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Appendix D

Proof of Proposition 2.47

Here, Proposition 2.47, which is a flat-operator version of Nehari’s theorem, is proven. Some
preparation is needed for this.

Let F be a real flat operator that maps £2[0,7)" to C. Since FF* is a real symmetric
matrix and is semi-positive definite, we can choose a real orthogonal matrix V" and a real

diagonal non-singular matrix A so that

e {1» 0}\‘
(81858)

Suppose that the matrix A has the size f x f. Then, f is equal to rank FF*, and to rank F in

1
(@]

which is a real tall operator mapping ¢/ into £2[0,7)". It is not difficult to show that 7*T = I
to N(F)*. Here, let N(F) denote the

null space of the operator F and let N'(F)* denote its orthogonal complement in £2[0,7)". In

turn. Define T by

and TT* is the orthogonal projection from £2[0,7)"

particular, there holds F(I — TT*) = O. Furthermore, we can show that 7 is an isometric

isomorphism from C/ to N(F)*. Here, we have the following lemmas.
Lemma D.1. For any matrix M such that M F is well-defined, there holds

G(MFT) = ||MF||g.

| Lemma D.2. For any matrix-valued function Q(z) having no pole on |z| = 1, we have

inf _[|QFT — X'||g = 1OF 3
LIERH™ F

inf
venn
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138 Appendix D. Proof of Proposition 2.47
These lemmas mean that problems on a flat-operator or a flat-operator-valued function can be
simplified into corresponding problems on a matrix or a matrix-valued function, respectively,

by concatenation of 7.

Proof of Lemma D.1. Define an operator = : C/ @ £2[0,7)" — £2[0,7)" by
=T I=TT*.
Here, @ stands for the direct sum of linear spaces. Then, = [ holds. Just like the proof

of Proposition 2.46, we can show that
|MFZing = |5*F*M"|fina = [|F*M" ||z = ||MF||;
and
[|MEZ||ina = |[MFT O]|lina =(MFT).
Hence, we have shown the claim L
Proof of Lemma D.2. First, let us show
b‘_,(ig‘fw |QFT — X'||g < ,\“ivlv‘ll;l’r [|QF — Z|gg. (D.1)

Defining an operator = as above, we have

|QF — Xl|eee = sup [|Q(2)F — Z(2)|[r = sup [{Q(2)F -
z|=1 |z|=1

ind *

:.\up\;[Q(:)I’T ()T -S(2)I TT‘)H
z 1
Hence, there holds

inf ||QF — %

DR

2]

= odll sup [H{QR)FT — £(2)T} + || £(2)(1 - TT)

. R e
Ep 121,{)[’)“ iu’]:ﬂ{(.v)i‘)Fl 2(2)T}

e W
- gy 10FT - 5T
> \OFT _ 5|2

> ‘,’»“»)](rﬁ‘ |QFT — Z'||5ee-

Now, (D.1) is proven.

Next, we show that for any £' € RH™ there exists £ € RH that satisfies

[QFT — &'||gx = |QF — g
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If it is shown, the proof is completed

For a matrix-valued function &' € RH™, define a flat-operator-valued function X' by X :=

*. Then there holds

= sup [|Q(2)F — Z(2)||% = sup [{Q(2)F — £(2)}Z|l3a
1 z 1

= swp |[QIFT-S()T {QR)F-2(2)}( /1')]“’!
:
= sup || [Q(2)FT-2'(z) <)]‘\’> |

|QFT - ¥'||..

Now, Proposition 2.47 is proven.

Proof of Proposition 2.47. First, it is shown that we can express our ¢(z) as ¥(z)F using
a real rational matrix-valued function ¥(z) and a flat operator F. Suppose for the time being

that the provided @(z) has no pole at z = co. Then, by considering its observer canonical form

just as we did to prove Proposition 2.23, we can represent @(z) as

B(z)=D+CzI~A)B=[I CleI—A)7 [D}
B

using real matrices A and C and real flat operators B and D. Putting the first factor in the last
expression as ¥(z) and the second factor as F, we see that our claim is proven in a special case.
In the case that @(z) has a pole at z = oo, transform @(z) by z' = (—az +1)/(z — a) choosing
« > 1 so that @(z) has no pole at z = . Since in the z’-domain our @(z) does not have a pole
at 2/ = oo, we can represent our @(z) as above and transform it back to the z-domain. Then,
we have a representation ®(z) = ¥(z)F.

