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Abstract

The work in this thesis is dedicated to the numerical modeling of complex
multiphase flows, specifically the gas-liquid flows and gas-solid-liquid flows
interacting with general geometries. Those flows involving free surface, gran-
ular particles and complicated boundaries are widely encountered in indus-
tries including various mixing and grinding processes, e.g. agitation tank,
wet beads or ball mill, and twin screw kneader (TSK). There is an urgent
need for accurate, robust and efficient computational fluid dynamics (CFD)
techniques that can assist engineers in designing and optimizing their oper-
ational conditions for those industrial problems.

From an engineering point of view, key factors affecting the process perfor-
mance and product quality comprise the design of stirring paddles, rotation
speed, fluid filling ratio and solid load of particles; for their counterparts in
the numerical perspective, the considerations of boundary shape and move-
ment, interfacial flow motion, solid behavior and fluid-particle interaction
could be important. In these respects, numerical models that are able to
provide integrated solutions have not been soundly established by past stud-
ies.

Therefore, the objective of the present study is to develop a numeri-
cal framework capable for predicting the macroscopic behaviors of two- and
three-phase flows within complex geometries to facilitate their practical anal-
ysis. The current numerical framework provides systematic approaches to
three types of flow problems with pragmatic relevance: (a) modeling of gas-
liquid flows in complex geometries, (b) macroscopic large-scale modeling
of gas-solid-liquid flows in complex geometries, and (c) microscopic direct
numerical simulation (DNS) of gas-solid-liquid flows with full resolution of
fluid-particle interactions. In our attempts to treat these problems of diverse
complexities and scales, new computational technologies have been proposed
and their validity has been tested thoroughly.

The first part of our main matter describes a computational method
namely the VOF-IB method for the three-dimensional simulations of two-
phase flows in general geometries. This method adopts a volume-of-fluid
(VOF) approach to capture and advance the fluid interface, and it integrates
the fluid solver with the immersed-boundary (IB) modeling of arbitrary-
shaped walls and moving bodies. The shape and movement of general ge-
ometries are efficiently represented by an auxiliary signed distance function
(SDF) field with local coordinate transformation. The VOF-IB method is a
versatile two-phase solver allowing for a wide range of flow conditions as well
as topological changes of the free surface. The simplicity and efficiency of its
numerical algorithm are remarkable for real applications in comparison with
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existing CFD models.
In the second part, an Eulerian-Lagrangian model, specifically the DEM-

VOF method, is proposed to perform three-dimensional simulations of gas-
solid-liquid flows, for which the fluid motion is solved by using the preceding
computational techniques and the distinct particle phase is tracked by the
discrete element method (DEM). The fluid-particle coupling is achieved by
the volume-averaging approach wherein an empirical closure is employed for
the description of interphase momentum transfer. In particular, the combi-
nation of the SDF representation and the IB method tackles the modeling of
complex geometries that are in simultaneous interaction with the three-phase
flow. A variety of model verification and validation tests are performed to
show the capability of the DEM-VOF method to simulate macroscopic three-
phase behaviors such as free surface deformation, water displacement, and
configuration of solid beds. Results are also presented for its successful ap-
plication to a laboratory TSK system.

The last development in this thesis is undertaken for the DNS method for
the microscopic modeling of gas-solid-liquid flows. The discretization of the
coupled system is accomplished by an improved IB method accounting for
increased accuracy and generalized fluid actions. The VOF-based interface
calculation is enhanced by the level set (LS) model to treat surface ten-
sion and contact angles on solid surface. Unlike the macroscopic model for
large-scale simulations needing closure equations for unresolved terms, the
DNS-based method can fully resolve the gas-solid-liquid interactions inclu-
sive of both the fluid-particle hydrodynamic force and the particle-interface
capillary force dominant in a typical three-phase flow system. Hence the
DNS method is conceptualized as a supportive tool to validate and develop
useful correlations for the large-scale simulations. Such an example is shown
in this part to establish a preliminary link between the two levels of numerical
modeling.
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Chapter 1

Introduction

1.1 Background and motivation

The scope of this thesis covers the numerical modeling of gas-solid-liquid
flows [1] which are defined as multiphase flows composed of gas and liquid
phases separated by immiscible interfaces and solid granular particles; some-
times its concept also embraces the gas-liquid flows interacting with general
solid boundaries in certain context [2]. Those flows are widely encountered
in many environmental and industrial circumstances, at the largest scale of
which are those common in nature such as erosion of river bank, transporta-
tion of sedimentation, pyroclastic and lava flow from volcano, tsunami and
debris flows [3]. At the opposite end of these geophysical settings, three-
phase phenomenon can scale down to the micro world where dust, bacteria
and colloidal particles float and cluster on a fluid interface [4]. A typical
industrial application of three-phase flow is the floatation machine used in
mineral processing [5], which is able to separate ore particles effectively by
aerating the liquid column with air bubbles. Another representative indus-
trial three-phase system is the three-phase fluidized bed [6, 7].

Gas-solid-liquid flows are also ubiquitous in chemical engineering includ-
ing many mixing, dispersion, classification and interface processes. Partic-
ularly in the author’s group, interest of research has long been focused on
the study of various mixing, blending and grinding processes. The agitation
tanks are the first good example of the utilization of gas-liquid flows driven
by specially shaped impellers to deliver continuous and efficient blending out-
puts. Three-phase flows could be found in many attrition-based devices, e.g.
wet ball/beads mill [8,9] and twin screw kneader (TSK). These instruments,
usually equipped with spinning paddles in elaborate shapes to enhance work
efficiency, stir to mechanically activate the gas-liquid or fluid-particle mix-

10
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ture inside, and hence the energetic impact and shear effects between solids
(stir paddles or particles if involved) could serve to generate manufactured
products (e.g. for mixing, size-reduction and improvement of micro particle
dispersion state). Some key factors affecting the performance and product
quality may include the design of stirring paddles, rotation speed, filling ratio
of fluid and solid load of particles, for which the considerations of boundary
shape and movement, flow motion, particle behavior and fluid-particle inter-
action could be important.

Traditionally such flows are mainly studied by experiments and empirical
observations. In these problems, however, the lack of transparency for the
internal movement and complicated phenomena will restrict the insight that
could be obtained with experimental approaches. In addition, the cost of
running experiments is another factor to be concerned. On the other hand,
the alternative approach provided by the recent advent of computational
fluid dynamics (CFD) techniques is gaining increasing attention, which has
opened a new way of investigation into every details of the underlying system
without the limitation of experimental conditions.

Therefore, development of accurate, robust and efficient numerical algo-
rithms that can assist engineers in designing and optimizing their opera-
tional conditions is now becoming a pressing research topic in the nowadays
computer-aided engineering (CAE) activities. This requirement for solution
to practical problems, indeed, calls for a self-contained numerical framework
able to predict the macroscopic behaviors of gas-solid-liquid flows with ac-
curate computation of interface motion and fluid-particle interaction in a
generality of complex systems, which has motivated our developments in the
present study.

For gas-solid-liquid flow problems, numerical challenges mainly arise from
complicated interactions among different phases. From an engineering per-
spective, the complexities could be decomposed into sub-problems (assuming
they are separable) via a divide-and-conquer methodology and later inte-
grated as a whole solver with proper coupling among different parts. This
allows for effective extension of existing ideas and models to the maximum.
Careful selection is needed for examining their suitability, as a matter of
course.

Basically, a typical gas-solid-liquid flow involves fluid-fluid interaction
(the evolving fluid interface and jumps in physical property), fluid-solid in-
teraction (interphase momentum transfer mainly owing to the hydrodynamic
and capillary forces) and solid-solid interaction (impact and friction during
particle collision). In addition, the influence of arbitrary-shaped geometries
and moving boundaries must be taken into consideration for practical sim-
ulations. In this study, problems related to these fundamental aspects are
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first discussed and addressed.

• The representation and advection of the fluid interface together with
the modeling of binary fluids separated by it in a flow field;

• The way to calculate and track the motion of distinct solid particles;

• The discretization of fluid-particle system and how to achieve the cou-
pling between them;

• The modeling of complex geometries and moving boundaries.

Prior to the introduction of our contributions to gas-solid-liquid problems,
the section that follows will present a review of some past studies and related
work, which is by no means exhaustive but intends to give an indication of
potential numerical candidates, competitors and their limitations.

1.2 Previous studies and related work

1.2.1 Interface model

The history of computational efforts to model free surface and interfacial
flows date back almost as long as that of the CFD itself. Up to now, two
types of numerical approaches [10] have been adopted to model fluid in-
terfaces, namely methods that use (a) boundary-fitted mesh conforming to
the interface or (b) fixed-grid simulation with specific representation of the
interface.

With accurate treatment of boundary conditions at the fluid interface, the
boundary-fitted technique [11–14] is able to offer high accuracy for interface
behaviors with lesser mobility such as steady rising of nearly spherical gas
bubbles in viscous liquids. Its applications are mainly found for relatively
simple geometries and interface configurations; however, for complex free
surface flows involving violent interface motion, the mesh manipulation can
be considerably complicated and expensive.

As an opposite, the latter methodology adopts a stationary Eulerian mesh
to simulate the overall multiphase flow, which has greatly simplified the com-
putational procedure with satisfactory accuracy for a wide range of flow con-
ditions. Since an explicit representation does not exist for the fluid interface,
special consideration must be made to somehow embed the interface on the
fixed grid defined a priori. According to the way how interface is represented
and connected to the underlying mesh-based computation, it can be further
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categorized into two classes of algorithms: interface tracking and interface
capturing methods1.

In an interface-tracking method, as its name implies, extra marker points
are employed to explicitly represent the interface and track its movement
in a Lagrangian manner. The marker-and-cell (MAC) method [18] is the
earliest free surface model which employs massless dots to tag the domain
occupied by the liquid. Its concept of using Lagrangian particles is still en-
lightening and has been extended in some modern interface models, e.g. the
particle level set method [19, 20]. The front-tracking method [21] treats the
infinitely thin interface by auxiliary meshes of (Ndim − 1) dimensions, i.e.
connected line segments in 2D and triangular surface elements in 3D. The
Lagrangian modeling of the interface enables very exact calculation of the in-
terfacial profile such as the surface normal and curvature; the front-tracking
is also very gifted in modeling phase change problems such as evaporation,
boiling and solidification [17]. However with this approach problems arise
when large deformations of the interface occur: in order to maintain a well-
defined front shape, a series of operations considerably complicated might be
required to manipulate the front mesh, such as adjustment of node position
and dynamic addition or deletion of some surface elements. Without the spe-
cial operations, break-up and coalescence cannot be automatically handled
by the front-tracking model. It is also difficult to treat three-phase contact
lines in tracking methods because of the contradiction that the contact line
explicitly defined by Lagrangian points does not move if their motions are
subject to the non-slip boundary condition on solid surfaces, see [22].

The alternative approach consists in the fully Eulerian interface capturing
methods, where an indicator function, C, is stored discretely on fixed grids
provided as an implicit description of different phases separated by the inter-
face. When the interface is to be evolved, unlike other Lagrangian models,
a special advective transport equation is solved for C instead on the back-
ground fluid mesh to update the interface configuration. The conservative
form of the advection equation is usually expressed by

∂C

∂t
+∇ · (uC) = 0 (1.1)

with u the flow velocity. By utilization of the incompressibility condition
∇ · u = 0, a pure advection equation can be written for C as

DC

Dt
≡ ∂C

∂t
+ u · ∇C = 0 . (1.2)

1Note that the usage of terminology of “interface tracking” and “interface capturing”
may be different in literatures under different contexts of definition, see [15, 16]. Their
classification in this study generally follows the sense of Tryggvason et al. [17].



14

Different interface-capturing models adopt unique choices of the indicator
function C and algorithms to solve the transport equation (1.2), which will
be reviewed later.

The family of the interface capturing approach is composed of the most
popular and commonly implemented algorithms for multiphase solvers, for in-
stance, the volume-of-fluid (VOF) method [23], the level-set (LS) method [24],
the constrained interpolation profile (CIP) method [25] and other diffuse in-
terface model such as the phase field method (PFM) [26, 27], to cite a few.
These methods, although not so accurate as the previous interface-tracking
since the interface shape is not directly available, are conceptually simple and
computationally efficient. They also inherently allows for high density ratios
and complex interfacial phenomena such as large deformations, coalescence
and breakup, making them handy to perform robust simulations of industrial
flows. For this reason, we set our sights on two interface-capturing models,
specifically the VOF method and the LS method.

Generally in the VOF method the liquid volume fraction φ which is ac-
tually the integral average of a Heaviside function across the interface is
used as the indicator function. The value of φ is φ = 1 in the liquid phase,
φ = 0 in gas phase and 0 < φ < 1 near the interface. For this sharp tran-
sition, the preceding advection equation (1.2) cannot be solved with general
finite difference methods otherwise the interface will be severely smeared by
numerical diffusion. For this reason, VOF methods usually feature a geo-
metrical reconstruction and advection of the interface based on the volume
fraction φ. The simplest approach is to approximate the interface by linear
surfaces parallel to the boundaries of computational cells, viz. the simple
line interface calculation (SLIC) [28]. A better choice for calculation of inter-
face is recognized as the piecewise linear interface calculation (PLIC) [29,30]
with sloped reconstruction of linear surfaces. The drawback of the PLIC ap-
proach is its complicated implementation in three-dimension. To overcome
this, Yokoi [31] proposed the weighted line interface calculation (WLIC).
In the WLIC, piecewise constant reconstruction similar to the SLIC is car-
ried out along all coordinates separately, and then a weighted average of
these components is calculated taking in account the local surface orienta-
tion. In comparison with the traditional PLIC, the WLIC could be imple-
mented in three-dimensional space straightforwardly and it is able to capture
the fluid interface with comparable accuracy in many scalar transportation
tests. There are also other possible ways to treat the VOF function, such
as that based on the algebraic function transformation [32, 33] and solution
using high-order or high-resolution differencing schemes [16,34,35]. However,
those methods are sometimes still too diffusive and may need compressive
fluxes for anti-diffusion, e.g. the interFOAM solver contained in the open
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source OpenFOAM library2. Therefore, only those VOF models employing
geometrical reconstruction techniques are considered in this study. A strict
comparison of VOF-type methods could be found in [36].

In the LS method, a smooth function commutes the sharp marker function
in the VOF method, for which the best practice is usually the signed distance
function (SDF) ψ indicating the nearest distance to the interface although
other choices may also be applicable (see e.g. [37]). Following the convections
in many LS literatures [24, 38], the sign of ψ is negative in gas phase and
positive in liquid phase, and hence the zero-contour of the LS function gives
an implicit representation of the interface. Unlike the VOF function whose
gradient ‖∇φ‖ ∼ 1/∆x with ∆x the grid spacing is steep, the property as a
signed distance function ensures the gradient of ψ is well-defined,

‖∇ψ‖ = 1 . (1.3)

Thus the advection equation for ψ can now be treated as a typical hyper-
bolic one and get solved using the well-known ENO/WENO schemes [39,40]
and TVD-RK methods [41]. After the advection, it is known that ψ does
not remain a distance function anymore, which can cause errors in interface
calculation that follows. For this sake, the LS method usually comes with
a reinitialization procedure [24, 38] to periodically regularize the interface.
For the LS method its downside is the risk of loss of mass during the advec-
tion and reinitialization procedures, especially in cases where the interface is
significantly distorted.

A problem existing in the VOF and LS methods has been the calcu-
lation of the surface tension force, for which it is common to rewrite the
singular surface tension force as a body force, as done in the famous contin-
uum surface force (CSF) model [42]. Later a continuum surface stress (CSS)
model [43] is proposed to give an equivalent but conservative formulation of
this body force. Other techniques developed to improve the computation of
surface tension include the high-order reconstruction of interface [44] , height
function based curvature calculation and balanced-force formulation [45,46].
Another point worth noting is that these schemes (especially VOF with inter-
face reconstruction) are originally designed for computation on rectangular,
stationary grids, and thus special treatments are needed if complex geome-
tries are to be modeled.

The VOF method is highly appreciated for its property of volume conser-
vation (even up to machine precision with proper flux calculation), which is a
virtue advantageous in long-time simulation of large-scale problems. On the

2OpenFOAM user guide, http://cfd.direct/openfoam/user-guide/damBreak/.

http://cfd.direct/openfoam/user-guide/damBreak/
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Table 1.1: Different approaches for the modeling of fluid-particle flows.
Representation Coupling Target problem

TFM Eulerian-Eulerian Closure correlations Large-scale flow structure
DEM-CFD Lagrangian-Eulerian Closure correlations Macroscopic behavior
DNS Lagrangian-Eulerian Primary calculation Flow details

other hand, holding the LS function during the simulation is beneficial for in-
terface modeling because it directly tells the interface position, normal vector
and curvature. A coupled LS and VOF (CLSVOF) method [47–49] combines
them to complement the flavor of each other. However the CLSVOF algo-
rithm that almost doubles the computational time and storage is still quite
complex even in two dimensions, which is not realistic for engineering appli-
cations.

From the literature survey in this section, we find that the WLIC VOF
advection scheme has the advantage of being reliably robust, reasonably ac-
curate and technically simple, making it a good candidate for our numerical
investigations of complex multiphase flows.

1.2.2 Modeling of fluid-particle flow

The numerical modeling of massive fluid-particle (liquid-solid or gas-solid)
flows relevant in various industrial processes is a very interesting topic of
research considering the multiscale nature of such systems. As figured out
by Deen et al. [50] and van der Hoef et al. [51] in the context of fluid-
particle fluidization, the requirements to resolve the flow behavior at different
scales of phenomena with different details of information have diversified the
numerical approaches ever adopted to aid their engineering. Since the fluid
phase is naturally modeled as a continuum, numerical models can be roughly
categorized according to the way to treat the dispersed particle phase, for
which either continuous or discontinuous description has been employed, see
Table 1.1.

An early and still attractive practice towards this problem by having a
continuous solid phase is the well-known two-fluid model (TFM) [52, 53],
where both the fluids and solids are treated as interpenetrating continua and
get solved on stationary grids. Hence, it is commonly referred to as the
Eulerian-Eulerian approach. In the TFM, a spatial filtering operation is ap-
plied to the mixture system with the local volume fraction of the solid phase
indicating the phase configuration. The interaction between two separate
phases is calculated based on empirical correlations which are generally writ-
ten as the function of the local volume fraction and the mean slip velocity.
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The major shortcoming in the TFM is that closure equations are also needed
to describe the constitutive behavior of the solid bed, which is not only hard
to be derived for solid behavior under generic circumstances but also has
made it impossible to accurately evaluate the solid stress. For this sake,
TFM-based simulations are not able to reflect some characteristic aspects of
solid particles that might be important in engineering application, such as
distribution of particle size, material properties and adhesive particles. In
spite of this, the computational cost of the TFM is low and can be well scaled
up, making it attractive for simulating industrial-size systems, see [54] for a
review.

Insofar as the particle behavior is to be fully resolved, the Lagrangian
methodology of the discrete element method (DEM) [55] or the discrete par-
ticle model (DPM) has proven to be a versatile tool. In the DEM where
solid particles are modeled by distinct entities, the trajectory and velocity
of particles could be calculated to high accuracy based on Newton’s second
law of motion. The particles are represented by soft spheres and the contact
forces are derived from their overlap against others (or rigid walls) during
a finite-time collision. For the contact force, usually a Voigt model combin-
ing linear springs, damping dashpots and friction sliders is used to produce a
viscoelastic effect (Figure 1.1), for which the parameters can be calibrated nu-
merically. The seemingly simple ideas employed by the DEM have performed
surprisingly well in predicting behaviors of bulk granular flows, making it now
a common practice to simulate powder and granular materials. The numer-
ical strategy of DEM allows for specific particle properties and can be easily
adapted to some new physics, e.g. non-spherical particles [56, 57], internal
stress by coupling with finite element method (FEM) [58,59], nonlinear con-
tact force [60, 61], plastic contact and deformation [62, 63] , cracking and
fracture [64, 65], wet lubrication [66], van deer Waals force [67], etc. To fur-
ther reduce the computational complexity that increases linearly with the
particle number, the coarse grain model (CGM) has been proposed for the
DEM by different authors, see [68–72].

The Lagrangian-Eulerian methodology couples the DEM with fluid sim-
ulation for the modeling of fluid-particle flows. Compared with the fully
Eulerian description in TFM, the Lagrangian representation of particles is
able to well resolve the solid force and alleviate the analytical and numerical
difficulties when modeling dense solid beds. For this reason, numerical mod-
eling based on the Lagrangian-Eulerian strategy is preferred in this study.

Within the Lagrangian-Eulerian framework, there are two types of algo-
rithms classified by the calculation of the fluid-particle coupling term or the
hydrodynamic force. In the first class of method referred to as the DEM-CFD
method [73, 74], the fluid-particle coupling is established upon the volume-
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Figure 1.1: Contact force based on Voigt model in DEM.

averaging formulation [52] that has originated from the TFM. As illustrated
in Figure 1.2 (a), the spatial resolution of the fluid phase is chosen coarser
than the typical length of particle diameter, and the volume-averaged forms
of equations of momentum and continuity are solved to determine the fluid
motion. Similar to the TFM, the fluid-particle interaction terms are obtained
with empirical correlations in terms of the local void fraction and flow con-
ditions. The DEM-CFD method has broad applications in particle process
engineering, see [75] for an extensive review.

Another category is the direct numerical simulation (DNS) of fluid-particle
flows, where the fluid-particle interaction is directly calculated based on the
primary solution of the governing equations with boundary conditions pre-
scribed on the solid surface, and hence no model assumption is needed. In
order to achieve this, it is necessary to have a sufficiently fine fluid mesh so
that all relevant flow structures around the solid particle can be resolved prop-
erly, see Figure 1.2 (b). A variety of implementations of DNS models could
be found in the literature, e.g. the body-fitted moving mesh method [76], the
lattice Boltzmann method (LBM) [77], the distributed Lagrange multiplier-
fictitious domain (DLM-FD) method [78] and the immersed boundary (IB)
method [79, 80]. So far, the most impressive applications of them have been
found in the DNS of pilot fluidization systems, see e.g. [81–84].

Apparently, the DEM-CFD method and DNS-based models have their
targets in different directions: the former focuses on macroscopic fluid-particle
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Figure 1.2: Particle and cell configurations in DEM-CFD and DNS ap-
proaches.

behavior in average flow problems, while the latter tends to fully resolve the
flow in detail at a microscopic level. In comparison with the DNS that is
inherently computationally intensive, the DEM-CFD method based on the
volume-averaging approach is less demanding and thus it is recognized as
an affordable and pragmatic choice for simulating large-scale systems in the
present study. From another point of view, the DNS method is able to pro-
vide a comprehensive understanding of the fluid-particle system from the
first principle, which is helpful to develop improved closure models for the
volume-averaged model, as documented by some literatures [85–89].

1.2.3 Modeling of complex geometry

Technically, the modeling of complex geometries treads a similar path to that
of free surface falling in two classes of (a) body-fitted grid and (b) fixed grid
methods, although the boundary condition therein is non-slip on the solid
surface ∂Ω in place of the kinetic and dynamic boundary conditions at the
fluid interface, that is,

u = uB at ∂Ω (1.4)

with uB the wall velocity. In conventional finite-difference (FD) and finite-
volume (FV) methods on curvilinear and unstructured grids [90,91], the task
prior to the simulation is to generate a high-quality fluid mesh compatible
with the boundary shape; for moving boundaries, it is also necessary to
dynamically adjust the mesh in case of mesh distortion and overturning.
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The consumption on those operations will significantly impose computational
load for practical simulations. In addition, the implementation of the CFD
algorithms is also considerably more complicated on these irregular grids.

In the light of the seminal work of Peskin [92,93], the IB method is plau-
sible for its simplicity and efficiently to treat arbitrary-shaped geometries
and moving boundaries using stationary grids. Generally in IB methods, the
model description of the fluid phase is extended to the whole computational
domain including the “immersed” solid region, in which the governing equa-
tions for fluid motion are solved as well. Special techniques are applied to
enforce the non-slip boundary condition on solid surface or the rigid motion
within the solid domain. Compared with traditional body-fitted grids, the
IB method is free of the mesh manipulation and is allowed to have almost
unrestricted boundary motions.

In the original IB method by Peskin [92, 93] and others [94, 95], the im-
mersed interface is tagged by Lagrangian marker points which actually com-
pose a tessellation of the solid surface. The fluid-solid interaction F calcu-
lated from local relative velocity at those points is continuously scattered to
surrounding fluid cells as a body force f , which stylistically writes

fijk =
∑
l

Flδl,ijk∆Sl , (1.5)

in which δl,ijk ≡ δ(xijk − xl) is a generalized delta-function that converges
with the grid spacing ∆x and ∆Sl is the surface area associated with the
point l. The δ-function is required to be normalized, i.e.∑

ijk

δ(xijk − xl)∆x
3 = 1 . (1.6)

Such a continuous forcing term shows up as an extra body force distributed
smoothly within a band of cells covered by the support domain of the δ-
function along the immersed interface. It is simple to implement but some-
times can give rise to a smeared near-wall flow and spurious flows in the
solid interior, for which substantial improvement can be achieved with im-
plicit calculation of the forcing term via an iterative procedure [96]. Another
problem of the IB model based on continuous forcing is the generation of
the point set representing the solid shape, of which the qualities (e.g. point
number, spacing and uniformity) might finally affect the simulation results,
see e.g. [80].

An alternative approach is developed in the IB formulation of Fadlun et
al. [97] which is said to be the direct forcing. In their model, rather than
introducing a continuous force term, the fluid velocity near the IB is directly
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modified to reflect the wall velocity. Usually it suffices to accomplish this
direct forcing with an interpolation of the wall velocity and outer flow velocity
based on the geometrical configuration of those points, see Figure 1.3 for a
2D illustration with linear interpolation. Higher-order interpolation has been
described in [98] and truly multidimensional interpolation scheme is available
in [99, 100]. In comparison with the continuous forcing approach, the direct
forcing can result in a sharper representation of the immersed boundary,
see [101] for a review.

A number of analytical and numerical investigations have been contributed
to improve the performance of the direct forcing IB method. With respect
to the model formulation, the accuracy of direct forcing used together with
a projection method [102] for incompressible fluids is studied in [103]. New
forcing terms considering the consistency between the IB interpolation proce-
dure and surrounding fluid motion have been suggested by [104–106]. Kim et
al. [107] proposed an extra mass sink/source term to improve the pressure so-
lution yielded by the IB method. Other authors developed sharp-interface IB
methods by using the cutting-cell technique [108–113] or stepwise truncation
of the fluid domain [114] to achieve fully conservative modeling of fluid-solid
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interaction. We note that, all of the reports above require a well-defined
shape of the solid surface, so that their interpolation stencils, added source
terms and truncated cells or domain could be obtained without ambiguity.
For this sake, they are best suited to simple IB geometries, but may become
difficult and even render algebraic systems that are not solvable for complex
shapes.

Kajishima et al. [79, 115] simplified the procedure in the direct forcing
IB method. In their “volume-of-solid” approach, fluid and wall velocities
are blended by using the solid volume fraction α as a weight function. This
method is very robust, efficient and suitable for the situation where a single
fluid point is affected by multiple solid objects. The advantages of this IB
model are very appealing for an engineering method designed to simulate
arbitrary-shape geometries and moving boundaries.

Another problem related to the modeling of complex geometry is the
practical aspect of their representation in the actual implementation. For
example, simple objects such as cube, sphere and cylinder can be described
by their geometrical parameters with ease, and in principle, it is possible to
provide appropriate approximation to all general shapes by using triangular
meshes. However, those approaches are not suitable for practical usage: the
generality is lacking in the former and the latter involves many inefficient
operations of mesh elements. To this end, the arbitrary-shape wall boundary
model developed by our group [116] is able to offer an efficient representa-
tion for general boundaries. It renders the solid object as a special SDF field
ψB of which the zero-contour implicitly defines the surface shape. The rigid
motion of the boundary is recorded by a corresponding transformation to
the local coordinate space. Hence, it is guaranteed that complicated shapes
and rigid motions are inclusively represented in a unified approach. Similar
techniques utilizing the LS representation of IB objects (but with less deli-
cate consideration of design, implementation and usability) have also been
described in [117–119].

1.3 Objective and developments

In this section, the scope of this thesis on the numerical modeling of gas-
solid-liquid three-phase flows will be discussed in detail. Particularly, our
literature survey has helped us identify three major problems needing urgent
solution for academic and engineering purpose.

Firstly, computational models have not been established for two-phase
and three-phase flows in general geometries, which in fact comprises the
theme of this thesis. Numerical studies of gas-liquid flows interacting with



23

arbitrary shapes of boundaries seem to be restricted to stationary geome-
tries or objects with simple motion such as spheres, cylinders, wedges and
ship hulls, see e.g. [2, 117, 120–123]. Their application to rather complicated
cases, including the stirring disks and paddles of considerable intricacy in
beads mill and twin screw kneader, is however unknown. On the other hand,
for gas-solid-liquid flows, the author is not aware of any general geometries
other than a simple rectangular computational domain that has been ever
treated in past studies. These facts imply that, the existing methods are not
suitable to simulate three-phase flows interacting with arbitrary-shaped ge-
ometries or moving parts widely encountered in engineering applications. We
would also like to emphasize that, a unified boundary model is desirable for
conveniently treating the various interactions that dominate in a gas-solid-
liquid system, which include the aspects of fluid-fluid (contact angle on solid
surface), solid-solid (contact between particle and boundary structure) and
fluid-solid (agitation of fluid by boundary movement) interactions.

