Study for the Development of New Anti-Anglogenesis Drugs with VEGF Signal Transduction Inhibitory

Activities

(VEGF情報伝達阻害活性を有する新規血管新生抑制剤開発のための研究)

KATSUHIDE IGARASHI

Study for the Development of New Anti-Angiogenesis

(1)

Drugs with VEGF Signal Transduction Inhibitory

Activities

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE UNIVERSITY OF TOKYO

By

KATSUHIDE IGARASHI

December 1998

Contents

Ackno	wledgment	1
Abbre	viations	3
Chapte	er 1. Background and Literature Review	5
1-1	Role of angiogenesis in pathological processes	6
1-2	Importance of VEGF in pathological angiogenesis.	8
1-3	VEGF receptors.	11
1-4	Inhibitors of angiogenesis	16
1-5	The purpose of this study	18
Chapte	er 2. Analysis of proteins binding to Flt-1 and KDR.	20
2-1	Introduction	21
2-2	Sck interacts with KDR and Flt-1 via its SH2 domain.	24
2	-2-1 Materials and Methods	24
	Yeast two-hybrid system screen.	24
	Construction of Sck mutants.	25
	Construction of Flt-1 and KDR mutants.	26
	β- galactosidase assay	27
	RT-PCR analysis	28
2	-2-2 Results and Discussion	29
	Identification of Sck as a binding protein of KDR.	29
	Expression of Sck in HUVEC.	34
	Sck interacts with both KDR and Flt-1 and their interaction is	35
	kinase dependent.	
	Essential domein of Sck for binding to KDR and Flt-1 is	39
	Its SH2 domain but not its PTB domain	
	Sck SH2 domain binds to Y1175 of KDR.	40
2-3	Tyrosine 1213 of Flt-1 is the major binding site of Nck and SHP-2.	44
2-	3-1 Materials and Methods	44
	Yeast two-hybrid system.	44
	β-galactosidase assay.	46
	Site-directed mutagenesis,	46

2-3-2 Results and Discussion	47
Nck and SHP-2 bind to Flt-1.	47
Nck binds to Y1213 and Y1333 of Flt-1.	52
SHP-2 binds to Y1213 of Flt-1.	54
Chapter 3. Screening of inhibitors of VEGF binding to its receptor KDR.	59
3-1 Introduction	60
3-2 Materials and Methods	63
Materials.	63
Expression and purification of FLAG-VEGF ₁₆₅	63
Detection of the binding of FLAG-VEGF $_{\rm 165}$ to KDR or Flt-1	64
in COS-7 cells by ELISA.	
Analysis of MAPK tyrosine phosphorylation in HUVEC.	66
3-3 Results	67
Construction of a simple ELISA system to detect VEGF ₁₆₅ binding to KDR.	67
Screening of inhibitors.	70
Effect of OTXNA on VEGF-induced MAPK tyrosine	74
phosphorylation in HUVEC.	
Effect of OTXNA on bFGF- or EGF-induced MAPK tyrosine	81
phosphorylation in HUVEC.	
3-4 Discussion	84
Chapter 4. Novel indications for the application of the yeast two hybrid system	88
for screening of the VEGF signal transduction inhibitors.	
4-1 Introduction	89
4-2 Materials and Methods	91
Yeast two-hybrid system	91
Assay procedure	93
4-3 Results and Discussion	95
Chapter 5. Total Discussion	101
References	105

Acknowledgment

I express my most sincere gratitude to Professor Koji Yoda, University of Tokyo, for his valuable and continued support, discussion and critical reading of this dissertation. I am indebted to Assistant Professor Harushi Nakajima, University Tokyo, for his valuable suggestions. I appreciate Dr. Naoki Okumura, Head of Advanced Technology Research Laboratories of Nippon Steel Corporation, for the warm and continued support. I am also indebted to Dr. Isao Uno, Director of Life Science Research Center of Nippon Steel Corporation, Mr. Toshio Isohara and Dr. Toshiaki Kato of Nippon Steel Corporation for their valuable support, discussion and suggestions. I am grateful to Prof. Masabumi Shibuya, University of Tokyo for providing cDNAs of KDR and Flt-1.

I also appreciate Miss Keiko Shigeta of Sanko Corporation for assisting during experimentation throughout the course of this investigation and Miss Tomoka Yamano of Sanko Corporation for constructing several plasmids.

I also thank to Dr. Masamichi Takami of Showa University for his valuable advice and support. I thank the following people of Nippon Steel Corporation: Mr. Shinkichi Kohno, Dr. Yoshio Hayashi, Dr. Jun Katada, Mr. Kaneo Kanoh and Miss Satoko Muramatsu for their valuable comments and suggestions.

- 1 -

Finally, I thank my wife Asako from the bottom of my heart for her support.

Abbreviations

BSA	bovine serum albumin
СН	collagen homology domain
DMEM	Dulbecco's modified Eagle's medium
EGF	epidermal growth factor
EGFR	epidermal growth factor receptor
ELISA	enzyme-linked immunosorbent assay
Flt-1	fms-like tyrosine kinase-1
GAP	GTPase activating protein
Grb2	growth factor binding protein 2
HRP	Horse-radish peroxidase
HUVEC	human umbilical vein endothelial cells
KDR	kinase insert domain-containing recepto
МАРК	mitogen-activated protein kinase
Ni-NTA	nickel affinity chromatography column
PAEC	porcine aortic endothelial cells
PI3K	phosphatidyl inositol 3-kinase
PLCγ	phospholipase C gamma
РТВ	phosphotyrosine-binding domain
Sck	Shc-like

- 3 -

SH2	src homology domain 2
SHP-2	src homology 2 phosphatase 2
TCA	trichloroacetic acid
TMBZ	3,3'-5,5'-tetramethylbenzidine
VEGF	vascular endothelial growth factor

Chapter One

Background and literature Review

1-1 Role of angiogenesis in pathological processes

Angiogenesis, the development of new blood vessels, is involved not only in the physiological processes such as embryogenesis and wound healing (Peters et al., 1993), but is also implicated in the pathological processes of a variety of diseases such as diabetic retinopathy, tumors and rheumatoid arthritis (Ferrara, 1995). For example, vision loss in diabetic retinopathy is characterized by extensive formation and proliferation of new blood vessels in the retina (Robinson et al., 1996). The resultant new vessels are directly responsible for various destructive changes such as leakage and bleeding, which are subsequently followed by organization of the clot and fibrosis, and may ultimately lead to retinal detachment or irreversible damage to the macula lutea (Ferrara and Davis-Smyth, 1997). On the other hand, it is well known that the development of new blood vessels within and around the tumor is an important step in the growth of solid tumors in order to provide nutrition and oxygen. This phenomenon is called "tumor angiogenesis" (Fig. 1-1), and previous studies have estimated that tumors with diameter > 2 mm usually show abundant angiogenesis (Folkman, 1995).

Thus, inhibition of angiogenesis might be a promising novel therapy in the above described diseases, since inhibition of tumor angiogenesis should theoretically lead to inhibition of tumor growth and results in the

- 6 -

Fig. 1-1 Schematic reprensentation of tumor angiogenesis

This figure was modified from Nikkei Science (1996) vol. 26, no. 12, p.160 Non-invasive tumor turns to invasive tumor. The number of capillary vessels around tumor increases and the tumor begins to grow.

The tumor continues to grow and begins to invade to other tissues. The figure at upper-right zooms up a capillary vessel in the tumor. regression or complete resolution of the tumor. To this effect, inhibition of tumor angiogenesis has been recently considered as one of the most promising strategies for the development of new anti-cancer drugs (Folkman, 1995).

1-2 Importance of VEGF in pathological angiogenesis

Several factors that promote angiogenesis have been identified in the last 10 years (Ferrara and Davis-Smyth, 1997). These include epidermal growth factor (EGF), platelet derived growth factor (PDGF) (Pierce et al., 1992), transforming growth factor- α (TGF- α), basic fibroblast growth factor (bFGF) (Hori et al., 1991) and vascular endothelial growth factor (VEGF). Among these, VEGF (Fig. 1-2) is considered to be one of the most important factors. Different from other factors, it has a direct mitogenic activity toward endothelial cells and uniquely shows signal sequence, which is not found in bFGF. In addition, the expression level of VEGF correlated with the pathological condition of many diseases (Ferrara and Davis-Smyth, 1997; Keck et al., 1989; Leung et al., 1989).

VEGF was first reported to be a vascular permeability factor in 1983 by Senger and coworkers. This permeability activity is 100-1,000 times stronger than histamine, which is a well-known vascular permeability factor (Connolly et al., 1989). Therefore, VEGF is also known as the

- 8 -

Fig. 1-2 VEGF family

Subtypes of human VEGF. The peptide coded by exon 1-5 represents the "core region" of VEGF, exhibiting the basic level of VEGF activity. Fifty percent of amino acids of the peptide coded by exon 6 is basic amino acids (lysine, arginine). Therefore, this peptide strongly binds to heparin. The peptide coded by exon 7 is rather basic and shows a weak binding to heparin.

"vascular permeability factor (VPF)". On the other hand, Ferrara and Henzel (1989) identified a new angiogenic factor, which showed a mitogenic activity toward bovine endothelial cells and named the factor, vascular endothelial growth factor (VEGF). The cDNAs for both factors were cloned in 1989, and their amino acid sequences revealed that both factors were identical (Keck et al., 1989; Leung et al., 1989). VEGF has a signal sequence and expression of its receptors is virtually restricted to the vascular endothelial cells. The high expression of VEGF is reported in almost all tumors investigated so far, for example, glioblastomas, renal cell carcinomas, neoplastic tumors of the ovaries, kidney and bladder (Berkman et al., 1993; Berse et al., 1992; Brown et al., 1993; Dvorak et al., 1991; Plate et al., 1992; Shweiki et al., 1992; Takahashi et al., 1994). More importantly, tumor differentiation has been shown to correlate well with the extent of VEGF mRNA expression in the case of glioblastoma (Plate et al., 1992). In addition, there is a high correlation between VEGF expression and retinal neovascularization associated with diabetic retinopathy (Aiello et al., 1994). Thus, these findings support the notion that VEGF is one of the most important angiogenic factors.

Several mechanisms are known to be involved in the regulation of VEGF gene expression. Among these, local hypoxia is thought to be the major inducer of expression, thus, VEGF mRNA is highly expressed in ischemic tumor cells that are juxtaposed to areas of necrosis (Shweiki et al., 1992). Overproduction of VEGF by ischemic retinal cells may promote
retinal and iris neovascularization in a number of neovascular eye diseases
(Pe'er et al., 1995). Induction of VEGF accompanied by mutation in
oncogenes and tumor suppresser genes has also been reported (Arbiser et al., 1997; Kieser et al., 1994; Shweiki et al., 1992). These expression-enhancing
mechanisms increase the importance of VEGF in pathological angiogenesis.

It has been shown that the VEGF neutralizing antibody reduced the diameter of the tumor implanted in nude mouse (Kim et al., 1993; Kondo et al., 1993). Furthermore, expression of the VEGF receptor dominant negative form, which has only an extracellular domain, is associated with inhibition of several types of mouse tumors (Millauer et al., 1996; Millauer et al., 1994). Furthermore, antisense oligodeoxynucleotides inhibited retinal neovascularization in a murine model (Robinson et al., 1996). These data indicate that VEGF activity is necessary for these angiogenesis-related pathological processes. Furthermore, they also confirm that inhibition of VEGF activity inhibits pathological angiogenesis.

1-3 VEGF receptors

Three types of receptors for VEGF have so far been described, including KDR, Flt-1 and neuropilin-1 (de Vries et al., 1992; Quinn et al., 1993; Soker et al., 1998) (Fig. 1-3). KDR and Flt-1 are typosine kinase type

Fig. 1-3 Three VEGF receptors

There are three receptors for VEGF, KDR, Flt-1 and Neuropilon-1. KDR and Flt-1 are tyrosine kinase type receptors and closely related to each other. They have seven immunogloblin (Ig)-like domains in their extracellular domains.

receptors and are closely related to each other (Fig. 1-4). Both have seven immunoglobulin (Ig)-like domains in the extracellular domain (ECD), a single transmembrane region and a consensus tyrosine kinase sequence that is interrupted by a kinase-insert domain. Their amino acid sequence homologies are 32% in their extracellular regions, 78% in their amino halves of the tyrosine kinase domain, 51% in their kinase insert domains and 78% in their carboxyl halves of the tyrosine kinase domain (Shibuya, 1995). Flt-1 has the highest affinity for VEGF₁₆₅, with a Kd of approximately 10-20 pM (de Vries et al., 1992). KDR has a somewhat lower affinity for VEGF; its Kd is approximately 75-125 pM (Terman et al., 1992). Neuropilin-1, a recently identified VEGF receptor, has been shown to modulate VEGF binding to KDR and subsequent bioactivity, its coexpression with KDR in certain cells enhances the binding of VEGF₁₆₅ to KDR and VEGF₁₆₅-mediated chemotaxis (Soker et al., 1998). Whether it signals itself is not clear at present.

Recent studies have demonstrated that both Flt-1 and KDR are essential for the normal development of embryonic vasculature (Fong et al., 1995; Shalaby et al., 1995). Mouse embryos homozygous for a targeted mutation in the Flt-1 locus died *in utero* between days 8.5 and 9.5 (Fong et al., 1995). Endothelial cells developed in both embryonic and extraembryonic sites but failed to form normal vascular channels. Mice in which the Flk-1 gene had been inactivated lacked vasculogenesis and also

