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Chapter 1

Introduction

1.1 Plasma flow simulations

In recent years, the importance of plasma flow simulation has been increasing in many

fields of science and engineering. One of the characteristics of plasma flow simulation

is characteristic speeds existing in wide range. Generally plasma simulations handle

ions, electrons, neutral particles, and electromagnetic field. Fig. 1-1 presents the

typical characteristic speeds of elements in plasma simulations. For instance, if the

time step is set to calculate the electromagnetic field time-dependently, an enormous

calculation step is needed to observe the phenomena in the time-scale of neutral

particles. Therefore, steady states are assumed for elements which have much high

speed of information compared to the concerned phenomena.

Figure 1-1: Characteristic speeds of elements (governing equations) in plasma simu-
lations.
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There has been a lot of approaches of plasma calculation for various types of

plasmas. Representative models for plasmas are shown in Fig. 1-2. It is noted

that the characterization in Fig. 1-2 is based on the general understanding, and the

location of each model in the map subject to change in the actual codings. Several

numerical models have been proposed to attain reasonable computational cost and

application range suited to the simulation target.

The hybrid model applies the kinetic model for ion motions, whereas the elec-

tron flow is regarded as a fluid. This model has been adopted in many numerical

simulations for various applications such as nuclear fusion,1 space plasma,2 and elec-

tric propulsions. In the calculations using the hybrid model, the target of interest is

generally how the ions are generated and how they are accelerated. Thus, the phys-

ical phenomena in the ion time scale is concerned and the electron flow is typically

assumed to be time constant. In this case, a time-constant electron density is con-

sidered, and the electron flow has a characteristics similar to those of incompressible

fluid. Therefore, the conservation equations of electron fluid have been conventionally

calculated with computational methods for incompressible fluid utilizing elliptic or

parabolic equations.

Figure 1-2: Review of various models for plasma flow simulation.
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1.2 Magnetized plasma flow in Hall thrusters

Hall thrusters are promising technology for high-power electric propulsion system

which enables next-generation missions such as the manned Mars mission and solar

power satellite. The magnetized plasma flow in Hall thrusters can be characterized

by following relations:

Ωe ≫ 1, rL,e ≪ L ≪ rL,i, λm,e ≪ L, (1.1)

where Ωe, rL,e, rL,i, L, and λm,e are electron Hall parameter, electron Larmor radius,

ion Larmor radius, channel length, and electron mean-free path, respectively. The

first relation means that the electron flow is strongly confined by the magnetic field.

The second relation indicates that the finite Larmor radius effect is negligible in the

electron flow, whereas the ion flow is hardly magnetized. The third relation means

that the electron flow in Hall thrusters can be regarded as a collisional flow.

In the development of Hall thrusters, the important role of numerical simulations

is the lifetime investigation. It is known that the factor of lifetime limitation is the

channel wall erosions.3 Since endurance tests for lifetime investigation is costly, the

replacement of experiments by numerical simulations saves a lot of cost and time. A

number of simulations have been conducted for the prediction of thruster lifetime4 and

reduction of wall erosions.5 Recently a technology named “magnetic shielding” has

been proposed.6 A significant reduction of channel wall erosion was observed,7 and

the mechanism of the technology has been investigated by numerical analyses.8 The

magnetic shielding utilizes concave magnetic lines of force toward downstream, which

bypass the channel wall. The future numerical simulations for Hall thrusters should

be capable of two-dimensional calculations for analyzing the effect of complicated

magnetic topology in the magnetic shielding. Therefore, there exists a demand of an

efficient and accurate computational method for two-dimensional calculation of Hall

thrusters.
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1.3 Plasma modelings of Hall thruster discharge

The plasma models for Hall thruster simulations can be categorized into three models:

fully kinetic, hybrid, and fully fluid models. The kinetic model is generally calculated

by using the particle-in-cell (PIC) method. The characteristics of the three methods

are compared in Table. 1.1. Each method is explained in detail in this section.

Table 1.1: Summary of plasma models for Hall thruster simulations.

Model Ions, Neutrals Electrons Cost Reference
Full PIC Particle Particle Large Cho,4 Szabo9

Hybrid PIC Particle Fluid Middle Parra,10 Perez-Luna11

Fully fluid Fluid Fluid Small Mikellides,6 Keidar12

Full PIC method

The full PIC method handles ions, neutral particles, and electrons as particles.

The full PIC method is able to calculate the velocity distribution function of both ions

and electrons. Also, the non-neutral region like wall sheaths can also be analyzed with

the full PIC method. The disadvantage of this approach is enormous computational

cost. Practical codes for Hall thruster simulations using the full PIC method gen-

erally introduce artificial models to reduce the computational cost. Recent works of

numerical simulations using the fully kinetic model are the ones by Cho4 and Szabo.9

Both of these works calculated the motions of ions, neutrals, and electrons by PIC

methods, and the electric field was calculated by the Gauss’s law. The feature of the

Szabo’s work was the use of the artificial mass ratio factor and artificial permittivity.

The feature of Cho’s work was the use of semi-implicit method in addition to the

artificial mass ratio model.

Hybrid model

The hybrid PIC method handles ions and neutrals as particles, whereas electrons

are regarded as fluid. The computational cost is significantly reduced by applying

the fluid approximation to the electron flow. The motions of heavy particles are
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calculated by the PIC method.

In the conventional hybrid PIC method, the magnetized electron fluid is calculated

by using the so-called “quasi-one-dimensional model.” The numerical simulation based

on this model is originally proposed by Fife.13 This code has been improved to include

various physics and the relatively recent code is named HPHall-2.10 The calculation

processes in the quasi-one-dimensional model are illustrated in Fig. 1-3. This model

assumes the isothermal property and the Boltzmann relation along the magnetic lines

of force. An one-dimensional magnetic-field-aligned mesh (MFAM) which has the

magnetic surfaces for mesh boundaries is prepared, and the fluxes flowing across the

magnetic surfaces are integrated into the one-dimensional conservation equation. The

distributions of plasma properties along the magnetic lines of force are determined

based on the isothermal property and Boltzmann relation.

However, the use of the one-dimensional MFAM limits the range of application

to relatively simple magnetic field geometry. The one-dimensional MFAM cannot

be defined in the complicated magnetic topology, such as the ones for magnetically

shielded thrusters. In order to analyze Hall thrusters with complicated magnetic

topology, one needs a computational method which enables the two-dimensional cal-

culation of magnetized electron fluid.

Figure 1-3: Calculation processes in the quasi-one-dimensional model.
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Fully fluid model

The fully fluid model assumes fluid for ions, neutrals, and electrons. Since ions

are regarded as fluid, the kinetic effects of heavy particles are neglected. The advan-

tages of this model is the small computational cost and smooth calculation results.

The computational cost is reduced by assuming fluids for both heavy particles and

electrons, which enables the computation of a large calculation area.14 A represen-

tative work of the fully fluid method is the Hall2De,6 which has been utilized for

investigating the magnetic shielding. The characteristics of this method is the use of

two-dimensional magnetic-field-aligned mesh (MFAM).

However, it is controversial if the fluid model is applicable to the ion flow. In

the Hall thruster plume, a deviation from the Maxwellian distribution was observed

in the ion energy distribution.15 It was reported that one factor of this deviation

is related to the presence charge-exchange collisions (CEX). To permit the existence

of several Maxwellian distributions of different temperatures, one needs to employ a

two- or more temperature model, which degrades the simplicity of the fluid model.

1.4 Statement of issues

The characteristics of the electron fluid in Hall thrusters is the high anisotropy ow-

ing to the strong magnetic confinement. The large difference of electron mobilities

between the tangential and orthogonal directions of magnetic lines of force makes

the computation of the fluid difficult. If the elliptic or parabolic equations are used,

these equations become anisotropic diffusion equations. Numerical instabilities arise

in computing the anisotropic diffusion equation. Further, the disparity of electron

mobilities causes an imbalance of information of speed in different directions, which

results in a slow convergence speed. Also, it is known that the calculation suffers

a large numerical diffusion if the computational mesh is not aligned with magnetic

lines of force.14,16 In order to enable the two-dimensional calculation of magnetized

electron fluids, it is necessary to develop a computational method which can cope

with the above issues.
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1.5 MFAM-based approach and HES approach

Magnetic-field-aligned mesh (MFAM) approach

As described in the previous section, the large disparity in electron mobilities

makes the computation of the magnetized electron fluid difficult. One approach

to solving the magnetized electron fluid is to utilize a magnetic-field-aligned mesh

(MFAM) such as the one in Fig. 1-4.6 In the MFAM, the boundary of each mesh

is precisely aligned with tangential or orthogonal directions of the magnetic lines of

force. The use of an MFAM is effective in reducing the numerical diffusion in the

computation of magnetized electron fluid. The MFAM-based approach has been a

standard approach to calculating the anisotropic magnetized electrons, and MFAM

has been used in many research applications such as ion thrusters and tokamak as

shown in Fig. 1-5.17,18 Although the MFAM is effective in computing the magne-

tized electron fluid, it is not very compatible with the PIC method. The cell sizes

in an MFAM typically significantly varies, especially in the magnetic field geometry

of plasma lens focusing in Hall thrusters. In general, a minimum number of macro

particles of ∼ 50 must be maintained in each cell for calculation stability. In the

MFAM, this criterion should be satisfied in the cell of minimum sizing. Therefore,

if the PIC method is used in the MFAM, one needs to handle quite a number of

macro particles in the calculation region, which results in a large computational cost.

In terms of the compatibility with PIC methods, a simple mesh whose cell sizes are

uniform or varying with plasma density, is preferred.

Figure 1-4: The configuration of a two-dimensional magnetic-field-aligned mesh
(MFAM).

7



Figure 1-5: (Left): An MFAM used for a calculation of ion thruster. (b): An MFAM
used for a tokamak calculation.

Hyperbolic-equation system (HES) approach

In this dissertation, the hyperbolic-equation system (HES) approach for diffusion

equations is considered to overcome the difficulties related to magnetized electron

fluid.19–21 Conventionally, diffusion terms are discretized by central differencing be-

cause they contribute the stability of computation. Instead, the HES approach solves

the diffusion equations by using hyperbolic systems. This approach is supposed to be

beneficial in calculating magnetized electron fluid because the approach may avoid

the issues associated with anisotropic diffusions.

Herein the mathematical concept of the HES approach is briefly explained. Con-

sider a two-dimensional boundary-value problem for u as follows:

−k∇2u = 0, (1.2)

where k(> 0), is a diffusion coefficient. The HES approach divides Eq. (1.2) into

hyperbolic equations as follows:

∂u

∂tp
− k∇ · p⃗ = 0, (1.3)

Tr
∂p

∂tp
−∇u = −p⃗, (1.4)
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where p⃗ is new variables that approach the gradient of u. tp and Tr are pseudo time

and arbitrary relaxation time, respectively. To make the pseudo-time advancement

terms negligible, the calculation is continued until the steady state is attained. In the

steady state, the HES of Eqs. (1.3) and (1.4) is equivalent to Eq. (1.2). Because of

the nature of diffusion, the hyperbolic system has two eigenvalues of the same norm

and different signs, in each direction, as follows:

λx = −
√

k

Tr

,

√
k

Tr

, λy = −
√

k

Tr

,

√
k

Tr

. (1.5)

A similar concept is also used in the pseudo-compressibility method for low Mach

number flows.22

Other approaches in mathematics field

Among the computational methods for elliptic equations, a few approaches pro-

posed in the field of mathematics are reviewed. First, the idea of disintegrating a

second-order differential equation into several first-order equations is utilized in the

mixed finite volume method and mixed finite element method.23,24 However, in these

methods, pseudo-time advancement terms are not introduced, and the system is not

recognized as hyperbolic system. Compared with the mixed-type approaches, the

HES approach has features that it introduces pseudo-time advancement terms and

considers the characteristics of the system in the manner of CFD.

A similar idea to “upwind” is also utilized in the elliptic equation approaches.

In the finite volume methods for elliptic equations, one can consider the diffusion

flux flowing through cell interfaces. Lipnikov used the concept of right- and left-

running waves of information such as the one used in the flux-vector splitting in the

evaluation of the diffusion fluxes.25 Compared with this work, the HES approach

has characteristics in its upwind method which is based on the characteristics of the

system consisting of multiple equations.
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1.6 Objectives and overview of dissertation

There exists a demand of efficient and accurate computational method for magne-

tized electron fluids which satisfies the conservation laws in two dimensions. Numer-

ical simulations of Hall thruster discharges require such a computational method for

analyzing the complicated magnetic field configurations.

The objective of this thesis is to develop a “good” computational method for two-

dimensional magnetized electron fluids, in terms of the properties as follows:

1. Efficiency: the computation is fast.

2. Accuracy: the computation yields accurate and reasonable results.

3. Applicability: the computation is applicable to practical problems.

In order to develop such a computational method for magnetized electron fluids,

the key idea is the Nishikawa’s HES approach. To the best knowledge of the author,

Nishikawa mentioned only HES for isotropic diffusion equations. The objective of this

thesis is the development of the HES approach which copes with the issues associated

with the strong anisotropy of magnetized electron fluids. This thesis proposes an HES

for magnetized electron fluid, and develops a computational method which achieves

the properties listed above by using several CFD techniques.