Secondly, numerical studies are insufficient for the macroscopic modeling
of gas-solid-liquid flows involving a dense particle phase and strong fluid-
particle interaction as those found in mixing and grinding processes. In par-
ticular, this insufficiency resides in two ends of the numerical modeling: the
model formulation and the computational capability. For the first point, as
an engineering viewpoint is respected, models based on the volume-averaging
approach aforementioned are preferable. However, the careful examination
of literatures in three-phase flows has revealed that many of them adopted
inconsistent formulations especially with respect to the fluid-particle inter-
action term, see e.g. [6, 124–126]. For this sake, unfortunately it is no point
to expect that those computational models would balance the interphase
momentum transfer between continuum and disperse phases and yield physi-
cally convincible results. For the second point, we have noticed that, previous
studies are found within a rather limited scope of three-phase fluidization sys-
tems in dilute regime, see e.g. [127–130], where particle suspensions (typically
below 10% solid volume fraction) passively follow the flow field and their in-
fluence to the fluid phase is not appreciable. It is thus not available in the
past how the macroscopic flow structure (in particular the free surface) be-
haves in response to the motion of massive particles, which is oppositely the
case in our scope of three-phase systems. For example, in mixing processes
involving water entry and exit of solids (both stirring paddles and solid beds),
some issues are to model the deformation of the free surface and the water
displacement of the solid phase, in order to properly reflect the influence
of operational conditions such as rotation speed and solid loading. These
important considerations are lacking in previous studies. Consequently to
all intents and purposes, the computational capability of existing models to
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recover the macroscopic behavior of three-phase flows is questionable.
Thirdly, the computational model that can directly simulate gas-solid-

liquid systems without any empirical equations is absent in the current status.
As commented by van der Hoef et al. [51] in their multi-scale philosophy of
fluid-particle modeling, such a DNS approach is mainly conceptualized at the
microscopic level, whose primary task is to supplement macroscopic models
with effective and scalable closures for the description of unresolved and
subgrid terms, rather than attempting to defeat complex problems using the
brute numerical force of their own. To take the three-phase flow systems
concerned in this study for instance, besides the dominant hydrodynamic
effect, particles floatation on free surface and adhesion to wet wall owing
to particle-interface capillary action can also be observed in our laboratory
experiments for relatively fine particles with typical size dp < 1 mm. For such
effects having not been treated previously within a context of gas-solid-liquid
flows, one might rely on the three-phase DNS in a representative system from
which useful correlations could be extracted and then adopted in his/her
larger-scale simulations. Similarly, another anticipatory application of the
DNS-based study is the evaluation of validity for empirical drag correlations
and the development of new ones. In this sense, a DNS model suitable
to perform computations with fully-resolved interactions of hydrodynamic
force and capillary force will fill the gap by aiming for the advancement of
numerical modeling of gas-solid-liquid flows.

In order to address the aforementioned problems, the work presented
in the current thesis is devoted to the development of an accurate and ef-
ficient computational framework that enables the numerical simulation of
general gas-solid-liquid flow systems. As for the major objective, the numer-
ical procedures are targeting towards the effective modeling and predicting
the macroscopic flow behavior of three-phase systems in engineering prob-
lems, especially those encountered in various mixing and grinding processes
including but not limited to wet beads milling, wet ball milling and twin
screw kneading.

In the current numerical framework, a conventional finite volume method
with Chorin’s projection methodology [102] is used to compute the fluid
motion. On discretized grids, the fluid interface is tracked by using the
THINC/WLIC VOF method [31]. The DEM [55] is adopted to simulate dis-
tinct solid particles and their collisions. The IB method [79]) models complex
geometries with the SDF representation [116]. These fundamental techniques
are then combined as building blocks for more advanced simulators, which
have comprised a set of numerical tools to treat diverse complexities and flow
cases.

Specifically, our first step is made to develop a VOF-IB method for simu-
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lating two-phase flows in complex geometries. In this part a robust workhorse
VOF model is implemented for gas-liquid flows interacting with arbitrary-
shaped walls and moving boundaries modeled by the IB method. It is in-
tended to provide flexibility and extensibility for more complicated flow prob-
lems as well as for the usage as a standalone fluid solver. Its development
partly solves the first problem of complex geometry modeling for two- and
three-phase flows.

In the second stage, the DEM-VOF method enlarges the computational
window for three-dimensional simulation of gas-solid-liquid flows based on a
volume-averaging approach. This method fully integrates the numerical tech-
niques for three-phase flows and complex boundary modeling. It is also able
to correctly recover the macroscopic flow behaviors for both the steady and
unsteady states of gas-solid-liquid flows. The development of the DEM-VOF
method satisfactorily achieves the main goal of this study with a settlement of
both the first and the second problems. Simulation results of its application
to a laboratory TSK system together with other test problems are presented
to demonstrate its capability to model complex gas-solid-liquid flows.

The last part of this study describes a DNS method with direct calcu-
lation of two major effects in a representative three-phase flow, namely the
hydrodynamic force and the capillary force exerted on solid particles. This
DNS method finally furnishes the present framework by introducing a fully
numerical approach to validate and develop closure model equations to en-
hance a large-scale simulation, as it is figured out by the third problem.

In this way, the numerical framework undertaken in this study utilized a
systematic approach to treat gas-solid-liquid flows with complex geometries
which is relevant in a large variety of engineering processes. In particular, the
following originalities and achievements are thought to be the contribution
of the present study.

• The VOF-IB method allows for a wide range of flow conditions and
complex geometries. It presents a novel approach extending conven-
tional VOF method to arbitrary-shaped computational domains. Its
simplicity and efficiency are remarkable in comparison with existing
two-phase models.

• The DEM-VOF method developed in this study, to the author’s best
knowledge, is the only one that can compute gas-solid-liquid flows in-
teracting with non-trivial boundaries. Its development has filled the
gap for a large variety of engineering problems.

• The three-phase DNS method is another important technology tar-
geting the numerical solution of detailed gas-solid-liquid interactions.
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Specifically, it is the first computational model based on VOF/IB meth-
ods with the ability to resolve the hydrodynamic and capillary actions
in three-phase flows.

1.4 Outline of this study

The main matters of this thesis are organized as follows.
In Chapter 2, a numerical modeling of two-phase flows in complex geome-

tries namely the VOF-IB method is presented. The essential concepts of the
modeling of fluid motion, interface and general boundary are depicted and
numerical tests are performed to show its validity.

In Chapter 3, this modeling is extended by the DEM-VOF method to
gas-solid-liquid flows for which the fluid-particle interaction is defined via a
volume-averaged approach. As the central element of the present numerical
framework, this part describes a series of numerical techniques necessary for
the proper calculation of three-phase interaction with the presence of non-
trivial boundaries. The DEM-VOF method is successfully applied to the
simulation of a laboratory TSK system, which highlighted its potential in
tackling complicated gas-solid-liquid flow problems.

Chapter 4 describes developments to the microscopic end for the DNS of
gas-solid-liquid flows, for which the fluid-particle interaction is fully resolved.
Special treatments to discretize the entire system and to evaluate capillary
effects are discussed. Numerical tests are performed to validate this DNS
method. To exemplify the point in what way DNS results could be used
to provide feedback to large-scale simulations based on averaged model, the
evaluation of the validity domain of some empirical drag laws adopted by the
DEM-VOF method is carried out by using the DNS.

Finally, overall conclusions and future investigations are summarized in
Chapter 5.
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Chapter 2

The VOF-IB method for
two-phase flows in complex
geometries

2.1 Introduction

2.1.1 Background and related work

Incompressible gas-liquid flows interacting with complex geometries and mov-
ing bodies are ubiquitous in numerous natural and industrial circumstances.
Their applications include wave impact problems in marine and costal engi-
neering, liquid jets and atomization in engine designing, and high-viscosity
or viscoelastic flows through kneader/extruder in chemical engineering. Ef-
ficient, accurate and robust computation of these flow problems are gain-
ing increasing attentions in recent years. However, the physical intricacy
and numerical difficulty have rendered such a problem highly challenging for
computational methods.

As the simulation for two-phase flows within complex geometries is con-
cerned, there are two major aspects defining the numerical method: the
modeling of fluid-fluid interface and the modeling of fluid-solid interaction.
Among a large variety of numerical models for solving two-phase problems
(e.g. the marker-and-cell (MAC) method [1], the front tracking (FT) method [2],
and the constrained interpolation profile (CIP) method [3]), the so-called
“ interface capturing”methods are good choices for predicting the motion of
incompressible, viscous, and immiscible fluids involving complex fluid inter-
face, large density ratio and general flow conditions. Basically, an interface
capturing method follows an Eulerian description of fluid motion and has a
fixed Cartesian grid covering the whole fluid domain. On that grid a field

40
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variable, viz. the indicator function, is discretized to identify and move the
fluid interface. The volume-of-fluid (VOF) method [4] and the level set (LS)
method [5] are the most famous and successful ones in the interface-capturing
family. In the VOF method, the volume fraction of one fluid phase in each
computational cell is adopted as the color function to distinguish different
fluids. A typical procedure in a VOF method contains a geometrical recon-
struction and advection of the binary interface using the volume fraction. To
this end, several varieties of the VOF algorithm have been proposed [4,6–10].
The VOF method has good volume conservation properties, but it is difficult
to exactly locate the interfacial point and compute the surface tension as
pointed out by many past studies [11–13]. The LS method directly stores
a signed distance field (i.e. the level-set function) whose zero contour cor-
responds to the fluid interface. High-order upwind methods for hyperbolic
laws can be applied to the interface advection in a LS method [14]. However,
the LS method is known to suffer from the loss of mass problem although
this could be partly alleviated by using reinitializing operations [5, 15]. Be-
sides some improvements made individually to the VOF and LS methods, a
coupled level set and volume-of-fluid (CLSVOF) method [13] has also been
proposed to combine their advantages.

To model fluid-wall boundary interaction, the immersed boundary (IB)
method is thought to be efficient. The term “immersed boundary” is now a
collective designation of the techniques to represent geometrical shapes non-
conforming to the fixed computational grids (see e.g. an overview [16]). Com-
pared with traditional body-fitted grids, the IB method is free of the costly
gridding procedure and is allowed to have almost unrestricted object mo-
tions. In general, existing IB methods could be categorized into two types in
respect of the way how the flow field is modified near the immersed boundary.
In the IB method originated by Peskin [17,18] and other researchers [19,20],
the immersed interface is represented by distinct Lagrangian points and their
actions to the fluid are scattered in surrounding fluid cells, calculated either
explicitly or implicitly. The direct forcing IB method [21] adopts an alter-
native approach. The boundary velocity given by the interpolation based on
local geometry profile is prescribed discretely at nearby fluid grids where the
boundary is embedded. Kajishima & Takiguchi [22, 23] proposed a simpler
formulation of direct forcing IB method: at the fluid-solid interfacial cells,
fluid and solid velocities are explicitly mixed by using the local solid volume
fraction as a weight factor. This method is efficient and suitable for the situ-
ation when a fluid point is interacting with multiple solid objects. Different
versions of the direct forcing IB method have been successfully applied to
the numerical simulation of particulate flows [19, 24], creature-induced air
flows [25], and turbulent flows [26,27].



42

In the past, some numerical methods have been proposed for simulating
two-phase flows in general geometries by connecting the VOF method and
immersed boundary models in fixed Cartesian grids. Some attempts have
been made for free-surface flows in wave impact problems where the influ-
ence of the gas phase is ignored [28, 29]. Kleefsman et al. [28] incorporated
the VOF method into a finite volume code based on cutting-cell techniques.
Lin [29] developed a two-dimensional VOF free-surface flow solver with spe-
cial treatments for fluid-solid partial cells. An alternative approach is to
solve the Navier-Stokes equation in the whole computational domain so that
the gas motion is also taken into consideration, see [30]. Their two-phase
VOF solver is further combined with discrete element method (DEM) [31]
to simulate wave-particle-structure impact problems. However, they used an
upwind-biased MUSCL scheme instead of a standard VOF advection algo-
rithm, which may cause interface diffusion in long-time simulations. The
treatment of contact-angle boundary condition is not specified in their work,
either.

Similar to the VOF method, the LS method is also frequently adopted
for simulating gas-liquid systems within general boundaries. Sussman [32,33]
described a CLSVOF method for multiphase flows with application to ship
hydrodynamics using three-dimensional adaptive mesh refinement (AMR)
grids. To give the contact-angle boundary condition when the free surface
intersects the solid wall, an iterative algorithm is developed based on a spe-
cial advection equation of the LS function. By solving such an advection
equation in pseudo-time iterations, the LS function defining the fluid inter-
face is extended into the solid region subjected to a given contact angle, so
that the contact-angle boundary condition could be satisfied without explic-
itly locating the three-phase contact line. Yang and Stern [34] developed a
LS/IB method to simulate wave-body interactions. In their study, the den-
sity/pressure jump across the gas-liquid interface is treated by using a sharp
interface model. At the solid surface, the LS function is directly modified in a
way consistent with linear interface fitting to explicitly prescribe the contact-
angle boundary condition. Yoon et al. [35] also proposed their computational
model using the LS method. Degrees of freedom for rigid motion are added
to their numerical model and the hydrodynamics force on solid objects is
evaluated from the IB forcing term, allowing for simulating interaction prob-
lems between two-phase flows and floating bodies. Other numerical studies
using a combination of the LS method and immersed boundary modeling of
relatively simple geometries include two-dimensional bubble adherence [36],
fluid-particle interaction [37], and three-dimensional jet atomization [38].
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2.1.2 Developments in this study

In this study, a combined VOF-IB numerical method is developed to per-
form three-dimensional simulations of two-phase flows interacting with com-
plex geometries. Its development is motivated by our interest to model some
mixing devices used in chemical engineering, which usually have severely dis-
torted free surfaces and highly complicated internal shapes and moving parts.
Therefore, it is required in the VOF-IB method to simulate the generality
of fluid interfaces and rigid boundaries (and their interactions) with good
accuracy and efficiency. The originality of the present method different from
known literatures lies in the following points.

• First, the THINC/WLIC scheme [10] is used for VOF interface re-
construction and advection, which could be implemented in 3D space
more easily than traditional PLIC (piecewise linear interface calcula-
tion) method [7] while it is able to capture the fluid interface with
comparable accuracy. Some possible improvements to the scheme are
discussed. The convective momentum fluxes is computed by using a
modified version of the hybrid scheme of Spalding [39] to avoid spurious
wiggles at the free surface.

• Second, Kajishima’s IB method [22, 23] is chosen for calculating fluid-
solid interactions. In comparison with other direct forcing IB formu-
lation with geometrical interpolation, its velocity blending based on
volume fraction weighting provides a natural way to handle multiple
moving bodies that might come close to each other.

• Third, the geometry boundary and immersed objects now have a spe-
cial signed distance function (SDF) representation which is based on
our arbitrary-shape wall boundary model developed in [40]. Not only
could primary shapes such as spheres and cylinders be modeled but
also very complicated ones are able to be imported from CAD (com-
puter aided design) data. This programming module can also support
rigid motions including translation and rotation with ease. Combined
with the previous point, our boundary modeling based on the SDF/IB
approach is a major novelty of this study. It does not only allow for
flexible representation and computation of complex geometries, but is
also critical for suppressing nonphysical interface attachment on wall
boundaries. See Sections 2.5.2 and 2.5.3.

• Last but not least, we propose some simplified treatments within a
VOF framework to apply the contact-angle boundary condition in gas-
liquid-solid systems.
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The problems of interest have a wide spectrum across many engineering
problems, and we also hope our VOF-IB solver to be a generic, versatile tool
for the prediction of various flow systems. In this study, we perform tests and
provide comparison to analytical or numerical reference solutions in order to
validate the proposed VOF-IB method.

2.2 Governing equations and grid system

We consider an incompressible Newtonian flow composed of two immiscible
fluids confined by solid boundaries. Its computational model is governed by
the Navier-Stokes equation (modified to reflect the immersed boundary) and
the continuity equation:

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ µ

ρ
∇2u+

1

ρ
σκδn+ g + fB , (2.1)

∇ · u = 0 , (2.2)

where u is fluid velocity, ρ is fluid density, µ is fluid viscosity, p is pressure, σ
is coefficient of surface tension, κ is local mean curvature, δ is a delta function
non-zero at the interface, n is the interface normal vector and g is gravity.
Herein fB stands for the external forcing on the fluid due to immersed bound-
ary, whose role is to enforce the condition u = uB with uB the boundary
velocity. Hence, the terms on the right hand side of the Navier-Stokes equa-
tion 2.1 represent the effects of pressure gradient, viscosity, surface tension,
gravity and wall boundary, respectively.

The VOF function φ is defined as the volume fraction of the “liquid”
phase out of the binary fluid mixture. It works as a characteristic function
whose value is 1 in “liquid”, 0 in “gas”, and 0 < φ < 1 at the interface.
The temporal evolution of the fluid interface can be obtained by solving the
passive advection equation:

∂φ

∂t
+ u · ∇φ = 0 . (2.3)

Using the VOF function, fluid density ρ and viscosity µ could be calcu-
lated from original physical properties of the liquid and gas phases as follows:

ρ(φ) = φρl + (1− φ)ρg , (2.4)

µ(φ) = φµl + (1− φ)µg , (2.5)

where the subscript l and g denote liquid and gas phases, respectively.



45

u

v

p, , ,
ψ,

j)

Figure 2.1: Staggered grid and variable configuration.

The fluid domain is discretized on a standard uniform staggered grid. As
shown in Figure 2.1 (for clarity a 2D grid is used), components of velocity u
are arranged at the corresponding staggered positions (face-centered), while
other flow variables such as φ, ρ, µ, and p are defined at fluid cell centers
(cell-centered).

2.3 Arbitrary-shape wall boundary represen-

tation

The arbitrary-shape wall boundary model developed in our previous study [40]
is a highly reusable programming module that can provide a signed distance
function (SDF) based representation of geometric shapes independent of the
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application context where it is deployed. The arbitrary-shape wall boundary
model and its analogy have already been successfully applied to our previous
Lagrangian particle simulations of granular materials [40] and solid-liquid
granular flows [41–43]. A similar approach is that used by [38] in their
CLSVOF simulation of injectors. For the sake of completeness, the basic
concept, construction and utility about the arbitrary-shape wall boundary
model is described in this section.

The solid boundary representation is based on the implicit zero-contour
surface defined with a special SDF ψB. Following the convention in level set
literatures, ψB < 0 in the region occupied by the solid body. Since ψB is a
level set function, in principle, for a given point we can directly retrieve the
shortest distance to the solid surface and get the boundary normal vector
(pointing outwards from solid region to the fluid region) as

nB =
∇ψB

‖∇ψB‖
. (2.6)

The original solid object is described by a surface mesh consisting of trian-
gle elements, and we construct the SDF field within a box at least bounding
all mesh nodes with some margin. The calculation of ψB value is equivalent
to that for each grid point, find the minimal distance from all nodes, edges
and elements in the original surface mesh. For better efficiency, the calcula-
tion is actually carried out in a limited range near the object mesh, and the
remaining points are filled with a cutoff value instead. The input need not
be a high quality mesh, as stretched elements are also allowable. However,
for simplicity and correctness, it is desirable to have a closed object mesh
without any hanging nodes.

One important point is that, ψB is independently calculated on a uniform
grid which generally does not coincide with the fluid grid. In our case, this
auxiliary grid has a resolution much finer than that used in fluid simulation
(usually the grid size is a factor of 2 (or more) smaller than the fluid grid size).
So that from the viewpoint of fluid solver, the boundary representation is
almost precise. Once calculated, ψB could be cached for different simulations.
When there are N objects, their SDF fields are built and kept separately as
ψB1, ψB2, . . . , ψBN . In fact, at the beginning of each step in our VOF-IB
solver, the SDF values are transferred to the fluid cell (i, j, k) and combined
to be a single level set profile ψ:

ψijk = min (ψB1(xijk), ψB2(xijk), . . . , ψBN(xijk)) (2.7)

The combination of ψB by taking their minimum primarily has two reasons:
(a) the resulting SDF field will give the closest distance to the wall in the
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Figure 2.2: Translation and rotation represented by SDF coordinate trans-
formation.

fluid and (b) any point with a negative SDF value must belong to the corre-
sponding solid boundary.

A local coordinate is associated with each SDF field to reflect rigid body
motion without re-evaluation of their values. The coordinate transformation
is updated every time as translational or rotational motion occurs. If the
SDF value at some point is requested, we will transform the point back
to its position in the local coordinate system. Then we perform a trilinear
interpolation on the SDF grid and return the obtained value. This procedure
is illustrated in Figure 2.2.

From the SDF model, we can also obtain the solid volume fraction αijk
which is a part of the IB treatment (see Section 2.5.2). In this study, each
fluid cell is refined to 8× 8× 8 finer volumes of which the SDF signs at the
centers are checked. The volume occupied by the solid is then approximated
by the ratio of non-positive fine volumes out of all subdivisions. Both the
level set function, ψ, and the solid volume fraction, α, are defined as cell-
centered variables (see Figure 2.1).
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2.4 THINC/WLIC VOF interface advection

2.4.1 Standard WLIC scheme

We first describe the THINC/WLIC advection scheme [10] briefly. In this
method, piecewise constant reconstruction of the interface similar to the
SLIC (simple line interface calculation) [6] is carried out along x, y, and z-
coordinates, respectively. All these three flat interfaces are used to determine
the upwind, geometrical flux F across the cell face,

Fi =

∫
ui∆t

φdV with i = 1, 2 and 3, (2.8)

and a weighted average of the resulting fluxes is calculated taking in account
the local surface orientation,

F =
3∑
i=1

Fiwi . (2.9)

Figure 2.3 provides a two-dimensional schematics of the WLIC interface re-
construction with corresponding weights.

To advance the fluid interface in time, the VOF advection equation 2.3
is written in the form

∂φ

∂t
+∇ · (uφ)− (∇ · u)φ = 0 . (2.10)

Then the operator split of the governing equation at time step n is performed
as follows:

φ∗
ijk = φnijk −

F n
i+1/2,j,k − F n

i−1/2,j,k

∆x
+∆tφnijk

∆u

∆x
(2.11)

φ∗∗
ijk = φ∗

ijk −
F ∗
i,j+1/2,k − F ∗

i,j−1/2,k

∆y
+∆tφnijk

∆v

∆y
(2.12)

φn+1
ijk = φ∗∗

ijk −
F ∗∗
i,j,k+1/2 − F ∗∗

i,j,k−1/2

∆z
+∆tφnijk

∆w

∆z
(2.13)

with

∆u = ui+1/2,j,k − ui−1/2,j,k ,

∆v = vi,j+1/2,k − vi,j−1/2,k ,

∆w = wi,j,k+1/2 − wi,j,k−1/2 ,
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(nx, ny)

Linear interface WLIC interface

x, wx

y, wy

Figure 2.3: Schematic diagram of WLIC interface reconstruction. In this 2D
example, an interface with surface normal vector (nx, ny) is approximated
by the sum of two simple line reconstructions φx (dashed line) and φy (dotted
line) with different weights given by wx = ‖nx‖/(‖nx‖ + ‖ny‖) and wy =
‖ny‖/(‖nx‖+ ‖ny‖).

respectively. Herein F with different superscripts is the geometrical flux
calculated from the VOF interface reconstruction at each split step. It is
seen that all terms on the right hand side of the split equations contain only
the variables from the previous stages. So this is thought to be an explicit
updating of the VOF function φ. This method is conservative if the velocity
field is discretely divergence free.

2.4.2 Modified WLIC schemes

In this study, we respect the interface reconstruction methodology from the
original THINC/WLIC method. On the other hand, we explore alternative
approaches for updating the VOF function.

Consider a two-dimensional flow case where the velocity is compressive
in x-coordinate (∆u < 0) but expansive in y-coordinate (∆v > 0). One
problem introduced by the above explicit scheme is that after a single sweep,
overshoot in the value of φ may possibly occur because of the compressive
one-directional velocities (see [8]), although it would be partially compen-
sated by the following sweep in the expansive direction. This problem could
be overcome by replacing the explicit scheme with a semi-implicit one as
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below:

φ∗
ijk = φnijk −

F n
i+1/2,j,k − F n

i−1/2,j,k

∆x
+∆tφ∗

ijk

∆u

∆x
(2.14)

φ∗∗
ijk = φ∗

ijk −
F ∗
i,j+1/2,k − F ∗

i,j−1/2,k

∆y
+∆tφ∗∗

ijk

∆v

∆y
(2.15)

φ∗∗∗
ijk = φ∗∗

ijk −
F ∗∗
i,j,k+1/2 − F ∗∗

i,j,k−1/2

∆z
+∆tφ∗∗∗

ijk

∆w

∆z
(2.16)

It is not difficult to show that such a semi-implicit updating is conceptually
equivalent to the “effective cell volume change” approach proposed by [8].
In addition, this scheme is made conservative by subtracting the velocity
gradient terms from the operator-splitting algorithm, as done in [13]:

φn+1
ijk = φ∗∗∗

ijk −∆tφ∗
ijk

∆u

∆x
−∆tφ∗∗

ijk

∆v

∆y
−∆tφ∗∗∗

ijk

∆w

∆z
. (2.17)

Another approach used to advance the interface is a semi-Lagrangian
propagation with directional split. Both forward [11] and backward-tracing [44]
strategies are applicable to such a Lagrangian interface tracing. Our ap-
proach based on a backward-tracing is explained here.

Since the advection is done through separated one-directional sweeps,
illustration for the x-coordinate case is sufficient. Consider a control volume
CVi on the interval [xi−1/2, xi+1/2] with face velocity ui−1/2 and ui+1/2 at its
two ends, respectively. We want to decide the VOF function φn+1

i for CVi.
Starting from the cell faces, we trace backward along the characteristic line,
so we have a “departure cell” CVD mapped on the region

[xi−1/2 − ui−1/2∆t, xi+1/2 − ui+1/2∆t] .

In other words, the departure cell CVD shall be just fitted into the target
control volume CVi after the advection. So φn+1

i is set to the average value
of the VOF function contained in CVD, which may involve multiple cells, as
depicted in Figure 2.4. The same THINC/WLIC technique for evaluating the
volume fluxes is adapted to integrate the VOF function in each intersected
area separated by cell boundaries.

2.4.3 Comparative study of different schemes

In order to compare three different types of the THINC/WLIC method, we
apply them to several two-dimensional scalar advection problems. We first
consider the famous Zalesak disk [45] problem with rigid body rotation. In
this test, the computational domain is set to a unit square and a notched
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xi-1/2-ui-1/2 t xi+1/2-ui+1/2 t

xi-1/2 xi+1/2

ui-1/2 ui+1/2(i,j) (i+1,j)

Figure 2.4: Semi-Lagrangian advection of VOF function with WLIC recon-
struction. The departure cell for CV(i, j) is displayed as the rectangular
region with dashed border.

disk whose radius is 0.17 is centered at (0.5, 0.75). The slit cutting into the
disk is given by

|x− 0.5| ≤ 0.03 and y ≤ 0.85 .

The VOF function inside the disk is initialized to one. An external velocity
field is prescribed as

u = y − 0.5

v = 0.5− x

After the simulation begins, the disk will rotate rigidly clockwise around the
domain center. We run the computation on a 100 by 100 grid and complete
one revolution in 2000 steps.

Figure 2.5 shows the computational results after one cycle of rotation.
The original shape of the notched disk is clearly recovered by the results,
except for some smearing and deformation at sharp corners, which could be
improved by further refining the grids (results not shown here). It is seen that
all three schemes can well predict the interface motion. Differences between
different schemes are almost invisible for this rigid body rotation test.

Another problem, referred to as the Rider-Kothe vortex [46], is a more
severe test featured by a large deformation of the interface. At t = 0, a circle
with radius 0.15 is placed at (0.5, 0.75). A time dependent shearing flow is
imposed as

u(t) = −U0 sin
2(πx) sin(2πy) cos(πt/T )

v(t) = +U0 sin
2(πy) sin(2πx) cos(πt/T )



52

(a
)
E
x
p
li
ci
t
u
p
d
at
in
g

(b
)
S
em

i-
im

p
li
ci
t
u
p
d
at
in
g

(c
)
S
em

i-
L
ag

ra
n
gi
an

u
p
d
at
in
g

F
ig
u
re

2.
5:

Z
al
es
ak

d
is
k
p
ro
b
le
m

u
si
n
g
d
iff
er
en
t
T
H
IN

C
/W

L
IC

sc
h
em

es
.
T
h
e
re
d
li
n
e
sh
ow

s
th
e
in
te
rf
ac
e
af
te
r
on

e
ro
ta
ti
on

an
d
th
e
b
la
ck

d
as
h
ed

li
n
e
is
th
e
in
it
al

sh
ap

e.



