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Abstract 

 
Different energy sources exist in the environment, in which the vibration sources can be found 

everywhere in daily life, and hence the concept of electrical energy harvesting from ambient 
vibration sources has been of popular interest of research in recent years. Due to recent 
advancements in microelectromechanical systems, the power consumption of electrics had been 
dramatically decreased. It becomes a considerable application to use small-scale low powered 
wireless sensors in inaccessible or hostile environments. On the other hand, the vibrations in 
many situations can be very large; for example, the vibrations of vehicle systems, can be 100 W 
or more. Up to new, linear resonant energy harvesters had been one of the most common type of 
energy harvesters with the limited response bandwidth. Many efforts were made to overcome 
this problem, covering resonance frequency tuning techniques, multimodal energy harvesting, 
frequency up-conversion, and so on. However, those well-known methods are still restricted in 
the field of linear energy harvesting, which already studied by many researchers.  
  The energy harvesting by application of self-excited vibration also attracted some attentions; 
however, its applicable area for energy harvesting is generally limited to a certain field. For 
example, the energy harvester subjected to a uniform and steady flow. Another apparent issue is 
that the performance of the energy harvester is significantly limited by the fundamental 
frequency of the device. One typical case is the beam-type wind energy harvester using the 
theory of Karman Vortex Street.  

As a result of those problems, a large body of work has been, and still is being, devoted to 
investigating the energy harvesting performance by introducing dynamic nonlinearities into 
devices - this forms the main focus of this thesis. Therefore, the present work in this thesis is to 
enhance the energy harvesting efficiency applying nonlinearly vibrating systems, which can be 
divided into two parts based on the excitation types: harmonic and random excitations. 

For the case of the harmonic excitation, it is mainly focused on the monostable energy 
harvester with Duffing-type nonlinearity. It is validated that at relatively high excitation levels, 
both low- and high-energy solutions can coexist for the same combinations of parameters, and 
the existence of the high-energy orbit can achieve higher energy harvesting effectiveness with 
wider bandwidth applications. It is certainly favourable to maintain the high-energy orbit for 
boosting the response and a larger output power. However, if the operating point falls down to 
the low-energy orbit, the wider bandwidth compared with the linear energy harvester will be 
impaired. The frequency or amplitude sweeps of the excitation is usually used in order to reach a 
desirable high-energy orbit and investigate the influence of the nonlinearity by many researchers. 
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This gives a limitation on practical implementation, because the external vibration source cannot 
be arbitrarily controlled.  

Another approach is to add disturbance or initial conditions for the energy harvesters, but no 
physically feasible mechanism has been fabricated and tested. To solve this problem, a stiffness 
tunable nonlinear vibrational energy harvester is proposed, whose nonlinearity emerges from the 
interaction forces with two neighbouring permanent magnets facing with opposing poles. The 
hypothesis is that the jump from the low-energy orbit to the high-energy orbit can be triggered 
by tuning the stiffness of the system, without changing the frequency or the amplitude of the 
excitation. Theoretical investigations show a methodology for tuning stiffness, and experimental 
tests also validated that the proposed method can be used to trigger a jump to the desirable state, 
and also tune the resonant frequency when the external ambient vibration varies; thereby, this 
can broaden the bandwidth of the energy harvester. Considering the tuning procedure of the 
stiffness, it means the additional energy consumption, though it does not require the constant 
energy supply. Another improved approach is further investigated to stabilise the high-energy 
orbit. The equivalent linear stiffness of the energy harvester can be varied by tuning the damping 
level of the device. Same as the stiffness tunable nonlinear energy harvester, from this 
adjustment the variation of the equivalent stiffness generates a corresponding shift in the 
frequency-amplitude response curve, which can trigger a jump and stabilise the high-energy 
orbit. The approach has been observed to require little additional energy supply for the 
adjustment and stabilisation, because it needs less energy for tuning the damping than the direct 
stiffness tuning by mechanical method. 
  Having stabilised on the high-energy orbit, it is necessary to further optimise the system for 
maximum power output. However, there has been much recent interest in the response analysis 
of the monostable nonlinear energy harvesters and comparison with their linear counterpart, but 
few literatures about the optimisation of the nonlinear energy harvester. Same as the linear 
energy harvester, the Duffing monostable energy harvester can also be optimised to maximise 
the available electrical power. With the consideration of the unconstrained and constrained 
electrical damping and stroke of the energy harvester, the analytical optimisation and numerical 
studies are demonstrated under the different conditions with the designed harvesting devices. 
The optimisation works can comprehensively provide the design rules of the monostable 
nonlinear energy harvester under harmonic excitations.  

Furthermore, this thesis also focuses on the nonlinear energy harvesting techniques to 
random excited energy harvesting scenarios, because the vibration sources in the environment 
usually present time-varying properties, even completely random. 

It is firstly concentrated on the influence of the stiffness nonlinearity on the transduction of 
the energy harvester, and the relative performance of linear, monostable hardening-type and 
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bistable energy harvesters are comparatively investigated with the careful consideration of the 
constrained electrical damping and stroke of the device. General conclusions are drawn based on 
the numerical and experimental observations, which provide the guidance for the design of the 
randomly excited energy harvesting devices. 
  In spite of the comparative performance study of different kinds of energy harvesters, it is the 
passive energy harvesting approach by using several kinds of existing typical configurations. 
Then, motivated by how to actively enhance energy harvesting efficiency from random 
excitations, another novel approach is proposed and improved based on the theory of stochastic 
resonance. Stochastic resonance is a physical phenomenon through which the throughput of 
energy within an oscillator excited by a stochastic source can be boosted by adding a small 
modulating excitation. The hypothesis is that such stochastic resonance can be efficiently 
realised in a bistable mechanism, and the feasibility of implementing stochastic resonance is 
investigated for energy harvesting. Experimental results confirm that the addition of a 
small-scale force to the bistable system, excited by a random signal apparently, leads to a 
corresponding amplification of the response. Thereby, the proposed approach is a promising way 
to improve the energy harvesting performance under certain forms of random excitations. 
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Nomenclature 
 
A0        Amplitude of the periodic force  
A1, B1     Fourier coefficient of the displacement  
A2, B2     Fourier coefficient of the displacement  

B  
B          Fourier coefficient of the voltage 
C         Capacitance 
D        Noise density 
D31       Piezoelectric constant of the transducer 
E 
Ec 
Ef        Electric field 
Enet       Net energy 
F         Amplitude of the periodic fore 
FE        Force of the electrical magnet 
FM, FMb, FV    Interaction force between permanent magnets         
Fr 

G         Restoring force of a schematic hardening type energy harvester 
I 
Mf, Mc 
Mfx, Mcx 
Mfy, Mcy 
N 
P, PXl 

Pc 
Pnet 

Pd 

Q 
Qa, Qb 
R 
Ri 
Rl 

Rlopt 

S 

Amplitude of the periodic force 
Fourier coefficient of the displacement 
Fourier coefficient of the displacement 
Magnetic flux density 
Replacement symbol 
Capacitance 
Noise density 
Piezoelectric constant of the transducer 
Young’s modulus  
Consumed energy 
Electric field 
Net energy 
Amplitude of the periodic fore 
Force of the electrical magnet 
Interaction force between permanent magnets 
Restoring force of a schematic hardening type energy harvester 
Gain 
Moment of inertia  
Magnetisation amplitude 
Magnetisation amplitude in x direction 
Magnetisation amplitude in y direction 
Noise excitation 
Power 
Consumed power 
Net power 
Dissipated power 
Electrical displacement 
Replacement symbol 
Sum of the internal resistance and the load resistance 
International resistance 
Load resistance 
Optimum load resistance 
Strain 
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Ts 

T 
T0 
U0, U0u, U0d  
U 
Um, Umb 
V 
V          
Vl          
X 
X 
Xmax            

Xl               
a1, b1       
a2, b2  
bt 
c        
c1 

c2 

ce        
cm 
d 
d0        
d31 
f 
h          
i 
k0, k1, k2, k3 
kc 
l 
l0 

lt        
m 
mf, mc 
mopt 

n 

Stress 
Period 
Length of time 
Non-dimensional displacement amplitude 
Potential  
Potential between permanent magnets 
Voltage 
Laplace transform of the volatge 
Induced voltage on the load resistance 
Displacement amplitude 
Laplace transform of displacement 
Maximum displacement amplitude 
Displacement amplitude limit 
Fourier coefficient of the displacement 
Fourier coefficient of the voltage 
Width of the piezoelectric transducer 
Sum of the mechanical damping and the electrical damping 
Electrical damping coefficient 
Tunable electrical damping coefficient 
Electrical damping coefficient 
Mechanical damping 
Distance between the permanent magnets 
Distance between the mass and frame of the hardening type energy harvester 
Piezoelectric constant of material 
Induced force by the piezoelectric transducer 
Distance between the permanent magnets 
Current 
Stiffness of springs 
Stiffness of the beam 
Length of the beam 
Length of the spring 
Length of the transducer 
Mass 
Magnetic moment 
Optimum mass 
Transmission ratio 
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p 
q 
rms            
rc, rf, rc/f  
rK 

sE 
t, t0 

tb 

tt 

v 
x, xp 
xm 
x0 
yt 

α   
β   
ω   

dω  

nω   

uω  

Ω   

dΩ   

uΩ   
ε   
γ   

aγ  
ζ  

mζ   
κ   

0µ   
ϕ   

φ   
τ   

θ   
ψ   

υ , υ  

Nonlinear stiffness 
Non-dimensional nonlinear stiffness 
Excitation frequency 
Jump-down frequency 
Natural frequency 
Jump-up frequency 
Non-dimensional excitation frequency 
Non-dimensional jump-down frequency 
Non-dimensional jump-up frequency 
Permittivity under constant stress 
Additional periodic force 
Additional periodic force 
Total damping ratio 
Mechanical damping ratio 
Electromechanical coupling factor 
Permeability of free space 
Phase angle between the input and response 
Electromechanical constant related to velocity 
Non-dimensional time 
Electromechanical coupling coefficient of piezoelectric energy harvester 
Magnetic force angle 
Variable of the index 

Ratio between the deflection of the piezoelectric transducer and the beam 
Electrical charge 
Root mean square 
Magnet positon vector 
Kramers rate 
Mechanical compliance 
Time 
Thickness of the beam 
Thickness of the piezoelectric transducer 
Volume of the permanent magnets 
Displacement 
Equilibrium position of bistable system 
Deflection formula for a cantilever beam 

Deflection of the piezoelectric transducer along the direction of the beam 
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λ   
δ   
σ              

Θ , Φ , Γ       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Constant 
Root mean square of power 
Root mean square of excitation  
Replacement symbol acceleration 
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1.1 Background 
 

Efficient energy harvesting from environmental ambient vibration is of great current interest 
as a means of self-powering for small-scale electronics. Especially modern electronic devices 
have become increasingly efficient. For instance, a wireless sensor can require the power as 
little as 100μW [1]. Currently, the wireless sensing applications and portable electronics are 

powered by batteries; however, the improvement of batteries energy density remains stagnant, 
as compared with the other computing hardware. Another limitation for the use of batteries is in 
inaccessible or hostile environments. It becomes inconvenient for the usual miniaturisation and 
replacement. There are a lot of sources that can be used as an energy source, such as thermal 
gradient, wind, solar, mechanical vibration, and so on. Among these several workable energy 
sources, ambient vibration has promising potential to be a power source, since it can be found 
almost everywhere in the environment.  

Up to now, there are three kinds of common methods to convert mechanical energy to 
electrical energy, termed as electromagnetic, piezoelectric and electrostatic. One of the earliest 
vibrational energy harvesters was designed by Amirtharajah et al. [2]. It is a simple 
single-degree-of-freedom (SDOF) system comprised by a mass, spring and damper. An 
electromagnetic transducer, composed of a coil and magnetic core, is used in this device. One 
obvious benefit of the electromagnetic transduction is that it usually has very small mechanical 
damping because of little contact between the magnet and coil. However, the voltage generated 
by the electromagnetic transducer is relatively low, and the level of the electrical damping 
strongly depends the magnetic strength. In the same case, piezoelectric-type transducer can 
produce relatively high voltage. Electrostatic transduction is capacitive and offers the most 
promising potential for the application to microelectronics. Relatively high voltage can be easily 
provided using the technology with the advantage that it does not require smart materials to 
operate, whilst it is required for the piezoelectric-type transducer. Therefore, the requirement of 
the initial external source to charge is the main limitation. 

Among those single degree-of-freedom mechanical systems for transferring mechanical 
vibration energy into electrical energy, the beam-type system is one of the most popular type 
[3][4][5][6]. The main limitation of this kind of energy harvester is that it can provide maximum 
output power, only when the natural frequency of the system is same as the external excitation 
frequency. However, considering the practical cases, the environmental vibration is normally 
frequency-varying or totally stochastic. Therefore, how to broaden the bandwidth of the energy 
harvesters becomes one of the most important topics for the practical implementation. In 
addition, because the performance decreases dramatically under the non-resonance conditions, 
many researchers have concentrated on overcoming such disadvantages in linear devices.  
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The recent advances in this field are briefly introduced in the following parts, covering the 
resonance frequency tuning methods, multimodal energy harvesting, frequency up-conversion, 
and nonlinear energy harvesting. 

 
1.2 Linear energy harvesting 

 
(1) Resonance frequency tuning methods 
  The most of the existing literature are related with linear devices, and a natural frequency 
tuning mechanism can be adopted to increase its functionality. According to different tuning 
mechanisms, the frequency tuning methods can also be divided into mechanical and 
piezoelectric methods [7][8][9][10]. To tune the natural frequency of the device, either the 
stiffness or the mass of the devices can be varied. However, it is more feasible to tune the 
stiffness rather than the mass. Generally, mechanical tuning methods can achieve the largest 
tuning range. However, it is difficult to tune the device automatically. For instance, Eichhorn et 
al. [11] proposed and fabricated a beam-type tunable energy harvester based on natural 
frequency variation using pre-stress. The preload of the cantilever beam is tuned by a screw, 
which is the most common method for mechanical tuning. Figure 1.1 shows the generator and 
the schematic of the entire setup.  
 

 
Figure 1.1. Schematic of the beam-type stiffness tunable energy harvester 

 
Researchers also used the permanent magnets as the actuator, for example, by varying the 

distance between the permanent magnets as shown in Figure 1.2 [12]. Compared with the 
mechanical method, a much smaller frequency tuning range is presented by the piezoelectric 
tuning method. However, it consumes much less energy for the tuning process. Wu et al. [13] 
reported that the consumed power is only the level of micro-Watt. Thus the enhanced net power 
can be achieved. However, when the frequency of the excitation shows the frequent variation 
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property, it becomes difficult to follow it, which limits its implementation. 

 

Figure 1.2. Schematic of the tuning mechanism 
 

(2) Multimodal energy harvesting  
Several natural frequencies can coexist when the energy harvester is designed as a 

multi-degree-of-freedom system. The frequency response curves can overlap. Therefore broaden 
the bandwidth of the energy harvester. Shahruz [14][15] designed an energy harvester, which is 
composed of piezoelectric beams with different lengths and tip masses attached to a same base. 
Each beam had a unique natural frequency. That is why it is called multimodal energy harvester. 
The schematic diagram is presented in Figure 1.3. However, such an arrangement will increase 
the size of the device. Therefore, the energy density will be reduced. Another problem is that it 
requires more complex circuit because of the use of multi-energy transform-mechanism. 

 

 
Figure 1.3. Schematic of the band-pass filters energy harvester 
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(3) Frequency up-conversion 
  In most cases, the natural frequency of the micro-energy harvester is relatively high. However, 
it is common for the ambient vibration occurs at low frequency, for example in human motion. 
Frequency up-conversion is therefore adopted for the frequency amplification of the ambient 
vibration source. As long as the resonance frequency of the energy harvester is much higher 
than the vibration source, their energy harvesting performances are less sensitive to the variation 
of the excitation frequency. Therefore, this characteristic improves the robustness of the energy 
harvester. Figure 1.4 depicts an example of a frequency up-conversion energy harvester [16]. 
Another similar study can be found in the literature [17]. An apparent problem of this 
configuration is that there is energy loss because of the impact between the mass and beam. 
Therefore, Külah, et al. used two permanent magnets as the actuator to overcome this problem 
[18]. However, this kind of configuration requires a minimum distance between the two 
magnets, because the interaction force between the magnets should be small enough at a certain 
time for the realisation of the free vibration of the beam. 
 

 
Figure 1.4. Schematic of the two-stage vibration energy harvester 

 
  Those studies are still restricted in the field of linear energy harvesting, which is well-known 
and already done by many researchers. 
 
1.3 Self-excited vibrational energy harvesting 
 
  The self-excited vibration can also be employed as an approach for energy harvesting. 
Although the phenomenon of the self-excited vibration can be very common in the daily life, 
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such as clock pendulum, vibration caused by the friction, and cutting process of the machine. 
However, for its application in the field of energy harvesting, it is mainly about the piezoelectric 
energy harvester subjected to a uniform and steady flow. Akaydin et al. designed a harvester 
that consists of a cylinder attached to the free end of a cantilevered beam for wind energy 
harvesting, where the cylinder induced self-vibration is the most common type [19]. Several 
similar devices were presented in references [20][21][22][23]. Other configurations include 
flutter and beam with an attack angle [24] [25].  

It can be noted that different kinds of parts were used to achieve the vortex induced vibration 
but with the similar principle. One common advantage of the energy harvesting using 
self-excited vibration is that the performance of the harvester is not limited by its fundamental 
frequency. However, for the application of self-excited vibration in the field of energy 
harvesting, it is mainly constrained in the fluidic energy harvesting. 
 
1.4 Parametric resonance energy harvesting 
 
  The amount of literature about the parametric resonance energy harvesting is relatively small. 
However, Yu. et al. [26] validated that the parametric resonant technique theoretically promises 
better power and frequency response in contrast to the conventional directly excited harvesters. 
However, a list of strict initiation criteria, such as a damping dependent minimum excitation 
amplitude threshold, needs to be fulfilled, which limits it practical implementation. 
 
1.5 Nonlinear energy harvesting 
 
  As a result of the issues highlighted in the previous sections, a large body of work has been, 
and still is being, devoted to investigating the energy harvesting performance by introducing 
dynamic nonlinearities into devices - this forms the main focus of this thesis. For the nonlinear 
energy harvester, it has the functionality of self-frequency-tuning. Therefore, it is more 
insensitive to the variation of the excitation frequency. The nonlinearity of the system itself can 
improve the performance of the energy harvester over a wider bandwidth. According to the type 
of nonlinearity, the nonlinear energy harvesters can be classified into monostable and bistable 
cases. Under certain harmonic excitation conditions, both the bistable and the hardening-type 
monostable nonlinearities can provide enhanced energy harvesting over that of the conventional 
linear energy harvester. However, it shows more complex phenomenon under random 
excitations. 
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1.5.1 Monostable energy harvester 
 
(1) Harmonic excitation   

The nonlinearities were firstly employed to study and test its influence on the performance by 
Burrow et al. [27] and Barton et al. [28]. The hardening-type nonlinearity of the energy 
harvester was achieved by using a tip magnetic mass attached to a beam and a steel stator. 

Following the work of Burrow et al. and Barton et al., a hardening-type oscillator was 
investigated by Mann et al. [29] and the schematic diagram of the magnetic levitation system is 
shown in Figure 1.5. Two outer permanent magnets were used in this device and were attached 
to a threaded support. The threaded supports were installed to the ends of a teflon tube for 
varying the distance between the permanent magnets. A centre magnet was inserted between the 
two outer magnets and with opposite polarity with the outer magnets. Thus levitate the centre 
magnet with a nonlinear restoring force. In their work it was shown that the magnetic restoring 
force of the centre magnet could be accurately modelled by a cubic order nonlinear spring. This 
gave the system similar properties to that of the Duffing hardening-type monostable oscillator 
which has a governing equation of the form as 

 
3 cosmx cx kx x F tα ω+ + + =                        (1.1) 

 
where m is the mass, c is the viscous damping, cosF tω  is the excitation force, and k and α  
are linear and nonlinear stiffness, respectively.  
 

 
 

Figure 1.5. Schematic of the magnetic levitation system 
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Figure 1.6. Frequency response curve of hardening-type Duffing oscillator demonstrating 
area of coexisting solutions. 

 
It was found that the nonlinear stiffness term lead to a skew effect on the frequency response 

curve of the system. An example of this effect is shown in Figure 1.6, where one can find that 
the frequency response curve becomes skewed that a area of coexisting solutions has been 
achieved, called the high-energy orbit (upper solution) and the low-energy orbit (lower solution). 
In practice, there exists the third unstable energy orbit, and the steady-state of the oscillator will 
converge to either the high- or low-energy orbit. By using the device shown in Figure 1.5, Mann 
and Sims tested the responses under different excitation amplitudes. It is found that only at 
relatively high sinusoidal excitation levels, both low- and high-energy responses can coexist for 
the same parameter combinations. When compared with a linear oscillator using similar 
parameters the effectiveness of a nonlinear energy harvester can be dramatically enhanced over 
certain frequency ranges if one can stabilise the high-energy orbit. However, the operating 
branch is determined by the basins of attraction of the coexisting solutions, the probabilistic 
method for estimating the steady-state response were investigated by Quinn et al. [30] in the 
area where multiple solutions coexist. For the steady-state response, a weighted average value is 
used with the weights calculated using the basins of attraction under physically reasonable 
initial conditions. It was found that as the frequency moves away from the linear natural 
frequency, the probabilistic response shifts to the lower branch of solutions. 
  Based on the device of Mann and Sims and by comparing with experimental data, a more 
reliable and extensively validated mathematical model of the energy device was developed by 
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Green et al. [31]. With regards to device dynamics the first important contribution from this 
investigation was the discovery that one must include friction effects to accurately model the 
system dynamics. Only viscous damping is used to model mechanical losses of the energy 
harvesters for the majority of works. However, after an extensive investigation using several 
different friction models it was found that the relatively simple Coulomb damping model could 
be used to accurately model friction in the device. 

Other monostable devices with Duffing nonlinearities have also been analysed [32] 
[33][34][35][36]. In [34], the operating principle of this device was similar to that of the Mann 
and Sims device, but with an advantage that when the centre magnet approached the ends of the 
device, the beams could flex away thereby reducing the magnet colliding chance with the 
beams. 

In addition to this technique, a monostable nonlinear device using the piezoelectric effect was 
proposed by Stanton et al. [32]. The response of this system showed an increase in bandwidth 
and a distinct capability for outperforming the linear approach.  

Another detailed investigation to evaluate the performance of a monostable Duffing-type 
harvester was carried out by Sebald et al. [37]. Especially the influence of the time-constant 
ratio on the performance was investigated. 

In addition to the macroscale examples, several monostable energy harvesters were fabricated 
for microscale applications [38][39][40][41]. 

Thus far, the literature focused upon in this section has been concerned with the use of 
Duffing-type nonlinearities in monostable energy harvesters.  

 

(2) Random excitation 
The stochastic nature of many ambient vibration sources led to several authors focusing on 

the performance of nonlinear energy harvesters to random excitations.  
For the white noise excitation, the influence of nonlinearity on the performance of 

Duffing-type monostable energy harvesters has been investigated by many researchers 
[42][43][44][45][46]. Gammaitoni et al. [42] numerically and experimentally studied the 
response of a monostable piezoelectric energy harvester under random excitations. It is 
validated that, when the linear stiffness is held constant, the root mean square (rms) output 
voltage always decreases with the nonlinearity when the time constant ratio is very large. 
Subsequently, in [43] the response of a similar device to a Gaussian white noise excitation was 
analysed using the Fokker-Planck-Kolmogorov (FPK) equation. It is found that the nonlinear 
stiffness has no effect on the velocity probability density function (PDF) of the system thus it 
did not enhance power output when the time constant is very large. By approximating a solution 
for the corresponding FPK equation, the response of the device to colored noise excitations was 
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also analysed. It was concluded that, the nonlinearities are not beneficial to improve the 
performance of the system for most cases. After that, in [44], the FPK equation was also used to 
find the stationary joint probability density of the system by Green et al., however, it was shown 
that the Duffing hardening-type nonlinearities are beneficial to reduce the size of the device 
without effecting its power output. 

Daqaq [45] also showed that, for both capacitive and inductive harvesters, even when the 
time-constant ratio is not very large, the output voltage also decreases with the increasing of the 
nonlinearity as long as the stiffness is the hardening-type. It was verified that, the performance 
of the hardening-type energy harvester always cannot outperform its linear counterpart. 

In a recent study, Halvorsen [46] also demonstrated that the rms voltage of the harvester has 
no relationship with the nonlinearity when the time constant of the harvesting circuit is very 
small. Moreover, it was found that, it is impossible for the voltage variance of a monostable 
energy harvester with the hardening-type nonlinearity be larger than that of its linear counterpart 
harvester when the time constant is at intermediate levels. 

For the band-limited random excitations, Barton et al. [28] experimentally investigated the 
response of a monostable energy harvester with Duffing-type nonlinearities under random 
excitations with very limited bandwidth. In this paper it was concluded that the limitations of a 
linear energy harvester (a limited response bandwidth) indeed can be overcome by introducing 
the nonlinearity. However, the nonlinear energy harvester can only present a wider response 
bandwidth when it is subjected to a consistent vibrating environment. For instance, the harvester 
is attached to the rotating machinery. Especially, random excitations appear to average out the 
high- and low-energy states thus impairing the advantage of the nonlinear stiffness. In [43], 
Daqaq also investigated the response of Duffing-type monostable inductive harvesters to 
band-limited random excitations. For obtaining the approximate analytical solutions for the FPK 
equation governing the response statistics, the Van Kampen expansion is adopted. It is 
concluded that, when the natural frequency of the harvester match the centre frequency of the 
noise, the output power always decreases with the increasing of the nonlinearity 

 
1.5.2 Bistable energy harvester 
 
(1) Harmonic Excitation 

For the case of bistablility, it has been initially proposed by Cottone et al. [47] and later 
studied by several researchers [48][49][50], is based on the well-known bi-stable 
magneto-elastic structure of Moon and Holmes [51]. However, the main operation principle is 
very similar while several variations of the device were proposed. As shown in Figure 1.7, the 
device is composed of a ferroelectric and piezoelectric beam oscillating between two permanent 
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magnets. By adjusting the distance between those permanent magnets, the system becomes 
bistable system with two stable equilibriums. 

 

 
Figure 1.7. The piezomagnetoelastic generator. 

 
Another form of bistable device was proposed in [52] - a schematic of which is shown in 

Figure 1.8. The device consisted of a series of magnets that were positioned to make the system 
bistable. Based on the device of Mann and Sims, four permanent magnets were placed 
symmetrically around the tube’s middle position to make it become a bistable device.  

