer functions and their matrix representations, we can obtain these properties.

First, we present properties of functions belonging to the set D. Because the kernel functions
of a regular sampler and a regular hold belong to this set, these properties are important for

the subsequent analysis

Proposition 3.30. Suppose that a function a(t) is an element of D and e“a(t) belongs to
L% with ¢ > 0. Write the Laplace transform of a(t) as a(s). Then, the following properties
hold.

(a) The function a(s — €) belongs to the Hardy space iia
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(b) In the half plane Re s > 0, the function a(s) converges to zero uniformly as |s| approaches
infinity.
(¢) Let B be any bounded closed set that is contained in the open half plane Res > —e.

Then, the infinite series 3.0___ |a(s +i2wm/7)[* converges uniformly for all s € B.

Proof. Note that the Laplace transform of e“a(t) is a(s — ¢) by a property of the Laplace
transform. Then, Property (a) immediately follows from the equivalence between £2 and H?
stated in Proposition 2.1. Moreover, applying Proposition 2.3 to the H*-function a(s — €), we

obtain Properties (b) and (c). O

In a sampled-data control system, an operator composition SGyy H is a discrete-time oper-
ator since its input and output are discrete-time signals. This operator has the next important

property.

Theorem 3.31. Consider a sampled-data control system in Figure 3.5 and let 0 < py < 1 be a
number such that S(z) and H(z) are analytic in D,,. Moreover, let s be any complex number
such that e*” € D,
holds

and none of s + 12rm/7, m = 0,£1,..., is a pole of (’.'“(.s')‘ Then, there

i !Zﬁly:) e (.4 b i‘Zmr{) ﬁ(s o 127\'m> ) (3.9)
7 T T

3. The formula (3.9) is known as a

Po

5 |

Note that such a number py always exists by Proposition 3.

consequence of an impulse modulation formula and is used as a basis of sampled-data systems

analysis in [4. 3, 5], for example. In [12], this formula is called a key sampling formula and is

proven rigorously. However, in [4, 3, 5], the complex number s is restricted on the imaginary

axis. Besides, the proof in [12] requires the assumption that Res is larger than the real part

of any pole of Goy(s). Theorem 3.31 holds without such assumptions and this fact is essential
when this theorem is applied in the proof of Theorem 3.34, which is the main result of this
chapter. (Another proof, which is more general than that of [12], is found in [71] though it

treated only the case that the ideal sampler and the zero-order hold are equipped.)

24 implies (SGyH) (e*7) = S(e*")Gga(e’")H(e’"). By the

assumptions on s, Propositions 2.28 and 3.18 can be applied and the following formulas are

Proof. Note that Proposition :

obtained:

E}Gon(e™™)Ef = C’u(s i llim) Simes (3.10a)
S(em)ie, = \},(s + ‘52"') ! (3.10D)

20 4 2 i27f
Ef(em) = —F (s i ) (3.10¢)
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Here, I3 and Ej are as defined in Definition 2.25.
In the following, dependence on e* is not described explicitly. Combining the above formulas

and applying Propositions 2.26. we obtain that
x
(SGuH) () =S Z

L

= 1 Z‘: 5.,(5 ; i27m>(/;“(h ; izmu) [7(» ; iz:m)
T ‘3 T T

m=—cc

Each infinite series above converges strongly. In particular, the last series converges also abso-
lutely as a matrix series because Gyy(s + i27m/7) is uniformly bounded for any integer m and
each of S(s +i27m/7) and H(s +i27m/7) is square summable as a sequence indexed by m by

Proposition 3.30 (c).
Remark 3.32. Using matrix representations discussed in Subsection 2.4.4, the procedure of

the above proof can be expressed as follows:

(SGaaH) (e e )Gy(e)H (™)

m ~ i2m —
5 |Z~m) (,“<s £ i 'ln) i

This helps us to understand the essence of the proof. However, it cannot be a rigorous proof

of Theorem 3.31 because convergence of the series is treated in a naive way. a
The next result of ours is about the lifting-based transfer function of F(G, HK4S), which

is the closed-loop operator mapping w(t) to z(t) in Figure 3.5.

Theorem 3.33. For a provided sampled-data control system, choose 0 < py < 1 so that S(z)
and H(z) are analytic in D,,. Consider a discrete-time operator Kq(I — SGaHK,) ! and
such that (i) there holds e*” € D,,, (ii)

write it as Lq. Finally, let s be a complex number
the discrete-time transfer function of Ly, i.e., Lq(z), is analytic at = = e°7, and (iii) none of

s+i2rm/T, m=0,%1,..., is a pole of (:(\) Then, we have

. . - s
E;F(G, HK4S)(e") By = Gui(sm)bme + — Grals $m)H(5m)La(e*")S(5¢)Gon(se),  (3.11)

where s, = s + i27m/7.
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If the large operator F(G, HK4S)(e*7) is represented in the matrix form of (2.6a), the above
quantity 1‘:‘,‘”}‘(({. HEK4S)(e™ )i:'; corresponds to the (m,f)-block of this matrix. In the case
that s is a pure imaginary number, the formula (3.11) is equivalent to the one obtained in the
papers of Araki et al. [4, 3, 42, 44, 5], where sampled-data control systems were analyzed based

on their matrix representations (or FR-operators in their words).

Proof. The proof is carried out similarly to that of Theorem 3.31.
Note that

F(G, HK4S) = Gu1 + GioHE (I — SGpHK4)'SGy = Gy + GioHL4SGy

Obtain the lifting-based transfer functions of the both sides. Then, by the assumptions on s,
the values of the functions G1,(z), Gy2(2), H(z), La(z), S(2), and G,(z) are bounded operators

at z = e*". Therefore, it follows that

F(G, HE18)(e"™) = Gii(e™) + Gra(e™) H(e™) La(e™)S () G (™).

In the following, we omit the dependence on e*". Apply Ej and Ej on both sides of the

above equality. Moreover, use Proposition 2.26 and substitute (3.10). Then, it is obtained that

B2 F(G, HKyS)(e)E} = E5GuBi + B5Gn | Y BB | HLS | Y EiBL| GoE
J oo ke 0o
- 1% - TR, S
= G11(5m)0m.e + —Gra(5m)H(5m)La(e™)S(s¢)Gai(se)-
Now the proof is completed. m}

tem

Our final result in this section is about a relationship between a sampled-data control s
and a continuous-time control system. which was considered in Section 2.5. This theorem was
first obtained by Oishi [72] (whose contents were published as [77]) with restricted to a special
case. It is a powerful tool to compare the best sampled-data control performance with the best
continuous-time control performance and works as the basis of the analysis in the next chapter.

Let us briefly review a continuous-time control system. In Figure 3.7, a continuous-time
control system is depicted compared with a sampled-data control system. (Figure 3.7 (a) is the
same as Figure 3.5 and Figure 3.7 (b) is the same as Figure 2.2.) A continuous-time control
system is composed of two continuous-time operators G and K as is shown in Figure 3.7 (b).
The operator G stands for a generalized plant and is assumed in the same way as in a sampled-
data control system. The operator K is a continuous-time controller and is assumed to be an
element of the set K, that is, the set of continuous-time operators having continuous-time state-
space representations and consistent dimensions with G. A continuous-time control system is

called input-output stable if the nine operators mapping w(t), b(t), a(t) to z(t), y(t), w'(t)
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are all bounded. Sometimes, a continuous-time controller K is required to be chosen from a
subset of K. The set Ky is one of such subsets and consists of continuons-time operators having

strictly proper continuous-time state-space representations and consistent dimensions with G

w(t) z(t) w(t) z(t)

b(t) ult) e ) b(t) 1 @
( Y O |

“1(")_ qqlk] @ulk][ Ipalk] pulk][ T lp(t) | 1 a(t)
i | Ka B’. | s e T O-
balk] aqlk]

(a) (b)

Figure 3.7. Standard configurations of (a) a sampled-data control system and

(b) a continuous-time control system.

Now the result is stated.

Theorem 3.34. Suppose that an input-output stable sampled-data control system depicted
in Figure 3.7 (a) is provided. Let us write a discrete-time operator Kq(I — SGay H Ky) 1 as L.
Then, there exists a sequence of continuous-time controllers {[\',}I’“ . K; € Ky, that satisfies
the following conditions:

ration of

(a) The continuous-time control system constructed by G and K; in the config
Figure 3.7 (b) is input-output stable for every j;
(b) The closed-loop transfer function of the continuous-time control system above. i.e.,

f'((y’. K;)(s), converges as ] — oo to the function

= 1 — v 1 =

Gii(s) + = Gra(s)H(s)La(e™)S(s)Gul(s) (3.12)
uniformly for any Res > 0.

An interpretation of Theorem 3.34 is as follows. Regarding the closed-loop operator of
the sampled-data control system, i.e., F(G, H K4S), consider its lifting-based transfer function

F(G, HK4S)(z). We can write its matrix representation at z = e*” as

F(G, HK4S)(e'T) ~ (3.13)




e
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following the form of (2.6a). Here, F is a shorthand for F(G, HK4S)(e*”). Now, let us write

the function in (3.12) as ©(s). Then, from (3.11), it follows that

> i2mm
e

EF(G, HK4S)(e*)

m

Extract the diagonal blocks of (3.13) and construct a new infinite matrix. This matrix satisfies

0 ", 0
B Fie, e (_)(Nf m)
EFE; = O(s) .(3.14)

EiFE; 6(s + 2=)

0 0

That is, ©(s) interpolates the diagonal blocks of the matrix representation of F(G, H K4S)(e®").
Now, consider the matrix representation of (G, K;)(e*"). Since F(G, K) is a continuous-time

operator having a continuous-time state-space representation, Proposition 2.28 implies

0

F(G.K;)(s — 2=

F(G, K;)(eT) ~ F(G, K;)(s) . (315)
F(G, [\'J)(s } )
0

Since Theorem 3.34 claims that, as j — oo, the function F(G, K;)(s) approximates O(s)
uniformly in Res > 0, the matrix (3.15) converges to (3.14) uniformly. Let us summarize this
interpretation. Theorem 3.34 claims that there exists a continuous-time controller sequence
{K;} such that F(G, K;)(e*") approximates F(G. HK4S)(e*") in its diagonal blocks.

It is conjectured that ©(s) is a continuous-time transfer function of some continuous-time
time-invariant operator that optimally approximates F(G, HK4S) with respect to some norm.
Interpreting this theorem in this direction is an interesting subject and research is proceeding
in this direction. See [22] for this kind of approximation.

The proof of Theorem 3.34 is given in the next section.

3.5. Proof of Theorem 3.34

Theorem 3.34, which plays a key role in Chapter 4, is proven here.
First, we present one lemma. Recall that Ag is the set of all real functions analytic in

Res > 0 and continuous in Cy. = {s € C. : Res > 0 or s = oo}. (It was defined before

Proposition 2
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Lemma 3.35. A function Q(s) belongs to the set Ag and Q(0c) = O, if and only if there exists
a functional sequence {Q,)”‘ 1, Qj € RH™, that satisfies Qj(00) = O and ||Q — Qj||n= — 0 as

ji=> 0.

Proof. Proving the “if" part is easy. Let us consider the proof of the “only if” part.

Since @ € Ag, Proposition 2.7 implies the existence of a sequence {Q}}7,, Q] € R,
that attains ||Q — Qj|lx~ < 1/2j for j =1 ... Since Q(o0) = O, we can find 2; > 0 for each
j so that @{Q(iw)} < 1/4j for any |w| > £2;. Moreover, if we define Q;(s) := (21,(,~)/(r\/.‘~' +1)
using a small enough a; > 0, we can attain o{Q(iw) — @Q;(iw)} < 1/2j for any |w| < £2;.

Then, in fact, we can show ||Q — Qj|ln= < 1/j. Since Q; € RH™ and Q;(o0) = O, this

means that the proof is completed. In order to show [|Q — Qjl»= < 1/j, suppose the case of

|w| < £2; first. Tn this case, there holds

1 e Jow ¥
7{Q(iw) — Q;(iw)} < F{Q(iw) — Q(iw)} + 7{Q(iw) — Q;(iw)} < o + R (3.16)

Next, suppose |w| > £2;. Then, we have [{Q(iw)}—o{Q(iw)}| < 1/2j. Note that 7{Q;(iw)} <

o{Q(iw)} by definition. Therefore,

1
7{Q;(iw)} < 7{Q)(iw)} < [o{Q}(iw)} — o{Q(iw)}| + 7{Q(iw)} < CTT

It is derived that
y o atar i I g
iw) — iw W W = - 3.17
7{Q(iw) — Q;(iw)} < T{Q(w)} +a{Q;(iw)} < 1 T 7
Combining (3.16) and (3.17), we can see [|Q — Qjlln= < 1/j. The proof is now completed. [

which

In order to prove Theorem 3.34, we need a doubly-coprime factorization of G.

was introduced in Definition : That is, obtain eight functions N, M, X, Y, N, M, X,
Y € RH™ such that
Gaa(s) = N(s)M(s)™" = M(s)"'N(s),
IR | s S
-N M||N X )
Note that s) cannot have a pole at s = oo because (:'.,J(x; = Dy, with the state-space

representation of G. Hence, by Lemma 2.41, it is possible to assume Y'(o0) = O and Y(o0) = O
without loss of generality. Then. from Proposition 2.42, it follows that a continuous-time
operator Iy € K stabilizes a provided continuous-time control system if and only if Ko is

represented as

Ro(s) = {X(s) — Qo(s)N(s)} ' {¥ (5) — Qo(s)M(s)} (3.18)
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using some Qg € RH™ such that Qy(oc) = O. Moreover, define

Ti(s) := Gi1(s) + G1aM(s)Y (8)Gai (s),
Ty(s) := Gra(s)M(s), Ts(s) := M(s)Ga(5).

Then, Proposition 2.40 shows that these three functions belong to RH™ and satisfy
F(G, Ko)(5) = Ti(s) — Ta(5)Qo()Ta(s)
with (3.18).

