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Abstract

In the realm of chemical processes, machine learning techniques are used to highlight
important characteristics of a system by analyzing the relationship of variables and samples.
Despite the myriad of applications available, one particular field is explored in this thesis:
process monitoring. In order to do so, a combination of human knowledge, experience and
statistical analysis is used, leading to information that can be used for future assessment,
called supervised knowledge.

One might argue, however, about the reliability of the information available, since
different aspects, such as human biases, atypical scenarios, poor data assignment or just the
wrong mindset can lead to misinformed decisions and false conclusions regarding the nature
of the dataset and the quality of obtained results. The main goal, thus, is to evaluate different
aspects of data reliability, trying to challenge different notions often overlooked.

Initially, the distinction between supervised and unsupervised approaches is explored,
where the former uses pre-existent labels for analysis and the latter uses only the relation-
ship between variables and samples for assessment. Supervised approaches are said to be
inherently better, since they provide more information about the process. As mentioned
previously, however, always relying on this information might lead to misleading results.
To challenge this notion, an unsupervised monitoring methodology is proposed, using a
combination of Generative Topographic Mapping (GTM) and Graph Theory. GTM is a
probabilistic technique, which highlights system features, reducing variable dimensionality.
Graph Theory can then visualize this information, through a network, clustering samples with
similar characteristics. Simulation data sets, Tennessee Eastman Process and a real industrial
scenario are used as case studies for validation of the conjoined approach. The proposed
unsupervised methodology performed as well as the supervised approaches presented, which
motivates their use as a support tool for unbiased analysis of the system.

Complementary to this analysis, the study also focuses on applicability domain (AD)
and fault detection, by analyzing how the definition of proper training and test data sets
affect modeling. A flour data set is used as a case study, where distinct splitting scenarios
are created to explore this concept, evaluating predictive modeling and anomaly detection

capabilities. A flour dataset is used for this assessment, allied to generative algorithm



tools. Generative Algorithm Partial Least Squares (GAPLS) and Genetic Algorithm-based
Wavelength Selection (GAWLS) are used for modeling, where their non-deterministic nature
is essential for evaluation of AD. Different models are created, resulting in several predictions
for each sample available. By analyzing the relationship between precision, variation of
prediction error, accuracy and the average of those predictions, AD can be assessed and
anomalies on Y-values can be detected.
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Chapter 1
Introduction

It is fair to say that, at least in the realm of chemical processes, machine learning techniques
are used with the following key element in mind: highlighting important features and
characteristics of a process by analyzing the relationship of variables and samples belonging
to this particular system. This notion, as general as it may be, can be applied for all sorts of
different goals, such as pattern recognition, predictive modeling, classification, etc. Among
all these applications, one stood out as particularly interesting, being the focus of this entire
work: process monitoring.

The operation of any chemical plant requires attentive eyes and ears of a big task force,
so to assure its smooth functioning. It is only natural that, over time, automated systems
were developed, trying to rely less on human capabilities and more on data coming from the
process itself. This is not to say that human experience and knowledge is unimportant, but
rather that such burden should not rely entirely on their shoulders.

More concretely, process monitoring judges whether the process is currently in its normal
operational state or it is suffering from an anomaly. This can be divided in two main tasks
to be accomplished: fault identification and diagnosis. The former is concerned about
finding anomalies, discriminating them from the normal states in the plant[1, 2]. The latter
tries to evaluate which part of the system is responsible for the fault[1, 2]. Faults in the
process can arise from hidden plant states, disturbances, controller malfunctions, and so
on. Soft sensors[3], for instance, are affected tremendously by it, since faulty samples
in the model database lead to poor model prediction. Process control also benefits from
process monitoring greatly, where identifying faulty data is useful in alarm technologies[4]
and hierarchical control systems[5], guaranteeing fast response to anomalous scenarios.
By integrating the aforementioned elements, therefore, one main goal of this work is to
explore fault identification and diagnosis capabilities for nonlinear systems, through useful

applications.



2 Introduction

1.1 Fault Identification

The notion of fault identification, or detection, in any process is of fundamental importance.
It is directly related to a deep understanding of the process. Such knowledge can be brought
via a phenomenological background, a heuristic background or a statistical background,

which all have their merits and drawbacks.

1.1.1 Heuristics Fault Detection

Heuristics have little relevance as a sole concept for fault detection. Despite being a rather
broad terminology, when it comes to applications in chemical engineering, it can be translated
to approaches where experience and trial and error alone are taken into account when
developing an anomaly detection system. This approach is limited to companies who are not
technologically advanced or whose process are not complex enough to justify any changes.
It may involve, for example, arbitrary definition of maximum and minimum ranges for key
variables. While its sole use is not recommended, arbitrariness may be involved, as long as
its use is not the key element behind one’s methodology.

1.1.2 Phenomenological Fault Detection

Phenomenological models try to describe a body of knowledge, in a way consistent with a
previously established theory, always trying to relate them with empirical observations. The
models created are based on fundamental equations, which try to better represent the current
scenario being analyzed. For chemical engineers, several equations can be incorporated
to a model, coming from all sorts of topics: thermodynamics[6], transport phenomena[7],
reaction engineering[8], unit operations[9], etc.

Once models are defined, parameters must be tuned in order to better represent the
system being analyzed. Parameter sensitivity, optimization approach and AD are one of the
few aspects to be considered carefully for proper modeling. One should, for example, be
insightful enough to include only equations and inputs that are relevant and meaningful to
the output variables presented, otherwise achieving proper modeling can be very complex
and troublesome. From a practical standpoint, phenomenological models need to be very
specific and finely tuned for each process, which can be rather time consuming. Furthermore,
only systems that can be expressed by phenomenological models can be used for analysis,
depending, thus, on the nature of equipment present.

Several works rely on phenomenological model-based fault detection, allying a complex,
yet finely tuned, representation of the process with fault detection methodologies. Whether
fault detection in embedded in a dynamic hybrid simulator[10] or associated to a control-

system for fast response[11], the integration of phenomenological models is possible. It is
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important to keep in mind, however, that there is a great deal of work and expert knowledge

that must be inputted in this analysis for proper modeling.

1.1.3 Statistical Fault Detection

Despite all the merits and drawbacks aforementioned, the statistical approach for modeling
is presented in this work as particularly interesting, since it relies entirely on the feedback
coming from the process itself. It could be argued that such approach is phenomenological
as well, since it is reconciling empirical observations with models, but it differs from what
is mentioned in the previous section due to its "black box" nature. There is no theoretical
background that indicates the relationship between variables, but the analysis of data via
statistical approaches.

One of the main benefits of a statistical approach is how broad, and to a certain extent
simple, its strategy is. Once data is the most important element, and not the process,
methodologies can be easily extended to other scenarios, without worrying about the intricate
peculiarities of each system. This is not to say, evidently, that knowledge about the process
should be disregarded, but rather that it loses its utmost significance in determining the
relationship between variables. Insights regarding the process can still be useful for variable
selecting, labeling of reliable information and so on.

The core idea is to extract essential information that allows one to represent the effect
that input variables have on desired output variables[12], without really analyzing what is
physically between those variables. Since fault detection goes beyond just representing
the model, the methodology related to identifying anomalies can also rely on a statistical
approach to do so. In this work, the proposed method that will be presented aims to take a
fully statistical approach, benefiting from what was described.

Within data driven methodologies, this work focuses particularly on Multivariate Sta-
tistical Process Control (MSPC) and Monitoring (MSPM)[13, 14] approaches. The main
concern here is to evaluate and visualize how variables and samples interact with the process
and with each other. Thereby, a more complete understanding of the process can be achieved,

where data discrimination is more objective and meaningful.

1.2 Fault Diagnosis

Being able to not only understand that something is wrong with the system, but also pointing
out the source of a fault is the complementary step right after fault detection[15]. Fault
diagnosis is complex and it relies greatly on experience. Closed loop systems are rather chal-
lenging, where despite faults attacking locally the process, the whole system acts suppressing

this variable, making a clear diagnosis more troublesome[16].



4 Introduction

1.3 On Supervised and Unsupervised Strategies

The most straightforward approach to process monitoring count on a supervised approach,
where previously known "normal" and "anomalous" labels are given to each sample and
a classification model, for example, can then be developed for future fault detection. One
might argue, however, about the reliability of such labeling, given the right circumstances.
The notion of supervision is deeply connected to certainty, where labels are usually accepted
without further inquiries. This is not to say that everyone is forgetful about the transient
nature of a process, but rather that labels inherently bring a sense of ease and trust to those
looking at a process. Such mindset can be harmful due to several different reasons. As
mentioned before, it is fair to say that processes are transient by nature, where the notion of
stability is, at most, temporary. This is not to say that finding a steady data set is irrelevant,
but rather that one should be careful with the data being chosen over an extended period.
Some companies, evidently, are aware of this issue, leading to actions towards database
maintenance.

Being aware of a process transient nature, however, hides in plain sight another issue,
which, yet similar, brings a far more profound feature of human nature towards faults. It is
of human nature to accept and internalize psychological biases. Biases are small practical
rules, a natural part of human condition, which makes our lives easier and more predictable.
They are directly related to all shortcuts that we establish throughout our lives, so to quickly
respond to most situations we face on a daily basis[17]. Biases can be harmless or harmful,
depending on so many different factors. The main point, though, is that biases deprive us
from a fair judgment, by instead encouraging its propagation.

When we translate biases to our engineering reality, there is a common pitfall related to
experience and knowledge. It is recurrent to rely on operator’s knowledge for assessment
of bottlenecks, normal operation, etc. This experience can be seen as truth, in a dogmatic
way, or it can be trusted if the meets certain criteria. Regardless, analyzing the system from
an unbiased perspective might lead to interesting insights. One of the key aspects of the
work, therefore, lies on analyzing data purely based on the relationship between variables, an
unsupervised approach, not relying on labels given for each sample. After that, the system
might even be expanded later to one where experience is taken into account, by adding small,
yet relevant pieces of information to the model created.

Still, it might be difficult for the reader to conceive how chemical plants would deal
with completely unsupervised approaches, considering among other factors, the intricate
knowledge engineer and operators might have about the process. Firstly, there is reliability.
To what extent is such knowledge reliable? People, as aforementioned, are prone to human
error, despite their best efforts. Secondly, how subtle can these anomalies be? What if
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an anomaly occurs due to a change of correlation between variables? Considering slowly
drifting variables, for example, if a pipe is clogging, how soon can faults be detected based
on human perception? Operators might lack the fine-tuning required for such task. The
same reasons can be extended to current applications (software, sensor, etc.) installed in the
plant. Within their reference data, which samples are normal and which are faulty might
be questionable. It is true that questioning the use of supervised data is challenging, but a
paradigm shift towards valuing unsupervised approaches might be beneficial, especially if
one imagines using both approaches for a better understanding of the process. Relying only
on process data can reveal optimal data sets to be incorporated in future evaluations, where
then supervised approaches can be reintegrated to the process using those newly updated
sets.

It is also important to highlight that for some scenarios, supervision is just inexistent.
Emergency scenarios pose an interesting challenge to operation, since few to no labeled
data is available. Once an equipment shuts down, for example, several alarms are instantly
triggered. How to discern between alarms coming from the shutdown and the real cause
behind the fault itself? Detecting fundamental anomalies that might threat the safety of the
plant based on changes from previous stable states is highly desirable.

In order to develop unsupervised methodologies, though, various factors have to be
considered to achieve successful monitoring. Firstly, the quality of the information available
is fundamental for the development of trustworthy models. Real data sets have to deal with
noise and redundant information, elements that might mask the true relation between distinct
features and samples in the process. Dimensionality reduction, thus, plays an important
role, isolating irrelevant information from the data set. One of the most widespread methods
for process monitoring is Principal Component Analysis (PCA)[18], which assesses linear
correlation between different process variables, so to reduce the dimensionality of highly
correlated variables. Its use is so widespread that several PCA-based MSPMs were created,
such as dynamic PCA (DPCA)[19], recursive PCA[20], distributed PCA[21] and maximum-
likelihood PCA[22]. Likewise, some extensions were developed to overcome PCA’s linear
nature, such as kernel PCA[23] for nonlinear systems. Other methods not related to PCA also
tackle non-linearity from scratch, such as Support Vector Machines (SVM)[24], Gaussian
Mixture Models (GMM)[25], Generative Topographic Mapping (GTM)[26] and even the use

of inferential models[27].

1.4 Applicability Domain

All principles presented here rely, evidently, on proper modeling, which, despite being an

expected premise, can be highly overlooked by many works in the literature[28, 29]. This
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goes beyond the usual big historical data sets found in chemical plants, since, for any soft
sensor assembled, faulty samples can have a negative impact on the performance. Smaller
data sets, actually, might be more sensitive to anomalies, since the ratio between normal and
anomalous samples is small. The key element disregarded is Applicability Domain (AD),
i.e., to what extent is a model applicable to predict future data. Along that aspect, issues
related to how to define adequate training and test data sets for modeling also arise, leading
to discussions that can be incorporated to the scope of this work, associating applicability
domain to fault detection capabilities[30].

The main concern is how to define training and test data that lead to coherent results.
There are some issues associated to data similarity that should be considered. If, for example,
both training and test data are too similar, even with high prediction accuracy, the overall
predictability of the model might be low. On the other hand, if both data sets are funda-
mentally different, modeling is meaningless and frustrating, since accuracy will always be
low. The important element is Applicability Domain (AD), i.e., to what extent is a model
applicable to predict future data. A poor representation of training and test data sets can
lead to misguided conclusions regarding the predictability and outlier detection potential
of models created[31, 32]. It is important to notice that this is usually more troublesome
when data is independent, i.e., not time-series, since there is greater freedom to define which
samples are used for model training and which samples are used for test of the methodology
utilized.

One of the first approaches explored in this thesis towards process monitoring tried to
associate AD to fault detection capabilities via the evaluation of a flour and protein content
data set[30], evaluating the predictability and reliability of different sub-data sets. Once
adequate modeling was discussed, fault detection capabilities were proposed, by using soft
sensor monitoring indexes[33] and genetic algorithm modeling features[34, 35]. Genetic
algorithms are non-deterministic and, therefore, may result in different regression models
for each run. This information can be used for ensemble prediction[36], where several
models are conjointly used for anomaly assessment by verifying the relation between distinct
predictions.

1.5 Applications

Despite how developed the methodology, to what extent or how it can be applied to practical
applications is essential. From this premise, the following explore two of the main feasible
applications: soft sensors and process control.
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1.5.1 Soft Sensors

Soft sensor, also called inferential models, are statistical models that aim to estimate process
variables whose measurement is difficult[37]. There are several reasons why certain variables
cannot be measured easily. Technical difficulties, offline measurement delays and high
investment costs are a few of those causes. Soft sensors models are created, therefore,
between variables that are easy to measure and those who are not.

One of the most widespread methodologies for modeling is Partial Least Squares
(PLS)[38, 39]. Since its development, several techniques were derived from it, such as
nonlinear PLS extensions[40] and variable selection variations[30, 34, 35]. PLS is but one
methodology, though, where several other ones were developed, such as support vector
regression[41] and artificial neural networks-based methods[42].

From a fault detection perspective, regardless of which methodology is involved, it is
fundamentally important to know which data is relevant for the construction of a soft sensor
model. If abnormal data is associated to the current database, the accuracy of the soft sensor
created might decrease, affecting the prediction of regular samples yet to come. The aim
of fault detection in this scenario is, thus, to detect preemptively whether these samples are
normal or faulty. By doing so, one can prevent substantial changes on soft sensors’ accuracy.
This is intricately related to database maintenance, where the goal is essentially the same, to

avoid the presence of outliers in a reliable data set.

1.5.2 Process Control

Process control applications for fault detection and diagnosis are related closely to hierarchical
control and alarm management. For this work, process control applications will not be dealt
with directly. Instead, its potential will be presented here and there to motivate future
scenarios.

Hierarchical control assumes that the control structure of a system relies on different
control layers, where higher layers can execute different functions. Monitoring is one of
the most common tasks, where higher layers can evaluate whether controllers are operating
optimally, or even, for our purposes, to see if the plant is going through an anomaly, triggering
alarms that can alert operators of the nature of the fault and how to react quickly to it. Some
low level controllers also rely on models that are updated based on data being fed to them
constantly. Identifying anomalies is rather relevant in those cases as well, allowing the
controller to maintain its performance, regardless of the anomalous scenario presented.

Alarm management[43, 44] is another key aspect, since triggering of alarms is a com-
plicated issue in the chemical plant. The overwhelming presence of different alarms being

triggered at the same time during and emergency scenario, for example, makes it difficult to
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identify the source of the problem, since alarms from all different features would be ringing
simultaneously.

Process control applications on fault detection and diagnosis would hardly be used for
anything else then higher levels of control, monitoring the chemical plant.

1.6 Proposed Strategies
1.6.1 GTM & Graph Theory Combined Approach

From a practical point of view, real industrial processes are intrinsically complex and
nonlinear. Given that PCA itself is linear, little can be attested regarding its performance.
GTM, conversely, is a nonlinear methodology relying on a probabilistic framework, being
more suited to handle such complexity. Each sample plotted in the latent space has a
unique probability distribution (PD), a so-called "fingerprint", associated to each point pre-
established in the latent grid. Assuming that samples with correlated PD profiles represent
data with similar characteristics, GTM can be used for fault identification and dimensionality
reduction simultaneously, including discrimination of normal and faulty data.

After this matrix of similarities is calculated, however, one must express, or visualize,
this similarity in a tangible way. Clusters must encapsulate similar data through the core
relationship between samples, while understanding that samples belonging to the same
cluster might not be highly correlated necessarily with all those samples. Graph Theory
models pairwise relations between objects[45], by expressing them as a network. Two basic
elements are always present: nodes (samples) and edges (connections). For this work, each
sample is connected to those whose GTM probability profile correlation is higher than a
given threshold. In the end, this web of connections creates a weighted graph, where the
number of connections and their density around the graph unravel data clusters with distinct
features. This combined approach using GTM and Graph Theory is proposed, therefore,
acting as a fault identification tool, keeping in mind, evidently, its unsupervised nature. GTM
highlights important data information and calculates similarity between samples. Graph
Theory not only clusters data in normal and anomalous groups, but also allows an objective
and clear representation of all data in the process.

Once faults are properly detected, however, finding their source is also an important
aspect of process monitoring. Two distinct approaches are taken into account, all derived
or based from the proposed methodology: one from a GTM perspective and another from a
Graph Theory point of view. The former uses GTM remapping error (RE) and dissimilarity
index as criteria for diagnosis, by training a map only with the normal data set found. Then,

one can find which variables exceed the error threshold defined by the normal data itself, so
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to point different candidates responsible for the fault. The latter uses the network structure

itself to see whether new data belongs to a normal or anomalous cluster.

1.6.2 On Applicability Domain & Fault Detection

The analysis on AD portrayed in this thesis in intimately connected with soft sensor perfor-
mance and adequate training and test data splitting, as described in the literature. Different
soft sensor methodologies, such as Genetic Algorithm Partial Least Squares[34] (GAPLS)
and Genetic Algorithm based Wavelength Selection[46] (GAWLS) are used along different
data splits to assess the AD of different models for a flour and protein content data set.
Knowing that genetic algorithms are non-deterministic, each run may result in a different
regression model. This information, if used correctly, can lead to ensemble prediction, which
can be used for fault detection. Assessing AD acts as a bridge connecting data splitting and
soft sensor performance with anomaly detection, by interpreting similar results from two

distinct perspectives.