Among the research to investigate the performance of bistable energy harvesters to harmonic 
excitations, the work of Erturk et al. [50][53] were the earliest one. It is concluded that the 
bistable energy harvester is beneficial because of the occurrence of the interwell oscillation 
which can be triggered under certain excitations. The interwell oscillations can yield apparently 
larger power output over a wider frequency bandwidth when compared with its linear 
counterpart. After the investigation of the amplitude and frequency bifurcations of a bistable 
piezoelectric energy harvester, Stanton et al. [49] arrived at similar conclusions. The analytical 
model of the system was presented. Similarly, it is observed both the large- and small-orbit 
periodic and chaotic responses for different levels of harmonic excitations.  

Under certain excitation levels, the operating point can stabilise either on the high- or the 
lower energy orbit, which is determined by the basin of attraction of the solutions. However, the 
mechanism for adding the disturbance for stabilising the high-energy orbit has not yet 
physically designed. 

Another approach to solve the problem is to extend the frequency response bandwidth where 
the unique large energy-orbit exists. This is a rather complex problem, and several researchers 
had employed some analytical methods for investigation. The harmonic balancing method is 
used by Stanton et al. [54] and Harne et al. [55] to derive the analytical solutions of the 
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responses. Thus, it provides a better understanding of the influence of the parameters on the 
final response states. 

In [56] work was undertaken with the specific aim of comparing the response of monostable 
and bistable devices to chirp excitations. In this work it was concluded that the bistable device 
was only effective if the interwell chaotic response could be activated. Furthermore, it was 
found that the shape of the potential energy well required for such behavior to occur was very 
sensitive to the amplitude of excitation. It is also noted that even if the input acceleration is 
increased to a large enough value, one can only find that the bistable energy harvester 
outperforms the monostable one in the vicinity of the frequencies where the secondary 
resonances occur. Figure 1.9 shows the schematic diagram of the experimental device, an axial 
preload is applied to the beam to achieve the monostable and bistable configurations. 

 

 
Figure 1.8. Illustrations of the bistable generator. 
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Figure 1.9. Schematic of an axially loaded energy harvester. 
 
(2) Random excitation 

Several works have focused on the response of bistable devices to random excitations 
[42][57][58].  

For the white noise excitation, Cottone et al. [47] analysed the response of a bistable 
piezoelectric energy harvester. They illustrated that a bistable device can provide performance 
improvement in the output power under white Gaussian noise only when the time constant of 
the harvesting circuit is very large. By solving the FPK equation, Daqaq [45] corroborated these 
findings and showed that, when the time constant ratio is large, the mean power becomes 
independent of the nonlinearity and equals that obtained using an equivalent linear device. The 
same result was also concluded by Daqaq in another literature [58]. 

For the band-limited random excitations, Daqaq [58] studied the approximating the solution 
of the FPK equation for the case of exponentially correlated noise, it was shown that maximum 
power could be extracted from a bistable device if interwell dynamics were activated. 
 
1.6 Motivation 

 
This thesis focused on how to enhance the energy harvesting performance under two kinds of 

the most common excitations: harmonic and random excitations, by using nonlinearly vibrating 
system.  

Based on the previous discussions, it is apparent that nonlinear energy harvesters have 
presented potential advantages for improving the performance of the device, and the intentional 
inclusion of nonlinearities makes the devices more tolerant to variations in the excitation 
frequency. However, there are still some apparent issues exist. 

The performance of different energy harvesters under both the harmonic and the random are 
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briefly summarised in Table 1.1, where the bold part indicates the focused investigation in this 
thesis.  

 
(1) How to guarantee operation of the Duffing-type monostable energy harvesters on the 
favorable high-energy orbit for energy harvesting, thereby widening the response width and 
boosting the response under harmonic excitation: 

The nonlinearity of the Duffing-type monostable oscillator provides a wider bandwidth and a 
higher energy harvesting capability under harmonic excitations because of the high-energy orbit 
solution. However, the high-energy orbit favorable for energy harvesting is always accompanied 
by a lower energy orbit. The ability of the harvester to operate on the higher orbit of solutions is 
determined by the initial conditions and its basin of attraction. Due to its larger basin of 
attraction away from resonance, probabilistic studies seem to suggest that, on average, the output 
voltage will be closer to the lower orbit of solutions as the frequency shifts away from the linear 
resonance value, which diminishes the importance of the higher orbit of solutions [59]. If the 
oscillator’s response happens to coincide with the low-energy orbit then the improved 
performance achieved by the nonlinear oscillator over that of its linear counterpart, could be 
impaired. This is the main motivation for stabilising the high-energy orbit. 

It should be mentioned that because the monostable configuration can show higher 
performance compared with the bistable one as presented in [56], and also because of the 
complicated dynamics characteristic of the bistable oscillator, the approach to stabilise the 
high-energy orbit of the monostable configuration is investigated in this thesis. 

 
(2) Optimisation of the nonlinear monostable energy harvester for maximum power output and 
design guidance under harmonic excitation: 

There has been much recent interest in the response analysis and optimisation of the linear 
energy harvester under ambient vibrations. To transfer maximum power to an electrical load in a 
resonant system, the load resistance should be equal to the sum of the electrical analogue of 
mechanical damping and internal resistance. However, there is little literature on the 
optimisation of the nonlinear energy harvester. The motivating hypothesis has been that the 
nonlinear monostable energy harvester can also be optimised to maximise the available 
electrical power. This thesis presents theoretically analytical optimisation and numerical studies 
under three different conditions for the designed Duffing-type monostable devices, by taking the 
practical application into account. Meanwhile, the su-boptimisation of the energy harvesters is 
also conducted when the excitation frequency changes. 
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Table 1.1. Concise performance summary of the energy harvesters with different configurations 
 

      Configuration 
Excitation 

Duffing-type 
monostable  

Bitsable Linear 

Harmonic 

Wider bandwidth and 
higher energy 
harvesting capability 
[29] (with a 
precondition that 
the high-energy 
orbit must be 
stabilised);  
Optimisation work 
for maximum 
power delivery is 
still needed. 

Can’t outperform the 
monostable one under 
many scenarios, and the 
performance is sensitive 
to the excitation 
amplitude. [56] Narrow response 

bandwidth 

White noise 

Similar mean output 
power with the linear 
one but with the 
smaller mean 
displacement. [43] 
[44] 
 

Similar mean output 
power with the linear 
one. [58] 

 

Band-limited noise 

Comparative numerical or experimental studies were incompletely 
made by some researchers and with some contradictory conclusions 
[28][43][58][60][61], a comprehensive investigation is still needed.  
To actively enhance the noised excited energy harvesting using the 
theory of stochastic resonance instead of just using the existing 
passive nonlinear mechanisms. 
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(3) Performance analysis in random vibratory environment for random excitation: 
Nonlinear systems have shown increase in the bandwidth of the device and the capability to 

outperform linear resonance under harmonic excitations. However, the excitation force is not 
always periodic, it was realised that many ambient vibrations sources can actually be somewhat 
stochastic in nature. While many environmental excitations exhibit the characteristics of white 
excitations, many others have most of their energy trapped within a narrow bandwidth 
possessing the characteristics of a band-limited (Colored) noise excitation.  

Several incomplete theoretical or experimental works have studied the effect of nonlinearities 
on the performance but with some conclusions conflicting with each other. Thus, a full 
performances comparison and analysis between different kinds of energy harvesters is presented 
in this thesis for the clearly interpreting the role of the nonlinearities and providing an optional 
design guidance of the energy harvesters for random excitations with certain bandwidth and 
centre frequency. Moreover, it should be mentioned that the parameters optimisation were also 
discussed and conducted for fair comparison  

 
(4) Enhanced energy harvesting for random excitation for random excitation: 

A bistable device may outperform the linear equivalent in random environments, this 
conclusion draws on the assumption that the bistable harvester exhibits inter-well vibrations. 
Should inter-well vibrations be observed, it has been proposed to utilise the random excitation 
component in tandem with small coherent sinusoidal excitation to induce stochastic resonance. 
This provides a potential of further performance improvement of the bistable energy harvester. 
This thesis aims to adopt stochastic resonance as an effective way for energy harvesting and 
takes this a further step by introducing a novel approach to enhance the random excited energy 
harvesting with experimental demonstration. 
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Chart 1.1 Structure of the thesis 

Chapter 1 

 Not limited by natural frequency 
 Usually limited in the field of 

fluidic energy harvesting 

Vibrational energy harvesting 

Linear Nonlinear Self-excited vibration 

 Frequency-up conversion 
 Multi-modal 
 Resonance frequency tuning 

 Broad bandwidth 
 Complexity 
 Room for further investigation 

 Already done and well known 
 Simple realization 

 Limited application field 
 Not forced vibration 

 

 Monostable  
 Bistable 
 Harmonic, random excitation 

The thesis is to enhance performance under harmonic and random excitations using nonlinearly vibrating system. 

Chapter 2: Basic nonlinear dynamics 
  

Harmonic excitation 

To guarantee operation of the monostable energy 

harvesters on the favorable high-energy orbit for 

energy harvesting. 

Chapter 3: Response boost  

To optimise parameters for effective harvesting of 

monostable harvester by considering damping and 

stroke constraints.  

Chapter 4: Parameters optimisation 

To compare harvesting performances for linear, 

monostable and bistable cases considering parameters, 

damping and stroke constraints.  

Chapter 5: Performance comparison 

Feasibility of enhancing energy harvesting by 

application of stochastic resonance  

Chapter 6: Performance enhancement 

(1) Operation on the desirable high-energy orbit can be guaranteed with little energy consumption.  

(2) Design guidance is provided by parameters optimisation for harmonic excited energy harvester. The advantage of 

tuning resonance frequency by modifying electrical damping is reveled for monostable nonlinear energy harvester.  

(3) Comprehensive comparison and parameter interpretation are conducted for band-limited noise excitation. Bistable 

energy harvester can be the best candidate because of its better low frequency performance, low requirement of electrical 

damping for maximum power, and smaller response displacement under certain excitation levels. 
(4) The available energy can be dramatically amplified using stochastic resonance, which can be a promising way to 

harvest energy from random vibrations. 

Chapter 7: Conclusions and contributions 

Band-limited noise excitation 
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1.7 Objectives 
 

This thesis is focused on enhancement of the energy harvesting performance from nonlinearly 
vibration system under harmonic and random excitations. The main objectives of this thesis are 
as follows: 
(1) Guaranteeing operation of the Duffing-type monostable energy harvesters on the favorable 

high-energy orbit for energy harvesting. 
(2) Investigating the optimised condition for maximum delivered power from the harmonic 

vibrating source using the Duffing-type monostable energy harvester. 
(3) Making clear interpretation of the effect of nonlinearities on performance under band-limited 

noise excitations and give the guidance for the design of the energy harvesting device. 
(4) Investigation of the feasibility of actively enhancing the available energy from the randomly 

vibrating sources by using a proposed and improved novel approach - stochastic resonance. 
 
1.8 Overview 
 

As presented in Chart 1.1, structure of the thesis is clearly interpreted corresponding the 
studying motivation, and the further introduction is given in the following parts. 

In Chapter 1, an overview was executed about the developing techniques to increase the 
bandwidth of vibration-based energy harvesters. The broadband vibration-based energy 
harvesting solutions are introduced covering resonance tuning, multimodal energy harvesting, 
frequency up-conversion, self-excited and parametric resonance energy harvesting, which are 
summarised with regard to their merits and shortcomings. Moreover, the techniques exploiting 
non-linear oscillations are especially addressed. 

In Chapter 2, the basic dynamics characteristics of the typical Duffing oscillators are 
presented, including the principle of the theory of stochastic resonance. 

The main work of Chapter 3 is focused on how to guarantee operation of the monostable 
nonlinear energy harvesters on the favorable high-energy orbit for energy harvesting, thereby 
widening the response bandwidth and boosting the response. Two kinds of approaches with the 
prototyping are presented to trigger a jump from the low- to the high-energy orbits by tuning the 
stiffness of the system, without changing the frequency or the amplitude of the excitation. One 
configuration is designed as a stiffness tunable nonlinear energy harvester, whose stiffness can 
be tuned directly. Meanwhile, another configuration is also proposed to change the equivalent 
stiffness of the energy harvesting device using damping variation. One obvious advantage of 
this method is that it requires little extra energy input for stiffness tuning, which is different 
from the directly mechanical tuning method.  
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The Chapter 4 presents the parameters optimisation work under harmonic excitations for 
maximum electrical delivery, with the assumption that the energy harvesting device operates on 
the high-energy orbit. By the consideration of the implemental environments, theoretical and 
analytical optimisation under unconstrained and constrained conditions (i.e. electrical damping 
and stroke of the device) is investigated. This work provides the guidance for the design of the 
monostable nonlinear harvesters. 

In Chapter 5, for the random excitation, the parameters interpretation is processed for the 
influence of the nonlinearities on the transduction of the energy harvester, and the 
comprehensive performance comparisons of different energy harvesters. Meanwhile, the 
performance comparison is also conducted with the consideration of the constrained electrical 
damping and displacement amplitude conditions 

In Chapter 6, instead of only making using of the existing typical passive devices (i.e. 
including linear, monostable nonlinear and bistable configurations), a novel method of actively 
enhancing energy harvesting effectiveness is investigated under random excitations based on the 
theory of stochastic resonance. Meanwhile, another method to achieve stochastic resonance is 
also presented, which indicates that an easier approach may be a promising way to improve the 
performance of energy harvesting under random excitations. After that, by using the bistable 
configuration, the method using the theory of stochastic resonance is demonstrated for 
enhancing the energy harvesting effectiveness. 

In Chapter 7, the conclusions are drawn mainly about contributions and significance of the 
above work. 
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Chapter 2 

 

Basic Nonlinear Dynamics 
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2.1 Introduction 

 
  In this chapter, the basic dynamics and its characteristics are introduced for the monostable 
and bistable Duffing oscillators under harmonic excitations, which will be used for the 
theoretical derivation in the following chapters. Moreover, the nonlinear influences on the 
responses under random excitations are also briefly discussed, which is followed by the 
introduction of a novel method to further enhance the performance using the theory of stochastic 
resonance, and its details will be presented in Chapter 6. 

 
2.2 Harmonic excitation 
2.2.1 Monostable oscillator 

 
The equation of motion of a force-excited Duffing monostable oscillator can be written as 

 
 ( )3 cosmx cx kx x F tα ω ϕ+ + + = +   (2.1) 

 
where x  is the relative displacement, and m  is the seismic mass which is coupled with a 
restoring force with cubic nonlinearity and an energy transducer with damping coefficient c , 
excited by a harmonic force ( )cosF tω ϕ+ , ϕ  is the phase angle between the excitation and 

the response. The positive and negative nonlinearity α  indicate a hardening and softening 
system, respectively. Equation (2.1) can be expressed in non-dimensional form as 
 

( )32 cosu u u uζ β τ ϕ′′ ′+ + + = Ω +                    (2.2) 

 

where kxu
F

= , 
n

ω
ω

Ω = , n
k
m

ω = , 
2 n

c
m

ζ
ω

= , 
2

3

F
k
αβ =  and ( ) d

dτ
′• = . 

 
To analyse the response of the oscillator, the frequency-amplitude relationship needs to be 

derived. The analytical approach includes using classical perturbation methods, which are quite 
accurate for predicting the jump-up frequency, but less so for the jump-down frequency under 
a strong nonlinearity. Another approach to obtain the analytical solution of the equation is the 
method of harmonic balancing method. The harmonic balancing method can be applied to the 
weakly and strongly nonlinear systems, which gives an advantage of this method over the 
perturbation methods. It is assumed that the harvester response can be modelled by a truncated 
Fourier series, where the number of terms dictates the accuracy of the intended solution. In the 
existing literature different numbers of terms in the Fourier series have been used to compute 
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the critical jump frequencies in the frequency response curve of the Duffing oscillator. Friswell 
and Penny [62], and Worden [63] computed the jump-up and jump-down frequencies of the 
Duffing oscillator linear damping using the HBM. Friswell and Penny [62] used a numerical 
approach based on Newton’s method to compute the jump frequencies, including terms up to 
the ninth harmonic, while Worden used a first order expansion to solve the resulting equation 
numerically. Brennan et al. [64] made a comparison based on the results. Remarkably the 
difference between Friswell and Penny’s results and Worden’s first order approximation never 
exceeded 0.34% for the parameters chosen in Brennan’s study [64]. Carrella [65] used the 
HBM for a first order expansion to find closed form expressions that, with the parameters used 
in [62][63], yield values which differ from those found by Friswell and Worden by less than 
1%. However, a relatively weak nonlinearity was used in Friswell and Penny’ study. Peng et al. 
[66] investigated the case of a Duffing oscillator with a stronger nonlinearity using third order 
expansion HBM. However, the frequency response curve was only numerically computed 
because it they failed to find analytical solutions, even by using appropriate software.  

   

 
Figure 2.1. Frequency response comparison between the first order expansion HBM (dotted 

line) and the third order expansion HBM (square). 
 

To validate the accuracy of the first order HBM approximation the parameters chosen by 
Peng et al. [66] are employed to make a comparison ( 0.04ζ = , 0.1β = ) by simulation, which 

is presented in Figure 2. 1. It is validated that the fundamental harmonic of the response is 
dominant over higher harmonics and it shows sufficient accuracy.  

It is assumed that the steady state solution of Equation (2.2) is of the form  

dU

uU

uΩ dΩ

Jump-up
point

Jump-down point
0

0

0
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0 cosu U τ= Ω                               (2.3) 

 
so that the velocity and acceleration are respectively given by 
 

0 sinu U τ= − Ω Ω                             (2.4) 

 
and 
 

2
0 cosu U τ= − Ω Ω                             (2.5) 

 
Substituting Equations (2.3), (2.4) and (2.5) into the Equation (2.2), it becomes 
 

2 3 3
0 0 0 0cos 2 sin cos cosU U U Uτ ζ τ τ β τ− Ω Ω − Ω Ω + Ω + Ω               

cos cos sin sinϕ τ ϕ τ= Ω − Ω                                (2.6) 

 
The coefficient of β  is then expanded using elementary trigonometric relations. By ignoring 

the superharmonics, it gives 
 

3 3 3 3
0 0 0

3 1cos cos cos3
4 4

U U Uβ τ β τ β τΩ = Ω + Ω                 (2.7) 

 
Substituting the approximation into Equation (2.6), and equating the coefficients of sin τΩ  
and cos τΩ , gives 

 

2 3
0 0 0

3 cos
4

U U Uβ ϕ− Ω + + =                        (2.8a) 

 
 02 sinUζ ϕΩ =                              (2.8b) 

 
Squaring and summarizing Equations (2.8a) and (2.8b) to obtain 
 

( ) ( ) ( )( )2 22 6 2 4 2 2
0 0 0

9 3 1 1 2 1
16 2

U U Uβ β ζ+ −Ω + −Ω + Ω =               (2.9) 

 
This equation represents the frequency-amplitude response relationship of the oscillator. The 
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solution of this sixth order polynomial can be found using the Matlab solve command.  
However, the expressions of the jump-up and jump-down points of the oscillator should be 

derived, which are necessary for the high-energy orbit stabilisation and optimisation in the 
following chapters. For convenience, the modal coupling coefficient ε  is neglected.  

Solving Equation (2.9) for the positive solutions as 
 

( )2 2 2 2 42
0 020

1
0

1 4 1- 33 1 2
4

U UU
U

ζ ζ βζβ
ζ

--
Ω ≈ + - +              (2.10a) 

 

( )2 2 2 2 42
0 020

2
0

1 4 1 33 1 2
4

U UU
U

ζ ζ βζβ
ζ

− − −
Ω ≈ + − −             (2.10b) 

 
Assuming that 2 1ζ << , the above solutions can be reduced to 

 

2 2 2 42
0 00

1
0

1 4 33 1
4

U UU
U

ζ βζβ − −
Ω = + +                  (2.11a) 

 

2 2 2 42
0 00

2
0

1 4 33 1
4

U UU
U

ζ βζβ − −
Ω = + −                  (2.11b) 

 
The jump-down point can be regarded as the resonance point of the nonlinear oscillator and 

it approximately equal to the point where the response amplitude is maximum. In this thesis, 
the approach taken by Magnus [67] and Hagedorn [68] is followed to derive the jump-down 
point. The jump-down frequency can be found by equating the two values in Equations (27) to 
yield 

 
  2 2 2 4

0 01 4 3 0U Uζ βζ− − =                          (2.12) 

 
and rearranging the expression gives 
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0 2

2 31 1
3 4dU β
β ζ
 

≈ + −  
 

                         (2.13) 

 
Substituting Equation (2.13) into Equation (2.11) yields the jump-down frequency of the 

frequency-amplitude curve as 
 

 2

1 31 1
2 4d

β
ζ

 
Ω ≈ + +  

 
  (2.14) 

 
To determine the jump-up frequency, it is noted that when the jump-up phenomenon 

occurs, this frequency is weakly dependent upon the damping ratio. Thus, by setting 0ζ =  

and finding the point at 1,2

0

0
d
dU
Ω

= , the non-dimensional displacement amplitude of the 

jump-up frequency can be given as 
 

 
1 3

0
2

3uU
β

 
≈  
 

  (2.15) 

 
Substituting Equation (2.15) into Equations (2.11) gives the jump-up frequency 

 

 
1 33 31

2 2u
β Ω ≈ +  

 
                         (2.16) 

 
2.2.2 Bistable oscillator 
 
  The equation motion of the bistable oscillator can be expressed in non-dimensional form as 
 

( )32 cosu u u uζ β τ ϕ′′ ′+ − + = Ω +                    (2.17) 

 
The steady state solution of Equation (2.17) is that of the form  
 

0 cosu B U τ= + Ω                               (2.18) 
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where B  is a constant. The frequency-amplitude response equation can also be obtained using 
the harmonic balance method, which can be expressed as 
when 0B =  
 

( ) ( ) ( )( )2 22 6 2 4 2 2
0 0 0

9 3 1 1 2 1
16 2

U U Uβ β ζ− +Ω + +Ω + Ω =            (2.19) 

 

and when 2 2
0

31
2

B U= −  

 

( ) ( ) ( )( )2 22 6 2 4 2 2
0 0 09 6 2 2 2 1U U Uβ β ζ+ Ω − + Ω − + Ω =            (2.20) 

 
It can be noted that the response of the bistable oscillator is more complex compared with the 

monostable one. However, as mentioned previously, in [56], the performance of the monstable 
oscillator was experimentally compared, it is demonstrated that in contrast to the common 
understanding that the bistable energy harvester has a wider bandwidth, it is is very much 
dependent on the level of the input acceleration and the shape of the bistable potential function. 
And, many of the presented scenarios clearly demonstrate that the monostable harvester can 
outperform the bi-stable one. 

On the other hand, considering the complexity of the bistable oscillator, it is mainly focused 
on the investigation of the monostable configuration for the harmonic excitations in this thesis, 
including how to trigger a jump from the low- to the high-energy orbit thereby boost the 
response and the optimisation work for maximum power output, which will be presented in 
Chapter 3 and Chapter 4, respectively. 

 
2.3 Random excitation 
2.3.1 Effect of the nonlinearity 
 

Nonlinear energy harvesters, in particular the hardening monostable oscillator with a cubic 
nonlinearity [69][70], and bistable devices with double-well potential [53][71] have shown an 
increase in the bandwidth of the device and the capability to outperform linear resonance under 
harmonic excitations. However, the excitation force is not always periodic in reality and in fact 
most ambient vibrations sources can actually be somewhat stochastic in nature.  

The influence of the nonlinearity on the performance of energy harvesters under random 
excitations has been investigated in some of the literature [72][73][74][75]. However, it was 
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demonstrated that under Gaussian white noise excitation both the nonlinearity of the 
hardening-type monostable oscillator and the bistabilities in the potential did not provide any 
enhancement of energy harvesting over that of the traditional linear generator with a single well 
[43][58]. Different conclusions can be found when the value of the constant of the harvesting 
circuit is taken into consideration [47][42]. While many environmental excitations exhibit 
characteristics of white noise excitations, many others have most of their energy trapped within 
a narrow bandwidth possessing the characteristics of a band-limited coloured excitation. 
Notably, Daqaq [43] analysed the responses of linear and hardening-type monostable systems 
subjected to band-limited noise by computing the probability density function (PDF) and made 
certain comparisons. It was shown that the nonlinearity can adversely influence the mean output 
power under band-limited noise excitations, but it can be noted that experimental validation was 
not involved in this particular study. Sebald et al. [37][76] arrived at a similar conclusion for a 
hardening-type monostable harvester. After that, by applying a static compressive axial load at 
one end of a beam, Masana et al. [77] experimentally investigated the performance of a 
monostable hardening-type energy harvester in the pre-buckling condition, and a bistable energy 
harvester in the post-buckling condition, when the harvesters were subjected to random base 
excitations of different levels, bandwidths, and centre frequencies. The bistable harvester has 
been shown to outperform the monostable design. 

On the other hand, Meimukhin el al. [60] made a comparison of a bistable energy harvester 
and its linear counterpart and showed that nonlinear bistable oscillators generally perform better 
than the linear one under band-limited noise excitation, in certain regions. This was only under 
the condition that a random excitation with a cut-off frequency was analysed, and without 
considering the independent influence of the various centre frequencies. However, Joo et al. 
[61] numerically demonstrated that under coloured noise excitations the linear energy harvester 
outperformed the monostable nonlinear harvester, while the bistable energy harvester showed 
the lowest performance, and this rather conflicts with the conclusions discussed above.  

Therefore, a full performance comparison between the monostable hardening-type 
configuration, the bistable configuration, and the linear counterpart, under a band-limited base 
force will be presented in the thesis which will be shown in Chapter 5. The influences of various 
excitations levels, bandwidths and centre frequencies are all taken into account. Moreover, the 
influence of damping and displacement constraint on the performance is also analysed.   
 
2.3.2 Method for performance enhancement 

 
The enhanced method presented in this thesis is based on the theory of stochastic resonance, 

which is an intriguing and counter-intuitive phenomenon. It has been demonstrated and 
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considered for several fields such as signal processing, electrical circuit development and image 
visualization [78][79]. Ongoing work exploits stochastic resonance as a way of harvesting the 
energy within the random excitation. 

Stochastic resonance applied to harvesting requires three basic ingredients: firstly an 
energetic activation barrier such as the double well potential of a bistable system, a weak but 
coherent control input in the form of a periodic signal, which is a means of controlling the 
potential well’s threshold of a bistable system, and finally a source of ambient vibration that is 
inherent to the system to be harvested. In satisfying the above requirements the response of the 
system undergoes resonance-like behaviour as a function of the ambient (noise) excitation, 
hence the term stochastic resonance [80][81]. Stochastic resonance can be thought of as 
resulting from the synchronisation of a stochastic time-scale determined by the transition rate 
over the barrier, and a deterministic time-scale determined by the time-scale of periodic 
modulation. The system is seen to exhibit stochastic resonance when the noise strength is 
appropriately tuned to ensure the synchronisation of these two time scales.  