For a real flat operator F, define a tall operator 7" as before. Then, we have
O(2) =) ET

and @(2)T is a matrix-valued function. Note that Proposition 2.48 (Nehari’s theorem for

matrix-valued functions) implies

inf _[|6T — '[|g = ||&T |-
X'ERH™

In the following, we show

inf || — X'||e= = _inf _||® — T|ee, (D.2)
RH™ ERHE

ey 3
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[[@T (|5 = |||l (D.3)

Then, the desired equality infyenge [|€ — 2| g ||@||y; follows
Equation (D.2) follows from Lemma D.2 easily. Let us consider Equation (D.3). When we
expand @(z) = ¥(z)F into the Laurent expansion Y52 . L¥2*, each L¥ can be written as MrF

using a matrix M*. Then, just like the proof of Lemma D.1, it can be shown that

e 22 .. [= 01| S =
L2 <) =|[2* L? = |||,
I : r
| 0 lind ¢ "I lina
and
tfee 2 k= 0 BT O BT g
[
‘ I & = | E*T © I’T O
L= 110 " Mlina : “*Jlina
LT “TAT
= | L*T LT = (|7 |u.
: . ind
Hence, Equation (D.3) is established. O

Note that the above proof shows how we can compute the Hankel norm of a flat-operator-
valued function @(z) and how we can obtain ¥(z) that approximates @(z). That is, using
the formula (D.3). computation of ||®||y is reduced to that of ||[@T'||y, which is carried out via
matrix calculations. Besides, if a matrix-valued function X’(z) approximates ®(z)7 well, then

Y(z) := X'(z)T* approximates ¢(z) equally well.

Appendix E

Proof of Proposition 3.24

We prove Proposition 3.24, which states properties of the 25 operators from w(t), b(t). a(t),
aqylk], balk] to z(t), y(t), pak], g4[k], g(t) in Figure E.1. (This figure is the same as Figure 3.5.)
Namely, it is proven that, if the system in Figure E.1 is input-output stable, these 25 operators
have lifting-based transfer functions, and there exists 0 < p < 1 such that S(z), H(z), and

these 25 transfer functions are analytic in D,.

b(t) (t) 1 G
5 u ] |

\(I(')“ H :]d[“ ‘I!l["'” K ‘p(’llkl palk][ LP(/)C}

2 - o : a(t)

bylk] aqylk]

Figure E.1. A sampled-data control system.

First, let us consider the operator (I — SGyHKy) ™', which is the discrete-time operator
mapping aq to pjy. Write this operator as Vi temporarily. Because the operator from a4 to py
is bounded by assumption, this operator Vy is bounded. too. Note that both Gy(z) and Kg4(z)
are rational functions. Moreover, S(z) and H(z) are analytic in D,, for some 0 < py < 1 by
Proposition 3.13. Hence, v(2) := det(/ SGyHKy)(z) is meromorphic in D, .

Since v(z) takes a nonzero value at least at one z in D by assumption, a function (/ —
SGay HIKy) ' is well-defined and is meromorphic in D,,. This is exactly the lifting-based transfer
function of Vj, i.e.. Vy(z). Suppose that v(z) = 0 for some z in D or on [z| = 1. Then, Vy(z)
has a pole there. However, if Vq(z) has a pole in D or on |z| = 1, there exists aqy € H? such
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142 \ppendix E. Proof of Proposition 3.24

that Vjag does not belong to $%. This means that the operator V3 is not bounded, which
contradicts the assumption. Hence, v(z) # 0 in D or on |z| = 1. Next, we show that we can
choose p; so that 0 < py < p; < 1 and v(z) is not equal to zero in D,,. In order to show it,

suppose that v(z) has a zero in D, for any py < p; < 1. Define v~ (w) := v(1/2). Then, v~ (w)

has a zero in |w| < 1/p; for any py < py < 1. Because the disc [w| < 1 is compact, there is a
x
J

This contradicts with the previous result. Now, we have shown that v(z) # 0 in D, for some

sequence {w;}%, such that v~ (w;) is equal to zero and w; converges to some point in |w| < 1.
po < pi < 1. This implies that the operator has the transfer function V4(z), which is analytic
inD,,.

Next, we consider the operator (I — GyyHK4S)™!. Since this is the operator from a to p,
it is bounded by assumption. Note that
I=(I—GuHK4S){I + GuHK4(I — SGpuHKy) 'S} = (I — GpuHK4S)(I + G HK4VyS).
In the same region, G(z) and Kq(z) are mero-

We have shown that Vy(z) is analytic in D,,.

morphic and S(z) and H(z) are analytic. This means that the function

I+ G HEV3S (E.1)

'9oHK4S)™'. From the

is bounded, the function (E.1) cannot have a

is meromorphic in D, and it is exactly the transfer function of (I —

assumption that the operator (I — Gy HKy4S) ™!

pole in D or on | 1. Furthermore, note that this function can have only a finite number
of poles in D,
p1 < p2 < 1 and the function of Equation (E.1) is analytic in D,,. In summary, the operator
£ =€