This thesis consists of mainly four parts. First, the fundamental equations of

magnetized electron fluids are derived in Chapter 2.

In Chapter 3, a hyperbolic-equation system (HES) approach is proposed for mag-

netized electron fluids. By introducing new variables including the gradient of another

variable, the HES of conservation laws is constructed. The HES is stably calculated

by an upwind method. The property “1. Efficiency” is discussed via a test calculation

by comparing the time to convergence with that of an MFAM-based approach.

In Chapter 4, the HES approach is extended to include the conservation equations

of mass, momentum, and energy. To construct an upwind method for the extended

HES, a flux-splitting method is proposed. In this method, the fluxes are split into four

categories, and the upwind directions of each category is considered. The property “2.

Accuracy” is discussed through a test calculation by comparing the mesh convergence
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of electron and electron heat flux with those calculated by an MFAM-based approach.

In Chapter 5, the HES approach is applied to the electron fluid calculation in a

hybrid modeling of the SPT-100 Hall thruster, to check the property “3. Applicabil-

ity.” The satisfaction level of the Bohm criterion for the wall sheathes is checked, to

discuss how accurately the boundary conditions in the electron fluid calculation are

reflected to the plasma dynamics.

The conclusions obtained in this thesis are summarized in Chapter 6.
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Chapter 2

Fundamental equations of electron

fluids

In this chapter, the fundamental equations of electron fluid in quasi-neutral plasmas

are derived. Starting from the Boltzmann equation, the conservation equations of

magnetized electron fluids are derived. In the derivation process, the two important

assumptions: fluid approximation and plasma approximation, are explained.

2.1 Boltzmann equation

In plasmas the motion of a single particle is described by the equation of motion as

follows:
∂r⃗

∂t
= v⃗, (2.1)

m
∂v⃗

∂t
= q

(
E⃗ + v⃗ × B⃗

)
, (2.2)

where m, E⃗, B⃗, r⃗, and v⃗ are particle mass, electric field, magnetic flux density, posi-

tion, and velocity, respectively. The collective behavior of particles can be described

in a continuum approach. The Boltzmann equation treats the velocity distribution

function (VDF) f (r⃗, v⃗, t) to describe the collective motions. The Boltzmann equation
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is described as follows:

∂f

∂t
+ v⃗ · ∇f +

F⃗

m
· ∂f
∂v⃗

=

(
∂f

∂t

)
c

. (2.3)

Here F⃗ is outer force acting on the particles and
(
∂f
∂t

)
c

represents the collisional

effects. In ordinary plasmas, the electromagnetic force is predominant for the outer

force. Thus, by using the electromagnetic force for the outer force, the collisional

Boltzmann-Vlasov equation is obtained as follows:

∂f

∂t
+ v⃗ · ∇f +

q

m

(
E⃗ + v⃗ × B⃗

)
· ∂f
∂v⃗

=

(
∂f

∂t

)
c

, (2.4)

where q is the charge of fluid species. The sign of q is plus for positive ions, and minus

for electrons.

2.2 Derivation of conservation equations of fluid

The conservation laws of fluid can be obtained by using moments of the Boltzmann

equation. The zeroth-order moment is derived by integrating Eq. (2.4) in the velocity

space. The integration yields the mass conservation equation as follows:

∂n

∂t
+∇ · (nu⃗) =

∫ (
∂f

∂t

)
c

dv⃗, (2.5)

where n and u⃗ are number density and average fluid velocity, respectively. The

relationship between v⃗ and u⃗ is described as follows:

v⃗ = u⃗+ w⃗, (2.6)

where w⃗ is the random thermal velocity. The first-order moment is derived by multi-

plying Eq (2.4) by mv⃗ and integrating over the velocity space. This process produces
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the momentum conservation equation as follows:

mn
∂u⃗

∂t
+mn (u⃗ · ∇) u⃗+∇ · [P ]− qn

(
E⃗ + u⃗× B⃗

)
=

∫
mv⃗

(
∂f

∂t

)
c

dv⃗. (2.7)

Here [P ] is the pressure tensor.

Lastly, the third-order moment is derived by multiplying Eq. (2.4) by 1
2
m|v⃗|2 and

integrating over the velocity space. The energy conservation equation is obtained as

follows:
∂U

∂t
+∇ · (Uu⃗+ pu⃗+ q⃗c)− qnE⃗ · u⃗ =

∫
1

2
m|v⃗|2

(
∂f

∂t

)
c

dv⃗, (2.8)

where U is the total energy density which consists of internal and kinetic energies. The

second term on left-hand side represents the energy flux including energy convection,

work by pressure, and thermal conduction. The third term on left-hand side expresses

the Joule heating. With moderate temperature gradient, the thermal conduction flux

is approximated by the Fourier’s law as follows:

q⃗c = − [κ]∇T, (2.9)

where T and [κ] are temperature and thermal conductivity tensor. This tensor be-

comes anisotropic under the presence of magnetic confinement. The collisional term

may include the effects of energy dissipation by ionization and excitation collisions.

2.3 Fluid approximation

By implementing the fluid approximation, the information of each particle are av-

eraged and only averaged quantities such as n, u⃗, and T are treated. This approx-

imation significantly simplifies the numerical simulation in many cases. The fluid

approximation is theoretically validated by comparing the representative length of

the calculation target, with the characteristic length of the plasma flow featuring the

particle effects. If the representative length is much greater than the characteristic

length featuring the particle effects, the particle effects may be neglected and the fluid
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approximation becomes valid. This section considers two criteria which are commonly

used for evaluating the validity of the fluid model.

Knudsen number

In collisional plasmas, the Knudsen number is commonly used for the theoretical

validation of fluid approximation. The Knudsen number Kn is expressed as follows:

Kn =
λm

L
, (2.10)

where λm and L are the mean free path and representative length, respectively. The

essential meaning of this number is how many times the particles experience collisions

while they traverse the domain where the physical processes happen. It is said that

the fluid model may be valid if Kn < 0.01. This relation is visualized in Fig. 2-1.

In most artificial plasma devices utilizing collisional ionizations, the neutral number

density is maintained sufficient for frequent electron-neutral ionization collisions. In

this case, the criterion of Kn < 0.01 is satisfied for electrons.

Ratio of Larmor radius to scale length

Another aspect on the criterion of fluid approximation is the ratio of Larmor

radius as follows:
rL
L

=
1

L

mv⊥
qB

, (2.11)

This criterion is used for collisionless plasmas under the presence of magnetic con-

finement. If rL/L < 1, the fluid model is supposed to be valid.26 This relation is

visualized in Fig. 2-2. In artificial plasma devices, strong magnetic confinements are

used to avoid plasma diffusions to the equipment wall. In this case, the condition

on the ratio of Larmor radius to scale length of rL/L < 1 is achieved, especially for

electrons. Therefore, the fluid equations are valid for electrons in most plasma flows.
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Figure 2-1: The relationship between Knudsen number and appropriate model.

Figure 2-2: The relationship between the ratio of Larmor radius to scale length and
appropriate model.

Maxwellian distribution

In the fluid model, the shape of VDF is approximated by the Maxwellian distri-

bution. A VDF of the Maxwellian distribution is described as follows:

fm (v) =
( m

2πkT

) 3
2
exp

(
− v2

v2th

)
, (2.12)

where

v2 = v2x + v2y + v2z , vth =

√
2kT

m
. (2.13)

A particularly important characteristics of the Maxwellian distribution is the ran-

dom flux crossing an imaginary plane from one side to the other side. The random

flux is formulated as follows:

Γrandom =
1

2
n|v̄x| =

1

4
|v̄|, (2.14)

where

|v̄x| =
√

2kT

πm
, |v̄| =

√
8kT

πm
. (2.15)
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2.4 Quasi-neutrality and plasma approximation

The quasi-neutrality is a reasonable assumption for bulk plasmas in most applications,

except for sheaths. One criterion on the validity of quasi-neutrality is the ratio of

Debye length λD to the representative length L. If this ratio λD/L is sufficiently small,

the quasi-neutrality assumption is supposed to be valid. For instance, if ne = 1018

m−3, Te = 10 eV, and L = 10 mm are assumed like the condition in Hall thrusters,

the Debye length is λD = 2.4×10−2 mm and λD/L = 2.4×10−3. In typical numerical

simulations of Hall thrusters, the grid size of ∆x/L ∼ 10−2 is sufficient to resolve the

phenomena. Therefore, the plasma in each cell is deemed as quasi-neutral.

The assumption of quasi-neutrality does not mean that there is no electric field.

It is possible to assume the quasi-neutrality and the existence of electric field at the

same time. This process is called as plasma approximation. Chen emphasizes in the

book27 that “Do not use Poisson’s equation to obtain E⃗ unless it is unavoidale! ” One

should exclude the Poisson’s equation of Gauss’s law, and introduce the new relation

of quasi-neutrality. The electric field should be derived through the conservation

equations of ions or electrons, if the quasi-neutral assumption is reasonable. Fig.

2-3 graphically summarizes the processes and assumptions to derive the equation

set of fluid model with quasi-neutrality. In summary, the electron fluid model with

quasi-neutrality is derived by assuming the fluid approximation and quasi-neutrality.

Figure 2-3: Overview of processes and assumptions to derive the equation set of
electron fluids quasi-neutral plasmas.
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2.5 Conservation equations of electron fluids

The fundamental equations treated herein are the two-dimensional conservation equa-

tions of electron mass, momentum, and energy.

Conservation of mass

The mass conservation equation is given by Eq. (2.5). Regarding the collision

term on the right-hand side, the effect of ionization is considered. The other effects

such as electron attachment and recombination are neglected, because the collision

frequency regarding these processes are much smaller than that of the ionization

collision in Hall thrusters. Then the conservation of mass is formulated as follows:

∂ne

∂t
+∇ · (neu⃗e) = neνion, (2.16)

where ne, u⃗e, and νion are the electron number density, electron velocity, and ionization

collision frequency, respectively. Under the quasi-neutrality assumption, the electron

number density is equal to the ion number density. The ion number density is derived

through the computation of the ion flow, which is not treated here. Thus, the electron

number density can be treated as a given distribution in this thesis. Since electrons

are sufficiently mobile to instantaneously achieve quasi-neutrality, the time-derivative

term of the electron number density can be excluded. Eq. (2.16) is rewritten as,

∇ · (neu⃗e) = neνion. (2.17)

Because the electron density is given as a time-invariant quantity, the electron fluids

in quasi-neutral plasmas have characteristics similar to those of incompressible fluids.

Conservation of momentum

The mass conservation equation is originally given by Eq. (2.7). Conservation of

momentum is derived from the Navier-Stokes equation,

mene
Du⃗e

Dt
+∇ (eneTe)− ene∇ϕ+ eneu⃗e × B⃗ = −meneνcolu⃗e, (2.18)
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where e, Te, ϕ, and νcol are the elemental charge, electron temperature, space poten-

tial, and electron-neutral total collision frequency, respectively. The forces working

on the fluid element are pressure, electrostatic force, electromagnetic force, and colli-

sional force from the electron-neutral collisions. Here, the effects of electron-electron

collision and electron-ion collision are neglected because generally their collision fre-

quencies are much lower than the electron-neutral collision frequency. Furthermore,

because of the large number of collisions, the inertia of the electron fluid is negligibly

small, and the force working on the fluid element is balanced, so

∇ (eneTe)− ene∇ϕ+ eneu⃗e × B⃗ = −meneνcolu⃗e. (2.19)

After linear conversion of Eq. (2.19), the electron flux in tangential (||) and orthogonal

(⊥) directions of the magnetic lines of force can be described by using the electron

mobility µ, as follows:

ne

 u||

u⊥

 = ne [µ]mag

 ∇||ϕ

∇⊥ϕ

− [µ]mag

 ∇|| (neTe)

∇⊥ (neTe)

 , (2.20)

where

[µ]mag =

 µ||

µ⊥

 =

 e
meνcol

µ||

1+(µ||B)
2

 . (2.21)

Eq. (2.20) is Ohm’s law for electron current on a coordinate system fitted to magnetic

lines of force. In the derivation of Eq. (2.20), the E × B drift and the diamagnetic drift

are neglected by assuming symmetry in one orthogonal direction with the magnetic

lines of force. µ⊥ in Eq. (2.21) is based on the classical diffusion model, and this

model can be modified for better reflection of magnetic confinements such as the

Bohm diffusion model, depending on the situation.28 The electron mobility on a

computational mesh is derived by rotating [µ]mag with the angle between the magnetic

lines of force and the computational mesh. Thus, we have the following equations.

neu⃗e = ne [µ]∇ϕ− [µ]∇ (neTe) , (2.22)
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[µ] =

 µx µc

µc µy

 = Θ−1 [µ]mag Θ, Θ =

 cos θ − sin θ

sin θ cos θ

 . (2.23)

Here Θ is the rotation matrix and θ is the angle between the magnetic lines of force

and the computational mesh.