An excellent review which clearly identifies the advantages of bistable energy harvesters was 
provided by Cammarano et al. [82]. Reports on experimental studies confirm the necessity for 
inter-well motion through which the system oscillates by switching between two stable 
equilibria, and show that more energy can be throughput than for intra-well motion where the 
system simply oscillates around one stable equilibrium. Consequently, for a suitably designed 
nonlinear mechanical system, the ambient noise is the source of excitation, and it is this which 
can excite the stochastically resonant system into a bistable nonlinear response. The presence of 
bistability makes the system capable of rapidly switching between stable states and if even a 
relatively weak periodic excitation is also applied to the system then the double well potential 
can periodically raise and lower the potential barrier, and so noise-induced hopping between the 
potential wells can become synchronised with the periodic excitation, leading to stochastic 
resonance. McInnes et al. [83] first proposed the possibility of enhancing the performance of a 
bistable mechanism with stochastic resonance, and provided a numerical analysis to support this. 
By adding a periodic modulating excitation to a random excited bistable mechanism, the power 
available from the device was found to be enhanced over that of the same device without the 
periodic excitation. In this thesis, the motivation is to propose and validate a design for a novel 
nonlinear bistable harvester in which the principles of stochastic resonance are applied. 

A basic model is proposed by initially considering a hypothetical nonlinear system with one 
single degree of freedom comprising an oscillating mass m  undergoing response x  from 
forces determined by an overall damping coefficient c , and stiffness coefficients k  and α  

the determine a third-order polynomial 3kx xα− +  that is required for bistability. Subjected 
also to random excitations, ( )N t , this system is described by 
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( )3mx cx kx x N tα+ − + =                           (2.21) 

 
The potential governing the particle dynamics is of the standard double well type, and 
defined as, 
 

( ) 2 41 1
2 4

U x kx xα= − +                             (2.22) 

 
The doubly degenerate minima of the double well potential are located at 1/2( )mx k α= ±  and 

the barrier height is given by 2 (4 )U k α∆ = . 

 

Figure 2.2. The potential well of bistable system. 

 

In addition to the system being excited by the ambient vibration force, when the low-level 
additional periodic force ( )0 cosA t , is applied to the right hand side of Equation (2.21), the 

system’s dynamics is described as 

 

( )3
0 cosmx cx kx x A t N tα ω+ − + − =                     (2.23) 

 

The potential associated with the system described by Equation (2.23) can be correspondingly 
expressed as 
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( ) 2 4
0

1 1, cos
2 4

U x t kx x A x tα ω= − + −                   (2.24) 

  

 

Figure 2.2. Variation of the potential wells with the periodic force ( 24.5N mk = − , 
335000 N mα =  and 2T π ω= ). 

 

The presence of bistability makes the system capable of switching between stable states. 
From Figure 2.2, it can be noted that the double-well potential can be tilted asymmetrically up 
and down, so that the potential-well barrier can be lowered. Although the additional periodic 
excitation is maybe too weak to continually make the system move from one side of the 
double-well potential into the other, it becomes relatively easy for the random excitation to 
overcome this barrier and a noise-induced hopping between the wells can still take place 
through synchronisation with the small-scale additional excitation. In short, stochastic 
resonance can be generated in a bistable system through synchronisation of hopping between 
the potential minima with the imposed small-scale periodic excitation. When the condition for 
stochastic resonance is fulfilled, the response will be amplified because the inter-well dynamics 
are activated from the intra-well motion, thereby enhancing the energy harvesting from the 
random excitation. 
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2.4 Summary 
 

By the analysis of the basic dynamics and its characteristics of the Duffing type oscillators, 
under the harmonic excitation, the bistable oscillator presents a more complex characteristic 
than that of the monostable configuration. However, it is validated that the monostable energy 
harvester can outperform the bistable one under many scenarios. Therefore, the monostable 
configuration is mainly investigated for the harmonic excited energy harvesting in this thesis.  

For the case of random excitation, it gives a brief review of the performances of several 
typical energy harvesters, and presents the necessities of further investigation. Thereby, the 
comprehensive study under band-limited excitations will be introduced in Chapter 5, including 
the constrained electrical damping and displacement conditions.   

Moreover, it is briefly introduced about the theory of the stochastic resonance in this chapter, 
and its implementation and the improved method for achieving stochastic resonance will be 
investigated in detail in Chapter 6.  
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Chapter 3 

 

Response Boost for Harmonic Excitation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Introduction 
 

As mentioned previously, a hardening type oscillator was investigated by Mann and it was 
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found that at relatively high excitation levels, both low- and high-energy responses can coexist 
for the same parameter combinations [29]. When compared with a linear oscillator using similar 
parameters, the effectiveness of a nonlinear energy harvesting device can apparently be 
increased over a certain frequency range. However, this conclusion is obtained with the 
precondition that the energy harvester is always operated on the high-energy orbit within the 
frequency range, where the low-energy orbit coexists. However, it is not always the case. 
Furthermore, in the numerical and experimental investigations of the former studies, many 
researchers only used the slow forward or backward sweeps of the excitation frequency for the 
performance of the monostable nonlinear energy harvester, despite the implementation 
challenge that this offers in practice, and in fact this is a formidable requirement for the 
satisfication of the ideal harvesting conditions.   

The hardening type device, proposed by Mann [29], is an electromagnetic energy harvester, 
which contains a moving magnet suspended between two magnets with opposing poles, and 
whose nonlinearity is identical to that of the monostable Duffing oscillator. This current study 
improves upon that work to produce a design for a stiffness tunable nonlinear vibrational energy 
harvester. The device is constructed in the hope that the jump from a low-energy orbit to a 
high-energy orbit, which can be triggered by tuning the stiffness of the device.  

However, it should be mentioned that the linear DC motor, utilised to tune the stiffness, will 
result in the energy consumption for this form of mechanical tuning, and it was the main 
shortcoming. A similar effort to tune the stiffness of a linear vibration-based generator was 
reported by Zhu et al. [12].  
  The self-excitation method was also proposed by Masuda et al. [84] to stabilise the 
high-energy orbit. A load circuit was adopted in this design, with a switch between the 
conventional load, a negative resistance circuit, and a switching control law dependent on the 
amplitude of the oscillator’s response. However, besides the additional electrical energy 
required to drive the circuit and switch, it also consumes part of the harvested energy in order to 
destabilise the low-energy orbit and trigger the jump. Although the technique can work well, it 
is not ideal in the context of the self-sustainability and overall efficiency for the energy 
harvester. 

Inspired by a linear vibration isolation system with variable stiffness as proposed by Liu et al. 
[85], in this thesis, the method of damping variation is used to change the equivalent linear 
stiffness of a nonlinear harvester for stabilising the high-energy orbit. It provides an advantage 
for practical implementation, because of the fact that it consumes much less energy to vary the 
damping, compared with directly tuning the stiffness using the mechanical method, especially 
when an electromagnetic damper is adopted. It should be noted that this kind of electrical 
damper was successfully used for a self-powered vehicle suspension by Nakano el al. [86], in 
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which the electrical damping was tuned by varying the load resistance in the electrical drive 
circuit. For a further improvement, a nonlinear vibrational energy harvester is also designed, in 
which the equivalent linear stiffness can be changed by only varying the damping.  

The proposed principles are demonstrated for stabilising the high-energy orbit and boosting 
the response, through the analysis of the variation in the frequency-amplitude response curves 
during the tuning process; thereby, its effectiveness is validated for both of the tuning methods. 

 
3.2 Stiffness tuning method 
3.2.1 Apparatus illustrations 

 
A schematic diagram for an energy harvester is given in Figure 3.1 in which three permanent 

magnets of the same dimensions and parameters are arranged in a repulsive configuration, and 
where the magnetic end mass of the piezoelectric cantilever is aligned with respect to the fixed 
top and bottom permanent magnets [87]. The top magnet is fixed and the bottom magnet is 
attached to a slider on a rail to allow the equilibrium distance h  to be adjusted by a DC motor. 
The initial positions of the top magnet and bottom magnet are symmetric about the equilibrium 
position of magnetic end mass under the action of the cantilever and the gravity. However, it 
should be noted that the magnetic end mass will deviate the middle position between the other 
two permanent magnets when only the bottom magnets is tuned to change the stiffness of the 
system because of the existence of the cantilever. Hence, the equivalent stiffness of the 
cantilever is chosen to be low enough to minimise its influence on the magnetic interaction 
force between the permanent magnets.  

 

Figure 3.1. Schematic diagram of the stiffness tunable hardening type energy harvester. 
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3.2.2 Model of energy harvester 

 

 

Figure 3.2. Schematic diagram of the interaction between two permanent magnets. 

 

To obtain the restoring force between the permanent magnets, the mathematical model of the 
interaction forces between two permanent magnets shown in Figure 3.2 is firstly derived. The 
dipole model [52][88][89] is used to represent the interaction forces. The magnetic flux density 

at the location  due to the top magnet located at fr  can be defined by  
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                           (3.1) 

 

where  is the magnetic flux density,  is the vector gradient, is the 

permeability of free space, /c fr  is the position vector from the fixed magnet to the movable 

magnet, and /c fr  is the scalar distance between the two permanent magnets. The magnetic 

moment of the fixed magnet is defined by , where fM  and  are the 

magnetisation amplitude and volume of the magnet, respectively. The potential energy of the 
movable magnet at cr  in the field generated by the fixed magnet at fr  is defined by  
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M cU − ⋅= m B                              (3.2) 

 

where the magnetic moment of the movable magnet is defined by c cvm = M . The 
magnetisation amplitudes of the movable and the fixed magnet are defined by ( , )c cx cyM M=M  
and ( , )f fx fyM M=M , respectively. Using Equations. (3.1) and (3.2), the potential energy of 

the magnetic end mass can be expressed as   

 

2
0 ( )

4M
vU h xµ
π

= Φ +                         (3.3) 

 

where h  is the vertical distance between the equilibrium position of the movable magnet and 
the fixed magnet, and the function ( )xΦ  is defined by 

 

( )( )
( ) ( )5/2 3/22 2 2 2

3
( ) cy cx fy fx fy cy fx cxdM xM dM xM M M M M
x

d x d x

+ + +
Φ = − +

+ +
        (3.4) 

 

where d  is the lateral distance between the movable magnet and the fixed magnets. Equation 
(3.4) can be substituted into Equation (3.3) to get the analytic expression of the potential energy 
of the movable magnet.  

Restoring forces are conventionally obtained from the negative of the spatial derivative of the 
potential energy, as follows 

 
2

0( ) ( )
4M

vF x h xµ
π

= Θ +                         (3.5) 

 

where the function  is defined by 

 

( ) ( )( )
( )

( )( )
( )5/2 7/22 2 2 2

3 3 15
( )

cy fx fy cx fy fx fx fy cx cyM dM xM M dM xM x xM dM xM dM
x

d x d x

+ + + + +
Θ = −

+ +
 (3.6) 

 

( )xΘ
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The analytic expression of the restoring forces of the movable magnet can also be got by 
substituting Equation (3.6) into Equation (3.5). 

The corresponding magnetisation strengths of the magnets are chosen to be 

59 10 A mcx fxM M= = ×  and 58 10 A mfy cyM M= − = × , where the signs indicate polarity. 

The length, width and height of these permanent magnets with same dimensions are chosen to 
be 30mm , 10mm and 10mm , respectively. Those parameters are used to depict the 

magnetoelastic force. Figures 3.3 to 3.8 show the restoring force and the corresponding 
potential energy as function of displacement of the movable magnet under various distance d 
and h. 

 

 
Figure 3.3. The restoring force plotted as a function of displacement of the movable magnet 

(h=15 mm). 
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Figure 3.4. The potential energy plotted as a function of displacement of the movable magnet 
(h=15 mm). 

 

 

Figure 3.5. The restoring force plotted as a function of displacement of the movable magnet 
(h=18 mm). 
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Figure 3.6. The potential energy plotted as a function of displacement of the movable magnet 
(h=18 mm). 

 

 

Figure 3.7. The restoring force plotted as a function of displacement of the movable magnet 
(h=21 mm). 
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Figure 3.8. The potential energy plotted as a function of displacement of the movable magnet 
(h=21 mm). 

 

The movable magnet can be regarded as the magnetic end mass on the cantilever, and the 
fixed magnet represents the top magnet or bottom magnet as shown in Figure 3.2. Using 
Equations (3.3) and (3.4), considering the effect of the bottom magnet and cantilever, and 
setting the distance d to be zero, the potential energy of the magnetic end mass can be expressed 
as   

 

2
0 2

3 3

3 1 1 1( ) +
4 ( + ) ( ) 2

f c
Mb c

v M M
U x k x

h x h x
µ

π
 

− − − 
=              (3.7) 

 
where h  is the vertical distance between the equilibrium position of the magnetic end mass 
and the top and bottom magnets.  

The restoring forces are conventionally obtained from the negative of the spatial derivative of 
the potential energy, as follows 
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2
0

4 4

3 3 3( )
4 ( ) ( )

f c
Mb c

v M M
F x k x

h x h x
µ

π
 

− − − + 
=               (3.8) 

 
 

By choosing the same magnetisation strengths, the diameter and height of these three 
permanent magnets with same dimensions are chosen to be 20mm  and 8mm , respectively, 

which are also representative of the experimental system. The magnetic force and the beam 
elastic force can all be plotted against the magnetic mass displacement, as shown in Figure 3.9. 

 

 

Figure 3.9. The restoring force plotted as a function of displacement of the magnetic end mass. 

 

3.2.3 Tuning stiffness 
 

This section describes the method of tuning the stiffness, and the analysis of charactering the 
response of the energy harvester to a wide range of frequencies for stiffness variations. In this 
paper, in order to investigate the influence of linear stiffness and nonlinear stiffness on the 
frequency response curve, respectively, the Taylor series is used to get the stiffness coefficients. 
Thus, Equation (3.8) can be expanded as 
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2
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12 60( ) f c
Mb c

v M M
F x x x k x

h h
µ

π
 ≈ − + − 
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                (3.9) 

 

Then the linear stiffness and the nonlinear stiffness coefficients can both be expressed as 

 

2
0

5

12 f c
c

v M M
k k

h
µ
π

= +                         (3.10a) 

 
and 
 

2
0

7

60 f cv M M
h

µ
α

π
=                          (3.10b) 

 

 
Figure 3.10. Linear stiffness and nonlinear stiffness as function of the distance between the 
magnetic end mass and the top magnet. 
 
Table 3.1. Parameters used in the investigations of stiffness calculation. 
 

Parameter Value Unit 
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fM , cM  59 10×  A m  

0µ  74 10−×  H/m 
v  2.8×10-6 m3 

ck  11.2 N/m 

 
 

The restoring force calculated by the Taylor series is also presented in Figure 3.9. It can be 
seen that the error can be neglected when the displacement amplitude of the magnetic end mass 
is smaller than 20mm . As shown in Equation (3.10), the nonlinear restoring force can enable 

both the linear stiffness and nonlinear stiffness to be tuned for changes in distance h . Figure 
2.10 shows the relationship between the stiffness and the distance. 

In order to find the influence of the stiffness variations on the frequency response, the 
frequency-amplitude relationship should be derived. As mentioned previously, the classical 
perturbation methods which can be quite accurate for predicting the jump-up frequency, but less 
so for the jumping down frequency under a strong nonlinearity [67]. The harmonic balanced 
method is used again to derive the frequency response-amplitude relationship when the 
electromechanical coupling is considered.  

To derive the motion equation of the energy harvester coupled with the piezoelectric 
transducer. The model of the piezoelectric transducer is shown first. 

 

 
Figure 3.11 A laminar design piezoelectric transducer. 

 
In a piezoelectric transducer, electric charge is generated by a displacement, while a force is 

produced when the voltage is applied. A constitutive equation for a uniaxial piezoelectric 
transducer whose piezoelectric material constant is d31 can be written as [90] 

 

31

31

f
E

s

d EQ
d s TS
ε    

=     
     

                         (3.11) 
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where Q, S, Ef, Ts are electrical displacement, strain, electric field and stress, respectively. The 
symbol ε  represents permittivity under constant stress and sE is the mechanical compliance of 
the material when the electric field is constant. Figure 3.11 illustrates a laminar design 
piezoelectric transducer. The length, width and thickness of the transducer are lt, bt, and tt, 
respectively. 

Then the constitutive equation can be written as  
 

31f D q= −                              (3.12a) 

and 

31 t
qD y V
C

− = +                           (3.12b) 

 
where f is the induced force by the piezoelectric transducer, q is the electrical charge, C is the 
capacitance of the piezoelectric film, yt is the deflection of piezoelectric transducer, V is the 
voltage, and D31 is the piezoelectric constant of a transducer, and C and D31 can be defined as 
 

2

1 1
1

t

t t

t
C l bκ ε
=

−
                           (3.12c) 

 

31
31

t
E

d bD
s C

= −                              (3.12d) 

 
where 
 

31

E

d

s
κ

ε
= −                             (3.12e) 

 
Then, by introducing the harmonic excitation cosF tω , the equation of motion for the 

piezoelectric energy harvester directing powering a resistive load can be written as  
 

                        3 cosmmx c x kx x q F tα q ω+ + + + =                    (3.13a) 

 

and 
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qx Rq
C

q = +                             (3.13b) 

   

where m is the equivalent mass of the permanent magnet attached to the beam, cm is the 
mechanical damping, R = Ri + Rl, and Ri and Rl are the internal and load resistances, and θ  is 
the electromechanical coupling coefficient, which can be obtained by using D31 by considering 
the relationship between the deflection at the tip of the beam and the deflection of the 
piezoelectric transducer, it can be expressed as 
 

31pDθ =                             (3.14a) 

 

where p is the ratio between the deflection of the piezoelectric transducer along the beam and 
the deflection of the tip of the beam in the x direction, and it is given as  

 

 
( )

2
0

20

0

( , )
2

,

tl b

t

t d x y t dy
y dyp
x x l t

= =
∫

                       (3.14b) 

 

where lt is the length of the piezoelectric transducer, and the l is the length of the beam, y is the 
horizontal location along the beam axis in Figure 3.1, and x0 is the deflection formula for a 
cantilever beam at the first bend mode, it is shown as follows 

 

( ) ( )
2 3

0 2 3

3, ,
2 2
y yx y t x l t
l l

 
= − 
 

                     (3.14c) 

 
  The model consists of a mechanical oscillator coupled to an electric circuit through a 
piezoelectric transducer. The equivalent electrical circuit model of the piezoelectric transducer is 
shown in Figure 3.12. It is a voltage source in series with its capacitance and resistance. 
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Figure 3.12. Equivalent electrical circuit of the piezoelectric transducer modelled as a voltage 

source. 
 
Moreover, another kind of equivalent model is the piezoelectric transducer can be regarded as 

a current source, it can be obtained by the transformation of Equation (3.11b) as follows. 
Multiplying both sides of Equation (3.13b) by capacitance C gives 
 

  Cx q CRqq = +                              (3.15) 

 
Then, Equation (3.15) can be written as 

 
  Cx q CVq = +                             (3.16) 

 
where V Rq=   is the induced voltage. Taking the derivative of each term in Equation (3.16) 

with respect to the time, it can be written as 
 

  Cx q CVq = + 

                              (3.17) 

 
 

Equation (3.17) can be further repressed as 
 

  VCx CV
R

θ = + 

                            (3.18) 

 
Equations (3.13b) and (3.18) represent the same model but with different methods of 

expression. In Equation (3.13b), the piezoelectric transducer is regarded as a voltage source, 
while it is expressed as a current source in Equation (3.18). The corresponding electrical circuit 
is show in Figure 3.13. 
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Figure 3.13. Equivalent electrical circuit of the piezoelectric transducer modelled as a current 

source. 
 
In references [32][42][59][91], the expression of Equation (3.18) was adopted to model the 

piezoelectric nonlinear energy harvester. 
Thus, the equation of motion for the piezoelectric energy harvester directing powering a 

resistive load can be re-written as  
 

                        3 cosmmx c x kx x CV F tα θ ω+ + + + =                  (3.19a) 

 

and 

VCx CV
R

θ = + 

                            (3.19b) 

 
In order to explain how the piezoelectric operates in the mechanical system, Equation (3.18b) 

can be repressed s 

 

1
s

s RC

θ
=

+
V X                             (3.20) 

 

where s  is Laplace transform, and V and X are the Laplace transform of V and x. Now, it can 
be seen that the piezoelectric transducer operates as an electrical damping related to the velocity 
and a spring element when the electrical circuit is connected and disconnected, respectively. 

  It is assumed that the higher order harmonics are negligible and the steady state solution of 
Equations (3.19a) and (3.19b) can be modelled as 
 

1 1sin cosx a t b tω ω= +                        (3.21a) 
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and 
 

2 2sin cosV a t b tω ω= +                       (3.21b) 

 
Then 
 

1 1cos sinx a t b tω ω ω ω= −                      (3.22a) 

 

2 2cos sinV a t b tω ω ω ω= −                     (3.22b) 

 
and 

2 2
1 1sin cosx a t b tω ω ω ω= − −                    (3.22c) 

 
Substituting Equations (3.21), (3.22) into Equation (3.19a), collecting coefficients with the 

same structure and neglecting the high order items, it gives 
 

1 1 2a bb Q Q a Cb Fθ+ − =                      (3.23a) 

 
and 
 

1 1 2 0a ba Q Q b Caθ− − =                       (3.23b) 

 
where  
 

2 23
4aQ k m Xaω= − +                       (3.23c) 

 
 b mQ c ω=                              (3.23d) 

 
Similarly, substituting the steady state solutions of Equations (3.21b) and (3.22) into 

Equation (3.19b), it is given that 
 

( )1 1
2 2 2 21

C b R C a
a

R C
θ ω ω

ω
− +

=
+

                      (3.24a) 

 
and 
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( )1 1
2 2 2 21

C a R C b
b

R C
θ ω ω

ω
+

=
+

                      (3.24b) 

 
By and squaring and adding Equations (3.23a) and (3.23b), it can be obtained as 
 

( ) ( ) ( )22 2 2 2
2 1 1 2 1 12 2a b a b a bQ X Q X C V Ca Q a Q b Cb Q b Q a Fθ θ θ+ + − − − − =   (3.25a) 

 
 

where  
2 2 2

1 1X a b= +                             (3.25b) 

 

( )2
2 2 2

2 2 2
2 2

1
X

V a b
R C

θω

ω
= + =

+
                      (3.25c) 

 
Substituting Equation (3.24) into Equation (3.25), the items of 1 1a b  can be cancelled. Then 

by adding the items of 2
1a  and 2

1b  using Equation (3.25b), Equation (3.25a) can be expressed 

by an algebraic equation about X as 
 

( ) ( )

2

2
2 2 2

2
2 2

31
41

CX k m X
m R C

θω α
ω

  
  − − +  

+    

                  

( )

2

2
2 2 2

2
2 2

1mc X F
R R C

θ ω
ω

 
 + + = 

+  

                     (3.26) 

 
 

Equation (3.26) represents the equation for the steady-state motion of the piezoelectric energy 
harvesters. 

Moreover, Equation (3.25c) can be rewritten as 
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2 2 2
11

V X

R C

θ

ω

=
+

                        (3.27a) 

 

The physical interpretation is the induced voltage by the piezoelectric material cannot be 
completely delivered to the resistance because of the existence of the capacitance. From 
Equation (3.27a), it can be noted that the delivered voltage on the resistance increases with the 
increasing of the excitation frequency because of the high-frequency-pass property of the 
capacitance.  

Equation (3.27b) can also be rearranged as 

 

2
2 2
1

V X

R C

θ ω
ω

=
+

                       (3.27b) 

 

It can be found that Equation (3.27b) expresses the induced voltage on the resistance and the 
velocity amplitude of the seismic mass, which is similar to the inductive model. Therefore, the 
equivalent electromechanical constant related to the velocity can be written as 

 

2
2 2
1

R C

θφ
ω

=
+

                           (3.28) 

 

 It should be mentioned that the coupling between the oscillator and the piezoelectric transducer 
also has influence on the frequency response curve of the energy harvester. The standard form 
of the frequency response curve without the consideration of the electromechanical coupling can 
be expressed as 

 

 ( )
2

2 2 2 2 2 2 23
4 mX k m X c X Fω α ω − + + =  

                (3.29) 
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By comparing Equations (3.26) and (3.29), it can be found that the piezoelectric transducer 
can be regarded as an electrical damping item from the second term on the left side of the 
equations. For the first item on the left side, it has little influence on the frequency response 

because the fact that ( )2 2 2 2 1C m m R Cθ ω +  . 

  Table 3.2 shows the parameters which were used to investigate the influence of stiffness on 
the frequency response, which will be used for the experiments. It should be mentioned that the 
proportion between the displacement of the magnetic end mass and the deflection of the 
piezoelectric film is considered for calculating the coupling coefficient θ . 
 
 
 
 
Table 3.2. Parameters used in the investigations of stiffness on the frequency response. 
 

Parameter Value Unit 

m 0.022 kg 
cm 0.008 Ns/m 
θ  645 V/m 
C 110 nF 
Ri 115 KΩ  

F 0.06 N 
ω   11.2 Hz 

 
As shown in Equation (3.10), the stiffness can be tuned by increasing or decreasing the 

distance between the permanent magnets. To illustrate this for energy harvesting considerations, 
a series of frequency-relative velocity amplitude curves under different stiffness are presented in 
Figure 3.14, according to Equation (3.26). While Figures 3.14(a) and 3.14(b) show the 
independent influence of the linear stiffness and the nonlinear stiffness on the frequency 
response respectively, Figure 3.14(c) depicts the effect of varying the distance h. It should be 
mentioned that Mann [29] compared the relative velocity responses of the hardening-type 
monostable device with a linear device with similar parameters.  

An observation is that the response for both systems scales almost linearly within the regime 
of low level amplitude of excitations. In this study, the case that the nonlinearities are 
sufficiently engaged is discussed. 

Variations in the linear stiffness have an influence on both the jump-up and jump-down 
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frequency. By increasing the linear stiffness, the frequency response curve shows a movement to 
the right. Varying the value of the nonlinear stiffness, a similar tendency is observed. For the 
practical experimental system, Figure 3.14(c) is used to illustrate the process of triggering the 
jump. It is assumed that the energy harvester is oscillating at point A, which is located on the 
low-energy orbit, and then by starting to decrease the distance between the permanent magnets, 
the operating point moves slowly to the jump up point. A further decrease in the distance h , 
shows that the frequency of the excitation will exceed the jump up frequency. Hence, the 
operating point jumps to B. The oscillator is now operating in the desirable orbit. However, 
variation of the stiffness also decreases the amplitude of the response. So following the 
high-energy orbit mean that the operating point moves to C by increasing the distance h. 