53

in which T is the time period for the circle returning back to its initial
position. In this test, we have U0 = 1 and T = 8. The (u, v) values are
directly assigned to staggered velocity components at cell faces. We use a 200
by 200 uniform grid to discretize the computational domain of 1.0 by 1.0. A
fixed time step of ∆t = 0.001 sec is chosen to guarantee a mediate Courant
number. After 8000 steps the simulation is finished. We also generate a
reference solution by tracking the Lagrangian particles representing the front
and integrate their motions using a fourth-order Runge-Kutta method.

Figure 2.6 shows the interface shapes of maximal deformation at t = T/2.
The original circle has been stretched into a long filament along the vortex
flow direction. At this stage, all three schemes yield comparable results in
good agreement with the reference solution (Figure 2.6 (d)) except that some
flotsam detached from filament tail which has becomes too thin to be resolved
by the current computation.

When time comes to t = T , the circular shape should be exactly restored
for a perfect advection. Figure 2.7 compares the simulation results with the
initial state. It is observed that, however, there is a subtle phase lag between
the interface calculated by the explicit scheme and the initial state. Such
a discrepancy does not exist for the computation using the semi-implicit
and semi-Lagrangian schemes. Hence, for flow cases with strong vorticity
and large deformation of the interface, it is possibly more beneficial to use
the VOF method together with a semi-implicit or semi-Lagrangian updating
scheme.

In the fluid simulations reported in this study, the original THINC/WLIC
interface reconstruction and propagation algorithm is used for its proven
validity. The semi-implicit and semi-Lagrangian schemes discussed in this
section are not pursued. Their performance in practice will be left for future
research.

2.5 Numerical methodology

2.5.1 The Navier-Stokes solver

In this section, we first describe the basic implementation of the Navier-
Stokes solver while ignoring the IB forcing term in the momentum equation.
At the beginning of the n-th time step, all VOF related quantities at the new
(n+1)-th step, i.e. φn+1, ρn+1 and µn+1, are assumed to be known and they
are referred with the superscript (n+ 1) dropped.

Our discretization approximates the Navier-Stokes equation and satis-
fies the incompressible condition by using a classical first-order projection
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(a) Explicit updating (b) Semi-implicit updating

(c) Semi-Lagrangian updating (d) Reference solution

Figure 2.6: Rider-Kothe vortex problem at t = T/2 using THINC/WLIC
scheme. The red line shows the calculated interface and the black line is
the original shape. The reference solution in (d) is obtained by tracking the
motion of Lagrangian points.
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(a) Explicit updating (b) Semi-implicit updating

(c) Semi-Lagrangian updating

Figure 2.7: Rider-Kothe vortex problem at t = T using THINC/WLIC
scheme. The red line shows the calculated interface and the black line is
the original shape.
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method. In this method, the convective, viscous, gravity and surface tension
terms are calculated explicitly. Next, a pressure Poisson equation is solved
to obtain the pressure implicitly. Then the intermediate velocity is corrected
to be discretely divergence free. The fractional-step algorithm is done by the
following procedures.

1. Explicit Euler solve for predicting velocities:

u∗ − un

∆t
= −∇ · (uu) + µ

ρ
∇2un +

1

ρ
σκδn+ g (2.18)

2. Implicit pressure Poisson equation with variable coefficients:

∇ ·
(
1

ρ
∇pn+1

)
=

∇ · u∗

∆t
(2.19)

3. Pressure projection step for correcting velocities:

u∗∗ − u∗

∆t
= −1

ρ
∇pn+1 (2.20)

The resulting velocity field u∗∗ will be further modified according to the IB
treatment, see Section 2.5.2.

The following sections provide the spatial discretization schemes used in
this study.

Grid variables

The fluid density and viscosity in each cell is computed thru the volume
average in equations 2.4 and 2.5 using the VOF function collocated at the
same position:

ρijk = φijkρl + (1− φijk)ρg (2.21)

µijk = φijkµl + (1− φijk)µg (2.22)

If their values are required at face or node position, they are obtained via a
simple average of the neighboring values. For example,

ρi+1/2,j,k =
1

2
(ρijk + ρi+1,j,k) (2.23)

µi+1/2,j+1/2,k =
1

4
(µijk + µi+1,j,k + µi,j+1,k + µi+1,j+1,k) (2.24)
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Similar operations are done for staggered velocity components if necessary,
e.g.:

uijk =
1

2
(ui−1/2,j,k + ui+1/2,j,k) (2.25)

vi+1/2,j+1/2,k =
1

2
(vi,j+1/2,k + vi+1,j+1/2,k) (2.26)

Convective and viscous terms

For the non-linear convective term, a conservative discretization is used. For
the u-component at staggered position (i+ 1/2, j, k), it is given by

∇x(uu)i+1/2,j,k +∇y(vu)i+1/2,j,k +∇z(wu)i+1/2,j,k .

Let us take the second term with y-derivative for an example. It is written
in finite difference form as

vi+1/2,j+1/2,kUi+1/2,j+1/2,k − vi+1/2,j−1/2,kUi+1/2,j−1/2,k

∆y
,

where v is the advection velocity obtained using linear interpolation as shown
in the previous section. The quantities U in capital letters are u-velocities
constructed at the faces of momentum control volume. In general, upwind-
biased schemes should be used to avoid unphysical oscillations. A hybrid
scheme of Spalding’s [39] with some modification is used to interpolate face
values in this study. For the case of U velocity above, it can be determined
using the hybrid scheme as

Ui+1/2,j+1/2,k =


ui+1/2,j,k if Pe > Pestab,

ui+1/2,j+1,k if Pe < −Pestab,
(ui+1/2,j,k + ui+1/2,j+1,k)/2 otherwise,

(2.27)

where the Peclet number (or cell Reynolds number), Pe, is chosen as the
maximum value of two neighbor cells,

Pe = vi+1/2,j+1/2,k∆ymax

(
ρi+1/2,j,k

µi+1/2,j,k

,
ρi+1/2,j+1,k

µi+1/2,j+1,k

)
. (2.28)

Herein Pestab is the stability criterion for which we use Pestab = 1.5 in this
study. The other terms are treated in a similar way. The hybrid scheme
switches between first-order upwind difference scheme and second-order cen-
tral difference scheme, depending on the local Peclet number. Although it
tends to be more diffusive than other higher-order schemes often used in LS
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methods (e.g. the third-order QUICK scheme for convective term in [34]),
the hybrid scheme is found to be a good company for a VOF method which
can keep the consistency between momentum fluxes and mass fluxes and
avoid spurious wiggles at the free surface.

The well-known central differences is applied for the viscous term while
the variable fluid viscosity is computed at the midpoint. For example, its
u-component is written as

µ∇2u ≈ ∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)
for which all the continuous derivatives are replaced by central differences,
and the viscosity is estimated as mentioned in the previous section.

Surface tension

The famous continuum surface force (CSF) model [47] is used to compute
the surface tension. In the CSF model, the original surface force is recast as
a volume force within a narrow band across the free surface as follows:

1

ρ
σκδn ≈ 1

ρ
σκ∇φ . (2.29)

The interface unit normal vector n is computed by evaluating the finite-
difference gradient of the VOF function

n = ∇φs/‖∇φs‖ . (2.30)

Here φs is a smoothed VOF function to improve the estimation of normal
vectors. In this study, φs is obtained by smoothing the original φ twice using
the filter suggested by [48]. The curvature κ is evaluated as the divergence
of the surface unit normal:

κ = −∇ · n . (2.31)

In practice, we check the value of the VOF function and cutoff small, unstable
values of normal vectors to ensure that the surface tension force is only
calculated in the vicinity of the free surface.
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Pressure projection

The left hand side of the pressure Poisson equation 2.19 is discretized by
using a classical central difference scheme given by

∇ ·
(
1

ρ
∇p
)
ijk

=
1

∆x2

(
pi+1,j,k − pijk
ρi+1/2,j,k

− pijk − pi−1,j,k

ρi−1/2,j,k

)
+

1

∆y2

(
pi,j+1,k − pijk
ρi,j+1/2,k

− pijk − pi,j−1,k

ρi,j−1/2,k

)
+

1

∆z2

(
pi,j,k+1 − pijk
ρi,j,k+1/2

− pijk − pi,j,k−1

ρi,j,k−1/2

)
.

(2.32)

The matrix system defined by this discrete operator is thus symmetric.
The velocity divergence term at right hand side of the pressure Poisson

equation can be easily calculated as

(∇ · u)ijk =
ui+1/2,j,k − ui−1/2,j,k

∆x

+
vi,j+1/2,k − vi,j−1/2,k

∆y

+
wi,j,k+1/2 − wi,j,k−1/2

∆z
.

(2.33)

Once the pressure is obtained, the fluid velocity (e.g. the u-velocity)
could be corrected by

u∗∗i+1/2,j,k − u∗i+1/2,j,k

∆t
= − 1

ρi+1/2,j,k

pi+1,j,k − pijk
∆x

. (2.34)

To solve the discretized pressure equation, we use an algebraic multigrid-
preconditioned conjugate gradient method from the HYPRE library1 (namely
the PFMG-CG structured grid solver in the HYPRE documentation). This
solver is found to be efficient and robust through our numerical study even
for gas-liquid flows with high density ratios (up to 1000 : 1). The convergence
tolerance is set to 10−8 as a measure of the relative error.

2.5.2 IB treatment for flow field

The flow velocity at the wall is made consistent with the prescribed boundary
velocity through the IB model. As mentioned in Section 2.3, each boundary
wall has its own level set representation ψBm (m = 1, 2, . . . , N in N objects),

1The Hypre library, http://acts.nersc.gov/hypre/.

http://acts.nersc.gov/hypre/
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and for the entire fluid domain, both a level set function ψijk and a solid
volume fraction αijk field will be generated from the boundary shape profile,
see Figure 2.8.

Next the boundary velocity is to be projected from the Lagrangian wall
objects to the Eulerian fluid mesh. The rigid velocity, uBm, could be evalu-
ated at a point x as follows:

uBm(x) = vBm + ω × (x− xBm) , (2.35)

where vB, ωB and xB are the linear velocity, angular velocity and reference
point of rotation of the m-th wall, respectively. We note that the point x
corresponds to a staggered velocity at cell face, so the components of uB
parallel to the cell face are actually discarded. The calculation of uB is
not only limited to the solid region inside the walls, but also expanded to a
narrow band beyond the solid surface where the solid volume fraction α is
non-zero.

For a momentum control volume intersected by multiple wall objects,
special care should be taken. We first find out whether the fluid point is
covered by any of these objects by checking the signs of the level set functions.
If so, the rigid velocity of that wall is directly assigned to the fluid position;
otherwise a weighted mean boundary velocity is calculated with the volume
fraction of each wall used as the weight.

Then the velocity u∗∗ yielded from the fluid solver (Section 2.5.1) could
be readily corrected to take into account the solid motion by an explicit
modification:

un+1 = (1− α)u∗∗ + αuB (2.36)

which in return yields an expression for the IB forcing term

fB =
α(uB − u∗∗)

∆t
. (2.37)

Explicit evaluation of fB is not necessary as only prescribed object motion
is allowed. As illustrated in Figure 2.8, for a cell completely enclosed inside
some solid subdomain (α = 1), the present IB correction will directly inject
the rigid velocity therein; while at the interface (0 < α < 1), the velocities
are continuously interpolated to form a boundary layer by which fluid and
solid regions are smoothly connected. Similarly, in a physical sense, the IB
forcing fB could be related to the slip-velocity between solid and fluid phases
in the interface boundary layer, whereas the forcing effect naturally vanishes
in the fluid region (α = 0).

Applying the IB correction to a staggered velocity variable still requires
some more clarification. The face velocity that needs such a correction is
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ψ>0, �luid

ψ<0, solid

Figure 2.8: IB domain and fluid domain.
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called an IB point, which is identified by that the wall level set function ψ
is non-positive for at least one of the two adjacent cells. The determination
of IB points is similar to that of finding interfacial points in some existing
methods for fluid-fluid [49] and fluid-solid [25] interaction problems. Again,
we choose the u-velocity (i + 1/2, j, k) as an example, see Figure 2.9. The
values of ψ at adjoining cells sharing this face are first examined for

(ψijk < 0 and ψi+1,j,k < 0) or ψijk · ψi+1,j,k ≤ 0 . (2.38)

In that case, the IB equation becomes

un+1
i+1/2,j,k = (1− αi+1/2,j,k)u

∗∗
i+1/2,j,k + αi+1/2,j,kuB,i+1/2,j,k . (2.39)

The solid volume fraction at face is given by the arithmetic average of two
neighboring cells:

αi+1/2,j,k =
1

2
(αijk + αi+1,j,k) . (2.40)

We note that, using both SDF signs and IB fractions to identify IB points
is a novel contribution by the proposed method in order to successfully sim-
ulate fluid interfaces within complex geometries. It is known that IB mod-
els generally introduce thickened artificial velocity boundary layer so that
boundary and fluid domains are connected continuously. This is accept-
able for single-phase flows but could be extremely problematic for two-phase
flows within complex geometries. Based on our numerical test, the thickened
boundary layer may cause the fluid interface to adhere to the wall surface
spuriously, which is a peculiar problem that transpires only in the context
of multiphase flows but not yet get addressed in existing IB literatures since
their application to such flows is still very limited.

To solve this problem, the proposed SDF/IB approach is a useful remedy
by restricting the thickness of artificial boundary layer to a minimal extent.
We find this treatment is factually critical for suppressing the aforementioned
spurious adherence of fluid interface on IB surfaces and subsequently can
greatly improve the quality of numerical results. Its effect is demonstrated
in the following example of a twin screw kneader (TSK) system which will be
further discussed in the next chapter. Figure 2.10 shows fluid interfaces in a
rotating TSK calculated by using the IB method with and without the SDF
sign check. It is evident that the nonphysical attachment and entrainment
of the gas-liquid interface on the paddle surface has spoiled the solution.
One must be aware of the fact that those layers are mismatch to real liquid
membranes sometimes observed on wall surfaces, as they are totally numer-
ical artifacts and grid-dependent. When the current SDF/IB technique is
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Fluid point

Solid point

IB point

Extended IB

i+1/2,j i+1,ji,j

i,j+1/2

i,j+1

Figure 2.9: Selecting IB forcing points at staggered positions.

applied, such spurious phenomenon are satisfactorily eliminated and reason-
able interface behavior is obtained.

Finally, a subsidiary problem is how to setup the boundary condition (BC)
when the immersed boundary extends to the physical boundary, e.g. internal
flows inside a tank. Based on our numerical test, at the boundary of the
computational domain that is taken over by IB regions, one can apply some
type of consistent fluid BCs, e.g. Dirichlet BC for velocity and homogeneous
Neumann BC for pressure.

2.5.3 IB treatments for fluid interface

A typical IB method for fluid-solid problems takes care of the no-slip velocity
BC, but an additional consideration arises when free surface calculation is
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(a) IB interpolation without SDF sign check

(b) IB interpolation with SDF sign check

Figure 2.10: Effect of the SDF/IB approach on interface behavior.
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Liquid

Gas

Wall
Solid

Fluid

n

-nB
Figure 2.11: Schematic diagram of contact angle at a wall.

involved. Usually a special boundary condition has to be supplied to the
intersection of the free surface and the solid wall, viz. the contact angle BC,
which is given as follows with a contact angle θC :

n · (−nB) = cos θC (2.41)

in which n is the interface unit normal pointing from gas region to liquid
region and nB is the boundary unit normal pointing from solid region to
fluid region, as defined in preceding sections. Their relations is illustrated
for a two-dimensional contact point in Figure 2.11.

Because the precise resolution of contact line dynamics is not the main
aim, our discussion is restricted to the most basic case of a neutral contact
angle, i.e. θC = π/2. Consequently, the contact angle boundary condition is
reduced to

n · (−nB) = − ∇φ
‖∇φ‖

· nB = cos(π/2) or ∇Bφ = 0 . (2.42)

It is thus shown that the reduced condition equals to a homogeneous Neu-
mann BC for the VOF function at solid walls. In this study, two different
approaches based on the extrapolation of the VOF function into the solid
region are used to satisfy the contact angle BC.

The first way is a simple “dilation” operation which has been inspired
by some sharp-interface methods that smoothly populate pressure [25, 50]
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or velocity [38, 51] into a fictitious fluid domain. In the beginning, all fluid
cells (ψ > 0) are tagged and all solid cells (ψ ≤ 0) are untagged. Next the
VOF function inside an untagged cell will be assigned as the average value
from tagged cells in its 3× 3× 3 neighborhood with weight factors inversely
proportional to the square of the distance between them. This procedure is
repeated for nextend times. Every time a cell is updated, it will be tagged and
treated as known in the next iteration. In this way, the VOF front in the
fluid region will grow into the solid region sequentially, by one layer of cells
per iteration.

The second way consists in iteratively solving the “extension” equation
proposed by [32]:

∂φ

∂τ
+ uextend · ∇φ = 0 , (2.43)

in which the extension velocity is the normal vector orthogonal to the solid
surface:

uextend = −nB . (2.44)

Although originally this method is proposed for level set methods, we apply
it to VOF functions. It is solved at all the solid cells (ψ0) for an artificial
time duration τmax = nextend∆x with time increment ∆τ = ∆x. A semi-
Lagrangian advection scheme is used to find φ from its upwind position:

φτ+∆τ
ijk = φτ (xijk − uextend∆τ) (2.45)

in which the right hand side is evaluated by using a trilinear interpolation.
The dilation approach has the advantage in its simplicity that only the

sign of the solid level set function is required, which makes it efficient and
applicable to general geometry configurations. However, it must come with
considerable smearing of the extrapolated interface. The extension approach
reflects the solid surface orientation and thus can be adopted for arbitrary
contact angles (see [32] ), but finding the surface normal vector is sometimes
ambiguous for under-resolved areas (e.g. consider a single cell influenced by
two objects). Both methods are used in our numerical studies, case by case.
The parameter nextend is the total iteration number that controls the depth
of front advancing into the solid region. Setting nextend to zero is equivalent
to omitting the contact angle BC. If not specified, we have nextend = 4 in this
study for both approaches.

It is noted that, in the present method, the THINC/WLIC interface ad-
vection (see Section 2.4) is performed for all computational cells ignoring
immersed boundaries. And then the dilation or extension procedure is car-
ried out to modify the VOF function in partial and full solid cells. This
treatment is consistent with the IB methodology in an ignore-and-correct



67

style, and it can circumvent the stringent time step restrictions caused by ar-
bitrarily small cells, as figured out by [32]. However, the VOF advection is no
longer conservative in the existence of the immersed boundary. A slight loss
of mass (or overshoot) might occur in that case. If the volume conservation
is desired, we choose to periodically reset the volume fractions of the liquid
phase to compensate the mass error, which does not have an appreciable
influence to the overall flow behavior.

2.5.4 Time-stepping algorithm

In the present method, the time step ∆t is limited by the CFL condition,
viscosity and surface tension:

∆t < C ·min

(
∆x

‖u‖
,
ρ∆x2

µ
,

√
ρ∆x3

2πσ

)
(2.46)

where C is a positive constant sufficiently small. We perform simulations
with a stable fixed time step chosen accordingly.

The overall time-stepping algorithm in a single sweep (from step n to
n+ 1) is outlined as follows.

1. Update moving boundaries for the arbitrary-shape wall boundary model,
see Section 2.3.

2. Transfer the boundary representation to the fluid grid, on which gen-
erate the solid wall level set ψn+1 and volume fraction αn+1, see Sec-
tion 2.3.

3. Advance the VOF interface to φn+1 using the THINC/WLIC scheme,
see Section 2.4.

4. Extend the VOF function into the solid region, by using either the
dilation or extension operation described in Section 2.5.3.

5. Compute the updated fluid properties ρn+1 and µn+1, see Section 2.2.

6. Explicitly calculate the convective, viscous, gravity and surface tension
terms listed in Section 2.5.1 to obtain a provisional velocity u∗.

7. Solve the pressure Poisson equation for pn+1, and correct the interme-
diate velocity to have u∗∗, see Section 2.5.1.

8. Apply the IB treatment to enforce the velocity BC at the walls, and
finally the flow velocity is updated as un+1, see Section 2.5.2.

Now the current time step is completed.
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2.6 Numerical results

In this section, we show three-dimensional numerical examples using the
VOF-IB method. First, the fundamental part of the proposed method is
validated in two quasi-steady systems, namely the parabolic surface in a
rotating barrel and the relaxation of rods to static shape. Next the water
exit of a cylinder is computed and compared with known solutions to show
the effects of moving bodies. As a flow case with violent free surface motion,
two dam break problems, where the flow either evolves freely or interacts
with an obstacle, are investigated and validated against experimental data.
Lastly, the simulation of the stirring process caused by two elliptical paddles
rotating in a tank is conducted to show the ability of the present method to
model complicated systems.

2.6.1 Water surface in a rotating barrel

The steady state of a free surface under rigid-body rotation, if ignoring the
contact condition at the rigid wall, is given by a parabolic profile:

z =
ω2

2g
r2 + (H − R2

4
) ,

where z is the surface elevation, r is the distance from rotation axis, ω is
the angular velocity, g is gravity, H is the initial water depth, and R is the
radius of the cylindrical container. See Figure 2.12.

In this test, we simulate a barrel with radiusR = 1 and height 2H rotating
with ω = 1. The initial water depthH equals to 2 and the gravity is (0,−1, 0).
The computational domain is set to 2.4×4.8×2.4 and the barrel is placed at
the center of the domain with its pole aligned with the y-axis. The density
and viscosity is ρl = 1.0 and µl = 0.01 for the liquid phase, and ρg = 0.001
and µg = 10−5 for the gas phase, respectively. The computation is run up
to steady state using four different resolutions, 18 × 36 × 18, 24 × 48 × 24,
36 × 72 × 36 and 48 × 96 × 48 cells, which serves as a grid convergence
study involving the fluid interface. The extension approach described in
Section 2.5.3 is used to treat the adhesion at walls.

Figure 2.13 shows the initial and final shapes of the interface obtained
using the finest grid (48×96×48 cells). Due to centrifugal effects, the liquid
has been pushed towards the wall side. Thus a concave surface forms and it
is elevated from the initial position near the wall. In addition, as a 90-degree
contact angle BC is applied, we can see that a flat extension of the interface
is generated in the solid region on a plane orthogonal to the vertical wall.
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ω

g

-g

ω
2r

Figure 2.12: Rigid-body free surface vortex in a rotating barrel.

In Figure 2.14 the grid refinement study is shown in respect of the in-
terface shape. Convergent results are obtained as grid is refined, and the
interface shapes are also in good agreements with the analytical solution.
Some difference between the simulation results and the parabolic profile is
near the contact line at the wall. This is consistent with the application of
the contact angle BC; however, this point is not considered in the analytical
solution.

A numerical convergence study is performed for this test using the parabolic
profile as the reference solution. Following theWLIC VOF paper by Yokoi [10],
the L1 error defined as

e1 =

∑
|φ− φref |
N

(2.47)

is used for measuring the numerical error of interface shape in an average
sense. Note that for immersed regions no analytical solution exists, so the
evaluation of numerical error is only carried out in the fluid domain where
ψ > 0. Figure 2.15 presents the estimates of numerical errors under different
resolutions. From the slope in the error plot, a convergence rate close to
1 has been obtained, which is due to the first-order accuracy of the WLIC
VOF scheme [10].
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(a) Initial state

(b) Steady state

Figure 2.13: The interface shape in a rotating barrel. In this figure, the
interface is calculated on the finest grid (48×96×48 cells) and is extrapolated
from the solid surface using the extension algorithm.
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Figure 2.14: Comparison of the interface shape with grid refinement.
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Figure 2.15: Convergence of VOF interface to the parabolic profile.
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2.6.2 Relaxation of rods to static shape

In this section we validate the contact angle treatments described in Sec-
tion 2.5.3 by studying relaxation of quasi-2D droplets (or rods) to static
shape in different IB geometries.

Rectangular geometry

We first design a test case with straight walls. The computational domain is
defined on [−0.03, 0.03]× [−0.06, 0.06]× [−0.06, 0.06] with a discretization of
32×64×64 cells. A box [−L/2, L/2]×[−L,L]×[−L,L] is embedded as an IB
geometry. The reference length L equals 0.05 m. The immersed boundary
does not coincide with any cell boundaries under this problem setup. We
initialize the VOF function to one in the area given by

y ≤ 0 and z ≤ 0

and fill zero elsewhere.
In this study, we assume zero gravity, and have the parameters chosen as

ρl/ρg = 1, µl/µg = 10 and σ = 0.075 N/m. Subject to the 90 ◦ contact angle
condition, the initial shape will relax to a quarter of a cylindrical rod whose
radius is computed as

a = 2L/π1/2 ≈ 0.0564

and axis is at
y = z = −0.05 .

In Figure 2.16, we compare the computed interface shape (solid line) with
the expected state (squares). Only a sectional view is shown for the two-
dimensional nature of this test. It is confirmed that both the dilation and
extension approaches are able to reproduce the analytical solution.

Curved geometry

Next we consider a system with curved boundaries. The parameters are
totally the same as the previous test except that the IB geometry is replaced
with a cylinder with radius R = 0.05. On a section plane, the static surface
will theoretically be an arc whose tangents at the intersection points are
perpendicular to the circular boundary (due to 90 ◦ contact angle). The
central angle Θ subtending the arc (see Figure 2.17) can be obtained from
the nonlinear equation

π −Θ

2
+

Θ

2
tan2

(
π −Θ

2

)
− tan

(
π −Θ

2

)
− Θ0

2
= 0 .
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(a) Dilation approach

(b) Extension approach

Figure 2.16: Relaxation of rod to static shape in a box. The solid line shows
the computed interface and squares represent expected solution.
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Θ/2
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R

Figure 2.17: Meniscus shape in a cylinder.

Θ0 depends on the initial configuration and is equal to π/2 in this problem.
We solve this equation using Newton ’s method and find that the value of
Θ is approximately 69.28 degree. It is thereby easy to calculate the radius of
the arc as

a = R tan

(
π −Θ

2

)
≈ 0.0724 .

Figure 2.18 shows the resulting interface in comparison with the expected
shape. Again, both dilation and extension approaches can give satisfactory
results in good agreement with the analytical solution. It also seems that
the extension approach slightly outperforms that based on dilation operation
in the vicinity of the immersed boundary. In the rest of this paper, the
contact angle boundary condition is handled by the extension approach if
not specified.
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(a) Dilation approach

(b) Extension approach

Figure 2.18: Relaxation of rod to static shape in a cylinder. The solid line
shows the computed interface and squares represent expected solution.
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2.6.3 Water exit of a cylinder

The water exit problem of a cylinder has been studied as a test of free surface-
moving body interaction by using various numerical approaches [28–30, 34,
35].

We setup this test in a fluid domain of 16R × 16R × 4R where R = 1
m is the cylinder radius. A 160 × 160 × 40 grid is used to discretize the
fluid domain, which gives a cell spacing ∆x = 0.1R. The water depth is
12R and the cylinder is initially submerged beneath the water surface. The
distance between the cylinder center and the surface is H = 1.25R. Physical
properties of the water are ρl = 1000 kg/m3 and µl = 0.001 Pa·s, and those
of the air are ρg = 1 kg/m3 and µg = 10−5 Pa·s, respectively. The gravity is
set to −1 kg m/s2.

During the simulation, the cylinder rises at a constant upward velocity
V = 0.39 m/s. The rising process is shown in Figure 2.19 against the dimen-
sionless time

T =
|V |t
H

.

In early stages (T < 0.6), a growing curved surface arise due to the upward
motion of the cylinder. At T = 0.8, the surface is broken by the emerging
cylinder top and consequently surface waves are generated by the falling
water from both sides around the cylinder (T = 1.0). As the cylinder moves
on (T > 2.0), it completely exits the water surface. The behavior of the fluid
interface obtained from our three-dimensional simulation agrees with other
2D reports (see e.g. [34]).

For a more precise comparison, Figure 2.20 shows the interface shapes
at T = 0.4 and 0.6 in close-up together with the boundary element method
(BEM) solution of [52]. The present results are in good agreements with the
reference data.
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Figure 2.19: Water exit of a cylinder with vorticity contour.
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(a) T = 0.4

(b) T = 0.6

Figure 2.20: Water exit of cylinder: comparison of interface shapes.
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2.6.4 Dam break flow

The dam break problem is a classical incompressible two-phase flow test
case [53].

Conventional dam break

In this section, we first simulate a “standard” dam break flow in a 3D tank
whose length, height and width are 1 m, 3 m and 2 m, respectively. The
initial length and height of the reservoir are a = 0.5 m and h = 2a. Such a
problem setup has been backed up by the experimental investigation of [54].
The water has density ρl = 1000 kg/m3 and the air ρg = 1 kg/m3, while their
viscosities are µl = 0.001 Pa s and µg = 10−5 Pa s. As usual the downward
gravity is 9.8 m/s2. Non-slip boundary conditions are applied to all walls
except that the top of the tank is an outflow boundary. IB modeling is not
activated for this problem.

Numerical simulations are computed using grids with different refine-
ments: 20× 60× 40, 30× 90× 60 and 40× 120× 80 cells. We have used the
following non-dimensional quantities, see Figure 2.21.

time t∗ = t(2g/a)1/2

water front z∗ = z/a

dam height y∗ = y/a

pressure p∗ = p/ρga

As the simulation begins, the water dam will collapse under gravity and
move along the floor. When it reaches the opposite wall, the splashed water
rises high into the air. Figure 2.22 provides several snapshots showing the
propagation and reflection of the water wave computed on the finest mesh.