In a similar way, we can derive that (I — HK4SG45)™" and (I — K4SGy,H)™! have their

o, since G(z) and Ky4(z) are rational functions. Hence, there exists p, such that

2 HK4S) ™" has its lifting-based transfer function and it is analytic in D,

2

lifting-based transfer functions, which are analytic in D,, and D,,, respectively, where p; <
ps<land py <py<1.
Now, we consider the 25 operators in question. The claim is proven almost in the same

procedure for each operator. For example, let us consider the operator from w to z. This

operator is expressed as
Gu + GiaHKy(I — SGyHKy) ' SGy,. (E.2)

Since each of Gy, Gya, H, Ky, (I — SGpHK,4)™', S, and Gy; has its lifting-based transfer
function, so does the above operator. Furthermore, S, H, and the transfer function of (I —
SGyHK4) ' is analytic in D,

of poles. Therefore, the lifting-based transfer function of (E

o G(2) and K4(z) are meromorphic and have only finite number

and has

2) is meromorphic in D,
finite number of poles there. From the assumption that the considered operator is bounded, it

follows that this transfer function cannot have a pole in D or on |z| = 1. Since this function can
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have finite number of poles in D,,, there exists p; < p < 1 such that the considered transfer
function is analytic in D,.
It is possible to choose a common 0 < p < 1 so that the transfer functions of all the 25

operators together with S(z) and H(z) are analytic in D,. Now the proof is completed.

-
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Appendix F

Supplement to the Proof of
Theorem 4.12

The aim of this appendix is to prove the following two statements are equivalent. This fact was
left unproven in Section 4.4.
(b) For any £2 > 0,
P - 1/2 . b o) . 1/2
T [{ o8 I'I,(iw',.,1‘11,('1;,..)} {Z Il,m-,,,)'Iljm.,,)}{ D3 ll,m,.»'ll,m,m} }
m=—oc mZ0 m=—oc
converges to zero uniformly for any |w| < 2 as j — oco. Here, wy, := w + 27m/7;.
(b") [I(1 — Hi*H}*™)R™||gee — 0 (2:=2 o9).
The proof proceeds by two steps. At the first step. (b') is shown to be equivalent to
(b") VR > 0, Ve > 0, 3J > 0 s.t. ||[{I — H"(e"™)H;" (" )}i;‘);\ r < € for any j > J and
|w| < £2.
Then. at the second step, equivalence between (b”) and (b) is proven. Hereafter, let us write

Vi

=1 — H(e“5)H " (e™7) and write R™ just as R.
[(b)=(b")] Assume (b”) does not hold. That is, we assume that there exists £ > 0 and
¢ > 0 such that we can attain

iw;
“0

[l > e

|{r- u;"<(-'~~~)11‘,'“((-‘*/"')}Hf’h. = [|V;”

for infinitely many j's by choosing each w; appropriately with |w;| < 2. By redefining the

sequence {(75,5;, H;)}32,, we can assume ||V} Ey” || > € for any j without loss of generality.
Since {w;} is a bounded sequence, there exists 7 > 0 such that o{R(iw;)} > r for each j. In
the sequel. we will show that (I — ”;”I’;”\)/l" g > TE Because this contradicts with (b'),

(b")=>(b") is confirmed.
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146 Appendix F. Supplement to the Proof of Theorem 4.12

Note that
I — H*H"")Rl|gge > |V} R(e* ™ )|l > ||V}~ i R(e i) By ||

Here, the first inequality is derived from the definition of the £3°-norm (Section 2.6.1) and the

second from Proposition 2.27. By Propositions 2.26 and 2.28, there holds

R(e“im) By =

Using this, we obtain

(1 = Hi H ) Rllgee > [V} Eg” Riw;)llr > [|V;” Bo”||v a{ Riw;)} > er.

Now. the proof of this part is completed.

[(b)4=(b")] Let € be any positive number. Choose £2 so that n{l}’(iw')} < efor any |w| > 2.
Moreover, let us consider large enough j’s such that 2 < 7/7;. We will show that [[{
H" () Hi"™~ (™)} R(e™™)||y, = [|V;*R(e“7)||1. converges to zero as j — oo uniformly for
any |w| < w/7;. This implies (b').

First, we consider the range of 2 < |w| < m/7;. In this range, there holds

[|[R(e“™)||. = sup n{l}(i.u - l2m”>} <e
m=0,41 7

Here, the first equality is based on Proposition 2.28. Since the U(z) in Section 2.6.1 satisfies

(2) = I, there holds ||V, < 1. This gives

Ve R(e=7)|r, <

[VEllLll (™)l < e
Hence, the uniform convergence we are interested in has been proven in 2 < |w| < 7/7;.