 

 
Figure 3.14. Influence of the stiffness on the frequency response curve: (a) k = [50.3, 77.5, 
109] N/m versus h = [60, 54, 50] mm and α = 5.44×104 N/m3, (b) k = 50.3 N/m and α = 
[5.44×104 , 1.14×105, 1.95×105] N/m3  versus h = [60, 54, 50] mm, and (c) h = [60, 54, 50] 
mm versus k = [50.3, 77.5, 109] N/m and α = [5.44×104 , 1.14×105 , 1.95×105] N/m3 (solid 
lines: stable solutions, and unstable solutions: dashed lines; Scatter points: experimental results). 

 

h

α

k
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Moreover, the scatter points in Figure 3.14(c) represent the experimental results for 
comparing with the theoretical frequency response curve. Figures 3.15(a) and 3.15(b) show the 
time domain experimental results when the distance h is chosen to be 60 mm. A base 
acceleration of 2.7 m/s2 was used so that multiple periodic attractors could appear, and it is same 
as the excitation amplitude for the numerical simulation. In Figure 3.15(a)，the excitation 
frequency starts from 4 Hz, and with the upward frequency sweep of 0.03 Hz/s to 14 Hz, which 
corresponds to Figure 3.15 (c), where the horizontal axis is re-expressed using frequency. 

Similarly, in Figure 3.15(b), the excitation frequency starts from 14 Hz with the downwards 
frequency sweeps of 0.03 Hz/s to 4 Hz, which corresponds the results shown in Figure 3.15(d). 

From the results presented in Figures 3.15(c) and 3.15(d). The experimental scatter data for 
the case of the distance h is set to be 60 mm shown in Figure 3.14(c) can be obtained by using 
the response amplitude data at different frequencies. Similarly, in Figure 3.14(c), the 
experimental scatter data when h is set to be 54 mm and 50 mm can be obtained from Figures 
3.16 and 3.17, respectively. 
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Figure 3.15. Experimental velocity responses under the excitation amplitude of 2.7 m/s2 when 
the magnets distance h is 60 mm: (a) the time domain data when the excitation frequency 
linearly increased at the rate of 0.03 Hz/s, (b) the time domain data when the excitation 
frequency linearly decreased at the rate of 0.03 Hz/s, (c) the relationship between the excitation 
frequency and the response amplitude when the excitation frequency linearly increased at the 
rate of 0.03 Hz/s, and (d) the relationship between the excitation frequency and the response 
amplitude when the excitation frequency linearly decreased at the rate of 0.03 Hz/s. (The 
marked points corresponds to the scatter data in Figure 3.14(c)). 
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Figure 3.16. Experimental velocity responses under the excitation amplitude of 2.7 m/s2 when 
the magnets distance h is 54 mm: (a) the time domain data when the excitation frequency 
linearly increased at the rate of 0.03 Hz/s, (b) the time domain data when the excitation 
frequency linearly decreased at the rate of 0.03 Hz/s, (c) the relationship between the excitation 
frequency and the response amplitude when the excitation frequency linearly increased at the 
rate of 0.03 Hz/s, and (d) the relationship between the excitation frequency and the response 
amplitude when the excitation frequency linearly decreased at the rate of 0.03 Hz/s. (The 
marked points corresponds to the scatter data in Figure 3.14(c)). 
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Figure 3.17. Experimental velocity responses under the excitation amplitude of 2.7 m/s2 when 
the magnets distance h is 50 mm: (a) the time domain data when the excitation frequency 
linearly increased at the rate of 0.03 Hz/s, (b) the time domain data when the excitation 
frequency linearly decreased at the rate of 0.03 Hz/s, (c) the relationship between the excitation 
frequency and the response amplitude when the excitation frequency linearly increased at the 
rate of 0.03 Hz/s, and (d) the relationship between the excitation frequency and the response 
amplitude when the excitation frequency linearly decreased at the rate of 0.03 Hz/s. (The 
marked points corresponds to the scatter data in Figure 3.14(c)). 

To trigger a jump to the high-energy orbit, the dimensional jump-up frequency uω  should 

be higher than the excitation frequency ω .  
Rewriting Equation (2.16) with the dimensional form of the jump-up frequency as 
 

1
2 3

3

3 31
2 2u

F
k

αω
 

= +  
 

                          (3.30) 

 
Substituting Equations (3.10) into Equation (3.30), it gives 
 

1
1 242 2 2 330 0

5 7

12 121 3
2

f c f c
u

v M M F v M M
m h h

mm
ω

π π

  
    = +             

           (3.31) 
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and 
 

 uω ω>                                (3.32) 

 
As mentioned previously, after the operating point jumps to the high-energy orbit, it is 

necessary to increase the distance between the magnets to make it moves toward to the peak 
response point, rewriting Equation (2.14) with the dimensional form of the jump-down 
frequency as 
 

2

2 2

1 31 1
2d

m F
k c
αω

 
= + +  

 
                          (3.33) 

 
By substituting Equations (3.10) into Equation (3.33), the corresponding jump-down 

frequency can be written as    
 

1
1 2

2 2 3 2
0

5 2 2
0

6 51 1
3

f c
d

f c

v M M mF h
mh c v M M

m πω
π m

  
   = + +    
     

                (3.34) 

 
and 
 

dω ω≥                                (3.35) 

 
It is still necessary to estimate the consumed energy for the tuning process. When the distance 

between the permanent magnets decreases, part of the electrical energy is transfer into the 
potential energy, which can be expressed as 

 
2

0
3 3

0

3 1 1
32

f c
c

v M M
E

h h
µ

πh
 

− 
 

=                       (3.36) 

 
where 0h  is half of the original distance between the top and bottom magnets, and η  is the 

electric-to-mechanical conversion efficiency. 
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3.2.4 Power delivered to the load resistance  
 

A primary interest is the electrical power delivered to the electrical load. An expression for 
the power is derived in this section.  

Using Equation (3.27a), the stable response voltage across the load resistance can be 
expressed as 

 

( )22
2

1
l l

l
i l

i l

R RV V X
R R

R R
C

θ
ω

ω
= =

+
+ +

                    (3.37) 

 

Then the power amplitude delivered to the load resistance can be written as 
 

  
( )

2 2
2 2

22
2

1
l l

l i l

V RP X
R R R C

θ
ω

ω
= =

+ +
                    (3.38) 

 
 
3.2.5 Numerical simulation  
 

The parameters of a hardening-type energy harvester shown in Table 6.2 are used to conduct 
the numerical simulation, which are also representative of the experimental parameters. An 
array of numerical simulation was performed to validate the theoretical predictions, the 
harmonic excitation amplitude and excitation frequency is kept constant while changing both 
the stiffness and nonlinear stiffness of the system. 
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Figure 3.18. Influence on the responses for energy harvesting by tuning the stiffness under 
constant excitation: (a) the changing of the distance between the magnets, (b) the velocity 
response of the magnetic end mass, and (c) the power delivered to the load resistance. 

Figures 3.18 (a) shows the variation of the distance between the magnetic end mass and the 
bottom magnet during the tuning process, which is equivalent to the tuning of the distance 
between the magnetic end mass and the top or bottom magnet and it corresponds to the 
changing of the frequency response curve shown in Figure 3.14. 

Figure 3.18(b) presents the influence of the changing of stiffness on the responses of velocity 
of the magnetic end mass. It can be observed that the energy harvester is operated on the 
low-energy orbit at first, and then jump to the branch with higher solutions with the increasing 
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of the stiffness. The response amplitude shows a continuous decrease tendency if the stiffness is 
further increased. Conversely, the operating point moves towards to the peak response point on 
the high-energy orbit with the decreasing of the stiffness. The power delivered to the load 
resistance of 51KΩ  is presented in Figure 3.18(c). 

 
3.2.6 Experimental validation of stiffness tunable harvester 

 
 Instrumentation and measurement 

 
A laboratory scale experimental device has been designed and manufactured to illustrate the 

theory described previously. A photograph of the experimental rig is shown in Figure 3.19. The 
energy harvester is mounted on an IMV m060 modal shaker to provide harmonic base 
excitations. The accelerometer can be attached to the table of the shaker to measure its 
acceleration. The displacement of the bottom permanent magnets and velocity of the magnetic 
end mass are measured by a laser displacement sensor and a directly mounted velocity 
micro-sensor. 

 

Figure 3.19. Photograph of the experimental system. 
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Lead screw
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 Experimental results 
 

  The experimental tests was performed to compare the experimental behavior and theoretical 
predictions, the permanent magnets distance of the energy harvester is tuned with no variation 
of the excitation frequency and amplitude. The initial distance h  is chosen to be 60mm . 

The experimental test results are displayed in Figure 3.20. It shows the influence on the 
responses for energy harvesting by tuning the stiffness under the harmonic excitation with the 
acceleration amplitude of 2.7 m/s2, where the frequency of the excitation is 11.2 Hz and held 
constant. It can be noted that the excitation frequency is higher than the jump-down frequency. 
The variations of h, the velocity of the magnetic end mass and the power delivered to the load 
resistance of 51KΩ  are presented, respectively. It is noted that a jump from the low-energy 

orbit to the high-energy orbit can be triggered by tuning the stiffness of the energy harvester. 

The finally stabilised responses in Figure 3.20 and compared with the numerical simulation 
results in Figure 3.18, where the black color represents the experimental results and the light 
blue color represents the simulation results. It can be noted that the experimental results meet 
the simulation well. An index shown in Equation (3.39) for the quantitative comparison between 
the numerical and experimental results: 

 

( ) ( )

( )

0

0

2

0
0

2

0
0

1

1

T

T

t t dt
T

Index
t dt

T

υ υ

υ

 −  
=

∫

∫
                      (3.39) 

 

where υ  is the numerical simulation, υ  is the experimental data, and T0 is the selected length 
of time. The calculated error of the velocity is 4.3% by using the stabilised data in Figures 
3.20(b) and 3.20(c). Similarly, the error for the delivered power is estimated to be 6.7% by form 
Figures 3.20(d) and 3.20(e).  

Moreover, it can be noted that the jump-up phenomenon occurs when the distance between 
the permanent magnets is around 51 mm, which corresponds to the estimation results using 
Equation (3.31). It is a little earlier than the experimental results because of the estimation error 
of the interaction force between the permanent magnets. 

If the electric-to-mechanical energy conversion is chosen to be 0.8, the consumed energy 
during the distance decreasing process is estimated to be around 0.0026 J by using Equation 
(3.36). The mean delivered power to the load resistance is about 0.11 mW after it is stabilised on 
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the high-energy orbit, which indicts the required time for compensating for the consumed 
energy is around 24 s. 

 

 

Figure 3.20. Influence on the responses for energy harvesting by tuning the stiffness under 
constant excitation: (a) the distance between the equilibrium position of magnetic end mass 
and the bottom magnet, (b) the experimental velocity response of the magnetic end mass, (c) 
the numerically obtained velocity response of the magnetic end mass (d) the experimental 
power delivered to the load resistance. (e) the numerical obtained power delivered to the load 
resistance. 
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3.3 Damping tuning method 
3.3.1 Apparatus illustrations 
 

A schematic diagram for an energy harvester is shown in Figure 3.21. It is composed of two 
linear springs connected in series, with two dampers in parallel with the springs, and a third 
order nonlinear spring. It should be noted that the model is a one-degree-of-freedom system 
because the linear springs are connected at a node which is an effectively massless point. The 
equivalent linear stiffness of the system can be tuned by adjusting the damping coefficient of 
controllable damper 2c . The right side of the Figure 3.21 shows the electrical circuit for tuning 
the damping level 2c . If a linear DC motor is adopted to achieve the required relatively high 

damping level for the tuning process, the dimension of the device might become impractically 
large. A transmission mechanism, e.g. ball screw or gear rack, and a micro DC motor can be 
used as an alternative. Thus the linear motion of the mass can be transferred into the rotational 
motion of the motor, and the damping level is also amplified. The damping can be changed by 
tuning the load resistance of the circuit. It can be noticed that different from the directly 
mechanical tuning method which needs extra energy consumption, electrical energy still can be 
harvested during the tuning process.  

 

Figure 3.21. Schematic diagram of the stiffness, tunable, hardening-type energy harvester. 
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3.3.2 Model of the energy harvester 

 
The governing equations for the motion of the system shown can be stated as 
 

( ) ( ) 3
2 2 0 cosp pmx k x x c x x x F tα ω= − − − − − +                (3.40a) 

 

( ) ( )1 1 2 2p p p pk x c x k x x c x x+ = − + −                    (3.40b) 

 
where m  is the mass, 1k , 2k  are the linear stiffness coefficients of the springs and 1c , 2c  
are the damping shown in Figure 3.21. x  and px  are the displacements of the mass and the 

connection point of the springs, respectively, α  is the nonlinear stiffness coefficient. The 
single frequency harmonic excitation is given by cosF tω . 

The harmonic balance method is applied to generate the responses. The harvester response is 
presumed to be accurately modelled by a truncated Fourier series, where the number of terms 
dictates the accuracy of the intended solution [92]. This type of motion maintains a dominant 
fundamental frequency at the frequency of excitation. Hence, Equations (3.40a) and (3.40b) can 
represent the assumed Fourier series expansion of the displacements of the mass, and 
connection point, respectively. 

 
 

 1 1sin cosx A t B tω ω= +   (3.41a) 
 2 2sin cospx A t B tω ω= +   (3.41b) 

 

where 2 2 2
1 1X A B= +  and 2 2 2

2 2pX A B= + . X  and pX  therefore represent the corresponding 

displacement amplitudes. Equations (3.41a) and (3.41b), and the time derivatives, are 
substituted into Equations (3.40a) and (3.40b). It should be mentioned that for convenient 
derivation, the third order item is neglected first. Equating the coefficients of the harmonic 
terms cos tω  and sin tω , four equations are obtained as follows 

 
 ( ) ( )1 2 1 2 2 1 2 2 1 2k A c B k A A c B Bω ω− = − − −   (3.42a) 

 
 ( ) ( )1 2 1 2 2 1 2 2 1 2k B c A k B B c A Aω ω− = − − −   (3.42b) 

 



73 
 

 ( ) ( )2
1 2 1 2 2 1 2 0mA k A A c B Bω ω− + − − − =   (3.42c) 

 
 ( ) ( )2

1 2 1 2 2 1 2mB k B B c A A Fω ω− + − + − =   (3.42d) 

 
Equations (3.42a) and (3.42b) are solved in terms of 2A  and 2B , then substituted into 

Equations (3.42c) and (3.42d). The latter are squared and summed to produce the following 
equation as 
 

 
( )

( ) ( )
( )

( ) ( )

2 22 2 2 2 2 2 2 2 2 3
1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 22 2 2

2 2 2 22 2
1 2 1 2 1 2 1 2

k k k k c k c k k c k c c c c c
m X F

k k c c k k c c

ω ω
ω

ω ω

    + + + + + +    − + = 
   + + + + + +     

 (3.43) 

 
From Equation (3.43), the equivalent linear stiffness and equivalent damping can be expressed 
as 

( ) ( )
( ) ( )

2 2 2
1 2 1 2 1 2 2 1

2 2 2
1 2 1 2

eq

k k k k c k c k
k

k k c c

ω

ω

+ + +
=

+ + +
                   (3.44a) 
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1 2 2 1 1 2 1 2

2 2 2
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eq

k c k c c c c c
c

k k c c
ω

ω

+ + +
=

+ + +
                   (3.44b) 

 
For the equivalent model of the system, the corresponding relationship between the 

frequency and amplitude of the response can be given as [64] 
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( ) ( )
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k k k k c k c k k c k c c c c c
m X F

k k c c k k c c

ω
α α ω

ω

ω ω
ω

ω ω

 + + +
 + −
 + + + 

    + + + + + +    + − + = 
   + + + + + +     

 (3.45) 

 
A set of physically reasonable parameters used for simulation is shown in Table 3.3, where 

φ , n and iR  are back EMF constants, transmission ratio and internal resistance of the DC 

motor, respectively. This data is also used for the numerical examples afterwards. 
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Table 3.3. Parameters of the vibrational energy harvester. 
 

Parameter m  1c  1k  α  F  ω  n  φ  iR   

Value 1kg  
1

Nm s
 

1000
N m

 
6

3

2.45 10
N m

×
 1N  5.2Hz  6283  

0.003 
Vs/rad 

6Ω  

 
The equivalent stiffness and damping coefficients as functions of 2c  and the stiffness 

coefficient ratio 2 1k k  are plotted in Figures 3.22 and 3.23, respectively. It is noted that the 
equivalent stiffness increases with increasing 2c  and that it can be tuned within a larger range 
when 2 1k k  is smaller, as shown in Figure 3.22. However, from Figure 3.23, it can be shown 
that the equivalent damping increases first, then decrease with increasing 2c , and that smaller 

2 1k k  can cause a greater equivalent damping when a certain value of the damping coefficient 

2c  is applied. 

 

 

Figure 3.22. Equivalent stiffness coefficient as a function of 2c  and stiffness coefficient ratio 

2 1k k . 
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Figure 3.23. Equivalent damping coefficient as a function of 2c  and stiffness coefficient ratio 

2 1k k . 

 
3.3.3 Tuning damping 
 

The tuning of the damping coefficient can cause a change in the equivalent stiffness, and then 
a further influence on the frequency-amplitude response curve of the oscillator. The detailed 
principle of the proposed method is presented in this section. Figure 3.24 shows the frequency 
response curves under different values of damping coefficient 2c  according to Equation (3.36), 

while the other parameters shown in Table 3.3 are kept constant. Variations in the damping 
coefficient have an influence on both the jump-up and jump-down frequencies. By increasing 
the linear stiffness, the frequency response curve shows a movement to the right. 
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Figure 3.24. Frequency response curve of a hardening-type system.  

 
The process of triggering the jump is also illustrated in Figure 3.24. It is assumed that the 

energy harvester is oscillating at point A when 2c  is equal to 5 Ns/m, with this point located in 
the low-energy orbit, and then by starting to increase 2c , the shape of the frequency response 

curve slowly varies, as shown in Figure 3.24 . The operating point jumps to point B when the 
frequency of the excitation exceeds the jump-up frequency. The oscillator is now operating in 
the preferred orbit. However, variation in the stiffness also decreases the amplitude of the 
response. Thus, following the high-energy orbit, the operating point subsequently moves to C by 
decreasing the damping coefficient 2c . It is noted that in the process of tuning the damping 

coefficient there is a possibility that the multi-valued frequency response curve disappears (for 

2c = 20 Ns/m) because the equivalent damping coefficient initially increases with 2c , as shown 

in Figure 3.23. This phenomenon does not influence the jump from point A to B, but the 
movement from point B to C and this is further discussed below. 

To trigger a jump to the high-energy orbit, the dimensional jump frequency uω  should be 

higher than the excitation frequency ω . Hence, from Equation (3.30), the minimum 
equivalent stiffness coefficient for triggering a jump is defined by 

 

 ( )
4 3

1 32 23
2eqk m Fω α ′ = −  

 
                       (3.46) 
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It is assumed that the electrical damping is small and 1 2c c<< . By setting 1 0c = , the 

corresponding minimum control damping coefficient can be given by Equation (3.44a) as 
 

 
( ) ( )

( )
2

1 2 1 2 1 2
2 2

1

eq
u

eq

k k k k k k k
c

k kω

′ + − +
=

′−
                    (3.47) 

 
Using Equation (3.47), and substituting Equation (3.46) into Equation (3.44b), the required 

equivalent damping coefficient to get the target equivalent stiffness can be expressed as 
 

 
( ) ( )( )( )

( )

2
1 2 1 2 1 2 1

1 2

eq eq

equ

k k k k k k k k k
c

k kω

′ ′+ − + −
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To increase the jump-up frequency tuning range as much as possible it is necessary to 

analyse the influence of the parameters 2 1k k  and 2Fα  on the ratio between the maximum 

and minimum jump-up frequencies, and this can be expressed as the following frequency ratio 
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where max 1k k=  when 1 2 0c c= =  and ( )min 1 2 1 2k k k k k= +  when 2c →∞ . 
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Figure 3.25. Jump-up frequency ratio as a function of 2 1k k  and 2Fα . 

 
Assuming that 1 1000 N mk = , the jump-up frequency ratio as a function of 2 1k k  and 
2Fα  is shown in Figure 3.25, where 2Fα  governs the degree of nonlinearity and the 

excitation amplitude. 
It is noted that a smaller stiffness coefficient ratio 2 1k k  is propitious for increasing the 

tuning range. Additionally, the weaker nonlinearity and smaller excitation amplitude can 
achieve a similar effect for increasing the jump-up frequency tuning range. 

As analysed above, it is possible to trigger a jump to the high-energy orbit by tuning the 
damping until the jump-up frequency exceeds the frequency of the excitation. However, under 
some conditions it is necessary to continue to decrease the equivalent stiffness to close to the 
jump-down frequency, which is the peak response point of the oscillator. It should be noted 
that the equivalent damping of the system also varies besides the equivalent stiffness in the 
process of damping variation, as shown in Figure 3.23, which has strong influence on the 
occurrence of the multi-valued frequency-amplitude curve and the value of the jump-down 
frequency. Thus, excessive equivalent damping during the tuning process (point B to point C 
shown in Figure 3.24 may again lead to an undesirable jump-down to the low-energy orbit. 

The condition for the multi-valued frequency-amplitude curve to occur is defined as [64] 
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Equation (3.50) can be combined with Equations (3.46) and (3.48) to give 
 

 
3 225

2
5 2

2
3

equ eqc k
F

m
α

′ 
≥   

 
 (3.51) 

 
It can be seen that the stronger nonlinearity and higher level of excitation amplitude are 

beneficial for meeting the requirement determined by Equation (3.51) for an inflexion to occur. 
However, this will decrease the tuning range of the jump-up frequency.  

Another condition is that the jump-down frequency should be kept higher than the 
excitation frequency. As shown in Figure 3.23, a maximum equivalent damping exists when 
the damping 2c  is large enough. Substituting Equations (3.44a) and (3.44b) into 
Equation (3.33) leads to the corresponding damping 2c  versus the minimum jump-down 

frequency being obtained from 
2

0dd
dc
ω

= , which leads to the following expression: 
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            (3.52) 

 
The corresponding equivalent stiffness coefficient and damping coefficient can then be 

obtained by substituting Equation (3.52) into Equations (3.44a) and (3.44b), respectively. Thus, 
the condition for keeping the oscillating point on the high-energy point can be expressed as 

 
 mindω ω≥                                (3.53) 
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Figure 3.26. Non-dimensional minimum jump-down frequency as a function of 2 1k k  and 
2Fα . 

 
Using the same values of 1k  and 2Fα  as previously obtained, and setting the mass at 
1kgm = , Figure 3.26 shows the minimum jump-down frequency mindΩ  as a function of the 

stiffness coefficient ratio 2 1k k  and 2Fα . It is obvious that the higher values of 2 1k k  and 
2Fα  can increase the available minimum jump-down frequency of the system, which also 

indicates that the jump-down frequency can also be increased by employing a greater 
nonlinearity in the stiffness and excitation amplitude. However, as discussed above, this will 
decrease the tunable jump-up frequency range. Therefore, the parameters 2 1k k  and 2Fα  

should be appropriately selected. 
 
3.3.4 Numerical simulation  
 

The parameters in Table 3.3 are used for simulation but under different excitation level F and 
stiffness coefficient k2. Figures 3.27 present the tuning process for the damping coefficient c2, 
and the corresponding velocity vs displacement phase trajectories of the magnetic end mass. As 
shown in Figure (3.27b), the oscillating point jumps to the high-energy orbit with the increase in 
the damping coefficient, and then moves further towards the maximum response point by 
decreasing c2 and by setting F and k2 equal to 3 N and 1000 N/m , respectively.  
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Figure 3.27. Variation of the damping coefficient and velocity vs displacement phase 
trajectories of the magnetic end mass (blue line: damping coefficient instantaneously tuned, 
and green line: damping coefficient slowly tuned): (a) changing the damping coefficient 2c , 
(b) response with F  and 2k  set to 3N  and 1000 N m , respectively, (c) response with F  
and 2k  set to 2N  and 1000 N m , respectively, and (d) response with F  and 2k  set to 
3N  and 500 N m , respectively. 

 

Figure 3.28. Jump-down frequency as a function of damping coefficient 2c  under various 
excitation levels F  and stiffness coefficients 2k . 



83 
 

 

However, when the excitation amplitude F  is set to 2N , the condition defined by 
Equation (3.53) cannot be satisfied, as shown in Figure 3.28, the minimum jump-down 
frequency is smaller than the excitation frequency of 5.2 Hz. The oscillating point jumps to the 
low-energy orbit again during a decrease in the damping coefficient, which is shown in 
Figure 3.27(c) (green line). A similar response can be seen in Figure 3.27(d) (green line) when 
the stiffness coefficient 2k  is set to 500 N m . The corresponding jump-down frequency as a 
function of the damping coefficient 2c  is also presented in Figure 3.28 by numerical 
simulation. It establishes that the smaller value of 2 1k k  can decrease the available minimum 
jump-down frequency of the system in the process of damping variation.  

The condition defined by Equation (3.53) provides a limitation on the tuning procedure. 
However, from Figures 3.27(c) and 3.27(d) (blue line), it is interesting to find that another 
approach to triggering a jump to the high-energy orbit is by instantaneously decreasing the 
damping coefficient 2c , when the condition defined by Equation (3.53) is not satisfied. It is 
known that the steady-state orbit is also significantly dependent upon the initial conditions. This 
is evaluated by using the basin of attraction obtained by choosing the initial conditions from the 
lattice points in the phase plane and then solving the equation of motion numerically until the 
trajectory converges to one of the steady-state solutions [84]. As mentioned previously, by 
increasing the controllable damping 2c , the operating point can jump to the high-energy orbit 
(see point B in Figure 3.24). Then, when 2c  instantaneously decreases to the initial value this 
could be regarded as an initial condition to be applied to the oscillator, and this initial condition 
is caused by the response of the oscillator at point B in Figure 3.24. If the initial conditions can 
lead to the basin of attraction for the high-energy solution then the oscillator will stabilise on the 
corresponding high-energy orbit. This approach gives a possible solution to the limitation 
problem defined by Equation (3.53). 
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Figure 3.29. Variation of the load resistance. ( F  and 2k  set to 3N  and 1000 N m , 

respectively) 
 

 
Figure 3.30. Delivered power with the changing of the load resistance. ( F  and 2k  set to 3N  
and 1000 N m , respectively) 

 

 
Figure 3.31.Variation of the load resistance. ( F  and 2k  set to 2N  and 1000 N m , 

respectively) 
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Figure 3.32. Delivered power with the changing of the load resistance. ( F  and 2k  set to 
2N  and 1000 N m , respectively) 

 
Figures 3.29 to 3.32 present the changing of the load resistance and the corresponding 

delivered power, which can be expressed as 
 

( ) ( )
( )

2

2
l p

i l

R n x
P t

R R

φ
=

+



                                (3.54) 

 
The load resistance plays not only the role of the power delivery but also the high-energy 

orbit stabilisation. Considering that it is much easier to tuning the load resistance compared 
with the direct stiffness adjustment, it can be concluded that net energy can still be harvested 
during the tuning process, which provides an apparent advantage for the application of the 
energy harvester. 
 
