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ABSTRACT

Exploiting Non-Local Information in Relation Extraction from Documents
by

Natsuda Laokulrat

Supervisor: Yoshimasa Tsuruoka

Relation extraction from documents is one of the most common tasks in Natural Language
Processing (NLP). Relations between entities are an important piece of information for
deep understanding of documents. Moreover, being able to extract relations appearing in
text is beneficial for various NLP applications such as textual entailment, multi-document
summarization, and question answering.

Traditional machine learning-based approaches to relation extraction use only local fea-
tures, i.e., features between a given pair of entities, and thus fail to incorporate useful in-
formation that could be inferred from nearby entities into the classification process. In
this project, in order to apply non-local information into the classification, we make use of
graphs and apply a stacked learning method to classification task.

This study mainly focuses on the temporal relation classification. However, the idea can
also be applied to other NLP relation extraction tasks. In this work, the temporal relation
classification task has been performed with extensive experiments to verify the proposed
method.

Temporal relation classification aims to classify temporal relationships between pairs
of temporal entities into one of the relation types such as BEFORE, AFTER, SIMULTA-
NEOUS, and BEGINS. Local approaches do not consider entities that have temporal con-
nections to the entities in the given pair at all, and thus contradictions within a document
can occur. For instance, the system may predict that A happens before B, that B happens
before C, and that A happens after C, which are mutually contradictory. In our model,
we tackle the problem of contradictory predictions by using a stacked learning approach.
The prediction for a temporal relation is made by considering the consistency of possible
relations between nearby entities.

xii



In this study, we tackle the problem of contradictory predictions by using a stacked
learning approach proposed by Wolpert (1992). Stacked learning is a machine learning
framework that allows one to incorporate non-local information into a structured predic-
tion problem and has proven useful in dependency parsing (Martins et al. (2008)). We
employ stacked learning in order to use the results of temporal inference as non-local fea-
tures in temporal relation classification. To perform temporal inference, we use timegraphs
proposed by Miller and Schubert (1990), which represent temporal connectivity of all tem-
poral entities in each document.

Global approaches for tackling the aforementioned problem have been proposed previ-
ously (Chambers and Jurafsky (2008); Yoshikawa et al. (2009); Denis and Muller (2011);
Do et al. (2012)). Chambers and Jurafsky used Integer Linear Programming (ILP) to max-
imize the confidence scores of the output of local classifiers in order to solve the contra-
dictory prediction. Denis and Muller also used ILP but they enforced temporal relation
coherence only on particular sets of events rather than on the entire documents. How-
ever, both of the studies focused only on the temporal relations between events and used
reduced sets of the temporal relations, i.e., Chambers and Jurafsky used BEFORE, AFTER,
and VAGUE., while Denis and Muller used BEFORE, AFTER, OVERLAP, and NO RELATION. Do
et al. employed a full set of temporal relations to construct a globally coherent timeline
for an article using ILP, leveraged event coreference to support timeline construction, and
associated each event with a precise time interval.

Yoshikawa et al. proposed a Markov Logic model to jointly predict the temporal re-
lations between events and time expressions. They also used a reduced set of the rela-
tion types, i.e., BEFORE, OVERLAP, AFTER, BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER, and
VAGUE.

Our method differs from theirs in that their methods used transition rules to enforce
consistency within each triplet of relations, but our method can also work with a set con-
sisting of more than three relations. Moreover, in our work, the full set of temporal relations
specified in TimeML are used, rather than the reduced set used in Chambers and Jurafsky
(2008) and Yoshikawa et al. (2009).

We evaluate our method on the TempEval-3’s Task C-relation-only data, which provides
a system with all the appropriate temporal links and only needs the system to classify the
relation types. The results show that by exploiting the probability values in the stacked
learning approach, the classification performance improves significantly. By performing
10-fold cross validation on the Timebank corpus, we can achieve an F1 score of 60.25%
based on the graph-based evaluation, which is 0.90 percentage points (pp) higher than that
of the local approach.
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We compared our system to the state-of-the-art systems that use global information
in temporal relation classification and found that our system outperforms those systems.
Our system can achieve 7.7 pp higher accuracy than Chambers’s system and 0.9 pp higher
accuracy than Yoshikawa’s system. By using a stacked learning approach, we are able to
include a large number of features into our models, which makes our results better than
those of Yoshikawa et al. (2009), since including a large number of features into a Markov
Logic model is difficult and computationally expensive.
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I
Introduction

1.1 Natural Language Processing

Natural Language Processing (NLP) is becoming more and more important in this dig-
ital era when information is everywhere, becoming too large and growing too rapidly. NLP
has been widely used and already become a part of our daily lives. The most common ap-
plications of NLP are search engines, smart phones’ autocorrection function, and machine
translation. More advanced applications have been invented by giant companies, such as
Apple’s Siri, Google Now, and IBM Watson.

Apple’s Siri, an application for Apple’s iOS, uses a natural language user interface to
answer questions, make recommendations, and perform actions by delegating requests to a
set of Web services. Fig.1.1 demonstrates how Siri answers the questions.

IBM Watson is an artificial intelligence computer system capable of answering ques-
tions posed in natural language, developed in IBM’s DeepQA project (www-03.ibm.
com/innovation/us/watson/index.html). In 2011, Watson competed on the

Figure 1.1: Apple’s Siri
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Chapter I. Introduction

Figure 1.2: IBM Watson

Figure 1.3: Google Search

quiz show Jeopardy!, as shown in Fig.1.2, and received the first prize. It had access to
200 million pages of structured and unstructured content consuming four terabytes of disk
storage, including the full text of Wikipedia, but it was not connected to the Internet during
the game.

Google Search, as shown in Fig.1.3, is a very success application of NLP and has
become an essential part of our daily lives. Another state-of-the-art NLP system is Wol-
framAlpha (www.wolframalpha.com), developed by Wolfram Research. It can give
answers on facts and data and calculates answers across a range of topics, including sci-
ence, nutrition, history, geography, engineering, mathematics, linguistics, sports, etc.

1.2 Relation extraction

Normal text documents are unstructured. In order to change unstructured information
into computer-understandable data, a task called relation extraction is necessary. Relation
extraction from documents is one of the most common tasks in NLP. There exist many
kinds of relation that can be extracted from text, such as dependencies between word to-
kens (dependency parsing), temporal relation between entities within or across documents.

2
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Figure 1.4: Example sentence for temporal relation classification

Relations between entities are an important piece of information for deep understanding
of documents. Moreover, being able to extract relations appearing in text is beneficial for
various NLP applications such as textual entailment, multi-document summarization, and
question answering.

Traditional machine learning-based approaches to relation extraction use only local fea-
tures, i.e., features between a given pair of entities, and thus fail to incorporate useful in-
formation that could be inferred from nearby entities into the classification process.

Temporal relation classification aims to classify temporal relationships between pairs
of temporal entities into one of the relation types such as BEFORE, AFTER, SIMULTA-
NEOUS, and BEGINS.

Event extraction is a task to identify and classify events in the document text, as well as
arguments associated with those events. For classification tasks, the traditional approach is
to use local information associated with trigger and argument tokens.

1.3 Motivation

Local approaches do not consider entities that have temporal connections to the entities
in the given pair at all, and thus contradictions within a document can occur. For instance,
in the temporal relation classification task, the system may predict that A happens before
B, that B happens before C, and that A happens after C, which are mutually contradictory.

Let’s see an example sentence in Figure 1.4. The timeline of the temporal entities
appearing in the sentence is shown on the left side of Figure 1.5.

If we look at the sentence, the words one year and the word killed are close to each
other and the event attend and the time expression one yearare also closed, so it is not hard
to predict the relation type. But for the events attend and kill, they are distant and it is hard
to predict their relationship by using only their local information, e.g. surrounding words,
Part of Speech (POS) tags, or their tenses.

This is our motivation to put all of these temporal entities into a graph, as illustrated in
Figure 1.6, and thus we can use the information extracted from the graph in the temporal
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Chapter I. Introduction

Figure 1.5: Temporal relation classification time line example (pairwise)

Figure 1.6: Temporal relation classification time line example (graph)

relation classification.
By considering the relations in a document as a graph consisting of nodes (entities) and

edges (relations), we are able to extract more information such as paths between a pair of
entities or context of a node, as illustrate in Figure 1.7. We call these kind of information
Non-Local Information.

1.4 Non-local approaches

There exist many machine learning approaches that are capable of incorporating non-
local information into relation extraction models, such as

• Structured perceptron (with global features)

Structured perceptron is suitable for incorporating non-local features. However, high
computation cost cannot be avoided.

• Conditional Random Field (CRF)

4
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Figure 1.7: Non-local information

Normally, CRF is suitable for employing short distance features. Even we can in-
crease the degree of the model but the computation cost will increase drastically.