1.6.3 Strategy Summary

Four case studies were defined for performance comparison. To discuss AD features asso-
ciated to fault detection, a flour and protein content data was considered. The remaining
case studies are related directly to the GTM and Graph Theory combined methodology.
A simulation data set with different types of anomalies was created, analyzing single and
multiple anomaly scenarios, so to explore the potential of the proposed methodology afore-
mentioned. Secondly, the Tennessee Eastman Process (TEP)[47], a virtual realistic data set,
was considered for validation of the methodology, enhancing discussion and understanding.
The proposed method was compared against unsupervised PCA, DPCA, GTM and Graph
Theory independent approaches and supervised PCA, DPCA and GTM.

Chapter 2 explores all aspects related to the proposed GTM and Graph Theory strategy.
Initially, a review on dimensionality reduction, graph theory and process monitoring is
presented, describing all fault identification and diagnosis methods considered for comparison
in this work, followed by the proposed approach described in detail. Finally, several results
discussing the impact of different methodologies on anomaly detection and diagnosis are
presented.

Chapter 3 discusses applicability domain and fault detection features. Similarly to Chapter
2, review, proposed strategy and results are presented. Chapter 4 presents final remarks and

future work.






Chapter 2

GTM & Graph Theory Combined
Approach

Throughout this work, rather different topics will be considered for discussion. Even though
data visualization is the key element involving the proposed GTM and Graph Theory strategy,
many other basic, but nonetheless important, topics should be explored. This section aims to
present, thoroughly, relevant literature on all different features somewhat explored.

Initially, one has to consider how to handle data properly. This starts essentially on
how to be able to extract only relevant information from a given data set. In order to do so,
bypassing redundant and unnecessary features is an important step. This leads to a review
on dimensionality reduction, aiming to clarify some of the main criteria taken into account
when developing the methodology proposed in this work.

Handling, however, also involves knowing how to present and use this information in a
meaningful way, according to the application. Graph theory is the great responsible for it,
where not only data can be brought together in distinct clusters, but characteristics of each
cluster gives further insight on the nature of different anomalies by evaluating what set each
cluster apart and how they behave independently. Sections 2.1 to 2.3 describe thoroughly a
review on all topics aforementioned. Section 2.4 presents the details regarding the combined
approach proposed. Sections 2.5 and 2.6 present the main results of this chapter, exploring

simulation and TEP data sets.

2.1 Dimensionality Reduction

2.1.1 Principal Component Analysis

Visualization of the relationship between distinct variables can be rather complex, especially

if the system possesses many variables or is nonlinear. PCA 1is the most straightforward linear
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approach known, relying on variables being converted into linearly uncorrelated variables
called principal components (PC), through an orthogonal transformation[18]. The basic logic

behind PCA can be seen in Equation 2.1.

X=TP'+E (2.1)

where X is the original data set matrix, T is the score matrix, P is the loading matrix and E is
the residual matrix. P establishes the relation between X and T, resulting in the projection of
X values onto the transformed space T, where the PCs are its column vectors.

By finding the directions where data has maximum variance, it is possible to extract
relevant information about the data set. Each PC contributes to the original data contained
in X proportionally to the eigenvalues of column vectors in the covariance matrix. Such
effect can also be expressed by the data variation of each principal component as described

in Equation 2.2, assuming that centering and scaling are performed in advance.

(2.2)

where C;; is the component contribution for PC t; and M is the number of input variables.
The main goal is to select only those PCs that contain relevant information, excluding the
rest. The heuristics considered in this work keeps only those components whose accumulated
component contribution is just below 99%.

PCA is recognized as one of the main techniques for dimensionality reduction, with all
sorts of applications in different fields, such as forensics[48], metabolic engineering[49] and
cardiology[50], for instance. As for chemical engineering applications, process control[51]
and process monitoring[52, 53] are a constant source of developments. This tool has been
explored for so long that all sorts of derivations from the original PCA were developed.
In order to better deal with time-series, for example, Recursive PCA[54] was created. For
monitoring applications, once enough features are available, PCA sub-blocks could be
obtained to adapt to different changes in process, called distributed PCA[21].

Since one of its main limitations is its inherent linear nature, which limits its application
for more complex, nonlinear systems, other techniques were developed to cope with that,
such as Kernel PCA[55], one of the most popular PCA extensions. In this work, we are
focused on the original PCA, DPCA[56] and Kernel PCA, to be explained in details in the
next subsections. This extension elegantly inserts artificially delayed variables to the pool of
existing features, so to represent in a simple way the time-series aspect of a system.
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2.1.2 Dynamic Principal Component Analysis

DPCA extends the regular PCA concept by introducing dynamics to better understand and
represent nonlinear time series processes. The methodology itself is remarkably simple.
Time shifted variables are added as extra variables, establishing a relation between current

and past samples[57]. Equation 2.3 shows how to represent this new data set.

Xd+1 Xa - X1
Xd+2 Xd+1 X2
XDyn = [XI,XZ,...,Xd] = i i ) (2.3)
XN XN-1 °°° XN-d

where X; is the original data set being delayed, N is the total number of samples and d
is the sample delay. x; is a row vector with all variables for the nth sample. DPCA has
fundamentally the same approach as PCA, but with extra time shifted vectors. Thus, all
analysis related to PCA, such as determining the optimal number of principal components,
apply to DPCA as well.

By adding dynamics to the analysis, it is possible to achieve better discrimination within
samples that, despite having similar variable values, belong to distinct stable and transient
states. As for how far should variables should be delayed, most delays involves one or two

time steps at most, related to the complexity of the system[57].

2.1.3 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) can efficiently compute principal components
in high-dimensional feature spaces, by relying on integral operators and nonlinear kernel
functions[23]. The concept behind KPCA is quite intuitive, where linearly inseparable data
is projected onto a new feature space, resulting in better discrimination. The mapping of a
sample x; can be written as x; — ¢(x;j), where ¢ is called kernel function.

Instead on applying PCA on the original data, a kernel matrix K is used analogously,
where each element k(x;,X;) of this matrix is defined by the dot products shown in Equation
24

k(xi,%Xj) = (0 (xi), 9 (x;)) (2.4)
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Kernels can map nonlinear data in different ways. Sigmoidal, Polynomial and Gaussian
kernels[58] are the most common ones. In this work however, Gaussian kernel is used for
evaluation, according to Equation 2.5

Il

k(Xi,Xj) =e ¢ (2.5)

where c is a width parameter regulating the Gaussian coverage. This parameter is defined
based on the average minimum distance between samples in the original space. K is a square
matrix, meaning that the number of features (and PCs) in the kernel space matches the
number of samples available. Principal components are extracted based on their eigenvalue
contribution. Analogously to PCA, relevant PCs are selected by keeping those components
whose accumulated component contribution is just below 99%, as shown in Equation 2.6,

eig

where A" is the eigenvalue for PC te.

A
Cp=—tr (2.6)
l i’il )Lielg

2.1.4 Generative Topographic Mapping

GTM is a widely used technique applied for visualization of data with several variables. It
consists of a probabilistic non-linear approach, where a low-dimensional latent variable z is
represented in a 2D space, so to approximate original data x as a high-dimensional manifold
on the original data space. This manifold is modeled by a Gaussian function. Acting as a
bridge between spaces, an intermediary layer of radial basis functions (RBFs), also Gaussian,
is created[59]. RBFs are embedded in a mapping function y(z; W), which defines the non-
Euclidean manifold and connects both spaces. Figure 2.1 shows the schematic representation
behind GTM.

Latent Space Data Hyperspace

RBFs
o o s y(z W)
.....

22 .‘.’

>
<

Visualization

Z4

Fig. 2.1 GTM overall concept representation.
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GTM structure

The main goal of GTM is to find a representation for the distribution p(x) of data in a
D-dimensional space x = (xy,...,xp) associated to a number L of latent variables z =
(z1,...,21). In order to achieve that, a function y(z; W) is devised, mapping points z in
the latent space into the equivalent y(z; W). The transformation y(z; W) maps the latent
variable space into and L non-Euclidean manifold S embedded within the data space. W is a
parameter matrix that governs the mapping from z to x.

The distribution of x is chosen, for a given z and W, to be a radially symmetric Gaussian

centered on y(z; W) having variance !, as shown in Equation 2.7.

B b/2 B i1y(z: 2
p(x[z,W,B) = <—> e 2 I (zW)—x]| (2.7)
2n
The distribution in x-space is then obtained by integration over the z-distribution, assum-

ing a known value for W, according to Equation 2.8.

p(x.W.B) = [ p(xiz.W.B)p(2) eX)

where p(z) is the prior distribution of z. Once a data set of N data points X = (Xp,...,XN) is
given, the unknown parameters W and 8 can be optimized, using maximum likelihood. It is

more convenient, though, to maximize log likelihood, as presented in Equation 2.9.

N

Z(W,B) =In]]p(xa,W,B) (2.9)

i=1

One problem with this representation, however, is that despite specifying p(z) and
the functional form of y(z; W), the integral specified in Equation 5 is usually analytically
intractable. To circumvent this issue, y(z; W) is chosen to be a linear function of W and p(z)
has to be defined accordingly. One option is to define p(z) as Gaussian, then the integral
becomes a convolution of two Gaussians. In this case, however, the model is closely related
to PCA, where the maximum likelihood solution for W columns leads to scaled principal
eigenvectors. In order to expand this formalism to nonlinear y(z; W) functions, p(z) has to

be defined in a specific form, as shown is Equation 2.10.

G
mnzéZ&rw> (2.10)

i=1
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where G is the number of nodes in latent space assuming a regular grid. p(z) is given by a
sum of delta functions centered on nodes in a latent space grid. This implies that probability
distribution is local in each point of the lattice and not continuously distributed along the
latent space. The x-distribution function now takes a different form from Equation 2.8, as
presented in Equation 2.11.
1 G
P W.B) =G X pxlzi, W, B) (2.11)
i=

and the log likelihood function is now given by Equation 2.12
1 G
Z(W,B) =inq = Y p(x|zi; W, ) (2.12)
i=1

Expectation-Maximization Algorithm

This structure can now be optimized for W and 3, once y(z; W) is defined. Knowing that
the model developed consists of a mixture distribution, the Expectation-Maximization (EM)
Algorithm might be the most suited for optimization[60]. This algorithm relies on a suitable
choice of y(z; W), such as a generalized linear regression model as described in Equation
2.13.

Wz W) = Wo(2) (2.13)

where ¢(z) consists of B fixed basis functions ¢;(z), and W is a parameter matrix D x
B relating these functions with the non-Euclidean manifold S. For a large class of basis
functions, Radial Basis Functions (RBF) are universal approximators[61]. These structures,
particularly the Gaussian RBFs, are interesting, due to their fast training. GTM training using
multi-level programming (MLP), for example, is prohibitive[62].

Once the basis function structure is defined, the optimization can be executed. In
the expectation step, current parameters Weq and 3, are used to evaluate the posterior
probabilities, also called responsibilities, of each Gaussian component i for every data point

xj using Bayes’ theorem, as shown in Equation 2.14.

P(Xn|zi, Wold, Boia)

L (2.14)
Y P(Xnl|zi, Woid, Bora)

Fin(Wolds Bota) = P(Zi|Xn, Wold, Bord) =
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This leads to the expectation of the log likelihood data presented in Equation 2.15

Woud, Bora)in{ p(xn|zi;, W, B) } (2.15)

HMQ

N
(£ (Wola, Bota)) Z

Whew and B, can then be obtained on the maximization step, by maximizing Equation

2.15 with respect to both parameters independently, as shown in Equations 2.16 and 2.17.

N G

Y Y rin(Woud, Bota) { Wnew® (zi) —xn} ¢ (z) =0 (2.16)

n=1i=1

B Z Zrm olds Bota) | Wnew® (2i) — Xn”2 (2.17)
new n=1i=

This cycle of expectation and maximization is repeated until the objective function
reaches a maximum, according to a satisfactory convergence.

Data Visualization and Latent Probability Distribution

Once the map is trained, it is possible to determine for each sample the likelihood of it
belonging to each node in the latent grid, establishing a PD profile. The profile comes
from the responsibility matrix obtained from the optimization procedure aforementioned, as
suggested by equation 2.18.

'n ri2 - TN
Ir; Iz -+ IN

R:[l‘l,l'z,...,I’N]: . . . . (218)
't g2 - IGN

Such profiles can be represented as individual heat maps or as one plot for all data, as
Figure 2.2 suggests. PD profiles are unique considering that the variables in hyperspace
have a different combination of values for each sample, which, for this work, allows the
similarity assessment of all samples on the same basis. The overall structure of one of the
proposed methodologies presented in this work relies on calculating similarity and GTM
sophisticatedly fulfills this requirement as well.

GTM data visualization can also be performed by collapsing the PD profiles into mean
and mode plot for all samples. Those plots give extra information on how samples are
distributed along the map, since each datum can be represented as a dot, where visualization
of distinct clusters in the data set might be more apparent. Figure 2.3 shows a comparison
between PD heat map and mean/mode GTM plots.
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Fig. 2.2 GTM PD heat map for a) one sample and b) a data set.

In addition to the representation of data in the GTM map itself, it is important to notice
how data is dealt within the optimization algorithm, since this impacts greatly how maps are
trained. GTM considers all samples to be independent, identically distributed vectors (i.i.d.),
which implies that dynamic information is not being considered. For monitoring applications,
not using dynamic information is, at most, a waste of valuable information in one’s data set.
From this premise, some techniques were developed over the years trying to establish the
connection between samples over time. GTM Through Time (GTMTT)[63], for instance,
was developed using the original GTM algorithm and incorporating it as the emission density
in a hidden Markov model. This leads to GTM training at every instant, combining all trained
maps at the end of analyzing all samples. Despite the interesting approach, though, training
GTM maps at each instant is computationally prohibitive, which constrains its application
severely.

A faster and far simpler approach is to consider time-delayed variables, following the
same procedure described in section 2.1.2. Analogous to DPCA, therefore, extra variables

are created, allowing dynamic information to be incorporated to the system to some degree.
On GTM Hyperparameters

One aspect of GTM that deserves special attention is how to set the hyperparameters, which
are structural parameters defined previously to optimizing the parameters W and § mentioned
earlier. GTM relies on the following set of hyperparameters for its utilization: latent grid
size, number of RBFs, width of RBFs and regularization parameter A. The optimal value for
each parameter is usually determined via exhaustive search, using cross-validation to look

for the minimization of reconstruction error, i.e. distance from the manifold, once data is
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Fig. 2.3 a) GTM PD heat map and b) mean/mode plot. Different colors in the mean/mode
plot represent different process states, where dots are collapsed PD means and circles are
collapsed PD modes.

recreated into the original hyperdimensional space. Root Mean Squared Error (RMSE) is

usually used as an index for such assessment, as described in Equation 2.19.

N M rmp 2
Y I 2
RMSE — 1| Ei=1 % i, ;=25 (2.19)
NM

where N is the number of samples and M is the number of variables. x; ; is the original it
sample value for the j' variable and x{'}w is the respective remapped value. Regular RMSE,
however, does not take into account certain factors, such as the smoothness of the map, which
allied to poor choosing of hyperparameters might lead to overfitting, a serious problem in
GTM.

As pointed out by several works in the literature[64-66], GTM overfitting is often
overlooked since most applications do not consider new data being incorporated to the
map. For monitoring applications, however, the idea of new online data coming to a map
is particularly interesting, so to assess data in real time. Overfitting, thus, results in great
representation of training data, but poor evaluation of new samples coming to the map.

In order to cope with this methodology, one option is to use GTM extensions, which, al-
legedly, try to deal with this limitation. Variational Bayesian GTM[67] is the most prominent
methodology, which replaces the regularization hyperparameter present for a full Bayesian
treatment to a Gaussian process based variation of the optimization model. Such extension,

however, is far too time consuming and computationally heavy to be used indiscriminately.
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The key element is the regularization mechanism, since it is directly related to the
smoothness of the map, where higher maps lead to smoother maps, but with generally greater
reconstruction error. There are good practices embraced by the community using GTM, such
as keeping this hyperparameter always above a threshold, which evidently is to be tuned
based on the experience of the user with different data sets. Other developments can be allied
to it, especially when it comes to the criterion used for evaluation. Root Mean Squared Error
of Midpoint (RMSEM) tackles this issue[68], where midpoints to those existent in training
data are used for accuracy assessment. If those samples can be predicted accurately, then not
only training data has high prediction accuracy, but also the regions in between, preventing

overfitting and concentrated sample’s PD. RMSEM is calculated according to Equation 2.20.

L M id mid,rmp 2
pl Yo xna 5
RMSEM:\/ Ll (2.20)

LM

where L is the number of midpoints selected, xmid ig the ith midpoint value for the j’h variable

i,J
mid,rmp - . . . .
and x; i is the respective remapped point. Midpoints are sampled randomly from all
possible combinations of training data, usually in a greater number (five-fold) than the

original data set.

2.2 Graph Theory

Graphs are symbolic representations of networks that model pairwise relations between
objects[45]. In chemical engineering, their application is mostly close to chemistry applica-
tions, such as drug design[69, 70], thermodynamics[71] and reaction pathways[72].

The main focus here, nonetheless, is process monitoring. There is little to no application
of graph theory in chemical engineering for this purpose. The current research usually
involves transforming the process itself in nodes[73] or using process variables as nodes for
the development of a network[74]. Exploring the potential of samples as the main elements
of a network, as proposed in this work, is new[75], leading to future insights on both fault

detection and data visualization.

2.2.1 Basic Structure

There are two basic elements for every graph: nodes and edges. The former represents
observations (samples) and the latter indicates connections between those observations.
Graphs can be undirected or directed, according to the nature of connection between nodes.
For undirected graphs, edges do not establish any direction for the connection between two
samples, i.e., there is no starting node and ending node for any edge. Directed graphs, on

the other hand, establish that edges have direction, indicating flow of information. Electrical
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grid networks, for example, are directed graphs showing the flow of electrical energy. Social
media networks are also usually directed, showing who start the interaction and towards
whom. Graphs are, by definition, undirected unless said otherwise. For chemical engineering
applications, both types are possible. Associating graphs with process design can lead to
directed graphs, where the connection between equipment shows the flow of energy, mass,
etc. Process monitoring where samples are associated to networks, on the other hand, can be
undirected.

For a given data set, adjacency matrix (AM) formalizes this web of connections, by
representing all connections via a square matrix whose size is directly related to the number

of observations available. Figure 2.4 shows an example of such representation.
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Fig. 2.4 Schematic representation of a a) weighted AM and b) its respective undirected
graph.

All null values show that there is no connection between respective pair nodes. Values
different from zero, on the other hand, reveal links between nodes, where the strength of the
connection is correlated to the respective adjacency value. AM is the core element of any

graph, from where graph analysis, visualization and clustering is possible.