Conservation of energy

When considering the energy conservation equation of Eq. (2.8) for electrons, the

internal energy is predominant since the electron mass is quite small. In addition to

this, electrons can be treated as monoatomic molecule, thus U = 3
2
eneTe. Then, the

equation of energy conservation is formulated as follows:

∂

∂t

(
3

2
eneTe

)
+∇ ·

(
5

2
eneTeu⃗e − [κ]∇Te

)
= eneu⃗e · ∇ϕ− αeεionneνion. (2.24)

where εion is the single ionization energy. Here α is a coefficient to handle the effects

of ionization, excitation, and radiation with a single term, and it is experimentally

determined as a function of electron temperature.29 For instance, this function is

expressed for xenon as follows:

α = 2.0 + 0.254 exp

(
0.667

εion
Te

)
. (2.25)

The relation between the thermal conductivity and thermal diffusivity is formu-

lated as follows:

[κ] = necp [Dt] , (2.26)

where Dt is the thermal diffusivity. The process of thermal diffusion is associated

with electron diffusion, thus,

[Dt] ≃ [De] , (2.27)

where De is the diffusion coefficient of electrons. By using the Einstein relation of

[De] = Te [µ],30 the thermal conductivity is eventually expressed as follows:

[κ] = necp [De] =
5

2
eneTe [µ] . (2.28)
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Chapter 3

A hyperbolic-equation system

approach for electron fluids

In this chapter, a new approach using a hyperbolic-equation system (HES) is pro-

posed to solve for the anisotropic diffusion equation of magnetized electron fluids in

quasi-neutral plasmas. The conventional approach using an elliptic equation suffers

numerical instabilities stemming from the cross diffusion terms. The HES approach

avoids treatments of cross-diffusion terms. The HES is constructed by introducing

new variables which contain gradient of another variable. A test calculation reveals

that the HES approach can robustly solve problems of strong magnetic confinement

by using an upwind method. The computation time of the HES approach is compared

with that of the MFAM-based EE approach in terms of the size of the problem and

the strength of magnetic confinement. The results indicate that the HES approach

can be used to solve problems in a simple structured mesh without increasing com-

putational time compared to the MFAM-based EE approach and that it features fast

convergence in conditions of strong magnetic confinement.
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3.1 Issues of conventional approaches using an ellip-

tic equation

A common approach to computing the space potential is to utilize an integrated

form of the mass conservation equation and momentum conservation equations.31,32

Substituting the divergence of Eq. (2.22) into Eq. (2.17) gives an elliptic equation as

follows:

∇ · (ne [µ]∇ϕ− [µ]∇ (neTe)) = neνion. (3.1)

This equation is solved for the space potential as a boundary value problem. This

approach is similar to the marker-and-cell (MAC) approach for incompressible fluids

in the sense that both utilize an elliptic equation derived by the divergence of the

momentum conservation equation.33 The approach using Eq. (3.1) is referred to as

the EE approach in this paper.

The first term on the left-hand side of Eq. (3.1) can be decomposed as follows:

∇ ·

ne

 µx µc

µc µy

∇ϕ

 =

∂

∂x

(
neµx

∂ϕ

∂x

)
+

∂

∂y

(
neµy

∂ϕ

∂y

)
+

∂

∂x

(
neµc

∂ϕ

∂y

)
+

∂

∂y

(
neµc

∂ϕ

∂x

)
(3.2)

In Eq. (3.2), µx and µy are coefficients for diffusion terms of ∂2/∂x2 and ∂2/∂y2, and

µc is the coefficient for the cross-diffusion terms of ∂2/∂x∂y. Both these two types of

diffusion terms pose difficulties if Eq. (3.1) is solved with an iterative method. The

first difficulty is due to the large difference between µx and µy, which increases the

condition number of the problem and degrades convergence performance.

The more critical difficulty is that the cross-diffusion terms violate the diagonal

dominance of the coefficient matrix. The condition of diagonal dominance is formu-

lated as follows if elements in coefficients matrix is expressed as a.
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|aii| ≥
∑
j ̸=i

|aij| for all i (3.3)

Here the index i is for rows, and the index j is for columns. To satisfy this criterion, it

is important to maintain the balence between diagonal and nondiagonal elements in

discretization. The contribution of the coefficient in stencils to diagonal and nondiag-

onal elements of the coefficient matrix in one row is shown in Fig. 3-1 for convection,

diffusion, and cross-diffusion terms. Convection and diffusion terms increase both

the diagonal and nondiagonal elements by the same value, and diagonal dominance

is maintained. However, in differencing cross-diffusion terms, the increase of non-

diagonal elements is greater than that of diagonal elements with any discretization

method based on linear Taylor expansions. The violation of diagonal dominance of

the coefficient matrix constrains the convergence speed by µc/∆x∆y. This restriction

is very severe in many cases, which results in quite slow convergence. Although one

can use a direct method to compute Eq. (3.1), the computation cost is O (N3
cell),

where Ncell is the number of cells. Thus, using a direct method is not desired for

practical simulations.

Because the cross-diffusion terms are caused by the angle between the computa-

tional mesh and the magnetic lines of force, one effective approach to avoid cross-

diffusion terms is to use an magnetic-field-aligned mesh (MFAM).6 By aligning the

computational mesh with the magnetic lines of force precisely, the effect of cross dif-

fusion is neglected. If only non-cross-diffusion terms are included in Eq. (3.1), the

diagonal dominance of the coefficient matrix is satisfied by applying a central differ-

ence to the diffusion terms. However, if the magnetic lines of force near the boundary

are neither parallel nor perpendicular to the boundary, the MFAM ceases to be a

body-fitted mesh and the estimation of fluxes flowing into the boundary becomes

complicated. Also, if the magnetic field is time variant such as the induced magnetic

field, the mesh needs to be reconstructed in every iteration, which results in large

computation costs. Using a MFAM is effective in avoiding cross-diffusion terms but

its application range is limited.
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Figure 3-1: Contribution of coefficients in stencils of convection, diffusion, and cross-
diffusion terms to diagonal and nondiagonal elements of the coefficient matrix. The
balance of diagonal and nondiagonal terms is violated in differencing cross-diffusion
terms.

3.2 The hyperbolic-equation system approach

3.2.1 Construction of a hyperbolic-equation system

Another approach to avoid cross-diffusion terms is the hyperbolic-equation system

(HES) approach. In this approach one converts the second-order differential equation

into a first-order system by introducing new variables, which include the gradient of

another variable. This kind of approach was first proposed by Nishikawa for future

application to Navier-Stokes equations.19,20 Nishikawa mentioned following remarks

about the HES approach in his papers.19,20

• Diffusion equations and advection-diffusion equations can be solved with upwind
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schemes.

• Both of advection and diffusion terms can be solved by a single advection

scheme.

• The gradient of variables can be calculated in the same order of accuracy as

main variables.

• High-order accuracy schemes are applicable as well as common advection equa-

tions.

Although Nishikawa did not mention cross-diffusion terms in his papers, the HES ap-

proach is supposed to be beneficial in solving anisotropic diffusion equations including

cross-diffusion terms.

Instead of the elliptic equation of Eq. (3.1), the original mass and momentum

conservation equations can be used for an HES. To solve for the space potential in an

HES, a pseudo-time advancement term of the space potential is introduced into Eq.

(2.17). Also, pseudo-time advancement terms of electron momentum are added to

Eq. (2.22) for x- and y-directions. Then the HES of electron fluids in quasi-neutral

plasmas can be derived as follows:

1

a

ne

Te

∂ϕ

∂t
−∇ · (neu⃗e) = −neνion, (3.4)

1

νcol

 bx

by

−1

∂

∂t
(neu⃗e)− ne [µ]∇ϕ+ [µ]∇ (neTe) = −neu⃗e, (3.5)

where a, bx, and by are arbitrary acceleration parameters of no dimension. Because

the pseudo-time advancement terms are artificially added, the HES of Eqs. (3.4) and

(3.5) needs to be calculated until a steady state is obtained to make the artificial terms

negligibly small. In a steady state, the HES is equivalent to the mass and momen-

tum conservation equations. This approach is similar to the pseudo-compressibility

approach for incompressible fluids in the sense that both introduce a pseudo-time

advancement term into the conservation equation.22 However, the key point of this
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approach is to add the pseudo-time advancement term of the space potential in the

mass conservation equation, but not that of electron density. The introduction of the

pseudo-time advancement term of space potential is discusses in Sec. 3.7 in detail.

3.2.2 Nondimensional form of the hyperbolic-equation system

Eqs. (3.4) and (3.5) are modified to a nondimensional form for the analysis. First,

the electron mobility tensor is normalized by the electron mobility in the tangential

direction of the magnetic lines of force:

˜[µ] =

 µ̃x µ̃c

µ̃c µ̃y

 =
1

µ||
[µ] =

meνcol
e

[µ] . (3.6)

By using representative values of electron number density n∗
e, electron temperature

T ∗
e and mean free path λ∗

m, the nondimensional values of the physical quantities are

defined as follows:

ñe =
ne

n∗
e

, T̃e =
Te

T ∗
e

, ϕ̃ =
ϕ

T ∗
e

, (x̃, ỹ)T =
1

λ∗
m

(x, y)T , (3.7)

t̃ =
1

τ ∗m
t =

v∗e,th
λ∗
m

t =
1

λ∗
m

√
2eT ∗

e

me

t, ˜⃗ue =
u⃗e

c∗s
=

u⃗e√
γeT ∗

e

me

, (3.8)

ν̃col = τ ∗mνcol, ν̃ion = τ ∗mνion. (3.9)

Here the tilde denotes a nondimensional quantity. τm, ve,th, and cs are the mean free

time, electron thermal velocity, and electron acoustic velocity, respectively. By using

these quantities, a nondimensional equation system can be constructed. Furthermore,

the following properties are assumed throughout the calculation region for simplified

analysis of the space potential and electron velocity.

ñe = 1, T̃e = 1, ν̃col = 1, ν̃ion = 0. (3.10)
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Eventually, the simplified nondimensional system can be expressed as follows:

1

a

∂ϕ̃

∂t̃
−
√

γ

2
∇̃ · ⃗̃ue = 0, (3.11)

 bx

by

−1

∂⃗̃ue

∂t̃
− 1√

2γ
[µ̃] ∇̃ϕ̃ = −⃗̃ue. (3.12)

Optimal choice of the acceleration parameters improves the condition of the nu-

merical problem. One of the criteria controlling the difficulty of the numerical problem

is the condition number. In this problem the condition number can be interpreted as

the absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue

in the coefficient matrix. Thus, to make the eigenvalues unity in each direction the

acceleration coefficients are chosen as follows:

a =

√
2

γ
, bx =

√
2γ

µ̃x

, by =

√
2γ

µ̃y

. (3.13)

With these acceleration coefficients, Eqs. (3.11) and (3.12) can be rewritten in the

vector form as follows:
∂U

∂t̃
+ Jx

∂U

∂x̃
+ Jy

∂U

∂ỹ
= S, (3.14)

U =
(
ϕ̃, ũx, ũy

)T
, S =

(
0,−

√
2γ

µ̃x

ũx,−
√
2γ

µ̃y

ũy

)T

(3.15)

Jx =


0 −1 0

−1 0 0

− µ̃c

µ̃y
0 0

 , Jy =


0 0 −1

− µ̃c

µ̃x
0 0

−1 0 0

 . (3.16)

Here, Jx and Jy are the Jacobian matrices in the x and y directions. The eigenvalues

for the Jacobian matrices are as simple as follows:

λx = 0,±1, λy = 0,±1. (3.17)

By using the Jacobian matrices and the eigenvalues, upwind schemes based on the

approximate Riemann solver can be constructed.
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Here the meaning of the characteristic speeds in Eq. (3.17) is discussed.For in-

stance, the characteristic quantities for the eigenvalues in the x-direction of λx = 0,±1

are − µ̃c

µ̃y
ũx + ũy,±ϕ̃ + ũx, respectively. The zero characteristic speed indicates that

the information of − µ̃c

µ̃y
ũx + ũy is not transported in the x-direction. Likewise, the

information of − µ̃c

µ̃x
ũy + ũx is not conveyed in the y-direction.

3.3 Test calculation condition and numerical method

3.3.1 Calculation condition in two dimensions

Test calculations in two dimensions are conducted for the analyses of the HES ap-

proach for the electron fluid equations. Another intention of the test is to compare

the HES and EE approaches in terms of the computation cost. The calculation con-

dition is illustrated in Fig. 3-2-(a). Magnetic lines of force, uniformly angled at 45◦

from the vertical and with uniform strength of magnetic confinement of µ||/µ⊥ =

1000, are applied on the calculation field. Dirichlet conditions on the nondimensional

space potential are defined at the left and right side boundaries. Zero-flux conditions

are used for the top and bottom boundaries. The condition of 45◦ magnetic lines of

force gives a maximum effect of cross diffusion in the EE approach when a vertical-

horizontal mesh (VHM) is used. Thus if this condition can be solved stably with the

HES approach, robust calculations for any angle of magnetic lines of force can be

expected.