Next, consider the range of |w| < £2. Here, we use the relationship

IVFREDIE < X (VR Bl (F.2)

m=—oo

which is obtained from Proposition 2.27. Note that there holds

[V R(e“ ™) Eg’||v = ||V}* Eg° R(iw)||r < [V} By’ ||lx 7{ R(iw)},
where the first equality follows from (F.1). By assumption, the above quantity H\f (e“n)Ey||r
converges to zero uniformly in [w| < £2. On the other hand, for any nonzero integer m,

S o 27 | =~ 1
VeBR(is )\ < vl HI,,.um{ r(m’
5] T

m

IV R(e“7) Bl =
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As we saw above, ||[V|l, < 1. Besides, ||E&||y 1 by Proposition 2.26. Noting that

d{R(iw + i2wm/7;)} converges to zero unmiformly for any |w| < 2 as j — oo, we can see
that H\ “ (el I:; |1 converges to zero uniformly for any |w| < 2 and any nonzero integer

. By these facts together with (F.2), the uniform convergence of \/* R(e™7)||. is confirmed
in \JJ\ < £2, too.

[(b")=>(b)] Define a finite-dimensional matrix Z,, by

Zn = B2 H(e4T).

Although Z,, depends on j and w, this dependence is suppressed for notational simplicity.

Then, there holds

{1 = Hir(eomy i~ (e} B > {1 - Hire ) H~ ()} EY] =a(] - Z025).

We used Proposition 2.27 to obtain the first inequality and used H}"(e™™) = H"(e™7™)*
and By = (E§’)* to have the last equality. Note that for a square matrix M, there holds

a(l — MM*) =a(I — M*M) in general. Furthermore, from Proposition 2.26, it follows that

Z Him~(e7)

= H™ () Hin(en

Hence, it is derived that

|[{x = Hinceom) Hir~(em)} B | > a1 - 2023) = 7T — Z320) n{z //} (F.3)
mz0
On the other hand, by the definition of Hy"(2),

HO (o) How (e7) = Hy () H(e7) = 3 Hy () Bl Bl H (e

m=—oc

Y. H;(iwm) H(iwn)-

m
Hence, I‘I"““(v‘"") can be represented as W{¥o°_ Ilj{i.p,,,)'ll,(i“;,,,)}‘ % with an appropriate
unitary matrix W. This further gives a representation

1/2
T = B2 H;(e25)H (%)™ = H; (i) { S Hj(wa)H [1,_,,,)} w*.

m
m=—00

Substituting this into (F.3), we can see that (b") implies (b).
[(b")4=(b)] Define a matrix Z,, as before. By assumption. for any 2 > 0 and € > 0, there

exists J > 0 such that

Esitis . € A
n(zn//) ¥ mm{ﬁ‘ 2(1 +,>} (F.4)




148 \ppendix F. Supplement to the Proof of Theorem 4.12
holds for any j > J and |w| < 2. Recall [ = ¥0°___ Z} Z,,. Hence, there holds

,
R ) =T\ 30 Z5Z o=

This implies that

5 IY
= 7(1 - ZoZ3) < 5 (F.5)

| (X — ZoZ2)|

On the other hand, again from (F.4), it is derived that

m#0

1-3(Z)*| = 1 — (23 20)| < oI — Z3Z0) ta(z //) <L
This gives
0(Z) <1+—=<1+e (F.6)
We note

7 7 (‘2

by (F.4) and multiply Z; and Z; to the sum in the left-hand side. Then, from (F.6) it follows

rf{Z,, (Z //) Z,;} < :
mA0
This relationship implies

I y , 4
‘ = [ Zoze e || (ST BNz | =G5 Zagrz e =
|1 m#0 ££0 m#0 2 (F7

.7)

that

\ Y Buz.7

|m#0

Now, using Propositions 2.26 and 2.27, we have

2 | & < . Y o s
{1 - By @)} B = | X Bk {By - H,'"(v'*'v)/l:"m-‘*‘v)l-::r}‘

[m=—oo ;
[ = LI
- s o
| m=—os :

, i :
= H By = 3 EnZnZ;

m=—o00

= ||EY - EX 2233+ | - B4 225

m#0 |

2
T

By Equations (F.5) and (F.7), this expression is less than 2.

Bibliography

[1] S--i. Amari, Differential-Geometrical Methods in Statistics. New York, NY: Springer,
1985.

[2] S--i. Amari, “Differential geometry of a parametric family of invertible linear systems
Riemannian metric, dual affine connections, and divergence,” Mathematical Systems

Theory, vol. 20, no. 1, pp. 53 82, 1987.

. Hagiwara, and Y. Ito, “Frequency-response of sampled-data systems II:

[3] M. Araki, T

closed-loop consideration,”

in Proceedings of the 12th World Congress of the International

Federation of Automatic Control, Sydney, Australia, July 1993, vol. 7. pp. 293 296.

