博士論文 (要約)

Kinetic study of interfacial SiO_2 scavenging in HfO_2 gate stack on Si substrate

(Si 基板上 HfO₂ゲートスタックにおける SiO₂界面層の スカベンジング現象に関する速度論的研究)

李 秀 妍

Kinetic study of interfacial SiO₂ scavenging in HfO₂ gate stack on Si substrate

"Scavenging" of SiO₂ interface layer (SiO₂-IL) in high-k gate stacks is a significant issue for interface materials science as well as for further scaling of equivalent oxide thickness (EOT) in high-k gate stacks. The mechanism in this process has not been fully understood so far. The objective of this study is to clarify what really occurs in SiO₂-IL scavenging in HfO₂/SiO₂/Si stacks experimentally and physically.

First, the SiO₂-IL scavenging has been achieved by ultra-high vacuum annealing (UHV-PDA) in place of metal incorporating used in the literature so far reported. Because the UHV enable us to study what happen in this process more deeply and controllably through bare HfO₂ surface. The specific condition of for SiO₂-IL scavenging in UHV-PDA of HfO₂/SiO₂/Si stack has been clarified and optimized. The effect of other reaction involved in UHV-PDA of HfO₂/SiO₂/Si stacks on SiO₂-IL scavenging was also investigated.

Then the key issue, SiO_2 -IL scavenging kinetics in $HfO_2/SiO_2/Si$ stack, has been experimentally investigated. Through studying the effect of V_O in HfO_2 and tracing the oxygen in SiO_2 by ^{18}O

isotope, it was found that oxygen atom in SiO₂ diffuses into Vo HfO₂ in SiO₂-IL scavenging. This provides the direct evidence for the model proposed in the literatures. More importantly, the substrate-Si has been found to be significant for SiO₂-IL scavenging for the first time by changing Si substrate to SiC, Ge and sapphire ones. It seemed Si in substrate is necessary for SiO₂-IL scavenging, but it was observed that Si substrate was not changed during scavenging. Furthermore, up-diffusion of Si atom in SiO₂ has been demonstrated for the first time by using ²⁹Si isotope. Thus the diffusion species and reaction system in SiO₂-IL scavenging has been clarified experimentally.

Based on the experimental results, the SiO₂-IL scavenging has been understood theoretically by taking account of both effects of V_O in HfO₂ and Si in substrate. It was described that substrate induced Si chemical potential gradient in SiO₂ together with V_O injection from HfO₂ drives the SiO₂-IL scavenging reaction at SiO₂/Si interface. A kinetic model where down-diffusion of V_O converts to up-diffusion of Si at SiO₂/Si interface has been proposed for SiO₂-IL scavenging in HfO₂/SiO₂/Si stacks. After that, the kinetic model has been formulated analytically. A formula looks like Deal-Grove model was obtained and discussed in detail.

In addition, considering the practical application of SiO₂-IL scavenging, the interface property in SiO₂-IL scavenging has been considered by capacitance-voltage characterization. Although a flat band voltage is observed in SiO₂-IL scavenging, the interface was not degraded. And the metal effect in SiO₂-IL scavenging has been discussed. It was considered that the thermodynamics and kinetics should be the same with that in our model.