3.3.5 Numerical and experimental validation of a simplified model 
 

This section describes the experimental test, also with the numerical simulation performed 
to validate the proposed method using a simplified model because of the difficulty of the 
engineering design problem. More detailed description is shown as follows. 

An electrical damper is favorable for the experiment and that it can be fabricated using a 
linear DC motor or a DC generator coupled with a transmission mechanism so that it can 
produce a high level of damping. The damping could be tuned using a variable resistance [86], 
with the advantage that electrical energy can be harvested by the controllable damper, even 
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during the tuning process. However, because of the mass of the linear DC motor and the 
equivalent mass of the transmission mechanism, it becomes rather difficult to achieve a very 
high damping ratio, as expected in an ideal experimental device. As an alternative, a small 
piece of ferrous metal is attached to the beam and an electromagnetic restraining device is 
placed under it with a small gap between them. And the gap is set small enough to minimise 
the influence on the response caused by the initial displacement when the beam is released. 
The piezoelectric beam can be regarded as two springs connected at the location of the small 
piece of ferrous metal. The electromagnetic restraining device is used to simulate the 
conditions that 2 0c →  and 2c →∞  by restraining and releasing the beam, respectively. 

This is the so called simplified model. 
On the other hand, the piezoelectric bimorph provides the electrical damper 1c  for energy 

harvesting. A schematic diagram of the ideal energy harvester is also presented in Figures 3.33 
(b). 

A picture of the fabricated energy harvester attached to the shaker table (m060, IMV Corp., 
Japan) is shown in Figure 3.33(a), in which three permanent magnets are arranged in a 
repulsive configuration to provide the cubic nonlinear stiffness [29], and where the magnetic 
end mass attached to the piezoelectric beam is aligned with respect to the symmetrically fixed 
permanent magnets (top and bottom magnets) in the vertical direction. The top and bottom 
magnets are symmetrically attached to sliders on a rail and this configuration allows the 
distance to be adjusted equally on each side, and so the natural frequency of the device is set to 
16.3 Hz. The parameters of the device are shown in Table 3.4.  

(a) 
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(b) 

 
Figure 3.33. Experimentation setup: (a) photo of the experimental device and (b) the 

corresponding schematic diagram. 
 

Table 3.4. Parameters of the experimental device and used for numerical simulation.  
 

Parameter Value Unit 

mass 0.01 kg 
Linear stiffness (Released) 105 N/m 

Linear stiffness (Stuck by EM) 213 N/m 
Nonlinear stiffness 4.6×105 N/m3 

Mechanical damping 0.007 Ns/m 
Coupling coefficient 472 V/m 

PZT capacitance  110 nF 
Internal resistance 115 KΩ  

 
(a) 

 
 
 

α

m
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(b) 

 
Figure 3.34. (a) Delivered output voltage on the load resistance (Blue color: Simulation results; 
Black color: Experimental results), (b) Experimentally cumulative energy on the load 
resistance. 
 

Figure 3.34(a) presents the delivered voltage on a load resistance of 1MΩ  when the energy 

harvester is subjected to a base excitation of 0.62 m/s2 at 18 Hz. Both the measured results and 
the simulated results are shown in this figure, by using the index defined in Equation (3.39), the 
error after the response is stabilized is around 15.2%. Moreover, it is noted that the output 
voltage for the experiment is not symmetric because the influence of the electrical magnets. 
Moreover, it can be seen that the output voltage decreases when the beam is held by the 
electromagnet restraining device, because the oscillating point moves to the lower frequency 
side of the frequency response curve, and the natural frequency of the system is measured to be 
23.25 Hz. When the beam is released by the electromagnet it can be seen that it jumps to the 
oscillating point which is close to the jump-down point on the high-energy orbit, and this 
validates the proposed solution to the limitation defined by Equation (3.53).  

Figure 3.34(b) compares the cumulative generated energy when the harvester is operated on 
the low-energy orbit and the condition with damping variation for the experimental results.  

 
3.4 Summary 
 
  This chapter investigated the methods to boost the response by stabilise the high-energy orbit 
using the ways of stiffness tuning and damping variation, respectively. The mathematical 
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models of the designed schematic devices were derived to interpret the principles of the 
proposed methods. For the former method, the analytical expressions of the key points, such as 
the permanent magnets distance that makes the excitation frequency equal the jump-up or 
jump-down frequency, are obtained through analysing the frequency response curve. Moreover, 
it is known that the resonant frequency of the monostable nonlinear oscillator is also dependent 
on the damping，and the optimum energy harvesting cannot always be achieved by only tuning 
the damping, when other physical parameters of the energy harvester are fixed. Thus, besides 
the function of high-energy orbit stabilisation, it also becomes possible for the stiffness tuning 
method to vary the resonant frequency of the device for the maximum energy harvesting, when 
the excitation frequency varies.  
  The method of the damping variation has a identical principle to the stiffness tuning method, 
except the stiffness is indirectly tuned by varying the damping. Considering the fact that it is 
much easier to tune the damping compared with that of the stiffness, it requires much less 
energy consumption for the tuning process.  
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Chapter 4 
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Excitation 
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4.1 Introduction 

 
This chapter presents the optimisation rule for the harmonic excited monostable energy 

harvester, with the consideration of two kinds of transducers, i.e. inductive and piezoelectric 
transducers.  

In first, the full optimisation of the general model is considered, in where both of the 
fundamental frequency and electrical damping are selected as the optimisation variables. A 
hardening-type monostable energy harvester is adopted for the numerical validation. It should 
be mentioned that the influence on the performance is also considered about the 
electromechanical coupling coefficient. In general, the higher electromechanical coupling 
coefficient is beneficial to enhancing the available energy; however, the maximum 
electromechanical coupling coefficient is often limited by the dimension and weight of the 
transducer. It is a feasible approach to overcome this problem by application of the transmission 
mechanism. The available electrical damping level can be amplified, and is proportional to the 
square of the transmission ratio. The related studies using the transmission mechanism can be 
found in references [93] [94] [95]. 

After that, a single parameter optimisation of the energy harvester is introduced, in which 
only the electrical damping can be varied for the maximum power output. For a system with the 
fixed fundamental frequency, when the excitation frequency moves away, it cannot follow this 
frequency variation for the linear energy harvester; however, this can be completed by changing 
the damping level for the monostable nonlinear energy harvester, because of the existence of the 
nonlinear stiffness term. However, it cannot achieve the full optimisation. 

In addition, in the practical implementations, several parameters of the energy harvesting 
device are constrained. For example, the maximum displacement of the seismic mass could be 
constrained on the maximum amount of stretch of the spring [96]. There is also a limitation for 
the available electrical damping of the damper. The optimisation rule is also suggested under 
this constrained condition. 

 
 
4.2 General model with two parameters optimization 

 
In this section, the parameters of the fundamental frequency and the load resistance are 

selected as the optimisation variables to maximizse the maximum power output. 
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4.2.1 Inductive model 

   
It is known that the Duffing oscillator has frequencies at which the vibration jumps up or 

down. The frequencies at which these jumps occur are dependent on whether the nonlinearity is 
hardening or softening [64]. To conventionally derive the optimisation, the motion equation of a 
single degree-of-freedom Duffing oscillator with a inductive transducer is rewritten as 

 

( )3 cosmx cx kx x F tα ω ϕ+ + + = +                      (4.1) 

 
where x is the relative displacement, and m is the seismic mass which is coupled with a 
restoring force with cubic nonlinearity and the inductive energy transducer with damping 
coefficient c, excited by a harmonic force ( )cosF tω ϕ+ . The positive and negative 

nonlinearity indicate a hardening and softening system, respectively. The simplest form of 
electromechanical coupling, as typified by a permanent magnetic linear DC motor, is assumed 
in this section, Figure 4.1 shows the schematic circuit, the effect of the electrical inductance is 
assumed to be neglected because of the relatively low frequency. Thus, in the case of an 
electromagnetic transducer, the relationship between the induced coupling force and the current 
can be written as 
 

eF iφ=                                  (4.2) 

 
where φ  is the electromechanical constant, it can be the back EMF constants for a linear DC 

motor. 
 

And the value of i can be evaluated by using Kirchhoff’s second law as 
 

( )i lx R R iφ = +                              (4.3) 

 
where Ri and Rl are the internal resistance and load resistance, respectively. Then, the electrical 
damping coefficient is defined by [97] 
 

( )
2

e
i l

c
R R
φ

=
+

                             (4.4) 

 
The total damping can be expressed as  
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m ec c c= +                               (4.5) 

 
where cm is the mechanical damping coefficient. 
 

 
Figure 4.1. Schematic circuit of the energy harvester with a purely resistive load. 

 
The case without any constraint is analysed first. The instantaneous current passing through 

the electrical load is expressed as: 
 

( )( ) sind d
d

i l

Xi t t
R R
φ ω

ω= −
+

                        (4.6) 

 
where dX  and dω  are the amplitude and frequency at the jump-down point, and dX  can be 

rewritten from Equation (2.13) as 

 

3 2

2 2 2

2 31 1
3d

F k m FX
k F c k

α
α

 
= + −  

 
                  (4.7) 

 

Thus, the instantaneous delivered power is: 
 

( )
( )

2 2 2
2

2( ) sind d l
d

i l

X RP t t
R R

φ ω
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+
                    (4.8) 

 
Substituting Equations (3.33), (4.4), (4.5) and (4.7), into Equation (4.8), the amplitude of the 
power is given by 
 

iR

lRxφ 

i
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( )
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                       (4.9) 

 

The optimum load resistance is then obtained from 0d

l

P
R
∂

=
∂

, which gives 

 
2

l opt i
m

R R
c
φ

= +                            (4.10) 

 
It is assumed that the seismic mass is selected as the design variable so that the jump-down 
frequency is equal to the source excitation frequency while maximising the available electrical 
power. For the hardening or softening-type Duffing energy harvester, from Equation (2.14), we 
have 

 

2

2 2

1 31 1
2n

m F
c k

ω α
ω

 
= + +  

 
                      (4.11) 

 
Substituting Equations (4.4), (4.5) into Equation (4.11), the selected mass is derived as 
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22
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4

i lopt
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F R Rkm
c R R
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ω ω φ

+
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 + + 

                  (4.12) 

 
For the Duffing oscillator there is always the potential for an essentially nonlinear system 

where the linear stiffness k equals zero. From Equation (4.10) it can be noted that the optimal 
resistance at the peak point is not dependent upon the stiffness. Moreover, for the essentially 
nonlinear system, the selected seismic mass can be obtained by setting k in Equation (4.12) to 
zero. 

A hardening-type Duffing energy harvester is selected for the numerical validation in this 
section, and the load resistance, mass as the design variable, is derived at the peak response 
point of the system. 

A schematic diagram of the energy harvester is shown in Figure 4.2. It consists of a single 
lumped mass with two horizontally placed linear springs of stiffness k3 and natural length l0, 
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providing a restoring force, and another linear spring of stiffness k0 in the vertical direction to 
counteract the influence of gravity. 

 

 
Figure 4.2. Schematic diagram for a hardening-type Duffing energy harvester. 

 
Dissipation of the mechanical damping and electrical transducer is modelled using a single 

linear damper c. It is noted that the horizontal springs are unstretched with l0 = D. The restoring 
force in the vertical direction is then expressed by 
 

0
3 02 2

0

2 1r
lF k x k x

x l

 
 = − −
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                       (4.13) 

 
Using the Taylor-series expansion to the third order, Equation (4.13) is rewritten as 
 

33
0 2

0
r

kF k x x
l

= − −                            (4.14) 

 
Thus, the linear stiffness and nonlinear coefficients k and α  are equal to k0 and 2

3 0k l , 

respectively. 
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Table 4.1. Parameters of the hardening-type Duffing energy harvester. 
 

Parameter k  α  mc  iR  φ  F  ω  

Value 
30

N m  

52 10×
3N m  

0.05
Ns m  

8 Ω  
0.3

Vs m  
0.08 N  11 Hz  

 

Table 4.1 shows a group of parameters used for the numerical simulation. This data represents 
the majority of current research in which milliwatt levels of power are obtained usually for 
applications in self-powered wireless sensors and low-power electronics. 

It is assumed that the parameters in Table 4.1 are to be used. Based on Equations (4.10) and 
(4.12), the optimum values for the load resistance and selected mass are 9.8Ω  and 0.02kg, 

and with the maximum delivered power of 5.9 mW. Figure 4.3 shows the delivered power as a 
function of load resistance. 

 

Figure 4.3. The delivered power as a function of load resistance. 
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Figure 4.4. The delivered optimum power as a function of the electromechanical constant. 
 

 

Figure 4.5. The optimum load resistance as a function of the electromechanical constant. 
 

In practice, form Equation (4.10), it can be noted that it has the same form with the linear 
energy harvester, in other words, the available power from the monostable nonlinear energy 
harvester is same to that of the linear energy harvester at the resonance point. 
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Figure 4.6. The optimum fundamental frequency as a function of the electromechanical 
constant. 

 
Moreover, the effect of the electromechanical constant on the optimum delivered power on 

the load resistance is shown in Figure 4.4. The corresponding results for the optimum load 
resistance and the fundamental frequency is shown in Figures 4.5 and 4.6. It is predictable that 
with the increasing of the electromechanical constant, the load resistance shows the monotonous 
increasing tendency, which indicts higher power delivery efficiency. Also, the increasing of the 
optimum fundamental frequency indicted the smaller seismic mass.  

For practical implementation, in order to achieve the high electromechanical constant, a 
transmission mechanism can be used to amplify the electromechanical constant of the linear DC 
motor, e.g. ball screw and gear rack. Usually, some of them have extremely transmission 
efficiency [98].  

The equation of motion of the system under this condition is similar to Equation (4.1), but 
with a total damping coefficient as 

 
2

m ec c n c= +                             (4.15) 

 
where n is the transmission ratio. The available electrical damping level of the energy harvester 
can be dramatically amplified by using a transmission mechanism. 
  Moreover, some additional benefits of the transmission mechanism are for the low frequency 
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vibration conditions: 
(1) When the excitation frequency is low but with the large amplitude, it might require an 

inacceptable large size transducer if the linear DC motor is directly used when the excitation 
amplitude is big. It can be replaced by a transmission mechanism and a small size rotational 
DC motor. 

(2) If the energy harvester is excited by a low amplitude vibration source, where the low 
frequency also indicts the low velocity. It will decrease the mechanical-to-electric 
conversion efficiency, because conversion efficiency of the practical motor also depends on 
the motion or rotation speed for a practical motor, the difference of the available DC motor 
conversion efficiency can be more than 35% under different speed [99].   

 
4.2.2 Piezoelectric model 

 

The condition for the piezoelectric model is more complicated compared with the inductive 
model. Substituting Equations (3.33) and (4.7) (4.18) into Equation (3.38), the steady state 
power delivered to the load resistance can be expressed as 
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                    (4.16) 

 

The optimum load resistance lR  is then obtained from 0
l

P
R
∂

=
∂

. However, because of its 

complexity, it is rather difficult to obtain the analytical expression even if using computer. 
Therefore, numerical analysis will be carried out for validation. 

When the mass is selected as the optimum variable, the expression is same as the inductive 
model, by substituting Equation (3.28) to Equation (4.12) as 
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              (4.17) 
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Table 4.2. Parameters of the piezoelectric hardening-type energy harvester. 

 

Parameter k  α  mc  iR  θ  C F  ω  

Value 30 N m  
52 10×

3N m  
0.05

Ns m  
110 KΩ  

2745
V m  

110 nF 0.08 N  11 Hz  

 

 

Figure 4.8. The delivered power as a function of load resistance. 
 

It is assumed that the parameters in Table 4.2 are to be used. Based on Equations (4.16) and 
(4.17), the optimum values for the load resistance and selected mass are 192 KΩ  and 0.02kg , 

and with the maximum delivered power of 5.9 mW. Figure 4.8 shows the delivered power as a 
function of load resistance. 

Moreover, the corresponding results are presented in Figures 4.9 to 4.11 when the 
electromechanical coupling coefficient θ  varies, the same tendency as the inductive model can 
be observed. However, in general, for the practical piezoelectric transducer, the maximum 
available electromechanical coupling coefficient or electrical damping is smaller compared to 
the inductive transducer. 
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Figure 4.9. The delivered optimum power as a function of the electromechanical coupling 
constant. 

 

 

Figure 4.10. The optimum load resistance as a function of the electromechanical coupling 
constant. 
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Figure 4.11. The optimum fundamental frequency as a function of the electromechanical 
coupling constant. 

 

4.3 General model with single parameter optimisation 
 

The above section introduced the optimisation method of the basic general model, this 
optimisation work is based on the assumption that there are two parameters can be varied for the 
optimization, i.e. the fundamental frequency and the electrical damping (load resistance). 

However, if one considers the fundamental frequency of the device are already determined, 
only the single parameter of the electrical damping can be tuned and optimised when the 
excitation amplitude and frequency changes, it is termed as ‘single parameter optimisation’.  

There is a beneficial property for the nonlinear energy harvester compared with the linear 
one, which is because the frequency of the resonance point of the nonlinear energy harvester, 
can changes under different damping level, in other words, the resonance frequency is a 
function of the damping, which is shown in Equation (2. 14) in Chapter 2. However, for the 
linear energy harvester, the changing of the damping has little influence on the resonance 
frequency when the damping ratio is relatively small. One cannot make the resonance frequency 
follow the excitation frequency by tuning damping. 

In order to understand the optimisation method, the frequency-amplitude response 
relationship is analysed first, it is shown in Equation (4.18) as  
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( ) ( )
2

2 22 2 2
0 0 0

31 2 1
4

U U Uβ ζ −Ω + + + Ω = 
 

             (4.18) 

 

It can be noted that the first term on the left side of Equation (4.18) is the conservative term, 
and the second part is the damping force, which is the non-conservative term. The right side of 
the equation represents the external force. The maximum power can be obtained when the 
external force and damping force can be in phase. Thus, it can be obtained the following 
equation as 

 

( )2
02 1UζΩ =                             (4.19) 

and  

 

2 3
0 0 0

3 0
4

U U Uβ− Ω + + =                       (4.20) 

 
Rearranging Equation (4.20), the relationship between the response amplitude and the 

excitation frequency can be expressed as  

 

2

0 2

4 1
3 n

U ω
β ω
 

= − 
 

                          (4.21) 

 
It can be noted that it is the backbone curve, it indicts that the optimum operating point of the 

energy harvester occurs at the jump-down point, which is at resonance. However, it should be 
mentioned that this conclusion is based on the condition that the energy consumed by the 
internal resistance is relatively small compared with the power delivered to the load resistance.  

  This is an advantage of the monostable nonlinear energy harvester compared with the linear 
configuration, because the resonance frequency can be tuned by changing the damping without 
the need to employ reactive loads as required for linear energy harvesters. 
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4.3.1 Inductive model  

 
It is considered that the linear, nonlinear stiffness and the seismic mass of the oscillator are 

given, by combining Equations (4.4), (4.5) and (4.11), the expression for optimum load 
resistance at the given excitation frequency can be written as 

 

  

( )

2

2 2 2

22 3
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2

lopt i

m

R R
F m c

k m k k

φ

α ω

ω

= −

−
− −

                   (4.22) 

 

It indicts the electrical damping is tuned to make the excitation frequency be equal to that of 
the peak response point of the frequency response curve. The corresponding maximum power 
can be obtained by substituting Equation (4.22) into Equation (4.9). 

By using the parameters in Table 4.1, a three-dimensional graph is depicted in Figure 4.12 to 
show the relationship between the delivered power, the non-dimensional excitation frequency 
and the electrical damping ratio under different values of electromechanical constant. The 
non-dimensional electrical damping ratio is defined as follows  

 

( )2
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i le e
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c R
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ζ φ

+
= =                           (4.23) 
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Figure 4.12. The delivered power as a function of the non-dimensional excitation frequency 
( nω ωΩ = ) and the non-dimensional electrical damping ratio under different values of 

electromechanical constant, (solid line); the non-dimensional electrical damping ratio as a 
function of the non-dimensional excitation frequency and under different values of 
electromechanical constant. (dashed line) 

 

 
Figure 4.13. The delivered power as a function of the non-dimensional excitation frequency 
under different values of electromechanical constant. 
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  For clearance, the results on the excitation frequency and the delivered power plan of Figure 
4.12 are plotted in Figure 4.13. The peak point is 5.9 mW at 11 Hz for the red line, which 
corresponds to the two parameters optimisation condition as shown in Section 4.2.1, and for the 
energy harvester with the fixed fundamental frequency, there is the optimised excitation 
frequency exists, the maximum available power decreases when the excitation frequency varies. 

 
4.3.2 Piezoelectric model 
 

Same as the inductive model, the linear, nonlinear stiffness and the seismic mass of the 
oscillator are assumed to be given, by substituting Equations (3.28) (4.4), (4.5) into (4.11), the 
expression for optimum load resistance at the given excitation frequency can be written as 
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2lopt i
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θ ω
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+ Γ − Γ
= −
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                      (4.24a) 

where 
  

  
2

2
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2
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α

ω ω
Γ =

−
                         (4.24b) 

 

The corresponding maximum power can be obtained by substituting Equations (4.4) and 
(4.24) into Equation (4.9). 

The delivered power as a function of the non-dimensional excitation frequency and the 
electrical damping ratio under different values of electromechanical constant are plotted in 
Figure 4.14 using Equations (4.9) and (4.24) and the parameters in Table 4.2. The corresponding 
projection on the excitation frequency and power plan is shown in Figure 4.15. The similar 
tendency to inductive model can be observed. 
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Figure 4.14. The delivered power as a function of the non-dimensional excitation frequency 
( nω ωΩ = ) and the non-dimensional electrical damping ratio under different values of 

electromechanical constant, (solid line); the non-dimensional electrical damping ratio as a 
function of the non-dimensional excitation frequency and under different values of 
electromechanical constant. (dashed line) 
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Figure 4.15. The delivered power as a function of the non-dimensional excitation frequency 
under different values of electromechanical constant. 

 

4.4 Constrained displacement model analysis 
4.4.1 Inductive model 

 
A design principle with the constrained relative displacement is suggested in this section. 

The allowed dimensional displacement amplitude of the seismic mass, lX , is assumed. From 

Equation (4.7), it can be obtained as 
 

3 2

2 2 2

2 31 1
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F k m FX
k F c k

α
α

 
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                   (4.25) 

 
Combining Equations (4.11) and (4.25) yields the expression for the selected mass as 
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= +                             (4.26) 

 
It can be seen that different from the previous cases, the selected mass does not depend on 

the damping coefficient. 
Substituting Equations (4.4) and (4.5) into Equation (4.25) and rearrange it, the optimum 

load resistance can be given as 
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                (4.27) 

 
and the corresponding delivered power is given as 
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2

2 2
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+
                      (4.28) 

 
By using the parameters in Table 4.1, the maximum displacement amplitude lX  under the 
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complete optimised condition is Xmax = 0.021 m. Then, based on Equations (4.27) and (4.28), the 
non-dimensional load resistance as a function of the electromechanical constant is depicted 
under various displacement amplitude limits. It can be noted that the smaller displacement 
constraint requires the higher minimum electromechanical constant, because the small 
displacement limit indicts higher level of the electrical damping. It is known that this can be 
done by decreasing the load resistance. However, there is the possibility of reaching zero before 
achieving the required electrical damping. Therefore, the higher electromechanical constant 
becomes necessary. 

 

 

Figure 4.16. The optimum non-dimensional load resistance as a function of the 
electromechanical constant (Xmax = 0.021 m, Ri = 8Ω ). 
 
  The corresponding delivered power as a function of the electromechanical constant is 
presented in Figure 4.17. Although the higher minimum electromechanical constant is needed 
with the decreasing of the displacement amplitude limit, it does not inevitably lead to the 
higher delivered power. 
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Figure 4.17. The delivered power as a function of the electromechanical constant (Xmax = 
0.021 m, Ri = 8Ω ). 

 
4.4.2 Piezoelectric model 
 
  Because the optimum mass shown in Equation (4.26) has no relationship to the electrical 
damping, it is still applicable for the piezoelectric model.  

Substituting Equations (3.28), (4.4) and (4.5) into Equation (4.7) and rearrange it, the 
optimum load resistance can be given as 
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and the corresponding delivered power is the same expression as Equation (4.28). 
  By using the parameters in Table 4.2, the optimum load resistance and the delivered power as 
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a function of the electromechanical constant are presented in Figures 4.17 and 4.18, respectively. 
The similar results to the inductive model can be observed. 
 

 

Figure 4.18. The optimum non-dimensional load resistance as a function of the 
electromechanical constant (Xmax = 0.021 m, Ri = 110 KΩ ). 
 

 

Figure 4.19. The delivered power as a function of the electromechanical constant (Xmax = 
0.021 m, Ri = 110 KΩ ). 
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4.5 Constrained electrical damping model analysis 
 
  In this section, the influence of the electrical damping limit on the performance is considered. 
In previous sections, it is already validated that the piezoelectric transducer can also be regarded 
as an equivalent electrical damper likes the inductive transducer, but the difference is the 
equivalent effective electromechanical coupling coefficient is not a constant, because it is a 
function of the excitation frequency. However, the influence is small due to the frequency just 
varies within restricted range in this study. Also for clearance, it is assumed that all the 
dissipated energy by the electrical damping is harvested.  

It is assumed that the parameters in Table 4.3 are given. The performance comparison under 
the constrained and the unconstrained conditions is conducted first. The maximum available 
electrical damping is set to be different values. 
 

Table 4.3. Parameters of the hardening-type Duffing energy harvester. 
 

Parameter Value Unit 

m 0.02 kg 

k 30  N/m 

α  52 10×  N/m3 

cm 0.05 Ns/m 

F 0.04 N 
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Figure 4.20 Comparison of the output power under the unconstrained and constrained 

conditions 
 

Figure 4.20 shows the comparison under the ideal condition and the electrical damping 
constrained case. Under the unconstrained condition, the electrical damping can be arbitrary 
tuned to make the resonance point of the system be equal to the excitation frequency for 
achieving the maximum output power, which corresponds to the single parameter optimisation 
condition of the general shown in Section 4.3.  

 

Figure 4.21 Variation of the electrical damping under the unconstrained and constrained 
conditions 
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The corresponding value of the electrical damping ratio with the variation of the excitation 
frequency is plotted in Figure 4.21，with the decreasing of the excitation frequency, the required 
electrical damping increases until it reach the limit, after that the operating point of the system 
moves away from the peak resonance point. 