[4] M. Araki and Y. Ito, “Frequency-response of sampled-data systems I: open-loop consid-
eration,” in Proceedings of the 12th World Congress of the International Federation of

Automatic Control, Sydney, Australia, July 1993, vol. 7. pp. 289-292.

[5] M. Araki, Y. Ito, and T. Hagiwara, “Frequency response of sampled-data systems,” Au-

tomatica, vol. 32, no. 4, pp. 483-497, 1996.

[6] M. Araki and K. Yamamoto, “Multivariable multirate sampled-data systems: state-space

Transactions on Auto-

description, transfer characteristics, and Nyquist criterion,” IE

matic Control, vol. 31, no. 2, pp. 145 154, 1986.

[7] K. J. Astrom, P. Hagander, and J. Sternby, “Zeros of sampled systems,” Automatica,

vol. 20, no. 1, pp. 31-38, 1984.

[8] B. Bamieh, M. A. Dahleh, and J. B. Pearson, “Minimization of the £>-induced norm
for sampled-data systems,” IEEE Transactions on Automatic Control, vol. 38, no. 5,

pp. 717-732, 1993.

[9] B. A. Bamich and J. B. Pearson, Jr., “A general framework for linear periodic systems
with application to H* sampled-data control,” IEEE Transactions on Automatic Control,

vol. 37, no. 4, pp. 418435, 1992.




150

[10]

1

[19]
[20]
[21]

22]

[23]

Bibliography

B. Bamieh and J. B. Pearson, “The H?* problem for sampled-data systems,” Systems &

Control Letters, vol. 19, no. 1, pp. 1-12, 1992.

B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A lifting technique for
linear periodic systems with applications to sampled-data control,” Systems & Control

Letters, vol. 17, no. 2, pp. 79-88, 1991.

2| J. Braslavsky, G. Meinsma, R. Middleton, and J. Freudenberg, “On a key sampling

formula relating the Laplace and z transforms,” Systems & Control Letters, vol. 29,
no. 4, pp. 181190, 1997.

D. S. Bridges, Foundations of Real and Abstract Analysis. New York, NY: Springer, 1998.

| J. Chen, “Multivariable gain-phase and sensitivity integral relations and design tradeoffs,”

IEEE Transactions on Automatic Control, vol. 43, no. 3, pp. 373385, 1998.

J. Chen and C. N. Nett, “The Carathéodory
a time domain approach,” IE

pp. 729 735, 1995.

‘ejér problem and H>/¢' identification:

Transactions on Automatic Control, vol. 40, no. 4,

T. Chen, “A simple derivation of the H?-optimal sampled-data controllers,” Systems &

Control Letters, vol. 20, no. 1, pp. 49 56, 1993.

7] T. Chen and B. A. Francis, “Input-output stability of sampled-data systems.” IEEE

Transactions on Automatic Control, vol. 36, no. 1, pp. 5058, 1991.

T. Chen and B. A. Francis, “H*-optimal sampled-data control.” IEEE Transactions on
Automatic Control, vol. 36, no. 4, pp. 387 397, 1991.

T. Chen and B. A. Francis, “Linear time-varying H*-optimal control of sampled-data

systems,” Automatica. vol. 27, no. 6, pp. 963-974, 1991.

T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems. London, United

Kingdom: Springer, 1995.

T. Chen and L. Qiu, “H* design of general multirate sampled-data control systems,”
Automatica, vol. 30, no. 7, pp. 1139-1152, 1994.

T. Chen and L. Qiu, “Linear periodically time-varying discrete-time systems: aliasing
35, 1997.

and LTI approximations,” Systems & Control Letters, vol. 30, no. 5, pp. 2

J. B. Conway, Functions of One Complex Variable II. New York, NY: Springer, 1995.

Bibliography 151

(24]

[26]

[27]

[28]

[29]

30]

31

[32)

)

[34]

[35]

[36]

[37]

C. A. Desoer, R-W. Liu, J. Murray, and R. Sacks, “Feedback system design: the frac-
E

Iransactions on Auto-

tional representation approach to analysis and synthesis,” IE
matic Control, vol. 25. no. 3, pp. 399 412, 1980.

5] J. Doyle, “Advances in multivariable control,” Lecture Notes in ONR/Honeywell Work-

shop, Minneapolis, MN, October 1984.

J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. New York,
NY: Macmillan, 1992.
G. E. Dullerud, Control of Uncertain Sampled-Data Systems. Boston, MA: Birkhéuser.

1996.

G. E. Dullerud and B. A. Francis, “£! analysis and design of sampled-data systems.”

. no. 4, pp. 436446, 1992,

IEEE Transactions on Automatic Control, vol. :

G. Dullerud and K. Glover, “Robust stabilization of sampled-data systems to structured
LTI perturbations,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1497

1508, 1993.