• Markov Logic Network (MLN)

MLN allows us to model the dependencies between entities but the number of fea-
tures is quite limited. A very-long running time is expected if too many features are
used.

• Reranking

Reranking is suitable for incorporating non-local features. However, the best the
reranking model is limited by the original model.

• Stacked learning

Stacked learning is also suitable for incorporating non-local features. It employs
multiple stages of learners (no form restriction) and the output of the current stage
will be the input to the next stage. Each stage can use any kind to classifiers so we
can choose the learning approach that is not computational expensive.

Since we want to apply a large number of features to our model, the stacked learning
approach seems to be the most suitable choice for our requirement. So, in this study, in
order to apply non-local information into the classification, we make use of graphs and
apply a stacked learning method to classification task.

1.5 Contributions

The contributions of this work are as follows:

5
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• Incorporate non-local information into the temporal relation classification task

We built a stacked learning model and incorporated several types of non-local fea-
tures into the model.

• Apply some inference methods to increase accuracy

To alleviate the graph sparsity problem, we apply temporal relation inference and
time-time connection to the graphs before extracting non-local features.

• Use probability values as real-valued features

The probability values of the prediction in the first stage (of the stacked learning)
are applied in temporal relation classification as real-valued features and used for
prediction in the second stage.

• Evaluation and result analysis

The temporal relation classification has been performed with extensive experiments
to verify the proposed method. The results were analyzed in detail and compared
with the state of the art.

Even though the idea can also be applied to other NLP relation extraction tasks, this
work mainly focuses on the temporal relation classification and tackle the problem of con-
tradictory predictions by using a stacked learning approach. The prediction for a temporal
relation is made by considering the consistency of possible relations between nearby en-
tities. By performing 10-fold cross validation on the Timebank corpus, we achieve an
F1 score of 60.25% based on the graph-based evaluation, which is 0.90 percentage points
higher than that of the local approach, and outperform other systems that have been pre-
sented so far.
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II
Machine learning

The machine learning approaches that are used in our work are supervised machine learning
which will be introduced in Section 2.1, and stacked learning which will be explained in
Section 2.2. The application of stacked learning to NLP tasks is described in Section 2.3.

2.1 Supervised Machine Learning

As illustrated in Figure 2.1, supervised machine learning is a learning method that based
on labeled training example. In the training stage, features and labels (correct answers) are
extracted from the training data. Then, the predicting model is trained from these features
and labels by some machine learning algorithms. The output from training stage is a set
of prediction rules (model). In the predicting stage (testing stage), a new example without
label is given. A set of features are extracted from the example and the model then predicts
the output from those features.

Supervised machine learning is widely used in NLP classification tasks. Figure 2.2
shows the application of it in NLP-related classification. The training examples are text or
sentences from documents. The features commonly used in NLP tasks are word tokens,
part of speech (POS) tags, lemmas, parse tree, synonyms, etc., and labels are correct (gold)
relations.

2.2 Stacked learning

Stacked learning method is proposed byWolpert (1992). It is a machine learning method
that contains multiple stages of learners. In this work, we will fix the number of stages to
2. The prediction results of the first stage will be the input feature to the second stage as
illustrated in Figure 2.3.
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Figure 2.1: Supervised Machine Learning

Figure 2.2: Supervised Machine Learning in NLP tasks
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Figure 2.3: Stacked learning
Figure 2.4: Training the first stage of the
stacked learner

Figure 2.5: Ten-fold cross validation to
create the training data for the second
model (1)

Figure 2.6: Ten-fold cross validation to
create the training data for the second
model (2)

The step-by-step training approach for the stacked learning is as follows.
First, we will use all training data to train the first model as illustrated in Figure 2.4.

This model will be used in the test stage.
Second, in order to create the training data for the second model, 10-fold cross valida-

tion is performed. The prediction results from the 10-fold cross validation will be used as
input to the second stage. This is because we do not want the second model to learn from
the real (gold) labels of the training data. Figure 2.5, 2.6, and 2.7 illustrate this step.

Third, we use the predicted output from 10-fold cross validation to train the second
model as represented in 2.8. After this step, the training for the stacked learner is already
done.

In test stage, the first model obtained from the first step (Figure 2.4) is used to predict
the output of the test data, as shown in Figure 2.9. Next, in the second stage illustrated in
2.10, the test data and the output from the first stage are used as input to the second model

9
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Figure 2.7: Ten-fold cross validation to
create the training data for the second
model (3)

Figure 2.8: Training the second stage of
the stacked learner

Figure 2.9: Test stage (first stage) Figure 2.10: Test stage (second stage)

obtained in the third step (2.8). The second model again predicts the output which is the
final result and may differ from the output of the first stage.

2.3 Stacked learning for NLP tasks

This section will show how to use the stacked learning approach in NLP tasks. First,
let Figure 2.11 represent a general relation extraction task. E stands for Entity and R stands
for Relation.

First, in Figure 2.12, the local features, such as words, lemmas, POS tags, and syn-
onyms, are extracted from the entities and the first model is trained.

Second, with the same set of features extracted from the first step, 10-fold cross vali-
dation is performed as shown in Figure 2.13. After finishing the cross validation, all the
relations have been predicted, as presented in 2.14.

Third, as illustrated in Figure 2.15, the relation graph is constructed from the output
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Figure 2.11: Relation extraction in NLP

Figure 2.12: Training the first stage of the stacked learner for NLP tasks

of the first stage. Non-local features can be extracted from the relation graph. Then the
second model is trained by using these non-local features as well as the same feature set
extracted in the first stage, as we can see in Figure 2.16.

In the test stage in Figure 2.17, again the local features, e.g. words, lemmas, POS tags,
and synonyms, are extracted from the test data. All the test relations are predicted using
the first model, as shown in Figure 2.18.

After that, the relation graph is constructed as seen in Figure 2.19, and the non-local
features are extracted. In the last step, the final prediction result can be obtained in Figure
2.20 by using the second model.
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Figure 2.13: Ten-fold cross validation to create the training data for the second model in
NLP tasks (1)

Figure 2.14: Ten-fold cross validation to create the training data for the second model in
NLP tasks (2)
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Figure 2.15: Constructing the relation graph from the prediction output of the first stage

Figure 2.16: Training the second stage of the stacked learner for NLP tasks
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Figure 2.17: Test stage (first stage) (1)

Figure 2.18: Test stage (first stage) (2)
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Figure 2.19: Test stage (second stage) (1)

Figure 2.20: Test stage (second stage) (2)
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III
Temporal relation classification

This chapter introduces the background about temporal relation classification and presents
some previous studies related to our work.

3.1 Temporal Relation Classification

Temporal relations are an important piece of information for deep understanding of
documents. Figure 3.1 shows an example of temporal relations in a news article. Temporal
relation classification aims to classify temporal relationships between pairs of temporal
entities into one of the relation types such as BEFORE, AFTER, SIMULTANEOUS, and BEGINS.

Traditional approaches to temporal relation classification employ machine learning-based
classifiers Mani et al. (2006) Being able to extract temporal relations between events and
temporal expressions appearing in text is beneficial for various natural language processing
(NLP) applications such as textual entailment Bos and Markert (2005), multi-document
summarization Bollegala et al. (2006), and question answering Ravichandran and Hovy

Figure 3.1: Temporal relations in a news article
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Chapter III. Temporal relation classification

(2002).
Temporal relation classification is one of the subtasks of TempEval challenge (Verhagen

et al. (2010); UzZaman et al. (2012, 2013)). According to TempEval-3 which was held in
2013, a temporal annotation task can be separated into three subtasks:

• Temporal expression extraction (Task A)

A task to extract temporal expressions appearing in a document, along with their
attributes and normalized values. The state of the art uses the ruled-based approach
(Chang and Manning (2012)).

• Event extraction (Task B)

A task to extract events appearing in a document, along with their attributes. Many
systems, such as the work of UzZaman and Allen (2010), used CRF for this task.

• Temporal link identification and relation classification (Task C)

A task to identify whether two specific temporal entities has a temporal relation be-
tween them and classify the relation type into one if the 13 relations described in
TimeML specification. There is another task called Task C - relation only which
focuses only on relation classification by using the given pairs of temporal entities
from the corpus.

3.1.1 Temporal expression

Temporal expressions are words that state

• A point of time, e.g. 5 minutes ago, yesterday

• A period or a range, e.g. one week or one year, 20 minutes)

• A frequency, e.g. everyday, every year

An example of temporal expressions in a sentences and their associated attributes are
shown in Figure 3.2.

3.1.2 Event

Events are word tokens that represent states or occurence. They can be nouns, verb,
numbers, or any kind of part of speech. An example of events in a sentences and their
associated attributes are shown in Figure 3.3.
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Figure 3.2: Temporal expression example

Figure 3.3: Event example

3.1.3 Temporal relation

Our work does not extract events and temporal expressions automatically but only fo-
cuses on the relation classification task (Task C and Task C-relation only). Figure 3.4
shows more example of temporal relations between temporal entities, including temporal
expressions and events.

