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Abstract

This thesis proposes a framework for sampled-data control syst ems wit h a large class of samplers

and holds and. hased on it, in\'estigates the best achie\'ahle p('rfOn"'UIC(' of sampled-data control

systems. This research is motivated by a simulation result that the best achievable perfonnan('('

of sampled-dat a cont rol s,'st ems docs not a"nlys converge to that of continuous-tin\(' cant rol

S\'stems eV('n if the sampling period approaches zero.

l3y introdncing the notions of rcgular samplers and holds, wc can treat a large class of

samplers and holds. Thcse notions cuable us to treat pract ical samp"'rs and holds in a more

cOIlvcnient way than the com'cntional notions of generalized samplcrs and holds. :--Iol"{'ove\".

using a lifting technique and a matrix representation of an operato\". some hasic properties

of a sampled-data control s.\·stem arc deri\·ed. Especial"', one property of them expresses a

relationship bet\\'e('n a sampled-data control syst('m and a continuous-time control system and

plays an important role in the subsequent aualysis.

Based on the prepared framework for sampled-data coutrol s\·stems. their best achievabk

performauce is studied. Here. the hest achievable performance of sampled-data comrol s.\·stems

means the best performance obtained by adjustment of a discrete-time controller when a plant.

a sampling period, a sample\". and a hold arc prO\·ided. This best achievable performance

can be improved b\' an appropriate choicc of a sampling environnwnt, that is. thc triplet of

a sampling pcriod, a samplcr, and a hold. First. the theoretical bound for this improH'IlH'nt

is comparcd with thc best achic\'ablc pcrformance of continuous-timc control systems. It is

show'II that thcsc two arc not always equal. This means that the hest achievable pcrformance

of continuous-time control systems may not bc recovered bv sampled-data control systems.

~cxt. supposing that a sequence of sampling cnvironm('nts is provided. W'C obtain a necessary

and sufficient condition in ordcr that the best achievable perfonnance of sampled-data control

systems for each environnH'nt converges to thc theon'tical bound. \Vhen the thcoretical bound

is equal to the best achie\'able performancc of continuous-time control systems. this convergence

means that th(· best achievable performance of sampled-data control systems convcrges to that

of continuous-tin\(' control s"stenIS. Simplification of the obtained condition is also considered.



.-\bstract

Preface

In this thesis, I 51 lid,' the best achin'able performallce of sampled-data cOlltrol systems. Special

attention is paid 011 how this best performance depellds on a choice of a sampling period.

a sampler, and a hold. One reason why I began I his stlld." is I hal I hal'e been int('reSled

in a n·lationship betwe('n control and information sillce I read Amari's lTlonograph [1] and

paper [2] alld Ohara's thesis [69]. (The contents of [69] was pllblished in English as [70].) In

the monograph [I], Amari developed a differential-geomel ric theory on statistical estimation

and test, which he named information geometry; in the paper [2]. he considered information

geometlT of a system theory; in the thesis [69], Ohara applied information geonletry to a control

system design. l3ecallse I wrote m,' master-course thesis on S<l1Ilplcd-data control systems. il

was natural for me to consider how information is related to a sampled-data control system.

A sampled-data coni rol system is a s.'·stem to control a continllons-time plant b.\' IIwans of

a discrete-tillle cont roller. If we are interested in its behavior only at sampling instants. this

system can be regarded as a discrete-tinJe control system. Thus, we use the term of a sampled­

data control system when we are interested also in its intersample behavior and regard the

system as a hybrid one in the sense that it incllldes both continnons-time signals and discrete­

time signals. The time period with which the discrete-time controller works is called a sampling

period. "ow, snppose thal. for a pro\'ided sampled-data cOlltrol system. its sampling period

is made smaller. Then. because more information can be nsed during a fixed time period in

order to control a plant, it is considered that a control performance can be imprO\'ed with an

appropriate choice of a controller. I expected that I can capture the notion of information in

control b,' noticing this performance imprO\·ement. From I his idea. I started the present study.

In addition to the interests mentioned above. I had another reason to begin the present

research. Since a lifting technique \\'as introduced by Yamamoto [94. 93]. a lot of papers 11<\\'e

been pllblished on sampled-data control systems. :\Iam' of them are based on the following

idea. \\'hen a sampling [wriod. a sampler, and a hold an' chosen a priori in a sampled-data

control sYstem, a lifting lechniqlle enables ns to rq;ard this systc'm just as a discrete-time

control system taking illto accollnt its intersample behavior. IIcnce. we can apply here well­

established methodologie's for discrpte-time control systc'IlIS, and Ihis nl('ans that we can analyze'

and syntlwsize a sampled-dala control system considering its in!c'rsarnplc bdla\·ior. Although

\'ii
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continuous-t ime' cont 1'01 systC'tns.
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cOlllmC'nts. EspC'ciall~·. h(' ga\"(' m(' an idC'a to tr.'· an anti-aliasing filt('\" whose' bandll'idth dC'l)('nds

on til<' sampling pC'riod. In facl. with snch a filt('\". it is oftC'n th(' case that til<' bC'st achi,'vabk

pC'rfonnam'" of sampl('d-data control syst(,llIs doc's not cOII\','rg(' to that of continnous-lil\lC'

control systC'llIs. Th('\"C'forC'. this COllllnC'ut was rC'ally a kC'y point to ,kvC'lop til<' prC'sC'nt tla'on·.

I wish to C'xprC'ss I\IY gratitude to ProfC'ssor Yntaka Yal\lal\loto in Kyoto Gnil·C'rsity. IIC'
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reasoning. and mann('\"s as a researdl"r. Furthermore. I al\l obliged to Professors lIara and
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Confen'nce in 1997.

I am in,iPhted to Prof('ssor lIisaya Fnjioka in Kyoto Univ('rsily for his comments on sampled­
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A. Scherpen in Delft Univ('rsity of Technology and Dr. LnbOJnfr l3aranlov in 111<' Uni,·ersi!.\' of

Tokyo for reading my carli('\" papers on the present topic and giving l\Ie helpful snggestions.

I would like to expn'ss my appreciation to Professor Fnrnio Ilarashinia in TokYo \kl ropolitan
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of Tokyo. who were t he members of the judging commitl('e of In~' do('(oral d('gr('e toget her with

Professors Kil\lura and Shin. Their comments given in t he preliminary presentation helped 1\1('

a lot to rewrite this thesis.
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Recently. we had to cOlnpletC'ly rC'configurC' the compntC'r systC'm in thC' laboratory thrC'C' til\les.
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Finally. III'0uld like to thank my parents. Yukio and Yoshiko, who brought lllC' up and gm'C'

mC' a high C'ducat ion. I also wish to thank m.\' wifC', l{aznC'. for her pati('ncC' and enconragC'I\I('nl.

this is a great progrC'ss. I sonl<'how felt nnsatisfiC'd. This is l)('cansC'. if we consider a sampled­

data control ,ystem only along this approach, a tlwory on a sampled-data control system is just

a translation of an ('xisting theory on a dis(TC'tC'-timC' control system. I ratlwr lI'anted to consider

a unique characteristic of a satupled-data control s~·stC'm. which is not possC'ssC'd hy either a

continuous-time cont rol systC'rn or a dis(TetC'-tirnC' control s.l·stem. Tlwn, what characterizes a

sampled-data control system" I noticed that in a sampled-data control system lI'e can choose

a sampling period, a samplC'!'. and a hold so as to gC't a good control p('rformallcC'. whilC' lI'e

cannot do this in a continuous-time or discrC'te-tinw conlrol systC'nl. So this is one of characters

of a sampled-data control s~·stem. Considering in this way. I found it interesting to inwstigate

holl' the best achiC'vahlC' pNforJuance of sampled-data control systems depends on a choice of a

sampling period. a sample'!'. and a hold.

Tntuitil'el\', it seellls obvious that the best achiC'vahle performance of sampled-d;lta control

systC'ms approaches that of continuous-time coutrol systems "'; thC' sampling period approaches

zC'ro. It is consid('['('d that, a sampled-data controlil-r is widely accC'pted as a substitute of a

continuous-time controll,'r partly becaus(' this conjectnre is bC'iiev('(1 to 1)(' correct. However,

this conjC'cture is not alll'ays COITC'Ct as will be seen in ExamplC' 1.3. Consideriug that this is

a fundamC'ntal conjecturC' in th,' uSC' of a samplC'd-data controllC'r, lI'e haw to clarify why and

when this conjC'C'lure fails to hold.

This thesis investigatC's propC'rties of the best achievablC' performance of sampled-data con­

trol systellis and givC's a necC'ssary and sufficiC'nt condition in ordN that the best achievablc'

pNformance of sampled-data control systems convergC's to that of continuous-time control sys­

tellls. From this result. it is sC'en that the mentiOlwd conl'C'rgencC' to thC' best continuous-timC'

control performance depends on any of a pro\'i(led plant. a sampling pC'riod. a sampler. and

a hold. The obtained condition givC's us somC' insight about what is important to imprOl'e

sampled-data control performance.

I was helpC'd by many peoplC' while I did this research and compiled it into this thesis.

I am particularly thankfnl to ProfC'ssor Hidenori Kimura in the Cniversity of Tokyo. SincC'

1lC' came to the Cniversity of Tokyo in 1995. he has allowed me to work as his research associatC'.

In spite that he himsC'if was always under the pressure of a horrible amount of works, he took

care to lightC'n my work load and kt me concentrate on the research. \loreover, he gave me

a number of valuable commeuts on the resean·h and encolll'agC'd me wl1C'n I tended to lose

enthusiasnl. He also carefully read the draft of this thC'sis and gave me many suggestions. I

can newr imagine that I could accolnplish this research lI'ithout his help.

Thanks ar(' duC' to Professor Seiichi Shin in th(' UnivC'rsity of Tokyo. He was my advisor

while I lI'as a doctoral-course student from 1993 to 1993. His unique viewpoiuts freC' [rom

any conventional ideas stilllulate'd at(' a lot. Particularly, he' suggested l11e to doubt whC'ther

the best achievable !)('rformancC' of sampled-data control systems ahl'<lys converges to that of

Tokyo, Jflp~ln
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a(z)

The tra.nspose of a. matrix AI

The maximum singnla.r I'alue of a matrix .\/

The minimnlll singular valne of a malrix AI

:= 10
00

a(t)e "dt. Thc La.placc transform of a continuons-time signal a(t).

:= \ I'Ta. The lifting of a continuous-tinH' signal a(t). Here. a is a functional

sequence {alk]}k' 0 defined by alk](t) := a(h + t) for k = 0, 1. .. and () :s t < T.

:= f= a[k)z k The z-transform of a lifted continuous-lime signal a = lI"Ta.
k-O

:= L ad[k]z k. The z-transform o[ a discrcte-time signal ad[k].
k=O

A The complex conjugate 0[.-1. \\"hen .4 is a vector or a matrix. conjuga.te is taken

elemcntwise. When A is a [unction o[ a real number t. its conjngale A is defined

by A(t) := A(t). \\"hen A is a function o[ a. complex number 8. A is defined by

:4(8) := II(s). When A is an operator, A is defined as an operator ::fa := Aa.

A' The complex conjugate transpose of .-1 when .-\ is a ma.trix. The adjoinl operator

of .4 ",hen A is an Opl'ralor.

P(s) The continlIoIIS-lillll' transfer flInclion of a. conlillllous-tirn(' op('rator P

Pd(Z) The discn·te-lilll(' lransfer function o[ a discr('t,'-linl(, olwrator Pd

xiii



Notarion NotatjolJ

P(z), 5(z). H(z)

The Iifting-IJas"d transfer functions of a continuous-tim" operator P, a sampll'r­

type operator S. and a hold-type operator Ii

The Enclid space of n-dimensional colnmn yectors composed of complex numl1l'rs

A flat operator that maps g E £'[0.7)" to u E C" with u

~ r e (sl;h"'/T)l g (t)dt
,filo

The detl'nninallt of a matrix 1\1

A tall op('rator that maps v E C" to f E £'[0.7)" with f(t) := ~('(S+i>~"'/T)tv

for 0 <::: 1 < 7

:= G'll + G',,[((! - G'n1() IG'21. Th,' lo\\,('r fraclionaltransform.

:= {z E Co: Izl > pOl' Z = ao} for p > 0

:=I!Ji,

The space of all real functions a(t) such that e"a(t) 11l'longs to £2 for some positiye

(> 0

Cu {ao}

:= {s E Co : l1e s 2': 0 or s = ao}

:= snp II P(z)11L for P E !'Ji.
zED

:= Slip 115(z)IIF for 5 E !'Jp'
,Ell)

:= sUPIIH(z)IIT for if E.f)T'
'Ell)

TIll' indnced norm of a flat operator F, that is. an op"rator from £2[0.7)" to c'

TIll' indllced norm of a tall operator T, that is. an operator from C" to £2[0.7)'

det .II

E;~,

Th(' fidd of complex numbers

C"

:= SllpU{Pd(z)} for Pd E J)OO
'E

Th" indllc"d norm of a large operator L. that is. an op"rator from £2[0.7)" to

£'[0.7)'

The lIankd norm of a real rational fllnction <P(z)

The space of all real and matrix-valn('d functions 1'(8) that arc anal,·tic in l1e 8> 0

and is continnous in C+o

I!Jip

I!Ji

V

1!Flh,

IITlh

II PlIlJ;:"

II 511 lJ'"

IIfJlllJ~

11·ll.er, II· II.e", , 11·11.e~, 1I·11.e~

IIAII.er := e1~1~\IP IIA(z)liL- The other nOl1ns II . II.e", , II . 11.e~, and II . 11.e~ arc

similarly ddined by replacement of II· IlL with II·IIF, 11·lh·, and u{.}. respect i\·"ly.

TIll' k"rt!,,1 function of a r"gnlar hold H. Th" op"ration of Ii : qd f-' q is sp"cified
k

as q(kr + t) := L H(kT + t - (7)q,t!t] for k = 0, l. ... and 0 <::: 1 < 7.
fO

1'1", kNn,,1 function of a rq>;ular sampll'r S. Th" op"rat ion of S : P f-' Pd is

sp"cifi"d as Pd[k] := fokT :i(kT - r)p(r) dr for k = 0, 1, ..

IIAlh"d

IIPII

11j311'H~

Ilfllc2 [0,T)

Iiallc'

An innl'r factor of a real rational function fJ(z)

Au ollter f,telor of a real rational function fJ(z)

:= (v; + v~ ... + V;;)I/'. The Euclid norm of an n-dimensiollal \'ector v =
[VI 712 /}nrl' E en.

00 '/'

:= (10 Ila(t)ll~ dt) for a function a E (£2)"

(t,g)C'[O,T) := [ f(l)"g(t)dl for functions f,g E £2[0,7)"

:= (t. f)~'~O,T) = ([ Ilf(t)II~dt) 1/' for a fnnction f E £2[0.7)"

:= f= llii[k]II~'lo,T) for an £2[0.7)"-\·alued sequence ii = {ii[kJ}~o E rho,T)
k=O

1/2

:= {sup 1 Joo llii((T + i..u)II~ dW} for a function ii E 'H 2

0'>021r 00

:= {sup 1 J~ Ila(Te;"')II~'lo,T) dW} 1/2 for an £'[0,7)"-Yalued function a E !'J~'[O,T)
r>! 21T 11"

:= (~lIa,dklll~)\12 for a sequence ad E W)"

:= {sup 1 J~ lIad(Te;"')II~dW}I/2 for a function ad E!'J2
r>l 21r 1l"

:= sup II Ax ll\·. The indllced norm of au operator A that maps X to )'.
zEX Ilxllx

IIzllx"O

The appropriate induced norm of an operator A

:= 11P11c' ,c', The induced norm from (£')" to (£2)£ IInless sp"cified in other way.

:= sup u{i3(.,)} for j3 E 'Hoo

Itcs>O

fJi"(z)

fJOUl(z)

IIvl12

H(t)

.2(1)
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Ims

K oo

:Volalion

Thl' zl'ro-orckr hold lI'ith til(' sampling pl'riod r

TIl(' Hardy spacl' consisting of all iC"-Yalul'd functions a(s) such that a(s) is

analytic in Rl's > 0 and satisfies sup 1 Joo lIa(a i'"")II~dw < 00
0->021T CX)

Thl' lIardy spacl' consisting of all iC"-yaluNI functions ad(z) such that iid(z) is
1 JW . 2

analytic in JI) and satisfil's sup II ad (n""')Ib dw < 00
r>1 2-rr 1r

Thl' lIardy spacl' consisting of all ,[2[0, r)"-\'alned functions ii(z) such that ii(z)
1 JWis analytic in JI) and satisfies sup - llii(rl';"')1I~2[0,,) dw < 00

r>l 27f 1r

Thl' lIardy spacl' of all matrix-valued functions P(s) that are analvtic and

houu(kd in thl' open half plane Rl's > 0

TIl(' Ilardy space of all matrix-val ned fnnctions Pd(z) that are analytic and

boun(kd in JI)

Thl' Hardy spacl' of all large-opl'rator-valued functions that are analytic and

boundl'd in JI).

TIl(' Hardy spacl' of all f1at-opl'rator-valuN\ functions that are analytic and

boun(!<'d in JI).

TIl(' Hardy spacl' of all tall-op<'rator-valul'd fuuctious that are anal,·tic and

boundl'd in JI).

Thl' imaginary unit

TIl(' i(!<'ntity matrix or the identity operator

Thl' n x II-i(!<'ntity matrix

Thl' imaginary part of a complex numher s

Thl' SPl of all coutinuous-time operators that 11<\\'e continuous-timl' statl'-spacl'

reprl'sentations and have inpnt- and output-signal dimensious cousistent ",ith a

provi(kd plant G

:= {I(o E K : Ko(oo) = O}

:= (l(oo E J( : Koo(oo) = 0 with multiplicity two or morl'}

Thl'sl'1 of all disn('[l'-tinle operators that havl' discrl'tl'-timl' state-spacp represl'n­

tations and ha\'l' input- and output-signal dimensions consistent with a provided

sampling l'!l\'ironlllent (r, S, H)

Notation xvii

((2)" TIl(' Hill)('r~"I"\('" of onl'-si(!<'d SNIUl'ncl'S of II-dinll'nsional \'p('[ors ad = {a,dk]}r ()

snch that L Ila,dklll~ < 00. \\'Il<'n thl'rl' is no fl'ar of confusion. it is \\,rillPn as
k 0

P.

f~2[0.T) Thl' lIilh,'rt spacl' of all functional Sl''1Ul'ncl'S a = {a[k]}r () snch that l'ach alk]

is a fnnction 1)('longing to ,[2[0. r)" and tl1<'rc' holds L lIa[klll~2[0,,) < ex::
k 0

(,[2)n Thl' I-lilhl'rt spacl' of Ll'besgnl'-sqnarl'-intl'grahll' II-dinl<'nsional-vl'ctor-\'alnl'd

functions a(t) that arl' defined on [0. ex::) and satisfy faoo Ila(l)ll~ dt < oc. \\'I1<'n

lIl('rl' is no fl'ar of confusion. it is writtl'n as ,[2

,[2[0, r)" The Hilh<'l't space of Ll'besgnl'-sqnare-inlegrabl,' n-dilnensional-vcctor-valuN[

functions a(I.) that arc defined on [0. r) and satisf,' fa' Ila(t)ll~ dt < oc. I"'rl',

r > O. Whl'n thl'rl' is no fear of confusion, it is ",ritten as ,[2[0, r).

o TI1<' zero matrix or the zero operator

IR TIl<' fil'ld of rl'al numhers

R The continuous-tillle operator ",hose continuous-time trausfer function is fI(s) =

I r
s+ 1

R., TIl<' continuous-t imp opprator whose continuous-tillle transfl'r function is R,(s) =

1 r
r-'+l

Res The real part of a complex numher s

RHoo TIl<' Sl't of all real rational matrix-\'altl<'d functions P(s) that belong to H

'.Jlf:JOO The spt of all real rational matrix-valued functions Pd(z) that belong to .\joo

Thl' sets of all rl'al rational operator-Yalul'd fnnctions that belong to f:Jr'. f:Jr. and

f:JT', rl'spl'ctivl'lv

The ideal sampIPr ",ith thl' sampling period r

The lifting operator. It maps a continuous-tillle sigual a(t) to a functional se­

(jllenc,' a = {a[kj}r 0' wl1f're each ark] is a function belonging; to ,[2[0, r) and is

("'fined as a[k](t) := a(kT + t) for 0 :::: I < r.
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Chapter 1

Introduction

1.1. Background and Objectives

A Continuous-Time Control System and a Sampled-Data Control

System

Today's engineering cannot be diiicnssed without menl ioning digital techniques such as digi­

tal computation and digital signal processing. Control is not an except ion. In a t1H'oretical

world. researches on continuons-time controllers arc still dominating becanse a systelll with

a continuous-tillle cont roller has a simple structure and is easy to lw investigated. However,

in a practical l\"Orld. most of controllers are realized as sampled-data ones. This is because a

sampled-data controlkr is constructed lI'ith digital techniques and can realize a more compli­

cated control lall' with higher precision than continuous-tillle controllers. which are based on

analog techniques.

Let us begin by showing an example of a continuous-time control system.

Exalnple 1.1. \Ye consider a system to control an inverted pendulum. which is often used for

a laboratory experiment of a control system. This system is presented in Figure 1.1 (a) . .-\

stick called a pcndulum is connccted to a cart by a free joint and 1he cart is dril'en by a motor

along a straight rail in both dircctions. By adjusting a voltage given to the motor. we can

change the velocity of the cart as we like. :"Ioreover, a sensor attached to the free joint enables

us to measure the angle between the I'ertical line' and the pendulum. Our purpose is to keep

the pendnlum standing up vertical I,' on the free joint by adjusting the I'oltage to the motor

based on the measured angle of the peudulum. This is a desired function of a controller to be

designed.

Figure 1.1 (b) shows an abstraction of the system of the inverted pendulum. The s.I"lTlbol

'u(t) stands for the voltage gil'en to till' motor at the tillle I. wllPreas yet) expresses the angl('

of the pendulum at t he time I. The voltage u(I), which is reallv gin'n to the 1lI0tor. ilia,' be
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(a)
Figure 1.1. A continuous-time control system to control an inverted pendulum:

(a) the appearance of the system; (b) its abstraction.

voltage to
the motor

d(l)

(b)

net)

achievable !wrfonnance can be computed theoreticall.\·. This means that an engineer dol'S not

have to rep('at trial and error in ,",lin; ff the pro\'ided perfonnancp slwcification is impossible

to be achieved, he can sa~' so. A problem hel"(' is that. if wp try to constrllct a continllolls-titrlp

controller in a rpal world Ilsing an analog techniqll(" it is difficllit to realizp a complicatpd cou­

trol law with a high precision. Thpse days. cont rol engineers ,up askpd to sokp InOl"(' and more

complicatpd control problellls. For instance. a plant to Iw controlled often has multiplp inputs

and mllitiple outplltS: sevPral performance sppcifications such as disturbance atlenllation and

robust stabilization are assigned sillluitaneousl~·. In such a situatiou, controllers that accom­

plish the best achienlble performance tend to 1)(' 1lI0re complicated than thp OIH" practically

realizable as continuous-time controllers. Then, it is questionable whet her the best achie\'able

performance is really altai ned.

A remed~' for this is to introduce a sampled-data controller. Since a salnpled-data controller

is constructed based on digital techniques, it can realize a complicated control law wit h a high

precision.

control s.,·stCIlI.

difrcrent from thc voltage u'(t), which the controller iutends to give, because a disturbance d(t)

comes in from the outside. TIH' angle yet) is also coutaminated by a seusor noise n(l) and the

measured angle y'(t) is some\yhat different from the real angle. Suppose that all thc signals

u(I). y(t) .... arc functions of a continuous time t. c\ symbol P stands for a mathematical model

that characterizes the dynamics from the actual \'oltage lI(t) to the actual angle yet). This Pis

an object to be controlied and is called a plant. 13y neglecting nonlinearities and higher-order

dynamics included in the real dynamics. we describe the plant P in linear ordinary differential

e~luations of a finite order. This P can be regarded as an operator that maps a function 'lI(l)

to a function y(I).
The block J( is H controller to be designed. At \cast. a controller must make the pendulum

stand up on the free joint even if a small disturbance d(t) and a noise net) come in in

other words, a controller must make the system stable. In addition to it, a controller is usuall~'

required to make the system to IHlye a good performance. For example. it may be desired

that the system attenuates the effect of a disturbance d(t) aud a sensor noise net); It may be

desired that the system is stabilized robustly against the dynamics neglected at modeling. \-Iere.

suppose that the dynamics of [I' is described by means of differential equations just as P. This

description is appropriate \\'hen 1\ is fealized in an analog circuit for example. In such a case.

f( is called a continuous-time controller and a constructed system is called a contilJflOns-t illle
o

A continuous-limc control sysll'm has a simple st rncture in the sense that its two c:ompo­

nents P and I( arc both pxpressed b.\· differential equations. !3ecause of t his simplicity, a lot of

methods to design" controller J( has been proposed. Among them, modern design methodolo­

gies like 11.00 and 11.2 are distinguished from the classical ones like riD in the sense that the best

Example 1.2. Let us considPr to control the s~'st('nl of Example 1.1 nsing a sampled-data

controller. Th(' resulting system typically looks like Figure 1.2 (a). Here. a controller is a

digital one frequently implemented in a digital computer. Since the input and the out put of

this controller arc digital signals. we need analog-to-digital (A/D) and digital-to-analog (0/.\)

signal cOII\'('rters in order to connect this controller to our im'erted pendulum. \,(oreo\·er. since

analog-to-digital com'ersion is sensitive to a high-frequency noise, it is usual to cut such a noise

using a low-p",;s filter, which is called an ilnti-aliasing filter.

Figllre 1.2 (b) shows an abstraction of the system in (a). Here, an analog signal is 1lI0deled

as a [unction of a continuous-time t and is called a continuouS-lilu(' sigual. A digital si!\nal is

regarded as a s('quence and is called a discrete-time signal. In this fi!\ure, a continllolls-time

siglml is presented by a solid arrow, whereas a discrete-tillle sigual by a broken arrow. The plant

P is the saute as in the pre\'ious example. The symbols F, 5, }(,I, and H denote the system

compouents corresponding to an anti-aliasing filter, an analo!\-to-digital com·erter. a digital

controller. and a digital-to-analog converter. respecti\·el~·. It is assullIed that the operator F is

described in difl"erential equations and has a low-pass property. Th(' block 5 is called a samplef.

There can be various sampling schellles. Typically. 5 is assumed to work as y~[kl := y"(kT)
with the symbols in the figure. See Figure 1.3 (a) for the operation of this typical S. Here.

T > 0 is a time period chosen in advance and is called a sampling p(·riod. From now on. this

particular sampler is called the iclcal sampler with the sampling period T. The block f\" is called

a discrete-tilllP ("on troller. Its operation is assumed to be express('d hI' diffc'ren("e equations while

that of a contiuuous-time coutroller is by dif1(·/"ential"ljuations. Finall.\·, t he block /I is called

a hoJd. The most tl"JJical hold works as u'(kT + t) := ll~[kl for an~' k = O. 1, ... aud () :s I < T.

See Figure 1.3 (b). This hold is called the 7-pro-order hold with the salllpliug period T. Just
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like tl](' sampler case. then' can 1)(' nHlll\" other type's holds..-\ I rain of hlocks F. 5, [(d, and H

is called a saIlJplcd-data coutroJJel". .\' in Example 1.1. the sysll'nl components F .. , [(d, and

II can be regardc'd as operators. 0

u~[t]

y~[2)
y"(t)

y:II°]

y~[l]

27 37 27 37

(a) (h)

Figure 1.3. The operation of (a) tl](' ideal sampler ami (h) the 7,ero-orde[' hold.

Samplers and holds difkrent from the ideal sampler and the' zero-order hold are called w'n­

eralizcd samplers and holds. respecti\·C\\·. If we choose a generalizt:'d samplt:'r and a genNalizt:'d

hold appropriatt:'h' for a pro\'i(kd plant. it is possihle to improvt:' a control performance ht:'.\'ond

the I)('st performance achit:''''lhle hv the idt:'al sampler and tht:' zero-order hold [55.311. [[owe\·t:'1".

realization of these generali7,ed de\'ices is mort:' difficult than the t~'pical ont:'s.

A draw hack of a sampled-data controller is that il makt:'s a system more complinlt('d than

a continuous-I ime controller. Particularl.\· in a sampled-data control systt:'ll1. hath continuous­

time signals and discrclt:'-time signals are iucluded; one component is descril)('d in differential

equations and another is in difkrt:'nce equations. Bt:'cause of this hl'brid nature, s~·nt.ht:',i, and

analysis of iI sarnpkd-data control system have ht:'t:'n difficult. for a long timt:'. Lt:'t us st:'t:' this

next.

(b)

Figure 1.2. A sampl('(l-data control systt:'m to control an invt:'rted pendnlum:

(a) tl](' appearance of tht:' system; (b) its abstraction.

Synthesis and Analysis of a Sampled-Data Control System

Let us consi(kr to syntbt:'sizt:' a sampkd-data control systt:'m for a prm'idt:'d plant P. \\-t:' suppose

that a sampling pt:'riod 7. an anti-aliasing filter F, a samplt:'[ S. and a hold Hart:' givt:'n in some

way. \\'hat. is considered hert:' is to d('sign a discrett:'-till1e controller h-d so that the rt:'sldting

system is stablt:' and has a good !)('rformance. \\'t:' lI1Nln this (ksign of [(d by syntl]('sis of a

sampled-dill a control systt:'ln. Two approacht:'s ha\'t:' bet:'n taken to this probkm [36,20]. that

is,

(i) dt:'signing iI controller in the continnous-time domain and diser<'lizing it:

(ii) dis(Tetizing a plant and designing a controller in the discrete-time domain
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(s"e Figure 1.4). Once I\d is obtained, \I'e can construct a sampled-data controller by combining

it wi Ih a prm'id"d sam pier and hold.

P

design in the
continuous-tim" domain

• f(

(i)

discretization (ii)

(ii)

(i) discretizatiou

Figure 1.5. Interpretation of a sampled-data control system as a discrete-time

control s,·stem.

design iu the
distTete-time domain

Figure 1.4. Two conveutional approaches for a synthesis of a sampled-data

control system: P is a plant to be controlled: Pd is a discretized plant: I( is a

cont innons-t ime controller; J(d is a discrete-time controller to he obt<tined.

In the first approach (i). <t coutinuous-time controller K is designed for a plant P just as

a design of a continuous-time control system and then K is discretized into f\'d' One way for

this discretization is to put J(d := 5' f( H' nsing some sampler 5' and some hold H'. (It is

not necessary that 5' and H' are identical with 5 and fI, respectively.) Another way is to

transform J( by a bilinear transformation. In this approach (i), we can use well-established

methodologies to design a continuous-time controller 1\. 'doreover. since we carry 0111 a con­

troller design in t he' continnous-time domain, we can give a performance specification iu a

natural way IIsing concepts in the continuous-time domain. A problem of this approach is that,

e"cn if a continuous-time controller J( attains a desirable control performancc, actllall,' implc­

mentcd into the system is a sampled-data controller 11 f(d5F. Therefore. \I·hen the dynamics of

a sampled-data controller is not close euough to that of the original continuous-time controller.

a designed sampled-data control system docs not beha"e as expected: sometimes it even falls

unstable <tlthough a continuous-time control system made of P and 1\ is stable. [t is often said

that if the sampling period 7 is "small enough." the dynamics of H /(d5F is almost similar to

that of /,'. However. this docs not give an answer to a question like "What sampling period is

small enough'l" or ·'\\'hat sball we do if the sampliug period is not small euough T

In the second appro;tch (ii). \,.!' modify thc system diagram of Figllre 1.2 (b) as in FiguT'e 1.5

and define a discr"tizcd plant by Pd := 5FPI-I. Then, both Pd and f(d, which constitule Ihe

system. an' expressed by difference equations. Let us call this type of system a disrrete­

time control system. The strut'lure of a discrete-time control system is as simple as that of

a continuons-timc control systelll, whose cOlnpon"nls arc d"scribed in difrcrential ('qnalions.

Aclnally, design nwthodologies for a discrete-time control syst em have been develop"d ahnost

in a parallel way to those for a continnons-time conlrol s,'stem [20, '10. 09]. Based on them. a

discrNe-time controller I\d can \)(' obtained. As far as the dynamics at the sampling instants

t = 0.7.27. . is concerned. no approximation is involved in this approach. ThNdore. the

resulting sampled-data control system behaves exactly as expected at "'ast at the sampling

instants. One disad\"antage of this approach is that the intersample behavior of tht, system is

completely neglected. Indeed, it is reported that a sampled-data control system designed along

this approach sometimes beha"es badly between Ihe sampling instants, thongh its behavior at

sampling instants is good. This phenomenon is called ripples. Again. it is said that. if the

sampling period is "small enongh," such a phenomenon docs not occur. However. this cannot

be a real anSW('r as we have se"n before. Another disath'antage is that it is not easy to Iranslate

provided perforlllance specification into terms of t h" disnete-time domain. where a controller

design is carried out. If this translation is not appropriate, it may happen that a designed

sampled-data control systelll does not satisfy the original performance specification gi"en in

the continuous-time domain.

So far, we ha"e seen how difficult synthesis of a sampled-data control s,'stelll is. imilarly.

analysis of this system is not easy either. There are two approaches to analyze it. One is to

regard a sampled-data controller as an approximation of some continuous-time controller and

to analyz!' the continuons-tim!' control system made of this continuous-time controller and the

provided plant. This is analogous to the synt h"sis approach (i). Another approach is to neglect

the intersample behm'ior of Ihe provided sampled-data control svstelll and to anal.,·ze it in th!'

discrete-tilll(' domain. This corresponds to the approach (ii) berore. It is now obvions that

these approaches for anal,'sis hay!' problems. The first approach do!'s uot really anal,'ze the

provided sampled-data control s,·stem. If the approximatiou by a coutinuous-time controller
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is not p;ood, Ih~ perforlllanc~ of tl10 continuous-tinl(' control s,'st~lll, which is analyz~d, is

compl~t~l)" diff~r~nt from t 110 real IWrfol'llH11l('(' of tlw orip;inal s<"nplerl-data control systelll.

Th~ s~cond approach for analysis n~p;I~ch th~ intersampl~ b~hal'ior. Therefore. it is possibl~

to O\'~r1ook a bad int~rsamplC' h~hayior. ~dor~OI'er, sinc~ anal."sis bas to 1)(' carriNI ont in tl10

dis(Tet~-tim~ domain, il is not obvions what il m~ans in th~ con tin nons-time domain.

A sampled-data cont rolkr is introdnced to realiz~ a complicat~d control Iall' with a high

precision. Although th~ Iwst achi~vabl~ p~rformance of continuous-tim~ control syst,'ms can

h~ comput~d th~or~tically, an act nal system is realizC'd as a sampled-data control syskm in

many casC's. lIC'r~. it is natmal to conjC'cturC' that thC' I)('st pC'rform<lIlcC' t11C'oretically achiC'vablC'

by continuous-tim(' coni rol systC'rns can be asyrnptotiC<ll1y attained by sampled-data control

systC'ms if thC' sampling period is chosC'n "small C'nough." However. this conjecturC' is not C'asy

to 1)(' provC'n siucC' synthC'sis and anal,'sis of a sampled-data control system arC' /lot straightfor­

ward. lud~~d, it is difficult to obtain tl10 best achi~I'able p~rformanceof sampled-data control

SYSt~lllS. It is also diflicult to analyz~ tlw p~rforrnanc~ of a provided sampled-data control

s,'st~m considering intersampl~ b~havior without approximation.

Astrom C'I al. [7] sbOlv~d that. wb~n a continuons-time plant haying a r~lativC' dC'greC' larg~r

than two is discr~tized with a small sampling period, the plant gains an additional unstablC'

ZNO. This r~slilt. is inl~r~sting hecaus~ an unstable zero is cousid~red to d~gra('" the control

performaucC' and thus it s~C'ms to be against our conj~ctur~. Although thC' C'ffects of unstahk

ZNOS can he quantified in tC'rms of int~gral-t.ypC' constraint.s (SeC' [37. 14] and th~ r~ferC'ncC's

tlwrC'in), direct rdationships hetween unstahlC' zeros and th~ hC'st achiel'ablC' performancC' arC'

not clear when thC' pC'l'formanc~ is measured by the .c2-inducC'd norm or the 7-(2-norm . Iknce,

it could not 1)(' a h~lp to 1'1'01'(' whetber our conject.urC' is correct or not.

Lifting-Based Approach to a Sampled-Data Control System

In these two decades. many researchers have tried to directly deal with a hybrid naturC' of a

sampled-data control systC'm. Thompson et al. [88,87] used a conic sector to captur~ this hybrid

nature, Francis and GC'orgiou [35] il1\'C'stigatC'd stability of a sampled-data control systC'm in

dC'lail. LC'ung et a/. [64) analyzC'd tbis systC'lTl assuming tbat a band-limited input is inject~d into

thp system. KellC'r and Anderson [59] IriC'd to handle the intersampIP behavior of a samplC'd-data

control s,·st.C'm by disCTetizing til(' systC'm with a smalkr period than the controller period.

Difficult\' iu the tr~atment of a sampled-data control syst"m wa~ removed to a consider­

ablC' degrC'e by a so-called lifting technique. which was introduced by Yamamoto [94, 95]. In

particular, it enabl~s us to synth~size and analyze a sampled-data control system excludiug ap­

proximatiou unlike the tirst approach Iwfore and taking into account the int~rsampl~behavior of

t.ll(' systC'm unlikC' the s~cond approach. A basic idea of lifting is to chop a prol'id('(1 continuous­

time signal aCt) at each sampling instant t = k7. k = 0.1. .... and to rep;ard it. as a sequ"nce

1.1. Background ,wd ()bjC'cti\'{'.~

of functional fraglllent" {a[k]}%" " WhNC' C'<1ch ark] is a function dC'fin~d as a[k](t) := a(AT + t)
for a ::; I < 7, SC'e Figur~ 1.6. ;\'01<' Ihat this "~<Jll('nc~ can 1)(' cousid~l'('d as a dis<Tpl C'-I inl<'

signal, which takC's a I'alue in a functional space <lC'tinNI on [0.7). Doing so. II'~ l'('gard all tlIP

continuous-timC' signals inc!udNI in a samplC'd-dat.a control systC'1ll as dis<TC't.C'-tilllC' OlI~S. ThC'n.

a hybrid nature of tbe system is not a probl~1ll anymor~ and its sl'nt hpsis and analysis h~cornp

lIInch ~asipr, nam~ly. t hC'y can be done by appl.l·ing I~chniqups for di"'<T~t"-1 imC' cont rol ,.,ystPllls.

aCt) _".IiB a[211<) ~

~ 0",.0.0.

a 7 27 37 47 tal 3 k

Figure 1.6. Lifting of a continuous-tim~ "ignal aCt).

Along this line. pxisting llIethodologies for syuthesis and analysis of coutrol syst~ms havC'

b~~n t.ranslat~d so as to Iw applicablC' to sampled-data control syst~ms. Sinc~ th~sC' nC'II' lIIC'lhod­

ologi~s considC'r an int~rsamplC' bC'havior of systems lI'ithout any approximatiou. c!Nlrl,' th~y

ar~ sllp~rior to conl'C'ntional ones. This was done for the 7-(""-control by l3amieh C't a/. [J 1,9].

Tadlllor [86], Toil'on~n [89]. Kabambll aud Hara [561. I-Iayakawll e/ al. [48] and othC'rs: for th~

7-(2-coutrol by Chen and Francis [18. 19. 16], KhargonC'kar and Sil'ashankar [611. BamiC'l1 and

PC'arson [10]. aud Hagiwara and Araki [-12] to uame a few. The .c'-control for satllpl~d-dat.a con­

trol syst~ms was considC'rcd by DullC'rud and Francis [28] and Bamidl pt a/. [8]. A sampl~d-data

robust st.abilization was stlldiC'd by Sil'ashankar and I<hargonekar [83] and Dulkrud and Glo\'C'r

[29.30.31. 271. Although many of thesC' papers assumC'd th~ ideal samplpr and the z~ro-ordC'r

hold for digital/analog signal cOl1\·{'[sion. a Iifting-basC'd approach is effC'ctive for a systC'lII with

a generalizC'd sampler and hold. This was pursnC'd in [~5. 86, 53. 56, 5, 66) to uame a fC'lI'.

Especially, Tadmor [86) cousidC'lwl not. onl,' an optimal design of a discrete-tilllp controll~r J(d

but also that of a sampler and/or a hold. (A c!osdy r~lat~d probl"m was considpred b.l· Sun

ct a/. [ 4].) illirkin and Rot.stC'in [66] consid~red lifting of a sampler and a hold. wher~as most

of oth~r papers hal'~ usC'd lifting of a plant only. A lllu/tiratC' sampled-data control "y"tC'm i,.,

a generalization of a sampled-data coutrol system and has bC'('n inl'estigatC'd for a long tilllP

[63,58. 6, ~1, 67, 43, 33]. In a lI1ultirale system. ~ach of a conlroll~r. a salnp"'r. alld a hold

may work with its oll'n tim~ ppriod. Lifting can 1)(' us~d in or<kr to anal.l,ze this syst~Ul. too.

About this topic. tll('re arC' th~ l\'Orb of "oulgaris and l3amiC'h [93] and ChC'n ami Qiu [21. 811.



.dh) := {....\ : ,1 is a cansnl linear op"rator satisfyiug 11....111 < 'Y}

The Best Achievable Performance of Sampled-Data Control Systems

but it is /lot known which demrnt it is. Ilerc. 'Y is some positive nnmber and 11....\11 denotes

the C2-induc"d norm of (he operator ....\ (Sce Section 2.3.1 for its precisc definition). The

11

r
n u'(I)

r~J
P~1

-& l -G
(b)(a)

1.1. Background alJ(l O!Jjcctin's

Figure 1.7. Robnst stabili;.mtion nsing a continnons-tim" controll"r: (a) a

continuous-tim" control system with a unc"rtain plant; (b) a system whose C'­

indnc"c! norm should be made small.

opemtor II· is a known linear operator describ"d in linear dirrer"nlial "'Iuations. Thi" II· is

introduced in ord"r to tailor the unc"rtainty included in the plant. For "xampl". if Ihe plant

is not considered to 1)(' \I·"II-ident.ified in a high-fr"quency range. 11''' let 1\· hal'c a high gain

there. Then, t.he sy"tem compos"c! of P. ....\, and II' has a larg" unc"rtaint.1' in this range. As

a Cotls"queuce of t Ill' small-gain theorem, it can be shown thai this system is stabl" for an.\"

....\ E .dh) if and only if 'Y IIT,_wll ::; 1. where T,_w dellotrs th" op"rator from w(l) to z(l) in

Figure 1.7 (b) and liT,. ",II its C2-indllced norm. Therefore. in l·i,,\1· of robust stabilization. the

bcst contiuuous-ti/n" conlrol performance can he expr"ssed by tli" infimum I"1t1ue of IIT,-",II
over all continuons-tim" controllers !( that stabilize ~he syst"m.