			20		30	40	50		60		70		80		90		10
MESKVI I		etro	sv-Gl	nSvS-10	IPel	Sinkdilti	kAntTigit	CRGar	d1 dW1 w	PnnaSa	seaR	vevT-	-efe-	dG-1	FCHTIT	inkri	aN
PLUTTLE	11 11	ie er de	1 1	11 1 1	11	111		LILL	l	11 1	11	1 11	11	11	11 111	I	11
VSYWDT	GVLLCA	ALLSCL	LLTGS	SSGSKL	OPEL	SLKGTOHI	ADAGOTLHLO	CRGEA	AHKWSL	PEMVSK	ESER	LSITK	SACGR	NGKO	FCSTLT	LNTA	DAN
					-												
	110		120		130	140	15		160		170		180		190		1
•			*		•	• •	• •	*	+		•	*	*	.*	*	*	
dTGaYk	fYretd	llasvi	iyvyvq	dYpFIas	svsdq	hgvvYI	tEn-kn-k	tvVIP	Clgsis	NlnVsL	aryP	ekrfv	PDGnR	IsWD	SkKGFt	Ipsyr	nis
III I.I				The	Tr		III	.1111	I.J.I	II.III			IIIII	Π	IIIII.	Ш.	
HTGFYSO	KYLAVP	TSKKK	KETESA	IYIFISI	DTGRP	FVEMYSEI	PEIIHMTEGR	ELVIP	CRVTSP	NITVTL	KKFP	LDTLI	PDGKR	IIWD	SRKGFI	ISNAT	Y
	210		220		230	240	25	9	260		270		280		290		
		*		÷.	-			*			*			*		*	-
yaumvto	LAKING	resrqs	smrtvv	vvgyr1y	NUVVI	spsngteL	SVUEKLVEN	IAP IE	LNVG10	TOREYP	SSKn	qnkkV	nkdlt	vsgs	emickFL	STL	100
ETGUT	EATUNC	CHI YET		POTNTT	EDVICT	STODDAR	RCHTI VI M	TATTO		MTWSYD	DEKA	KDAST	PPPT	ILLI	HANTEY	SVIT	I Di
EIGLEIG	EATVING	INCIKI	INIL IN	Remain	Diver	STERFYRL	LINGHTLYLING	TATTE	LIVINAQ	MINSTP	DEKN	KRASY	RRAIL	cncy	INAULT I	SAFL	
	310		320		330	340	35		360		370		3.80		390		
	*							*					*		*		,
vtrsDa	LYTCan	asSGlm	tKkns	TfVrvh	KDEV	afasames	VEatvGeR	-Ripa	KylavP	pPEikW	VKnG	iP-1E	-Snht	ikaG	hvLtIm	eVsEr	Đ
					1.					7911-1-1						PTTT	
	-delabeleres	in a const		-landal-land	htt		Labolation also also		denorshile a	Add dates of the		shebrarad		-descende		dadalaha	1
	410		420		430	* *	* *	*	460		*		480		490 *		-
GNYTVIL	tnpiSk	kekqsh	nvvsLv	VyVpPQJ	IgEKs	liS-Pvds	YqyGttQtl	TCTVY	aIPpPh	IhWyWq	eCar	epSqA	vsvtr	рурс			
															Eewrsv	eDfqg	G
111111	1 11			1.1.11		1111	1 11 1 1	TH I	111.1	1.1111	1.1			1	Eewrsv	eDfqg	GI
GNYTILL	SIKQSN	WFKNL	TATLI	VNVKPQI	YEKA	VSSFPDPA	LYPLGSRQII	TCTAY	III I GIPQPT	IKWFWH	PCNH	NHSEA	RCDFC	SNNE	Eewrsv I ESFILD	eDfqg ADSN	I IGI
GNYTILL	SIKQSN	WFKNL	LTATLI	VNVKPQI	YEKA	AVSSEPDPA	 LYPLGSRQII	TCTAY	III I GIPQPT	I IIII IKWFWH	PCNH	NHSEA	RCDFC	SNNE	Eewnsv I ESFILD	eDfqg ADSNØ	I I IGI
GNYTILL	SIKQSN	WFKNL	520	VNVKPQI	БҮЕКА 530	AVSSEPDPAI	I II I LYPLGSRQII	TCTAY	111 GIPQPT 560	I IIII IKWFWH	570	NHSEA	RCDFC	SNNE	Eewrsv I ESFILD 590	eDfqg ADSNØ	a I AG
GNYTILL *	SIKQSN 510	WFKNL	520	VNVKPQI	530	540	LYPLGSRQII		560	I IIII IKWFWH	1 1 PCNH 570	NHSEA	RCDF0 580	SNNE	Eewrsv I ESFILD 590	eDfqg ADSNØ	aG I AG
GNYTILL KIEvnkr	510 siqfAllE	* GKNKt	520 •	VNVKPQI	Salyk	540	S5 s s s s s s s s s s s s s	TrgPe	560 GIPQPT	I IIII IKWFWH * dmqPTE	PCNH 570 * qEsv	* sLwC1	RCDFC 580 * adrst	I SNNE *	Eewrsv I ESFILD 590 * TWykL1	eDfqg ADSNØ *	a I A G Je
KIEvnkr	SIKQSN 510	* GKNKt	520 • • •	VNVKPQI *	SalYk	540 * *	I II I LYPLGSRQII 55 * * rgeRvISFhv	TrgPe	560 GIPQPT	I IIII IKWFWH # dmqPTE	9CNH 570 * qEsv	* sLwCT	RCDFC 580 * Todrst	I SNNE * :fen1	Eewrsv I ESFILD 590 * TWykL1	eDfqg ADSNØ * pihvg	a I AG
KIEvnkr	510 sigfAllE	SKNK	520 * tvSTLV MASTLV	VNVKPQ1 i qaanv VADSRIS	Salyk	540 CCEAVNKVG	S5 rgeRvISFhv IIII IVGRNISFYI	TrgPe	GIPQPT 560 - itlqp GFHVNL	I IIII IKWFWH admqPTE I III EKMPTE	S70 * qEsv	* sLwCT KLSCT	RCDFC 580 * adrst JI VNKFL	I SNNE * :fen1 J_JI .YRDV	Eewrsv I ESFILD 590 * TWykL1 II I TWILLR	eDfqg ADSNØ * pihvg TVNNI	JG I AG
KIEvnkr	SIKQSN 510 • IqfAlIE [RMAIIE	SKNKt	520 * * * *	VNVKPQ1	Salyk	540 * * CCEAVNKVG	1 11 1 LYPLGSRQII 55 • • rgeRvISFhv III TVGRNISFYI	TrgPe TUPVPN	560 GIPQPT 560 - itlap GFHVNL	I IIII IKWFWH # dmqPTE IIII EKMPTE	S70 GEDL	* sLwCT KLSCT	RCDFC 580 * adrst JL VNKFL	I SNNE * fenl J J YRDV	Eewrsv I ESFILD 590 * TWykL1 II TWILLR	eDfqg ADSNØ * pihvg [] TVNNI	
KIEvnkr	510 sigfAlIE RMAIIE 610	EGKNKt	520 520 520 520 520 520 620	VNVKPQ1	530 Salyk SGIYI 630	540 CCEAVNKVG	1 11 1 LYPLGSRQII 55 rgeRvISFhv 1 11 TVGRNISFYI 65	TrgPe	GIPQPT 560 -itlqp GFHVNL 660	dmqPTE EKMPTE	570 • qEsv GEDL 670	* sLwCT KLSCT	RCDFC 580 * adrst VNKFL 680	SNNE fenl YRDV	Eewrsv I ESFILD 590 TWykL1 TWykL1 TWILLR 690	eDfqg ADSNØ * pihvg [] TVNNI	a A G a E T
KIEvnkr III RIESITO	SIKQSN 510 • IndfAllE (LIIII) RMAIIE 610 •	EGKNKt	S20 * tvSTLV IIII MASTLV 620 *	i qaanv VADSRIS	Salyk Salyk SGIYI 630	S40 CCEAVNKVG CCEAVNKVG CCEAVNKVG CCEAVNKVG 640	S5 seeRvISFhv IUGRNISFY 65	TrgPe TrgPe I II TDVPN	GIPQPT 560 -itlap GFHVNL 660	I IIIII IKWFWH # dmqPTE EKMPTE	S70 GEDL 670	* sLwCT LLL KLSCT	RCDFC 580 * adrst JI VNKFL 680 *	fenl YRDV	Eewrsv I ESFILD 590 * TWykL1 II TWILLR 690 *	eDfqg ADSNØ * pihvg [] TVNNI	a la
* kIEvnkr III RIESITO • ptpvcKv	SIKQSN 510 * nqfAlIE 1111 %MAIIE 610 * KlnaTm	EGKNKt SGKNKt	LTATLI 520 * tvSTLV MASTLV 620 * TndilI	VNVKPQ1 i qaanvS VADSRIS MelSLQI	Salyk Salyk SGIYI 630	540 cceAvNKVG ccIASNKVG 640 fvCLAgdrk	SSI TKKrhcvvrd	TrgPe TryPe TryPe	GIPQPT 560 - itlqp 660 * rvAPti	I IIII IKWFWH dmqPTE I.III EKMPTE * tgNLen	570 * qEsv 670 *	NHSEA sLwCT KLSCT	RCDFC 580 * adrst JI VNKFL 680 * evsCt	sonne fenl NRDV	Eewrsv I ESFILD 590 TWykL1 II TWILLR 690 *	eDfq ADSN * pihvy 1) TVNNI * WeKdl	ge the
KIEvnkr RIESITO • • •	SIKQSN 510 * IqfAlIE 1.00 * 610 * KlnaTm 11	EGKNKt	1111 520 * * * * * * * * * * * * * * * *	VNVKPQ1	530 531Yk 561Yk 630		VPLGSRQIU S5 rgeRvISFhu IIII IVGRNISFYI 65 IIkkrhovvrd	TrgPe T II TDVPN	GIPQPT 560 	* dmqPTE EKMPTE * tgNLen	570 * 9E sv 670 * 9Tts 11	* sLwCT KLSCT * IgeSi	RCDFC 580 * adrst 11 VNKFL 680 * evsCt	I SNNE fenl YRDV * *	Eewrsv I ESFILD 590 TWykL1 TWILLR 690 PPPQIm I III	eDfqg ADSN# * pihvg [] TVNNI * WeKdt 	
KIEvnkr RIESITO • ptpvcks III I HYSISKO	SIKQSN 510 * IqfAlIE IIII RMAIIE 610 * KlnaTm II I KMAITK	EGKNKt EGKNKt EGKNKA EGKNKA EGKNKA EGKNKA	TINITI	VNVKPQ1	530 531 530 531 531 74 530 630 0 0 0 0 0 0 0 5 0 7 1 1 1 1 0 5 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		I II I YPLGSRQIU 55 * * rgeRvISFhn I III IVGRNISFYI 65 * * Tkkrhcvvrd I I I TGEE ILQKKI	TrgPe TrUPPN	GIPQPT 560 - itlqp GFHVNL 660 * rvAPti UIII QEAPYL	I IIII IKWFWH # dmqPTE IIII EKMPTE # tgNLen IIII LRNLSD	1 1 PCNH 570 * qEsv GEDL 670 * qTts 11 1 HTVA	* sLwCT KLSCT * IgeSi IIIII	RCDFC 580 * adrst JI VNKFL 680 * evsCt I I	I SNNE fenl YRDV * AsGn III	Eewrsv I ESFILD 590 TWykL1 II TWILLR 690 PPPQIm I III PEPQIT	eDfqg ADSN/ * pihvy [] TVNN/ WeKd/ WFKN/	3G 1 4G 2P 2T
kIEvnkr RIESITO ptpvcKr HYSISKO	SIRQSN 510 * IqfAlIE [111] RMAITE 610 * * KlnaTr II 1 KMAITK 714	EGKNKt EGKNKt EGKNKA EGKNKA EGKNKA EGKNKA EGKNKA	520 520 520 520 520 520 520 520	VNVKPQ1	EYEKA 530 * 531Yk 531Yk 531Yk 630 * DqGdY 1 1 1 0 5GTY 730		I II I III IVPLGSRQTI 55 • • • FORRVISEN IVGRNISEN IVGRNISEN IIII IVGRNISEN IVGRNISEN IVGRNISEN IIIIII IVGRNISEN IVGRNISE	TTrgPe TrgPe TTrgPe LITULe	GIPQPT 560 - itlqp GFHVNL 660 * rvAPti 1111 QEAPYL 764	* dmqPTE tgNLen ILRNLSD	1 PCNH 570 * qEsv GEDL 670 * qTts 	* sLwC1 KLSC1 * IgeS1 IIIII ISSS1	RCDFC 580 * adrst JI. 580 * VNKFL 680 * evsCt 1 1 TTLDCF 780	I SNNE fenl J J YRDV * AsGn III	Eewrsv I ESFILD 590 * TWykL1 II TWILLR 690 * PPPQIM I III PEPQIM I III	eDfqg ADSNM * pihvy [] TVNNM * WeKdl 	
RIESITO	SIKQSN 510 ingfAllE IIIII WMAITE 610 i WKInaTe IIII KMAITK 710	EGKNKt EGKNKt nEsns1	520 520 520 520 520 520 520 520 520 520	VNVKPQ1	EYEKA 530 561Yk 561Yl 630 DqGdY 1 1 1 DSGTY 730	(VSSFPDPAI (CEAVNKVG) (CEAVNKVG) (CEAVNKVG (CEAVNKVG) (VCLAqdrk (EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	I IIIII S59 IIIII IVGRNISFNI G59 IIIII TKkrhcvvre I IIII TGEE ILQKKI 75	TrgPe	GIPQPT 560 -itlqp GFHVNL 660 * VAPti 1 11 QEAPYL 760	I IIII IKWFWH # dmqPTE IIII EKMPTE # tgNLen IIII LRNLSD	1 1 PCNH 570 * qEsv GEDL 670 * qTts 11 1 HTVA 770	* sLwCT KLSCT IgeSt IIII ISSST	RCDFC 580 * adrst JI. 680 * evsCt 1 1 1 1 TTLDCF 780	I SNNE * fenl J J YRDV * * AsGn III	Eewrsv I ESFILD 590 TWykL1 TWJLLR 690 PPPQIm I III PPPQIm I III 790	eDfqg ADSN# * pihvq TVNNI * WeKd! WFKNI	aG I AG ge RTI i i i i i i i i i i i i i i i i i i i
KIEvnkr KIEvnkr RIESITO ptpvcky HYSISKO •	SIKQSN 510 ingfAllE LIIII WMAITE 610 i WKInaTm III I KMAITK 710	EGKNKt EGKNKt EGKNKS EGKNKS EGKNKS	11111111111111111111111111111111111111	VNVKPQ1	EYEKA 530 561Yk 561Yl 630 00 630 1 1 1 056Th 730		I II III SS	TTrgPe	GIPQPT 560 	I IIII IKWFWH # dmqPTE EKMPTE # tgNLen IIII LRNLSD	1 1 PCNH 570 * qEsv 1 GEDL 670 * qTts 1 HTVA 770 *	* sLwCT LD KLSCT IgeSti IIIII ISSST	RCDFC 580 * adrst JI. VNKFL 680 * evsCt 1 1 TTLDCF 780 *	I SSNNE fenl J J YRDV & KASGn III III KANGV	Eewnsvv I ESFILD 590 • TWykL1 TWILLR 690 • PPPQIm I III PEPQIT 790 •	eDfqg ADSN/ * pihvy TVNNI U WEKdI WEKMI	gG I AG gge RTT I H H
kIEvnkr kIEsITG ptpvcKv iI i HYSISKG kIvedsG	SIKQSN 510 • IqfAlIE []]] RMAIIE 610 • KMAITE 710 • VLkdGr	EGKNKt EGKNKt EGKNKS EGKNKS EGKNKS EGKNKS EGKNKS	117111 520 * tvSTLV 1111 44ASTLV 620 * Trndill 11111 11111 720 * 11rRVrk	VNVKPQ1	EYEKA 530 5alYk 5alYk 5GIYI 630 • DqGdY 1 1 1 DSGTY 730 •	VVSSFPDPAI 540 CCEAVNKVG CCEAVNKVG CCEAVNKVG 640 CVCLAqdrki L I I I CCLAqdrki L I I I CCCCARNVY 740 CSVLGCakV	IVPLGSRQTI SS rgeRvISFhu IVGRNISFYI 65 TKkrhcvvrr I I TGEEILQKKI 75 FAFFIIeGo	TrgPe TrgPe TUVPN	GIPQPT 560 111 660 rvAPti 660 760 EITILV	dmqPTE	570 * qEsv GEDL 670 * qTts 11 HTVA 770 * mffY	* sLwCT KLSCT IgeSi IIIII ISSST	RCDFC 580 * adrst JI. VNKFL 680 * evsCt 1 1 1 1 TTLDCF 780 *	I SNNE fenl J J YRDV & AsGn III HANGV	Eewrsv I ESFILD 590 * TWykL1 III TWILLR 690 * PPPQIm I IIII PEPQIT 790 * gElKTg	eDfqg ADSN * * TVNNI WeKdI WFKNI WFKNI YLST	gG I AG gge RT I AH