Following TempEval-3, we consider the following four kinds of temporal relations:

• A relation between an event and the Document Creation Time (DCT),

• A relation between two events in the same sentence,

• A relation between an event and a temporal expression in the same sentence, and

• A relation between two events in consecutive sentences.

Figure 3.6 shows how temporal relations in the document in Figure 3.5 looks like.
The document, events, temporal expressions, and the temporal relations are annotated and
visualized by a visualization tool, BRAT invented by Stenetorp et al. (2012). Figure 3.7
shows the connection in the form of a graph consisting of nodes (temporal entities) and
edges (temporal relations).
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Figure 3.4: Temporal relation examples
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Chapter III. Temporal relation classification

3.1.4 The Timebank corpus

The Timebank corpus, introduced by Pustejovsky et al. (2003), is a human-annotated
corpus commonly used in training and evaluating a temporal relation classifier. It is an-
notated following the TimeML specification to indicate events, temporal expressions, and
temporal relations.

It also provides five attributes, namely, class, tense, aspect, modality, and polarity,
associated with each event (EVENT), and four attributes, namely, type, value, functionIn-
Document, and temporalFunction, associated with each temporal expression (TIMEX3). A
TIMEX tag can be used to annotate a date, time, duration, and a set of dates and times. An
example of the annotated event and temporal expression is shown below. The sentence is
brought from wsj 0292.tml in the Timebank corpus.

In <TIMEX3 tid=”t88” type=”DURATION” value=”P9M” temporalFunction=”true”

functionInDocument=”NONE” endPoint=”t0”>the first nine months</TIMEX3>, profit

<EVENT eid=”e30” class=”OCCURRENCE”>rose</EVENT> 10% to $313.2 million, or

$3.89 a share, from $283.9 million, or $3.53 a share.

<MAKEINSTANCE eventID=”e30” eiid=”ei349” tense=”PAST” aspect=”NONE” po-

larity=”POS” pos=”VERB” />

In addition to an EVENT tag which includes a class attribute, an event is also annotated
with one or more MAKEINSTANCE tags that include information about a particular instance
of the event. The information includes tense, aspect, modality, and polarity. In the above
example, there is no modal word in the sentence, so the attribute modality does not appear.

A pair of temporal entities, including events and temporal expressions, that is annotated
as a temporal relation is called a TLINK. Temporal relation classification is the task of
classifying TLINKs into temporal relation types. We use the complete set of the TimeML
relations, which has 14 types of temporal relations: BEFORE, AFTER, IMMEDIATELY BEFORE,

IMMEDIATELY AFTER, INCLUDES, IS INCLUDED, DURING, DURING INVERSE, SIMULTANEOUS,

IDENTITY, BEGINS, BEGUN BY, END, and ENDED BY. However, in TempEval-3, SIMULTANEOUS

and IDENTITY are regarded as the same relation type, so we replace all IDENTITY relations
with SIMULTANEOUS.

Given the example mentioned above, the temporal relation is annotated as below.

<TLINK lid=”l23” relType=”DURING” eventInstanceID=”ei349” relatedToTime=”t88”

/>

24



Chapter III. Temporal relation classification

Figure 3.8: Relation types

From the annotated relation above, the event rose (e30) happens DURING the temporal
expression the first nine months (t88).

Figure 3.8 shows all relation types along with their example sentences.

3.2 Related work

This section describes existing approaches to temporal relation classification along with
their advantages and disadvantages.

Global approaches for tackling the aforementioned problem have been proposed previ-
ously (Chambers and Jurafsky, 2008; Yoshikawa et al., 2009; Denis and Muller, 2011; Do
et al., 2012). Chambers and Jurafsky used Integer Linear Programming (ILP) to maximize
the confidence scores of the output of local classifiers in order to solve the contradictory
prediction.

Denis and Muller also used ILP but they enforced temporal relation coherence only
on particular sets of events rather than on the entire documents. However, both of the
studies focused only on the temporal relations between events and used reduced sets of the
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temporal relations, i.e., Chambers and Jurafsky used BEFORE, AFTER, and VAGUE., while
Denis and Muller used BEFORE, AFTER, OVERLAP, and NO RELATION.

Do et al. employed a full set of temporal relations to construct a globally coherent time-
line for an article using ILP, leveraged event coreference to support timeline construction,
and associated each event with a precise time interval.

Yoshikawa et al. proposed a Markov Logic model to jointly predict the temporal re-
lations between events and time expressions. They also used a reduced set of the rela-
tion types, i.e., BEFORE, OVERLAP, AFTER, BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER, and
VAGUE.
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IV
Local approach to temporal relation classification

This chapter presents a local approach to temporal relation classification in Section 4.1 as
well as the baseline and deep features in Section 4.1 and 4.3. The relation identification
methods are also introduced in Section 4.4 and 4.5.

4.1 Local model

In the local model, temporal relation classification is done by considering only a given
pair of temporal entities at a time as illustrated in Figure 4.1. We use a supervised ma-
chine learning approach and employ the basic feature set that can be easily extracted from
the document’s text and the set of features proposed in Laokulrat et al. (2013b), which
utilizes deep syntactic information. The baseline features at different linguistic levels are
listed in Section 4.2. For every TLINK, the baseline features include event attributes, time
attributes, morphosyntactic information, lexical semantic information, and deep syntactic
information. In addition, for Event-Event TLINKs, the matching of event attributes is also
used as local features.

Two classifiers are used; one for Event-Event TLINKs (E-E), and the other one for
Event-Time TLINKs (E-T).

4.2 Baseline features

The baseline features we employed are:

• Event and timex attributes

All attributes associated with events (class, tense, aspect, modality, and polarity) and
temporal expressions (type, value, functionInDocument, and temporalFunction) are
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Figure 4.1: Local pairwise classification

used. For event-event TLINKs, we also use tense/class/aspect match, tense/class/aspect
bigrams as features (Chambers et al. (2007)).

• Morphosyntactic information

Words, part of speech tags, lemmas within a window before/after event words are
extracted using Stanford coreNLP invented by Manning et al. (2014).

• Lexical semantic information

Synonyms of event word tokens from WordNet lexical database invented by Fell-
baum (2010) are used as features.

• Event-Event information

For event-event TLINKs, we use same sentence feature to differentiate pairs of events
in the same sentence from pairs of events from different sentences (Chambers et al.
(2007)).

We directly read the attributes as tagged in the corpus, different from some of the related
work that they automatically determine the attributes by Support Vector Machine (SVM).

4.3 Features extracted from a deep syntactic parser

In the case that temporal entities of a particular TLINK are in the same sentence, we
extract two new types of sentence-level semantic information from a deep syntactic parser.
We use the Enju parser which was invented by Miyao and Tsujii (2008). It analyzes syntac-
tic/semantic structures of sentences and provides phrase structures and predicate-argument
structures. The features we extract from the deep parser are

• Paths between event words in the phrase structure tree, and up(")/down(#) lengths of
paths.
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Figure 4.2: Phrase structure tree

We use 3-grams of paths as features instead of full paths since these are too sparse.
An example is shown in Figure 4.2. In this case, the path between the event words,
estimates and worth, is VBZ", VX", VP", VP", VP, PP#, PX#, IN#. The 3-grams of the path
are, therefore, {VBZ"-VX"-VP", VX"-VP"-VP", VP"-VP"-VP, VP"-VP-PP#, VP-PP#-PX#, PP#-

PX-#-IN#}. The up/down path lengths are 4 (VBZ", VX", VP", VP") and 3 (PP#, PX#, IN#)

respectively.

• Paths between event words in predicate-argument structure, and their subgraphs.

For the previous example, we can express the relations in predicate-argument struc-
ture representation as

– verb arg12: estimate (she, properties)

– prep arg12: worth (estimate, dollars)

In this case, the path between the event words, estimates and worth, is prep arg12:arg1.
That is, the type of the predicate worth is prep arg12 and it has estimate as the first
argument (arg1). The path from estimate to worth is in reverse direction ( ).

The next example sentence, John saw mary before the meeting, gives an idea of a
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Figure 4.3: Predicate argument structure

Figure 4.4: Predicate argument structure (2)

more complex predicate-argument structure as shown in Figure 4.3. The path be-
tween the event words, saw and meeting is prep arg12:arg1, prep arg12:arg2.

We use (v, e, v) and (e, v, e) tuples of the edges and vertices on the path as fea-
tures. For example, in Figure 4.3, the (v,e,v) tuples are (see,  prep arg12:arg1,

before) and (before, prep arg12:arg2, meeting). In the same way, the (e,v,e) tuple is
( prep arg12:arg1, before, prep arg12:arg2). The subgraphs of (v, e, v) and (e, v, e)
tuples are also used, including (see,  prep arg12:arg1, *), (*,  prep arg12:arg1, be-

fore), (*,  prep arg12:arg1, *), (*, prep arg12:arg2, meeting), (before, prep arg12:arg2,

*), (*, prep arg12:arg2, *), (*, before, prep arg12:arg2), ( prep arg12:arg1, before, *), (*,

before, *).