The mesh-convergence behavior is demonstrated through Figure 2.23, in
which the numerical solutions are compared at two different times before
(t∗ = 2.505) and after (t∗ = 3.757) the arrival at the wall, respectively.
Reasonable results have been obtained using all three grids. A general trend
seems to be that both leading edge and rising tip of the water move faster on a
fine mesh, but the overall difference between different grid refinements is not
significant. Hence the current results are almost free of any grid dependency.

The computed positions of the leading front z∗ at the floor and the re-
ceding edge y∗ to the vertical wall before the impact are plotted against the
non-dimensional time in Figures 2.24 and 2.25. Good agreements with the
experimental data from Martin and Moyce [54] are apparent.
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Time t* = t(2g/a)1/2

Front z* = z/a

Height y* = y/a

Pressure p* = p/ρga

Figure 2.21: Schematic diagram of a dam break flow.

Figure 2.22: Dam break: snapshots of water surface and pressure contour.
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(a) t∗ = 2.505 (b) t∗ = 3.757

Figure 2.23: Dam break: comparison of interface shapes near the wave front
with refinements.

Dam break with an obstacle

Next, we consider a more intense dam break problem in which the collaps-
ing water hits on an obstacle before its impact against the wall. This test
problem is suggested by Koshizuka et al. [55] and investigated therein both
experimentally and numerically using a Lagrangian particle method. We
follow the problem setup described in [55] and add a solid obstacle at the
bottom of the tank. The obstacle is modeled by the IB method. We compute
the solution with a uniform grid spacing ∆x = a/32 and a fixed time step
∆t = 0.0001 sec.

The calculated 3D fluid interface, colored by the velocity contour, is pre-
sented in Figure 2.26 at time instants t = 0.2, 0.3, 0.4 and 0.5 sec. Sliced
views of these results are compared in Figure 2.27 with the experimental pho-
tographs2. We can see that the flow behavior has been drastically changed
by the deflection at the obstacle. A strong, curved arm outspreads from the
water body and flies towards the opposite wall (t = 0.2 and 0.3 sec). After
the water arm hits the wall (t = 0.4 sec), a portion of air is trapped in the
space enclosed by the water layer, tank and obstacle. As the water attached
to the wall starts to fall (t = 0.5 sec), the air cushion is pushed to the ob-
stacle side and tries to break through the water layer. At the same time,

2Experimental photographs are provided by courtesy of Professor Koshizuka.
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Figure 2.24: Dam break: time evolution of the water front at the bottom.
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Figure 2.25: Dam break: time evolution of the water height at the wall.
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a secondary water tip penetrates into the air region. From the comparative
study in Figure 2.27, the computational results are likely to recover most in-
teresting features in the experimental flow qualitatively, e.g. the water arm,
impact against the wall, entrapment of air, deformation of water layer and
the secondary water tip. On the other hand, some points less satisfactory
may consist in flow details such as the splashing region above the water layer
and the size of the secondary water tip.

Some differences could be found for the shape of the water tip at t = 0.3
sec. We are aware of this problem and ascribe its reason to the fact that in
VOF- and LS-type interface capturing methods the motion of relatively thin
jets, filaments and broken free surfaces with high density ratio is somehow
prone to the accumulation of numerical errors depending on the grid resolu-
tion, discretization schemes (particularly the convection scheme) and bound-
ary conditions adopted. As mentioned by some authors [56, 57], to some
extent, discussion for such unsteady flow details is very hard and doubtful.

Figure 2.28 compares our simulation (the background picture) with other
available VOF results. The triangular markers are the sketch of the jet shape
in [58] which is calculated on octree-based adaptive grids by using a power
law interpolation [59] for the convective term within a truncated domain at
the top; the dots show the interface shape obtained with the opensource
CFD software OpenFOAM3 for which a fine mesh generation, an elongated
computational domain and upwinded linear interpolation for the convection
term have been used as the recommendation in its user document. The result
of [58] generally conforms to the current one, while the OpenFOAM result is
at a much leading position, which is plausibly explained for differences in their
numerical aspects. Apart from those differences, the overall flow behavior has
been satisfactorily recovered as shown in the comparison between simulation
and experimental photographs.

3The OpenFOAM foundation, http://www.openfoam.com/.

http://www.openfoam.com/


86

Figure 2.26: Dam break with an obstacle: free surface shape with velocity
contour.
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Figure 2.27: Dam break with an obstacle: comparison between the simulation
(left column) and experiment [55] (right column).
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Figure 2.28: Comparison of jet shapes obtained in different studies. The
background picture is the current VOF-IB simulation, the triangular marker
is sketched up from [58] and the dots are results by the OpenFOAM solver.
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2.6.5 Rotating elliptical paddles

The rotation of two ellipses in a water tank is numerically studied by [34] as
a challenging test case with complicated behaviors of the free surface.

In this test, parameters similar to those given in [34] is used, but the
problem setup is extruded to be a three-dimensional configuration. The
computational domain is 4.0L×2.4L×2.4L, and the reference length L = 1.0.
The elliptical paddles have a semi-major axis of 0.9L, semi-minor axis of 0.2L,
and a length 2L. The constant angular velocity is ω = π/3 rad/s for both
paddles, but in opposite directions. The gravity is set to −9.8 m/s2. The
whole domain is discretized by using a grid of 80× 80× 48 cells.

Figure 2.29 shows a series of three-dimensional snapshots of the air-water
interface and velocity vectors under stirring of the elliptical paddles, for which
the time is normalized by the rotation period T = 2π/ω. A very noticeable
phenomenon that takes place at t/T = 0.25 (and similarly at t/T = 0.5) is
the upward jet caused by the squeeze between the paddle tip and the vertical
wall, which is also observed in [34].

In order to further justify the current method, we compare the 3D simu-
lation results with a reference solution obtained by using a 2D CLSVOF [13]
code with direct forcing IB modeling [21]. This in-house code has been val-
idated independently in many flow cases. The 2D simulation is performed
using a much finer mesh of 320 × 192 cells. Their comparison is shown in
Figure 2.30, in which the central plane of the 3D results are extracted for
visualization. It is clearly seen that, although having a coarser resolution,
the behavior of the fluid interface is still well predicted and the 3D results
are in good agreement with the reference solution.

In the current 3D setup of the test problem, the liquid is allowed to escape
through the gap between the paddles and the front and back walls, which
does not occur for the 2D system. This difference helps balance the surface
position in the 3D case and thus brings in some dimensional effects: (a)
before captured by the downward moving ellipse tip, the water level between
the paddle and the wall is higher than the 2D case (e.g. between the right
side wall and paddle at t/T = 0.4) and (b) the liquid jets are weaker than
their 2D counterparts (e.g. near the vertical walls at t/T = 0.25 and 0.5).
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Figure 2.29: Rotating paddles: free surface with velocity vectors.
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Figure 2.30: Rotating paddles: the present 3D VOF (left) vs. 2D CLSVOF
solution (right).
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2.7 Conclusions

In this study, we developed a numerical method for three-dimensional simula-
tion of two-phase flows in complex geometries. The overall algorithm is based
on the VOF method for two-phase flows and the IB modeling of wall bound-
aries. The shape and movement of general geometries are represented by an
auxiliary level set function with local coordinate transformation. Numerical
schemes are presented in detail to solve the interface advection, incompress-
ible fluid dynamics, and the interaction with walls and moving objects. In
addition, we describe and test two different ways to satisfy the 90 ◦ contact
angle boundary condition. They are both usable and easy to implement in
three-dimension.

Various numerical tests have been performed to validate the present
method. They contains steady flow problems for grid convergence and wall
contact (concave surface in rotating barrel and relaxation of rods to a state
of rest), dynamic flow driven by moving objects (water exit of a cylinder),
violent air-water flow (dam break without/with an obstacle) and compli-
cated interactions with arbitrary shapes and movements (rotating elliptical
paddles). The calculated results have been compared with known reference
solutions and experimental data. Good agreements justify our numerical
modeling. Hence, the numerical method developed in this study is shown to
be suitable for simulating two-phase flows in complex geometries.
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Chapter 3

The DEM-VOF method for
three-phase flow simulation

3.1 Introduction

3.1.1 Background and related work

Gas-solid-liquid flows are widely encountered in chemical engineering. In
particular, the motivation for our research focus is the pressing requirement
for modeling gas-solid-liquid flows in wet ball/beads milling systems and twin
screw kneaders (TSKs). In these problems, the complicated phenomena will
restrict the observation and insight that could be obtained with experimental
approaches. On the other hand, one may rely on accurate numerical simula-
tions from which useful information could be extracted to help improve the
designing and operating procedures.

For gas-solid-liquid flow problems, the numerical challenges mainly arise
from interactions among different phases. Basically, a typical gas-solid-liquid
flow involves fluid-fluid interaction (evolving fluid interface), fluid-solid in-
teraction (fluid-particle momentum exchange), and solid-solid interaction
(particle-particle collision). In addition, the influence of arbitrary-shaped
geometries and moving boundaries must be taken into consideration for prac-
tical simulations. Prior to a systematic approach to complete gas-solid-liquid
problems, some fundamental techniques have been established to solve those
sub-problems independently.

Fluid-fluid interaction A variety of numerical models have been devel-
oped to describe the motion of two-phase flows separated by immiscible
fluid interfaces, e.g. the volume-of-fluid (VOF) method [1] , the level
set (LS) method [2], the coupled LS and VOF (CLSVOF) method [3],

98



99

the front-tracking (FT) method [4] and the constrained interpolation
profile (CIP) method [5]. Those interfacial models are known to have
their own features and limitations, which has been discussed in the
literatures.

Solid-solid interaction The discrete element method (DEM) [6] or the dis-
crete particle model (DPM) is now a common practice to simulate pow-
der and granular materials. Its numerical strategy by directly tracking
distinct particle motion allows for specific particle properties and ex-
act evaluation of solid forces. Due to the huge amount of particles in
real-world industrial problems and a relatively limited computational
capability and resources, the coarse grain model (CGM) has been pro-
posed to release computational efforts by different authors, see [7–10].

Interaction with wall boundary The immersed boundary (IB) method [11–
13] can efficiently model complex geometries non-conforming to the
fluid grids, which has greatly alleviated the time-consuming mesh gen-
eration and regridding procedures in traditional computational fluid
dynamics (CFD) techniques. On the other hand, DEM-type particle
simulations usually adopt mesh-based models as is the exact wall shape.
Recently, the author ’s group has proposed an arbitrary-shaped wall
boundary model [14] based on signed distance function (SDF) which
can offer a unified wall boundary representation for both fluid and par-
ticle simulations.

When it comes to the numerical analysis of more complex, coupled gas-
solid-liquid flow systems, two classes of approaches have been employed so
far: the DNS and the local volume-averaging technique, of which the former
intends to resolve microscopic flow behaviors and the latter mainly focuses on
macroscopic average flow problems. As opposed to the DNS that requires fine
grids to resolve all relevant flow structures, the volume-averaging approach
is less computationally demanding and thus it could be an affordable and
pragmatic choice for simulating large-scale systems. The volume-averaging
approach has its theoretical origin in the famous two-fluid model (TFM) [15,
16], where a spatial filtering operation is applied to the mixture system and
the interaction between two distinct phases is calculated based on empirical
correlations.

At present, the DEM-CFD method is among the most popular and suc-
cessful numerical techniques for simulating fluid-solid flows based on a volume-
averaging approach. In the DEM-CFD method, The discrete particle phase is
simulated by DEM-type particle-tracing Lagrangian methods and the fluid



100

phase is computed on Eulerian meshes by using CFD. Hence such a cou-
pling method is said to be an Eulerian-Lagrangian methodology. Compared
with traditional TFM Eulerian description, this combination can overcome
the analytical and numerical difficulties when modeling dense solid beds.
The DEM-CFD method is now widely used to simulate solid-gas and solid-
liquid fluidization systems. Review of DEM-CFD simulations of fluidized
beds could be found in [17–19].

Despite the successful application of the volume-averaging Eulerian-Lagrangian
model to two-phase fluidization systems, its power is not fully explored for
gas-solid-liquid three-phase flows. Zhang and Ahmadi [20] performed 2D
simulation of slurry bubble columns in which motions and trajectories of
disperse phases (bubbles and particles) are calculated by Lagrangian anal-
ysis procedure. As a result, there arises a dependency on empirical closure
model to define the fluid-bubble interaction. Wen et al. [21] described an
interesting approach to model large-scale three-phase fluidization systems by
combining DEM for particle phase and TFM for bubbly flows, where liquid-
bubble interaction still relies on constitutive correlations. The fluid-particle
momentum exchange is seemingly not balanced as different drag closures
have been adopted in continuum and disperse phases separately. Addition-
ally, their formulation is provided for axisymmetric coordinate but the DEM
particle model is ambiguous in that case.

Fan’s group has contributed some important results to the simulation of
three-phase fluidization systems with direct computation of bubble motions.
In [22–25], the authors proposed a 2D method combining the VOF method
and a hard-sphere DPM in which a special close-distance interaction (CDI)
model is included in the particle-particle collision process. Unfortunately,
their formulation of gas-solid-liquid fluidization suffers from an inconsistent
fluid-particle interaction model, as pointed out by [26]. Later in their 3D
studies [27, 28], the LS method is used instead of the VOF method for the
interface description. A review of their studies on gas-liquid-solid fluidized
beds and bubble formation from nozzle in three-phase system is given by [29].

A combination of FT method and hard-sphere DPM has been proposed
in [30] to simulate bubble rising and particle entrainment. However their
study is restricted to the case of dilute particle suspensions (up to maxi-
mum 4% solid volume fraction) where the influence to fluid phase is not
appreciable. The authors of [31] incorporated distinct particle tracing into
a commercial VOF package for simulation of microchannel flows. Although
the fluid-particle interaction is considered to be balanced, the interactions
among solid particles are not included in their implementation. In [32] a
DEM-CIP coupling method is developed to calculate liquid droplet impinge-
ment on powder bed. They described a sub-grid scale model for the capillary
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action when the fluid interface penetrates into the solid layer, and the au-
thors argued that this modeling can compensate the overestimated pushing
effect due to drag force during the granular wetting process.

As briefly reviewed above, previous studies are found within a rather
limited scope. Many of them are simple DEM-CFD extensions to three-
phase fluidization systems in dilute regime. Particularly, we wish to identify
several points that may obstruct the application to real engineering problems.

• First of all, more or less flaws could be found in many models concerning
the formulation of the fluid-particle interaction term. This problem
exists especially for some relatively early attempts, e.g. the VOF-DPM
method by [22]. It is no coincidence that such a model fails to verify
the momentum balance between continuum and disperse phases.

• Secondly, it is not clearly documented in the past how the free surface
behaves in response to the particle motion. For example, in mixing
processes involving water entry and exit of solids, common issues are
to model the deformation of the free surface disturbed by particles and
the water displacement of the solid phase, of which the former is mainly
credited with the dynamic fluid-particle interaction and the latter cor-
responds to the overall volume conservation property of the numerical
approach. These vital considerations are, however, incidentally lack-
ing in previous studies. Therefore the applicability of existing models
to recover the macroscopic behavior of gas-solid-liquid flows in such
problems is unknown.

• Lastly, it is found that no general geometries other than a simple rect-
angular computational domain have ever been treated throughout our
literature survey. This means that the existing models cannot simulate
three-phase flows interacting with curved geometries or moving parts
widely encountered in engineering applications. One must be aware
that, there is no trivial solution to this point because the influence of
general geometries is an essential aspect in gas-solid-liquid flow model-
ing, which is extensively involved in respects of fluid-fluid (contact line
and angle on wall surface), solid-solid (particle-structure collision) and
fluid-solid (interphase coupling term) interactions.

3.1.2 Developments in this study

In this study, we developed a novel Eulerian-Lagrangian coupling method
for the numerical simulation of gas-solid-liquid flows. The proposed model is
referred to as the DEM-VOF method. The continuum fluid phase composed
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of two immiscible fluids separated by a fluid interface is simulated by using a
WLIC/THINC VOF scheme [33] which is able to offer a simple implementa-
tion, good volume conservation property and capability to treat topological
change of interface shapes. The particle phase is tracked by the DEM as
discrete entities, which allows for exact evaluation of solid collisions in the
system. The fluid and solid phases are coupled by the volume-averaging
technique wherein the calculation of fluid-particle interaction is based on the
empirical closure for the description of hydrodynamic forces. The present
method enables modeling of complex geometries by incorporating the IB
method [12, 34] with SDF representation of arbitrary wall shapes [14]. Nec-
essary adaptations when applying the IB method to gas-solid-liquid flows are
also noted in the paper.

Special efforts have been made to address the aforementioned problems in
the present numerical method. Compared with existing models, the DEM-
VOF method is thought to have the originalities as follows. Firstly, its for-
mulation is based on the consistent model equations by [35] and the fluid-
particle interaction term is carefully distributed to balance the interphase
momentum exchange. Next, it is able to accurately predict the macroscopic
behavior of three-phase flow systems including large deformation of the free
surface and motion of the solid bed, as well as the liquid displacement of sub-
merged solids. Finally, the ability to model arbitrary-shaped wall boundaries
has distinguished it from all other competitive methods by allowing practical
simulations in chemical engineering.

Prior to the main results, model verification is performed to justify the
interphase coupling in the DEM-VOF method. After that, it is validated
against various gas-solid-liquid flow problems. The water entry of a particle
block is first simulated to examine the interface advancement and overall
volume conservation property. Next simulation results are presented for a
three-phase dam break flow, which is a dynamic system involving violent free
surface and particle motions. In the third test, the DEM-VOF method is ap-
plied to the quasi-steady gas-solid-liquid flow in a rotating cylindrical tank.
This problem is provided as a validation test for modeling of curved bound-
aries in constant motion. We will talk about the special treatments required
by this deceptively “simple” system to correctly compute the fluid-particle
interaction, which is conceived as prerequisites for our ongoing research to-
wards more complicated three-phase problems. By comparing the simulation
results with reference solution and experimental data, we have obtained good
agreements for all validation tests in respect of the macroscopic behaviors of
the three-phase flow system. Finally, we present its application to gas-liquid
flows within a laboratory twin screw kneader as an example involving highly
complex geometries and rotating parts.
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In this way, the novelty of this study is highlighted by the good applicabil-
ity to real gas-solid-liquid problems involving complex fluid-particle motions
and general geometries. To the authors’ best knowledge, the present method
is the first report which successfully couples the DEM to a VOF solver and
offers support for non-trivial wall boundaries.

3.2 Model specification

In this section, theoretical model equations are described individually for an
Eulerian-Lagrangian model of a gas-solid-liquid flow system involving general
geometries. Some fundamental concepts are then introduced to facilitate a
primary understanding of the present model.

3.2.1 Particle motion equations

According to the Newton’s law of motion, the following equations describe
the translational and rotational motions of a spherical particle immersed in
fluid:

mp
dv

dt
= F C +mpg + Vp∇ · σ + F S + F p , (3.1)

Ip
dω

dt
= T C . (3.2)

Herein on the left-hand side, mp, v, Ip and ω are the particle mass, velocity,
moment of inertia and angular velocity; on the right-hand side, Vp is the
particle volume, and F c, g, σ, F s, F p and T c stand for the actions of contact
force, gravity, fluid stress, surface tension, fluid-particle interaction force and
torque of contact force, respectively.

Basically the fluid stress action is separable to be a pressure gradient term
and a viscous stress part [36]:

Vp∇ · σ = −Vp∇p+ Vp∇ · τ , (3.3)

where p is the pressure and τ is the deviatoric viscous stress tensor of the
fluid. The far-field pressure gradient actually includes (but not limited to)
the buoyant effect counteracting the particle gravity. The viscous stress part
is often dropped from numerical modeling because of the negligible effect of
viscosity in most fluidization systems, see e.g. [26], which gives that

Vp∇ · σ ≈ −Vp∇p , (3.4)
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Our numerical test also displayed affirmative results to this convention1, so
it is respected in the present study.

F s corresponds to the capillary force induced by the curved gas-liquid
interface, whose effect is integrated as a part of the total fluid stress. Its
modeling will be further explained in subsequent sections.

The fluid-particle interaction F p may contains various coupling terms
such as the drag, lift and virtual mass forces. The fluid drag force is relatively
dominant while the other hydrodynamic forces are sometimes neglected, see
e.g. [37]. This statement is also supported by the numerical study of [38].
Therefore, we will only accept a drag-related term as the fluid-particle inter-
action:

F p = F drag . (3.5)

F drag is an effective drag force calculated from some analytical or empirical
correlation. The pairwise particle lubrication force is also ignored, similar
to [28,39].

3.2.2 Fluid hydrodynamic equations

The fluid phase motion is described using the well-known volume-averaged
forms of governing equations [15], i.e. the continuity equation

∂ε

∂t
+∇ · (εu) = 0 (3.6)

and the momentum equation

ρf

(
∂(εu)

∂t
+∇ · (εuu)

)
= −ε∇p+ ε∇ · (µf (∇u+∇uT ))

+ ερfg + εf s + f p .

(3.7)

In these equations, ε is the void fraction, ρf , u and µf are the fluid density,
velocity and viscosity, respectively. The surface tension force f s is located
near the fluid interface, and f p is the reaction force of the fluid-particle
interaction term 3.5.

In the past different forms of equations have been ever used. Concerning
the model consistency, particularly the way how the fluid stress and coupling

1 Rigorously speaking, the viscous force is still indispensable in some hypothetical flow
cases. For example, consider the steady motion of a test particle in a pressure-driven
Poiseuille flow or vertical channel. In that case, the pressure gradient must be balanced
by the viscous force so that the particle can reach a steady state. See Appendix A. We
thank Professor S. Takagi (The University of Tokyo) and Professor T. Kajishima (The
University of Osaka) pointing out this problem in private communication.
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term are posed, a good series of discussions about the formulation can be
found in [26, 40, 41]. Recently, Zhou et al. [35] carried out a thorough ex-
amination and comparison of different approaches, and our choice of model
formulation is kept compatible with their arguments.

3.2.3 Gas-liquid interface

The configuration of binary fluid interface is described by a color function φ
indicating the volume fraction of the liquid phase. Its value is 1 in liquid, 0
in gas and 0 < φ < 1 across the interface. The interface motion is then given
by the advection equation of φ based on the fluid velocity:

∂φ

∂t
+ u · ∇φ = 0 . (3.8)

Being an analogy to the volume-averaging fluid equations, Washino et al. [32]
also introduced a “volume-averaged” form of the interface advection:

∂(εφ)

∂t
+∇ · (εφu) = 0 .

We note that, by substitution of the continuity equation (3.6), it could be
easily reduced to the standard form of Eq. (3.8), so their equivalence is
apparent. In this study, the fluid interface is reconstructed and moved by
using the WLIC VOF scheme [33]. Our implementation and improvement of
this algorithm has been discussed and tested in the previous chapter. The
fluid density and viscosity are derived from the physical values of different
phases by a linear interpolation with the color function:

ρf (φ) = φρl + (1− φ)ρg (3.9)

µf (φ) = φµl + (1− φ)µg (3.10)

The subscripts l and g denote liquid and gas phases, respectively.

Contact angle on rigid walls

At contact lines where the gas-liquid interface intersects with the wall surface,
a static 90 ◦ contact angle boundary condition is enforced, see the previous
chapter. The reason of choosing a neutral contact angle is mainly for sim-
plicity and efficiency, and it also stands on the fact that the bulk flows in
the scope of this study are not affected by local motions driven by surface
tension, c.f. [42].
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Free surface in solid bed

In [32], a sub-grid scale model is proposed for capillary effects when a droplet
penetrates into a dense particle bed. Such microscopic capillary interaction is
also neglected for the particle phase in the present study; instead of that, the
additional force induced by the macroscopic interface curvature is considered
in Section 3.3.1. Similar to the aforementioned reason, it is because that
the problem scale of interest is considerably larger than that of nucleation
processes in wet granulation. Therefore compared with capillary effects, the
hydrodynamic force is thought to be the dominant fluid-particle coupling
term.

3.2.4 Arbitrary-shaped wall boundary

The arbitrary-shape wall boundary model developed in our previous study [14]
is deployed in this study to offer a unified representation of boundary shape
for both Lagrangian particle and Eulerian fluid sides. Unlike an explicit rep-
resentation of shapes by surface mesh, this model uses a special SDF field
whose zero contour implicitly defines the boundary shape. A local coordi-
nate transformation is associated with the SDF field to record the boundary
motion. It is thus highly simple and efficient to model complicated shapes
and unlimited rigid motions.

The SDF-based model has been first described in detail for granular parti-
cles in [14]. Next in our VOF-IB method, it becomes the essential ingredient
to compute two-phase flows in complex geometries. Similar approaches have
been adopted in our Lagrangian particle simulations as well, see [43–45].

3.2.5 Configuration of the fluid-particle system

The configuration of the Eulerian-Lagrangian modeling of the fluid-particle
system is illustrated for a computational cell in Figure 3.1. It is apparently
seen that the cell size is selected larger than the typical size scale of particle
diameter. Such a configuration, sometimes referred to as a mesoscale grid, is
required for a meaningful volume-averaging model.

Figure 3.1 shows a representative situation where the computational cell
is occupied by the wall geometry, fluids and particles. This simply implies a
volume summation:

V cell = V geom + V fluid + V particle , (3.11)

where V cell = ∆x∆y∆z is the cell volume with ∆x the cell size. Due to the
impenetrability of the wall boundary, we first introduce the geometry volume
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fraction

α =
V geom

V cell
. (3.12)

The volume fraction of solid particles accommodated in this cell is then
calculated as

εparticle =
V particle

V fluid + V particle
=

V particle

(1− α)V cell
. (3.13)

For a particle lying on the cell boundaries, it is approximated by a cube and
only the cut volume chopped by the cell boundary is taken into account, that
is,

V particle =
∑

γcellp Vp . (3.14)

Herein the weight γcellp indicates the ratio of truncated particle volume. It is
evident that γcellp = 1 for a particle completely enclosed by the cell and 0 <
γcellp < 1 if the particle intersects with the cell boundary. The void fraction
ε is then given by the complement of the solid particle volume fraction, that
is,

ε = 1− εparticle . (3.15)

One is thus able to compute the volume of fluids in the remains of the cell:

V fluid = (1− α) · ε · V cell . (3.16)

Recalling the color function φ indicating the volume fraction of liquid in a
two-phase flow, it is also possible to estimate the volume for liquid and gas
phases in the current cell:

V liquid = (1− α) · ε · φ · V cell (3.17)

V gas = (1− α) · ε · (1− φ) · V cell (3.18)

3.3 Numerical method

3.3.1 Particle phase

Contact force

In the DEM, the particle-particle or particle-wall contact force is determined
from their overlap during a finite collision time. In this study, a simple
force model composed of linear spring, viscous dashpot and friction slider is
used to represent a viscoelastic collision process. The contact force is first
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Figure 3.1: Configuration of wall geometry, fluid interface and particles in a
computational cell.
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decomposed with respect to the contact surface into normal and tangential
directions:

F C = F C
n + F C

t , (3.19)

in which the subscripts n and t denote the normal and tangential components,
respectively. The normal component is computed as a combination of elastic
spring with damping:

F C
n = −kδn − ηvn , (3.20)

where k, η, δn and vn are, respectively, the spring constant, damping coeffi-
cient, displacement vector and relative velocity in the normal direction. The
tangential force is treated in a similar manner, but it is first tested whether
the surfaces in contact have reached the maximum static friction:

F trial
t = −kδt − ηvt (3.21)

F C
t =

{
F trial
t if ‖F trial

t ‖ ≤ µ‖F C
n ‖,

−µ‖F C
n ‖ · vt/‖vt‖ otherwise,

(3.22)

where δt and vt are the displacement vector and relative velocity in the
tangential direction, and µ is the friction coefficient. The damping coefficient
η is derived as follows:

η = −2 ln e

√
km∗

ln2 e+ π2
, (3.23)

in which e is the restitution coefficient, and m∗ is the reduced mass of the
contact pair. The torque T C is calculated based on the contact force F C and
the distance vector connecting particle center and contact point.

This numerical procedure is repeated for all particle-particle and particle-
wall pairs in direct contact. We note that, it is straightforward to detect the
contact between the particle and the rigid boundary represented by an SDF
model, because the SDF value at the particle position directly yields the
distance to the nearest point on the wall. This approach integrates well with
the DEM contact force model and is highly efficient.

Drag force

The drag force acting on a solid particle is given by the following general
form:

F drag
p =

βVp
1− ε

(u− v) . (3.24)

Herein the local void fraction ε is equal to the value in the fluid cell that
contains the particle, and the flow velocity u is found by linear interpolation
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at the particle center. The choice of an accurate and versatile correlation for
the coefficient β is critical. In this study, a combination of the equations of
Ergun [46] and Wen-Yu [47] suggested by [16] is adopted.

