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ABSTRACT 

 

The construction, expansion, rehabilitation or discontinuation of any transportation 

infrastructure requires the collection of ground data, which will provide the basis for 

the planned operation. Similarly, policies implemented to meet certain targets, e.g. 

pollution control, traffic reduction, sustainability etc. also require extensive research, 

which is again based on data. The vitality of the data makes the collection all the more 

important. Conventionally, household trip data was collected by questionnaire surveys, 

which is still being practiced in many parts of the world even today. The collection 

method was later improved to conduct the surveys online. These methods have an 

inherent problem of dependence on the memory of the respondent. Due to this 

dependence, accuracy of data cannot be assured. Shortcomings include inaccuracies in 

recording the starting and ending times, underreporting due to missing short trips and 

non-response. To address the source issue, passive data collection methodologies have 

recently evolved. 
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This dissertation deals with the state of the art technique to gather and interpret travel 

related data. Data recorded by various sensors can be used to identify the mode of 

travel used by the person carrying the device. For this purpose, the most recent method 

is to use supervised learning algorithms like support vector machine (SVM), neural 

network (NN), Naïve Bayes (NB), decision trees (DT), adaptive boosting (AdaBoost), 

random forest (RF) etc. The current research also benefits from the use of supervised 

learning algorithms. The first part of the dissertation deals with the data collected by 

sensors integrated in a purpose-built wearable device named Behavioral Context 

Addressable Loggers in the Shell (BCALs). BCALs was employed to collect travel 

data from three cities of Japan namely Niigata, Gifu and Matsuyama. The 

accelerometer and GPS data was directly processed by the device and some basic 

features were yielded for the analysis. Overall accuracy of around 80 % was achieved 

to distinguish among four modes of transportation, i.e. walk, bicycle, car and train. 

The minimum accuracy per mode was reported to be 56 %. Upon further processing 

the data using moving window concept to extract a number of useful features from 

accelerometer data alone and using 70 % randomly selected data to train different 

algorithms, the classification results improved. Among the four classification 

algorithms tested, random forest performed best and for a final selection of 125 point 

moving window size, an overall accuracy of around 99 % was achieved, with 

minimum accuracy of 97 %.  

 

To adopt the methodology for data collected from smartphones, only GPS data and 

acceleration data along 3 axes, collected by BCALs, was used as raw data. Resultant 

acceleration and average resultant acceleration was calculated from the individual 
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accelerations, using moving window concept for the latter feature. From GPS data, 

distance and time between consecutive readings were calculated. GPS coordinates 

were further used to extract driving and walking distance and time using Google Maps 

distance matrix API. The only personal attributes collected i.e. gender and age, were 

also included as features. Again 30 % data was tested using random forest and the 

overall classification accuracy turned out to be more than 99 %. Best feature selection 

revealed that only four variables were enough to achieve similar accuracy. 

 

Sensors’ data using smartphones was collected by participants in Kobe city. The data 

was used to compare the performance of various classification algorithms for travel 

mode detection. Boosted decision trees was most accurate closely followed by random 

forest but because random forest was much quicker and the difference in accuracy was 

not much, it was preferred and used in the studies to follow.  

 

Again moving window concept was used to extract various features from 

accelerometer data, including standard deviation, skewness and kurtosis. Gyroscope 

readings were directly used as features. Moving window size of 10 minutes and 10 % 

learning data amount was selected. The collected data was scaled down to reduced 

data recording frequencies to acquire an energy-efficient solution. For six modes of 

transportation, the overall accuracy ranged from 99.96 % for 10 Hz data to 94.48 % 

for 0.2 Hz data but at the same time, the computational times ranged from 304.86 

seconds to 3.53 seconds. The results suggested that a compromise needs to be agreed 

upon between the accuracy and computational time. Later, speed calculated from GPS 

data was used as raw data along with resultant acceleration calculated from 
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accelerometer data, to extract features. Because of imbalanced data, a modification 

was introduced to devise weighted random forest. The results were improved further 

by employing a 2-step post-processing method. Weighted random forest improved the 

accuracy to a maximum 13 % and post-processing further improved by a maximum 

13 %. 10-fold cross-validation was used to validate the results. Down-sampling 

provided additional refinement, resulting in 98.42% overall accuracy for 0.067 Hz data. 

The last chapter studies the possibility of utilizing the mode choice model along with 

the machine learning algorithm. The combination yielded an astonishing 99% overall 

accuracy with no mode accuracy less than 90%. 
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Chapter 1  INTRODUCTION 

 

1.1. Background 

 

Household travel data comprises of the socio-economic and demographic 

characteristics of surveyed individuals, their household characteristics and the travel 

information of the individuals for a prescribed time varying from one day to several 

days and even weeks or months. The travel information contains the start and end 

locations, start and end times, mode of transportation, accompanied persons and the 

purpose of the trip. All this data is collected to understand the travel behavior and 

patterns of the people in the sample. The collected data is indispensable for the 

transportation officials and is utilized for efficient design and management of 

transportation infrastructure. Furthermore, this information provides the ground truth 

to become the base for introduction of new policies as well as revision or suspension 

of implemented policies. These policies, in turn are the vital part of transportation 

demand management.  

 

Conventionally, the travel data has been collected by conducting travel surveys. These 

surveys include face-to-face interviews, paper questionnaires, telephone surveys, and 

computer-assisted surveys. All these methods have drawbacks, some of which are as 

follows. 

 

1. They all depend on the memory of the respondents. 

2. The recording of data is tedious for the respondents. 

3. The methods are expensive and consequently have low update frequency 
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4. Seasonal variations are difficult to capture and are therefore usually ignored. 

5. The response rate is low because of the tiresome nature of recording method 

applied. 

6. Small trips are usually ignored or forgotten. 

7. Perception of time varies from person to person and is also affected by the mode 

of travel. 

8. Responses are usually biased. 

9. Exact starting and ending times are not reported, rather approximate values are 

stated. 

 

The above-stated shortcomings led to the introduction of passive data collection 

methods. These are the methods were information is collected automatically either by 

installing devices at fixed locations or by having the participants carry the devices 

along with them on their journeys. It started out with experiments on Global 

Positioning Systems (GPS) installed in the participants’ vehicles to monitor their daily 

movement and route choice. Obviously this methodology lacked the ability to collect 

data pertaining to modes other than the personal vehicles. With the introduction of 

light GPS devices that can be carried around, the location data collection was expanded 

to include other modes as well. With technological advancements, multiple sensors 

were utilized to record data and infer the travel mode and trip purpose. These sensors 

included accelerometer, barometer, magnetometer, gyroscope etc. Purpose-built 

wearable devices housing various sensors were used by different researchers with the 

aim to collect such a data which will be most practical for identifying the mode of 

transportation.  



 Chapter 1  

3 

 

 

Smartphones today, have a range of sensors integrated in them. This inclusion of 

various sensors has presented smartphones as a viable data collection device. The 

additional advantages lie in the increasing penetration rates of smartphones in different 

countries of the world. A number of researchers are studying the application of 

smartphones for travel data collection. The problems at hand are as follows, 

 

1. The reported classification accuracies of past studies are not very high. 

2. Few studies use simple features for classification. 

3. The quick drainage of smartphone battery during data collection is a big issue, and 

limits the application of the methodology.  

 

3.1. Research Objectives 

 

As discussed earlier, conventional methods of travel data collection have a number of 

weaknesses. To address these issues, automatic travel data collection methods have 

been devised. However, the use of devices, including smartphones, is a developing 

topic. In view of this fact my research objectives are as follows, 

 

1. Develop a methodology to use the sensors’ data (GPS, accelerometer and 

gyroscope) collected by smartphones or any other device, to identify the travel 

modes. 

2. The developed methodology should be battery-efficient and should be highly 

accurate, while using simple features to reduce the complexity of the approach. 
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3.2. Thesis Organization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Thesis Organization  
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Chapter 2  LITERATURE REVIEW* 

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as Shafique M.A. and Hato E. A Review of Automatic 

Travel Mode Detection Methods. Transport Reviews. 
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Chapter 3  SUPERVISED LEARNING ALGORITHMS* 

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as part of Shafique M.A. and Hato E. Improving the 

Accuracy of Travel Mode Detection for low Data Collection Frequencies. Transportation 

Research Part C. 

This chapter is presented in part as Shafique M.A. and Hato E. A Comparison among 

various Classification Algorithms for Travel Mode Detection using Sensors’ data collected 

by Smartphones. 14th International Conference on Computers in Urban Planning and 

Urban Management, CUPUM 2015, MIT, Cambridge, Massachusetts. July 2015. 
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Chapter 4 BEHAVIORAL CONTEXT ADDRESSABLE LOGGERS 

IN THE SHELL  

 

2.1. Introduction 

 

Behavioral Context Addressable Loggers in the Shell (BCALs) is a small, portable 

device developed by Hato (2010) for the purpose of travel-activity observation. This 

chapter introduces BCALs as it is the source of data collection used in section 1 of the 

thesis. The aim for the development of such a device was to introduce an instrument 

which is capable of estimating behavioral contexts without the requirement of any 

entry from the respondents. This way, the human error related to reliance on inaccurate 

memory of the events can be eliminated.  