The key step of the proof is to show that the function
2 1 - 2 =
Quals) = {)'m — = M(s) 'Il(,s)l,.i(n”).'(s)} M(s)™!

belongs to Ag and satisfies Qgi(o0) = O. Suppose that it is proven. Then, Lemma 3.35
shows existence of a functional sequence {Q;}32,, Q; € RH>, such that Q;(cc) = O and
[|Qsa — Qjllse=e — 0 as j — oo. Note that ||Qs — Qjll# — 0 means that Q;(s) converges
to Qu4(s) uniformly in Res > 0. Recall that the functions T)(s), T>(s), T3(s) are bounded in
Res > 0. Therefore, Ty — T5Q;T3 converges to Ty — T5QsqT5 uniformly in Re s > 0. Here, it is

easy to see

Ti(s) — To(8)Qua(8)Ta(s) = Gra(s) + ‘1(;'J'z(-*)ﬁ(ﬂ)i«s(“w)15'(-“’)(721(-")v

This is the function that appeared in the theorem statement as (3.12). Moreover, define a
continuous-time controller K; by substituting each Q;, j = 1,2,.... into Q in (3.18). Then,

K; belongs to Ky, stabilizes the continnous-time control system, and satisfies
Ti(s) — To(s)Q;(5)Ts(s) = F(G. K;)(s).

Now the theorem is proven.
In the rest of this section, it is shown that Qs € Ar and Qsa(oc) = O.
First, let us prove Qu(oc) =
that first H(s)La(e*")S(s) — O as s — oo, then ¥ (o0) = O, and finally M(s)~' and M(s)™"

are bounded at s = oco. Since a provided sampled-data control system is input-output stable,

O. The proof proceeds by three steps: that is, we show

Proposition 3.24 ensures that we can choose 0 < p < 1 so that the lifting-based transfer
functions of the 25 operators in Definition 3.22 are analytic in D,. In particular, La(z) is
analytic in D, because Ly = K4(I — SGyHK,y)™" is an operator mapping aqlk] to gj[k] in
Figure 3.7 (a). This means that Ly4(e*") is analytic and bounded in Re s > 0 as a function of s.
However, we should note that this function has an essential singularity at s = oc. On the other
hand, since the kernel functions S(¢) and H(t) belong to the set D, Proposition 3.30 implies

that their Laplace transforms S(s) and Iﬁl(s) are analytic and bounded in Re s > 0 and satisfy

S(s) > O and H(s)— O
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as s approaches infinity in Res > 0. Therefore, a function H(s)La(e’")S(s) is analytic in
Res > 0 and approaches
and Y (c0) = O. Since .
that M(s) " is bounded at s = co. Similarly, from the fact that MX — NY = I, boundedness
of M(s)™" at s = oc is derived, too. Now, it is easy to see Qui= {) — (/7 )M 'H LqS} M-

vanishes at s = oc.

ero as s goes to infinity. On the other hand, recall that Y (oc) = O
M — YN = I, there holds X(s)M(s) = I at s = oo, which means

Next, it is shown that Quq € Ay. Since the all functions that appear in the definition of
Q.a(s) are real functions, Qu(s) is real, too. As we saw above, the function lj](v\)l.d(l'.. )S(s) is

analytic in Res > 0. Therefore, at any s satisfying Re s > 0, the function Quq(s) is analytic or

possibly has a pole when M (s)~! or .\‘/(.&)4 has a pole there. Moreover, Quq(s) is continuous
at s = oo as is shown above; indeed, Qu(s) approaches the zero matrix as s goes to infinity.
Hence, if we can show Qu(s) has no pole in Res > 0, we have Q4 € Ag by definition. Let us
show this next.

M, X,Y, N, M, X, ¥

denote the continuous-time operators whose continuous-time transfer functions are N, M. ...,

With slight abuse of notation, temporarily let the symbols N,

Y. respectively. These eight continuous-time operators are bounded because their continuous-

time transfer functions belong to RH>. Now, consider the operator composition

= - |HKS(I — GpHK4S) "Gy —HK4S( — GpHEyS)™| |Y ’
[ . (3.19)
3 L (I — G HK4S)™'Gys —(I — GyHK4S)™ X

In fact, each of the four blocks in the second operator matrix is bounded. Indeed. the operator
of the (1,1)-block, i.e., HK4S(I 92 HEK3S) ™!
q(t) in Figure 3.7 (a), which is bounded by the definition of input-output stability. Boundedness

is equal to the operator mapping b(t) to

of the other three operators is shown in a similar fashion. Since operators X, Y, X, Y are
bounded, too, the operator composition (3.19) is bounded.

The expression of the operator composition (3.19) can be simplified. For this purpose, note
that there hold the following equalities among operators: XM -YN=1 MX -NY =1,
Gay = NM~' = M'N, and Ly = Ka(I — Go2HEK4S)™'. We can show the first three by
the fact that the corresponding equalities hold among transfer functions. The last one is
the definition of Ly. Moreover, there hold the identities A(I — BA)™' = (I — AB)™'A and
(I — AB)™' = I + AB(I — AB)™" for general operators A and B. Using these equalities, we
can derive the following:

% -7 HK.S(I — GpnHK48) "Gy —HK4S(I — GpnHK,S) ‘] [)}

(I — G HK4S)Gsz —(I — Gy HK4S)™ X
— X {HK4S(I - GrHKaS) ' GuY — HKaS(I ~ GpHEyS)™ X}
—V{( — GnHEK4S) 'Y — (I = G HK4S) 'x}
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= (XHK;S — ¥ (I — GpuHK38) " (GpY — X)
(XHK4S — Y)(I — GuHK.S) "M (NY — MX)
—(XHEKyS — Y)(I — GpuHKyS) ' M

= {X’ul\](su — G H K3t — ¥

= — {XHL4S - V(I - GnHK,S) 11

= [X‘HL,,s )'{1~(

= —(XHLyS — Y — YGpHLS)M™*

:{)"7(&.\/ YN)M 'IIL,\S} M
(¥ — M'HL,S)M.

Since the leftmost operator composition is bounded. so is the rightmost composition (Y —
M'HL4S)M~'.

From the above result, it follows that, for any Res > 0,
E3(Y — M~'HL,S)M'E}

is bounded. The definitions of E§ and Ej were given in Definition 2.25. Actually, just as the

proof of Theorem 3.33, we can prove that
Wt S 5 1 B N o =
ES(Y — M—'HLsS)M B3 —{)‘mf = M(s) " H(s)La(e" )5(.<)},\[(.~) b Z o9,

where the symbols M, M, Y in the central expression stand for functions rather than operators.
Therefore, Qs4(s) cannot have a pole in Res > 0.

The proof of the theorem is now completed.

3.6. Conclusion

In this chapter, a framework for sampled-data control systems was presented. In Section 3.2,
regular samplers and holds were defined in terms of kernel functions. They are more general than
the conventional generalized samplers and holds because the kernel functions of our samplers
and holds are allowed to have nonzero values over [0,00) while the kernel functions of the

conventional ones only on [0, Section 3.3 gave a standard structure of sampled-data control

systems and presented the notion of sampling environments. Moreover, properties of a sampled-
data control system were derived in Section 3.4 as three theorems. The first two theorems can
be regarded as a generalization of already known results. From the fact that these generalized
results are obtained in a natural way, we can see usefulness of our framework. The last theorem

claimed that any stable sampled-data control system can be approximated in the diagonal

5 1?"1
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blocks of its matrix representation by a sequence of corresponding continuous-time control
systems. This result is important in the next chapter. Section 3.5 gave the proof of this last
theorem.

Our framework is general enough to cover systems with a large class of samplers and holds
Especially, an anti-aliasing filter can be regarded as a part of a sampler. Since we have some
flexibility on the choice of an anti-aliasing filter, it is possible to improve control performance
by choosing an appropriate filter. This problem is formulated as a design of a sampler in
our framework. Furthermore, it is noteworthy that a sampler and a hold are treated in a

symmetric way here. Indeed, it is the case in the definitions of a sampler and a hold, the Hardy

ample

spaces of their lifting-based transfer functions, and their matrix representations, for ¢
It is considered that this fact shows our framework is mathematically natural. This kind of
3, 66].

Based on our framework, established methodologies for analysis and synthesis of sampled-

symmetry is found also in the frameworks of [86.

data control systems can be extended to more generally configured systems. Moreover, this
framework can be a basis to consider more advanced problems on sampled-data systems such

as analysis and design of a sampling environment aiming at further improvement of control

performance. Especially. lifting-based transfer functions and their matrix representations are

considered to be strong tools for these problems.
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Chapter 4

Convergence of the Best Sampled-Data

Control Performance

This is the main chapter of this thesis and is devoted to investigation on the best achievable

performance of sampled-data control systems. Here, the £%induced norm is adopted as a

performance measure. Since the best sampled-data control performance varies depending on
the sampling environment, it is possible to improve it by a proper choice of the environment
What we consider first in this chapter is to relate a theoretical bound of this improvement
with the best continnous-time control performance. Next, we obtain a necessary and sufficient
condition in order that the best sampled-data control performance converges to this theoretical

bound. The condition for the convergence is obtained not only in a general case but also in

special cases, which are of practical importance. The condition in the special cases has a simpler

i form and is easier to be tested. This study is motivated by an experimental result presented

i in Example 1.3, where the best sampled-data control performance did not converge to the best

continuous-time control performance even though the sampling period approaches zero.

4.1. Introduction

Intuitively, it seems obvious that the best achievable performance of sampled-data control
systems approaches that of continuous-time control systems as the sampling period goes to
| zero. Furthermore, this conjecture forms a basis to use a sampled-data controller in place of a
continuous-time controller. Indeed, Osburn and Bernstein [80] and Trentelman and Stoorvogel

[91] proved correctness of this conjecture in the case that the control performance is measured by

| the H2-norm. Moreover, Hara et al. [45] did the same thing in the case that the performance

is measured by the £*-induced norm. (Tadmor [86] obtained a closely related result, too.)

. Here, let us

However, these results are valid only in special cases as is seen from Example 1

| recall this example and restate it using notions introduced in the preceding chapters.

89
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(a) (b)

Figure 4.1. The systems examined in Example 1.3 for robust stabilization: (a)

a continuous-time control case; (b) a sampled-data control

Example 4.1. Recall the robust stabilization problem considered in Example 1.3. Here, a

plant has a continuous-time transfer function 1/(s — 1) and its robust stabilization is tried

both with a continuous-time controller and with a sampled-data controller. This problem is
formulated into reduction of the £%-induced norm of the operator from w(t) to z(t) in each
diagram of Figure 4.1. (These figures are essentially the same as Figures 1.7 (b) and 1.8 (b),
respectively.) Here, W is a weight assumed to have a continuous-time transfer function s + 1.
Accordingly, what we have to do with the continuous-time control system of Figure 4.1 (a) is
to minimize the norm above by choosing an appropriate continuous-time controller K from the
set K. Here, K is the set of continuous-time operators having state-space representations and
consistent input- and output-signal dimensions with P. Regarding the sampled-data control
system of Figure 4.1 (b), minimization is carried out by an appropriate choice of a discrete-time
controller Ky from the set Kg. This set Ky consists of discrete-time operators having discrete-
time state-space representations and consistent input- and output-signal dimensions with the

id
T

sampler Si¥ and the hold H*°. Here, the symbols Si¢ and H?® denote the ideal sampler and
the zero-order hold, respectively, both having the sampling period 7 > 0. Their definitions
are found in Examples 3.3 and 3.6, respectively. A continuous-time operator F stands for an
anti-aliasing filter, and two cases are considered for this F. In the first case, F is taken to
be R., which is a continuous-time operator having a transfer function I}T(.s) =1/(rs+1). In
the second case, F' is chosen as R, where R is defined to be a continuous-time operator whose
transfer function is R(s) = 1/(s+1). In a word, the bandwidth of F is taken to be proportional
to the Nyquist frequency 7/7 in the first case; it is fixed irrespective of 7 in the second case.

Apparently, the first choice of F seems reasonable because undesirable aliases that should be

{.1. Introduction 91

cut off by F appear mostly in the frequency range higher than the Nyquist frequency.

w(t)— 2(t) w(t) z(t)

b(t) | @ b(t) _ u(t) [e "y
Q! 0 “ -

(t)] alk] galk][
| Tl 7(,)‘11(!) q l H 4l b‘{l] K,

u'(t) | I y'(t) J

bylk] aqylk]
(a) (b)
Figure 4.2. Standard configurations of (a) a continuous-time control system

and (b) a sampled-data control system.

In Example 2.30, we have seen that our continuous-time control system in Figure 4.1 (a)

can be modified into the standard configuration depicted in Figure 4.2 (a). (This is the same

figure as Figure .) Indeed, if we put

G- |6n Gu] _[0 I
Gy Gy P P,
the operator from w(t) to z(t) in the original figure is expressed as F(G, K) = Gy + G K (I -
G K)'Gy,. The best continuous-time control performance is written as inf ey || F(G. K)||.
which is the same as in the standard configuration.

Likewise, our sampled-data control system in Figure 4.1 (b) can be modified into the stan-
dard structure shown in Figure 4.2 (b) as was done in Example 3.25. (Figure 4.2 (b) is the
same as Figure 3.5.) Set G be as before. Choose a sampler S to be SR, in the first case,
and to be SR in the second case. Finally, set a hold H as H?°. Then, the £*induced norm
|| F(G. HK4S)|| in Figure 4.2 (b) is exactly equal to the

w(t) to z(t) in Figure 4.1 (b). The best sampled-data control performance is expressed as

nduced norm of the operator from

infx,ex, [|F(G. HK4S)||. This is exactly what we considered in the standard configuration.
Figure 4.3 shows the best continuous-time control performance and the best sampled-data
control performance. (This is the same figure as Figure 1.9.) We can analytically obtain the best
continuous-time control performance just as in Example 6.1.2 of [34]. that is, by transforming
this problem into a model-matching problem. Computation of the best sampled-data control
performance is carried out by using the algorithm of [9]. The solid line stands for the best
S

sampled-data control performance in the first case S“R,; The broken line shows the best
performance in the second case S = SR It is observed that in the first case the best sampled-

data control performance does not converge to the best continuous-time control performance
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The best achievable performances

2.3 Sampled-data control
with S = SHR,
2.2 e
24 Sz .
_ -~ with §=S¥R

B Coadigiasie el |
1.9

0 0.05 0.1

Sampling period 7

Figure 4.3. The best sampled-data control performance does not always con-

verge to the best continuous-time control performance.

expressed by the dot-dash line, even if the sampling period approaches zero. On the other

hand, this convergence is accomplished in the second case. O

This example shows that our conjecture about the best sampled-data control performance
is not always correct. Since this conjecture is fundamental in the use of a sampled-data con-
troller, we have to clarify when it is correct and when it is not. The same example shows

that convergence to the best continuous-time control performance depends on the choice of an

anti-aliasing filter. Actually, from another simulation result, it is seen that the choice of a hold
also affects the convergence. However, these system components have never been investigated

from this viewpoint.