	810		820		830		840		850		860		870		880		890		900
*	*		*	٠.	*	*		*	*	*	*	*	*	*	*				
PDELPLD	EhCERL	PYDAS	KWEFpF	RdRL	nLGKpL	GRGAF	Gqeie	AdAF	GIdKta	TCRTV	AVKML	KEGAT	hSEh	ALMs	ELKIL	HIGH	HLNVVN	LLGA	TK
HIIII	11111	1111	0.001	unī															
PDEVPLD	EQCERL	PYDAS	KWEFAR	RERL	KLGKSL	GRGAF	GKVVQ	ASAF	GIKKSP	TCRT	AVKML	KEGAT	ASEY	KALMT	ELKIL	THIGH	HLNVVN	ILLGAO	TK
	910		920		930		940		950		960		970		980		990		1000
				*		*				*			*						
pGGPLMV	IVEFCK	FGNLS	tYLrS	KRne	FvpyKtk	kgarf	rqgKd	yvg-	aipvdl	KrRLD	SiTSS	qSsAS	SGFvi	EeKSL	SDVEE	Eape	dlYKdf	TTLEP	LI
				111	().	1.1	11	1	H. I.	1,111	11111	11.11	111	1111	THE	11.11	IIIII		0.1
QGGPLMV	IVEYCK	YGNLS	NYLKS	KRDL	FFLNKD	AALHN	EPKKE	(MEP	GLEQGK	KPRLD	ISVTSS	ESFAS	SGFQ	DKSL	SDVEE	EDSD	GFYKEP	ITME	DLI
	1010		1020		1030		1040		1050	5	1066	,	107	0	108	8	1096	8	1100
CYSFQVA	KGMEFL	aSRK	THROLA	ARN	TLLSER	WWKJ	CDFGL	ARDI	YKdPDY	VRKGE	aRLPL	KWMAP	EtIF	DrvYt	igSDV	SFGV	LLWEIF	SLGa	PY
			LILL		111111		THE	IIII		IIII	11111	THE	IIII		LLL		11111	TITE	11
SYSFQVA	RGMEFL	SSRK	THRDLA	ARN	ILLSEN	WWKI	CDFGL	ARDI	YKNPDY	VRKGE	TRLPL	KWMAP	ESIF	OKIYS	TKSDV	SYG	LLWEIF	SLGG	PY
-														-					-
	1110		1120		1130		1140		1150		1166		117	0	118	8	1196	ð	1200
						*				*		*			*	*		*	
PGVkiDE	eFCrRL	KEGtF	MRAPd	TTP	EmYQtM	LDCW	IgePsql	RPtF	sELVEh	LGnLL	QANaQ	QDGKD	YIPI	setLs	edSG1	alpTs	spvS-cm	eeEev	rcd
						1111				1111	in i	IIIII	HII.	1.11	1111	111	11.1	1.1	
PGVQMDE	DFCSRL	REGM	MRAPEY	STP	EIYQIM	LDCW	RDPKE	RPRF	AELVEK	LGDLL	QANVQ	QDGKD	YIPI	AILT	GNSGF	YSTP	AFSEDF	FKEST	SA
				-							_								
	1210		1220		1230		1240		1250	9	1266	9	127	0	128	8	1296	8	1300
•	*	*	*	*	*	*	*	*	•	•	•	•	•		•	•	•	•	*
PKFhydn	tagiqY	lqnsk	rkSrps	svKT	FEdLePe	evkvi	pDDnQt	tDSg	mviASe	eLKtl	e-drt	KlspS	fg-gr	n-VpS	KSpES	aSeg	Snqtsg	yqS-0	iyh
1111-11	1 1111	11 1	1	111	1111 1	1 1	11.1	111	1111	11.1	1 1	1 11	1.1	111	11-11	11	I L	1.1	
PKFNSGS	SDDVRY	VNAFR	FMSLEF	RIKT	FEELLP	NATSM	FDDYQ	SDSS	TLLASP	MLKRF	TWTDS	KPKAS	LKID	RVTS	KSKES	SLSDV	SRPSFC	HSSCO	HV
	1310		1320		1330														
		*				*													
Sddtdtt	vYsseE	aEllk	lieig	vqtg	staqila	apdta	ttlss	ppv											
111	1 1																		

Flt-1 SEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI

Fig. 1-4 Alignment of human KDR with Flt-1

Flt-1 amino acid number is shown.

Identical or closely related amino acids are marked with vertical lines. Ig-like domains are shown within dotted boxed areas, transmembrane regions are underlined while boxed areas represent tyrosine kinase domains.

Angiogenesis inhibitor	Inhibition of the growth of an dethelicit and	Inhibition of
(1) Missoorgania matahal	itee	in vivo angiogenesis
(1) Microorganic metabol	nes	
Fumagilin	+	+
AGM14/0	+	+
FR118487	+	+
DS4152	+	+
Suramin	+	+
(2) Neutralizing antibodie	25	
Anti-integrin $\alpha_v \beta_3$	+	+
Anti-basic FGF	+	+
Anti-VEGF	+	+
(3) Proteins		
Platelet factor IV	+	+
CDI ¹⁾	+	+
$TIMP^{2)}$	+	+
TSP	+	+
TGF-β	+	1.
TNF-α	+	-
Angiostatin	+	+
Endostatin	+	+
(4) Others		
Protamin	+	+
Angiostatic steroid	+	+
Vitamin A derivative	+	+
Vitamin D3 derivative	+	+

Table 1-1 Angiogenesis inhibitors and their effects

Modified from Kodansha (1997). Chorioallantoic membrane assay (CAM) or rabbit cornea assay were used to monitor the inhibitory activity of the compounds on angiogenesis in vivo.

¹CDI: cartilage derived inhibitor.

²TIMP: tissue inhibitor of proteinase.

failed to develop blood islands. Furthermore, hematopoietic precursors were severely disrupted and organized blood vessels failed to develop throughout the embryo or yolk sac, resulting in death *in utero* between days 8,5 and 9.5 (Shalaby et al., 1995).

1-4 Inhibitors of angiogenesis

Table 1-1 lists various angiogenic inhibitors reported so far in the literature. These inhibitors are classified into the following three broad categories. (1) Microorganic metabolites whose inhibitory mechanisms are almost unknown at present. (2) Neutralizing antibodies against various angiogenic factors. (3) Proteins whose inhibitory mechanisms are almost not clear at present.

Recent studies have indicated that Angiostatin and Endostatin, which are categorized as protein inhibitors of angiogenesis, are the most attractive factors (Zetter, 1998). Angiostatin is the fragment of plasminogen and Endostatin is the fragment of collagen. Furthermore, Angiostatin and Endostatin have also been shown experimentally to reduce the size of four types of tumors implanted in mice (Mauceri et al., 1998) thus making them more attractive for clinical use.

1-5 The purpose of this study

The aim of the present study was to develop new agents that inhibit the growth of tumors by arresting angiogenesis. Based on the above background, I defined the following two properties as essential features of new anti-angiogenesis drugs:

(1) Small molecule compounds rather than proteins.

(2) Known mechanism of inhibition of angiogenesis.

In the first part of this study, I searched for small-molecule inhibitors of VEGF signal transduction. To inhibit VEGF signal transduction, two strategies are available at present.

 Intracellular inhibition, i.e., inhibition of VEGF downstream signal transduction.

(2) Extracellular inhibition, i.e., inhibition of VEGF binding to its receptors. However, information about the mechanism of VEGF downstream signal transduction is limited at present. Therefore, for the first strategy, I first searched for unidentified proteins that bind to KDR and Flt-1. I believe that there might be endothelial-specific proteins that bind to the cytoplasmic regions of KDR and Flt-1, and that such agents will be promising specific inhibitors of VEGF signal transduction. For the second strategy, I screened my chemical library for inhibitors of the binding of VEGF to its receptor, KDR.

Chapter 2 Analysis of proteins binding to Flt-1 and KDR

2-1 Introduction

At present, very little is known about the signal transduction of VEGF (Fig. 2-1) compared with that of EGF and PDGF. In EGF and PDGF system, the proteins that bind to receptors, the domains to which they bind to, and their importance to signal transduction have been well characterized. In comparison, only a few proteins that form a complex with VEGF receptors have been identified, making it very difficult to explain the diversity of VEGF-induced cellular responses. Therefore, in the first part of this study, I attempted to define the basic aspects of VEGF signal transduction in order to determine the potential targets for VEGF inhibitors.

Binding of VEGF to its receptors, KDR and Flt-1, induces autophosphorylation of their tyrosine residues (Waltenberger et al., 1994). The phosphorylated receptors are thought to recruit proteins with SH2 domains or phospho-tyrosine-binding domains to their phosphorylated tyrosine residues and transduce the downstream signal transduction. Immunological studies suggested that PI3K p85, PLCγ, Nck and GAP bind to both Flt-1 and KDR in bovine aortic endothelial cells (Guo et al., 1995). Using the baculovirus expressed Flt-1 as a probe, PLCγ has been shown to bind to the phosphorylated Y1169 of Flt-1 (Sawano et al., 1997). The yeast two hybrid analysis revealed that both N- and C-SH2 domains of PI3K p85

Fig. 2-1 VEGF intracellular signal transduction

- 22 -

bind to Y1213 of Flt-1 (Cunningham et al., 1995) while N- but not C-SH2 domain of PLCγ binds to Y794 and Y1169 of Flt-1 and Y801 and Y1175 of KDR (Cunningham et al., 1997).

In addition to these proteins, the bindings of another three proteins, Grb2, SHP-2 and Stat3 to Flt-1 or KDR have been suggested. Grb2 and tyrosine phosphatase SHP-2 have been shown to bind to KDR in KDRoverexpressing porcine aortic endothelial cells in a VEGF-dependent manner (Kroll and Waltenberger, 1997). Whether they also bind to Flt-1 is currently unknown. Stat3, a transcription factor, has recently been reported to function as an adapter protein. (Pfeffer et al., 1997). Flt-1 has the consensus motif (YXXQ) for Stat3 binding (Stahl et al., 1995) in its cytoplasmic region (YSFQ; 1002 - 1005 amino acids).

In the first part of the study, I screened human brain cDNA library using the yeast two-hybrid system with the KDR cytoplasmic domain as the bait in order to find unidentified KDR binding proteins. Such proteins will be potential targets for inhibitors of VEGF signal transduction.

In the second part of the study, I investigated whether the proteins described above directly bind to KDR or Flt-1. I also analyzed the tyrosine residues of KDR and Flt-1 to which they bind. The proteins, which were shown to bind directly to KDR or Flt-1, can be the targets for inhibitors of VEGF signal transduction. Information about the sequence surrounding the

tyrosine residues to which they bind may be helpful for the design of peptide mimetic inhibitors that selectively inhibit their binding.

2-2 Sck interacts with KDR and Flt-1 via its SH2 domain

2-2-1 Materials and Methods

Yeast two-hybrid system screen

Flt-1 and KDR cDNA were kindly provided by Dr. M. Shibuya (Department of Genetics, Institute of Medical Science, University of Tokyo). The cytoplasmic domains of KDR (788-1354 amino acids) and Flt-1 (781-1338 amino acids) were amplified by PCR and subcloned into the yeast two hybrid plasmid pGBT9 (Clontech, Paolo Alto, CA) and used as bait plasmids (KDR/pGBT9 and Flt-1/pGBT9). A human brain cDNA library constructed in prey plasmid pACT2 and pretransformed into the yeast strain Y187 ($MAT\alpha$, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4 Δ , gal80 Δ , met, URA3 :: GAL1_{UAS}-GAL1_{TATA}-lacZ) was purchased from Clontech. Screening was performed as described in the instructions provided by the manufacturer. Briefly, yeast PJ69-2A (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4 Δ , gal80 Δ , LYS2::GAL1_{UAS}- $GAL1_{TATA}$ -HIS3, $GAL2_{UAS}$ - $GAL2_{TATA}$ -ADE2) transformed with KDR/pGBT9 was mated with yeast Y187 pretransformed with the library. The resultant diploids were selected as colonies growing without adenine and histidine. β -galactosidase activity of each colony was assayed and colonies showing positive activities were selected. Library plasmids were isolated from selected colonies and re-introduced into the yeast Y187 to confirm interaction with KDR cytoplasmic region. Positive clone cDNAs were partially sequenced.

Construction of Sck mutants

Partial Sck cDNA was isolated by using the Rapid-Screen cDNA Library Panel human fetal brain (OriGene). Briefly, master 96 well plate was screened by PCR with the primer pair, Sck/SH2/FW

(TTCCCTTGGAGGACCACTGG) and Sck/SH2/RV

(AGGCGAAATGGTTCCGTCTTTGG). Nine sub-plates corresponding to wells showing positive amplification were re-screened by PCR with the same primer pair. *Escherichia coli* cells in positive wells were isolated and screened with the same primer pair. Candidate clones were sequenced and the clone (8B6A5) containing the PTB domain was isolated.

Partial Sck constructs used here were prepared by PCR and subcloned into the prey vector pACT2. Primer pairs were: sense 5' -

GGAATTCGATTCATCCGGAAGGGCAGCTTCATCC-3', antisense 5' -

- 25 -

CCGCTCGAGTCAGGGCTCCCGTGAGACCACG- 3' for plasmid containing PTB, CH and SH2 domains (Sck PTB-CH-SH2); sense 5' -GGAATTCGATTCATCCGGAAGGGCAGCTTCATCC-3', antisense 5' -CCGCTCGAGCGGGATGCTGTTGTAGTAATTGTG- 3' for plasmid containing PTB domain (Sck PTB); sense 5' -

GAAGATCTTTCCCTTGGAGGAGCAGTGG-3', antisense 5' -CCGCTCGAGGCGAAATGGTTCCGTCTTTGG-3' for plasmid containing SH2 domain (Sck SH2). For plasmid containing PTB and CH but not SH2 domains (Sck PTB-CH), plasmid Sck PTB-CH-SH2 was digested with *Pvu*II and *Xho*I. The fragment containing the vector sequence was blunt ended and ligated.

Construction of Flt-1 and KDR mutants

Site-directed mutagenesis of KDR was carried out using the Chameleon double-stranded site-directed mutagenesis kit (Stratagene, La Jolla, CA). The sequences of mutating primers were as follows: Y801F, AACTGAAGACAGGCTTCTTGTCCATCGTCATGG; Y822F, GTGAACGACTGCCTTTTGATGCCAGCAA; K868A, GGACAGTAGCAGTCGCAATGTTGAAAGAAGG; Y951F, AGGGAAAGACTTCGTTGGAGCAATCC; Y996F, CCTGAAGATCTGTTTAAGGACTTCCTGACC; Y1175F, GGATGGCAAAGACTTCATTGTTCTTCCG;

- 26 -

Y1319F, CAGACACCACCGTGTTCTCCAGTGAGGAAGC.

Site-directed mutagenesis of Flt-1 was carried out using the same kit. Mutating oligonucleotides were synthesized as follows: Y794F,GAAATAAAGACTGACTTCCTATCAATTATAATGGACCC ; Y815F, GTGAGCGGCTCCCTTTTGATGCCAGCAAGTG ; K861A, GGACTGTGGGCTGTCGCGATGCTGAAAGAGG ; Y990F, TTCTGACGGTTTCTTCAAGGAGCCC ; Y1169F, CAACAGGATGGGAAAGACTTCATCCCAATC ; Y1184F, ATAGTGGGTTTACATTCTCAACTCCTGCCTTC ; Y1213F,GGAAGCTCTGATGATGTAAGATTTGTGAATGCTTTCAAG ; Y1242F, CCATGTTTGATGACTTCCAGGGCGACAGC ; Y1309F, GCGCAGGTTCACCTTCGACCACGCTGAG ; Y1327F, CCGCCCCAGACTTCAACTCGGTGGTCC ; Y1333F, CTCGGTGGTCCTGTTCTCCACCCCACCCATC.

The triple mutant of Flt-1 (Y1309F, Y1327F and Y1333F) was constructed with three primers, Y1309F, Y1327F and Y1333F.