Th" things arr almost the same about a sampled-data control sy"tem. I-\"r". \I·e consider a

S,'stem presented in Fignre 1.8 (a). wher" the sampling period T and the opcrator" P, 5, F.

J-I, and IV are provided in advanc". It is prol'en thnt this system is stable for nny el"nl"nt of

.dh) if and only if') IIT,-", II ::; 1, wh"re T,_w is an operator from w(l) to ;;(1) in Figure 1.8 (b)

[831· Consequently. the best sampled-data control performance in this selling is th" infinllim

of IIT,-wll over all discrt'te-time controllers !(d that stabilize the syst.em.

:"ow. suppose that P is an unstable plant ha\·ing a continuous-tinle transfcr function 1/(8­
1). (Se" Scction 2.3.1 for the d"finition of a transfer fllllction.) L"t II" hm·e a continuous­

time transfer fnnction 8 + 1. which has a high gain in a high-freqlll'ncy range. Then, \I·e can

comput" th" best conti/luolls-tinw control performancl' by (ransforming the probl"m inlo a

modd-matching problem jllst as pxplain"d in Exampl" 6.1.2 of [341. In order to consid"r the

best sampled-data control perforInancc. \I." choose 5 to be the ideal sampl<'l" wit h the sampling

Chaptcr 1. Introdflctioll

Example 1.3. Herc, we consid"r a robust slabilization probl"m both with a contiuuous-timc

control scheme and with a sampled-data control schemc. As WI' saw in Example 1.1. an operator

P is a math"matical model of a controlled object and may be slightly different from thc actual

one. Therefore, a controlkr needs t.o st.abilize not only P but also a plant slightly different

from P. There arc scveral approaches to handle this problem. One wa,' to formulate it in the

context of thc H -control is the follolViug.

Consider a system in Figurc 1.7 (a), whrre a controlled object is expressed as the combina­

tion of P, ....\, and W. Her", t.hc operator P express"s a nominal plant model anc! ....\ st.ands for

unccrtainty of our knowledge about tIl(' plant. Specifically, lVe suppose that it is known that ....\

is an element of th" set

10

:\0'1' \ct liS cOllsidcr our conjccturc abollt thc bcst achicvahlt' performancc. From nO\l· 011,

somctimt's IVC IISC a shorlC!" tcrm, thc hcsl cOlltinflous-limc cOllt.rol pcr{ol"1wu/c,'. in placc of

thc hcst achievahlc pcrformanc" of continuolls-tim" control syst"ms. Similarh·. IV" som"tim"s

sa,· thc !Jcst samplcd-dilla control pCr/Orl1WlICC lIl<'aning til<' bcst achiel·able !)('rformallce of

sampkd-data control syst."ms. In Ih"s" terms, IVhat IV" arc inl"rested in is IVh"ther th" b"st

sampled-data control performance conwrges to the I",st continuous-time control performance as

til<' samplillg I",riod approaches zero. Since \I·e han' a lifting techniqll", w" ,u" r"ad,· to considC!"

this prohkm. Indeed, it is nolV possihl" to m"asur" the p"rfonnallc" of a sampkd-data cOlltrol

Sl·st"tl! and that of a continuous-tilll" control system using the sa/lie performance indices such as

the C2-induced norm and thp H 2-nonn. ;\Ior"ol·cr, we can obtain the hest sampkd-data control

performance wit h resp"ct t.o these indices and compare it with th" best continuous-time control

perfornHlllc". Trent"lmen and Sioorvogel [91) and Osburn and l3ernstein [80) chose the H 2-nonn

as thc performance index and proved that the Iwst san/pled-dat.a control p"rfonnance converge's

to the b"st coni inuons-tim" control performance as the sampling period approadl<'s z"ro. Hara

1'/ '11. [~5] chose the C2-indllc"('(1 norm (or equivalently thc HOO-norm) as th" perfonnance inckx

and did t.he sanlc' thing in a spccial casco (Tadmor [86] considcred a dosc,I.I· rc]aled problem,

ou which \I·e will comment iu R"mark 4.6.)

Howeyc/". the abovc proofs treatcd only tIl<' situation that the ideal sampler and t hI' zero­

orckr hold arc used for a sampl"r and a hold, resp"ctivc]y, and the same anti-aliasing filt"r F

is IIsed for an,· sampling period T. In a more general case, the best sampled-data performance

may not conl'"rge to the best continuous-time control p"rformance. This is seen from thc (l<'xt

example.
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2.2(a)

period rand H to be the' ze'ro-ordC'r hold with the sam,' sampling pC'riod r. \\"e' consider two

case's regarding an anti-aliasing filter F. ThaI is. in the' first case'. Ihe tram,fe'r fuuctiou of F is

choseu as I/(rs + 1): in the 01!,,'1' case' as l/(s + L). TheIl. usiug au algorithm of l3alllie'h aud

Pe'arson [9], for e'xample', the Ill'st sampkd-dala conlrol performauce' can be' compllte'd.

The' simulation results are' pre'se'nte'd in Figure' L.9. The' solid line' stands for the' be'sl sample'd­

daLa controllwrfonllallce' whe'n F has a transfe'r function l/(rs+ 1). (The' symbol F(s) de'nole's

the' continuous-time' transfer functioll of F.) [t doe'S not C011\'e'rge' to Ihf' best continuous-time

control pf'rfonnance' expresse'd by thf' dash-dot line f've'n if the sampling pf'riod appraadlf'S Zf'ro.

On the othe'r halld, the broke'n line' stands for thf' bf'st samplf'd-data control pe'rformance' with

the' transfer function of F be'ing l/(s + 1). This linf' does conwrgf' Lo thf' be'st continuous-time'

control pe'rformance'. 0

The besL achie'I'able' pC'rformances

2.3.-----~-----,
Sampkd-dal a coni ral

with F(s)=r.<~'

0.10.05
Sampling pe'riod r

Continuous-Lime control
2 -

2.1

1.9'------------------'
o

Figure 1.9. The be'sL sampkd-daLa control p('l'forman,'(' doe'S not ajl\'a~'s COIl­

vergf' La the' be'st continuous-Lime control p('l'formance'.

(b)

Figure 1.8. Robust stabilization using a samplf'd-data controller: (a) a sampled­

daLa control system with a unce'rtain plant: (b) a system \\·hose' .c2-induced norm

should be' made' small.

Gain of F (i.e .. IF(iw)l)

1

1

72

L- +-- -----' Frequency w

Figure 1.10. A gain plot of the' firsL F Ol'('r freque'ncics.
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If the continuous-tim" Iransfer function of F is l/(Ts+ 1). it, gain plot over frequencies looks

like Figure 1.10. It is a low-pa" filter who'e bandwidth is proportional to l/T. Thi, choice of a

filter seems quite rea.sonable considering an aliasing df,'ct, which occurs at thl' ideal sampler S.

In order to see t his, consider a continuous-time signal having high-frequency components bcyond

the ;"'yqnist fn'qu('ncy rr /T aud suppose t hat it is fed into tht' ideal sampler S. Sampil'd by the

ideal sampler. a distinction bel ween the frequency ..v and its side-band frequ('ncies ..v + 2mn/T.

m = ± 1. ±2, .. , disappear,. l3ecau,e of this effcel. the high-frequcncy components arc folded

onto thc low-frequency range and contaminat(' low-freqnency compon('nts. Hcncc, it is often

said that bigh-freqll<'llcy compouents excl'eeling the frequency rr/T should be attenuated befor('

fed illlo thl' ideal ,ampler S. Tbis is con,istent with the above choice of the filter because this

filter has a low gain beyond t.hc frequency rr /T. Howl'ver, the sirnulal ion rcsnlt shows that the

best sampled-dilta control performance in this case docs not eOIl\'erge to the best continuous­

time control performance evell if the sampling period approaches zero. This means that our

fundamental conjecture abont a sampled-dala control system is not always correct. Since this

conjecture is considered to help the widesprl'ild usc of silmpled-data controllers, it is a pressing

need to clarify why such a nOll-con\'erging phenomcnou occurs and bow it Ciln be avoided.

generalized sampler

ideal anti-aliasing
sampler filtcr

Figure 1.11. Interpreting t}](' pair of tbe ideal sampll'r 5 and iln ilnti-aliasing

filter F as a gelwralized silmple!'.

Moreover, it is seen from the ilbove exam pic that a choice of an anti-illiasing filter F affects

convergence to the best continuous-time control pcrformance. In this thesis. wc combinc an

anti-aliasing filter with the ideal sampler and regard them as one generalized sampler. Sec

Figure 1.11. Considering in this way. we can also say that convergencl' to the best continuons­

time control performance depends on il choice of a sampler. In fact. another simulation result

shO\\'s that if we use a generalized hold instead of the zero-order hold, the best sampled-dilta

control performance mayor may not converge to the be,t continuous-time ('Qntrol performance.

This means thilt couvergence depends ou a choice of a hold. too. Hence. in order to iJl\'estigate

this performance convergence is~ue. first we have to construct a frame\\'ork to treat sampled­

data control systl'ms wit.h a lilrge clas, of samplers and holds.

Objectives of This Thesis

In t his thesis. the following two probl,'ms are considered:

(i) Construction of a lifting-based framework for sampled-data control S\',lem, \\'ith a large

class of sam piers aud holds:

(ii) IIl\'estigation of the best ,ampled-data control performance. e,pecially on it, convergence

to the best continuou,-time control performance.

In Problem (i). our purpose is to construct a general, clear, usdul framework for 'ampled­

data control system,. Ilere, special attention is paid on treatment of samplers and holds. which

have not been treated so seriously. A principal reason why w,' make t his framework i, to

provide a solid basis for the anal~'sis of the best sampled-data control performance. However.

this framework is significant in its own right because it is belie\'ed to be useful for other advanced

problenls on sampled-data control systems. too.

Although there arc man~' studies on generalized hold, [55. 5~, ,15. 6.56,5,661. they assumed

that the kernel functions of holds are defined on [0. T), where T is the ,ampling period. In other

word,. a discrete-time ,ignal recei\'ed b~' a hold at t he time I = kT affects it, output only

during kT ::; t < (k + l)T. Therefore. the first-order hold. which i, often qUOl<'d as an exampk

of gelleralized hold,. i, not covered by their hold classes (Example 3.7). Similarly in Ihe studie,

on generalized sampler, [86, 53. 66], it is assumed that samplers have kernel functions defined

on [0. T) . .-'\ problem l1<'re is that treatment of the ideal sampler. which is the most important

sampler in practice. is difficult in their frameworks because its kernel function turus out to

be the delta function. This thesis shows that. by enlarging the domain of kernel functions

to 10.00). we can resolve these difficulties. Consequently. our framework obtains p;enerality

regarding treatrn"nt of samplers and holds.

Furthermore. \\'e try to make our framework clear for ease of the subsequent analysis. For

this purpose. we consider lifting and lifting-based transfer functions of various systelll compo­

nents including samplers and holds, while it has been usual to consider lifting of cOlltinuous-time

plants onl~" Besides. we inlerpret tbe FR-operators of 1'1, 3, 42. 51 as matrix reprt'sentations

of the above transfer functions (also sec [96]). Since FR-operators arc frequency responses of

a sampled-data control system in some sense. they are defined only on the nnit circle 1;:1 = 1.

On the otbl'r hand, our matrix representations can be defined 011 Izi :::: 1. Henc,'. our represen­

tations give more information on sampled-data control systems. Especially for sampl('rs and

holds, relationships betwe('n th('ir matrix representations and kernel functions arl' presented.

Based 011 this framework. three basic properties of sampled-data control systems arc ob­

tained. They play an important role in the anal.\·sis of the best sampled-data control perfor­

mance. This fact shows usdlliness of our framework.
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In the n('xt part of this thesis. \\'e considN Problem (ii) abo\·e. that is. we investigat(' the best

achievable performance' of "ampkd-data control syst('ms in relation with that of coutinnons-tim('

control s\·sl<'ms. Systt'm perforInance is nwasured In' the .c2-indnced norm as in Example ].3.

Our main int"resl is concerned wilh obtaining a condition in order that tl](' best sampl('d-data

control performance ('ol1\'erges to Ihe b"st continnous-time conI rol performance.

One reason to consider this probklll is that, as we saw pre\'ionsll', it is related to a fun­

dam('nta[ conject nrc about a sampkd-data control scheme. That is, it is couject ured that the

best continuous-time control performance is reco\'ered by sampled-data controllers. and based

on this conjecture we acc('pt a sampled-data controller as a "nbstitute of a continuous-time

controller. However, this conjecture is not always correct as we ha\·e seen. Accordingly, there is

a need to clarify w1]('u it is correct and when it is not. Another reason to consider Problem (ii)

is that il is expected that by investigating this problem we can sec what is important iu sam­

plers and holds in order to improve control p('rforItHlnc('. If a condition for tbe performance

cOI1\'erg('nce is obtained. it may give an insight about how to choose a sampler and a hold.

II1\'estigation is carried out by two steps. At the first step, we consider how much the b('st

sampled-data control performance can be improved by adjustment of a sampling environment.

Here, th(' best sampl('d-d<lLa control per/ormanc!' means the opt imal performance obtaiued b,v

choosing an appropriate discrete-time controller wh('n a controlled plant and a sampling en­

\'ironment is prO\·ided. :'-[oreo\,('r. a sampling ('m'ironment is the triplet of a sampling period.

a sampler, alICl a hold. With this terminology, it is seen that the b('st sampled-data control

p('rformanc(' can be improved by appropriat(' adjnstnwnt of a sampling environment. Th('lI.

docs the best sampled-data control performance reach the best continuons-time control perfor­

mance by this adjustment'? Against our intuition. it is shown that the fOrIner do,'s not always

reach the latter. This is because a sampled-data controller cannot instantaneously respond

to its input, while a continuous-time controller possessing a nonzero dir('ct feed through term

can respond. Therefore. when tl](' b('st continnous-tim(' control performance can b(' achie\'ed

only with a continuous-tinle cont roll('r having nonzero direct feedthrough term, there exists a

gap between the best sampled-data control performance and the bpst continuous-time control

performance. At the second step, we consider the theoretical bound that the best sampled-data

control performanc(' can reach by adjustment of a sampling environment and investigate what

enviroument W,' should choose to attain this theoretical bound. In particular, we suppose that

a sequeuce of sampling environm('nts is provided and obtain a n('cessary and sufficient coudition

in order that the best sampled-data control performauce correspouding to each environment

cOIl\'erges to the theoretical bonnd. [f we notice the plants that do not have a gap observed

at the first step. this condition is necessary and sufficient in order that Ihe best sampled-data

control performance con\'Nges to the b('st continuous-time control pprformance. :'\ot only a

gen('ral case but also sp('cial cases. where a provided sampling en\'ironnwnt has some special

structutf·. arc consid('lwl. In thps(' sp('cial cases. th,' n",'('SS'UI' and sufficient condition abo\'('

can 1)(' modifi('d so as to bp t('slpd ('asily.

1.2. Construction of This Thesis

This thesis is construct('d as follows.

Chapter 2

Th(' purpose of this chapIN is to introdnc(' notation and lerminolog,\' utilized throughout this

thesis and to pr('s('nt ns('ful facts. :\Ithongh t II(' contents of Spctions 2.1 2.:; arc ns",lthroughout

til(' subs('quent chapters. Section 2.6 is gi\'('n as a pr('paration for Spction l.cl particularly. "Iost

of til(' r('snlt.s presented in this chapt('r ar(' morp or I('ss known in th(' cont 1'01 community.

[[owe\·('I'. th,' cont('nt.s of Sections 2.4.3. 2.-1.-1. and 2.6 ar(' Il<'W.

Section 2.1 gi\'('s math('lnatical notation ns",1 in this th('sis.

[n S('ction 2.2, notions of cont inuons-tim(' and dis(T('t('-tiUl(, signals are pr(,s"nted aud t hpir

fn'qu('ncv-domain r('pr('s('ntations, i.(' .. the Laplac(' transform and th,' z-transforIn. r(,slwcti",·ly.

ar(' introduc('d.

A sampl('d-data control syst"m is construct('d by combination of four differ('1ll t.'·pes of op­

('rators: a continuons-tim(' op(,!'<It.or, a dis(Tet('-tinl(' ol)('rator. a sampler-typ(' ol)('rator. and

a hold-typ(, op('l'ator. Spction 2.3 explains th('s(' ol)('rators in tnrn. Subs('ction 2.3.1 discuss('s

continuons-time op(·rators. Aft('r basic notions such as their linearity, causality. time-inl'arianc('.

and bou nd",1 ness ar(' defin('d. th('ir transfer functions and stat('-spacp repr('sentations ar(' intro­

ducpd. "Ior('o\·er. important spac('s of transfer functions arc d('fined, that is. 'Hoo and R'Hoo .

Sub,,('ction 2.3.2 talks about discret('-tim(' operator, almost in the sam(' manner a" til(' previous

subs('ction. Their basic notions. transft'r functions, state-spac(' repr('selltations. and important

span's of their t!'<lnsfer functions arc pr('sent('d. A bripf subsection 2.3.3 ddirI<'s sampler-t.l'p(,

and hold-type operators.

Section 2.4 introduces the notion of lifting, which is a k('y idea for r('cent studi('s on sampl"d­

data control systems. This notion pIal'S a fundanl('ntal role in ChaptNs 3 and 4. fir"t.. lifting

of a continuous-tim(' signal is defined in Subsection 2.4.1. Using this conc('pt. lifting of a

continuons-time ol)('rator is consider('d in Snbsection 2.-1.2. Especially. a lift in!'\-based t.ransf('r

function. a lifting-based state-spac(' representation. and import.ant spaces of transfcr functions

arc in turn explained with respect to continuous-tim(' oll('rators. Subs('ction 2.cl.3 do('s a similar

thing regarding samp[N-type and hold-typ,' operators. Su bsection 2, 1.-1 int roduce, th,· notion of

matrix n'pr('sentations of operator". ince lifting-based tramifer functions arc operator-\·alued.

th('ir matrix r('presentations an' u,,('ful for their analysis.
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Although th~ purpos~ of this th~sis is to inn'stigate s<tmpkd-data control s,'stcms, th~y

ar~ frequ~ntll" discuss~d in comparisou with continuous-timc control s,'st~ms. lu Scctiou 2.:>,

a coutinuous-timc control S\'stcm is inl"cstigat('(l. AftN its standard configuration is gi\-cn.

parametrizatiou of all stabiliziug controllNs (Youla paramctrization) is prcscnted with the' hdp

of thc notions of unimodularity aud coprimcucss. \loreo\·N. W(' considcr the bcst performanccs

achicvabk by two limil~d c1ass~s of coutinuous-tim~coutrol SYSt~lllS, rcspcctivcly.

Th~ lasl scct ion 2.6 is giv~n as a prcparatiou for S~ctiou 4.4. It talks abont a modcl-matchiug

problcm including contiuuous-timc. sampler-typc, and hold-typc opcrators. I3y gcucralizing

tcchniqucs for a usual modcl-matchiug problcm. which inclu(ks coutinuous-time operators only.

wc can cousidN thc abO\'~ problem. In particular, inner-out~r factorizatiou. Hankclnorms. and

:-':chari"s theorcm arc gcncralized so as to b~ applicable on opNator-\'alucd functions.

Chapter 3

This chaptcr givcs a framework for sampled-data control systems ,,-ith a largc class of gencraliz('(1

samplers and holds. The contents hNc are important not only as a prcparatiou for thc analysis

in Chapter 4 but also in their own right. Sincc the framework givcu h~re is considered to

bc morc gcneral and dearcr than thc other existing framcworks, it would be useful for ot hN

sampled-data control problems tban the one considered in this thesis.

In thc introrluctory section 3.1. problems of thc existing fram~worksfor samplcd-data control

S\'stcms arc discussed.

Scction 3.2 introduccs regular samplers and holds and iJl\'cstigatcs thcir propcrtics. The,'

arc dcfined as special types of sampler-type and hold-typc opNators, respccti\-e1y, and arc morc

gcncral than tlw con\'cntional g~ncralized samplcrs and holds. Propcrties of rcgular sampkrs

and holds arc obtained cspecially on their transfer functions. state-spacc representations, and

matrix rcpresentations.

In Section 3.3, the notion of a sampled-data control system is introduc~d. Aftcr its standard

structurc is cxplained. the notions of a sampling environment. input-output stability of thc

system, and thc bcst achicvable pcrformancc of the systcm are prcscnted.

Section 3.4 is dcvoted to derivation of basic properties of sampled-data coutrol systems.

Three thcorclTls arc statcd with respect to thc systems. In particular, the last theorem es­

tablishes a ncw relationship bctwcen a sampled-data control system and a corrcsponding

continuous-time control syst~m. This thcorelTl plays an cssential role in the ncxt chaptcr.

Thc proof of this theor~m is givcn in Scction 3.5. Section 3.6 is a conclusion of this chapter.

Chapter 4

This is a main chaplcr of this th~sis and dcals with th~ propertics of thc bcst sampkd-data

control pcrformancc.

Section 4.1 rC\'icws thc cxperimcntal rcsult in Examplc 1.3 and rcslall' Ihc rcsult using thc

notions introduced in thc prcccding chaptcrs. Thcn. thc importancc of 1his study is discusscd.

Scction 4.2 givcs a tllCOl"ctical bound about how much th~ bcst salllpkd-data control pN­

formancc cau bc improv~d by adjustmcnt of au sampling l'u\·ironnH'u1. which is t hc t ripkt of

a sampling period, a sampler, and <t hold. It is rcmarkabl(' that this bouud is uot u~ccssarily

cqual to thc I)pst contiuuous-time control perfonll<tuce.

In Scction -1.3, wc obtain a ncccssar,' and sufficicnt condition in ordN that a pro\'idcd

scqucncc of sampling cnvironmcnts guarantccs that the bcst sampled-data control p~rfortllancc

convergcs to its theoretical bound for all plants. ~Iorcover. \\"e notic~ a class of plants "'ith

which thc best continuous-time control pcrfonnancc is cqual to thc thcorctical bouud of 1h~

bcst sampled-data control performance. Th~n, the condition abovc is shown to bc Iwc~SSatT

and sufficicut in order that th" bcst sampled-data control I'erfonnanc(' cOII\'ergcs to the I)('st

continuons-time control pcrformancc for all plants in this class.

In Scction -1.4, thc condition obtained in th~ previous s~ction is cquivalentl.\· modificd into

a couple of silllpler conditions. Onc condition means the lIankei nonn of SOIllC functiou ap­

proaches ~cro: the othcr condition IIICal1S that side-band-frcquency components of a sampler

and a hold d~(Tease in sOllie prccisely defincd sense. This silllplification is carricd out by apply­

ing techuiqucs for a model-matching problem. which are introduced in Scction 2.6. ~loreO\w.

it is shown that thcsc conditions can be furl hcr simplificd wl10n a providcd sUllIplcr and hold

havc spccial structurcs.

Finally. this cbapt~r is concludNI by Section 4.5.

Chapter 5

For both of Chaptcrs 3 ami -I, rclatNl problellls that rcquire furthcr rcscarch arc dcscribcd.

Significance of thc problems and possible approaches arc slated, too. This chapter concludcs

this thesis.
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Chapter 2

Preliminaries

This chapter prepares concepts which arc utilized thronghout this thesis and sunllnarizes nseful

results. Sections 2.1 2.5 work as a basis of the whole thesis. However. Section 2.6 is a prepara­

tion for Section 4.4 iu particular. Therefore, it is possible to skip it first and com(' back at ueed.

Although most of the resnlts arc known in the control community, ('olltents of Secliolls 2.4.3.

2.4.-1. and 2.6 are new contributions.

In Sectiou 2.1, mathematical notation is gi,·en. In Sectiou 2.2, continuous-time and discrete­

time signals are defined together ",ith their frequency-domain represelltations. Sectioll 2.3 intro­

duces four type's of operators that compose a sampled-data control s.,·stem altogether: namely.

a continuous-time operator, a diserete-time operator. a sampler-type operator. and a hold-type

operator. Here. ('speciall~' about a continuous-time operator <lnd <l discrete-time operator. their

tmnsfer functions. state-space representations. and associated Hardy spaces arc presented. Sec­

tion 2.4 introdu("('s a lifting technique as a preparation for Ch<lpters 3 <lnd 4. Lifting is a key

notioll in the I'('cent studies on sampled-dat'l control systems. In rel'lt ion to lifting, th<: no­

tions of lifting-b'lsed transfC'l' fUllctiollS, lifting-based state-space representations. alld matrix

representat iOlls of opemtors are given. Section 2.5 talks about continuous-time cOlltrol systems.

which are frequently compared wit h sampled-data cOlltrol systems in this thesis. The contents

of Section 2.6 arc utilized ill Section -1.-1. Here, a model-matching problem ou contilluous-time.

sampler-type. and hold-t~'pe operators is considered. Inner-outer factorizatioll. Hankel norms.

and :"ehari's theorem arc gClleralizcd so as to be applicable to this problem.

2.1. Mathematical Concepts

The followillg mathematical llotions arc used in this thesis.

The imagillary unit is (jpuoted b.\' i. The symbols IR alld iC stalld for the fields of realllumI)('rs

and complex nUlllhers. respectively. Let iCe denote iC U {oo}. Introduce topology illtO iCc by

Ie'tting fUlldalllental neighborhoods of 00 be the sets of the form {s E iCc : lsi> (J or -' = oo}

21



22 C'lmp!",. 2. P,."liminari"s 2.2. C'ontinuolls- TiIll" 'Iud Di".,.,,/,,-Tilll" Signal., 23

for p > O. Th" spt c+', is d"fin"d to Ill' {s E C. : Res ~ 0 or s = oo}. Le·t j[])p 1)(' th" s"t

{z E C.: Izl > p or z = oc} for p > O. Especially. j[]), is simph' writt"n as j[]).

For a positiYe integ('[' n. the symbol Cn denotes the Enclid spac" of 7I-dimensional column

Yectors compos"d of complex numb"rs. Th" Euclid norm is "XIH'"ssNI by 11·112' TIl(' z('['o yector

is d"uoted hy O. The /'('1'0 matrix and th" ZNO 0IH'rator is l'xpr"ss"d h.y O. Th" identil,' matrix

or th" idputily 0p('l'alor is "xpr"ss"d h,' f. \\'Ill'u th"r" is a !H'l·d to show its siz", I" is used to

m"an thl' n x n-ident it.I' matrix.

Suppose' A is a v"ctor. a matrix, a fUllction. or an op"rator. Th"u, th" compl"x conjugat" of

A is d"not"d by A. \Vhen A is a v"clor or a matrix, conjngatl' is tak"n compOll('utwis". \\·hen

A is a function of a real numbN I, its conjugat" A is defin"d b,' A(t) := A(t). \\'hen A is a

function of a complpx nnmb"r 8. A is ekfined by A(8) := A(05). \\'Il('n A is au opNator and till'

compl"x conjugat" is ekfinNI in its domain and range, A is ,kfin"d as an operator Aa := An. In

"ach cas".. ! is calkd real if A = A. This definition applies also wh"n A is an 0l)('rator-valued

function.

The astC'l'isk (') stands for a cOJ1lpl"x-conjugate-transpos" matrix or an adjoiut ol)('rator

dl'p"nding ou til(' cont"xL. The transpose of a matrix i\l is "xpress"d as 1\1'1'. The' maximum

and minimum singular values of a matrix .\1 are written as (J(.!!) and q(JIl). respectively. Hl'l"e.

th" maximum singular mlue of .\1. i.e'., a(.\I). is defined as the nonnegative squar" root of the

maximulTl "igenvalu" of the semi-positi"e d"finitp matrix M',\1: tl)(' minimum singular valne

of J\f, i." .. er("!), is th" nonnegative squar" root of the minimum eigenvalue of ill'JII. \\'hen a

matrix .\1 is provided. th" operation to lTIultiply i\J is d"fin"d. With a slight ahns" of uotatiou,

this opNator is deuot"d by the sam" symbol JIl. Then, th" induc"d norlll of a multiplication

operator .\1 is "qual to (J(,\!).
III gen"ral, th" norm of a normed spac" X is writt"n as 1I·llx. For an op"rator P mapping

a nOr/ned spac" .\ to a norm"d spac" Y. its induced norm is gi,·"n by

II p ·clly
IIPllx-I':= ~~f Wx .

IIxlixtO

If lIP II X-I' is finite. P is called bounded. \\'h"n tIl(' spac"s X and}' are ckar from th"

context, w" som"times us,' a simplified symbol II . Iliud to "x press an iudncecluorm.

:\ow. important spac"s ((2)n, (£2)n, and £210, r)" ar" introduc"d in turn. H('I'", n is a

positive inll'g"r.
Th" symbol ((2)n deuol"s tll(' Hilbert spac" of one-sided square-summable sequ"uces each

term of which bdongs to C". That is, a s"qu"uc" ad = {aedk]}~o belougs to (f2)n if ad[k] E C"

for k = 0,1, . and

L: lIad[k]ll~ < 00.
k~O

The squar" root of th" left-hand sid" is th" norm of ad and is \\TiU"n as lI a dlit"

TIl<' spac" (£2)n is Ih" Ilill)('rt spac" of L"I)('sgue-square-iutegrabk funct ions mapping [0. 00)

to cn. :\amely, a function a(l) belongs to (£2)" if a(l) E Cn for 0 ::::: I < 00 and

1"0 lIa(I)II~ dl < x.

The sqnare root of the left-hand side ahO\'e gin·s the norm of a and is e!Pnoted hy Iialic'.

Finally, £210. r)" is Ihe Hill",rt space of Lpbpsgu,,-squarp-intl'grabk fnnclions mapping [0. r)

Lo cn. Hen', r is soml' positiYe numl)('r. \\'P prps"nt ils innt'r prodncl I'xplicilly for th" lat"r

(j.g)C2[O,T):= f f(l),g(l)dl for f,g E £2[0,r)".

Th" norm iu £2[0. r)n is ddin"d as Ilfllc210,T) := ..j(i7)C2[O,T)'

linkss th('['p is a fear of confusion, we writ" th" abov" spac"s simply as e. £2 and £2[0. r).

r"specti""ll', dropping th" dim"nsion 11.

2.2. Continuous-Time and Discrete-Time Signals

This s"ction introduces mathematical notions about continuous-tim" and dis('l'"t"-tim,, signals.

The formulation presputed her" is standard in Lll(' literatur" on the 1{ -control. Fnrt Ill'r dl'tails

,u" found in 13.1. 26, 40. 99. 62] for "xamplt,.

In ordN to introduce the notion of a continuous-time signal. we n"Nl the continuous-time

truncation operator /J.r, wll('r" T > O. Let It be a positi"e int"g"r. For a function art)
thaL maps [0.00) Lo cn, a function /J.ra is ddined by (lJ.ra)(t) := a(l) for 0 ::::: I < T and

(n/,a)(t) := 0 for T ::::: I.

A function a(l) is call"d a continuous-time signal if it maps [0. oc) to en and its lruu­

cation flTa is L"b"sgu" square int"grable for "ach T> O. that is.

[' lIa(I)II~dt < oc

To writ" a continuous-lime signal, we usc I for its independl'nt variahle. which is "ailed th"

time, and expr"ss cil'ppnd"nce on I by parentheses. Here. we allowed a continuous-time signal

to take a eotnplex valu" for simplicity of mathematical treatment. However, in a practical

system, a continuons-t ime signal tak"s r"al valu"s onl,·.

Esppeially. a continuous-time signal that belongs to til(' space £2 is important in counectioll

with tIl(' Laplac" transform introduc"d n"xl.

For a coutinuous-tim" signal art). its Laplace transform u(s) is d"fin"d as

u(s) := fo'''' a(t)e-" dt.

For s whNe this integral conv"rges, u(s) b"com"s a functiou of s. This u(s) is sonlC'linlC's

caU,'d a frequency-domain r"pr"sentation of th" signal a(t). In colltrasl. the original art) is
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a time-domain rcpreselltatio\l. In the following. we usually use 8 for the independent variables

of fre'luencT-domain functions.

Here. the !lard\' space 'H2 becollles important. A Cn-I'alued function a(s) belong, to 'H 2 if

a(s) is analytic in Re s > 0 and fulfills

sup I Joo Ila(er + i"")II~dw < 00.
a>O 2rr 00

The norm of a in this space, which is writt,'n as Ilall 1i2, is defined as the square root of the

left-hand side of the above formula. Tbe following fact known as the Paley-Wiener theorem is

significant for our usc [;;0. p. 131] [32. Tbeorem 11.91 [82, Theorem 19.21·

Proposition 2.1. A fnnction belongs to 'H2 if and only jf Ihis function is Ihe Laplace trallsform

of <J function in £2 Moreol'('r, for a fUIlctjon a(t) that belongs to £2, there holds Iiallc2 = Ilall1i2.

Therefore, the Laplace transform is an isometric isomorphism that maps £2 onto 'H 2
•

Next, we introduce notions on discrete-time signals. The discussion goes almost in parallel

witb the case of continuous-time signals. Pirst, the discrete-time truncation operator 7fK,

where I{ is a positive integer. is required. POl' a oue-sid('d Cn-valued sequence ad = {adlk]}k'o·

we define 7fKad to be a s('quence (7fKad)[k] = ad[k] for 0 ::; k < 1\ and (7fKad)[k! = 0 for

r<::; k.

A one-sided Cn-valued sequence ad = {a,dk]}k:o is called a discrete-time signal if 7fK a d

is square-surnmable for each K = 1,2, ... , that is,

'tl
lIad[klll~ < 00.

k=O

In order to dif[erentiate a discretc-time signal from a continuous-time one. we put a suffix "d"

and usc square brackets to ''x press dependence on tbe independent nuiable k. The I'<uiable Ie

runs OI'er all nonnegati\'e integers 0, l. ... and it is related to the time t by t = kr. Here, r is a

fixed positivc lIumber called a sampling period. Therefore, a discretc-time signal is a signal

that has valnes only at diserete time points t = 0, r, 2r..

Similarly to the case of a continuous-tillle signal. a discrete-time signal belonging to the

space (2 is important when we consider its frequcncy-domain representation.

For a discrete-time signal ad = {ad[k]}k:o. its z-transform ii(z) is a formal series

iid(z) := f ad[kjz k.

k=O

In the case of diserete-tillle signals, (his iid(z) is considered to be a freqnency-domain repre­

sentation of a signal. For a clear contrast with till' continuous-time signal casco we usc .. "" in

place of .. -" to express the z-transform and use the variable z in place of s.

A dis(Te!<'-time cOllnterpart to 'H' is tlw lIardy spac<' fl'. A fllnction ad(z) oelongs to S)2

if ad(z) is analytic at any z E j[)) alld satisfies

Th,' square root of the left-hand side ahoye is adopted as (h,' norlll of S)2 The next fact is a

sourcc of significance of this spacc S)2 [32, p. 8] [ 2. Theon'lIl 17.12].

Proposition 2.2. A fllnction belongs tOS)2 ifalld 0111.1' ifit is tile z-tnlllsforlll ofsollleseqllellC('

ill £2 ..\[oreOlw. for an." seqllence in £2, say ad, there holds. Ila,t1lt2 = lIa,t11f:J2.

This proposition mealls that the z-trallsform is all isometric isomorphislll mappillg POlitO S)2

'I'Ve close this seetioll by givillg properties of 'H'. which illdllcP characteristics of kernel

fllllctions of samplers alld holds ill the next chaptN. Hen'. \\"(' cOllsickr t he scalar case.

Proposition 2.3. Lpt a(s) be allY scalar flllWtiOll tha.t bclollgs to 'H2 and let b alld r be any

posili\'(' lIlllllbprs. Th,,]]. the fol/OIl"illg prop"rties hold.

(a) In th" i1alf plan" Re s 2: D, til" fllnctioll 1";1/lle a(5) cOIll'"rg"5 to ,<'ro Ilniforl1lly as 1st

approadJ"5 illfillity.

(b) Let D /)(' any bOlllld"d c/os('(1 set conta.ined in tile opell i1alf plalle Re s > O. Tilell. tile

illfillit" s<'ries L~ 00 la(s + i27fm/rW cOrJ\'erges Illliforlllly for all sED.

Por the proof of Propert.l· (a). sec Corollary 2 of Theorelll 11.3 in [32]. Property (b) is prOl'en

ill .\ppeudix A.

[n Table 2.1. \I'e slIlllmarize the notions illtroduced ill tbis seetioll with cOlllparing the

cOlltinllous-time signal case and the discrete-time signal case.

Table 2.1. "otions abollt contiuuous-tillle and discrete-time signals: (a) Their

typical time-domain representations: (b) The Hilbert sp'tces in the time dOI\lai\l:

(c) Their typical freque\lcy-domain rcprese\ltatio\ls; (d) The !lardy spaces in thc

freqlle\lcy domain.

Sig\lals (a) (b) (c) (d)

conti\lnous-t illle signal a(t) £2 a(s) 'H 2

discrete-time signal ad[k] (2 iid(z) S)2

--- ---
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2.3. System Component Operators Suppose that!' maps £\ which is a spaC(' of slwcial continuous-timp signals, into £2. TIlC'n.

the £2.induced norm of P can he defined as
Having introduced notions on signals. we uext present notions on operators that stand for

S\'stem components. Since a sampled-data control s~'stem inclndes both continuous-time signals

and discrete-time signals, this system is constructed of four t\'pes of system components:

II!'II

IIPII'H~:= sup a{P(s)}.
Rc.~>O

Although all elell\ent of H oo is not alwavs expresspd as in (2.2). it is possible to associate an

operator on £2 \\'ith each clement of H OO as follows. Suppose t hat an Hoo-funclion P(09) is pro­

vided. If a(l) belongs to £2. its Laplace transform o.(s) belongs to H 2 by Proposition 2.1. which

implies thal lhp functioll product P(s)o.(8) is all e1emPllt of H2. Again, b~' Propositioll 2.1,

there is a ulliqll(' b E £2 such that b(s) = P(8)o.(8). Now, this correspondence betw('ell a and b

induces an operator on £2. Also in this case. th(' Hoo-[unclion P(s) is callee! the continuous­

time transfer function of this newl\' defilled operator. This tprtllinology is consistent wilh

H P has a finite £2-induced norm. it is call"d £2-bounded or simpl.\' bounded. The £2_

induced norm plays a ceut ral role in the Hoo-cont rol thpory Iwcaus<' II PII works as an inciPx of

the system performance when P rpprpscnts a COli trolled s~·s1<'ITI. Csually. a small vallie of II PII

IIIeans a good system performancp. Thereforp. we let the symbol II '11, which has no suhscript.

impl\' the £2-illducee! norm unless it is specifipd in other \\'<1y.

\'ext, we introduce the notion of a transfpr function. which is a frequellcy-domaill represen­

tation of a continuous-time opprator.

Let liS consider a cont inuous-time operator P whose oppration is d('snibpd as

is well-defined for sOllle 8 E iCc, this fllnction P(s) is called the continuous-time transfer

function of P. From 11 propprty of the Laplace transforll\, we call derive b = Po. when b = Pa.

\Ioreovpr, t he transfer functioll of all operator PQ, which 11I("UlS successive operatioll of Q and

then P. is equal to the fUllction product P(s)Q(s). When b(l) is the dprivative of a(t) \\'ith

respect to t. there holds b(s) = so.(s) - a(+O). Because of this. it is consie!ered that s itself

corresponds to the deri\'ation with respect to t.

i'\ow. the set of transfPl' functions is introduced. The Hard~' space HOC is the spacp of 71 x (­

matrix-vaIIlPe! [unctiolls that arp analytic and bounded ill Rps > O. "-e do not explicitl\' write

the dimensions /I alld ebecause they ,ue usually clear [rom the contpxt. The nOrtn in Ihp spac<'

Hoo is ddilH'd by

(2.2)

(2.1 )

P(8) := D + 10
00

P(I)p S'dt

(!'a)(t) = Da(l) + l' P(I. - r)a(,)dr. I 2: 0,

with sOlTle matrix D and a funct ion P(t). If

2.3.1. Continuous-Time Operators

(i) a continuous-time operator;

(ii) a discrete-time operator:

(iii) a sampler-type opemtor:

(iv) a hold-type operator.

(i) a cOlllponent whose input and output are continuous-time signals:

(ii) a component whose input and output are discrete-time signals;

(iii) a compouent whose input is a continuous-timp signal and whose output is a dis(Tet('-tirne

signal:

(iv) a component whose input is a discrete-time signal and whose output is a cOlJtinuous-time

signal.

An operator mapping a continuous-time sigual to a continuous-t ime signal is called a continuous­

time operator. A continuous-time operator!' is called linear if there hold P(na) = n(Pa)

and P(a+b) = Pa+ Pb for any cOlJtinuous-time signals a and b and any complex number Q. A

continuous-time operator P is said to be causal if flT(Pa) = !'(flTa) for any continuous-time

signal a and any T > 0; in a word. if the output of P in the interval [0, T) only depends on

its input in [0. T) for each T > n. Furthermore, for a continuous-time signal a. consider its

translation aT, which is defined as aT(t) := a(f - T) for I 2: T and aT(t) := 0 otherwise. With

this uotation, suppose that a contiuuous-timp operator!' satisfies bT = PaT whenever b = Pa

and T > O. Tlwn, this P is called continuous-time time-invariant. If the above equality

holds for T = (T. where f is am' positive integer and T is some fixed positive number. P is

ca!led r-periodic.

In this section, thpse types of olwrators arc introduced in turn and, at the same time,

spaces and norms related to them arc defiued. The fOrJnulation for continuous-time operators

and discre\('-till1e operators arc standard again in the H -control theory. For example. sec

[34.26.40.99.62].

In order to express thes(' components, we prepare the [ollowing four types of operators:
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thC' original dC'finition of this word bC'cause the opC'rator defined [rol1l Pis) is identical to tl",

Pin (2.1) ('specially whC'n Pis) can be rC'presC'ntC'd as in (2.2). An opC'rator dC'fim'd from an

H -function as abo\'C' is shown to hC' linC'ar. causal. time-ill\·arianl. aud bouuded. FurthermorC',

from thC' isolllorphism betweeu £2 and H 2 (Proposition 2.1). thC' nC'xt relationship is dC'rivC'd

[26. PI'. 22-231 [99, TheorC'!Il 4.4 and HC'mark 1.21·

Proposition 2.4. Consider a fllnction Pis) in HOC and write as P the corresponding opcrator

on £2 Then, I here holds

"C'xt, some subsC'ts of HOC arC' introduc<'d.

The first subset is llHoc . It i" definC'd as thC' subset of HOC that consists of rC'al rational

functions only. ThC' sC'l llHoo is c1osel,' rclatC'd to a state-space represC'ntation of a continuous­

time opC'rator.

In general, a continuous-time state-space representation of a contilJuolls-timC' operator

P: a I-> b is

Proposition 2.6 .. \ ('on/inuous-/ iIne opemtor P is hounded fwd has H continuous-linIe stale­

space repIT's('nlalion. if MId only if it has H conliIlllOus-lime lransfer fUIJ('tion Pis) hl'1on~ing

to llHOO
•

Proof. [if] By thC' pre\'ious proposition, a coutiuuous-tillle opC'l'ator P has a coutiuuous-tin\('

state-space reprC'sentation. \Ioreovel'. if F E llHoo . P has to 1)(' bounded, as W(' have seen

bC'fore Proposition 2.4.