 

2.2. BCALs 

 

Designed and developed by Hato (2010), the instrument (Figure 4-1) was equipped 

with multiple sensors and therefore was capable of collecting different kinds of data, 

listed in Table 4-1. Originally, the acceleration data was used to identify the travel 

mode, whereas the atmospheric pressure along with ultraviolet rays was utilized to 

judge whether the participant was indoors or outdoors, and if indoors then which floor 

level. Moreover, sound and temperature observations were intended to evaluate the 

surrounding environment.  
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Figure 4-1: BCALs equipped with various sensors  

 

 

Table 4-1: Data acquired from BCALs (Hato, 2010) 

Sr. No. Data 

1 X-axis acceleration (32 Hz) 

2 Y-axis acceleration (32 Hz) 

3 Z-axis acceleration (32 Hz) 

4 Atmospheric pressure (32 Hz) 

5 Angular velocity (32 Hz) 

6 Ultraviolet ray (32 Hz) 

7 Direction (32 Hz) 

8 Sound (10 Hz) 

9 PS location (latitude, longitude, acceleration, velocity, and 

direction) (1 Hz) 

10 Elliptical error of GPS location measurement 

 

2.3. Summary 

 

Although, BCALs can record numerous types of data, but its use in this thesis is only 

restricted to GPS and accelerometer data. 
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Chapter 5 TRAVEL MODE DETECTION USING GPS AND 

ACCELEROMETER DATA WITHOUT PROCESSING*  

 

5.1. Introduction 

 

In this chapter as well as in the following two chapters, sensors’ data collected by 

BCALs is used to identify the mode of transportation used by the participants. Data 

acquired from travel surveys provide basic information for the traffic modeling, 

service optimization and routing. This is immensely valuable for traffic planners, 

transportation authorities, public transport providers and researchers. Conventional 

data collection methods for travel surveys comprise telephone interviews, personal 

interviews, travel diaries, mail-back or web-based questionnaires, traffic counting on 

cross sections or intersections as well as analyses of transport schedule inquires. When 

collecting data on a large scale, most of these methods are expensive and time 

consuming. Consequently the update frequency of the data is very low. Moreover, 

nonresponse issues and underreported trips are well-known problems in surveys.  

 

The second half of 1990s witnessed the introduction of Global Positioning System 

(GPS) devices to supplement the measurement of personal travel. One of the first 

household surveys employing GPS was conducted in 1997 in Austin, Texas, followed 

                                                   

* This chapter is published as Shafique M.A., Hato E. and Yaginuma H. Using Probe 

Person Data for Travel Mode Detection. International Journal of Computer, Information, 

Systems and Control Engineering, 8(10), 1482 – 1486. 2014. 

This chapter is presented as Shafique M.A., Hato E. and Yaginuma H. Using Probe Person 

Data for Travel Mode Detection. International Conference on Signal Processing, Pattern 

Recognition and Applications, Osaka, Japan. Oct. 2014. 
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by many studies conducted to examine the application of GPS to determine travel 

behavior (Bohte and Maat, 2009; Murakami and Wagner, 1999; Stopher et al., 2008; 

Wolf et al., 2001). These studies aim at determining the possibility of GPS device, 

combined with Global Information Systems (GIS), to replace or supplement 

conventional methods. Devices are either wearable or mounted in private vehicles. 

Common problems with GPS are loss of signal in underground facilities, high energy 

consumption and the willingness of users carrying the device.  

 

5.2. Methodology 

 

5.2.1. Data Collection 

 

This study comprises of the data collected from three Japanese cities namely Niigata, 

Gifu and Matsuyama. Figure 5-1 shows the locations of the three cities with reference 

to the location of Tokyo. 

 

Niigata is a coastal city facing the Sea of Japan and the Sado Island. It is the capital 

and the most populous city of Niigata prefecture. The city includes of a number of 

wetlands. In the west of Tokyo lies the Gifu prefecture, having a capital with the same 

name. The area varies from buildup city center to orchards in the surrounding regions. 

Further south west of Gifu is the Ehime prefecture on the island of Shikoku. Its capital 

is Matsuyama. In addition to railway lines, Matsuyama also houses tram lines. 

Population of each city (as reported in 2010 census) is given in Table 5-1. 

 

The data collected can be classified into two categories, Location Data and Trip Data. 
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Location data, collected by BCALs, comprised of features extracted from 

accelerometer and GPS whereas trip data, recorded by travel diaries, contained travel 

activity information. Table 5-2 shows the contents of both types of data. The location 

data was labeled with the help of information collected in the trip data. 

 

The surveys were conducted during Jan to Feb 2011 in Niigata, Dec 2010 to Jan 2011 

in Gifu and Nov 2010 to Jan 2011 in Matsuyama. Table 5-3 gives the amount of data 

used in the study discussed in this chapter. Moreover the distribution of data with 

respect to the mode of transportation is also shown. 

 

 

Figure 5-1: Location of Tokyo, Niigata, Gifu and Matsuyama  

 

Table 5-1: Population of cities surveyed 

City Population 

Niigata 811,901 

Gifu 413,136 

Matsuyama 517,231 
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Table 5-2: Contents of Location and Trip Data 

Data Contents 

Location Data 
User ID, Recording date and time, Exercise intensity, No. of steps, Min, Max 

and Avg. accelerations in movement, crosswise and vertical directions, Resultant 

and Avg. resultant accelerations 

Trip Data User ID, Departure date and time, Arrival date and time, Means of transportation 

 

Table 5-3: Distribution by Mode 

Mode Niigata Gifu Matsuyama 

Walk 164,078 (71.49%) 83,645 (58.24%) 168,687 (62.62%) 

Bicycle 3,214 (1.4%) 24,559 (17.09%) 15,404 (5.72%) 

Car 61,785 (26.92%) 34,678 (24.14%) 81,653 (30.31%) 

Train 425 (0.19%) 744 (0.52%) 3,631 (1.35%) 

Total 229,502 (100%) 143,626 (100%) 269,375 (100%) 

 

5.2.2. Mode Assignment 

 

Before assigning the mode of transportation used, the location data for each city was 

scanned for any redundant entries, with reference to the trip data. Afterwards using the 

departure and arrival times listed in the trip data, the relevant data sets in the location 

data were assigned the corresponding mode of transportation. The data sets which were 

left unassigned were deleted. 

 

5.2.3. Elementary Analysis 

 

Using GPS, the location of the respondent is recorded after every 1 minute. Hence the 

distance covered per minute can be assessed. This feature can help distinguish among 
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different modes of transportation. Figure 4-3 shows a part of the trip done by a 

respondent in Niigata city. The person walked from point A to F after which he used 

car from point F to K. The points are taken approximately 10 minutes apart to clarify 

the picture. It can be observed that the two modes can easily be separated based on the 

distance covered from point to point. 

 

The accelerometer sensor integrated in the smart phone calculates and records the 

acceleration along X, Y and Z directions. These accelerations can also assist in 

determining the mode of transportation used. Figure 5-2 shows the variation of average 

resultant acceleration along the same route (A-K). It is evident from figure 5-3 that 

some pattern exists among the modes when it comes to acceleration. 

 

 

Figure 5-2: Route formed by GPS data  
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Figure 5-3: Acceleration along the trip  

 

5.2.4. Classification 

 

Support Vector Machine 

The first choice for this type of classification problem was Support Vector Machine 

(SVM). SVM was trained by using the learning data for each city. After the training 

phase, the algorithm was used to predict the mode of transportation for the test data.  

 

Adaptive Boosting 

Next, Adaptive Boosting or AdaBoost was employed. It was used in two ways as 

shown in Figure 5-4. Firstly AdaBoost was trained for one mode (as it is a binary 

classifier) and then used to predict the test data. For example the mode was “Train” 

then the prediction resulted in “Train” and “Other”. Further the algorithm was trained 

for the second mode and prediction was done on the data sets predicted as “Other” 

from the first step. This procedure continued for all four modes. Consequently a small 
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amount of test data predicted as “Other” remained in the end. SVM was used to predict 

this data. 

 

In the second method, AdaBoost algorithm was trained for each mode separately but 

the prediction was done for the entire test data. The prediction results were analyzed 

and the data sets having only one mode predicted were assigned that mode. Rest all 

were assigned as “Other”. The whole procedure was repeated for the remaining test 

data assigned as “Other”. In the end SVM was used to finish off the task. 

 

Prediction Improvement 

The prediction results, acquired by the application of SVM alone and by AdaBoost 

along with SVM, were further improved by adopting a simple method. By applying 

conditions on user ID, measurement date and measurement time, the data was divided 

into a number of trips. The mode is expected to remain same throughout one trip, so 

in light of this hypothesis the statistical mode of the results was determined for each 

trip and was then assigned to the respective trip.   

 

 
Figure 5-4: Methods for AdaBoost application  
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5.3. Results and Discussion 

 

The prediction results acquired for the three cities, by applying the methodology 

discussed, are summarized in Table 4-5. The results suggest that the method of 

prediction improvement has a positive influence on the outcomes. Moreover the 

application of AdaBoost proved to be better than SVM alone. If the two methods of 

AdaBoost application are investigated then the second method involving repetition 

yielded comparatively better prediction results. 

 

Table 5-4: Prediction Results  

City Mode 
Normal Improved 

SVM AdaBoost (1) AdaBoost (2) SVM AdaBoost (1) AdaBoost (2) 

Niigata 

Walk 81.77 % 81.76 % 82.38 % 92 % 91.39 % 92.49 % 

Bicycle 71.53 % 86.43 % 87.06 % 93.25 % 100 % 100 % 

Car 64.67 % 74.83 % 75.32 % 68.96 % 81.67 % 81.3 % 

Train 93.88 % 97.18 % 97.88 % 100 % 100 % 100 % 

All 77.05 % 79.99 % 80.57 % 85.83 % 88.91 % 89.6 % 

Gifu 

Walk 64.46 % 67.44 % 70.27 % 75.72 % 76.16 % 79.58 % 

Bicycle 72.09 % 73.89 % 74.13 % 86.05 % 90.76 % 89.83 % 

Car 68.65 % 75.84 % 76.28 % 75.64 % 83.76 % 86.23 % 

Train 87.5 % 96.91 % 97.04 % 84.95 % 84.95 % 84.95 % 

All 66.9 % 70.72 % 72.52 % 77.51 % 80.54 % 82.97 % 

Matsuyama 

Walk 67.75 % 68.65 % 68.43 % 79.54 % 79.99 % 79.76 % 

Bicycle 59.65 % 62.64 % 63.46 % 72.32 % 81.41 % 81.06 % 

Car 44.63 % 57.93 % 59.78 % 44.92 % 67.28 % 70.62 % 

Train 60.53 % 67.2 % 67.78 % 58.14 % 58.63 % 55.96 % 

All 60.18 % 65.04 % 65.51 % 68.34 % 75.93 % 76.74 % 
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When cities are compared, Niigata gives the best results followed by Gifu and then 

Matsuyama. This might be because of difference in infrastructure, climate change and 

variation in technologies introduced. Although Niigata has the highest population 

among the three cities compared and the precipitation level is also very high, yet the 

prediction results are much better, partly due to moderate climate present during the 

survey. 
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Chapter 6 TRAVEL MODE DETECTION USING 

ACCELEROMETER DATA AFTER PROCESSING*  

 

6.1. Introduction 

 

In this chapter, the accelerometer data collected by BCALs is used for mode 

classification. The data correspondes to the same survey used in the previous chapter.  