From the above example, the features from predicate argument structure can properly
capture the preposition before. It can also capture a preposition from a compound sentence
such as John saw Mary before he went back home. As shown in Figure 4.4, the path
between the event words saw and went are ( conj arg12:arg1, conj arg12:arg2) and the (v,
e, v) and (e, v, e) tuples are (saw,  conj arg12:arg1, before), (before, conj arg12:arg2, went),
and ( prep arg12:arg1, before, prep arg12:arg2).
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4.4 TLINK identification

A pair of temporal entities that have a temporal relation is called a TLINK. The system
first determines which pairs of temporal entities are linked by using a ruled-based approach
as a baseline approach.

All the TempEval-3’s possible pairs of temporal entities are extracted by a set of simple
rules; pairs of temporal entities that satisfy one of the following rules are considered as
TLINKs.

• Event and document creation time

• Events in the same sentence

• Event and temporal expression in the same sentence

• Events in consecutive sentences

4.5 Hybrid approach

The rule-based approach described in Section 4.4 produces many unreasonable and
excessive links. We thus use a machine learning approach to filter out those unreasonable
links by training the model in Section 4.1 with an additional relation type, UNKNOWN, for
links that satisfy the rules in Section 4.4 but do not appear in the training data.

In this way, for Task C, we first extract all the links that satisfy the rules and classify
the relation types of those links. After classifying temporal relations, we remove the links
that are classified as UNKNOWN. The system overview can be found in Figure 4.5.

4.6 Evaluation

Two L2-regularized logistic regression classifiers, LIBLINEAR invented by Fan et al.
(2008), are used; one for event-event TLINKs, and another one for event-time TLINKs.
In addition to baseline features at different linguistic levels, features extracted by a deep
syntactic parser are used.

The scores are calculated by the graph-based evaluation metric proposed by UzZaman
and Allen (2011). We trained the models with TimeBank and AQUAINT corpora. We also
trained our models on the training set with inverse relations. The performance analysis is
based on 10-fold cross validation on the development data.
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Figure 4.5: TLINK identification and classification system overview

Features F1 P R
bas. (rule) 22.51 14.32 52.58
bas. + ph. + pas. (rule) 22.61 14.30 54.01
bas. + ph. + pas. (hyb.) 33.52 36.23 31.19
bas. + ph. + pas. (hyb. + inv.) 39.53 37.56 41.70

Table 4.1: Result of Task C. (rule: rule-based approach, hyb.: hybrid approach, bas.: base-
line features, ph.:phrase structure tree features, pas.:predicate-argument structure features,
and inv.: Inverse relations are used for training.)

4.6.1 Task C

In Task C, a system has to identify appropriate temporal links and to classify each link
into one temporal relation type. For Task C evaluation, we compare the results of the
models trained with and without the features from the deep parser. The results are shown
in Table 4.1. The rule-based approach gives a very low precision.

4.6.2 Task C-relation-only

Task C-relation-only provides a system with all the appropriate temporal links and only
needs the system to classify the relation types. Since our goal is to exploit the features from
the deep parser, in Task C-relation-only, we measured the contribution of those features to
temporal relation classification in Table 4.2.
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Features F1 P R
bas. 64.42 64.59 64.25
bas. + ph. 65.24 65.42 65.06
bas. + pas. 66.40 66.55 66.25
bas. + ph. + pas. 66.39 66.55 66.23
bas. + ph. + pas. (inv.) 65.30 65.39 65.20

Table 4.2: Result of Task C-relation-only. (bas.: baseline features, ph.:phrase structure tree
features, pas.:predicate-argument structure features, and inv.: Inverse relations are used for
training.)

4.6.3 Results on test data

We named our system UTTime, which has several combination of configurations and
weights.

Table 4.3 and 4.4 show the results on the test data, which were manually annotated and
provided by the TempEval-3 organizer. We also show the scores of the other systems in
the tables and illustrate the results in Figure and . For the evaluation on the test data, we
used the models trained with baseline features, phrase structure tree features, and predicate-
argument structure features.

UTTime-5 ranked 2nd best in Task C. Interestingly, training the models with inverse
relations improved the system only when using the hybrid approach. This means that the
inverse relations did not improve the temporal classification but helped the system filter out
unreasonable links (UNKNOWN) in the hybrid approach. As expected, the ruled-based
approach got a very high recall score at the expense of precision. UTTime-1, although it
achieved the F1 score of only 24.65, got the highest recall among all the systems.

The system description for NavyTime and JU-CSE can be found in Chambers (2013)
and Kolya et al. (2013).

For Task C-relation-only, we achieved the highest F1 score, precision, and recall. UTTime-
2 basically had the same models as that of UTTime-1, but we put different weights for each
relation type. The results show that using the weights did not improve the score in graph-
based evaluation.
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Approach F1 P R
rule (UTTime-1) 24.65 15.18 65.64
rule + inv (UTTime-3) 24.28 15.1 61.99
hyb. (UTTime-4) 28.81 37.41 23.43
hyb. + inv. (UTTime-5) 34.9 35.94 33.92
cleartk 36.26 37.32 35.25
NavyTime 31.06 35.48 27.62
JU-CSE 26.41 21.04 35.47
KUL-KULTaskC 24.83 23.35 26.52

Table 4.3: Result of Tack C on test data. (rule: rule-based approach, hyb.: hybrid approach,
and inv.: Inverse relations are used for training.)

Approach F1 P R
bas. + ph. + pas. (UTTime-1) 56.45 55.58 57.35
bas. + ph. + pas. (UTTime-2) 54.26 53.2 55.36
bas. + ph. + pas. (inv.) (UTTime-3) 54.7 53.85 55.58
NavyTime 46.83 46.59 47.07
JU-CSE 34.77 35.07 34.48

Table 4.4: Result of Task C-relation-only on test data. (bas.: baseline features, ph.:phrase
structure tree features, pas.:predicate-argument structure features, and inv.: Inverse rela-
tions are used for training.)

Figure 4.6: Results of Task C (TLINK identification and classification)
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Chapter IV. Local approach to temporal relation classification

Figure 4.7: Results of Task C - relation only (TLINK classification)
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V
Non-local approach to temporal relation

classification

This chapter explains our stacked learning approach for temporal relation classification.
The local model (first stage of the stacked learning) was introduced in Section 4.1 and the
non-local model (second stage) will be described in Subsection 5.1.1.

5.1 Stacked model for temporal relation classification

Rather than using only local information on two entities in a TLINK as summarized in
Table 5.1, we exploit more global information which can be extracted from a document’s
timegraph, a graph that represents temporal entities and their relations. Our motivation
is that temporal relations of nearby TLINKs in a timegraph provide useful information for
predicting the relation type of a given TLINK. For instance, consider the following sentence
and the temporal connectivity shown in Figure 5.2, which is constructed from the temporal
entities and temporal relations appearing in the sentence.

The first stage, as shown in Figure 4.1, uses the local classifiers and predicts the relation
types of all TLINKs.

About 500 people attended (e1) a Sunday night memorial for the Buffalo-area
physician who performed abortions, one year (t1) after he was killed (e2) by a sniper’s
bullet.

It can be seen that the relation between e1 and t1 and the relation between t1 and e2 are
useful for predicting the relation between e1 and e2. That is to say, if we know the fact that
e1 put an end to the period t1, and the period t1 started from the occurrence of e2, we can
infer that e1 must happened after e2.
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Chapter V. Non-local approach to temporal relation classification

Figure 5.1: Timegraph

Feature Description
Event attributes All attributes associated with events, i.e., Class, Tense, Aspect,

Modality, and Polarity. The explanation of each attribute can
be found in Pustejovsky et al. (2005).

Timex attributes All attributes associated with temporal expressions, i.e., Type,
Value, FunctionInDocument, and TemporalFunction. The ex-
planation of each attribute can also be found in Pustejovsky
et al. (2005).

Morphosyntactic
information

Words, POS tags, and lemmas within a window before/after
event words. We extracted those information by using Stanford
coreNLP Manning et al. (2014).

Lexical semantic in-
formation

Synonyms of event word tokens and temporal expressions ex-
tracted from WordNet lexical database Fellbaum (2010).

Event-Event informa-
tion

Class match, Tense match, Aspect match, Class bigram, Tense
bigram, Aspect bigram, and Same sentence flag (True if both
temporal entities are in the same sentence). The details are
described in Chambers et al. (2007). Note that these features
are only applied in the E-E classifier.