2.2.2 Graph Analysis and Visualization

Visualization of graphs is associated to indexes (measures) that reveal different characteristics
of the network. In addition, networks can be seen under different layouts, which also changes
drastically the structure of the graph and how one would interpret the data. In the end, graphs
are malleable, meaning that the same system can be seen through different filters, giving
different insights about the data and the relationship between all samples.
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If one considers each node as a sample in a chemical process belonging to a time-
series data set, the behavior and characteristics of the network worth noting tend to follow
those of social network analysis (SNA)[76]. SNA works with big data sets and try to
investigate the relationship between individuals in social structures such as social media
networks([77], disease networks[78], friendship networks[79], among so many others. SNA
was the inspiration for using graphs relating chemical process measurements over time, to be

depicted along this work.
Graph Layout

Adequately representing graphs in space is fundamental to visualize data in its entirety.
There are several layout approaches available, each one with their particular characteristics.
Force-Directed Graphs (FDG)[80] are more recurrent, since they try to draw graphs focused
on aesthetic aspects. The idea is simple, using repulsion and attraction to the point where
the system reaches a mechanical equilibrium, i.e., all forces are balanced in the network.
One of the most known FDG is the Fruchterman-Reingold (FR) layout[81], whose elegant
representation is used to this day. Methodologies that are more efficient were developed over
time, like Hu’s layout[82], culminating in a robust, elegant and efficient approach, Force
Atlas (FA)[83]. Figure 2.5 shows a comparison between three distinct layouts for the same
data set.

IR

Fig. 2.5 a) FR, b) Hu and c) FA layouts for a simulation data set.

Both FR and Hu keep a spherical layout, which constrains the representation under one
fixed area. FR tends, however, to fill all the area when compared to Hu, which can be positive
or negative depending on the application. FA, on the other hand, is not restricted to that space
and it shows more clearly the depiction of different clusters within the data set. Discussing
whether one layout is better than the other, however, depends greatly on the data set and

application of the analysis. For process monitoring purposes, where discriminating distinct
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clusters is important, however, FA style layout is used, since it gives more insight on this

particular data aspect.
Centrality Measures

Once the layout is defined, there are still several analysis that can be performed considering
the relationship between nodes and edges in the graph, through indexes called centrality
measures[84]. All measures shown here can be applied for directed graphs, however consid-
ering the nature of the application proposed in this work, all measures are being applied for
undirected graphs.

The most straightforward measure is the degree centrality, which reveals the total weight
of edges towards one node[84]. It reveals in the network the most connected nodes overall.
This measure has some limitations, however, since it does not specify whether this value
come from several small edges or one big edge. In addition, it does not give any information
related to the flow of information in the network.

Other centrality measures are complementary to degree analysis, revealing the most
important nodes on the graph. Closeness[85], eigenvector[85] and betweenness[85] centrality
are just a few to cite. For process monitoring applications, considering that discrimination
among clusters is a determining factor, betweenness centrality might be the most interesting.
It quantifies how many times a node acts as bridge along the shortest path between other
nodes. It is interesting for determining important links between clusters where few nodes are
associated between them. Figure 2.6 shows the distinction between degree and betweenness
centrality for the same data set presented in Figure 2.6. Betweenness helps identifying the
nodes that communicate with different clusters the most, indicating their transitional nature in
the system. This analysis, however, is a minor aspect of the analysis for process monitoring.
Being able to extract clusters in the system is far more interesting. The next sub-section will

explore that aspect of graphs in more details.

2.2.3 Graph Clustering

Albeit all approaches consider graph features for discrimination, Graph Clustering (GC) can
rely on rather different techniques, such as Spectral Partitioning (SP)[86], Girvan-Newman
Algorithm (GNA)[87] and Louvain Community Finding (LCF)[88]. Each methodology
has its merits and drawbacks, revealing the plurality of techniques available for adequate

clustering in a network.
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Fig. 2.6 a) Degree and b) betweenness graphs for a simulation data set.

Spectral Partitioning

SP is one of the simplest methods for GC[89]. It relies on the Laplacian matrix for connected
graphs, as expressed by Equation 2.21.

L=D-A (2.21)

where D is the degree matrix and A is the AM. The degree matrix can easily be obtained by
computing all node degrees from A. Once the Laplacian is obtained, the eigenvector and
eigenvalues of L are determined. The eigenvector associated with the lowest second vector,
called Fiedler Vector, is then used for bisection of the graph. All values above zero belong to
one community, all values below zero to another.

The limitations are apparent. SP only bisects the graph, even though further splitting is
possible assuming that partitioning is performed on the remaining sub-graphs available. If
the user has no information on the optimal number of clusters, however, it is difficult to know
when to stop bisecting. This limitations motivates the use of other criteria for discrimination,
as described in the next GC methodology.

Girvan-Newman Algorithm

GNA finds clusters by removing edges from the original network progressively[90]. In order
to do so, the algorithm focuses on edges the are in between communities by evaluating edge
betweenness. Edges are gradually removed to the point where the initially connected graph

is divided in two connected graphs. The algorithm can keep running indefinitely until all
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edges are removed. Betweenness has to be updated every time an edge is removed from the
network, resulting in a computationally expensive algorithm.

This methodology characterizes hierarchical clustering, where a dendrogram is created
keeping track of communities being split. Despite the different criterion for community
detection, however, this approach still suffers from lack of termination criterion. The splitting
of the community is more gradual and conceptually more interesting, but it gives little

solution to a clear termination criterion for community detection.
Louvain Community Finding Algorithm

As discussed in the previous sub-section, SP and GNA has no termination criterion for
optimal clustering and GNA relies on betweenness[45], a graph centrality measure for
finding important hubs in the graph, which may not be available for a given graph or it is
computationally too expensive to calculate.

In order to cope with these limitations, Louvain Community Finding (LCF)[88] presents
itself as an algorithm with intriguing features, based on, generally speaking, evaluating the
density of edges within a group via an index called modularity[91, 92]. LCF algorithm has
two steps: local modularity optimization and graph update. Initially, a weighted graph of N
nodes is created, where different clusters are assigned to each node, i.e., there are as many
clusters as nodes. From this framework, a maximization of modularity is trailed, following
the pseudo-algorithm below. A more detailed version of the algorithm can be found in the

Appendix 1.

1. For each node i, consider all neighboring communities j of i.

2. Compute modularity gain (AQ; ;) when i moves to each community j. i moves to
the cluster with maximum gain, only if the gain is positive. Otherwise, i stays in its
original community. Figure 2.7 shows the schematic representation of step 2 for one

node, when tested against three other communities.

AQ,,>A4Q,,> A0, AQ,,>0 AQ ,,<0

AQ1,4(-.®"\AQ112 % or @
)@ ® ®
AQLS

Fig. 2.7 Modularity gain test, where different background patterns indicate different
communities.
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3. Test modularity gain for all nodes in sequence, till no further improvement is encoun-

tered. Modularity gain is described in Equation 2.22.

ki j kiXior

AO;: + — b
Qij 2m )’2m2

(2.22)

where m is the total sum of edge weights in the graph, k; ; is the sum of edge weights from i
to J, k; is the sum of edge weights incident to i, X, is the sum of edge weights incident to
nodes in j and A is called the resolution limit, regulating both terms of Equation 6. Lower
A results in fewer clusters, where higher A results in more clusters. Once the algorithm
stabilizes, the graph is updated by condensing all nodes belonging to a single community
into a single node, keeping in mind that edges between nodes of the same community lead to
self-loops. After the update, all steps above are repeated until no more modularity gain is
achieved. Figure 2.8 and Figure 2.9 show graph and modularity evolution during LCF cycles

for a trivial example.
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Fig. 2.8 Graph evolution according to LCF algorithm.

After the second cycle, the graph reaches a modularity peak, indicating that this is the
optimal configuration. By observing the original graph on cycle 0, one can easily see that it

corresponds indeed to the best clustering scenario. Any further clustering beyond that results
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Fig. 2.9 Modularity evolution during LCF cycles.

in a modularity drop. LCF uses modularity in a similar way that Newman-Girvan algorithm,

but it provides an intuitive algorithm with a clear termination criterion.

2.3 Process Monitoring

2.3.1 Principal Component Analysis, Dynamic PCA & Kernel PCA

PCA, DPCA and KPCA rely on two distinct indexes for process monitoring: T2 and Q[33].
The former assesses input data variation and the latter, prediction residuals. Several articles
in the literature have dealt with those indexes[93, 94], reassuring their application for the
scenario previously described. Equations 2.23 and 2.24 present both indexes for PCA and
DPCA. Those values are calculated for each sample, leading to a Q x T plot used to indicate

discrimination between data groups.

ko,
T} = Z(%)2 (2.23)
=1 4
M
On = Z(xm- — ni)? (2.24)

N
I
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where M is the number of input variables and k is the number of principal components
selected. t,; is the score component for the n'" sample and i t-score variable and std; 1s
the estimated standard deviation for the respective ¢-score. £ is the estimated input given k
principal components for data reconstruction.

KPCA, on the other hand, while maintaining the same conceptual background, relies on

a different set of equations, since its assessment is in the nonlinear kernel space. Prediction
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residuals and input data variation can be all associated to the score t, as presented in Equations
2.25 and 2.26

2 gr.eig eig eigy A —1r,eig eig eighT
Ty =1t oty st JA [ttt ] (2.25)
N2 & eie2
- eig eig
On =) 1,5 =) 1y (2.26)
i=1 i=1

For unsupervised approaches, once data belongs to different states, one could assume
that 72 and QO would also be on different ranges, or that at least one of the indexes would
behave in such way. If samples are dissimilar enough, groups of data can be isolated.

Such dissimilarity would lead to data discrimination and, thus, process monitoring. While
it is true that the usual approach is supervised, where the reduced model is trained only with
data from a particular state, one can apply it to an unsupervised scenario, if there is a clear
distinction between two or more data groups. For supervised approaches, a threshold for
both indexes is defined as 99% of the maximum value in the normal data. Values exceeding
at least one of the thresholds are detected as outliers.

In the case where a clear discrimination is not possible, another option is to cluster data
based on the reduced PCA subspace, by using, for example, k-means clustering on the main
PC subspace[95], where here k indicates the predetermined number of clusters to obtained. It
is true that one need to know beforehand the number of clusters required for discrimination,
however depending on the characteristics of the system, this parameter could be inferred
with reasonable certainty. Furthermore, not only the PCA subspace, but also the 7% and Q

plot itself can be used for discrimination, using their values as position references.

2.3.2 Generative Topographic Mapping

The main aspect behind GTM is that its latent space approximates the original, hyperdimen-
sional variable space. Once all issues related to possible overfitting are considered, these
trained maps can be used for process monitoring, once RE, remapping error is calculated.
Once data reduced to a latent framework is re-plotted into the original space, RE can be
calculated[96], according to Equation 2.27.

M
RE, = \/ Z (X — XGTM)2 (2.27)
i=1

where x,; and xgrp,, are the original and reconstructed, respectively, i input for the n'"
sample. Analogous to PCA, both supervised and unsupervised approaches are possible, where
the former only uses the previously defined normal group for map training and the latter
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uses all data for training. For the unsupervised approach, finding at least two groups with
clearly distinct RE ranges is desirable, yet unlikely. For supervised approach, a maximum
threshold considering 99% of the maximum RE in normal data is used, where RE exceeding
this threshold are said to be anomalous.

Considering the GTM structure, however, one can argue on the effectiveness of an
unsupervised approach for this assessment. Knowing that GTM fits data on the latent space
aiming for a non-Euclidean manifold in the original hyperdimensional space, there is no
discrimination between data in different states. All samples are being fitted to the latent map.
From this premise, the remapping error should be equivalent for all samples, anomalous or
not in the system.

While it is true that only a supervised approach would be adequate for this evaluation,
once normal samples can be extracted from the original data set, the map could be trained
with this extracted sub set, leading to discrimination between anomalous and normal samples.

Besides Remapping Error, similarity between probability distributions can be used as an
index. The same matrix used for the network generation can be used for assessment. From an
unsupervised perspective, little knowledge can be obtained about the process, since there is
no reference. If normal data is known, however, it is possible to see whether external samples
are at least 99% similar to at least one of the samples in the normal data pool. Assuming that
all normal samples are part of the same state, if any external sample is similar to any sample
in the pool, it can be considered normal as well. This idea leads to an unique threshold for
each sample, since maximum similarity for each query sample against the normal data pool

is different.

2.3.3 Graph Theory

Once data is represented as a network and GC is performed, different clusters can be isolated
in the system’s graph. From the LCF procedure, a graph structure is defined with clusters
representing different states in the chemical plant. By defining a criterion for isolating the
normal group, biggest cluster for example, a clear distinction between outliers and normal
samples can be established.

Given a similarity criteria that creates the network in the first place, new data can be added
to it, where LCF can constantly re-evaluate the network and assess whether data is classified
as normal or anomaly. From that point on, monitoring can be performed online, while, if

necessary, one can visualize the system through the network being currently updated.
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2.4 Proposed Methodology (GTM+GT)

The main methodology explored in this work involves two key elements: extraction of
essential information and effective data clustering. This is achieved by combining GTM and
Graph Theory[75]. Primarily, GTM reduces data to a 2D latent plot, removing redundant
and irrelevant information from the original data set. Every sample in the latent space has a
unique PD profile, which is used for similarity assessment, as represented schematically in
Figure 2.10 for two responsibility vectors ry and r.

ry mr l =N HNE ? N N
. 2
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Fig. 2.10 Correlation assessment between two samples using the same GTM grid.

Each sample’s PD can be expanded in a vector, which then is used for squared Pearson
product-moment correlation coefficient (r?) calculation. Each assessment between samples
fills one element of the AM. Once all samples are cross-evaluated, AM construction is
finished.

With the AM built, LCF can cluster data into groups with similar characteristics. For
unsupervised fault identification, it is assumed that faults are a minority of the system and
due to their faulty nature, their behavior is usually more erratic, i.e., less stable. Normal
operational data, on the other hand, represents generally a majority of the samples available,
where data itself is stable. From a graph theory perspective, this means that normal data has
a far higher number of connected nodes combined with higher connection density, which is
used as reference for identifying the optimal Normal Cluster (NC). It is also important to
notice that anomalous data might be detected as not one cluster, but several, representing

different fault characteristics or different states within one fault development over time.
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2.4.1 AM Construction

The benefit of GTM is to extract only relevant information for assessing similarity between
data. How to calculate it properly, however, becomes the challenge. It was presented earlier
that r2 was used for calculation. The reason behind this assumption, however, was not
clarified. PD profiles are analogous to images, where comparing two images relies on
evaluating the discrepancies in pixels. From image processing, similarity can be defined
according to structural discrepancies, also called Structural Similarity (SSIM)[97]. It relies
on three distinct features: luminance, contrast and structure, described by the Equations 2.28

to 2.30[98], respectively, for two PD (responsibility) vectors ry and r;.

2rir +C
l = 2.28
ry,rp r_12 -l-EZ + Cl ( )
261'1 Grz + Cz
_ 2.29
T 52162 1 G 2.29)
Orr, +C3
Stiry = oy = — (2.30)
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where o is standard deviation, rj and r; are the average values of ry and r; and C; are
arbitrary constants to avoid instability when the denominator is very close to zero. Gy, is

shown in Equation 2.31.

(r1;i—11)(ri —12) (2.31)

Orir, =

-

G-1

i=1

remembering that G is the number of nodes in latent space assuming a regular grid. Lumi-
nance considers differences in the average PD value, contrast compares variance changes in
PDs and structure calculates the correlation between PDs. When two images are compared to
assess degradation, for example, all those three elements are important and equally relevant.
For PD evaluation, however, luminance and contrast are far less important than structural
comparison. Figure 2.11 shows the usual PD for two samples in a GTM map.

When images are compared, all pixels have important information and therefore all
three indexes are relevant, trying to extract all tiny nuances in both images. GTM PDs are
much more crude and limited in their representation, occupying specific regions of the map.
Dissimilar samples will occupy different regions in the map, resulting in low similarity.
Similar samples will overlap and be somewhat similar. This structural assessment depicted
in Equation 2.28 is enough for our applications. It is important to notice that given some

mathematical manipulation, Equation 2.28 corresponds directly to 2.
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Fig. 2.11 GTM PD for two samples in a trained map.

Assessing similarity between all samples in the system, then, is being portrayed as simple
r? calculation. Depending on the map size chosen for GTM, however, each PD vector can
easily go to thousands of variables. Even for small map sizes such as 10 x 10, there are 100
features being compared between samples for similarity assessment. Knowing that samples
have local PD, calculating solely correlation between samples is not enough, since it would
result in very low similarity for any samples marginally different. In order to cope with that,
good practices recommend local assessment, by creating a moving window, which slides
point by point throughout both latent grids. Once all local values are calculated, an average
similarity is calculated and integrated to A, the AM, as shown in Equation 2.32 for ry and r,
presented previously.
| W

arn = -

W 2 (2.32)

I’lji"zj

j=1

where ry; and ry; are local vectors and W' is the number of local windows. Once similarity
assessment is finished for all responsibility combinations, AM can be constructed. Finally,
for any AM very low correlation values are recurrent (< 107>). In order to keep the structure
of the network intact while discarding irrelevant correlation values, a low threshold (1079)
is set to cut all similarity values below it. Determining a low threshold rather than a high
threshold is more important, excluding correlation by chance and reducing considerably the

number of unnecessary connections.

2.4.2 Normal Cluster Refinement

Once GTM map is trained, AM can be generated, resulting in a network representing the

system. GC is then performed using LCF, isolating clusters with different characteristics.
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The biggest stable one is defined as the normal cluster (NC), where the remaining ones
are defined as anomalous clusters. According to this description, the NC is susceptible to
anomaly contamination. Assuming a big gradient in similarity between different groups
of samples, it is possible for faults that are somewhat similar with the normal data to be
misjudged as belonging to this cluster.

Very dissimilar anomalies will be far from normality in the GTM map created, but slightly
dissimilar anomalies might be close enough to normal data. From this premise, an iterative
methodology using the GTM and Graph Theory cycle is concurrently proposed, where only
the sub-data set belonging to the NC is used for GTM retraining, leading to sub-graphs and
new clustering results. Once data with a smaller similarity range is chosen for retraining, it is
more likely for marginally dissimilar samples to be excluded from the NC, increasing the
likelihood of clearer final clusters. Figure 2.12 shows the entire flow of this procedure.

Once NC stops changing its size, i.e., when no more samples are excluded from the cluster,
the final NC is obtained. One important aspect to notice is that LCF’s resolution parameter
A described in Equation 19 is updated every iteration, which regulates the importance of
connections inside and outside the cluster. Higher A means more clusters and lower A results
in fewer clusters. If the data set does not change in size, an initial adjustment is enough. If
the system remains the same, but the data change size, the clustering results can be affected,
pointing one downside of the modularity approach, called resolution limit[92, 99]. Its effect
is usually felt on big data networks, where small communities are hard to detect unless
subnetworks are extracted and A is adjusted.

For the iterative methodology described, knowing that the amount of data decreases over
iterations, the likelihood of one cluster splitting into smaller ones is big if the parameter is

not adjusted. From this premise, A is adjusted according to Equation 2.33.

Ailit 1
li

Aip1 = (2.33)
where /; is the number of samples under GTM training at iteration i and A, is the respective
resolution parameter. The initial value for A depends on the data set involved, by evaluating
how many clusters are being generated. There is a connection between the density of
connections in the network, and the likelihood of fewer clusters being the optimal solution
for LCF. When A is too big, big clusters can be split in two or more smaller clusters, even
though their connection is evident. When A is too small, clusters with different characteristics
connected by a few links can be misguidedly brought together. An intermediary value is

recommend, so to avoid those issues.
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Fig. 2.12 Schematic representation of the proposed fault detection procedure, considering
NC refinement.