An accelerometer measures the acceleration of a device in three directions with respect 

to gravitational force. This means that when the device is placed on a flat surface, an 

acceleration of 1 g is detected in a downward direction, whereas zero acceleration is 

recorded in the other two directions. To improve the methodology, pre-processing is 

employed in order to extract features of high importance. 

 

Mode determination will not just prove beneficial for the transportation sector, but will 

also pave the way for a new and effective means of advertising. For example, if a user’s 

location and mode of transportation are known in real time, a message can be sent to 

his or her mobile phone advertising the nearest facilities available in connection with 

the mode detected. In addition, products relating to a particular mode used can be 

advertised directly to the user. In this way, the data accumulated can be used to 

implement a targeted customer-oriented advertising program (Figure 6-1). 

   

                                                   

* This chapter is published as Shafique M.A. and Hato E. Use of acceleration data for 

transportation mode prediction, Transportation, 42(1), 163-188. 2015. 
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Figure 6-1: Concept of Customer-oriented advertisement 

 

For the purpose of mode detection, the analyst can currently avail of different types of 

classification algorithms. Some of these are listed in Table 6-1, along with their 

advantages and disadvantages and the methodologies associated with each. A number 

of researchers have compared the various algorithms in comparative studies, some of 

which are summarized in Table 6-1. The four classifiers used in this study, namely, 

AdaBoost, SVM, decision tree and random forests, were selected based on the results 

derived from existing comparative studies. These algorithms have exhibited good 

performance in numerous studies, and their respective advantages and disadvantages 

can be seen in Table 3-1. The current study compares the algorithms with a view to 

ascertaining the one most appropriate for transportation mode detection.  
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Table 6-1: Some previous algorithm comparison studies 

Study Algorithms compared Best Algorithm 

Caruana and Niculescu-Mizil 

(2006) 

Support Vector Machines, 

Neural Nets, Logistic 

Regression, Naïve Bayes, 

Memory-based Learning, 

Random Forest, Decision 

Trees, Bagged Trees, Boosted 

Trees, Boosted Stumps 

Boosted Trees 

Nick et al. (2010) 
Naïve Bayes, Support Vector 

Machines 
Support Vector Machines 

Reddy et al. (2010) 

Decision Trees, K-Means 

Clustering, Naïve Bayes, 

Nearest Neighbor, Support 

Vector Machines, Continuous 

Hidden Markov Model, 

Decision Trees with discrete 

Hidden Markov 

Decision Tree with discrete 

Hidden Markov Model 

Stenneth et al. (2011) 

Naïve Bayes, Bayesian 

Network, Decision Trees, 

Random Forest, Multilayer 

Perceptron 

Random Forest 

Yu et al. (2013) 
Decision Trees, AdaBoost, 

Support Vector Machines 
Support Vector Machines 

 

GPS data is not used in this study at all. Although GPS data has been shown to work 

well for mode detection, certain disadvantages are associated with it. The main 

difficulty is the drop in accuracy due to signal loss or degradation during warm or cold 

starts, and in ‘urban canyons’ (Gong et al., 2012; Schuessler and Axhausen, 2009; 

Stopher et al., 2008). Warm and cold starts happen when a GPS logger requires 

between five and thirty seconds more to find enough satellites for accurate location 

detection after being off (or underground) for a long period of time. In densely built 

central business districts (CBDs), satellite signals do not generally reach the GPS 

device directly but are bounced off tall buildings. This is known as the urban canyon 
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effect. The above drawbacks associated with GPS use tend to decrease the accuracy of 

the results extracted from GPS data. Furthermore, respondents’ privacy concerns are 

also a problem in this area. If a smartphone is used as the data collection instrument, 

developing a methodology using acceleration data alone will not only address the 

above problems but will also extend the battery time of the smartphone during data 

collection, as the GPS sensor will not be activated. 

 

6.2. Methodology 

 

6.2.1. Data Collection 

 

The data was collected from three cities in Japan, namely, Niigata, Gifu and 

Matsuyama. In Niigata, the surveys were conducted during January and February 2011 

and involved 12 participants; in Gifu, they were conducted in December 2010 and 

January 2011 and involved 8 participants; and in Matsuyama, they were conducted in 

November 2010 and January 2011 and involved 26 participants. The data collected can 

be classified into location data and trip data. 

 

The location data was recorded using Behavioral Context Addressable Loggers in the 

Shell (BCALs) (Hato, 2010). BCALs, are purpose-built wearable devices equipped 

with different sensors, in addition to a GPS and an accelerometer. They can record 

location as well as acceleration in three directions, a task that is now possible using 

modern smartphones. The BCALs observed the various sensors’ readings at a 

frequency of 16 Hz or 16 readings per second, but the readings transmitted to the server 

were spaced out at an average of five seconds. Hence, the maximum, minimum and 
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average readings were calculated by the device for each five-second interval and then 

recorded by the server. The wearable devices were kept in the same position 

throughout the trip so that accelerations in different directions could be judged easily. 

The trip data was collected using paper-based travel diaries in which the respondents 

were asked to record the details of their everyday trips. Feedback calls were made to 

the respondents to correct any mistakes made during reporting. Again, this is a task 

that can be fulfilled using smartphones, a method used by many researchers. A simple 

application developed for the smartphone can be utilized to record the start and end of 

a trip, as well as the mode of transportation used. 

 

The location data comprised GPS data and accelerometer data. The accelerometer data 

recorded was the minimum, maximum and average acceleration in movement, 

crosswise and vertical directions. Moreover, resultant acceleration and average 

resultant acceleration were also noted. The trip data covered the information regarding 

each trip, i.e., the date, start time, end time and mode used. 

 

Table 6-2 presents the raw location data and the mode-assigned data (discussed in 

Section 6.2.2. Mode assignment) for each city. The table also shows the assignment of 

the data to various modes. Table 6-3 displays the trip share for each mode. Due to data 

limitations, the analysis was carried out for four modes only. Acceleration data relating 

to the bus as a fifth mode was either non-existent or so small that it was not treated 

separately but simply merged with the car travel data. Similarly, only one trip was 

recorded for Shinkansen (the high-speed train), and instead of adding a new mode, it 

was included with the train data. 
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Table 6-2: Amount of data collected through BCALs 

Data¥City Niigata Gifu Matsuyama 

Raw Location Data 341,712 258,388 507,014 

Mode Assigned Data 
229,502 

(100.00%) 

143,626 

(100.00%) 

269,375 

(100.00%) 

Walk 
164,078 

(71.49%) 

83,645 

(58.24%) 

168,687 

(62.62%) 

Bicycle 
3,214 

(1.4%) 

24,559 

(17.09%) 

15,404 

(5.72%) 

Car 
61,785 

(26.92%) 

34,678 

(24.14%) 

81,653 

(30.31%) 

Train 
425 

(0.19%) 

744 

(0.52%) 

3,631 

(1.35%) 

 

Table 6-3: Number of trips recorded 

Mode¥City Niigata Gifu Matsuyama 

Walk 662 342 861 

Bicycle 12 180 90 

Car 306 219 386 

Train 4 3 40 

Total 984 744 1377 

 

6.2.2. Mode Assignment 

 

The location data was filtered in terms of the trip data. For example, if accelerometer 

data was recorded with respect to a user for a specific day, but the user had not 

registered any trips for that particular day in the trip data, then the accelerometer data 

recorded was of no use. Moreover, data sets with zero acceleration (‘rest’ position) 



 Chapter 6  

24 

 

were also discarded. Using the departure and arrival times listed in the trip data, the 

corresponding data sets in the location data were assigned the respective mode of 

transportation, as shown in Figure 6-2. After the mode of transportation was assigned 

to the location data, the remaining data sets were disposed of. The reason some data 

remained unassigned is that the accelerometer data may have contained data sets 

recorded before the start of the trip or after the end of the trip. The remaining data was 

used in subsequent pre-processing and analysis. 

 

 

Figure 6-2: Example of Mode Assignment 

 

6.2.3. Elementary Analysis 

 

A distinction between the modes was detected upon careful examination of the 

acceleration data. For instance, Figures 6-3 to 6-6 show part of the acceleration data 

for each mode. It can be observed that walking has maximum variability, followed by 
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cycling. This could be due to excessive movement by the traveler carrying the device. 

On the other hand, the car and train modes showed relatively small acceleration 

variability, probably due to the smooth travelling environment. Therefore a clear 

distinction can be perceived between the different modes by just inspecting the 

acceleration data. 

 

 

Figure 6-3: Average Resultant Acceleration for walking 

 

 

Figure 6-4: Average Resultant Acceleration for bicycling 

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0 500 1000 1500 2000 2500

A
cc

e
le

ra
ti

o
n

 (
G

)

Time (sec)

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0 500 1000 1500 2000 2500

A
cc

e
le

ra
ti

o
n

 (
G

)

Time (sec)



 Chapter 6  

26 

 

 

Figure 6-5: Average Resultant Acceleration for automobile travel 

 

 

Figure 6-6: Average Resultant Acceleration for train travel 

 

6.2.4. Pre-Processing 

 

Pre-processing was applied in two stages. First, the moving average was calculated, 

followed by the differences between each mode. The moving average was calculated 

at 25 point, 50 point, 75 point, 100 point and 125 point in order to identify the trend 

most likely to maximize classification accuracy.  
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In this case, x denotes the various data entries for acceleration in any direction, n is the 

total number of data entries and k is the window size (25, 50, 75, 100 and 125) for 

calculating the moving average. At any position i within the data, the window will 

cover xj entries to calculate the moving average. The window will keep the reference 

entry xi at the center, except at the start and end of the data set. As the reference entry 

xi moves closer to the start or end of the data set, the window will be suppressed. As a 

solution to this, the window was halved at the start and end of the data set, with the 

reference entry kept at one end of the window rather than placed in the center. The 

following equations 6.1 and 6.2 were formulated for the calculation of the k point 

average. Equation 6.2 was used only for average resultant acceleration. 