β =

{
150 (1−ε)2

ε

µf
d2p

+ 1.75(1− ε)
ρf
dp
‖u− v‖ ε ≤ 0.8

0.75CD
ε(1−ε)
dp

ρfε
−2.65‖u− v‖ ε > 0.8

(3.25)

where dp is the particle diameter. CD is the drag coefficient of a single sphere
given by

CD =

{
24
Rep

(1 + 0.15Re0.687p ) Rep ≤ 1000

0.44 Rep > 1000
(3.26)

The particle Re number Rep is defined as

Rep =
ερfdp‖u− v‖

µf
. (3.27)

The Gidaspow’s correlation has been commonly used in DEM-CFD simula-
tions of fluidization systems as a drag model valid for a wide range of flow
conditions. Other drag models (e.g. the Di Felice correlation [48]) are also
available.

Pressure gradient and surface tension terms

As described in Section 3.2.1, other fluid actions on the particle include the
pressure gradient term

F∇p = −Vp∇p (3.28)

and the surface tension term (also see next section for its computational
model)

F s = Vpσκ∇φ (3.29)

with the surface tension coefficient σ and interface curvature κ. For a par-
ticle submerged by a single fluid, a partial effect of the former term is the
hydrostatic buoyancy while the latter one vanishes. In the vicinity of the
fluid interface, the particle is affected by both terms. Let us consider a static
drop, for which according to the Laplace formula the jump of the pressure
across its interface is ∆p = σκ. Hence in this case the pressure gradient term
near the interface tends to push a test particle toward the outside of the drop.
On the other hand, the surface tension term pointing inward will result in a
capillary attraction to balance the repulsive effect. In the simulation, both
terms are calculated on the fluid grid and then interpolated for each particle
by simple averaging.
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Updating particle states

The aforementioned force calculation is performed explicitly at each time
step n. Once the contact force, gravity force and fluid hydrodynamics forces
have been computed for a particle, their net force is used to determine the
acceleration a. The particle states of velocity and position are then updated
to the next time step by using the symplectic Euler scheme:

vn+1 = vn +∆tan (3.30)

xn+1 = xn +∆tvn+1 (3.31)

The angular velocity is treated in a similar way; if necessary, the rotated
orientation of the particle could be updated by using quaternion operations,
see e.g. [49].

3.3.2 Fluid phase

The modeling of the fluid phase basically follows our previous numerical
study of two-phase flows in general geometries, see the previous chapter for
details. For the sake of completeness, the numerical procedure is outlined
here.

Spatial discretization

The computational domain is discretized on a uniform, staggered grid [50].
The velocity components are defined at corresponding cell faces and other
variables are centered in each cell. The governing equations are solved with
a classical finite-volume method, where the spatial derivatives in the viscous
and pressure gradient terms are calculated by central differences, and field
values required at undefined places are obtained by using linear interpolation.
For the discretization of the convective term, either a modified hybrid scheme
of [51] or a TVD upwind scheme like [52] is used. Numerical tests show that
they can give equivalent results.

Surface tension

The singular surface tension term is introduced by using the continuum sur-
face force (CSF) model [53] as a volume force spreading over the interfacial
region:

f s = σκ∇φ (3.32)
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with the curvature κ = −∇ · n. The normal vector n is computed as the
gradient of the color function φ as

n =
∇φ

‖∇φ‖
. (3.33)

In a VOF method, it is also common to replace the original color function φ
with a smoothed field φs to facilitate the calculation of normal vectors and
curvatures. In this study, two sequential sweeps of the smoothing operation
based on the compact filter suggested by [54] are used.

Fluid-particle interaction

The fluid-particle interaction force Fp, as described in the preceding section,
is first evaluated for distinct particles based on local flow conditions and
particle states. From the point of view of the continuum fluid, their reaction
force becomes a cloud of point source term fp appended to the right-hand
side of the volume-averaged Navier-Stokes equation (3.7). In the fluid solver,
those scattered point forces are gathered from particles and distributed as a
volume force for each computational cell. This operation can be written by

f p = −
∑
γcellp · F p,cell

V cell
, (3.34)

in which the minus sign indicates the effect of reaction. We note that the
weight γcellp ∈ [0, 1] is the fraction of the partial volume of a particle inside
the current cell, see Section 3.2.5.

Pressure solution

The fluid solver follows the fractional-step algorithm of a projection method [55].
The terms on the right-hand side of Eq. (3.7), except the pressure gradient
term, are explicitly computed at the n-th time step, which yields an inter-
mediate velocity prediction u∗ which does not satisfy the continuity equa-
tion (3.6) in general. Consequently, the pressure field p is implicitly solved
from the pressure Poisson equation

∇ ·
(
ε

ρ
∇p
)

= − 1

∆t

(
∆ε

∆t
+∇ · (εu∗)

)
(3.35)

and then a velocity correction based on the pressure gradient is performed.
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Wall boundary motion

Finally, according to the IB method [12], the influence of the wall boundary
is incorporated by locally averaging the fluid velocity uf and the boundary
velocity uB, from which the velocity at the (n+ 1)-th step is obtained:

un+1 = (1− α)uf + αuB . (3.36)

Note that the geometry volume fraction α (Section 3.2.5) equals unity in wall
domain, and thus the wall velocity is exactly prescribed therein.

3.3.3 Treatments near the IB

We remark on that, it is critical to take the effects of the IB geometry into
consideration when calculating the fluid-particle interaction. Although the
wall boundary shape and its motion are automatically handled by the IB
approach, the IB is likely to interfere with the evaluation of drag force by
rendering a fictitious flow state at least in two aspects: the local void frac-
tion and flow velocity. Since the void fraction is determined by the ratio of
the particle volume to the cut-cell volume other than the IB part, this com-
putation may become inaccurate or unstable when the geometry fraction α
is close to unity. Another problem arises when the flow velocity is to be
determined in the vicinity of an IB, for which a naive interpolation of the
velocity field using a stencil across the IB surface will contaminate the results
by improperly introducing the wall velocity. Such errors generally stem from
the discontinuity between a true fluid and a fictitious IB domain. Similar
discussions also extend to other types of hydrodynamic forces that depend
on local flow conditions.

In the present method, related problems are circumvented by carefully
selecting and adapting the interpolation stencil close to the IB surface so
that their influences are excluded effectively. A fluid cell with geometry frac-
tion α > α0 is considered to be a “small” cut-cell, and it is temporarily
connected with surrounding cells and the void fraction ε is calculated within
the imaginary “large” cell. This procedure is illustrated for a 2D configu-
ration in Figure 3.2, in which the partial cell in the center is merged with
adjacent eight cells (twenty-seven cells in 3D) as the area enclosed by the
broken line. In this study, we have the constant threshold as α0 = 0.2, which
is an adjustable parameter.

Similarly, the flow velocity interpolation also relies on the selective usage
of data. As mentioned in Section 3.3.1, the flow velocity is obtained for
a particle distant from IB by trilinear interpolation involving surrounding
eight data points. Note that because the components of fluid velocity are



114

staggered in space, the interpolation must be determined distinctively for all
three dimensions. If any of these points is found to belong to the IB domain
as indicated by α > α0, it is then tagged and discarded from the stencil. The
interpolation in that case falls back to a simple averaging among remaining
valid points. If all eight points are tagged, the one with the smallest value
of α is used. A typical 2D case for clarity is demonstrated in Figure 3.3,
where the operation on the u-component velocity is shown. It is seen that
among all four fluid points bounding the particle, the two on the left side
are affected by the IB and thus get tagged as invalid points (white marker),
while the other two are chosen as valid candidates (solid marker) to provide
a reliable estimation to the local flow velocity.

Generally speaking, the treatment introduced here could be equivalently
understood as the utilization of stencils biased to the fluid side near the
IB surface, which is conceptually similar to the ghost fluid method (GFM)
of multi-material flows [56]. It is critical for suppressing spurious particle
motion and grid dependency of computational results, especially for simula-
tions involving moving boundaries. In respect to this point, an example is
discussed in Section 3.5.3.

3.3.4 time-stepping algorithm

The overall algorithm of the present DEM-VOF method is described in this
section. It is assumed that at the current time step n, all variables, including
the geometry profile, particle states, interface configuration and fluid field
variables, are known.

1. If the geometry is moving, update its definition (geometry modeling in
Section 3.2.4) and find the geometry fraction αn+1 and velocity un+1

B

for the fluid mesh (Section 3.2.5).

2. Perform the DEM simulation of particle phase and compute the fluid-
particle interaction force (Section 3.3.1) to have the particle velocity
vn+1 and position xn+1.

3. According to the updated particle states, calculate the void fraction
εn+1 on the fluid mesh (Section 3.2.5). Simultaneously, the fluid-
particle interaction force is gathered from the particle phase and trans-
ferred to the fluid phase (Section 3.3.2).

4. Perform VOF reconstruction and advection of the gas-liquid interface
(Section 3.2.3), whose new configuration is known as φn+1. Fluid prop-
erties such as the density ρn+1 and viscosity µn+1 are also derived in
this stage.
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Figure 3.2: Stencil connected near the IB for evaluating void fraction.
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Figure 3.3: Stencil selected near the IB for velocity interpolation
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5. Perform the fluid simulation and enforce the boundary velocity (Sec-
tion 3.3.2), which finally yields the new fluid velocity un+1 and pressure
pn+1. The gas-solid-liquid system is now fully updated to the next time
step.

The time step ∆t is limited by both particle and fluid sides. For the
particle phase, the restriction mainly comes from the stiffness in the DEM
contact model:

∆tparticle < 2

√
mp

k
. (3.37)

At the same time, due to the explicit treatment of the convective, viscous
and surface tension terms, the time step permissible in the fluid solver is
given by

∆tfluid < min

(
∆x

‖u‖max
,
ρf∆x

2

µf
,

√
ρf∆x3

2πσ

)
. (3.38)

Basically, ∆tparticle tends to be more stringent than the fluid counterpart
(typically smaller than ∆t fluid by one order of magnitude in our tests)
because of the stiff numerical parameter k and a relatively small particle
mass mp. Therefore the total stability condition is dominated by the particle
simulation. In order to save computational time, it is feasible to adopt a
sub-cycling methodology to run several iterations of particle computations
and one sweep of fluid simulation sequentially in a single time step. During
the particle iterations, the interphase coupling term is calculated based on
a frozen flow state and it is integrated over those fine time intervals. When
the sub-cycling comes to the end, the temporal average of the accumulated
interaction force is passed to the fluid phase. This approach is similar to that
used in [57,58].
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3.4 Model verification

In this section, verification of the proposed model is performed in simple
problems. We will focus on the fluid-particle coupling by examining results of
two problems: (a) single particle sedimentation and (b) flow passing through
a fixed bed. In the first problem the particle behavior is dominated by the
fluid action under dilute limitation and low-Re regime; in the second problem
the flow state is influenced by the porous solid layer with dense packing and
higher Re number. Through these “patch tests”, we generally find good
agreements between the computational results and analytical or empirical
equations. The effects of some numerical parameters are also explored. Hence
the proposed model could be applied with increased confidence.

We also note that, the underlying numerical framework has already been
extensively tested and used for gas-solid fluidized beds, see e.g. [9,10]. Tests
for the multiphase model and complex geometries have already been provided
in Chapter 2.

3.4.1 Single particle sedimentation

Sedimentation of a sphere is a basic and important problem for fluid-particle
flows. Such particle settling problems are chosen here to examine the correct
evaluation and integration of fluid force.

In a similar way like some other authors (see e.g. [59, 60]), a low-Re flow
regime is assumed for simplicity, where the fluid remains almost quiescent
and the Stokes’ law of drag applies. Under this assumption, the particle
motion is described by the following equation (with the gravity in the −y
direction):

v̇ = −ρp − ρf
ρp

g − 3πµfdp
mp

v , (3.39)

which defines an initial value problem for the particle trajectory with the
terminal velocity (if could be reached) derived as

v∞ = − 1

18

(ρp − ρf )d
2
pg

µf
. (3.40)

For this problem, the Re number is calculated based on the fluid density,
viscosity, particle diameter and terminal velocity, i.e.

Re =
ρfdpv

∞

µf
. (3.41)
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Settling in one-fluid domain

We first consider the particle settling in a single fluid from static state. For
this initial value problem provided that v(t = 0) = 0, it is easy to find the
analytical solution given by

v(t)/v∞ = 1− exp(−t/T ) (3.42)

where a characteristic time towards the final steady state is defined as

T = mp/3πµdp .

In the computational setup, the domain dimensions are 4 mm by 8 mm by 4
mm, for which all wall boundaries are set to non-slip. A particle is placed at 5
mm height. The whole fluid domain is covered by uniform grids with spacing
of 0.25 mm and the particle diameter is 0.1 mm, which results in a size ratio
of ∆x/dp = 2.5 times. The particle density is 2500 kg/m3. The fluid density
is fixed to 1000 kg/m3, and its viscosity is varied in the simulations to achieve
different Re numbers.

For this specific verification test with analytical assumption of the Stokes’
law and ambient fluid, we consider the following factors that may bring in
influences for simulation results.

Effect of the drag law adopted To better recover the predicted solution,
one may hopefully use the analytical Stokes’ law instead of the Gi-
daspow’s correlation implemented for practical usage. It is thus nec-
essary to investigate the difference when these two drag laws are used
respectively. It is noted that for this single particle test, the void frac-
tion is set to ε = 1 for drag calculation.

Effect of particle Re number Following the previous point, the Gidaspow’s
correlation is a function of finite Re numbers. It is also known that such
empirical drag correlations should asymptotically approach the Stokes
drag in the limit of zero Re number. Therefore, the fluid viscosity
is changed from 0.001 Pa s to 0.01 Pa s to show the trend when ap-
proaching a Stokes flow regime. The Re numbers are approximately
Re = 0.818 and 8.18 × 10−3 (“high” and “low”) for those two cases,
respectively.

Effect of fluid motion or coupling model Although they are consider-
ably small, perturbations caused by settling particle can still affect the
fluid motion, which may differ from the theoretical derivation within an
inert fluid domain. In order to identify this effect, we perform regular
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Table 3.1: Simulation cases for single particle settling in one-fluid domain.
Case 1 Case 2 Case 3 Case 4

Drag model Stokes Stokes Gidaspow Gidaspow
Re number High High High High
Coupling model 1-way 2-way 1-way 2-way

Case 5 Case 6 Case 7 Case 8
Drag model Stokes Stokes Gidaspow Gidaspow
Re number Low Low Low Low
Coupling model 1-way 2-way 1-way 2-way

“2-way” simulations as well as special “1-way” tests in which the fluid-
particle interaction force is only acting on the particle but get switched
off for the fluid side2.

Table 3.1 lists all simulation cases. Figure 3.4 plots the dimensionless
sedimentation velocity against time for all eight test cases together with the
analytical solution. All cases adopting Stokes’ law of drag generally agree
well with the analytical curve, showing that the force acting on the particle
is correctly evaluated and integrated. It is seen that, with relatively high Re
number (Re = 0.818), the utilization of Gidaspow’s correlation leads to a
lower terminal velocity (Case 3 and 4). This is because that the drag force,
as described in Section 3.3.1, boils down to the form like

F drag = 3πµdpv(1 + 0.15Re0.687) ,

which is larger than the theoretical Stokes drag by a Re-related factor (≈
1.13) in the parenthesis. Under the low Re number (Re = 8.18× 10−3), the
Gidaspow results can reproduce the analytical solution satisfactorily (Case 7
and 8). It seems that the drag-induced fluid motion in “2-way” simulations
can cause slight perturbation in the final velocity, but this effect does not
make an much appreciable difference.

Falling in air-water domain

Next a particle falling through an air-water interface is simulated. The com-
putational setup is same as the one-fluid case, except that a horizontal in-
terface is added in the center of the domain dividing it into an upper part

2Note that in “1-way” computations the fluid is still aware of the existence of the
particle. Although the reaction force of fluid drag is set to zero, the system is still coupled
via the void fraction, which works as a source term in the continuity equation to drive the
fluid into motion.
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Figure 3.4: Plot of normalized sedimentation velocity against time.
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Table 3.2: Simulation cases for single particle falling in air-water domain.
Case 1 Case 2 Case 3 Case 4

Drag model Stokes Stokes Gidaspow Gidaspow
Coupling model 1-way 2-way 1-way 2-way

filled with air (ρg = 1 kg/m3 and µg = 10−5 Pa s) and a lower part of water
(ρl = 1000 kg/m3 and µl = 10−3 Pa s).

The analytical solution is derived under the assumption that the particle
experiences a free fall in the air phase and then settles obeying the Stokes’
law in the water phase. The simulation cases deploying different drag laws
and interphase coupling approaches are listed in Table 3.2.

In Figure 3.5 the temporal variations of particle position and velocity are
plotted for each case. When falling in the air phase, the particle motion
seems to be slightly delayed due to the air drag. After the water entry, the
particle rapidly slow down to the predicted terminal velocity. It is seen that
with the Gidaspow’s drag correlation (Case 3 and 4), particle motion in the
water is retarded more effectively, but in general the simulation results from
all test cases reasonably match the analytical solution and tend towards the
predicted terminal velocity.
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Figure 3.6: Schematic diagram of the flow through a fixed particle bed.

3.4.2 Flow through fixed particle bed

In another verification test for the fluid-particle coupling, the liquid flow
passing through a fixed particle bed is simulated. In this test, the flow
state is affected by the porous solid layer, through which a drop in pressure
transpires as a result of the fluid-particle interaction.

The computational domain is a rectangular channel with a cross section
of W = 0.1 m and a length of 0.8 m. The region between 0.15 < y < 0.65
is filled with a fixed particle bed. The inflow velocity is U = 0.1 m/s.
The fluid density is ρ = 1000 kg/m3 and the viscosity is µ = 0.001 Pa s.
This configuration is similar to that in [30] but we left 0.15 m long free
spaces at both the inlet and outlet zones to check the flow transition. The
computational setup is illustrated in Figure 3.6.

Flow profile along central axis

All four channel walls are assumed to be free-slip boundary, so that there is
no pressure loss due to friction and the pressure must remain constant in the
free inlet/outlet zone. In the particle bed, the pressure drop rate could be
predicted by using the Ergun’s equation [46]:

∆p

∆y
= 150

(1− ε)2

ε3
µU

d2
+ 1.75

1− ε

ε3
ρU2

d
. (3.43)

As the inlet velocity U is exactly equal to the superficial velocity passing
through the channel, inside the particle bed the exact flow velocity is obtained
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Figure 3.7: Fixed particle beds of regular (a) and random (b) packing.

via volume conservation:
u = U/ε . (3.44)

It is known that the Gidaspow’s correlation is actually an adaptation of the
Ergun’s equation for dense systems, so the agreement between simulation
results and the prediction by Eq. (3.43) is determined critically by the cal-
culation of three important factors: (a) void fraction, (b) flow velocity and
(c) drag force feedback from particle bed to the flow.

The solid bed used in the simulation is regularly aligned on a 25 by 25 by
125 lattice as illustrated in Figure 3.7 (a), or 78125 particles in total. The
particle diameter is d = 3.95 mm, from which a void fraction ε = 0.496 and
flow velocity u = 0.202 m/s could be obtained. The pressure loss is thus
expected to be 2.03× 104 Pa/m. The fluid cell size is ∆x = W/10 = 10 mm.

Figure 3.8 plots the profile of the void fraction, flow velocity and pressure
on the central line of the channel. The sharp jump of ε is observed at y = 0.15
and 0.65, respectively. Between these two end points, the bed porosity is
well calculated in comparison with the analytical value ε = 0.496 and an
increased flow velocity is also confirmed. The pressure distribution obtained
from simulation results agrees well with our analytical solution. By using a
linear fitting, the pressure drop through the solid bed is found to be 2.03×104

Pa/m, and the relative error with the Ergun’s equation is below 1%.
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Effect of grid size

Next we examine the computational dependency on grid size. The grid spac-
ing used in the simulations is chosen as ∆x = W/8, W/10, W/12 and W/16,
respectively, or 3.16d, 2.53d, 2.11d and 1.58d measured in particle diame-
ter. When using a refined grid size, it mainly brings in an impact on the
calculation of void fraction, as illustrated in Figure 3.9. From its inset show-
ing close-up of the ε values calculated on different grids, it seems that the
∆x = W/10 or 2.53d grid gives the best results because particles are evenly
fitted in each cell. The ε calculation is generally robust to larger or smaller
cells ( ∆x = 3.16d or 2.11d) where the deviation is not very noticeable. A
finer cell size (∆x = 1.58d) can lead to fluctuation and overshot values of ε,
but the error is relatively small (about 1% relative error).

However, too much excessive refinement of the cell size might lead to
unacceptable estimation of ε and consequently affect the fluid states such as
velocity and pressure. Hence it is important to choose a grid size compatible
with the particle diameter scale.

Effect of packing state

Besides the regular configuration of particles, a random packing state is also
considered in this study. In order to avoid possible particle overlapping, the
random bed of 78125 particles is generated by using a modified hard-sphere
packing algorithm in [61], see Figure 3.7 (b). Figure 3.10 compares the
void fraction and pressure profiles for these two packing states, from which
reasonable agreements can be observed.
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3.5 Numerical examples

Three-dimensional simulations of gas-solid-liquid flows are performed by us-
ing the DEM-VOF method. Some results are compared with available ref-
erence solutions, and some of them are validated against experimental data
obtained in our laboratory measurement. When analyzing the results, we
mainly focus on the macroscopic behaviors of the gas-solid-liquid flow sys-
tem, e.g. the size, shape and motion of the free surface and the solid bed.
The reason is twofold: firstly, such macroscopic behaviors are provided as the
most evident criteria for justifying the simulation results from a phenomeno-
logical point of view; secondly, they can also be useful to characterizing flow
regimes and determining key parameters such as particle loads in engineering
practice.

3.5.1 Water entry of particle block

The water entry problem of solid objects is an interesting problem involving
complex free surface motions and solid-liquid interactions. Particularly in a
finite enclosure, the free surface must rise accordingly as the same amount of
immersed solid volume. In this test, the sedimentation of a block of particles
in an air-water column is simulated.

The computational domain size is 0.05 m by 0.20 m by 0.05 m, with the
gravity g = 9.8 m/s2 in the −y direction. We use 16× 64× 16 uniform cells
to cover the entire domain. Non-slip wall boundary condition is enforced
at all boundaries except the top boundary which is transparent. The free
surface initially located at y = 0.05 m separates the domain into an air part
(ρg = 1.0 kg/m3 and µg = 10−5 Pa·s) and a water column (ρl = 1000 kg/m3

and µl = 10−3 Pa·s).
Totally 10000 particles aligned on a 20 × 25 × 20 lattice are placed just

above the free surface. The particle diameter is dp = 2.0 mm and the distance
between their centers is 2.01 mm. Their density is set to ρp = 2500 kg/m3.
For numerical parameters used by the DEM, the spring constant is 500 N/m,
the restitution coefficient is 0.9 and the friction coefficient is 0.3, respectively.
It is noted that those numerical parameters are not necessarily the same
as their physical counterparts. They are selected in the way based on our
previous numerical studies using the DEM, see e.g. [43]. The computation
is conducted with a fixed time step of ∆t = 2.0 × 10−5 sec and runs up to
t = 2.0 sec after the particles all get settled.
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Particle and interface motion

Figure 3.11 shows a series of snapshots from the falling to final sedimenta-
tion, where the particles are colored by the magnitude of velocity and the free
surface is rendered by the 0.5-contour of the VOF function. When the simu-
lation begins, particles soon fall through the air-water interface under gravity
in about t = 0.1 sec, which is close to the time predicted by a free falling. At
the same time, the particle block expands laterally and fills the gap between
the initial shape and the vertical wall. The water is also squeezed out of the
original gap forming high jets climbing along the wall, especially at the four
corners. After all particles are submerged beneath the free surface (t > 0.2
sec), it seems that their motions are generally found in two patterns: (a)
the particles in the central part descend almost straightly and some of them
reach the bottom in as early as t < 0.4 sec, but (b) the near-wall particles ex-
perience a rolling-up motion induced by the upward water flow, which causes
that the particle block is stretched and fills up almost the whole water body.
Such a motion is most noticeable near the corners and can last until t = 0.6
sec when the bulk of the particle bed has already get settled.

The images in Figure 3.12 are the same snapshots but the particles are
labeled by their vertical positions in the initial block, from which the topo-
logical change of the particle block is easily observable. The bottom particles
(colored blue and green) are partially flipped to the mixing region and they
form two separated layers wrapping the original top particles (colored red)
in the final deposits.

These patterns of particle motions could also be confirmed via Figure 3.13
where the trajectories of 250 out of 10000 particles are plotted by connecting
their positions at different time steps. In principle, the dynamics presented
here are analogous to a classical Rayleigh-Taylor instability (RTI), although
the heavy fluid in RTI is replaced by the air-particle mixture and the pertur-
bation is initiated with the impact on the free-surface in the current case.

We note that the coupling between fluid and particle phases is twofold: (a)
the dynamic condition through the explicit interphase momentum exchange
and (b) the kinematic condition in terms of local void fraction implicitly
given by the continuity equation. It is thus critical for a numerical solver to
resolve them simultaneously for such a three-phase flow problem, which is a
remarkable demonstration of the capability of the DEM-VOF method.

Liquid displacement and volume conservation

The water entry simulation is also provided as a test to examine the vol-
ume conservation property for the DEM-VOF method, which is naturally a
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physical requirement for numerical modeling of gas-solid-liquid flow systems.
From the snapshots in Figure 3.11, it is evident that the water entry of solid
particles has caused the free surface to rise significantly. The advancement
of water surface is theoretically 0.0168 m based on the total particle volume
and sectional area of the column. This expected water level is compared with
the last computational result at t = 2.0 sec.

As illustrated in Figure 3.14, the free surface lifted over its initial position
runs across the analytical position and is sloshing weakly. The temporal
variation of the total volume of the water phase is plotted in Figure 3.15.
During the penetration of particles across the free surface, a tiny volume error
(smaller than 1%) is observed which is generally acceptable for engineering
applications. After that, the remaining volume is exactly conserved for the
water phase without any loss. Hence it is shown that the proposed method
can simulate the water displacement of solid particles correctly.

Although the water entry problem is designated as a fully numerical ex-
ample due to the absence of theoretical solution and limited experimental
conditions, it seems that these results are reasonable, especially with regard
to the free surface deformation and rising. On the other hand, a qualitative
likeness in flow pattern and particle motion has also been confirmed in our
recent DNS study of a similar but substantially smaller problem setting-up
(unpublished), which indirectly supported the reliability of current results.
A critical comparison between DNS and volume-averaging simulations is be-
yond the scope of this study, but it will be pursued in a near future.

We also note that, although complex fluid-particle interactions and free
surface deformations are successfully reproduced by using the present model,
it is however unlikely to capture microscale phenomena smaller than the
particle size scale such as the bubble entrainment and cavity attachment
behind falling particles, which is an inherent drawback due to computational
resolution of the fluid phase in a volume-averaging simulation.
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Figure 3.11: Snapshots of water entry of particles (colored by velocity).
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Figure 3.12: Snapshots of water entry of particles (colored by initial vertical
position).
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Figure 3.13: Water entry of particles: path-line of 250 representative parti-
cles.
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Figure 3.14: Water entry of particles: free surface at t = 2.0 sec.
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3.5.2 Three-phase dam break flow

The dam break problem is a test case for incompressible two-phase or free sur-
face flows, and it also has a wide application in ocean engineering. Although
the classical gas-liquid dam break has been well studied in last decades which
dates back to the experiment of [62], its three-phase version containing a par-
ticle bed has not been thoroughly discussed. Among limited literatures, some
authors reported numerical results by using Lagrangian particle methods ig-
noring the gas phase motion, see [44, 63]. In this test, we simulate a dam
break flow involving fully gas-solid-liquid three-phase dynamics and perform
experiments for validation.

Similar to the typical setting-up of a dam break problem, initially a reser-
voir holding the water or solid-liquid mixture, whose length is a, and height
is h, stands still in a tank. When released, the water dam will collapse under
gravity and the wave propagation along the floor is simulated. As usual, the
set of dimensionless time t∗, front z∗ and height y∗ is used to describe its
motion:

t∗ = t
√

2g/a

z∗ = z/a and y∗ = y/a

in which z is the front position and y is the remaining height of the dam.
For the problem setting-up, the length, width and height of the compu-

tational domain are 0.2 m, 0.1 m and 0.3 m, respectively. Non-slip boundary
condition is set at all vertical and horizontal walls including the top boundary
to prevent the splashing water or particles from escaping. Since the air-water
density ratio is as large as 1000 times and the domain is sufficiently high, our
numerical tests show that results are not affected by the choice of boundary
condition at the top of the domain. The reservoir with initial length a = 0.05
m holds a solid bed of glass beads. It is then filled up with water to a height
of h = 2a. Totally 3883 glass beads are used in this test, and they are known
have a mean diameter of 2.7 mm. The solid bed packed randomly from the
reservoir bottom by using those particles is approximately 15 mm high. The
rest of the computational domain is assumed to be air.

Table 3.3 lists the computational parameters for the dam break problem.
The physical properties close to the air and water are used for the fluids
and the surface tension is neglected in the simulation. The fluid cell size is
∆x = 5× 10−3 m. The particle density is 2500 kg/m3. For the DEM contact
parameters, the spring constant is 103 N/m and the coefficients of restitution
and friction are 0.9 and 0.3, respectively. The time increment is 5.0 × 10−5

sec for the fluid and 1.0× 10−5 sec for the solid. Hence five sub-iterations of
the particle computation are executed per time step.