β-Galactosidase assay

The filter assay was performed according to the method of Bartel et al. (Bartel et al., 1993). Briefly, transformants were streaked directly on a nylon membrane placed on Leu Trp His⁺ plate and incubated at 30°C for 24

h The filter was then transferred into liquid nitrogen for 20 s and allowed to thaw at room temperature then placed on a paper filter that was presoaked in Z buffer/X-Gal solution (22.2 g/L Na-HPO, 12H-O, 5.9 g/L NaH,PO4·2H,O, 0.75 g/L KCl, 0.246 g/L MgSO4·7H,O, and 390 mg/L X-Gal) and incubated at 30°C for about 8 hr. Liquid culture assays using a chemiluminescent substrate (Galacton Plus (Roche Molecular Biochemicals) for the quantification of β-galactosidase activity were performed according to the method described in the Yeast Protocols Handbook (Clontech). Briefly, the transformants were grown to saturation in Leu Trp His+ medium overnight then diluted the following morning. Diluted yeasts were grown to an optical density (A_{600}) of about 0.6 and pelleted. Yeasts were washed in Z buffer once and resuspended in 300 μ l Z buffer and placed in liquid nitrogen until frozen. At a later stage, yeasts were thawed by incubation in a 37°C water bath for 1 min. This freeze/thaw cycle was repeated once and the yeast lysate was centrifuged for 5 min. Yeast supernatants were collected and used as yeast extract. Enzymatic reactions and light measurements were performed according to the protocol recommended by the manufacturer.

RT-PCR analysis

 5×10^{5} human umbilical vein endothelial cells (HUVEC) (primary culture, passage number 3, (Kurabou) grown in HuMedia-EG2 (Kurabou)

- 28 -

were used as the source of mRNAs. mRNAs were purified using the mRNA capture kit (Roche Molecular Biochemicals). RT-PCR was performed using Titan one tube RT-PCR system (Roche Molecular Biochemicals) with either the Sck specific primer pair, Sck/P/F4 (AGAGCAACCTTCGCTTTGCC) and Sck/P/B9 (AGGGTCGCATGTCAAACAGATC) or the human β-actin specific primer pair, β-AC/FW (CCAAGGCCAACCGCGAGAAGATGAC) and β-AC/RV (AGGGTACATGGTGGTGCCGCCAGAC). All procedures were

performed according to the instructions provided by the manufacturer.

2-2-2 Results and Discussion

Identification of Sck as a binding protein of KDR

I screened human brain cDNA library using the yeast two-hybrid system with KDR cytoplasmic region as the bait. As a screening method, I used diploids grown without adenine and histidine, which were constructed from mating yeast PJ69-2A that expressed KDR with yeast Y187 expressing the library (Fig. 2-2). Yeast PJ69-2A has two reporter genes, *ADE2* and *HIS3*, therefore, yeasts having a cDNA for KDR binding proteins are also able to grow without adenine and histidine. After two rounds of screening, I obtained 50 colonies that were able to grow in adenine- and histidine-free environment, among 6.2×10^6 diploids. In order to remove false positives,

Fig. 2-2 Procedure used for the yeast two-hybrid system screening of pretransformed cDNA libraries.

Reproduced from the Product Protocol provided by Clontech Laboratories, Inc. and modified according to the actual conditions of the screening used in the present study. I assayed the β -galactosidase activity in these 50 colonies with the filter assay and selected 48 colonies showing positive B-galactosidase activity. After isolating cDNA library-derived plasmids from these yeasts, I cotransformed these plasmids and KDR/pGBT9 into yeast Y187. I assayed βgalactosidase activity of the transformants and selected 38 plasmid clones. Finally, in order to select clones for protein binding to the DNA binding region of Gal4 protein, I co-transformed these 38 plasmids and vector pGBT9 into yeast Y187 and assaved the β-galactosidase activity of transformants, but none showed a positive B-galactosidase activity. Therefore, I selected these 38 plasmid clones as candidates for cDNAs of KDR binding proteins (Table 2-1). I determined the partial DNA sequences of the inserts and searched for cDNAs having homology to them. Table 2-2 is a list of the results of homology search. Among these, I found a fragment of Sck gene (clone number 2#7), one of Shc homologues. This fragment contained nucleotide 616 to 2356 of the partial sequence of Sck cDNA described by Nakamura et al. (Nakamura et al., 1998) (Fig. 2-3). Analysis of porcine aortic endothelial cell (PAEC) overexpressing KDR showed that She forms a complex with KDR in a VEGF stimulation-dependent manner and becomes phosphorylated on its tyrosine residues (Kroll and Waltenberger, 1997). These data suggest that Sck might also play a role in KDR signal transduction in endothelial cells through binding to KDR. Therefore, I selected Sck for further analysis.

Total diploids	6.2 x 10 ⁶
Ade+, His+ colonies	50
β-gal positive	48
Confirmation by retransformation of prey plasmid	
bait-dependent	38
vector-dependent	0

Table 2-1 Results of screening for KDR binding proteins.

The numbers of colonies or clones are shown. Ade+, His+ colonies represent the number of colonies that can grow on agar medium without adenine and histidine. β -gal positive represent the number of colonies that show reasonable strength of blue color in β -gal filter assay.

Bait -dependent represents the number of clones that reproduced the positive reults with KDR bait plasmid. Vector-dependent represents the number of clones that show the positive results with empty vector bait plasmid.
Total number of clones	38	
ATP synthase	4	
nucleolar protein	2	
РІЗК р85	11	
Shc	3	
none	18	

Table 2-2. Results of homology search of inserts.

Partial DNA sequence of clones inserts was determined and the homology search was performed using FASTA program on March 30, 1998.

1	54	238		394	487
	PTB		СН	SH	2
clone No. 2#7				-	
PTB-CH-SH2					
PTB-CH				- 11	
РТВ					
SH2					

Figure 2-3. Wild type and mutant Sck.

- 33

PTB and SH2 domains are indicated by shaded boxes. Clone segments analyzed in the present study are indicated by bars.

Twelve clones (clone number 1#7, 1#10, 1#11, 1#13, 1#35, 2#1, 2#2, 2#8. 2#10, 2#13, 2#14, 2#19) were highly homologous to PI3K p85, the regulatory subunit of phosphatidyl inositol 3-kinase. In section two of this chapter (see Fig. 2-11), I could not detect the binding of N- and C-SH2 domains of PI3K p85 to KDR by the yeast two hybrid analysis (Igarashi et al., 1998). This discrepancy might be due to differences in the expression level of PI3K p85. I used the low-level expression vector pGAD424 in section two; on the other hand, I used the high-level expression vector pACT2 in screening studies. PI3K p85 has been shown to bind to Flt-1 cytoplasmic region by the yeast two hybrid analysis (Cunningham et al., 1995). It has also been shown that PI3K p85 forms a complex with KDR and Flt-1 in bovine aortic endothelial cells (BAEC) upon VEGF stimulation (Guo et al., 1995). The result that PI3K p85 was selected through screening with KDR cytoplasmic region as the bait suggests that PI3K p85 might play some role in VEGF signal transduction by binding to KDR as well as Flt-1. However, previous studies have shown that VEGF stimulation in endothelial cells failed to activate PI3K enzymatic activity (Abedi and Zachary, 1997). Therefore, further analysis will be required to determine the role of PI3K p85 in VEGF signal transduction. The remaining 25 clones are now under investigation.

Expression of Sck in HUVEC

If Sck plays some role in VEGF signal transduction, its expression in endothelial cells must be confirmed. Recent studies have shown that Sck is expressed mainly in human liver, pancreas and prostate (Nakamura et al., 1998). However, to my knowledge, its expression in endothelial cells has not yet been reported. Therefore, I performed RT-PCR analysis using specific primers for Sck (corresponding to 509-1189 of AB001451) to determine the expression of Sck mRNA in endothelial cells. I purified mRNA from HUVEC and used it as the template. Figure 2-4 shows that a band with an expected length, i.e., 681 bp, was amplified with the Sck specific primer. These results indicate that that Sck is expressed in endothelial cells.

Sck interacts with both KDR and Flt-1 and their interaction is kinasedependent

I also tested whether Sck binds to KDR and Flt-1. Using plasmid Fltl/pGBT9 to express Flt-1 cytoplasmic region as the bait, I assayed β galactosidase activity of each transformant. As shown in Fig. 2-5, Sck bound to Flt-1 as well as to KDR. Next, I examined whether such binding was dependent on tyrosine kinase activity of KDR and Flt-1 using mutants without kinase activity. As shown in Fig. 2-5, the binding of Sck to KDR and Flt-1 was totally dependent on kinase activity. These results suggest that

Fig. 2-4 Expression of Sck mRNA in HUVEC.

mRNA purified from 5 x 10^5 HUVECs grown in growth media were subjected to the RT-PCR using the primer pairs for Sck (*lane2*) and βactin (*lane3*). 100 bp DNA size markers were loaded at both sides (*lane 1 and 4*). Similar results were obtained in three different experiments.

rlu / min / OD600

Fig. 2-5A Sck binds to KDR via its SH2 domain.

Baits were cytoplasmic regions of wild type and kinase mutant of KDR (above) and Flt-1 (next page) introduced into pGBT9. Preys were mutants of Sck introduced into pACT2. The bait and prey plasmids were cotransformed into the yeast reporter strain Y187. Liquid assay of β -galactosidase activity of the transformants was assayed using chemiluminescent Galacton Start as a substrate. Values represent the mean \pm SD of triplicate determinations expressed in relative light units divided by reaction time (60 min) and optical density.

rlu / min / OD600

Fig. 2-5B Sck binds to Flt-1 via its SH2 domain.

See legend of figure 2-5A.

Sck binds to the phosphorylated tyrosine residues of KDR and Flt-1 upon activation of KDR and Flt-1 in endothelial cells.

Essential domain of Sck for binding to KDR and Flt-1 is its SH2 domain but not its PTB domain

Sck protein contains three domains, i.e. PTB domain (amino acid number 54-238), CH domain (239-393) and SH2 domain (394-487) (Nakamura et al., 1998). Among these domains, PTB and SH2 domains might be responsible for binding to phosphorylated tyrosine residues of KDR and Flt-1. The partial clone of Sck obtained by screening has the C terminal half of PTB domain and full SH2 domain. This suggests that SH2 domain binds to KDR and Flt-1. In order to construct the prey plasmid expressing various regions of Sck, I obtained a cDNA of Sck containing the full length of PTB domain (193-2356) from human brain cDNA library and used it as a template for PCR. I first investigated whether SH2 domain of Sck can bind to KDR and Flt-1. B-galactosidase activity of each transformant was quantified using Galacton-Star as a substrate. As shown in Fig. 2-5, SH2 domain could bind to both KDR and Flt-1. Next, I examined whether the PTB domain binds to KDR and Flt-1. The results showed that PTB domain could not bind to KDR or Flt-1. In addition, the clone containing full PTB domain and SH2 domain bound to both KDR and Flt-1 while the clone containing full PTB domain but not SH2 domain could not

bind to them. Combined together, these results indicated that the SH2 domain of Sck is an essential region for its binding to KDR.

Unexpectedly, the β -galactosidase activities of transformants with Sck PTB-CH-SH2 were much higher than those of other transformants. This suggests that although PTB domain and CH domain are not necessary for the binding of Sck to KDR and Flt-1, they may be important for the stabilization of SH2 domain structure, thus allowing a firm binding. However, further studies must be conducted to confirm this possibility.

Sck SH2 domain binds to Y1175 of KDR

To determine the tyrosine residues of KDR and Flt-1 responsible for Sck binding, I co-transformed the SH2 domain of Sck and either KDR or Flt-1 mutant constructs whose tyrosine residues were individually mutated to phenylalanine (Fig. 2-6). β -galactosidase activity of each transformant was quantified using Galacton-Star as substrate. As shown in Fig. 2-5, mutations of kinase domain (K868A of KDR and K861A of Flt-1) caused a complete loss of activity. Substitution of Y1175 of KDR resulted in a loss of about 98% of β -galactosidase activity (Fig. 2-7). However, substitution of tyrosine residues of Flt-1 did not cause a significant loss of β -galactosidase activity (data not shown). These results indicate that Y1175 of KDR is responsible for the binding to Sck. I also examined the effect of a triple mutant of Flt-1 (Y1309F, Y1327F and Y1333F), however, it did not lead to

Fig. 2-6 Schematics of KDR and Flt-1 cytoplasmic regions.

Y990

Shown are mutated tyrosine residues used in this study. TM, transmembrane; KI, kinase insert; TK, tyrosine kinase

Fig. 2-7. Sck SH2 binds to Y1175 of KDR.

The prey Sck SH2 plasmid was co-transformed with KDR mutants into yeast Y187. β-galactosidase activity of resultant transformants was assayed using chemiluminescent Galacton Star as a substrate. Values represent the mean ± SD of triplicate determinations expressed in relative light units divided by reaction time (60 min) and optical density. a significant loss of β -galactosidase activity (data not shown). There might be several tyrosine residues of Flt-1 that are responsible for the binding to SH2 domain of Sck. Further analysis is required to identify the responsible tyrosine residues of Flt-1.

In conclusion, I showed in this section that Sck is a protein that binds to activated KDR and Flt-1 and that SH2 domain but not PTB domain of Sck is responsible for the binding. I also showed Y1175 of KDR is responsible for the binding of SH2 domain of Sck to KDR, but I could not determine the responsible tyrosine residue of Flt-1. The binding of Sck to activated EGFR has been recently reported, however, the responsible tyrosine residues of EGFR were not determined (Nakamura et al., 1998). Therefore, this is the first time that the surrounding amino acid sequence of tyrosine residues to which Sck binds has been identified.

What is the role of Sck in VEGF signal transduction? Recent studies by Nakamura and colleagues (Nakamura et al., 1998) have shown that upon EGF stimulation, Sck binds to EGFR and is phosphorylated on the receptor tyrosine residues and Grb2 then binds to the phosphorylated Sck. Therefore, Sck might play a role in the activation of mitogen-activated protein kinase (MAPK) as an adapter protein in EGF system. It is possible that Sck might also play a similar role in VEGF system. Further studies such as investigation of the effect of antisense repression of Sck, are necessary to determine the role of Sck in VEGF signal transduction.

- 43 -

2-3 Tyrosine 1213 of Flt-1 is the Major Binding Site of Nck and SHP-2.

2-3-1 Materials and Methods

Yeast two-hybrid system

Vector plasmids (pGBT9 and pGAD424), yeast hosts SFY526 (MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, can', gal4-542, gal80-538, URA3 :: GAL1_{UAS}-GAL1_{TATA}-lacZ) and Y190 (MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, gal4 Δ , gal80 Δ , cyh'2, LYS2 :: GAL1_{UAS}-HIS3_{TATA}-HIS3, URA3 :: GAL1_{UAS}-GAL1_{TATA}-lacZ) were purchased from Clontech. Yeast two-hybrid plasmid pGBT9 containing the cytoplasmic region of KDR (790-1356 amino acids); (KDR/pGBT9) and Flt-1 (781-1338 amino acids); (Flt-1/pGBT9), indicated in section 2-2-1, was used as the bait. Partial cDNAs (containing SH2 region) of PLC γ , PI3K p85, Nck, Grb2, SHP-2, Stat3 and GAP were cloned by PCR from human placenta cDNA library (Clontech) and their sequences were confirmed by DNA sequencing. Their SH2 domains were PCR amplified and subcloned into pGAD424 and used as prey plasmids. Primer pairs are listed in Table 2-3. The resultant bait and prey plasmids were cotransformed into SFY526 or Y190 yeast hosts.

domain		5'→3'
N-SH2 of PLCy	sense	AGTGCGAATTCAATGAGAAGTGGTTCCATGGG
	antisense	ATAAGTCGACGCTGTGGGACAGGCTCTGAAAG
C-SH2 of PLCy	sense	AGTGCGAATTCCCACGAGAGCAAAGAGTGGTAC
	antisense	ATAAGTCGACGCTCCTCGTTGATGGGATAGCG
N-SH2 of PI3K p85	sense	GCGAATTCCCTACTACTGTAGCCAACAACGGT
	antisense	CGGCGTCGACGGTATTTGGATACTGGATAAAG
C-SH2 of PI3K p85	sense	GCGAATTCGATGAAGATTTGCCCCATCATGATGAG
	antisense	CCAGAGTCGACTTCATCGCCTCTGCTGTGCATATACTG
SH2 of Nck	sense	GCGAATTCAGGCCTTCACTCACTGGAAAGTTTGC
	antisense	CCAGAGTCGACGGTCAGCAGTATCATGATAAATGCTTGACAAG
SH2 of Grb2	sense	CCGAATTCGTCCTTTTTTGGCAAAATCC
	antisense	TACGGTCGACTTAGGCTGCTGTGGCACCTGTTC
N-SH2 of SHP-2	sense	CCGAATTCATGACATCGCGGAGAT
	antisense	TACGGTCGACTTATGCACAGTTCACACCATATTTAAGC
C-SH2 of SHP-2	sense	CCGAATTCTGGTTTCATGGACATCT
	antisense	TACGGTCGACTTACTTGAGTTGTAGTACTGTACCC
SH2 of Stat3	sense	AGTGCGAATTCATTGGAACCTGGGACCAAGTGGC
	antisense	ATAAGTCGACTCACATGGGGGGGGGGGGGGGCAC
N-SH2 of GAP	sense	TCCCCCGGGGTGGTATCACGGAAAACTTGACAGAACG
	antisense	TGCGGTCGACTCAAACTGGGTAAAGTAATTTTTCTCC
C-SH2 of GAP	sense	TCCCCCGGGGTGGTTCCATGGGAAGATTTCC
	antisense	TGCGGTCGACTCATACAGGTTCCTTAAGATAATATCC

Table 2-3 Primer pairs used in this section.