In this chapter, we first consider a theoretical bound that shows how much we can improve

the best sampled-data control performance infg ek,

|F(G, HK4S)|| by choosing a sampling
environment (7,5, H), where 7 denotes a sampling period, S a sampler, and H a hold. Then,
this theoretical bound of the best sampled-data control performance is compared with the
best continuous-time control performance. It is shown that there exists a gap between these
two in general, which means that sometimes we cannot make the best sampled-data control

performance approach the best continuous-time control performance no matter how we choose

a sampling period, a sampler, and a hold. Next, it is considered when the theoretical bound of

the best sampled-data control performance is attained. Namely, supposing that a sequence of

%
J

sampling environments {(7;, S;, H;)}%, is given, we obtain a necessary and sufficient condition
in order that the best sampled-data control performance for each environment converges to

its theoretical bound for all plants. This condition is split into a condition on a hold and a

condition on a sampler and these two are symmetric to each other. If we notice a class of plants
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with which there is no gap between the theoretical bound and the best continuous-time control

performance, the above condition is necessary and sufficient in order that the best sampled-data

control performance converges to the best continuouns-time control performance for all plants
in this class. Furthermore, by applying techniques for a model-matching problem, which were
introduced in Section 2.6, we simplify the necessary and sufficient condition. It is also shown
that when the kernel functions of samplers and holds have special structures, the condition

becomes even simpler.

The non-converging phenomenon such as observed in Example 4.1 was first reported in
[73, 74]. These papers theoretically clarified the reason of this phenomenon with respect to a
particular example. It is also proven that the pair of SR and H?°, which are used in the second
example of Example 4.1, gnarantees convergence of the best sampled-data control performance

to the best continuous-time control performance for some large class of plants. Later, Reference

[79] presented a class of systems that have a non-converging property and gave a necessary and

sufficient condition for the convergence in a general case. The contents of this chapter are

based on the results of [75, 76, 78]. which were obtained by further investigation on this topic.

Recently, Hara et al. reported several interesting simulation results on sampled-data control

systems with small sampling periods, which include a non-converging phenomenon [46].

4.2. The Theoretical Bound of the Best Sampled-Data
Control Performance

In this section, we consider a theoretical bound of the best sampled-data control performance

and compare it with the best continuous-time control performance. Let us review the systems in

Figure 4.2. Figure 4.2 (a) shows a standard continuous-time control system introduced in Se
tion 2.5 and its best achievable performance is infgex [|F(G, K)||. Here, ||+ || is the £*-induced
norm though its value is defined to be equal to infinity if the evaluated system is not input-
output stable. The set K is composed of all continuous-time operators that have state-space

representations and appropriate signal dimensions. On the other hand, Figure 4.2 (b) shows a

standard sampled-data control system considered in the previous chapter and its best achiev-
able performance is inf,cx, || F(G, HK4S)||. The set K4 consis

having state-space representations and appropriate input- and output-signal dimensions.

s of all discrete-time operators

Note that the best sampled-data control performance infg,ex, || F(G. HK4S)|| depends not
only on a generalized plant G but also on a sampling environment (7,5, H), where 7 is a
sampling period, S is a sampler, and H is a hold. By using an appropriate (7,5, H), it is possible
uf e, [|F(G. HK4S)||

smaller. From now on, we mean the bound of this improvement by the theoretical bound of

to make the value of

to improve the control performance, that is,

the best sampled-data control performance or simply the theoretical bound. This can
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be written as

inf inf ||F(G, HK4S)|.
(7,5.H) Ka€Kq

where the left infimum is taken over all sampling environments consistent with the provided
G. (See Definition 3.19 for the definition of a sampling environment.) Then, what prop-
erty does this bound have? Is it equal to the best continuous-time control performance
infgex || F(G.K)||? Our task in this section is to answer these questions. Here, we need

the set Ky, which was defined in Section 2.5 as

Ko == {Ko € K : Ko(co) = O};

in a word, Ky is a subset of K and consists of continuous-time operators whose continuous-time
transfer functions are equal to zero at s = co. Recall that a continuous-time transfer function

having a zero at s = oo is called strictly proper. (See Section 2.3.1.)
Theorem 4.2. For any generalized plant G, there holds

inf inf || F(G,HK4S)||= inf || F(G,Ky)- (4.1)
7,5.H) Ka€Kq

( Ko€Ko

Here, the leftmost infimum is taken over all sampling environments (7, S, H) consistent with
the given G.

Here, it is noteworthy that the theoretical bound of the best sampled-data control perfor-
mance is not equal to the best continuous-time control performance in general. Indeed, since

Ky C K,

heorem 4.2 implies

inf inf || F(G, HK4S)
(r.8.H) K4€Kq4

|= dnf 7@ Ko)l| > jnf [|F(G.K)]|

and the equality does not hold in general in the last inequality. When the rightmost quantity is
strictly smaller than the quantity in the middle, there is a gap between the best sampled-data
control performance and the best continuous-time control performance. In other words, the
best continuous-time control performance cannot be recovered by a sampled-data controller no
matter how we choose a sampling environment and a discrete-time controller. This recovery is
possible by a sampled-data controller if and only if there is no gap, that is,

inf ||F(G, Ko)|| = Aﬂ\\f((.‘.l\')u. (4.2)

Ko€Ko

These results are understood as follows. By definition, a continuous-time state-space rep-
resentation of Ky € Ky is strictly proper. That is, if we represent a continuous-time operator

KoeKy:y' — v as

x(t) = Az(t) + By'(t), z(0) =0,

u'(t) = Cz(t) + Dy'(t),

then we have D = O. In a word, a controller Ky € K has no direct feedthrough term or the
input of K cannot instantaneously affect its output.
On the other hand, a sampled-data controller HK4S has a similar property. We assumed

that our regular sampler S : p — p, is described in an integral form:

.
palk] = /“ S(kr — t)p(t) dt.

Since S(t) cannot be the delta function, the input of S cannot instantancously affect its output.
Therefore, a whole of a sampled-data controller HK,S does not instantaneously pass its input
to its output. This similarity between a continuous-time controller in Ky and a sampled-data

controller is considered to be a reason why Equation (4.1) holds.

Remark 4.3. One may think that, if we allow S(t) to be the delta function, then a sampler is
allowed to respond instantaneously to its input and eventually the left-hand side of (4.1) would
become equal to the best continuous-time control performance infxex [|F(G, K)||. However,
this idea has some difficulties. First, practically, such a sampler is sensitive to a high-frequency
noise just like the ideal sampler. (Recall that the ideal sampler has the delta function as its
kernel function.) It is problematic to feed a noisy sensor output directly to such a sampler. If
we use an anti-aliasing filter before the sampler, then the instantaneous response is impossible.
Second, theoretically, such a sampler has an infinite induced norm and a sampled-data control

]

system with it never can be input-output stable in the sense of Definition 3

A sufficient condition for Equation (4.2) to be satisfied was given in Proposition 2.44. From

this, we can see that most of plants that appear in practical problems satisfy (4.2), though not

all of them. The result is summarized as follows.
Corollary 4.4. If at least one uf(:'H(x). G5(s), and Gy, (s) is strictly proper, then the theo-
retical bound of the best sampled-data control performance is equal to the best continuous-time

control performance, that is,

inf inf ||F(G,HK4S)|| = inf || F(G, Ko)|l = inf [[F(G, K)|. (4.3)
(r,5.H) Ka€Ka Ko€Ko Kek
Example 4.5. Let us recall the systems considered in Example 4.1. Here, a generalized plant
G is provided as Gy, = O, G2 = I, and Gy; = PW, and Gy, = P. Since Gy is strictly
proper, Corollary 4.4 ensures that Equation (4.3) holds in this case: in other words, we can
make the best sampled-data control performance converge to the best continuous-time control

performance by choosing an appropriate sequence of sampling environments.

xample 4.1, the sampling environment is set as (7,5, H) AR, H2),
SiH) = (r,SYRH Here, R, and R are

In the first case of

while in the second case it is chosen as (




—

—

R A

o

and K4 € K4. If a sampled-data control system is not input-output stable, the value of
||[F(G, HK4S)|| is infinite by definition. In this case, the desired inequality is trivial. Thus, let
us consider an input-output stable sampled-data control system. Applying Theorem 3.34 on
this system, we can obtain a continuous-time controller sequence {1\’,}} 1» Kj € Ky, such that
F (G, K;)(s) converges to the function

Gir(s) + - Gra()H(s)La(e")3(5)Gn ()

uniformly in Res > 0. Here, Ly is a discrete-time operator defined as Kq(I — SGyyHKy) ™!

Let us write the function displayed above as ©(s). Then, we have
Jnf [IF(G Ko)| < lim (G, 1) = lim || E(G, Kl = @]
0€Ko j =00 j—00
=supa{@(iw)} = sup sup ﬁ{(—)(iw+ ‘27””)}. (4.4)
weR we|—n /7.7 /) m=0.£1 T

Here, the first inequality follows from K; € Ky, and the second equality from the relationship
between the £%-induced norm and the H*-norm (Proposition 2.4). The third equality is ob-

tained from uniform convergence of F(G, K;)(s) to ©(s). Now, as we have noticed just after

Theorem 3.34, this function ©(s) is related to the matrix representation of F(G, HEK4S)(e*7),

that is, there holds

m

27 22 g
H(u fod _”') — B F(G, HKJS)(¢*7)

P
i
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continuous-time operators whose transfer functions are 1/(7s + 1) and 1/(s + 1), respectively. Here, the right-hand side of the above equation stands for the (m,m)-block of the matrix
According to the experimental result presented in Example 4.1, the convergence representation of F(G. HK,S)(e™7). Hence, the former half of Proposition 2.27 ensures that

L T P T T e 2w . . v

inf || F(G, HKaS)|| = int |FG,K)|  (r—0) ﬁ{(-)(.d L )} < ||E(G, HE4S) (@)1 (4.5)

K4€Ky KeK T
is not accomplished in the first case while it is accomplished in the second case. This means Substitute (4.5) into (4.4). Then, since the right-hand side of (4.5) does not depend on m,
that the first sampling environment (7,5, H) = (7, S¥R,, H**) does not attain the theoretical there holds
bound "
inf inf || F(G, HK.S)| Jnf [FG K < sup  |IF(G, HES)E ) = [F(G. HEaS)loge-
(7,5.H) Ka€Ka Ko€Ko o ey
as 7 — 0, whereas the second environment (7, S, H) = (7, SR, H*) does attain it. | The rightmost quantity is equal to ||F(G, HK4S)|| by Proposition 2.16.
: 3 e o 3 Next, it is proven that
In the next section, we seek for a condition in order to ensure that a provided sequence of i
sampling environments attains the theoretical bound. We close this section by giving a proof inf inf || F(G, HK,S)|| < inf ||F(G.Ky)|-
E (7,S,H) Ka€Ky  Ko€Ko
to Theorem 4.2.
By Proposition 2.43, the right-hand side is finite. Moreover, according to Proposition 2.45,
Proof of Theorem 4.2. First, let us prove
v - 3 . : inf || F(G, Ko)|| = inf [|F(G, Ko)ll,
inf inf ||F(G.HK4S)|| > inf || F(G.Kp)l. Koo€Kao Ko€ko
(7,S.H) Ky Ko€Ko ]
where Ky is a subset of K defined as

For this purpose, it suffices to show || F(G, HKyS)|| > infg,ex, || F(G. Ko)|| for any (7,5, H)

Koo := {Kp €K : I;'\m(x) = O with multiplicity two or more}

in Section 2.5. It is possible to choose Koo from Koo so that || F(G. Kop)l| is arbitrarily close
to the above infimum. Therefore, the desired inequality is proven if we can find a sampling

environment family {(7.S;. H;)}-0 and a controller family {K4:}r>0, Kar € Ky, such that

IF(G, H.K4.5)|| = |F(G, Ka)l|  (r—0).

In the following we do this.

The basic idea of the proof is borrowed from the proof of Theorem 4 in [18]. Let Koo
be any operator in Kg. We can assume that the continuous-time closed-loop system made
of G and Koo is input-output stable because we are interested in this case only. Define R"
to be a continuous-time operator whose transfer function is {1/(s + 1)}I,, where I, is the
n X n-identity matrix. Then, since Koy € Koo, Koo can be expressed as R™ K;R™ with
some K; € K. The resulting system is shown in Figure 4.4 (a). Define an operator Gres
so that (27 37 by]" = Grew" y! b"|" in this figure. Since K, € K, K, has a state-
space representation. Hence, at s = oo, K, (s) is equal to the “D’-matrix of this state-space
representation; in particular I:’.(‘x) is bounded there. From this, we can derive that G is a
bounded operator as follows.

Let us show G is bounded. The operator Gy is composed of nine operators. Because

boundedness of these nine operators can be proven similarly, we give an explicit proof only on
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w(t) 2(t) w(t) 2(t) |
G o Gt
P P e | 1
O iR G O LR L ‘y(.(l)i 1y(t) ‘
| &
b(t) + bo(t) yo(t) v y(t) b(t) bo(t)
(a) (b)
Figure 4.4. (a) Definition of G,.; (b) The feedback connection between G
and @.
the operator from w(t) to by for instance. Let us write (I — Goy R™ K| R™)~'Gy; =: A in short.

In the sequel, we call a pole in {s: Res > 0 or s = oo} an unstable pole. Then, the considered
operator from w(t) to by(t) is expressed as K; R"™ A. By the assumption that Koy = R™ K, R™
stabilizes G, the operators R™ K;R"™ A and A are bounded. (Recall the definition of input-
output stability as for a continuous-time control system, which was given in Definition 2.29.)
Hence, the continuous-time transfer function of A, i.e., i(s) does not have an unstable pole.
This means that (K;R"A)(s) can have an unstable pole only at the point where I:',(h) has
its unstable pole. Since K (c0) is equal to the “D"-matrix of its state-space representation,
R,(s) does not have a pole at s = co. However, if (K, R™ A)”(s) has an unstable pole at some
point other than s = oo, so does (R™ K, R™ A)~(s) since l}"“(s) is invertible at s # oo. This
contradicts with boundedness of R™ K, R"v A. Therefore, (K;R"*A)”(s) has no unstable pole,
which means boundedness of K;R™ A.