Deep syntactic infor-
mation

Deep syntactic information extracted from Enju Parser Miyao
and Tsujii (2008). The features are paths between pairs of
temporal entities in phrase structure and in predicate-argument
structure. The details are described in Laokulrat et al. (2013b).
Note that these features can be extracted only when temporal
entities are in the same sentences.

Table 5.1: Local (baseline + deep) features
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Figure 5.2: Temporal relations. Path length  2

Figure 5.3: Temporal relations. Path length  3

Figure 5.3 shows another example of a group of temporal relations that has a longer
path. In this example, the relation between e4 and e3 can be inferred from the nearby
relations, i.e., (1) e4 AFTER e2 and e2 AFTER e1 imply e4 AFTER e1, (2) e4 AFTER e1

and e1 SIMULTANEOUS e3 imply e4 AFTER e3.
There are many machine learning approaches that can exploit global features such

as stacked learning, Markov Logic Networks, and structured perceptron. However, each
method has its advantages and disadvantages. A Markov Logic Network can model de-
pendencies between temporal entities easily but it has a limitation in employing high-
dimensional features, e.g. bag of words and n-grams, which are considered to be very
powerful features for temporal relation classification. In a structured perceptron, computa-
tion time increases exponentially with the number of possible labels, unless the structure is
simple enough for one to employ an efficient searching algorithm, e.g. Viterbi algorithm,
to find the best solution. A stacked learning method enables a learner to be aware of labels
of nearby entities by employing more than one stages of learning. In each stage, we can
use any kind of efficient learners that can handle high-dimensional features, such as sup-
port vector machines (SVMs) and logistic regression, so it is able to employ rich linguistic
features and, at the same time, exploit global features without too much computation time.

Motivated by its reasonable training time and the ability to use both high-dimensional
and global features, our framework is based on the stacked learning method Wolpert (1992),
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Figure 5.4: Stacked learning. The output from the first stage is treated as features for the
second stage. The final output is predicted using label information of nearby TLINKs.

which employs two stages of classification as illustrated in Figure 5.4. The first stage
employs a local model which predicts each TLINK independently. In the second stage, the
relation types of neighbouring TLINKs, which are the output from the first stage, are used
as non-local features. Since, in the test stage, the labels in the timegraphs are drawn from
the predictions made by the local model, the training data for the second stage is created by
using cross-validation techniques over the original data, and replacing the true labels with
the predicted labels.

5.1.1 Non-local model

In the second stage, the document’s timegraph is constructed and the output from the
first stage is associated with TLINKs in the graph.

The classifiers in the second stage use the information from the nearby TLINKs and
predict the final output. We exploit features extracted from the documents’ timegraphs, as
listed in Table 5.2 and 5.2 in the second stage of the stacked learning. A concrete example
can be found in Figure 5.5 and the example column of Table 5.2 and 5.2 when the features
of the relation between Src and Dst nodes are being extracted.

The timegraph features include information extracted from adjacent nodes and links,
other paths that connect the temporal entities of the TLINK being predicted, generalized
version of the paths, and tuples of edges and vertices along the paths. We treat timegraphs
as directed graphs and double the number of edges by adding new edges with opposite
relation types/directions to every existing edge. For example, if the graph contains an edge
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Chapter V. Non-local approach to temporal relation classification

Figure 5.5: Prediction of the relation between Src and Dst nodes

e1 BEFORE e2, we add a new edge e2 AFTER e1.
An example of a document’s timegraph, which is constructed from the TLINKs in

Figure 4.1, is shown in Figure 5.1.

5.2 Relation inference and time-time connection

We call TLINKs that have more than one path between the temporal entities multi-path
TLINKs. The coverage of the multi-path TLINKs is presented in Table 5.4 and Figure
5.7. The original Timebank corpus has 4,983 TLINKs in total but only 282 of them have
multiple paths between given pairs of temporal entities in the timegraphs. As we can see
from the table that only 5.65% of all the annotated TLINKs are multi-path TLINKs, the
annotated entities in the Timebank corpus create loosely connected timegraphs.

Since most of the timegraph features are only applicable for multi-path TLINKs, it is
important to have dense timegraphs. To alleviate the sparsity problem of timegraphs, the
relation inference in Subsection 5.2.1 and the time-time connection in Subsection 5.2.2 are
performed in order to increase the timegraphs’ density.

5.2.1 Relation inference

On the basis of the transitivity table proposed by Allen (1983), we construct a full set
of inference relations as presented in Table B.1 and B.2. The table shows the results of
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Feature Example Description

Adjacent nodes
and links (ADJ)

The features are the concatenation
of the directions to the adjacent
links to the pair of entities, the rela-
tion types of the links, and the infor-
mation on the adjacent nodes, i.e.,
word tokens, part of speech tags,
lemmas. For example, SRC OUT-
IS INCLUDED-(type of t0), DEST IN-
BEFORE-(type of t0).

Other paths (OP)

Paths with certain path lengths
(in this work, 2  path length
 4) between the temporal en-
tities are used as features. The
paths must not contain cycles.
For example, the path features
of the relation between e1 and
e2 are IS INCLUDED-BEFORE and
SIMULTANEOUS-SIMULTANEOUS-
BEFORE.

Generalized
paths (GP)

The generalized version of the path
features, e.g., the IS INCLUDED-
BEFORE path is generalized to *-
BEFORE and IS INCLUDED-*.

Table 5.2: Timegraph features (part 1)
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Feature Example Description

(E,V,E) tu-
ples (EVE)

The (E,V,E) tuples of the edges and
vertices on the path are used as fea-
tures, e.g., IS INCLUDED (Type of
t0) BEFORE. In this work, we use
Type (for temporal expressions) and
Tense, POS tags (for events) but
others attributes could also be used.

(V,E,V) tu-
ples (VEV)

The (V,E,V) tuples of the edges and
vertices on the path are used as
features, e.g., (Tense of e1) IS IN-
CLUDED (Type of t0) and (Type of
t0) BEFORE (Tense of e2).

Table 5.3: Timegraph features (part 2)

No. of TLINKs E-E E-T Total
All TLINKs 2,520 2,463 4,983
Multi-path TLINKs 119 163 282
Percentage 4.72 6.62 5.65

Table 5.4: Coverage of multi-path TLINKs

temporal relation inference for every case, i.e., if a temporal entity A has relation X to an
entity B and the entity B has relation Y to an entity C, then A has relation Z to C. We create
new E-E and E-T connections between entities in a timegraph by following this set of
inference rules. For example, if e1 happens AFTER e2 and e2 happens IMMEDIATELY AFTER

e3, then we infer a new temporal relation “e1 happens AFTER e3”.
In this study, we perform two types of inference: partial inference and full inference.

For the partial inference, we add a new connection only when the inference gives only one
type of temporal relation as a result from the relation inference. Full inference adds new
connections for all of the inference results in Table B.1 and B.2.
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Figure 5.6: Histogram of the increased number of TLINKs for each document (The x-
axis shows the ratio between the number of TLINKs after pre-processing and the original
number of TLINKs. The y-axis is the number of documents.)

No. of TLINKs Total
Original (annotated TLINKs) 4,983
+Inference (partial) 29,039
+Inference (full) 47,927
+Time-time connection +Inference (partial) 92,181

Table 5.5: Number of relations in Timebank

Figure 5.7: Visualization of coverage of multi-path TLINKs
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Figure 5.8: Visualization of number of TLINKs after relation inference and time-time con-
nection

45



Chapter V. Non-local approach to temporal relation classification

(a
)

(b
)

(c
)

Fi
gu

re
5.

9:
R

el
at

io
n

in
fe

re
nc

e
an

d
tim

e-
tim

e
co

nn
ec

tio
n.

(a
)

O
rig

in
al

tim
eg

ra
ph

.
(b

)
A

fte
r

re
la

tio
n

in
fe

re
nc

e.
Tw

o
re

la
tio

ns
(e

1-
e2

,
e1

-e
3)

ar
e

ad
de

d.
(c

)A
fte

rt
im

e-
tim

e
co

nn
ec

tio
n

(t1
-t2

)a
nd

re
la

tio
n

in
fe

re
nc

e.
Th

re
e

re
la

tio
ns

(e
1-

e2
,e

1-
e3

,e
2-

e3
)a

re
ad

de
d.

46
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Figure 5.10: Time-time connection

Figure 5.9b shows a simple example of the timegraph after adding new inference rela-
tions to the original timegraph in Figure 5.9a. For example, knowing that the relation e1-t1
is SIMULTANEOUS and t1-e2 is AFTER, it can be inferred that the new temporal relation e1-e2

is AFTER.

5.2.2 Time-time connection

As with Chambers et al. (2007) and Tatu and Srikanth (2008), we also create new
connections between time entities in a timegraph by applying some rules to normalized
values of time entities provided in the corpus. An example of how to add a time -time
relation can be fount in Figure 5.10.