[ouly if] B" til(' previous proposit ion again. P is a real ratioual fuuct ion. Suppose it has a

polC' iu llC's 2: 0 or at s = 00. TIH'n. thC'rC' exists a functiou ii E H2 such that Fii docs not

bC'iong to H 2 This contradicts \vith the assumptiou that Pis boundC'd. lIencC'. Pcannot han'

a polC' in [les 2: 0 or at s = 00. which means PE llH 0

i\ext, cousider a real function Q(s) that is analytic iu [lC's > 0 and is continuous in Ct•.

'vVe writl' till' set of such functions as All. By definition. llHoo <;; All <;; HOC. For an." function

Q(s) in All. its Hoc-norm is attained on thC' imagiuary axis, that is.

Proposition 2.5. A continuous-time opcrator P liaS a continuous-time statc-spacc rcpresen­

talion if and only if it has a transfer fllnctio]J Pis), which is real and rational.

\\'hC'l'e .-1. B. C. and D art' real matrices and x(t) is a continuous-timC' signal. SomC'till1t's th('

above representation is bridly written as (A, fl, C, D). A continuous-time state-space rC'presen­

tation is callC'd strictly proper if its "D"-llIatrix is equal to the zero matrix. For one operator

P, its statC'-spacC' representation is not uniquC'. A statC'-"pace representation of P is callC'd

minimal if the dimension of x(t) is the achiC'vable minimum. in gC'neral. if a continuous-timC'

operator P has a continuous-time state-space represC'ntation, it is liuear. causal. time-im'ariant

and real. \Ioreovpr. the trausfer fUlJetion of P is Pis) = D + C(sl -.4) 1B. :'\ow. there holds

the following propC'l'ty.

x(l) = .\x(l) + Ba(I).

bit) = Cx(t) + Da(t).

x(O) = 0, IIQII'H~ = supO'{Q(i",,)}.
wE

It is prO\'C'n as a consequC'nce of the maximum modulus theon'm.

This sC't All is a variant of the dis(' algebra. which is thC' sC't of functions anal.'·tic in Izi < t

and contiuuous in Izl ~ 1. [n thC' work of Oullemd [29,271. which derived a noncons('rvative

robust stability condition for a samplC'd-data control systelll, the sC't A,l played a kC'.'· rolC'. A

propert.v of All which is important in this thesis is as follows.

Proposition 2.7. A function Q('~) defined in C+o belon~s to All, if and only if there t'xists a

functioIwl sC'quence {QJj I' Q) E llHoc
. such that I~Q - Q)II'H~ ---+ 0 as j ---+ 00.

It is prO\'en by a slight modification of the proof of Proposition 20.'1.3 of [23]. Another proof is

presen ted below.

Proof. ThC' "if" part is C'asil,\' proveu by definition. ln order to pro\'C' thC' "only if" part, dC'fine

the fuuctions
Proof. ThC' "only if" part is easy from the abo\'e expression of a transfer fuuction. In orc!C'r

to sho\\' t!IC' "if" part. construct a control or an observer canouical form [57. Section 6.1] for a

prO\'idC'c! real rational function. 0 (/(11') := Q(S)IS=(I_W)/(I+W)' Q~(w) := Q'(pw),

If a transfer function Pis) has a strictly proper statC'-space representation. it is also called

strictly proper. It is seen that ]''>(s) is strictly proper if and only if Pis) is real and rational

and satisfies P(oo) = O. The next proposition shows a rC'iationship between a state-space

representation and llHoc . It is prO\'C'n by slight modification of thC' proof of the previous

proposition.

where 0 < P < 1. As fJ approachC's unit,', Q~(w) cOII\'ergt's to Q'(w) uniformly 011 111'1 = 1, \\'hich

implies that so doC's in Iu'l ~ 1 due to the maximum modulus thC'orC'ltl. Expanding Q~('UJ) to

the Taylor series around the origin, we can seC' that each Q;,(w) can 1)(' approximated b,' rC',,1

rational functions uniform/." in 111'1 ~ 1 and. hence. so can 1)(' Q'('UJ). Transforming them back

to the s-domain. \\'C' seC' the claim hold". 0



30 Chapter 2. rr('limiIlari('s 2.3. SyS/'(,IIl COIllPOIl('Ilf Operator, 31

2.3.2. Discrete-Time Operators

\\'r can discuss discrl'lr-titne operators analogously to continuous-time operators.

An 0p('l'alor that maps a discrl'le-time signal to a discrl'le-time signal is called a discrete­

time operator..\ discrete-time operator is expressed by a capital letter with a suffix "d.'·

like I'd, in this tl]psis. Linearity of a discrNe-time operator is defined similarl." to the case

of continuous-time operators. A discrete-time operator I'd is called causal if 7rJ«Pda d) =
!~I(7rJ<ad) for any discrete-time signal ad and any positive integer !{. With g being a positive

integer. let ad,J< be a discrete-I ime signal such that ad,J< [k] = ad[k - 1\] for k 2: g and

ad,J<[k] = 0 for 0 :s; k < g. Then. a discrete-I ime operator I'd is said to be discrete-time

time-invariant if bd = P'lad implies bd,J< = Pdad,J< for any !< = l. 2..

Recall that [2 is the space of certain special discrete-time signals. uppose that a discrete­

time operator I'd maps p2 into e2 In this case, we can define the £2-induced norm of r d

suppressed in this svmbol I)('caus,' the.\· arc often obvious frotn the contl'xl. The norm of .1')00

is defined as

IIP,dlf)~ := supa{P't(z)}.
%E

Especially \\'hen ?d(Z) is continuous in IIJi U {lzi = I}. the maximum modulus theorem imp!i,·s

IIP,dlfJ~ := sup a{Pd(z)}.
1%1 ,

Corresponding 10 Proposition 2.1. there holds the nt'xl proposition. For its proof. Proposi­

tion 2.2 is used [20. Lemma 4.3.3].

Proposition 2.8. SIIP/JOS(' that a dist'!"('tr-ti1lJr oprrator I'd has a di,crrtr-tiIlJ(' tnlIls[rr [lInc­

lion belongiIlg to .1')00. TII('rl. thl're holds

Define 9'\.1')00 as the subsrt of .1')00 that consists of rral rational functions only. It has a dose

rl'lationship to a state-spacr repn'st'ntation of a discrclr-timr operator.

In general. suppose that a diserNr-time operator I'd : ad t-> bd can be represented as

IIPda,dlt2

IW,dlt' ,1':= :':~1:2 Wlt2 .
lIa,ill",",0

If I'd has a finite induced norm, it is called £2-bounded or just bounded.

\ext. we consider a frequency-domain representation of a discrete-time operator. "'hile

the Laplace transform was used in the continuous-time case, the z-trausform is used this time.

Let I'd be a linear causal time-invariant discrete-time operator. Then, there exists a mal rix

sequence {Pd,d);';o such that there holds bd = Pdad if and only if
x,t!k + I] = .-Ixd[k] + fla,t!k],

bd[k] = CXd[k] + Da,t!k]

X,t!O] = O.

Then. we can sec that (2.3) is equivalent to bd = Pdad, where ad and bd are the z-tritllsforms of

ad and bd, respectively. \\'hen the series ?d(Z) COIl\'CI'ges for some z E iCc, this fuuction ?d(Z) is

called the discrete-time transfer function of Pd' Although the same symbol" .. is used to

express the z-transform. distinction should be dear from the context. Furthermore. note that

we usc difft'rent symbols .. -" and '.-" to distinguish between a discrete-time transfer functioll

and a continuous-time Iransfer function. Similarly to the continuous-time opt'rator case. a

trausfer function of all operator compositiou pdQd, where both I'd and Qd arc discrcte-time

operators, is equal to f'd(Z)Qd(Z).

Finally. a Hardy spacl' of transfer functions is introduced. Let 5j be the Hardy space of

n x (-matrix-valued functions that arc analytic and bounded in 1IJi. The dimensions 11 and earc

k

bd[k] = L Pd,k-tad[f] for k = 0. l..
l~O

Here. consider a formal series with an iudeterminate z

Pd(z) := L pdP-k.
k~O

(2.3)
with real matrices A, B. C. and D and a discrete-time signal xd[kl. Theu, this is called a

discrete-time state-space representation of Pd. The above state-space representation is

sometimes denoted by (.-I. B. C. D). If the dimension of Xd is the achie"able minimum. the

representation is called minimal. If the "O"-matri" is equal to zero. the representation is

called strictly proper. It is easy to sec Pd(z) = D + C(z1 -.-I) 'D. :--loreO\'('[', there holds

the next property. Its proof is similar to the continuous-time casc.

Proposition 2.9 . .-I discrete-timc operator I'd has a discrete-time state-space rrpreseutatiou

i[ and only i[ it has '1 discrete-time traus[er [Iluctiou Pd(z), \\'hich is real and rational.

A discrcte-tillte trallsfer fUllction P't(z) is called strictly proper. if it has a strictl\' proper state­

space rcpresentatioll. ;\0\\' the l'<'lationsbip bt,tween 9'\.1')00 and a state-space represt'ntation is

presented.

Proposition 2.10 . .-I discrete-time operator I'd is hOlluded aud has a discrete-time state-span'

represeut"tiou. i[ 'Ind oull' i[ it has" rliscretl'-time trans[rl' [uuction Pd(z) belougiug to 9'\.1')00.



An opi'ralor thaI maps a continuous-timi' signal to a discrete-lin\(' signal is calkd a sampler­

type operator. \\'],,'n a sanlplpd-t.ypi' oppmlor S maps £2 into p2, W(' can think of its indnepd

Table 2.2. The four typi'S of operators and rdatNI symbols: (a) Thi'ir induced

norms: (b) Their transfi'r functions: (c) Thi' Hardy spaces that t1]('ir transfl'r

functions belong to: (d) The ri'al rational snbsets of the Hardy spaci's.
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Figure 2.1. Lifting of a continuous-timi' signal a(l).

a(l) a~IOI(l)F~ a(211'1 r311~

lllil~ 11 ,~
a 7 27 37 47 tal 3

\Ve need sOllle pri'paration first. Let 7 be a positive numbi'r and Il'l II be a positiye inti'ger.

Recall that £2[0,7) is the spacp of all functions that map [0.7) to en and arc Li'bi'sgup squari'

iutegrabli'. Hi're. consider a functioual spqui'ncp a = {a[k]}j;;o such that each ark) is a function

belonging to £2[0.7) and tlwre holds

2.4.1. Lifting of Continuous-Time Signals

2.4. Lifting of Signals alld Sys{i'IIJ COIJJpol]i'nt Opi'rators

discrete-timi' controller is a dis(Tl'ti'-timi' 0l)('rator. a sampler is a sampli'r-type opi'rator, aud a

hold is a hold-Iypi' 0l)('rator. l3i'causi' of this hybrid nature of a s'"npINI-data coutrol systi'm.

it has I)('en diflicult to analyze and synthesize this SVStl'llI considning it.s intersampll' be!J<wior.

A lifting technique was introduced b,' Yamamoto [9.1, 95] and was d"\'e!opi'd by l3amil'!1

and Pearson [9] as a remedy for this sitnation. Its basic idea is to chop a continuons-timi'

sigual at each sampling time and ri'gard it as a discri'te-timi' signal whose value is a function

on [0,7). Sei' Figuri' 2.1. which is tlw same as Figuri' 1.6. In Ibis wa\·. Wi' can treat all the

four typi'S of 0pi'rators abm'i' as discrete-time opi'rators by ri'garding their inputs and outputs

as discri'ti'-tinw signals. Then. analysis and synthesis of a sampled-dat.a control systpm can be

done i'asily wil h techniques for discrete-timi' systpms.

In this spction. lifting of a continuous-timi' signal is discussNI first and. then. lifting of thp

four typps of ol)('rators is considered in succession. These notions arp i'ssentia] for discussions

in Chapters 3 and ~. On lifting of continuous-I ime siguals and cont.inuous-timi' operators.

basically follow [91. \Iori' information can be obtaini'd from recent books [20, 271.

(d)

CiJ"pti'r 2. Pri'li'llillarii's

(c)(b)

P(s)

(a)

IIPII

IIHllf'-C'

Opprator types

eontinuons-time opNator
(c.-t. sig. f-> c.-t. sig.)

samp\('r-type operator
(c.-t. sig. f-> d.-t.. sig.)

hold-t,'pe operator
(d.-!. sig. f-> c.-t. sig.)

discretp-typi' operator
(d.-t. sig. f-> d.-t. sig.)

If this valup is finilp, H is said to 1)(' bounded.

At tbis moment, we cannot consider a t ransfi'r function for a salnplcr-typi' opprator or a

hold-typi' opprator. Tbis is onp of the tasks of thp next Si'ction.

Here, Wi' snmmarize the notation introdncpd in this section.

If IISlIc'_I' is finiti'. \\'e say S is bounded.
Similarly. an opi'rator that maps a diseri'te-timi' signal to a continuous-time signal is calii'd

a hold-type operator. \\'I]('n a hold-typi' opi'rator H maps p2 into £2, the induced norm of

H is (\('finpd as

nonn

2.3,3, Sampler-Type and Hold-Type Operators
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2.4. Lifting of Signals and System Component Operators

In Section 2.3, we have scen four typps of opi'rators. A sampled-data conlrol system is composed

of thesi' four types of opi'rators; namel.'·, a controlled plant is a continuous-time ol)('rator, a

f Ila[klll~'IO,T) < 00.
k~O

TIl(' spt of all such Si'qUi'nci'S is written as (~'IO,T)' II is actually a lIilbnt space. Thi'square

root of thi' I('ft-haud side of thi' aboye iuequalit\· is adopted as Ihi' norm of a in this spacp and

is writtl'n as lIalli' .
:>Jow, lifting ot:t~~~ntinuous-tinli'signal is dpfini'd toget]wr wilh thi' lifting operator \1'T'
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Definition 2.15. tor aT-periodic contiuuous-tinlC operator P. its lifting-based transfer

function is the formal series

\"exl. lifting of a continuous-tilll" op('rator is introduced ..\gain. T is a positin' nUJrIlwr.

Definition 2.14. tor a continnous-tilTl" operator P. its lifting is an opPrator composition

IV,PII', '. 0

k

b[k] = L Pk_ra[f]
f °

nsing an appropriat(' sequence of op('rators {Pd%" 0' \\·bere each Pk is an opPrator from £2[0. T)"O
to £210. T)"b.

o

2.4.2. Lifting of Continuous-Time Operators

F(z) := L PkZ-k,
k=O

where {Pdk' ° is an operator seqm'llce defined as abO\·e.

Suppose that P is a continuous-tin\(' operator and satisfies b = Pa for coutinuous-I inle signals

a and b. Lei no alld nb be till' dimensions of a and b. n·spectil'('ly. Then. W(' have b =

(W,PW, ')a writing a:= W,a and b:= W,b. Th('refor(', II",PIV, I maps an £210, T)"o-\'alued

sequellce to an £2[0, T)"'-I'alued s('quence and it resembles a discrele-tim(' operalor in the sense

that it maps a 5equ('nce to a s('qu('nce. A difference froln a normal discrete-time openltor

is that bolh input signal and output signal tak(' their nllt!('s in functional spa('es instead of

finit('-dilllensional v('ctor spaces.

1\'ow, suppose that P is linear, causal. and T-periodic. Then, b = (II', PI I', ')a can be

expressed as

\"ote that this is completely parallPi to the defiuition of transf"r functions of normal discrete­

time operators. .Just lik<· the case of discrete-time operators. b(z) = ?(z)a(z) whenl'\'er b = Pa.

From now on. w" call a bounded liuear operator from £2[0. T)" to £2[0. T)' a large operator

in shorl. where nand ( arc positive integer:;. This name comes from the fact that such an

operator is represented as a matrix with infinite numlwrs of rows and coluulIls when ('('['tain

bases arc taken in £2[0, T)" and £2[0, T)', respectivel~·. Csing t.his terminologv. a lifting-based

transfer fuuc!iou F(z) is a large-operator-valued function. The maguitude of a large operator

is measured by the induced norm from £2[0, T)" to £210, T( This nonu II . IIc'[o.,)-C'[O,,)

is simply written as II . IlL henceforth. ~loreo\'Cr, the Hardy space l'J1. is defined to be til('

space of large-operator-nllued fUllctions that arc analytic and uniformly bounded in 1Di. Here.

a large-operator-\'alul'd function F(z) is said to be analytic at z = 20 if a scalar function

(g, P(z)f)c'[O,,) is allal~,tic at z = Zo for any f E £2[0, T)" and any g E £2[0, T( The norlll of

.fJL" is defi ned bylIallc' = lIallf~',o'T) = Ilo'llS)~',o'T)'

where a := IIf,a and ii(z) is the z-transform of a.

Definition 2.11. Lei II', be an op('rator that maps a continuous-tinw signal a(/) 10 a func­

tional 8('quell("(' a = {a[k]}k'o such thai each a[k] is a fUllction defilled on °~ I < T by

a[k](t) := a(kT + t). This operator II", is called the lifting operator \\'ith respect to the

sampling period T. H('re. the sequence a = lI',a is lifting of a signal a. 0

The idea of lifting is illustrat('d in Figure 2.1. \"ote that II', is inv<'l'tible. On the oth('\" hanel.

it is easy to see that each a[k] belollgs to £2[0, T) for any ('ontinuous-time signal a. Especially,

when alld ollly when a belongs to £2, its lifting a belongs to rl,[o,,)' It is 1I0t difficult to sec

that this correspolldence is isollletric, that is. lIallc' = lIallf~',o'T)·

Once a continuous-time signal is lifted. it can be regarded as a dis(Tete-time signal. There­

fore. it is possible to cOllsider its z-transform just like a normal discrete-time signal.

Definition 2.12. Consiekr a continnous-time signal a and its lifting a. Then. the z-transform

of a is defi ned to be

It is reasonable to usc the symbol '.'" because this o,(z) is defined ill the same way as til<' z­

transform of normal discrete-time signals. HO\l'e\·er. note that. for each complex number 2 with

wbich this series cOIl\·Prges. this ii(z) gives a function in £2[0. T) inste'ad of a finite-dimensional

I'ector.

Just lik,' tlw case of norlllal discrete-time signals, we COli sider a Hardy space of z-transforms.

Let us sayan £2 [0. T)-valued function to be analytic at Zo E iCc if a scalar function (f, o,(z ))c'[O,,)
is analytic at z = Zo for any f E £2[0, T). (Analyticity and rPiated properties of operator-mlued

functions arc discuss('d in [./9. pp. 92 97] 18;), pp. 183 189].) Here, suppose that o,(z) is an

£210, T)-valued function that is analytic in IDi and satisfies

sup -.!: f II ii(Tei",)IIho,,)dw < 00.
r>! 27l'

The set of all such functions is denoted by .fJl,[o,,)' The norm in the space .fJl,[o,,) is defined to

be the square root of the left-haud side of the above inequality and is expressed as lIo'llS)~',o.T)·

Then, in fact. the z-transform is isometric isomorphism from (l,[o,,) to .fJl,[o,,)· This result is

found in [8;), pp. 1 4 18;)] [9. Theorem 2 (i)1 [27, Proposition 2.9j.

ln sunllnary, \\'e ha\'C the n"xL

Proposition 2.13. Til" lifting operator IV, is an isometric isomorphism that maps £2 onto

fl,[o,,)' Tile z-transfol'lIl is an isometric isomorphism mapping el,[o,,) onto l'Jl,[o,,)' Namely,

[or any a E £2, there holds

o

o'(z) = L a[k]z-k.
k-O
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Especially when P E Jjr' is continnous in ID>u {izi = 1}, the maximnm lJlodulus theorem implies

11P1[f)~ := sup I[P(z)llr.·
I. zl I

Proposition 2.16. Suppose that a continuous-time operator P has its lifting-based trallsfN

fUllctioll ill fJr'. Thcn, P has a bounded .c2 -illduced norlll and satisfies 111'1[ = IIPl[r,;:",

:'I!oreover. lI'e can consider an analogue of 1<.7-£00 and 9lfJoo, Let 9l5Jr' be the subspace of

fJr' that consists of real rational functions only. This space is related to a sort of stale-space

representations. Suppose that we can express an operation of P : a f-+ b as

Balk] := [ eA(T ,) l3a[k](I)dl.

(Cx(kT))(t) := Ce'''x(kT).

(iJa[k])(I) := Da[kJ(t) + l' CeA(t ,) l3a[k!(T)dr

if :=(''''.

Proposition 2.18. Suppose' that a cOlllinuous-tillle operator P : a f-+ b has a COllt illuous-time

statc-Spi-J('(' repres('ntatio1J

x(l) = .\x(l) l3a(I). x(O) = 0.

b(l) = Cx(t) + Da(l).

ill the not'ltion of (2.4). ,\!oreover, P(z) has a pole at z = zo only if zo is expressed as zo = e"oT

with So heillg a pole of 13(8).

w!J('re .-\, B, C, alld 0 are fillite-di/lj('nsional real matrice's. Theil. P ha., a lift ing-based slate'­

space representation as weI/ and it is gil'en hy

(2.4a)

(2.4h)

xel[k + l] = AXeI[k] + Da[k], XeI[O] = 0,

blk] = CXeI[k] + Dalk]

Just as 11'(' did in Section 2.3. we are int('l"<'sted in operators IdlOse lifting-based transfer

functions belong to fJr'. In fan. by noting the isometry between .c2
, f~'IO,,), and Jji'lo,,), which

was claimed in Proposition 2.13, we have the' following result [85, p. l89] [9, Theorem 2 (ii)]

[27. Proposition 2.10 (ii)1 [97].

using an ll z -dimensional-\Tctor-valued sequence xeI[k] and writing a := II",a and b := \\',b.
lIere..4 is a real matrix and B, C. and D are real operators mapping .c2[0. 7)"0 to iC"'. iC

n
,

to .c2[0, 7)"'. and .c2[0,7)"0 to .c2[0, 7)"', respectively. TheIl. this is called a lifting-based

state-space representation of P. Sometimes this representation is denoted by (A, B, C, D).
It is deril'ed that P(z) = D + C(zl - At' B in this case. Now. the next proposition easily

follo\\'s.

Proposition 2.17. A continuous-tiIJlr operator P is boundrd and has a lifting-based state­

space represrlltatioll. only if P has a !ifting-basrd transfrr function in 9lfJr'.

Proof. If P has a lifting-hased state-space representation, it is clear from the ahol'e expression

of P(z) that p(z) is real and rational. Suppos<' P(z) has a pole in ID> or on Izi = 1. Then,

there exists a E fJ~'IO,') such that P(z)a(z) docs not belong to fJ~'IO,,). This means P is not

bounded becausc of Proposition 2.13. Hence, P(z) docs not ha\'e a poll' in ID> or on Izl = l.

from this, P E 9l5Jr' folloll's. D

In contrast to the cases of 1<.7-£ and 9lfJoo, a continuous-time operator hal'ing a transfer

function in 9lfJr' docs not necessarily Im\'e a lifting-based state-space represenlation. This is

because a control or an observer canonical form is not well-defined for 9l5J;:"-functions. for

more details. see [66].

\-Vhen P has a cOlltilluous-time state-space representation. it also has a lifting-based state­

space representation. lI('1'e. lI'e present the explicit form of its lifting-based stal('-"pace repre­

sentation for the later use [9].

2.4.3. Lifting of Other Types of OperatOl's

Lifting of sampler-type and hold-type operators can be considered in a similar Iyay.

Definition 2.19. A lifting of a sampler-type operator S is 511",-'. A lifting of a hold-type

operator II is W,H. D

Suppose' bel = Sa, where a is a continuous-time signal and bel is a discrete-time signal. "'riting

a := 1\ ',a, we' hal'e bel = (SII', I )a. In the sense that both a and bel are sequences. 5l1"T '

resembles a discrete-time operator. Similar!I·. \",1'1 can be regarded as a discrele-t ime operator

becanse its input and output arc sequences.

Suppose that a sampler-type operator S has the following representation. that is. there

exists an operator seqnence {5dk'=0 such that there holds

k

bel[k] = I: Sk_fa[f]
1=0

whenever bel = (511', ')a. Here, each Sk is an operator from .c2[0.7)"0 to iCn
, with the dimen­

sions of a and bel being 11 0 and "b. respectively.

Definition 2.20. If a sampler-type operator 5 has the representation abOl'e, its lifting-based

transfer function is the' formal series

S(z) := I: 5k z k

k=O

D
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o

(2.3a)

(2.3b)

xdlk + I) = rlxd[k] + Da[k]. x,dO] = 0,

b,dk] = CXd[k] + Da[kl·

Proposition 2.23. A saIl/pier-type operator S is bourJ(/ed and has a lift ing-bas"d state-space

representillion, if 'Jnd only if it has a lifting-based transfer ftlnction bdonging to 915Jf.
Lik(,lYise. a hold-type operator /-I is botlnded and has a Iifting-basc'd state-spac" represen­

tMion. if and only if it has a /ifting-bas('d transfer ftlnction belonging 10 91SJ~.

Now the n"xt proposition is derived from tI](' isometry bellvepn £2, fi2[O.T)' and 5Ji'[O.T).
which is established in Proposition 2.13.

Proposition 2.22. Suppos,' th'lt "salllp/cr-tYJl" openltor S I"., a /ifting-bas"d tnlllsfer func­

tion that belongs to 5Jf· Then. 5 hilS a finite induced nonn illlCl sati.,fi"s IISIIC2 ./2 = $'In,.

I-/ere, [I . [lc2 .f' stilnds for til" ilJduc"d nOrlU fr01/1 £2 to 12.

Similarly, suppose thaI;} hold-type operator II has <l liftil/g-based tral/sfer fnncl iOI/ bdong­

ing to 5JT'. Then,}f has a finite il/duced I/orlll al/d ther" holds [[111[12 .c' = 1I/IIIf]'!". H"re,

[I· [112_c' denotes the indnced norlll from (2 to £'.

wher(' ii and Care rpal matricps and nand D ar(' real flat operators. This is a lifting-based

state-space representation of a sampler-typp operat.or S. On the othN hand, suppose thai

an operation of a hold-typp operator H : ad >-+ b is repn'sented as (2.3) with A and jj being

real matricps and C and D bping rcal tall ol)('rators this time. Then, this is a lifting-based

state-space representation of a hold-typ(, operator If. Both r('presentations arc sOllletinws

written as (.4. n. C. D).

"'ow. we have the n('xt proposition. i\ote that the ··if" part holds. too. this tillle unlik(' th"

case of 915Jr'.

Corresponding to 915Jr', the spac"s 91S)~ and 915JT' arp definpd. Tbe space 91f)~ is defined

as the subspace of 5J" that consists of real rational fnnctions only. The space 915Jf is defined

to be the subspace of 5JT' that is composed of rpal rational fnndions only. As is ('xpectNI, the

spaces 915JV' and 915JT' havp relationships to stalp-spacl' representations.

First, let ns define lifting-based slatl'-sp,tC" represl'ntat.ions of samplcr-Iyp" and hold-typ('

operators. Snppos(' that a samplC'r-typ(' opprator 5 : a>-+ bd has a r('presentation:

[n th" pr"vious subsection. w" introduced t.h" term '·Iarge operator," which means an oper­

ator from £2[0,7)" to £2[0,7/, wh"re II and t arc positive integers. Correspondingly. let ns call

an operator froll1 £2[0,7)" to Ce as a flat operator and an opl'rator from C" t.o £2[0,7/ as a

tall operator. These names come from matrix representations of thes,' operators. If lIe take

bases in tl](' spaces £2[0,7)" and £2[0,7/, respeetin'ly. \I·e can represent a flat operator and

a tall operator as infinite-dimensional matrices. A flat operator has a matrix representation

with an infinit" number of columns and a finite number of rows. that is. a ··fiat'· represeutation.

On the other hand, a matrix n'pres"ntation of a tall operator has a fiuite number of columns

and an infinite nnmber of rows, which means its shape is "talL" Gsing th"se terlns, S(z) is a

fiat-operator-,·alued function while fl(z) is a tall-operat.or-valued function.

Let us write the induced norm from £2[0,7)" to Ce as II . IIF' which is a norm of a flat

operator. Likewis". the induc('d norm from Cn to £2[0,7/ is \I·ritten as 11·111'. which ll"Orks as

a norm of a tall operator.

Furthermore. define the Hardy space 5Jf to be the set of flat-operator-,·alued functions

analytic and uniformly bounded in D. H"re, a f1at-operator-mlued function S(z) is called

analytic at. z = Zo if a scalar funct ion v' S(z)f is analytic at z = Zo for any f E £2[0,7)" and

any v E ct In a similar way. a Hardy space 5JT' is defim·d. Namely. it is defined t.o be the sct.

of tall-operator-valued fnnctions analytic and uniformly bonndcd in D. A tall-operator-valued

function l/(z) is called analytic at z = zo0 if a scalar function (g. H(z)u)C2[O,T) is analytic for

any u E C" and any g E £2[0.7( For the spaces 5JF' and 5JT', their norms are defined as

b[k] = t Ih f a,t1t].
eo

Here, each Hk i, an op"rator from C'" to £2[0,7)'" with th" ,ignal dimensions of ad and b

being lI n and nb. respectivel,·.

Definition 2.21. If a hold-typ" olwmtor H has a r",)resent.ation of th" abov" form, its lifting­

based transfer function is th" formal seri"s

H(z) := f Hkz- k.
k 0

appose that a hold-tl·pe operator If ha, an operator sequence (Hdk' 0 such that b =
(1I"TH)ad implies

IISlIn, = ~~g IIS(z)[[F'

[IIIlln';? = ~~g IIH(z)IIT.

:\ote that all of these definitions an' analogous to those of large-operator-valu"d function,

discussed in the previons subsection.

ProoF. Thp '·onIY if"' part can b(' showtl similarl,· to Proposition 2.17. Let us consid('r th" ··if··

part. Jtlst as in [57, Section 6.1]. we can constrtlcl the obs('rver canonical form in the sampler­

type opprator case and the control canollical foml in th,' huld-type opcrator casp. Thtls. S

or H has a lifting-bas"d ,tat('-spacp repr('s('ntation. 'don'ov('r, by Proposition 2.22, 5 or }f i,

bounc!<'d. 0
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So far. lI'e ha\'e considered liftillg of continuous-time operators, sampler-type operators. and

hold-t,'pe OIH'rators. There is no need to introduce lifting of disCTetc'-t itlle operators because

their inputs and oUlputs arc alr('ad,' discrete-lim(' sip;nals. lIowe\·('r. it is also possible to

consider that liftinp; of a discret('-time operator is this discrete-time op('rator itself. In this

sense, by "a lifting-based transfer function of a discrete-time operator" we mean its usual

discret('-tim(' transfer function.

1\'011'. all the four typ('s of ol)('rators can be consicil'red as discret('-t.iml' ones by a lifting

technique and can be t.r('ated in thl' same fram('work. Especially. we do not havc' t.o be so

nen'ous about distinguishing these four types of lifting-based transfer functions. This is a

consequence of the lH'Xt proposition.

Proposition 2.24. Suppose' that an operator P is either continuous-timC', sampler-type. hold­

typC', or discrete-Ume anel has a lifting-based transfer function. Suppose similarly n'garding an

opC'rator Q and, moreOI'cr, assume that t hC' operator composition PQ is \Fell-defined. Then, a

lifting-based transfer function of PQ exists and is equal to P(z)Q(z).

In oreil'r to prove this, just formally follow the proof of (PQt(z) = P(z)Q(z) for discwle-time

operators P and Q.

In spite of the above result, we still continue to use symbols like DE", Dp. DT' II·IIL· II·IIF,
and II . liT making clear distinction between them. This is only to hC'lp readers' understandinp;

wh('n such detailed distinction is required.

The liftinp;-based notions introduced in this section arc summariz('(! in the table.

Table 2.3. Lifting-ba'ied notions concNning the four types of operators: (a)

Typical representations of their lifting-based transfer functions: (b) \'alues of

the lifting-based transfer functions: (c) The Hardy spaces that the lifting-based

transfer functions belong to: (d) The real rational subspaces of the Hardy spaces.

2.4.4. Matrix Representations of Operators

In this subsection. with the help of two familil's of operators. we consid('\" matrix repn'senlations

of large operators. flat 0lwrators. and tall operators. It lI'ill be seen in the succeeding chapters

that this notion is useful to investigate these operators.

Definition 2.25. Ll't II be son\(' posit i\'e integer. For each cOlnplex IIl1mber sEe and for

each integer m., we dl'fille a tall operator E:" : v E en f-> I E .c'[0, T)" by

for 0:::; I < T.

On the other hand, a flat operator E:,,: 9 E .c'[O,Tt f-> u E e" is defined as

1
T 1u := - e(s+;,sm/T)'g(l) dl.
oIT

o

The aCTC'nt marks of E:" and E:" s,'lllbolize their operations. :\amclv. Es maps a finit,,­

dimcnsiona! space to an infinite-dimensional on". Its associated accent n:ark ;:pr('ssc's "from a

small thing to a larg(' thing." Conversel,·. the accent mark of E:" represents that t his operator

makc's a large thing small. (The idea of this notation is adopted from [661.)
These operator" hal'<' the following properties.

Proposition 2.26. For any 8 E e and any integers 111 and f. II'C' h",'c E:"E; = b",.ff. II'here

b",.f is l\l'Oneckcr's eldia. On the other hanel, a series of large opemiors I:~= 00 E;'"E:', strongly

cODl'crgeo to the idC'ntity. that is, for any IE .c'[0. r)",

Al~,,-II f E:"E:"I - III = 0.
m -At £2[0;r)

l3y thc third assertion of Proposition 2.26. we can write I = I:~ ooE:"E;:.t for an,'

I E .c'[0, T)". This is equi\'alent to expanding a function I E .c'[0, Tt wit h respect to a

for any rcal nUllJber w anel any illtcge['7/1" (E~~)* = E:~ anel IIE:~lh' = IIE;~I1F = l.

Proof. TIl(' first assertion is easih' sho\\"ll. The second assertion is proven b,' the fact that

for any fUllction in .c2 IO, T) its Fourier series cOII\'crges to the original function in the norm

of C2 [0. T) [82, pp. 91 921 The ('quality (E:~)* = E:~ is easy to prO\·e. Finall\". IIE:~IIT = 1
because .

IIE;~vll'~2[O,T) = (E:~v. E;~V)C2[O,T) = (v. E;~ E:~vlc2[o,T) = IIvll~

Operator types

continuous-time operator
(c.-t. sip;. f-> c.-t. sig.)

sampler-type operator
(c.-t. sig. f-> d.-t. sig.)

hold-type operator
(d.-t. sig. f-> C.-t. sig.)

(a)

P(z)

S(z)

ll(z)

(b) (c)

large operator c;ooL

(£2[0.T)"->£2[0.T)', II· lid ~J

flat operator
W[O. T)" -> C', .IIF) Dp

tall operator
(iC" -> £'[0. r)', ·11·.-)

(d)

for any v E en. Besid,'s, IIE;~lh' = IIE;~IIF follo\\'s froul a property of adjoillT operators. o
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functional basis {(l/JTk(H;,..n/T)'}", which is not orthogonal in general. :\oting that

each E:"f is a finite-dimensional \"C(·tor. let the expansion f = L~~-oo E:',(E:,,!) correspond

to an illfinite-dimensional vector

Proposition 2.27. For;1 large operator L. a [Jal operator F, and a Iilll operiltor T. consider

their l1Iatrix representations (2.6) lI"iUI s = iw, \I·here,", is a rI'al IIIJ11Ibel". TIII'IL alJl' fillite­

diI1Jcnsional SllbIllrltriccs of th('s(' matrix rf'pn'sC'llfatiolls hav(' m<lXill III III SiIlgllhlf valllf's that

arl' smaller than or equal to IILliL, IIFIIF, alld IITIIT, rI'specti\·I'h-. Especially for L. tllt'I"t' hold

IIE;~LIIF::; IILliL ,wd IILE~"'lh'::; IILliL
FlJrUlerIllOre. there hold

IILlli~::; L IIE;~LIli.,::; f L (j(E~~LE~"')',
m-; 001 00

Csing this correspondence, we call represent a large olwrator L, a flat operator F, and a tall

operator T as infinite-dimensional matrices:
II L lli,::; f IILE~wlI~::; f f (j(E;~LEt)2

l~ -00 111:--00/- oc

IIFIIi.·::; f u(FE~"')2,
l= -oc

E"-,LEs,
EoLE"-,
Ei LEs ,

ES ,LED E,,-,LEi
EO LED EoLEi
EiLEo EiLEI

(2.6a)
Since values of lifting-based transfcr functions aI"<' eithcr large operators. flat operators.

or tall operators, matrix repres('ntations of lifting-based transfer funct ions can be considered.

lIer('. we ha\'c the ncxt proposition. which is important in Chapters 3 and 4. For its proof, see

.\ppendix B.

(2.6b) Proposition 2.28. Ll't P be a continuous-lim(, 0p('/";I/or havinll a conlinlJolJS-tillle slale-space

repr('selJ tal i01l:

respecti\·ely. The above matrices are referred to as matrix representations of the operators

L. F. and T. respectively. Because of the shapes of these matrices. these operators arc called

"large." "flat:' and ..tall:' respecti\·e1y.

Let us consider the case that s = iw' for a real,",. :\ote the basis {(l/JT)ei(w+h"'/T)'}~. '00

is orthollormal in this case. This implies that correspondence between f = L~ -00 E";';: E;~f
and u . {-( i2r.1n)}IIP(e'WT)IIL = Slip (j P iw + -- .

m.::;:.O,±I,... T

E:',f(,"')E; = p(s + i2:m) b",,t.

Especially when s is eqllal 10 i", \I'ith a real IIfIIIlber w, there 1J0ids

with a alld b beillg an illPlJ1 and an outpul of P, respecti\·el.\·. Moreon-r, let s be a cOl1lplex

lIulIIber slIch thai none of s+i2r.m/T, m = 0, ±l. .... is iI pole of P(.~). wlJich is Ihe C"Ontinllolls­

lillie transf('r fllnclion of P. Thcn, for the lifting-bilsed transf"r [undioll o[ P, i.c., fez), alld

iJn)' in/I'gers m and e, there holds

x(O) = 0,x(l) = Ax(t) + Ba(t)

bet) = Cx(t) + Da(t).(2.6c)
E,,-,T

T ~ EDT ,
EIT

In a matrix form. the consequcnce of this proposition is express"d as

o

is isometric. when' the nonn of tl](' above \wtor is defined as (L~~-oo IIE;~fIID'/'. :\ow. the

next proposition is deri\'ed from this isometry. o
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desired to ])(' controlled. \\.{' assuml' that G 11<"' a continuous-tinl<' statl'-spac{' ["('I)I'('Sentatioll:

HNl'. it is assuml'd that (A. B2 ) is stabiJizabl{' and (C2 ,.4.) is dl'tectabl(·. which means that

thNe exist real matrices F and L such thai A + B2 F and. \ + LC2 POSS('SS t!\{'ir eige[]\'alnes

only ill Ill' 8 < O. The signal w(/,) is an l'xogenolls inpnl consisting of cOlllnJand signals.

disturbanc{'s, and sensor noises. for example: u(l) is a control input; z(l) is an ontput dl'sirl'd

to be attenuated by controllik{' tracking errors: y(l) is a 11I1'asllred oulpllt: x(l) is all intl'rnnl

state of G. TIl<' dimensions of w(t), u(I). z(t). y(l). and x(l) arc dl'notl'd I,,' 11"., It •. liz. lI y •

and nn respectively. As usual. G is divid{'d into four operators G", G", G lI , and Gn so that

"ot{' that only its diagonal blocks ar{' nonz{'ro. This strnclur{' originat{'s from continuous-tinl{'

tim{'-innlrianc{' of P. If P is T-p<'riodic hnt not n{'c{'ssaril" tim{'-innuiant, th{' off-diagonal

hlocks arl' nonz{'ro in g{'nl'ntl.

As is s('('n so far. thp form of s + i27r1ll/T oft{'n appl';us in ["(,Iation wil h a nmtrix r{'p­

rl's{'ntation. Esp{'cially wh{'n s is r{'prl's{'nt{'d as iC<! and C<! is int{'rpr{'t{'d as a frl'qn{'ncy. the

fr{'qnencil's") +27rm/T. 111 = ± 1. ±2.... , arl' associatl'd with it. They ar{' called th{' side-band

frequencies of w.

~ratrix r{'pr{'senlations of lifting-has{'d transfer functions W<'r{' hl';1\"ily used hy Araki and

his cO-II'ork{'rs nndl'r the name' of "FIl-operators" [4,3,42.44,5]. (Also sec [96].) Our notion

is more gl'nl'ral than 1]1<'irs in the point that WI' allow s to bl' a gen<'ral complex nnmber whil{'

th{'y r{'stricl{'d s to bl' a pnre imaginary numb<'r. This diff{'r{'nc{' becomes {'ssential in the proof

of Th{'orl'm 3.3-1. which is important to deri\'{' th{' results of Chapter 4.

x(t) = Ax(t) + B,w(l) + B,u(I), x(O) = 0,

z(l) = C,x(t) + D"w(l) + D"u(t).

y(t) = C2x(l) + D21 W(I) + Dnu(I).

(2.7a)

(2.7b)

(2.7c)

2.5. Continuous-Time Control Systems

Throughont this thesis. continuous-tim{' control systl'ms play an important role. In Chapt{'r 3.

a fran1<'work for sampled-data control syst{'ms are construcl{'d so that it corresponds to a

framework for continuous-tim{' control systems. In Chaptn ,I. th{' bl'st achil'\'able !)('rformance

of samp!<'d-data control systNns are investigated in comparison with that of continuous-tim{'

control systl'ms. In order to prepar{' for til<' later us{', we introducl' sl'\'<'ral nolions about

continuous-time control systl'mS and deri\'e th{'ir re]{'vant prop<'rti{'s.

Figur{' 2.2 shows a continuous-time control system consi(kred in this thesis. It consists

of two continuous-time 0p<'rntors G and 1\. which l'xchange continuous-time signals shown

by arrows. Any signal can be multi-dimensional. This configllration is quite standard in the

'}-{oo-control Jit<'rature [34, 26. -1O, 99, 62].

Figure 2.2. A continuous-time control system.

A continuous-time opNator G is called a generalized plant and stands for an obj{'cl

z=G"w+G"u.

y = G21 W + Gnu.

"ot{' that no assnlllption is made on strict prop{,l"Il<'SS of G.

A continnolls-t ime operator J( is called a continuous-time controller and its purpos{' is

to (,0I1trol G so that the systelll exhibits a desirabi<' behavior. A COllt inuons-tilllP contro!kr [(

is chosen from the Sl't K. Ikre. K consists of operators lhat have continnolls-tillle stat<'-space

reprl's('ntal ions and ha\'{' ll y -diml'lIsional inpnts and 1l,,-dim{'lIsional outpnls.