Define S?' :

MR, where S is the ideal sampler whose sampling period is 7. As we

saw in Example 3.3, this ST is a regular sampler. Morcover, let H" be the zero-order hold
such that its sampling period is 7 and its input signal and output signal have the dimension n,
respectively. This H] is a regular hold as is seen in Example 3.6. By Proposition 3.10, there

holds ||HS" — R™|| — 0 as 7 — 0. Now, consider feedback connection between G,.; and

yo| _ [HPrSPy — R 0 y
b| 0 HS™ — R™| |y

and construct a closed-loop system. We write the above displayed operator as @. Figure 4.4 (b)

shows the constructed closed-loop system. Note that G is a bounded operator and @ satisfies

[|@]| — 0 as 7 — 0. Therefore, the closed-loop system consisting of G and @ is input-output

stable for sufficiently small 7. Moreover, it satisfies

| F (Grets B)| = |F(Grer, O)|| = || F(G. Knd)l|  (r — 0).
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Besides, it can be shown that

F(Grery ®) = F(G, HM™ S™ K H S™)

by definition. Write Ky, :

"« K H". Then, we have Ky, € Ky and || F(G, H" K4 ;]
[|[F(G, Koo) i

| as 7 — 0. [

Remark 4.6. In Theorem 4.2, Equation (4.1) remains to hold even if we restrict the class of
'MHY and H €

MHT mean that a sampler S and a hold H have their lifting-based state-space representations,

samplers and holds by assuming S € = “R.ﬁi‘ and H € RHT. Here, S ¢

respectively (Proposition 3.16). In order to see this, note that the former half of the above

proof works as it is even if S € z 'ROYF and H € ROT are assumed. In the latter half of
the proof, recall that S* and H have transfer functions in 2 'RHY° and RHT, respectively, as
were commented before Proposition 3.18.

Furthermore, Proposition 3.29 stated that the class of sampled-data controllers does not
change even if the kernel functions S(t) and H(t) are allowed to take a nonzero value only in

[0,7). Therefore, under this restriction, Equation (4.1) still holds.

Here, we like to comment on a result of Tadmor. In [86], he considered an optimal design
of a sampler and a hold as well as a discrete-time controller assuming that Gy(s) is strictly
proper. As a corollary to one of his main results, he gave a result about the best achievable

performance (Corollary 3.1 in [86]). In our terms, his result can be stated as
lim inf inf ||F(G,HK4S)| = inf | F(G, K)|,
70 (S,H) Ka€Ka KeK

where the leftmost infimum is taken over all samplers and holds under the condition that their
sampling periods are equal to 7 and their kernel functions are nonzero only in [0,7). From the
above discussion, Equation 4.1 continues to be valid even if the kernel functions of a sampler and
a hold are allowed to be nonzero only in [0, 7). Since strict properness of Gy (s) is assumed here,
Corollary 4.4 implies that the theoretical bound of the best sampled-data control performance
is equal to the best continuous-time control performance. Therefore, his result on the best

achievable performance can be understood as a special case of ours. m}

4.3. A Necessary and Sufficient Condition for the Con-
vergence

In the previous section, we observe that there holds

F(G HES)]| = inf | F(G. Kol

inf inf inf
(7.5.H) Ka€K, Ko€Ko
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in other words, the theoretical bound of the best sampled-data control performance is equal to
the best continuous-time control performance when a controller class is limited. By choosing an

appropriate sampling environment, we can make the best sampled-data control performance as

close to this bound as we wish. Then, how should we choose the environment for this? To state
this problem precisely, we suppose that a sequence of sampling environments {(7;, S;, H;)}32, is
provided. Because there must exist a plant G that is consistent with all sampling environments
(75, S;, H;), the dimensions n, and n, are constant for all environments. (Recall that n, and n,
stand for the input-signal dimension of S; and the output-signal dimension of Hj, respectively.)
Then, our purpose in this section is to obtain a condition in order to guarantee the performance

convergence:

i g UG Sl = o, 106, Kol o

for all plants G consistent with this n, and n,. Note that, especially for plants that satisfy

(4.2), Equation (4.6) ensures convergence to the best continuous-time control performance.
The reasons to consider this problem are as follow. The first and main reason is that non-

it is

converging examples such as Example 4.1 inspire our theoretical interests. Intuitively.

obvious that the best sampled-data control performance converges to the best continuous-time
control performance. It is considered that this conjecture helped the sampled-data control
scheme to be accepted widely in practice. However, a non-converging example such as Exam-
ple 4.1 tells us that this conjecture is not always correct. Then, we have to clarify why such a
non-converging phenomenon occurs and how we can avoid it in order to keep the sampled-data
control scheme being acceptable. Another reason is that such investigation on the performance
convergence gives one way to appraise existing samplers and holds from an asymptotic view-
point. For instance, Example 4.1 suggests that bandwidth of an anti-aliasing filter should not
be taken proportionally to the Nyquist frequency though some textbooks say the opposite.

Regarding an anti-aliasing filter as a part of a sampler, we can also say that such choice of

a sampler is not appropriate for a good performance. If we can obtain a condition for the

performance convergence, we should be able to find inappropriateness of this sampler without

doing a simulation. Finally, through a convergence analysis, we can see what is important in
samplers and holds to improve the best achievable performance. Such knowledge is believed to
be useful to design an efficient sampler and hold for a given plant.

Our first result on this problem is a condition that the sampling period has to satisfy for

the performance convergence. We have assumed that the signal dimensions n, and n, (i.e.,

the input-signal dimension of S; and the output-signal dimension of H;) are constant for all

environments (7;,S;, H;). In order to obtain the following result, we need to further assume

d
P

dimension of H;) are bounded uniformly for all (7}, S;, H;).

that the dimensions n¢ and n‘q’ (i.e., the output-signal dimension of S; and the input-signal
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Proposition 4.7. Suppose we are provided a sequence of sampling environments {

H;) and the dimensions u'/‘,

Assume that the dimensions n, and n, are constant for all (7.

and n‘,” are bounded uniformly for all (75, S5, Hj). Then, the performance convergence:

lim inf || F(G, H;K.S;)| | (G, Ko)||
j—o00 Kq€Kq o

= inf

Koek
is accomplished for all generalized plants G consistent with n,, and n,, only if 7; converges to
zero as j increases.

se of n, = n, u"', = n:l' = 1 for simplicity. This means

Proof. First, let us consider the ¢
that the kernel function of S; amd H; are scalar-valued. Suppose that G is a plant such that
(:'H =1/(s+1), Gio =Gy =1, and Gap = 0. If we put K; to have Ko(s) = 1/(s+ 1), there
holds [|F(G, Kp)|| = 0. Hence, inf g ex, [|F(G, Ko)|| = 0.

Now, let us consider sampled-data control of this G under an environment (7;,

H;) and
show that its best performance does not approach zero unless 7, — 0. When a sampled-
data controller H;K4S; stabilizes G, Proposition 3.24 implies that the closed-loop operator
F(G.H;K4S;) has its transfer function and this transfer function is analytic in D, for some

0 < p < 1. Hence, by Propositions 2.16 and the comments preceding it, we have

£ (G, H;KaS;)|| =

sup
WE[-w/15,7/7;)

|F(G, Hj KaS;)(€“7)||1.-

Using E“ and Ei*, which were introduced in Section 2.4.4. we can represent the operator

m

F(G.H;K4S;)(e“™) in the matrix form

E“ FEw
e F v

E

¢

|F(G, H; K4S;)(™ )|, is larger than or equal to the maximum singular value of any submatrix

where F is a shorthand for (G, H;K4S;)(¢*™). Now, Proposition 2.27 claims that the value ¢

in the above matrix representation. Therefore, we have

(G, H;KaSy)l| = 1F(G, HiKaS;) ()]

EwFEe EBerie||
[ zo S . s
e e e

Vv
|

Theorem 3.33 gives the explicit formula for I‘/.'i‘flzf,‘“‘. that is,

m

2y 27
e 111( )+ "“’”) Lg(e7)!
L g

oA
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Hence,
; . e 1
[|F(G. HiK4S;)|| > & U“ i + 0
7
b i f (4.8)

Note that the functions S;(s) and H,(s) are scalar-valued. Since the second term of the right-
hand side of (4.8) has a rank one or less, this maximum singular value must be greater than or

equal to
1
ir/7j + 1

1
‘*iﬂ/r’, + 1‘

— 0 as j§ — o0,

Next, we consider the case that n, = n, = 1 but not necessarily H',! = u:: = 1. Since

It is clear now that | F(G, H;K4S;)|| does not converge to zero unless 7;

u,f and ujl' are bounded uniformly for all (7;,S;, H;), it is possible to find their upper bound,
say n9. The proposition is proven similarly to the previous case except that we choose in
(4.7) a submatrix having at least n¢ + 1 rows and columns. Indeed, the input and output of
the discrete-time operator Ly = Kq(I — S;GyH;K4)~' have dimensions nd or less this time
Therefore, the second term of the right-hand side of (4.8) does not have a full rank again, which

enables us to use a similar reasoning.

Finally in the case that n, # 1 or n, # 1, consider a plant G such that the (1, 1)-clements
of 'Gyulis)uGrals

This time, each

Gyi(s), and Gyy(s) are as above and other elements are all equal to zero.

wFE is not a scalar but a matrix. However, applying the same procedure

blockwise, we can show the claim. O
In the sequel, we do not especially assume that H',:
ver, as is seen from Example 4.5, they are considered to be

and n:: are bounded uniformly for all

environments (75, S;, H;). How

bounded in many situations which are of practical importance. Hence, in the following, we

assume 7; — 0 as j — oo. Proposition 4.7 guarantees that not so much generality is lost
because of this assumption.

If we restrict ourselves to the case that a sampling period 7; approaches zero and a sampler
S; and a hold H; have their lifting-based state-space representations, a necessary and sufficient
condition for convergence can be obtained. Since many of practically important samplers and
holds require 7; — 0 (Proposition 4.7), and also many of them have state-space representations
(Proposition 3.17), this result is significant. Recall that a regular sampler S; has a lifting-
based state-space representation if and only if its lifting-based transfer function S;(z) belongs
to z7'RHF. Similarly, a regular hold H; has a lifting-based state-space representation if and

only if its lifting-based transfer function fl,(z) belongs to ROHT (Proposition 3.16).

Theorem 4.8. Let {(7;.5;, H;) }]‘“:1 be a sequence of sampling environments whose dimensions

n, and n, are constant independently of j. Assume that 7; — 0 as j — oc and S; and H; have
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their lifting-based state-space representations for each j. Then, the performance convergence:

lim inf || F(G. H;KaS;) |17 (G, Ko)||
J—o0 d )

in = inf
Kqe KoeK
is accomplished for all plants G consistent with n, and n, if and only if there exist a regular
sr sealience fo0ee Al AT )00 P Qo 0% Ave
sampler sequence {S9}°° | and a regular hold sequence {H}}32, such that each S} and H} have

their state-space representations and there hold

[[R* — H;S}|| =0 (5 — o0), (4.9)
[|R™ — HjS;]| =0  (j — o). (4.10)

Here, R™ is a continuous-time operator whose continuous-time transfer function is {1/(s+1)}1,.
If a provided plant satisfies Equation (4.2). that is,

inf || F(G, Ky)| = lin& | F(G. K)|,

Ko€Ko

the above condition ensures convergence to the best continuous-time control performance. This

fact can be strengthened as is stated below.

Corollary 4.9. Suppose that an environment sequence as in Theorem 4.8 is provided. Con-
sider the set of all plants G that satisfy (4.2) and are consistent with n, and n,. Then, this
environment sequence guarantees, for any plant in this set, that the best sampled-data control
performance infg,cx, || F(G. H;KqS;)|| converges to the best continuous-time control perfor-
mance infgex | F(G. K)||, if and only if there exist a sampler sequence {S]}3%, and a hold
sequence {H]}3, such that each .‘1") and HY have their state-space representation and there

hold (4.9) and (4.10).

Note that the condition given in Theorem 4.8 is split into a condition on holds (4.9) and a
condition on samplers (4.10). It is interesting that these two conditions are symmetric to each

other.
Proof of Theorem 4.8. [if] Again, we use the set Ko, which was defined as
Koo :={Kw €K : I;'““(x] = O with multiplicity two or more}.

Recall that
inf || F(G, Koo)l| = ,inf [IF(G, Ko)|

Koo€Koo Ko€Ko
by Proposition 2.45.
Now. choose a Koo € Koo s0 that [|F(G. Koo)|| is close enough to infko,exq, || F(G, Koo)l-
Since Koo € Koo, it can be decomposed as R" K R" using some K; € K. Define Ky; =
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S‘,’I\'.I[‘/'. Then Ky; € Kyq. Moreover, in a similar way to the latter half of the proof of
Theorem 4.2, we can show that [|F(G, H,;Kq;S;)|| converges to ||F(G, Ky)||. Now the “if”
part is proven

[only if] We prove the existence of {S7} only. The existence of {HY} is similarly proven.

Let us consider the case n, < n, first. Define G by putting Gy, = [R™ O], Gy = I,

Gy = I, and Gy = O. If we put Ky := [-R™ O], then ||F(G, Ko)|| = 0 and K, € K.
Hence, infgex || F(G. K)| infg,ex, || F(G, Ko)|| = 0 in this case. Therefore, by assumption,
we can choose {Kqy;}32,, Ka; € Kq, so that || F(G, H;K4;S;)|| — 0 as j — oc. Let us consider

a sampler-type operator Kg;(I — S;GH;Kq;)'S; and write it as S} This Sll is an operator
from a(t) to ¢4[k] in Figure 4.2 (b). Hence, it is bounded. Proposition 3.24 implies that its
lifting-based transfer function .‘ll'(z) has no pole in D, for some 0 < p < 1. Furthermore, since
Kaj, Sj. G, and H; have rational lifting-based transfer functions, so does ‘v: Finally, since
S;(00) = O, there holds S}(o0) = O. In summary, S} belongs to z 'R, On the other hand,
it can be seen that F(G, H;K,;S;) = [R™ O] — HJ.S'_I'. which means |[[R" O] — H;Sj|| — 0

as j — oco. Here, collect the first n, columns of .S'l‘ and write them as S7. It is now easy to

see that [[R" — H;S?|| — 0 as j — oc and its transfer function S belongs to 2 'RHF. This
means that {S]} is exactly what we want.