Figure 5.9c shows the timegraph after adding a time-time link and new inference rela-
tions to the original timegraph in Figure 5.9a. When the normalized value of t2 is more
than the value of t1, a TLINK with the relation type AFTER is added between them. After
that, as introduced in Subsection 5.2.1, new inference relations (e1-e2, e1-e3, e2-e3) are
added.

As the number of relations grows too large and the computation time increases dras-
tically after performing time-time connection and inference relation recursively, we limit
the number of TLINKs for each document’s timegraph to 10,000 relations. The total num-
ber of TLINKs for all documents in the corpus is presented in Table 5.5 and Figure 5.8.
The first row is the number of the human-annotated relations. The second and third rows
show the total number after performing relation inference and time-time connection. Table
7.1 shows the number of TLINKs for each relation type. The number of TLINKs after
inference for some relation types, e.g, IBEFORE, IAFTER, BEGINS, BEGUN BY, and ENDED

BY, decreases from the original number since the inference is performed over the predicted
results made by the first stage of the stacking framework.

An example of a timegraph of a document before and after relation inference and time-
time connection can be found in Figure 5.11.
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Relation
type Original Inference

(partial)
Inference

(full)

Time-time
+ Inference

(partial)
BEFORE 1,190 9,061 13,682 36,223
AFTER 624 9,411 21,286 38,781
IBEFORE 24 3 19 6
IAFTER 31 3 12 6
INCLUDES 341 2,445 2,945 4,943
IS INCLUDED 1,227 2,435 3,171 4,950
BEGINS 42 7 21 10
BEGUN BY 49 8 18 10
ENDS 75 82 92 106
ENDED BY 85 81 85 104
SIMULTANEOUS 1,052 5,156 5,110 6,439
DURING 243 347 1,486 603

Table 5.6: Number of TLINKs for each relation type after relation inference and time-time
connection

Figure 5.6 shows the distribution of how many times the number of TLINKs for each
document increases after performing time-time connection and relation inference. As we
can see from the histogram, the number of TLINKs for most of the documents’ timegraphs
increases by a factor of 50 compared to the original ones and the preprocessing can raise
the number of TLINKs for a few documents by a factor of 200-500.

5.3 Evaluation

For the baselines and both stages of the stacked learning, we have used the LIBLINEAR
invented by Fan et al. (2008) and configured it to work as L2-regularized logistic regression
classifiers.

We trained our models on the Timebank corpus, introduced in Subsection 3.1.4, which
was provided by the TempEval-3 organiser. The corpus contains 183 newswire articles in
total.

5.3.1 Results on the training data

The performance analysis is performed based on 10-fold cross validation over the train-
ing data. The classification F1 score improves by 0.18% and 0.16% compared to the local
pairwise models with/without deep syntactic features.
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Approach Graph-based evaluation
F1 P R

Local - baseline features 58.15 58.17 58.13
Local - baseline + deep features 59.45 59.48 59.42
Stacked - baseline features 58.33 58.37 58.29
Stacked (inference) - baseline features 58.30 58.32 58.27
Stacked (inference, time-time) - baseline features 58.29 58.31 58.27
Stacked - baseline + deep features 59.55 59.51 59.58
Stacked (inference) - baseline + deep features 59.55 59.57 59.52
Stacked (inference, time-time) - baseline + deep fea-
tures

59.61 59.63 59.58

Table 5.7: Ten-fold cross validation results on the training set

Figure 5.12: Visualization of results on the training data

We evaluated the system using a graph-based evaluation metric proposed by UzZaman
and Allen (2011). Table 6.5 shows the classification accuracy over the training set using
graph-based evaluation and the visualization of the result is presented in Figure5.12.

Further experimental results can be found in Laokulrat et al. (2014).
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VI
Using probability values as real-valued features

In this chapter, the probability values of the prediction in the first stage are applied in
temporal relation classification as real-valued features.

6.1 Probability values as real-valued features

For the first stage (local model) of the stack learning, we use logistic regression clas-
sifiers, so it gives not only the output relation but also the probability values (confidence
scores) of all relation types. We make use of these probability values obtained from the
first stage as real-valued features in the second stage (global model) of the classifier. The
features that are used in the local models for E-E and E-T classifiers can be found in Table
6.2 and 6.3.

Table 6.1 describes the real-valued features that we construct from the output relation
types and their probability values. The example of the features is illustrated in Figure 6.1.
In Figure 6.1a, the first stage predicts the temporal relations of e1-e3 and e3-t1 and gives the
probability values of each relation type. We create the timegraph features in Figure 6.1b by
generating all combinations of the relation types and calculating the real-valued features by
multiplying the probability values. All possible inference results of the features in Figure
6.1b are also used as timegraph features as presented in Figure 6.1c. If the inference result
is UNDEFINED, the feature will not be used.
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Feature Description
Probability values of
the output

The probability values of the predicted output from the first
stage. All of the output labels that have more probability values
than a specified threshold are used as real-valued features. For
example, for predicting in the relation of e1 and e3 shown in
Figure 6.1a in the second stage of the stacked learning, the
features include BEFORE:0.1, AFTER:0.05, IBEFORE:0.2, and so
on. Refer to Figure 6.1a.

All possible paths All possible paths between the pair of temporal entities are
used as features. For example, the path features of the re-
lation between e1 and t1 are BEFORE-BEFORE:0.04, BEFORE-
AFTER:0.001, and so on. Refer to Figure 6.1b.

Inference results of all
possible paths

Inference results of all possible paths between the pair of tem-
poral entities are used as features. For example, the infer-
ence results of the relation between e1 and t1 are BEFORE:0.04,
BEFORE:0.3 (summed up to BEFORE:0.34), ENDS:0.0007, ENDED
BY:0.0007, and so on. Refer to Figure 6.1c.

Table 6.1: Probability values as real-valued features
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6.2 Experimental evaluation and results

For the baselines and both stages of the stacked learning, we have used the LIBLIN-
EAR, invented by Fan et al. (2008), and configured it to work as L2-regularized logistic
regression classifiers.

We trained our models on the Timebank corpus, introduced in Subsection 3.1.4, which
was provided by the TempEval-3 organizer. The corpus contains 183 newswire articles in
total.

We performed the experiments using various combinations of features and configura-
tions. For cross-validation evaluation over the training data, we performed a grid search in
order to find the best regularization coefficient for each model. In each model, we used the
same regularization coefficient value for every fold. We also applied that value in the test
stage. Refer to Table 6.4 for the details of each configuration.

We performed the relation inference in both training and testing stages in order to in-
crease timegraphs’ density. However, we did not count the propagated relations as evalua-
tion relations. We evaluated only the relations annotated in the original corpus.
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Feature E-E E-T Description
Event attributes
Class X X

All attributes associated with events. The
explanation of each attribute can be found
in Pustejovsky et al. (2005).

Tense X X
Aspect X X
Modality X X
Polarity X X
Timex attributes
Type X All attributes associated with temporal

expressions. The explanation of each at-
tribute can be found in Pustejovsky et al.
(2005).

Value X
FunctionInDocument X
TemporalFunction X
Morphosyntactic information
Words X X Words, POS, lemmas within a window

before/after event words extracted using
Stanford coreNLP invented by Manning
et al. (2014)

Part of speech tags X X
Lemmas X X

Lexical semantic information
Synonyms of event word tokens X X WordNet lexical database invented by

Fellbaum (2010)Synonyms of temporal expres-
sions

X

Event-Event information
Class match X

Details are described in Chambers et al.
(2007)

Tense match X
Aspect match X
Class bigram X
Tense bigram X
Aspect bigram X
Same sentence X X True if both temporal entities are in the

same sentence
Deep syntactic information
Phrase structure X X Deep syntactic information extracted

from Enju Parser invented by Miyao and
Tsujii (2008). The details are described in
Laokulrat et al. (2013b)

Predicate-argument structure X X

Table 6.2: Local (baseline + deep) feature usage
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Feature E-E E-T Description
Adjacent nodes and links X X

The details are described in Subsection
5.1

Other paths X X
Generalized paths X X
(E,V,E) tuples X X
(V,E,V) tuples X X

Table 6.3: Timegraph feature usage
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Graph-based evaluation Accuracy (%)
F1 (%) P (%) R (%) E-E E-T

A1 58.07 58.04 58.09 48.21 67.11
B1 58.35 58.39 58.31 48.29 67.52
C1 58.12 58.12 58.11 48.01 67.28
D1 58.43 58.44 58.41 48.57 67.11
E1 58.15 58.17 58.13 48.25 67.19
F1 58.27 58.23 58.31 48.57 67.07
G1 58.36 58.31 58.41 48.45 67.07
A2 59.35 59.36 59.34 50.12 67.52
B2 59.62 59.61 59.62 50.40 67.80
C2 59.52 59.57 59.46 50.63 67.68
D2 59.60 59.63 59.56 50.71 67.52
E2 59.25 59.31 59.18 50.04 67.60
F2 59.69 59.68 59.71 51.31 67.52
G2 59.62 59.60 59.64 51.31 67.15

Table 6.5: 10-fold cross validation results on the training data when all the features are
used. Refer to Table 6.4 for the details of each configuration setting.