- 45 -

β-galactosidase assay

The filter assay was performed according to the method of Bartel et al. (Bartel et al., 1993) as described in section 2-1-1.

Site-directed mutagenesis

Site-directed mutagenesis of Flt-1 and the primers used were described in section 2-1-1.

2-3-2 Results and Discussion

Nck and SHP-2 bind to Flt-1.

In section 2-2-2, we showed that Sck binds to KDR and Flt-1 cytoplasmic regions via its SH2 domain. These results indicate that SH2 domains are important for Sck binding to KDR and Flt-1 cytoplasmic regions and suggest that other proteins that have SH2 domains may also bind to KDR or Flt-1 via their SH2 domains. As described in section 2-1, the SH2 domains of PI3K p85, PLC_Y, Nck and GAP have been shown to form a complex with KDR or Flt-1 upon VEGF stimulation in BAEC (Guo et al., 1995). In addition to these proteins, the bindings of three other proteins, Grb2, SHP-2 and Stat3 to Flt-1 or KDR has also been suggested (Kroll and Waltenberger, 1997). Grb2 and tyrosine phosphatase SHP-2 have been shown to bind to KDR in KDR-overexpressing porcine aortic endothelial cells in a VEGF-dependent manner (Kroll and Waltenberger, 1997). Flt-1 has the consensus motif (YXXQ) for Stat3 binding (Stahl et al., 1995) in its cytoplasmic region (YSFQ; 1002 - 1005 amino acids).

In this study, I tested the binding of SH2 domains of these proteins to KDR and Flt-1 cytoplasmic region. For this purpose, I co-expressed the cytoplasmic region of Flt-1 or KDR with the SH2 domain of each protein using the yeast two-hybrid system. In this system, reconstitution of functional transcription factor through the binding between the bait protein

- 47 -

and the prey protein leads to the expression of reporter gene β -galactosidase. The cytoplasmic region of Flt-1 or KDR was introduced into pGBT9 as the bait. SH2 domains of PLC γ , PI3K p85, Nck, Grb2, SHP-2, Stat3 and GAP (Fig. 2-8) were introduced into pGAD424 as preys. The resultant bait-prey plasmids were co-transformed into the yeast reporter strains, SFY526 and Y190 in various combinations. The transformants were grown on filters and their β -galactosidase activities were visualized using X-Gal as a substrate. As shown in Fig. 2-9, the N- and C-SH2 domains of PLC γ , N- and C-SH2 domains of PI3K p85, SH2 domain of Nck, and N-SH2 domain of SHP-2 bound to Flt-1. The C-SH2 domain of SHP-2 and SH2 domain of Grb2 did not bind to Flt-1. Furthermore, I could not detect the binding of SH2 domain of Stat3 and GAP to Flt-1.

The N-SH2 of PLCγ bound to KDR as previously reported (Cunningham et al., 1997) and C-SH2 domain of PLCγ also bound to KDR (Fig. 2-10). Unexpectedly, I could not detect a significant binding of SH2 domain of Grb2 nor both SH2 domains of SHP-2 to KDR, although the interaction of Grb2 and SHP-2 with KDR has been suggested (Kroll and Waltenberger, 1997). This discrepancy might be derived from the weak binding of KDR to prey proteins with SH2 domain in the yeast two-hybrid system used in this study. Actually, previous studies showed that the magnitude of binding between KDR and N-SH2 domain of PLCγ is relatively weak in comparison to Flt-1 (Cunningham et al., 1997).

- 48 -

Fig. 2-8 SH2 containg proteins used in this study.

Fig. 2-9 Interaction of Flt-1 with certain SH2 domains.

The cytoplasmic region of Flt-1 was introduced into pGBT9 as a bait. The SH2 domains of PLC₇, PI3K p85, Stat3, Nck, Grb2, SHP-2 were introduced into pGAD424 as preys. Resultant bait and prey plasmids were co-transformed into the yeast reporter strains, SFY526 [pGAD424 (a), PLC₇ N-SH2 (b), PLC₇ C-SH2 (c), PI3K p85 N-SH2 (d), PI3K p85 C-SH2 (e) and Stat3 SH2 (f)] and Y190 [pGAD424 (g), Nck (h), Grb2 (i), SHP-2 N-SH2 (j), SHP-2 C-SH2 (k) and SHP-2 NC-SH2 (1)] in various combinations. Transformants were grown on filters and their b-galactosidase activities were visualized using X-Gal as substrate.

a b c d e f

pGBT9

g h i j k l

a b c d e f

KDR

g h i j k l

Fig. 2-10 Interaction of KDR with certain SH2 domains.

The cytoplasmic region of KDR was introduced into pGBT9 as a bait. The SH2 domains of PLCg, PI3K p85, Stat3, Nck, Grb2, SHP-2 were introduced into pGAD424 as preys. Resultant bait and prey plasmids were co-transformed into the yeast reporter strains, SFY526 [pGAD424 (a), PLC_Y N-SH2 (b), PLC_Y C-SH2 (c), PI3K p85 N-SH2 (d), PI3K p85 C-SH2 (e) and Stat3 SH2 (f)] and Y190 [pGAD424 (g), Nck (h), Grb2 (i), SHP-2 N-SH2 (j), SHP-2 C-SH2 (k) and SHP-2 NC-SH2 (1)] in various combinations. Transformants were grown on filters and their b-galactosidase activities were visualized using X-Gal as substrate.

Furthermore, I could not detect the binding of SH2 domains of PI3K p85, Stat3 nor GAP to KDR (data for GAP are not shown). Taken together, these results indicate that Nck and SHP-2 may directly bind to FIt-1.

Nck binds to Y1213 and Y1333 of Flt-1

To determine the tyrosine residues of Flt-1 responsible for Nck binding, I co-transformed the SH2 domain of Nck and Flt-1 mutant constructs whose tyrosine residues were individually mutated to phenylalanine (Fig. 2-6). β -galactosidase activity of each transformant was quantified using Galacton-Star as a substrate. As shown in Fig. 2-11, mutation of the kinase domain (K861F) resulted in a complete loss of the enzyme activity. Substitution of Y1213 resulted in 93% loss of β galactosidase activity, while substitution of Y1333 resulted in 89% loss. Interestingly, substitution of Y1242 resulted in 321% gain in activity for unknown reasons. These results indicated that two tyrosine residues of Flt-1, Y1213 and Y1333, are responsible for binding to the SH2 domain of Nck.

Y1213 is followed by VNA, and Y1333 is followed by STP. The results do not agree with Y-D-E-P/D/V, the preferred sequence for Nck SH2 domain binding determined in *in vitro* phosphopeptide studies (Songyang et al., 1993).

- 52 -

Fig. 2-11 Interactions of Nck SH2 with mutant constructs of Flt-1 cytoplasmic region.

Liquid assay of β -galactosidase activities expressed in yeast host Y190 using chemiluminescent Galacton Star as substrate. Values represent the mean \pm SD of triplicate determinations expressed in relative light units divided by reaction time (60 min) and optical density.

SHP-2 binds to Y1213 of Flt-1

In the next series of experiments, I determined the residues of Flt-1 responsible for SHP-2 binding. I co-transformed Flt-1 mutants described above and the N-SH2 domain or N- and C-SH2 domains of SHP-2. β galactosidase activity of each transformant is shown in Fig. 2-12 and the result showed that Y1213 of Flt-1 might be the major binding site for SHP-2. Substitution of Y1213 resulted in 95% loss of β -galactosidase activity. Y1213 is followed by VNA. As the preferred sequence of SHP-2 N-SH2 domain binding is Y-V/I/T-X-V/L/I (Songyang et al., 1993), Y1213VNA almost matched with the sequence.

As determined previously (Cunningham et al., 1995), Y1213 of Flt-1 is responsible for PI3-kinase p85 binding (data not shown). I also found that Y1169 of Flt-1 is responsible for such binding (data not shown).

In summary, I showed in this section, using the yeast two hybrid system, that Nck may bind to Y1213 and Y1333 of Flt-1 and that SHP-2 may bind to Y1213 of Flt-1. Considering that Y1213 of Flt-1 has been shown to be the binding site for PI3K p85 (Cunningham et al., 1995) and is autophosphorylated when Flt-1 was expressed in both yeast and insect cells (Cunningham et al., 1995; Sawano et al., 1997), Y1213 of Flt-1 may be autophosphorylated upon the binding of VEGF and become a target for certain SH2-containing proteins, for example, PI3K p85, Nck and SHP-2.

Fig.2-12 Interactions of SHP-2 SH2 with Flt-1 cytoplasmic region mutant constructs.

Liquid assay of β -galactosidase activities expressed in yeast host Y190 using chemiluminescent Galacton Star as substrate. Values represent the mean \pm SD of triplicate determinations expressed in relative light units divided by reaction time (60 rain) and optical density.

Table 2-4 summarizes the results of this chapter.

 Both the SH2 domain of Sck and N-SH2 domain of PLCγ bind to the same site, Y1175, of KDR.

(2) The N-SH2 and C-SH2 domains of PLCγ and N-SH2 and C-SH2 domains of PI3K p85 bind to the same site, Y1169, of Flt-1.

(3) The N-SH2 and C-SH2 domains of PI3K p85, SH2 domain of Nck and N-SH2 domain of SHP-2 bind to the same site, Y1213, of Flt-1.

These results prompted us to compare the amino acid sequences of SH2 domains that bind to the same sites of KDR and Flt-1. As shown in Fig. 2-13, the homology score of the alignment of Sck SH2 to PLCY N-SH2 was 79 (maximum possible score: 461) while that of Nck SH2 to SHP-2 N-SH2 was 165 (maximum possible score: 369). On the other hand, that of Sck SH2 to Shc SH2 was 342 (maximum possible score: 461). Therefore, the homology between Sck SH2 and PLCY N-SH2 is low and that between Nck SH2 and SHP-2 N-SH2 is medium. These results suggest that the three-dimensional structures of Sck SH2 and PLCY N-SH2 are somewhat different and that inhibition of binding of Sck SH2 to Y1175 of KDR without inhibition of binding of PLCY N-SH2 to KDR might be possible. Further structural analysis is important to determine the above conclusion.

		KDR		Flt-1	
		binding	site	binding	site
Sck	PTB	-		-	
	SH2	+	Y1175	+	?
			YIVLP		
PLCy	N-SH2	+	Y801*	+	Y794*
			YLSIV		YLSII
			Y1175		Y1169*†
			YIVLP		YIPIN
	C-SH2	±	?	-	
PI3K p85	N-SH2	+	ND	+	Y1169
					YIPIN
					Y1213**
					YVNAF
	C-SH2	-		+	Y1169
					YIPIN
					Y1213**
_					YVNAF
Nck	SH2	-		+	Y1213
					YVNAF
					Y1333
					YSTPP
SHP-2	N-SH2	-		+	Y1213
					YVNAF
	C-SH2	-		-	
Grb2	SH2			-	
GAP	SH2	-		-	
Stat3	SH2	-		-	

Table 2-4 Summary of the results

+ significant binding

- no detectable binding

* Cunningham et al., 1997

**Cunningham et al., 1995

† Sawano et al., 1997

A																	
		10	2	0	30		40		50		60		70		80		90
		*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Sck SHZ	WYHGRMS	RRAAE	RMLRADGD	FLVRDS	/TNPGQ	YVLTG	MHAGQ	PKHLL	LVDPE	GVVRT	KDVLF	ESISH	LIDHH	LQNG	PIVAA	ESELH	LRGVV
			111:	шш	1 11	1:11	1:11	111	1 :	1: 11	:1111	111.1	11:1:	11	11 :	1 111	E.
PLCY N-SHZ			pDGsI	FLVReSe	TfvGd	YtLsf	wrnGk	vqHih	srqdal	GtpkT	dnlvF	dSlyd	LItHy	-Qqv-	Plrcn	EfEmr	1>
Maximum pos	sible sc	ore:	461														
homology sc	ore:		79														
В																	
	10		20	30		40		50		60		70					
	*	*	• •	*	*	*	*	*		*	*	*		*			
Nck SHZ	WYYGKVT	RHQAE	MALNERGH	EGDFLIF	RDSESS	PNDFS	VSLKA	QGKNK	HFKVQ	LKETV	YCIGQ	RKFST	MEELV	EHYK	CA		
	11: 111	111	1:11	11:11-1	1:11	1:111	1111	11 :	шп	:::	1.11	TH	1:111	1:1			
SHP-2 N	WfhpniT	gveAE	nlLltRGv	dGsFLaR	RpSkSn	PgDFt	lSvrr	nGavt	HiKiQ	ntgdy	YdlGg	eKFaT	laELV	qyY>			
Maximum pos	sible sc	ore:	396														
homology sc	ore:		165														
~																	
C																	

	10		20		30		40		50		60		70		80		90	
	*	*		*						*	*	*	*	*	*	*		
Sck SHZ	WYHGRMSR	RAAE	RMLRA	DGDFL	VRDSVT	NPGQ	VLTG	MHAGQ	PKHLL	LVDPE	GVVRT	KDVL P	FESISHL	IDHH	LQNG	PIVAA	ESELH	LRGVVSR
		1:11	111	11111	1111:1	:1111			11111		11111	11	unn	1::1	111	шп	:111	11 1:1
Shc SH2	WfHGk1SR	ReAE	alLql	nGDFL	VReStT	tPGQ	VLTG	lqsGQ	PKHLL	LVDPE	GVVRT	CDhri	FESVSHL	IsyH	ndNh1	PIisA	gSELc	LqqpVeR>
Maximum po	ssible sco	re:	4	461														
homology r	COROL																	

Fig. 2-13 Alignment of SH2 regions

Identical or closely related amino acids are marked with vertical lines.

- (A) Alignment of Sck SH2 to PLCy N-SH2
- (B) Alignment of Nck SH2 to SHP-2 N-SH2
- (C) Alignment of Sck SH2 to Shc SH2

Chapter 3

Screening for inhibitors of VEGF binding to its receptor KDR

3-1 Introduction

In Chapter 2, I described the results of my studies on protein binding to KDR and Flt-1 cytoplasmic regions.