\\'ith n'sp{'ct to a cOlltinuous-tim{' control system ill Figure 2.2, input-outpnt stability is

th{' 1II0St important property that is desired to be possessed. In order 10 define this notion. 11'1'

need the fictitious inputs a(/) and b(I,) togethl'r with the continuons-tillle transfl'r fun('tions of

Gn and 1<' i.e., On(s) and K(s).

Definition 2.29. A coutinuous-til1l{' control systl'lll in Figurl' 2.2 is caliI'd input-output sta­

ble or just stable if a fnncl ion det{l-On(s)K(s)} takl's a nOli zero value al least at one 8 E iCe.

and all the nine operators from w(l). btl). a(l) to z(t), y(I), u'(t) have bounded L:'-indncl'd

norms. 0

III addil ion to input-output stability. a continuous-time system is d{'sil"{'(1 to ha\,{' a good

PNfortllanc{'. III I hI' fn11ll1'work for the HOC-control theory. a S~'st('Ill pNfol"lllalH'(' is measured

by the L:'-induced norlll of 1!1<' operator from w(t) to z(t) and its sl1lall ",tllle is consid<'rl'd 10

show a good pNforman('{'. Now. i<'t ns define the lower fractiollal trallsform I)\"
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Then, t he best achievable performance of continuous-time control systems (or the best

continuous-time control performance in short) with respect to a prm'ided G is expressed

as

(2.8)

Here, the symbol 11· II stands for the .c2-induced norm though we adopt the convention that

the value of this nonu is equal to infinity if th(' evaluated system is not input-output stable.

Example 2,30. Recall a coutinuous-time coutrol system presented in Figure 1.7 (b). lIere. P

is a controlled plant and II" is a weight to show how au amount of plant nncertainty depends

on frequency. In Example 1.3, it is d('sired to reduce th(' .c2-induced norm of the operator

from 'U,(I) to z(l) for th(' sake of robust stability. "ow, let us represent this system in a

standard configuration of a continnous-time control system. Assume that both P and PII' arc

continuous-time operators having continuous-time state-space' representatiolJs and put

G:= [p~1' ~].
Then. the operator F(G, J() is equal to the operator from wet) to =(t). This means that

inf KEK IIF(G. 1\')11 implies the b('st achievabl(' perforrnanc(' in the sense of robust stability. 0

Remark 2,31. We ha\'e assumed stabilizabilit,' of (A. E2 ) and det('ctability of (C2 , A) in tIl('

state-spac(' representation of G, i.e" (2.7), As is se('IJ lwlow, this assnmption is mild ('lJough

and also simplifies th(' tr('atm('nt of our s.\'stem.

\\"ithout loss of g('n('rality, w(' can assume stabilizability of (A. [E, 8 2]) and d('t('ctability of

([Cr Cil', A) in til(' state-spac(' repr('sentation of G. i.('., (2.7). Inde('d, it suflic('s to consider

a minimal state-spac(' r('presentation of G. Then. in this situation, it can be pro\'('n that

(A, 8 2 ) is stabilizabl(' and (C2 , A) is detectable if and only if there exists J( E K with which

th(' system consisting of G and J( is input-output stable. Hence, a'i far as we arc cOlJc('rt!('d

with stabilization of G, the above assumlJtion is mild enough. Sec Lemma A.4.2 of [401 for the

proof of this r('sult. (TIl('re, only the cas(' of D22 = 0 is considered. However, its g('neralization

is straightforward.)

"ext. assnme stabilizability of (A. 8 2 ) and d('t('ctability of (e2 , A). Th('n. it can be shown

that a continuous-tim(' control s,'stem is input-output stable if and only if the four op('rators

from b(I), a(l) to yet). u'(t) are bounded. This means that we do not hav(' to car(' about the

whole G bul only Gn to inspect the stability of the syst('m. The proof of this claim is fonnd

in Lemma A.4.3 of [40], 0

As is stakd in this remark. under our standing assumption. there always exists a continuous­

time controller J( E IC t hat stabilizes thl' systenl. From this fact the next proposition folloll's.

Proposition 2,32, For any g(,lleraJized plall/ G, /he !Jest ("(Jilt iIlI/OIIS-/illJ(' ("OIl/roJ [)('rformanc'('

is finite. that is,

Csing a strong tool called the l"oula parallletrization [98, 21]. \Y(' can parallletrize all

continuous-t ime controll<-rs I{ that stabilize the systell\ and analyze th" infilllulll of (2.8). \\'l'

introduce this paralllet rization following [24], [92. Chapters 4 and 5], and [34, Chapter II.
First, we need the notions of unimodularit\· and coprimenl'ss. l1"call Ihat RH is Ihe s"t

of all real rational functions analytic and bounded in l1e s > D.

Definition 2.33, A function A(s) is called unimodular in RHoo if both .--\(8) and .'1(8) I

belong to RHoo
, 0

Definition 2.34. Let N(8) and ,If(8) be ele!llents of RHoo
, If there exist two functions X,

Y E RHoo such that XU - YN is unimodular in RHoo , the pair (N . .If) is called right

coprime ill RHoo
.

On the othl'r hand, snppose that two fnnctions N(8) and D(.~) belong to RH"", If there

exist two fnnctions X. }' E RHoo such that ,VX -N}' is unimodular in RHoo , til(' pair (,\1. ,\')

is called left coprime in RHoo
, 0

Definition 2.35, Suppose that a real rational fnnction ..1(8) is provid('d and it is expressed

as ,-I = NM ' = DIN, ",hel"(' (.v. ;II) is right coprillle in RHoo ami (IV. N) is Idt coprime

ill RHoo
. Thl'll. the' pair (N, M) is called a right-coprime factorization of A(,,) in RHoo

.

while the pair (iV, ,\I) is called a left-coprime factorization of A(,,) in RHoo
, 0

Espl'cially. the following type of coprime factorizations is important.

Definition 2.36, SlIppose that, for a prm'ided real rational function A(8), ther(' exist ('ight

functions N. JIl, X, )'. N, Xl. X, FE RHoo satisfying

A(8) = N(~)M(s)-l = JIJ(~) 'N(8),

[
X -F] [,If }.]
-N ,V X X = I.

Thl'n, this octN of functions is calkd a doubly-coprime factorization of A(5) in RHoo , 0

In the following, we do not explicitlY describe the considel"('d functioll class RH whell Wl' talk

about unimodularit.\' and copri[l\elless. ~otl' that, with respl'ct to a doubly-coprinle factor­

ization of A(8), (N, /II) is a right-colJrime factorization of ,1(,,) and (D. N) is its left-coprinw

factorization, [n particular. thl' ne'xt proposition shows that. for an,' real rational function

rI(s). there exists its douhly-coprime factorization.
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Proposition 2.37. Suppos~ that .\(09) is a r~al rational function alld I~t (.YoM) alld (.li.N)

be any right-coprim~ factorization and any kft-coprill/(' factorizatioll of A(s), r~spectil'ely.

Suppose that X. Y E RHoo satis(,' XJII - Y.V = I. Th~lI, there exists .\.}' E RHoo such U",t

[ X -YJ [AI }'J- - =1.
-N .\1 ,V X

Its proof is fouud in Th~orem ~.1.60 of [92). Referellc~ [6 ] gal'~ formulas to comput~ a doubly­

coprime factorization of a provided ~\(s) based on the state-space representations of ..1(09),

Let us go back to the issue of stabilizing controllers. First, W(' have the following result.

Proposition 2.38. Consid~r;t continuous-tim~cOlltrol syst~J1J made of C and I{ E K. Let

(,V, .\f) and (,li,::1) be any right-coprime factorizatioll and ;In,'' left-coprime factorization of

Gn(s), respecti,·cly. Let (}',X) and (X. Y) be anJ' right-coprime factoriZittion and ;lily !eft­

copriJ1J~ factorizatioll of K(s), rcspecti"c1.,·. The thc following are equivalellt:

(a) Th~ consid('/'ed syste/ll is input-output stablc;

(b) Tile functioll XJII - Y.Y is ullimodular;

(c) The fU/1('lion Xl X - ;V}' is unimodular.

Sec Th~or~m 2 in [24) or Th~orem 5.1.2:> in [92] for its proof.

[f we nse the uotion of douhly-coprime factorization, we can obtain a panunetrization of

all stabilizing controllers, which is called the Youla parametrization. For its proof. sec [24.

Theorem 3], [92, Theorem :>.2.1]' or [34, Theorem 4.4.11. for exam pi".

Proposition 2.39. Suppose' that a continuous-time control systcm is pro"idcd and a doubly­

coprime factorization ofG22 (s) is gi,'en in the form of De[illitioll 2.36. Theil, a cOlltillllous-tillle

controllcr I,' E K /llakcs this continuous-tilllc control syslcm input-output stable if and only i[

f( is expresscd as

K(s) = {Xes) - Q(s)N(sW'{Y(s) - Q(s),li(s)}

with somc Q E RHoo such that dct{X(s) - Q(s)N(s)} is 1I0t cOllstantly equal to zero.

From this parametrization, the next result follows. Its proof is found in [34. Theorem 4.5.11·

Proposition 2.40, Define

TI(s) := G,,(s) + G I2 ,\I(.S)Y(S)G21 (S).

T2(s) := Gds)J\{(s), T3(s):= .\1(S)G21 (S).

Theil, all of T , . T2 , alld T., bclong 10 RHoo and t!Jere holds

wherc F(C,I\)(s) is the continuous-time transfer function of F(C, f().

By this proposition. anothpr expression for (2. ) is obtained. that is.

1~'~lIIF(C. 1")11 = QEiML= III', - T,QT:.II1i=·

d«(; QN)"O

;\ole lhal the new expression is much easier to be tn'atec! I)('('<uls(' the free parameter Q is

included in an affilll' manner the["('.

\'ext. we cOllsider the bpst achievable !)('rforJnanc{' of continuous-time control systpms r{'­

stricting f( to be chosen from cerlain subscls of 1\.. Iu Chapter t. it is re,'eal('d lhat these

restricted performances are closely related to the bpst achievabl(' performance of samplpd-data

control systems.

In the following discussion. the next resulls arp useful. Sp(' [92. Lemma :>.2.2:>. Proposi­

tion 5.2.271 for their proofs.

Lemma 2.41. L(,t 8" S" .... Se be distinci points in iC+< such that lIolle is a pole ofG22 (s).

Moreover, let "I, "2,'" . lie be positive iniegers. Theil, there is a doublv-coprillle factorizatioll

ofGn(s) such ihat }'(s) and yes) arc equal to zero at each 09), j = 1, ... ,r. "'iih IIJlIltiplicit."

71) or 1110re, respecti,'e!y.

Proposition 2.42. L'nder the sallie assu1JJptiolls as the pre"iolls lenlllla. let N, !lI . .Y. } '. ;Y,
M. X, Y 1)(' i}](' (Iouhly-coprillie factorizatioll gil'CII by the prc"ious le1JJllla. Theil, a co//troller

I( st,tbiliz('., C alld satisfies K(s)) = 0 at blst "'ith llIultip/icity,,) for (';tch j = 1. .... [ if ;}lId

only if I,' is expressed as

K(s) = {Xes) - Q(s)N(sW1{y(s) - Q(s).li(s)}

with Q E RHoo such that Q(Sj) = 0 at least with IIlIrltip/iCit,Y'nj for each j.

By thp definition of a doubly-coprime factorization. wp ha"e XAi - 1'.\' = I. Since \'(s)) = O.

the matrix Xes)) is iIl\'CI'tible. Hence. c!et(X - Q'V) ~ a is ensured by Q(8)) = 0, and thus it

is not assumed explicilly this time.

We are particularly inlerest.ed ill the following subsets of K:

Ko := (J(o E I\. : Ko(oo) = O},

Koo := {J(oo E I\. : 7<00(00) = 0 with multiplicity t\\'O or more},

Let us consider 1\.0 first. Cnder Ollr standing assumptioll. that is, stabilizability of (A, il2 )

alld detectability of (C2 . A), actuall,' we can find in Ko a controllrr lhal input-oulput stabilizes

the system, (Sec the proof of Lemma .\.4.2 in [40]. Therp. a stahilizing controller that belongs

lo 1\.0 is act ually constructed.) This gives the following rpsult.
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Proposition 2.43. For any genC'rali2(,([ plant G, th('r(' holds

\"ow. not(' "'0 <;; K. This impli('s

Chapt('r 2. Preliminari('s 2.6. A Model ,\latching ProblC'm on PC'riodie Operators

to 915)~. iVIoreO\'C'r, aSSllllle that. wilh respc'd to a matrix n'presentation of If(e'WT )

t;~IIf(e'WT)

tb~lI(e'~T)

t:wlI(e;"")
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(2.9)

and tl](' ('qnalit,' docs not hold in g('!wral. However, for a spe,ial dass of G, the ,qualitv holds.

Proposition 2.44. If ill iC'a5t on(' of C" (8), Cds), and C21 (5) is stri,tly prop('r, IV(' hav('
all the columns arc iudependent for any wE [-7':/r.1[/r). ellder thesc' couditions e"'llnate the

valne of

inf IIF(G. 1\'0)11 = inf IIF(G,I\)II·
KoEK'.o KEK. (2.10)

The proof is found in Appendix C.

Next, w, consider K oo . As we sec below, the best achievable- performance docs not change

even if the controller rlass is narrowed from K o to K oo . Sec Appendix C again for its proof.

Proposition 2.45. For any gen('ralhed plant G, there holds

inf IIF(G. ]\00)11 = inf IIF(G.I\o)ll·
KooEK.oo KoElCo

2.6. A Model-Matching Problem on Periodic Operators

In this section. we considl'r a modl'!-matching problem on periodic operators in ord('r to prepare

for the ill\'estigation in Section ~.4, where a property of thl' best sample-d-data control perfor­

mance is discussed in connection with snch a problem. The contcnts of this section is a nl'\\'

contribution. A modd-matching problem on time-invariant continuous-time opl'rators or time­

in\'ariant discrete-time operators has been examined wdl. Especially. it is known that such a

problem can be solved with the hdp of inner-outer factorization and Nl'hari's theorem [25. Sec­

tions 2.3 and 2.4] [34, Chapters 7 and 8]. In this section, these techniques arc translated so as to

be applicable to our modd-matching problem that includes periodic operators, particularlv, a

sampler-type operator and a hold-type operator. These two problems arc considerably different

at the point that the conventional problem can be consid('[ed using properties of matrix-valued

functions, while our problem requires those of operator-\'alued functions. Therl'fore. an at­

tention should be paid on the infinite-dimensional nature of operator-valued functions at the

translation.

Our model-matching problem considered h('[e is as follows.

Problem. Lc·t P be a bounded continuous-time operator having a continuous-time state-span'

representation and let H be a hold-type operator whose lifting-based transfer function belongs

where 5 varies over all samp!n-lype operators whose lifting-based transfer functions 5(z) have

the form of z 15'(z) with 5' E 91Sjr'. D

Particularl.'· in this section. \\'e obtain an upper bound aud a lo\\'~r bound for th(' infilllulIl

(2.10).

Proposition 2.17 ensures that om P has its lifting-based transfer function P(z) in 91Jjr':

l3y assumption. our If has its lifting-based tra!lsfer [unction H(z) in 91Jj't \\'ith the help of

Propositiou 2. L6. \\'e cau rcll'rite lhe aboI'e iufilllum in the frequency domain:

(2.11)

[u the following. \\'e mainly usc this expression.

2.6.1. Inner-Outer Factorization

As our first step, wc' need the not ion of inner-onter factori2ation for tall-operator-\'alued fnnc­

tions H(z).
In ge!leral, suppose that .-\(z) is a function belonging to either 915)r', 91fJf,', 91Jj~, or 915)00.

!lere, with respect to this .-l(z), its conjugate '-\-(z) is defined as

.r(z);=A(+r·
A funclion '-\-(z) is lVell-defincd for allY z where .\(I/z) is well-defined. \"ote that whene\·er.-l

is real and rational. so is .-\-(z). \"ote abo that ,4-(z) = ..-\(z)* on Izl = l. \\'ith this notation.

it function .·\(z) is called inner if .-I(z) is an elelIlent of 91Jj~ or 91Jjoo and satisfies

..-\-(z)..-\(z) = 1
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for any z whrr(' both .I(z) and A-(z) arc 1I·('Il-ddin('(1. ~loreO\'('l' . .-1.(z) is call('d outer if lI(z)

ib a square-Iuatrix-valu('d function 1)('longing to 91Jj'" and d('t .I(z) =I 0 for any z in til(' set

[J)U {Izl = I}. 13,1' ddinition, for an oul('r funclion .-I(z). both lI(z) and .-I(z) I belong to 91Jj"'.

:-';ow. for a tall-op('rat.or-nllu('d function ir(z), which is t.he liftiug-bas('d t.ransf,'r fuuctiou of

tl)(' pro\'id('d II in our probl(,lIl. !('t us consid('r its factorization into a pair of an iuner fuuct.ion

and an outrr function. This pair is called an inner-outer factorization of H(z). First,

consid('r the conjugate of H(z). Sinc(' Ih(' function H(z) is real. rat.ional. and tall-operat.or­

valu('d. its conjugat" /I-(z) is real, rational. and flat-op('rator-valuNI. From this it follows that

a function product. jr-(z)lJ(z) is a real rational matrix-valued functiou. Since

E;W/I(e;"")

= [.. {E;wllJ(e;WT)}* {Ebw/l(e;WT)}* {E:wiJ(e;WT)}* ...] Ebwjl(';WT) ,
E;WII(';WT)

the assulupt.iou Ihat. the lllatrix in (2.9) has iudepeudcnt columns implics t.hat. t.h(' function

J-I-(z)li(z) has a full rank at auy point.s on Izi = 1. Th('rcfore, using a bpectral factorization

t('chniqu(' for usual discr('t('-time transf('r functions [511 [3.\, S('ction 7.31. we can obt.ain an outer

function IIOU'(z) such that

for any z where li(z) and il-(z) arc well-defined. lu fact. this lJOU1(z) can b(' eomput.ed

via matrix manipulations bas('d on the discr('t.e-time state-space represeutat.ion of i'!-(z)11(z).

Furthermore. defin(' a tall-oprrator-valued function

kn(z) := H(z)lJ"'''(Z)-l

Then, t.here holds

][('1'('. th(' function (I"'(z) b('long" t.o 91Jj~ sinc(' i'!(z) is an d('ln('nt of 91Jj~ and /I"'''(z) I

belongs t.o 91jjoc. H('nce. 11"'(z) i" inner. "ow. it can 1)(' s('ell that th(' pair (li;", i'!"''') is an

inner-outrr factorization of 11(z).
LJsing an inner-out.er factorizat.ion of i'! (z), we can decompos(' the value of our concrrn

(2.11) into two parts. For a larg('-op"l'ittor-nllued function ..-I(z), define

Similarl,' for a flat-operat.or-Yalued function. a tall-op('rator-\'alued function. and a matrix­

valn('d function. th,' uorms 1I'II£f' 11'11£,;", and II'II£~ ar(' (I<'fin('(] by r('placing 1I·lk in till'

abo\'e definition by 11·111', 11·lh, and u{.}. r('specti\·ely.

Then, we have t.he n('xl proposit.ion.

Proposition 2.46. \ I'ill/ till' notiltion int rodl/c(·d so fa 1', th(·/'(· holds

max{_ iuf IIzli;"-p-5'II'~, 1I(i-W'JJ;n-)F'II~~}
S'E~f)r £F -I

::; '~'~~~)F' liP - z I H5'11~r

::; S'~~~)F' Ilzk"- P - 5'1I~i'" + 11(1 - H;" H;"-)1'II~, .

This proposit.ion means that th(' valuc of (2.11) converg('s to ~('ro if and only if t.h(' following

t.wo terms convng(' to zero, t.hat is, inf'i'E91SiF' Ilzkn- p - 5'1I~f." ami IIU - I-I;n IP"-)j>II~f'

Although the latter t.('rm do('s not. include 5', t.be forlller t.('rm still inl'iudes it.. In fact, b,'

:-';('hari's t.heorem, w(' can show t.hat t.hc \'alue of this former lerm is cqual to the Ilank('1 nOrt11

of zH;"- P. which do('s not includ(' 5'. This is what we considn in thc next subsection.

Proof. Since om 1'(z). II(z), and 5'(z) ar(' rat.ional functions, tll<',' ar(' not. only analytic in [J)

bUI also continuous in [J) U {Izl = I}. The maximulll Illodulus th('orem implics

in other words. thc Jjr-norm (th(' suprclllum in [J)) is replac('d by the oCr-norm (the suprelllulll

on Izi = 1). "exl, considcr all operat.or-\·alued function

Then. C-(z)U(z) = I holds in tIl<' domain \\'hen' [;(z) and U-(z) arc wdl-dcfined. "ote

t.hat both of the two are w('ll-defined on Izi = 1. FurthNmor('. since the rang(' of U(z) i" the

dir('ct sum of the finite-dilllcnsional v('ctor space and £'[0,1'). its nonn and inner product arc

naturally int.roduccd.

It. is claitn('d that liP - z 'i'!5'11£, = snPlzl=l IIU(P - z l,if 5')II;nd with II . Ihnd b('ing an

appropriat(' indnc('d nOrtn. To show this. not.e U-(z) = U(z)' on Izl = 1. It can be (I<'ri\'('(1 on

Izi = 1 that. for am' f E £'[0.1').

IIU(z){P(z) - z I J1(z)S'(z)}fll'

= UP(z) - z lli(z)5'(z)}f. C-(z)U(z){P(z) - z 111(z)5'(z)}f)c2[o,T)

= II{P(z) - z IlJ(z)S'(z)}fll~2iO,T)'
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Proposition 2.47. SlIppose that $(z) is '1 rml rational f!at·opcralor-I'elltlpd [lIl1ction, which

is allalytic in PI < Izl < P" whl'f(' 0 < PI < 1 < fI,. Then. lI'l' havc

In the case that <1>(z) is matrix-I·alued. its Ilanke! opprator and Ilankel norm arp cll'finpd

in t he same way. Only the diffPrencp is that each L k is a matrix and pach I k bclongs to a

fillite-dimellsional vpctor space,

A maill n'sult in this subsectioll is 1I0W prpspllted.

where each Ik bclongs to £:'[O,1')n O and c'ach Vk is an ell'nll'ut of en". TIl<' aboVl' operator

composed of L I, L' . ... i, called thp Hankel operator with the ,ymbol <}) and is denoted bl'

r</>. Define the norm in its domain a, (Lk' I Il/klli'lo,T»)1 , and definp the norm in it, range a,

(Lk'i II v kllD I
/'. TIlC'n. thp induced norm of the Ilankcl operator r</> is well-defined. This norm

is called til<' Hankel norm of <P and is cll'L1oted hy 11$1111' By dpfinit ion. thpn' holds

(2.12)11<PIITI:'OL:IILkllf.·
k I

max {lIzH"'-P - [[Ou' 5'111,:0' II(J - IIIUIlin-)Plli"}

:'0 liP - z I fr5'1I~"

:'0 Ilzfrin-p - fro'''5'11~~ + IIU - ffinkn-)PII~L'

Takp the infimum moving 5' ovpr 91jj~ in pach pxpressiou. Then, since lfOU'(z) has its ill\'erse

in 91f)"". a function fr°Uls' moves all over 91jj~ as 5' varips OVPr 91jjF' \Tow. Il'p hal'p shown

the claim. 0

I ' ., II [z JJin- p - lf
onl

5'] II
liP - z Ifl5'IISle = I~:~ IIU(P - z ffS )I!;nd = 1~:11~ (J _ JJinffin-)p iUd'

Ilerl', Wp have used fI = ifinfloul and frin- iiin = f. \Tot ing that zflin- P - IJm" 5' is a f1at­

opPrator-valued function and (J - flin frin-)p is a large-opprator-valued function. we conclucll'

that

whNe thl' norm in thp Il'ftmost l'xprl'ssion is thl' OIl!' appropriatl'l," dl'finl'd in thl' range of

U(z). Thi, l'quillity nlC'ans that IIP(z) - z Ill(z)S'(z)lh. = IIU(z){P(z) - Z IfI(z)S'(z)}lllnd

on 1.::1 = 1. Our claim is prO\'l'n.

:\ow. thNp holds

2.6.2. Hankel Norms and Nehari's Theorem

Let $(z) be a real ratioual operator-valued function. It is assumed that $(z) is analytic in

PI < Izl < p,. wherp 0 < PI < l < P" Especially in this section. we are interested in the

casp that $(z) is a f1at-opl'rator-valupd function or a matrix-valued function. In the follO\l'ing.

wl' define the Hankel norm of such a function $(z) and sec that this norm is equal to the

infimum of 11$ - Ell bl' :\ehari's theorem, where 17 I'aries over 91f)r' or 91f)"" depending on the

function-type of <P(z) and 11'11 stands for 1I'II.c~ or 11·11.c~·

Let us consider thc' case that <P(z) is a f1at-operator-vaJued function first. That is, for each

z. a function value <P(z) is a flat operator mapping £:'[0,1')"° to en, for some n" and no. The

notion of Laurent expansion is succl'ssfully extended to the casp of operator-valued functions

[49. p. 97). :\oting that $(z) is analytic in PI < Izi < P" write its Laurent expansion thpre as

$(z) = kJ;oc Lkz\ L
k

:= 2~i i. =1 <P(z) Zk1+1 dz.

Here, each Lk is a flat o!Jl'rator from £:'[0, 1')nO to en,. t.:sing this {Lk
}, consider the OIJl'ration

VI L I £2 L3
II

V, U L3 L 4 I,

V" L3 L4 L5 13

If the two functions <P alld 17 arc 1I0t f1at-opprator-I'alued but matrix-valllpd. this rpsllit is wpII­

kllo\\'[1 now in tIll' colltrol commullity as :"ehari's theorem [25. Sectioll 2.1] [31, Sections G.2

alld 8.1) [40. Theorem 10A.G] [99, Spetion 8.8). That is. there holds till' Ill'Xt.

Proposition 2.48. SlIppose that <})(z) is el rCel! ratiollal 1I1atrix-velJu('(1 [ullctioll, lI'hich is allel­

lytic in 0 < PI < Izi < P" where ()I < 1 < p,. Then. lI·l'l];1\'p

A f1at-opprator version of :"cbari'" thporem, Proposition 2.17. is prO\'ell by rcdllcing it to its

matrix cOllllterpart, Proposition 2.18. See Apppndix D for the proof. From this proof it can

also 1)(' spell that computation of the IIall kel norm of a fJat-operator-valued functioll <P(z) can

be carried out by matrix manipulatiolls and thp same is t rue about complltatioll of (z) that

approximates $(z). :\amely. thesp problems call be reduced to the correspouding problems 011

matrix-valued functiolls.

Lpt u, see the implication of Propositioll 2.·17 on our model-matching problpnl. By tbis

proposition. \I'e hal'p

_ inf liz [[in-P - 5'1I.c~ = liz [[in_ Pllu­
S'E~lf:lp

which simplifips thp formula ohtailled in th,' previous sec·tioll. Our final ['('sllit is sUlllmarized as

follows. 111 Spctioll 4.1. this proposition is utilized to simplifl' a cOllditioll for thp coll\'ergpllcp

of the I)('st "alllpled-data cOlltrol pl'l'fonnance.
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Proposition 2.49. SlIppose t.l/ilt P is a continuolls-tinl(, op('rator having a cant ilillous-t illl('

state-space repres('ntation and II is a hold-t.I·I'" opNator lI·hose lifting-based transfer fllncLion

belongs to 91j)'t". Suppose also that. with respect to th(' matrix representation of fI(e;""), i.e..

E":'/1(e;WT)

E!tff(e;WT) ,

E;w ff (e'WT)

aJl the coillmns are independent for any w E [-7rIr, 7r Ir). Then, there exists an inl1er-OIl/er

factorization of /fez) ..\loreo,·('!". when lI'e write this factoriziltion as (Hin, HOu,), there holds

max {lizHin- Pili" 11(1 - knHin-)PII~r'}

::; s'Ei~~~ liP - z-llf5'11~r'
. ""JF

::; IIzkn- Pili, + 11(1 - k niJin-)PII~r"

2.6.3. A Dual Model-Matching Problem

So far. I\"e ha"e considered hOI\" to e"aluate

In Section -1.4 we need a corresponding result also on a problem that i" dual to the above;

namely, the value of

i}}fIlP-HSII

is desired to be obtained. Here, it is assumed that P is a contiuuous-time operator having a

continuous-time state-space representation and that 5 is a sampler-type operator lI'hose Iifting­

based transfer function 5(z) can be expressed a~ z 15'(z) with 5' E 91j)F'. ~loreO\"Cl", in the

abO\'e expression, H varies ow'r all hold-type operators I\"hose lifting-based transfer functions

belong to 91j)'t". Using lifting-based t ransfl'r functions, we can write our IH'W model-matching

problem a';

This expression resembles Equation (2.11) we' have considered so far. Hence, by translating the

discussion so far in an appropriate I\"ay, we can obtain a result on this problem, too. [n this

section, this result is presented brien,·.

Some preparation is needed to state the result.

For a real rational fnnction .·\(z). A(z) i" said to be co-inlier if A-(z) i" inner: .\(z) i" called

co-outer if A-(z) is onter. For th" above sampler-type operator S. eon"ider its lifting-based

transfer fnnction 5(z). Assnme that. in its matrix representation

(2.13)

all the rows arc independent for any -.u E [-7rlr.7rlr). Th"n. in fact. the fuuetion .5(z) can be

factored as

.5(z) = Z '50Ul(z)5in(z)

so that 5 in (z) is co-inner and 5 onl (z) is co-outer. If 11'(' write .5 = z '5', this factorization

becomes 5'(z) = SOUl(z)sin(z), and the pair (Sou',sin) is said to be a co-inncr-co-outer

factorization of S'. In order to obtain this factorizatioll. compute a spectral factorization of

a matrix-valued functioll 5'5'- (= 55-). This factorizatioll gives a co-ouler fllnctioll S°'" such

that 5'S'- = SO"'SOUl-. TheIl. defille s;n(z) := son,(z) 1.5'(Z) (= z5°"'(z) '5(z)). It is easy

to sec this functioll Si"(z) is co-inlier.

The Hankel operator and the Hallkel norm arc defilled for a lall-operator-,'alued function

</J(z) by appropriate modification of the defillitions in Subsection 2.6.2. :\ehari's theorem holds

in this setting, too. ~Iore precisely, Proposition 2.47 still holds ('ven if <P is a real rational

tall-operator-"allled 0Jlerator alld E moves ill the set 91j)'t".

\\'e nOli' present a result for our nel\" model-matchillg problem. lI'hich is required ill Sec­

tion 4.4.

Proposition 2.50. Sllppose that P is a continllolls-tiItle operator IUIVillg a cOlltillllolls-time

s/ate-space represelltatioll alld that 5 is a sampler-tlpe operator II'hose liftillg-based trallsfer

fUllctioll S(z) call be expressed as z IS'(Z) "'ith S' E 91JjF'. AssuItle that. lI'ith respect to

a matrix represelltatioll of S(e iWT ) presellted in (2.13). all the roil'S are illdepelldellt for allY

w E [-7rIr, 7r Ir). Then, with respect to the fllllcUon S', its co-inller-co-ollter factorizatioll

(sun', sin) call he fOlllld. l'tJor('OI'cr, there holds

max {lIzPsin-lIi" IIP(I - 5in-s;n)II~L}

::; .inf IIjJ-z-'ffS'II~J~
IIE9\fJT' J.,
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Chapter 3

A General Framework for

Sampled-Data Control Systems

This chapter presents a framework for sampled-data ("ontrol systems. The framework presented

hen' is general in the sense that a large class of samplers and holds ("an be tre'ated in it; moreover,

this framework is elear in the sense that basic properties of sampled-data control systems arc

deri\'ed in a natural way. Althongh on(' purpose of this chapter is to gi\'e a solio theoretieallmsis

for subseqllent ill\·estigation. it is important in its own right. This is becallse this framework is

believed to be IIseful in order to solve other advallced sampled-data control problems than the

one considered }]('re.

First, regular samplers and holds are defined. They arc more general than the cOIl\'entional

notions of generaliz('d samplers and holds. ~amel~·. th(' kernel functions of our sampl('rs and

holds arc d('filwd on [0.00), while those of COIl\'('ntional samplers and holds arc only on [0. r).

wh('re r is the sampling period. Several properties of regular samplers and holds arc stated

on their transfer fllnctiolls, state-space repn's(,lltations, and matrix representations. "('xt. a

sampled-data control system is introonced and the notion of a sampling envirollment is gin'n.

:--Ioreovt'r, stabilit~· and the best a("hie\'able pt'rfonnance of samplt'd-data control systems art'

defillt'd. Based on the constructed framework. thrt'e theorems arc pro\'en abont propl'rtit's of

sampled-data cOlltrol systems. Especially. t he last theorem is important in the next chapter

because it states a relationship between a sampled-data control system and a corresponding

contilluolls-time control system.

3.1. Introduction

In a sampl('d-data control s.\·stem, which was introdnced in Section 1.1, a sample-r was IIsed

for all analog-to-digital sigllal conn'rsion and a hold was IIsed for a digital-to-allalog signal

COIl\·ersion. As was statcd ill Section 1.1. the most typical sampler is the ideal sampler and the

;)9

-------- ---

~---~- ~-
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most typicHI hold is tlw zNo-oreIPr hold. Ilow('v"r. if \I'!, ('hoos" a ilion' generaliz('(1 sHlnpler and

hold appropriatel.,· for a provid"d plant. it is possihk to improV(' a ('ontrol performance. Earlier

studi"s on this topic ar" [55. 5 I). ,\fter the lifting t"chnique was introdu('ed by [9~. 95]. lifting­

basNI approadl('s hav" b""n tri"d on this topic [.j5, 86.53.56.5.66). lIo\l'''''"r, til(' fnull"works

us"d in Ihese papPI'S an' uot suffici"nt 10 analyz(' general configuratiou ofsarnpkd-data control

systellls. Th(' reason is as follo\l·s.

lu UHln~' of th"s" pap"rs. a g"n"raliz"d hold H : q" ...... q is assullled to ha\'(' til(' form

Her", T is the sampling period. qdlk) is a discr"te-tillle input. to H, q(t) is the correspouding

contiuuous-time output. aud Ji(t) is a c"rtain provi(IPd function. In fact. "I'ell th" first-order

hold. "'hich is often quoted as an "xampIP of a generalized hold, canuot h" modeled in this form.

In,ked. in (3.1). th" output q(l) during h :s: 1 < (k + 1)T dep"nds only on qd[k). Howel'"r. th"

output of Ih" first-order hold during kT :s: t < (k + l)T dep"nds not onlv on qd[k] bul also all

qd[k - 1]. Ther('[or". \I'" ha"e to usc a more gelH'ral form than (3.1).

The situation is similar as for gen"ralized samplers. A generaliz"d sampler 5 : P ...... Pd is

typically assumed to have the form

where p(t) is a contillllOus-tim" illput to the sampler S. Pd[k] is its discrete-time output, and

5..(t) is a prOl'ided function. In this form, the ideal sampler, which is the sampler most widely

used in practic". is not easily tr"at"d. If one likes to Inodel the ideal sampler. he has to s"t 5..(t)
to he th" delta functiou. This makes til(' suhsequ"nt mathematical tr"atm('nt complicatNI.

:-'Ioreol'('['. an anti-aliasing filt"r is modeled as a part of a plant in the "xisting frameworks.

An anti-aliasing filtN is diff"r"nt frolll a plant in th" sense that it has sam" design flexibility

although a plant is provid"d as fixed. Aetually. we can improv" control performanc" by choosing

an anti-aliasing filter appropriately. However. if th" filter is regardNI as a part of a plaut, this

flexibility becomes implicit and gets difficult to be utilized.

Finally. many of th" "xisting papers considered lifting of a plallt only. Th"y paid less

att"nt.ion on a sampler and a hold. In order to see how t.h" control performance depends on a

choice of a salllpler and a hold. 1."(' h""e to t.r"al these devic"s more seriously.

In this chapt('r, we construcl a framework for sampled-dala conlrol systems so t hat these

problems arc resolved.

In parlicular, hy assuming that the functions .2(1,) and Ji(t) arc defined on [0. (0) (as

opposed to [0. T)), we eXl<'nd 1he' class of samplers and holds. Our class indudes the c1assl's of

[55. 5-1. ~5. 86. 53. 56, 5. 66] as its subclasses and can model th" ideal sampler and the first-order

hold in a natural way. Furthermore. this pxtension enables uS to treat an anti-aliasing filter as

q(kT + t) := l1(Lkdk] for 0 :s: I < T and Ie = 0, 1,.

j kT
p,dk) := 5..(kT - I)p(t) dt for k = O. 1, ... ,

(k I)T

(3.1)

(3.2)

a part of a sampler (as oppose'd to a plant), which meanS thai allalysis and sylJUwsis of the

filt"r call be formulaled as thos(' of a sampler.

:'\ext, not only lifting of a coutrolled plant hut also lhat of a sampkr and a hold is consider"d.

Although this was already tri"d by :-'Iirkin and Hotstein 166j. our dass of a sampler and a hold

is more general lhan thl'irs. \\'e obtain "xplicit formulas that express lifting-bas"d transfer

functions of a sampler and a hold in terms of 5..(t) and 11(1). Th(·s(' formulas are us"ful in tl]('

subsequent chapters.

Finally. sam" important properties of sampled-data control S~'stems ar" deril'ed based on

the constructed framework. Herl'. th" notions of a lifting-based transf"r function ami its malrix

representation play an important roll'. Especially. a prop"rty abont a relationship belll'""n a

con1innous-time control system and a sampl"d-data control systl'm is sholl'n. This is a n"w

result and works as a key \\·I]('n we compare 11](' I)('st achi"l'able performance of th('se two typ"s

of systems in tIl(' uexl chapter.

3.2. Regular Samplers and Holds

Befor(' consid('ring sampl"d-data control systems, 11''' pr"pare our dass of sampl"rs and holds.

Our class is larg(' enough to cover Illany practically important samplers and holds. Especially.

it includ"s the sampler and hold classes formerly proposed by [55. 54. ·15, 86. 53. 56, 5. 66].

:'\(·xt. 11''' illl'estigate properties of samplers and holds that belong to th" presented class. Th"

obtained prop"rli"s are utilized to deri,'" usdul formulas on sampled-data control systems in

Section 3.4.

We need the following functional space to define our class of samplers and holds.

Definition 3.1. Suppose that a(l) is a real function such that e"a(/,) belongs to .c2 for some

( > O. L,·t D be the space of all such functions. Herr',' may vary d"pl'nding on (J ED. 0

\\'ith the help of this spac", a considered class of samplers and holds is defined as folloll's.

Let the sampling period be T. This is a positi"e number. which associat"s a discrete-time k

with a cont.inuous-tim" t by I = kT.

Definition 3.2. A sanlpler-type op"rator 5 : P ...... Pd is called a regular sampler or simply

a sampler if its operation is represented as

Pd[k) = f' S(kT -1)p(l)dt for Ie = 0, 1, ..

using a Inatrix-I'fdued fUlJction Q(t) II'hos(' el"ments belong lo D. '\ote that p(t) is a continuous­

time signal and Pd[kj is a discr"te-time signal.
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Example 3.4. Let ns consider a sampler-type oppmtor S~'" : p f-+ Pd that works as

where J(t) := 1 for 1:::0: 0 and 1(/.) := 0 for t < 0. It is s,'en fronl t.his example that. a kerIlel

function may noL be square. 0

[
Ce'''B ]

1(1 - T/2)Ce A (1 T/2)8 '

for k = 0.1, ...k _ [ p(kr) ]
p,d ]- p((k _ 1/2)T)

\lere, suppose p( -1/2) is eqnal to zero. This sampl,'r picks up th,' inpnt signal p not onl.'· at

1 = kT but also aL 1 = (k - 1/2)T. Let ns call this olwrator th,' multirate sampler. 13\' Ilsing

t.his sampler, we can deal wiLh a certain L."I)e of multirate sampled-data control systems 'L'i will

be seen in Examples 3.26 and 3.27. Although I he mnltiraLp salnpler s~n, is not a rpgular sampler.

Lhe operator S~'"P is a regular sampler by a proper choicp of a conLinuous-timp operator P jnst

as the previolls exam pip. In this casc', t.he kerIlel function of S~H'P is

Remark 3.5. In our fralll('work. the ideal samplC'r S~d is ahntys treated as in Example 3.3.

Practically. we do as follows.

In t.he recent. sampled-data eonLrol studies. it is standard to assume t.hat a cont.inuons-time

operat.or F that has a strictly proper stat.e-space repres('ntation preced('s t.he ideal sampler.

On,' wa.\· Lo usc the technique of Example 3.3 is to prepare a bounded continuous-time operator

P having a strictly proper slate-spat'(, representation. and decompose S~dF into a suecessi\'e

opprat ion of S~d P and p-l F. Sincc S~dp is a regular sampler and p-l F is a continuolts-tin\('

operator wit.h a state-space repre'sentat.ion, t.heir treatment. is now easy.

Tltl're is another way \\'he-n Lhe operator F is bonnded itself. This is often the cas(' when

F is an anti-aliasing filter. In this case, F has a st.ate--spaCl' representation whose ··.-t··-matrix

has all of its eig"ll\'alucs in Re 8 < O. Then, it is possible to regard S~d F as a rcgular sampler.

This shows another possibility of our frame\\·ork. That is, an anti-aliasing filter F can be

t.reated as a part of a sampler in our framework. In the Iift.ing-based st.udie-s so far. an anti­

aliasing filter was oftcn modeled as a part of a plant. I-Iowe-ve-r. our formulation is considered to

bc nlore' natural than t.he conventional ones because of the following reasons. First. sillt'e both

anli-aliasing filLc'r and sampler \\'ork t.o convert a cont.inuow;-Lime signal int.o a dis(']'ete-tillle

signal. it is appropriate to t.reat. t.hem in a combined way. \'('xl.. an anti-aliasing filter has SOllle

design f!exibilit,' and can be d"signed in accordance with ('ngineer's prcf('rences. At this point

au ant.i-aliasing filter is diffe-rent. from a plant because a plant is given to an engineer as fixed.

Ouce we r('gard an ant i-aliasing filter as a part of a sa11lpkr, we can formulate a design problem

of this filter a~ t.hat of a sampler. [n addit.ion. not(' that the kernel function of S~d F has the fOrtn

of Ce,lI/3 and. Lhus. it is nonzPro all over [0,00) in general. Therefore. t his operator cannot be

p(t)

2T 3T

Figure 3.1 shows how this works in the one-dimensional case. (This is essentially the sallle

figure as Figure 1.3.) This S~e1 is called the ideal sampler with the sampling period T. It is

not. a regular sampler because its kernel function turns out to be the delta funct.ion. \\'hich docs

not belong to V.

with /-1(t) being a fnnction e\'NY elenH'nt of which !wlongs t.o V.

TIH' functions ~(t) and ll(t) are called t.he kernel functions of Sand H. respectiydy. 0

k

q(kr + t) = 'LJI(kr + t - (T)qel[f! for k = 0. 1, .. and I E [0, T)
10

Figure 3.1. The operation of the ideal sampler S~d

p,dk] := p(kr) for k = 0, 1. ....