6.2.1 Results on the training data

The performance analysis is performed based on 10-fold cross validation over the train-
ing data1. We evaluated the system using both pairwise accuracy and the graph-based eval-
uation metric proposed by UzZaman and Allen (2011). Table 6.5 shows the classification
results over the training set using graph-based evaluation and the accuracy of the E-E and
E-T models separately.

Based on the graph-based evaluation, the classification F1 score improves by 0.36 pp
(difference between A1 and D1) and 0.34 pp (difference between A2 and F2) compared to
the local models with/without deep syntactic features. However, by looking at the accuracy
of the E-E and E-T classification results, we can see that the stacked method helped the
prediction in the E-E models but decreased the accuracy of the E-T models.

Table 6.7 shows the top F1 scores of different set of graph features and configuration. In
every model shown in this table, both local and deep features are used. The results ranked
1st - 20th in the table used the stacked models and the bottom row shows the result of the
local model. The definition of the acronyms of each feature set can be found in Table 5.2
and 5.3. From the table, the stacked models with the probability values outperformed other

1We performed the document-level 10-fold cross validation. The folds were generated by: (1) Sorting the
documents in ascending order of file names. (2) Selecting the 1st, 11th, 21st, ... documents to be the test data
of the 1st fold and the others are the training data. (3) Selecting the 2nd, 12th, 22nd, ... documents to be the
test data of the 2nd fold and the others are the training data, and so on.
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Graph-based evaluation Accuracy (%)
F1 (%) P (%) R (%) E-E E-T

A1 52.86 52.26 53.48 41.64 73.26
B1 53.80 53.23 54.39 43.15 71.27
C1 53.81 53.58 54.05 42.86 70.66
D1 52.64 52.27 53.02 44.82 66.56
E1 52.10 51.54 52.68 41.55 71.44
F1 53.06 52.75 53.36 43.69 69.82
G1 52.46 51.91 53.02 44.75 67.29
A2 52.33 51.76 52.91 42.38 71.74
B2 52.81 52.38 53.25 43.43 70.81
C2 54.70 54.22 55.19 45.76 69.85
D2 53.29 52.56 54.05 44.64 69.20
E2 51.62 51.14 52.11 41.54 71.32
F2 53.53 52.92 54.16 45.22 70.17
G2 52.86 52.14 53.59 45.14 68.08

Table 6.6: Results on the test data when all the features are used. Refer to Table 6.4 for the
details of each configuration setting.

configuration as we can see that every model that ranked in the 20 highest F1 scores used
the probability values as real-valued features. The best model without probability values
ranked 41st in our feature experiment which proves that the probability values are helpful.

Compared to the local model with deep features (baseline), the stacked model with
the highest F1 score (60.25%) changed the relation types of 259 (out of 2520) E-E TLINKs
and 173 (out of 2463) E-T TLINKs. The overall improvement is statistically significant* (p
< 0.01, McNemar’s test, two-tailed) when applying the best feature set and configuration
to the system.
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Chapter VI. Using probability values as real-valued features

System F1 (%) P (%) R (%)
UTTime 56.45 55.58 57.35
NavyTime 46.83 46.59 47.07
JU-CSE 34.77 35.07 34.48
Our system (F2, All feat.) 57.30 57.01 57.58
Our system (G2, Best feat.) 57.78 57.63 57.92

Table 6.8: Comparison to other systems submitted to TempEval-3. The TempEval-3 test
data set was used.

6.2.2 Results on the test data

Table 6.6 shows the results on the test data containing 20 newswire articles, which
were manually annotated and provided by the TempEval-3 organizer. The stacked models
with partial inference (C1, C2) improve the classification F1 score by 0.95 pp (difference
between A1 and C1) and 2.37 pp (difference between A2 and C2) compared to the baselines
with/without deep syntactic features. However, this is not statistically significant (p >

0.1, McNemar’s test, two-tailed). Besides, incorporating probability values into the model
deteriorated the classification results (although this is, again, not statistically significant).

As shown in Table 6.8, we also compared our system to other systems that were submit-
ted to TempEval-3’s task C-relation-only. In order to make a fair comparison, the models
were trained on the Timebank and AQUAINT corpora, containing 256 newswire articles
in total, which were provided by TempEval-3’s organizer. We do not use the AQUAINT
corpus in cross-validation evaluation because there are many duplications in the data set so
we think it will make the results unreliable.

Note that all the TempEval-3 participants only use local information for temporal rela-
tion classification and our system, UTTime proposed in Laokulrat et al. (2013b), utilizes
deep syntactic features. The system description for NavyTime and JU-CSE can be found
in Chambers (2013) and Kolya et al. (2013).

We can see that the global model (F2) can achieve a better results. By applying all of
the features to the model, it reaches an F1 score of 57.30 %. We also did the experiment
using the selected set of features that got the highest F1 score in Table 6.7 and achieved
an F1 score of 57.78 % which outperformed all other systems. The training times for the
local model (A2) and the global models (F2, G2) were 16.89, 21.50, and 25.50 seconds
respectively2.

2The training times do not include feature pre-processing. The experiments were run on a 64-bit machine
with Intel Core i7 1.8GHz CPU, and 4GB main memory.
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Total Avg. no. of features Total Avg. no. of features
A1 31,895 63.31 A2 33,778 68.89
B1 32,923 87.69 B2 34,816 93.28
C1 34,321 127.38 C2 36,299 133.92
D1 35,294 218.64 D2 37,236 226.07
E1 36,559 188.53 E2 37,528 194.64
F1 36,374 395.79 F2 38,338 402.33
G1 37,347 487.05 G2 38,274 494.48

Table 6.9: Total number of features and average number of features for a TLINK. Refer to
Table 6.4 for the details of each configuration setting.

Approach E-E
Chambers08 (local) 66.8
Chambers08 (global) 70.4
Our system (A1) 69.7
Our system (B1) 69.2
Our system (C1) 69.0
Our system (D1) 69.6
Our system (F1) 69.6
Our system (G1) 70.1
Our system (A2) 70.8
Our system (B2) 71.0
Our system (C2) 70.8
Our system (D2) 70.8
Our system (F2) 71.9
Our system (G2) 72.2

Table 6.10: Comparison with Chambers’s system (Accuracy(%)) by performing 10-fold
cross validation over the Timebank corpus. The configuration of our system is described in
Table 6.4.

6.2.3 Comparison with the state of the art

We compared our system to those of Chambers and Jurafsky (2008) and Yoshikawa
et al. (2009), which use global information to improve the accuracy of temporal relation
classification.

In Chambers and Jurafsky (2008), the experiments were performed on the Timebank
corpus over the relations BEFORE and AFTER. They merged IBEFORE and IAFTER into
those relations as well and ignored all other relations. Table 6.10 shows our results when
using the same experiment setting. Although the difference when using the local model
and the stacked model is not significant, the overall scores of our system were better than
those of their system.
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Approach Task A Task B Task C Overall
Yoshikawa09 (local) 61.3 78.9 53.3 66.7
Yoshikawa09 (global) 66.2 79.9 55.2 68.9
Our system (A1) 59.7 80.2 58.7 68.5
Our system (B1) 60.1 79.9 58.7 68.5
Our system (C1) 59.1 79.4 58.8 68.0
Our system (D1) 61.8 79.9 59.8 69.2
Our system (F1) 63.0 79.5 59.4 69.2
Our system (G1) 63.3 79.9 59.9 69.6*
Our system (A2) 62.3 80.2 58.5 69.1
Our system (B2) 63.6 79.8 58.7 69.3
Our system (C2) 62.4 79.6 58.7 68.9
Our system (D2) 64.4 80.0 58.9 69.7
Our system (F2) 64.4 79.6 58.9 69.4
Our system (G2) 64.8 80.0 59.1 69.8**

Table 6.11: Comparison with Yoshikawa’s system (Accuracy(%)) by performing 10-fold
cross validation over the TempEval-07 training data. The configuration of our system is
described in Table 6.4.

We compared our system to that of Yoshikawa et al. (2009) which was evaluated based
on TempEval-07’s rules and data set organized by Verhagen et al. (2007), in which the re-
lation types were reduced to six relations: BEFORE, OVERLAP, AFTER, BEFORE-OR-OVERLAP,
OVERLAP-OR-AFTER, and VAGUE. The evaluation was done using 10-fold cross validation
over the same data set as that of their reported results.

According to TempEval-07’s rules, there are three tasks as follows:

• Task A: Temporal relations between events and all time expressions appearing in the
same sentence.