Next, suppose n, < ny < 2n,. Define GG by

G

nps

and go through the previous procedure. Then, writing the operator Ky ;(I —S;GyH;Kq;)'S;

as S}, we have

R A
ot H;S; “ — 0
as j — oo. Furthermore, replace G, by
@) O
Gne=

R O

and repeat the same procedure. Pick the first n, —n, columns out of the obtained sampler,

and write them as 'ﬂf Then, there holds

— 0

I o
2
h Rra—me| HJSJ

as j — oo. If we put S7 := [S} S7], this S satisfies all the requirements.

The proof is similar in the case of 2n, < n,. (il

Proof of Corollary 4.9. The “if” part directly follows from Theorem 4.8.
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In the “only if” part of the proof of Theorem 4.8, all the considered G's have strictly proper
Gyy’s. This means that they satisfy (4.2) according to Corollary 4.4. Therefore, even if we
concentrate only on the plants that attain (4.2), still we can derive the existence of {SY} and

{H} that satisfy the requirements.

o,

Remark 4.10. The conditions (4.9) and (4.10) include the continuous-time operators /2" and

R"» whose continuous-time transfer functions are {1/(s+1)}I,,, and {1/(s+1)}I,,, respectively.
These operators can be replaced by other operators to some degree

First, let U™ be any continuous-time operator whose continuous-time transfer function
If""/(s) is ng X ngy and is unimodular in RH™. Here, we say Umi(s) is unimodular in RH™
if both U™ (s) and l"”"(n) ! belong to RH> (Definition 2.33). The continuous-time operator
1

having U™ (s) ™! as its transfer function is the operator inverse of U™ and is denoted by (U")~!

It is clear that both U™ and (U")~' have bounded £*-induced norms. Now, note that

(1R — H; S 10| 2 [|Rr=U™ — HyS3U™|

]

and if S is a regular sampler having a lifting-based state-space representation, so is SJU™.
Moreover, there holds
o7 0 rng)—1 n, 0 (7 gy~
[|RmU™ — H;SP|| |(U™)~ ]| = [|[R™ — H;S;(U™) |
and .5",'(1 /m5) -1 is a regular sampler with a lifting-based state-space representation. From these
facts, it is scen that there exists {S}} satisfying ||R™ — H,;S]
{S)} that satisfies [|[R" U™ — H;S}|| — 0. This means that Theorem 4.8 and Corollary 4.9

|| = 0 if and only if there exists

remain to hold even with Equation (4.9) being replaced by
||RPaU™ — [1,5‘,’” —0 (j — o0)

Similar replacement is possible about Equation (4.10).

In fact, it is possible to further replace (4.9) and (4.10) by

(B Y™ U
Hl-n,,(”u,.)m’ L

H;S}| — 0
H]S;|

(j = o0),

(4.11)
(4.12)

»0 (j > o),

respectively. Here, m and m' are positive integers and (R")™ stands for an operator whose
continuous-time transfer function is {1/(s+1)"}1,,. In order to show this, consider a subclass

= oo with multiplicity

of K that consists of a continuous-time operator having a zero at s

m +m’ or more. Then, actually we can show that the infimum of || F(G, K)|| when K varies in

this class is equal to infx,ex, [|[F(G, Ko)ll (It is proven in a similar way to Proposition 2.45.)




s
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Therefore, we can mimic the proofs of Theorem 4.8 and Corollary 4.9 replacing R™ and R"

by (R")™ and (R™)™ and finally obtain the equations

[|(R")™ — H; S|l — 0 (j — o),
I(R=)™ — H}S;|| -0 (j — o0)

instead of (4.9) and (4.10). From the previous discussion, it is clear that these equations can

further be replaced by (4.11) and (4.12). (]

Example 4.11. Let us examine Example 4.1 using the results of Theorem 4.8 and Corol-
lary 4.9.
As we saw in Example 4.5, there holds
inf ||F(G, Ko)|| = inf | F(G,K)||
ke (I o)ll s [1F¢ il
in this case. Therefore, according to Corollary 4.9, if a provided sampling period approaches
zero and there exist {‘a;’} and (1[;'} satisfying (4.9) and (4.10), respectively, then the best
sampled-data control performance converges to the best continuous-time control performance.
Let us consider the second case where the sampling environment was chosen as (7, SR, H*).
Here, R is the continuous-time operator whose continuous-time transfer function is 1/(s+1). Let

Az

{7}3%, be any sequence of sampling periods that approaches zero. Then, {(7;

defines a sequence of sampling environments. Proposition 3.10 claims
IR— HESSR[|—0  (j— oo). (4.13)

This implies that there exist {S} and {H}} that satisfy (4.9) and (4.10) in this case. Indeed,
putting S S‘fj”l( and H} := H?, we obtain (4.9) and (4.10). Thus, the best sampled-data
control performance converges to the best continuous-time control performance in this case.
This is consistent with the experimental result.

Next, let us examine the first case. There, the sampling environment was (7, SYR,, H?).
Choose any sequence of sampling periods {7;}7, and consider the sequence {(7;, S:,IRT:‘ H;;')}
Equation (4.13) shows that there exists (.‘v'j’} such that (4.9) is satisfied. On the other hand,
since the best sampled-data control performance does not converge to the best continuous-time
control performance, there should no {H}} satisfying (4.10). However, the inexistence of such

{H?} is not clear itself. |

One may notice in the above example that the condition for convergence that Theorem 4.8
and Corollary 4.9 give is not so easy to be tested because the existence of {S7} and {H}‘) is

not always obvious. In the next section, we obtain conditions easier to be tested.
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4.4. Simpler Conditions for Convergence

In Section 4.3, we provided a necessary and sufficient condition in order that the best sampled-
data control performance converges to its theoretical bound. Namely, the provided condition

is the existence of a sampler sequence {S7} satisfying Equation (4.9)
|R™ — H;S|| — 0 (j — 00)

and the existence of a hold sequence {H)} satisfying Equation (4.10)
||~ — HPS;|| — 0 (3 = )

Here, R" is a continuous-time operator whose continuous-time transfer function is {1/(s+1)}/,.
The former half of the condition is concerned with the provided holds {#;} and the latter half
is concerned with the provided {S;}.

A problem here is that, in order to check this condition, we have to find a sampler sequence
{Sy) and a hold sequence {H}} having particular characteristics. This is not an easy problem

In this section, we try to simplify this condition. The basic idea is to note that Equation (4.9)
resembles the model-matching problem considered in Section 2.6 and to apply techniques in-
troduced there. Then, it is derived that the existence of a sampler sequence {.“-':‘} satisfving
(4.9) is equivalent to two conditions: one condition implies that the Hankel norm of some func-
tion converges to zero as j increases; the other condition means that the side-band-frequency
components of H; disappear as j — oo in some sense. Corresponding results can be obtained

also on Equation (4.10).

Suppose that a sequence of sampling environments {(7; Hj)}s2, is provided. In this
section, we put the following assumptions on this sequence. The first one is about the sampling
periods 7;:
(A1) the sampling period 7; approaches zero as j goes to infinity.
As for the regular holds H; we put the following assumptions:
(A2H) the output signal of each hold Hj has a constant dimension n, irrespective of j;
(A3H) each hold H; has a lifting-based state-space representation:
(A4H) each hold H; has a lifting-based transfer function H;(z) such that its matrix represen-

tation at z =%, i.e.,

V0 |+ )

is column full rank (i.e., all the columns are independent) for any w €
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Correspondingly, we require the regular samplers S; to satisfy the following assumptions:

]

(A2

) the input signal of each sampler S; has a constant dimension n,, independently of j;
(A3S) each sampler S; has a lifting-based state-space representation;

(A4S) each sampler S; has a lifting-based transfer function S',(:] such that its matrix repre-

sentation at z

is row full rank (i.e., all the rows are independent) for any w € [—=/7;,7/7;).

By Proposition 4.7, Assumption (A1) has to be satisfied in order that the best sampled-data
performance converges to its theoretical bound when we consider practically important sam-
pling environment sequences. Therefore, generality is not lost so much even if we assume it.
Assumptions (A2H) and (A2S) are natural assumptions to ensure that all the sampling envi-
ronments are consistent with a certain generalized plant. The remaining assumptions (A3H),
(A4H), (A3S), and (A4S) are important here because they enable us to apply techniques intro-
duced in Section 2.6. Nevertheless they are mild enough. Indeed, many practical samplers and
holds satisfy them.

Now. let us consider the condition on holds, that is, the existence of a sampler sequence

S%} satisfving Equation (4.9). As for (4.9). there holds
i1

|R" — H;S3|| = (| R™ — H;SS ||

Since SJ’ is required to have a lifting-based state-space representation in Theorem 4.8, its

lifting-based transfer function has the form Sj’ = ‘S for some S} € RHY (Proposition 3.16).

Therefore, existence of such {S7} is equivalent to

inf ||R™ — 27 H;S}|lge — 0 (j — o0). (4.14)
RHF

In order to see this, suppose (4.14) holds. Then, if we choose each S} so that || R —2 LH; S| e
is close enough to its infimum and put S9(z) := 2 ‘f;‘;(:). this {S7} accomplishes (4.9). The
converse is also easy, too. Now, note that Equation (4.14) resembles Equation (2.11), which was
investigated in Section 2.6. Therefore, by application of the techniques there, we can simplify
the provided condition.

By Assumption (A4H), the matrix representation of a tall operator H;(c'“%) has inde-
pendent columns for any w € [—7/7;,7/7;). Therefore, following the procedure in Subsec-
tion 2.6.1, we can choose an inner function H;"(:) and an outer function [“11‘””(:) so that
Hi(z) = H’/“(:JII;”

) for each j. This is an inner-outer factorization of H;(z). Recall that

L X
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a real rational function A(z) is called inner if A~(z)A(z) = I. Recall also that a real rational

function A(z) is said to be outer if A(z) is square-matrix-valued and det A(z) # 0 for any =z

z € Dor |z| = 1}. Here, A~

our case, it is important that this inner-outer factorization can be obtained via matrix compu-

z) is a function defined as A™

in the set {z

tations though H;(z) and H}"(z) are tall-operator-valued functions. Next, write the Laurent

expansion of the flat-operator-valued function zH™( z)R"(z) into the form

2mi J

inn~ n, S = l in~( g
H()RM(z) = Y LA2A, Lka= 7( e (@) (2)
k ) ' ~

Here, each LF is a flat operator. Then, the Hankel operator with the symbol zH}"™ R" is

Dy I
Vi B 5
3 EY I

which is denoted by

and its induced norm is the Hankel norm of the function zH}"~(z)R"
[l R |-

Now, we have the following result.
2 S;, Hy;)}

Then, there exists a sampler sequence {S}}3°, such that

% satisfies

Theorem 4.12. Suppose that a sequence of sampling environments {(7; 7

Assumptions (Al), (A2H) (A4H).
each sampler Sy has a lifting-based state-space representation and there holds Equation (4.9),
e,

|R™ — H;SS|| — 0

(j — o0),
if and only if the following two conditions are satisfied:

(a) [|zH;"~R"|ju — 0 (= =0);
(b) For any §2 > 0,

)

1/2 ] )y 4
{ Z H, (iwm) H,(m,,,)} {Z H (iwm) " H; (i) }{ Z H(iw,) H (.W,,,)}

m#0

converges to zero uniformly for any |w| < 2 as j — oc. Here, wp = w + 27m/7;.
. : f 0 atiefyvi H o ivale r restate P 2
Proof. As is seen above, existence of {b,) satisfying (4.9) is equivalently restated as Equa-
tion (4.14). By Proposition 2.49, Equation (4.14) is further restated as

(a) |zHiP~R |l — 0 (= o0),




.

— .
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(b) |I(Z = Il‘,"ll;”\\/(“u;:‘\ > 0 (7 — o).

It is left for us to show (b') is equivalent to (b). Since its proof is long, it is given in Appendix F.

]

Interpretation of Condition (a) is not easy. In a rough sense, this condition is considered to
mean that the effect of unstable zeros of H,(s), i.e., zeros in Re s > 0, decreases as j — oc. This
interpretation comes from an analogy with a usual model-matching problem on matrix-valued

functions. Another reason why we interpret so is that an equivalent expression is obtained for

Condition (a) in some special case and it is related to unstable zeros. This is discussed after
Theorem 4.18.

The meaning of Condition (b) becomes clearer if we consider the case that the input- and
output-signal dimensions of H; are equal to one. In this case, the quantity in this condition

can be written as

Z i ( +i2mn>r
iliw -

Z T,
SR ..,J Sl (4.16)
$ [+ 2)
m=—ooc | £}

The function I7J(,s) is the Laplace transform of the kernel function H;(t). The values of

H(iwn) = /7,(@ +i2mm/7;), m # 0, are the frequency components of H;(t) at the side-band

frequencies of w. Therefore, the above value (4.16) and, in turn, the quantity in Condition (b)
express a relative amount of the frequency components of H;(t) at the side-band frequencies
Wy, compared with the one at the original frequency w. Or one may say that it stands for
the amount of aliasing effects in the hold H;. Condition (b) claims that this amount should

converge to zero uniformly in |w| < 2.

Example 4.13. Recall a triangular hold H!', which was introduced in Example 3.8. Its kernel
function was defined as
A-L5I foro<t<m,
H(t) = 3
O for 7 < t.
Let {7;} be any sequence of sampling periods such that 7; — 0 as j — oo. Moreover, let {S;}

be any sequence of regular samplers such that the sampling period of S; is 7; for each j. Then,

the triplet (75, S;, H}!) forms a sampling environment and the sequence {(7;, S;, IIL:)} satisfies
(A1), (A2H)-(A4H).

Indeed, it is obvious that both (A1) and (A2H) are satisfied. From Proposition 3.17, (A3H)
is correct. In order to see that (A4H) is fulfilled, note

—tr 75— 1+e~"*

H (s)= . (4.17)

T
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Hence, det H., (iw) = 0 if and only if w = 0. This means that it is not possible that all of

—tr 2m
det II‘,( = m). m.=0,E1,

are equal to zero simultaneously.
Now, let us apply Theorem 4.12 to this environment sequence {(7;. S;, H'')}. Equation (4.17)

implies

; i2rm iwry -i2am =1+ e™% I for m = 0,
iw + — . - - I—=4{?
Y7 (iwTj +i2mm)? LI form#0

i2mm

T
J

as j — oo. Therefore, the quantity (4.15) converges to a nonzero value. Here, the order of

summation and limitation is converted. This is allowed because the quantity (4.15) is equal to

= ok —tr 2t —ir ok
a|I { X n‘,‘(u,,.r/,l,j'n.c,,,)} H; (w)'H; <m{ > B (wn)H, mw}
Bnd o0l i IAllll(iJ,,‘)’lAlyj'(iu,,,) converges to Yo ,7I/I(id,,,)‘,7‘/‘(ia),,,) as M — oo uniformly

to j.