 

(𝑘 𝑝𝑜𝑖𝑛𝑡 𝐴𝑣𝑔)𝑖 =

{
 
 
 
 
 

 
 
 
 
 2

𝑘
∑ 𝑥𝑗

𝑖+𝑘 2⁄

𝑗=𝑖

                                                      𝑖𝑓 𝑖 ≤ 𝑘 2⁄

1

𝑘
∑ 𝑥𝑗
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                             𝑖𝑓 𝑘 2⁄ < 𝑖 < 𝑛 − 𝑘 2⁄
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𝑖
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                                 (6.2) 

 

Equation 5.1 shows that at the start of the data set, that is, when the reference position 

i had not yet exceeded the k/2 mark, a window of size k/2 was used to calculate the 
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average value, with the reference value at the start of the window. Similarly, at the end, 

the k/2-sized window was used, keeping the reference value at the end of the window. 

Between these two extremes, the window size was increased to k, with k/2 before i and 

k/2 after i. 

 

In this way, moving averages were calculated for maximum, minimum and average 

accelerations in the movement, crosswise and vertical directions. Furthermore, moving 

averages were also calculated for resultant and average resultant acceleration (𝑎𝑐𝑐res, 

𝑎𝑐𝑐avg.res). After the original values were replaced with the moving averages, the 

differences between maximum and minimum accelerations (𝑎𝑐𝑐max, 𝑎𝑐𝑐min ) were 

calculated for all three directions ( 𝑐𝑟𝑜𝑠𝑠, 𝑣𝑒𝑟𝑡,𝑚𝑜𝑣 ), and their differences 

subsequently calculated. Moreover, the differences between average accelerations 

(𝑎𝑐𝑐avg) along the three directions were also calculated. Equations 6.3 to 6.9 show the 

complete procedure used for the difference calculations.  

 

𝐷𝑑 = 𝑎𝑐𝑐max.𝑑 − 𝑎𝑐𝑐min.𝑑          𝑓𝑜𝑟 𝑑 = 𝑐𝑟𝑜𝑠𝑠, 𝑣𝑒𝑟𝑡,𝑚𝑜𝑣                      (6.3) 

𝐷1 = 𝐷𝑐𝑟𝑜𝑠𝑠 − 𝐷𝑣𝑒𝑟𝑡 − 𝐷𝑚𝑜𝑣                                                                            (6.4) 

𝐷2 = 𝐷𝑣𝑒𝑟𝑡 − 𝐷𝑚𝑜𝑣 − 𝐷𝑐𝑟𝑜𝑠𝑠                                                                            (6.5) 

𝐷3 = 𝐷𝑚𝑜𝑣 − 𝐷𝑐𝑟𝑜𝑠𝑠 − 𝐷𝑣𝑒𝑟𝑡                                                                            (6.6) 

𝐷𝑎1 = 𝑎𝑐𝑐𝑎𝑣𝑔.𝑐𝑟𝑜𝑠𝑠 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑣𝑒𝑟𝑡 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑚𝑜𝑣                                            (6.7) 

𝐷𝑎2 = 𝑎𝑐𝑐𝑎𝑣𝑔.𝑣𝑒𝑟𝑡 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑚𝑜𝑣 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑐𝑟𝑜𝑠𝑠                                            (6.8) 

𝐷𝑎3 = 𝑎𝑐𝑐𝑎𝑣𝑔.𝑚𝑜𝑣 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑐𝑟𝑜𝑠𝑠 − 𝑎𝑐𝑐𝑎𝑣𝑔.𝑣𝑒𝑟𝑡                                            (6.9) 
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Figure 6-7 shows the entire pre-processing method. After pre-processing, the final 

features were as follows: maximum, minimum and average acceleration along the 

three directions; differences between maximum and minimum (𝐷𝑥, 𝐷𝑦, 𝐷𝑧 ); their 

differences (𝐷1, 𝐷2, 𝐷3); differences between average accelerations (𝐷𝑎1, 𝐷𝑎2, 𝐷𝑎3); 

resultant acceleration and average resultant acceleration. In addition, moving averages 

were calculated for all values. 

 

 

Figure 6-7: Pre-processing and feature extraction 

 

6.2.5. Training and Testing Data Selection 

 

As the data for each mode was different, the training data was randomly selected in 

the following two ways: 
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1) Equal number selection 

2) Equal proportion selection 

While equal number selection ensures that all the modes are equally represented in the 

training data set, the algorithm lacks sufficient training for the most frequently 

occurring mode in the test data set. Conversely, equal proportion selection ascertains 

that training is done proportionally for the test data set, but the modes are not 

represented equally in the training data set. This variation may affect the prediction.  

 

Equal number selection 

For each city, the mode with the least data was selected and the number corresponding 

to 70% of that data was calculated. The data equal to that number was then randomly 

selected from each mode to form the training data set, leaving the rest as a test data set. 

In this way, no matter how much difference was present between the modes, the 

training data always comprised equal numbers from each. Table 6-4 shows the amount 

of training data selected for each city. 

 

Equal proportion selection 

A total of 70% of data for each mode was randomly selected to form the training data 

and the remaining 30% was used to test the algorithms. This method yielded a much 

larger quantity of training data, which can be seen in Table 6-4. 

 

6.2.6. Classifiers 

 

In order to determine the classifier that most accurately predicts transportation mode, 

a comparison was made between (a) Support Vector Machines (SVM); (b) Adaptive 
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Boosting (AdaBoost); (c) decision tree using rpart, and (d) random forests. These 

classifiers were selected due to their frequent and established use in existing literature. 

The aim was to identify the best performing algorithm by carrying out a comparison 

between them. 

 

6.3. Results and Discussion 

 

The overall classification results of the classifiers for the different moving averages, 

as well as the two types of training data selection methods, are summarized in Figures 

6-8 to 6-10. From the figures, it is evident that maximum prediction accuracy can be 

achieved by employing a 125-point moving average at the pre-processing stage. For 

the 125-point moving average, Table 6-5 shows the overall classification accuracies, 

while Table 6-6 gives the detailed results. The accuracy calculated can be considered 

producer accuracy. 

 

Table 6-4: Amount of training data used for travel mode classification 

City 

Data Selection 

Method 

Mode 

Walk Bicycle Car Train Total 

Niigata Total 164,078 3,214 61,785 425 229,502 

 Equal number 298 298 298 298 1,192 

 Equal proportion 114,855 2,250 43,250 298 160,653 

Gifu Total 83,645 24,559 34,678 744 143,626 

 Equal number 521 521 521 521 2,084 

 Equal proportion 58,552 17,191 24,275 521 100,539 

Matsuyama Total 168,687 15,404 81,653 3,631 269,375 

 Equal number 2,542 2,542 2,542 2,542 10,168 

 Equal proportion 118,081 10,783 57,157 2,542 188,563 



 Chapter 6  

32 

 

For example, if the prediction accuracy is 85%, this means that 85% of the known data 

carrying a certain class label (ground truth) is returned with the same label by the 

algorithm. The accuracies were calculated after creating confusion matrices and 

dividing the number of correct predictions for each mode by the total quantity of data 

in the test data set that is linked to that mode. 

 

It can also be observed from the figures, as well as from the results listed in the tables, 

that the equal proportion method is better than the equal number method, but some of 

the detailed results show differently. For instance, in the equal proportion method, 

SVM and AdaBoost seem to perform well, with overall accuracy exceeding 85% in all 

cases. However, a breakdown of the accuracies at mode level reveals that the accuracy 

in terms of train transport prediction is very poor, in fact zero in case of Niigata and 

Matsuyama. This is because the amount of data corresponding to train transportation 

in the training data is relatively very small, which results in a zero prediction accuracy, 

even for the training data itself. 

 

Random forest performs best in all cases. In particular, its accuracy is very high, at 

99.8%, for the 125-point moving average using the equal proportion method. Even in 

the equal number method, the overall accuracy is greater than 91%, which is quite 

impressive. The next best performer is decision tree, followed by AdaBoost and then 

SVM. 
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Figure 6-8: Prediction accuracy for Niigata city using (a) equal number method and 

(b) equal proportion method 

 

 

 

Figure 6-9: Prediction accuracy for Gifu city using (a) equal number method and (b) 

equal proportion method 
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Figure 6-10: Prediction accuracy for Matsuyama city using (a) equal number method 

and (b) equal proportion method 

 

The developed methodology was tested for three cities in order to establish the stability 

as well as the broader applicability of the approach. The results suggest that similar 

classification accuracy was achieved for the three cities. This is an indication that the 

approach is stable and might yield a good level of accuracy for other cities in Japan. 