However, the above discussion is about the condition that all the parameters of the device are 
given except for the electrical damping, thus, the problem is how to appropriately determine the 
value of the parameters for a given excitation. It is assumed that the energy harvester achieves a 
complete optimisation and there is no electrical damping limit. Similar to Equation (4.9), the 
amplitude of the dissipated power by the electrical damper can be expressed as 
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                            (4.30) 

 

The optimum electrical damping is then obtained from 0d

e

P
c
∂

=
∂

, which gives: 

 

eopt mc c=                               (4.31) 

 
Therefore, a constrained electrical damping smaller than the mechanical damping is selected 

for the parameters optimisation, the seismic mass of the device is selected as the design variable 
for a given excitation, while the other parameters are held constant. 

Equation (4.12) can be rearranged to get the optimum mass as 
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Table 4.4. Parameters of the hardening-type Duffing energy harvester for optimisation 
 

Parameter Value Unit 

k 30  N/m 
α  52 10×  N/m3 
cm 0.05 Ns/m 

cemax 0.03 Ns/m 
F 0.04 N 
ω   7.5 Hz 

 
It is assumed that the parameters in Table 4.4 are given for the validation of the optimisation. 

The calculated optimum seismic mass according to Equation (4.32) is 0.021 kg. 

  To validate the result, the amplitude of power when the selected mass varies should also be 
analysed. By recalling the frequency-amplitude response relationship in Equation (3.29), the 
amplitude of the power can be expressed as  

 

( )2
eP c Xω=                               (4.33) 

 

  

Figure 4.22 Frequency response curves under different seismic mass 
 

By substituting Equations (4.18) into(4.29), the implicit function of the amplitude of the 
power can be obtained. Then, the roots of this function can be solved. However, because of its 
complexity, numerical calculation is conducted by using the parameters in Table 4.4. Figure 

Decrease mass 



116 
 

4.22 shows frequency response curves under different seismic mass, the value of the mass 
decrease from 0.21 kg (optimum value) to 0.1 kg with the direction of the arrow. The dashed 
line is the excitation frequency, it can be noted that the amplitude of the response velocity shows 
the decreasing tendency.  

The power as a function of the seismic mass is depicted in Figure 4.23. The power shows a 
sharp decrease when the mass exceeds the optimum value due to the operation point jump down 
to the low energy orbit. 
 

 
Figure 4.23 Power as a function of the seismic mass 

 
4.6 Summary  

 
In this chapter, parameter optimisation of the Duffing energy harvester under a harmonic 

vibrating environment has been analysed with the consideration of two kinds of typical 
transducer models.  

Under the two parameters optimisation condition, for the form of inductive transduction, as 
embodied by a permanent magnetic linear DC generator, the maximum power is delivered to an 
electrical load, when its resistance is equal to the sum of the internal resistance and the electrical 
analogue of the mechanical damping coefficient. For the piezoelectric transducer model, the 
expression of the equivalent electromechanical coupling coefficient is derived for the inductive 
transducer, which depends on the excitation frequency and the load resistance because of the 
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exist of the capacitance. Based on this work, the corresponding parameters optimisation is 
conducted. 

Moreover, for the single parameter optimisation, only the load resistance can be tuned for 
maximum power outputting, and the corresponding analytical expression of the load resistance 
is also derived. 

In the practical applications, the relative displacement of the seismic mass is usually 
constrained. Furthermore, there is the limit for the available electrical damping of the transducer. 
Both of the conditions are discussed. The energy harvester can still keep normal operation under 
the certain constraints.  

The common point of the different conditions is that the optimised operating point of the 
energy harvester is always closed to the point, at which the backbone curve intersects the 
frequency response, i.e. the jump-down point of the frequency response curve. 

However, it should be mentioned that, when an optimum energy harvesting system is 
designed, the parameters should be optimised according to the design principle of the 
unconstrained case in the first step. And, if the amplitude of the relative displacement response 
exceeds the allowed maximum value, it will be valid for the constrained optimisation principle. 
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Chapter 5 

 

Comparative Analysis for Random Excitation 
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5.1 Introduction 

 
As mentioned in Chapter 1, related to literature review of the random excitation, it was 

already validated that the nonlinearities do not tend to provide the performance enhancement of 
the energy harvesting under ideal Gaussian white noise excitations. On the other hand, in fact, 
the environmental excitations have most of their energy trapped within a narrow bandwidth, 
namely possessing the characteristics of a band-limited noise excitation. 

Therefore, it becomes necessary for the comparative analysis among the linear, 
hardening-type monostable, and bistable configurations under the band-limited noise excitations, 
which is conducted to provide the guidance for the practical design of the randomly excited 
energy harvester. 

For rational comparison of the different configurations, the parameters optimisation should be 
indetical for each system. Therefore, the parameters interpretation is presented first for 
appropriately determining the optimisation variable for the performance comparison, including 
the role of the linear stiffness and nonlinear stiffness on the performance of the hardening-type 
monostable- and bistable energy harvesters. 

Then, the comparative analysis of the three different configurations is carried out under both 
of the conditions of the constant and optimised electrical damping levels. 

Finally, the performance comparison is also conducted among the different configurations 
under the constrained electrical damping and displacement, considering the practical limit of the 
electrical damper and the maximum stroke of the device.  

 
5.2 Interpretation of the parameters  

   
  For a give band-limited noise excitation, in order to make a fair comparison of different 
configurations, the parameters should be optimised for each case, e.g. stiffness and electrical 
damping. It should be mentioned that because of the generally higher available electrical 
damping level of the electromagnetic-type transducer compared with the piezoelectric-type, 
which is beneficial for achieving the required optimised electrical damping, the 
electromagnetic-type transducer is adopted for the numerical parameters interpretation. The 
general governing equation of the energy harvesters can be written as 

 
( )3mx cx kx x N tα+ ± + =                            (5.1) 

 
where c is the total damping, and it is the sum of the mechanical damping cm and the electrical 
damping ce, N(t) is the band-limited noise excitation.  
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  It can be found that either the stiffness or the electrical damping can be selected as the 
parameters for optimisation while the other parameters are held constant. Thus, the influence of 
the stiffness on the performance of the energy harvester under certain excitation will be 
discussed firstly.  
 

Table 5.1. Parameters of the energy harvesters for parameters interpretation 

Parameter m cm 2
accσ  Bandwidth 

Value 0.028 kg 0.036 Ns/m 2.49 m2s-4 10-20 Hz 

 
Table 5.1 shows the parameters for the numerical studies. The variance of the excitation 

acceleration is set to be 2.49 m2s-4, and the bandwidth of the noise excitation is 10-20 Hz with 
the centre frequency of 15 Hz.  

It should be mentioned that the selected bandwidth is physically reasonable, and it is also 
considered about the fundamental frequency of the experimental device in the next section, 
which is 15 Hz. All the other parameters shown in Table 5.1 are the represent of the 
experimental parameters.  

Moreover, it is more concise to use the non-dimensional expression of the bandwidth. 
However, because the stiffness of the energy harvester is varied for parameters interpretation, 
the non-dimensional cannot be adopted in this section. 

 

 
Figure 5.1. Time domain data of the band-limited noise excitation shown in Table 5.1. 
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Figure 5.2. PSD (Power Spectrum Density) of the band-limited noise excitation shown in Table 
5.1. 

 
The band-limited noise signals are created by applying the band-pass filters to the original 

Gaussian white noise signal. Figure 5.1 shows time domain of the band-limited white noise, 
while the PSD (Power Spectrum Density) of the filtered band-limited noise is presented in 
Figures 5.2. 
 
 Hardening-type monostable configuration 

 
By using parameters in Table 5.1, Figures 5.3, 5.5 to 5.7 show the corresponding simulation 

results of the hardening-type monostable energy harvester subjected to a noise excitation with 
the bandwidth of 10-20 Hz by varying the other parameters, i.e. the rms output power of the 
energy harvester is simulated as a function of the linear stiffness and nonlinear stiffness under 
different electrical damping levels.   
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(a) Side view 

 

 

(b) Top view 

 

Figure 5.3. The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.15Ns mec =  Hardening-type monostable oscillator) 
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 For better understanding and interpretation of the observation in Figure 5.3, the frequency 
response curves of different linear- and nonlinear stiffness (corresponds to the black points in 
Figure 5.3(b)) under the noise excitation with the bandwidth of (10-20Hz) are shown in Figure 
5.4, where the red line represents the unstable energy orbit. And the frequency axis is plotted 
using the non-dimensional form for concise expression. When the linear stiffness k is 80 N/m as 
shown in Figure 5.4(a), with the increasing of nonlinear stiffness α , the peak response area is 
included by the bandwidth of the noise excitation, thereby showing the increasing tendency of 
the harvested power as shown in Figure 5.3(b). However, if one further increases the nonlinear 
stiffness, it presents the decrease of the performance. This is because the operating point of the 
energy harvester cannot stablisied on the high energy orbit under random excitations.  

In Figure 5.4 (b), the linear stiffness is set to be 240 N/m, the corresponding fundamental 
frequency near to the centre frequency (i.e. 15 Hz) of the band-limited noise excitation. The 
continues decreasing tendency of the performance can be observed with the increasing of the 
nonlinear stiffness as presented in Figure 5.3(b), due to the frequency response curve skew 
towards to the higher frequency area and also the unstable high-energy orbit. The results when 
the linear stiffness is 400 N/m can also be interpreted from Figure 5.4 (c).  

The similar results can be observed in Figures 5.5 to 5.7.  

 

 (a)  
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 (b)  

 

(c) 

 

Figure 5.4. Frequency response curves under different linear stiffness and nonlinear stiffness 
and the non-dimensional bandwidth of the noise excitation (10-20 Hz, yellow area): (a) linear 
stiffness k = 80N/m, (b) linear stiffness k = 240N/m, and (c) linear stiffness k = 400N/m. 
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 (a) Side view 

 

(b) Top view 

 

Figure 5.5. The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.3Ns mec =  Hardening-type monostable oscillator) 
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(a) Side view 

 

(b) Top view 

 

Figure 5.6. The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.45Ns mec =  Hardening-type monostable oscillator) 
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 (a) Side view 

 

 (b) Top view 

 

Figure 5.7. The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.6 Ns mec =  Hardening-type monostable oscillator) 

 

From the above simulation results, it can be noted that it presents similar tendency under 
different electrical damping levels, the peak response point moves towards to the lower linear 
stiffness with the increasing of the nonlinear stiffness, which is due to the hardening effect. 
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However, the most high output power is when the nonlinear stiffness is equal to zero, which 
indicts a linear energy harvester. Moreover, the corresponding linear stiffness at the peak 
response point is around 240 N/m, where the fundamental frequency is around 15 Hz. It is same 
as the centre frequency of the band-limited noise. 

 

 Bistable configuration 
 

Similar to the hardening-type monostable configuration, the rms output power of the 
bistable energy harvester is also simulated as a function of the linear stiffness and nonlinear 
stiffness under various electrical damping levels. 

  
(a) Side view 
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(b) Top view 

 

Figure 5.8 The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.15Ns mec =  Bistable oscillator) 

 

To interpret the results shown in Figure 5.8, the frequency response curves of different linear- 
and nonlinear stiffness (corresponds to the black points in Figure 5.8(b)) under the noise 
excitation with the bandwidth of (10-20Hz) are shown in Figures 5.9 to 5.11. Similar to the 
hardening-type case, the frequency axis is plotted using the non-dimensional form for concise 
expression.  

When the linear stiffness k is 120 N/m as shown in Figure 5.9, when the nonlinear stiffness 
α  is very small, the energy harvester operate as the linear case as shown in Figure 5.9 (a), 
because the potential ( 2 4U k α∆ = ) is very large, and the energy harvester only oscillate within 

one potential well and nears to the equilibrium point, with the increasing of the nonlinear 
stiffness, the frequency response curve skew towards to the lower frequency side because of the 
softening effect of the potential well of the bistable system, and as presented in Figure 5.9(b), 
there is another highest energy orbit exists, which indicts the inter-well motion of the energy 
harvester. However, it is not covered by the bandwidth of the noise excitation under this 
condition. Thus, in Figure 5.9(b) the energy harvester tends to oscillate within one potential well 
and cannot stabilise on the high-energy orbit of the frequency response curve skews to the low 
frequency sider. That’t why the performance decreases compared with that of Figure 5.9(a).  
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Then, with the further increase of the nonlinear stiffness, as shown in Figure 5.9(c), the 
highest energy orbit is included by the bandwidth of the noise excitation. Although it cannot be 
stabilised, the large-amplitude inter-well motion can be sometimes triggered, thereby increasing 
the performance.  

From Figures 5.10 and 5.11, the conditions when the linear stiffness equals to 50 N/m and 
210 N/m as shown in Figure 5.8(b) can be interpreted using the same principle. 

(a) 

 

(b) 
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 (c) 

 

Figure 5.9. Frequency response curves under the constant linear stiffness (k = 120 N/m) and 
different nonlinear stiffness and the non-dimensional bandwidth of the noise excitation (10-20 
Hz, yellow area): (a) nonlinear linear stiffness α = 1 N/m3, (b) nonlinear stiffness α = 2× 107 
N/m3, and (c) nonlinear stiffness α = 1.5× 108 N/m3. 

 

(a) 
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 (b) 

 

(c) 

 

Figure 5.10. Frequency response curves under the constant linear stiffness (k = 50 N/m) and 
different nonlinear stiffness and the non-dimensional bandwidth of the noise excitation (10-20 
Hz, yellow area): (a) nonlinear linear stiffness α = N/m3, (b) nonlinear stiffness α = 2× 107 
N/m3, and (c) nonlinear stiffness α = 1.5× 108 N/m3. 
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(a) 

 

 (b) 

 

(c) 
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Figure 5.11. Frequency response curves under the constant linear stiffness (k = 210 N/m) and 
different nonlinear stiffness and the non-dimensional bandwidth of the noise excitation (10-20 
Hz, yellow area): (a) nonlinear linear stiffness α = N/m3, (b) nonlinear stiffness α = 2× 107 
N/m3, and (c) nonlinear stiffness α = 1.5× 108 N/m3.  

(a) Side view 

 

(b) Top view 

 

Figure 5.12 The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.3Ns mec =  Bistable oscillator) 
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(a) Side view 

 

 (b) Top view 

 

Figure 5.13 The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.45Ns mec =  Bistable oscillator) 

 

 

 



136 
 

(a) Side view 

 

 (b) Top view 

 

Figure 5.14 The rms power (W) as a function of the linear stiffness and nonlinear stiffness. 
( 0.6 Ns mec =  Bistable oscillator) 

 

Similar results are also observed in Figures 5.12 to 5.14 for the bistable case, but the 
optimised linear stiffness is nearly half of the hardening-type monostable case, that is because 
the stiffness around the equilibrium point with in one potential well of the bsitable system is 
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obtained as 2k. Thus, it is fundamental frequency is also located at the around the midpoint of 
the frequency bandwidth of the excitation. Moreover, the peak response point is obtained when 
the nonlinear stiffness α  is very small, it indicts a very deep potential well (potential 

2 4U k α∆ = ), the oscillator only operate around the equilibrium point, which is similar to a 

linear energy harvester with the natural frequency of 2k m . 

From the observation results, it can be concluded as: 

 
Hardening-type monostable configurations: 
(1) For a given noise excitation with certain bandwidth, if both the linear stiffness and nonlinear 

stiffness can be tuned for optimisation, the maximum power output always occur at the point, 
where the nonlinear stiffness equals zero. 

 
(2) The optimised linear stiffness exists, when the fundamental frequency is equal to the centre 

frequency of the band-limited noised excitation. 
 
(3) Under the optimised condition, the energy harvester becomes a linear energy harvester. 
 
Bistable configurations: 
(1) For a given noise excitation with certain bandwidth, if both the linear stiffness and nonlinear 

stiffness can be tuned for optimisation, the maximum power output always occurs at the 
point, where the nonlinear stiffness is extremely small (can’t be zero). 

 
(2) The optimised linear stiffness exists, when the fundamental frequency at the equilibrium 

point is equal to the centre frequency of the band-limited noised excitation. 
 
(3) Under the optimised condition, the energy harvester operates like a linear energy harvester. 
 
5.3 Comparative analysis 

 
From the discussion in Section 5.2, the following conclusions can be obtained as:  
  
(1) If the linear and nonlinear stiffness are selected as the optimisation parameters, the linear 

configuration can be directly employed, for a given band-limited noise excitation with the 
fixed centre frequency, because the optimised peak output power point is always at when the 
nonlinear stiffness is zero (for hardening-type monostable configuration) or extremely small 
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(for bistable configuration), and operated as a linear energy harvester. 
 
(2) When the excitation presents the time-varying property of the frequency bandwidth or centre 

frequency, if the stiffness can be tuned, the linear energy harvester can be directly employed, 
in other words, there is no necessary to conduct the performance comparison. 

 
Thus, the stiffness is kept as constant but the electrical damping should be optimised for more 

fair comparison under different centre frequencies and bandwidths of the band-limited 
excitations. The maximum bandwidth of the band-limited noise excitation will be selected large 
enough (i.e. around two times larger than the fundamental frequency) to make the effect of the 
nonlinearities on the performance become not obvious anymore, which is similar to the white 
noise condition.  

However, before the performance with optimised electrical damping level, the comparison 
with the constant electrical damping is also conducted in the following Section 5.3.1. 

 
5.3.1 Comparative analysis with constant electrical damping  
 
 Energy harvester configurations 

 
To compare the performance of the energy harvesters, linear, nonlinear monostable and 

bistable configurations were designed to undertake the work reported here. By considering a 
cantilever beam it is possible to create an appropriate nonlinearity by positioning a magnetic 
mass on the cantilever tip which moves relative to externally fixed permanent magnet(s). The 
dependence of the restoring force on the tip deflection can be changed by controlling the 
distance between the magnets and also through their polarities. 

 

Figure 5.15. Schematic diagram of the energy harvesters in different configurations. 
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Figure 5.15 presents a schematic diagram from which two types of energy harvester can be 
synthesised by means of intentionally introduced nonlinearities. Bistability can be created by 
positioning two permanent magnets with opposite polarities, respectively on the piezoelectric 
cantilever tip and on another fixed support at a distance d  in the horizontal direction. The 
corresponding expression for the interaction force can be obtained by setting h  to zero in 
Equation (3.5).  

To achieve the monostable nonlinear configuration, another two permanent magnets are fitted 
symmetrically at an equilibrium distance h  at either side of the magnetic end mass, and the 
magnets are arranged in a repulsive configuration to produce the hardening-type nonlinearity. 

 

 

Figure 5.16. Photo of the energy harvesters in different configurations. 

 

A photograph of the experimental device is shown in Figure 5.16. The permanent magnets are 
attached to sliders on rails that allow the distance to be adjusted. In order to conduct a 
convenient comparison, the fundamental frequencies in different configurations are set to be 
equal to 15 Hz by adjusting the mass on the cantilever tip and changing the distances h  and 
d .  

The general motion equation of the system can be written as [32][42][59][91] 
 

                        3 cosmmx c x kx x q F tα q ω+ + + + =                    (5.2a) 

 

and 
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qx Rq
C

q = +                             (5.2b) 

where mc  is the mechanical damping, m  is the equivalent mass of the permanent magnet 

attached to the beam, θ  is the modal coupling coefficient, C  is the capacitance of the 
piezoelectric film, q is the electrical charge, i lR R R= + , and iR  and lR  are the internal and 

load resistances. Table 5.2 shows the parameters of the system. 
 

Table 5.2. Parameters used in the investigations of stiffness on the frequency response. 
 

Parameter Value Unit 

m 0.028 kg 
cm 0.036 Ns/m 
θ  645 V/m 
C 110 nF 
Ri 115 KΩ  

Rl 1 MΩ  

 
The experiments were conducted using a seismic shaker (IMV corporation, m060) controlled 

by a dSPACE 1103 controller. The main objective was to make a comparative performance 
study in the linear, monostable and bistable configurations under colored noise excitations. 
These devices allow for the chosen harvester system to be subjected to random base acceleration 
at specified excitation levels, frequency bandwidths and centre frequencies. The shaker table 
acceleration is measured by a vibrometer then the root-mean-square value is calculated by the 
dSPACE controller, and this is kept approximately equal for noise excitations with different 
bandwidths and centre frequencies by tuning the amplifier gain (noting that a constant power 
spectral density of the excitation produced by the shaker cannot be guaranteed under different 
bandwidths and centre frequencies using a fixed gain because of the dynamic characteristics of 
the shaker). The rms power of the piezoelectric bimorph attached on the cantilever can be 
obtained in a similar way, and used for comparison.  

Tests consist of response comparisons under various centre frequencies and excitation levels 
at a constant bandwidth, and the influence of the bandwidth on the performance is assessed 
under several centre frequencies by keeping the same excitation level. 
 
 
 
 

http://en.wikipedia.org/wiki/Power_spectral_density
http://en.wikipedia.org/wiki/Power_spectral_density
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 Comparison under different centre frequencies and excitation levels 
 

The responses are investigated with the change of centre frequency in different configurations 
in this section. Figures 5.17-5.19 show the comparison of the output voltage variance in the 
open-circuit configuration with band-limited noise excitation (using a bandwidth of 4 Hz) of 
several levels. The sampling window of the output voltage is kept wide enough for accuracy.  

The results in Figure 5.17 show that at a small excitation level the peak of the output voltage 
occurs when the centre frequency nears the fundamental frequency for both of the monostable 
hardening-type monostable- and bistable configurations, and this is similar to the linear 
configuration. There is also not a great deal of difference for the amplitude of the peak output 
voltage between the results, and this indicates that these energy harvesters are operating near 
their equilibrium positions and do not obviously exert strong nonlinear effects.  

 

 
Figure 5.17. Variation of the experimental voltage variance with the excitation's centre 

frequency. ( 2 2 -4
acc 0.0286m ss =  bandwidth 4Hz∆ = ) 
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Figure 5.18. Variation of the experimental voltage variance with the excitation's centre 

frequency. ( 2 2 -4
acc 2.49m ss =  bandwidth 4Hz∆ = ) 

 

 
Figure 5.19. Variation of the experimental voltage variance with the excitation's centre 

frequency. ( 2 2 -4
acc 7.38m ss =  bandwidth 4Hz∆ = ) 

 
With the increase of the acceleration level the peak output voltage of the monostable energy 

harvester shifts towards higher frequencies because of the hardening effect of the stiffness, as 
shown in Figure 5.18. However, it can be noted that the amplitude of the peak voltage is lower 
when compared with the linear configuration. It is known that for a monostable hardening-type 
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monostable oscillator, both low- and high-energy responses can coexist for the same parameter 
combinations at relatively high harmonic excitation levels. This indictates that when the energy 
harvester is randomly excited, the high-energy orbit cannot be maintained. The performance 
decreased due to a noticeable hopping between the different energy orbits with the variation in 
excitation level. On the other hand the peak voltage of the bistable configuration shifted towards 
to the lower frequency away from the fundamental frequency. This phenomenon is caused by 
asymmetric stiffness softening effect within one potential well. Figure 5.20 shows the stiffness 
as a function of displacement in different configurations. It should be mentioned that for the 
case of the bistable energy harvester one of the equilibrium positions is set as the origin for the 
coordinate system. The softening effect can be observed at the side of the equilibrium position 
for the bistable configuration. 
 

 

Figure 5.20. Stiffness as function of displacement in different configurations. 
 

 
The peak output voltage of the monostable energy harvester shifts further to the high 

frequency side as the excitation level is increased, as presented in Figure 5.19. However, the 
tendency of the bistable configuration is to show a reversion and to start to move to the higher 
frequency side. The increase of the excitation makes it relatively easy to overcome this barrier 
and hop between the two potential wells. In this condition the hardening-effect, as shown in 
Figure 5.20 with larger amplitude motions, starts to become the dominant factor at higher centre 
frequencies. For a bistable energy harvester the presence of the hopping oscillation between the 
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double potential wells yields a substantially larger power output. However the large amplitude 
hopping oscillation is considerably dependent upon the excitation level. Figure 5.21 shows the 
displacement responses under different accelerations levels. The number of occurrences of 
hopping between the potential wells increases as the excitation level increases. 

 
(a) 

 
(b) 

 
Figure 5.21. Displacement responses of the bi-stable harvester at the input acceleration variance 
of (a) 2 -42.49m s  and (b) 2 -47.38m s when the centre frequency and bandwidth are set as 15 Hz 

and 4 Hz, respectively. 
 
 Comparison under different bandwidths 

 

The objective of this section was to study the performance of both of the linear and nonlinear 
configurations with the change of bandwidth, and at different centre frequencies while keeping a 
moderate level of excitation. The bandwidth of more than two times of the fundamental 
frequency is considered, which is large enough for the comparison. The centre frequencies are 
set to smaller, bigger and equal values of the fundamental frequency of the energy harvester, e.g., 
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11 Hz, 15 Hz and 19 Hz, respectively.  
Figure 5.22 presents the voltage variance curves depicted at the centre frequency of 11 Hz. In 

the case of the monostable configuration the peak response appears at a larger bandwidth as 
compared with that of the linear configuration, it indicates that the hardening-type nonlinearity 
of the monostable energy harvester starts to take effect because of the moderate level of the 
excitation. Conversely, a higher response presents at narrower bandwidths for the bistable case. 
   

 
Figure 5.22. Variation of the experimental voltage variance with the excitation's bandwidth. 

( 2 2 -4
acc 2.49m ss = centre frequency 11Hz ) 
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Figure 5.23. Variation of the experimental voltage variance with the excitation'sbandwidth. 
( 2 2 -4

acc 2.49m ss = centre frequency 15Hz ) 

 

 
Figure 5.24. Variation of the experimental voltage variance with the excitation's bandwidth. 

( 2 2 -4
acc 2.49m ss = centre frequency 19Hz ) 

 
When the centre frequency is set at 15 Hz the peak output voltage variances are extended 

over wider bandwidths and the lowest voltage variance is observed in the monostable 
configuration in Figure 5.23. For the case when the centre of the noise excitation is around 19 
Hz opposite trends can be seen from those of 11 Hz. 
  For all configurations and centre frequencies, as the bandwidth of the excitation increases to a 
large enough value the influence of the nonlinearity and centre frequencies decreases. It can be 
shown that the output voltage variance curves become insensitive, and the similar amplitude can 
be observed for different configurations when the bandwidth exceeds certain critical values. 
 
 Comprehensive performance comparison 

 

Figures 5.25 to 5.27 show the experimental output voltage variance as a function of the centre 
frequency and bandwidth of the noise excitation for the different configurations and under an 
excitation level of 2.49 m/s2. For the monostable case the peak response can be observed at a 
higher fundamental frequency. For different centre frequencies the optimum bandwidth can be 
found, and this increases as the centre frequency shifts away from the peak point. 
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Figure 5.25. Variation of the experimental voltage variance with the excitation's bandwidth and 

centre frequency. ( 2 2 -4
acc 2.49m ss =  linear oscillator) 

 
For the linear energy harvester a foreseeable peak output can be noted at the fundamental 

frequency in Figure 5.25. The influence of the bandwidth shows a similar effect to the 
monostable nonlinear case. However an overall higher output can be observed for the linear 
energy harvester when compared with the monostable nonlinear case as shown in Figure 5.26, 
and this is different from the general impression due to the assumed advantages inherent in 
nonlinearity in this context.  