Along with the update of the resolution parameter, there is another aspect that needs
to be taken into account related to how to determine the hyperparameters. As mentioned
previously, assessing similarity is related to the PDs profiles of each sample in the map. If
samples are similar, there must be some overlap between them, so that a higher similarity
value is obtained. Regardless of the criterion, cross-validation is used for determining the
best combination of parameters. A grid search like structure is created, were all possible
combinations of hyperparameters are tested, according to pre-determined values assigned to
each hyperparameter. By using good practices and the right criterion, overfit can be avoided.
Some issues, however, might still arise from a similarity assessment perspective. Depending
on the range of those values, data’s PD profiles may be too concentrated, to the point where
even really similar data has low similarity. As the clusters get small, and fewer data are used
for training, the likelihood of low similarity values is high, which compromises clustering,
even with A update. The number of RBFs and their width affect negatively the map. If

the number of RBFs is far too great and their width is too small, even without overfitting
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obtaining meaningful AM can be difficult. Determining a reasonable number of RBFs, thus,
is desirable.

In order to cope with that, Bayesian Information Criterion (BIC)[100] is used for de-
termining the optimal number of RBFs. BIC is formally defined according to Equation
2.34

B= —2In? +kinN (2.34)

where .2 is the maximized value of the likelihood function and k is the number of parameters
needed for model generation. Each term of this equation takes into account different aspects
of model selection. The likelihood term considers how good the model fit is. The second
term penalizes models based on how complex the model is (number of parameters) and how
many samples are involved. By minimizing B, the optimal model can be selected.

BIC is mainly used when the modeling application is descriptive, i.e., when the goal is to
create a model featuring the most meaningful factors influencing the outcome, based on an
assessment of relative importance. For the work explored in this thesis, what is proposed is a
fit based on Gaussian Mixture Models (GMM)[101], where the optimal model reflects the
optimal £ number of Gaussians required for model representation. Since GTM works with
RBFs as Gaussian functions, this value is used as a guide for their determination. Knowing
that the displacement of RBFs in the latent space only accepts values leading to integer square
roots (4,16,25,...), the optimal value found by BIC is adjusted accordingly, always rounded
up. The remaining GTM hyperparameters, RBF width and regularization, are determined by
cross-validation.

2.5 Case Study - Simulation Data Set

Trying to include several topics related to anomaly detection through a data visualization
centered methodology, the combined GTM and Graph Theory strategy was presented. Differ-
ent aspects of fault detection such as multiplicity of anomalies and unsupervised approach
philosophy are being explored using two case studies[75]. This section shows a simulation
data set for single and multiple anomaly scenarios, exploring in a controlled environment the
capabilities of the proposed methodology. Section 2.6 shows results associated to Tennessee
Eastman Process, a virtual chemical plant whose structure mimics real plant behavior, in
order to validate the proposed methodology and further enhance the discussion. Finally,

section 2.7 depicts a real industrial case of an exhaust gas denitration process.
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2.5.1 Single Anomaly Scenarios

In order to evaluate the potential of the combined GTM and Graph Theory approach for
process monitoring, artificial data sets were created, with different goals in mind. Initially,
single anomaly scenarios were generated, so to evaluate the basic premise of the proposed
methodology, i.e., using GTM for similarity assessment, generating the AM and creating the
system graph. Aiming only to evaluate the potential of this procedure, the analysis is limited
to the first discrimination cycle, meaning that normal data refinement is not explored at this
step.

An artificial data consisting of four pseudo-random variables was created. Aiming to
explore the most common types of anomalies encountered in chemical plants, six scenarios
were proposed, according to what can be seen in Figure 2.13. Additive Outliers (AO) are
spikes in the system, usually present when there are sensor malfunctions. Level Shift (LS)
indicate sudden and sustained change in state, sign of sensor non-gauging or unexpected
changes in set-point. Local Trend (LT) represents continuous data drift over time, which
usually appears as disturbances in the system, such as steam leaking or raw material shortage.
Transient Change (TC) occurs when a sudden change is dampened over time. Process control
malfunctions or sudden bursts of pressure might trigger such behavior. Seasonal Change
(SC) is oscillatory behavior, where it can appear as a disturbance, like temperature changes
during day-night cycles, or as pure anomalies when controllers become poorly tuned. Finally,
Variance Change (VC), which as the name suggests, is a result of change in data variation.
Sticking valves are a classic example of such anomaly. For simplicity, all disturbances are
assumed to be happening simultaneously on all variables. Even though it might not represent
chemical plant faults in their entirety, faults can affect several variables in a short period.

For generation of the data sets, four different baselines xp = (0.2,0.4,0.6,0.8) were
created, where both random Gaussian noise and Brownian motion were used for defining the

overall structure of each variable x;, as presented in Equation 2.35.

X; = xp,J +0.005g +0.02b (2.35)

where xy, is the i'" baseline value, J is a vector of ones, g is a random Gaussian noise vector
from O to 1 and b is a Brownian motion vector with variance of norm distribution equal to 1.

Using Equation 33, four pseudo-random variables of 1000 samples were created, where
part of those samples were altered for each scenario to be the anomalies. Equations 2.36
shows the general structure of each fault described for a variable x;, except for VC described
in Equation 2.37, keeping in mind that all faults happen simultaneously in all variables.
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Xout; = Xi(tj) + 0j (2.36)

Xoutyc = Xi(tvc) +0vc (2.37)

where Xouy; 18 the j anomalous input vector, tj is the j* anomaly time vector, 0;j is the
defined anomaly itself for the j anomaly and x;(fy¢) is the faulty input average for VC.
Table 2.1 shows all t; and oj parameters used for the six scenarios.

Table 2.1 Parameters for single anomaly scenarios generation.

tj 0;
AO  tao = [200 400 600 800] 040 =[0.5 —0.50.2 —0.2]

LS tys=[751752 --- 1000] ors = 0.15j
LT tr= [601 602 --- 1000] ort = 0.0025 (tLT — 600)

6(tpc—500)
0

SC  tgc = [501502 -+ 1000] osc = 0.2sin [4ﬂ<ts5c06500>]
VC  tyc = [501502 --- 750] ove = 7[xitve — Xitvel

The dynamic information was added using time delayed variables. For these scenarios,
delay d was defined as 1. Initial A was defined as 1.

For unsupervised PCA, Q and T2 plots are presented in Figures 2.14 and 2.15, respectively.
The lack of discrimination between both normal and anomalous is clear, indicating poor
monitoring performance. Except for AO and VC, data cannot easily be discriminated in

distinct clusters. PCA’s simplistic approach and inherent linear capabilities led to such results.
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Fig. 2.14 Unsupervised PCA Q plot for single anomaly scenarios.
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Fig. 2.15 Unsupervised PCA T2 plots for single anomaly scenarios.

Supervised PCA results can be seen on Figures 2.16 and 2.17, where only normal data
is used for PCA model construction and, then, anomalies use this model for Q and T2
calculation. Compared to the previous unsupervised approach, a slight improvement is
noticeable. For some scenarios, however, such as LT, SC and TC, discrimination is rather
poor. Despite knowing which samples are which, PCA’s linear nature still takes a toll on the
overall fault identification performance.

PCA does not include any information regarding the dynamic of the system, which is
unfair once the data used is time dependent. The insertion of dynamics here is presented
initially using DPCA. While it is true that adding dynamic information provides better insight
on the relationship between current and past samples, positive and negative aspects are worth
mentioning. In cases where faults are sudden and not sustained, such as AO, not only outliers
are detected, but nearby normal data, due to the delay. On the other hand, for faults where
anomalies are set only due to their dynamic behavior, some advantages might arise from
it. In SC, for example, anomalous samples cross the normal data range, even though their
dynamic characteristics are completely different. Figures 2.18 and 2.19 shows unsupervised
DPCA Q and T? plots.
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Fig. 2.16 Supervised PCA Q plots for single anomaly scenarios.
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Fig. 2.17 Supervised PCA T? plots for single anomaly scenarios.
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Fig. 2.18 Unsupervised DPCA Q plots for single anomaly scenarios.
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Fig. 2.19 Unsupervised DPCA T2 plots for single anomaly scenarios.

By relying on dynamic information, discrimination was improved, particularly for LS,

TC and VC. Discrimination is not perfect for all samples, but a clear visualization of two
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or more clusters with distinct characteristics is possible. Evidently, the linear nature of the
methodology is still present, which hinders performance. Supervised DPCA, as shown in
Figures 2.20 and 2.21, leads to even better discrimination, as expected. For all scenarios,
anomaly detection was satisfactory, even if not all samples are detected as such.

® Normal
+ Anomaly

Fig. 2.20 Supervised DPCA Q plots for single anomaly scenarios.
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Fig. 2.21 Supervised DPCA T2 plots for single anomaly scenarios.

DPCA’s performance considers evaluating not only variables’ range, but also their dy-

namics. The approach, however, is still linear and, therefore, other aspects related to the

inherent nonlinearity of the data might be compromised. From this premise, Figures 2.22
and 2.23 show, initially, unsupervised kPCA Q and T plots. Compared to the other method-

ologies, a small improvement could be hinted, especially if one considers Q performance as

a monitoring index. Even so, still is not satisfactory enough to confirm its applicability as a

fully unsupervised methodology. Figure 2.24 and 2.25, on the other hand, show supervised

kPCA Q and T? results with a rather improved performance. Except for a few samples in

SC and VC, most detections were near perfect. The use of kernels for transforming the data

had a significant impact in the final discrimination performance, confirming its potential as a

supervised methodology.
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Fig. 2.22 Supervised kPCA Q plots for single anomaly scenarios.
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Fig. 2.23 Supervised kPCA T? plots for single anomaly scenarios.
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Fig. 2.24 Supervised kPCA Q plots for single anomaly scenarios.
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Fig. 2.25 Supervised kPCA T plots for single anomaly scenarios.

As for GTM as a methodology for process monitoring, without considering Graph Theory,

the distinction between unsupervised and supervised approaches is far more evident. The



46 GTM & Graph Theory Combined Approach

latent map is dependent on which samples are being used for training. From a RE, remapping
error, perspective, if all samples present in the system are used for training, both normal and
anomalous samples will adhere similarly to the non-Euclidean manifold created. Little to no
distinction therefore will be attested, as seen in Figure 2.26. As for the similarity assessment
index, slightly better discrimination can be seen, but with little improvement, as shown in
2.27. Supervised GTM, on the other hand, shows a clear evolution on discrimination, since

outliers now hardly adhere to the map, as shown in Figures 2.28 and 2.29.
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Fig. 2.26 Unsupervised GTM RE plots for single anomaly scenarios.
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Fig. 2.27 Unsupervised GTM Similarity index plots for single anomaly scenarios.
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Fig. 2.28 Supervised GTM RE plots for single anomaly scenarios.
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Fig. 2.29 Supervised GTM Similarity index plots for single anomaly scenarios.

Independent Graph Theory analysis, where the AM is constructed by assessing similarity
between the original samples using simple correlation, also had poor performance. The
similarity matrixes could not detect any differences between normal and faulty data, what
compromises the structure of the network generated. Figure 2.30 shows the discrepancy
between Graph Theory AM and GTM/Graph Theory AM for the LT scenario, even though
the same behavior was apparent for all scenarios. GTM highlights relevant information
regarding different states in the plant, where the influence of redundant and unnecessary
information is minimized. If the AM cannot recognize any patterns, the network has similar
connection density everywhere, resulting in one single cluster.

As states before, the combined GTM and Graph Theory has two key features: on one hand
GTM extracts the system relevant information while minimizing the impact of redundant
information, where Graph Theory uses this knowledge for visualization and clustering of
different states. Figure 2.31 and Figure 2.32 show such behavior. Figure 2.31 networks
present all samples without connection, so to ease the visualization of different clusters.

Figure 2.32 networks show all nodes and edges for each network.



2.5 Case Study - Simulation Data Set 49

2) " b ‘
200 0.8 200 0.8
400 0.6 400 0.6
600 04 600 04
800 0.2 800 0.2

1000 0 1000

200 400 600 800 1000 200 400 600 8001000

Fig. 2.30 AM matrix for a) Graph Theory and b) combined GTM and Graph Theory

approaches, considering the LT scenario.
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Fig. 2.31 GTM + Graph Theory networks for single anomaly scenarios represented without
any edges.
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Fig. 2.32 GTM+Graph Theory networks for single anomaly scenarios represented with all
available connections.

For all cases, it is clear that one densely connected cluster is formed, where anomalous
clusters are just scattered. Particularly for time varying faults, it can be seen that discrimina-
tion is not perfect, but close to it. In LT, the variation of the two initial anomalous samples
was not big enough to compensate the inner variation of normal data. It was, therefore,
considered as normal. For SC, within the oscillatory behavior, each sample that crossed
the normal state was said to be normal. As for VC, the samples whose change in variation
was not enough to compensate the noise of the normal state were still considered as normal.
Nonetheless, these results motivate the use of the proposed approach for process monitoring.
One important aspect to be considered is that this approach is fully unsupervised. Compared
to the other unsupervised approaches, the proposed approach outperformed all techniques
presented. Furthermore, it performed as well as or close to the supervised approaches,
revealing how the analysis of the relationship between variables might be enough for data
discrimination.

The idea behind using unsupervised analysis can be misinterpreted as ignoring all knowl-
edge available. It is important to clarify the tone of the analysis proposed. Using unsupervised
approaches for data analyzing does not intend to ignore important information, but rather to
support methodologies already implemented by offering a perspective free of biases, relying
only on the relationship between variables and samples. What is offered is the analysis
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before the analysis, i.e., to not rely on the preconceived notion that all existent information is
reliable.

This simplified case study also gives some insight on the nature of certain anomalies
and their plants. In the case of planned transitions, for example, the system could behave
similarly to the fault presented in LT. Assuming that normal data is only the steady normal
operation data, such transition would be detected as a fault. Once the characteristics of the
transitioned cluster are known, however, one could take this information and incorporate it
to the normal data set, or hide it from the network, or even ignore alerts coming from that
particular cluster. A more comprehensive framework is required, however the potential for

such analysis is present.

2.5.2 Multiple Anomaly Scenario

This scenario considers multiple anomalies in the same data set, where not only normal
and anomalous data have to be discriminated, but also that within anomalies, it should
be possible to discriminate between different types of faults. For this step, the whole
methodology is considered, including normal data refinement, so to compare the evolution
of the discrimination and motivate the application to the Tennessee Eastman Process case
study. The simulation consists of three variables, where two of them are highly correlated. In
order to mimic such behavior, the same Brownian motion sequence was associated to two
variables, with distinct Gaussian noise for each variable. The remaining variable has both
independent Brownian motion and Gaussian noise.

The normal data benchmark was created using Equation 33, with baseline xp = (0.1,0.2,0.3).
Variables x; and x, are correlated. 700 samples were generated, where the first 300 are
associated to normal data and the remaining 400 are split in four different outliers, each with
100 samples. Differently from what was devised in section 2.5.1, the anomalies are now
local, i.e., they do not affect all variables simultaneously, but the structure of the faults still
follows Equation 34. Figure 2.33 shows the variable plot and Table 2.2 details the parameters

involved for each anomaly, including which variables are affected by each anomaly.

Table 2.2 Parameters for multiple anomalies scenario generation.

Variables Affected t 0j
Ol X1 to1 = [301302 --- 400] 007 = 0.0005(tos — 300)
02 X1 & X, toz = [401 402 --- 500] 002 = 0.05
03 X1 & X2 toz = [501 502 --- 600] 003 = 0.089—|—0.005b03
04 X3 toq = [601 602 --- 700] 004 = 0.1bgy
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Fig. 2.33 Multiple anomalies simulation data set, where each color delimits different states.

Each anomaly presented here has a different characteristic. O1 is a slow drift acting on
variable x;. O2 is a sudden sustained change in variable x;, accompanied by variable x;. O3
is a change in correlation values for both x; and x, where the range of the variables does not
change, only the relationship between them. This type of anomaly is particularly difficult to
be detected. Finally, O4 expresses random variation in variable x3, result most likely from
some equipment malfunctioning. The delay d chosen for defining time delayed variables is 1
and the initial A is 1/3.

Figures 2.34 and 2.35 shows the comparison between PCA, DPCA and KPCA for both
unsupervised and supervised approaches. Figure 2.36 shows RE and Similarity assessment
results for GTM.

The case presented now is more complex than the previous one for two reasons. First,
the presence of multiple anomalies itself leads to a more complex representation of data,
where now more than two clusters are necessary for representing the data set. In addition,
now faults are local and not global anymore, what also penalizes how much difference there

1s between each normal and anomalous states.
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Fig. 2.34 PCA, DPCA and KPCA Q monitoring results for both unsupervised and
supervised results, following the color scheme depicted in Figure 2.33.
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Fig. 2.35 PCA, DPCA and KPCA T2 monitoring results for both unsupervised and
supervised results, following the color scheme depicted in Figure 2.33.
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Fig. 2.36 GTM monitoring results for both unsupervised and supervised results, following
the color scheme depicted in Figure 2.33.

PCA, DPCA and KPCA have similar performance, where for both unsupervised and
supervised approaches, finding clean normal and anomalous clusters is not feasible. For
the unsupervised approach, the overlap between different states is small, even though clear
differentiation between them is not possible. For the supervised results, O4 and O2 anomalies
overlap with the normal data set, which is not an indication of good fault detection.

GTM, as expected, is ineffective as an unsupervised methodology, since all data is used
for map training. The supervised approach, however, has a good performance, where most
anomalies are soon detected, even though for anomalies O1, O3 and O4 some samples are
falsely distinguished as normal. For the supervised approach, it should be noticed that the
training data threshold changes for each abnormal sample tested, since it represents the
similarity associated to the maximum similarity value of those samples.

For this case study, the combined approach is fully explored, including refinement of
the NC, according to all steps described in section 2.4.2. Only two cycles were necessary
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for finding the optimal NC, where Figure 2.37 shows the evolution of the NC from the first

network.

Fig. 2.37 Evolution of NC where a) shows data label for normal and anomalous states and b)
shows clustering results.

Initially, all samples are trained, resulting in the first network marked by 1. NC is then
extracted based on the biggest cluster available, showed in 2. A new GTM map is obtained by
training only the NC, which followed by AM calculation results in the new network depicted
in 3. After another NC extraction, showed in 4, further GTM maps and network generation
led to one single cluster, satisfying the criterion established. Once the process is finished,
all networks connections in each step are fed back to the original network, resulting in what
can be seen in Figure 2.38, which shows the clustering results and actual labels of the final
network found.

From the NC perspective, the discrimination obtained is near perfect, where only a few
abnormal samples are not detected. Once more, the key aspect to highlight here is that the
methodology is unsupervised from start, not relying on any labels. Even when compared
with supervised techniques, the proposed methodology outperformed them. It is true that
the methodology was only initially unsupervised, since in later cycles labels were assumed,
similar to a self-learning process. Even so, there was no external knowledge available other
than the relationship between variables and samples. Furthermore, one could also argue
on the nature of the data presented. According to the characteristics of the methodology
presented, it is fair to say that the contaminated data in the NC is similar to the NC itself.
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Fig. 2.38 Final network for the multiple anomalies scenario showing a) clustering results,
where different colors are different clusters, and b) network labeled for reference.

Taking into account the timeline of data, it is common sense to assume that those samples
are anomalous, since all samples around them are. If similarity with the NC is high, however,
considering them as normal has little to no impact on the data set. On a bigger scale, how
reliable was assigning those samples as outliers is the issue.