The above result means that, for our environment sequence, there exists no {S}} satisfying
(4.9). In other words, if a triangular hold H!" is used in a sampled-data control system, no
matter what a sampler would be, there exists a plant G such that the best sampled-data control

performance does not converge to its theoretical bound. [m]

As is seen in the above example, testing Condition (b) is easily done based on the kernel

function of a hold H;. Since (b) itself is a necessary condition for the existence of {S‘" . if (b)

is not satisfied then there always exists G such that the best sampled-data control performance
does not converge to its theoretical bound whatever the used sampler would be. Condition (a) is
more complicated than (b). However, since the Hankel norm can be computed through matrix

calculations, its test is not difficult.

A similar discussion is possible about the condition on samplers, that is, the existence of
a hold sequence {I[;’} satisfying (4.10). Just like the case of the condition on holds, one can

rewrite the above condition in the frequency domain as

inf [|B" — 27" H}S}[|l5z — 0 (4 = o0).
H)ERHT

Here, S)(2) is a function in RGP such that Sj(2) = 27'S)(2). Then, by virtue of Assump-
tions (A3S) and (A4S) we can obtain a co-inner-co-outer factorization of Sj(z) as Sj
out () &in( 5
5244(2)S}"(2). Here . : :
tion 2.6 for the definitions of these terms. Finally, let [|zR"S}"~ ||y be the Hankel norm of a

S}“”(:) is a co-outer function and Sj"(z) is a co-inner function. See Sec-

tall-operator-valued function 2R™(z S~(2). Then, using Proposition 2.50 we can obtain the

next result.
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Theorem 4.14. Suppose that a sequence of sampling environments {(7;, S;, H;)} 3
Assumptions (Al), (A2S) (A4S). Then, there exists a hold sequence {HV},‘] such that each

hold HY has a lifting-based state-space representation and there holds Equation (4.10), that is,

| satisfies

|| R — HJS;|| — 0 (J — o0),

if and only if the two conditions below are satisfied:
(a) ||zR"

“lla—0 (7 — o);

(b) For any 2 > 0,
o 1/2 o 1/2
T { » 5,(14”.)5',(@”.)'} {Z s,‘,(m.)s/(i*-,..r}{ 3 .S',(iw',..)ﬁ',(i«:n.)'}
m=—oc m#0 m=—o0
converges to zero uniformly for any |w| < 2 as j — co. Here, wy, := w + 27m/7;.

Remark 4.15. As we saw in Remark 4.10, the existence of an appropriate {S7} and {1}
satisfying

[(R™)™U™ — H;S|| — 0 (j — o0),

|t vu,,(l‘,n,,)m' ”(,JSJ

[=0 (i—00)

also guarantees the performance convergence to the theoretical bound. Here, U™ is a continuous-
time operator whose continuous-time transfer function ("”(s) is nxn and is unimodular in RH>.
Starting from this expression, we can obtain different forms of conditions for the convergence
in place of those given in Theorems 4.12 and 4.14. Namely, Condition (a) in Theorem 4.12 may

be replaced by

[zH~(R™)™"U™|]g =0  (j — o0),
and Condition (a) in Theorem 4.14 may be replaced by
20 ()™ S0l — 0 (j — o).

O

Let us go back to the hold case. When a hold sequence {H;}3

has some special structure,
there is an even simpler condition, which is necessary and sufficient for the existence of an
appropriate {S7}. Suppose that the kernel function of each hold Hj, i.e., H (t), can be written
as Z(t/7;)T;, where Z(t) is a fixed function belonging to D elementwise and j is an invertible
matrix. Here, the set D consists of all real functions a(t) such that e“a(t) belongs to £* for

some € > 0 (Definition 3.1). In this case, we call a hold sequence {H;} a proportional-type

hold sequence. This name comes from the fact that the shape of the graph of H(t) shrinks
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H™(t)

Figure 4.5. The kernel function of the zero-order hold H?°.

proportionally to 7; as j increases. On the other hand, suppose that H;(t) can be expressed as
Z(t)Y; with Z(t) and T; being as before. In this case. we call a hold sequence {H;} a fixed-
type hold sequence. This is because the shape of the kernel function H(t) is fixed irrespective

of j.

Example 4.16. Recall a zero-order hold H?°, a first-order hold H™, and a triangular hold H!",

which were introduced in Examples 3.6, 3.7, and 3.8, respectively. If we choose a sequence of

sampling periods {7;} so that it converges to zero, each of the hold sequences {/I,f:'}‘ ey s

and {H!"} is proportional-type. Indeed, with respect to the zero-order holds for example. if we

define
) I or0's <,
Q forr <t
and T; = I, then H2’(t) = Z(t/7;)7;. Besides, noticing Figure 4.5, we can see that the graph

of its kernel function H?’(t) shrinks proportionally to 7;. (This is almost the same figure as

Figure 3.2 (b).) ]
Now, we have the following theorems. Their proofs will be given at the end of this section.
Theorem 4.17. Suppose that a provided sequence of sampling environments {(7;, S;, H;)}32,
sume {H;}°2, is a proportional-type

satisfies Assumptions (A1), (A2H) (A4H). Moreover, 2

hold sequence. Then, there exists a sampler sequence {S9}32, such that each sampler SJ has a

lifting-based state-space representation and there holds (4.9), that is,

[|R™ — H;S{|| =0 (j — o),

if and only if Condition (b) in Theorem 4.12 is satisfied.
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Theorem 4.18. Suppose that a provided sequence of sampling environments {(7;, S;, H;)}32,
satisfies Assumptions (A1), (A2H) (A4H). Suppose also that {H;}3, is a fixed-type hold se-

i
quence and the kernel function H,(t) is represented as Z(t)Y;. Furthermore, assume that the
input signal and the output signal of H; have the same dimension, that is, n, = n;,’. and that the
Laplace transform of Z(t) is a rational function. Then, there exists a sampler sequence {‘7;')7’“ :
such that each sampler .S'y has a lifting-based state-space representation and there holds (4.9),

s) # 0 for any Res > 0.

if and only if det =

According to Theorem 4.8, the best sampled-data control performance converges to its

theoretical bound if and only if there exist a sampler sequence {S‘/’} satisfying (4.9) and a
hold sequence (IIJ”} satisfying (4.10). Theorem 4.12 claims that in order that such ("’"’]} exists
it is necessary and sufficient that both Conditions (a) and (b) in the theorem are satisfied.
Now. the claim of Theorem 4.17 is that, when a provided hold sequence {H,} is a proportional
type, only Condition (b) is necessary and sufficient for the existence of such {S?}. (In other
words, Condition (a) is always satisfied in this case.) This result simplifies a lot checking the
condition for the performance convergence. On the other hand, when a provided hold sequence
{H;} is a fixed type, a desired {S7} exists if and only if the Laplace transform of the kernel
function of each H; has no unstable zero. This is the claim of Theorem 4.18. In this case, if

we further assume

iw) # 0 for any finite real number w, Condition (b) in Theorem 4.12 is
fulfilled actually. This means that Condition (a) is equivalent to the existence of an appropriate
{S}} and then to the no-unstable-zero condition. This is one reason why Condition (a) was

interpreted in connection with unstable zeros just after Theorem 4.12.

Example 4.19. Let us consider a zero-order hold H?°, a first-order hold H™, and a triangular
hold H" again. We have seen in Example 4.16 that each of {H}, {H2}, and {H}'} forms a
proportional-type hold sequence when 7; — 0 (j — oc). Theorem 4.17 claims that with respect
to these sequences Condition (b) is necessary and sufficient for the existence of an appropriate
{S]}. We have already seen that, in the case of a triangular hold H', Condition (b) is not
satisfied. Hence, no appropriate {S} exists for this hold. As for a zero-order hold and a first-
order hold, Condition (b) is satisfied actually. Consequently, there exists an appropriate {.S",'}
for each of these two holds.

Let us show that Condition (b) holds in the case of a zero-order hold H?. Recall that

I for0.<t< 7
HY(t) =
O forT<t.

Its Laplace transform is computed as

' -
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Hence,

inm) ] —e™" I form =0,
+
i

T lwr +i2mm O form#0

as j — oc. This means that Condition (b) is fulfilled in this case.

With respect to Theorem 4.14, corresponding results hold. A sequence of regular samplers
{S,};‘ , is called a proportional-type sampler sequence, if the kernel function S;(¢) has the

form 7,

matrix. Besides, {S;}32, is called a fixed-type sampler sequence, if the kernel function S;(#)

Z(t/7;), where =(t) is a fixed function belonging to D elementwise and 7/, is an invertible

can be written in the form of 7;=(t), where Z(t) is a fixed function whose elements belong to

D and 7; are invertible matrices. With this terminology, the following theorems hold.

Sj» Hj)}32,

\ Is a proportional-type

Theorem 4.20. Suppose that a provided sequence of sampling environments {(7;,
satisfies Assumptions (A1), (A2S)-(A4S). Moreover, assume {S;}5
sts a hold sequence {H)}32, such that each hold H} has a

j

sampler sequence. Then, ther

lifting-based state-space representation and there holds (4.10), that is,
|R™ — HIS;|| =0 (j — o),
if and only if Condition (b) in Theorem 4.14 is satisfied.

Theorem 4.21. Suppose that a provided sequence of sampling environments {(7;, S;, H;)}32,
satisfies Assumptions (A1), (A2S)-(A4S). Furthermore, suppose that {S;}32, is a fixed-type
sampler sequence, that is, the kernel function S;(t) has the form of Y;=(t). Finally, assume
that the input signal and the output signal of S; have the same dimension, that is, n, = u;!. and
that the Laplace transform of =(t) is a rational function. Then, we can find a hold sequence
{I[t’}?L , such that each hold 11}’ has a lifting-based state-space representation and there holds
(4.10), if and only if det Z(s) # 0 for any Res > 0.

Example 4.22. Let us consider regular samplers S¥R, and Si'R, which appeared in Exam-
ple 4.1. Their kernel functions are (1/7)e "I and e ‘I, respectively. If {7;} is a sequence
of sampling periods that converges to zero, {.S",‘,‘I(’,’} is a proportional-type sampler sequence
with 7; = (1/7;)I and Z(t) = e ETe (S\‘,‘"Ii’) is a fixed-type sampler sequence with 1; = 1
and =(t) = e 'I. Application of Theorem 4.20 to the sampler sequence {S}'R, } shows that
there exists no hold sequence {H_:') satisfying the requirement (4.9). Let us see this. Putting

= SHR,,, we have S;(t) = (1/7;)e Y51 and thus

S

j

ﬁ.T‘k
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This implies
. i2m 1 1
5iliws——] = L= I (ji=+00).
Tj wT; +i27m + 1 i27m + 1

Note that the quantity in Condition (b) in Theorem 4.14 is equal to

-] 1/2 ) 1/2
a1 { = .é',m,,,)s-,m-,,.r} S;(iw)S; (w‘{ Y ﬁ',(iw-,.,)é',(m.)‘}

o
Since the convergence of the above infinite sum is uniform with respect to j, we can compute
the limit of j — oo before the infinite sum. Then, it is seen that the above quantity converges
to a nonzero value as j — oo.

On the other hand, if we apply Theorem 4.21 to the sampler sequence {.S"Y‘l' R}, we can see
that there exists an appropriate hold sequence {H}} in this case. Indeed, since Z(t) = eI,

there holds =(s) = {1/(s + 1)}/, which has no zero in Res > 0. &

Example 4.23. Combining the results of Examples 4.19 and 4.22, we can explain the simula-
tion results of Example 4.1 (or Example 1.3), which motivated this research.

In the first case of Example 4.1, a sampling environment was chosen as (7, SR, H*).
Letting {7;}¢, be any sequence of sampling periods that converges to zero, we consider the

sampling environment sequence {(7;, SR, | H?°)}2°,. As was shown in Example 4.19, for the
g 1 JrP = b

considered hold sequence (II_"} there exists an appropriate sampler sequence (5';’) that satisfies
(4.9). However, according to the result of Example 4.22, there is no hold sequence {H?} that
satisfies (4.10) with the sampler sequence {S‘;" R, }. Hence, the consequence of Corollary 4.9
is that there exists a plant G with which the best sampled-data control performance for each
environment does not converge to the best continuous-time control performance as j — oc.
Our G examined in Example 4.1 was one of such plants.

The second case in Example 4.1 dealt with a sampling environment (7, SR, H*®). Choosing
{7} as before, we consider a sampling environment sequence {(7;, S:,‘ R, H7°)}. We have already
xample 4.22

for the considered sampler sequence {SHR}, there is a hold sequence {H?} satis
j 3

ays that,
ng (4.10).

Therefore, Corollary 4.9 concludes that the best sampled-data control performance converges

seen that the hold sequence { HZ°} has an appropriate {S]}. Moreover,

to the best continuous-time control performance as j — oc for any plant G in a certain set.

Since our plant G belongs to this set (Example 4.5), the simulation result of Example 4.1 is

explained. O

We conclude this section by giving proofs for Theorems 4.17 and 4.18. Theorems 4.20 and

1.21 are proven similarly.

Proof of Theorem 4.17. Because we can let the factor 7; be absorbed in II;""(:)A we can

consider that T; does not affect .’/'"(~ Since only 171 (z) appears in Condition (a), it can be
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assumed that 7; = I without loss of generality. First, let us show the existence of 0 < py < 1
such that HI i(2)||r is bounded uniformly for any z € D, and any j.

Since {II,} is a proportional-type hold sequence, a function H¢"(z) has a similar shape
irrespective of j. Let us see this. Consider the lifting-based transfer function of the hold
Hj, that is, Hj(z). Just as we did before Remark 3.12, represent this H;(z) in the form of
H;i(z) =Y ///‘z’A for each j. Here, llf is a tall operator mapping v € C" to a function

(HEv)(t) = H;(krj + t)v = Z(k + t/5)0,
*a. Define a regular hold H,_, by setting its kernel function to be

cpand its lifting-based transfer function H,—,(2) into a series .52, HF_ z*

which belongs to £2[0, 7;)"
H @)= 52(t). B
by defining the operator HX | as

(HE_v)(t) := E(k + t)v.