On the other hand, a hold-tvpe opNiltor IJ : qd f-+ q is said to be il regular hold or simply

a hold if it is repl'<'sentpd as

Example 3.3. Define a sampler-type operator S~d so that. it. maps a continuous-time signal

p(t) to a discrete-time signal Pel in accordance \\·it.h

In ordN to avoid this difficulty. consider a bouncled continuous-t.ime operator P t.hat. Ciln be

described by a st.rictly proper st.ate-space representation (A, B, C, 0). Without loss of generality

it can be assumed that the maLrix .-l has all of its eigenvalues in Res < 0. Here, an operator

S~dP is a regular sampler. Indeed, its kernel function is Ce A
' /3. 0

\\'e pxpress kerIlpl functions by putting nnderlines on the corresponding symbols of a sampler

and a hold.

The ddinitions above are difkrent. froln (3.1) and (3.2), which arc typical defilJitions of a

generalized samplpr and hold in the literature. ThaL is, in our definitions kernel functions arc

defined on [0. oc), while in the cOI1\'enLional definitions only on [0, T). This means that our class

of samplers alld holds inclndes the convent.ional classes as it.s snbclasses.
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H~O(t)

3.2. Regular SaIlJp)('J's and Holds 6:;

Figure 3.2. (a) The operation and (b) the kertlel function of the zero-order hold

H~o.

(a) (b)

II~O(t)

treated as a sampkr in the cOI1\'entional frameworks. where kernel fnnctions are defined only

on [0, r). 0

(a)
-If··········································''''

(b)

Example 3.6. Let a hold-type operator II~o maps a discrete-time signal qd[kj to a continuous­

time signal q(t) as

q(kr + t) = qd[k] for 0 ~ I < rand k = O. 1..

Figure 3.2 (a) illustrates its oprration in th" Case that bot h qd[k] and q(t) are one-dimensional.

(This is almost the same figure as Fignre 1.3 (b).) This operator )1~O is called the zero-order

hold with the sampling period r. Its kernel fnnction H~O(t) turns out to b"

Figure 3.3. (a) The operation and (b) the kertlel function of the first-order hold

H~o

H~O(t) = {~ for 0 ~ t < r.

for r ~ t.

Figure 3.4. (a) The operation and (b) the kertlel function of th" triangular hold

H~r.

This function is presented ill Figure 3.2 (b). It is seen that the zero-order hold is a regular

h~d. 0

Example 3.7. Consider a hold-t~'pe 0l)('rator H~o : qd f-> q such that

q(kr+t)=-;qd[k-1]+(1+;)qd[k]

Figure 3.3 (a) ,hows how this operator works in tbe one-dimen,ional case. This operator j-{~o

is called the first-order hold. Its kernel function is obtained as

1
(1 + ~)r for 0 ~ I < r.

II~O(t) = (J -~)f for r ~ I < 2r.

o for 2r ~ I.

See Figur" 3.3 (b) for the shape of this function. Because this kernel function takes a nonzero

value in r ~ t. the first-order hold "an not be modeled in the cOIl\'entional frameworks. 0

(a)

H~(t)

(b)
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q(kT + t) = (1 - t )q,tlk] for 0 ~ 1<7 and Ie = O. 1, ....
7

Example 3.8. For compari,on. we define a rather artificial hold. Consider a hold-t,'!)(' 0lwra­

tor ff;' : qd 1-+ q such that

Example 3.9. Corresponding to the multirate sampler, we think of a multi rate hold. Suppose

that H;m : qd 1-+ q works as

Remark 3.11. \\'e assnllwd that kernel funetions of a regular sampler 5 and a regnlar hold H.

i.e .. $(t) and li(t), belong to D. Roughly sIH'aking. this assumption requires t h"s" funnions

to de('l'('as" exponentially or faster as I gO('S 10 infinity..\Ithough their exponel/tial de('l','ase is

assumed for techuical r('asous. it is reasonable to assume that th"se fundious decreas(' b\' the

following r"'Lsons. First, if ~(t) (resp. /I(t)) cOII\'erg"s 10 a uonzero valu,' as I ---> 00. S (r"sp.

H) must he unhounded. and thus it is irrekvant. Ll'l us sec this r"garding 5. D"fine p(l) := 1

for 0 ~ t < 7 and p(t) := °otherwise, wher(' 1 is a \'cctor whose e1"lIIenls ,u(' all equal to OIH'.

If this coutinuous-time signal p(l) is given to S. the obtained output p,dk] is

lIence. if ~(t) cOI1\'erges to a nonzero \·alue. Pd[k] does not approach zcro no malter hm\' large

k becomes. In this sense. the efrect of a nonzero input during 0 ~ I < 7 remains in thc output

forever. Th"refo['(' 5 is unbounded. The proof is similar regarding ff. ;-Ioreovcr, it is natural

to assume decrease of kernel functions considcring realization of S and /I as pmdif'al devic('s.

Indeed. deereas" of a kernel function nwans that the circct of an input at some part icular tillle

gradually dccreases in the output as the time passes by. 0

o

for 0 ~ 1<7,

for 7 ~ t.

{(
1 - '-)1

I/;'(t) = 0 T

Figure 3. I (a) sholl's how its operation looks like. Let us call this op"rator the triangular'

hold for con\'enience. Thc kernel function of the triangular hold II;' is as

This function is depicted in Figure 3.4 (b).

{
[I" On]q,tlk] for 0 ~ t < 7/2.

q(kT + t) =
[On f,,]qd[k] for 7 /2 ~ I < 7.

for f E £:2[0,7). !lere, we adopt the cOIJ\'ention ~(t) = 0 for I < 0, which implies So = O.

Moreover, write p := lVTP, that is. p[P](t) := p(Pt + t) for P= 0,1, .... Th"n, we ha\'e

fo
kT k 1 foT

p,dk! = S,(h - l)p(l) dl = L ~((k -£)7 - t)p(h + t) dt.
o 1=0 0

Tn Section 2.4. lifting-hased transfer functions wcre considered for sampler-type and hold­

type operators. L,·t ns pay special al tention to regular samplers and holds and investigate their

lift ing-bas"d transf('r functions.

By the ("'finition of a regular sampler S : P ..... Pd' there holds

Here, n is the dimel/sion of t he output signal q(I). in dellotes the n x II-idelltity matrix,

and On stands for the n x n-zero matrix. This hold gives the upper half of qd[k] during

kT ~ I < (k + 1/2)7 and thell gi\'es the lower half during (k + 1/2)7 ~ t < (k + 1)7. Tn this

sense. the output of this hold is switched not only att = k7 but also at I = (Ie+ 1/2)7. Therefore.

it is appropriate to call it the multirate hold. Its kernel function W;'(t) is expressed as

l
[fn On] for 0 ~ t < 7/2,

H~n'(t) = [0" in] for 7/2 ~ t < 7,

[On Onl for 7 ~ I.

o

As was stated before. th" ideal sampl"r 5~1 (Exam pic 3.3) and th" zero-order hold I-J~o

(Example 3.6) are most typicall.'· used in practic". Corollary 2 of [171 gave t he following

interesting property of them. This result is utilized in the next chapter.

lIe['(', ,kline the flat op"rators Sk, k = O. 1, .... by

Ski := f ~(h - I)f(t) dl

k-I

Pd[k] = L 5k _ I P[fj.
1'0

(3.3)

(3.4)

Proposition 3.10. Let P be a boullded continuous-tiIl/e operMor having a strictly proper

continuous-; jIl/e stat ('-space representation. Thel/, for the id"al saIl/pier 5~d al/d til(' zcro-order

hold Il~o thilt have col/sistcn; dill/cl/sions. I here holds

Therefol'f', the lifting-based transfer function of S is given b,'

5(z):= ~ 5 k z k

kO

with 5k defined in (3.3) (sce Definition 2.20).
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A similar discnssion is possible lI'ith r"sp"ct to a !'"gnlar hold H. \"am"'y. d"fin" tall

operators fh. k = O. I..... by

wh"r" v is a I'e('[or and t mils over [0, T). Th,,", th" op"mtion of a regular hold H : qd >--> q is

exprC'ss"d a'i

H(z) := 'f Hkz k
k 0

k

q[kj = L Ih (qd[fj,
1=0

wher" q := \\I,q. Hence. \\'ith fh in (3.5), the lifting-based transfer function of H is defined as
With this notation, the claim of Proposition 3.13 call be rl'stated as 5 E z 15Jr'.

Combining thl' abOl'e proposition 3.13 with Proposition 2.22. 11''' call imUlecliatl'l~' obtaiu

the next r<'sult.

For notational convenience. let us introduce the following notation. Hl'eall that 915Jf." is a

sllbspace of 5Jr' that consists of real rational fllllctions only (Sel'tion 2.1.3).

Definition 3.14. Let z 15Jr' denotl' the set of fUllctions hal'ing the form of z I .. \(Z) with

A E 5JF'. Similarly, let z 1915Jr' denotl' the Sl't of fUllctions Il'ith th" fortll of z IA(z) for some

A E 915Jf.". 0

sllch that S(z) is allah·tic ill z E iDlPo . [II particlllar. $(z) is allah·tic and IIl1iformly bOlluded in

iDl; hence $ E 5Jr'. It is eas.l· to see $(00) = 50 = O.

In a similar way, the resllits on fI can Iw derived. 0
(3.:;)(!fkv)(t) := ff(kT + t)v.

in accorclal](,C' lI'ith Ddinition 2.21

Remark 3.12. Th"r" holds 50 = 0 while flo = 0 docs not hold in general. W" need th"

<,quality 50 = 0 in order to guarant"e causality of a sampler 5. Inde"d, if 50 #- O. p,J!kj

depends on jj[k] by (3.~): in a word. the output of 5 at the discrete time k depends on the

fnture input giv"n ill kT :s: t < (k + I)T. 0

Proposition 3.15. .-\ r<,gu/ar sampler 5 llits a finit<' illdllced norm ill)(l satisfies 11511c' .f' =

1151InF" Likewise, il regular hold H I",s il finit<' induced norlll and satisfies IIUII" ,c' = IIHlln,;,,'

From Proposition 3.15 together with Proposition 2.23. it follows that. if a reglllar samplc'r 5

(resp. a regular hold H) has a lifting-based state-space r"pr"sentation. its lifting-based transf"r

function 5(z) (r"sp. H(z)) bdongs to ;;-I915Jf." (resp. 915J~). Th" cOLII'('['se is trlle in a slight I\'

st rouger form. The ITSlllt is summarized as follows.

Proof. By the definitioll of 5k (3.3) alld the Schwarz inequality, thNe holds

From the C'xplicit forms of Sk and Ih, the next proposition follows. which is aboul lifting­

based transf"r functions of r"gular sam pINs and holds.

Since each c!",ment of -S'(t) belongs to D. there "xist f > aand V > asuch that Jooo e2"0'{,2(t)F dt

< \,2. Then. it is deri.'·"d that

llf = fa' l1(T - t)f(l)dt for an." f E .e2 [0,T).

Proposition 3.16. A salJJpiC'r-type operator 5 is 'J regular salllpler and has il lifting-based

state-space representation if and only i[ 5 has a lifting-based trans[er function belonging to

z 1915J F . A hold-type operator H is a regular hold and has il lifting-based state-space repre­

sentation if ilnd only i[ H I",s a lifting-based transfer function that belongs to 915Jf.

Proof. Lc,t us prove the "only if" part for a sampler-type operator 5. SlIppOS" that 5 is a

regular sampler and has a lifting-bas"d stat"-spac,, n presentation. T Ill' II , bl' Proposit iOIl 3.15.

5 is bOllllded. Applying Propositioll 2.23. we see that 5 has a lifting-based trallsfer fUllction

belonging to z I915Jr'.

0:exl. the "if" part is proven. If 5 has a lifting-based transfer functioll in z- I 915Jf." C 915Jr'.

5 is bounded and has a lifting-based state-space r"pres"ntation by virtu" of Propositioll 2.23.

L"t us writ" this otall'-space r"presentation as (A, E. C, 75). wh"re A alld Care r"al matric"s

and E and 75 arC' real flat op('l'ators. Her", S(z) = 75 + C(zl - A) IE. Since 5 E ;;-1 91j)f.".

75 = o. ~[oreOl·e!'. it can bC' assum"d that r\ has its C'igenYalll"s only ill 1;;1 < 1. (If it io not

the casco lI'e can get rid of all th" "igenl'alnes ill Izi ~ 1 by obtaining a minimal otale-space

r"pr"s""talion of 5.) Sinc" II is a linear operator mappillg .e2[0, T) to a finite-dilll"lloional\'c('[or

opace, the Hiesz repr"scntation theor"m impli"s that th"r" exists a real function 11 E .e2[0, T)

such that

(3.6)

Combining this with (3.6), 11''' obtain the bOlllld 115kll~. < ,,2'(k-I)'1'2. lIence. 5(z)

L:k" 0 5 k z-k absolnt"ly con.'·erges for Iz II < ,,<T. This means that ther" exists a < Po < 1

Proposition 3.13. For a r"gu/ar sampler 5, thct'(' exists a < Po < 1 such th"t its lifting-hased

trans[er function 5(z) is anal.l·tic in z E iDlPo .

Simi/adl' for a rC'gu/ar hold H, we can cboos" a < Po < 1 so that its lifting-based transfer

[unction ll(z) is arul1ytic in z E iDlpo '

Particular/.I·,5 belongs to 5JF' and H he/ongs to 5Jf. i\foreOl'Cf, 5(00) = O.
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Ddin(' a function .')(t) bl' !i(kT t):= Ciik lJ(t) for k = O. 1, ... and a ::; I < T. Th('n, this S-(t)

t.nrtls out to 1)(' til(' k('J"llPl funcl ion of S. Sinc(' all til(' ('ig('n\'aln('s of ii ar(' locat('d in Izi < 1.

('ach d('ln('nt of .')(1) bdongs to V. I-I('nc('. 5 is " I"<'gular sampkr.

As for a hold-I,'p(' ol)('rator If the claim is proven similarl\·. 0

lIere. w(' pr('s('nt an easily testable snfficient condit.ion in order that a regular sampler and

a regular hold hav(' th('ir Iifting-bas('d stat('-span' repr('s('ntatious.

Proposition 3.17. Snppos(' tlrat 5 is a regular sampl('r. If its k('1'I1C'i fUllctioll S-(t) Iras a

bOl1nd('d support or if tire Laplace transform of S-(t) is ratiollal, tlren 5 Iras a lifting-basNI

sta/('-space r('presentat iOIl.

Suppose / Irat H is a regular Irold. If its kerJ}('1 fUllctioll II(t) has a bounded support or if tIr('

Laplac(' trllllsform of lI(t) is nl/iolla/, tlrell H has a lifting-based stat('-spac(' r('presentatioll.

Proof. Suppos(' that. !i(t) has a bounded support.. TheIl. th('re exist.s ko > a such t.hat. 5k = 0

for any k > ko. This means that 5(z) is equal to l::~';,o 5k z k, which is rational. :\ext.. suppose

t.hat. the Laplace transform of t he kernel fuuction S-(t) is a rational function. Then, this Laplac('

transform ~(s) is ('xpressed as 0 + G(sl -.-I) I D using real matrices A. lJ. G. aud O. In this

case, we have S-(t) = D + G("" B. Sinc(' S- belongs t.o V by assumpt.ion. D must be a zero

matrix and lI'e can assume .-I has its eigenvalu('s only in Re s < a without loss of gellerality.

Define a flat operator jj so that

tn the case that a continuous-time operator P has a continnous-time state-span' repre5('n­

tation. an explicil formula can be obtain('d for a matrix represt'ntat.ion of tht' lifting-based

transfer fnnct.ion of P (Proposit.ioll 2.18) . .\ similar thing is possible with respeel 10 a l"('gular

sampler and a rcgular hold. Her(', w(- need a t.all operator E;:, and a flat. operator E:". which

were defined in Definition 2.25.

Proposition 3.18. LC't 5 b(' a reglliar sampler alld l('t 5(z) b,' ;l1ra!.,·t;c ill []l"" for () < Po < 1.

Tlren, for allY cOlllpl('x T1l1m!>er 8 Sllclr that e'OT E []lpo, tlr('re Irolds

for In = O. ±1, ±2, .... 1I'!Jer(' ~(s) is tire Laphlce trallsform of tIr(' keruC'i fUTlc/ion ~(I).

Suppose tlrat 11 is a r('gll/ar Irold aTld lJ(z) is aml!.,'tic ill []l"" for a < Po < 1. Tir (,Il , for aTl.'·

complex IIlImber siltis(villg CST E []lpo, there holds

for 111 = O. ±1. ±2, .... \\')l('I"t·ll(s) is the Laplace trallsform of the kel"1l(,! fllllctioll H(t).

V\'ri t iIIg this proposi t ion ina mat rix form, we have

(3.7)

for any f E .c2 [0. T). Then, th('l"(' hold 5 k = GeA(k-I)T jj for k = 1,2,. and 50 = O. This

impli('s that 5(z) = G(zl - (,AT) 'B = z 'G(J - z-'eAT
) I B; hellc(' 5 E z '9lljr'.

TIl(' proof is similar for a hold. Especially, once we obtain tht· [arm H(t) = GeAtB, define

tall operators C and 75 by

ll(s - ~)
11(eST

) ~ ~ ll(s)
.fi ll(s +~)

and (75u)(l) := GeAtBu. (3.8)

:\ote that th(' above proof gi\'es explicit forms for the lifting-bas('d state-space representations

of 5 and H. when th('ir kern('1 functions ar" repl"<'sent"d as GeAt B. ;\amcly. if S-(t) = GeAtB,

the lifting-based state-space representation of 5 is (CAT, B. G. 0). where B is as in (3.7): if

H(t) = GeAT D. the lifting-based state-space representat.ion of H is (eAT, B, C, 75) with C and

75 being as in (3.8).

From Proposition 3.17. we can sec that all t.he samplers and holds in Examples 3.3 3.9 satisfy

5 E z '9'\f:J" and H E ~f:J~. This 5nggpsts that many of practically important samplers and

holds can be cO\'et'('(l by the classes z 19'\f:Jr' and 9'\f:J~, respectively.

Th('n, then' holds lJ(z) = 75 + C(zi - ('ATt' B. Hence, (r E 9'\f:J~. o
These formulas arc quite nseful to ill\'cstigat(' sampled-data control systems and play an im­

pOl·taut role ill th,' sequel. Similar formulas lI'ere preseut.ed ill [4, 3. 5, 12) under the name

of ·'FR-operators.'- Ilo\Vever, thcir class of samplers and holds is smaller than ours ami they

considered ollly the case t.hat s is a pure imaginary nllluber.

3.3. A Structure of Sampled-Data Control Systems

Figure 3.5 shows a sampled-data control system considered in this t1"'sis. It is made of fOUl

operators C, J(d, 5, and H and signals connecting them. The signals shown by solid arrows arc

continuous-time sigllals. while those shown by broken ,uro\\,s arc discret.e-time signals. All th"
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signals may he multi-dimensional. .-\s is seen from the figure. G is a contiuuous-time operator,

f{d is a discrete-time operator,S is a sampler-type operator. and 11 is a hold-type operator.

This system configuration is quite standard iu the recent sampled-data control literature (see

[9,86. 20, 27] for ex,unple).

y(l)

s~
a(t)

Figure 3.5. A sampled-data control systell1.

A contilluous-time operator G is a geueralized plant and is defined exactly in the same wa.'·

as in Section 2.;:;. Especially. the dimension of the signals w(t). u(t). z(t), and y(t) are written

as II"" 11", liz> and ll y . Besides, G is divided into four operators so that

z = Gllw + G I2 U,

Y = G21 W + Gnu.

A positi\'(' Ilumber l' is associated with the sampled-data control system. An operator

5 : P >-> Pd is a regular sampler with this l' being its sampling period. The dimension of its

input p(t) is denoted by n p and that of its output Pd[k] is denoted by n~. On the other hand,

an operator Ii : qd >-> q is a regular hold with l' being its sampling period. The dimension of

its input qd[kj is written as 11~ and that of its output q(t) is written as n".
Here, some terminology is introduced.

Definition 3.19. Suppose that 7' is a positive uumber. 5 is a regular sampler with the sampling

period 7', and H is a regular hold with the sampling period 1'. Theu, the triplet (7',5,H) is

caliI'd a sampling environment. 0

Definition 3.20. Snppose that a genl'ralized plant G and a sampling environmcnt (1'.5. H)

are proVided. If there hold n u = n" and ny = n,,, G and (1'.5. H) are said to be consistent

wit h each oth,'r. 0

If a sampliug l'nvironment is consistl'nt with a provided G. thl'n a sampler 5 and a hold H have

inpllt- and output-signal dimensions that match those of G, so that 5 and H can be couuected

to G. Once a sampling ell\'ironlTlent (1'.5.1/), which is consisl<'nt with G. is fixed. what is

left for us is only to choose f{d. In this Sl'nse, (1'.5.11) prepares au environment to make a

sampled-data cont rol system. This is t he reason why (1'.5, H) is called a sampling ell\·irolllIH'nt.

A discrete-time operator /,'d is called a discretc-timc controller. It is assumed to be

choscn from a set Kd . The set Kd is defined to be composed of all dis!Tete-t illle operators

that have dis!Tetc-time state-space representations. ll;:-dimensional inpnt. and n~-dimensional

output. :\Iorl'o,·er. the opcrator composition 1I/,'d5 is caliI'd a sampled-data controller as

a whole.

Remark 3.21. In "iew of design f"'xihility left to au engiueer. a sampling l'nvironuwnt (1'. 5. J-/)

is located bet\\'eeu a plaut G and a discrete-time controller f{d. A plant G is pro"ided to au

eugineer as fixed: a dis!Tete-time controller J(d can be chosl'n almost freely by au engineer.

though practically some coustraints arc posed ou the choice of [,'d because of a cost. technical

difficulty, and so ou, On the other hand, a sampling eU"ironment (7',5,11) has soule lksign

flexibility but it is not so r"'xible as a dis!Tel!'-time controller J(d. POI' <,xample, a sampling

period l' caunot he made too small because devices with a small sampling period cost much.

:\Ioreover, we cannot a~sign a too complicated function to a sampler 5 and a hold H. This is

because l' is chosen small usually and the operations of 5 and H arc to integrate and iuterpolate

siguals, respecti,·c1y. in the time range shorter than 7'. 0

:\Iexl. stability of this sampled-data cont rol s~'stelu is cousidered. Thl' signals a(t). b(t).

a,dkj. and b,dk] arc fictitious iuputs introduced to define stability of this systeul. I!Pre. \\'e also

ueed liftiug-based transfer functiolls of Gn , 5, H. aud 1,'d. which arc written as (';22(Z). 5(z).
lI(z). and f{d(Z), respectively. '\ote that scnff f(d gives a matrix-valued functiou.

Definition 3.22. With respl'cL to a sampled-data control system in Pigure 3,;:;, suppose that

the function det(J - scnff f{d)X takes a nonzero mlue at least at onl' point z E IIJ>. and all the

2;:; operators mappiug w(t), b(t). a(t). ad[k], bd[k] to z(t). y(t). Pd[kj. q;dk]. q(t) are bOllnded

in respect of their appropriate induced uorms. TheIl. this sampled-data control system is called

input-olltput stable or just stable. 0

Remark 3.23. Just like the case of a continuous-time control s~'stem, it is conjectured that.

undcr some condition. we can decrease the number of operators whose stability should be

checked. A due to consider this problem cau he found in thc work of Francis and Georgiou

[351. That is. usiug the notion of a non-p"tho!ogical s<1InpJing period. they gave a condition in

order that the stability of sOlUe special sampled-data control s.'·stems can be checked hy thl'ir

observat.iou at sampling iustauts oul.'·. It is expected that b.l· gen"raliziug this uotion we can

obtain a condition to de(Tease the number of opcrators. The research is now proceeding in this

dircction. (Se" [6;:;] for another attempt to geueralize this notion.) 0
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Csually, w£' wanl t h£' system not only to Iw stahle' but also to posse-ss a good pNformance.

In a staudard formulation of a samplt'd-data 5)""-control problem [11, 9,86. 9, :>6, 83..18, 20],

the- "y"t£'JIl pe'rfonnance' i" m£'asur('(1 hy th£' £2-induc£'d nonn of the opNator that maps w(l)

to z(I). Csing the symhol of the lower fractional transform :Fe..). which was introduced in

Se-ction 2.:>. this norm is expressed as II:F(G. H h'dS) II. The- snnbolll·1I denote-s the £2-induced

norm . .Just as in Section 2.:>, we define that this norm is equal to infinity whe-n the considcre-d

sampled-data system is not input.-output stable. lu a standard formulation, the smaller the

value of II:F(G, {f /<dS)11 is. the betl<'r the system performance- is. Hence, the best achievable

performance of sampled-data control systems (or the best sampled-data control

performance in short) with respect to a proyided G and (r.S. H) is expressed as

z(1)

Unlike the case of a continuous-tillle control system. it is possible that this value is infinite.

In other words. there is a case t.hat thNe exists no discrete-time controller J(d E !Cd that.

iuput-output stabilizes the system.

For an input-output. stable sampled-data control system, a lifting-based transfer function is

well-defined for each of the 25 operators above.

Proposition 3.24, For all input-olltpllt stable sampled-data control syst£'lll, each of the 25

op£'rators that \v£,re used to define inpur-outpllt stability has a lifting-based transf£'r fllllcrion.

Moreover, tiler£' exists 0 < p < 1 sllch that th£'se 25 lifting-based transfer fuuctiolls together

",ith S(z), f/(z) are analytic in lDip .

For its proof. see Appe-ndix E. 131' this proposition. each of these 25 lifting-based transfer

functions bclougs to either 5)L'. 5)F ' 5)'r. or 5)= depending on its function type.

Let us formulate a sampled-data control system considered in Section 1.1 into the standard

form.

Example 3.25. In Exanlple 1.3, robust stabilization by means of sarnpl£'d-data control was

considered. The diagram of the considered system is redrawn in Figure 3.6. (This is esse-ntially

the same figure as Figure- 1. (b).) Here-. P is a continuous-time operator having a continuous­

tim£' state-space representation: \\' is an operator such that PIt' is a continuous-time operator

having a continnous-tim£' state-space representation: F is a bounded continuous-tim£' operator

having a strictly prope-r continuous-time state-space- representation. This P stands for a plant

to be controlle-d; W is a weight. to express how the- amount of unee-rtainty inclutkd in the- plant

model de-pe-nds on the- fre-tjuency; F stands for an auti-aliasing filter. Suppose- that ,t typical

sampler and hold are- chose-n here-, that is. the- ickal sampler S~d and the- zero-order hold H~o

both having the- sampling period r. (Se£' Examples 3.3 and 3.6 for definitions of these devices.)

Figure 3.6. The- system eonsidere-d in Example- 1.3. The £2-indueed nonn of

the ope-rator from w(l) to z(l) should be- reduct'd for robust stabilization of this

sys1<'IlI.

[t is desire-d to minimize- the £2-indueed norm of til(' operator from w(l) to ::(/) for robust

stabilization.

\'o\\'. let us formulate this robust stability probkm iuto the standard configuration iutro­

dm'ed above. This is aellie-\'ed by putting a g£'ue-ralized plant Gas

and ddining a sampler 5 to be ~dF and a hold H to be J-/~o. Th£'n. since 5 = S~dF is a

regular sampler and 1-I = H~o is a regular hold by Examples 3.3 and 3.6. the triplet (r. S. 11)

is a sampling environm£'nt. The ope-rator from U'(I) to z(l) is expr£'ss£'d by :F(G. H J<dS),

The-rdore, the best aehi£'\'Hble p<'rforJuanee in the- sense of robust stability is £'xa('\I~' £'qual to

infKdE"-d II:F(G. H I<dS)II. that is. the- best achie-\'able pPrformance iu the standard configuration.

o

III general, a system is calle-d a multirate sampled-data control system if each of a

sampler, a hold. and a discr('\e--tilne controlle-r works with its own lime- period and there- is not

neeessarily oue unifie-d sampling period. l3y adopting the- least common multiple of the periods

of the- sampler. the- hold. and th£' discrete-tim£' controller as the ullifi('(1 sampling period. we can

r£'gard a multirate ,.,ystem as a usual single-rate sampled-data control s~·stem. In this ease-. th£'

sampler and the hold are int<'rpre-ted to have g£'neral functions iu tll(' se-nse that the-y produee

and receive- multip!£' discre-\('-time signals in one- sampling p<'riod. See- [63, :>8. 6. 11. 67.43.33]

for earlie-r results on Illultirait' sampled-data control systelJ1s, and see [93. 21, 811 for their

lifting-base-d treat llH'llt.

Some- t~'pe-s of multirate- samp!('(I-data control s~'st£'ms ean be- tre-ate-d ill our framework.
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Example 3.26. III th~ "yst~m in Fil\llt·c 3.6. rcplacc thc i(kal sampkr S~" by th~ tnultirHI~

samplcr S~" consi(krcd in Exampk 3. I. \\'hilc t hc idcal samplN S~d sampl~s tl1<' input signal

only at 1 = leT. this sampkr S~" sampks it also at 1 = (Ie - l/2)T. In otl1<'r words, this sampl,'r

S~" works wit h thc pcriod T /2. Sinc,' Ihc included hold H~o and the dis(Tete-timc con troll('\"

[(,I have the period T. this system has two different time periods inside. Accordingly, this is a

spccial cxamplc of a multirate sampled-data cont rol systcm. In particular. this system brlongs

to a "pecial class of multi rate systems called tll'o-dclilol' con/rol systell/s and is known to havc

some intcrestinl\ properties 167]. By put ting S := s~mF and following Ihc procedlll"c of the

previous example, wc can formulate this system into tl1<' standard form again. 0

till' saluplcd-da/a C011/rol/"r 11 /'d5 can bc ,'xpr('sscd as [f' [<:,5' so thaI I,~ is 'I dis<Tclr-IiIIlC

conlrollcr /;('longing to A:.d and 5' awl H' au' a regular sanlpkr and a regular hold. r~speeti\·cly.

whose kemcl functions I",,'" non7,cro valul's only in [0, T).

Proof. Oy assulnption, cach of J<d, 5, and f-{ has its liftini\-bascd slatc-space reprcsentation.

\Ioreover, the Iifting-bascd state-space rl'prcs,'ntation of 5 is stricti,' proper. Thi" illlplics

that thc samplcd-data controller II [(d5 has a lifting-bascd state-spacc rcprc"cntation and it ;"

strictly proper. Specifically. llJ(d5 has a Iifting-bascd transfer function of thc fortH

C(zJ-A) '[]=C{I+(zl-A) 'A}z 'B,

where A is a matrix. B is a Bat operator, and C is a tall opcrator. :\ow, dcfine a dis(Telc­

tinle opcrator [<I' a samplcr-type operator 5'. and a hold-typc operator HI b,\' I\i"ing their

lifting-based transfcr functions as

Then. it is easy to see that l\'~, 5', and fJI arc the dcsired opcrators.

Example 3.27. In thc system in Figure 3.6. replace nol only S~d by S~" but also the zero­

ordcr hold F-l~o by lhe multirate hold fJ~''', which was considered in Example 3.9. The resulting

s,'sl<'1ll is anothcr example of a multi rate sampled-data control systeUl because a sampler and

a hold work with the pcriod T/2 while a discretc-time controller has the period T. Just as

the preceding two cxamples, this s.vstem can be formulated iuto t.h,' standard form by putting

5 := 5~"F and fJ := Jl;". 0

5'(z):= z 'fl, j{I(Z) = C.

o
Remark 3.28. Let liS consider the sampkd-data controllcr H ]{d5 = H~n,J(d5~"F. which was

obtained in Exampk 3.27. l3y the definition of Jl;", it.s outpllt during the time leT :s t < (k+l)T
is produced from the' output of J(d at 1he time I, = kT. Moreo\"er, the input signal that arri\'es

at 5 after 1 = kT is not sent. to J(d until I = (k + l)T because the kernel function of 5, i.e., !i(t),
is ,'qual 10 zero in t < O. In summary. t.he illPllt signal given to 1I ]{d5 after t = kT docs not

affect the output of H 1\'d5 uutil t = (Ie + 1)T. Ilowe\'er, in a geueral formulation of multirate

sampled-data control systems, it is allowed that the input to fJ J(d5 during h :s t < (k + l)T

is reBect.ed in its output before t = (Ie + l)T [6.41,43.93,21,81). In this sense. our framework

for sampled-data control systems do not co"er gelleral multirate systems. It is considered that

this problem is will be resolved if the kernel function 5.(t) is allowcd to have a nonzero \'aIue in

t < O. Howc\·cr. it is not clear ho\\' we call consistently l'xtcnd our framework in this direction.

This is an interl'sting topic and left as a future research theme. 0

At the cnd of this section, a relationship to the result. of \lirkin and Rotstein 166] is discussed.

In thcir paper. thcy assumed that a sampler has t.he form of (3.2) and a hold is represented

a~ in (3.1). In our tcrtninology, they allowed kernel functions to havc nonzero valucs only in

[0. T). \\'hich means their samplers and holds arc indil'idually quitc spccial compared with ours.

.\c\·crlhcless. the cJa% of salllpll'd-data controll~rs constructed from their samplers and holds

is thc same as our corresponding class. This is a consequence of their main result Theorem 1

and is formall,' stated as follows.

Proposition 3.29. Supposc thill '1 rcgular saIllpll'r 5 Hnd a j"cgular hold J-l ham thcir lifting­

based staw-space reprcsentations alld a discretc-tiIlle controller 1\a belongs to thl' sct Kd. Thcn.

Sii\nificance to dcfine $(t) and l1(t) on [0. (0) rather than 10. T) is not lost bccau"e of this

result. Proposition 3.29 only claims that combination of a samplcr. a dis(Tete-timc controllcr.

ami a hold cau be ('xpJ"('ssed by a combination of spccial devices who"e kerncl functions arc

defincd onl\' au [0, T). 1I00\"l'vcr, in order to analyzc a sampler and a hold themsc!vcs. it is

dcsirable that the,\' can be exprcsscd by a single opcralors. respecti,·el.\', not by a combination

of multiple opcrators. Furthermorl'. it is possible to interpret an anti-aliasing filter as a part of

a sampler only when the kernel fuuction 5.(t) is defined on 10, (0) as Wl' saw in Examplc 3.3.

3.4. Basic Properties of Sampled-Data Control Systems

[n this scction. some basic properlics of sampled-data control system" arc deri\"ed. These

propcrtics arc shown to bc quitc useful in tl](' next chapter. 13.1' applying technical tools such as

lifting-based trausfer functions and their matrix represcntations, wc can obtain thcsc properties.

First, wc present properties of functions bcJonging to t hc set V. I3ccause the keruel fuuctions

of a rcgular samplcr and a regular hold belong to this set. thesc propcrties arc important for

the subsequent analysis .

Proposition 3.30. Supposc thai a function a(t) is an el~mcnt of V and e"a(/) bclongs to

[} ,vith f > O. Write the Lal'Jacc frans[ornJ of a(t) as a(s). Th"n, thc fol/oll'ing prop('rtics

hold.

(a) Th" function a(s - f) belongs /0 Ihc Hardy space re.
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(b) In t II(' half planr Rr s ~ 0, t hr fllnction ii.(.~) conl'('rgrs to zero IIniformly as lsi approacll('s

infini/.I·.

(c) Lrt fJ br an)' bOllndrd closrd srt tllat is contained in thr oprll half planr Iks > -(.
Thrn, thr infinite srrirs I:m 00 la(s + i27rrn/rW cOIll'('rges uniformly for all s E fJ.

Proof. :'iot" thaL the Laplac(' Lransform of ('''a(t) is a(s - () by a propert,' of the Laplac('

transform. Then. PropC'rty (a) immediat('I,' follows from tl)(' equivaknce b('Lween [Z and HZ

stated in Proposition 2.1. 'dorem"Cr. applying Propositiou 2.3 to the HZ-fuuction a(s - f).
obtain PropC'rties (b) and (c). 0

Here, E;'n and E; are as defined in Definition 2.25.

In til(' followillg, d('p('nd('nce on ("'" is not descril",d ('xplicith'. Combining the abov(' formulas

and appl,'ing Propositions 2.26. \\'e obtain that

(SCnHt(''') = S ( f E:"E;',) On (f EiE;) /I
71t 00 I ()l,..

2: f (se;,.)(E:J;nEf)(ti H)
711_ -001- 'JC

I ~ -( i27rm) - ( i27rnl) -( i27r11l)= ~!'i s +-- Cn 8 + H s + .
T m=. 00 T r T

In a sHmpkd-data eOlltrol systelll, an opemtor cOIn position SC2Z J-J is a discrete-time oper­

ator sincr its input and output arc discrete-time signals. This operator has the next important

property.

ll(s-~)
Jl(.~)

ll(s+~)

o
On(09-;~W)

OZ2(S)

On(S+;~)

Tlw next r('sult of ours is about til(' lifting-bas('d transfer fllnction of F(C. H !"dS), which

is th(' closed-loop op('l'ator mapping wet) to z(l) in Figur(' 3.3.

Theorem 3.33. Fo!' a provided sanlpkd-data cOlltrol s."stem, choosp 0 < Po < 1 so that S(z)
and lI(z) arc anal)'/;,' in [»po' COllside!' a dis(,/,('te-tinJ(' opera/a!' f(d(I - SC22 H f(d) 1 and

wri/(' it as Ld . Finally. let s be ;1 complex number such that (i) ther(' holds (''' E [»Po' (ii)

the discrete-ti1lle trallsfer fllnction of Ld . i.e.. Ld(z). is allal,,·tic at z = ('S", and (iii) 1l01l(' of

s + i27rrn/r. III = o. ± L, ... is a pole of 0(8). TII('Il, we hav('

,_ 1- - --
E:J'(C. H lI'dS)("")£; = Gil (s..,)Dm e + r Cdsm)II(s..,) Ld (e'").2(se)C Z1 (Sl). (3.11)

wl1('l'(, 8 m := S + i27ffn/r.

o
f S(s + i27r'tn) On(s + i27r1n) ll(s + i27rm).

T
m

oo~ T T T

This hdps us to IInd('l'stand the ess"nce of the proof. How('\'er, it ('an not be it rigorolls proof

of Tlipor('1lI 3.31 b('(';tlls(' convergence of th(' spries is (r('ated in a Imive way. 0

Remark 3.32. Using matrix repr('s('ntations discllssed in SlIbsecLion 2.4.4. tli(' procedurp of

the ahov(' proof can b(' ('xpr('ssed as follows:

Each infinite scrips above converges strongly. In particular, t hp last series convergl's also ahso­

lute/yas a matrix seri('s ]",caus(' Ozz(s + i27rIlL/r) is uniformly bounded for an,' int('g('l' III and

each of ~(s + i27rrn/r) and Jl(s + i27rm/r) is squar(' slIllllnab\(' 'L'i a sequ('nc(' in(kx",1 by IlL b,'

Proposition 3.30 (c). D

(3.9)

(3.lOc)

(3.lOa)

(3. LOb)

(SC ,)V( ST) _ 1 ~ 5-(' i27r'ln) C- (. i27rrn) -:-f( i27rrn)22Jf e - - ~ _ s + -- 22 S + -- L s + -- .
T Tn -(X) T T T

Theorem 3.31. Consider a saillp/ed-data control syst('ln in Figllre 3.5 and let 0 < Po < 1 br a

nllmber slleh thM S(z) alld /f(z) are analytic in [»po' i\[oreOl'CI', let s !J(' any compiC'x nlllll/Jer

such tlJ<lt CST E [»Po and none of s + i27rIll/r. In = 0, ±1, .... is a pole of 022(S). TheIl, there

holds

\'ot(' that such a number Po always exists by Proposition 3.13. The formula (3.9) is known as a

co!U;equence of an impulse modulation formula and is used as a basis of sampled-data systellls

analysis in 14.3.31. for example. In [12]. this formula is called a key sampling formula and is

proven rigorously. Howe"er, in '.1,3,51. the complex number s is restricted on tl)(' imaginary

axis. Besides. the proof in [121 requires the assumption that R,' s is larger than the real part

of any 1'01(' of On(s). Th('orem 3.31 holds without such assumptions and this fact is ('ss('ntial

wh('n this tl)('or('1ll is appli('d in the proof of Th('or('rn 3.34, which is the main r('sult of this

chapt('r. (Another proof, which is mor(' genC'ral than that of [12]. is found in [711 though it

treated only the ca~e that the id('al sampler and the zero-ord('r hold are equipp",!.)

Proof. \'ot(' that Proposition 2.24 implies ( CnHt('ST) = S(eST)On(eST)H(e"). By the

assumptions on s, Propositions 2.28 and 3.18 can b(' applied and the followillg formulas are

obtained:
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If th<' larg<, opNator F(C. 111,'(5)(<,ST) is r<,pres<,nled in the matrix form of (2.6a). tlw abov<'

quantit.'· E:"F(C. fI "'(5)(~ST)EI corr~sponds to th<' (m, f)-block of this matrix. In th<' casc'

that sis n pllr<' imaginar.,· nnmher, th~ formula (3.11) is equival<'nt to th<' on~ ohtain<'d in the

pap~rs of Araki ~t ,d. [-1,3,42, 'II, 5], wh<'r<' sampled-data control systems wer~ analyzed based

on tlwir matrix r<,pr~s<,ntatiom; (or FI1-opNators in th<'ir words).

Proof. Th<' proof is carried out similarly to that of Th~orem 3.31.

;'\ote that

Obtain th~ lifting-bas~d transfN functions of th<' both sicks. Then. by the assumptions on 8.

the values of th<' functions G,,(z). G I2 (Z), H(z), Ld(z). S(z), and G21 (z) ar~ bouuded op<'rators

at z = CST. ThNcfore. it follows that

are all boul1cl<'d. Sometimes, a continuom;-time controllPr It is requir<'d to he chosen from a

subset of /C. The set /Co is one of sllch subsets and consists of continuous-tim~operators havillg

stricUy JlI'OJlCf contitlllous-time statc'-space reprc'sc'ntations and consistent dillH'nsions with C.

wet) 1z(I).
bet) yet) b(l) C

5 p~~-
[(I) yet)

I(
-:oa(t)

aCt) u'(t) y'(t)

(h)

Figure 3.7. Standard configurations of (a) a sampled-data control systelll and

(b) a continuous-tilll~ control system.

lu tlw follow'ing, w<, omit the d<,p<,ncl<'nce on CST. Apply E;'n and E; on both sid~s of th~

abO\'e <,quality. :-'loreO\w, us<, Proposition 2.26 and substitute (3.10). Then, it is obtained that

Our final re,mlt in this sect ion is ahout a relal ionship between a sampled-data control system

and a continuous-time control system. which was considered in Section 2.5. This theorem was

first obtain<'d by Oishi [721 (whose contc'nts wer<, publish<'d as [77]) with restricted to a special

case. It is a powerful tool to compare the best sampled-data control performance with the best

continuous-t ime control performance and works as the basis of the analysis in the next chapter.

Let us briefly review a continuous-lime control system. In Figure 3.7, a continuous-time

control system is depicted compared with a sampled-data mntrol system. (Figure 3.7 (a) is the

same as Figure 3.5 and Figure 3.7 (b) is the same as Figure 2.2.) A continuous-time control

sy'stem is composed of two continuous-time operators C and f{ as is shown in Figure 3.7 (b).