Also, to confirm that the HES approach is applicable to a condition with compli-

cated configuration of magnetic lines of force, a condition of concave magnetic lines

of force is calculated with the HES approach. This calculation condition is illustrated

in Fig. 3-2-(b). The magnetic lines of force are angled by -63.5◦ to 63.5◦ from the

vertical line in the calculation field. The uniform strength of magnetic confinement

of µ||/µ⊥ = 1000 is assumed. Nondimensional space potential is defined at the left

and right boundaries, and nondimensional electron velocity in y-direction is defined

for the top and bottom boundaries.
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Figure 3-2: Two-dimensional calculation conditions used for the test calculation. (a):
The magnetic lines of force are uniformly angled by 45◦. (b): A concave shape of
magnetic lines of force toward right-hand side are applied with the angle from the
vertical of -63.5◦ at the bottom and 63.5◦ at the top of the calculation field. For both
cases the strength of magnetic confinement of µ||/µ⊥ = 1000 is assumed. Dirichlet
conditions are used on ϕ̃ for the left and right side boundaries. The zero-flux condition
is used for the top and bottom boundaries.
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3.3.2 Numerical method used in the HES approach

The numerical methods used for the HES approach are summarized in Table 3.1.

The discretization is implemented based on a finite-difference method. A first-order

upwind scheme is constructed based on the Jacobian matrices and the eigenvalues of

Eqs. (3.16) and (3.17). Here the upwind difference based on an approximate Riemann

solver of Steger-Warming’s flux vector splitting (FVS) is used.34 The FVS is modified

for the non-conservation form of Eq. (3.14).35 For instance, the space difference in

the x̃ direction is split as follow:

Jx
∂U

∂x̃
≃ 1

∆x̃
J+
x δ

b
xU +

1

∆x̃
J−
x δ

f
xU. (3.18)

Here, J+
x and J−

x are the Jacobian matrices which have only positive and negative

eigenvalues, and δfx and δbx are the forward and backward derivatives, respectively.

Because the signs of the eigenvalues are fixed, the split terms in Eq. (3.18) are always

differentiable. Thus the scheme does not lead to instability associated with the change

of signs in eigenvalues.

Implicit methods should be used for the pseudo-time advancement method because

only the steady-state solution is needed. In an implicit method, the space difference

is evaluated at the n + 1 time level. Eq. (3.14) can be written by discretizing the

time-derivative term in the first-order form as:

∆Un

∆t̃
+

(
Jx

∂U

∂x̃
+ Jy

∂U

∂ỹ

)n+1

= Sn, (3.19)

where ∆t̃ is the time step and ∆Un = Un+1 − Un. This formulation is converted to

a “delta" form of the implicit method by utilizing Beam-Warming linearization.36

(
I +∆t̃Jn

x

∂

∂x̃
+∆t̃Jn

y

∂

∂ỹ

)
∆Un = −∆t̃

(
Jx

∂U

∂x̃
+ Jy

∂U

∂ỹ

)n

+∆t̃Sn. (3.20)

For the two-dimensional calculation, the alternating direction implicit (ADI) method

is used for fast computation. In the EE approach, the ADI method cannot be

used if there are cross-diffusion terms. Information on the stencils of (i+ 1, j + 1),
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Table 3.1: Summary of the HES and EE approaches. VHM: vertical-horizontal mesh.
MFAM: magnetic-field-aligned mesh.

HES approach EE approach
Equation Hyperbolic-equation system (HES) Elliptic equation (EE)
Mesh VHM MFAM
Scheme First-order upwind Second-order central
Iteration LU-ADI method SOR method

(i− 1, j + 1), (i+ 1, j − 1), or (i− 1, j − 1) must be used for cross-diffusion terms if

the differencing is based on a linear Taylor series in two dimensions. The coefficients

for these stencils appear in isolated positions from diagonal positions in the coefficient

matrix; thus reduction of computation cost by ADI is not expected. However, in the

HES approach, the ADI method can be used because cross-diffusion terms are not

included. The ADI factorization proposed by Beam and Warming is applied to Eq.

(3.20) as follow:36

(
I +∆t̃Jn

x

∂

∂x̃

)(
I +∆t̃Jn

y

∂

∂ỹ

)
∆Un = −∆t̃

(
Jx

∂U

∂x̃
+ Jy

∂U

∂ỹ

)n

+∆t̃Sn. (3.21)

To strengthen the diagonal dominance, an lower-upper ADI (LU-ADI) scheme is

further implemented.37 In the LU-ADI method, for instance, the operator in the x̃

direction can be written as follow:

I+∆t̃Jx
∂

∂x̃
≃
(
I − ∆t̃

∆x̃
J−
x +∆t̃J+

x δ
b
x

)(
I +

∆t̃

∆x̃

(
J+
x − J−

x

))−1(
I +

∆t̃

∆x̃
J+
x +∆t̃J−

x δ
f
x

)
.

(3.22)

The computations are implemented with a Courant number of 30.

For the HES approach, a VHM is used as shown in Fig. 3-3-(a). The boundary

conditions are set at the “ghost cells" outside of the calculation field. According to the

eigenvalues of Eq. (3.17), one characteristic speed is flowing from outside to inside

of the boundary. Thus, among the three variables of Eq. (3.15), one variable should

be defined as the boundary condition. The calculation condition of Fig. 3-2 satisfies

this requirement on the boundary conditions.

33



3.3.3 Numerical method used in the EE approach

For the condition in Fig. 3-2, the dimensionless elliptic equation for space potential

can be written as follows:

∇̃m ·
(
[r]m ∇̃mϕ̃

)
= 0, (3.23)

[r]m =

 1

µ̃⊥
µ̃||

 , ∇̃m =

(
∂

∂ξ

∂

∂η

)T

, (3.24)

where ξ and η mean tangential and orthogonal directions of magnetic lines of force,

respectively. The numerical methods used for the EE approach are also summarized in

Table 3.1. The EE approach with an MFAM handles only non-cross-diffusion terms.

Thus a second-order central difference is used with the finite-volume method. To

solve the boundary value problem of the elliptic equation, a successive over-relaxation

(SOR) method is used. In the test calculations the relaxation parameter of the SOR

is set as 1.8. For the EE approach, an MFAM is used, as is shown in Fig. 3-3 (b).

This mesh is derived by rotating the VHM by 45◦. The boundary conditions are

defined at ghost cells outside the calculation field. For the upper and lower boundary

conditions of uy = 0, the electron mass flux is set to zero.
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Figure 3-3: (a): A VHM for a grid of 8 × 4 (output points). (b): An MFAM for a
grid of 8 × 4 (output points).
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3.4 Steady-state calculation results

The HES approach is tested for the calculation condition of Fig. 3-2-(a) with a VHM

for a grid of 48 × 24. The steady-state calculation results are shown in Fig. 3-

4. The equipotential lines are almost uniformly angled by 45◦, which indicates that

the result reflects the effect of magnetic confinement. Also, the velocity vector map

reflects the zero-flux boundary condition at the top and bottom boundaries. Because

the HES approach utilizes pseudo-time advancement terms, they have to converge to

be negligibly small values in the steady state. For evaluating the convergence of each

variable, the normalized difference is defined as

Dnorm =

√√√√ 1

Ncell

Ncell∑(
|yn+1 − yn|2

|yn|2 + ε

)
. (3.25)

Here y is a variable and ε is a positive value satisfying ε ≪ |y| to avoid division

by zero. The time history of the normalized difference of each variable is shown in

Fig. 3-5. The normalized difference of each variable shows a monotone decrease, and

they become negligibly small in the steady state. This fact verifies the usefulness of

pseudo-time advancement terms and that a robust calculation is possible with the

HES approach for the conditions of angled magnetic lines of force.

The condition of Fig. 3-2 (b) is also calculated by the HES approach using a

VHM for a grid of 48 × 24. The steady-state calculation results and the time history

of the normalized difference are shown in Fig. 3-6 and Fig. 3-7, respectively. It

is confirmed that the equipotential lines reflect the magnetic lines of force and all

of the pseudo-time advancement terms become negligibly small values in the steady

state. This indicates that the HES approach can robustly compute the condition of

complicated magnetic lines of force configuration.
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Figure 3-4: Simulation results for the Fig. 3-2 (a) condition with the HES approach
using a VHM grid of 48 × 24. Top: Nondimensional space potential distribution.
Bottom: Vector map of nondimensional velocity.

Figure 3-5: Time history of the normalized difference of each variable. The Fig. 3-2
(a) condition is solved with the HES approach using a 48 × 24 grid.
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Figure 3-6: Simulation results for the Fig. 3-2 (b) condition with the HES approach
using a VHM grid of 48 × 24. Top: Nondimensional space potential distribution.
Bottom: Vector map of nondimensional velocity.

Figure 3-7: Time history of the normalized difference of each variable. The Fig. 3-2
(b) condition is solved with the HES approach using a 48 × 24 grid.
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3.5 Computational cost comparison

The computation cost of the HES approach is compared with that of the EE approach.

Order analyses of computation cost are conducted in terms of the size of the problem

and the strength of magnetic confinement. The size of the problem is evaluated with

the number of cells, Ncell, and the strength of magnetic confinement is associated with

the ratio of electron mobility, µ||/µ⊥. Computation cost is measured with a sequential

calculation without parallelization. The convergence is deemed to be satisfied when

the normalized difference of the space potential reaches 10−10, and the CPU second

at convergence is termed Tconverge.

Fig. 3-8 shows Tconverge of the HES approach and the EE approach when the

number of cells, Ncell, is varied. The computation time of the HES approach is

O (N1.5
cell), whereas the cost of the EE approach is O (N1.8

cell). From this result, we

conclude that the differences in computation time in terms of the size of the problem

between the two approaches is insignificant. This fact supports the advantage of the

HES approach in its ability to utilize a simple structured mesh without increasing

computation time.

Fig. 3-9 shows a comparison of Tconverge between the two approaches when the

strength of magnetic confinement, µ||/µ⊥, is varied. The computation time of the

EE approach increases with µ||/µ⊥, whereas that of the HES approach stays almost

constant. This is because the eigenvalues of the system are always adjusted via Eq.

(3.13) by the acceleration coefficient, and the condition number of the system does

not increase with µ||/µ⊥ in the HES approach. This result indicates that the HES

approach is suitable under conditions of strong anisotropy resulting from magnetic

confinement. This is also an advantage of the HES approach.
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Figure 3-8: Computation costs until convergence when the number of cells is changed.
The Fig. 3-2-(a) condition is solved using the HES approach and the EE approach.
A logarithmic scale is used for each axis for scale analysis. 1.5th-, and 1.8th-order
slopes are depicted for reference.

Figure 3-9: Computation costs until convergence when µ||/µ⊥ is changed. The Fig.
3-2-(a) condition is solved using the HES approach and EE approach. A logarithmic
scale is used for each axis for scale analysis. Zeroth-, and 0.7th-order slopes are
depicted for reference.
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3.6 Comparison on mesh convergence of transverse

electron flux

It is difficult to analyze the computational accuracy for anisotropic diffusion equations

because the analytical solution is hard to be derived. Therefore, the mesh convergence

of the calculated electron transverse flux is evaluated for the HES and EE approaches.

Here the transverse electron flux is defined as the total electron flux flowing from the

right to left side boundaries. The result is visualized in Fig. 3-10. The transverse

electron fluxes calculated with a fine grid system are almost the same between the

HES and EE approaches. However, with a coarse grid system, the transverse electron

flux is overestimated in the HES approach. This indicates the HES approach has a

large numerical viscosity stemming from the first-order upwind scheme. Thus, the

HES approach should be used with schemes of high-order spatial accuracy for faster

mesh convergence in practical calculations.

Figure 3-10: The transverse electron flux calculated by the HES and EE approaches
when the grid spacing is varied. The Fig. 3-2-(a) condition is solved using the HES
approach and EE approach.
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3.7 Consideration on the pseudo-time advancement

term

The test calculation results in Sec. 3.4 proved that the HES approach maintained

numerical stability during the computation. The validity of intruducing the pseudo-

time advancement terms into the mass and momentum conservation equations, is

considered here. First, an implicit formulation of Eq. (2.22) can be written as follows:

ne [µ]∇ϕn+1 − [µ]∇ (neTe) = neu⃗
n+1
e = neu⃗

n
e + Tr

∂

∂t
(neu⃗e)

n , (3.26)

where Tr is the reference time. As described in Sec. 2.3, in collisional plasmas, the

characteristic time scale governing the electron motion is electron-neutral collision.

Thus, the choice of Tr as Tr = ν−1
col is reasonable, and eventually Eq. (3.5) is derived.

An analogy of the pseudo-compressibility method can be considered for the pseudo-

time advancement term of space potential in the mass conservation equation. For clear

expressions, the negative space potential is defined for negatively charged electrons:

ϕn = −ϕ (3.27)

Fig. 3-11 shows the concept of the analogy between the pseudo-time advancement

term of space potential and pseudo-compressibility method. The effect of the space

potential on the momentum conservation equation is similar to that of the pressure.