Now, observe that

out~ out(,\ _ - S .- k. —k
HS (2 H™ () = H; (2)Hy(z {z(u‘ }{ZII,‘ }

k=0 k=0
~ o o x
= NO(H)T 11j+z{ EN(HE) HE + 2 ‘Z(llj)'llf"}.
=0 k=1 =0 =0
Since
(I[f")'l[j = /” d H;((k+ O + )" H;(6r; + ) dt
1
=13 [ S(k+ e+ E(e+r)dr = r(HE) HE,
Jo
we can write ll“"' \/_‘Il'“” (2), where H?Y, (2) is an outer factor of H,—;(z). Hence, each
of the functions £ "“‘( =i R has a similar shape. By definition, H2", ()" is a rational

function and is bounded in I. This implies the existence of 0 < p; < 1 and M; > 0 such that
F{H2" (2)7'} < M, for z €D),.

By assumption, there is € > 0 for which e“=Z(t) belongs to £2. Using this €, we obtain

1 rl
b -1 NE=( L 3 5 a2k (k) =0 Y® = e (k+r Y
([[f)Hf:rl/) E(k+7)*E(k+7)dr < 75€ /‘( )Z(k+r)*E(k+7)e Jdr,

where the inequality A < B means that the matrix B — A is positive semi-definite. Since

e!Z(t) belongs to £?, the integral in the last expression has an upper bound independent of

k. Thus, H[[le is bounded by /7je %V, where V' is independent of k. Since ||H;(z)|lr <
o 1 HElel2l ™ € £ TV (€f12]) k we can find 0 < p, < 1 and M, > 0 so that
S el =

|H;(2)llr < /TMa for any z € D,,. Now, put py := max{p;,p2}. Then, for any z € D,,.

i T T
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there holds || H}"(2)||lv < |[H;(2){\/FH (2)} |lv < MyM,. Defining M to be MyM,, we
have proven the claim
Next, consider the flat-operator-valued function zH}*>(z)R"(z). In the following, R"(z)

is written as 2(z) for simplicity. Note that H}">(z) is analytic in 0

|2] < 1/py since H}"(2) is
analytic in D,,. Furthermore, R(z) is analytic in 1 < |z|. Therefore, if we choose 1 < p3 < 1/py,
the function 2H}"~(2)R(2) is analytic in 1 < |z| < p3. Expand it into the Laurent series
Y22 LFzF with putting L* := (1/2mi) 4, 0 2H (2)R(2)2 k-1dz. Since [[H*(2)[[r < M in
Dy, [|H™(z)[lr < M on |2| = ps. Then, there holds

Y 1
Il < 5

, M \
% |[H;*(2)|[ell R(2)|| pi¥ldz| < 1 sup [|[R(2)|L.
Rl P3  |zl=ps

By (2.12), the Hankel norm :II;“‘I‘?HH can be bounded as

2

L f7in~ 13(12 .- k|2 M?pj
IRl < 3 HIEHE < 30 ( sup (G

=l P3 |2|=ps
In the last expression, sup,_,, ||R(z)||. tends to zero as j — oc in fact, which implies
that Condition (a) is satisfied. In order to see this, note that a continuous-time state-space
representation of R is (—1,1,1.0). By application of Proposition 2.18, the lifting-based state-

space representation of R is obtained as (A, B, C, D), where

A:=e 1],

Bf = /‘(‘ L=t £(t) dt,

Jo

((\'v)(i) =e v for0<t<m,

DF)(t) = /'n I f(r)dr

for 0 < t < 7.

Jo

Here, f is an arbitrary function in £2[0, 7;)"™ and v is an arbitrary vector in C". By definition,
[ID]|, IC|lx, and ||B||¢ approach zero as j — oo while A converges to the identity. Since
R(z) = D+ (\'(:1 - i) I B, the value of SUD|z(=p,

claim is proven. |

[|[2(2)||1. goes to zero as j increases. Now, the

Proof of Theorem 4.18. [if] Let us simply write R in place of R". It suffices to show
that for any € > 0 there exists J such that infg |R — H;S|| < € holds for any j > J, where S
varies over all regular samplers having state-space representations. Note that infg ||R—H;S|| =
infs || R — H;Y; '7;8|| = infs ||R - H;Y; 'S||. Hence, it is enough to prove above in the case of
T;=L

Let € be any positive number. Since Z(s) is rational and has a zero at s = oo, there

exists a positive integer r such that {1/(s+ 1)"}=(s)"! is bounded at s = co. Write as Q,
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a continuous-time operator whose transfer function is Q,,[~\ {1/(as + 1)"}. By using a
small enough a > 0, we can guarantee |[R — Q,R|| R — QuR|n~ < €¢/2. Here, R(s) and
(2(s) are continuous-time transfer functions of R and Q, respectively, and || - |4~ denotes the

usual H>®-norm (not in the lifted domain). The proof is completed if we can find a sequence of
regular samplers {5}, such that each S; has its lifting-based state-space representation and
it is possible to find J so that

[|QaR — H;Sj|| < €/2
for any j > J. Let us construct such {S;}

. Then, actually,

) 'Qals)R(s), j =1,

it is possible to define a regular sampler S; so that it has 5',(») as its kernel function. Indeed,

Consider a sequence of functions S, (s) :=

S;(s) is a rational function, has a zero at s

there exists € > 0 such that 5‘,(5 — €) belongs to ‘H? as a function of s. Noting that the

>0, and has no pole in Res > 0. Therefore,

equivalence between H? and £, which was stated in Proposition 2.4, it is seen that eS;(t)

belongs to £ as a function of t. Hence, S; belongs to D and, consequently, S; can be defined

as a regular sampler. Moreover, since S;(s) is rational, Proposition 3.17 implies that S; has a
lifting-based state-space representation. Now, it is left for us to show the existence of J such
that ||QaR2 — H;S;|| < €/2 for any j > .J.

The considered norm is bounded as
sup  |[(QuR — H;S;) (e7)IE
w )

Qo — HyS)I =

S i o{ B (QuR — H;S;) (e“m) B}

v/75) m=—00 f=—00

This inequality follows from Proposition 2.27. The summation in the last expression is evaluated

by being classified into the following four groups:
(i) m=0and £ =0;
(ii) m # 0 and £ = 0;
(iii) m = 0 and ¢ # 0;

(iv) m # 0 and £ # 0.

Propositions 2.28 and 3.18 give

EQa(e“") B = Qaliwm)bm.e;

B R(e“) B = R(iwm)bm,es

m

i 1 = 1
B2 Hi(e“™) = —H,;(iwm) = —
m (¢ =l N

; < Lsigt,
Si(e“M) By = —=S;(iwe) = /T;
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where w,,, 1= w + 7;. Combining them, we have

i v e S =/ 1 - A
n(QaR — H;S;) (€7 ) Ey* = Qaiwm ) R(iwm)bm,e — — H,;(iwm)S;(iwe).
Therefore, for the group (i),

n{/{‘;;((z,,lf — H;S;)" (e ki

for the group (ii),

3 o{ E%(QaR — H;S;) (¢ ‘< |y a{H

m#0 m#0

for the group (iii),

o

0

5(Qa R — H;S;)"(¢“7) E

for the group (iv),

YOI

(QuR — H;S;) ((\'»'/)f':y}l c4lBE n{ﬁ,(u,,,)}’ Zn{ L5
J

m#0 ££0 m#0 40 (l 2“)
Here, note that [Alj(s) = ) and (1/7; )5,(»’) = Z(5)"'Qa(s)R(s) do not depend on j actually.
Therefore, as j — oo, the values of

s ) 2 1 5 3
Z H{I,J(Iw',,,)} and er{ .S'J(iw‘,)}
mz0 70 i

converge to zero because w,, = w + 27m/7; — oo when m # 0. Hence, the right-hand sides of
(4.18)(4.20) converge to zero, which implies the existence of .J such that ||Q, R — H;S;|| < e/2
J.

[only if] Suppose that there exists a sequence {S?}52, such that each S} is a regular

for each j >

sampler having a state-space representation and there holds ||R — [1]55‘” —0as j — o0. In

the following, let us assume det =(s) = 0 for some Re s > 0 and derive contradiction.

First, note that

I1£3 2

[lI(R — H;S7) (eIl

I 74 9 () Eg}

s } (4.21)

Here, since [|E3[I: < (1/7) Ji” |e*![*dt by definition, it is seen that |[Eg|lr — 1 as j — oo.
Similarly, || £3

|r — 1. Moreover, because

|R — H;S|| = [(R — H;S?)||s; = sup (R — H;S})"(2)||l. = sup ||(R— H;S9) ()|,

Res>0

i A
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and || R — H;S7|| approaches zero as j goes to infinity, there holds ||(R — H;S)) (e*7)||1. — 0 as

j — oo for each point in Res > 0. Using these results in (4.21), we can conclude that

n{l}’(.v) = 'l 17,@)5",'(5)} 20

as j goes to infinity for each point in Res > 0. However, at s such that det =(s) = 0, we have

det H,(s) = 0 for each j but det R(s) # 0. This is a contradiction. O

4.5. Conclusion

This chapter was devoted to an analysis of the best sampled-data control performance es-
pecially about its convergence to the best continuous-time control performance. Section 4.2
noticed that the best sampled-data control performance can be improved by an appropriate
choice of a sampling environment (the triplet of a sampling period, a sampler, and a hold)
and related the theoretical bound of this improvement with the best continuous-time control
performance. Then, Section 4.3 presented a necessary and sufficient condition in order that a
provided sampling environment sequence ensures convergence to this theoretical bound for all
plants. If we concentrate only on the plants with which recovery of the best continuous-time
control performance is potentially possible, the above condition is necessary and sufficient for
convergence to the best continuous-time performance. In Section 4.4, this condition was made
easier to be tested by use of techniques for a model-matching problem in the H>-control theory.

For special types of samplers and holds, this condition was further simplified.

A control theory has been developed mostly about continuous-time controllers and it enables
us to compute the best achievable performance of continuous-time control systems. However,

since it is difficult in practice to make a continuous-time controller that realizes a complicated

function with a high precision, a sampled-data controller is usually used instead. In Theo-
rem 4.2, we have seen that it may not be possible to recover the best achievable performance
of continuous-time controllers by means of sampled-data controllers no matter how a sampling

environment is chosen. Fortunately, this recovery is possible when at least one of Gy, G,, and

G, is strictly proper. Hence, the above fact does not cause a problem in many of practical sys-
tems. However, this result suggests that serious care is necessary to handle direct feedthrough
terms of G, which are often treated lightly.

This chapter gave a condition on a sequence of sampling environments in order that the

ses to the theoretical bound

best sampled-data control performance for each environment conver;
of the best sampled-data control performance. That is, the sampling period should converge
to zero, the effect of unstable zeros should decrease in a sampler and a hold, and side-band-
frequency components should diminish also in a sampler and a hold. These results give us some

insight about how we should choose a sampling environment. Then one might ask whether these
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results give us a quantitative index to appraise a provided sampling environment; whether it is
possible to optimize a sampling environment with respect to that index. Recall Conditions (a)
and (b) in Theorem 4.12. Since the quantity in Condition (b) depends only on the provided
sampling environment, this may work as a performance index of the provided environment.
However, the norm in Condition (a) depends on an operator R, and this R can be replaced
by many other continuous-time operators (Remark 4.15). Therefore, it is not expected that
the specific value of this norm expresses goodness of the provided environment. Therefore, the
mentioned questions cannot be positively answered right now. Nevertheless, the results of this

chapter are expected to be a starting point to consider those questions.

It can be seen from the results of this chapter that naive inference based on intuition is
dangerous with respect to sampled-data control systems because it sometimes leads to erro-
neous consequences. For example, although it seems natural to choose the bandwidth of an
anti-aliasing filter proportional to the Nyquist frequency, this choice does not guarantee even
convergence to the theoretical performance bound as the sampling period tends to zero. In

spite that the zero-order hold H* and the triangular hold H' look similar in the sense that

their kernel functions change their shapes proportionally to the sampling period, the hold HE
does satisfy the condition for convergence while H' does not. Besides, it is seen from this re-
search that a lifting-based approach is powerful for a careful treatment of sampled-data control

systems.

Chapter 5
Topics for Further Research

At the end of this thesis, topics that are considered to be interesting for further research are

listed up.

Chapter 3

Chapter 3 provided a framework for sampled-data control systems. This framework is general
enough to cover many of practically important samplers and holds. Based on this framework,
useful properties of sampled-data control systems were derived.

The following problems need to be investigated further in relation to this framework.

e Generalizing the framework so that general multirate sampled-data control systems can

be treated there.

In order to treat a multirate system in our framework, we choose for the sampling period 7
the least common multiple of the all periods included in the system. Then, a continuous-time
signal sampled at multiple time points in [k7, (k + 1)7) are regarded as a discrete-time signal
at the time k. In this setting, actually we can allow devices such as a sampler to work in an
apparently non-causal way. However, in this thesis, each of a sampler, a discrete-time controller,
and a hold are required to be causal. This is the reason why a general multirate system cannot
be treated in our framework. (See Remark 3.28.) It is considered that we can resolve this
problem by allowing a sampler to work in a non-causal way to some degree. For this purpose,

the framework itself should be modified so as to be consistent with this extension

ation of the approximation theorem.

e Extension and appli

is a sort of approximation theorem (Theorem 3.34). This reveals

The main result in Chapter
a relationship between a sampled-data control system and a continuous-time control system

for the same plant. It is conjectured that this theorem can be generalized more so as to hold

123
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between a general periodic control system and a continuous-time time-invariant control system. not efficient unfortunately. Furthermore, a problem expressed by bilinear matrix inequalities is

This is considered to be useful for analysis of the best performance of a periodic control scheme, NP-hard in general [90]. It should be clarified whether our problem, that is, optimization of a
which has interesting properties [60, On the other hand, this theorem was applied sampler or a hold in a limited class, is NP-hard itself. If NP-hard, it is unlikely that there exists
to the performance analysis of control systems in this thesis. It must be interesting to consider an efficient algorithm to optimize a sampler or a hold; hence, we have to consider to obtain a

good sampler or a hold based on a different scheme. One possibility for this is the use of the

another application of it. For example, in identification of a continuous-time system it is usual
that the system is identified in a discrete-time sense first, and then the obtained discrete-time change rate of the best achievable performance.
system is approximated by a continuous-time system. It is considered to be interesting if this

theorem is applicable to the analysis of this procedure. e A performance index of a sampling environment.