The operator C stands for a generaliz<'d plant and is assunl<'d in th<' same way as in a sampled­

data control system. TllP operator f{ is a continuous-time contro''''r and is assumed to be an

dement of the set /C, that is, th<' s<'t of continuouIi-time operators having continuous-time state­

space repr<'sentations and consistent dillleusions with C. A continllous-tim~ control system is

called inpllt-output stable if the nine operators mapping wet), bet), aCt) to z(t). yet). u'(t)

:"ow the result is stated.

(3.13)

(3.12)

E~,FE;

EoFE;
E;FE;

E',FEij
EijFEo
E;FEij

E',FE',
E(iFE~,

E;FE' ,

An int<'rpr~talion of Thc'or~1II 3.34 is ali follows. Regarding the closed-loop op<'rator of

the salllpled-data control s.vstelll, i.e .. F(C, HI(dS), consider its lifting-based transfer function

F(C. H 1'·(5)(z). \\'<, can writ<' its lIIatrix repr~sentaliol1 at z = e" as

(a) The continllolls-Iillll' control s.l·stell/ ('onstructed by C and I'"j in th~ configuration of

Figure 3.7 (b) is input-outpllt stable for ~I-cry j;

(b) Th~ closed-loop transfer fllnctian of th~ cOlltillllous-t illl~ cOllI raJ s_I'sle/1I abo\"('. i.e..

F(C. f(j)(s), conv('/'g~s as j -> (Xl to the fllnctioll

uniformly far any l1e s ;::: o.

Theorem 3.34. 511ppos(' that an input-outpllt stabl~ .,aHlpJc<cl-clata cont rof syst~ll/ depiCl~d

in Figure 3.7 (a) is provid<'d. L<'lns IITite a dis('ret('-tim~ operator I,'d(l - 5Gn " f(,!l 1 as L".

Theil, th('r~ exists a seC/llellce of continuOlIs-tillle ('ontl'OlI~rs {1(j}~" f\j E "-0, that satisfies

the follo"'illg cOlldit ions:

o

E:J'"(G. ffl\( 5 )(eST )E; = E:nG"E; + E:',G'2 ( f: EjEj) IndS ( f: EkEk) G2,E;
J=-OO k_ 00

= G,,(Sm)Dml + ~GdSm)1l(sm)Ld(eST)S(st)G21(St).
T

:"ow the proof is completed.
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follo\\"ing the form of (2.6'1). lIere, F is a shorthand for F(C.I[ l\d5)(e"). \Tow. let us write

th(' function in (3.12) as 8(8). Th('n. from (3.11). it follows that

Extract th(' diagonal blocks of (3.13) and coustruct a new infinite matrix. This matrix satisfies

0 0
E;slFEs, 8(09 _ i~~)

EJFEJ 8(09) . (3.1~)

EfFEf 8(09 +~)

0 0

Lemma 3.35. A [lIlIdioll Q(s) be/ollgs to / he set All MId Q(oo) = O. ifalld 0111,1' if t}J('re exists

a [lIlIc/iona} seqllellce {Q)}j " Q) E RHoo , tllal satisfies QJ(00) = () illld IIQ - Q) 1I11~ -+ II as

] -+ 00.

Proof. Proving the "if" part is easy. L('t ns consider th(' proof of t he "only if'" part.

Since Q E All' Proposition 2.7 implies the ('xistence of a seqll('nce {Q~}j" Q~ E RH
oc

,

that attaills IIQ - Q~II11~ < 1/2j for j = 1,2, .... Since Q( ) = 0, we can find f2J > 0 [or each

j so that u{Q(iw)} < l/elj for any Iwl ;:::: f2j . MoreOlw, if we define QJ(s) := Q~('~)/({\)s+ 1)

using a small ('nough (\J > O. we call attain u{ Q~(iw) - QJ(iw)} < 1/2] [or allY Iwl < [2)"

Then, in fact. \\"(' can show IIQ - Q)II11~ < Ifj. Since Q) E RHoo and Q)(oo) = O. this

means that th(' proof is completed. In order to sho\\" IIQ - Q)II11~ < Ifj, snppose th(' case of

Iu'l < flJ first. In this cas('. there holds

That is, 8(8) intNpolat(·s th(' diagonal blocks of the matrix r('pres('ntation of F(C, If 1\·d5)(e").

Now. consid('r the matrix representation of F(C, I\J)(e·"). Sinn' F(C, KJ) is a continllons-time

op('rator havinf', a contillllolls-time stat('-space repn's('ntatioll, Proposit iOIl 2.28 implies

o

1 I
u{Q)(iw)} < u{Qj(iuJ)} ~ lu{Q~(iw)} - O'{Q(iw)}1 + O'{Q(iw)} < 2] + I]'

(3.17)I ( 1 1) Iu{Q(iw) - eJJ(iw)} ~ a{Q(iw)} +u{Qj(iw)} < 4) + 2] + 4j = r
It is ckri\wlthat

1 1 1
u{Q(iw) - QJ(iw)} ~ O'{Q(iw) - Q~(iw)} +u{Q~(iw) - Qj(iw)} < 2j + 2j = j (3.16)

N('xt, snppos(' Iwl;:::: [2)" Th('u, \1'(' hav(' 100{Q(iw)}-0'{Qj(iw)}1 < 1/2]. Note that u{QJ(iw)} <
O'{Qj(iw)} by definition. Th('refor('.

(3.15)

o
F(C.I\'J)(o9 -~)

F(C.1\j)(o9)

F(C. [\J)(s + i~~)

Since Theoreln 3.34 claims that. as j -+ 00, the fuuction F(C. [\'j)(8) approximates 8(s)

uniformly in He s ;:::: O. the matrix (3.15) conv('rges to (3.14) nniformly. Let us summarize this

intNpretation. Theorem 3.34 claims that there exists a continuous-time controller sequence

{I(J} such that F(C. 1\)(e") approximates F(C. H f\'d5)(e") in its diagonal blocks.

It is conjectured that 8(s) is a continuous-time transfer function of some continuous-tim('

time-iuvariant operator that optimallv approximates F(C. [-f [(d5) with respect to some norm.

Interpretiug this theorem in this direction is au ilJteresting subject and research is proceeding

in this direction. Se(' [22] for this kind of approximation.

The proof of Theorem 3.34 is given in the next s('ctiou.

Combining (3.16) and (3.17). 11'(' can s('e IIQ - Qjll11~ < l/j. Th(' proof is now complet('d. 0

In ord('r to prove Th('orem 3.3<1. \\"(' need a doubly-coprim(' factorization o[ 622 (8). which

was introduc('d in Opfinition 2.36. That io. obtain ('ight functions .Y..\!. X. \". :V, .V. x.
Y E RHoo such that

6 n (8) = N(,).\!(S)-I = M(~) IN(8),

[X -Y] [AI \"]-N ,V N X = 1.

3.5. Proof of Theorem 3.34

Th('orern 3.34, which plays a key role in Chapter 4, is proven here.

First, we present on(' lemma. !1ecall that All is the set of all real functions analytic in

Res> 0 and continuous in iC+c = {s E iCc : Res;:::: 0 or 8 = oo}. (It \vas defined before

Proposition 2.7.)

Note that 6n (s) cannot ha\"e a 1'01(' at " = 00 b('cause 622 (00) = Dn with th" statP-spac"

r('pr('seutatiou of C. lIence. by Lemma 2.41. it is possible to assume \'(00) = 0 and }'(x) = 0

withont loss o[ g('nerality. Th('n. from Proposition 2.•12, it [allows that a continuous-tim(,

operator [10 E K o stabilizes a provided continuous-tim(' control system if and onll' if ](0 is

represen ted as

(31 )
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usin!\ somp Qo E R7-f.oo such that Qo(oo) = O. :,,[orpoV<'r, dpfine

TI(s) := 0 11 (8) + 0 12 .\1(8)1'(8)021 (8),

T2(8):= Od8).\1(S). Tl(8):= .17(8)021 (8).

Thpn, Proposition 2.40 shows that these three fnnctions hclon!\ to R7-f.oo aud satisfy

with (3.1 ).

Thc' key step of the proof is to show that the function

belongs to All and satisfies Qsd(oo) = O. Suppose that it is proH'n. Then, Lemma 3.3;;

shows existence of a functional sequence {QJ}i=I, Qj E R7-f.oo
, such that QJ(oo) = 0 and

IIQ,d - Qjll1i~ --> 0 as .i 00. :'\ole that IIQsd - QJII1i~ --> 0 means that Qj(8) convergc's

to Qsd(S) uniformly in Res> O. Recall that the functions TI(s). T2 (8), 73(s) arc bounded in

Res> O. Thercforp. T I - T2QJT3 COll\wges to TI - 7"2QsdT3 uniformly in Re 8> O. Ht're, it is

casy to s('('

TI(s) - T2(s)QSd(S)T3(s) = OII(S) + 1 Ods)H(s)Ld(e")~(s)021(S).
7

This is the function that appeared in tht' theort'm staten1<'nt as (3.12). :\Ioreo"er, dt'fine a

continuous-time controller /(J by substituting each Qr j = J, 2, .... into Qo in (3.1S). Then.

/(J be[ougs to K o, stabilizes the continuous-time control system, and satisfies

:\ow the theorem is proven.

In the rest of this section, it is shown that Qsd E All and Qsd(oo) = O.

First. let us provt' Q,d(oo) = O. The proof proceeds by three steps: that is, we show

that first H(s)Ld (eST )3.(s) --> 0 as s --> 00. then 1/(00) = 0, and finally .\1(s) I and fiJ(.~)-1

art' bounded at s = 00. Since a prO\'ided sampled-data control system is input-output stable.

Proposition 3.2-1 ensures that we can choose 0 < p < 1 so that the lifting-based trausfer

functions of the 25 operators in Definition 3.22 al'e analytic in IIJ>p. In particnlar, Ld(z) is

analytic in IIJ>p because Ld = /(d(J - SG22 J-1 /(d)-I is an operator mapping ad[k] to q~[kl in

Figure 3.7 (a). This means that Ld(eST
) is ana[~·tic and bounded iu Re s :::: 0 as a function of s.

Howeyer. we shonld note that this function has an essential singularity at s = 00. On th" other

hanc!. since the kernel functions 5.(t) aud fi.(t) belong to the set 'D, Proposition 3.30 implies

that their Laplace trallsfonns ~(s) and H(s) arc analytic and bounded in Res:::: 0 and satisfy

~(s) --> 0 alld H(s) --> a

as 8 approachc's infinity ill l1e8 :::: O. Therefore. a function H(8)Ld(e-'T)~(.~) is analytic in

Res:::: 0 and approachps zel"O as s goes to illfillity. On the othel' haud. re(';lll that Y(x) = 0

and 1/(00) = O. Sinn' X;\I - F.Y '= I, there holds ,\"(8),\1(S) _ J at 8 = x, which means

that i\1(s) I is bonnded at s = . Similarl~', from the fact that :lix - Xl' '= J. boundedn~ss

of fiJ(s) I at s = 00 is deri,·ed. too. :\ow. it is cas,\' to sec' CJ,d = {I' - (1/7),\1 IHLd.c5},1J I

vanishes a.t s = 00.

;\Iext, it is shown that (2", E Alt. Since the all fnllctions that app~ar in t he definition of

Qsd(S) aI''' real functions, Q"I(S) is real. too. As we saw abov~, th~ function H(s)Ld(eST)S(s) is

analytic in Res:::: O. Therdore. at am' s satisfying Res:::: O. the function (2,,\(s) is analytic or

possibly has a pole when .11(st l or i\f(s) I has a pole there. :\lol'eo\'('r. CJsd(S) is continuous

at s = 00 as is shown above: indec'd, Q",(s) approaches the zero matrix as s goes to infinity.

Hencc. if \\'c can show Qsd(S) has 110 pole in l1es:::: O. we hav~ Q", E All by d~finition. Let us

show this next.

",Vith slight abuse of notation, temporarily I~t th~ symhols N, J\1 ..\'. \', N, Xi. X, Y
denot~ the contilluous-time olwrators whose continuons-time transfN functiolls arc N. J1J . ..

}'. respt'cti\'cly. Th~se eight continuous-tim~ operators arc bonnd~d because their contiuuous­

time transfer functions belong to R7-f.oo
. \011'. consider the op"rator composition

[n fact. each of the four blocks in th~ second operator matrix is bounded. Indeed. the operator

of the (1, I)-block, i.~ .. HI,'dS(1- G'nH[(dStIGn, is ~qual to the operator mapping b(t) to

q(i) in Figure 3.7 (a). which is bounded by th~ definition of input-output stability. Boundedness

of tlw other three op~rators is shown in a similar fashion. Since operators X. L X, Yare

bounded. too. the operatol' composition (3.19) is bounded.

The cxpression of the operator composition (3.19) can be simplified. For this purpos~. nolP

that th~l'e hold the followiug equalities amollg operators: XJ\1 - Y.V = I. fiJx - NY = I.

G 22 = NJ\1-1 = fiJ IS;, and Ld = [(d(1- GnllI(dS) I \\·c' can sho\\' the first three by

the fact that the corr~sponding equalities hold among transfer functions. The last one is

the dc·fillition of Ld. \ 1oreO\'('I' , there hold the identities .\(1 - BA) I = (1 - .-\B) IA alld

(1- ABt' = 1+ AB(1- .. \B)-I for gencral operators A and B. Csing these equalities. we

can deri ve the followi ng:

__ [HJ(dS(1- Gnlll(dS) IGn -H1,'dS(J - Gn 1/ J(d S) I] [Y]
[X Y] (I - GnH J\d S) IG22 -(I - G22 111(d S) I X

= X {II J(dS(1 - G22 H J(dS) I G22 )' - H l(dS(I - G'nlll(dS) I X}

- }' {(1 - GnJlI(d S) IGn )' - (J - GnJ-l J(dS) IX}
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= (XHI(dS - }')(J - G22 I! f(dS) '(GnV - X)

= (hi f(dS - Y)(I - GnlJ f(dS) 'Xj 1(NV - DX)

=-(XHJ(dS-}')(J-GnHKdS) I.V 1

= - {XCH f(dS(1- GnH f(dS) I - F(J - GnllI,'dS) '}.V '
= - {XHLdS - Y(J - GniJl(dS) I} Ai I
= - [XHLdS - F {I + G22Hf(dS(1- G22 HJ(d S) '}] X] 1

= -(XHLdS - Y - YGnHLdS)"j-'

={Y-(XM-Y.VP/'IlLdS}i\i-1

=(Y-AJ IHLdS)jJ-I.

Since t1w leftmost operator composition is bounded. so is thl' rightmost compositiou (F ­
M IIlLdS)i\i-I.

From thl' aboY<' rl'slilt. it follo\\'s that, for an.\' Re.9 ::: 0,

is bounded. The cil'finitions of Eo and Eo werl' givl'n in Definition 2.23. Actually, just as the

proof of Theorem 3.33, WI' can prove that

whl'rl' the symbols .\1, M. Y in the central exprl'ssion stand for functions rather than operators.

Tlwrdore, Qsd(S) cannot haw a poll' in Res::: O.

The proof of the theorl'm is now completl'd.

3.6. Conclusion

In this chapter, a framework for sampled-data control systems was presentl'd. In Sl'ction 3.2,

regular samplers and holds \\'erl' defined in terms of kernel functions. They arl' more general than

tl1/' cOllvl'ntional gencrali'l.l'd samplers and holds because the kcrnel fUllctions of our samplers

and holds are allowed to have nonzero values over [0.00) while the kl'rt!1'1 functjolls of the

com'l'ntional ones only on [0. T). Section 3.3 gave a standard structure of samplcd-data control

systl'ms and pres('nted the notion of samplillg I'nvironments. '''oreover, properties of a sampll'd­

data control system wcre derived in Scction 3.4 as thrl'l' theorl'ms. The first two thl'orcms can

be n'garcil'd as a gl'neralizatioll of alrl',uly known results. From t1w fact that tbesl' generalized

results arl' obtained in a natnral way. WI' can sel' usefulnl'ss of our framl'\\·ork. The last tlworem

c1ainwd that any stable sampled-data control system can bl' approximated in the diagonal

blocks of its matrix representation b~' a sequence of corn'"ponding continuous-timl' control

s.l·stl'ms. This n'sult is iUlporlant in the nl'xt chapt,·r. S,·ction 3.5 gave t he proof of t his last

theorem.

Our framework is gl'nl'ral enough 10 COl'er systems with a large das" of "ampkr" and holds.

Especially. an anli-aliasing filtl'r can be regarded as a parI of H sampil'r. Sincl' we hal'l' some

flexibility on the choicl' of an anti-aliasing filter. it is possibl,' to improve' cont rol performance

by choosing an appropriate filter. This problem is formulated as a de"ign of a "ampkr in

our framl'work. Furthl'rmorl'. it is note\\'orth~' that a sampll'r and a hold arl' treall'd in a

symmctric way hcre. Indced. it is the casc in thc ddinitions of a samplcr and a hold. the lIardy

spaccs of thl'ir lifting-based transfer functions, and their nmtrix n'presentalions, for pxample.

It is considl'red that Ihis fact shows our framework is malhematicall~' natural. This kind of

symml'try is found also in the fran1/'works of [86. 33, 66].

Based on our framcwork. established methodologies for analysis and s.\'Ilthl'sis of sampil'd­

data control systems can be extended to lJIorc genl'rally configured s.l·steIns. III0rI'0\'('r, this

frantework can be a basis to consider more advanced probiPl1\s on sampled-data sys[pms such

as analysis and design of a sampling cl1\'ironment aiming at furthl'r il11prol'ellll'nt of control

performance. Espccially. lift ing-based transfcr functions and thl'ir mat rix reprl'senlations are

considl'rl'd to be strong tools for thcse probkms.
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Chapter 4

Convergence of the Best Sampled-Data

Control Performance

This is th(' main chapt('r of this t1wsis and is d(',·ot('d to inv('stigation on th(' I)pst achi(',·abh'

p('rformanc(' of sampl('d-data control syst('ms. H('r('. tl](' .c2-indnced norm is adopted as a

p('rformance m('asnre. Sinc(' the best sampled-data control p('rformance ,·aries dep('nding on

the' sampling environment, it is possible to impro,·(' it by a proper dlOic(' of the ('nvironlll('nt.

"·hat we consider first in this chapt('r is to rdate a theoretical bound of this improv('ment

with the 1)('51. continuous-time control performance. :'\ext, we obtain a n('cessary and sufficient

condition in order that the best sampled-data control performance converge's to this theoret ical

bound. The condition for the convergence is obtained not only in a general case but also in

special cases, which are of practical importance. The condition in the special eases has a simpler

form ami is easi"r to be tested. This study is motinlted by an experimental resnlt presented

in Example 1.3. where the best sampled-data control performance did not conn'rge to the best

continnous-time cont rol p('rformance even thongh the sampling period approaches zero.

4.1. Introduction

Intnitively, it seems obvious that the best achievable performance of sampl('d-data control

syst('ms approaches that of continnous-time control systems as the sampling p('riod goes to

'('ro. rurthermore, this conjecture forms a basis to us(' a sampled-data controller in place of a

continuous-time cout roller. fnd('('d. Osburn and Bernstein [801 and Trentdlllan alld Stool"\"og'"

[91) prO\·ed correctness of this conjecture in t he case that the control performance is Ill('asured by

the fi2- uorm . i\foreov('r. lIara ct a1. [4:;1 did the same thing in the case that the p('rformance

is measured b.'· the .c2-induced uorm. (Tadmor [861 obtain('d a dosely related result, too.)

However. these results are ,·alid only in sp('cial cases as is s('('n from Example 1.3. Here. let us

recall this example and restate it using notions introdnced in the preceding chapters.
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cut off b\' F appear mostly in the freqnenc~' range higher th,ul the \"quist fr('quency.

a(t)

y(t)
w(t) GJ(t)

1
q,t1k~:t1k! J(d P:t1k~d!kl[ 5 p(t)

: ad[k]

b(t)

(a)

•z(t)

(a) (b) Figure 4.2. Standard configlll'ations of (a) a cont.inuous-time control system

and (b) a sampled-data control system.

Figure 4.1. The systems examined in Example 1.3 for robust stabilization: (a)

a continuous-time control case: (b) a samplcd-data control case.

Example 4.1. l1ecall the robust stabilization problem considered in EXaJnple 1.3. Ilere, a

plant has a continuous-time trausfer function 1/(8 - 1) and its robust stabilization is tried

both with a continuous-time controller and with a sampled-data controller. This problem is

formulated into reduction of the .c2-induced uonn of the operator frolll w(t) to z(l) in each

diagram of Figure 1.1. (Thes" figures are essentially the same as Figul"<'s 1.7 (b) and 1.8 (b).

respecti,·c1y.) Here, 11' is a \\'eight assumed to hm'e a continuous-time transfer function s + 1.

Accordingly, \\·hat we have to do with the continuous-time control system of Figure 4.1 (a) is

to minimizc the norm abovc by choosing an appropriate continuous-time controller f( from the

set K.. Here. K. is the set of continuous-time operators IUl\'ing state-space representations and

consistent input- and output-signal dimensions with P. Regarding the sampled-data control

system of Figure 4.1 (b). minimization is carricd out by an appropriate choice of a discrete-time

controller [,'d from the set K.d • This set K.d consists of discrete-time operators ha"ing discretp­

time state-space representations and consistent input- and output-signal dimensions with t.he

sampler S~d and the hold H;o. Here. the symbols S~d and H;o denote the ideal samplcr and

t.he zero-order hold. respectively, both having til(' sampling period T > O. Their definitions

are found iu Examples 3.3 and 3.6, respectively. A continuous-time operator F stands for an

anti-aliasing filter. and two cases arc considercd for this F. In the first case. F is taken to

be R" which is a continuous-time operator having a transfer fuuction RT (8) = 1/(r8 + 1). [n

the second case, F is choseu as R. where R is defined to be a continuous-time operator whose

transfer functiou is R(s) = 1/(8+1). [n a word. the bandwidth of F is taken to b,' proportional

t.o thc \yquist frequency 7f /r in the first case: it is fix('d irrespecti"e of r in the second case,

Apparently. the first choice of F seems reasonable becaus(' undesirable aliases that should be

[n Example 2.30. 11'(' have spen that our continuous-time control system in Figure 4.1 (a)

can be modified into the standard configuration depicted iu Figure 1.2 (a). (This i, tlw same

figure as Figure 2.2.) Inde('(1. if we put

the ol)('rator from w(t) to z(t) in the original figure is ,'xpl'essed as F(G, J() = Gil +G I2 J«(J­

G22 J() IG21 . The best continuous-time control p('rfonnance is written as inf KE ,,- IIF(G. [\)11.

which is the same as in the standard configuration.

Likewise. our sampled-data control system in Figure 4.1 (b) can be modifi('d into the stan­

dard structure sl1O\\'I1 in Figure 4.2 (b) as was don(' in Example 3.25. (Figure cl.2 (b) is the

same,t> Figure 3.5.) Set G b(' as before. Choose <' sampler S to be S~dRr in th,' first case.

and to be ~d R in the secoud case. Finally, set a hold H as H~o. Theil. t hc .c2-induced norm

IIF(G. HKdS)11 in Figure 4.2 (b) is exactly equal to the .c2-induced norm of the op('rator from

w(t) to z(t) in Figure 4.1 (b). The best sampled-data control performance is expressed as

infKdEK:
d

IIF(G, H J<dS)II. This is exactly what we consider('d in til(' standard configuration.

Figure 4.3 shows the best continuous-tim(' control performance and thc h('st sampled-data

control performance. (This is the sam(' figure as Figure 1.9.) "'e can analytically obtain the best

continuous-time control performance just as in Example 6.1.2 of [341. that is. hy transforming

this prohlem into a model-matching problem. Computation of the I)('st samplcd-data control

performance is carried out by using th" algorithm of [91· The solid lin" stands for the best

sampled-data control performance in the first case 5 = S;I R.,.: The hroken Jille shows the best

performance in the s('('ond cas(' S = S~d R. It is observed that ill the first case til(' best sampled­

data control perfonmlncp docs /lot ('ol1\'erge to the best continuous-time cont rol perfornlauce
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with which thrr(' is no I\ap I",twrrn til(' th('or('tical bOllnd and th(' b('st ('ontinuolls-tilllr coutrol

prrformall('r, thr abol'c' condition is nrcrssary and sllfliei('lIt in orckr thilt 1hr best sampled-data

cOlltrol prrformanc<' cOI1\'erges to the b('sl cOlltiunous-liln,' control p<'l'fonnance for all plants

in this class. Furthermorr. by applyinl\ trdlniques for a model-matching problem, which lI'rrr

introduced in Srctiou 2.6, wr simplify th(' necrssary and sufliC'irnl condition. It is also shOIl'n

that when the krl'llel fllnct.ions of sampler, and holds have sp('cial structllr(,s, Ihe condition

becom('s even simpl('r.

The non-convrrging ph('nomruon such as obsel'\'ed in Example 4.1 was first rrport('d in

[73. 74]. These papers theor('tically clarified the rrason of t his phenomenon with rrsp('ct to a

particular example. It is also prown that the pair of 5~dRand H;o, which arc used in til<' second

rxample of Example ,1.1. guamnters conl'ergrnce of thr besl sampled-data control pl'rformanc('

to the best continuous-time control prrformance for som(' hug(' class of plants. Later. flef('rl'nce

179] pres('nted a dass of systrlJ1s that hal'e a non-converging prop('rty and gal'r a n('crssary and

suffici('nt condit ion for the convrrgen"r in a grneral case. Thr contrnls of this chapter ar('

basrd on Ihe rrsults of [73. 76, 78]. which w<'l'e obtainrd bl' furthrr investigation on this topic,

Recently. Hara 1'( al. rrportrd srveraJ interesting simulation r('sults on samplrd-data control

S\'stems with small sampling prriods. which include a uon-conl'erging phenom('non [46).

0.10.05
Sampling period T

Continuolls-time cOlltrol
2 -

2.2

2.1

1.9'-------~-----'
a

The best achie\"ilble prrfOrJIHlnC'"

2.3 r--S-a-m-pl-r(-I-,-h~,t,-',-co-II-tr-ol---'

with 5 = 5~IRT

Figure 4.3. Thl' brst sampled-data control performance dors not al\\'a.l·s con­

vrrge to thr !)('st continllolls-timr control prrformallce.

rxpressed by thr dot-dash linr, el'en if thr sampling period approacllPs zero. On the other

hand. this cOII\'ergence is accomplishrd in th(' second case. D

This rxample shows lhal onr conjectnre about thr hrst sampled-data control prrfonnallcr

is not always COI'l'(,CI. Sillce this conj('clure is fundamrntal in the usc of a samplrd-data con­

troller. \\'(' have to clarify wh(,11 it is correct and whrn it is not. The sallie example sholl's

that conl'rrg(,IH'r to thr brst continuous-tim(' control prrfonllauce drprnds on the cltoicr of an

anti-aliasing filter. Actnally. from anothrr simulation r('sult, it is srrn that the choice of a hold

also affects th(' conl'erg(,lIce. However, these system componellts havl' never been illl'estigatl'd

frolll this l·il'lI·poinl.

ln thi, chapirr. Wl' first consid('r a theor('tical bOil lid that shows how much we can improve

the best sampled-data control performallce inf KdEK" II.F(C. H J(d5)11 by choosing a sampling

environmc'lIt (T, 5, H), whrre T denotes a sampling prriod, 5 a sampler. and H a hold. Then.

this theoretical bound of the best sampled-data control pC'rformance is compared with the

best continuous-time control performance. It is shown that there exists a gap betll'een these

two in general, which 1I1('ans that sometimes we cannot make the best sampled-data control

performanc(' approach thr best continuous-time control performance no maLter how we choose

a sampling p('riod, a sampler. and a hold. \'rxt. it is consider('d when the theoretical bonnd of

the brst samplrd-data control prrfonnance is allainrd. Xamdy. supposing that a sequruce of

sampling elll'ironmrnts {(Tj, 5J , HJ ) }~l is givrll. we obtain a nrcessary and sufficiellt condition

in order that the best sampled-data cOlltrol prrfonnance for each rnvirollment cOIII'erges to

its tlH'orNical bon lid for all plants. This cOlldition is split illto a conditioll on a hold alld a

condition 011 a sampler and these two arc symmetric to each othrr. If we notice a class of plants

4.2. The Theoretical Bound of the Best Sampled-Data

Control Performance

In this section. we considrr a throretical bound of thr best sampkd-dllta control prrformanc"

and compare it with 1h,' best continuous-time control prrformanc,'. Let us rrvi"II' thr systrms iu

Figurr 4.2. Figurr 4.2 (a) sholl's a staudard continuous-time control systrm introdn('{'(j in Sec­

tion 2.3 and its brst achievable performance is infKEk.II.F(C. 11')11· Hen'. 11·11 is thr .c'-induc"d

norm though its valllr is drfined to br equal to infinity if thr (,I'alullted systrm is not input­

olltpul stablr. Thr srt K. is composed of all continuous-time operators that hal'e statr-space

repr('s('ntations and appropriate signal dimellsions. On the olhrr hanci. Figur(' 4.2 (Il) S!JOII'S a

standard sampled-data control syst('m considered in thr prr\'ious chapter and its best achiel'­

able prrformancr is inf /<"EK" II.F(C. I(J(d5) II· The s"1 K.d consists of all discrete-I ime operators

hal'ing state-space repn'selltations and appropriatr input- alld outpllt-sil\nal dimeusious.

1\ote that tbe best samplrd-data coutrol perfonnance infKdEk.d II.F(G. H J(d5)11 d('pends not

only on a geurralizrrl plant C bul also ou a sampling rlll'ironment (T. 5. H), wherr T is a

sampling period. 5 is a sampler, and j-{ is a hold. By using an appropriate (T. S. H). it is possible

to illlProve thr control prrformance. that is, to nrake Ihe valu,' of inf/<dEk." II.F(C, IlJ\d5)11
smaller. From nOli' OIl. I\'r mran til(' bound of this improl'rll1l'nt by the theoretical bound of

the best sampled-data control performance or simply thr theoretical bound. This cau
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inf in[ IIF{G'. H I\dS)II.
(T,S./I) !\dE,cd

wlwr<' thp I(,[t infimum is taken oyel" all sampling pnvil"onllleuts consistpnt with the providpd

G. (Spp Ddinition 3.19 for the definition of a sampling pnvironment.) Thpn, what prop­

Prty dops this bonnd lun'e'/ Is it equal to th(' best cont innous-time control performance

inf"E .... IIF{G'.I,·lIl? Our task in this spelion is to answer t]wsp qnpstions. \-]prp. we ueed

tlw set Ko, which wa>; dpfin('(1 in Section 2.5 as

Ko := {I(o E K : }(o(oo) = O}

in a word. Ko is a subsl't of I\. and consists of continnous-tillle operators whose continuous-time

transf('r functions arp pqnal to 7,pro at 8 = 00. Rpcall that a continuous-time transfN fnnction

having a zpro at s = 00 is calIPd strictly proper. (S('e Spction 2.3.1.)

Theorem 4.2. POI" an" gcneralized plan! G, thel"e holds

(4.1)

H(,I"(" the left most infimum is tak('n OI'pl" all sampling Plll'ironm('nts (T. S, II) consistpnt lI'ith

th(' gi"en G.

Herp. it is not('worthy that the theoretical bound of thp bpst sampl('d-data control pNfor­

manc(' is not pqual to th(' bpst continuous-timp control pprformanc(' in gen('ral. lud('('d. sinc('

Ko <;; 1\.. Th('orem 4.2 implies

inf inf IIF(G. H /(d S )II = inf IIF(G, I{o) II :::: inf IIF(G. 1\)11
(T,S,II) I<dEIC" l<oElCo I<EIC

and the equality do('s not hold in gen('ral in the last ineqnality. \\'hen th(' rightillost quantity is

strictly smaller than thp quantity in th(' middl(', there is a gap between th(' b('st sampled-data

control performanc(' and the best continuous-tim(' control performance. In oth('r words. the

best continuous-time control performance cannot be recoyered by a sampled-data controller no

matter how we choos(' a sampling environment and a discrete-tim(' coutroller. This recovery is

possible by a sampl('d-data controller if and only if there is no gap. that is,

th('n we h",'p D = O. In a word. a controllPr 1\0 E 1\.0 has no dirpc! fp(,(lthrough t('rm or th('

input of [(0 cannot instantanc'oush' affpct its outpnt.

On tlw ot Iwr hand, a sampled-data controll('l' H [(dS has a similar propprt,·. \\'(' assumed

that Ollt' r('gular samplpr S : P ....., Pd is d('scribed in an integral form:

rkT
Pd[k] = J

o
S,(kT -1)p(I)dl.

Since (i(t) cannot Iw th(' dplta fnnction, tlw inpnt of S ('an not instautanponsly affpc! its ontpnt.

Therefor(', a wholp of a sampled-data. controller H [(,IS docs not instantaneously pass its input

to its output. This similarit,' betll'('pn a coutinuous-tinl(, coutrollel" in /Co and a sampled-data

controlkr is considcr('d to bc a reasou why Equatiou (4.1) holds.

Remark 4.3. Oue ma.I' think that. if we allow (i{t) to be thp dplla fnnctiou. then a samplpr is

allow('d to rpspond instantaneonsly to its input and eventually th(' left-hand side of (1.1) would

become pqual to the b('st ('ontinnous-tiI1lP control p('r[ormancp infI<E.... IIF{G.I\)II· Howp\,pr.

this id('a has somp difficnltips. First. practically, such a samplpr is sensil i\'p to a high-fr('(l'lpncy

noise just like the ideal sampler. (Recall that the ideal sampler has I hc' delta function as its

h'rnel fun('tion.) It is probkmati(' 10 fepd a nois\' spnsor output dir('ctl.\· to such a samplpr. If

wp usp an anti-aliasing filt('r 1)('1'01'(' th(' sampler, then tl]{' instantaneous r('sponse is impossible.

Sp('ond. thporplically. such a samplpr has an infiuite induced nonn and a samplC'd-data control

S,'st(,111 with it n('\'pr cau b(' input-ontput stable in the s('nsp of O('finitioll 3.22. 0

A sn[fici('nt condition for Equation (4.2) to be satisfi('d was given in Propositioll 2.4-1. From

this. we can see that most of plants that app('ar in practical probl(,!l1s satisf,' (1.2), though 1I0t

,til of them. Thp r('sult is sllmmarized as follows.

Corollary 4.4. If at least one of 0 11 (8), 012(8). and 021(S) is strictly proper, then tile theo­

I"C'tical bound of the best sampled-data control performance is equal to thC' bpst continuous-lillie

control perfol"mance, that is.

Thesp rpsults arc understood as follows. By definition, a continuous-tim(' state-space rep­

resentation of /(0 E Ko is strictly proper. That is. if we r('present a continuous-tinw operator

/(0 E Ko : y' ....., u' a.s

inf IIF{G. [(0)11 = inf IIF(G. "')11·
KoEK.o KEK.

:i:{I) = AX{I) + By'(t), x(O) = o.

(4.2)
Example 4.5. Lct us rpcall the systems considered ill Example 4.1. IINP. a geuNaliz('d plant

Gis pro\'id('(1 ''', Gil = O. G I2 = I. and G 21 = PII·. alld G22 = P. Sinc(' Gil is strictly

prop('r. Corollar,' 4.4 ('nsnrps that Equation (4.3) holds in this cas(': in otl]{,I" words. wp can

makc the I)('st sampled-data control pcrformancc cort\'('rge to th(' best continuous-timp control

per[ormancp by choosing an appropriate s('qnpncp of sampling cnvironnH'nts.

[n th(' first casc of Example 4.1, thp sampling ptlVironmellt is s('t as (T. S. H) := (T. S~d nT' H~O).
while in th(' spcoud cas(' it is chospn as (T.S,H) := (T.s;ln,H~O). 1I('\'('. n T and narc
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continuous-time opprators whos(' transfN functions ar(' t/(rs + 1) and l/(s + 1). r('sp('ctin'I,·.

According to th(' ('xperim('ntal r('sult pr('s('nt('d in Exampl(' 1.1. th(' cotl\'('rgpnce

lIere, the right-hand side of til(' abo\'(> equal ion slands for thp (11/. m)-block of t hp matrix

represeutation of F(G.lIl\dS)(e''''T). lIence. the fonnN half of Proposition 2.27 pnsures that

(r --> 0) { ( i27r1Tt)} 0 ,

(J 8 iw + r ::; IIF(G, 11 }'dS)(""")[[I.' ( 1.3)

is 110t accomplished in t 11(' first case whilC' it is accomplish('d in th(> second case. This tIl('ans

that the first sampling ('n,'ironment (7'.5. H) = (r, 5~d nT' rr;O) doC's 1I0t attain tIl(' t1H'oretical

bound

inf inf 1I.1'(C. [-[[(d 5 )II
(T,S,/I) I<"EIC"

as r --> O. wher('as the spcond ('nvironnH'ut (r.5. [1) = (r. 5~dn, H;O) docs attain it. 0

In thp IH'Xt section, we s('('k for a condition in order to eusur(' that a prm'ided s('quenc(' of

sampling pIl\'ironm('nts attains the theoretical bound. \\'(' close this section by gi"ing a proof

to Th('otnn 4.2.

Substitut(' (4.3) into (4.4). Tb('n. since th(' right-hand side of (1.3) do(>s not d<'!)('nd on m.

there holds

inf [[F(C. [,'0)11 ::; sup I[F(C. f-{ [\d5)(""")lk = IIF(G.II 1\d5 )IIf:Ji'
l<oEKo wEt -rr/r,tr/T) ,

Th(' rightmost quantity is ('qual to [IF(C, H [(d5)11 by Proposition 2.16.

:'\('xl. it is prO\'('n that

Proof of Theorem 4.2. First, iC't us prove

For this purpose, it suffices to show IIF(C. H 1\d5 ) II ~ inf/(oElCo IIF(G. 1\0)11 for any (r,5, rr)
and [(d E K:d· If a sampled-data control syst('ttl is not. input-output stable, th(' valu(' of

IIF(G. [-[[(d )11 is infinit(' by definition. In this case, the desired in('quality is trivial. Thus, I('t

us C'Onsider an input-output stable sampled-data control s,·stem. Applying Theor('trl 3.34 on

tbis system. w(' can obtain a continuous-tinl(' controller sequ('nce {I(} }~1' /() E K:o. such tbat

F(c. [')(8) converg('s to th(' fuuction

By Proposition 2.43. the right-hand sid(' is finite. ~Ior('ov('r. according to Proposition 2.15.

inf IIF(C. }\OO)II = inf, IIF(C. [,'0)11·
KooEK:.oo KaEK.a

wh('l'e K:oo is a subsC't of K: defined as

Koo := {/(oo E K: Koo(oo) = () with multiplicity [\\'0 or more}

in S('ction 2.5. It is possibiC' to choosC' /(00 from K oo so that IIF(G. 1\00)11 is arbitrarily dose

to tbe above infimum. TherC'fore. thC' desired inequality is pron>n if we can find a sampling

C'1l\'ironmC'nt family {(r. 5T> HT ) }T>O and a cont roller family {["d,T }oo, }'d,T E K:d . such that

uniformly iu R(' 8 ~ O. lIere. Ld is a discrete-tittle operator defill('d as [,'d(J - 5Cn IJ /(d) I

Let us write tbe function displayed abm'e as 8(s). Th('n, we bave

Her(', the first inequality follows from /() E K o• and tbe second equality from tbe rplationship

b('t\"('('n thf' .c2-induc('d norm and th(' rico-llorJn (Proposition 2.4). The third equality is ob­

tained from uniform converp,('nce of F(C. }"j)(8) to 8(8). i'\ow. as we ha\'e noticed just after

Th('ol'('m 3.34. this function 8(09) is related to tl](' matrix l'('prespntation of F(C, H [(d5)(e·'T),

that is. there bolds

(r --> 0).

In th(' following w(' do this.

Th(' basic idea of the proof is borrow('d from tl)(' proof of Theorem ..t in [18]. Let J{oo

be any operator in K oo . \\'e can assume that the coutinuous-time dosed-loop s~'stem made

of G and I,'oo is input-output stable because we arc interest('d in this case only. Defin(' R"

to be a continuous-time op('mtor whose transfer function is {l/(s + 1)}}", whNe J" is the

1/ X II-identity III at rix. Then. since /(00 E K oo , /(00 can h(' ('xpress('d as n"" /(, R'" with

sOll1e [(I E A:-. The r('sulting syst('m is shown in Figure ..t. I (a). O('fine an operator G rer

so that [zT yT bciTr = GrerlwT y~' bTIT in this figure. Sinc(' },', E K:. [,', has a state­

space repr('sentation. Hence. at 8 = 00. K,(09) is ('qual to til(' "D"-matrix of this stat(>-space

r('pr('s('ntation; in particular K, (8) is bounded ther('. From this. we can deri\'(' that C rer is a

bound('d operator as follolVs.

Let us show C rer is hounded. Th(' op('rator G rer is con,posed of nin(' ol)('rators. B('cause

bound('(ln('ss of t!l('se nine operators can b(' pro\,('n similarly. we gi,'(' an ('xplicit proof only ou

(4.4)

inf IIF(C. 1\0)11 ::; lim IIF(C. [(})II = lim IIF(C. }\'})II1i~ = 118111i~
KoE~o J- ]-00

{ ( i2nn)}= supO'{8(iw)} = sup sup 0' 8 iw + -- .
wEt'{ wEI· '/T,'/T) m=O,±I.... r
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l3esides, it can 1)(' shown that

Figure 4.4. (a) Definitio/l of C ce( (b) The feedback connection between C,er

and <P.

where the leftmost infimulll is taken over all samplers and holds under the condition that their

sampling periods are eqnal to T and their kernel functions arc nonzero only ill [0. T). From the

abo"e discussion, Equation 4.1 continues to be "alid (·,·en if the kel'l1el functions of a sampler and

a hold are allowed to be nonzero only in [0, T). Since strict propel'l1ess of GIl (s) is assumed here.

Corollary 4.4 implies that the theoretical bound of the best sampled-data control performance

is equal to the best continuous-tillle control performance. Therefore. his result on the best

achievable performance can be understood as a special case of onrs. 0

by definition. Write K",T := S~··I(III~·'. Then. lI'e hal'e f(,I.T E 1(<1 and IIF((;. H~··I(<1.TS;')I1 --.

IIF((;, 1,'00)11 as T --. O. 0

lim inf inf IIF((;./IK<1S)1I = inf IIF(C. "')11.
,-0 (8,11) l<dEK.d KEA-

Remark 4.6. [n Theorem 1.2. Equation (4.1) re'mains to hold even if wc' restrici the class of

samplers and holds by assuming S E z I!RS:JF' and if E !RS:J~. lIere. S E z I!RS:J F and if E

!RS:JT mean that a sampler S and a hold H hal'e their lifting-hased state-space representations.

respectively (Proposition 3.16). In order to see this. nol(' that the fOl'lller half of Iht, abo\'{'

proof works as il is even if S E z I!RJjF' and fJ E !RS:J~ are assnllled. In thc' latter half o[

the proof. recall that S~' and H; have transfer functiolls in;; I!RS:JF' and !RS:J~. respectiv"'~·. as

were commented before Proposition 3.18.