Besides data discrimination itself, data visualization aspects can also be discussed, related
to the nature of each fault. The structure of the network and the clusters hints on the structure
of the normal and faulty data. The NC obtained is a cluster with high connection density,
i.e., there is a high ratio between the number of nodes and edges. This is an indication
of a stable state, since a lot of samples relate to each other. This is not a characteristic of
normal data only, though. Both O1 and O3 represent data that, while anomalous, are stable.
Understanding the characteristic of those faults, one can investigate further their origin on
a more oriented basis. O2 cluster has a lower density, implying that only a few samples
are similar to each other. This is an indication of constant transition, where samples at the
beginning of the fault might not relate to samples at the end of the fault. Such structure
matches the slow drift structure of O2. Finally, when the behavior is erratic, such as the one
portrayed by O4, each sample has a low likelihood of relating to any other faulty sample,
resulting in isolated nodes, with no connection to other ones whatsoever. Almost all data
belonging to O4 exhibit this behavior. By analyzing not only which clusters were found, but
also what their characteristics are, further insight can be gained on the nature of outliers.
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On Online Monitoring

In order to apply the proposed methodology in a real case study, evaluating the methodology
beyond its training data is fundamental. With that mind, a test data set is presented, so to
motivate the use of GTM and Graph Theory for online monitoring. Figure 2.39 shows the
structure of the test data. The structure of normal and faulty data follows the one shown in
Table 2.2, with different noise and Brownian Motion. In addition, the order of the anomalies

is different.
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Fig. 2.39 Multiple anomalies simulation test data set, where each color delimits different
states.

When evaluating test data, one can assume that the proposed strategy (GTM+GT) has al-
ready detected within the training database which data is normal and which data is anomalous.
From that point on, the analysis is no longer unsupervised. From exclusively a fault detection
perspective, GTM+GT could evaluate test data, however other supervised methods can be
used instead, saving processing time. GTM was the methodology with the best performance
and, therefore, it is used for this assessment.

Figure 2.40 shows supervised RE and Similarity index results for test data, respectively,
using training data’s threshold. Figure 2.41 depicts better the inferred labels according to
GTM, so to highlight the detection performance. Overall, the methodology can detect fairly
well normal and anomalous data, except for a few instances. More importantly, however, is
knowing that there was no detection delay in this scenario, i.e., anomalies were detected as

soon as they occurred.
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Fig. 2.40 GTM monitoring results for both unsupervised and supervised results with the
detection threshold highlighted in black, following the color scheme depicted in Figure 2.39.
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Fig. 2.41 GTM normal and anomalous inferred labels for the test data set.

The normal instances undetected or the anomalous ones wrongly detected as normal
reveal important characteristics, and limitations, regarding the approach taken in this work. In
order to select the NC, GTM+GT relies heavily on similarity, since it depends heavily on the
AM obtained. In the test data, some normal samples deviate from the original NC obtained,
indicating their lack of similarity with that cluster. This limitation hints at applicability
domain issues, where the NC obtained should be broad enough to encapsulate a fair range of
normal states, and it should be considered more thoroughly for future works.

When it comes to anomalies being detected as normal data, however, a different aspect of
similarity can be considered. Knowing that time-delayed variables were used for GTM+GT

evaluation, both variable range and dynamics are being considered for similarity assessment.
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The samples mislabeled as normal, therefore, are indeed similar to the NC in both aspects.
Despite their anomalous nature, they affect little the existent pool of normal data, since their
values are within boundaries of normal data variation. This behavior assumes, evidently,
that normal clusters in the training data set have little contamination. Despite those issues,
however, most of the detection was successful, motivating its application for more complex

scenarios presented in the following section.

2.6 Case Study - Tennessee Eastman Process

2.6.1 Data Characterization

TEP is a realistic virtual industrial process whose data sets are valuable for process control
and monitoring evaluation. The schematics of the plant can be seen in Figure 2.42. The
system consists of eight compounds (A,..., H), 12 manipulated variables and 41 process
(measured) variables. In order to evaluate fault detection capabilities, 21 preprogrammed
faults are available, consisting of both training and test data sets. Each training data set
consists of 500 initial normal samples followed by 480 anomalies.

As for the impact of the outliers on the chemical plant, TEP differs from the scenarios
presented previously. For the simulation data sets, the system was an open loop and each
variable channel was, from an outlier perspective, independent from one another. Each
anomaly, therefore, had no impact on the other variables. TEP variables, on the other hand,
are affected in two different ways. First, depending on the physical structure of the plant,
anomalies in one variable can affect other ones in the system. If the A feed depicted in Figure
2.42 is affected, for example, variables related to the reactor will probably be affected as
well. Moreover, TEP is a closed loop, where several PID controllers are constantly reacting
to changes in the plant. This results in seemingly unrelated variables changing to compensate
the anomaly. TEP is a far more realistic approach to what is experienced in real plants and
it is a more challenging case study to analyze. All manipulated variables and all, but one,
process variables are used as input, giving a total of 52 variables for assessing relationship
between samples. From the literature[57], TEP’s delay d is defined as 2, since a more
complex system needs a bigger delay for dynamic information to be collected.

For the work presented here, not all faults are being considered for analysis. Table
2.3 shows the nine faults chosen for evaluation, considering anomalies with different char-
acteristics. Figure 2.43 shows all nine plots for all TEP variables already centered and

scaled.
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Fig. 2.42 Tennessee Eastman Process flow sheet.

2.6.2 On GTM and Graph Theory Combined Approach

The discussion presented so far evaluated the distinction in performance from a qualitative
point to view, using monitoring plots and networks to assess how well each methodology
could discriminate between normal and anomalous data. From a more quantitative point
of view, however, the following results try to go beyond the visual cue given by those
approaches, even though specially from a network analysis perspective, those cues bring the
entire system to an easier representation. For the proposed approach, outlier assessment relies
on the final network obtained for each scenario, by checking normal and anomalous clusters.
Figure 2.44 and Figure 2.45 show the networks obtained, with and without connections.

Table 2.4 shows the confusion indexes for each scenario. Confusion indexes consists of
evaluating four different, yet related, values for assessing outlier detection performance. True
positive (TP) shows how many samples were correctly detected as outliers. True negative
(TN) shows how many samples were correctly identified as normal. False positive (FP)
shows the ratio of normal samples falsely detected as anomalies. False negative (FN) shows
the ratio of abnormal samples wrongly detected as normal samples. True indexes should be
close to one and false indexes should be close to zero.
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Table 2.3 Preprogrammed faults in TEP process.

Fault ID Description Type
F1 A/C feed ratio, B composition constant Step
F2 B composition, A/C ratio constant Step
F5 Condenser cooling water inlet temperature Step
F6 A feed loss Step
F7 C header pressure loss - Reduced Availability  Variation
F8 A,B,C feed composition Variation

F12 Condenser colling water inlet temperature Variation
F13 Reaction kinetics Slow Drift
F17 Unknown ?

Table 2.4 Confusion matrix for all scenarios.

F1 F2 F5 F6 F7 F8 FI12 F13 FI17
TP 994 100 100 100 100 96.6 93.6 97.0 944
FP 06 130 114 136 0.2 0 0 0.8 14.2
TN 994 874 88.6 864 99.8 100 100 99.2 8538
FN 0.6 0 0 0 0 34 64 3.0 5.6

When GTM and Graph Theory are combined for detection, there is overall good anomaly
detection. For all step faults, detection is near perfect and even for the other faults, contamina-
tion of the normal database is small. There is a trade-off associated to this detection, however,
as it can be seen by the FP results. Depending on the scenario, a significant percentage of
data is considered anomalous. According to the similarity principle considered, it is fair to
say that those samples do not relate much with the existent normal data set. Knowing that
the normal samples are essentially the same for all scenarios, the outliers have an influence
on the process. GTM training involves initially all samples, which led to different initial
maps for each scenario, as one would expect. This discrepancy can be augmented over the
cycles, leading to different final maps for the NC where certain samples are more likely to
detach than others do. F2, F5, F6 and F17 networks have a substantial part of normal samples
detached, where most of them are recurrent in at least two of those clusters, corroborating
the fact that certain samples are more prone to detachment due to their dissimilarity. When
creating the network, it is undesirable to lose too many samples, since the inner variation of
the data set can be compromised. This effect, however, is not big, does not affect all scenarios
and it helps with the faulty detection itself.

Along with the discrimination itself, certain aspects of visualization can also be taken

into account. The structure of anomalous clusters reveal important information about the
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Fig. 2.43 Input variable plot for TEP preprogrammed faults.

nature of the faults. For F1 and F2, for example, the step faults eventually led to a second
stable state, which can be identified by the formation of a second big, densely connected
cluster. For both cases, however, the initial transition is characterized by disconnected or
poorly connected clusters. For other scenarios, clusters as sparse as their anomalies indicate.
F8, for example, is a random variation fault, which is associated to almost no connection
between anomalous samples. Analyzing the visual aspect of the formed clusters, therefore,
can lead to different insights related to the process.

On Normal Cluster Refinement

One of the key aspects of the methodology presented is how to clean the NC obtained in the
first GTM + Graph Theory cycle, by retraining that data. The impact of this assessment is
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worthy of analysis. Figure 2.46 shows the evolution of the NC size, along with the amount
of normal samples contained in it. It is important to recall that 500 samples were said to be
normal.

For some scenarios, such as F1, F2 and F6, discrimination on the first cycle is already
good, where further refinement eliminates aim to remove outliers whose similarity with the
normal data is high. For other scenarios, the initial NC has far too many outliers, which are
gradually discarded as the methodology evolves. F5, F7 and F17 in particular start with at
least 800 samples in total, where gradually the NC is brought to a size where not only normal
samples are still the majority, but also the number of outliers is reduced drastically.

The reason why refinement is necessary is directly connected with similarity assessment
and GTM training. Considering F5, for example, the first cycle of the GTM+GT methodology
failed to discriminate between normal and anomalous samples, but it managed to remove
those samples whose variation was big compared to the remaining samples. By reducing the
overall variation in the following sub-data sets, samples that were similar before can be now
be better discriminated. Figure 2.47 shows the first and last networks for F5.

When data has significant inner variation, dissimilar groups of data might be brought
together to a single cluster misguidedly, reaffirming the need of a refinement approach, which

can handle better such dissimilarity assessment.
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Fig. 2.44 GTM + Graph Theory networks for TEP preprogrammed faults, showing all
available connections.
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Fig. 2.45 GTM + Graph Theory networks for TEP preprogrammed faults, without edges.
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a)

Fig. 2.47 a) First and b) last network obtained using GTM + GT proposed method for F5

2.6.3 On Data Labeling and Fault Detection

Knowing the unsupervised nature of the proposed methodology, along with the common
understanding that supervised approaches should be inherently superior, the TEP case study
tries to challenge this notion, by presenting results from both ends of the spectrum.

For unsupervised PCA and DPCA, Q and T? thresholds alone do not lead to good results,
since there is no clear distinction between different data groups. Instead, k-means clustering
algorithm of the PCA subspace is used for evaluation, aiming to find two distinct clusters, one
normal and one anomalous. The optimal number of PC is determined when the cumulative
component contribution reaches 99%. Unsupervised GTM, as mentioned before, has no
potential for discrimination, since all data is used for the map training and, thus, it is not
being considered. For Supervised PCA and DPCA Q and T? thresholds are being used for
delimiting normal data regions, where values exceeding those thresholds are considered
anomalous. Supervised GTM uses RE for assessing faulty samples, also relying on a RE
threshold.

Initially, for the unsupervised approaches, Table 2.5 and Table 2.6 shows how PCA,
DPCA and the proposed approach perform when trying to discriminate clusters with different
characteristics, by showing TN and FN results. Figure 2.48 to 2.53 show Q and T2 plots for
PCA, DPCA and KPCA.

When evaluating the performance of data discrimination for unsupervised anomaly
detection, two points are important. First, the majority of normal samples, used as reference
since samples’ true label is unknown, should belong to the NC. Second, as few anomalies as

possible should be contaminating the NC. Table 2.5 and Table 2.6 summarize those results,
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Table 2.5 TN in percentage for unsupervised approaches.

F1 F2 F5 F6 F7 F8 FI12 F13 FI17

GTM+GT 994 874 88.6 864 99.8 100 100 99.2 85.8
Uns.PCA 100 100 100 100 100 100 100 100 80.8
Uns.DPCA 100 100 100 100 100 100 100 100 81.9
Uns.KPCA 100 100 100 100 100 100 100 100 82.3
Uns.GTM 100 100 100 100 100 100 100 100 100

Table 2.6 FN in percentage for unsupervised approaches.

F1 F2 F5 F6 F7 F8 F12 F13  F17

GTM+GT 0.6 0 0 0 0 34 6.4 3.0 5.6
Uns.PCA 712 229 852 160 810 640 67.7 756 3583
Uns.DPCA 50.8 231 854 162 806 744 673 792 358.1
Uns.KPCA 403 187 604 10.7 813 557 593 624 57.6
Uns.GTM ~100 ~100 ~100 ~100 ~100 ~100 ~100 ~100 ~100

revealing that the proposed methodology outperforms PCA and DPCA for all scenarios.
As an unsupervised methodology for discrimination, relying on k-means is at best naive,
since knowing with certainty the number of clusters existent in the system is unlikely. Even
so, for F2 and F6, two step faults, discrimination was fair, with roughly 20% of the data
contaminating the samples. The proposed approach, on the other hand detected pretty well
step faults, with close to perfect discrimination. For all other anomalies, discrimination was

still high, even with some contamination.
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Fig. 2.48 Unsupervised PCA Q plots for TEP.



70 GTM & Graph Theory Combined Approach

@ Normal
+ Anomaly
80 150
60 ) B
1:;:{ 100 )
o~ !
1’% ? o :
50 i
0 0
U 500 1000 0 500 1000 0 500 1000
time time time
F1 F2 F5
80 150 80

500
time time

F13 F17

Fig. 2.49 Unsupervised PCA T? plots for TEP.
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Fig. 2.50 Unsupervised DPCA Q plots for TEP.
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Fig. 2.51 Unsupervised DPCA T2 plots for TEP.
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Fig. 2.52 Unsupervised KPCA Q plots for TEP.
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Fig. 2.53 Unsupervised KPCA T2 plots for TEP.

Table 2.7 shows the incidence of undetected outliers for all supervised approaches tested
and the proposed unsupervised approach. Since normal data is known beforehand, there is
no need to assess the amount of normal samples undetected. Figures 2.54 to 2.59 show Q
and T2 plots for supervised PCA, DPCA and KPCA and Figures 2.60 and 2.61 shows RE
and similarity plots for supervised GTM.

Among the supervised techniques, DPCA had the best performance overall, where despite
poor detection on F17, the remaining scenarios had good detection performance. PCA, KPCA
and GTM struggled to discriminate correctly FS. The RE plot for this fault shows that part of
the anomalous data adheres well to the map, which is a sign of similarity with the normal

data. As mentioned in the previous section, the proposed methodology can handle such issue,
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by retraining NC data until the inner variation of the data set is small enough to discriminate
seemingly similar, yet dissimilar, data groups.

The unsupervised proposed methodology here performed as well as the best other method-
ologies presented. This reinforces the use of GTM+GT as a tool for both data visualization

and fault detection.

Table 2.7 FN in percentage for supervised approaches and the proposed methodology.

F1 F2 F5 F6 F7 F8 FI12 F13 Fl17
GTM+GT First 1.6 22 584 08 402 14 76 3.0 322
GTM+GT Last 0.6 0 0 0 0 34 64 30 56
Sup. PCA 042 250 492 O 0 2.5 5 312 11.25
Sup. DPCA 0 208 O 0 0 187 1.87 2.08 1292
0
0

Sup. KPCA  0.80 1.81 41.6 1.20 281 422 3.01 12.05
Sup. GTM 0 208 517 O 271 375 312 10
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Fig. 2.55 Supervised PCA T2 plots for TEP.
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Fig. 2.56 Supervised DPCA Q plots for TEP.
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Fig. 2.57 Supervised DPCA T2 plots for TEP.
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Fig. 2.61 Similarity plots for supervised GTM.

2.6.4 On Online Monitoring

Similarly to what was presented in section 2.5.2, discussing the proposed strategy is important
for assessing its main benefits and drawbacks. Based on the data obtained in the literature[47],
test data sets are available for all preprogrammed faults. The source of each fault is the
same for training and test data sets. 160 normal samples are initially displayed, followed by
960 anomalous instances. Based on the results presented in section 2.6.3, DPCA was the
supervised methodology with the best performance. Figures 2.62 and 2.63, therefore, show
DPCA results for each fault. Figure 2.64 shows the inferred labels using DPCA.
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Fig. 2.62 DPCA Q monitoring results for test data.
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Fig. 2.63 DPCA Q monitoring results for test data.
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Fig. 2.64 DPCA normal and anomalous inferred labels for test data.

For most scenarios, detection was good, with little delay or no delay at all. Table 2.8
shows the detection delay for all cases, keeping in mind that FN and FP results are presented
in percentages. Since the amount of normal is small, FN values are significantly larger than
the ones presented in Table 2.7 Despite the fact that for F2 and F13, for example, there
was some delay involved, those delays are small when compared to the overall evolution of
anomalies.
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Table 2.8 DPCA Detection delay, FN and FP for test data.

F1 F2 F5 F6 F7 F8 F12 FI13 F17

Detection Delay (Samples) 1 20 1 1 0 19 5 35 17
FN (%) 0.62 125 0.62 0.62 0 11.87 3.12 21.87 10.62
FP (%) 0 1.8 380 10.13 0.12 126 0.60 0.63 13.29

F8 and F12 presented poor detection, where lots of anomalies were mislabeled as normal
instances, especially because mislabeling was recurrent. F8 and F12 are random faults,
meaning that their behavior is erratic, and as such it can come back to the normal state
momentarily. Random behavior can be very difficult to predict and if both range and
dynamics match the one in the normal state, mislabeling will occur.

Another aspect to be considered is that ideally one would assume that the NC contains
only significant normal samples, but contamination is a reality, affecting the similarity
assessment of future samples. Considering the results presented in Table 2.7, F8 and F12
have a fair amount of contamination in their NC. The presence of such anomalous instances
might lead to other anomalies correlating to those particular samples. It is important to notice,
however, that due to the nature of those faults and GTM+GT’s methodology, it is more likely
that those samples have little influence in the overall results. In the end, the application of
GTM+GT as a tool for online process monitoring is viable and it showed good performance,
even though depending on the specific fault nature, detection performance might suffer some

degradation.

2.7 Case Study - Exhaust Gas Denitration Process

The final case study explores an Exhaust Gas Denitration Process at Mitsui Chemicals, Inc.
NHj is injected into a denitration reactor, where exhaust gas passes through a catalytic layer,
and NO, is decomposed into N, and water vapor. The reactions are established as described
below:

4NO + 4NHz+ 20, — 4N, + 6H,0 (2.38)
NO + NO,+ 2NH3 — 2N, + 3H,0 (2.39)

The interest (output) variables in this system are the denitration outlet NH3, denitration
outlet NO, and outlet gas duct NO,. Among all variables available for measurement, 37 were
used for assessing normal and anomalous states. Two distinct case studies were considered,

each with 2000 samples, where both normal and anomalous data coexist. The labeling was
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provided by operators in locu, who judged which samples would be normal and anomalous.
By referring to those labels and the results obtained from different methodologies, we aim to
assess, besides fault detection itself, the reliability of such labeling. Table 2.9 presents extra
information on each case study.

Table 2.9 Case study description.