G. E. Dullerud and K. Glover. “Analysis of structured LTI uncertainty in sampled-data

systems,” Automatica, vol. 31, no. 1, pp. 99-113, 1995.

G. E. Dullerud and K. Glover, “Robust performance of periodic systems,” IEEE Trans-

actions on Automatic Control, vol. 41, no. 8, pp. 11461159, 1996.

P. L. Duren, Theory of H? Spaces. New York, NY: Academic Press, 1970.

] D.S. Flamm, “Single-loop stability margins for multirate and periodic control systems,”

IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 12321236, 1993.
B. A. Francis, A Course in H* Control Theory. Berlin, Germany: Springer, 1987.

B. A. Francis and T. T. Georgiou, “Stability theory for linear time-invariant plants with

periodic digital controllers,” IEEE Transactions on Automatic Control, vol. 33, no. 9,

pp. 820-832, 1988.
G. F. Franklin. J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,

second ed. Reading, MA: Addison-Wesley, 1990.

J. S. Freudenberg. R. H. Middleton, and J. H. Bras

, “Inherent design limitations for

linear sampled-data feedback systems,” International Journal of Control, vol. 61, no. 6.

pp. 13871421, 1995.




(39

[40

a)
j42]

[43]

i [44]

j43)

[46]

fa7]

(48]

Bibliography

| K.-C. Goh, M. G. Safonov. and G. P. Papavassilopoulos, “A global optimization approach

for the BMI problem.” in Proceedings of the 33rd Conference on Decision and Control,
Lake Buena Vista, FL, December 1994, pp. 2009 2014.

K. C. Goh, L. Turan, M. G. Safonov, G. P. Papavassilopoulos, and J. H. Ly, “Biaffine
matrix inequality properties and computational methods,” in Proceedings of the 1994

American Control Conference, Baltimore, MD., June 1994, pp. 850-855.

M. Green and D. J. N. Limebeer, Linear Robust Control. Englewood Cliffs, NJ: Prentice-
Hall, 1995.

T. Hagiwara and M. Araki, “Design of a stable state feedback controller based on the mul-
tirate sampling of the plant output.” IEEE Transactions on Automatic Control, vol. 33,
10. 9, pp. 812 819, 1988.

T. Hagiwara and M. Araki, “FR-operator approach to the H? analysis and synthesis

of sampled-data systems,” IE, Transactions on Automatic Control, vol. 40, no. 8,

pp. 1411 1421, 1995.

T. Hagiwara, T. Fujimura, and M. Araki, “Generalized multirate-output controllers,”

International Journal of Control, vol. 52, no. 3, pp. 597-612, 1990.

T. Hagiwara, Y. Ito, and M. Araki, “Computation of the frequency response gains and
‘H>*-norm of a sampled-data system,” Systems & Control Letters, vol. 25, no. 4, pp. 281
288, 1995.

S. Hara, M. Nakajima, and P. T. Kabamba, “Robust stabilization in digital control
systems,” in Recent Advances in Mathematical Theory of Systems, Control, Networks
and Signal Processing I, H. Kimura and S. Kodama, Eds. Tokyo, Japan: Mita Press,
1992, pp. 481 486.

S. Hara, Y. Yamamoto, and H. Fujioka, “What can modern sampled-data design do?
] I 8
performance evaluation via design examples,” in Proceedings of the Second Asian Control

Conference, Seoul, Korea, July 1997, vol. 2, pp. 275-278.

S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: a new
type servo system for periodic exogenous signals,” IEEE Transactions on Automatic Con-
trol, vol. 33, no. 7, pp. 659-668, 1988.

Y. Hayakawa. S. Hara, and Y. Yamamoto, “H* type problem for sampled-data con-
trol systems — a solution via minimum energy characterization,” IEEE Transactions on

Automatic Control, vol. 39. no. 11, pp. 2278 2284, 1994.

Bibliography 153

[49]

[50]

[53]

[60]

[61]

[62]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups. Providence, RI: Amer-

ican Mathematical Society, 1957.

K. Hoffman, Banach Spaces of Analytic Functions. Englewood Cliffs, NJ: Prentice-Hall,
1962.

V. Ionescu and C. Oara, “Spectral and inner-outer factorizations for discrete-time sys-

tems,” IEE

ransactions on Automatic Control, vol. 41, no. 12, pp. 18401845, 1996.

H. Itoh, D. Kyono, Y. Oishi, and H. Kimura, “Identification of a model set and its

performance analysis based on diameters,” to appear in Transactions of the Society of

Instrument and Control Engineers, vol. 34, no. 8, 1998, in Japanese

Y. Ito, M. Araki, and T. Hagiwara, “Use of generalized samplers in sampled-data control,”
in Proceedings of the 15th SICE Symposium on Dynamical System Theory, Akita, Japan,
December 1992, pp. 165 170.