139

Table 3.3: Computational parameters for the three-phase dam break.
Liquid density (kg/m3) 1000
Liquid viscosity (Pa s) 10−3

Gas density (kg/m3) 1
Gas viscosity (Pa s) 10−5

Fluid cell size (m) 0.005
Fluid time step (s) 5× 10−5

Particle density (kg/m3) 2500
Particle diameter (mm) 2.7
Spring constant (N/m) 1000
Restitution coefficient (-) 0.9
Friction coefficient (-) 0.3
Particle time step (s) 1× 10−5

Full-scale lab experiment is performed to obtain reference data. The tank
is equipped with a shutter gate to lock the fluid-particle mixture. The gate
is connected to weights through metal wire and it will be pulled up once the
weights are released. The motion of the dam break flow is then recorded by
a high-speed camera. From the pictures it is measured that the gate rises
approximately at a constant velocity of 0.84 m/s. This effect of gate rising
is also reflected in the simulation by adding an obstacle in front of the water
column.

Three-phase dam break behavior

Snapshots of the gas-solid-liquid dam break flow are shown in Figure 3.16
for the physical time from t = 0 to 1.1 sec with intervals of 0.1 sec. The
overall behavior is comparable with a classical dam break: as the gate is
being removed, the mixture column flows through the opening gap between
the gate and floor to form an elongating surge front. The remarkable point
in these results is that the particle motion is also captured, as rendered by
scattered dots with their velocity contour. It is seen that the particle bed
moves more slowly than the water front does in early stages of the dam break
for t < 0.2 sec. After that the particle layer slightly vibrates following the
water sloshing. It is also interesting to observe that particles near the left
corner are shoved aside, subject to the impact of water falling from the wall
(t = 0.5 and 0.7 s), which implies an effective interaction between them.

Additionally, velocity vectors are presented for the central plane of the
domain as well in Figure 3.16. They clearly describe the motion of the air
phase in this system: the air flows over the gate to fill the cavity left empty
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behind the collapsing dam at t = 0.1 s; later strong vortices are generated
from the free surface (t = 0.4 s) and spread to the entire air region (t = 0.6
s). It is known that the air can play important roles in dam break problems
involving severe interface deformations and air cushion effects, see e.g. [64].
Those results turn out to be true proof for the three-phase nature of the
DEM-VOF method.

Comparison with experimental observation

Figure 3.17 gives a detailed comparison of the simulation results with the
experimental photographs for different time instants. As mentioned above,
the locked gate is rising and the mixture dam is collapsing at t = 0.1 s, and the
accelerating water and particle form a double-layer surge front. Consequently
the front arrives at the opposite wall around t = 0.2 s. The solid particle
bed expands over the floor of the tank and the water hits the vertical wall.
The bulk of the water-particle mixture goes on moving forward and strongly
impacts against the tank, which leads to a high water jet attached to the
wall at t = 0.3 s. The solid layer also follows this motion, as it is found that
at the left corner of the tank lies a pile of particles as well as some splashing
ones. Finally at t = 0.4 s, a plunge wave is bounced back from the wall and
most particles are again settled to be a solid bed that is thick at two ends
and thin in the middle. In regard to the interface shape and particle bed
configuration, the agreement between simulation results experimental data
is apparent.

Water position and effect of solid phase

In addition, the normalized dam positions at the bottom floor (front z∗) and
right wall (top y∗) are plotted against dimensionless time t∗ to show the
temporal variation of the dam shape. In order to examine the simulation
results, Figure 3.18 compares the computed dam positions with those mea-
sured from the experimental photographs. They agree excellently before the
front reaches the opposite wall.

Furthermore, simulations of a classical gas-liquid dam break (with the
same aspect ratio of the initial shape) are performed independently and their
results are presented together with the current gas-solid-liquid test in Fig-
ure 3.19. This is intended to emphasize the difference brought in by the
solid phase. Compared with its gas-liquid counterpart, the gas-solid-liquid
dam seems to move slower especially in terms of the front position, which is
plausibly explained by the influence of solid particles.
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Figure 3.16: Snapshots of the three-phase dam break flow.
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(a) t = 0.1 sec

(b) t = 0.2 sec

(c) t = 0.3 sec

(d) t = 0.4 sec

Figure 3.17: Dam break flow: comparison of experimental photographs (left)
and computational results (right).
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3.5.3 Circulating flow in a rotating drum

The rotating cylindrical tank system, provided as a simplified model of pow-
der devices such as a wet ball mill, is an important test case in the engineering
context of grinding and mixing. In this study the circulating gas-solid-liquid
flow is computed in such a rotating drum system as illustrated by Figure 3.20.
Physically the cylindrical tank has an inner diameter of 120 mm and a depth
of 100 mm. A mixture of water and glass beads fills the lower part of the
partially-filled tank. The tank is driven by rollers and its speed of rotation is
measured by a tachometer. We will mainly focus on the macroscopic aspects
of the gas-solid-liquid flow at quasi-steady state, e.g. the shape and size of
the solid bed.

A rectangular domain of 0.16× 0.16× 0.12 m is used with uniform mesh
size of ∆x = 0.004 m in the simulation. The curved boundary of the cylin-
drical tank that does not conform to the grids is embedded in the center
of the domain. As described in our numerical model, inside the tank is the
true computational domain in which the motion of the gas-solid-liquid flow
is solved, while the outer part represents the rotating geometry of the tank.
This computational configuration is demonstrated in Figure 3.21. The solid
bed is composed of totally 14555 glass beads with mean diameter of 2.7 mm.
It is submerged in a water layer filling up to half the elevation of the tank.
The physical properties and DEM parameters are the same as those used in
the previous test problem. The time step of the DEM is 1.0 × 10−5 s and
that of the continuum phase is five times larger.

Convergence towards quasi-steady state

The drum rotates at 63 rpm and the simulation runs until a quasi-steady
state is reached. This point is ensured by examining the temporal evolution
of the translational kinetic energy of the solid phase. Figure 3.22 shows that,
during the first revolution (t < 1 s) the energy increases fast and traverses
two sharp peaks as the solid bed is undergoing lifting and avalanche along
the wall. The variation converges soon after two cycles of rotation except for
some small fluctuations around the equilibrium energy density approximately
equal to 0.008 J/kg. Hence in this test, simulation outputs obtained between
the period of 3.0 < t < 4.0 s will be presented as quasi-steady results.
We note that this statement is consistent with our previous study on this
problem, see [43].
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Macroscopic behaviors at quasi-steady state

Figure 3.23 (a) depicts a representative snapshot from the simulation where a
steady slope of solid bed has formed. Along the axial direction of the cylinder,
the bed shape is almost flat and no local clumping of particles is observed near
the front and back wall, which is also confirmed through our experiments.
For a critical comparison of the bed shape, the experimental photograph is
overlaid with the outline sketch of the computed slope in Figure 3.23 (b) in
which the dashed line corresponds to the numerical solution. It is clearly
seen that the bed shape is exactly recovered by simulation results.

Table 3.4 lists the bed width and height measured from the experiment
and simulation, respectively. The relative error is below 2% and their agree-
ment is also quantitatively satisfactory. Hence, it is shown that the proposed
numerical model is able to accurately predict macroscopic behaviors in re-
spect of solid bed shape and size for a three-phase flow system involving
moving boundaries.

Effects of special IB treatments for fluid-particle interaction

Although the modeling of a moving boundary like the rotating tank seems to
be straightforward, it is in fact non-trivial for a fluid-particle system where
the computational reliability mainly depends on the validity of interphase
coupling term. Here the rotating tank test case is utilized to show why the
special treatments for the drag force calculation (Section 3.3.3) is necessary
near the wall surface.

It is first investigated for the void fraction ε which is geometrically de-
fined in a particle-in-cell manner regarding the local solid bed configuration.
Figure 3.24 compares the ε values calculated for particles in a randomly
packed bed with and without the corrective procedure of cell merging. The
bright-yellow circle therein draws the outline of the tank and light-grey lat-
tices depict the numerical cells surrounding the solid bed. For such a bed
with equal-sized particles, as a matter of course, a rather homogeneous dis-
tribution of void fraction is expected inside the solid bed as well as in the
vicinity of the rigid walls. This is well confirmed in Figure 3.24 (a) and (c)
employing the ε correction for particles near the front surface and the curved
bottom of the cylindrical tank, where the void fraction is reasonably close
to the theoretical limit of random close packing of monodisperse spheres. If
no correction is applied to the near-wall particles, noticeable deviation from
our expectation is observed in both front and bottom views of Figure 3.24
(b) and (d), respectively. We note that, this is not a consequence of the
physical confinement of the wall but a numerical artifact depending on the
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grid resolution and configuration.
Another strategy of near-wall correction is applied when determining the

flow velocity at particle positions, as described by the biased interpolation
procedure in Section 3.3.3. Its effectiveness is examined in a different rotating
tank system. The dimensions of the tank are kept the same, but it revolves
with a faster speed of 100 rpm. A loose, regular solid bed of 160000 particles
with diameter of 1 mm is used instead. This solid bed is initially suspended
in the lower part of the tank and does not touch the surrounding walls.
The friction between particles and tank is set to zero. Modifications are
made so to magnify the effect of fluid drag and to eliminate the frictional
acceleration. Note that the treatment for the void fraction is always valid in
this computation.

Figure 3.25 gives snapshots at t = 0.005 s of simulation results (a) with
and (b) without the velocity correction. As indicated by the velocity con-
tour in Figure 3.25 (b), the thin layer of particles adjacent to the front wall
exhibits an abnormal azimuthal velocity distribution, which is mostly as-
cribable to the fluid drag since the wall friction is zero. According to the
general form of drag force (3.24), the drag force is proportional to the flow
velocity minus particle speed. Therefore a naive interpolation of the veloc-
ity field partially blending the contribution of a rapidly rotating boundary
will inevitably overestimate the drag force and consequently lead to spurious
behavior of the fluid-particle system.

Again, it turns out to be a nonphysical motion that explicitly depends
on the grid configuration. Figure 3.26 provides a close-up view of near-wall
particles and grids from the top without the correction. It is observed that
the false acceleration due to uncorrected drag force is restricted to the two
arrays of particles accommodated within the partial cells where the front wall
is embedded. With the adoption of the correction based on biased velocity
interpolation, those problems can be suppressed to a large extent, as implied
by Figure 3.25 (b).

In this way, the problems caused by indiscriminate inclusion of boundary
data have been revealed through our numerical tests and discussions. It is
doubtlessly proved that the proposed treatments for the fluid-particle inter-
action is vital for gas-solid-liquid flow systems involving complex boundaries.
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Figure 3.20: Schematic diagram of the rotating cylindrical tank.

Table 3.4: Rotating drum: comparison of the bed size.
Bed width (mm) Bed height (mm)

Experiment 93.9 67.8
Simulation 92.3 66.8
Relative error 1.70% 1.47%
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Figure 3.21: Computational setting-up of the rotating cylindrical tank.
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Figure 3.23: Rotating drum: (a) particles and free surface at quasi-steady
state and (b) comparison of solid bed shape where the red dashed line shows
the computed shape.
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Figure 3.24: Effect of void fraction correction near the wall.
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Figure 3.25: Effect of velocity interpolation correction near the wall.
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Figure 3.26: Close-up view of spurious velocity and near-wall grids.
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3.6 Application to twin screw kneader (TSK)

In order to show the capability of the present method to model systems with
extreme complexity, we present its application to 3D numerical simulations of
a twin screw kneader (TSK). Nowadays the TSK plays a primary role in the
chemical industry including processes of compounding and mixing. A picture
of the laboratory apparatus of our TSK system is shown in Figure 3.27.

Calculating flow patterns in a TSK is not an easy job for its geometri-
cal and physical complexities. Firstly, TSKs are, in general, composed of a
fixed outer barrel and multiple screw elements or kneading blocks serialized
and co-rotated around two axes. The shapes of these parts can be highly
complicated, and what’s more, the two sets of screw elements and knead-
ing blocks are constantly moving asynchronously with respect to the barrel.
It is thus extremely time-consuming and computationally demanding if one
tries to model TSK system by generating body-fitted mesh and performing
re-gridding during the simulation as the traditional CFD practice does. Sec-
ondly, in many applications the TSK features a multi-physics nature: for
example, the free surface and particulate flows are frequently involved in
popular TSK processing. This point further requires a versatile numerical
solver able to treat the entire coupled system.

In the past, some attempts have been made to numerically explore the op-
eration and performance of TSKs. In these known reports, the TSK is mod-
elled by using unstructured moving meshes with complicated mesh super-
imposition techniques provided by commercial packages, see e.g. [65–68]. Be-
sides the expensive punishment due to mesh manipulation, existing models
are found only for single-phase continuum flow in TSK systems.

Targeting towards those two problems, we will present numerical results
on two-phase and three-phase flows obtained by using fixed grid-based TSK
simulations. It is shown that the TSK geometry and motion could be calcu-
lated with good efficiency, and complex flows involving free surface and solid
particles can be treated as well. To the author’s best knowledge, the present
work is the first numerical model allowing for multiphase TSK computations.

3.6.1 Air-water flow in a TSK

In this study, such a case is carried out for our laboratory TSK system as
illustrated in Figure 3.28. The TSK has a sealed barrel and is equipped with
two screw elements that co-rotate in a counter-clockwise direction. The x-
width (axial), y-height (vertical) and z-length (horizontal) of the outer barrel
are 44 mm, 106 mm and 186 mm, respectively.

A single screw element is composed of four oblique disks arranged in a
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Figure 3.27: Photograph of the laboratory TSK apparatus.
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Table 3.5: Computational conditions for the two-phase TSK problem.
Water density (kg/m3) 1000
Water viscosity (Pa s) 10−3

Air density (kg/m3) 1
Air viscosity (Pa s) 10−5

Surface tension (N/m) 0.075
Grid spacing (m) 2.0× 10−3

Time step (sec) 1.0× 10−4

Rotation speed (rpm) 30, 60 and 90

whorl with 45 ◦ advance angle. A disk is 7 mm thick and the gap between
adjacent disks or barrel surfaces is about 3 mm. The screws outer diameter
is 100 mm and the root diameter is approximately 50 mm. Center distance
between the twin axes is equal to 80 mm. For the sake of brevity, information
about the TSK design will not be further detailed here.

All the TSK parts, including the barrel and twin screws, are modeled by
the SDF model and the IB method. Different from the primary shapes (e.g.
spheres and cylinders) that are often discussed in past IB literatures or even
the more complicated rotating ellipses problem (Section 2.6.5) for which one
may still manage to find some analytical definition of the boundaries, it is
almost impossible to represent the TSK geometry in a trivial way. This point
highlights the good applicability and flexibility of our modeling for arbitrarily
shaped boundaries.

For the initial setting-up, water level is set to half the barrel height. Fluid
density, viscosity and surface tension are set equal to the physical properties
of water and air under room temperature. The grid size is decided so that
there is at least one fluid point in the narrow gap between two adjacent disks.
The dilation approach introduced in Section 2.5.3 is used to treat the wall
contact because boundaries can come very close in this problem.

Three simulation cases with screw speeds of Ω = 30 rpm, 60 rpm and 90
rpm are considered in order to examine the effect of rotation speed. These
computational conditions are summarized in Table 3.5. For this problem,
the Reynolds number based on the tip speed U , disk cross-sectional length
L and water kinematic viscosity ν is roughly estimated to be Re ∼ 5000.
In this study, turbulence models are not taken into account because of the
complex wall shapes; the LES approach suggested by [42] may be considered
in the future.
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Figure 3.28: Two-phase TSK: initial setup.

Temporarl evolvement of the two-phase flow

We first present charts of the kinetic energy of the two-phase flow within
the TSK as a function of time to depict the temporal evolvement of the
system. Figure 3.29(a) plots the kinetic energy per unit fluid volume e against
simulation time t to show the convergence towards quasi-steady states. From
Figure 3.29(a) it is seen that the air-water mixture starts with a state of rest
and reaches the quasi-steady state very soon under the agitation of screw
paddles in all cases.

We have also noticed that, the relationship between temporal variation
of kinetic energy and rotation speed can be more clearly revealed by plotting
the normalized kinetic energy density e∗ = e/(ρmU

2/2) against the non-
dimensional time t∗ = t/T . Herein, ρm is the average fluid density which
is equal to ρm = 500.5 kg/m3 in the current TSK system and T = 60/Ω
is the rotation period of the screw paddles. This relationship is shown in
Figure 3.29(b) from which the flows in all three cases are known to reach
quasi-steady states readily after one cycle of screw rotation, i.e. t∗ > 1.
After that, it seems that all simulation cases are shifted to a constant value
of normalized kinetic energy density e∗ ∼ 0.085 which is almost independent
of the rotation speed.

Besides the systematic behaviors from the viewpoint of energy, we have
also examined the flow fields at three individual probes, whose positions are
illustrated in Figure 3.30: the probes A and C are located beneath the screw
paddles, and probe B is at the conjunction of the barrel. The coordinate
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is chosen that the x-axis is parallel to the axis of screw paddles, the y-
axis is the vertical direction of gravity, and the z-axis runs along the line
connecting the radial centers of the barrel. Figure 3.31 plots the fluid pressure
subtracting the hydrostatic part at those probes pd = p− ρgy as a function
of time. Figures 3.32, 3.33 and 3.34 plot the temporal vairations of velocity
components (u, v, w), respectively. In those charts, the pressure is rendered
dimensionless by the dynamic pressure ρmU

2/2 and the velocity is normalized
by the paddle velocity U . Similar to the overall kinetic energy, the values of
different flow fields are well aligned by the normalization same factors. The
flows are shown to be at quasi-steady states during the TSK agitation. No
bifurcation has been excited by the current stirring effects.

Based on our observation of convergent behaviors, quasi-steady solutions
of the TSK two-phase flow will be chosen from numerical results with simu-
lation time t > 2.0 sec in the following sections.

Free surface motion in the TSK

Next for one to have an image of the flow behavior inside the TSK system,
Figure 3.35 displays the configuration of the water surface during one single
rotation of Case 3 with the largest rotation speed. As the screw disks peri-
odically cut into and emerge from the water, they bring the fluid interface
into motion and surface waves travel between two paddles. The water level
in the right barrel is slightly higher than that in the left, due to the rotation
direction. Those results seem reasonable. Again, we note that no re-gridding
procedure is needed in this simulation.

In order to validate the simulations and demonstrate the effect of screw
rotation, calculated results of Case 1 (30 rpm, the lowest rotation speed)
and Case 3 (90 rpm, the highest rotation speed) are compared with experi-
mental photographs taken by a high-speed camera. Figure 3.36 shows such
comparisons of interface shapes for Case 1 (30 rpm) where the left column is
experimental photograph and the right column is sketch of simulation result.
The time interval between Figure 3.36(a) and (b) is a quarter of one rotation
period. It is observed that the water surface remains almost flat in both
simulation and experiment for the current rotation speed.

On the other hand, the disturbance of fluid interface is rather obvious for
Case 3 (90 rpm) as shown by Figure 3.37. In Figure 3.37(a) the water level is
ascending from the left to the right side of the TSK and some liquid near the
central part is attached to the left paddle exiting the water, which have been
satisfactorily recovered by simulation results. In Figure 3.37(b) the water
level is higher in the middle part than other places. This is also captured by
the simulation, except for that the height at the right wall is slightly over-
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Figure 3.29: Plot of kinetic energy of two-phase flows in the TSK.
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Figure 3.30: Probe positions A, B and C.

predicted. The air cavity entrained behind the left paddle entering the water
is confirmed as well. Therefore, the simulation results are found in qualitative
agreement with validation data, showing that the VOF-IB method is able
to correctly reflect the influence of different rotation speeds on two-phase
agitation.

To further examine and validate the simulation of energetic fluid-boundary
interactions in Case 3 (90 rpm), the comparison of interface heights at the
TSK front wall is carried out for seven gauge positions, named from P0 to
P6 respectively, whose locations are elucidated in Figure 3.38 and Table 3.6.
The horizontal line connecting the twin screw axes is chosen as the zero water
level. The remainder fluctuation of the water height around the baseline is
normalized by the radius of the TSK barrel. We note that experimental data
is directly measured from the photographs because it is not realistic to install
probes or sensors inside the TSK device. The series of water levels at dif-
ferent gauge positions are plotted against time in Figure 3.39. Those charts
plot the surface fluctuation during a single rotation period T . Specifically,
both simulation result and experiment data show a global periodic feature
of T/2, which is due to the apparent symmetry of TSK disks. Apart from
the global periodic mode, the local modes of surface fluctuation owns to the
interface motion and interaction with moving paddles. Reasonable matches
are found between the simulation and experiment in respects of the overall
oscillation frequency and fluctuation pattern.

However, it seems that the calculated wave motions generally have greater
amplitude than those measured. For example, the left gauges (P0, P1 and
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Figure 3.31: Plot of pressure p
ρmU2/2

at probe positions A, B and C.
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Figure 3.32: Plot of velocity component u/U at probe positions A, B and C.
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Figure 3.33: Plot of velocity component v/U at probe positions A, B and C.
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Figure 3.34: Plot of velocity component w/U at probe positions A, B and C.
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Table 3.6: Gauge positions for interface height measurement.
Gauge name Gauge position
P0 Left wall
P1 Midpoint between left wall and left screw axis
P2 Midpoint between left screw axis and TSK center
P3 TSK center
P4 Midpoint between TSK center and right screw axis
P5 Midpoint between right screw axis and right wall
P6 Right wall

P2) tend to be lower than their experimental counterparts whereas the right
ones (P4, P5 and P6) are slightly higher. It is possibly explained by that the
boundary layer is artificially thickened by the IB model and thus more liquid
has been transported to the right barrel.

Shear effects induced by paddle rotation

The final part discussion is devoted to the investigation of screw-induced
shear effects, which is generally considered to be dominant mechanism for
a working TSK device. Particularly, strong shearing is expected for the
interstitial slit region between counter-moving disks when they overlay each
other.

Such a case is shown for the time instance when the second disk of the
left paddle meets the third disk of the right paddle, as illustrated by the
x-plane slice in Figure 3.40. Because two screw paddles co-rotate counter-
clockwise, their interdigitated disk tips in the conjunction region tend to
approach quickly and generate shear effects between them. Figure 3.40 shows
the colored contour of the (1, 2)-component of the strain rate tensor

Dxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
on the central plane perpendicular to the rotating axis. It is apparent that
maximum shearing is found in the region sandwiched between the two grazing
disks. Similarly, the distribution of shear strain rate Dxy is shown on the
y = −0.0168 plane in Figure 3.41 from a bottom view, and on the plane
connecting the left and right barrels in Figure 3.42.

Again, when the results obtained from different simulation cases (30, 60
and 90 rpm) are compared, values of Dxy (approximately 18.6, 37.0 and 55.0
sec−1) are found almost proportional to the corresponding rotation speeds.
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Figure 3.35: Two-phase TSK: water surface during one period of rotation
(90 rpm).
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p0 p1 p2 p3 p4 p5 p6

Figure 3.38: Gauge positions for interface height measurement.

This linear correlation owes to the Newtonian nature of water and it is plotted
in Figure 3.43 with curve fitting.
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Figure 3.40: Strain rate tensor Dxy on x = 0 plane for Case 1 (top), Case 2
(middle) and Case 3 (bottom).
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Figure 3.41: Strain rate tensor Dxy on y = −0.0168 plane for Case 1 (top),
Case 2 (middle) and Case 3 (bottom).
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Figure 3.42: Strain rate tensor Dxy on z = −0.04 plane for Case 1 (top),
Case 2 (middle) and Case 3 (bottom).
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3.6.2 Three-phase flow in a TSK

In this section, the full-scale three-dimensional simulation of the gas-solid-
liquid three-phase flow stirred by the TSK is performed. In addition to the
gas-liquid free surface in the two-phase counterpart, a third solid particle
phase is mixed into the system. Totally 200k particles are used in the simu-
lation, or equivalently 261.8 g of glass beads for the lab experiment. These
particles are let fall freely under gravity and reach a motionless, packed state
owing to the inter-particle damping and friction. Water is filled into the
barrel up to a height of 83 mm measured from the bottom, submerging ap-
proximately 80% of the TSK system. Initial configuration of the three-phase
TSK simulation is shown in the Figure 3.44.

For the experiment, after the barrel is sealed, screw paddles are forced
to rotate for several rounds so that entrapped gas bubbles are expelled and
the particles are well mixed with the water phase. In our experiment, we
noticed that some few particles may float on the water surface, which does
not interfere with our experimental observation.

The simulated lab TSK is designed for a mean particle diameter dp = 1
mm. With the same mesh resolution as the two-phase test, the ratio between
grid spacing and particle size is close to ∆x/dp = 2.0, which is thought
an appropriate choice for DEM-VOF computations. In this study, three
simulation cases are conducted with different rotation speeds of 30, 60 and
90 rpm, respectively. Important computational parameters and a list of test
cases can be found in Tables 3.7 and 3.8.

We note that, for Case 3 that rotates the fastest (90 rpm), the charac-
teristic velocity based on the tip speed of the screw paddle (D = 0.1 m) is
approximately U ∼ 0.5 m/s. Then the particle Re number is estimated to be
Re ∼ 500. For such a moderate particle Re number and dense particle distri-
bution, turbulent effect is known to be suppressed by the energy loss owing
to fluid-particle interaction, see [69]. For this sake, turbulence modeling is
not taken into account in the present study.

Early-time agitation of the TSK system

First some results describing the early-time movement, namely behaviors
during the first revolution of TSK paddles by which the TSK has not yet
arrived at a quasi-steady state, are presented. When the paddles begin to
rotate, the initially quiescent mixture is agitated and transient movements
transpire such as deformation of the solid bed and disturbance of the free
surface. It is thus expected that the DEM-VOF simulation can recover such
dynamical phenomena.
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Figure 3.44: Initial configuration of the three-phase TSK simulation.

Table 3.7: Computational conditions for the three-phase TSK problem.
Water density (kg/m3) 1000
Water viscosity (Pa s) 10−3

Air density (kg/m3) 1
Air viscosity (Pa s) 10−5

Particle density (kg/m3) 2500
Particle number (-) 200000
Particle size (m) 1.0× 10−3

Mesh size (m) 2.0× 10−3

Spring constant (N/m) 100
Restitution coefficient (-) 0.9
Friction coefficient (-) 0.3
DEM ∆t (sec) 1.0× 10−5

CFD ∆t (sec) 5.0× 10−5

Table 3.8: Simulation cases for the three-phase TSK problem.
Case 1 Case 2 Case 3

Rotation speed (rpm) 30 60 90
Rotation period (s) 2.0 1.0 2/3
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The image panels in Figures 3.45, 3.46, and 3.47 display the configurations
of free surface and particle bed at dimensionless time t/T = 1/4, 1/2, 3/4
and 1 for three test cases, respectively. For all three cases, it is commonly
observed that the left paddle suddenly cutting through the solid bed can
generate a spalshing of particles in the middle of the TSK at t/T = 1/4.
Futher stirring (t/T = 1/2 and 3/4) of the screw paddles gradually conveys
the solid bed from the left to right barrel. Then finally at t/T = 1 those
particles rising with the right paddle begin to fall along its surface like an
avalanche.

The free surface motions in response to the paddle rotation is also clear
and self-explanatory: the water surface in Case 1 remains almost flat; on the
contrary, break wave and overlapping of free surface can be observed in Case
3 where the motion is very energetic.

Evolution and convergence of systematic behavior

Through the visualization of simulation results, for all three cases the transi-
tional behaviors described above tend to become steady in no more than two
revolution periods, leading to a recurrent circulation between the left and
right barrels.

In a similary manner to the rotating cylindrical tank test, the evolu-
tion and convergence to a quasi-steady state are checked by examining the
temporal change of kinetic energy of the solid phase. As depicted in Fig-
ure 3.48(a), after a sharp increase, the kinetic energy very soon reaches a
stable value around which small fluctuations are found in correspondence
with the peroidic motion of the screw paddles.

Figure 3.48(b) plots the vertical position of mass center of the solid bed
against time to show the temporal change of gravitational (potential) energy.
In comparison with the kinetic energy, it is interesting to see that the poten-
tial energy increases almost monotonically during the transient stage, which
indicates that the overall expansion of the solid bed in vertical direction is
not significantly affected by the periodic entry and exit of the paddles.

From those charts, quasi-steady state solutions are extracted for time
instants t > 3.0 sec.

Comparison with experiment at quasi-steady state

In this section, a comparison between simulation results and experimental
data is presented at a phenomenological level. Our validation will mainly
focus on some macroscopic behaviors of the gas-solid-liquid flow in the TSK
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system. For the sake of brevity, only the results obtained from Case 3 (90
rpm) are discussed here.

Figure 3.49 juxtapose a simulation snapshot and experimental photo-
graph with the same screw paddle configuration.

On the left side of the barrel, only a few particles are floating in the liquid,
while the sedimentation stacking at the bottom forms a gradual ascent
as indicated by the red lines in the figure. At the top left hand corner
where a paddle blade has entered the water, the air cavity entrained at
its back is well captured by the simulation (red circle).

Near the middle joint part of the barrel, scattered solid particles are set-
tling within the space between two screw elements. From the animated
movies, they are found to be released from the avalanche over the right
paddle.