The pseudo-compressibility method introduces a pseudo-time advancement term of

pressure into the mass conservation equation.22 This method stably and efficiently

calculates incompressible and low speed flows, by using preconditioning methods.38

Because of the similarity shown in Fig. 3-11, introducing a pseudo-time advancement

term of space potential is supposed to yield a stable computation, in a mathematical

sense. In addition, the coefficient of ne/Te is added to the time-derivative term to

arrange the dimension.

In the above discussion, the validity on the pseudo-time advancement term of
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Figure 3-11: Analogy between pseudo-time advancement term of space potential and
conventional pseudo-compressibility. β is a pseudo-compressibility parameter.

space potential is considered from the computational aspect. The physical aspect

of the validity can be considered as follows. As explained in Sec. 2.4, under the

plasma approximation, one needs to derive the space potential from the conservation

equations of electron fluids. However, the space potential is originally determined by

using the Gauss’s law as follows:

∇2ϕ = − e

ε0
(ni − ne) , (3.28)

where ε0 is the vacuum permittivity. If the ion number density is regarded as a time-

constant quantity in the electron time scale, the space potential is basically dependent

on only the electron number density. Therefore, it is supposed to be natural to replace

the time-derivative term of electron number density in the mass conservation equation

by the pseudo-time advancement term of the space potential. Further, by using the

second-order central differencing, the discretized form of Eq. (3.28) can be written

as follows:

1

∆x2
(ϕi−1,j − 2ϕi,j + ϕi+1,j) +

1

∆y2
(ϕi,j−1 − 2ϕi,j + ϕi,j+1) =

e

ε0
(ne − ni) . (3.29)

In this equation, the sign of ne in the right-hand side is positive, whereas the sign

of ϕi,j in the left-hand side is negative. Thus, a pseudo-time advancement term of
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negative space potential (ϕn) should be introduced in the mass conservation equation.

3.8 Improvement of preconditioning by using rota-

tion matrix

The role of acceleration coefficients can be expanded to the preconditioning matrix.

The system of equations of Eq. (3.14) can be rewritten using a preconditioning matrix

as follows:

P−1∂Q

∂t̃
+ Jx

∂Q

∂x̃
+ Jy

∂U

∂ỹ
= S, (3.30)

where P is the preconditioning matrix. If only the three acceleration coefficients are

considered, the preconditioning matrix is a diagonal matrix as follows:

P =


a

bx

by

 =


√

2
γ

√
2γ
µ̃x √

2γ
µ̃y

 . (3.31)

Based on the idea that the electron mobility tensor is derived by rotating the [µ]mag,

a revised preconditioning matrix using a rotation matrix can be considered as follows:

P̂ = U−1PU, (3.32)

P =


√

2
γ

√
2γ

µ̃|| √
2γ

µ̃⊥

 , U =


1

cos θ sin θ

− sin θ cos θ

 . (3.33)

Preconditioning methods using rotation matrices are also used in CFD.39 By using

the revised preconditioning matrix P̂ , the flux Jacobian matrices are as simple as

follows:

Ĵx =


0 −1 0

−1 0 0

0 0 0

 , Ĵy =


0 0 −1

0 0 0

−1 0 0

 . (3.34)
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Therefore, the Jacobian matrices become uniform throughout the calculation field

without being affected by the magnetic field. The eigenvalues for these Jacobian

matrices are the same as Eq. (3.17), and the advantage of smooth conveyance of

information is maintained. The uniform Jacobian matrices enables the conservative

form of the system of equations. Specifically, the system of equation can be rewritten

as follows:
∂U

∂t̃
+

∂

∂x̃

(
ĴxU

)
+

∂

∂ỹ

(
ĴyU

)
= Ŝ, (3.35)

Ŝ =


0

−
√
2γ

µ̃||
(ũx cos

2 θ + ũy cos sin θ)−
√
2γ

µ̃⊥

(
ũx sin

2 θ − ũy cos sin θ
)

−
√
2γ

µ̃||

(
ũx cos sin θ + ũy sin

2 θ
)
+

√
2γ

µ̃⊥
(ũx cos sin θ − ũy cos

2 θ)

 . (3.36)

Hence the effect of magnetic field is included in the source terms.

The test calculation condition of Fig. 3-2-(a) is computed by the formulation

of Eq. (3.35). The calculation results in the steady state are presented in Fig. 3-

13. As well as the results in Fig. 3-4, the dimensionless space potential distribution

and electron streamlines reflect the effect of magnetic confinement. The convergence

history of the variables are shown in Fig. 3-13. It is proved that the convergence

history in Fig. 3-13 is smooth compared with that in Fig. 3-13. This is because the

improved preconditioning of Eq. (3.33) contributes to further smooth information

conveyance.
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Figure 3-12: Calculation results for the Fig. 3-2-(a) condition with the HES approach
using a VHM grid of 96 × 48. Top: Electron streamlines. Bottom: Vector map of
nondimensional velocity. The dashed lines denote reference magnetic lines.

Figure 3-13: Time history of the normalized difference of each variable. The Fig.
3-2-(a) condition is solved with the HES approach using a 96 × 48 grid.
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3.9 Summary of the chapter

A new approach using an HES is proposed for electron fluids in quasi-neutral plasmas.

The main advantage of this approach is that it avoids cross-diffusion terms, which

violate the diagonal dominance in conventional approaches using the EE. The HES

approach enables robust calculations with a simple structured mesh such as a VHM

by using an upwind scheme. Numerical experiments in two dimensions are conducted

with angled magnetic lines of force to validate the HES approach. Furthermore, the

computation time of the HES approach is compared with that of the MFAM-based

EE approach. Also, the mesh convergence of transverse electron flux calculated by the

two approaches are compared. Finally, the improvement of preconditioning matrix is

presented. The findings are summarized as follows:

1. The calculation results computed by the HES approach reflect the effect of

magnetic confinement and the given boundary conditions, and all pseudo-time

advancement terms converge to negligibly small values. These facts validate the

HES approach for electron fluids.

2. The computational cost of the HES approach is O (N1.5
cell), whereas the cost of

the EE approach is O (N1.8
cell). The HES approach has an advantage that it can

utilize a simple structured mesh without increasing computational cost.

3. With increasing µ||/µ⊥, the computational cost of the HES approach remains

constant, whereas that of the EE approach increases. The HES approach is

efficient in solving conditions of strong magnetic confinement.

4. The HES approach has a large numerical viscosity stemming from the first-

order upwind scheme. The HES approach should be implemented with schemes

of high-order spatial accuracy for good mesh convergence.

5. The preconditioning matrix is improved by using a rotation matrix. Very

smooth convergence history can be obtained by the improved preconditioning.
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Chapter 4

A flux-splitting method for the HES

of electron fluids

In this chapter the hyperbolic-equation system (HES) approach is extended to the

system including conservation equations of mass, momentum, and energy of elec-

tron fluids. A flux-splitting method is proposed for the HES in which the numerical

fluxes are split into four categories. Furthermore, an upwind method which incorpo-

rates a flux-vector splitting (FVS) and advection upstream splitting method (AUSM)

is proposed for upwinding the split numerical fluxes. The proposed method is ap-

plied to a test calculation condition of uniformly angled magnetic lines of force. A

high-order space-accuracy scheme using the TVD-MUSCL technique is applied to

the HES approach. All the pseudo-time advancement terms are monotonically con-

vergent to negligibly small values. The calculation results are compared with those

computed by an approach using an elliptic-parabolic equation system (EPES) with

an magnetic-field-aligned mesh (MFAM). They are in good agreement in both quali-

tative and quantitative comparisons. This fact indicates the HES approach with the

flux-splitting method achieves the computational accuracy of the same level of the

approach using an MFAM.
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4.1 An HES for energy conservation equation

The HES discussed in Chapter 3 consists of only mass and momentum conservation

equations. To simulate plasma devices using the heating of electrons for plasma

generation, an HES must include the energy conservation equation for deriving the

electron temperature. As described in Sec. 2.5, the equation of energy conservation

is formulated as follows:

∂

∂t

(
3

2
neTe

)
+∇ ·

(
5

2
neTeu⃗e −

5

2
neTe [µ]∇Te

)
= neu⃗e · ∇ϕ− αεionneνion. (4.1)

The left-hand side consists of time derivative term, enthalpy convection term, and

thermal diffusion term. The right-hand side is Joule heating and energy losses due to

ionization, excitation and radiation.

4.1.1 Conservative form of energy conservation equation

By using the negative potential ϕn = −ϕ for the negative charge of electrons, the

Joule heating term is converted as follows:

neu⃗e · ∇ϕ = −∇ · (neϕnu⃗e) + ϕnneνion. (4.2)

In deriving Eq. (4.2), the equation of continuity of Eq. (2.17) is used. In the right-

hand side of Eq. (4.2), the meanings of the first and second terms can be interpreted

as the potential energy flow, and potential energy generation associated with electron

generation, respectively. By using this relation, Eq. (4.1) can be rewritten as follows:

∂

∂t

(
3

2
neTe

)
+∇·

(
5

2
neTeu⃗e −

5

2
neTe [µ]∇Te + neϕnu⃗e

)
= (ϕn − αεion)neνion. (4.3)

Therefore, the energy conservation equation can be expressed in a conservative form,

and the conservation of fluxes can be strictly calculated by using a finite volume

method (FVM). All of the source terms are associated with the electron generation.
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4.1.2 Introduction of new variables for energy diffusion

The thermal diffusion term contains the mobility tensor in its coefficient, and hence

this term causes anisotropic diffusion including the effect of cross diffusion. Because

cross diffusion terms induce instabilities as explained in Sec. 3.1, an HES must be

constructed for Eq. (4.3) New variables can be chosen arbitrarily if it contains the

gradient of electron temperature. Here new variables g⃗ are defined as follows:

g⃗ = − [µ]∇Te. (4.4)

Substituting Eq. (4.4) into Eq. (4.3) yields a hyperbolic equation as follows:

∂

∂t

(
3

2
neTe

)
+∇ ·

(
5

2
neTeu⃗e +

5

2
neTeg⃗ + neϕnu⃗e

)
= (ϕn − αεion)neνion. (4.5)

This equation no longer contains diffusion terms and it can be regarded as a hyperbolic

equation. Concerning the new variables g⃗, pseudo-time advancement terms are added

to Eq. (4.4) as follows:
1

νcol

∂g⃗

∂t
+ [µ]∇Te = −g⃗, (4.6)

where νcol is total collision frequency which is used as a reference time scale. Here an

acceleration coefficient is omitted from Eq. (4.6) for simplicity. The variables g⃗ have

the dimension of velocity. Thus, the meaning of g⃗ is the velocity of energy diffusion

regarding a pseudo time. Originally, the characteristic speed of diffusion terms are

infinite.40 The introduction of the pseudo-time advancement term split the infinite

speed of information into finite ones, with time step intervals of the pseudo time.

When one calculates only the energy conservation equation, an HES consisting

of Eqs. (4.5) and (4.6) can be used. However, in order to calculate ne, u⃗e, and Te,

the HES for full conservation equations is considered. By combining the HES of Eqs.

(3.4) and (3.5), and the HES of Eqs. (4.5) and (4.6), the HES for full conservation

equations can be constructed as follows:

ne

Te

∂ϕn

∂t
+∇ · (neu⃗e) = neνion, (4.7)
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1

νcol

∂

∂t
(neu⃗e) + ne [µ]∇ϕn + [µ]∇ (neTe) = −neu⃗e, (4.8)

∂

∂t

(
3

2
neTe

)
+∇ ·

(
5

2
neTeu⃗e +

5

2
neTeg⃗ + neϕnu⃗e

)
= (ϕn − αεion)neνion, (4.9)

1

νcol

∂g⃗

∂t
+ [µ]∇Te = −g⃗. (4.10)

Totally the system consists of six equations in two dimensions. Again the acceleration

coefficients are omitted here since the optimization of the preconditioning matrix is

considered in Sec. 4.2.

4.2 Issues of the HES for full conservation equations

For the computation of the HES, an upwind method based on an approximate Rie-

mann solver should be used to make the numerical viscosity small. Especially, the

approximate Riemann solvers using the characteristics of the system enable stable

calculation with least numerical viscosity.

However, there is an issue when one considers an approximate Riemann solver

based on the flux Jacobian matrices. The flux Jacobian matrices are too complicated

to analyze the eigen-structure. Without the eigen-structure, it is difficult to diago-

nalize the Jacobian matrices. This issue is also reported when the first-order system

approach is applied to the Navier-Stokes equation.20 It is possible to calculate the

HES consisting of Eq. (4.7) and Eq. (4.8), and the HES including Eq. (4.9) and Eq.

(4.10), iteratively. However, the iterative calculation will result in a sluggish conver-

gence because of the disparity between the characteristic speeds of the two systems.

It is desired to compute the full conservation equations as a single system.

One approach to calculate a complicated system is to use an approximate Rie-

mann solver which does not need the eigen-structure. For example, the Lax-Friedrichs

scheme is usually used for ideal MHD equations.41,42 (Even though the eigen-structure

of the ideal MHD equation is analyzed,43 the Lax-Friedrichs method is used for nu-

merical stability.) However, it is known that the Lax-Friedrichs scheme has a large

numerical viscosity. As is decribed in Sec. 3.6, the HES approach for anisotropic
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diffusion equations originally contains a large numerical viscosity arising from the

cross-diffusion terms. Thus, the Lax-Friedrichs scheme should not be used to avoid

excessive numerical viscosities.