Furthermore, Proposition 3.29 stated t hat the class of sampkd-dala coni rollers does not

changc' even if the kerJIcl functions ~(t) and ll(t) arc allowed to take a nonzero "alnc' onl\' in

[0. T). Therefore. nnder this restriction. Eqnation (4.1) slill holds.

Here, we like to comment on a result of Tadmor. In [ 61. he consickred an optimal cksign

of a 5alilpler and a hold as well as a discrete-tinle controller assnming that GII(.~) is strictly

proper. :\s a corollar~' to one of his main resnlts. hc gal'c a result about the best achievable

performance (Corolla!'\' 3.1 in [86]). In our terms. his resnlt can be stated as

(b)

-2/1
(a)

the operator from w(t) to bo for instance. Ll'l us write (1 - C 22 R"· /(l/r,) IC 21 =: A in short.

In thc seqnel, we call a poll' ill {s: Res:::: 0 or s = oo} an ullstable po/e. Then. the considered

operator from w(t) to bo(t) is expre'ssed as J'·IR"'A. 13.,' the assnmption that J{oo = R"·KIR",

stabilizes C, the operators R"· /(1 n", rI and .-\ arc bounded. (Recall the definition of inpnt­

ontpnt stability as [or a continuous-time control systc'm, which was gil'en in Definition 2.29.)

Hence. the continuous-timc transfer functioll of A, i.c .. A(s), docs not have au unstable poll'.

Thi, means that (/(IR"'Ar(s) can h""e an unstable pole ouly at the point where {(I(S) has

its unstable pole. Since ](1(00) is equal to the <'O"-matrix of its state-space representation.

](1 (8) docs not have a pole at s = 00. However, if (/(I R'" fl)-(8) has an nnstable pole at some

point other than 8 = 00, so docs (n"·/(IR."'A)-(s) since R"·(s) is invertihle at s '" 00. This

contradict, with bounded ness of n"·](1 R'" A. Therefore. (](I R'" Ar(.~) has no un,table polc.

which means bounded ness of ](1 n",.4.
Define S; := S~dR", where S~d is the ideal sampler whose sampling period is T. As we

saw in Example 3.3, this S; is a regular sampler. :-Ioreover, let H~' be the zero-order hold

such that its sampling period is T and its input signal and output sigua] have the dimension n.

re,pecti,·c!y. This H; is a regular hold as is seen in Example 3.6. By Proposition 3.10. there

holds IIH;S; - R"II--. 0 as T --. O. :'\ow. consider feedback connection betll'een C",r and

[Yo] = [JJ~"S;' - R'" 0 ] [Y]
b 0 j-j~··S;· - R"· bo ' 4.3. A Necessary and Sufficient Condition for the Con-

and con,truct a closed-loop ,ystell1. \\'e write the abo\'(' displayed operator as <P. Figure 4.4 (b)

shows the constructed closed-loop systt'm. :'\ote that C,.r is a bounded operator and <P satisfic's

II<PII --.0 as T --. O. Therefore. the closcd-Ioop system consisting of C'd and cf) is input-output

stable for sufficiently small T. :-Ioreo,·er. it satisfies

vergence

In the previous sectiou. w(' observe that there holds

IIF(C,.r·<p)II--. IIF(C,.r. O )1I = IIF((;. ](00)11 (T --. 0).
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IIF(G. J-l)/(d5))11 = sup IIF(G, f-l)I<d5J)(e;"'TJ)11t.-
WE[-1r/Tj,trj-rJ )

is >lccolllplished for all g('IJe!'Hli%NI plHllts G cOllsislent wil iJ Itl' >lnd "". ollly if 7) cOIlI'erges 10

z('ro as j inC/"C'ilSCS.

(U)

IIF(G. H)J(,15))11 :::: IIF(G, f-ljI<d5))(eiWTJ)IILlw ,,;r,

:::: u{ [~t:~~!: ~t:~~n K=-*·
Theon'ln 3.33 gi"es the l'xplicit formula for E:~FE)w. that is,

where F is a shorthand for F(G. f-l) l(d5))(ei"'TJ). i\ow, Proposition 2.27 daims t hat the valne of

IIF(G. 11) J(d 5)) (ei"'TJ )111. is larger than or equal to the maximum singnlar "alue of an." submatrix

in the above matrix r('preseutation. Therefore. \\'e h""e

E"::'JE"::', E,wJE;t E,::"FE;w
EhwFE'::', Eh'"FE!t Eh'"FE;w
E;'"FEi"'l E;'"FEo'" Ei'"F Ei'"

Using E~~ and E)"'. whicb "'ere introduced in Section 2.4..l. we can represent the operator

F(G.IJ)/(d5))(e;"'TJ) in the matrix form

Proof. Pirst, let us consider the case of II p = n q = ))~ = It;; = I for simplicity. This lueans

that the k('rtwi function of 5) amd J-l) arc s('alar-valnrd. Suppose that G is a plant such that

Gil = 1/(5 + 1). G12 = G2l = l. and Gn = O. If we put 1(0 to hm'e Ro(.~) = -1/(8 + 1), tlH're

holds IIF(G. {(o)1I = O. Hen('e, infKoEk.o IIF(G. 1,'0)11 = o.
:\ow. let us consider sampled-data control of this G undrr an environment (7)' 5)' II)) and

sho\\' that its best performan('e docs not approach zero unless 7) -> O. \\'hen a sampled­

data controller JJjJ(d5) stabilizes G, Propositiou 3.24 implies Ihat the dosed-loop operator

F(G. H)I<d5)) has its transfer function aud this transfer function is analyti(' in J[]Jp for soml'

0< p < 1. Hence. by Propositions 2.1G and the comments precediug it. \\'e ha\'e

Pl'Oposition 4,7. Suppose W(' >If(' prol'ided a -'1''1u('uce ofS>I III plill!f ('III'iroll III ell Is {(7), 5)' H))}'; I'

AssuIJJr t.Jlal. till' dill)(,llsions "" and II" '11'(' (,ollstallt for all (7).5), II)) Hnd l!l(' dilllellsions II;~

Hlld n~ are bonlld('d unifoI'Jnl.l· for >Ill (7),5), II)). TiJell. 11)(' perfOI'Jllance cOIJI'('rgence:

(-16)

in otl10r \\"ords. the theoretical bouud of the I)('st sampled-data control performance is equal to

the best contilluous-t iul(' cOlli rol performance whl'lI a controller dass is limitl'd. By choosing all

appropriate sampling f'uviroumellt, we can make the best sampled-data control performance as

dose to this boulld as \\"e wish. TlwlI. ho\\" should we choose Ihe ellvirollment for this? To state

this problem precisely. we suppose that a Sl'quellce of sampling l'lIvirollments {(7), 5), H))}~I is

providl'd. Because Ihere must exist a plallt G that is cOllsi:;tl'lI1 with all sampling e/lvironme/lts

(7j, 5), H)). the dimensiolls 'lp and nq arf' constant for all ell\·ironments. (Recall that n p and nq

stand for the input-signal dimension of 5) and the output-signal dimension of II). respectively.)

Theil, our purpose in this section is to obtaill a coudition in order to gnarantee the performance

conv('rgcncc:

for all plauts G consistent with this 1Ip alld nq . :\ote tbat, especially for plants that satisfy

(4.2). Equation (.1.6) ensures convergellce to the best continuolls-time control performance.

The reasons to consider this problem arc as follow. The first aud main reason is that nOIl­

cOl1\wging examples sllch as Example 4.1 inspire our theoretical intere:;ts. [ntuitively. it is

obvious that the best sampled-data cOlltrol performance converges to the best contiunons-time

control performance. [t is considered Ihat this cOlljl'cture helped the sampled-data cOlltrol

scheme to be accepted widely in practice. Ho\\"ever. a lion-converging example such as Exam­

ple I. [ tells us that this conjecture is not always correct. Then, we h""e to darih' why such a

nou-converging phenomenon occurs and ho\\" we can a"oid it in order to keep the sampled-data

control scheme being acceptable. Another reason is that such iuvestigation on the performauce

cOI1\'ergence gives one way to appraise existing samplers and holds from an asymptotic view­

point. For instance, Example .1.1 snggests that bandwidth of an anti-aliasing filter should uot

be taken proportionally to the :\yquist frequency though some textbooks say the oppositl,.

Regarding au anti-aliasing filter as a part of a sampler. \\"e can also say that such choice of

a sampler is not appropriate for a good performance. If we can obtai II a coudition for the

performance convergence, we should be able to find inappropriateness of this sampler ,vithout

doing a simulation. Finally. through a cOIl\'ergence analysis. \\"e can sec what is important in

samplers aud holds to imprO\'e the best achievable performance. Such knowledge is believed to

be useful to desigll 'ill efficient sampler and bold for a gi"en plant.

Our first result on tbis problem is a conditioll that the sampling period bas to satisfy for

tbe performance convergence. "'e han' assumed that the signal dimensions IIp and n q (i.e..

the input-signal dimension of 5) and the output-signal dimension of Hj ) arc constant for all

environments (7),5),1-1)). In order to obtain thr following result, we need to further assume

that the dinll'nsions 11~ and n~ (i.e .. the output-signal dimension of 5) and tbe input-signal

dimension of 1-1)) are bounded uniformly for all (7). 5j , H)).
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Hence. their Jifling-based st atC'-span' rC'pTesC'lJlatioIls for each J. TiJC'n, the pC'rfomulIJcC' ('Oll1'C'rw'nc(':

Recall that

If a pro\'ided plant satisfies Equation (~.2). that is,

( 1.9)

( 1.10)

(j --> 00).

(j --> 00).

IIRn
, - HJ 5JII --> 0

IIRn
, - HJ5J --> 0

inf IIF(G.l\oo)11 = )nf IIF(G.I\o)1I
l<ooEK:oo l\oEK:o

Proof of Theorem 4.8. [if] Agaiu, we lise the sct Koo , which \l'as definC'c1 as

by Proposition 2.45.

:\'ow. ,.hoos,' a /(00 E J(oo so that IIF(O.l\oo)11 is closC' C'nollgh to inf"·ooE'-.oo IIF(G./I·oo)lI·

Since /(00 E J(oo, it calJ be dcconlJ)osC'd as R'" /(1 R'" using some 1,'1 E J(. Dl'fine I\d.J :=

K oo := {I(oo E K: Koo(oo) = 0 with ll1ultiplicity t\l'O 01' morC'}.

[\ot(, that the condition given in Theorell1 ~.8 is split into a condition on holds (~.9) and a

condition on samp1C'rs (4.10). It is interesting that these t\l'O conditiolls are s.l·t1Ill1l'tric to ('ach

other.

the abovC' condition ellsures convergence to the best continuons-tilne ('ontrol performauce. This

fact can 1)(' str('ngthl'ued as is statC'd bdo\l'.

Corollary 4.9. Suppose that an ('II\'ironmC'ni seqtlC'nce as in Theorem I. is prrJl'ided. Con­

sider t h(' s('t of all phl/lts G that satisfy «1.2) and ill'C' consistent, \Vith n" alJd "". TheIl. this

I'II\'il'Qnnl('nl SN/uC'ncc gUill'<l1Itees. for auy plant in this set. that the !Jest sampiC'd-data control

pcrformil1lCe inf KdEK:
d

IIF(G. H J/(d 5 J) II cOIJI'Nges to the !Jest contintlous-timc control perfor­

mance inf KE '-.IIF(G. 1\)11. if and on I.,' if Ihcl'e cxist a sampJl'r sequence {5J}j' 1 and a hold

sl'qucncc {/fJ}';" 1 stich that each 5J and HJ havl' their statC'-space reprcscntation and thel'(,

hold (4.9) alJd (4./0).

lI('re, R" is a continuous-tinl(, opl'rator ,1'I,0SI' continnotls-time tnlllsf('1' function is {l/(.~+ I)}!".

is accomplishC'd for all plilIlts G cOIlsist.C'Ilt \\"itll 11" ilIld u" if alld only if IhC'TC' C'xist a rC'gllJar

sampler S('q II C'Il CC' {SJ} j' 1 ilIlcl a rC'gllJar hold S('qllC'IlCC' { IIJ} j' 1 sllch t ha teach SJ ilIld HJ h",'C'

their state-spacC' rC'/JfeseIlliltions alld there hold

Theorem 4.8. Lei {(TJ • 5 J , 11J)}~1 bl';1 sequl'lJ('C' of sampling I'nvirolJmelJls \Vhosl' dinJ('lJsions

Il" and 11" al'(, constalJt indq)l'nd('ntJy of j . .-\SStllJll' that TJ --> 0 as j -+ 00 ilnd 5J and HJ have

In the sequl'l, WC' do not especially assume that n~ and n~ arC' boun(1C'd uniforml.l· for all

environments (TJ , 5J , I1J ). HOlYl'ver. as is seen frolll Example 4.5, thel' are consi(I<'I'('(1 to be

bounded in many situat ions which arc of practical importance. Hl'nce, in the following, lYe

assume TJ -+ 0 as j --> 00. Proposition 4.7 guarautees that not so much generality is lost

because of this assumption.

If we restrict ourseh'es to the casC' that a sampling period Tj approaches zero and a sampler

5J and a hold I-IJ havl' their lifting-basl'd state-space represeutations, a necessary and sufficient

condition for cOIl\'ergl'nce can b,' obtained. Siuce mauy of practically important samplers and

holds r('quire TJ -+ 0 (Proposition 4.7). allCl also many of t1H'm have state-space repr('seutations

(Proposition 3.17). this rC'sult is significant. Tlecall that a regular samplC'r 5 j has a lifting­

based state-space representation if and only if its lifting-basl'c! transfer function 5J (z) belongs

to z-l!Jtnf. Similarh', a regular hold f-IJ has a liftiug-bascd state-spacc rcprescntation if and

only if its lifting-based transf"r fllnctioll Hj(z) 1)('Iongs to !Jtn~ (Proposition 3.16).

\"otC' that thC' functious ~J(s) and lL(.~) arC' scalar-valued. SincC' thl' second tl'rm of thC' right­

hand sidC' of (4. ) has a rank onC' or less. this maximum singular l'alllC' llIUSt bl' grl'ater than or

C'qllal to

l-i7r/~J+11=li7r/T:+11= 7r2T~T{
It is dear now that IIF(G. HJ /(d 5J) II doC's not converge to ZNO unless TJ --> 0 as j -+ 00.

\"ext. we consid,'r til(' casl' that "I' = n" = 1 but not necessarily Il~ = Il~ = 1. Since

n~ and Il~ are bounded uuiformly for all (TJ , 5J , flJ ), it is possiblC' to find thC'ir upper bound,

say 1/d Thl' proposition is provl'n similarly to the prC'violls case except that we choose in

(4.7) a submatrix hal"ing at least 'lid + I rows and columns. Indeed. the input and olltput of

the discretC'-time operator Ld = [(d(I - 5J G22 HJ /(d)-1 haY(' diml'nsions n d or less this time.

Tll('rl' fore. the second tC'rnl of the right-haml side of (4.8) does not hal'e a fnll rank again. which

enables liS to IISC' a similar rC'asoning.

Finally in the case that 11" # 1 or "" # 1. consider a plant G sllch that the (1. l)-l'lemC'nts

of G,,(s), GI2 (S), G21 (8), and G22 (s) al'l' as above and other elemC'nts arc all eqllal to zero.

This tillie, each E;~:fE~'" is uot a scalar but a matrix. HOII'ever, applying the same procC'durl'

blockwisl'. lI'e can show the claim. 0
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SJ I,', /-IJ. Then "'d,J E "·d. :\Iorco"cr, in a similar WilY 10 t hc lat Icr half of the proof of

Thcorcm 1.2, II"C Ciln shOll" that 11.1"(G, IIJ/(d.JS})1I convcrg('s to IIF(G'. [,'00)11. ;\'011" the "if"

part is prO\·cn.

[only if] \\'e pro"e thc ('xistenCl' of {SJ} only. Thc cxistcnCl' of {I1J} is similarly pro,·ell.

Lct us ('onsidcr the casc nq Sil" firs!. Define G by pulting G" = [Rn, 0]. G'2 = 1""

G2 , = ["p, and Gn = 0. If lI"e pnt 1"0 := [-R'" 0]. thcn IIF(G. /(0)11 = 0 and 1"0 E Ko.

Hence. inf KE,,-IIF(G. 1,')11 = inf KoEKo IIF(G. 1\0)11 = 0 in this case. Therefor<', by assumption,

\\'e can choosc {[{d,}};;',. /(d,) E Kd , so that IIF(G. HJ/(d,}SJ)II---> 0 as j ---> 00. Let us consider

a samp!cr-type opNator [(d,} (I - SJGnJ[JJ(d,J) IS} and write it as SJ. This SJ is an ol)('rator

from a(t) to q;dk) in Fignre 4.2 (b). Hence, it is bounded. Proposition 3.24 implics that its

lifting-based transfcr function 5J (z) ha~ no polc in ][))p for sOllie 0 < P < 1. Furthermore. since

}"(dJ' SJ. Gn , and HJ ha~e rational lifting-based transfer functions. so docs SJ. Finally. since

SJ(oo) = 0. there holds SJ(oo) = O. In summary, 5J bclongs to z-I91.f:J~. On the other hand,

it can bc secn that F(G', Ifj{(d,JSJ) = [R'" 0] - HjSJ, which means II[R'" 0] - flJSJ II ---> 0

as j ---> 00. lIere. collect the first nq columns of SJ and write them as SJ. It is now easy to

sec that IIR'" - HJSJII --+ 0 as j ---> 00 and its transfer function 5J bclongs to z-'91Jj~. This

means that {SJ} is cxactly what we want.

i\'cxt, suppose H" < 1lq S 21lp . Define G by

[n thc "only if" part of the proof of Theorcln 4.8, all thc cOllsid"lTd C's ha\,(' strictl~' propcr

G" '5. This mcans that thcy satisfy (4.2) il('('ording to ('orollan' 1.1. Thcrdorc. cv,'n if w,'

concentratc only on the plants that attaill (1.2). stillll"c can (kri,·c the cxisten('" of {SJ} and

{l-{~} that satisfy the rcquircmellts. D

Remark 4.10. Th(' conditions (4.9) and (1.10) incillde thc continnolls-t imc operators R'" and

R"p whose continuous-time transfer fnnetiollf; arc {1/(8+ I)} In, and {1/(5+ I)} Inp ' respc('\ivcly.

Thcse operators can be replaced by ot hcr operators to somc degr<'c.

First, let U", be any cont inuolls-time opcrator whose coutinnous-timc transfer function

Dnq(s) is ILq X fl q and is llnimodular in R1....C::I(). Il('r(', w(' say 01\'1(8) is lInimodular in 'R.:Hoo

if both 0"'(09) and On'(o9t' belong to RHoo (Dcfinition 2.33). The continuous-tinle operator

having On, (09) I as its transfer function is the operator in\'crse of U'" and is dcnoted by (en,) I

[t is clear that both un, and (un,) , havc boul1dcd .c2-induccd uorms. "ow, uote that

and if SJ is a rcgular sampler ha"ing a lifting-bascd stalc'-spacc !'I'presentation, so is SJUn
,.

Moreovcr, there holds

[
R"p]

G,,:= ° .
aud go through thc pre"ious proccdnre. Then. writing the operator f(d,J{f - SJGnHJ[{d,}) 'Sj
as SJ, we havc

II [~p] - HJSJII---> 0

as j ---> 00. Furthermore. replace G" by

G' ._ [0 0]
J 1,- Rnq-np 0

alld SJ(U n,) I is a regular sampler with a lifting-based state-spacc reprcsentation. From these

facts, it is scell that thcre exists {SJ} satisfyiug IIR'" - fljSJII---> () if alld ani\' if thNe cxists

{SJ} that satisfies III?",U'" - {-{JSJII ---> O. This means that Thcorem 4.8 alld Corollar~' 4.9

remain to hold c"en with Equation (1.9) beillg replaced by

(j ---> 00)

Similar rcplacclllent is possible about Equation (4.10).

In fact. it is possible to further rcplace (4.9) and (4.10) by

and repeat the samc procedure. Pick thc first nq - IIp COIUIllIIS out of the obtained sampler,

and write them as Sj. Thcn, there holds

respecti,·ely. Here. m and 1/1' arc positi"e integers and (R",)m stands for an operator whosc

cOlltilluous-time transfer fUllction is {l/(o9+ l)m}/",. Iu order to show this. consider a subclass

of K t hat consists of a cOUtilluous-tillll' operator h""ing a zero at 8 = 00 with J1Jultiplicit~·

111 + TIl' or more. Thcn. actuall.'· wc call sholl' that thc infimum of IIF(G'. 1\')11 whell l\' ,",nies in

this class is cqual to infKoEICo IIF(G. },'o)II· (It is prO\'en ill a similar way to Propositiou 2.45.)

as J ---> 00. If wc put SJ := [SJ Sj], this SJ satisfies all the requiremellts.

The proof is similar in thc casc of 2n
"

< nq .

Proof of Corollary 4.9. Thc "if" part directly follows from Theorem 4.8.

D

I[(R"')"'U'" - HJSJII ---> 0

lIU"p(R"")'''' - HJSjll--+ 0

(j ---> (0).

(j ---> 00).

(4.ll)

(4.12)
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Therefore, lI'e can mimic til(' proofs of Theorem 4.8 and Corollan' 4.D replacin!'; Rn, and Rnp

by (R".)'" and (R"')"" and finally obtain the eqnations

II(R"')'" - l1)SJII --+ 0

11(R',p)m' - HJS)II--+ 0

(j --+ (0).

(j --+ (0)

4.4. Simpler Conditions for Convergence

In Section 4.3, we prm'ided a necess;Hv and sufficient condition in order t hat the best sampled­

data coutrol performance couverg('s to its theoretical bound. :'\amel~·. t he provided condit ion

is the existence of a sampler s('quenC1' {Sn satisfying Equat iou (I.D)

instead of (I.D) and (4.10). From the pre"ious discnssion. it is cI('ar that these equations can

further be replaced by (4.11) and (4.12). D

(j --+ (0)

and the existence of a hold sequence {fIn satisf~'ing Equation (I.ID)

Example 4.11. Let ns examine Example 4.1 using the results of Theorem 4.8 and Corol­

lary -1.9.

As lI'e sail' in Example 1.5. there holds

One may notice in the above example that the condition for convergence that Theorem 4.8

and Corollary -I.D give is not so ea.,;y to be tested because the existence of {Sn and {fin is

uot always obvious. In the next section. we obtain conditions easier to be tested. is column fnll rank (i.e .. all the columns an' independent) for an." w E l-tr/T),1r/T)).

lIere, /7n is a continuous-time operator whose continuous-tim(' transf('r function is {1/(8+ 1) }In .

The fonner half of the condition is concerned with the provi(kd holds {Il)} and the latter half

is concerned wi th the provided {Sj}.
A problem here is that. iu order to check this condition. we hal'e to find a sampler sequence

{SJ} and a hold sequence {fIn having particular characteristics. This is not an easy problem.

In this section. we try to simplify this condition. The basic idea is to note t hat Equation (I.D)
resembles the model-matching problem considered in Section 2.6 and to appl." techniques in­

troduced there. Then, it is deri"ed that the existence of a samplPr sequence {Sn satisfying

(4.9) is equivalent to tll'O condit ions: one condition implies that th(' IlankPl norm of som(' func­

tion couverges to zero as j increases; t he other condition means t hat the side-band-fn'quency

components of 11) disappear as j --+ 00 in some sense. Corresponding results can be obtained

also on Equation (4.lD).

Snppose that a sequence of sampling environments {(T], S]' [fJ)}~1 is prOl·ided. [n this

section, we put the followiug assumptions on t.his sequence. The first one is about the sampling

periods T{

(AI) the sampling period T] approaches zero as j goes to infinity.

As for t.he regnlar holds Hj we put the following assumptions:

(A2H) the output signal of each hold HJ has a constant dimension lI q irrespect i"e of j:

(A3H) each hold I-I) has a lifting-based state-space represelltation:

(A4H) each hold H] has a lifting-based transfer fuuction iI](z) such that its matrix represen­

tation at z = ('IWTJ . i.c.,

(4.13)(j --+ (0).

This implies that tbere exist {SJ} and {fIn that satisfy (-I.D) and (1.10) in this case. Indeed,

pntting SJ := S~~ R. and HJ := H~:. we obtain (4.9) and (-1.10). Thus. the best sampled-data

control performance converges to the best continnous-time control performauce in this case.

This is consistent with the experimental result.

:'\ext. let us examine til(' first case. There. the sampling environment was (T.S~dR..,.,fI~O).

Choose any sequence of sampling periods {TJ~1 and consider the sequence {(T], S~;IR..,.J' fI~JO)}.

Equation (4.13) shows that there exists {SJ} such that (4.9) is satisfied. au the other hanc!.

since the best sampled-data controljl('rfonnance does uot cOll\'erge to the best contiuuous-time

control performance. tbere should no {fIJ} satisfying (4.10). However, the inexistence of such

{Hn is not clear itself. D

in this case. Therefore, according to Corollary 4.9, if a provided sampling period approaches

zero and there exist {SJ} and {fin satisfying (4.D) and (-1.10). respecti,·el~·. then the best

sampled-data control performance converges to the best continuous-tillle control performance.

Let us consider the second case where t h(' sam pi ing environment was chosen as (T, S~d R, 11~O).

Here, R is the continuous-time operator whose continuous-time transfer function is 1/(8+]). L(,t

{T) }~I be an~' sequence of sampling periods that approaches zero. Then, {(T), S~;I R. /-f~:)}~ 1
define, a ,equence of sampling el1\·ironments. Proposition 3.10 claims
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Corrl'spondingl\·. we requirl' the regular samplers 5) to satisf~' tlH' following assumptions:

(A2S) thl' input signal of each sampler 5) has a constant dimensiou lip indepl'ndently of j;

(A3S) each sam pI('/" 5) has a lifting-hasNI statc'-spacl' reprl'sentat ion:

(A~S) each sampler 5) has a lifting-hased trausfer function 5)(z) such that its matrix repre­

Sf'ntal ion at ;; = ('IWTJ , i.p..

a real rational function .4(z) is called inner if .·\-(z)/\(z) =J. Recall also that a real rational

function .\(z) is said to he outer if ..\('0) is squarl'-matrix-\'alul'd aud det.\(z) '" 0 for any '0

in the set {z : z E ID or Izi = l}. 111'1'1', A-(z) is a fuuction defined as A-(z) := .\(l/z)'. [u

our case, it is important that this iuuer-outer factorizatiou call he obtniued via matrix compu­

tatious though Hj(z) aud f1;"(z) are tall-opNator-valued fUllctions. :'\ext. write t1H' Laurl'ut

expansion of thl' flat-operator-valul'd function zHj"-(z)l?n.(z) iuto t1H' form

zffj"-(z)Rn,(z) = f= Lkz\
k -00

is row full rank (i.e., all the rows arc inckpl'll(lent) for auy w E [~7I"/7),7I"/7j).

By Proposition ~.7. Assumption (A1) has to be satisfied in order that tl](' hest sampled-data

pl'rformanee COll\'erges to its theoretical bound when Wl' considl'r practically important sam­

pling euvironll/l'nt sequcnces. Therefore. generality is not lost so much l'Vl'n if Wl' assume it.

Assumptions (A21-1) and (A2S) arc natural assumptions to ensurc that all thc sampling envi­

ronments 'HC' consistent with a certain generalized plant. TIH' remaining assumptions (A3H),

(A411). (A3S). and (A.IS) are important hl're bl'canse they enab'" ns to appl\" techniqnes intro­

duced in Sl'ction 2.6. :'\l'\"ertheless thl'y arl' mild l'llOugh. Indel'd, many practical samplers and

holds satisfy them.

:'-low. kt us consider the condition on holds, that is, t hl' existence of a sampler sequence

{5J} satisf~'ing Equation (4.9). As for (4.9), there holds

Since 5J is rl'qnired to have a lifting-based state-spacl' rl'presentation in Theorem 4.8, its

lifting-based transfl'r function has the form 5J = z '5j for some 5j E 9'tJjf.' (Proposition 3.16).

Thl'rcfore, l'xistencl' of such {5J} is equivalent to

lIerl', each L k is a flat operator. Then, the lIankel oj>C'rator with the symbol z[f~"-/In. is

L' U La

L2 La L 1

L'! £1 L5

and its induced norm is thl' Hankclnorm of the function zHj"-(z)/ln.(z). which is cknotl'd b~'

II zHjn-W'II II .

;'\Jow. I\"l' have the following rl'snlt.

Theorem 4.12. SIIPPOSl' that a scqlIcl1ce of sampling eJJvironnJCl1ts {(7),5j.H))}~1 s"tisfil's

Assumptions (AI). (A211) (A4H). Then, ilJl're cxists " sampler sCCJnence {5J}j 1 snch th"t

e"ch sampler SJ has " lifting-ba~l'el state-spacl' represcntation anel thl're holels Equation (4.9).

(j -+ 00).

if ,wei only if thc follolVing tlVO conditions ;]I"l'satisfieel:

(j -+ 00). (4.1-1)
(a) IIzHj"-]ln'lIn -+ 0

(b) For an_I' n > o.

(j -+ 00);

conl'crgl's to Zl'1"O IIniformly for allY 1""1 < n as j -+ 00. /-fere. uJ", := w + 271"JIl/7).

Proof. As is Sl'en above, existc'lIc(, of {5J} satisf\"ing (4.9) is cquivalently restatl'c\ as Equa­

tion (4.1,1). B.I' Propositioll 2,49. EqlIalion (4.11) is further restall'd as

In order to sec this, suppose (4.14) holds. Then, if we choose each Sj so that IIRn. -Z-I fl j 5jlllir'

is dosl' l'llOugh to its infimum and put 5J(z) := z- 15j(z), this {5J) accomplishes (4.9). Thl'

COl1\'l'rsl' is also l'asy. too. :\ow. notl' that Equation (4.14) resembll's Equation (2.11), which was

il1\'estigated in Section 2.6. Thl'rl'fore. by application of the techniques there. we can simplify

the prm'ided condition.

l3y Assumption (A.IH). tl](' matrix rl'presentation of a tall opcrator ii)(eiwTJ ) has indc­

pl'lldl'nt colullIns for anv w E [-71"/7),71"/7)). Th"rcfore, following the procedure in Subsl'c­

tion 2.6.1. we can choosE' an inner function H;"(z) and an outer function i'IJ"'(z) so that

H)(z) = Hj"(z)HJ"'(Z) for l'aeh j. This is an inner-outer factorization of H)(z). Recall that (j -+ 00).
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(j --+ x). Hence. d('t 11~'(i",) = 0 if and only if", = O. This nwans thai it is not possihlC' thai all of

Example 4.13. Recall a triangular hold H~'. which was introduced in Examplc 3.. Its kcrnd

function was d('fined as

It is l('ft for liS 10 show (b') is (''1ni''alC'ut to (b). Sinc(' its proof is loug, it is gi,'('u iu Appendix P.

o
111 = n.±I.±2, ..

iuf II!."" - z-'iJJS;IIf)~ --+ 0 (j --+ (0).
flJe:Hf)T L

H('r(', Sj(z) is a fnnction in 9l!jf snch that S](z) = z ISj(z). Th('II. by "irtne of A";lllllp­

tions (A3S) and (A,IS) we can obtain a ("Q-inn('r-co-out('r factorization of 5j(z) as Sj(z) =
Sj'''(z)S;''(z). H('r('. Sj'''(z) is a co-outer fnndioll and Sj"v(z) ,is a co-inner fUllclioll. S('(' S,'c­

tiou 2.G for th(' d('finitions of tbese terllls. Pinally, I('t IlzR"'Sj"-1I11 b(' th(' 1-laukC'i norm of a

tall-op('rHlor-"alued fuuction zk'p(z)sj"-(z). TIH'n. IIsiug Proposition 2.50 w(' can obtain the

next r('sult.

A similar discussion is possibl(' about the condition on salllplC'rs. tbat is. tb(' ('xistcnc(' of

a hold s('qu('nc(' {lin satisfying (4.10). Just lik(' the cas(' of tb(' condition on holds.

r('writ(' tb(' abO\'(' condition in the fr('qu('ncy domain as

and L~;_ AI Il~'(iw",)'Il~"(iWm) cOllv('rges to L~~-oo H~"(iWm)'11~'(iwm) as JI! --+ 00 uniformly

to j.

Th(' abQ\'e r('sult lll('ans that. for our enyironm('ut s('quenc('. there cxists no {SJ} satisfying

(4.9). [n other words, if a triangular hold H~' is us('d in a sampl('d-data control systpm. no

mattN what a sampler wonld be. thcrp exists a plant G such that the h('st samplC'd-data control

pNforIllalH"(, docs 1I0t converg(' to its theoretical bound. 0

As is s('('n ill t hp abovc ('xample, t('sting Condition (b) is ,'asily don(' hased 011 I h(' k('rnC'i

fllnction of a hold fir Sinc(' (b) ils('lf is a necessary cOlldition for th(' cxistenct' of {SJ}, if (b)

is not satisfied th('n there a!lYays ('xists G such that th(' best sampled-data control pNformance

dol'S 1I0t converg(' to its th('or('tical bound whatevcr the IIsed sampler would h('. Condition (a) is

more complicated tban (b). However. since tbe HallkC'! II 0 rill can be computed tbrougb matrix

calclllations, its [('sl is not difficult.

-"( i2:m),det fIT iw ,

arc equal to zero simultam'ously.

;\ow. let us apply Theorem 4.12 10 this environnH'nt sp'l"ence {(7], 5], I/~;·)}. Eqnat ion ( 1.17)

implies

I _" ( i21f7n) iW7 + i27rllt - 1.+. e ;..>T
J {2.

1
I for III = n.-H i",+ =] /--+

7j -T
J 7] (iw7J + i27r'11!)2 '2~'" 1 for In # 0

as j --+ 00. Tlwrl'fore, thc quanlit,' (4.15) COII\'C'rges to a nOIl%('ro value. I-lC're. th(' ordN of

summation and limitation is cOII\·cIt('d. This is allowcd b('callsc thp quantity (1.\5) is ('qllal to

(4.17)

(4.1G)

L IHJ (iW + i2;m) 1

2

m;tO J

f IH
J

(iW + i21fln) 1

2

'

m=-oo 7)

l

{

(1_1)/ forO<I<7,
H;(t) = T -

o for 7:S t.

Let (7)} be any sequeuce of sampling p('riods such that 7J --+ 0 as j --+ 00. :-Ioreover, let {Sj}
be any s('quence of regular samplers such that the sampliug period of S] is 7J for each j. Th('n,

the triplet (7J • S]' H~;) forms a sampling ('nYiroument and the sequeuce {h, S]' H~;)} satisfies

(Al), (A2H) (A4H).

Indeed. it is obvious that both (Al) and (A211) are satisfied. Prom Proposition 3.17. (A3H)

is CO!T('Ct. In order to s('e that (A4H) is fulfill('d, note

Interpretation of Condition (a) is not easy. In a rough sensc. this condition is consider('d to

m('an that the ('[f('ct of uustable /('ros of 11)(8). i.(' .. z('ros iu R(' 8 ~ 0, d('creases as j --+ . This

int('rprC'lation comes from au aualogy with a usual model-matchiug problem on lIlatrix-"alu('d

fuuct ions. Anoth('r reason why we intC'rpr('t so is that an eqllivaiC'nt ('x pression is obtaiu('d for

Condition (a) ill som(' sp('cial cas(' and il, is related to IInstablc 7,('ros. This is discusscd aftN

Th('or('1Il 4.1

The meaning of Condition (b) becomps clearer if we consider the case that the input- and

output-signal dim('nsions of H) arc equal to on('. In this case, th(' quantity in this condition

can h(' written as

Th(' function ll](s) is th(' Laplacc transform of thc kernel function Jij(t). The valt,,'s of

Il](iwm) = Il)(iw + i27rm/7j), "In # 0, ar(' thc fr(''1ucncy compon('nts of Jij(t) at the sid('-band

fr('qu('ncics of "'. ThC'rC'for(', th(' aboy(' "aluc (4.16) aud. in turn. th(' quantity in Condition (b)

express a relativ(' amount of the frequeucy components of Ji)(t) at th(' side-band frequ('ncies

Wen comparNI with th(' on(' at th(' original frcqu('ucy "'. Or one may say that it stands for

the amounl of aliasing ('[fects in the hold liJ . Coudition (b) claims that this amount should

converge to 7,('1"0 uniforlnly in Iwl < n.
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Theorem 4.14. SlljJjJOS~ I hal a SCC/llCIICC of salllpJillg ('llvirollllJ('lItS {(TJ, SJ' HJ)}j 1 siltisfi~s

AssulIlptiolls (Al), (A2S) (A4S). ThclI, th~I"c ~xists a hold S('(lll~IICC {lfnj 1 such that cach

hold lfJ ha..' a lifting-/)a.,~d Slill~-sjJ'lCC J"('pJ"('sclltarioll and thcI"c holds ECJll<ltioll (4.10), that is.

(j ---> 00).

if alld only if th~ two conditions h('loII' al"~ satisri~d:

(a) IIzR"ps;n-llll ---> 0

(h) FOl" allY fl > 0,

(j ---> oc);

COll\'cIgcs to ZCI"O lllliformly for any Iwl < fl as j ---> 00. H~I"~, w'" := w + 21lIll/TJ.

Remark 4.15. As we sal\' ill Remark 4.10. the l'xistcncc of an appropriatc {SJ} and {UJ}

satisfying

Figul"e 4.5. The kl'rncl [unction of thc zl'ro-ordN hold (f~n.

proportionally to TJ as j inCTl'ascs. On thc othcl" hand, suppose that liJ(t) cau 1)(' l'xprl'ssl'd '"

~(t)YJ with ~(t) and ~ bcing as bcforc. In this case. \\'l' call a hold Sl'qucncc {ffJ} a fixed­

type hold scqUl'llcc. This is bccausc t hc shapc of thc kcrnd function liJ(t) is fixed irrcspl'ctil'l'

of j.

and Condition (a) in Theorcrn 4.14 ma." bc replaced by

also guarantccs thc pcrformance cOI1\'crgcnce to thc tbcol"ctical bound. Hcre, un is a cOlltinuous­

timc operator \\'hosc continuous-timl' transfl'r function On(s) is nXn and is unimodular ill rV-loo .

Starting from this cxpressioll, Wl' can obtain diffcrcnt forms of condit ions for thc convcrgcncc

in pla('(' of those givl'n in Thcorcllls -/.12 and 4.14. "anldy. Conditioll (a) in Thcorl'lll ,1.12 Illay

bc rl'placcd by

II(W')"'Un
, - HJSJII 0

IIU"p(R"")"" - HJSjll---> 0

(j ---> 00).

(j ---> 00)

(j ---> (0),

(j ---> (0).

Example 4.16. Rccall a zcro-ordcr hold H;o, a first-ordcr hold JJ~o, and a triangular hold H~'.

which Wl'rc introduced in Examplcs 3.6.3.7. and 3.8, rcspl'ctivl'ly. If \\'l' choosc a Sl'qU('lH'l' of

sampling pcriods {TJ } so that it convl'rgcs to zero, cach of thc hold Sl'qnenccs {l-r;Jn}, {f(~~}.

and {H~;} is pl"oportional-t~·p('. Indeed. with rcspcct to thl' zero-order holds for exam pic. if I\'C

dcfinc

{
r for 0 < t < T,

~(t)= -
o [01" T::; t

alld YJ = J. thcll H~O(t) = ~(t /TJ)YJ. Besidps. noticing FiguI"e -/.5. \\'l' call SC(' that the graph

of its kcrncl fuuct-:I; H~~(t) shrinks proportionally to T]" (This is almost the samc fip;urc as

Fip;url' 3.2 (b).) 0

;'\ow. IYC havc thc following thcorl'ms. Their proofs will be gil'en at the end of this scctiou.

o

Lct us go back to thc hold case. Whcn a hold sequence {HJ}~1 has some special structurc,

t[)prl' is an l'VCIl simpler condition. which is nccessary and sufficient for thc existcncp of an

appropriate {Sn. SUPPO"l' that thl' kerncl functioll of cach hold H J. i.p., liJ(t). can be writtl'n

as ~(t/Tj)YJ' where ~(t) is a fixcd fUllctioll bclonging to 'D elcmcntwise and Yj is an illvcrtiblc

matrix. Hl'n'. til<' sct 'D consists of all rcal functions a(t) snch that c"a(t) bclongs to [.2 for

soml' (> 0 (Opfinition 3.1). In this casco wc call a hold spqupncc {N
J

} a proportional-type

hold scqucncc. This namc comcs from thc fact that thc shapc of thc graph of lij(t) shrinks

Theorem 4.17. Supposc t1wt a prOl"ided sl'quenc~ ofsalllp/ing l'nvironlllcnts {(TJ,SJ·JJJ)}~1

sMisfi~s Assulllptions (AI), (A2H) (A'JH)..\lOl"~OV~I", assuIIJe {l-IJ}~1 is a proportiona/-t.,·pc'

llOJd s~qu('n('('. TlJen. there exists a samplel" s~q1.J('ncl' {SJ}~I such thell each s'lI/lp/"I" SJ has a

lifting-b'lscd stal~-Sp'lel' I"l'pl"l'bentation and IhCl"l' holds «J.9). that is,

(j ---> (0).

if aud only if Condition (b) ;n Thl'ol"elll 4.12 is satisfied.
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Theorem 4.18. Suppose ,hat a {Jl'Ovided sequeuc(' of salllpliug ('nvirolllupnts {(TJ, SJ' Hj)}j I

satisfips As.,uluptious (A1), (A211) (A.III). Suppose also that {Hj}jl is a fixer/-type hold se­

qUpl/('P aud tile kpI'1lpl fuuetion ff)(/) is rppres('uted as '=(1)1';. PurthpI'Iuorl'. assulue lIwt the

input signal and the output signal of H) havp I hI' same dilllPllsiou, thar is. 11 q = 11~, and that the

Lapla('(' trausfoml of '=(1) is a ratioual fuuetiou. Then, tha(' exists a s'l/llplasequeucp {SJ}f-1

such that ""d, sa/llplpr SJ has a lil'tiug-hased stn/e-spacp represeulatiou aud there holr/s (4.9).
if aud only if dpt ~(s) # 0 for an,\' Re s ::::: o.

Example 4.19. Let us consider a zero-ordN hold H~o, a first-order hold H~o. and a triangular

hold H;' again. \\'e ha\'e seen in Example -1.16 that pach of {H~:}, {II~~}, and {H;;} forms a

proportional-type hold sequence when TJ -; 0 (j -; 00). Theorpm 4.17 claims that with respect

to th('sp sequences Condition (b) is necessan' and sufficient for the existence of an appropriate

{SJ}. \\'e ha\'e already secn that, in til(' case of a triangular hold H;'·. Condition (b) is not

salisfipd. Hence, no appropriate {SJ} exists for this hold. As for a zero-order hold and a first­

order hold. Condition (b) is satisfied actually. Consequently, there exists an appropriate {SJ}
for pach of these two holds.