  

Table 6-5: Overall classification results at 125 point moving average 

Selection 

method 
City 

SVM AdaBoost Decision Tree Random Forest 

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) 

Equal 

number 
Niigata 90.44 89.21 98.49 92.67 100.00 87.59 100.00 93.64 

 Gifu 85.80 83.22 96.74 89.77 100.00 85.67 100.00 91.85 

 Matsuyama 81.25 75.54 90.96 82.91 99.28 87.68 100.00 93.17 

Equal 

proportion 
Niigata 96.37 96.30 96.61 96.42 99.20 98.78 100.00 99.86 

 Gifu 94.41 94.36 93.15 93.00 98.76 97.97 100.00 99.79 

 Matsuyama 90.84 90.85 89.89 89.65 97.42 96.52 100.00 99.81 
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Table 6-6: Classification results at 125 point moving average 

Selection 

method 
City Mode 

SVM AdaBoost Decision Tree Random Forest 

Train 

(%) 
Test (%) 

Train 

(%) 
Test (%) 

Train 

(%) 
Test (%) 

Train 

(%) 
Test (%) 

Equal 

number 
Niigata Walk 92.95 92.91 97.32 93.99 100.00 87.85 100.00 94.39 

  Bicycle 90.94 90.05 98.99 96.54 100.00 91.50 100.00 97.81 

  Car 77.85 79.27 97.65 88.96 100.00 86.69 100.00 91.43 

  Train 100.00 100.00 100.00 100.00 100.00 97.64 100.00 100.00 

  All 90.44 89.21 98.49 92.67 100.00 87.59 100.00 93.64 

 Gifu Walk 85.03 85.92 95.20 90.80 100.00 85.37 100.00 93.06 

  Bicycle 90.98 87.16 96.93 89.82 100.00 83.36 100.00 90.88 

  Car 74.09 73.78 94.82 87.16 100.00 87.92 100.00 89.57 

  Train 93.09 94.62 100.00 100.00 100.00 99.55 100.00 100.00 

  All 85.80 83.22 96.74 89.77 100.00 85.67 100.00 91.85 

 Matsuyama Walk 77.50 77.07 81.83 80.91 98.47 86.26 100.00 91.81 

  Bicycle 87.25 86.71 94.26 91.10 99.76 93.40 100.00 98.27 

  Car 71.75 70.32 88.28 85.56 98.94 89.60 100.00 95.11 

  Train 88.51 87.51 99.49 99.54 99.96 97.52 100.00 100.00 

  All 81.25 75.54 90.96 82.91 99.28 87.68 100.00 93.17 

Equal 

proportion 
Niigata Walk 97.95 97.84 98.17 97.92 99.66 99.45 100.00 99.96 

  Bicycle 77.96 79.88 84.76 86.41 94.13 92.22 100.00 99.38 

  Car 93.81 93.70 93.55 93.37 98.32 97.44 100.00 99.64 

  Train 0.00 0.00 30.54 37.01 89.60 85.04 100.00 99.21 

  All 96.37 96.30 96.61 96.42 99.20 98.78 100.00 99.86 

 Gifu Walk 97.82 97.70 97.55 97.31 99.28 98.75 100.00 99.84 

  Bicycle 88.10 88.04 82.18 81.49 97.91 96.73 100.00 99.78 

  Car 91.46 91.57 90.93 91.43 98.23 97.14 100.00 99.71 

  Train 56.05 56.05 63.92 61.88 92.90 89.69 100.00 98.65 

  All 94.41 94.36 93.15 93.00 98.76 97.97 100.00 99.79 

 Matsuyama Walk 94.10 94.09 94.10 94.13 98.72 98.14 100.00 99.88 

  Bicycle 64.50 63.75 51.79 49.12 89.58 87.06 100.00 99.70 

  Car 93.12 93.29 91.47 91.17 96.97 95.95 100.00 99.80 

  Train 0.00 0.00 20.38 19.47 80.45 74.38 100.00 97.43 

  All 90.84 90.85 89.89 89.65 97.42 96.52 100.00 99.81 

 

 

A careful examination of the results reveals that when using random forests, the 

prediction accuracy of the train transportation mode is the highest of all the modes, in 
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fact 100%, in the case of the equal number method. However, the same mode is 

predicted with the least accuracy relatively for the equal proportion method. This 

suggests that the prediction accuracy of the train mode can easily be improved by 

collecting more data so as to increase its representation in the training data set. 

Therefore, the optimum solution is to collect a comparable amount of data for each 

mode so that both selection methods will yield a training data set of a similar size. 

 

This study highlights a limitation with respect to the SVM and AdaBoost algorithms. 

Minimal representation of the train transportation mode in the training data set 

following the equal proportion selection method resulted in the total misclassification 

of train data during prediction. This shows that the training of SVM requires equal or 

comparable representation from all classes, and the same is true for AdaBoost. On the 

other hand, no such constraints exist in the case of decision tree and random forests. A 

further observation was made regarding the computational time required by the 

algorithms. SVM and AdaBoost are very time consuming when it comes to large data 

sets like those used in this study, whereas decision tree and random forests outmatch 

them in this respect also.  

 

However, the ideal scenario is to have a nearly equal amount of data for each 

contributing mode and then use the equal proportion method. In this manner, the 

strengths of both methods will be combined and yield even better prediction results. 

One of the limitations of this study relates to the fixed positioning of the data collection 

device while its carrier was travelling. The positioning should be flexible, especially 

in cases where purpose-built devices are replaced by smartphones. The newly 
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developed methodology needs to be modified and extended to incorporate varying 

placement of the device. Furthermore, the new approach should also be checked for 

additional modes. To this end, behavior models can also be incorporated into the 

analysis in order to enhance accuracy, and may be especially beneficial in the case of 

insufficient collected data. 
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Chapter 7 TRAVEL MODE DETECTION USING 

ACCELEROMETER AND GPS DATA AFTER PROCESSING*  

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as Shafique M.A. and Hato E. Classification of Travel 

Data with Multiple Sensor Information using Random Forest. Transportmetrica B. 



 Chapter 8  

39 

 

Chapter 8 COMPARISON OF CLASSIFICATION 

ALGORITHMS* 

 

8.1. Introduction 

 

Over the years, a lot of classification algorithms have been developed, and many 

among them, have been applied in the field of travel mode detection. For example, 

Neural Network (Byon et al., 2007; Gonzalez et al., 2008), Bayesian Network 

(Moiseeva and Timmermans, 2010; Zheng et al., 2008), Decision Tree (Reddy et al., 

2010; Zheng et al., 2008), Support Vector Machine (Pereira et al., 2013; Zhang et al., 

2011; Zheng et al., 2008), Random Forest (Shafique and Hato, 2015) etc. 

 

The aim of the current chapter is to compare the performance of various classification 

algorithms for the purpose of travel mode identification. The comparison is done by 

taking two criteria into account, accuracy and computational time. Furthermore, the 

algorithms are not applied by taking the default values of the associated variables as it 

is. Rather, within each algorithm, a comparison is done with varying values of the 

variables involved. 

 

                                                   

* This chapter is to be published as part of Shafique M.A. and Hato E. Improving the 

Accuracy of Travel Mode Detection for low Data Collection Frequencies. Transportation 

Research Part C. 

This chapter is presented in part as Shafique M.A. and Hato E. A Comparison among 

various Classification Algorithms for Travel Mode Detection using Sensors’ data collected 

by Smartphones. 14th International Conference on Computers in Urban Planning and 

Urban Management, CUPUM 2015, MIT, Cambridge, Massachusetts. July 2015. 
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8.2. Methodology 

 

8.2.1. Data Collection 

 

Smartphones were used by 50 participants from Kobe city, Japan, to collect travel data 

over a period of one month, while using seven different modes of transportation 

namely walk, bicycle, motor bike, car, bus, train and subway. The collected data 

consisted of GPS, accelerometer and gyroscope readings. Although, the sensors’ data 

was recorded at an average frequency of 14 readings per second but for the current 

study, the frequency was scaled down to 1 reading per 5 seconds, because low data 

collection frequency is more energy-efficient. A big drawback with smartphones as 

data collection devices is the quick drainage of battery-time. Table 8-1 provides the 

amount of data and the number of trips for each mode, used in this study. As this study 

tends to provide a comparison among different algorithms, therefore GPS data was 

dropped because it requires much more processing, and only accelerometer and 

gyroscope data was used.  

 

8.2.2. Feature Extraction 

 

The raw data consisted of accelerometer data (accelerations in x, y and z directions) 

and gyroscope data (pitch and roll). Due to the different positions in which the 

smartphones were carried by each participant, the resultant acceleration was calculated 

from the individual accelerations and was used for feature extraction.  
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For the purpose of smoothening the data and reducing the effect of the outliers, the 

concept of moving window was used where the readings covered in a certain amount 

of time, known as the window size, were used to apply an operation (e.g. average, 

maximum etc.) at a certain data entry level and this window moved downwards as the 

calculations proceeded along the data column. 

 

Using a window size of 5 minutes, maximum resultant accelerations, average resultant 

accelerations and maximum average resultant accelerations were calculated from the 

resultant acceleration values. Furthermore, standard deviation, skewness and kurtosis 

were also calculated. These calculated features along with the recorded features by 

gyroscope (pitch and roll) were used to train and test each algorithm. The training 

dataset was formed by randomly selecting 10% of data from each mode class and the 

rest was used to form the test dataset. 

 

Table 8-1: Amount of data used in the study 

Mode Amount of data No. of trips 

Walk 146,973 442 

Bicycle 9,098 10 

Motor Bike 6,121 1 

Car 13,981 31 

Bus 10,666 21 

Train 18,423 45 

Subway 6,520 10 
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8.2.3. Classification Algorithms 

 

The classification algorithms used in this chapter have already been introduced in 

chapter 3. Therefore, without repeating the introductions, the values of variables 

associated with each algorithm are only provided, 

 

Support Vector Machines 

For comparison, SVM was applied repeatedly using linear, RBF and polynomial 

kernels. For RBF kernel, gamma (𝛾) value was changed from 20 to 1E-06. Whereas 

for polynomial kernel, gamma (𝛾) value was changed from 0.1 to 1E-06 and degree 

(𝑑) from 1 to 6. The default values of gamma and degree usually used were 4.7E-05 

(1/data dimension) and 3 respectively. 

 

Neural Networks 

For neural networks, the number of units in the hidden layer or size was varied from 

30 to 50 and maximum number of iterations (default 100) ranged from 100 to 500. 

 

Decision trees 

In case of simple decision trees, minimum number of observations for the split to take 

place was reduced from 20 (default) to 2. The complexity parameter (cp) was varied 

from 0.1 to 1E-05. In case of boosted decision trees, SAMME was applied with the 

complexity parameter ranging from 1E-02 to 1E-05.  

 

Random Forest 

Sampling was done with and without replacement, while the number of trees in the 

forest was varied from 100 to 200. 
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Naïve Bayes 

There is no variable associated with Naïve Bayes, whose varying value can be checked 

for comparison within the algorithm. 