4.3 Flux-splitting method (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.4 Calculation Conditions and Numerical Methods

(deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.5 Convergence history of normalized differences (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.6 Steady-state calculation results (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.7 Mesh convergence of transverse electron flux and

electron heat flux (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.8 Applicability to condition of complicated mag-

netic lines of force (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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4.9 Summary of the chapter

The HES was constructed for the conservation laws of magnetized electron fluids

in quasi-neutral plasmas. The hyperbolic-equation system is calculated as a time-

development problem by introducing pseudo-time advancement terms. To construct

a robust upwind method based on the approximate Riemann solver for the HES, the

flux-splitting method was proposed. The fluxes were split into four categories for

which the upwind method incorporating the FVS and AUSM was used. The HES

approach with the flux-splitting method was tested by using the calculation condition

in which the magnetic lines of force were uniformly distributed and at 45◦ relative to

the horizontal direction. The findings are summarized as follow:

1. All pseudo-time advancement terms converge monotonically to negligibly small

values. This fact validates the robustness of the flux-splitting method and that

the conservation equations are strictly satisfied.

2. The numerical viscosity is drastically reduced by using the high-order scheme,

which results in better reflection of the magnetic confinement.

3. The calculation results obtained by using the HES approach with the flux-

splitting method are identical to the results obtained by using the MFAM-based

EPES approach, in both qualitative and quantitative comparisons. This fact

indicates that a good computational accuracy can be obtained by using the HES

approach, even with the use of a simple structured mesh.

4. The HES approach with the flux-splitting method was also applied to the condi-

tion of lens-shape magnetic lines of force. The calculation results are reasonable

and it is proved that the HES approach with the flux-splitting method is appli-

cable to the conditions of nonuniform magnetic field geometry.
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Chapter 5

Application of HES approach to Hall

thruster analyses

This chapter discusses the applicability of the HES approach to Hall thruster calcu-

lations. The HES approach is applied to an axial-radial two-dimensional calculation

of a Hall thruster using the hybrid particle-in-cell (PIC) method. The applicability

is examined by the following points: 1) conservation of electron flux, 2) satisfaction

of Bohm criterion, and 3) the Boltzmann relation along magnetic lines of force in

the region of strong magnetic confinement. Concerning point 1), strict conservations

of numerical fluxes are expected by computing the HES by using the finite volume

method. The point 2) evaluates how accurately the boundary condition of the wall

sheath is implemented in the HES approach. The point 3) is expected if the HES

approach reasonably calculates the magnetized electron fluid in Hall thrusters. The

discussion is mainly focused on the verification, but not the validation.48 Thus, sim-

plified models are used for electron mobility and wall sheath, without losing the main

characteristics of the Hall thruster discharge.
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5.1 Hybrid PIC method using HES approach

In this chapter, the hybrid particle-in-cell (PIC) method is employed for the analyses

of a Hall thruster. First of all, the use of hybrid PIC method is validated by con-

sidering the Knudsen number. In the cases of Hall thrusters, if the channel length is

used for L, Kn ∼ 10 for ions and neutrals, whereas Kn ∼ 0.1 for electrons. From

this analysis, it is obvious that ion and neutral flows should be calculated with the

kinetic model. Concerning electrons, electrons are drifting in the azimuthal direction

because of the Hall effect, and the representative length for electrons is supposed to

be much longer than the channel length. Therefore, the fluid model for electrons is

considered to be valid.

There have been a lot of numerical simulations using the hybrid PIC method for

Hall thrusters, and it seems that there are two streams. One stream is that the

electron fluid is calculated in an ordinary boundary-fitted mesh.11,16,31,49 The hybrid

PIC method using the HES approach is categorized in this stream. In contrast to the

conventional works using the elliptic equation and parabolic equation, an accurate

and efficient calculation is expected by using the HES approach.

The other stream is the approach using the so-called “quasi-one-dimensional model,”

which is originally proposed by Fife.13 This code was improved to include various

physics and the recent code was termed as HPHall-2.10 In this model, the one-

dimensional MFAM is constructed, and the one-dimensional conservation equations

in the perpendicular direction of magnetic lines of force are calculated. The distribu-

tions along magnetic lines of force are determined based on the isothermal property

and the Boltzmann relation.

Herein the hybrid PIC method using the HES approach is named as “HP-HES.”

The features of the HP-HES are compared with other modeling works in Table 5.1.

The Hall2De6 code is also listed in the table because it has a feature of the use of two-

dimensional MFAM. The main purpose of the HP-HES code is accurate and efficient

calculation of Hall thrusters, by using the simple structured boundary-fitted mesh

(BFM).
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Table 5.1: Summary of the HP-HES, HPHall-2, and Hall2De. BFM: Boundary-fitted
mesh. MFAM: Magnetic-field-aligned mesh.

HP-HES HPHal-210 Hall2De6

Developer UT UPM and MIT JPL
Plasma model Hybrid PIC Hybrid PIC Fully fluid
Electron sub-model 2-D calc. “Quasi 1-D model" 2-D calc.
Electron sub-model mesh 2-D BFM 1-D MFAM 2-D MFAM

5.2 Physical models in the hybrid PIC method (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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5.3 Numerical method (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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5.4 Calculation condition (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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5.5 Results and discussion (deleted)

To be compliant with the “Guideline on Publication of Summary of Dissertation,"

this section is deleted.
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5.6 Summary of the chapter

The HES approach was applied to the calculation of a Hall thruster using the hybrid

PIC method. The HES approach is able to calculate the two-dimensional conservation

equations of magnetized electron fluid with a simple structured mesh. The SPT-100

thruster was assumed as the calculation condition in which the simple models of

electron mobility and electrostatic sheath were used. The findings are summarized as

follows:

1. The hybrid PIC method using the HES approach is able to reproduce the fun-

damental characteristics of the Hall thruster discharge.

2. Electron fluxes are strictly conserved in the HES approach during the calculation

of the hybrid PIC method.

3. The Bohm criterion was satisfied at the plasma-sheath boundary in front of the

channel walls. This fact indicates that the HES approach accurately reflects the

boundary conditions of the wall sheath to the plasma dynamics.

4. The Boltzmann relation along magnetic lines of force was confirmed in the

strong magnetic confinement region. The HES approach reasonably calculates

the magnetized electron fluid in the Hall thruster with simple rectangular mesh.

Based on the findings above, it is concluded that the HES approach is applicable to

Hall thruster simulations using the hybrid PIC method, where the boundary condition

of the sheath model is accurately implemented.

For practical numerical analyses of Hall thrusters, update of the models through

validations are necessary. A lot of experimental data are available for the SPT-100

thruster, and validations from various aspects are envisaged. To make the calculation

results reflect the experimental data, the electron mobility model may need tunings

as well as the previous numerical simulations.28,55 The calculation field is supposed

to be expanded to further outer regions of the channel.

Once the model validation is implemented, the PIC-fluid hybrid PIC code using

the HES approach enables numerical analyses on many physical phenomena which
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have been difficult if one uses conventional models. Here two topics are introduced.

One topic is the numerical analysis of magnetically shielded thrusters. Since the HES

approach does not need the use of MFAM, the HES approach can be easily applied to

the complicated magnetic topology of magnetically shielded thrusters. Especially, the

estimation of the effect of magnetic shielding for thruster with anode layer (TAL) is

planned. An experimental study of magnetically shielded TAL has been conducted at

the University of Tokyo.63 The numerical analysis should support the understanding

of the physics and the design optimizations.

The other topic is the electron fluid calculation in the axial-azimuthal coordinate.

As described in Sec. 3.1, the computation using elliptic equations becomes unsta-

ble with the presence of cross-diffusion terms. In the electron fluid calculation in

the axial-azimuthal coordinate, cross-diffusion terms arise owing to the E x B drift

and diamagnetic drift. The HES approach is supposed to be beneficial to stabilize

the computation by avoiding the effects of cross-diffusion terms. It is expected that

the PIC-fluid hybrid model using the HES approach reproduce the azimuthal oscil-

lation phenomena such as the electron cyclotron oscillation, and contribute to the

understanding the electron anomalous transport across magnetic lines of force.
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Chapter 6

Conclusion

In this dissertation, a new approach using a hyperbolic-equation system (HES) was

proposed for electron fluids in quasi-neutral plasmas. The HES is calculated as a

time-development problem by introducing pseudo-time advancement terms. The main

advantage of this approach is that it avoids cross-diffusion terms which violate the

diagonal dominance in conventional approaches using the elliptic equation (EE). The

HES approach enables robust calculations with a simple structured mesh such as a

vertical-horizontal mesh (VHM) by using an upwind method. Further, the speed of

convergence is accelerated by using the preconditioning and efficient implicit methods.

The HES was extended to the full conservation laws of magnetized electron fluids.

To construct a robust upwind method based on the characteristics of the HES, the

flux-splitting method was proposed. In this method, the fluxes are split into four

categories for which the upwind method incorporating the FVS and AUSM is used.

To reduce the numerical viscosity arising in the discretization of the HES, the third-

order TVD-MUSCL technique was adopted.

Finally, the HES approach was applied to the calculation of a Hall thruster using

the hybrid PIC method. The SPT-100 thruster was assumed as the calculation con-

dition in which the simple models of electron mobility and electrostatic sheath were

adopted.

Several test calculations were conducted to verify the efficiency, accuracy, and ap-

plicability of the HES approach. The efficiency and accuracy were discussed through
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the comparisons between the HES approach and the MFAM-based approaches. The

applicability was evaluated through the Hall thruster calculation by examining if the

HES approach could reproduce the fundamental characteristics of the plasma flow in

Hall thrusters. The major findings are summarized as follows:

1. The calculation results computed by the HES approach reflect the effect of

magnetic confinement and the given boundary conditions, and all pseudo-time

advancement terms converge to negligibly small values. These facts validate the

HES approach for magnetized electron fluids.

2. The computational cost of the HES approach is O (N1.5
cell), whereas the cost of

the EE approach is O (N1.8
cell). The HES approach has an advantage that it can

utilize a simple structured mesh without increasing computational cost.

3. With increasing µ||/µ⊥, the computational cost of the HES approach remains

constant, whereas that of the EE approach increases. The HES approach is

efficient in solving conditions of strong magnetic confinement.

4. The calculation results obtained by using the HES approach with the flux-

splitting method are identical to the results obtained by using the MFAM-

based elliptic-parabolic equation system (EPES) approach, in both qualitative

and quantitative comparisons. This fact indicates that a good computational

accuracy can be obtained by using the HES approach, even with the use of a

simple structured mesh.

5. The HES approach with the flux-splitting method is applicable to the conditions

of complicated magnetic field geometry.

6. The hybrid PIC method using the HES approach is able to reproduce the fun-

damental characteristics of the Hall thruster discharge.

7. In the Hall thruster calculation, the Bohm criterion was satisfied at the plasma-

sheath boundary and the Boltzmann relation along magnetic lines of force was

confirmed in the strong magnetic confinement region. These facts indicate that
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the HES approach accurately calculates the plasma-sheath interaction and mag-

netized electron fluid in Hall thrusters with simple structured mesh.

Based on the findings above, the efficiency, accuracy, and applicability of the HES

approach were verified in this dissertation.
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Appendix A

Numerical methods of CFD

In this chapter, the numerical techniques of CFD used in this thesis are reviewed.

Since the numerical techniques for the particle-in-cell (PIC) method can be referred

in many numerical works of Hall thrusters,64–66 this appendix focuses on the CFD

techniques. Although most of the methods can be found on textbooks, some cautions

are given when these methods are applied to the calculation of plasma flows and the

HES approach. Verifications of the techniques are conducted, and the results are

shown in Sec. A.10.

A.1 Conservative form and non-conservative form

In general, the partial differential equations of fluid conservation laws are expressed in

either conservative form or non-conservative form. Conservative quantities are used in

a conservative form. For instance, a set of two-dimensional equations in conservative

form is expressed as follows:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+ S = 0, (A.1)

where Q, E, F , and S are a conservative quantity vector, x-flux vector, y-flux vector,

and source term vector, respectively. The finite volume method (FVM) is usually used

for solving the equations in the conservative form. In many shock-capturing schemes
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used in CFD, the conservative form is preferred to satisfy the flux conservations

between discontinuities of shock waves. On the other hand, a set of equations in

non-conservative form is written as follows:

∂U

∂t
+ A

∂U

∂x
+B

∂U

∂y
+ S = 0, (A.2)

where U , A, and B are variable vector, x-Jacobian matrix, y-Jacobian matrix, re-

spectively. If the set of equations is written in non-conservative form, it is difficult

to apply the FVM because the numerical fluxes cannot be defined. Thus, the strict

conservation of numerical fluxes is not expected with non-conservative forms.

In general, a conservative form and non-conservative form give different calculation

results. It is said that if the solution is smooth and there is no discontinuity in the

flow, the difference is small. However, if there is a discontinuity like a shock wave,

only the conservative form yields physical results.67 The conservative form is also

preferred in computations of anisotropic flows such as magnetized electron fluids.