Let us show that Condition (1)) holds in thc case of a zero-order hold H~o. Recall that

According to TheOl'pm 1.8. t he best sampled-data control performance converges to its

theoretical bound i[ and only if there exist a sampler sequence {SJ} satisfying (4.0) and a

hold sequence {fTn satisf,'ing (4.10). Theorem 1.12 claims that in order that such {SJ} exists

it is necessary and sufficient that both Conditions (a) and (b) in the theorem arc satisfied.

\'011'. the claim of Theorelll 1.17 is t hal. when a prm'ided hold sequence {H)} is a proportional

type, only Condition (b) is necessary and sufficient for the ('xistence of such {SJ}. (In other

words, Condition (a) is always satisfied in this case.) This result simplifies a lot checking Ihe

condition for the performancp convprgence. On the othpr hand, when a provided hold sequence

{HJ } is a fixed type. a desired {SJ} exists if and only if the Laplace transform of the kernel

function of p,teh flJ has no unstable zero. This is the claim of Theorem 4.18. In this case, if

we furlher assuml' ~(iw) # 0 for any finite real number w. Condition (b) in Theorem 4.12 is

fulfilled actually. This means that Condition (a) is equivalent to the pxistence of an appropriate

{SJ} and tll('n to til(' no-unstable-zero condition. This is one reason why Condition (a) was

interpreted in connection wit h unstable zeros just after Theorem 4.12.

o

(j -; 00).

Theorem 4.20. Suppose that a provided sequene(' of sampliug puviroulllpnts {(T), S). H))}'j 1

satisfies Assulllptions (Al), (A2S) (!\~S). ,\!oreovpr, assullle {SJ}j 1 is a pro{Jortioua/-t.I'f)p

saluplcr spqupuce. Thpn, th('re exists a ho/r/ se'queuep {lIJ}j=1 such that paeh lrold flJ has a

lifting-based statl'-spaee represeut'ltion and there llOlds (4.10), that is.

if '"1<1 only if Condition (b) in Tlworpnl 4./<1 is s<1lislied.

Theorem 4.21. Suppose tl1at a provided sequenep of sampling pll\'ironIllpnts {(TJ . S), IIJ )}j';,

satisfies Assumptions (AI), (A2S) (A~S). F'urtheI'luore, supposP tlwt { ) lj';1 is'l fixed-typp

s'/lnplN sequence, that is. the keI'1lel function S)t) has tl,e fOl'ln of 1';'=(1). Finally, assulnp

that the input sigmll '/Ill/ the output signal of Sj hal'e the same dimension, that is. lip = n~. and

that the Lap/ace transform of '=(t) is a rational function. Then, \\'(' can find a hold sequence

{HJ}j 1 such that each hold HJ has a lifting-based state-space representation and there holds

(4.10), if and old.l· jf dct ~(s) # 0 for an.\' Res ~ O.

Example 4.22. Let us consider regular samplers ~dR.,. and S~dR. which appeared in Exalll­

pic .1.1. Their kernel functions arc (l/T)e 'IT T and e-'I, respectively. If {T)} is a sequcnce

of sampling pcriods that con\'erges to zero, {S;:I RTJ } is a proportional-type sampler sequence

with Y
J

= (l/T))! and .=(/) = e 'T; {S~~R} is a fixed-type sanlplcr sequence with YJ = 1

and .=(1) = p 'J. Application of Theorem -1.20 to the samplpr sequence {S~~ R~J l shows that

therp exists no hold sequence {fTn satisfying the requirelllent (1.9). Let us spe this. Putting

Sj := S~:I R
TJ

, we have 5'j(t) = (l/TJ)e '/~) T and thus

Ilence.

vVith respect to Theorem 4.14. COIT('sponding n'sults hold. ,\ sequence of rel\ular samplers

{S)}J'=.I is called a proportional-type salllpler seC/uenet'. if the kernel fundion 5')(/) has the

form Y/:o(l/T)), where .=(t) is a fixed fnnction belonging to V elementwise and Y) is an invertible

matrix. Besides. {SJj';1 is called a fixed-type sampler seC/uence, if the kernel fnnction 5')(1)

can be written in the [01'10 of Yj'=(l). where '=(1) is a fix('d [unction whose elelllents belong to

V and Y) arp im'crtible matrices. With this terminology, the following theorems hold.

1-"'( i27fm) l-e ;WT {I forlu=O.
II iw + = 1-;

T T
J T i""T i27f1l1 () for III # 0

as j -; 00. This means that Condition (b) is fulfill('d iu this case.

for 0 ~ t < T.

for T ~ t.
l1~O(t) = {~

Its Laplace transform is com pUled as
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Sinc(' th(' conY('l"gl'nc(' of th(' abOl'(' infinit(' sum is uniform \I'ith rcsp('ct to j. wc cau comput('

thc limit of j --> 00 bl'fore thl' infinite sum. Then. it is sl'('n thai Ihc abol'c quantity convcrgcs

to a nonzero value as j ----t 00.

On th(' otll('r haud, if 11'(' apply Th('or('m 4.21 to thc sampl('r scqucncc {S~dR}, 11'(' can sce

that th('r(' ('xists an appropriat(' hold s('qu('nce {flJ} in this cas('. lncked. sin'ce '::(t) = (' 'I.

ther(' holds ~(s) = {t/(s + 1)}I. which has no z('ro in R(' s ~ O. 0

This implil's

S (i.,; + i21rln) = I I --> __1_ I
-J TJ iWTJ i21rln + 1 i21rl1l + 1

.\ot(' that thl' quantity in Condition (b) in Tll('orl'm 1.14 is l'qual to

u--> (0)

assumed that YJ = 1 withollt loss of g('n('ralitv. First, 1('1 liS sho\\' th(' ('xist('nc(' of 0 < Po < 1

such that Ilflj"(z)lh' is boun,kd IInifortnly for any z E [)Ipo ami any j.

Sinc(' {flJ } is a proportional-t~·p(' hold S(''1UCIH'(,. a function 1I~"'(z) has a similar shap('

irrespcctiYe of j. L<'l us s('(' this. Consi,kr th(' lifting-basNI transfN fUlIction of tIl<' hold

IlJ, that is. lIJ(z) . .lust as 11'(' did I)('fol'<' R('mark 3.12, r('pr('s('nt this HJ(z) in til(' form of

/Ij(z) = I:k~O flJZ-k for ('ach j. H('I'<" /-fJ is a tall op('ralor mapping v E C"~ to a function

which bdongs to £2[0,TJ )"'. Defin(' a r('gular hold IlT · I by s('tting its k('rnd fllnction to 1)('

fI T~l (t) := '::(1). Expand its lifting-bas('d tmnsf('r function IIT=I (z) into a s('ri('s I:~o 11; 1z k

by defining th(' opcrator H; , as

(I/~ ,v)(t) := '::(k + t)v.

Example 4.23. Combining the results of Exalnplrs 4.19 and ,1.22, we can ('xplain th(' simula­

tion r('sults of Exampl(' ~.1 (or Examplc 1.3). which motil"<lt('d this rcs('arch.

In the first cas(' of Examplc ~.1, a sampling cnvironmcnt \I'as chos('n as (T. S~d Hr. fI~O).

Lctting {TJ}f, be am' sequenc(' of sampling pl'riods that conyergcs to zero, 11'(' considcr thl'

sampling c"vironml'nt scquence {(TJ • S~~ RT" H;,O) }j;I' As \I'as shown in Example 4.19, for Ihe

considered hold s('qu('ncc {fI;,O}, th('re ('xists an appropriate sampler scquence {Sn that satisfi('s

(4.9). [[O\l·CI"Cf. according to the r('sult of Exampl(' 4.22. th('rc is no hold seqll('ncc {fin that

satisfi('s (~.10) with thc sampler scquenc(' {S~~ R.,.,}. Hencc. the consequ('nc(' of Corollary 4.9

is that therc ('xists <l plant G with which the Iwst sampl('d-d<lta control performance for ('ach

el1\'ironm('nt does not conv<'rge to th(' Iwst continuous-time control performance as j --> 00.

Our G examin('d in Example ~.1 was one of such plants.

Th(' second case in Example 4.1 dealt with a sampling ('nvironment (T, S~d n, H;O). Choosing

{TJ } as befor(', we consider a sampling environm('nt sequ('ncc {(TJ , S~~fl, fI;:)}. We havc alrcady

s('en that th(' hold s('qu('nc(' VI;,O} has an appropriate {SJ}. :-I01'eover, Example 4.22 says that,

for til(' consid('r('d sampl<'r s('qu('nc(' {S~~R}, th('r(' is a hold s('quence {flJ} satisfying (4.10).

Ther<'fore. Corollary ~.9 conclud('s that the b('st sampkd-data control performallc(, cOI1\'erg('s

to the b('st contiuuous-tim(' control performance as j --> 00 for any plant G in a c('[tain s('t.

Since our plant G belongs to this set (Exarnpk 4.5). the simlliation rcsult of Example 4.1 is

explaincd. 0

Wc conelud(' this s('ction by gil'ing proofs for Thcor('ms 4.17 and 4.18. Thcorcms ~.20 and

4.21 ar(' prOl'('n similarly.

Proof of Theorem 4.17. l3ecalls(' II"{' can I('t the filctor YJ b(' absorbed in lr'j"l(Z), \1'(' can

considcr thilt YJ do('s not aff('ct jj;"(z). Sincc onl~' lr;,,(z) app('ars in Condition (a). it can be

'low, obs('rv(' that

iJ'j"'-(Z)lr;U'(Z) = Hj(z)I\(z) = {~(flJ)'zk} {~/I> k}

= IJH;)* II; + f {Zk f(Jrr l )* H; + z k f(II])* IIJ+!}.
10k 1 1--0 I~O

Since

r'(flr l )* Il; =./0 Hj«k + (h + t)* /-fj(fTJ + t) dl,

= TJ fa' '::(1.: + f + r)*'::U + 1') dr = TJ(i-J~;:f)*Jf;=l'

'1'(' can writ(' llj"'(z) = ..[fj/i~,::\(z). wher(' fr~,::\(z) is an outer factor of lIT= , (z). H('nce, each

of the functions i'll''' (z) . .i = 1. 2, ... , has a sim ilar SIHlp(,. By defi nit ion. lr~,::\ (z) 1 is it rational

function and is bounded in [)I. This impli('s the cxisknc(' of 0 < PI < 1 and 1\1, > 0 such that

a{H~'::\ (Z)-I} < .\1, for z E [)IPI'

By assumption, th('r(' is f > 0 for which c"'::(t) belongs to £2 Csing this f. 11'(' obtain

wh('1'(, the itl('quality . \ :S B mcans that th(' matrix B - .l is positil'(' s('mi-<!dinit('. Sinc('

("''::(1) belongs to £2, the int('graJ in the last expression has an upp('r bound indep('ncknt of

k. Thus, IIHJlh· is bound"d by ..[fj" "-V, where \ - is illfkpl'ndent of 1.:. SillC'(' IIHJ(z)IIT :S
I:~oll}-{jklh'lzl k :S I:~o TJ\'«"lzl) k. 11'(' can find U < (12 < 1 'llid .\/2 > 0 so that

II1\ (z)lh' < ..[fj'\]2 for an~' z E [)Ip,. :\011'. put (10 := max{p,.P2}. Th('l!. for any z E [)leo'
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By (2.12). the llankclnorm Ilzii;,,- flli ll can bl' bonlHll'c1 as

Herl'. / is an arbitrary fnnction in [2[0, T])O, and v is an arbitrary vector in Cn
,. By definition.

IIDIIL, IIClh, and IIBllr approach ~ero m, j ...., 00 whilp ii con\'erges to till' identity. Since

R(z) = 15 + C(z1 -;1) 's, till' \"illue of sUPlzl=p" IIR(z)11L goes to zero as j incrl'ases. l\ow. the

In thl' last exprp"sion, sUP,z =P31Ifl(z)IIL tends to zero as j ...., 00 in fact. which implil's

tbat Condition (a) is satisfil'd. In order to sel' this. note that a continuolls-timl' state-spacl'

rl'prl'sl'ntation of R is (-I, i.l. 0). By application of Proposition 2.18, till' lifting-basNI statl'­

spacl' representation of R is obtained as (A, B, C, D), wherl'

This iuequality follows from Proposition 2.27. The summation in the last l'xpression is p\'aluated

by being classified into the following four groups:

IIQo R - JlAIi < (/2

(i) m = 0 and f = 0:

(ii) In # 0 and (= 0:

(iii) TIl = 0 and ( # 0;

(iv) '11/ f 0 and ( f O.

IIQon - Hj 5 j W= sup II(QoR - H j 5 j t«,iwT')lli,
wEt 1f/T},1f/'Tj)

:5 sup f fa{E;~(QoR-H]5])(ei">T')E;..>r
wE( 7f/TJ ,7f/TJ ) m= ·001=-'::10

for anY.i > J. Lpt ns construct such {Sj}.
Considl'r a s('qucnce of functions Sj(s) := T]~(S) 'Qo(s)R(s),.i = 1,2, .... Th(',l. actually,

it is possibll' to define a rl'gular sampll'r S] so Ihat it has S](s) as its kl'rIlel function. Inlk('d,

3](8) is a rational function. has a zpro at 8 = 00, and has no poll' in Rl'S 2 O. Th('[('fore.

therp exists f > 0 such that S](s - f) bdongs to 1-£2 as a fuuction of 8. :'\oting that thp

l'quivalpncp belwl'('n 1-£2 and [2. which \,-as stated in Proposition 2.1. il is sppn Ihal l'''5](I)

bdongs to [2 as a function of t. Hl'ucl', 5j belongs to 'D and. cOnSl'qul'ntiy. 5] can be d('finl'd

as a regular sampll'r. :\loreO\w. since s.](s) is rational, Proposilion 3.17 implil's Ihal 5j has a

lifting-based statp-space representation. ;\0'1'. it is left for us to show thl' existeucl' of J such

that IIQo R - H]5]1I < f/2 for any j > J
The considered norm is bounded as

a eontinuous-tinJ(' operator whose trausfpr fuueliou is Qo(s) = {1/(ns + It}l. B~' usin~ a

slllall l'nou~h n > 0, Wl' can guarantl'l' IIR - (JoRII = llti - Qotill7t~ < (/2. Hl'rl'. ti(s) and

Q(s) arl' coulinuous-timl' transfl'r functious of Rand Q. resppeliv"'y. aud 11'117t~ dl'notl's thp

usual1-£oo-norm (nol in thl' liftl'd domain). Thl' proof is compll,ted if Wl' can find a Sl'qUl'ncc' of

regular samplers {Sj}~, such that each S] has its lifting-basl'd statl'-spacp r('prl'sputation and

it is possiblp to find J so that

o

.4 := e-TJ I,

B/:= fJ eh-t)/(t)dl.

(Cv)(t) := e-tv for 0 :5 t < T],

(15/)(/) := fa' e (t r) /(,-) dr for 0 :5 t < Tj.

claim is prown.

thl'rl' holds II J!;"(z) iI, :5 IIH](z){J7jJ!~""(z)} 'liT < .\hJi,. Dl'fining.\1 to bl' .\121\1" Wl'

ha\'l' proH'n thl' claim.

:'Jl'xl. consi(kr Ihl' flat-opl'rator-\'alul'd function z Hj"-(z) Ro, (z). In Ihl' following, RO, (z)

is written as I?(z) for simplicity. ;>Jotl' thai ii;"-(z) is analytic in 0:5 Izl < L/po sincl' ii;"(z) is

analyt ic in lI))Po' Furtl)('nnorl'. R(z) is analylic in 1 :5 14 Therl'forl', if WP choosl' 1 < P:, < 1/Po,

Ihl' function zfl;"-(z)/?(z) is analytic in 1 :5 Izi :5 P3. Expand it into the Laurl'nt seril's

'Lk' x UZk with putting Lk := (1/27ri) ~zl P3 zll;"-(z)R(z)z k-'dz. Sincl' IIH;"(z)IIT < 1\1 in

[JIpo, IIlJ;"-(z)liF < JI[ on Izi = P:I' Thl'n. thl're holds

Proof of Theorem 4.18. lif] Let us simply write n in place of RO,. It suffices to show

that for any ( > 0 thl'n' exists J such that infs IIR - H]511 < f holds for any j > J, where 5

varies over all rl'gular samplers having state-space representations. i\ote that infs IIR- H]511 =

infsllR - H]Y] 'Y]511 = infsll/? - H]Yj '511. Hl'nce. it is l'nough to prove abO\'e in the case of

YJ = I
Let ( 1)(' any positive numl)('r. Since ~(s) is rational and has a zero at S = 00, there

exists a po itive intl'ger ,. such that {l/(s + l)'}~(.>t' is bounded at .> = 00. Write as Q"

Propositions 2.28 and 3.1 give

E;~Q,,(ei"'TJ)E;'" = Q,,(iwm)Om/,

E;~R(l'i">TJ)Et = R(iJJm )6m ./.

,. v. 1 - 1 -
E~~iJk''''TJ) = .,ffjfLj(iwm) = J7j-S(iJJ",),

S](l'i">TJ)E;"> = ~S](iw/) = .,ffj~(iJJ/) 'Q,,(iJJ/)ti(iJJ/).
J7j
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wher" "'m := '" + 2rrlll/T), Combining tlH'I1I, wr hav"

t;~(qon - 11]5]) (e'~TJ)Et = (Jo(iwm)R(i"'m)b",.1 _ 1 H](i",,,,)~](iwl)'
T]

Th"r"fore, for til(' group (i),

for tl1(' group (ii),

for tl1(' group (iii),

2::O'{tb~(qoR - H]SJn"i~TJ)E~~}2:s 0'{K](iw)}2 [2::a{~.s'](iwl)}2]; (4.19)
~ ~ ~

for the group (iv).

2:: 2::a{t~~(qoR- H]S]nei~TJ)E~~}l:s [2:: a{K](iW",)f] [2:: a{ 1 .s'](iWI)}2].
",>'01>'0 ",>'0 1>'0 T] (4.20)

Here, note that K](s) = ~(8) and (1/T])~](S) = ~(s)-IQo(s)fl(s) do not depend ou j actually.

Therefore. as j --> DC. th" values of

com'"rge to 7."1'0 becausr w'" = w + 2rrm/T] --> wheu IlL =I' O. H"nc". the right-hand sid('s of

(4.18) (4.20) couverge to 7.pro. which implies the existence of.J such that Ilq"R- fI]S] II < (/2

for each j > J.

[only if) Suppose' that there exists a sequ"nce {SJ}f=1 such that "ach SJ is a regular

sampl"r having a state-space represeutation and th('I'(' holds IIR - HjSJl1 --> 0 as j --> 00. [n

the followiug. let us assume det3'(s) = 0 for sOlTle Hes:::: 0 and derive contradiction.

First. note that

IIt~IIFiI(n - H]SJt(eSTJ)liLIIE~lh :::: O'{ t~(R - HjSJn"STJ)E~}

= O'{ R(s) - *K](S)~~(S)}. (4.21)

Here, since IIE~II~, :s (I/Tj)JJJ 1,,5'1 2 dt by defiuition, it is s"en that IIE~IIT --> 1 as j --> 00.

Similarly. IItgil F --> 1. ~[oreO\'CI'. because

and II R - H]SJII approad10s z('ro as j gOl'S to infinity. th('r" holds lI(n - ll]SJ) ("HJ)IIL --> 0 as

j --> 00 for "ach point in 11"8:::: O. Csing th"s" r"snlts in (1.21), W(' can conclud" that

as j goes to infinity for "ach point in l1"s:::: O. 1I0\\·",·Pr. at "sllch that dN 5'(.,) = D. wr have

det Kj(s) = 0 for "ach j but d"t R(.,) =I' O. This is a contradict ion. 0

4.5. Conclusion

This chaptrr was devoted to an analysis of th" best sampled-data control prrfonnanc" ('s­

pecially abollt its converg"nce to the best continnous-time control performance. e(·tion 1.2

noticed that the best sampled-data control performance can be improved by an appropriate

dlOice of a sampling environmrnt (the triplrL of a sampling prriod. a sampler, and a hold)

and relat"d the theoretical bound of this improvement with the best continllons-tinl(' control

perfonnaIH·". Then. Section 4.3 presented a necessar~' and suffici('nt condition in onkr that a

provi(lPd sampling em'ironlllent seqnence ensures convergence to this theoretical bound for all

plants. If we concentrate only on the plants with which recovcry of the best continnolls-time

control performance' is potentially possibk, the above condition is necessalT and slIfficient for

com'erg('nce to the best continuous-time pcrformance. In Section 4.4. this condition was made

casier to be tested by usc of techniques for a modd-matching probleln in the HOC-control theory.

For slwcial types of samplers and holds, this condition was fnrthPr simplified.

A control theory has b"en de"elop",[ mostly about contiuuous-time controllers and it enabks

us to compute the' b"st adlie"able performancr of continuons-time control sysLc·ms. How(·v"r.

since it is difficult in practice to make a continuous-time controller t hat realizes a complicated

function with a high pn'cision. a sampled-data cOl,trollcr is usually used instead. In Theo­

relll 4.2, we have seen that it may not be possible to r"cover the best achievable performance

of continuous-time controllers by means of sampled-data controllers no matter how a sampling

environIllent is chosen. Fortllnatcl~', this r"co"ery is possibl" when at least on" of Gil, Gil, and

G21 is strictI,' proper. Helice. the above fact docs not cause a problem in many of practical sys­

tems. However. this result suggests that serious care is necessary to handle direct feed through

terms of G, which arc oft"n treated lightly.

This chapter ga,'" a condition on a s"quence of sampling "nvironments in order that the

best sampled-data control performance for each "nvironln"nt ('ol1verg"s to the the'ordical bound

of th" best sampled-data control performance. That is. th" sampling period should c01l\'''rge

to zero, tIl(' effect of lIustabl" zeros shollid decr"ase iu a sampler aud a hold. and sick-band­

frequ"un' COl1lpon"uts should diminish also in a saulpl"r and a hold. These results giv" us SOI1l('

insight abollt how w(' should choose a sampling euvironm"nt. Th"u one might ask \\'hether th"se
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re"ldts ISivp us a qnantitative index to appraisp a provided sampling environment: whether it. is

possible to optimize a sampling pll\'ironment with rpsl)('cl to that index. Recall Conditions (a)

and (b) in Theorem 4.12. Since th,' quantity in Condition (b) depends only on the provided

sampling pll\·ironlllent. this may \\'ork as a performance index of the provided environnll'nl.

Howe\·er. Ihe nann in Cotldition (a) depends on an operator R. and this R can be replaced

by many othpr continuous-time operators (flemark .1.15). Therpfore. it. is not expected t.hat

the "peeific value of this norm pxpresse" goodness of the provided environment. Therefore. til('

mentioned questions cannot be positi\'e1y allS\\'ered right. now. :'\everthel,'ss. the results of this

chapter aI'(' eXl)('cl pd t.o be a slarting point to consider those questions.

It. can 1)(' seen from the results of t.his chapter t.hat. naiV!' infel'('uce based on intuit.ion is

dangerous with rpspect. t.o sampled-data control systems because it sometimes leads to erro­

neous consequences. POI' example. although it seems uatural to choose the bandwidth of an

ant.i-aliasing filter proport.ional to the i'\yquist frequency, this choi('(' does not guarantee even

conwrgence to the theol'etical performance' bound as the sampliug period tends to zero. In

spite tbat the zero-order hold H;o and the triangular hold II;' look similar in the sense Ihat

their kernel functions change their shap('s proportionally to the sampling period. the hold Jf;o

doe'S satisfy the condition for convergence while H;' docs not.. Besides, it. is seen from this re­

s('arch that a lifl ing-based approach is powerful for a careful t.reatment of sampled-data control

systems.

Chapter 5

Topics for Further Research

At the l'lld of this thl·sis. topics that are considered to be inter('stillg for further r('search an'

listcd up.

Chapter 3

Chapt('r 3 pro\'id('d a fram('work for sampl('d-data control systems. This fram('\\'ork is p,Pneral

enough to cover many of pract ically important sampl('rs and hol(\:'. I3ased on this fram('work.

useful propert i"s of samplcd-data control systellls weI''' d"ri\·ed.

Th" following probkms Il('ed to be inv"stigated furthl'l' in relation to this fram('work .

• G('neralizing the framework so that general lIlultirate sampled-data control systems can

be treated L1wre.

In order to treat a mnltirate system ill our framework. w(' choos(' for the sampling p('riod l'

the least common multiple of the all pNiods inclnd('d in til(' syst('nl. Th('n, a continuous-time

signal satllpled at multiple tim(' points in [k1'. (I.: + 1)1') ar(' regarded as a discrete-tillle signal

at the tillle k. In this setting, actually we call allow devices such as a sampler to work in an

apparently non-causal way. However. in this thesis. each of a sampler. a discret,,-\ ime controller.

and a hold arc required to be causal. This is the reaSOIl \\'hy a general mnltirate system cannot

be treated in our frame\\·ork. (See Remark 3.2 .) It is considered that we can reso"'e this

problem by allowing a sampler to work in a non-causal way to some degree. POl' this purpose,

the frallll'\\'ork itself should be modified so as to be consistent with this pxtensiOll .

• Extpnsion and application of thp approximation theorpm.

TIl(' main result in Chapter 3 is a sort. of approximation thporenl (Theorem 3.3·1). This rpveals

a relationship between a sampled-data conI rol s,'stem and a continuons-time control system

for the same plant. [I is conjectnred Ihat. this theorem can be generalizpd more so as to hold
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b"twe"n a g"n"rallH'riodic control syst"m and a contimlons-time time-invariant control syst"m.

This is consider"d to b" nsdnl for anal.l·sis of t h" best performanc" of a I)('riodic control sch"m".

which has int"r"sting properti"s [60. 3;;. 17.671. On th" otlll'r hand. this th"orem was applied

to til(' p"rfortnanc" analysis of control syst"ms in this th"sis. It must be int"r"sting to consid"r

another application of it. For example. in identification of a continnons-timC' system it is nsual

that th" system is identified in a discn,t,,-time sellS" first, and then t h" obtained discret"-tim<'

syst"m is approximated by a continuous-tim" system. It is consider"d to be interE'sting if this

th"orE'm is applicable to til(' anal~'sis of this procE'dur".

Chapter 4

In Chapt"r 4, th" b"st achiel'abl" I)('rfortnance of sampl"d-data control syst"l1l \\"as inv"stigat"d.

EspE'cially. \\"" obtained a neCE'ssary and snfficient condition in order that the best sampled-data

control performanc" converges to ils theoretical bound. In many cases, this theoretical bonnd

is equal to the lwst continuous-time control performauce, though not always.

1n rcJat ion to this chapter. the following topics are considered to be int"resting.

• Obtaining a change rate of the Iwst sampled-data control performancC' as th~ sampling

period approaches z~ro.

In this thesis. lI'e consider~d \\'hether the bC'st sampled-data control p~rformanc" conl'erg~s

to its theorl'tical bound. HOII·el·"r. it lI'ould be good if we can also see holl' it converges. If

w~ us~ a small sampling period, the l)('st achi~vable performance is improv~d usually, but. at.

the same timE', morc expensil'E' <kvic~s are ueeded to realize a controller. lu order to S~e this

t.radeoff. the rate of conl'~rgence is desired to be computed. To consid~r this problem, again

t.he approximation theorem is expected to be a strong tool.

• Optimization of a sampler or a hold in a limited class.

Tadmor 186] cousidered optimization of a sampkr or a bold for a provided plant and sampling

p~riod. If<' assumed that any sampl"r and hold can be r~alized. HOII·el'er. it is impossiblE'

practicaliv. Especially II'hcn the sampling p~riod is small, only a limitcd class of samplers

and holds having rather simpl~ functions can h" realized. Therefore. a practically important

problem is optimization of a sampler or a hold in a limited class. One approach toward this

problem is to choose som~ simpl" sam piNs (or holds) as a basis and express a realizabk sampler

as a lin"ar combination of the hasis samplers. It is not difficult to d"scribe this problem nsing

bilinear matrix inequaliti~s. It is known that th~ global opt.imnm can be computed for a

problem cxpress"d by bilinear matrix inequalities [39. 381. Therefore. our problem is solv~d at

least in principle. HOII·ever. this algorithm is based on the branch-and-bound method and is

not effici"nt nnfortnnately. Furthermor", a prohkm ('xpn'ssed by hilin"ar matrix inequaliti"s is

NP-hard in g"neral [90]. It shonld b" c1arifi<'d \\"h"t her onr probl"m. t hat is, optimization of a

sampkr or a hold in a Iimit"d class. is \'P-hard itself. If \'P-hard. it is nnlikely that there "xists

an effici"nt algorithm to optimize a sampl"r or a hold: h"nc". II'" hm'" to consid"r to ohtain a

good sampler or a hold bas"d on a different sdl"me. On" possibility for this is th" nse of th"

chang" rat" of th" best achi"l'ahle p<'r[ortnanc('.

• A p"rfomlanc" ind"x of a sampling "nvironm"nt.

Th"or"ms 4.12 and 4.14 gal''' conditions on a s"qn('nc" of samplinf', "nvironnl('nts in ordn that

the b"st sampled-dala contTol performance for "ach environment COIJ\'<'I"gl'S to its th<'or"tical

bonnd. As 11''' have s"en in Section I.;;. this r"snlt does not diredl~' givc' a pnformanc" ind"x

of a sampling "nvironment. \'el'ertheless, it \\"ould be int"r"sting if \\'" can <leri,'" some kind

of iud"x to measure goodnE'ss of a sampling envirolllll"nt from th" quantiti"s that appeared in

the Ill"nl ioned conditions. This is because Ihes" qnantities an' ill(l"pendent of a provided plant

and, th",;. express prop"rti"s of a sampling "lll'ironulent. which do uot d"pend on a particular

plant. \\'" hal'(' only Iilllit"d fre"dom in til(' choice of sampl"rs and holds du" to a r"striction

on th"ir physical r"alization. Th"refore. it s""ms to 1)(' mor" pract ical to pnrsue a sampler and

hold nnil'"rsally good to all plants rather than to Iry fin" tuning of th<'m for "ach of a prol'id"d

plant. :\Ior"ol'er. such an approach may 1)(' "ffectiv" in order to choose a hasis of a sampler and

a hold for th"ir optimization. \\"hich was considE'r"d in til(' previous topic.

• Information-bas"d approach in the control th"ory.

Theorem ~.2 sholl'E'd t hat the theoretical bound of t hE' best sampl"d-data control p"rformance is

~qual to the b"st performanc" achi~vable by strictly proper continuous-time controllers. \\'hat

does this theorem imply theor"ticall<' It means that. no malt"r how fast till' sampling period

is, a sampl~d-d>1la coni roller cannot compensatC' t he plant dl'namics at s = 00. lu oth~r words .

some information about tb" plant is ilJel·it.ably lost in tIll' sampling process. Th~ll. II'hat kind

of information is lost" In vil'li' of the b~st achi"vable control performanc". holl' a notion of

information should b~ defin~d'i R~c"ntly. in th~ fi"ld of eontrol-ori~ntl'd id"ntificatiolJ. the

set of models unfalsified by prol'id~d inpnt-output data is ~xplicitly obtain('d. and th~n by

measuring the' diametN of this SE't >1 I'alue of a prior information is l'l'alnat"d [101. 15, 100. ;;21·

Also from this "xamp]e. II'" can see how importaut a notion of information is in til(' control

th"or.\'. It is a chall~nging probkm to reconsider control and identification from all information­

based viewpoint. This problem is ~xl)('ct~d to hal'~ relationships to other areas like' statistics.

a leamiuf', theor~', and an informatiou tlwor.v.
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Appendix A

Proof of Property (b) of

Proposition 2.3

Hc're, a property of a scalar-mlued function a(s) belonging to 1{2 is pro\·en. This property is

important because a regular sampler and hold. which arc defined iu Section 3.2. arc closely

related to functions in 1{2 Although the property itself is simple. its proof has to be rather

long.

Two lemmas arc prepared first. l3y Proposition 2.1. it is possible to find a fnnction 0(1)

in £2 so that the Laplace trausform of a(t) is our a(s). Let (~ (\enote tl](' set of two-sided

square-sulllmable scalar-valued sequences. For any sequence (\ = {n[k]}b 00 in (~. its (~-norlll

is dcfi n"d as

Lemma A.!. For any s such that nc' s > O. thc sequcnee {a(s + i21f1n/T)}~ 00 bdongs to (~

and satisfies

~ la(s + i21f'ln) 1

2
= ~. I roo a(t)e (S+i2~"'IT)tdtI2 S TJ

2
. . (\ 1)

m~oo T "'~00 i o {1 - e-(Hes)T}' ! .

whcre P := J;" 1a.(tWdl < 00.

Proof. Choose any s so that nc' s > O. Define

Here. a.(kT + t)e-'(kT+t) belongs to £2[0. T) as a function of IE [0. T) and its Fourier coefficients

arc {a.~J~ -00' Therefore. from Parsc'V<t!·s identity. there hold {a~J~= '00 E (~ and
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Proof of Property (b). Defin"

129

If w(' d"scrib" th" seqn"nc" {a~n}~ 00 as Ok, th" abovc formnla sho\l's that til(' (~-norll! of

(Lk is I('ss than or "qnal to JT(, (I'.-,)kT J. Th('r"for(', \\,(' can s('" that tlU' infinit" s"rics of th"

s"qnl'nc"s. Lk':oo ak. absolnt"ly conv"rg"s in {~ for 11" s > O. l3"cansl' th" spac" (~ is compll't",

Lk=O (Lk Iwlongs to f~ and it is id"ntical to til(' s"qnl'ncl' in th" daim. In ordN to dNiv" (A.l),

notc that its left-hand sit\(' "quais II Lk':oo (Lkll~, and is bound"d froll! abovc by (Lk' 0 Ilakllf~)2.

:"ow ns" lIakllf~ ::; JT" (Res)kTJ. b 0

Lemma A.2. The f"llction of s,

!i00(8):= f la(s+i21Tm)1
2

,
111=-00 r

is COIltillUOUS ill R" 8 > O.

Proof. Th" fnnction ,300 (8) is wdl-d"fin"d from Lcmma A.I. L"t So b" an\' compl"x nnmb"r

with R"80 > O. 1n ol'dN to prov" til(' continuit.y of !ioc,(.S) , it suflic('s to show that w" can mak"

I 300 (8) - JfJoo( '0)1 arbitrarily small by Ictting 05 b" dos" "lIollgb to so·

Sincc~ is th" e~-norm of thc s"qllencc {a(s + i21Trn/r) }~=-oo' the triangl" incqnality

induces

for sEn and for .\1 = O. 1. .... :"ot" t hat, for each .\1. liu (s) is ('Ont inuous in 8 E B. :--Ior"o\'{'1'.

for "ach 8 E n. thl' sl'qu"nc" 130(8), iii (8), ... ill(was"s monotonicall,' and cOIl\'l'rg"s to .Joo(s).
which is continuous duc to Ll'mma A.2. Now. applying Dini's thl'or"ll! [13. Th"orl'1Il 4.5.5].

which is prcsl'nt"d b"low. w" can show tIl(' daill!. 0

Proposition A.3 (Dini's Theorem). L"I X b" a compact /llelrir sl'ac(', all<l {J.. } he all

illcf('asillg S('C/,wIlce of cOlltilluous f(',,1-"a1u,,<1 f""cUoIIS thai ('Olll'('fg"s 10 a cOlltillllOUS 1'",,1­

valu('d fUIlCljoll J al ('ac!J :r EX. Th ('11 , {In} cOIlw'rg('s to J 1111 ifOl'IlI 1,".

(A.2)

ff we choos" a positive llllmber b small cnough. it is possibl" to find a neighborhood of so.

say IJ. so that U is contailll'd in the op"n half p1<1Il(' R" S > b. Th"n, for any 8 E U. t.hc

fllllction a(t)(c-SI
-" .,ot)c" belongs to £2. Apply Lemma A.l, with snbstitnting b into sand

a(t)(c st
- ('-SOI)C61 into a(t). Then \I'" ha\'c

whNC .J2 = fo 1(I(t)(" sl -" sOI),,6I 12dl. Combin" this incqnality with (A.2) to hm'"

It is casy to show that we can mak" thi" J arbitrarily small hy kiting 05 approach So. 0
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Appendix B

Proof of Proposition 2.28

Proposition 2.28, which gives a matrix representation of a continuOlls-lillle operator having a

state-space repr~sentation. is proven here.

VVithout loss of generality. W~ can assullle th~ cont inllolls-time stal~-space n'preselltation of

10, i.e .. (.-I, B. C. D). has th~ property tbat the matrix .-I has an eig('nvalll~ p ollly if P(s) has a

pole at s = 7'. (See Section 6.1 and Exercise 6.5.8 of [571.) Let us ,,·rite 8 m := S + i27rm/T for

an integn ilL If W~ choos(' s so that none of 8 m is a pole of P(s). each of snJ - .-I is imTrlible

and. Ihell. so is e" I _ ~M.

By Proposition 2.18. the lifting-based state-space representation of 10 is gi\·en by (.:\, D. C. 75).
where-

Balk]:= fa' (,A(T-t)Ba[k](t)dl.

(Cx(kT))(I) := CeAtx(kT).

(i5a[k])(t) = Da[k](t) + fa' CeA(1 ')Ba[k](7)d7.

""ith this representation. P(z) = 75 + C(zI - iI) I D. Helice. E;~P(e")E:

E~/5(e"1- iI) I BE;' Straightforward calculation gi\·es

131
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= ~ {faT e'no' Dc'" dl + faT e-·'no'Ce·"'(spl -.-1) '13 dl

- faT e "no'Ce"'(spl - . \) 'B dt }

=P(Sm)Om.f-lC(s"J- .. I) '{f-e ('no I 1)T}{stI-.-1) 'B.
r Appendix C

These eqnations establish the relationship

'>ext, w(' consider the second equation in the proposition. Since Proposition 2.27 implies

IIP(eiWT ) IlL ::: a{ E;~P(eiWT)E~~} for each m, the left-hand sid" of I he considered equation is

larger than or equal to its right-hand side. To show the re\'ersed inequality, snppose f is an

arbitrary functioll in £2[0, r). Then. by Proposition 2.26.

I'(ei"")f = Cf:
oo

E;~ E;~) p(eiWT{toc E~'"Et) f

= L f: E;~ E~~ P(eiWT ) E~w E~w f
111_ oof_

00 '_( i27i1ll) ,.= m~oo E;~P iw + -r- (E:~f).

Proofs of Propositions 2.44 and 2.45

Here. two propositions 2.4-1 and 2.-15 arc proven. which an' concerned with the best continuous­

time control performance when the controller class is rest ricted.

Proof of Proposition 2.44. It is obvious that

Hence. we show t he reversed inequality ill the following.

\ote that Gn(s) cannot hayeapolcats = 00 because Gn(oo) = Dn . Applying Lemma2.11.

we obtain a donbly coprilJl(' factorization of G22(.~) such that \'(00) = 0 and Y( ) = O. Define

Tlwn, if we define T" T2 , T:I E RHoo as in the statelllent of Proposition 2.,10, it is derived from

Propositions 2.40 and 2.-12 that

\oting that P(iw + i27irn/r)(E':;: f) i" just a finite-dimensional vector. we obtain

II ['(e
iWT

)fll2:'[o,T) ::; mf:JP(iW + i2:1Il) (E;:;'f)II:

::; sup U{P(iW+ i27i
r
lll)}2 L IIE;~fll~

111 O,±I,

sup a{P(iw + i27i
r
lll)}2 '11/1I2:'IO,T)

In :O,±J.

This confirms that the desired illequality holds.

1Ui';;':= {Q E RHoo
: Q(oc) = O}

I~~~ IIF(G. [\')11 = QduL~ liT, - T2QT311"H
dCl(X QN);£O

ami

(C.l)

Let f be any positive IlIlIlIber and choose one Q E RHoo so that det(,\'" - QR) t 0 and

liT, - T2Q'Tll1"H~ < QEi+lL liT, - T2Q'Tll1"H +;.
dpt(X-QtV);£O

Define Qo(s) := {l/({\'s + 1)}Q(s) for a > 0 Prott! now 011. we show that

liT, - T2QoT311"H~ < liT, - T2QT:dl"H~ + ;
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for small cnongh n. If it is shown. sincc Qn E RH':, thc c!csircd in('qnality follo\\·s.

i\ow notc that at Icast on(' of T" T2 , and T:, is strictl.I' proper, sinCl' at Icast one of Gil,
G". and G2 , is stricti,,' proper. ltppose T, is stricth' propcr. Continuity of Tt(s), T2 (s), and

T1(S) in iCH implies

liT, - T2QnT3111t~ = supO'{T, (iw) - T2(iw)Qn(iw)T2(iw)},
wE

as is notcd beforc Proposition 2.7. Here, wc h""e

O'{T,(iw) - T2 (iw)Qo(iw)T2 (iw)}

=u{(T, -T,QT:,)-._I- +T,(I- _._I_)}
mw + I QIW + I

:'0 u(T, - T2QT3 ) +u(T,) II _-._I I.
Q'W+ I

Dependcnce on iw is not described abovc for notational conl'enicncc. This in!'qualitl' means

that, if we take a large eHough Wo > O. we can ensure

for any Iwl :::: woo On the other hand, therc also holds

u{T,(iw) - T,(iw)Qn(iw)T2 (iw)}

=u{T, - T2Q7'3 + T2QT3 (I __._1_) }
QIW+ I

:'0 O'(T, - T,QT3 ) + u(T2QT3 ) II _ ._1_1·
QlW + I

Hence. also for Iwl < Wo, by taking small enough (} > 0, II'!, can guarantee (C.3). '\011', the

inpqnality (C.2) is confirmed.

Also in the case that T2 or T3 is strictly proper. (C.2) can bc shown to hold for sIllali cnough

(} > 0 by a similar techniqne. The proof is completed. 0

Pt'Oof of Proposition 2.45. Define RH': as in (C.1). Dcfinc RH~ as

RHoo := {Q E RH=: Q(oc) = 0 with multiplicity two or marc}.

By Lemma 2.41. lI'e can find a coprime factorization of Gn(s) snch that 1'(8) and Y(s) equal

to zero at s = oc with multiplicity two or more. Csing this factorization. dcfine fltnctions T"
T2 , TJ as in Proposition 2.40. Thcn, Proposition 2..12 implies that

inf IIF(G'. [(0)11 = inf liT, - T,QoT3111t~,
KoEK.o QoE'R.rto

'(o~~Lo IIF(G'. /1'00)11 = QO(J~~1tOo liT, - T2QooT:JiI1t~·

Let ( bc son\(' positil'c nltmbcr. Choosc Qo E RH': so that

for small enough n using a technique similar to the one used in thc pr!'l'iolts proof. TI\('refor!', it

is sbown that infQooE1/.1tOo liT, - T,Qo07'3111t~ :'0 infQoE1/.1t:;" liT, - T,QoT:JiI1t~. Sinc!' th!' rCl'crscd

iu!'quality is obvious. the d!'sired !'quality is obtaillNI. 0
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