Y.-C. Juan and P. T. Kabamba, “Optimal hold functions for sampled data regulation,”

Automatica, vol. 27, no. 1, pp. 177-181, 1991.

P. T. Kabamba, “Control of linear systems using generalized sampled-data hold func-

tions,” IEF 3, 1987.

2 Transactions on Automatic Control, vol. 32, no. 9, pp.

P. T. Kabamba and S. Hara, “Worst-case analysis and design of sampled-data control

systems,” IEEE Transactions on Automatic Control, vol. 38, no. 9, pp. 13371357, 1993.
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.

o. Bertram, “A unified approach to the theory of sampling systems,”

R. E. Kalman and .
Journal of the Franklin Institute, vol. 267, no. 5, pp. 405-436, 1959.

J. P. Keller and B. D. O. Anderson, “A new approach to the discretization of continuous-

IE

time controllers, Transactions on Automatic Control, vol. 37, no. 2, pp. 214 2:

1992.

P. P. Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control of linear time-
invariant plants using periodic compensation,” IEEE Transactions on Automatic Control.
vol. 30, no. 11, pp. 1088 1096, 1985.

P. P. Khargonekar and N. Sivashankar, “H? optimal control for sampled-data systems,”
136, 1991.

Systems & Control Letters, vol. 17, no. 6, pp. 42:

H. Kimura, Chain-Scattering Approach to H*-Control. Boston, MA: Birkhéuser, 1997.




154

63

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

72

73]

(74]

Bibliography

G. M. Kranc, “Input-output analysis of multirate feedback systems,” IRE Transactions

on Automatic Control, vol. 3, pp. 2128, 1957.

G. M. H. Leung, T. P. Perry, and B. A. Francis, “Performance analysis of sampled-data

. no. 4, pp. 699704, 1991.

control systems.” Automatica, vol.

R. Middleton and J. Freudenberg, “Non-pathological sampling for generalized sampled-

data hold functions,” Automatica, vol. 31, no. 2, pp. 315-319, 1995.

L. Mirkin and H. Rotstein, “On the characterization of sampled-data controllers in the

lifted domain,” Systems & Control Letters, vol. 29, no. 5, pp. 269277, 1997.

T. Mita, Y. Chida, Y. Kaku, and H. Numasato, “Two-delay robust digital control and

C Transactions

its applications — avoiding the problem on unstable limiting zeros,” IF
on Automatic Control, vol. 35, no. 8, pp. 962-970, 1990.

C. N. Nett, C. A. Jacobson, and M. J. Balas, “A connection between state-space and
doubly coprime fractional representations,” IEEE Transactions on Automatic Control,
vol. 29, no. 9, pp. 831 832, 1984.

A. Ohara, “Analysis of geometric structures of linear feedback control systems and its

application,” Ph.D. thesis, Department of Mathematical Engineering and Information

Physics, the University of Tokyo, Tokyo, Japan, 1989, in Japanese.

A. Ohara and T. Kitamori, “Geometric structures of stable state feedback systems,” IEEE

Transactions on Automatic Control, vol. 38, no. 10, pp. 15791583, 1993.

Y. Oishi, “Computation-oriented expression of a non-conservative condition for robust
stability of sampled-data systems,” International Journal of Control, vol. 62, no. 5,
pp. 10851104, 1995.

Y. Oishi, “A relationship between the two sampled-data robust stabilization methods and
its dependency on sampling periods,” in Proceedings of the 18th SICE Symposium on

Dynamical System Theory. Fukuoka, Japan. November 1995, pp. 167-170, in Japanese.

Y. Oishi, “A performance bound of the sampled-data control using generalized samplers
and holders,” in Proceedings of the 25th SICE Symposium on Control Theory, Chiba,

Japan, May 1996, pp. 115-120, in Japanese.

Y. Oishi, “Converging and non-converging properties of the best achievable performance
in sampled-data control,” presented at the International Symposium on the Mathematical
Theory of Networks and Systems (MTNS96), St. Louis, MO, June 1996.

Bibliography 155

[7s)

[76]

[78]

=
o

[80]

1]

[s2]

[83]

84

fss]

[86]

Y. Oishi, “Converging and non-converging properties of the sampled-data control with
generalized samplers and holds,” in Proceedings of the Second Asian Control Conference,

Seoul, Korea, July 1997, vol. 2, pp. 283 286.

Y. Oishi, “A framework for generalized sampled-data control systems with an analysis
of their best achievable performance,” Technical Report METR 97-11, Department of
Mathematical Engineering and Information Physics, the University of Tokyo, Tokyo,
Japan, October 1997.