 

8.3. Results and Discussion 

 

Each algorithm was tested by manually varying the variables involved, rather than 

automatically tuning the algorithm to identify the most suitable values, because the 

aim was to observe the computational time for each change so as to gain an indicator 

(time) for the comparison of algorithms. All the calculations were performed on an 

Intel core i7 3.50 GHz with 32 GB RAM.  

In case of SVM, the prediction accuracies (ratio of data of a certain class correctly 

labelled by algorithm to entire data of that certain class) for linear kernel and RBF 

kernel (with varying gamma values) are shown in Table 8-2, whereas the results for 

polynomial kernel are given in Table 8-3. All results for polynomial kernel are not 

shown in Table 8-3 because those variable values were skipped for which the entire 

data was labeled as walk. The results propose that both linear and polynomial kernels 

are not suitable for smartphone data. Using RBF kernel, the overall accuracy is 

maximum when gamma has a value of 10, but a gamma value of 1 gives equally good 

results with much less computational time. Furthermore, close inspection of the results 

suggest that gamma = 1 is actually yielding better results mode-wise. Because the 

amount of data for walk is more that 50% the entire data, therefore a slight increase in 

its prediction accuracy (in case of gamma = 10) made it look like a better option. 

 

The results for neural networks are shown in tables 8-4 and 8-5. The overall prediction 
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accuracy improves as the number of weights is increased by increasing the size and 

maximum iterations. The maximum accuracy is achieved for size 50 and iterations 500, 

above which the algorithm is unable to perform due to too many weights. The 

complexity parameter in decision trees determines the pruning of the tree. The results 

shown in table 8-6 demonstrate that the maximum overall accuracy of the decision 

trees can be achieved for cp value of 0.0001. But if the decision trees are boosted, then 

the prediction accuracy jumps up by around 4% (Table 8-7).  
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Table 8-2: Prediction results for SVM (Linear and RBF kernels) 

Mode Prediction Accuracy (%) 

Walk 100.00 99.99 99.94 98.73 99.14 99.98 100.00 100.00 100.00 100.00 

Bicycle 0.00 60.11 71.17 77.20 50.48 8.39 0.00 0.00 0.00 0.00 

Motor Bike 0.00 70.86 80.52 89.27 62.84 1.29 0.00 0.00 0.00 0.00 

Car 0.00 61.79 73.05 76.52 3.56 0.00 0.00 0.00 0.00 0.00 

Bus 0.00 67.72 78.48 82.25 47.74 0.00 0.00 0.00 0.00 0.00 

Train 0.00 55.48 63.70 61.66 18.25 0.00 0.00 0.00 0.00 0.00 

Subway 0.00 49.23 57.63 60.04 34.76 5.61 0.00 0.00 0.00 0.00 

Overall 69.40 87.85 90.83 90.82 78.08 69.96 69.40 69.40 69.40 69.40 

Kernel Linear RBF 

Gamma - 20 10 1 0.1 0.01 0.001 0.0001 0.00001 0.000001 

Computational time (sec) 74.03 1311.99 1202.65 281.82 217.57 298.85 298.4 269.81 238.7 235.26 
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Table 8-3: Prediction results for SVM (Polynomial kernel) 

Mode Prediction Accuracy (%) 

Walk 99.93 100.00 99.52 100.00 99.60 100.00 99.49 99.99 99.58 99.99 

Bicycle 2.92 0.00 43.93 2.60 36.79 2.72 42.88 2.72 36.48 2.72 

Motor Bike 31.21 0.60 34.51 1.16 35.84 1.16 37.93 1.29 37.36 1.29 

Car 0.00 0.00 0.78 0.00 4.20 0.00 6.32 0.00 7.38 0.00 

Bus 0.00 0.00 2.41 0.00 4.20 0.00 8.61 0.00 4.57 0.00 

Train 0.00 0.00 1.04 0.00 18.45 0.00 18.86 0.00 20.01 0.00 

Subway 0.00 0.00 33.95 0.00 29.12 0.00 38.91 0.00 38.60 0.00 

Overall 70.38 69.42 73.26 69.54 74.73 69.55 75.67 69.55 75.40 69.54 

Degree 2 3 4 5 6 

Gamma 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 

Computational time (sec) 85.44 75.98 113.81 75.16 88.2 76.86 111.73 76.35 99.62 73.45 
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Table 8-4: Prediction results for Neural Networks 

Mode Prediction Accuracy (%) 

Walk 97.77 97.48 96.00 96.27 95.61 96.17 96.98 95.24 96.71 94.87 95.35 96.01 96.01 96.18 

Bicycle 36.53 54.79 55.30 58.70 63.57 57.71 65.71 65.56 66.90 52.31 53.97 48.88 55.45 59.32 

Motor Bike 53.16 63.16 61.71 69.30 71.01 71.50 65.63 68.06 80.52 62.98 68.06 71.68 71.90 72.59 

Car 18.81 23.46 26.14 23.30 42.26 28.81 23.17 21.51 20.59 22.75 31.47 26.54 37.37 30.02 

Bus 0.04 0.67 36.21 42.56 47.20 53.40 0.34 37.14 58.97 41.32 44.20 52.54 52.64 40.19 

Train 20.03 22.26 22.67 22.86 24.72 23.55 22.70 24.03 22.07 23.67 20.80 22.52 23.72 23.63 

Subway 2.37 8.61 24.76 23.19 40.95 37.88 4.36 46.17 25.75 26.31 22.05 31.65 42.60 24.71 

Overall 74.02 75.61 77.06 77.72 79.71 79.09 75.68 77.68 79.36 76.36 77.25 78.13 79.58 78.22 

Size 30 40 

Max. iterations 100 150 200 250 300 350 400 450 500 100 150 200 250 300 

Computational time 

(sec) 
13.84 22.88 26.35 34.82 37.3 40.97 43.44 51.18 60.21 19.31 27.66 33.93 42.4 52.97 
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Table 8-5: Prediction results for Neural Networks (Cont.) 

Mode Prediction Accuracy (%) 

Walk 96.09 95.64 95.74 95.18 96.81 94.87 95.28 94.67 95.52 95.34 96.19 95.37 95.47 

Bicycle 60.66 64.66 64.00 63.81 40.29 48.30 49.73 57.22 59.18 69.28 61.86 68.32 68.94 

Motor Bike 72.80 76.38 75.25 74.60 65.78 67.77 71.21 71.15 71.88 76.47 73.33 77.51 77.72 

Car 32.06 36.59 41.18 40.07 21.10 26.32 29.92 32.42 32.45 31.56 30.85 49.04 40.92 

Bus 47.67 56.64 53.57 42.68 28.64 54.89 46.17 50.29 50.88 58.21 51.36 56.42 60.26 

Train 22.96 22.93 24.80 27.16 20.92 27.15 27.24 29.62 28.09 29.61 22.74 29.49 33.59 

Subway 29.75 34.73 41.65 41.96 26.69 17.50 9.13 34.71 37.42 25.00 28.61 42.48 43.18 

Overall 78.82 79.69 80.22 79.40 76.30 77.27 77.27 78.53 79.21 79.71 79.01 81.31 81.45 

Size 40 50 

Max. iterations 350 400 450 500 100 150 200 250 300 350 400 450 500 

Computational time 

(sec) 
53.35 62.39 71.32 74.12 21.25 34.52 43.09 52.4 58.7 68.07 78.43 86.03 94.46 
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Table 8-6: Prediction results for Decision Trees 

Mode Prediction Accuracy (%) 

Walk 100.00 99.18 97.01 96.32 95.84 

Bicycle 0.00 37.02 85.75 94.04 94.16 

Motor Bike 0.00 28.69 79.56 93.26 93.48 

Car 0.00 0.00 61.72 87.26 88.18 

Bus 0.00 44.56 69.88 88.62 88.97 

Train 0.00 21.23 63.41 85.57 85.94 

Subway 0.00 29.52 47.48 84.15 85.77 

Overall 69.40 76.25 87.88 93.84 93.68 

Complexity parameter 0.1 0.01 0.001 0.0001 0.00001 

Computational time (sec) 0.21 0.87 1.28 2.23 2.44 

 

 

 

 

 

Table 8-7: Prediction results for Boosted Decision Trees 

Mode Prediction Accuracy (%) 

Walk 88.05 99.68 99.86 99.81 

Bicycle 68.80 96.89 96.87 96.62 

Motor Bike 73.02 96.79 98.00 97.68 

Car 48.74 94.28 95.12 94.93 

Bus 60.63 92.22 92.72 92.35 

Train 57.14 89.57 90.74 90.71 

Subway 52.01 87.05 87.71 86.45 

Overall 79.01 97.48 97.84 97.71 

Complexity parameter 0.01 0.001 0.0001 0.00001 

Computational time (sec) 94.48 123.83 191.15 214.78 
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In case of random forest, sampling without replacement provides slightly better results 

than with replacement (Table 8-8). Moreover, the increase in overall prediction 

accuracy is minimal with the increase in the number of trees beyond 100. In order to 

provide a specific value for the suitable number of trees, 150 will do as it provides 

high accuracy along with saving some computational time. A peek into the results of 

naïve Bayes, given in Table 8-9, reveals that its performance is least, in comparison to 

all the algorithms discussed.    

 

A comprehensive comparison is provided in table 8-10. Here it can be seen that 

boosted decision trees provide the highest prediction accuracy but are not the most 

efficient classifier, as is evident from the computational time. Although, the accuracy 

achieved by random forest is slightly lower than by boosted decision trees, the 

computation is very quick making it a better option, especially when the data is huge. 