#Normal Samples #Anomalous samples
Case A 1200 800
Case B 1430 570

Figures 2.65 to 2.68 shows Case A and B results, respectively, for PCA, DPCA, Kernel
PCA and GTM. For Case A, regardless of the technique used, it is clear that even for
supervised approaches discrimination is poor if one assumes correct labeling. Supervised
DPCA, Kernel PCA and GTM all fail to exclude the beginning of the anomaly, which might
be an indication that the label defined by operators is only roughly discriminating between
distinct states. Case B also shows a poor discrimination, where only supervised GTM has
slightly better results. Unsupervised approaches still perform poorly, as expected, but GTM
can discriminate to a certain extent. Similarity, however, is not really effective on normal and
anomalous data, where Q shows a more promising potential.

For unsupervised GTM, using similarity for discrimination is difficult, where the inner
similarities for each data group results in similar maximum values. For the supervised
approach, even though the visualization of the concept is difficult, its logic is more coherent.
A varying threshold reflects how different samples can relate to the normal data set, even if

their similarity is not as high.
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Fig. 2.65 Case A PCA, DPCA, KPCA T2 and GTM similarity monitoring results for both
unsupervised and supervised results, where blue samples are normal and red, anomalous.
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Fig. 2.66 Case A PCA, DPCA, KPCA Q and GTM RE monitoring results for both
unsupervised and supervised results, where blue samples are normal and red, anomalous.
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Fig. 2.67 Case B PCA, DPCA, KPCA T2 and GTM similarity monitoring results for both
unsupervised and supervised results, where blue samples are normal and red, anomalous.
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Fig. 2.68 Case B PCA, DPCA, KPCA Q and GTM RE monitoring results for both
unsupervised and supervised results, where blue samples are normal and red, anomalous.

From O, T 2 RE and similarity perspective alone, however, it is difficult to say which is

the reason for samples to belong to one or another cluster. Figure 2.69 shows the detection
results for GTM+GT on both Case A and Case B. Complementary, the network presented in
Figure 2.70 takes GTM information and highlights it, showing clearly how some outliers

are actually rather similar to the NC, to the point of correlating with lots of samples. The

proposed approach not only aims to discriminate data, but also gives unique insights on
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the nature of distinct anomalies. What was complicated to assess using the aforementioned
indexes becomes much easier to grasp.

As for the reliability of the labeling presented, this example motivates the use of GTM+GT
as an unsupervised methodology, since normal data was probably mislabeled as anomaly
by the operators. From PCA-based methodologies and GTM alone, one could even argue
that part of the anomalies mislabeled as normal are indeed normal, according to a consensus.
GTM+GT, however, can identify to what extent are those samples similar to the NC, giving
a more reliable tool for judgment. Being able to locate the borderline between normal and
anomalous states, especially the instances close to the true beginning of the anomaly, is
fundamental to better understand the origin of such deviation.

Case B, on the other hand, due to its higher complexity did not perform as well as expected.
GTM'’s similarity assessment and LCF’s clustering narrowed the final NC encountered. In
addition, since the anomaly behaves similarly to the normal state in many instants, some of its
samples were mislabeled as normal. Even with those drawbacks, however, the network shows
that part of the normal data undetected is very similar to the NC, only suffering from LCF’s
restriction. From a practical point of view, that data could be incorporated to the NC, once
some expert knowledge can confirm its nature. Once again, the assessment proposed here
does not ignore expert knowledge, but rather uses it as support for validating and confirming
true states in the chemical plant.

Despite the results presented, these scenarios show one key limitation to be explored in
the future. The notion of unstable normal states is, perhaps, the biggest challenge faced by
GTM+GT. Expert knowledge and statistical analysis need to be merged in order to overcome
this issue. A semi-supervised strategy would be desirable, combining bits of truly reliable
information with unsupervised data clustering. Operators could focus on assessing important

moments of the process and use this information to evaluate the entire process span.
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Fig. 2.70 GTM+GT results for cases A and B, showing reference labels and clustering
results.






Chapter 3

Applicability Domain & Fault Detection

3.1 Applicability Domain

AD represents to what extent a model can be used to predict other data, being developed
originally to deal with quantitative structure activity relationships (QSAR)[102, 103] and
quantitative structure property relationships (QSPR)[104, 105]. Analyzing AD aspects can
lead to multivariate statistical monitoring, where model accuracy can be monitored through
its AD over time3,17,18][3, 31, 32].

Here, the concept of prediction trustworthiness is particularly important. How much one
trusts in the prediction is a key element of AD. There are rather distinct approaches which
tackle this concept, however the essence of the analysis is to pursue this notion of reliable
predictions[106].

Convex-hull methods, for example, try to encapsulate reliable data within a region in
space, where data beyond that hull exceeds its AD, considered faulty[107, 108]. These
methods establish this hull with concrete and well-defined boundaries. Such boundaries
might lead to complications, however, since it assumes complete reliability on the training
data used in the first place. Furthermore, how the boundaries are established is a further
complication if complex, nonlinear boundaries are required, since most classic convex-hull
methods have a geometrical approach[109].

Density estimation based approaches create fuzzy probability clouds to define the variable
space[110, 111]. Aside from mere outlier detection, density estimation can be used for
support of other applications, such as soft sensors[112]. Defining boundaries, however, may
require certain tuning of several empirical parameters, which constrains how easily can one
apply it for meaningful AD analysis.

In the realm of distance-based methodologies usually lead to less robust, yet more simple,

approaches. T2 and Q statistics are one of the most widespread techniques for assessing
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applicability domain[33]. Both indexes can be applied for PCA and PLS assessing related,
yet different aspects of data. For PCA, T? evaluates how far samples are from the data
distribution based on data variance. Q evaluates pure distance from the PCs hyperplane,
using residuals for calculating projection error. For PLS, the analysis is similar, but it relies
on the reduced PLS matrix. The interpretation is different, where now distance from the
model is assessed. 72 indicates input variation discrepancies in data and Q distance from the
model from prediction residuals.

Another alternative relies on exploring the standard deviation of prediction errors, by
evaluating the same sample with different models coming from the same methodological
source. This can be resulting from ensemble learning[113] or even repeated runs of a
particular non-deterministic methodology([30]. For the study in this work, genetic algorithms
are used for this assessment, even though any non-deterministic strategy can be considered.

The use of standard deviation allows the evaluation of prediction anomalies. Low average
prediction errors should lead to small standard deviations and high prediction errors, to big
standard deviations. When high prediction errors have low standard deviation, for example,
values are being consistently poorly predicted, which is an indication of measurement error

in Y-variables.

3.2 Proposed Strategy

AD is intrinsically related to soft sensor modeling, which can deviate from the general
perspective taken so far. Instead of considering the whole process, one can focus on key
variables in the system and monitor them specifically.

One way to evaluate AD relies on average prediction values. For the work presented in
this thesis, GAPLS and GAWLS are used for the generation of several predictions for each
sample. Standard deviation of output variable prediction errors against the average prediction
error plots can, thus, be easily obtained for all samples, as expressed in Equations 3.1 to 3.3.

L

— y T d,‘
Vpredi = X, = p (3.1)
k=1
1] -2
O, = D1 Z (ypred;k _ypredi) (32)
P—1 k=1
A)’i - |ypredi _)’testi| (33)

where P is the number of available predictions, whether it comes from ensemble or different
Tuns. ypreq, 18 the i"* predicted output value, Yrest; 15 the i"" output reference value and o is the

standard deviation of the i sample prediction errors. 6; shows how consistent the prediction



3.2 Proposed Strategy 97

is for recurrent models being tested against the test data set. Ideally, small prediction errors
lead to small prediction variance, where big prediction errors result in bigger prediction
variance. If the methodology can predict a certain output sample with small error, it is
expected that such prediction is consistent. Alternatively, poorly predicted samples will have
rather different predicted values for different models.

By analyzing this and assuming that the model is reliable, irregularities in predictions
can be assessed, leading to detection of samples with anomalies in the measured Y -values
(output).

This analysis, though, is not the only one available for AD analysis. Other indexes can be
used where the relationship between inputs and outputs can be assessed. Analogous to PCA,
T2 and Q indexes can be applied for model prediction, particularly PLS[33]. The equations
are essentially the same ones presented in Equations 4 and 5, but applied to the reduced PLS
matrix.

Similarly to the supervised approach for PCA, T2 and Q are calculated for training
data first, but now focusing on prediction values rather than data distribution itself, so to
determine a threshold. New test data then, is tested against the model obtained, trying to
relate differences in prediction error with exceeding 72 and Q values. This approach is

applied in this thesis for AD assessment and, as a result, anomaly detection, as well.

3.2.1 Genetic Algorithm Partial Least Squares

Genetic algorithms (GA) are presented in this thesis as a methodology for soft sensor
modeling, which through ensemble prediction leads to faulty data assessment. Specially, but
not limited to, systems with many features, some of those might be redundant or unnecessary
for PLS modeling. From this premise, the best variable set should be optimally selected.
GA can be used for this goal, being based on a direct analogy to evolutionary biology. A
random population with different characteristics will be naturally selected according to
their adaptive potential, being subject to an environment where certain key features lead to
reproduction and survival. Those more fit will reproduce and propagate their features along
several generations[114]. GA-based PLS is an extrapolation of this idea for modeling[34],
whose conceptual representation can be seen in Figure 3.1.

Initially, a population is created with a predetermined number of random chromosomes
whose nonlinear optimization solutions are feasible. To express the suppression (non-
selection) or expression (selection) of a gene (variable) in the chromosome, a continuous
value from O to 1 is used. Assuming a threshold, which in this study is 0.5, values below it are
not selected. If any value is higher, however, the gene is selected. For GAPLS, the genes are

the input features of the system, where PLS models are generated for each chromosome for
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the prediction of an output vector y. In order to find the fittest chromosomes, the predictability
of a model given a training data set is evaluated, according to the index g2, shown in Equation
3.4.

N (o 2
=Y i —yew)” (3.4)

Generate initial chromosomes

Calculate fitness values by cross-
validation (g?-PLS)

r

Selection

r

Crossover, Mutation

The number of

No

iterations exceeds the
predefined limit ?

Output of best combinations of
variables

Fig. 3.1 Schematic representation of GAPLS procedure.

where y; is the i/ output value, Ycv; 1s the i"" value predicted by cross-validation and  is the
average output value. Once all fitness indexes are calculated, the best ones are selected for
cross-over and mutation. Cross-over is the key element for evolution, where chromosomes
interact with each other to create new chromosomes that might be more fit than the previous
ones. Mutation stands for the randomness of a change in one or more genes in a chromosome,
also aiming for better variable sets. Both cross-over and mutation rates are defined in advance,
therefore only a portion of the genes and chromosomes is changed. These steps are repeated
for a preset number of generations. In the end, the best variable combination (chromosome)
in the population is selected and presented as a final solution. Due to its nondeterministic
nature, it is important to notice that for each new GAPLS run, the final solution might be
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different, which is interesting for ensemble prediction purposes, leading to anomaly detection

capabilities.

3.2.2 Genetic Algorithm-based Wavelength Selection
The concept behind GAWLS is similar to GAPLS, since PLS is still being used for modeling.

What changes, however, is how variables are selected[35], since GAWLS selects wavelength
regions instead of individual features. The difference in strategy can be seen in Figure 3.2.
The structure of the chromosome is now different. Two parameters are used for generation:
number of windows, which determines the number of regions to be optimized, and frame
size, indicating the maximum interval of each region. Each two genes represent one region,
where the first value indicates initial wavelength and the second value shows length. The
overall procedure is exactly the same as GAPLS, but the chromosome’s structure is different,

guaranteeing regions to be found and not scattered data.
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Fig. 3.2 GAWLS chromosome coding rule for a data set with Snm sampling.

3.3 Case Study - Flour & Protein Content Data Set

AD is discussed via a GAPLS and GAWLS approach, trying to relate soft sensor performance,
data splitting and Y-anomaly detection, based on an article previously published[30]. The
case study used a flour and protein content data set for evaluation, to be presented in next

section.

3.3.1 Data Characterization

The data analyzed consists of 34 samples data set from different brands and types of flour,
where the protein content was measured in triplicate using two distinct techniques: Fluores-
cence and Near-Infrared (NIR) spectroscopy. There are, then, 102 values in total for each
method.



100 Applicability Domain & Fault Detection

All samples were characterized off-line by a Farinograph analysis, using a Brabender
GmbH & Co. KG, Duisburg, Germany, model FD0234H, and the protein content was
determined by a Hach, Dusseldorf, Germany, Digesdahl Digestion Apparatus. Parallel to that,
online characterization was performed by Fluorescence and NIR spectroscopy. NIR data was
collected via a Bruker Optik GmbH Ettlingen, Germany, Multi Purpose NIR Analyser and
Fluorescence data was collected via a BioViewR sensor (DELTA Light & Optics, Denmark).

NIR spectroscopy has 1150 variables, referring to near infrared reflectance for each
wavelength, uniformly distributed between 800nm and 2758 nm. Fluorescence has 150
variables, represented by the light intensity for several pairs excitation (270 - 550 nm) and
emission (310 - 590 nm) wavelengths. A summary of all this information can be seen in
Table 3.1.

Table 3.1 Fluorescence and NIR spectroscopical summary.

Date Samples Inputs Inferences(Outputs)
Fluorescence = 34x3 150 1
NIR 34x3 1150 1

Two interesting aspects of this case study are worth noting. Firstly, this application differs
from usual online process monitoring. Samples are not time related, even though online NIR
and Fluorescence measurements are possible. Secondly, the number of samples is far smaller
than thousands of data points available in most processes. The techniques applied for online

measurement are explained in the Appendix II and III.

3.3.2 On Applicability Domain and Fault Detection

The analysis portrayed here has an intimate connection with a basic pre-processing philosophy
that is ignored by many researchers: knowing how to define your training and test data for
soft sensor modeling. When it comes to developing a soft sensor of any sort, the way data
is selected has a great impact in the final accuracy and predictive capability of the model
developed. More specifically, the way a data set is split between training and test groups
reflects directly on how consistent and reliable the analysis will be. Ignoring it may lead to
model misunderstanding, which affects any posterior application using that model, such as
soft sensor prediction and anomaly detection.

Regardless of the application, however, the methodology for assessing how adequate the
splitting is does not change. AD is in this section the bridge connecting data splitting with
anomaly detection, using soft sensor modeling results for evaluation. Soft sensor models
can be interpreted from both data splitting and fault detection perspectives, each with its
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own significance and complementary information, where GAPLS and GAWLS, given their

non-deterministic nature, help in the AD analysis, providing different prediction models.
Data Splitting

Different data split set-ups were devised, following a training:test ratio 0.7:0.3, commonly
used. As described in section 3.3.1, the data is composed of 34 flour samples, where for each
sample triplicate experiments were performed, giving a total of 102 values.

Initially two big groups were considered, according to the nature of their splitting: Sample
splitting (SS), where data is split according to the samples, i.e., experiments of the same
sample are kept together, and Experiment splitting (ES), where the samples have no restriction
to be split. Three different strategies for splitting were assumed for each group, resulting in
the six scenarios in total, as shown in Figure 3.3.

Initially, two strategies were applied for both SS and ES. The first method, the most
widely used one, is called Random Selection (RS), where data is randomly split in two
groups, according to a ratio defined in advance. For practical purposes, one random splitting
was chosen and kept this way, allowing the reproducibility of results. For SS, the method
was called Sample Random for differentiation (SR).

The second approach is called Y-ranking (YR), where data is initially sorted from lowest
to highest Y-values. Test data is space evenly along the Y interval, following a given ratio.
For SS, the same approach is Sample Y-ranking (SYR).

Knowing that each sample has three experiments, another splitting was also selected
in the ES group, by choosing one experiment (OE) as test data and two experiments as
training data. Finally, one last splitting in SS was determined, Y-splitting (YS), by selecting
a threshold in Y (Y = 0.85) and splitting the data above and below in training and test data,

respectively. Table 3.2 presents a summarized description.

Table 3.2 Data splitting description summary

Experiment Random Selection (RS) Data is randomly split in training / test data
.. . Data is sorted according to Y, so that test data
Splitting (ES) Y-Ranking (YR) can be selected evenly along Y range
One Experiment (OE) One experiment f;;)r:; :tagelllt :ample is selected
. Y-Splitting (YS) Data is split based on a Y threshold (Y = 0.85)
Sample Splitting Data is grouped in samples and randomly split
(SS) Sample Random (SR)

in training / test data
Data is grouped in samples and sorted
Sample Y-Ranking(SYR) according to Y, so that test data can be
selected evenly along Y range
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Fig. 3.3 Data splitting for flour samples.

Soft Sensor Performance

Initially, GAPLS and GAWLS models were generated for the prediction of protein content,
following the simulation parameters described in Table 3.3. For both GAPLS and GAWLS,
the number of variables selected is usually smaller than the original data set. In order to
ensure that GAWLS, the parameters for frame size and number of intervals were limited to a
combined maximum of 800 variables. Since the original variables set for NIR consists of
1150 variables, fewer variables are guaranteed to be found.

It is important to notice that GAPLS can be applied freely for both NIR and Fluorescence
data, whereas GAWLS, due to its one-dimensional interval selection, can only be applied to
NIR. In addition, GA methods are non-deterministic optimization algorithms, leading, most
likely, to different results every time. Repeating simulations, therefore, is recommended.
From a soft sensor perspective, it gives more reliability to the modeling methodology. For
each fluorescence and NIR predictions, therefore, 30 runs were simulated for all six scenarios.

Table 3.4 and 3.5 present the main quantitative results for GAPLS and GAWLS. Coef-

ficient of determination 72, predictability index ¢ as described in Equation 3.4 and Root
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Table 3.3 GAWLS and GAPLS parameters.

GAPLS GAWLS

Population size 300 150
Generation size 300 150
Frame size - 160
Number of windows - 5
Crossover probability 60% 60%
Mutation probability 5% 5%
Fitness PLS components 10 10

Mean Square Error (RMSE) are used to evaluate model performance. > and rlzw 4 EXpresses
how accurate the model is for training and test data, respectively, where the closer the value
is to one, the more accurate the prediction is. ¢ based 10 fold cross-validation expresses
the predictive power for the model generated, being used to determine the optimal number
of principal components (#PC) and the optimal run among the 30 simulations for each case.
The closer ¢ is to 1, the more predictive the model is. RMSEpred represents the model
error for test data. SVratio represents the proportion of variables selected during GAPLS and
GAWLS.

There is a clear distinction between the performance of Fluorescence and NIR models,
based on rlzm, 4 and RMSE,,.; values. This is most likely due to the nature of NIR data
itself. NIR has more variables available for selection, which potentially allows for a greater
combination of wavelengths for better models. Furthermore, NIR information just might be
more meaningful for representing the flour and protein content data.

As for the differences in split, ES models have overall smaller prediction errors when
compared to SS, where YR and OE present similar performance. YS and SR scenarios
in particular had rather low accuracy. Being that said, however, looking at prediction
errors for NIR it is evident that YS actually has lower prediction error than SR for both
GAPLS and GAWLS, despite rather low r;‘;re 4+ YS even outperforms SYR for the GAPLS
models. Looking at 72, g*> and RMSE alone is not enough to capture the model behavior, not
explaining, therefore, the differences in performance and model quality. AD analysis acts
as a complementary analysis to those indexes, using the prediction results to assess model
performance and presence of anomalies.

Applicability Domain Analysis

One big aspect of modeling results is how to handle RMSE )., values. More than evaluating
the best case scenarios, checking prediction errors on a sample basis can give more infor-
mation on the predictive capabilities of the model created. Figure 3.4 shows GAPLS and
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Table 3.4 GAPLS results for Fluorescence and NIR.