In this chapter, using the second strategy described in the introduction of this thesis (Chapter One), I describe the results of screening for inhibitors of VEGF binding to its receptor KDR.

I selected KDR as the main target for the inhibitors of VEGF binding to its receptors. KDR has a stronger tyrosine kinase activity than Flt-1 and several studies have indicated that KDR plays a more important role in VEGF signal transduction than Flt-1 (Seetharam et al., 1995). In studies using porcine aortic endothelial cells (PAEC), which express very small amounts of KDR and Flt-1, stimulation of KDR induces various cellular responses. In comparison, stimulation of Flt-1 induces only MAPK and a weak DNA synthesis but does not induce chemotaxis (Landgren E et al., 1998; Seetharam et al., 1995).

The assay system utilizing I¹²⁵-VEGF is commonly used for the detection of VEGF binding to KDR (Gitay-Goren et al., 1996; Keyt et al., 1996; Soker et al., 1996). In this method, I¹²⁵-VEGF is first incubated with cells expressing KDR. After several washes, the amount of the bound VEGF is quantified by measuring the radioactivity of I¹²⁵-VEGF. Since it provides

quantitative data, this method is very useful. However, it inevitably produces radioactive waste, and therefore, this method is not suitable for mass screening.

As an alternative approach, I first developed a non-radioactive method for the detection of VEGF binding to KDR. Using VEGF with FLAG epitope at its amino terminus, I developed the ELISA system, in which VEGF binding to KDR is detected with an anti-FLAG antibody (Fig. 3-1).

EAG-VEGF is first incubated with KDR ECD transfected COS-7 cells for 2hrs. After extensive washes, cells are incubated with anti-FLAG antibody for 1hr. After extensive washes, cells are incubated with HRP-conjugated anti-mouse IgG for 1hr. After extensive washes, HRP activity is revealed with TMBZ as a substrate.

3-2 Materials and Methods

Materials

VEGF₁₆₅ was produced in *Pichia pastoris* according to the method described by Mohanraj and coworkers (Mohanraj et al., 1995) and purified using Ni-NTA column (QIAGEN Inc., Santa Clara, CA). Anti-VEGF neutralizing antibody (MAB293) was purchased from R & D Systems, Inc. Anti-MAPK antibody and anti-phospho specific MAPK antibody were part of the PhosphoPlus MAPK Antibody Kit, which was purchased from New England Biolabs Inc. (Beverly, MA). TMBZ was purchased from Sumilon. Other chemicals were purchased from Specs & Biospecs, Maybridge or Sigma/Aldrich.

Expression and purification of FLAG-VEGF 165

The yeast N-terminal FLAG Expression system (Eastman Chemical Company) was used for the expression of FLAG-VEGF₁₆₅ in *Saccharomyces cerevisiae*. VEGF₁₆₅ cDNA was cloned by PCR using human placenta quick-clone cDNA (Clontech) as a template and VEGF/FW (CCGAATTCATGAACTTTCTGCTGTCTTG), VEGF/RV (GGGGATCCTCACCGCCTCGGCTTGTCACA) as primers. The amplified DNA fragment was digested with *Eco*RI, *Bam*HI and

subcloned into EcoRI, BamHI pre-digested YEpFLAG-1. The clone

carrying VEGF₁₆₅ cDNA was confirmed by sequencing. The plasmid (YEpFLAG-VEGF₁₆₅) was introduced into *S. cerevisiae* BJ3505 strain and transformants were selected for growth without tryptophan. Transformants were incubated in 10 mL of Trp-medium overnight at 30°C. The overnight culture was added to 200 mL YPEM medium (1% dextrose, 3% glycerol, 1% yeast extract, 2% peptone) and incubated at 30°C for 48 hr. The supernatant was collected by centrifugation and 5.6 mL 10 × TBS / Ca (0.5 M Tris, pH 7.4, 1.5 M NaCl, and 100 mM CaCl₂) was added to it. The mixture was loaded onto the anti-FLAG M1 Affinity column (Eastman Chemical Company), and the protein was eluted with 2 mL TBS / EDTA (TBS containing 2 mM EDTA). The eluate was dialyzed overnight with TBS. The purity of FLAG-VEGF₁₆₅ was about 90%, as determined by SDS-PAGE. The amount of FLAG-VEGF₁₆₅ was 40 μ g, as determined by VEGF ELISA (R & D Systems, Inc.).

Detection of binding of FLAG-VEGF₁₆₅ to KDR or Flt-1 in COS-7 cells by ELISA.

The extracellular regions, including transmembrane domain of KDR (1~806 amino acids) and Flt-1 (1~800 amino acids) were amplified by PCR. The templates were KDR and Flt-1 cDNA (kindly provided by Dr. M. Shibuya, Department of Genetics, Institute of Medical Science, University of Tokyo). The primer pairs were KDRFW

(GGGAATTCCCACCATGGAGAGCAAGGTGCTGCT), KDRRV (CCGAATTCTCACATGACGATGGACAAGTAGC) for KDR and FLTFW (GGGAATTTCCCACCARGGRCAGCRACRGGGACAC), FLTRV (CCGAATTCTCAGGTCCATTATAATTGATAGG) for Flt-1.

The amplified DNA fragments were digested with EcoRI and subcloned into EcoRI pre-digested pCXN₂. The clones were confirmed by sequencing. Each plasmid (KDR / pCXN₂ and Flt-1 / pCXN₂) was transfected into COS-7 cells by Trans IT (Mirus Corporation). Transfected cells were seeded in gelatin-coated 96-well plates at a density of 5×10^4 cells per well and grown for 24 h at 37°C. Plates were washed three times with TBST (TBS containing 0.1% Tween-20) and incubated with FLAG-VEGF₁₆₅ (3 nM) in the absence or presence of inhibitors in the binding buffer (DMEM, 0.15% gelatin, and 20 mM Hepes [pH 7.4]) for 2 h at room temperature. After three washes with TBST, cells were incubated with anti-FLAG M1 antibody in the binding buffer (1: 1000) for 1 h at room temperature. After three washes with TBST, cells were incubated with anti-mouse IgG antibody conjugated to HRP (Santa Cruz, Santa Cruz, CA) in the binding buffer (1: 1000) for 1 h at room temperature. After three washes with TBST, HRP activity was revealed with TMBZ as a substrate. After 10 to 15 min, the reaction was stopped with 2 N sulfuric acid, and optical density was read at 450 nm with an ELISA plate reader.

Analysis of MAPK tyrosine phosphorylation in HUVEC.

HUVEC (primary culture, passage number less than 5 [Kurabou]) were seeded in gelatin-coated 6-well plates at a density of 3×10^5 cells per well in HuMedia-EG2 (Kurabou) and grown for 24 h at 37°C. After further incubation in the endothelial SFM medium (Life Technologies, Inc.) for 20 h, various amounts of VEGF as indicated in the legend of Fig. 4 were added to cells, followed by incubation for 3 to 10 min at 37°C. Cells were then fixed with 10% TCA for 30 min on ice and scraped. Cell lysates were prepared with 40 µL of urea solution (9 M urea, 2% Triton X-100, 1% 2mercaptoethanol) and 10 μ L of 10% SDS. Cell lysates were separated by 12% SDS-PAGE and transferred to nitrocellulose membranes. After transfer, the membranes were incubated in blocking buffer (TBS + 5% BSA) overnight at 4°C. The membranes were probed with the appropriate antibodies, anti-MAPK (1: 1000) or anti-phospho-specific MAPK antibody (1:1000), followed by HRP-conjugated anti-rabbit IgG antibody using the protocol recommended by the manufacturer. Immunoreactivity was detected by chemiluminescence (LumiGLO, New England Biolabs) and photographed with the Instant-Film Format Camera Luminometer (Tropix).

3-3 Results

Construction of a simple ELISA system to detect VEGF₁₆₅ binding to KDR.

To detect VEGF₁₆₅ binding to KDR, VEGF₁₆₅ with an N-terminal FLAG epitope (FLAG-VEGF₁₆₅) was produced in *S. cerevisiae* and used to detect its binding by ELISA with anti-FLAG antibody. VEGF₁₆₅ cDNA was subcloned into the yeast expression vector YEpFLAG-1 in order to add a FLAG epitope to its N-terminal. The resultant plasmid (YEpFLAG-VEGF₁₆₅) was introduced into *S. cerevisiae* BJ3505 strain. The FLAG-VEGF₁₆₅ protein secreted into YPEM medium was purified by anti-FLAG antibody affinity chromatography. SDS-PAGE analysis demonstrated that the eluted protein migrated as a single band under reducing conditions (Fig. 3-2). The apparent molecular weight estimated from its mobility on the gel was approximately 22 kDa (reducing conditions) and 44 kDa (non-reducing conditions). These bands were detected by both anti-VEGF antibody and anti-FLAG antibody (data not shown). The half-maximal concentration of FLAG-VEGF₁₆₅ for stimulation of DNA synthesis of HUVEC was 50 pM, (Fig. 3-3) which was similar to that of VEGF₁₆₅ (D'Angelo et al., 1995).

The KDR extracellular region (1~806 amino acids) (Terman et al., 1992) was subcloned into the mammalian expression vector pCXN₂, and the resulting plasmid was transfected transiently into COS-7 cells. Transfected COS-7 cells were first incubated with 3 nM FLAG-VEGF₁₆₅

Fig. 3-2 SDS-PAGE analysis of FLAG-VEGF165

Cultures of yeast containing YEpFLAG-VEGF₁₆₅ were purified by anti-FLAG antibody and analyzed by SDS-PAGE. *Left:* non-reducing condition, *right:* reducing condition. *M* lane: 10 kDa ladder molecular weight marker. *V* lane: culture of yeast with empty vector. *F* lane: culture of yeast with YEpFLAG-VEGF₁₆₅

Fig. 3-3 Mitogenic effect of FLAG-VEGF 165 on HUVEC

HUVEC were seeded into a growth medium at 3 x 10 ⁴ cells/well of 96-well plate precoated with gelatin and incubated for 24 hours. The medium was then replaced with serum-free medium for another 24 hours. Cells were stimulated with various amounts of FLAG-VEGF₁₆₅ for 16 hours. BrdU was added and cells were incubated for 8 hours. The incorporated BrdU was quantified with anti-BrdU antibody with chemiluminescent substrate. Relative light unit (rlu) was plotted against the dose of FLAG-VEGF₁₆₅ 165[°]

for 2 h, then with an anti-FLAG antibody for 1 h, and finally with an antimouse IgG antibody conjugated to horseradish peroxidase for 1 h. The peroxidase activity was then revealed with TMBZ as a colorimetric substrate. Absorbance at 450 nm was increased in a FLAG-VEGF₁₆₅ dosedependent manner (Fig. 3-4). The Kd value of FLAG-VEGF₁₆₅ for transfected COS-7 cells was approximately 0.5 nM. FLAG-VEGF₁₆₅ binding was inhibited by VEGF₁₆₅ and the half-maximal inhibitory concentration (IC₅₀) of VEGF₁₆₅ was about 5 nM (Fig. 3-5). This binding was also inhibited by anti-VEGF neutralizing antibody (data not shown) and suramin (Fig. 3-6), which is known to inhibit the binding of several growth factors to their receptors (Danese et al., 1993; Hosang, 1985; Johannes et al., 1996; Kloen et al., 1994).

These results indicated that FLAG-VEGF₁₆₅ bound to the KDR extracellular region expressed in COS-7 cells and that its binding can be detected employing a non-radioactive method by ELISA using an anti-FLAG antibody.

Screening for Inhibitors

Using my ELISA system, I screened my chemical libraries for compounds that might inhibit the binding of VEGF₁₆₅ to KDR. I identified 8-(3-oxo-4, 5, 6-trihydroxy-3h-xanthen-9-yl) -1- naphthoic acid (OTXNA,

FLAG-VEGF165 concentration (nM)

Fig. 3-4 Detection of FLAG-VEGF₁₆₅ binding to KDR expressed in COS-7 cells.

COS-7 cells transiently expressing KDR extracellular region (\blacksquare) or control COS-7 cells (\square) were first incubated with various amounts of FLAG-VEGF₁₆₅ for 2 hr. FLAG-VEGF₁₆₅ was detected as indicated in

(3-2 MATERIALS AND METHODS).

Enzymatic activity was revealed with TMBZ as a chromogenic substrate (absorption at 450 nm). Data represent the mean ±SD of three measurements.

Fig. 3-5 Competition of FLAG-VEGF₁₆₅ binding to KDR expressed in COS-7 cells by VEGF₁₆₅.

Various amounts of VEGF₁₆₅ were first incubated with FLAG-VEGF₁₆₅ for 10 min. The mixture was then added to COS-7 cells transiently expressing KDR extracellular region (**■**) and incubated for 2 hrs. FLAG-VEGF₁₆₅ was detected as indicated in (3-2 MATERIALS AND METHODS). Enzymatic activity was revealed with TMBZ as a chromogenic substrate (absorption at 450 nm). Data represent the mean ±SD of three measurements.

Fig. 3-6 Competition of FLAG-VEGF₁₆₅ binding to KDR expressed in COS-7 cells by suramin.

Various amounts of suramin were first incubated with FLAG-VEGF₁₆₅ for 10 min. The mixture was then added to COS-7 cells transiently expressing KDR extracellular region (\blacksquare) and incubated for 2 hrs. FLAG-VEGF₁₆₅ was detected as indicated in (3-2 MATERIALS AND METHODS). Enzymatic activity was revealed

with TMBZ as a chromogenic substrate (absorption at 450 nm). Data represent the mean ±SD of three measurements. Fig. 3-7) as an inhibitor of VEGF₁₆₅ binding to KDR with an IC₅₀ value of 700 μ M (Fig. 3-8). Comparison of the inhibitory effect of some analogues showed that pyrogallol red (Fig. 3-7) did not inhibit the binding even at 4 mM (Fig. 3-9). I also assayed the effect of OTXNA on the binding of VEGF₁₆₅ to Flt-1 expressed in cos-7 cells, and its IC₅₀ was similar to that to KDR (data not shown).

Effect of OTXNA on VEGF-induced MAPK tyrosine phosphorylation in HUVEC.

To clarify whether OTXNA directly inhibits the binding of VEGF₁₆₅ to KDR, I investigated the effect of OTXNA on VEGF₁₆₅-induced tyrosine phosphorylation of MAPK in HUVEC. MAPK tyrosine phosphorylation was revealed by anti-phospho specific MAPK antibody. Stimulation of HUVEC with VEGF₁₆₅ increased MAPK tyrosine phosphorylation after 3 min (Fig. 3-10) in a VEGF dose-dependent manner (Fig. 3-11) as reported previously (D'Angelo et al., 1995). Various amounts of OTXNA were first incubated with 0.1 nM VEGF, and mixtures were added to HUVEC for 3 min. OTXNA inhibited MAPK phosphorylation, with an IC₅₀ value of 13.7 μ M (Fig. 3-12).

OTXNA

pyrogallol red

Fig. 3-7 Structures of OTXNA and pyrogallol red

OTXNA represents

8-(3-oxo-4, 5, 6-trihydroxy-3h-xanthen-9-yl)-1- naphthoic acid

Inhibitor concentration (µM)

Fig. 3-8 Effect of OTXNA on the binding of FLAG-VEGF $_{165}$ to KDR expressed in COS-7 cells.

Various amounts of OTXNA were first incubated with FLAG-VEGF₁₆₅ for 30 min. The mixture was then added to COS-7 cells transiently expressing KDR extracellular region (**II**) and incubated for 2 hrs. FLAG-VEGF₁₆₅ was detected as indicated in (3-2 MATERIALS AND METHODS). Enzymatic activity was revealed with TMBZ as a chromogenic substrate (absorption at 450 nm). Data represent the mean \pm SD of three measurements.