In the right part of the barrel, particle dispersions raised by the rotating
paddle is visible. In fact, it is roughly estimated that solid particles
cover the trapezoid area below the water surface and the red line run-
ning through the right axis. The water level also seems to be slightly
lifted at the right shoulder.

In respect of interface shape and particle distribution, qualitative agreements
have been confirmed between simulation results and experimental data. Fig-
ure 3.50 makes the comparison for an alternative paddle configuration, from
which similar observations could be identified.

On the other hand, a noticeable discrepancy in the macroscopic behavior
is the excessive particle gathering above the red line in the simulation result,
which possibly implies too strong a rising effect has been generated locally.
Provided that the slit between the paddle and front wall is considerably
narrow (∼ 1.5dp), it is likely to ascribe this problem to a numerical reason
regarding the choice of friction coefficient for the DEM simulation. In some
literatures, it is recommended to use a friction coefficient µ lower than the
typical value of 0.3 for wet contacts, see e.g. [45]; otherwise the frictional effect
will be overestimated. Based on this point, the value of friction coefficient µ
is to be calibrated in order to hopefully improve the results. Besides that,
we also noticed particle adherence caused by capillary liquid bridge, which
is left as a future work to be considered in the proposed model.

Apart from these points, the current computational results are highly
encouraging as a reasonable match to the experimental data in macroscopic
aspects of the gas-solid-liquid flow in a complicated TSK system. In this
study, our validation and investigation are based on visual comparisons due
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to the restricted experimental conditions. It is still planned to use a high-
speed camera and particle image velocimetry (PIV) technique to facilitate
detailed comparison of velocity profiles in the near future.

Time cost of the three-phase TSK simulation

The performance of the DEM-VOF solver is analysed in the TSK problem
that involves considerably complicated conditions. Numerical simulations
discussed in this section are carried out on a Windows workstation, which is
equipped with Intel R©Xeon R©CPU E5-2699 v3 2.30GHz and 64.0 GB mem-
ory. The computation is parallelized by OpenMP technique using 36 cores.

For the current three-phase TSK simulation running up to Tmax ∼ 6.0
sec for a converged quasi-steady solution, the wall-clock time for each test
case is approximately 25 hours on average. The differences among three
cases is minor. Therefore, the proposed DEM-VOF method turns out to be
a realistic choice that is able to yield meaningful results within acceptable
computational time for practical engineering problems.

Concerning the runtime feature of the coupled DEM-VOF simulation, the
CPU time cost by distinct computational stages is collected:

1. DEM phase: particle registration, contact detection and interaction
force calculation;

2. CFD phase: explicit calculation of velocity predictor and implicit so-
lution of pressure;

3. Miscellaneous functions: mainly the interface reconstruction and ad-
vection.

They are converted to percentages out of total execution time in order to
locate the hotspots for the current computation.

Figure 3.51 gives such profiling information for TSK Cases 1 and 2 (Case
3 not measured). It is not surprising to find that the Lagrangian DEM
simulation eats up over 70% of the total CPU time, owing to the relatively
expensive contact detection which is not memory-friendly. We note as well,
since sub-cycling has been performed for the DEM (∆tCFD/∆tDEM = 5), its
actual iterations are five times as many as the CFD sweeps.
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Figure 3.49: Comparison at quasi-steady state for Case 3 (90 rpm): state 1.
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Figure 3.50: Comparison at quasi-steady state for Case 3 (90 rpm): state 2.
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3.7 Conclusions

In this study, we developed the DEM-VOF method based on an Eulerian-
Lagrangian description for the three-dimensional simulation of gas-solid-
liquid flows. The fluid and particle phases are computed by using the VOF
method and the DEM, respectively, and they are coupled in the context of
the volume-averaging approach. Curved walls and moving boundaries are
efficiently simulated thanks to the adoption of the SDF and IBM with spe-
cial treatments of near-wall interphase interactions. Compared with existing
models, the proposed method adopts a consistent formulation of fluid-particle
interaction and it can simulate complex three-phase flow behaviors involv-
ing large deformation of free surface and liquid displacement induced by the
particle motion. Moreover, it has also enlarged the computational window
by providing great freedom and ability to treat general geometries with ease.

Model verifications were conducted to justify the fluid-particle coupling
in the problems of single particle sedimentation and flow passing through a
fixed bed. It has been confirmed that the particle and flow behaviors match
analytical predictions exactly; besides, effects of various computational con-
ditions and parameters, such as the law of drag, particle Re number, coupling
model, grid spacing and packing state, are also investigated targeting a com-
prehensive understanding of the numerical method.

The DEM-VOF method is then applied to several three-phase flow prob-
lems. In the first test, the water entry and subsequent sedimentation of a
particle bed is simulated, in which complicated free surface deformation and
particle motion comparable with a Rayleigh-Taylor instability have been ob-
served. The water displacement of solid particles is also reproduced, implying
a good volume conservation property of our model. The second test is the
gas-solid-liquid wave propagation of a three-phase dam break problem. The
violent motion of the water-glass beads mixture and vortex generated in the
air phase are successfully computed and their dynamic snapshots agree well
with experimental photographs at different stages. The temporal variations
of the surge front and column height are also compared with experimental
data. Finally, the gas-solid-liquid flow in a rotating cylindrical tank is con-
sidered as a test case involving curved, moving boundaries. The quasi-steady
results are validated against an experiment. In respects of the macroscopic
behaviors such as the solid bed shape and size, excellent agreement are found
between them.

We finally apply the present method to a very challenging problem,
namely the gas-liquid and gas-solid-liquid flows in a twin screw kneader and
obtained reasonable predictions to this system. Through the numerical tests,
we have demonstrated the flexibility and accuracy of the DEM-VOF method
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in performing high-fidelity simulations for gas-solid-liquid flows.
The proposed DEM-VOF method is designed to be a macroscopic model

capable of predicting the behaviors of complicated gas-solid-liquid flows which
is difficult to be achieved by existing numerical solvers even at a phenomeno-
logical level. At present its applications are mainly found for three-phase
flows in various mixing and grinding process, and its potential for other en-
gineering problems is promising.

As discussed previously, its major limitation lies in the macroscopic volume-
averaging formulation which has introduced a strong coupling between the
particle size and fluid grid spacing, that is, fluid cell ∆x is required to be
several times larger than the particle diameter dp to sustain the essential pre-
requisite of locally-averaged approximation. It makes one difficult to freely
adjust the spatial resolution for the continuum fluid phase, which is in fact the
reason why it cannot be used to resolve flow behaviors at scales finer than dp,
e.g. air entrainment or liquid splash behind solid particles. Those microscale
effects are generally considered unimportant in the scope of this study, but
they may be of special interest when modeling certain three-phase problems
such as spray coating/drying. For that purpose, subgrid-scale model can be
introduced to describe the dispersed micro bubbles or droplets, see [70] for a
recent example. Another problem related to the restricted computational res-
olution is that sharp edges and corners of wall boundaries may be smeared for
fluid computation. This can be alleviated by defining special kernel functions
to calculate void fraction and transfer interactive force between the fluid and
particle phases. Those kernel functions will have support size determined by
the original constraint of fluid cell-particle diameter ratio. Hence they can
partly loosen the restriction and provide more degrees of freedom to better
resolve the flow field and boundary shape.
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Percival, J. Xiang, and C. C. Pain, “Verification and validation of a
coarse grain model of the DEM in a bubbling fluidized bed,” Chemical
Engineering Journal, vol. 244, pp. 33–43, 2014.

[10] M. Sakai, Y. Yamada, Y. Shigeto, K. Shibata, V. M. Kawasaki, and
S. Koshizuka, “Large-scale discrete element modeling in a fluidized bed,”
International Journal for Numerical Methods in Fluids, vol. 64, no. 10‐
12, pp. 1319–1335, 2010.

[11] E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined
Immersed-Boundary Finite-Difference Methods for Three-Dimensional
Complex Flow Simulations,” Journal of Computational Physics,
vol. 161, pp. 35–60, 2000.

[12] T. Kajishima, S. Takiguchi, H. Hamasaki, and Y. Miyake, “Turbu-
lence Structure of Particle-Laden Flow in a Vertical Plane Channel Due
to Vortex Shedding,” JSME International Journal Series B, vol. 44,
pp. 526–535, 2001.

[13] C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal
of Computational Physics, vol. 25, pp. 220–252, 1977.



191

[14] Y. Shigeto and M. Sakai, “Arbitrary-shaped wall boundary modeling
based on signed distance functions for granular flow simulations,” Chem-
ical Engineering Journal, vol. 231, pp. 464–476, 2013.

[15] T. B. Anderson and R. Jackson, “Fluid Mechanical Description of Flu-
idized Beds. Equations of Motion,” Ind. Eng. Chem. Fund., vol. 6, no. 4,
pp. 527–539, 1967.

[16] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Ki-
netic Theory Descriptions. Academic Press, 1st ed., 1994.

[17] N. Deen, M. Van Sint Annaland, M. Van der Hoef, and J. Kuipers,
“Review of discrete particle modeling of fluidized beds,” Chemical En-
gineering Science, vol. 62, pp. 28–44, 2007.

[18] H. Zhu, Z. Zhou, R. Yang, and A. Yu, “Discrete particle simulation of
particulate systems: Theoretical developments,” Chemical Engineering
Science, vol. 62, pp. 3378–3396, 2007.

[19] H. Zhu, Z. Zhou, R. Yang, and A. Yu, “Discrete particle simulation
of particulate systems: A review of major applications and findings,”
Chemical Engineering Science, vol. 63, pp. 5728–5770, 2008.

[20] X. Zhang and G. Ahmadi, “Eulerian―Lagrangian simulations of liquid
―gas―solid flows in three-phase slurry reactors,” Chemical Engineering
Science, vol. 60, pp. 5089–5104, 2005.

[21] J. Wen, P. Lei, and L. Huang, “Modeling and Simulation of Gas-Liquid-
Solid Three-Phase Fluidization,” Chemical Engineering Communica-
tions, vol. 192, pp. 941–955, 2005.

[22] Y. Li, J. Zhang, and L.-S. Fan, “Numerical simulation of gas―liquid
―solid fluidization systems using a combined CFD-VOF-DPM method:
bubble wake behavior,” Chemical Engineering Science, vol. 54, pp. 5101–
5107, 1999.

[23] Y. Li, G. Yang, J. Zhang, and L.-S. Fan, “Numerical studies of bubble
formation dynamics in gas―liquid―solid fluidization at high pressures,”
Powder Technology, vol. 116, pp. 246–260, 2001.

[24] J. Zhang, Y. Li, and L.-S. Fan, “Numerical studies of bubble and particle
dynamics in a three-phase fluidized bed at elevated pressures,” Powder
Technology, vol. 112, pp. 46–56, 2000.



192

[25] J. Zhang, Y. Li, and L.-S. Fan, “Discrete phase simulation of gas―
liquid―solid fluidization systems: single bubble rising behavior,” Pow-
der Technology, vol. 113, pp. 310–326, 2000.

[26] K. Kafui, C. Thornton, and M. Adams, “Discrete particle-continuum
fluid modelling of gas―solid fluidised beds,” Chemical Engineering Sci-
ence, vol. 57, pp. 2395–2410, 2002.

[27] C. Chen and L.-S. Fan, “Discrete simulation of gas-liquid bubble
columns and gas-liquid-solid fluidized beds,” AIChE Journal, vol. 50,
pp. 288–301, 2004.

[28] Y. Ge and L.-S. Fan, “3-D direct numerical simulation of gas―liquid
and gas―liquid―solid flow systems using the level-set and immersed
boundary methods,” Advances in Chemical Engineering, vol. 31, pp. 1–
63, 2006.

[29] G. Yang, B. Du, and L. Fan, “Bubble formation and dynamics in gas
―liquid―solid fluidization―A review,” Chemical Engineering Science,
vol. 62, pp. 2–27, 2007.

[30] M. van Sint Annaland, N. Deen, and J. Kuipers, “Numerical simulation
of gas―liquid―solid flows using a combined front tracking and discrete
particle method,” Chemical Engineering Science, vol. 60, pp. 6188–6198,
2005.

[31] T. Can, L. Mingyan, and X. Yonggui, “3-D numerical simulations on
flow and mixing behaviors in gas-liquid-solid microchannels,” AIChE
Journal, vol. 59, pp. 1934–1951, 2013.

[32] K. Washino, H. Tan, M. Hounslow, and A. Salman, “Meso-scale coupling
model of DEM and CIP for nucleation processes in wet granulation,”
Chemical Engineering Science, vol. 86, pp. 25–37, 2013.

[33] K. Yokoi, “Efficient implementation of THINC scheme: A simple and
practical smoothed VOF algorithm,” Journal of Computational Physics,
vol. 226, no. 2, pp. 1985–2002, 2007.

[34] T. Kajishima and S. Takiguchi, “Interaction between particle clusters
and particle-induced turbulence,” International Journal of Heat and
Fluid Flow, vol. 23, pp. 639–646, 2002.

[35] Z. Y. Zhou, S. B. Kuang, K. W. Chu, and A. B. Yu, “Discrete particle
simulation of particle―fluid flow: model formulations and their appli-
cability,” Journal of Fluid Mechanics, vol. 661, pp. 482–510, 2010.



193

[36] C. T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with
Droplets and Particles. Taylor & Francis, 1997.

[37] A. Di Renzo and F. P. Di Maio, “Homogeneous and bubbling fluidization
regimes in DEM―CFD simulations: Hydrodynamic stability of gas and
liquid fluidized beds,” Chemical Engineering Science, vol. 62, pp. 116–
130, 2007.

[38] M. Sakai, Y. Shigeto, X. Sun, T. Aoki, T. Saito, J. Xiong, and
S. Koshizuka, “Lagrangian―Lagrangian modeling for a solid―liquid
flow in a cylindrical tank,” Chemical Engineering Journal, vol. 200-202,
pp. 663–672, 2012.

[39] M. Abbas, M. Van der Hoef, and H. Kuipers, “Discrete Particle Model
for simulating liquid-solid fluidization,” in 7th International Conference
of Multiphase Flows, (Tampa, USA), 2010.

[40] Y. Feng and A. Yu, “Comments on“ Discrete particle-continuum fluid
modelling of gas―solid fluidised beds”by Kafui et al. [Chemical Engi-
neering Scinece 57 (2002) 2395―2410],” Chemical Engineering Science,
vol. 59, pp. 719–722, 2004.

[41] K. Kafui, C. Thornton, and M. Adams, “Reply to Comments by Feng
and Yu on“ Discrete particle-continuum fluid modelling of gas―solid
fluidised beds”by Kafui et al.,” Chemical Engineering Science, vol. 59,
pp. 723–725, 2004.

[42] J. Yang and F. Stern, “Sharp interface immersed-boundary/level-
set method for wave―body interactions,” Journal of Computational
Physics, vol. 228, pp. 6590–6616, 2009.

[43] X. Sun, M. Sakai, M.-T. Sakai, and Y. Yamada, “A Lagrangian―
Lagrangian coupled method for three-dimensional solid―liquid flows in-
volving free surfaces in a rotating cylindrical tank,” Chemical Engineer-
ing Journal, vol. 246, pp. 122–141, 2014.

[44] X. Sun, M. Sakai, and Y. Yamada, “Three-dimensional simulation of
a solid―liquid flow by the DEM―SPH method,” Journal of Computa-
tional Physics, vol. 248, pp. 147–176, 2013.

[45] Y. Yamada and M. Sakai, “Lagrangian―Lagrangian simulations of solid
―liquid flows in a bead mill,” Powder Technology, vol. 239, pp. 105–114,
2013.



194

[46] S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Prog.,
vol. 48, pp. 89–94, 1952.

[47] C. Wen and Y. Yu, “Mechanics of fluidization,” Chem. Eng. Prog. Symp.
Ser., vol. 62, no. 62, p. 100, 1966.

[48] R. Di Felice, “The voidage function for fluid-particle interaction sys-
tems,” International Journal of Multiphase Flow, vol. 20, pp. 153–159,
1994.

[49] N. Sharma and N. A. Patankar, “A fast computation technique for the
direct numerical simulation of rigid particulate flows,” Journal of Com-
putational Physics, vol. 205, pp. 439–457, 2005.

[50] F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Surface,”
Physics of Fluids, vol. 8, p. 2182, 1965.

[51] D. B. Spalding, “A novel finite difference formulation for differential
expressions involving both first and second derivatives,” International
Journal for Numerical Methods in Engineering, vol. 4, pp. 551–559,
1972.

[52] E. Olsson and G. Kreiss, “A conservative level set method for two phase
flow,” Journal of Computational Physics, vol. 210, pp. 225–246, 2005.

[53] J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for
modeling surface tension,” Journal of Computational Physics, vol. 100,
pp. 335–354, 1992.

[54] T. Yabe, K. Chinda, and T. Hiraishi, “Computation of surface tension
and contact angle and its application to water strider,” Computers &
Fluids, vol. 36, pp. 184–190, 2007.

[55] A. J. Chorin, “Numerical solution of the Navier-Stokes equations,”
Mathematics of Computation, vol. 22, no. 104, pp. 745–745, 1968.

[56] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid
Method),” Journal of Computational Physics, vol. 152, pp. 457–492,
1999.

[57] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, “Mod-
els, algorithms and validation for opensource DEM and CFD―DEM,”



195

Progress in Computational Fluid Dynamics, an International Journal,
vol. 12, no. 2, pp. 140–152, 2012.

[58] S.-Y. Lin and Y.-C. Chen, “A pressure correction-volume of fluid method
for simulations of fluid―particle interaction and impact problems,” In-
ternational Journal of Multiphase Flow, vol. 49, pp. 31–48, 2013.

[59] M. Robinson, M. Ramaioli, and S. Luding, “Fluid―particle flow simu-
lations using two-way-coupled mesoscale SPH―DEM and validation,”
International Journal of Multiphase Flow, vol. 59, pp. 121–134, 2014.

[60] J. Zhao and T. Shan, “Coupled CFD―DEM simulation of fluid―
particle interaction in geomechanics,” Powder Technology, vol. 239,
pp. 248–258, 2013.

[61] M. Skoge, A. Donev, F. Stillinger, and S. Torquato, “Packing hy-
perspheres in high-dimensional Euclidean spaces,” Physical Review E,
vol. 74, p. 041127, 2006.

[62] J. C. Martin and W. J. Moyce, “Part IV. An Experimental Study of the
Collapse of Liquid Columns on a Rigid Horizontal Plane,” Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 244, pp. 312–324, 1952.

[63] L. Guo and K. Morita, “Numerical simulation of 3D sloshing in a liquid-
solid mixture using particle methods,” International Journal for Numer-
ical Methods in Engineering, vol. 95, pp. 771–790, 2013.

[64] S. Muzaferija and M. Peric, “Computation of free-surface flows using
interface-tracking and interface-capturing methods,” in Nonlinear wa-
ter wave interaction (O. Mahrenholtz and M. Markiewicz, eds.), ch. 2,
pp. 59–100, WIT Press, 1999.

[65] S. A. Jaffer, V. L. Bravo, P. E. Wood, A. N. Hrymak, and J. D. Wright,
“Experimental validation of numerical simulations of the kneading disc
section in a twin screw extruder,” Polymer Engineering & Science,
vol. 40, pp. 892–901, 2000.

[66] X.-M. Zhang, L.-F. Feng, W.-X. Chen, and G.-H. Hu, “Numerical sim-
ulation and experimental validation of mixing performance of kneading
discs in a twin screw extruder,” Polymer Engineering & Science, vol. 49,
pp. 1772–1783, 2009.



196

[67] J. Wei, X. Liang, D. Chen, Y. Yang, and D. Zhou, “Evaluation of the
mixing performance for one novel twin screw kneader with particle track-
ing,” Polymer Engineering & Science, pp. n/a–n/a, 2013.

[68] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, and T. Kajiwara,
“Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-
screw extruder,” Chemical Engineering Science, vol. 66, pp. 103–110,
2011.

[69] M. van der Hoef, M. van Sint Annaland, N. Deen, and J. Kuipers,
“Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale
Modeling Strategy,” Annual Review of Fluid Mechanics, vol. 40, pp. 47–
70, 2008.

[70] H. Marschall and O. Hinrichsen, “Numerical Simulation of Multi-
Scale Two-Phase Flows Using a Hybrid Interface-Resolving Two-Fluid
Model (HIRES-TFM),” JOURNAL OF CHEMICAL ENGINEERING
OF JAPAN, vol. 46, pp. 517–523, 2013.



Chapter 4

A numerical method for the
direct numerical simulation of
three-phase problems

4.1 Introduction

Complex gas-solid-liquid flows involving free surface motion and solid parti-
cles transportation are widely encountered in industries. Especially in pro-
cesses involving classification, dispersion and interfaces, it is known that the
interactions among multi-fluids and granular particles can be relevant to
the systematic account of complex phenomena and key parameter directing
towards optimal operation conditions. Study of such problems based on nu-
merical approaches is nowadays an active yet pressing topic for researchers
and engineers.

So far, the complexity of gas-solid-liquid three-phase systems from its
multi-physics and multi-scale nature has rendered the numerical study to
fork in at least two levels: macroscopic methods based on averaged models
and microscopic methods based on direct numerical simulation (DNS). For
instance, the DEM-VOF method developed in our previous study belongs to
the former category which is able to simulate large-scale engineering prob-
lems in practical applications. However, its actual performance may strictly
depend on a number of core correlations for the description of unresolved
terms, of which one considered the most important in fluid-particle flows is
the interphase momentum transfer or the hydrodynamic force giving an ef-
fective fluid drag to furnish the coupling between continuum and dispersed
phases. In the context of three-phase flows, there are still requirements for
the closure defining the capillary force and liquid bridge force induced by

197



198

local interface deformation. To some extent, the discovery and integration of
various closure equations determine the validity and versatility of a numerical
solver adopting macroscopic models.

In comparison with the macroscopic modeling of gas-solid-liquid flows dis-
cussed in the preceding chapter, the DNS-based approach is self-contained in
the sense that all relevant flow structures and interaction terms at the con-
tinuum scale are solved without any empirical constitutions (as long as they
are taken into consideration), including both hydrodynamic and capillary
effects. It is certainly worth noting that, because of its constraint on com-
putational cost, the requirement of DNS of multiphase problems is twofold
from an engineering point of view:

(a) to directly simulate some microscopic systems, e.g. bubble floatation
and self-assembly of colloidal particles on fluid interfaces and sub-
strates;

(b) to provide scalable interaction models that can be used for large-scale
problems, e.g. kneading, wet beads/ball milling and three-phase flu-
idized bed.

In both respects, the DNS approach would be helpful for understanding and
improving the numerical modeling of gas-solid-liquid systems, which has mo-
tivated our development in this study of a three-phase DNS method that
is able to correctly evaluate the fluid-particle interaction mainly owing to
hydrodynamic and capillary forces.

4.1.1 Modeling of fluid-particle flows

The DNS modeling of fluid-particle flows is first reviewed briefly so as to
provide a fundamental discretization of three-phase systems. A traditional
approach is to use body-fitted moving mesh that conforms to the fluid-solid
surface [1], which can be computationally complicated and expensive because
of the grid generation and remeshing operations. In recent years, fixed Carte-
sian grid methods, e.g. the lattice Boltzmann method (LBM) [2], the ficti-
tious domain (FD) method [3] and the immersed boundary (IB) method [4–6],
have become popular for their great simplicity and efficiency in treating mov-
ing solid objects with arbitrary shapes. The most impressive applications of
those fixed-grid methods are found in the DNS of fluidization systems [7–9].

The IB framework considered in this study is first proposed by [4] for
fluid-structure interaction problems. In Peskin’s IB method, the immersed
interface is represented by marker points and their actions are distributed to
surrounding fluids by a generalized delta-function, which is referred to as a
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continuous forcing approach. Sometimes, it can cause a considerable smear-
ing of the fluid-solid surface. Later in the direct forcing IB method [10],
the solid velocity is discretely prescribed on fluid points embedding the ob-
ject surface by using geometrical interpolation. In the work of Kajishima
et al. [11, 12], the direct forcing IB method is further simplified by mixing
the fluid and solid velocities are explicitly blended by using the local solid
volume fraction as a weighting factor. This method is easy to implement
and particularly useful for dense suspensions. All these formulations of IB
method have been successfully applied to the DNS of flows involving mobile
particles or moving objects with necessary modifications and improvements,
see e.g. [6, 13–17].

4.1.2 Modeling of three-phase flows

In the past, some studies have been contributed to the DNS of gas-solid-
liquid flows by using fixed-grid type methods. The most common strat-
egy is to incorporate an interfacial flow model such as the volume-of-fluid
(VOF) method [18], the level-set (LS) method [19], the front-tracking (FT)
method [20], and the constrained interpolation profile (CIP) method [21]
into the fluid-particle solver to represent the continuum phase composed of
a mixture of gas and liquid.

In [22] two-dimensional waves interacting with floating cylinders is com-
puted. Iwata et al. [23] studied the trajectory of a single rising bubble through
particle dispersions of comparable size, but their work is lacking in a detailed
validation of the bubble-particle interaction model. Washino et al. [24] pro-
posed models for fluid-particle interaction and gas-liquid contact line dynam-
ics separately, but there were not any direct results illustrating the coupling
among those three phases. Lin and Chen [25] simulated a three-phase dam
break flow in which a submerged stack of spheres collapsed simultaneously
with the water column. A series of water entry problems of spheres have
been studied numerically with experimental backup in Jain et al. [26] and
Mirzaii and Passandideh-Fard [27]. Based on DNS results of bubble-particle
interference simulations, Baltussen et al. [28] tried to derive a closure for drag
force on bubbles as a function of solid volume fractions.

However, we would like to emphasize that all of the above reports have
only provided a partial modeling of three-phase flows as they generally neglect
the particle-interface interaction which includes the contact angle on solid
surface and the capillary effects exerted by the local meniscus. Therefore,
it is no point that those “incomplete” models could ever be eligible for the
target of this study, i.e. the fully-resolved DNS of gas-solid-liquid flows.

Existing models that are able to achieve a simultaneous resolution of
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hydrodynamic and capillary interactions in a three-phase system have been
mostly achieved by using the multiphase LBM with special treatment to
enforce the rigid motion of the solid phase. They have been applied to various
three-phase problems featuring the lateral force between two-dimensional
rods [29,30], solid particles suspension and wetting behavior [31,32], contact-
line motions [33] and particle clustering driven by capillary interactions [34–
36]. The major drawback of LBM is that the computation becomes unstable
for flows with large density ratio, c.f. [37], so their application is severely
restricted and may not be directly applicable to free surface flows with a
typical air-water pairing. Additionally, for the mesoscopic nature of the LBM,
the definition of contact angle cannot be directly designated but is introduced
via an intermediate cohesive variable, see [34]. As mentioned by the authors,
there arises an ambiguity of computational parameter, because no analytical
correspondence could be found between the cohesive force parameter and the
physical contact angle.

The Finite Element (FE) simulation by [38, 39] modeled the steady and
unsteady motions of floating objects at fluid interface. A remarkable result
of their work is the modeling of cubes and disks clipped to the free surface
at sharp edges. However, the algorithm described in [38] is relatively com-
plicated which might be prohibitive in treating systems with a large amount
of particles. In fact, the number of spherical particles simulated is at most
four in [39].

Washino et al. [40] proposed the continuum capillary force (CCF) model
and proved its validity for the calculation of capillary force on solid particles.
The description of fluid interface in their model is based on the CIP method,
which is disadvantageous for the accurate representation of the interface and
the computation of surface tension force.

According to the review of past studies, there are mainly three problems
that would be addressed in order to achieve high-fidelity DNS of gas-solid-
liquid flows:

(a) The algorithmic complexity and accuracy of the numerical framework
to achieve fluid-particle coupling;

(b) An accurate representation of the interface which can also facilitate the
calculation of surface tension and capillary force;

(c) The straightforward treatment of three-phase contact lines and contact
angle boundary condition.

The section below will be talking about our solutions for these problems.
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4.1.3 Developments in this work

In this study, we describe the DEM-VOF-DNS method to perform three-
dimensional simulations of gas-solid-liquid flows at a micro-scale, i.e. a full
resolution of fluid-particle interaction. The fluid phase consisted of gas and
liquid is treated by our workhorse implementation of a multiphase flow solver
based on the THINC/WLIC VOF scheme of [41]. The Newton dynamics of
distinct particles are simulated by the discrete element method (DEM) [42].
The coupling of this system is realized by using the IB formulation suggested
by [11].

Computational techniques have been developed within this DNS frame-
work in order to address the numerical difficulties stemming from the com-
plexity of gas-solid-liquid systems.

• With revising for the IB method, a new form of the fluid-particle in-
teraction term is derived by considering the integral of a multiphase
fluid stress over the solid surface. This revised model is provided as
a unified interaction term for not only the hydrodynamic force as in
conventional IB models for gas-solid and liquid-solid flows but also the
capillary force due to the fluid interface in gas-solid-liquid flows. The
numerical procedure enrolled in this new model is almost as simple as
the original IB method so that the computational complexity is not
increased.