Fluorescence

r? q rared  RMSEpreq #PC SViatio

RS 0.9458 0.8139 0.6613 0.9525 15 0.3891
YR 09507 0.7972 0.8246 0.7223 20  0.3822
OE 0.9336 0.7799 0.7644  0.8183 17  0.3553
YS 0.9552 0.7900 -14.26 2.7053 21 0.3769
SR 09454 0.8261 0.1941 1.7104 29  0.3829
SYR 0.9709 0.8809 0.0480 1.8847 23 04187

NIR

r q2 r?,red RMSEpreq #PC  SViasio

RS 09741 0.9086 0.8897 0.5547 12 0.4897
YR 09694 0.8905 0.9213 0.4879 12 0.4259
OE 09812 0.9086 0.9001 0.5382 11 0.4297
YS 09433 0.8790 -0.460 0.8448 10 0.4925
SR 09872 0.9265 0.6539 1.1201 17  0.4656
SYR 0.9907 0.9488 0.6848 1.0648 19 0.4556

Table 3.5 GAWLS results for NIR.

NIR

r? 7 rared  RMSEpreq #PC SViatio
RS 0.9670 0.9394 0.8600 0.6215 10 0.2436
YR 09553 0.9319 0.9350  0.4440 10 0.2751
OE 0.9648 0.9366 09178  0.4859 10 0.2659
YS 0.9538 0.9305 -1.435  1.0737 10 0.2667
SR 0.9722 0.9430 0.6576  1.0972 10 0.2491
SYR 09827 09713 0.7005  1.0325 10 0.2340

GAWLS prediction results for NIR data, using a Y-Y plot for all data splitting scenarios. Y-Y
plots show the discrepancy between the real and predicted values for all samples.

Overall, it is hard to assess whether GAPLS or GAWLS can generate better models,
since both methodologies outperform the other depending on the scenario. GAPLS selects
wavelengths in a more scattered distribution, whereas GAWLS looks for specific wavelength
intervals with more relevant information about the system. Due to this particular distinction
in the selection algorithm, GAWLS SVratio tends to be smaller than GAPLS’s. The impor-
tant point to be discussed here, however, is related to the samples being predicted. Both
methodologies suffer from this issue, but particularly for GAWLS there are a few samples
that are being poorly predicted. Are those results an indication of model error, sampling error
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Fig. 3.4 Integrated Y-Y plot for all splitting in a) GAPLS and b) GAWLS NIR data.

or poor data splitting? Without going further in the analysis, little can be said just looking at
this plot, even though it gives insight on how samples are being predicted in the big picture.

One of the techniques applied for assessing AD is described in section 3.1, where the
standard deviation of prediction errors for a certain methodology can be plotted against
the average prediction error for each sample. Figure 3.5 shows these plots for GAPLS
Fluorescence and NIR data and GAWLS NIR data.

From a fault detection perspective, the plots shown in Figure 3.5 give valuable insight
regarding which flour samples are more likely to be anomalous. Each data splitting represents
a feasible scenario where data was chosen for the construction of a soft sensor model. By
plotting the standard deviation of prediction errors against the average of those predictions
for all samples in the test data set, one can infer which samples have an odd behavior. It
is expected that samples with low standard deviation will have a lower average prediction
error than those whose standard deviation are higher. When a sample presents low standard
deviation and high average prediction errors, this is an indication of anomaly, particularly
measurement error in the Y-variable.

For the case study discussed here and taking as reference initially GAWLS results, it is
easy to visualize in Figure 3.5 that for all scenarios in ES, one experiment stands out from
the other ones, and that for SS, SYR has at least one triplicate with very discrepant values
around Y = 1.5. For all cases, experiments from the same flour sample were detected to
be anomalous. In the ES scenarios, only one experiment was detected because the other
two anomalous experiments are included in the training data for the model generation. For

SYR, the entire sample stood out as an anomalous scenario, since data was split based on
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Fig. 3.5 Standard deviation and prediction errors plot for Fluorescence GAPLS models and
NIR GAPLS and GAWLS models.

the samples, and not the experiments. The evaluation of the AD of those samples allowed
the detection of anomalous experiments or triplicates, even when the training database was
contaminated with anomalies.

Another interesting aspect can be noticed for the remaining SS scenarios. Taking a closer
look on the SR plot, no sample appears to be anomalous, which is odd considering that
other four different data splitting scenarios detected one sample. By checking its training
data set, however, the presence of the anomalous triplicate was confirmed. In the test data
set presented, therefore, there are no anomalies to be detected, which are reflected on a
seemingly normal plot. A similar behavior can be seen in the YS plot, which suffers from
the same issue as SR. What is, however, the true impact of this assessment?

Here, two different aspects of data are affecting the soft sensor performance: data splitting
and outlier contamination. Depending on the scenario, one effect outweighs the other and
vice-versa. For all ES scenarios, for example, the training data set is contaminated with two

anomalous experiments. Due to the proximity of both training and test data set, however,
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the prediction is not really affected by it. Looking exclusively at prediction accuracy, thus,
would be deceptive, since the anomaly would never be detected. Moreover, if both training
and test data have essentially the same information, regardless of being anomalous or not,
models are generated and predict with great accuracy that particular test data. This shows
how misleading the construction of a model can be if one is not really concerned about which
information is being added on both training and test data sets. One could falsely conclude,
by looking only at the ES scenarios, that the soft sensor methodology performed rather well,
which is not a reliable conclusion whatsoever.

For the SS scenarios, separating entire flour samples decreased the overall accuracy of the
model, but allowed a better visualization of the true nature of the system. Furthermore, for
SYR it showed that one entire triplicate was faulty. This affects SYR prediction error, since
the model is trying to predict samples that do not belong to the AD of the model created. For
YS and SR there is a pronounced combined effect of poor data splitting and training data
contamination that affects the performance of the models generated.

GAPLS results are similar to GAWLS ones, if only NIR results are considered. Fluo-
rescence data can hardly detect the anomalies on ES, since its samples are far too spread to
identify clearly which experiments are anomalous or not. As for the NIR results, GAPLS
results can be said to be somewhat different from the GAWLS ones. All detected experiments
match the ones found by GAWLS in the ES section, but in the SS section, the judgment is
more difficult, since there is no clear detachment of one triplicate compared to the rest of the
data.

Besides the standard deviation of prediction errors, though, the potential of 72 and Q
indexes for AD analysis can also be discussed. This approach takes into account the distance
from the PLS model generated, where T2 is related to changes in input variation for that
model and Q assess the distance from the model in the form of prediction residuals. The
main assumption here is that for low prediction errors, test data 7% and Q would fall within
the training sample range for the same indexes. Based on this principle, higher prediction
errors would have T2 and Q values beyond the training data thresholds. Any samples whose
behavior does not correspond to what was previously mentioned are potentially anomalous.
The threshold is defined as 99% of the maximum value within the training data range for
both indexes. Figure 3.6 to 3.9 shows 7% and Q plots for GAPLS and GAWLS NIR data.

As expected, there was a bigger overlap for both indexes in the ES scenarios than the SS
ones, since training and test data are more similar in the former. With that being said, though,
there is no consistency on which samples are exceeding the threshold and there is no clear
correlation between prediction error and any index, regardless of the methodology used for

model generation.
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In the standard deviation analysis, both ES and SS splits had a general convergence on
which samples were most likely to be anomalous. For 772 and Q analysis, however, different
scenarios led to different faulty samples. Since data splitting has to be carefully considered,
so to avoid false conclusions, having a reliable index behind it whose applicability depends

little on the correct data splitting is desirable.
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Fig. 3.6 T? and prediction errors plot for NIR GAPLS.

The characteristics and interpretation of each index reflect on their performance. T2
is associated to input variation within the model generated. Considering the samples with
highest prediction errors, test 72 values only exceeded the training data range for a significant
amount of samples for the models with the worst accuracy, YS and SR. For the other models
generated, test data shows little correlation between prediction errors and input variation.

Q is associated with prediction residuals and, thus, with the distance from the model. For
GAPLS, distance from the model and prediction error show some correlation, especially for
the SS scenarios, even though there is little discrimination between low and high prediction
errors. This reflects on the consistency of this analysis, where most ES samples are exceeding
the threshold, even for low prediction errors, and for SS all of them exceed the threshold,
also regardless of the prediction error. Q results for GAWLS, on the other hand, could be
considered the best among all 72 and Q results presented. This is not to say that the Q
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Fig. 3.7 T? and prediction errors plot for NIR GAWLS.

is successful on detecting anomalies, but rather that it showed the least inconsistency in
detection. On Figure 3.9, the anomaly detected from the standard deviation approach is
detected in the SYR plot where a high prediction error shows a value of Q within training
data range. The same can be seen for the individual experiments, coming from the same
flour sample, detected on each ES scenarios. Along with those detections, however, several
other distinct samples are being detected as well. In the end, differently from the standard

deviation analysis, 72 and Q indexes are not consistent enough for them to be reliable as

indexes for AD evaluation and, consequently, anomaly detection.
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Chapter 4
Conclusion and Future Plans

Regardless of the application, relying on the data being used for assessment is desirable.
To what extent can one trust on the already available information is challenged here by
showing different aspects of modeling. From applicability domain and data splitting applied
to evaluate soft sensor capabilities to unsupervised approaches used for process monitoring,
the crucial element here is how to not deceive yourself into ignoring information that could
lead to misunderstandings and false conclusions.

Initially, one should be careful on how training and test data sets are created. This is
a basic premise, on which the whole work is based upon. When it comes to developing a
soft sensor of any sort, the way data is selected has a great impact in the final accuracy and
predictive capability of the model developed. Overlooking this matter is recurrent in research;
methodology itself becomes so important that data sets used for test come in second place.
It should be the other way around. How to pursue better modeling is important, but if the
premise of the work relies on biased data sets from the start, very few conclusions can be
taken from any model generated.

Biased data sets not only prevent models from high performance, but also constrains
their application to other aspects of statistical analysis. Predictive modeling and anomaly
detection are two feasible applications that might come from the same modeling source. The
flour data set presented in this work dealt not only with regression models, but also on how
to use those predictions in favor of anomaly detection. GAPLS and GAWLS were used for
modeling, where their non-deterministic structure led to several models generating different
predictions for each sample. Those results were essential for the AD analysis explored in this
case study. By evaluating the average prediction error for each sample against the variation
of such errors, the AD of all scenarios could be assessed and anomalies on Y-values could
be detected. AD is the key element here, acting as a bridge between prediction and fault

detection and allowing intricate reliability assessment.



112 Conclusion and Future Plans

The distinction between ES and SS was an example of this, where the former had high
accuracy models, but with rather narrow AD, and SS had lower prediction accuracy, but with
higher AD. The different perspective on the data led to more substantial info about the nature
of samples. The detection of possible anomalous experiments was possible for both ES and
SS, however a deepened sense of understanding regarding those anomalies was presented by
SS, due to the bigger dissimilarity between data sets.

Complementary to data splitting and AD issues, the use of unsupervised data was another
aspect worth of discussion. It shed some light on the nature of process monitoring and its
relation with supervised data and supervised techniques in practical applications. This part
of the work aimed to challenge the usual notion the supervised approaches are fundamentally
better than unsupervised ones, and by doing so propose a change on how processes can be
analyzed in the future.

The notion of supervision is deeply connected to certainty, and more than, reliability.
Accepting labels without further inquiry is common, due to the inherent sense of ease and
trust associated to them. Such mindset, however, might be harmful if by any reason those
labels do not match the reality of the chemical plant. The notion of permanency is, at most
temporary in a process, so one should be careful with the data being chosen over an extended
period. A false sense of security can be easily manufactured by routine itself or by epistemic
overconfidence, rooted in biases we all carry.

Unsupervised methodologies can approach the process from a fresh perspective, free of
bias. Again, this is not to say supervised information should be ignored, but rather that an
unsupervised layer could support existing methodologies, aiding in process monitoring. This
is only valid, however, if unsupervised methodologies have the potential to perform close to
supervised ones. The simulation data set and TEP case studies aimed to justify the use of an
unsupervised approach, by proposing a combined GTM and Graph Theory approach that
would perform as well, or even outperform, supervised methodologies.

GTM extracts relevant information for similarity assessment of distinct samples, while
minimizing the impact of unnecessary features in such assessment. Graph Theory takes this
information and brings it to another level, by encapsulating similar data through the core
relationship between samples. It is by joining the merits of both methodologies that data
discrimination and visualization could be devised. The results presented here for both case
studies reveal an unexplored potential arisen from the exploration of connections between
data, which has space for further developments. The use of Graph Theory in chemical
engineering, from the samples perspective, is little to no existent.

Considering the developments made so far, however, it is clear that there is a myriad of

developments that can be pursued in the future, so to improve and diversify the range of
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applications of the methodologies described in this work. In the realm of Graph Theory, for
example, network modeling can be explored, trying to fit data in the system by assuming
distinct graph growth models. GTM extensions can be more thoroughly analyzed, so to truly
incorporate system dynamics, allowing a more reliable assessment of the process’ dynamics.

From a practical point of view, the evaluation of real chemical processes brings new
challenges. When it comes to on-line monitoring, for example, GTM+GT performed well
and could handle most faults presented. Analyzing new data and assessing their relationship
depends greatly on NCs obtained. On one hand, Restraining NC’s similarity domain can lead
to future normal samples being mislabeled. This is related to applicability domain issues that
should be considered more thoroughly for future endeavors. On the other hand, anomalies
whose range and dynamics was similar to the normal instances are being mislabeled as well.
One could argue that, because of such similarity, mislabeling has little impact in the existent
data pool. Regardless, properly defining what truly characterizes an anomaly should also be
subjected to more studies.

Moreover, one of the main assumptions regarding the proposed methodology is how
only one normal state exists, facing multiple anomalous scenarios. The presence of multiple
normal states, however, is also possible and very interesting from a research point of view. The
current methodology developed cannot cope with these systems from a purely unsupervised
approach. From this premise, Semi-supervised techniques might be an interesting follow-up
for this research. Bits of information can be gradually added to the data set, aiming to identify
different normal regions in the operational space. In the end, despite the results presented
and the analysis portrayed here, one has to admit that there are so many possible advances

available and paths to pursue in the future.






References

(1]

(2]

(3]

[4]

(6]

(7]
(8]
[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

L. Chiang, R. Braatz, and E. Russell, Fault Detection and Diagnosis in Industrial Systems. Springer
London, 2001.

C. Aldrich and L. Auret, Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning
Methods. Springer, 2013.

H. Kaneko, M. Arakawa, and K. Funatsu, “Applicability domains and accuracy of prediction of soft
sensor models,” AIChE Journal, vol. 57, no. 6, pp. 1506-1513, 2011.

C. Kuehnert, Data-driven Methods for Fault Localization in Process Technology. KIT Scientific
Publishing, 2013.

H. Noura, D. Theilliol, J. Ponsart, and A. Chamseddine, Fault-tolerant Control Systems: Design and
Practical Applications. Springer, 2009.

J. Smith, H. Van Ness, and M. Abbott, Introduction to Chemical Engineering Thermodynamics. McGraw-
Hill, 2005.

R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena. Wiley, 2007.
H. Fogler, Essentials of Chemical Reaction Engineering. Pearson Education, 2010.

W. McCabe, J. Smith, and P. Harriott, Unit Operations of Chemical Engineering. McGraw-Hill
Education, 2005.

N. Olivier-Maget, G. Hétreux, J. M. Le Lann, and M. V. Le Lann, “Model-based fault diagnosis for
hybrid systems: Application on chemical processes,” Computers & Chemical Engineering, vol. 33,
no. 10, pp. 1617-1630, 2009.

M. Canova, S. Midlam-Mohler, P. Pisu, and A. Soliman, “Model-based fault detection and isolation for

a diesel lean trap aftertreatment system,” Control Engineering Practice, vol. 18, no. 11, pp. 1307-1317,
2010.

D. Freedman, Statistical Models: Theory and Practice. Cambridge University Press, 2005.

T. Kourti, “Application of latent variable methods to process control and multivariate statistical process
control in industry,” International Journal of Adaptive Control and Signal Processing, vol. 19, no. 4,
pp. 213-246, 2005.

S. Bersimis, S. Psarakis, and J. Panaretos, “Multivariate statistical process control charts: an overview,”
Quality and Reliability Engineering International, vol. 23, no. 5, pp. 517-543, 2007.

S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault
diagnosis and process monitoring methods on the benchmark tennessee eastman process,” Journal of
Process Control, vol. 22, no. 9, pp. 1567-1581, 2012.

J. Yu, “A particle filter driven dynamic gaussian mixture model approach for complex process monitoring
and fault diagnosis,” Journal of Process Control, vol. 22, no. 4, pp. 778-788, 2012.



116

References

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

D. McRaney, You Are Not So Smart: Why You Have Too Many Friends on Facebook, Why Your Memory
Is Mostly Fiction, and 46 Other Ways You're Deluding Yourself. Penguin Publishing Group, 2011.

L. Jolliffe, Principal Component Analysis. Springer, 2002.

E. L. Russell, L. H. Chiang, and R. D. Braatz, “Fault detection in industrial processes using canonical
variate analysis and dynamic principal component analysis,” Chemometrics and Intelligent Laboratory
Systems, vol. 51, no. 1, pp. 81-93, 2000.

W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin, “Recursive pca for adaptive process monitoring,”
Journal of Process Control, vol. 10, no. 5, pp. 471-486, 2000.

Z. Ge and Z. Song, “Distributed pca model for plant-wide process monitoring,” Industrial & Engineering
Chemistry Research, vol. 52, no. 5, pp. 1947-1957, 2013.

S. W. Choi, E. B. Martin, A. J. Morris, and 1.-B. Lee, “Fault detection based on a maximum-likelihood
principal component analysis (pca) mixture,” Industrial & Engineering Chemistry Research, vol. 44,
no. 7, pp. 2316-2327, 2005.

J.-M. Lee, C. Yoo, S. W. Choi, P. A. Vanrolleghem, and I.-B. Lee, “Nonlinear process monitoring using
kernel principal component analysis,” Chemical Engineering Science, vol. 59, no. 1, pp. 223-234, 2004.

S. Kittiwachana, D. L. S. Ferreira, G. R. Lloyd, L. A. Fido, D. R. Thompson, R. E. A. Escott, and R. G.
Brereton, “One class classifiers for process monitoring illustrated by the application to online hplc of a
continuous process,” Journal of Chemometrics, vol. 24, no. 3-4, pp. 96-110, 2010.

J. Yu and S. J. Qin, “Multimode process monitoring with bayesian inference-based finite gaussian
mixture models,” AIChE Journal, vol. 54, no. 7, pp. 1811-1829, 2008.

J. Yu, “A nonlinear probabilistic method and contribution analysis for machine condition monitoring,”
Mechanical Systems and Signal Processing, vol. 37, no. 1-2, pp. 293-314, 2013.

Y. Masuda, H. Kaneko, and K. Funatsu, ‘“Multivariate statistical process control method including soft
sensors for both early and accurate fault detection,” Industrial & Engineering Chemistry Research,
vol. 53, no. 20, pp. 8553-8564, 2014.

Y. Cong, B.-k. Li, X.-g. Yang, Y. Xue, Y.-z. Chen, and Y. Zeng, “Quantitative structure—activity
relationship study of influenza virus neuraminidase a/pr/8/34 (h1nl) inhibitors by genetic algorithm
feature selection and support vector regression,” Chemometrics and Intelligent Laboratory Systems,
vol. 127, no. 0, pp. 3542, 2013.

J. Yu, “A bayesian inference based two-stage support vector regression framework for soft sensor
development in batch bioprocesses,” Computers & Chemical Engineering, vol. 41, no. 0, pp. 134—144,
2012.