Owing the the high anisotropy, a small residual in the computational may induce a

large erroneous flux in one direction. Hence it is difficult to maintain the flux balance

if one uses a non-conservative form.

A.2 Upwind method and flux vector splitting (FVS)

Upwind method for one-dimensional scalar hyperbolic equation

An one-dimensional scalar hyperbolic equation is considered as follows:

∂u

∂t
+ c

∂u

∂x
= 0, (A.3)

where u is a scalar variable and c is time-independent quantity. Based on the sign of

c, the upwind direction is determined. If one applies the first-order discretization for
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time and space, the discretized equation in an explicit form is written as follows:

qn+1
i − qni
∆t

+ c
qni − qni−1

∆x
= 0, (c ≥ 0) ,

qn+1
i − qni
∆t

+ c
qni+1 − qni

∆x
= 0, (c < 0) ,

(A.4)

where n denotes time step, and i denotes cell number. Upwind method is known to

be a stable approach for hyperbolic equations. The Courant-Friedrichs-Lewy (CFL)

condition to stabilize the compuation is written as follows:

CFL ≡ |c|∆t

∆x
< 1. (A.5)

Basic concept of upwind method for system of equations

An one-dimensional system of equations is considered as follows:

∂Q

∂t
+

∂E

∂x
= 0. (A.6)

Here Q is a variable vector and E is a flux vector. The Jacobian matrix can be defined

as A ≡ ∂E/∂Q and Eq. (A.6) can be rewritten as follows:

∂Q

∂t
+ A

∂Q

∂x
= 0. (A.7)

With this form, it is difficult to define the upwind direction because A is a complicated

matrix. So the technique of diagonalization is used as follows:

R−1AR = Λ =


c1

...

cm

 ; m : number of equations (variables), (A.8)

where R is eigenvector matrix and Λ is diagonal eigenvalue matrix. c1 · · · cm are the

eigenvalues of A, which are also called characteristic speeds. By using the eigen-

structure, Eq. (A.8) is rewritten as follows:

∂Q

∂t
+RΛR−1∂Q

∂x
= 0. (A.9)
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Let’s multiply R−1 from left-hand side of this equation, and define Q̃ ≡ R−1Q.

R−1∂Q

∂t
+ ΛR−1∂Q

∂x
= 0. ⇐⇒ ∂Q̃

∂t
+


c1

...

cm

 ∂Q̃

∂x
= 0 (A.10)

This conversion process is not very strict because R−1 is fixed on t and x. But

Eq. (A.10) helps one to understand the concept of upwind method for a system of

equations. Eq. (A.10) is just a set of scalar equations. So the upwind directions can

be determined based on the signs of c1 · · · cm, as well as the case of scaler hyperbolic

equation.

Flux vector splitting (FVS)

The flux vector splitting (FVS) is one of the upwind approximate Riemann solvers.34

The flow directions are determined by the signs of c1 · · · cm. For instance in Eq. (A.6),

the numerical flux flowing between the ith and i+ 1th cells is expressed as follows:

Ei+ 1
2
= A+

i Qi + A−
i+1Qi+1, (A.11)

A± = RΛ±R−1, (A.12)

where Λ+ and Λ− consists of only positive and negative eigenvalues, respectively.

The FVS is an efficient upwind method compared with the Roe’s flux difference

splitting (FDS).68 However, numerical fluxes become non-differentiable where the

signs of eigenvalues change, which results in instabilities of the scheme. In order to

avoid the non-differentiable points, another flux splitting using polynomial approxi-

mations is proposed.69

A.3 Advection upstream splitting method (AUSM)

The advection upstream splitting method (AUSM) is proposed to achieve the effi-

ciency of FVS and the accuracy of FDS. This scheme also uses the polynomial ap-
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proximations, and also, it simplifies the evaluation of numerical fluxes by separating

the fluxes into advection ones and pressure ones. Let’s think about an one-dimensional

Euler equation as follows:
∂Q

∂t
+

∂E

∂x
= 0, (A.13)

where

Q =


ρ

ρu

e

 , E =


ρu

ρuu+ p

hu

 . (A.14)

If the Jacobian for E is diagonalized, three eigenvalues of u + a, u, u − a appear (a

is the acoustic speed). The AUSM simplifies this problem by splitting the flux as,

E =


ρu

ρuu+ p

hu

 = u


ρ

ρu

h

+

 p

 = Ma


ρ

ρu

h

+

 p

 , (A.15)

where M is the Mach number. The upwind direction of the first flux can be determined

by the sign of M . Furthermore, in the AUSM, the upwind direction of the second

flux is also determined by the sign of M . The numerical flux is split into right- and

left-running waves of information, as follows:

E = M+a


ρ

ρu

h

+

 p+

+M−a


ρ

ρu

h

+

 p−

 . (A.16)

Further, to avoid non-differentiable points, following polynomial approximations are

used for the −1 ≤ M ≤ 1 region in the AUSM.

M± =

 1
2
(M ± |M |) , if |M| > 1,

±1
4
(M ± 1)2 , otherwise,

(A.17)
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p± =

 1
2
(1± sign (M)) , if |M| > 1,

1
4
(M ± 1)2 (2∓M) , otherwise.

(A.18)

The meaning of the polynomial approximation in Eqs. (A.17) and (A.18) are

visualized in Figs. A-1 and A-2.

Figure A-1: Left: appearances of M+ and M− based on linear upwinding. Right:
appearances of p+/p and p−/p based on the sign of M .

Figure A-2: Left: appearances of M+ and M− based on the polynomial approximation
of Eq. (A.17), and right: appearances of p+/p and p−/p, based on the polynomial
approximation of Eq. (A.18).
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A.4 TVD-MUSCL

The total-variation diminishing monotone upstream scheme for conservation laws

(TVD-MUSCL) is one of the most popular high-order space accuracy schemes because

of its simplicity in implementations. The accuracy of the finite volume method (FVM)

depends on the accuracy of the numerical fluxes flowing at the cell interfaces. These

numerical fluxes are evaluated based on the flux Jacobian matrices and variables

defined at the cell interfaces. The MUSCL is a kind of preconditioning methods to

assess accurate quantities at the cell interfaces by using polynomial interpolations.

One can consider various distribution of quantities in computational cells such as

the piecewise constant and piecewise linear distributions in Fig. A-3. The numerical

fluxes are evaluated by the interpolated quantities. For example, the numerical flux

flowing between the i th and i + 1 th cells is calculated by using ui+ 1
2
,L and ui+ 1

2
,R.

By using the upwind MUSCL interpolation, these values are evaluated as follows:

ui+ 1
2
,L = ui +

1

4

(
(1− k)∆− + (1 + k)∆+

)
i
,

ui+ 1
2
,R = ui+1 −

1

4

(
(1− k)∆+ + (1 + k)∆−

)
i+1

, (A.19)

where ∆ is given by (∆+)i = ui+1 − ui and (∆−)i = ui − ui−1. The coefficient

k determines the order of accuracy. A second-order accuracy is achieved by using

k = −1, and a third-order accuracy is achieved by using k = 1
3
.

It is well known that the high-order schemes become unstable where the flow is

complicated, if the MUSCL interpolation of Eq. (A.19) is directly applied. In order

to regain the stability achieved by the first-order upwind method, the concept of

TVD is applied. In the TVD-MUSCL, one just needs to introduce a nonlinear limiter

function where the flow is not monotonic. The minmod limiter function is one of the

most popular functions which contributes the stability of the scheme, and it is often

used in plasma flow simulations.42 This function is expressed as follows:

∆̃+ = minmod (∆+, b∆−) , ∆̃− = minmod (∆−, b∆+) , (A.20)
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Figure A-3: Piecewise constant and piecewise linear distributions of quantity u in
cells.

where the coefficient b is defined as follows:

b =
3− k

1− k
. (A.21)

The TVD-MUSCL is derived by replacing ∆± in Eq. (A.19) by ∆̃±.

A.5 Implicit method using delta-form

In many cases, only steady-state solutions are concerned and the transit until the

steady state is out of interest. In this case, an implicit method should be used to

avoid the Courant-Friedrichs-Lewy (CFL) restriction. In an implicit method, the flux

is evaluated at the n+1 time level, and the time-derivative term of Eq. (A.6) can be

discretized in the first-order form as

∆Qn +∆t

(
∂E

∂x

)n+1

= 0. (A.22)
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Here ∆t is the time step interval and ∆Qn ≡ Qn+1 −Qn. To linearize the flux in the

direction of time, Beam and Warming proposed the following linearization method.36

En+1 = En +

(
∂E

∂Q

)n

∆Qn +O
(
∆t2
)
. (A.23)

If this linearization is used, by using the flux Jacobian vector of A ≡ ∂E/∂Q, the Eq.

(A.22) can be rewritten as,

(
I +∆t

∂

∂x
An

)
∆Qn = −∆t

(
∂E

∂x

)n

. (A.24)

Here the ∂
∂x

in the left-hand side is also effective on ∆Qn. Because A is a matrix, the

left-hand side of Eq. (A.24) is a tridiagonal block operator. Thus, the calculation of

the inverse of the operator can be easily implemented.

However, the situation is different in two- or three-dimensional calculations. For

instance, the implicit form in two dimensions like Eq. (A.24) is written as follows:

(
I +∆t

∂

∂x
An +∆t

∂

∂y
Bn

)
∆Qn = −∆t

(
∂E

∂x
+

∂F

∂y

)n

. (A.25)

Here F is the flux in the y-direction and B is the flux Jacobian matrix of F . The

configuration of the implicit matrix operator is illustrated in Fig. A-4. The coefficient

matrix of the implicit operator becomes a wide-band matrix because two spatial

indices (i, j) are involved. The matrix inverse calculation of the coefficient matrix

needs a lot of computational time and machine memory. Therefore, efficient implicit

methods for multi-dimensional calculations are developed as explained in the following

sections.
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Figure A-4: The configuration of the coefficient matrix of the implicit operator of Eq.
(A.25). c is the element of the coefficient matrix.

A.6 Lower-upper alternating direction implicit (LU-

ADI) method

To avoid the calculation of matrix inversion of the complicated configuration like

Fig. A-4, approximate factorizations are used. Eq. (A.25) can be modified by the

alternating direction implicit (ADI) factorization proposed by Beam and Warming36

as follows:

(
I +∆t

∂

∂x
An +∆t

∂

∂y
Bn

)
≃
(
I +∆t

∂

∂x
An

)(
I +∆t

∂

∂y
Bn

)
+O

(
∆t2
)
. (A.26)

The conceptual figure of this factorized operator is shown in Fig. A-5. The compli-

cated configuration of the implicit operator is factorized into two tridiagonal block

matrices by switching the indices. Therefore, the operator can be calculated by the

two steps of inversion of tridiagonal block matrices as follows:

(
I +∆t

∂

∂x
An

)
∆Q⃗n∗ = −∆t

(
∂E⃗

∂x
+

∂F⃗

∂y

)n

, (A.27)

(
I +∆t

∂

∂y
Bn

)
∆Q⃗n = ∆Q⃗n∗. (A.28)

Furthermore, to enhance the diagonal dominance of the ADI-factorized operators,

the lower-upper alternating direction implicit (LU-ADI) method was proposed.37 This
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Figure A-5: The configuration of the implicit operator of Eq. (A.26). c is the element
of the coefficient matrix. Each matrix is a tridiagonal block matrix.

method is known as a robust and fast multi-dimensional implicit method. The oper-

ator in x-direction is approximated by the lower-diagonal-upper (LDU) factorization

as follows:

(
I +∆t

∂

∂x
An

)
≃(

I − ∆t

∆x
An− +∆tδbxA

n+

)(
I +

∆t

∆x

(
An+ − An−))−1(

I +
∆t

∆x
An+ +∆tδfxA

n−
)
,(A.29)

where A+ and A− are the Jacobian matrices which contain only positive and negative

eigenvalues, respectively. δfx and δbx are the forward and backward differences in x-

direction, respectively. Totally six operators are involved in the LU-ADI method in

two dimensions. Finally, a caution must be paid on the accuracy when the ADI

method is used. ADI method has a numerical error of O (∆t2). This numerical error

is trivial when a small ∆t is used, because originally the first-order differencing is

used for the time derivative. However, the numerical error becomes substantial when

a large CFL is used, and the steady-state results can be distorted. Thus, a very large

Courant number should be avoided even if the steady state is calculated stably. To

the best of the author’s knowledge, the Courant number exceeding 103 should not be

used with the ADI method.
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A.7 Lower-upper symmetric Gauss Seidel (LU-SGS)

method

In addition to the LU-ADI method, the lower-upper symmetric Gauss Seidel (LU-

SGS) method is commonly used as an efficient multi-dimensional implicit method.45

The LU-SGS method uses the approximate LDU factorization as follows:

I +∆t
∂

∂x
An +∆t

∂

∂y
Bn = L+D + U, (A.30)

L+D + U = (L+D)D−1 (D + U) +O

(
∆t2

1 + ∆t

)
. (A.31)

In one-dimensional cases, the structure of (L+D)D−1 (D + U) is the same as the

right-hand side of Eq. (A.29). Thus, the LU-ADI method can be understood as that

it applies the LDU factorization after the ADI factorization.