Noting that it is different to the linear and monostable nolinear configurations, the bistable 
system result of Figure 5.27 shows that the peak voltage variance is obtained at a lower centre 
frequency than the fundamental frequency. The voltage variance obtained is much higher than 
that of the other configurations in most areas. It is confirmed that the bistable configuration is 
less susceptible to variations in the centre frequency and bandwidth of the noise excitation. 
However, it can also be noted that the peak value of the linear configuration is still greater than 
that of the bistable energy harvester. 
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Figure 5.26. Variation of the experimental voltage variance with the excitation's bandwidth and 
centre frequency. ( 2 2 -4

acc 2.49m ss =  hardening-type monostable oscillator) 

 

Figure 5.27. Variation of the experimental voltage variance with the excitation's bandwidth and 
centre frequency. ( 2 2 -4

acc 2.49m ss =  bistable oscillator) 
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  By using the same parameters in Table 5.2, it is simulated for comparison with the 
experimental results.  
  Figure 5.28 to 5.30 how the simulation results of the rms output power as a function of the 
centre frequency and bandwidth of the noise excitation for the different configurations and 
under an excitation level of 2.49 m/s2. It can be seen that the simulation results confirm the 
experimental results. 
 

 
Figure 5.28. Variation of the rms output power with the excitation's bandwidth and centre 

frequency. ( 2 2 -4
acc 2.49m ss =  linear configuration) (Numerical simulation) 
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Figure 5.29. Variation of the numerical rms output power with the excitation's bandwidth and 
centre frequency. ( 2 2 -4

acc 2.49m ss =  monostable configuration) (Numerical simulation) 

 

Figure 5.30. Variation of the numerical rms output power with the excitation's bandwidth and 
centre frequency. ( 2 2 -4

acc 2.49m ss =  bistable configuration) (Numerical simulation) 
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5.3.2 Comparative analysis with optimised electrical damping 
 
Thus far, the above discussion is the numerically and experimentally comparative 

investigation of different configurations under the constant electrical damping level, however, 
the optimised damping level is not taken into consideration. For further fair comparison, 
numerical simulations with the optimised electrical damping for each combination of the centre 
frequency and bandwidth are carried out. Considering the achievable higher electrical damping 
compared with the piezoelectric-type, the electromagnetic type transducer is adopted. The 
governing equation of the system is written as  

 
( )3mx cx kx x N tα+ ± + =                            (5.3) 

 
where c is the total damping, and it is the sum of the mechanical damping cm and the electrical 
damping ce. 

 
Table 5.3. Parameters used in the investigations of stiffness on the frequency response. 
 

Parameter Value Unit 

m 0.028 kg 
c 0.036 Ns/m 

k (monostable/linear) 248 N/m 
k (bistable) 124 N/m 

α  (monostable) 82.5 10×  N/m3 
α  (bistable) 73.8 10×  N/m3 

 
Table 5.3 shows the parameters for numerical simulations, which also the representative of 

the experimental setup. For each combination of the bandwidth and centre frequency, the 
electrical damping is varied to find the optimised value and get the maximum outputpower.  
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Figure 5.31. Variation of the rms power with the excitation's bandwidth and centre frequency. 
( 2 2 -4

acc 2.49m ss =  linear configuration) 

 

Figure 5.32. Variation of the rms power with the excitation's bandwidth and centre frequency. 
( 2 2 -4

acc 2.49m ss = , 8 32.5 10 N mα = ×  hardening-type monostable configuration) 
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Figure 5.33. Variation of the rms power with the excitation's bandwidth and centre frequency. 

( 2 2 -4
acc 2.49m ss =  bistable configuration) 

 
From Figure 5.31 to Figure 5.33, when the damping level is optimised, the similar responses 

to the experimental results can be observed, whatever the overall tendency or the quantitative 
analysis. Generally, the hardening-type monostable configuration does not show improvement 
compared with the linear case.  

Moreover, from the comparison between Figures 5.31, 5.32 and 5.34, for the harden-type 
nonlinearity, it can be found that with the increasing of the nonlinear stiffness, the performance 
presents a decreasing tendency. 
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Figure 5.34. Variation of the rms power with the excitation's bandwidth and centre frequency. 

( 2 2 -4
acc 2.49m ss = , 9 31.2 10 N mα = ×  hardening-type monostable configuration ) 

 
5.3.3 Comparative analysis constrained electrical damping 

 
There are practical limits on the damping level because of the strength of the magnetic field, 

coil area and number of coil turns, etc [102]. Therefore, the conditions with the constrained 
electrical damping should be further investigated. The performance comparison under the 
constrained electrical damping is conducted and interpreted in this section. 
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Figure 5.35. Variation of the optimised electrical damping with the excitation's bandwidth and 

centre frequency. ( 2 2 -4
acc 2.49m ss =  linear configuration ) 

 

 
Figure 5.36. Variation of the optimised electrical damping with the excitation's bandwidth and 

centre frequency. ( 2 2 -4
acc 2.49m ss = , 8 32.5 10 N mα = × hardening-type monostable 

configuration ) 
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Figure 5.37. Variation of the optimised electrical damping with the excitation's bandwidth and 
centre frequency. ( 2 2 -4

acc 2.49m ss =  bistable configuration ) 

 
Figures 5.35-5.37 show the distribution of the optimised electrical damping level, which 

corresponds to the rms output power of Figures 5.31-5.33. It can be noted that the 
hardening-type monostable energy harvester requires the overall highest electrical damping, 
while the bistable configuration presents the lowest damping level.  

For the linear configuration in Figure 5.35 and the hardening-type monostable configuration 
in Figure 5.36, it is found that when the centre frequency moves far away from the fundamental 
frequency and with a relatively narrow bandwidth, the optimised electrical damping becomes 
much higher compared with that of the other areas. However, for the bistable configuration, it 
shows similar tendency only for the high centre frequency area.   
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Figure 5.38. Comparison of the optimised output power. (grid surface: with limited damping 
ratio of 0.29; smooth surface: without damping limit 2 2 -4

acc 2.49m ss =  linear configuration) 

 

Figure 5.39. Comparison of the optimised output power. (grid surface: with limited damping 
ratio of 0.29; smooth surface: without damping limit 2 2 -4

acc 2.49m ss =  hardening-type 

monostable configuration) 
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Figure 5.40. Comparison of the optimised output power. (grid surface: with limited damping 
ratio of 0.29; smooth surface: without damping limit 2 2 -4

acc 2.49m ss =  bistable configuration) 

 
Figures 5.38 to 5.40 present the performance comparison of three different configurations 

when the electrical damping is constrained to be 1.5 Ns/m, which corresponds to the damping 
ratio of 0.29. It is shown that the performance of the linear energy harvester and the 
hardening-type monostable energy harvester present decrease of the performance, especially in 
the low centre frequency area. However, there is no obvious influence on that of the bistable 
configuration, except for slight decrease in the area of high centre frequency. 

From those observations, it can be concluded that the bistable energy harvester generally 
requires smaller electrical damping for the maximum power output, compared with the linear- 
and monostable configurations, especially the low frequency area, which indicts the lower 
performance decrease when the electrical damping is limited. It provides an obvious benefit for 
the practical implementation. 

 
5.3.4 Comparative analysis constrained displacement 

 
  Considering the practical energy harvester has limit of the stroke, the condition when the 
displacement of the mass is constrained to a certain value is investigated for further comparison 
of different configurations in this section. 



159 
 

   It should be mentioned that a special characteristic of the bistable configuration is that it has 
two equilibrium points, which indicts that there is the displacement exists even if there is no 
excitation is applied to the system. For the performance comparison in Sections 5.3.2 and 5.3.3, 
the variance of the excitation acceleration is 2.49 m2s-4, where the displacement of the linear 
energy harvester cannot exceed the displacement of the equilibrium point of the bistable energy 
harvester for most cases. Thus, a higher excitation level of 15 m2s-4is used for performance 
comparison under constrained displacement.  

 

 
Figure 5.41. Variation of the maximum displacement with the excitation's bandwidth and centre 

frequency. ( 2 2 -4
acc 15m ss =  bistable configuration) 

 
Figure 5.41 shows the variation of the maximum displacement with the excitation's 

bandwidth and centre frequency for the bistansystem. Figure 5.42 presents the displacement 
response of the bistable energy harvester when the peak displacement occurs in Figure 5.41. In 
practice, because of the hardening effect of the bistable potential wells under large amplitude 
excitation, with the increase of the excitation level, the increasing of the displacement amplitude 
for the bisable configuration becomes lower compared with the linear energy harvester. 
Therefore, the displacement amplitude limit (4 mm) shown in Figure 5.42 (red dashed line) is 
set to be the displacement constraint of the linear energy harvester. The electrical damping level 
is tuned to meet this displacement constraint. 
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Figure 5.42. The largest displacement response of the bistable energy harvester with the 

optimised electrical damping. 

 
Figure 5.43. Variation of the maximum displacement with the excitation's bandwidth and centre 

frequency. ( 2 2 -4
acc 15m ss =  hardening-type monostable configuration) 
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Figure 5.44. Variation of the maximum displacement with the excitation's bandwidth and centre 
frequency. ( 2 2 -4

acc 15m ss =  linear configuration) 

 
  Variation of the maximum displacement with the excitation's bandwidth and centre frequency 
for the mnostable and linear energy harvesters are shown in Figures 5.43 and 5.34, respectively. 
It can be noted that the displacement of the hardening-type configuration is smaller than the 
displacement constraint of 4 mm. However, for the linear configuration in Figure 5.34, the 
displacement response exceeds the limit for some areas. 
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Figure 5.45. Variation of the rms output power with the excitation's bandwidth and centre 
frequency. ( 2 2 -4

acc 15m ss =  bistable configuration) 

 
Figures 5.45 and 5.46 show the rms output power under different centre frequencies and 

bandwidths for the bistable and hardening-type energy harvesters, respectively, where the 
displacement response is smaller than the constraint. 

Moreover, Figure 5.47 shows the performance comparison of the linear energy harvester 
between the conditions that with displacement constraint (grid curve surface) and without the 
constraint (smooth curve surface). It can be noted that there is an obvious decrease of the output 
power around the peak response area.  
  To summarise, it is also predictable that if the displacement constraint is very closed to the 
equilibrium points of the bistable energy harvester, the performance of the bistable energy 
harvester will suffer an obvious decrease because it can only achieve the intra-well motion 
instead of the large amplitude inter-well motion because of the displacement constraint. 

However, when the excitation level is large enough to make the displacement of the linear 
energy harvester exceed that of the bistable configuration, the linear energy harvester will 
present the decreased performance as shown in Figure 5.47, while there is little influence on the 
bistable energy harvester. 
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Figure 5.46. Variation of the rms output power with the excitation's bandwidth and centre 
frequency. ( 2 2 -4

acc 15m ss = hardening-type configuration) 

 

 

Figure 5.47. Comparison of the optimised output power. (grid surface: with displacement limit; 
smooth surface: without damping limit 2 2 -4

acc 15m ss =  linear configuration) 
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5.4 Summary 

 
The comprehensive performance comparison was analysed for the linear, monostable and 

bistable hardening-type configurations, under different centre frequencies, bandwidths, and 
excitation levels. The general conclusions can be explained as follows.  

 
(1) When the input excitation level is small the peak response can be observed around the 

fundamental frequencies, and it shows similar amplitude irrespective of the centre frequency 
in all configurations. This indicates that the nonlinearities of the monostable and bistable 
energy harvesters have little effect on the response. 

(2) As the input acceleration is increased to a relatively high level the peak response shifts 
toward a higher centre frequency for the monostable nonlinear energy harvester, and the 
same tendency is seen as the excitation level is further increased to a higher level still 
because of the hardening nonlinearity effect. However the fact that the peak response of the 
bistable configuration moves to a lower centre frequency indicates the effect of the softening 
effect within the single potential as the excitation level is increased. Then the presented 
reversion effect demonstrates that the hardening phenomenon takes over when the large 
amplitude hopping oscillation between the potential wells becomes apparent. 

(3) In contrast to the commonly held assumption that a hardening-type monostable nonlinear 
energy harvester shows a wider bandwidth of large amplitude voltages as compared to the 
linear variant, this study experimentally and numerically validate that the hardening-type 
nonlinearity does not provide enhancement, it should be avoided for the band-limited noised 
excited energy harvesting. 

(4) For a given band-limited noise excitation with certain bandwidth and centre frequency, the 
linear configuration can be selected, and the fundamental frequency of the device should be 
around the centre frequency of the excitation frequency bandwidth. That’s because it has 
been validated that the optimised condition for the hardening-type monostable and bistable 
energy harvesters is when the parameter is appropriately selected so that they are operated 
like a linear energy harvester. 

(5) If the excitation presents the time-varying property of the frequency bandwidth or centre 
frequency, in other words, considering that sometimes the designed fundamental frequency 
of the system is excluded from excitation frequency range or becomes far away from the 
centre excitation frequency, the bistable configuration is the best candidate. That is because 
for most of the frequency and bandwidth range considered the bistable harvester 
outperforms the linear system but for area of the peak output power.  

(6) The bistable energy harvester requires the overall lower electrical damping compared with 
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the linear and monostable configurations. If the maximum available damping is constrained, 
the linear and the hardening-type energy harvester will suffer energy loss at both the low and 
high centre frequency area when the excitation bandwidth is narrow.  

(7) Because of the existence of the equilibrium point of the bistable energy harvester, there is a 
minimum stroke requirement for the bistable configuration. However, when the excitation 
level is large enough to make the displacement amplitude become bigger than that of the 
bistable energy harvester, the constrained displacement will cause the obvious performance 
decrease around the peak response area for the linear energy harvester.  
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Chapter 6 

 

Enhancement for Random Excitation 
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6.1 Introduction 
 
In this chapter, a bistable mechanism is designed to achieve the stochastic resonance, as an 
approach for energy harvesting following the fundamental theoretical work. A small-scale 
periodic input is provided to boost the response of the energy harvester. Moreover, another 
novel method, henceforth called square-wave-driven stochastic resonance, is also proposed 
with the advantaged that there is no need to determine the periodic excitation frequency based 
on the noise density and the physical parameters of the system. The feasibility of further 
increasing the available energy is validated from the random excitation source, which is 
different from the other investigations about the noise excited vibrational energy harvesting, in 
where only the performance study of several existing typical energy harvesters were 
conducted. 
 
6.2 Enhanced energy harvesting 
6.2.1 Apparatus illustration and modelling 

 
A practical physical system may now be conjectured as shown in Figure 6.1, where there is a 

cantilever beam with an end mass magnet, a fixed magnet, and a non-contacting actuator. The 
system is excited by ambient noise source, ( )N t , the effect of which may result in a nonlinear 

interaction between the beam and the magnets if the distance d between the two magnets is 
adjusted, and the non-contacting actuator is used to provide the periodic excitation.  

 

 

Figure 6.1. Schematic of a practical bistable system. 

 
The repulsive force FM acts between the tip magnet and its counterpart. While the two 

magnets are parallel in the central position, the horizontal component is maximised and tends to 
push the tip magnet away from the central position. After that the effect of the horizontal 

x

x
y

ψ
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component weakens and the vertical component predominates. Therefore, to avoid an 
over-complicated analysis only the vertical component is considered by appropriately 
simplifying the modelling of the device. The vertical component FV can be written as [103][104]  
 

 1/22
2

sin
1 ( )

M
V M

F xF F
d x

d

ψ= =
 +  

 
(6.1) 

 
The above equation is expanded in the form of a Taylor series, computed around 0x =  and 

truncated to lead to 
 

 3
32

M M
V

F FF x x
d d

≈ −  (6.2) 

 
FV is a nonlinear function of x and has the same overall form as a cubic polynomial. 

Moreover, the stiffness of an elastic cantilever beam can be approximated by a linear spring of 
stiffness k 
 

 3

3
c

EIk
l

=  (6.3) 

 
where E is Young’s modulus, I is the cross-section moment of inertia of the beam, and l is the 
length of the beam. Therefore the dynamics of the beam in Figure 6.1 can be represented in 
single degree of freedom form by the following simple differential equation of the form of 
Equation (6.4), where c represents the damping active in the system, noting that this can be 
measured and inserted later as a suitable numerical value. 

 
 
 

( )3
3( )

2
M M

c
F Fmx cx k x x N t
d d

+ + − + =   (6.4) 

 
from which the potential U(x) for the system is obviously of this form 
 

 2 4
3

1 1( ) ( )
2 4 2

M M
c

F FU x k x x
d d

= − +  (6.5) 

 
The distance d between the two magnets can be adjusted in Equation (6.5) and it is also 
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apparent that the value of c Mk F d−  can become negative and lead to the possibility of 

bistability. The condition is necessary and sufficient as a basic requirement for the occurrence of 
stochastic resonance.  

 
6.2.2 Non-contacting actuator 

 
In order to achieve stochastic resonance an electromagnet was used as a non-contacting 

actuator in conjunction with a further magnet fitted to the underside of the cantilever beam and 
positioned just above the electromagnet, so that a periodic force excites the cantilever beam 
when a periodic voltage is applied to the electromagnet coil. It should also be mentioned that the 
non-contacting actuator may excite higher modes, thereby reducing the performance of the 
harvester, even though the resonator is designed and modelled assuming that it mainly operates 
in the first mode. Referring to the schematic of Figure 6.1, h is defined as the distance from the 
electromagnet to the undeflected position of the cantilever beam, and x0 as the displacement of 
the magnet attachment point on the beam. Therefore (h+x0) defines the distance between the 
electromagnet and the beam when the system vibrates. FE is the force between the electromagnet 
and the magnet.  

FE reduces nonlinearly as the distance between the electromagnet and the magnet increases, 
and in order to determine this relationship the calibration experiment for FE was carried out by 
means of which the attractive force was measured over a distance of 1 mm to 16 mm. It was 
found that the force was inversely proportional to the square of the distance, so this relationship 
could be represented approximately by  
 

 2
0( )EF

h x
λ

=
+

 (6.6) 

 
The quantity λ  is a system dependent constant, and the calibration experiment showed that 

28λ =  for an almost perfect fit between the observed results and those predicted by Equation 
(6.6). In general it is possible to write this as, 
 

 
2

0 0
22 2 2

0 0

1 2 ( )
cos( ) cos( )

( ) 1 ( )
E

x h x h
F t t

h x h x h

λ λω ω
 − + = =

+  − 
 (6.7) 

 
where x0 is the peak vibration displacement of the attachment point of the magnet on the beam 
which now has to be related to the beam displacement x at the location of the end mass. The 
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static deflection formula for a cantilever can readily be used to define this relationship since it is 
physically similar in shape to the first bending mode. The formula is given by 
 

 
2 3

0 2 3

3( , ) ( , )
2 2
y yx y t x l t
l l

 
= − 
 

 (6.8) 

 
where x is the horizontal location along the beam axis, and l is the length of the beam. In the 
experimental system this relationship was found to be x0 = 0.25 x.   

One can generally observe that when the cantilever beam vibrates x0 is negligible when 
compared with h, namely that x0 <<h. Therefore, when the nonlinear term (x0/h)2 is neglected 
and x0 = 0.25 x is applied to Equation (4.7) it can be simplified down to 
  

 0
2 2 3(1 2 )cos( ) ( )cos( )

2E
x xF t t

h h h h
λ λ λω ω= − = −  (6.9) 

 
It is significant to note that one of the two terms representing the amplitude of the force FE 

contains x, and that this will lead to a parametric excitation term in the equation of motion. 
Following on from this the equation of motion for the practical system can now be written in 
full, 
  

 ( )3
3 2 3( ) ( )cos( )

2 2
M M

c
F F xmx cx k x x N t t
d d h h

λ λ ω+ + − + = + −   (6.10) 

 
As mentioned above, conventionally the frequency of the small-scale periodic force required 

to achieve stochastic resonance is in a relationship with the Kramers rate [105]. When the 
system is lightly damped, it can be defined by  

 

2

exp
2 4

n
K

kr
D

ω
p α

 
= − 

 
                         (6.11) 

 

where 2n k mω =  is the natural frequency around the equilibrium points. The value of the 

excitation frequency is clearly dependent upon the noise density D , stiffness coefficients k , 
and α .  
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It should be noted that when the excitation frequency is half the maximum value of the 
Kramers rate, stochastic resonance will occur by means of the definition already stated. 
Contrary to this, when the excitation frequency exceeds that value then stochastic resonance 
cannot occur. Therefore, the reference value of excitation frequency ω  for stochastic 
resonance can be represented by, 

 

 lim lim
12
2 2

n
Kr

ω
ω π= =

 

 
(6.12) 

 
 
6.3 Further improvement 
 

The study in Section 6.2 is based on the premise that the frequency of the periodic input must 
necessarily be determined by the Kramers rate, which is the transition frequency between the 
two potential wells of the bistable system. To calculate the value of the Kramers rate, the 
physical parameters, such as linear, nonlinear stiffness and noise density should be measured 
with the premise that the stiffness nonlinearity of the bistable device can be accurately modelled 
by a cubic polynomial. However, it is usually more applicable to characterize it using the higher 
order polynomial under practical conditions. Furthermore, the intensity of the noise excitation is 
rather difficult to measure in practice despite it being a necessary parameter for determining the 
value of the Kramers rate. To get round these problems, square-wave-driven stochastic 
resonance has been proposed. This approach differs fundamentally from the traditional method 
of directly adding a periodic modulating excitation to the random excited system and is based 
on the application of a simple closed-loop control law, thereby eliminating the need to 
determine excitation frequency by estimating the physical parameters and noise density.  
 
6.3.1 Methodology 
 

To achieve stochastic resonance without needing to determine the excitation frequency, that 
is, by measuring the physical parameters in Equation (6.11), another approach of 
square-wave-driven stochastic resonance is proposed by introducing an additional force as 

 

( ) ( )sgnt G xg =                               (6.13) 
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where G  is a positive constant. This force can be characterized by a square wave and follows 
the direction of the response velocity. In addition to the system being excited by the ambient 
vibration force, when the low-level additional force ( )tγ , is applied, the system’s dynamics is 

described as 

 

( ) ( )3mx cx kx x t N tα γ+ − + − =                       (6.14) 

 

The potential associated with the system described by Equation (6.14) can be correspondingly 
expressed as 

 

( ) ( )2 41 1,
2 4

U x t kx x t xα γ= − + −                       (6.15) 

 
Figure 6.2. Changes in the double-well potential under the additional force. 

 

The amplitude of the additional force ( )tγ  can also be used to express the degree of 

asymmetry of the potential wells. There are two kinds of interpretation that can be applied to 
( )tγ . The intuitive physical explanation is that it is a force follows the direction of the response 

velocity of the mass in the bistable system, and that this helps the mass jump between the 
symmetrical wells of the potential. The other, albeit non-physical, explanation is simply that 
( )tγ  is a convenient means to modulate asymmetrically the shape of the potential. Figure 6.2 

illustrates the variation in the potential arising from this additional force, ( )tγ , showing the 

potential in two differently biased asymmetrical forms. The arrows represent the direction of 
movement of the magnetic end mass. Assuming that the mass is moving within the left well of 
the potential from point P1 where ( )tγ  equals G  to point P2 where ( )tγ  is set to be G− , it 
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jumps to point P3 changing instantaneously its potential whilst the displacement shows no 
change. Then, within the right well of the potential, the mass moves to point P4 with ( )tγ  
equal to G− , and finally returns to the starting point P1. However, in practice, mainly because 

of losses through mechanical damping and the efficiency of the electricity transducer, any 
excess in the input energy (provided by the additional force) cannot be completely dissipated by 
the electrical damper. Nevertheless, it is necessary to subtract the energy provided by the 
small-scale additional force to calculate the net energy. This will decrease the net energy that 
can be harvested from the external ambient vibration. Therefore, the amplitude of the additional 
force should be appropriately chosen to establish optimal conditions. To provide guidance for 
selecting such amplitude of the square wave force, we write the partial derivative of the 
potential in Equation (6.15) with respect to x  and set it equals to zero as 

 

3( , ) ( ) 0U x t kx x t
x

α γ∂
= + − =

∂
                        (6.16) 

 

when Equation (6.16) has only two different roots, it shows that the system is in the transitional 
state between bistablity and monostablity. The threshold of the parameter ( )a tγ  can be given 

by  

 

3

( ) 2 3
9a

ktγ
a

= ±                             (6.17) 

 

It should be mentioned that because the additional force is a square wave, it only has two 
values with opposite signs. The system maintains bistability when the amplitude of the 
additional force is smaller than ( )a tγ . Under this condition, the derivative of the potential 

wells has three roots and it denotes bistability. However, when the amplitude of the additional 
force is bigger than ( )a tγ , there is only one root, meaning a single potential well and the 
bistability disappears. The coefficient G  should be smaller than ( )a tγ , because the mass can 

already switch between the potential wells even if only under the additional excitation, that 
becomes excessive.  

 

6.3.2 Performance estimation  
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Different from the source of ambient random vibration that is inherent to the system to be 
harvested, the small-scale periodic input was manually added and should be subtracted from the 
total harvested energy for comparison. This particular work was not involved in the previous 
study. To assess the effectiveness of use of stochastic resonance for vibrational energy 
harvesting, the power dissipated by the damper is investigated. The net power under stochastic 
resonance should be compared with the case that the energy harvester is only excited by the 
random excitation. The net power dissipated by the damper will now be investigated. Equation 
(6.14) can be rewritten as 

 

( )2 3mxx cx kxx xx t x mxXα γ+ − + = − 

                         (6.18) 

 

and re-expressed as 

 

( )2 2 4 21 1 1
2 2 4

d mx k x x cx t x mxX
dt

α γ − + + = − 
 



                 (6.19) 

 

Equation (6.19) effectively describes the conversion of energy within the bistable system. The 
rate of change of the kinetic energy, 2 2mx , and the potential of the mechanism, 

2 42 4k x xα− + , equals the instantaneous external excitation and the additional force input 
[83]. Clearly, 2cx  represents the instantaneous energy dissipated by the damper. The energy 
input of the additional small-scale force is expressed by ( )t xγ   and is always non-negative 
because ( )tγ  is a force that follows the magnetic end mass. mxX− 

  is the input energy from 
the external ambient vibration. To estimate the net power of the mechanism under stochastic 
resonance, the power provided by the additional force ( )tγ  is subtracted from the total power. 
Therefore the instantaneous net power can be defined by  

 

( ) ( ) ( ) ( )2
net d cP t P t P t cx t xγ= − = −                     (6.20) 

 

where ( )netP t  is the net power, ( )dP t  the total dissipated power by the damping, and ( )cP t  
the power consumed by the additional force. The net energy during a period of duration 0t  is 

given by 
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( )0

0

t

net netE P t dt= ∫                           (6.21) 

 
6.4 Numerical and experimental validation 
6.4.1 Enhanced energy harvesting 

 
 Parameter identification 
 

To prepare the harvesting experiment, it is necessary to confirm three important parameters, 
which include the normal natural frequency of the cantilever beam, the frequency range of the 
periodic modulating excitation, and the distance between the magnets for bistability. Especially, 
when the predominant frequency of the ambient vibration is close to the normal natural 
frequency of the cantilever beam, the vibration will be enhanced correspondingly. In order to 
distinguish the effect stochastic resonance from the normal resonance it is necessary to analyse 
the normal natural frequency and the frequency range of the periodic modulating excitation for 
stochastic resonance, respectively. Therefore, in the first step, the normal resonance frequency 
of the cantilever beam was investigated in the monostable system without the counterpart 
magnet. Moreover, considering the influence of the end magnet on the cantilever beam the 
natural frequencies of the cantilever beam were measured with and without the ending magnet 
fitted, and the natural frequencies were processed by spectral analysis. The results of the natural 
frequencies of the cantilever beam were found to be 5.5 Hz and 5.0 Hz for the cases with and 
without the ending magnet fitted, respectively.  