Fig. 3-9 Effect of pyrogallol red on the binding of FLAG-VEGF₁₆₅ to KDR expressed in COS-7 cells.

Various amounts of pyrogallol red were first incubated with FLAG-VEGF₁₆₅ for 30 min. The mixture was then added to COS-7 cells transiently expressing KDR extracellular region (**■**) and incubated for 2 hrs. FLAG-VEGF₁₆₅ was detected as indicated in (3-2 MATERIALS AND METHODS). Enzymatic activity was revealed with TMBZ as a chromogenic substrate (absorption at 450 nm). Data represent the mean ±SD of three measurements.

Fig. 3-10 Time course of VEGF165-induced MAPK phosphorylation in HUVEC

Serum-starved HUVEC were stimulated with 0.1 nM of VEGF₁₆₅ for the indicated time periods. MAPK tyrosine phosphorylation was analyzed by western blotting with anti-phospho MAPK antibody (*upper panel*) or anti-MAPK antibody (*lower panel*).

Fig. 3-11 VEGF165-dose dependent induction of MAPK phosphorylation in HUVEC

Serum-starved HUVECs were stimulated with various amounts of VEGF₁₆₅ for 3 minutes. MAPK tyrosine phosphorylation was analysed by western blotting with anti-phospho MAPK antibody (*upper panel*) or anti-MAPK antibody (*lower panel*).

Fig. 3-12 Effect of OTXNA on VEGF165-induced MAPK phosphorylation in HUVEC

Serum-starved HUVECs were stimulated with 0.1 nM of VEGF₁₆₅ in the presence of various amounts of OTXNA for 3 min. MAPK tyrosine phosphorylation was analysed by western blotting with anti-phospho MAPK antibody (*upper panel*) or anti-MAPK antibody (*lower panel*). Effect of OTXNA on bFGF- or EGF-induced MAPK tyrosine phosphorylation in HUVEC.

I next investigated the effect of OTXNA on bFGF- or EGF-induced MAPK tyrosine phosphorylation in HUVEC to determine whether OTXNA specifically inhibits the binding of VEGF₁₆₅ to KDR. bFGF and EGF induced MAPK tyrosine phosphorylation of HUVEC after 10 min as reported previously (D'Angelo et al., 1995) (Fig. 3-13). Unexpectedly, PDGF did not induce MAPK tyrosine phosphorylation even at 3 nM (data not shown).

 $40 \ \mu$ M OTXNA was incubated with bFGF, EGF or VEGF₁₆₅ for 10 min. Each mixture was then added to HUVEC for 10 min, and MAPK phosphorylation was detected by anti-phospho MAPK antibody. OTXNA inhibited VEGF₁₆₅- or bFGF-stimulated MAPK tyrosine phosphorylation, but it did not inhibit EGF-stimulated reaction (Fig. 3-14).

Fig. 3-13 EGF and bFGF induce MAPK phosphorylation in HUVEC

Serum-starved HUVECs were stimulated with various amounts of EGF and bFGF for 10 minutes. MAPK tyrosine phosphorylation was analysed by western blotting with anti-phospho MAPK antibody (upper panel) or anti-MAPK antibody (lower panel).

Fig. 3-14 Effect of OTXNA on MAPK phosphorylation in HUVEC induced by bFGF or EGF.

40 μ M OTXNA was first incubated with 0.1 nM VEGF₁₆₅, 2.5 nM bFGF or 0.5 nM EGF for 10 min and the mixture was added to serum-starved HUVEC for 10 min. MAPK tyrosine phosphorylation was analyzed by western blotting with anti-phospho MAPK antibody (*upper panel*) or anti-MAPK antibody (*lower panel*).

3-4 Discussion

I have shown in this study the expression of biologically active FLAG-VEGF₁₆₅ using the yeast expression system and detected its binding to KDR expressed in COS-7 cells by ELISA. The addition of FLAG peptide to the VEGF₁₆₅ N terminal did not reduce its biological activity compared with VEGF₁₆₅ with regard to their mitogenic activity and binding to KDR. The sensitivity of my ELISA system was similar to that of the binding assay using iodinated VEGF (Gitay-Goren et al., 1992). Using my ELISA system, I identified 8-(3-oxo-4, 5, 6-trihydroxy-3H-xanthen-9-yI) -1- naphthoic acid (OTXNA) with inhibitory activity against VEGF₁₆₅ binding to KDR or Flt-1 expressed in COS-7 cells. My results indicate that the novel ELISA system is useful to identify antagonists of VEGF.

My results also showed that OTXNA inhibited VEGF₁₆₅⁻ and bFGFinduced MAPK phosphorylation in HUVEC, but it did not inhibit EGFinduced MAPK phosphorylation. These results suggest that inhibition of OTXNA of VEGF₁₆₅ or bFGF-induced MAPK phosphorylation is not due to the cellular toxicity of OTXNA. The binding of VEGF₁₆₅ to KDR or Flt-1 and bFGF to FGFRs may have common features that differ from the binding of EGF to EGFR and OTXNA may affect such common features. The structures of VEGF and bFGF are different (Moy et al., 1996; Muller et al., 1997), while the extracellular regions of KDR (Terman et al., 1992),

- 84 -

FIt-1 and bFGFR (Lee et al., 1989) have a common feature, i.e., Ig-like domains, although the same region of EGFR does not have an Ig-like domain (Ullrich et al., 1984) (Fig. 3-15). The second Ig-like domain of KDR or Flt-1 is essential for the binding of VEGF₁₆₅ to these receptors (Davis-Smith et al., 1996). Both Ig-like domains 2 and 3 of FGF receptors are essential for the binding of basic FGF to the receptor (Zimmer et al., 1993). Therefore, I suspect that OTXNA might bind to Ig-like domains of KDR, Flt-1 or FGFR. However, further studies are required to confirm the inhibitory mechanism of OTXNA.

VEGF₁₆₅ and bFGF are heparin-binding growth factors (Saksela et al., 1988; Tessler et al., 1994), and the presence of heparin-like molecules is essential for the binding of both factors to their receptors (Gitay-Goren et al., 1992; Rapraeger et al., 1991; Yayon et al., 1991). Therefore, heparin might be involved in the inhibitory mechanism of OTXNA. However, suramin, which inhibits the binding of growth factors to heparin-like molecules, inhibits not only the binding of VEGF₁₆₅ and bFGF but also that of EGF to their receptors (Danese et al., 1993; Hosang, 1985; Johannes et al., 1996; Kloen et al., 1994). These data indicate that OTXNA-induced inhibition may not be related to heparin.

The IC₅₀ value of OTXNA for the binding of VEGF₁₆₅ to KDR was about 700 μ M and that for VEGF₁₆₅-induced MAPK tyrosine phosphorylation in HUVEC was 13.7 μ M. For the binding assay, 3 nM

- 85 -

Fig. 3-15 Comparison of VEGFRs, bFGFR and EGFR

KDR, Flt-1 and bFGFR have Ig-like domains in their extracellular domains. On the other hand, EGFR does not have Ig-like domains. $FLAG-VEGF_{165}$ was used, but only 0.1 nM $VEGF_{165}$ was used for MAPK activation. Therefore, a higher concentration of OTXNA might be required to inhibit the binding of $VEGF_{165}$ to KDR in my ELISA assay. OTXNA would be a seed compound for the development of VEGF specific inhibitors. I plan to investigate the inhibitory mechanism of OTXNA in more detail and improve its specificity.

Chapter Four Novel indications for application of the yeast two-hybrid system for screening of

VEGF signal transduction inhibitors

4-1 Introduction

In Chapter 2, I showed the results of analysis of KDR and Flt-1 binding proteins. I identified Sck as a new binding protein to KDR and Flt-1. I also showed that Nck and SHP-2 bind to Flt-1. The role of Sck in VEGF signal transduction was not, however, determined. I believe that Sck is one of the most important targets for VEGF inhibitors.

However, to identify small molecules that inhibit VEGF signal transduction at protein-protein interaction level, I have to construct an excellent screening method that allows accurate assay of a large number of samples within a short period of time.

The possible application of the yeast two-hybrid system for identification of small molecule inhibitors of protein-protein interactions was suggested by Fields and Sternglanz (Fields and Sternglanz, 1994). In the original yeast two-hybrid system, protein-protein interaction in yeasts leads to the expression of a reporter gene *HIS3*, which permits the yeast to grow without histidine. Therefore, small molecule inhibitors of protein-protein interactions can be selected as growth inhibitors of the yeast in a histidinefree medium (Fig. 4-1). However, this principle is impractical itself because growth inhibitors, such as protein synthesis inhibitors, DNA synthesis inhibitors and respiration inhibitors, would also be selected in the actual screening and are difficult to be excluded.

Fig. 4-1 Application of the yeast two-hybrid system for screening of small molecular inhibitors of protein-protein interactions.

Yeast containing the target proteins grows in histidine-free medium. Inhibitors of protein-protein interactions should inhibit yeast growth in histidine-free medium. I predicted that true inhibitors of protein-protein interactions should inhibit the growth of yeast in histidine-free media but not in media that contain histidine. Therefore, I defined $\Delta I\%$ index, the difference between percent growth inhibition without histidine and with histidine, as a new index of the inhibitory activity of protein-protein interaction of test compounds. The feasibility of $\Delta I\%$ has been previously confirmed by evaluating the activity of ascomycin (Kawai et al., 1993) (Fig. 4-2), an FK506-derivative, which binds to FK506 binding protein (FKBP) and thereby inhibits the interaction of type I transforming growth factor beta (TGF- β) receptors with FKBP.

In this chapter, using ΔI % as my index, I showed that the original yeast two-hybrid system can be applied as a simple method for selecting small molecule inhibitors of protein-protein interactions, for example, KDR and Sck.

4-2 Materials and Methods

Yeast two-hybrid system

The original yeast two-hybrid system was purchased from Clontech. cDNAs of ALK5 and FKBP (Wang et al., 1996) were cloned by PCR using human leukocyte cDNA library as a template and their sequences were confirmed by DNA sequencing. The cytoplasmic domain of ALK5 was PCR

Fig. 4-2 Structure of ascomycin

Ascomycin is an ethyl analog of FK506 with similar immunosuppressant properties (Kawai et al., 1993).

amplified, subcloned into pGBT9 and used as the bait plasmid. The fulllength FKBP was PCR amplified, subcloned into pGAD424 and used as the prey plasmid. Primer pairs were: sense 5' -

GGAATTCCGACGGAGGCAGG -3', antisense 5'-

ACGCGTCGACCTATTGAATCACTTTAGGCTTCTCTGG -3' for ALK5. sense 5' - GGAATTCATGGGAGTGCAGGTGGAA - 3', antisense 5' -CCGCTCGAGTTATCATTCCAGTTTTAGAAGCTCC - 3' for FKBP.

Assay procedure

Yeast reporter strain PI69-2A (*MATa*, ura3-52, his3-200, trp1-901, leu2-3, 112, gal4 Δ , gal80 Δ , LYS2 :: GAL1_{UAS}-GAL1_{TATA}-HIS3, GAL2_{UAS}-GAL2_{TATA}-ADE2) was transformed with designated plasmid. Resultant transformants were seeded in 2 ml SD/-LW medium (yeast nitrogen base 0.67%, glucose 2%, various nutrients without leucine and tryptophan) and incubated at 30°C overnight. After washing twice with SD/-LWH (yeast nitrogen base 0.67%, glucose 2%, various nutrients without leucine, tryptophan and histidine), cells were diluted to optical density of 0.1 with SD/-LW or SD/-LWH and 200 μ l of the diluted cultures were placed into wells of 96-well culture plates. Various concentrations of ascomycin were added to the wells and the plates were incubated at 30°C for 72 hour. The optical density of the culture was read at 600 nm with the microplate reader and $\Delta I\%$ index of each concentration of ascomycin was calculated as indicated in Results and Discussion.

4-3 Results and Discussion

 $\Delta I\%$, a new index of the inhibitory activity of protein-protein interaction of the sample compound, was calculated using the following formula:

 $\Delta I\% = I\%(-H) - I\%(+H)$

where:

 $I\% = 100 \times [OD(\text{-sample}) - OD(\text{+sample})] / OD(\text{-sample})$

OD = optical density at 600 nm

-H = histidine-free medium

+H = medium containing histidine

 $\Delta I\%$ represents the inhibitory activity of each sample on *HIS3*dependent growth of the yeast and consequently, it represent the inhibitory activity of the sample on protein-protein interaction.

I tested whether ΔI% is a useful index by evaluating the inhibitory activity of ascomycin, an FK506-derivative (Fig. 4-2), on the interaction of ALK5 with FKBP. The cytoplasmic region of ALK5 was fused to the DNA binding domain of Gal4 and full-length FKBP was fused to the transcriptional activating domain of Gal4. Resultant plasmids were cotransformed into the yeast PJ69-2A. As a control, a plasmid for expressing the full length Gal4 was transformed into the same strain. First, the growth of transformants in histidine-free conditions was confirmed. Optical density of the yeasts rose in an incubation time-dependent manner (data not shown). In the next step, the activity of ascomycin was quantified using $\Lambda I\%$. Ascomycin was added at various concentrations to the yeast culture and incubated for 72 hr at 30°C. Optical density of the culture was measured with a 96 well microplate reader. $\Delta I\%$ was calculated and plotted with the concentration of ascomycin. As shown in Fig. 4-3, AI% rose in dosedependent manner with a maximum of 64% when the yeast co-transformed with ALK5 and FKBP was used. The half-maximal effective concentration of ascomycin was 200 nM. On the other hand, AI% was almost zero when the yeast transformed with Gal4 was used. Fig. 4-4 shows $\Delta I\%$ of cycloheximide was almost zero with both yeasts, indicating that general growth inhibitors, such as cycloheximide, may inhibit the growth of yeast with or without histidine and therefore results in low $\Delta I\%$ value. Taken together, I conclude that the inhibitory activity of protein-protein interactions of test samples can be semi-quantified with the yeast two-hybrid system using the $\Delta I\%$ index.

In the actual screening using $\Delta I\%$, Gal4 function inhibitors and His3 activity inhibitors would also be selected. These false positives would be excluded as those that inhibit histidine-free growth of the yeast transformed with Gal4. True positives, such as ascomycin, should have considerably

Ascomycin (nM)

Fig. 4-3. Inhibitory effect of ascomycin on interaction between ALK5 and FKBP.

Cultures of yeast PJ69-2A transformed with Ga14 DB-ALK5 and Ga14 TA-FKBP (■) or control yeast PJ69-2A transformed with Ga14 full-length (□) were suspended in media with or without histidine and transferred into wells of 96-well plates. Various concentrations of ascomycin were added to the wells and incubated at 30°C for 72 hr. Optical density at 600 nm was read with a microplate reader. Ordinate: Δ I% of each ascomycin concentration.

Cycloheximide (µM)

Figure 4-4. Effect of cycloheximide on $\Delta I\%$.

Cultures of yeast PJ69-2A transformed with Ga14 DB-ALK5 and Ga14 TA-FKBP (■) or control yeast PJ69-2A transformed with Ga14 full length (□) were suspended in media with histidine or without histidine and transferred into wells of 96-well plates. Various concentrations of cycloheximide were added to the wells and incubated at 30°C for 72 hr. Optical density at 600 nm was read with a microplate reader. Ordinate: DI% of each cycloheximide concentration.

high $\Delta I\%$ with the yeast expressing the target proteins but low $\Delta I\%$ with the yeast expressing Gal4 (Fig. 4-3).