M. S. Escobar, H. Kaneko, and K. Funatsu, “Flour concentration prediction using gapls and gawls
focused on data sampling issues and applicability domain,” Chemometrics and Intelligent Laboratory
Systems, vol. 137, no. 0, pp. 33-46, 2014.

J. L. Godoy, R. J. Minari, J. R. Vega, and J. L. Marchetti, “Multivariate statistical monitoring of an
industrial sbr process. soft-sensor for production and rubber quality,” Chemometrics and Intelligent
Laboratory Systems, vol. 107, no. 2, pp. 258-268, 2011.

H. Kaneko and K. Funatsu, “A soft sensor method based on values predicted from multiple intervals of
time difference for improvement and estimation of prediction accuracy,” Chemometrics and Intelligent
Laboratory Systems, vol. 109, no. 2, pp. 197-206, 2011.

Q. Chen, U. Kruger, M. Meronk, and A. Y. T. Leung, “Synthesis of t2 and q statistics for process
monitoring,” Control Engineering Practice, vol. 12, no. 6, pp. 745-755, 2004.



References 117

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]
[40]

[47]

(48]
[49]

[50]

(51]

[52]

K. F. K. Hasegawa, Y. Miyashita, “Ga strategy for variable selection in gsar studies: Application of
ga-based region selection to a 3d-gsar study of acetylcholinesterase inhibitors,” Journal of Chemical
Information and Modeling, vol. 37, no. 2, p. 5, 1997.

K. F. M. Arakawa, Y. Yamashita, “Genetic algorithm-based wavelength selection method for spectral
calibration,” Journal of Chemometrics, vol. 25, no. 1, p. 10, 2010. - John Wiley & Sons, Ltd.

G. Seni and J. Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining
Predictions. Morgan & Claypool Publishers, 2010.

P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven soft sensors in the process industry,” Computers &
Chemical Engineering, vol. 33, no. 4, pp. 795-814, 2009.

S. Wold, M. Sjostrém, and L. Eriksson, “Pls-regression: a basic tool of chemometrics,” Chemometrics
and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109—130, 2001.

B. Lin, B. Recke, J. K. H. Knudsen, and S. B. Jgrgensen, “A systematic approach for soft sensor
development,” Computers & Chemical Engineering, vol. 31, no. 5-6, pp. 419-425, 2007.

G. Baffi, E. B. Martin, and A. J. Morris, “Non-linear projection to latent structures revisited (the neural
network pls algorithm),” Computers & Chemical Engineering, vol. 23, no. 9, pp. 1293-1307, 1999.

H. Kaneko and K. Funatsu, “Adaptive soft sensor model using online support vector regression with
time variable and discussion of appropriate parameter settings,” Procedia Computer Science, vol. 22,
no. 0, pp. 580-589, 2013.

K. Sun, J. Liu, J.-L. Kang, S.-S. Jang, D. S.-H. Wong, and D.-S. Chen, “Development of a variable
selection method for soft sensor using artificial neural network and nonnegative garrote,” Journal of
Process Control, vol. 24, no. 7, pp. 1068-1075, 2014.

S. Xu, S. Yin, R. Srinivasan, and M. Helander, Proactive Alarms Monitoring using Predictive Technolo-
gies, vol. Volume 31, pp. 1537-1541. Elsevier, 2012.

A. Adhitya, S. F. Cheng, Z. Lee, and R. Srinivasan, Evaluating the Effectiveness of Anticipatory Alarms
for Proactive Process Monitoring, vol. Volume 32, pp. 565-570. Elsevier, 2013.

F. Harary, Graph Theory. Perseus Books, 1994.

H. Kaneko and K. Funatsu, “Nonlinear regression method with variable region selection and application
to soft sensors,” Chemometrics and Intelligent Laboratory Systems, vol. 121, no. 0, pp. 26-32, 2013.

J. J. Downs and E. F. Vogel, “A plant-wide industrial process control problem,” Computers & Chemical
Engineering, vol. 17, no. 3, pp. 245-255, 1993.

B. Murphy and R. Morrison, Introduction to Environmental Forensics. Elsevier Science, 2014.

J. Alonso-Gutierrez, E.-M. Kim, T. S. Batth, N. Cho, Q. Hu, L. J. G. Chan, C. J. Petzold, N. J. Hillson,
P. D. Adams, J. D. Keasling, H. Garcia Martin, and T. S. Lee, “Principal component analysis of
proteomics (pcap) as a tool to direct metabolic engineering,” Metabolic Engineering, vol. 28, no. 0,
pp- 123-133, 2015.

D. Raine, P. Langley, E. Shepherd, S. Lord, S. Murray, A. Murray, and J. P. Bourke, “Principal component
analysis of atrial fibrillation: Inclusion of posterior ecg leads does not improve correlation with left atrial
activity,” Medical Engineering & Physics, vol. 37, no. 2, pp. 251-255, 2015.

X. Liu, X. Chen, W. Wu, and Y. Zhang, “Process control based on principal component analysis for
maize drying,” Food Control, vol. 17, no. 11, pp. 894-899, 2006.

C. Zhao and F. Gao, “Fault-relevant principal component analysis (fpca) method for multivariate
statistical modeling and process monitoring,” Chemometrics and Intelligent Laboratory Systems, vol. 133,
no. 0, pp. 1-16, 2014.



118

References

(53]

[54]

[55]

[56]

[57]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

J. Camacho and J. Pic6, “Online monitoring of batch processes using multi-phase principal component
analysis,” Journal of Process Control, vol. 16, no. 10, pp. 1021-1035, 2006.

T. Voegtlin, “Recursive principal components analysis,” Neural Networks, vol. 18, no. 8§, pp. 1051-1063,
2005.

S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, “Fault detection and identification of nonlinear
processes based on kernel pca,” Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 1,
pp- 55-67, 2005.

W. Lin, Y. Qian, and X. Li, “Nonlinear dynamic principal component analysis for on-line process
monitoring and diagnosis,” Computers & Chemical Engineering, vol. 24, no. 2-7, pp. 423—429, 2000.

W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal
component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 30, no. 1, pp. 179-196,
1995.

J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge University Press,
2004.

C. M. Bishop, M. Svensén, and C. K. I. Williams, “Gtm: The generative topographic mapping,” vol. 10,
no. 1, pp. 215-234, 1998.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1-38,
1977.

E. Hartman, J. D. Keeler, and J. M. Kowalski, “Layered neural networks with gaussian hidden units as
universal approximations,” Neural Comput., vol. 2, no. 2, pp. 210-215, 1990.

J. Park and I. W. Sandberg, “Approximation and radial-basis-function networks,” Neural Comput., vol. 5,
no. 2, pp. 305-316, 1993.

C. M. Bishop, G. E. Hinton, and I. G. D. Strachan, “Gtm through time,” 1997.

I. Olier, J. Amengual, and A. Vellido, “A variational bayesian approach for the robust analysis of the
cortical silent period from emg recordings of brain stroke patients,” Neurocomputing, vol. 74, no. 9,
pp- 1301-1314, 2011.

A. Vellido, “Missing data imputation through gtm as a mixture of -distributions,” Neural Networks,
vol. 19, no. 10, pp. 1624-1635, 2006.

A. Vellido, E. Marti, J. Comas, I. Rodriguez-Roda, and F. Sabater, “Exploring the ecological status of
human altered streams through generative topographic mapping,” Environmental Modelling & Software,
vol. 22, no. 7, pp. 1053-1065, 2007.

L. Olier and A. Vellido, “Variational bayesian generative topographic mapping,” Journal of Mathematical
Modelling and Algorithms, vol. 7, no. 4, pp. 371-387, 2008.

M. Arakawa, T. Miyao, and K. Funatsu, “Development of drug-likeness model and its visualization,”
Journal of Computer Aided Chemistry, vol. 9, pp. 70-80, 2008.

C. A. Nicolaou and N. Brown, “Multi-objective optimization methods in drug design,” Drug Discovery
Today: Technologies, vol. 10, no. 3, pp. e427—e435, 2013.

F. Prado-Prado, X. Garcia-Mera, P. Abeijon, N. Alonso, O. Caamaiio, M. Yafiez, T. Garate, M. Mezo,
M. Gonzdilez-Warleta, L. Muifio, F. M. Ubeira, and H. Gonzéilez-Diaz, “Using entropy of drug and
protein graphs to predict fda drug-target network: Theoretic-experimental study of mao inhibitors and
hemoglobin peptides from fasciola hepatica,” European Journal of Medicinal Chemistry, vol. 46, no. 4,
pp- 1074-1094, 2011.



References 119

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]

[86]

[87]

[88]

F. Couenne, C. Jallut, B. Maschke, M. Tayakout, and P. Breedveld, “Structured modeling for processes:
A thermodynamical network theory,” Computers & Chemical Engineering, vol. 32, no. 6, pp. 1120-1134,
2008.

Y.-C. Lin, L. T. Fan, S. Shafie, B. Bertok, and F. Friedler, “Graph-theoretic approach to the catalytic-
pathway identification of methanol decomposition,” Computers & Chemical Engineering, vol. 34, no. 5,
pp. 821-824, 2010.

R. S. H. Mah, “Application of graph theory to process design and analysis,” Computers & Chemical
Engineering, vol. 7, no. 4, pp. 239-257, 1983.

E. Cai, D. liu, L. Liang, and G. Xu, “Monitoring of chemical industrial processes using integrated
complex network theory with pca,” Chemometrics and Intelligent Laboratory Systems, vol. 140, no. 0,
pp. 22-35, 2015.

M. S. Escobar, H. Kaneko, and K. Funatsu, “Combined generative topographic mapping and graph
theory unsupervised approach for nonlinear fault identification,” AIChE Journal, pp. n/a—n/a, 2015.

S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications. Cambridge University
Press, 1994.

S. A. Einwiller and S. Steilen, “Handling complaints on social network sites — an analysis of complaints
and complaint responses on facebook and twitter pages of large us companies,” Public Relations Review,
vol. 41, no. 2, pp. 195-204, 2015.

S. M. Firestone, M. P. Ward, R. M. Christley, and N. K. Dhand, “The importance of location in contact
networks: Describing early epidemic spread using spatial social network analysis,” Preventive Veterinary
Medicine, vol. 102, no. 3, pp. 185-195, 2011.

B. Rienties and E.-M. Nolan, “Understanding friendship and learning networks of international and host
students using longitudinal social network analysis,” International Journal of Intercultural Relations,
vol. 41, no. 0, pp. 165-180, 2014.

P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A multi-dimensional approach to force-directed layouts
of large graphs,” Computational Geometry, vol. 29, no. 1, pp. 3—18, 2004.

T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed placement,” Softw. Pract.
Exper., vol. 21, no. 11, pp. 1129-1164, 1991.

Y. F. Hu, “Efficient and high quality force-directed graph drawing,” The Mathematica Journal, vol. 10,
pp. 37-71, 2005.

M. Bastian, S. Heymann, and M. Jacomy, Gephi: An Open Source Software for Exploring and Manipu-
lating Networks. 2009.

R. Diestel, Graph Theory. Springer, 2006.

D. Vukicevi¢ and G. Caporossi, “Network descriptors based on betweenness centrality and transmission
and their extremal values,” Discrete Applied Mathematics, vol. 161, no. 16-17, pp. 2678-2686, 2013.

M. Wieling and J. Nerbonne, “Bipartite spectral graph partitioning for clustering dialect varieties and
detecting their linguistic features,” Computer Speech & Language, vol. 25, no. 3, pp. 700-715, 2011.

M. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Physical
Review E, vol. 74, no. 3, p. 36104, 2006.

V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008,
2008.



120

References

[89]

[90]

[91]
[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

D. A. Spielman and S.-H. Teng, “Spectral partitioning works: Planar graphs and finite element meshes,”
Linear Algebra and its Applications, vol. 421, no. 2-3, pp. 284-305, 2007.

M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical
Review E, vol. 69, no. 2, p. 026113, 2003. TO BE READ.

H. Shen, Community Structure of Complex Networks. Springer Berlin Heidelberg, 2013.

A. Lancichinetti and S. Fortunato, “Limits of modularity maximization in community detection,” Physical
Review E, vol. 84, no. 6, p. 066122, 2011. PRE.

J. Yu, “Local and global principal component analysis for process monitoring,” Journal of Process
Control, vol. 22, no. 7, pp. 1358-1373, 2012.

M. Jia, F. Chu, F. Wang, and W. Wang, “On-line batch process monitoring using batch dynamic kernel
principal component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 101, no. 2,
pp- 110-122, 2010.

Q. Xu, C. Ding, J. Liu, and B. Luo, “Pca-guided search for k-means,” Pattern Recognition Letters,
vol. 54, no. 0, pp. 50-55, 2015.

C. M. Bishop, M. Svensén, and C. K. I. Williams, “Developments of the generative topographic mapping,”
Neurocomputing, vol. 21, no. 1-3, pp. 203-224, 1998.

J. Silvestre-Blanes, “Structural similarity image quality reliability: Determining parameters and window
size,” Signal Processing, vol. 91, no. 4, pp. 1012-1020, 2011.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600-612,
2004.

J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,” Physical Review E,
vol. 74, no. 1, p. 016110, 2006. PRE.

M. Hamada, A. Wilson, C. Reese, and H. Martz, Bayesian Reliability. Springer New York, 2008.
I. Nabney, NETLAB: Algorithms for Pattern Recognition. Springer, 2002.

S. Weaver and M. P. Gleeson, “The importance of the domain of applicability in gsar modeling,” Journal
of Molecular Graphics and Modelling, vol. 26, no. 8, pp. 1315-1326, 2008.

I. Tetko, I. Sushko, A. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches, and
A. Varnek, “Critical assessment of gsar models of environmental toxicity against tetrahymena pyriformis:
Focusing on applicability domain and overfitting by variable selection,” J. Chem. Inf. Model., vol. 48,
no. 9, pp. 1733-1746, 2008.

A. Talevi, M. Goodarzi, E. V. Ortiz, P. R. Duchowicz, C. L. Bellera, G. Pesce, E. A. Castro, and L. E.
Bruno-Blanch, “Prediction of drug intestinal absorption by new linear and non-linear gqspr,” European
Journal of Medicinal Chemistry, vol. 46, no. 1, pp. 218-228, 2011.

L. I. Baskin, N. Kireeva, and A. Varnek, “The one-class classification approach to data description and to
models applicability domain,” Molecular Informatics, vol. 29, no. 8-9, pp. 581-587, 2010.

H. Dragos, M. Gilles, and V. Alexandre, “Predicting the predictability: A unified approach to the
applicability domain problem of gsar models,” Journal of Chemical Information and Modeling, vol. 49,
no. 7, pp. 1762-1776, 2009.

J. A. Fernandez Pierna, F. Wahl, O. E. de Noord, and D. L. Massart, “Methods for outlier detection in
prediction,” Chemometrics and Intelligent Laboratory Systems, vol. 63, no. 1, pp. 27-39, 2002.



References 121

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

R. L. Kodell, B. A. Pearce, S. Baek, H. Moon, H. Ahn, J. F. Young, and J. J. Chen, “A model-free
ensemble method for class prediction with application to biomedical decision making,” Artificial
Intelligence in Medicine, vol. 46, no. 3, pp. 267-276, 2009.

F. Preparata and M. Shamos, Computational Geometry: An Introduction. Springer-Verlag, 1985.

X. Wang, X. L. Wang, Y. Ma, and D. M. Wilkes, “A fast mst-inspired knn-based outlier detection
method,” Information Systems, vol. 48, no. 0, pp. 89-112, 2015.

C. Cassisi, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti, “Enhancing density-based clustering:
Parameter reduction and outlier detection,” Information Systems, vol. 38, no. 3, pp. 317-330, 2013.

H. Kaneko and K. Funatsu, “Estimation of predictive accuracy of soft sensor models based on data
density,” Chemometrics and Intelligent Laboratory Systems, vol. 128, no. 0, pp. 111-117, 2013.

H. Kaneko and K. Funatsu, “Applicability domain based on ensemble learning in classification and
regression analyses,” Journal of Chemical Information and Modeling, vol. 54, no. 9, pp. 2469-2482,
2014.

R. Dawkins, The Greatest Show on Earth: The Evidence for Evolution. Free Press, 2009.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Springer London, Limited, 2009.

T. Scheper, B. Hitzmann, E. Stérk, R. Ulber, R. Faurie, P. Sosnitza, and K. F. Reardon, “Bioanalytics:
detailed insight into bioprocesses,” Analytica Chimica Acta, vol. 400, no. 1-3, pp. 121-134, 1999.

H. Siesler, Y. Ozaki, S. Kawata, and H. Heise, Near-Infrared Spectroscopy: Principles, Instruments,
Applications. Wiley, 2008.






Appendix A

L CF Pseudo-code

READ adjacencyMatrix
GET edgeList for each node from adjacencyMatrix
ASSIGN N clusters to N nodes
Cop =N
WHILE termination = false
termination = true
WHILE converged = false
converged = true
FORi=1toN
DECLARE AQpar
FOR j = edgeList(i)
AQ;; = modularityDelta(i, j) #Modularity calculation from Equation
2.22
AQumar (j) = AQ;j
END
IF max (AQumar(j)) >0
ASSIGN i to respective max(AQuar(j)) cluster j
converged = false
END
END
ERASE K empty clusters
C=Cop—K
END
IF Corp #C
GET selfLoops for each cluster #Edges between observations inside cluster C



124 LCF Pseudo-code

GET interConnections for each cluster #Edges connecting different clusters
adjacencyMatrix = newadjacencymatrix(selfLoops, interConnections)
GET edgeList for each cluster from adjacencyMatrix
termination = false
END
END



Appendix B

Fluorescence Spectroscopy

Fluorescence is a phenomenon that happens in excited single states, i.e., when there are two
paired electrons by opposite spin, one in the excited orbital and the other in the ground-state
orbital. Once excited, the electron can rapidly come back to the original state, in emissions
that last around 10 ns[115].

All measurements are obtained using a spectrofluorometer, which measures how inten-
sively the medium responses to a range of wavelengths provided by a xenon lamp. Each
excitation wavelength affects elements in the medium in different way, resulting in light
emitted in different wavelengths, whose intensity is captured by the device. Once all this data
is gathered, it is treated and presented as a 2D excitation emission spectrum[116], as shown
in Figure B.1. Each pair’s intensity corresponds to one input variable. In addition, each flour
sample is measured three times, leading to an input matrix that summarizes all information.

The rows represent the samples and columns, each emission-excitation pair’s intensity.
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Fig. B.1 Flour sample 2D Fluorescence spectrum.






Appendix C

NIR Spectroscopy

Near-infrared Spectroscopy is a spectroscopy method that evaluates the medium response to
near-infrared radiation (800 - 2500 nm). It is not particularly sensitive, but it can easily pene-
trate on objects, meaning that samples do not need much preparation to be measured[117].
An NIR spectrometer focuses light on a sample, measuring two complementary variables,
transmittance and reflectance. The former measures the fraction of incident light that passes
through a sample and the latter measures the fraction that reflects light from it. Each NIR
spectrum gives clues to the identification of patterns, which are connected to its chemical
composition. A typical NIR spectrum can be seen in Figure C.1. Each wavelength’s re-
flectance represents one variable. Similarly to Fluorescence spectroscopy, each flour sample

provides NIR spectra that is arranged in an input data matrix.
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Fig. C.1 NIR spectrum for one flour sample.
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