However, the frequency range of the periodic modulating excitation for stochastic resonance 
is different from the natural frequency of the cantilever beam. The parameter c Mk k F d= −  in 

Equation (6.2) changes while the beam vibrates because of the variation in FM. The preliminary 
experiment showed that the maximum peak displacement of the cantilever beam was about 25 
mm, so a force transducer could be used to measure the vertical elastic force FV, and FM can be 
given by,  
 

 
2 2

M V
x dF F

x
+

= ⋅  (6.22) 

 
According to Equation (6.22), the corresponding minimum value for FM is then FM (x= 25 

mm) = 2.83 N, and therefore a maximum numerical value for linear stiffness can be calculated 
as follows, 
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 min
2.83( ) 46.15 24.5
0.04

M
c

Fk k
d

= − = − =  (6.23) 

 
Using the calculated value, the parametric excitation frequency was found to be 2.76 Hz for 

stochastic resonance, as predicted by Equation (6.12). When the system vibrates FM will be the 
same as or a little bigger than FM (x = 25mm), therefore the central value of the parametric 
excitation frequency should be around about, or just a little bigger than 2.76 Hz to ensure that 
stochastic resonance occurs.  

In addition to this, a preliminary experiment was also carried out in order to determine the 
relatively optimal inter-magnet distance d for bistability. A harmonic ambient vibration of 
amplitude of 5 mm and frequency of 5 Hz was used to excite the experimental harvester, when 
the distance is 30 mm, 40 mm, and 50 mm, respectively. The experimental result indicated that 
the magnetic force drops almost to zero when d exceeds 50 mm, and the beam can only vibrate 
in one stable state and cannot then jump into the bistable state when it is less than 30 mm. It was 
observed that the system readily becomes bistable and the response is correspondingly stronger 
when d is 40 mm. Therefore, the 40 mm distance between the magnets was adopted in the 
following experiments. 

 
 Experimental trials 

 
The schematic diagram of the experimental system with the necessary instrumentation 

connected is shown in Figure 6.3. A signal generator (Iwatsu type SG-4105) was used to provide 
a harmonic voltage to drive the linear power amplifier which in turn drives the electromagnetic 
non-contact actuator. The ambient vibration was provided by a large-scale vibration generator 
(Mitsubishi, Japan), which could generate white noise and harmonic vibration over a range of 
amplitudes of 0 to 10 mm and, in the harmonic case, frequencies between 0 and 12 Hz.  

A high-precision laser vibrometer (Kyence Types IL-300 and IL-1000) was used to measure 
the displacement of the cantilever beam together with an accelerometer. A Rion PV-08A 
piezoelectric accelerometer and a charge amplifier were used to measure the acceleration of the 
end magnet of the cantilever beam. The experimental data was all recorded on a computer. 

 



177 
 

   

Figure 6.3. Schematic diagram of the experimental harvester with instrumentation. 
 

 
A harvester was designed as shown in Figure 6.4. The harvester was constructed around a 

rigid aluminium frame sub-system of length 700 mm, width 280 mm, and height 120 mm, a 
cantilever beam of aluminium alloy, two magnets, and an electromagnetic non-contacting 
actuator for the provision of the periodic excitation.  
 

 

Figure 6.4. Bistable harvester for stochastic resonance. 
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corresponding force which can be accurately calibrated as a function of amplifier input voltage. 

The cantilever beam has a readily computable elastic characteristic, with suitable design 
specifications presented in Table 6.1. According to the design parameters in Table 6.1 the 
linear spring stiffness k in Equation (6.3) is calculated to be 46.15 N/m. 
 

Table 6.1. Specifications of the cantilever beam. 

Parameters Values 

Length 550 mm 
Width 30 mm 
Height 2 mm 
Young’s modulus  70 kN/mm2 
Area moment of inertia 20 mm4 
Density 2800 kg/m3 

 
Two square neodymium magnets of dimensions 30 mm × 10 mm × 10 mm were fitted to the 

system. One of the magnets was attached as a mass at the free end of the cantilever beam and 
the other was fixed to the frame side member, in order, as a pair, to provide the nonlinear 
magnetic force FM. One of the most important factors underpinning the effectiveness of the 
magnets is the distance d between them, and a calibration experiment was carried out to check 
the optimal value of d for bistability.  

As is shown in Figure 6.5, the ambient vibration from the vibration generator is Gaussian 
white noise defined by ( ) 2 ( )N t Dg t= , with D = 6 mm and operating over a band width of 0 
to 10 Hz. The signal amplifier provides a variable current gain and the electromagnetic actuator 
generates an adjustable frequency f for the periodic modulating excitation. A laser vibrometer 
was used to measure the displacement of the cantilever beam. 
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Figure 6.5. Random excitation characteristics of the ambient excitation: (a) displacement 
and (b) power spectrum. 

 
In order to generate stochastic resonance the ambient excitation and the periodic modulating 

excitation must be input to the system together. A comparison was made between excitation 
only through the white noise ambient vibration and also for the case when only the modulating 
vibration is applied. A third set of results is provided for the case when both excitations are 
applied together. The response displacement of the end mass of the cantilever beam is shown in 
Figure 6.6 for the first case, and it can easily be observed that the cantilever beam is unable to 
jump periodically between the two potential wells. 
 

 
 

Figure 6.6. Response displacement solely under ambient vibration. 
 
Conversely, Figure 6.7 presents the response displacement just for the periodic modulating 

excitation, operating at the discrete points of 0.2 Hz, 0.5 Hz, 1.0 Hz, 2.0 Hz, 3.0 Hz, 5.0 Hz and 
6.0 Hz, respectively. It is observed that in the second case the periodic modulating excitation 
acting alone is also unable to push the cantilever beam into the bistable condition.  
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Figure 6.7. Response displacements solely under the periodic modulating excitation at different 
discrete frequencies: (a) 0.2 Hz, (b) 0.5 Hz, (c) 1.0 Hz, (d) 2.0 Hz, (e) 3.0 Hz, (f) 5.0 Hz, and (g) 
6.0 Hz, respectively (Experimental results). 
 

Figure 6.8 shows the response displacements of the cantilever beam under different 
frequencies of the periodic modulating excitation when simultaneously applied with the ambient 
noise vibration. 
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According to the results in Figure 6.8, when the frequency of the periodic modulating 

excitation is either 2.76 Hz or 3.0 Hz the response displacements of the cantilever beam are 
enhanced through clear progression into the bistable condition. However, when the frequency is 
shifted to 4.0 Hz, the amplitude of the response displacement decreases again. When the 
frequency of the periodic modulating excitation is 5.0 Hz (near to the natural frequency of 
damped vibration of the cantilever beam), the response displacement is more intense for a time 
than for 4.0 Hz but weaker than when it is at 2.76 Hz and 3.0 Hz. It becomes generally weaker 
again when the periodic modulating excitation frequency exceeds 6 Hz. Therefore it is 
considered that when the periodic modulating excitation frequency is in the region of 2.76 Hz to 
3.0 Hz then stochastic resonance occurs, and the harvesting response of the system is 
considerably enhanced. 

 
Table 6.2. Parameters used for simulation. 
 

Parameter Value Unit 

m 0.045 kg 
c 0.019 Ns/m 
k 24.5 N/m 
α  1.45×105 N/m3 

Periodic force amplitude 0.0016 N 

 
A series simulations under the same specifications are also conducted. Table 6.2 show the 

parameters used for simulation, which also represents the parameters of the experimental 
device.  

Figure 6.9 presents the response displacement just for the periodic modulating excitation 
under different excitation frequencies. Similar results can be found to the experimental series, 
the cantilever beam only vibrate within one potential well. 

Figure 6.10 shows the response displacements of the cantilever beam under different 
frequencies of the periodic modulating excitation with the action of the ambient noise vibration. 
It can be noted that stochastic resonance occurs when excitation frequency of the periodic 
excitation is in around 2.7 Hz to 3 Hz, which meets the experimental results. 

Figure 6.8. Response displacements under the ambient vibration together with the periodic 
modulating excitation applied at different frequencies: (a) 0.2 Hz, (b) 0.5 Hz, (c) 1.0 Hz, (d) 
2.0 Hz, (e) 2.76 Hz, (f) 3.0 Hz, (g) 4.0 Hz, (h) 5.0 Hz, (i) 6.0 Hz, (j) 8.0 Hz, and (k) 10.0 Hz 
(Experimental results).  
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Figure 6.9. Response displacements solely under the periodic modulating excitation at different 
discrete frequencies: (a) 0.2 Hz, (b) 0.5 Hz, (c) 1.0 Hz, (d) 2.0 Hz, (e) 3.0 Hz, (f) 5.0 Hz, and (g) 
6.0 Hz, respectively (Numerical simulation results). 
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6.4.2 Further improvement 

 

Another novel approach to achieve stochastic resonance is shown in this section, and a new 
energy harvester (Figure 6.11) is designed, three permanent magnets of the same parameters are 
arranged in an attractive configuration, although the 0.0225 kg magnetic end mass of the 
piezoelectric beam with length × width × thickness of 300 × 20 × 1 mm. is displaced 
horizontally by a small distance d  with respect to the two vertically fixed permanent magnets 
(top and bottom magnets). These fixed magnets are symmetrically attached by sliders to a rail 
that allow distance h  to be adjusted equally on either side of the end mass. Similarly the 
horizontal distance d  between the small magnets and the magnetic end mass can also be 
adjusted. To achieve stochastic resonance two electromagnets are used as an actuator in 
conjunction with a small permanent magnet, which is attached to the beam at a distance 193 mm 
from the magnetic mass, so that an additional force excites the beam when a square wave 
voltage is applied to the electromagnets. The electromagnets are fitted symmetrically disposed 
at a distance of 31.7 mm either side of this small permanent magnet. The outer diameter and 
length of the coil are 13 and 40 mm, respectively.  

 
Figure 6.11. Schematic of the bistable vibrational energy harvester. 
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Figure 6.10. Response displacements under the ambient vibration together with the periodic 
modulating excitation applied at different frequencies: (a) 0.2 Hz, (b) 0.5 Hz, (c) 1.0 Hz, (d) 
2.0 Hz, (e) 2.76 Hz, (f) 3.0 Hz, (g) 4.0 Hz, (h) 5.0 Hz, (i) 6.0 Hz, (j) 8.0 Hz, and (k) 10.0 Hz 
(Numerical simulation results).  
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The potential energy of the magnetic end mass can be derived using the dipole model as 

 

( )
2

0 ( ) ( )
4m

vU h x h xm
π

= Φ + +Φ −                      (6.24) 

 

where 7
0 4 10 H mm π −= ×  is the permeability of free space, v  the volume of each permanent 

magnet, and the function ( )xΦ  is defined by 

 

( )( )
( ) ( )5/2 3/22 2 2 2

3
( ) cy cx fy fx fy cy fx cxdM xM dM xM M M M M
x

d x d x

+ + +
Φ = − +

+ +        (6.25) 

 

where cxM , fxM , cyM , and fyM  are the magnetization amplitudes of the magnetic end mass 
and the fixed magnets in the directions x  and y , respectively. 

The values of d  and h  can be adjusted to change the corresponding value of the potential 

mU  for the permanent magnets. The corresponding magnetisation strengths were chosen for the 

fixed magnets and the magnetic end mass to be 59 10 A mfx cxM M= = − × . Note that fxM  and 

cxM  should be of the same sign, indicating polarity, so 58 10 A mcy fyM M= − = − × . 

Considering the role of the beam and choosing dimensions of length 30mm , width 10 mm , 
and height 10 mm , by setting different values of distance d  and h , the restoring force and 

potential energy can then be plotted against the displacement of the magnetic end mass (Figures 
6.12 to 6.17).  
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Figure 6.12. Restoring force against the displacement of the magnetic end mass ( d =15mm). 

 

 

Figure 6.13. Potential energy against the displacement of the magnetic end mass ( d =15mm). 
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Figure 6.14. Restoring force against the displacement of the magnetic end mass ( d =17mm). 

 

 

Figure 6.15. Potential energy against the displacement of the magnetic end mass ( d =17mm). 
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Figure 6.16. Restoring force against the displacement of the magnetic end mass ( d =21mm). 

 

 

Figure 6.17. Potential energy against the displacement of the magnetic end mass ( d =21mm). 
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In this work, two adjustable distances are set as 17 mmd =  and 52 mmh = . Clearly, two 

stable equilibria exist, so it can reasonably be assumed that the magnetic end mass is initially in 
one of the two symmetric equilibria corresponding to one of the two available potential wells.  

 

 Instrumentation and measurement 

 

A laboratory-scale experimental device has been designed and fabricated to illustrate the 
theory described in Section 6.3 (see photo of the energy harvester in Figure 6.18). A modal 
shaker table (m060, IMV Corp., Japan) driven by an power amplifier (MA1, IMV Corp.) is used 
to provide the random excitation. The displacement and velocity of the magnetic end mass are 
measured using a (IL-300, KEYENCE Corp.) laser displacement sensor and a directly mounted 
(PV-08A, RION Corp.) velocity micro-sensor at the sample frequency of 100 Hz. The measured 
velocity signal is used as the feedback to control the electromagnets in real time based on the 
rule shown in Equation (6.13) by a dSPACE 1103 controller, and the output control signal is 
amplified by a linear power amplifier (LPA01, TOYO Corp.) to the electromagnets generate a 
corresponding force which can be accurately calibrated as a function of amplifier input voltage. 
Data is acquired using a midi data logger (GL900, Graphtec Corp.). An overview of the 
experimental setup is shown in Figure 6.19. 
 

 

Figure 6.18. Photo of the experimental system. 
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Figure 6.19. Schematic of the experimental setup used in tests. 

 

 
Figure 6.20. Fitted curve for the interaction force between the permanent magnet and the flux 

generated by the electromagnets. 

 

The main aim of the experiment was to verify the possibility of achieving stochastic 
resonance using the proposed principle, and to compare the net available energy under the 
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condition of stochastic resonance with that available when only the random excitation is applied 
to the oscillator. The input to the electromagnets was calculated, mainly because of their 
relatively low efficiency. The two electromagnets are connected in series and operate with a 
supply voltage of 3 V. A fitted curve for the amplitude of the interaction force between the 
permanent magnet and the flux generated by the electromagnets is shown in Figure 6.20. The 
interaction force is measured by a digital force gauges. The best-fit force-displacement 
relationship used is given by 

 

( ) 6 4 5 3 5 2 43.598 10 2.157 10 2.304 10 6.413 10 0.04961EF x x x x x− − − −= × − × + × − × +  (6.26) 

 
This interaction force is not fully symmetrical because of the effect caused by the interaction 

force between the small permanent magnet and the iron cores of the electromagnets. It can also 
be noted that the amplitude of the force is not kept constant. However, small variation can be 
observed within certain displacement, thereby an approximate square wave is applied on the 
mass.  

To evaluate the net energy from stochastic resonance, the energy input from the 
electromagnets should be subtracted from the total energy dissipated through damping in the 
system. However, when the mechanical quality factor is low, a considerable part of the 
mechanical energy is transformed into heat, and this just serves to decrease the available energy. 
Xu et al. [106] proposed, and experimentally confirmed, the power that can be delivered from a 
PZT-Stack system to a resistive load. In the quasi-static regime, 70% of the generated electrical 
power was delivered to a matched resistive load, with a 35% mechanical to electrical energy 
conversion efficiency. This result significantly exceeds that of other reports. However, it can 
still be seen that the conversion efficiency is still very low when both the mechanical and 
internal resistance losses are considered. Therefore the total damping, including both the 
mechanical and electrical damping effects, was measured to calculate the total dissipated 
energy. 
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Figure 6.21. Velocity vs displacement phase trajectories of the magnetic end mass when only the 

additional force is applied to the device. 

 

The method of conservation of energy was used to measure the total damping, as shown in 
Equation (6.27). All the energy input of the electromagnets is dissipated by the damping. In this 
method only the force provided by the electromagnets is applied to the oscillator without the 
noise excitation, and a very small perturbation is needed to start the oscillator off initially. Thus, 
portions of the time domain response of the magnetic end mass are shown in Figure 6.21. The 
total damping of this particular system is estimated to be 0.0401Ns m . 

 

( )( )0 2

0
0

t
cx t x dtγ− =∫                         (6.27) 

 

 Experimental results 

 
The responses of the mechanism were investigated with and without the small-scale 

additional force. The external ambient force was provided throughout by random excitations. 
The corresponding comparison of the displacement vs velocity phase trajectories of the 
magnetic end mass is shown in Figure 6.22. Compared with the responses of the unforced 
condition, the mass is seen to fluctuate between the two potential wells in a state of stochastic  
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Figure 6.22. Velocity vs displacement phase trajectories of the magnetic end mass: unforced system 
(solid line) and forced system (dashed line). 

 

resonance with large amplitude displacements and velocities. After adding the random 
excitation to the system, the vibration intensity also becomes much stronger when compared 
with that of Figure 6.22. Therefore the dissipated energy by the damper is greatly enhanced.  

Figure 6.23 shows the instantaneous power dissipated by the damper with and without the 
additional force, and the net cumulative energy from both cases is also compared. Although the 
energy consumed by the additional force should be subtracted, under the additional forcing of 
( )tγ , the net energy from the external random excitation is still found to be several times 

greater than that of the unforced system. Note also that the presence of mechanical damping and 
internal resistance will decrease the energy that can be practically harvested. However, if more 
than 54.3% of the mechanical power can be delivered to a resistive load, then the practical 
harvested electrical energy under stochastic resonance will be noticeably higher than that of the 
unforced system.  
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Figure 6.23. Instantaneous power and cumulative energy of the forced and unforced systems: 

dissipated power from the unforced system (green line), net power from the forced system (blue 

line), net cumulative energy available from the device with forcing (red line), and without forcing 

(yellow line). 

 
It has been shown through experiment that the proposed method of square-wave-driven 

stochastic resonance can enhance the availability of harvestable energy from the external 
ambient vibration. It is a different approach to achieving stochastic resonance that uses a 
periodic modulating force, with the advantage that there is now no need to estimate the forcing 
frequency from the noise density using the Kramers rate. It is therefore a potentially easier 
method to apply.  

However, it should be understood that the application of stochastic resonance for energy 
harvesting requires a relatively high efficiency of conversion from mechanical into electric 
energy, because an additional force is manually provided. Improvements to the intrinsic 
conversion efficiency of piezoelectric materials may well deliver a practical convenient solution 
to this requirement. The external mechanical energy loss is also a very important factor to be 
considered, manifested, for instance, as aerodynamic damping. More effective ways to apply the 
necessary additional force is to be further explored in future work. The theoretical and 
experimental work reported here provides a simple form of a precursor technology from which 
alternatives to achieving stochastic resonance can be developed further.  
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6.5 Summary 

 

  This chapter proposed a novel concept of enhancing the performance under random 
excitations by application of the theory of stochastic resonance. The occurance of the stochastic 
resonance is conventionally based on the theory of Kramers rate, which is used to determine the 
excitation frequency of the periodic force for achieving stochastic resonance. However, 
considering the difficulty of the parameters measurement and estimation, another approach of 
the square-wave-driven stochastic resonance is also proposed, and its principle is illustrated 
based on the experimental investigations. It is validated that both of the approaches is a effective 
method for enhancing randomly excited vibrational energy harvesting.  
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Chapter 7 

 

Conclusions 
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7.1 Conclusions 

 
Investigation on energy harvesting from ambient vibration has attracted the interest of many 

researchers in the last decade. Contributing to the hot topic, this thesis focused on various 
aspects of energy harvesting from ambient vibration, to enhance harvesting capacity of 
monostable and bistable Duffing nonlinear oscillators under harmonic and random excitations.   

This paper begins with detailed reviews about various methods to broaden the bandwidth of 
the energy harvesters, and pay specific attentions on nonlinear energy harvesters. And, the 
performances are overviewed for the monostable and bistable energy harvesters under harmonic 
and random excitations.It was validated that the monostable nonlinear energy harvester hold 
wider response bandwidth under harmonic excitations, due to the coexisting high- and 
low-energy solutions. However, if the harvester’s response happens to fall into the low-energy 
solution, the improved performance achieved by the nonlinear harvester will be significantly 
impaired. Hence, rational mechanism should be developed that can ensures stable high-energy 
solution regardless of initial conditions and disturbances, to achieve high performance of the 
nonlinear harvester.  

In Chapter 3, an original model was proposed as a stiffness tuning method, in which the linear 
and nonlinear stiffness can be adjusted by changing the distance between the permanent 
magnets, which can result in shifting the frequency response curve and triggering the jump from 
low- to high-energy orbit, without changing the frequency or the amplitude of the excitation. 
Through a theoretical and experimental investigation, the monostable energy harvester can 
trigger a jump to the desirable state, accompanying with broadened bandwidth and boosted 
response. However, it consumes extra electrical energy for this method. Therefore, another 
approach with the damping variation is proposed with the advantage that it requires little energy 
consumption, which is a considerable benefit for the practical implementation of the energy 
harvester.  

The stabilised operating point of the energy harvester on the high-energy orbit is just a 
precondition. It is still needed to optimise the parameters of the energy harvester for maximum 
power output. However, there is little literature on the optimisation of the nonlinear energy 
harvester. Therefore, in Chapter 4, the optimisation of the monostable energy harvester is 
investigated, and the optimisation principles under general conditions are concluded with the 
consideration of two kinds of electrical transducers, namely the inductive and piezoelectric 
types. Moreover, under practical conditions, both the stroke of the device and the available 
electrical damping of the damper are considerably limited; therefore, the optimisation work is 
also conducted under the constrained response displacement and electrical damping conditions.  

The above work provides a detailed design principal for the practical implementation of the 
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monostable nonlinear energy harvester under harmonic excitations. When a Duffing-type 
monostable harvester is employed for energy harvesting under harmonic excitations, either the 
stiffness or damping tuning method can be used to ensure the operation of the high-energy orbit, 
then to maximise the output power according to the proposed optimisation rules. Although the 
stiffness tuning method consumes extra electrical energy, it can achieve the complete 
two-parameter optimisation. For the damping tunable method to stabilise the higher energy orbit, 
its apparent advantage is little energy consumption for the tuning process but also with a smaller 
frequency tuning range. 
  Given stochastic nature of ambient vibration sources, linear and nonlinear energy harvesters 
under random excitations had been investigated in the previous studies; however, their 
performance is still unclear with conflicting conclusions. In Chapter 4, a comprehensive 
investigation was processed for the monostable, bistable, and linear harvesters under the 
band-limited random excitations. In general, the bistable energy harvester can achieve higher 
performance than the linear configuration, when the time-varying of the excitation parameters is 
taken into consideration, while the monostable hardening-type energy harvester drops into the 
lowest performance. Therefore, the hardening-type monostable configuration should be avoided 
under band-limited random excitations. Conversely, the linear configuration is a preferable 
candidate for a given band-limited excitations with specific parameters. 
  For the band-limited noise excitation, the performance of different energy harvesters is also 
investigated, considering the influences of the constrained electrical damping and displacement. 
It is found that the bistable energy harvester requires overall lower optimised electrical damping, 
which is an obvious advantage for practical application. For the condition of constrained 
displacement, there is a minimum stroke requirement for the bistable system because the 
existence of the equilibrium points. However, the hardening effect of the bistable configuration 
under relatively larger excitation levels also tends to prevent the further increasing of the 
response displacement. Relative to the linear energy harvester, it is found that the higher 
performance around the fundamental frequency will be impaired because of the displacement 
constraint for the bistable configuration. 

To further improve energy harvesting efficiency under random excitations, the theory of 
stochastic resonance is applied for a bistable energy harvesting device. By the theoretical and 
experimental validations, the proposed method can obviously enhance the availability of 
harvestable energy from the external random vibration. In this case, the energy harvesting 
capacity can be several times than that of the common bistable energy harvester, even though it 
is limited in the arrangement of weakly periodic signal and ambient noise for the nonlinear 
system. 
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7.2 Significance of this thesis 

 
This thesis is actually the enhancement of architecture of the field of nonlinear vibrational 

energy harvesting, the significance of the work are: 
(1) For harmonic-excited energy harvesting using the monostable nonlinear energy harvester, 

the thesis solves the problem of how to guarantee the operation of the energy harvester on 
the high-energy branch, especially the proposed damping tuning method in Chapter 3, it 
doesn’t consume additional energy, which is an obvious benefit for improving the 
self-sustainable ability of the practical energy harvesting. 

(2) This thesis outlined the optimisation principles for the monostable nonlinear energy 
harvesting, which can be applied for the practical design of the energy harvesting device. 
This work also revel one advantage of the nonlinear energy harvester: the frequency tuning 
can be achieved by modifying the electrical damping (load resistance), and without the 
need to employ reactive loads as required for the linear energy harvesters. 

(3) For random-excited energy harvesting, this study processed a comprehensive parameter 
interpretation on the performances of three kinds of most typical configurations, including 
linear, monostable, and bistable harvesters; meanwhile, the design guidance was collected 
for the random-excited energy harvesting. Generally, for a given band-limited noised 
excitation, the linear energy harvester can present the highest performance. However, when 
the practical conditions, such as the limited electrical damping and stroke of the device, and 
the variation of the excitation frequency range are taken into consideration, the bistable 
becomes the best candidate, because it is less sensitive to the variation of the excitation 
parameters, especially the low frequency area, and the low requirement of the electrical 
damping, also the smaller response displacement under large enough excitation levels. 

(4) This thesis also explores and validates the feasibility of actively increasing the available 
energy from the random vibration source using the theory of stochastic resonance. As long 
as the required additional force can be effectively applied, this approach can be a promising 
way to improve the energy harvesting performance under random excitations. 
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