The LDU-factorized matrix can be calculated by an iterative method. Let’s con-

sider solving an equation as follows:

(L+D)D−1 (D + U)∆Q = RHS. (A.32)

For this equation, the two-step symmetric Gauss-Seidel method can be described as

follows:

Step1 : (L+D)∆Qn+1/2 = RHSn,

Step2 : (D + U)∆Qn+1 = −L∆Qn+1/2 +RHSn. (A.33)

As written in Eq. (A.29), L, D, and U are described by the split Jacobian matrices

such as A± and B±. In the LU-SGS method, the split Jacobian matrices are roughly

evaluated as follows:

A± =
1

2
(A± σρ (A) I) , B± =

1

2
(B ± σρ (B) I) . (A.34)
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Here, ρ is the maximum spectral radius (maximum eigenvalue), and the parameter σ

is usually set around 1.01. By introducing this approximation, D becomes a diagonal

matrix. Therefore, ∆Qn+1/2 can be obtained by the forward calculation, and ∆Qn+1

can be obtained by the backward calculation. Because no matrix inversion calculation

is involved, a vary rapid calculation is possible. It is noted that if D is originally

diagonal matrix, the use of spectral radius is not necessary.

In the LU-ADI method, there is a limitation of the time step interval ∆t due to

the O (∆t2) error involved in the ADI factorization of Eq. (A.26). In the LU-SGS

method, the error is O (∆t) when a large ∆t is used, and O (∆t2) when a small ∆t is

used. Thus, when a large ∆t is used for a fast convergence, the error of the LU-SGS

method is not predominant and is on the same order as the time-derivative term.

This is an advantage of the LU-SGS method.

A.8 ADI-SGS method

One can consider the conbination of the LU-SGS method with the ADI factorization.

After the ADI factorization of Eq. (A.26), the approximate LDU factorization can

be applied as follow:

I +∆t
∂

∂x
An = L+D + U ≃ (L+D)D−1 (D + U) . (A.35)

The matrix inversion calculation is replaced by the two-step sweep calculation of SGS

method as written in Eq. (A.33). This method is known as the ADI-SGS method.42

The advantage of this scheme is that the vectorization and parallelization are

easy because the operator in each direction can be calculated separately. Regarding

the disadvantage, it is supposed that this method suffers a large numerical viscosity

stemming from the ADI factorization and the introduction of the spectral radius for

diagonal D.
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A.9 Successive over relaxation (SOR) method

When one solves an elliptic equation as a boundary value problem, one needs to

calculate a system of equations. The calculation methods for the system are cate-

gorized into two methods. One is the direct method which inverses the coefficient

matrix. The other one is the iterative method which derive an approximate solu-

tion by decreasing the residuals. The successive over relaxation (SOR) method is a

simple iterative method which is typically used for calculations of elliptic equations.

The SOR method stably calculate multi-dimensional elliptic equation if the diagonal

dominance of the coefficient matrix is satisfied.

For instance, let’s think about a two-dimensional Poisson equation of Gauss’s law

as follow:

−∇2ϕ =
ρ

ε0
, (A.36)

where ϕ, ρ, and ε0 are space potential, charge density, and permittivity of vacuum,

respectively. Diffusion terms can be stably calculated by using the central differencing.

Thus Eq. (A.36) can be discretized as follow:

−ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x2
− ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y2
=

ρi,j
ε0

(A.37)

⇐⇒ ϕi,j =

(
2

∆x2
+

2

∆y2

)−1(
ρi,j
ε0

+
ϕi+1,j + ϕi−1,j

∆x2
+

ϕi,j+1 + ϕi,j−1

∆y2

)
(A.38)

i are j are the indices in x-direction and y-direction of calculation mesh, respectively.

The steady-state solution of ϕ is solved by iterative sweep calculations. If the sweep

direction is i : 1 → Nx and j : 1 → Ny, the SOR method can be formulated as follows:

ϕn+1
i,j = ω

(
2

∆x2
+

2

∆y2

)−1
(
ρni,j
ε0

+
ϕn
i+1,j + ϕn+1

i−1,j

∆x2
+

ϕn
i,j+1 + ϕn+1

i,j−1

∆y2

)
(A.39)

Here, ω is the relaxation parameter which is chosen as 1 ≤ ω < 2 to accelerate the

calculation. When the diagonal dominance of the coefficient matrix is not strict, ω <

1 is chosen for stable calculations. In this dissertation, ω is set at 1.8 in most cases.
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A.10 Verification of numerical techniques

Test calculations are conducted to check if the numerical methods are coded appro-

priately. Basically in the process of verification, calculation results are compared to

analytical solutions. Also, the mesh convergence is analyzed in steady state problems

to check if the numerical error is decreasing with expected order of accuracy.

Verification of FVS, AUSM, and TVD-MUSCL

As a test problem let’s consider a Poisson’s equation as follows:

∂2ϕ

∂x2
= A cos

(
2πN

x

L

)
. (A.40)

By introducing a new variable u = ∂ϕ
∂x

, a hyperbolic-equation system (HES) can be

constructed as follows:

∂u

∂x
= A cos

(
2πN

x

L

)
,

∂ϕ

∂x
= u. (A.41)

For this problem the analytical solutions for ϕ and u are derived as follows:

ϕ = −
(

L

2πN

)2

A cos
(
2πN

x

L

)
+Bx+ C, (A.42)

u =
L

2πN
A sin

(
2πN

x

L

)
+B, (A.43)

where B and C are constants of integration. The boundary conditions are given as

follows:

ϕi=1 = ϕAnode, ϕi=N = ϕCathode. (A.44)

Then, the constants of integration are expressed as follows:

B =
ϕCathode − ϕAnode

L
, C =

(
L

2πN

)2

+ ϕAnode. (A.45)

For test calculation, the following numbers are assumed in the calculation.

A = 10, L = 1, N = 3, ϕAnode = 2, ϕCathode = 1. (A.46)
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The HES of Eq. (A.41) can be computed by the HES approach, as described in

Sec. 3. Pseudo-time advancement terms are introduces into the system as follows:

∂ϕ

∂t
− ∂u

∂x
= −A cos

(
2πN

x

L

)
,

∂u

∂t
− ∂ϕ

∂x
= −u. (A.47)

For this HES, the Jabobian matrix and the eigenvalues are written as follows:

Jx =

 0 −1

−1 0

 , λx = ±1. (A.48)

Based upon these Jacobian matrix and eigenvalues, the test problem can be com-

puted by the FVS in Sec. A.2. Fig. A-6 shows the calculation results when the

test problem is calculated by a first-order upwind method with a grid number of 96

and a Courant number of 0.02. u is calculated accurately, whereas ϕ has a lot of

numerical viscosity. Fig. A-7 presents the results obtained by the first-order AUSM.

The numerical viscosity in ϕ of the first-order FVS is slightly reduced. However, it is

reported that the AUSM is unstable compared with the FVS, and the AUSM required

greater computational time for convergence than the FVS. To reduce the numerical

viscosity the TVD-MUSCL in Sec. A.4 is applied with the minmod limiter function.

Fig. A-8 presents the results of the calculation when a second-order scheme is used.

The numerical viscosity of ϕ in the result of fist-order approach is greatly reduced.
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Figure A-6: Results of first-order upwind FVS. Left: ϕ. Right: ux. Grid number is
96.

Figure A-7: Results of first-order AUSM. Left: ϕ. Right: ux. Grid number is 96.

Figure A-8: Results of second-order TVD-MUSCL FVS. Left: ϕ. Right: ux. Grid
number is 96.
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The order of accuracy can be checked by calculating the numerical errors with

varying grid sizing. Here the normalized error is defined as follows:

Enorm =

√√√√ 1

Ncell

Ncell∑(
|ysimulation − ytheory|2

|ytheory|2 + ε

)
, (A.49)

where ε is a tiny positive parameter satisfying ε ≪ |y| to avoid division by zero. It is

noted that the numerical error treated herein is the discretization error. The machine

error is neglected because it is negligibly small in typical calculation conditions.

Figs. A-9 and A-10 show the mesh convergences of ϕ and u, respectively, for first-

order upwind method, second-order TVD-MUSCL, and third-order TVD-MUSCL.

The errors are decreasing in all of the schemes. However, the order of accuracies

differ from expected values, especially in the TVD-MUSCL. For instance, the order

of accuracy attained by the second-order TVD-MUSCL is 2.70 for ϕ and 1.76 for u.

The discrepancy of the order of accuracies between the results and expected values

is coming from the manner of MUSCL interpolation. In this test calculation, the

MUSCL interpolation is implemented for characteristic variables, because the TVD-

MUSCL is based on the scalar calculation. Instead of ϕ and u, the order of accuracy

is checked for characteristic variable. For the hyperbolic system of Eq. (A.41), the

characteristic quantities are written as follows:

q1 =
ϕ− u

2
, q2 =

ϕ+ u

2
. (A.50)

The mesh convergences of these characteristic quantities are shown in Figs. A-11

and A-12, respectively. The order of accuracies attained by the second-order TVD-

MUSCL for q1 and q2 are 1.96 and 1.95, respectively. Thus, it is concluded that the

TVD-MUSCL is implemented appropriately.
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Figure A-9: Mesh convergence of ϕ. The order of accuracy for each scheme is esti-
mated as 1st: 1.00, 2nd: 2.70, and 3rd: 2.88.

Figure A-10: Mesh convergence of u. The order of accuracy for each scheme is
estimated as 1st: 1.34, 2nd: 1.76, and 3rd: 2.44.
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Figure A-11: Mesh convergence of q1. The order of accuracy for each scheme is
estimated as 1st: 1.01, 2nd: 1.96, and 3rd: 2.59.

Figure A-12: Mesh convergence of q2. The order of accuracy for each scheme is
estimated as 1st: 1.01, 2nd: 1.95, and 3rd: 2.62.
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Verification of implicit methods

Here the implicit methods for hyperbolic-equation systems are verified. The con-

dition in Fig. 3-2-(a) is used for the test, and the HES of Eq. (3.14) is calculated. The

Courant number is set at CFL = 30, for all of the calculations. The implicit methods

of only Beam-Warming linearization, LU-ADI method, ADI-SGS method, and 6-core

parallelized ADI-SGS method are implemented. The convergence is deemed to be

satisfied when the normalized difference of the space potential reaches 10−10, and the

CPU second at convergence is termed Tconverge.

Fig. A-13 shows the computational times of the implicit methods of only Beam-

Warming linearization and LU-ADI method. First of all, the computations are stable

for each method, even with CFL = 30. This gives a proof on the coding of the

implicit methods. The computational time is greatly reduced in the LU-ADI method.

The order of computational time is also decreased from O (N3
cell) to O (N1.5

cell). This

reduction of computational time is mainly owing to the ADI factorization.

Furthermore, the computational times of LU-ADI method, ADI-SGS method, 6-

core parallelized ADI-SGS are compared in Fig. A-14. Even though the order of com-

putational time is not decreased, the computational time of the ADI-SGS method is

approximately 1/5 of that of the LU-ADI method. This is mainly because of the char-

acteristics of the Jacobian matrices in Eq. (3.16). Normally the SGS-type methods

must introduce the spectral radius ρ to make D in the approximate LDU factoriza-

tion diagonal. The use of the spectral radius induces a lot of numerical viscosities.

However, if the Jacobian matrices in Eq. (3.16) are used, D becomes naturally diag-

onal without introducing ρ. Thus, very efficient calculations are expected with the

SGS-type schemes.

Further reduction of computational time is confirmed in the six-core parallelized

ADI-SGS method. The big advantage of the ADI-type method is the simplicity in the

parallelization. Although the parallelization is “desperate” in the LU-SGS method,70

the ADI method enables the segmentation of the region based on row and column.
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Figure A-13: Computation costs until convergence when the number of cells is
changed. The Fig. 3-2-(a) condition is solved using the HES approach. Implicit
methods of only Beam-Warming linearization and LU-ADI are implemented. A log-
arithmic scale is used for each axis for scale analysis. 1.5th-, and 3rd-order slopes are
depicted for reference.

Figure A-14: Computation costs until convergence when the number of cells is
changed. The Fig. 3-2-(a) condition is solved using the HES approach. Implicit
methods of LU-ADI, ADI-SGS, six-core parallelized ADI-SGS are compared. A log-
arithmic scale is used for each axis for scale analysis.
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Verification of elliptic equation solver

Elliptic equations are usually solved by applying central differencing and an it-

erative method. Here the Poisson’s equation in Eq. (A.40) is calculated by using a

second-order central differencing and the SOR method. The SOR method is imple-

mented with a relaxation parameter of 1.8. The mesh convergence of the normalized

error is visualized in Fig. A-15. The normalized error is decreasing with the order of

O (∆x2) as expected by the theory.

Figure A-15: Mesh convergence of normalized error. 2nd-order slope was derived by
the 2nd-order Poisson’s equation solver by the SOR method.
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