Y. Oishi, “A bound of conservativeness in sampled-data robust stabilization and its de-
pendence on sampling periods,” Systems & Control Letters, vol. 32, no. 1, pp. 11-19,
1997.

Y. Oishi, “Conditions for convergence of sampled-data control performance,” in Proceed-
ings of the 20th SICE Symposium on Dynamical System Theory, Sendai, Japan, October
1997, pp. 397 400.

Y. Oishi, “The best achievable performance of sampled-data control systems with a small
sampling period,” in Proceedings of the 36th IEEE Conference on Decision and Control,
San Diego, CA, December 1997, pp. 3603 3608.

S. L. Osburn and D. S. Bernstein, “An exact treatment of the achievable closed-loop H*
performance of sampled-data controllers: from continuous-time to open-loop,” Automat-
ica, vol. 31, no. 4, pp. 617 620, 1995.

L. Qiu and T. Chen, “H?-optimal design of multirate sampled-data systems,” IEEE

Transactions on Automatic Control, vol. 39, no. 12, pp. 25062511, 1994.
W. Rudin, Real and Complex Analysis, third ed. New York. NY: McGraw-Hill, 1987

N. Sivashankar and P. P. Khargonekar, “Robust stability and performance analysis of

sampled-data systems,” IEF
69, 1993.

ransactions on Automatic Control, vol. 38, no. 1, pp. 58

W. Sun, K. M. Nagpal, and P. P. Khargonekar, “H> control and filtering for sampled-

data systems,” IE Transactions on Automatic Control, vol. 38, no. 8, pp. 1162 1175,

1993.

B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space. Amsterdam,
the Netherlands: North-Holland, 1970.

G. Tadmor, “H> optimal sampled-data control in continuous time systems,” Interna-

tional Journal of Control, vol. 56, no. 1, pp. 99-141, 1992.




156

[87]

89]

[90]

[95]

[96]

[97]

[98]

[99]

Bibliography
P. M. Thompson, R. L. Dailey, and J. C. Doyle, “New conic sectors for sampled-data
feedback systems,” Systems & Control Letters, vol. 7, no. 5, pp. 395404, 1986.

P. M. Thompson, G. Stein, and M. Athans, “Conic sectors for sampled-data feedback

systems,” Systems & Control Letters, vol. 3, no.2, pp. 77-82, 1983

H.

criterion,” Automatica, vol. 28, no. 1, pp. 45-54, 1992.

Toivonen, “Sampled-data control of continuous-time systems with an H* optimality

O. Toker and H. Ozbay, “On the NP-hardness of solving bilinear matrix inequalities
and simultaneous stabilization with static output feedback,” in Proceedings of the 1995

American Control Conference, Seattle, WA, June 1995, pp. 2525 2526.

ampled-data and discrete-time H? optimal

H. L. Trentelman and A. A. Stoorvogel,

control,” SIAM Journal on Control and Optimization, vol. 33, no. 3, pp. 834-862, 1995.

2] M. Vidyasagar, Control System Synthesis: A Factorization Approach. Cambridge, MA:

MIT Press, 1985.

P. G. Voulgaris and B. Bamieh, “Optimal H> and H? control of hybrid multirate sys-
tems,” Systems & Control Letters, vol. 20, no. 4, pp. 249-261, 1993.

] Y. Yamamoto, “New approach to sampled-data control systems a function space

method,” in Proceedings of the 29th IEEE Conference on Decision and Control, Hon-
olulu, HW, December 1990, pp. 1882 1887.

Y. Yamamoto, “A function space approach to sampled data control systems and tracking

problems,” IEEE Transactions on Automatic Control, vol. 39, no. 4, pp. 703-713, 1994.

Y. Yamamoto and M. Araki, “Frequency responses for sampled-data systems their
equivalence and relationships,” Linear Algebra and Its Applications, vols. 205-206,
pp. 13191339, 1994.

Y. Yamamoto and P. P. Khargonekar, “Frequency response of sampled-data systems,”

IEEE Transactions on Automatic Control, vol. 41, no. 2, pp. 166-176, 1996.

D. C. Youla, H. A. Jabr, and .J. J. Bongiorno, Jr., “Modern Wiener-Hopf design of optimal
controllers — part II: the multivariable case,” IEEE Transactions on Automatic Control,
vol. 21, no. 3, pp. 319-338, 1976.

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper Saddle River,
NJ: Prentice-Hall, 1996.

Bibliography 57

[100] T. Zhou, “A parameterization of all the unfalsified plant models for MIMO systems,”
IEEE

Iransactions on Automatic Control, vol. 43, no. 1, pp. 18 30, 1998

[101] T. Zhou and H. Kimura, “Structure of model uncertainty for a weakly corrupted plant,”

IEEE Transactions on Automatic Control, vol. 40, no. 4. pp. 639655, 1995.