Recently, Huang and Schreiber (Huang and Schreiber, 1997) reported the inducible reverse two-hybrid assay for selecting small molecule inhibitors of protein-protein interactions. In that assay, the protein-protein interaction in yeast leads to the expression of a reporter gene URA3, which converts 5-fluoroorotic acid (5-FOA) to a toxic substance. Therefore, small molecules with protein-protein interaction inhibitory activities would be selected as those that recover the growth of the yeast in 5-FOA-containing media. Growth inhibitors would inhibit yeast growth and therefore be excluded. The feasibility of that assay system has been demonstrated in that FK506 recovers the growth of yeast expressing TGF beta receptor I and FKBP in 5-FOA-containing media. The system is excellent in that the true positive samples are selected as those that recover yeast growth. However, there are two unfavorable properties associated with the use of the above test for mass screening, these include the costeffectiveness and rather complex operation. The above system requires 5-FOA, a comparatively expensive material in assay media. In addition, it requires a change of sugar material from glucose to galactose in order to express target proteins. On the other hand, the original two-hybrid system used in my study requires no extra materials or change of sugar.

Using $\Delta I\%$ as an index of the inhibitory activity of the test sample, I have shown in this study that the original two-hybrid system is applicable to screen for small molecule inhibitors of protein-protein interactions. $\Delta I\%$ is potentially a powerful index for the actual screening of VEGF signal transduction inhibitors.

Chapter 5

Conclusions and Future Directions

In this study, I took a step toward the development of new antiangiogenesis drugs that specifically inhibit VEGF activity. As a first step, I screened for KDR binding proteins using the yeast two-hybrid system, and identified Sck, a She homologue (Nakamura et al., 1998), and its binding to Y1175 of KDR receptor via its SH2 domain. Sck has the consensus sequence for the binding of Grb2 in its CH domain, and it has been shown that it is phosphorylated in EGF signal transduction (Nakamura et al., 1998). These data strongly suggest that Sck is involved in VEGF signal transduction. In future studies, I plan to investigate the roles of Sck in VEGF signal transduction, i.e., whether it is phosphorylated upon VEGF stimulation and whether it is necessary for VEGF-induced growth stimulation. Such efforts will clearly show whether Sck is a suitable target for VEGF inhibitors. I have identified other clones that bind to KDR, which are not homologous to known proteins. There may be targets among these that are more promising than Sck. This topic is now under investigation.

Next, I analyzed the binding of SH2-containing proteins to KDR and Flt-1 receptors to determine the potential targets for inhibitors of VEGF signal transduction. The results showed that Nck, an adapter protein, binds to Y1213 and Y1333 of Flt-1 and that SHP-2, protein tyrosine phosphatase, binds to Y1213 of Flt-1 via its amino terminus SH2 domain. Considering that PI3K p85 binds to Y1213 of Flt-1, the latter may be the multiple signaling protein binding site of Flt-1 and the most important site for Flt-1 downstream signal transduction. These data prompt me to develop small molecules that mimic the structure of the amino acid sequence around Y1213 of Flt-1 and inhibit the binding of important signaling proteins to Flt-1.

I also identified OTXNA, an inhibitor of VEGF binding to KDR, by screening using my ELISA system with FLAG-VEGF. Indeed, the inhibitory activity of OTXNA is insufficient and its specificity is not very high for inhibition of the cellular response induced by bFGF as well as VEGF. However, by investigating the structure-activity relationship (SAR) of OTXNA, I believe that I can improve both its inhibitory activity and specificity. The data showing that pyrogallol red, an analogue of OTXNA, did not inhibit VEGF binding to KDR may be helpful for further improvement of OTXNA. In addition to improvement of OTXNA, I have to continue screening for other compounds with a stronger activity and higher specificity than OTXNA.

I also investigated the usefulness of a new screening system for small molecule inhibitors of the protein-protein interaction. The results showed that $\Delta I\%$ is a useful index when the original yeast two-hybrid system is used for screening. Using the $\Delta I\%$ index, a simple assay system to estimate the activity of the test sample could be constructed. This assay system requires only the incubation of samples in yeast culture for two or three days. Therefore, I believe that this system is suitable as first choice method to be
used for mass screening. It may also be suitable for the high through put screening using assay robots and I have indeed already confirmed in my laboratory that the test could be applied as an automated assay.

Thus, I have established the seed compound for inhibitors of VEGF binding to KDR receptor and few targets for inhibition of VEGF intracellular signal transduction. I also tested and confirmed the suitability of a new method for the screening of VEGF signal transduction inhibitors. Based on the study outlined in this dissertation, I believe that the development of clinically effective VEGF inhibitors should become possible near future. At that stage, the effectiveness of such compounds against tumor growth should be tested in animals and humans.

References

Abedi, H., and Zachary, I. (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment of new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272, 15442-15451.

Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., Pasquale, L. R., Thieme, H., Iwamoto, M. A., Park, J. E., and et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480-1487.

Arbiser, J. L., Moses, M. A., Fernandez, C. A., Ghiso, N., Cao, Y., Klauber, N., Frank, D., Brownlee, M., Flynn, E., Parangi, S., Byers, H. R., and Folkman, J. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. U S A 94, 861-866.

Bartel, P. L., Chien, C.-T., Sternglanz, R., and Fields, S. (1993) Using the two-hybrid system to detect protein-protein interactions. Cellular Interactions in Development: A Practical Approach., 153-179.

Berkman, R. A., Merrill, M. J., Reinhold, W. C., Monacci, W. T., Saxena, A., Clark, W. C., Robertson, J. T., Ali, I. U., and Oldfield, E. H. (1993) Expression of the vascular

permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J. Clin. Invest. 91, 153-159.

Berse, B., Brown, L. F., Van de Water, L., Dvorak, H. F., and Senger, D. R. (1992) Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell. 3, 211-220.

Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., and Senger, D. R. (1993) Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol. 143, 1255-1262.

Connolly, D. T., Olander, J. V., Heuvelman, D., Nelson, R., Monsell, R., Siegel, N., Haymore, B. L., Leimgruber, R., and Feder, J. (1989) Human vascular permeability factor. Isolation from U937 cells. J. Biol. Chem. 264, 20017-20024.

Cunningham, S. A., Arrate, M. P., Brock, T. A., and Waxham, M. N. (1997) Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites. Biochem. Biophys. Res. Commun. 240, 635-639.

Cunningham, S. A., Waxham, M. N., Arrate, P. M., and Brock, T. A. (1995) Interaction of the Flt-1 Tyrosine Kinase Receptor with the p85 Subunit of Phosphatidylinositol 3-Kinase. J. Biol. Chem. 270, 20254-20257. D'Angelo, G., Struman, I., Martial, J., and RI, W. (1995) Activation of mitogenactivated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc. Natl. Acad. Sci. USA 92, 6374-6378.

Danese, R., Del Bianchi, S., Soldani, P., Campagni, A., La Rocca, R., Myers, C., Paparelli, A., and Del Tacca, M. (1993) Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br. J. Cancer 68, 932-938.

Davis-Smith, T., Chen, H., Park, J., Presta, L. G., and Ferrara, N. (1996) The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15,4919-4927.

de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L. T. (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989-991.

Dvorak, H. F., Sioussat, T. M., Brown, L. F., Berse, B., Nagy, J. A., Sotrel, A., Manseau, E. J., Van de Water, L., and Senger, D. R. (1991) Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J. Exp. Med. 174, 1275-1278. Ferrara, N. (1995) The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat. 36, 127-137.

Ferrara, N., and Davis-Smyth, T. (1997) The biology of vascular endothelial growth factor. Endocrine Reviews 18, 4-25.

Ferrara, N., and Henzel, W. J. (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851-858.

Fields, S., and Sternglanz, R. (1994) The two-hybrid system: an assay for proteinprotein interactions. Trends. Genet. 10, 286-292.

Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine 1, 27-31.

Folkman, J., (1996) Fighting Cancer by Attacking Its Blood Supply. SCIENTIFIC AMERICAN September (Nikkei Scicence (1996) 12, p.160-163)

Fong, G. H., Rossant, J., Gertsenstein, M., and Breitman, M. L. (1995) Role of the Ftt-I receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70.

Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., Klagsbrun, M., Levi, B. Z., and Neufeld, G. (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem. 271, 5519-5523.

Gitay-Goren, H., Soker, S., Vlodavsky, I., and Neufeld, G. (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surfaceassociated heparin-like molecules. J. Biol. Chem. 267, 6093-6098.

Guo, D., Jia, Q., Song, H. Y., Warren, R. S., and Donner, D. B. (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J. Biol. Chem. 270, 6729-6733.

Hori, A., Sasada, R., Matsutani, E., Naito, K., Sakura, Y., Fujita, T., and Kozai, Y. (1991) Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res. 51, 6180-6184.

Hosang, M. (1985) Suramin binds to platelet-derived growth factor and inhibits its biological activity. J. Cell. Biochem. 29, 265-273.

Huang, J., and Schreiber, S. L. (1997) A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc. Natl. Acad. Sci. USA 94, 13396-13401. Igarashi, K., Isohara, T., Kato, T., Shigeta, K., Yamano, T., and Uno, I. (1998) Tyrosine 1213 of Flt-1 Is a Major Binding Site of Nck and SHP-2. Biochem. Biophys. Res. Commun. 246, 95-99.

Johannes, W., Ulrike, M., Hedwig, F., and Vinzenz, H. (1996) Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J. Mol. Cell Cardiol. 28, 1523-1529.

Kawai, M., Lane, B. C., Hsieh, G. C., Mollison, K. W., Carter, G. W., and Luly, J. R. (1993) Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues. FEBS Lett. 316, 107-113.

Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T. (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309-1312.

Keyt, B. A., Berleau, L. T., Nguyen, H. V., Chen, H., Heinsohn, H., Vandlen, R., and Ferrara, N. (1996) The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271, 7788-7795.

Kieser, A., Weich, H. A., Brandner, G., Marme, D., and Kolch, W. (1994) Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9, 963-969. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth *in vivo*. Nature 362, 841-844.

Kloen, P., Jennings, C., Gebhardt, M., Springfield, D., and Mankin, H. (1994) Suramin inhibits growth and transforming growth factor-beta1(TGF-beta 1) binding in osteosarcoma cell lines. Eur. J. Cancer 30A, 678-682.

Kodama, R., Takahashi, K., and Shibuya, M. (1997) Vascular Biology. Kodansha 193.

Kondo, S., Asano, M., and Suzuki, H. (1993) Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem. Biophys. Res. Commun. 194, 1234-1241.

Kroll, J., and Waltenberger, J. (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem. 272, 32521-32527.

Landgren E, Schiller P, Cao Y, and L, C.-W. (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16, 359-367. Lee, P., Johnson, D., Cousens, L., Fried, V., and Williams, L. (1989) Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 245, 57-60.

Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309.

Mauceri, H. J., Hanna, N. N., Beckett, M. A., Gorski, D. H., Staba, M. J., Stellato, K. A., Bigelow, K., Heimann, R., Gately, S., Dhanabal, M., Soff, G. A., Sukhatme, V. P., Kufe, D. W., and Weichselbaum, R. R. (1998) Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394, 287-291.

Millauer, B., Longhi, M. P., Plate, K. H., Shawver, L. K., Risau, W., Ullrich, A., and Strawn, L. M. (1996) Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types *in vivo*. Cancer Res. 56, 1615-1620.

Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., and Ullrich, A. (1994) Glioblastoma growth inhibited *in vivo* by a dominant-negative Flk-1 mutant. Nature 367, 576-579.

Mohanraj, D., Olson, T., and Ramakrishnan, S. (1995) Expression of biologically active human vascular endothelial growth factor in yeast. Growth Factors 12, 17-27. Moy, F. J., Seddon, A. P., Bölen, P., and Powers, R. (1996) High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry 35, 13552-13561.

Muller, Y. A., Li, B., Christinger, H. W., Wells, J. A., Cunningham, B. C., and De Vos, A. M. (1997) Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. J. Biol. Chem. 94, 7192-7197.

Nakamura, T., Muraoka, S., Sanokawa, R., and Mori, N. (1998) N-She and Sck, two neuronally expressed she adapter homologs. J. Biol. Chem. 273, 6960-6967.

Pe'er, J., Shweiki, D., Itin, A., Hemo, I., Gnessin, H., and Keshet, E. (1995) Hypoxiainduced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab. Invest. 72, 638-645.

Peters, K. G., De Vries, C., and Williams, L. T. (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. U S A 90,8915-8919.

Pfeffer, L. M., Mullersman, J. E., Pfeffer, S. R., Murti, A., Shi, W., and Yang, C. H. (1997) STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276, 1418-1420. Pierce, G. F., Tarpley, J. E., Yanagihara, D., and et al. (1992) Platelet-derived growth factor (BB homodimer), transforming growth factor- β 1, and basic fibroblast growth factor in dermal wound healing. Am. J. Pathol. *140*, 1375-1388.

Plate, K. H., Breier, G., Weich, H. A., and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas *in vivo*. Nature 359,845-848.

Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N., and Williams, L. T. (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. U S A *90*, 7533-7537.

Rapraeger, A. C., Krufka, A., and Olwin, B. B. (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705-1708.

Robinson, G. S., Pierce, E. A., Rook, S. L., Foley, E., Webb, R., and Smith, L. E. (1996) Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl. Acad. Sci. U S A 93, 4851-4856.

Saksela, O., D. Moscatelli, A. Sommer, and Rifkin, D. B. (1988) Endothelial cellderived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. *107*, 743-751. Sawano, A., Takahashi, T., Yamaguchi, S., and Shibuya, M. (1997) The Phosphorylated 1169-Tyrosine Containing Region of Flt-1 Kinase (VEGFR-1) Is a Major Binding Site for PLCy. Biochem. Biophys. Res. Commun. 238, 487-491.

Seetharam, L., Gotoh, N., Maru, Y., Neufeld, G., Yamaguchi, S., and Shibuya, M. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene *10*, 135-147.

Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., and Schuh, A. C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376,62-66.

Shibuya, M. (1995) Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv. Cancer Res. 67, 281-316.

Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature *359*,843-645.

Soker, S., Fidder, H., Neufeld, G., and Klagsbrun, M. (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271, 5761-5767.

Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735-745.

Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., and Lechleider, R. J., et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell *72*, 767-778.

Stahl, N., Farruggella, T. J., Boulton, T. G., Zhong, Z., Darnell, J. E. J., and Yancopoulos, G. D. (1995) Choice of STATs and Other Substrates Specified by Modular Tyrosine-Based Motifs in Cytokine Receptors. Science 267, 1349-1353.

Takahashi, A., Sasaki, H., Kim, S. J., Tobisu, K., Kakizoe, T., Tsukamoto, T., Kumamoto, Y., Sugimura, T., and Terada, M. (1994) Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res. 54, 4233-4237.

Terman, B. I., Dougher-Vermazen, M., Carrion, M. E., Dimitrov, D., Armellino, D. C., Gospodarowicz, D., and Bohlen, P. (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579-1586. Tessler, S., Rockwell, P., Hicklin, D., Cohen, T., Levi, B. Z., Witte, L., Lemischka, I. R., and Neufeld, G. (1994) Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors. J. Biol. Chem. *269*, 12456-12461.

Ullrich, A., Coussens, L., Hayflick, J., Dull, T., Gray, A., Tam, A., Lee, J., Yarden, Y., Libermann, T., and Schlessinger, J. (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature *309*, 418-425.

Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C. H. (1994) Different Signal Transduction Properties of KDR and Flt1, Two Receptors for Vascular Endothelial Growth Factor. J. Biol. Chem. *269*, 26988-26995.

Wang, T., Li, B. Y., Danielson, P. D., Shah, P. C., Rockwell, S., Lechleider, R. J., Martin, J., Manganaro, T., and Donahoe, P. K. (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell *86*, 435-444.

Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell *64*, 841-848.

Zetter, B. R. (1998) Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407-424.

Zimmer, Y., Givol, D., and Yayon, A. (1993) Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity. J. Biol. Chem. *268*, 7899-7903.