Theorems 4.12 and 4.14 gave conditions on a sequence of sampling environments in order that

Chapter 4 the best sampled-data control performance for each environment converges to its theoretical

bound. As we have seen in Section 4.5, this result does not directly give a performance index

In Chapter 4, the best achievable performance of sampled-data control s investigated.

. it would be interesting if we can derive some kind

Especially, we obtained a necessary and sufficient condition in order that the best sampled-data of a sampling environment. Neverthele
! control performance converges to its theoretical bound. In many cases, this theoretical bound of index to measure goodness of a sampling environment from the quantities that appeared in
is equal to the best continuous-time control performance, though not always. the mentioned conditions. This is because these quantities are independent of a provided plant
In relation to this chapter, the following topics are considered to be interesting. and, thus, express properties of a sampling environment, which do not depend on a particular
plant. We have only limited freedom in the choice of samplers and holds due to a restriction
e Obtaining a change rate of the best sampled-data control performance as the sampling on their physical realization. Therefore, it seems to be more practical to pursue a sampler and
sally good to all plants rather than to try fine tuning of them for each of a provided

period approaches zero. hold unive:
plant. Moreover, such an approach may be effective in order to choose a basis of a sampler and

In this thesis, we considered whether the best sampled-data control performance converges a hold for their optimization, which was considered in the previous topic.

to its theoretical bound. However, it would be good if we can also see how it converges. If

i we use a small sampling period, the best achievable performance is improved usually, but at e Information-based approach in the control theory.

| the same time, more expensive devices are needed to realize a controller. In order to see this

'1 tradeoff, the rate of convergence is desired to be computed. To consider this problem, again Theorem 4.2 showed that the theoretical bound of the best sampled-data (.'(mlml ]H‘l‘ftlrxlu\l)(:(' is
the approximation theorem is expected to be a strong tool. equal to the best performance achievable by strictly proper continuous-time controllers. What

does this theorem imply theoretically? It means that, no matter how fast the sampling period

o
¥ e Optimization of a sampler or a hold in a limited class. s, a sampled-data controller cannot compensate the plant dynamics at s = oo. In other words,
some information about the plant is inevitably lost in the sampling process. Then, what kind
86] 1 imi 1 < : N . . . . 4
Tadmor [86] considered optimization of a sampler or a hold for a provided plant and sampling of information is lost? In view of the best achievable control performance, how a notion of 5

period. He assumed that any sampler and hold can be realized. However, it is impossible information should be defined? Recently, in the field of control-oriented identification, the

set of models unfalsified by provided input-output data is explicitly obtained, and then by

practically. Especially when the sampling period is small, only a limited class of samplers

and holds having rather simple functions can be realized. Therefore, a practically important measuring the diameter of this set a value of a prior information is evaluated [101, 15, 100, :

problem is optimization of a sampler or a hold in a limited class. One approach toward this Also from this example, we can see how important a notion of information is in the control

theory. It is a challenging problem to reconsider control and identification from an information-

problem is to choose some simple samplers (or holds) as a basis and express a realizable sampler

| as a linear combination of the basis samplers. It is not difficult to describe this problem using based viewpoint. This problem is expected to have relationships to other areas like statistics,

B bilinear matrix inequalities. It is known that the global optimum can be computed for a a learning theory, and an information theory.

problem expressed by bilinear matrix inequalities [39, 38]. Therefore, our problem is solved at

least in principle. However, this algorithm is based on the branch-and-bound method and is
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Appendix A

Proof of Property (b) of
Proposition 2.3

Here, a property of a scalar-valued function a(s) belonging to H? is proven. This property is
important because a regular sampler and hold, which are defined in Section 3.2, are closely
related to functions in H?. Although the property itself is simple, its proof has to be rather

long.

Two lemmas are prepared first. By Proposition 2.1, it is possible to find a function a(t)

in £2 so that the Laplace transform of a(t) is our a(s). Let 2 denote the set of two-sided

2

square-summable scalar-valued sequences. For any sequence o = {or[k] } 2 in €}, its /}-norm

(5 )"

Lemma A.1. For any s such that Res > 0, the sequence {a(s +

00

is defined as

llalle

2
~ belongs to (}
and satisfies

o

5 b+ - £,

m=—o0 ! m

T —(s+i2mm/7)t [? T2
/“ a(t)e uu‘ < (=@’ (A.1)

where J? := [$°|a(t)|?dt < occ.

Proof. Choose any s so that Res > 0. Define

(k+1)7

ko
A *

a(t)e~GHizmm/ gy / alkr + t)e—*krH0 o~ G2mm/mt gy
Jo

Here, a(k7 + t)e **7*%) belongs to L£%[0,7) as a function of t € [0,7) and its Fourier coefficients

are {ak }2°___ . Therefore, from Parseval’s identity. there hold {af,}3 € (} and

S

|a(t)e|*dt
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Proof of Property (b). Define

(k41
) es)|2
= ,—/ a(t)P|le”Reot2qs < 7o~ 2R
i

12mm
If we describe the sequence {ak }:¢_ _ as a*, the above formula shows that the (}-norm of ()= D7 “’(’ e );
a* is less than or equal to /e (Re9*7 1 Therefore, we can see that the infinite series of the e
sequences, 37°  a*, absolutely converges in 2 for Res > 0. Because the space 2 is complete, fors € Bandfor M =0,1,.... Note that, for each M, By (s) is continuous in s € B. Moreover,
2 o a* belongs to £ and it is identical to the sequence in the claim. In order to derive (A.1), for each s € B, the sequence J(s), 8;(s), ... increases monotonically and converges to J.(s),
note that its left-hand side equals || 32 a¥||% and is bounded from above by (332, H”ka,{)Z- which is continuous due to Lemma A.2. Now, applying Dini’s theorem [13, Theorem 4.5.5].
Now use 4:“‘/;- < e Redkng, ’ [m] which is presented below, we can show the claim. &l

Proposition A.3 (Dini’s Theorem). Let X be a compact metric space, and {f,} be an

Lemma A.2. The function of s, increasing sequence of continuous real-valued functions that converges to a continuous real-
" 5 valued function f at each x € X. Then, {f,} converges to f uniformly.
=N i2rm) |
I S Z als+— ‘
m=—o00 | :

is continuous in Res > 0.

Proof. The function J4(s) is well-defined from Lemma A.1. Let sy be any complex number

with Re sy > 0. In order to prove the continuity of f(s), it suffices to show that we can make

\/1‘(.~) —\/1

Since \/ 3o (s) is the £2-norm of the sequence {@(s +i2xm/7)}

’\(‘0)‘ arbitrarily small by letting s be close enough to s.

> the triangle inequality

x
m

2 &= 12 27 =
‘\/f‘(a)—\/il[sn)i = f,(s?""l')fﬁ( < _"')‘
m o " 1

00 oo
3 Z ‘/ alt)(e*" — e ot)e~(2mm/mt
m oo !¢ 0

induces

2
‘ (A.2)

If we choose a positive number é small enough, it is possible to find a neighborhood of s,
say U, so that U is contained in the open half plane Res > é. Then, for any s € U, the |

st

function a(t)(e - e *h)e®t belongs to £2. Apply Lemma A.1, with substituting § into s and

a(t)(e® — e=%%)e®! into a(t). Then we have
x

m=-o0o

P ' 6t (84i2 s TJ?
a(t)(e ® — e %)l . o EETA e < —,
/, ) ) = (1—etr)2

where J? = [° |a(t)(e *" — e *0!)e’"|2dt. Combine this inequality with (A.2) to have

‘\/71(*) - \/-i’x(“(l)b

T2

2
< .
= (1 —e%7)2

It is easy to show that we can make this J arbitrarily small by letting s approach sg. O
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Appendix B

Proof of Proposition 2.28

Proposition 2.28, which gives a matrix representation of a continuous-time operator having a
state-space representation, is proven here.
Without loss of generality, we can assume the continuous-time state-space representation of

P, ie., (A, B,C, D), has the property that the matrix A has an eigenvalue p only if P(s) has a

pole at s = p. (See Section 6.1 and Ex 6.5.8 of [57].) Let us write s, := s +i2xm/7 for
an integer m. If we choose s so that none of s,, is a pole of P(s), each of s,,/ — A is invertible

and, then, so is €] — e/,
By Proposition 2.18, the lifting-based state-space representation of P is given by (A, B, C, D),

where

A= e,

Balk] = / AT BEK] (£)dt,
0

(Cz(k7))(t) :== CeMax(kT),
> ot
(Dalk))(t) == Dalk](t) 4 / CeAt=) Balk](r)dr.
o
With this representation, P(z) = D + C(zI — A)"'B. Hence, E5P(e*)E; =
[;',‘"("(v”l A)'BE;. Straightforward calculation gives

= DEse +

Gz 1 1

B,6 = — [TemmtCett dt = —=C(oml - A) {1 - el =)

© VT o T

LT =t e A 1

BE; = /(-“ 0ot dt (€ — A (s,I — A)~'B,
VT o N

i "IJ«"”dr}

e . 1 1 .
E;DE; /5;,,{ \/”I)v"’f 7=C A e
1

: 1
E; { De* + —C(e*'] —e™)(sel — A)™'B
m\ V7 7 (
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o :
{/ e Dettdt + [ e rmiCe (sl — A) Bt
g / smtCoM (s, — A) =1mr}

P(81)6mp — =C(aml — Ay I — e7lonI=-A) (5,7 — A)1B.

These equations establish the relationship

E2 P(e*

Next, we consider the second equation in the proposition. Since Proposition 2.27 implies
[|PE“)l > 7{Em

larger than or equal to its right-hand side. To show the reversed inequality, suppose f is an

)Ei} for each m, the left-hand side of the considered equation is

arbitrary function in £2[0,7). Then, by Proposition 2.26,

P(e“)f = ( X 1:;F:r.)l’((-‘*'

Z Z ERER P BB f
= ieh(: i2mm w
= 5P [:,,,I<u+ g )(E,,,j)

m=—oc

f) is just a finite-dimensional vector, we obtain
™ £I12 . = (. i2mm
1Bl < 3 [P+ 2) i,
m o ¥

27 S -
< s ofp(iw+ 2™} > IERSI
1 T

m=0,+
E: m

2 27
= swp a{P(w+ )} Fi

This confirms that the desired inequality holds.

Noting that P(iw + i27m/7)

Appendix C

Proofs of Propositions 2.44 and 2.45

Here, two propositions 2.44 and 2.45 are proven, which are concerned with the best continuous-

time control performance when the controller class is restricted.
Proof of Proposition 2.44. It is obvious that
ln[ Hf (G. Ko)|| > ,iynl"\ [|F(G, K)||.
K e

Hence, we show the reversed inequality in the following.
Note that Gy, (s) cannot have a pole at s = oc because Ggy(00) = Day. Applying Lemma 2.41,

we obtain a doubly coprime factorization of (71-3(5) such that Y(oc) = O and Y( >c) = O. Define
RHY = {Q € RH> : Q(c0) = O} (C1

Yy, Ty € R'H™ as in the statement of Proposition 2.40, it is derived from

Then, if we define T,

Propositions 2.40 and 2.42 that
inf [|F(G,K)| = inf Ty — T,QT;|| 3=
s [[F(G, K)|| i (173 2Q T[4
det(X —QN)#0

and

nf IF(G Kol = inf 1Ty = TQTs e

Let € be any positive number and choose one Q € RH™ so that det(X — QN) # 0 and

B =BT e . 1;.&(\ IT: ~ ToQTs e~ + 5
det(X—QN)

Define Qa(s) := {1/(as+ 1)}Q(s) for o > 0. From now on, we show that

T = ToQaTslln= < 1T — ToQTill e + (c.2)
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for small enough a. If it is shown, since @, € RHg’, the desired inequality follows.

Now note that at least one of Tj, Ty, and Ty is strictly proper, since at least one of Gy,
Gy, and Gy, is strictly proper. Suppose T} is strictly proper. Continuity of T)(s), Ty(s), and
Ts(s) in C,, implies

1T — ToQu Tl = sup {7 (iw) — T (iw) Qu (iw) Ta(iw)}

as is noted before Proposition 2.7. Here, we have
F{T(iw) — To(iw)Qa(iw)T(iw)}

1 1
= 7T~ TOT) — 7i(1- - )}
ﬂ{( s 2Q x)“u = o aiw + 1
1
ST~ Ti@h) +7(TY |1~ ——|.
aiw + 1|
Dependence on iw is not described above for notational convenience. This inequality means
that, if we take a large enough wy > 0, we can ensure
{711 (iw) — To(iw)Qa(iw)T3(iw)} < T{T\ (iw) — To(iw)Q(iw)Ts(iw)} + 5 (C.3)
for any |w| > wy. On the other hand, there also holds
T (iw) — Ty (iw)Qu (iw) Ta(iw)}
1
n{h e '/;Q'L,(l == )}
aiw + 1
1
aiw + 1“

< (T — TLQT;) + a(1,QT3) (1

Hence, also for |w| < wpg, by taking small enough o > 0, we can guarantee (C.3). Now, the
inequality (C.2) is confirmed.
Also in the case that T, or Ty is strictly proper, (C.2) can be shown to hold for small enough
@ > 0 by a similar technique. The proof is completed. O
Proof of Proposition 2.45. Define RH® as in (C.1). Define RHg; as
RHgG = {Q € RH™ : Q(o0) = O with multiplicity two or more}.

By Lemma 2.41, we can find a coprime factorization of Gy(s) such that ¥ (s) and Y (s) equal
to zero at s = oo with multiplicity two or more. Using this factorization, define functions 77,

T, T; as in Proposition 2.40. Then, Proposition 2.42 implies that

duf |7 (G, Ko)l| = (zuf’kf}«: |T: = T2QuTx||+4=o
;\‘.f““{.w“f“(""‘b"“”‘ = q.mi“refm;w‘ — T5Q00 T3]3 -
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Let € be some positive number. Choose Qy € RH so that

" e B ” v €
|77 = T2Qo T2~ < qu.“/':tn.: 177 = ToQo T3 lre= + -

Define Qq(s) :

{1/(as +1)}Qo(s) for & > 0. Then, Q, € RHgg and we can show

T2 = T2QuTis|lp < 1Ty — T2QoTs I + 5

for small enough a using a technique similar to the one used in the previous proof. Therefore, it

is shown that infguernes |71 — ToQooTs|lre < infoperree [Ty — TsQoTsl|xe- Since the reversed

inequality is obvious, the desired equality is obtained.
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