Decision trees are very quick but the prediction is not very accurate. SVM is the most 

time-consuming classifier, with accuracy even lower than decision trees. Neural 

network and Naïve Bayes come last in the list. 
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Table 8-8: Prediction results for Random Forest 

Mode Prediction Accuracy (%) 

Walk 99.81 99.82 99.84 99.82 99.82 99.82 99.82 99.81 99.83 99.83 

Bicycle 95.48 95.68 96.02 95.95 95.92 96.01 96.06 96.08 95.79 96.09 

Motor Bike 97.57 97.28 97.60 97.69 97.57 97.51 97.35 97.64 97.31 97.42 

Car 93.10 93.40 93.54 93.37 93.40 93.42 93.75 93.49 93.67 93.72 

Bus 90.74 91.09 90.82 91.33 91.18 91.17 91.64 91.43 91.30 91.42 

Train 87.41 88.26 87.91 87.77 87.80 88.50 88.07 88.54 88.43 88.46 

Subway 83.13 84.30 84.03 84.25 83.86 85.51 83.61 84.94 84.59 85.00 

Overall 97.07 97.22 97.21 97.21 97.19 97.30 97.26 97.31 97.28 97.32 

Replacement True False 

No. of trees 100 125 150 175 200 100 125 150 175 200 

Computational time (sec) 3.92 4.4 5.14 5.96 6.71 3.38 4.02 4.85 5.65 6.34 
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Table 8-9: Prediction results for Naïve Bayes 

Mode Prediction Accuracy (%) 

Walk 62.40 

Bicycle 67.13 

Motor Bike 57.30 

Car 14.89 

Bus 67.45 

Train 3.34 

Subway 4.02 

Overall 52.64 

Computational time (sec) 54.1 

 

 

 

 

Table 8-10: Comparison of Classification Algorithms 

Mode 
Prediction Accuracy (%) 

SVM NN DT BDT RF NB 

Walk 98.73 95.47 96.32 99.86 99.81 62.40 

Bicycle 77.20 68.94 94.04 96.87 96.08 67.13 

Motor Bike 89.27 77.72 93.26 98.00 97.64 57.30 

Car 76.52 40.92 87.26 95.12 93.49 14.89 

Bus 82.25 60.26 88.62 92.72 91.43 67.45 

Train 61.66 33.59 85.57 90.74 88.54 3.34 

Subway 60.04 43.18 84.15 87.71 84.94 4.02 

Overall 90.82 81.45 93.84 97.84 97.31 52.64 

Computational time (sec) 281.82 94.46 2.23 191.15 4.85 54.1 

SVM = Support Vector machine 

NN = Neural Network 

DT = Decision Tree 

BDT = Boosted Decision Tree 

RF = Random Forest 

NB = Naïve Bayes 
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This chapter provides an analysis of the performance of each algorithm by varying the 

associated variables and offers a comparison among the algorithms. The results 

suggest that random forest and boosted decision trees both provide good prediction 

accuracies but random forest is relatively very quick and thus is more suitable for 

identification of mode of transportation by employing the sensors’ data collected by 

smartphones. If the detection is required very quickly, then decision trees can also be 

used but the accuracy will fall. This study will assist other researchers in selection of 

classification algorithm. Although, the conclusion drawn by this study holds good for 

the travel mode detection, for other problems similar study should be carried out to 

ascertain the suitable algorithm. 
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Chapter 9 TRAVEL MODE DETECTION USING 

ACCELEROMETER AND GYROSCOPE DATA* 

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as Shafique M.A. and Hato E. Travel Mode Detection 

with varying Smartphone Data Collection Frequencies. Transportation. 
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Chapter 10 TRAVEL MODE DETECTION USING MULTIPLE 

SENSORS’ DATA* 

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as Shafique M.A. and Hato E. Improving the Accuracy 

of Travel Mode Detection for low Data Collection Frequencies. Transportation Research 

Part C. 
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Chapter 11 TRAVEL MODE DETECTION BY MERGING 

MACHINE LEARNING AND MNL MODEL* 

 

The contents of this chapter cannot be published, because this chapter is scheduled to 

be published in an academic journal. It is planned to be posted within next 5 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

* This chapter is to be published as Shafique M.A. and Hato E. Incorporating MNL model 

into Random Forest for Travel mode detection. 
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Chapter 12 CONCLUSION 

 

12.1.  Introduction 

 

This chapter summarizes the research provided in the previous chapters. Furthermore, 

recommendations for further study are also mentioned. 

 

12.2.  Research Summary 

 

Sensors like GPS and accelerometer are opening up a new horizon for introduction of 

technology to solve problems in the transportation sector. Travel data collection 

method can be revolutionized by employing devices carrying multiple sensors for 

passive data recording. This vast possibility is identified by researchers all over the 

world and a lot of research is being undertaken. The present dissertation is expected to 

contribute to the ongoing research. It presents a development procedure wherein each 

chapter refines the methodology by working on the lessons learned from the previous 

chapters and the development culminates into a final efficient, workable, sustainable 

and accurate methodology provided in the final chapter. 

 

The main findings of this dissertation are, 

 

 Travel mode can be identified with sufficient accuracy by using the data collected 

by sensors like GPS, accelerometer and gyroscope. 

 When using accelerometer data, magnitude of resultant acceleration is a better 

variable than individual accelerations along the 3 axes, because it permits the 
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smartphones to be carried around in any position feasible for the participants. 

 For feature extraction, moving window is better than 50 % overlapping window, 

as the amount of data is not decreased. 

 Increasing the moving window size improves the prediction accuracy for longer 

trips, at the cost of smaller ones. A window size of 10 minutes is therefore a suitable 

trade-off, which is less than the average walking time of 16.15 minutes per trip. 

 From resultant acceleration, additional features extracted like maximum resultant 

acceleration, average resultant acceleration, maximum average resultant 

acceleration, standard deviation, skewness and kurtosis prove to be quite valuable 

for classification. Similar features extracted from speed (calculated from GPS data) 

can further improve the classification accuracy.  

 The prediction accuracy increases with increase in the proportion of data used to 

train the algorithm. Increasing the proportion of training data means that a large 

amount of data with known travel modes needs to be collected in order to identify 

a relatively small amount of unknown data. It is therefore necessary to limit the 

proportion of training data so that a small dataset can predict a larger one. 10 % 

training data is found to be at the threshold. Further decrease in the proportion 

results in a steep fall in accuracy. 

 Among various classification algorithms mostly employed for travel mode 

detection, boosted decision trees and random forest provide the best results. 

Random forest is preferable due to less computational time required. 

 Imbalanced data results in abnormally high prediction accuracy for the majority 

mode, whereas the minority modes show low accuracy primarily due to 

misclassification as the majority class. 
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 Weighted random forest can solve the problem of imbalanced data, to some extent. 

 Down-sampling using mean as the threshold value can provide additional 

improvement for imbalanced data. 

 A 2-step post-processing method introduced can further refine the results. 

 Binomial logistic regression can be used to classify the travel modes by utilizing 

the features extracted from sensors’ data. 

 Data collection frequency directly affects the battery usage of the recording device. 

But at the same time, the classification accuracy drops with decrease in collection 

frequency. A compromise has to be made between accuracy and battery saving. 

 MNL model used in combination with machine learning can greatly improve the 

mode detection accuracy. 

 

12.3.  Further Studies 

 

For every research, there is always some scope of improvement. Although, the findings 

reported are concrete, many aspects remained to be investigated. Thus the current 

research can be improved and extended in a number of ways, some of which are 

mentioned below. 

 

 Data from different cities and different countries need to be utilized so that the 

developed methodology will be applicable in every region. 

 Excessive data is required to validate the developed methodology. 

 Transferability of the methodology should also be checked and assured.  

 Binomial regression analysis introduced in the current research should be 
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improved further. 

 Detailed attributes should be used in MNL model so that fitness can be improved. 

 Refinement in the methodology should be strived for so that accuracy can be 

further improved for low data collection frequency. 
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Appendix 

 

TRAVEL MODE DETECTION USING BINOMIAL LOGIT 

MODEL* 

 

Introduction 

 

The study introduced in this chapter is unique in sense that it explores the possibility 

of applying the binomial logistic model using the sensors’ data. Although, multinomial 

logit models have been adopted for assessing the effect of a policy change on mode 

shift or the possibilities of introducing a new travel mode, but using the logit model to 

identify the travel mode from only the data collected by sensors is a novel approach. 

The binomial logit model is applied in a hierarchical manner to separate six modes 

namely walk, bicycle, car, bus, train and subway. 

 

Binomial Logistic Regression 

 

Binary logistic regression is a type of generalized linear models (GLM), which models 

how a binary response is dependent on a set of explanatory variables. The explanatory 

variables can be discrete, continuous or a combination. Binary response means that 

there can be only two possible outcomes, either success or failure. For example, a 

doctor wants to figure out the proportion of breast cancer patients in a given population. 

Naturally, every person’s risk of being a patient of breast cancer will vary, depending 

                                                   

* This chapter was presented as Modelling of Accelerometer data for travel mode detection 

by hierarchical application of binomial logistic regression, 18th Euro Working Group on 

Transportation, EWGT 2015, Delft, the Netherlands. July2015. 
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on a number of factors including age, lifestyle and eating habits. Consider these factors 

or predictor variables be represented by 𝑋 = (𝑋1, 𝑋2, …𝑋𝑘)  with observed value 

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑘) for a person 𝑖. Let 𝑌 be the binary response variable where 

𝑌𝑖 = 1 if person 𝑖 is a patient and 𝑌𝑖 = 0 if otherwise. The probability (𝜋) that the 

person 𝑖 is a patient can be formulated as follows 

 

𝜋𝑖 = Pr(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖  ) =
exp (𝛽0 + 𝛽𝑖𝑥𝑖)

1 + exp (𝛽0 + 𝛽𝑖𝑥𝑖)
                                (1) 

Or 

                                           𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) 

                                                              = 𝛽0 + 𝛽𝑖𝑥𝑖 

                   = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘                                      (2) 

   

Methodology 

 

Data Collection and Processing 

 

Probe person data was collected by participants in Kobe city, Japan by employing 

smartphones. The accelerometer embedded in the smartphones recorded accelerations 

along the three axes at a frequency of around 14 Hz. The number of trips made by each 

of the six modes is given in Table 1.  
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Table 1: Number of trips for each mode 

Mode No. of trips collected No. of trips used 

Walk 512 45 

Bicycle 10 10 

Car 31 31 

Bus 26 26 

Train 44 44 

Subway 16 16 

Total  639 172 

  

As it is evident from the table that the number of trips for walk is about 80% of all the 

trips recorded, so to form a comparable scenario, 45 trips were randomly selected for 

analysis. The accelerations along the three axes were used to calculate the resultant 

acceleration. The resultant accelerations were averaged for each trip to get one average 

resultant acceleration value for each trip. Similarly, for each trip, the resultant 

acceleration values were used to calculate standard deviation, skewness and kurtosis. 