• Task B: Temporal relations between events and the DCT.

• Task C: Temporal relations betweeen main verbs of adjacent sentences.

As shown in Table 6.11, our system can achieve better results in task B and C even
without deep syntactic features but performs worse than their system in task A. Compared
to the baselines, the overall improvement is statistically significant* (p < 0.05, McNemar’s
test, two-tailed) without deep syntactic features and gets more statistically significant**
(p < 0.01, McNemar’s test, two-tailed) when applying deep syntactic information to the
system. The overall result has about 0.9 pp (difference between Yoshikawa09 (global) and
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G2) higher accuracy than the result from their global model. Note that Yoshikawa et al.
(2009) did not apply deep syntactic features in their system.

The stacked model enhances the classification accuracy of task A when timegraphs are
dense enough. Deep syntactic features can be extracted only when temporal entities are
in the same sentences so they improve the model for task A (event-time pairs in the same
sentences) but these features clearly lower the accuracy of task C, since there are very few
event-event pairs that appear in the same sentences (and break the definition of task C).
This is probably because the sparseness of the deep features degrades the performance in
task C. Moreover, these features do not help task B in the local model because we cannot
extract any deep syntactic features from TLINKs between events and DCT. However, they
contribute slightly to the improvement in the stacked model since deep syntactic features
increase the accuracy of the prediction of task A in the first stage of the stacked model. As
a result, timegraph features extracted from the output of the first stage are better than those
extracted from the local model trained on only baseline features.
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VII
Discussion

As we can see from Table 7.1, the distribution of the training data is very biased. Some
relation types appear in the corpus less than 50 times while some of them appear more
than 500 times. This is probably one of the major reasons that we could not obtain a high
classification performance.

According to the results shown in Table 4.2, the predicate-argument-structure features
contributed to the improvement more than those of phrase structures in both precision and
recall. The reason is probably that the features from phrase structures that we used did
not imply a temporal relation of events in the sentence. For instance, the two following
sentences give exactly the same path of the event words in the phase structure trees shown
in Figure 7.1 and 7.2 .

John saw Mary before the meeting.
John saw Mary after the meeting.

Using semantic structures, such as predicate-argument structure, can improve the per-
formance. Besides, using different methods of extracting features from phase structure
trees may also give better results.

As we can see from Table 6.5 and 6.6, although deep syntactic features can improve the
classification accuracy significantly, some additional pre-processing is required. Moreover,
deep parsers are not able to parse sentences accurately in some specific domains. Thus,
sometimes it is not practical to use this kind of features in real-world temporal relation
classification problems. By applying the stacked learning approach to the temporal relation
classification task, the system with only local features is able to achieve good classification
results compared to the system with deep syntactic features. The stacked model also has
another advantage that it is easy to build and does not consume too much training time
compared to MLNs used by Yoshikawa et al. (2009), which are, in general, computationally
expensive and infeasible for large training sets.
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Relation type Number of occurence
BEFORE 1,190
AFTER 624
IBEFORE 24
IAFTER 31
INCLUDES 341
IS INCLUDED 1,227
BEGINS 42
BEGUN BY 49
ENDS 75
ENDED BY 85
SIMULTANEOUS 1,052
DURING 243

Table 7.1: Number of TLINKs for each relation type

Figure 7.1: Phase structure tree for the sentence John saw Mary before the meeting
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Figure 7.2: Phase structure tree for the sentence John saw Mary after the meeting

Again, from Table 6.5 and 6.6, the inference and time-time connection, described in
Section 5.2.1, sometimes degrade the performance. This is presumably because the num-
ber of features increases severely as the number of TLINKs increased. Table 6.9 shows the
total number of features and the average number of features used for one TLINK for each
configuration. However, when the adjacent nodes and edges are removed from the feature
set, the inference (partial) and time-time connection play an important role in the classi-
fication improvement as we can see in Table 6.7 that these steps were performed in all of
the systems with top F1 scores. The adjacent nodes and edges decrease the accuracy since
they increase the number of features significantly, especially when the relation inference
and time-time connection are performed, so excluding those features makes a significant
improvement.

Full relation inference is not helpful and also decreases the accuracy. This is probably
because the severe increase of the ‘adjacent nodes and edges’ features when adding too
many TLINKs to the timegraphs. Having too many features also causes the sparseness
problem. As we can see from Table 6.7 that only graph paths with path length = 2, 3 are
useful while including paths with length = 4 into the models decreases the accuracy.
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Chapter VII. Discussion

Type No. of TLINKs
E-E (SS) 1,592
E-E (DS) 928
E-T (SS) 1,296

E-T (DCT) 1,167
Total 4,983

Table 7.4: Number of TLINKs for each link type when using 4 classifiers

Based on the 10-fold cross validation of the training data, the classification F1 scores
(pairwise evaluation) for each relation type are shown in Table 7.2 and 7.3. The relation
types that have low number of occurrences in the training set, e.g. IBEFORE, IAFTER, BEGINS,
BEGUN BY, ENDS, and ENDED BY, are almost 100% misclassified. Unfortunately, the F1
scores do not give any further insights on how each configuration of the stacked models
affects the classification results.

We have also performed a more detailed evaluation by dividing TLINKs into 4 cate-
gories:

• Two events within the same sentence (E-E (SS)).

• Two events in adjacent sentences (E-E (DS)).

• An event and a temporal expressions within the same sentence (E-T (SS)).

• An event and the DCT (E-T (DCT)).

The number of TLINKs for each category is shown in Table 7.4. We trained the models on
the Timebank corpus separately for each link type and performed a grid search to find the
best regularization parameters for each model.

Table 7.5 shows the accuracy (%) of each classifier by performing 10-fold cross vali-
dation. The weighted average values, E-E and E-T, are comparable to the results in Table
6.5. The accuracy for E-E and E-T classification of F2, which is the best configuration,
improved by 0.79 pp and 2.31 pp respectively (compared to F2 of Table 6.5). We also
performed the graph-based evaluation on the F2 classification results and achieved the F1
score, precision, and recall measures of 61.63, 61.55, and 61.70, which are the best per-
formance so far. The results in Table 7.5 also suggest that the deep syntactic information
is more useful in classifying E-E (SS) TLINKs than in classifying E-T (SS) TLINKs. The
timegraph features yield better results in E-E (SS) and E-E (DS) classifiers while E-T (SS)
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Chapter VII. Discussion

Accuracy (%) Average
E-E (SS) E-E (DS) E-T (SS) E-T (DCT) E-E E-T

A1 41.08 61.53 63.66 74.04 48.61 68.57
F1 41.71 62.50 63.89 73.86 49.37 68.62
G1 41.58 62.39 64.27 73.18 49.25 68.49
A2 45.79 61.53 64.89 74.04 51.59 69.22
F2 46.48 61.75 64.81 75.41 52.10 69.83
G2 46.04 61.74 64.66 74.12 51.82 69.02

Table 7.5: Accuracy (%) by performing 10-fold cross validation over the Timebank corpus.
E-E shows the weighted average over E-E (SS) and E-E (DS). E-T shows the weighted
average over E-T (SS) and E-T (DCT).

and E-T (DCT) classifiers have inconsistent results between training with and without deep
syntactic information. The overall improvement (F2 over A2) by exploiting timegraph
features when using deep syntactic information is statistically significant (p < 0.001, Mc-
Nemar’s test, two-tailed).
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VIII
Conclusion

The system, UTTime, identifying temporal links and classifying temporal relation, is pro-
posed. The links were identified based on the rule-based approach and then some links
were filtered out by a classifier. The filtering helped improve the system considerably. For
the relation classification task, the features extracted from phrase structures and predicate-
argument structures were proposed, and the features improved the classification in preci-
sion, recall, and F-score.

In this study, a stacked model for the temporal relation classification task as well as the
incorporation of non-local features and probability values are proposed. We also apply the
relation inference rules and the time-time connection to tackle the timegraphs’ sparseness
problem. The evaluation has been carried out to confirm the effectiveness of the proposed
method and the analysis of the effectiveness of each feature type has also been performed.

From the evaluation results, using probability values as real-valued features can im-
prove the classification accuracy especially when selecting the best feature set and the
best model configuration. Our system outperforms other systems that were submitted to
TempEval-3 and achieve good accuracy even without applying deep syntactic features.
The evaluation results also show that our system achieves the better results than those of
the state-of-the-art systems.

In future work, we hope to do more analysis on the classification results, especially the
effect of features on each relation type, and apply our method to other relation classification
tasks.
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APPENDICES
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A
TimeML

This appendix shows an example of a full TimeML document (ABC19980304.1830.1636.tml)
in The Timebank corpus which is annotated following the TimeML specification to indicate
events, temporal expressions, and temporal relations.
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B
Temporal Inference

This appendix shows the full set of relation inference results. The results are divided into 2
tables as below.
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