A dummy variable was also introduced to input the information that either the trip was 

made during a weekend or a weekday. 

 

Application of Binomial Logistic Regression 

 

Binomial logistic regression was applied in three different manners as follows, 

 Ranking  

 One against rest 
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 One against all 

In ranking, the data was first split into motorized and non-motorized modes. Then the 

non-motorized modes were further divided into walk and bicycle, whereas the 

motorized modes were divided into on road and on track. In turn, the on road modes 

were split into car and bus, and likewise the on track modes were split into train and 

subway (Figure 1).  

 

In case of one against rest, initially the data was split into mode walk and others. Then 

the data excluding walk was split into bicycle and others. Similarly, each mode was 

separated and with each turn the data kept on decreasing until only two modes were 

left in the last and the same split was made between train and subway as in ranking 

(Figure 2). The one against all method was essentially the same but this time the data 

was not decreased and for each mode the entire data was taken into consideration 

(Figure 3).  

 

 

Figure 1: Ranking method of application 
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Figure 2: One against rest method of application 

 

 

Figure 3: One against all method of application 
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Results and Discussion 

 

After application of the regression model, the goodness of fit is calculated as the 1-

pchisq using the residual deviance and corresponding degree of freedom. The results 

for each method are provided in Tables 2 to 4. 

  

Table 2: Regression results for ranking method 

Split Coefficients Estimate 
Std. 
Error 

z value Pr(>|z|) 
Goodness of 
fit 

Motorized vs. 
non-motorized 

Intercept 2.657 4.633 0.574 0.566 

0.238 

Average Resultant Acceleration -0.022 0.484 -0.044 0.965 

Standard Deviation -1.176 0.289 -4.068 0.000 

Skewness 0.333 0.192 1.732 0.083 

Kurtosis -0.003 0.006 -0.508 0.612 

Dummy (weekend) -0.380 0.392 -0.971 0.332 

Walk vs. 
Bicycle 

Intercept -54.440 22.876 -2.380 0.017 

0.975 

Average Resultant Acceleration 5.433 2.280 2.383 0.017 

Standard Deviation 2.057 1.103 1.865 0.062 

Skewness 0.262 0.525 0.499 0.618 

Kurtosis 0.003 0.018 0.147 0.883 

Dummy (weekend) -0.014 0.981 -0.014 0.989 

On road vs. on 
track 

Intercept 10.686 7.212 1.482 0.138 

0.104 

Average Resultant Acceleration -1.270 0.757 -1.678 0.093 

Standard Deviation 1.581 0.472 3.348 0.001 

Skewness -0.013 0.014 -0.963 0.336 

Kurtosis -0.186 0.199 -0.935 0.350 

Dummy (weekend) 1.508 0.491 3.070 0.002 

Car vs. Bus 

Intercept -40.506 16.581 -2.443 0.015 

0.667 

Average Resultant Acceleration 4.155 1.717 2.420 0.016 

Standard Deviation -1.192 0.720 -1.656 0.098 

Skewness 1.073 0.378 2.840 0.005 

Kurtosis -0.031 0.018 -1.729 0.084 

Dummy (weekend) 3.592 1.309 2.744 0.006 

Train vs. 
Subway 

Intercept 11.087 9.811 1.130 0.258 

0.168 

Average Resultant Acceleration -1.377 1.032 -1.335 0.182 

Standard Deviation 0.926 0.807 1.147 0.252 

Skewness -0.075 0.411 -0.182 0.855 

Kurtosis 0.038 0.029 1.317 0.188 

Dummy (weekend) -1.029 0.689 -1.494 0.135 
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Table 3: Regression results for one against rest method 

Split Coefficients Estimate 
Std. 
Error 

z value Pr(>|z|) 
Goodness of 
fit 

Walk vs. 

Others 

Intercept 12.710 5.895 2.156 0.031 

0.960 

Average Resultant Acceleration -1.108 0.605 -1.833 0.067 

Standard Deviation -0.914 0.407 -2.242 0.025 

Skewness 0.347 0.325 1.069 0.285 

Kurtosis 0.069 0.044 1.572 0.116 

Dummy (weekend) -0.450 0.446 -1.007 0.314 

Bicycle vs. 

Others 

Intercept -34.127 12.270 -2.781 0.005 

0.986 

Average Resultant Acceleration 3.733 1.278 2.922 0.003 

Standard Deviation -0.200 0.506 -0.395 0.693 

Skewness 0.428 0.252 1.697 0.090 

Kurtosis -0.002 0.006 -0.362 0.717 

Dummy (weekend) -0.705 0.529 -1.333 0.183 

Car vs. 

Others 

Intercept 23.455 7.993 2.934 0.003 

0.558 

Average Resultant Acceleration -2.393 0.833 -2.872 0.004 

Standard Deviation 1.744 0.566 3.080 0.002 

Skewness -0.802 0.237 -3.389 0.001 

Kurtosis 0.014 0.013 1.093 0.274 

Dummy (weekend) -0.309 0.499 -0.619 0.536 

Bus vs. 

Others 

Intercept 2.163 10.872 0.199 0.842 

0.776 

Average Resultant Acceleration -0.346 1.139 -0.304 0.761 

Standard Deviation 1.264 0.607 2.083 0.037 

Skewness 0.605 0.363 1.665 0.096 

Kurtosis -0.028 0.019 -1.453 0.146 

Dummy (weekend) 3.826 1.248 3.065 0.002 

Train vs. 

Subway 

Intercept 11.087 9.811 1.130 0.258 

0.168 

Average Resultant Acceleration -1.377 1.032 -1.335 0.182 

Standard Deviation 0.926 0.807 1.147 0.252 

Skewness -0.075 0.411 -0.182 0.855 

Kurtosis 0.038 0.029 1.317 0.188 

Dummy (weekend) -1.029 0.689 -1.494 0.135 
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Table 4: Regression results for one against all method 

Split Coefficients Estimate 
Std. 

Error 
z value Pr(>|z|) 

Goodness of 

fit 

Walk vs. 

Others 

Intercept 11.662 6.126 1.904 0.057 

0.822 

Average Resultant Acceleration -0.940 0.629 -1.494 0.135 

Standard Deviation -1.115 0.303 -3.674 0.000 

Skewness 0.424 0.216 1.964 0.049 

Kurtosis 0.003 0.012 0.240 0.811 

Dummy (weekend) 0.284 0.449 0.633 0.527 

Bicycle vs. 

Others 

Intercept -25.708 12.299 -2.090 0.037 

1.000 

Average Resultant Acceleration 2.936 1.287 2.281 0.023 

Standard Deviation 0.170 0.550 0.308 0.758 

Skewness 0.209 0.265 0.788 0.431 

Kurtosis 0.001 0.009 0.072 0.943 

Dummy (weekend) -0.901 0.697 -1.293 0.196 

Car vs. 

Others 

Intercept 19.443 6.905 2.816 0.005 

0.991 

Average Resultant Acceleration -1.963 0.720 -2.726 0.006 

Standard Deviation 1.918 0.519 3.696 0.000 

Skewness -0.811 0.226 -3.584 0.000 

Kurtosis 0.015 0.013 1.116 0.264 

Dummy (weekend) -0.357 0.471 -0.759 0.448 

Bus vs. 

Others 

Intercept -8.279 8.218 -1.007 0.314 

1.000 

Average Resultant Acceleration 0.878 0.853 1.030 0.303 

Standard Deviation 0.810 0.431 1.881 0.060 

Skewness 0.303 0.218 1.386 0.166 

Kurtosis -0.017 0.007 -2.270 0.023 

Dummy (weekend) 2.840 0.902 3.150 0.002 

Train vs. 

Others 

Intercept -0.359 5.172 -0.069 0.945 

0.166 

Average Resultant Acceleration 0.107 0.534 0.200 0.842 

Standard Deviation 0.295 0.284 1.038 0.299 

Skewness -0.155 0.209 -0.742 0.458 

Kurtosis 0.031 0.018 1.751 0.080 

Dummy (weekend) -1.013 0.378 -2.678 0.007 
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Subway vs. 

Others 

Intercept -15.610 9.016 -1.731 0.083 

1.000 

Average Resultant Acceleration 1.857 0.949 1.957 0.050 

Standard Deviation -0.322 0.400 -0.806 0.420 

Skewness -0.117 0.237 -0.494 0.621 

Kurtosis 0.005 0.016 0.311 0.756 

Dummy (weekend) 0.385 0.586 0.658 0.511 

 

 

The results suggest that for every method adopted, problem arises when train is 

involved in the split. In ranking, the goodness of fit is less than 0.5 at 3 levels, 

motorized vs. non-motorized, on road vs. on track and train vs. subway. These three 

levels are dealing with train. Similarly, for one against rest and for one against all, the 

goodness of fit is less than 0.5 for train vs. subway and train vs. others respectively. 

This shows that the three methods are very much applicable for all modes except train. 

The reason might be hidden within the raw data. Figure 4 summarizes the resultant 

acceleration values collected for each mode. It is evident that the mode train is a bit 

difficult to model because its range of acceleration values cover all other modes.  

 

Figure 4: Summary of Resultant Accelerations for each mode 
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This chapter explores the possibility of a new problem solving technique for 

transportation mode classification. Binomial logistic regression can be successfully 

utilized to model the travel modes by using only the acceleration values and hence, 

can classify the data into various modes. The modeling of mode train is a bit 

problematic but the effect can be minimized by using the one against rest or one against 

all method of application, instead of ranking method. The one against all method 

provides best results where, apart from train, all the other modes show a goodness of 

fit value close to 1. This method should be improved further and ultimately it can 

complement the current methods used for travel mode identification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