• The modeling of the gas-liquid interface is based on a simplified cou-
pled LS and VOF (CLSVOF) approach developed in this study. The
VOF known to have good property of volume conservation is used to
tracking the interface motion. From that an equivalent LS representa-
tion of the fluid interface is constructed by using the LS reinitialization
operation [43]. Compared with a VOF method, the LS approach de-
scribes the interface as a smooth function and thus it is able to yield
improved, convergent results for the calculation of surface tension and
capillary force. Our simplified version of CLSVOF method is also more
efficient than other existing ones [44,45] since it does not require explicit
reconstruction of the interface shape.

• In order to treat contact angles, the extension approach proposed by [46]
is adopted in the present model for spherical particles. In this method,
the interface profile at the fluid side is extrapolated into the solid do-
main to implicitly satisfy the boundary condition of contact angle.
Therefore, unlike some studies (see e.g. [47–49]), the position of the
three-phase contact line need not be explicitly located.
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In this way, the DEM-VOF-DNS method enables the fully-resolved sim-
ulation of gas-solid-liquid problems. Numerical tests have been performed
to validate this model and to demonstrate its achievement in computational
ability. It is further applied to the DNS of particles floating on the fluid
interface which is a typical gas-solid-liquid system where the flow behavior
can be dominated by hydrodynamic and capillary effects. The cases of sin-
gle particle in equilibrium and capillary attraction among multiple particles
(∼ 102) are simulated, showing that the proposed method can treat complex
three-phase systems with ease. Thru our literature survey, we find this might
be the first DNS method able to resolve the capillary interaction in an IB
framework1.

Additionally in the last part of this work, some DNS results are presented
for the calculation of fluid drag when flows pass through an ordered or random
particle bed within a range of solid fraction and Reynolds number. Those
results are then put into comparison with some model equations obtained
experimentally. Such drag correlations are the essential ingredient for nu-
merical solvers based on volume-averaging approach such as the DEM-VOF
method developed in the previous chapter. Hence, this might be helpful for
establishing a connection between DNS and averaged models through which
DNS results could be used to develop new subgrid constitutive laws or to
find the validity domain of existing empirical equations.

4.2 Model description for three-phase flows

Consider a domain contains a continuum fluid phase and a dispersed solid
phase V whose surface is denoted by S. The continuum phase is further
separated by an immiscible interface into binary components (i.e. gas and
liquid). The position where the gas-liquid interface intersects with the solid
surface becomes the so-called contact line L.

1Very recently, Fujita et al. [50, 51] also described an immersed free surface method
for colloidal particles behavior on a substrate with drying, which has got certain features
in common with our DEM-VOF-DNS model. However, in their model the interface is
tracked by using the LS method, which might suffer from loss of mass problem due to the
difficulty in fixing conservation errors.
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4.2.1 Fluid motion

The continuum phase motion is governed by a “one-fluid” Navier-Stokes
equation written as

ρ

(
∂u

∂t
+∇ · (uu)

)
= −∇p+∇ · τ + ρg + γκδn , (4.1)

which treats the fluid domain as a whole with varying physical properties.
Herein, u and p are velocity and pressure, ρ is the density, τ is deviatoric
stress tensor, g is the gravity, γ is the coefficient of surface tension, κ is local
mean curvature, δ is a the delta-function non-zero at the fluid interface, and
n is the unit normal vector of the fluid interface, respectively. For Newtonian
fluids, the fluid stress is linked with the rate of deformation tensor D as

τ = 2µD (4.2)

D =
1

2
(∇u+∇uT ) (4.3)

with µ the fluid viscosity. This system is complemented by the equation of
mass conservation for which incompressible fluids are assumed:

∇ · u = 0 , (4.4)

which is the well-known divergence-free condition for fluid velocity.
They are then supplemented with a non-slip boundary condition for veloc-

ity on the solid surface S, which must be compatible with the rigid velocity:

u = v + ω × r on S , (4.5)

in which v is the velocity and ω is the angular velocity of the solid object; r
is the displacement vector from the mass center of the solid object.

4.2.2 Solid motion

The translational and rotational motions of the solid is governed by the
Newton’s law of motion:

ms
dv

dt
= F C +msg + F f (4.6)

d(Isω)

dt
= T C + T f (4.7)
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In the translational equation, ms is solid mass, F C is contact force, and F f

is the force due to fluid action. For the rotational equation, Is is the moment
of inertia tensor calculated as

Is =

∫
V

ρs [(r · r)I− r ⊗ r] dV (4.8)

which is reduced to a single scalar

Is =
2

5
msR

2 (4.9)

for a single spherical particle. T C and T f are the torques of contact force
and fluid actions, respectively.

In this study, the fluid action F f = F d+F s comes from the contributions
of fluid stress or the hydrodynamic force on the solid surface

F d =

∫
S

(−pI+ τ) · nSdS , (4.10)

and the surface tension or the capillary force along the contact line

F s =

∫
L

γnLdL . (4.11)

Herein nS is the unit normal vector of the solid surface, and nL is a unit
vector tangential to the fluid interface and perpendicular to the contact line
indicating the orientation of pulling tension.

We would like to emphasize that, the current interaction model is also
open to other effects, such as the lubrication effect for concentrated suspen-
sion [52], van der Waals force for adhesive particles, and thermal fluctuation
or Brown motion in colloidal systems.

4.2.3 Interface description

The configuration of the gas and liquid phases are described by an indicator
function dφ coloring them differently, of which the advection equation gives
the temporal advancement of the interface motion:

∂φ

∂t
+ u · ∇φ = 0 (4.12)

In this study, a static contact angle boundary condition is applied to
contact lines to define the local shape of meniscus at the solid surface. With
a prescribed contact angle θC , this condition is written as

− n · nS = cos θC (4.13)

Again, recall that unit vector n is the interfacial normal pointing from the
gas to the liquid phase, and nS is the normal vector of the solid surface.
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4.3 IB modeling of fluid-particle system

In this section, the numerical modeling of a fluid-particle system based on
the IB method is discussed exclusively without any specific consideration for
the fluid interface. It is intended to derive a general, accurate form for the
fluid-particle interaction term within the IB framework.

4.3.1 Basic IB method

In the IB method, the fluid-particle motion is resolved in an integrated man-
ner in which the fluid phase is extended to the entire computational domain
including the solid region. For that purpose, the Navier-Stokes equation is
augmented as

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ 1

ρ
∇ · τ + g +

1

ρ
γκδn+ fIB , (4.14)

in which fIB is a special body force to enforce the rigid motion. The
solenoidal divergence-free condition

∇ · u = 0 (4.15)

now applies to the velocity field within the immersed solid region as well.
An additional phase function α indicating the solid volume fraction is intro-
duced to identify the solid domain. Its evolution is treated by a Lagrangian
advection following the particle movement:

dα

dt
= 0 . (4.16)

Those fluid equations are numerically solved by using a fractional-step
method. Firstly, a velocity predictor is calculated with Adams-Bashforth
scheme for the convective term and Crank-Nicolson scheme for the viscous
term:

u∗ − un

∆t
= −

(
3

2
∇ · (uu)n − 1

2
∇ · (uu)n−1

)
+

1

2ρ
(∇ · τ ∗ +∇ · τn)

(4.17)

Next the jump terms due to gravity and surface tension are incorporated
to give a provisional velocity field which does not satisfy the divergence-free
condition:

u∗∗ − u∗

∆t
= g +

1

ρ
γκδn . (4.18)
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The following pressure Poisson equation (PPE) scaled by density is hence
solved with proper boundary conditions to obtain the fluid pressure:

∇ ·
(
1

ρ
∇p
)

=
∇ · u∗∗

∆t
. (4.19)

For solid-liquid or solid-gas flows, the fluid density ρ remains constant and
thus the PPE above is separable and can be efficiently solved by an FFT-
based fast solver using the algorithm for boundary conditions treatment de-
scribed in [53]. For gas-solid-liquid flows with variable fluid density, the re-
sulting numerical system is solved by the multigrid preconditioned conjugate
gradient (MGPCG) method provided by the HYPRE library.

Based on the pressure gradient, the velocity corrector is applied so that
the divergence-free condition is satisfied:

u∗∗∗ − u∗∗

∆t
= −1

ρ
∇p . (4.20)

Finally the solid velocity is imposed for the pseudo-fluid in the immersed
domain, which is performed by a linear interpolation based on the solid
volume fraction function:

un+1 = (1− α)u∗∗∗ + αvn+1 . (4.21)

From this equation, the IB forcing term could be found by

fIB =
un+1 − u∗∗∗

∆t
=
α(uIB − u)

∆t
. (4.22)

In the original IB method by [11], fIB is explained a priori as the interphase
momentum transfer term, which directly leads to the following formulation
of fluid action on solid particles, i.e. the fluid force

F f = −
∫
V

ρfIBdV , (4.23)

and its torque

T f = −
∫
V

ρr × fIBdV . (4.24)

Those integrals are simply replaced by the midpoint quadrature rule at the
center of each numerical cell enclosed by the solid domain.
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4.3.2 Revised IB force for mobile particles

In this section, the derivation of the fluid-particle interaction term is revised
by considering its physical and mathematical definition owing to the integral
of fluid stress over the particle surface. It is hence pursued on the end to
derive a consistent equation for the fluid action.

Before that, the form of the singular surface tension is manipulated to
facilitate the discussion. In the continuum surface stress (CSS) [54] formula-
tion, it is shown that the surface tension can be recast into a tensorial form
as

f s = γκδn = −∇ · Π (4.25)

with the capillary pressure tensor Π defined by

Π = −γ(I− n⊗ n)δ . (4.26)

Therefore it is possible to combine the hydrodynamic and capillary actions
in a generalized “multiphase fluid stress”,

σ = −pI+ τ − Π . (4.27)

The fluid force is thus by definition given by the surface integral of the total
fluid stress σ on the solid surface. With the application of Gauss’s divergence
theorem, one obtains a volume integral instead:

F f =

∫
S

σ · ndS =

∫
V

∇ · σdV . (4.28)

In order to find this integral in an IB context, it is resorted to the pseudo-
fluid motion within the IB domain which writes

ρ
Du

Dt
= ∇ · σ + ρg + ρfIB . (4.29)

Integrate on both sides over the solid domain V and move terms, one can
easily derive that

F f =

∫
V

∇ · σdV

= −
∫
V

ρfIBdV −
∫
V

ρgdV +

∫
V

ρ
Du

Dt
dV .

(4.30)

From this form of F f , it is found that the total fluid force consists of three
parts of contributions. Similar results can also be obtained for the fluid
torque.
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• The first part is the original IB forcing with a minus sign, indicating
reaction to the solid phase.

• The second part is explicitly separated as hydrostatic buoyancy, which
tends to cancel solid’s gravity.

• The third part is a virtual force owing to the pseudo-fluid acceleration.

Now let us consider the motion of the immersed object, which is described
by

msv̇ = F f +msg . (4.31)

We insert the definition of F f into the momentum equation and obtain the
following one solved in the DEM-VOF-DNS method:

msv̇ = FIB + (ms −mf )g + Fvirt , (4.32)

with

FIB = −
∫
V

ρfIBdV (4.33)

mf =

∫
V

ρdV (4.34)

Fvirt =

∫
V

ρ
Du

Dt
dV . (4.35)

We note that, the new formulation of fluid-particle interaction term has the
following features in practical usage.

• It is consistent with the solution algorithm based on a fractional-step
method. Note that in a fractional-step method, variables such as pres-
sure and velocity generally come from different computational stages,
which makes it difficult and uneconomical to directly calculate the inte-
gral of fluid pressure and viscous forces. This problem is circumvented
in the present IB as only the fluid states at the end of a computational
step is required.

• The calculation of all terms composing the interaction force is relatively
straightforward; the virtual force term can also be easily computed by
the original IB quadrature rule.

• As shown in its derivation, not only the hydrodynamic force but also
the capillary force has been taken into account in the present model.
It is thus shown to be potentially inclusive of other physics as long as
they are continuous across the fluid-solid surface and can be integrated
as a part of the total fluid stress σ.
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We have also noticed that, the reduced-mass form of momentum equation
used in many IB literatures (see e.g. [6]) can be recovered if the virtual term
is moved to the left-hand side assuming that the rigid motion is perfectly
satisfied within the solid domain, i.e.

1

V

∫
V

udV = v . (4.36)

In that case, the momentum equation becomes

(ms −mf )
dv

dt
= FIB + (ms −mf )g , (4.37)

which is compatible with that adopted in [6]. However, the difference made
by the present formulation is that the

∫
ρDu

Dt
or the virtual force term actually

comes from the previous fluid calculation as a historical acceleration rather
than simultaneous effect at the current step. Moreover, it is known that the
reduced-mass form allow the fluid-solid density ratio only for ρs/ρ > 1.2 [6].
On the other hand, the present model will remain stable even for ms ≤ mf

so that light or neutrally buoyant particles could be simulated as well.
In comparison with the original IB [11, 12] method that uses a standard

form standing for the momentum exchange based on only the IB forcing

ms
dv

dt
= FIB +msg , (4.38)

the virtual force term in the current model can be viewed as an enhancement
for the transformation from the Eulerian fluid frame to the Lagrangian solid
frame. Based on our numerical tests, it can improve the performance for
time-dependent flows and naturally vanishes under steady flow cases.

In addition, it is noted that the current computational model suffices to
resolve the multiphase action on a single particle and several particles at far
and finite distances. However, the resolution may become insufficient for the
interstitial fluid action as particle pairing comes as close as below several fluid
grids. This also takes place when particles are in direct contact with each
other. Usually in such cases it is considered that DNS results degenerate for
those under-resolved regions and subgrid scale lubrication-like forces can be
added for compensation. In past literatures, either lubrication models [8] or
penalty forces [7] has ever been adopted for a pair of particles whose surface
distance is smaller than one fluid grid spacing. The deployment of such
subgrid scale models is accompanied by apparent arbitrariness as their role is
to keep solid particles separated rather than to exactly tackle the interaction
within narrow surface gap. Very recently, some advanced lubrication model
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attempts to perform scale separation between DNS-resolved part and subgrid
scale-modeled part of fluid actions on solid particles, see e.g. [52]. In this
study, the particle behavior at closed distance is out of our major concern
and thus the subgrid scale lubrication is not taken into account, although it
is straightforward to be incorporated. The contact and separation of solid
particles are directly handled by the soft sphere model of the DEM.

4.3.3 time-stepping algorithm

This section describes the overall work flow of the DEM-VOF-DNS method
to provide a understandable outline and close our discussion of IB modeling.
At the beginning of the n-th computation step, all fluid variables and particle
states including the fluid force are thought to be known. For the initialization
of the fluid force at the first step, we perform ∼ 5 iterations of the fluid
procedure without updating particle and interface states to obtain a quasi-
steady solution.

1. Solid phase

Calculate the particle collision force using the DEM and solve linear
and angular momentum equations. After updating the particle velocity,
the particle position is integrated by a mid-point rule as

xn+1 = xn +∆t
vn+1 + vn

2
. (4.39)

2. First sweep for coupling

The updated solid position is projected to the fluid mesh to generate the
solid volume fraction field. The updated solid velocity is also assigned
to the solid domain.

3. Fluid interface

Perform interface reconstruction and advection by using the VOFmethod.
In order to facilitate the interface calculation, a LS-based interface
representation is also built from the updated VOF function, see Sec-
tion 4.4.

4. Fluid phase

The fluid equations are solved by using the fractional-step methodology
described above.
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5. Second sweep for coupling

For the fluid phase, the IB forcing is applied on the immersed mesh
points to achieve desired solid motion. At the same time, we scan in
solid domain for each immersed particle and calculate the fluid force
based on the IB interaction model.

4.4 Simplified CLSVOF modeling of fluid in-

terface

This part presents another important development made in this study, specif-
ically the interface modeling and capillary action calculation based on a sim-
plified CLSVOF technique. It is convenient and accurate to represent the
fluid interface and contact line via the current approach; the capillary force
acting on solid particles can also be obtained with ease.

4.4.1 LS-based interface representation

In addition to the VOF function φ corresponding to the phase volume frac-
tion, a subsidiary interface representation based on LS field ψ is used in this
study. Different from φ which has a sharp jump across the interfacial region,
the LS field ψ is a smooth function indicating the shortest distance to the
interface position. Following conventions in LS literatures [19], it is provided
that the value of ψ is ψ < 0 in gas and ψ > 0 in liquid regions, and its
zero-contour coincides with the interface.

To avoid sudden change of fluid properties across the interface, a smoothed
Heaviside function is introduced to connect the gas and liquid regions, which
writes

Hs(ψ;χ) =


0 if ψ < −χ,
1 if ψ > χ,
1
2

(
1 + ψ

χ
+ 1

π
sin πψ

χ

)
otherwise,

(4.40)

in which χ is a cutoff distance whose typical value is equal to the spacing
of several numerical cells. The derivative of Hs with respect to ψ gives a
generalized δ-function localized in the interfacial area:

δs ≡ dHs

dψ
=

{
1
2χ

(
1 + cos πψ

χ

)
if |ψ| ≤ χ

0 otherwise.
(4.41)
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Fluid properties of density and viscosity are determined based on the smoothed
Heaviside function as

ρ = Hρl + (1−H)ρg (4.42)

µ = Hµl + (1−H)µg (4.43)

which commutes the VOF-based interpolation of fluid properties.

4.4.2 Construction of LS from VOF function

The present modeling is not a standalone application of the LS field ψ. It
is, in fact, coupled to the primary VOF-based interface representation. We
choose to construct ψ from the VOF function φ by using the following pro-
cedures.

After performing the interface reconstruction and advection using the
VOF scheme as usual, we initialize the LS field ψ assuming the interface is
the 0.5-contour of VOF function φ. Note that the VOF function φ ∈ [0, 1] is
mapped to a distance space ψ0 ∈ [−0.5∆x, 0.5∆x] scaling according to the
grid size,

ψ0 = (2φ− 1) · 0.5∆x . (4.44)

As a matter of course, this initial value ψ0 does not satisfy the regularity
condition as a well-defined LS field, i.e.

‖∇ψ0‖ 6= 1 . (4.45)

Therefore, the LS reinitialization procedure [19] is invoked to generate a
regularized distance function in the vicinity of the fluid interface. The reini-
tialization equation of ψ writes

∂ψ

∂τ
= sign(ψ0)(1− ‖∇ψ‖) , (4.46)

which can be reformulated as a hyperbolic partial differential equation and
treated by using upwind schemes. In this study, it is solved by using the
TVD-RK algorithm described in [43] iteratively until a steady state

‖∇ψ‖ = 1 in |ψ| ≤ χ (4.47)

has been reached. In this way, an equivalent representation of the interface
based on ψ has been constructed, whose zero-contour should be, in principle,
compatible with the original VOF interface. This hybrid interface modeling
is referred to as the simplified CLSVOF method in this study.
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Comparison with other approaches

The reinitialization procedure is an indispensable part of computations uti-
lizing the LS field. However, it is known that the position of the free surface is
not exactly preserved during the reinitialization operation and this can lead
to volume error in LS-based methods. On the other hand, in the current
simplified CLSVOF approach the interface is captured by the VOF method
that conserves the phasic volume well, from which the LS is constructed as an
auxiliary interface representation at each time step. Hence the error owing
to LS reinitialization is reset periodically and it does not accumulate during
the simulation.

Compared with Sussman’s original CLSVOF [44] method that involves
complicated procedures to locate the interface point with minimal distance,
the current simplified version is much easier to implement. In addition, the
VOF function is reversely coupled to the LS field in the original CLSVOF
method by truncating its value according to the local signed distance to the
interface, which may cause the problem of volume loss. On the other hand,
the simplified CLSVOF in the present study is a “one-way” coupling in the
sense that the VOF function is not affected by the LS side, so that the
advantage of volume conservation of the VOF method is not violated.

Furthermore, in comparison with other CLSVOF variants (see e.g. [23,
45]), the present model does not require explicitly locating of the VOF 0.5-
contour based on the PLIC VOF reconstruction or marching-cube algorithm.
Hence it is more efficient and naturally connected with a WLIC VOF scheme
or other type of interface-capturing methods.

4.4.3 Surface tension calculation

The calculation of surface tension force is based on the balanced continuous
surface force (CSF) approach [45,55,56] utilizing the LS interface modeling.
The surface tension force is given by

f s = γκδn . (4.48)

Notice that the generalized δ-function multiplied by the unit normal is an
approximation of the spatial derivative of a smoothed Heaviside function
across the interface, hence the following formulation

f s ≈ γκ∇Hs (4.49)

is used to calculate fs in the interfacial region defined by |ψ| ≤ χ. The key
element concerning the balance between the capillary and dynamic pressure
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in a “balanced” CSF approach is that, the same discretization scheme must
be used for the gradient terms of Hs and pressure in the projection operation.
On the MAC grid used in this study, they are both calculated by central
difference at staggered positions.

Thanks to the LS representation of the interface, it is very straightforward
to obtain the information required for the surface tension force. The unit
normal vector n is replaced by the normalized gradient of the LS field,

n =
∇ψ
‖∇ψ‖

. (4.50)

Consequently, the local mean curvature κ is given by

κ = −∇ · n . (4.51)

4.4.4 Contact angle boundary condition

The contact angle boundary condition of the gas-liquid interface on the solid
surface is written in terms of a static contact angle θC . This boundary
condition is enforced by using the extension approach proposed by [46]. It
has also been used by [45] to impose contact angle for droplet splashing on
a dry plane.

In the extension approach, the contact angle BC is treated implicitly
by extrapolating the LS function ψ along a selected direction into the solid
region. The extension equation is written in a convective form

∂ψ

∂τ
+ uextend · ∇ψ = 0 (4.52)

for cells in solid domain ψ ≤ 0 with the extension velocity uextend subject to
the expected capillary vector. The extension velocity is determined by

uextend =


ns−cot(π−θC)n2

‖ns−cot(π−θC)n2‖ if c < 0,
ns+cot(π−θC)n2

‖ns+cot(π−θC)n2‖ if c > 0,

ns if c = 0,

(4.53)

in which a set of orthogonal vectors n1, n2 and direction index c are defined
as

n1 = − n× ns

‖n× ns‖
, (4.54)

n2 = − n1 × ns

‖n1 × ns‖
, (4.55)
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and
c = n · n2 (4.56)

with ns the unit normal vector of the solid surface.
The extension operation is furnished by using the back-tracing semi-

Lagrangian scheme described in Chapter 2. After the extrapolation is com-
pleted, the VOF function in the solid domain is replaced by the smoothed
Heaviside function, that is,

φ = Hs(ψ) for ψ ≤ 0. (4.57)

The major advantage of the extension method is that the contact angle
boundary condition is satisfied automatically, which is independent of the
local position and configuration of the contact line.

4.4.5 Evaluation of capillary force

When combined with the IB model, the present simplified CLSVOF method
has the considerable merit of simply calculating the capillary force exerted
on the solid particle. Note that a continuous fluid interface is constructed
throughout the whole domain by the extension operation, and subsequently
so is the surface tension force. Hence the IB forcing introduced in Sec-
tion 4.3.2 is able to correctly evaluate the total fluid action as the integral of
the generalized multiphase fluid stress.

Since already included in the total fluid action, explicit calculation of the
capillary force is not necessary. If it is required to extract such information,
summing up the surface tension term over the solid domain will give the
capillary force estimated for the immersed object,

F s =
∑

αf s∆V . (4.58)

4.5 Test of numerical models

In this section, the numerical models proposed for the computation of hy-
drodynamic force, surface tension and capillary force are tested. We show
results of test problems including single particle settling, parasitic currents
and drop attachment to show the capability and improvement made by the
present modeling.
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Table 4.1: Simulation cases for single particle settling in an enclosure.
dp (m) ρp (kg/m

3) ρf (kg/m3) µf (Pa s) Re
Case 1

0.015 1120

970 0.373 1.5
Case 2 965 0.212 4.1
Case 3 962 0.113 11.6
Case 4 960 0.058 31.9

4.5.1 Sedimentation in enclosure

Single particle settling in an enclosure is simulated for the validation of the
fluid-particle interaction term.

In a container whose size is 0.1 m by 0.16 m by 0.1 m, a spherical particle
is initially suspended at a height of 0.12 m from its bottom to the floor.
The particle diameter is 0.015 m. Basically 80 × 120 × 80 cells are used to
discretize the computational domain, which results in a ratio of dp/∆x = 12.
Four different test cases with increasing fluid viscosity are simulated and
compared with the experimental backup in [57]. Physical properties in these
four cases are listed in Table 4.1, and the Reynolds number based on settling
velocity varies in a range from 1 up to 30.

Validation against experiment

When the simulation starts, the particle is released and settles under its
gravity, buoyancy and viscous friction from surrounding fluid. Figure 4.1
shows the snapshots particle position and flow velocity on the plane running
through the particle center at time t = 1.0 sec. The effect of fluid viscosity
is obvious: in Case 1 (Re = 1.5) the particle moves slowly and the flow
velocity behind and in front of the particle is almost symmetric, while in
Case 4 (Re = 31.9) the particle has advanced fast near the bottom with a
long trail behind it.

The temporal changes of the sedimentation velocity and height (normal-
ized by particle diameter) are plotted in Figure 4.2 together with the PIV
measurement by [57]. It is seen that in Case 1 and 2 the particle moves with a
steady sedimentation velocity for which the gravity and hydrodynamic force
are well balanced, but in Case 3 and 4 the particle has already get settled
to the bottom before such a terminal velocity could be reached. Such trend
owing to the increasing Re number is well recovered by the current simula-
tion and both the settling velocity and particle position compare very well
with the experimental data.

It is worthy to note that, minor discrepancy is found when the particle
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approaches the enclosure bottom. Similar problems have been reported by
other studies as well, see e.g. [9, 58]. In fact, in order to achieve closer
fit to the experimental resutls, some authors (e.g. the LBM study of [57])
suggested to use a calibrated hydrodynamic diameter for the particle and
add a lubrication force between the bottom. Such a calibration operation
usually relies on some known analytical or experimental database and thus
is inevitably problem-dependent. It is thus not considered in the present
study.

Space-time convergence study

A convergence study has been conducted to examine the current numerical
method. It is noted that both spatial and temporal steps are simultaneously
refined to check the space-time convergence with the CFL number kept com-
parable, see e.g. [14,59].

We will use the simulation conditions of Case 4 that has the highest Re
number. Computational resolutions are prepared for cell number of 50 ×
80 × 50, 60 × 96 × 60, 70 × 112 × 70, 90 × 144 × 90 and 100 × 160 × 100.
The result obtained on the finest grid of 120× 192× 120 is used as reference
solution. The particle sedimentation velocity, U , is selected and the error
with respect to the reference velocity U ref is calculated. Figure 4.3 plots the
sedimentation velocity against time with space-time refinements.

In order to estimate the convergent behavior, Figure 4.4 shows the er-
ror in particle velocity at t = 1.0 sec. Similar to the report of [59], the
convergence rate is better than first-order and very close to second-order,
which essentially owes to the second-order schemes used for spatial and tem-
poral discretization of fluid-particle system. We note that, this result is very
close to the optimistic estimate of the present method because that the IB
enforcing of rigid velocity is a first-order interpolation of local velocity.

Comparison with the basic IB results

We have also performed the simulation using the original IB method by
disabling the virtual force term to emphasize their difference. The computa-
tions are conducted under a sufficiently converged resolution of dp/∆x = 12
and ∆t = 0.4 ms, which should well resolve the transient particle motion
characterized by the particle relaxation time [60]

Tp =
2(ρs + 0.5ρf )d

2
p

µf
. (4.59)

For Case 1 (lowest Re), similar results have been obtained by using the
present and original IB formulations (results not shown here). For Case 4
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(a) Case 1 (Re = 1.5) (b) Case 2 (Re = 4.1)

(c) Case 3 (Re = 11.6) (d) Case 4 (Re = 31.9)

Figure 4.1: Snapshot of the settling particle and surrounding fluid velocity
at t = 1.0 sec.
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IB formulation.

(highest Re), deviations are seen as the particle undergoes acceleration, see
Figure 4.5. The present results clearly gives a better match to the experi-
mental data. Therefore the proposed treatment of solid-fluid interaction is
useful for unsteady particle-flow cases.

4.5.2 Parasitic current test

The parasitic current test is widely adopted to test the surface tension calcu-
lation in two-phase flow solvers. We will present results to check the simpli-
fied CLSVOF interface modeling and balanced CSF surface tension employed
in this study.

Consider a spherical drop placed in the center of the domain with zero
gravity. The fluid properties are set as ρ = 1.0 kg/m3, µ = 0.01 Pa s and
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γ = 1.0 N/m. The diameter of the drop is D = 1.0 m. The characteristic
Laplace-Ohnesorge number indicating the ratio between surface tension and
viscous force for this system is

La =
1

Oh2
=
γρD

µ2
= 10000 . (4.60)

Theoretically the flow velocity is zero everywhere, but in simulations par-
asitic currents can occur around the drop surface due to numerical error in
calculating the surface tension. Hence, the magnitude of the parasitic veloc-
ity is provided as a direct measurement of numerical errors.

In this study, the velocity errors are obtained for varied grid resolutions
at t = 0.1 sec by using the following error norms:

• The L∞ error
e∞ = max‖u‖ (4.61)

• L2 error

e2 =

√ ∑
u2

NxNyNz

(4.62)

• L1 error

e1 =

∑
‖u‖

NxNyNz

(4.63)

From their definitions, L∞ error corresponds to the maximum error, while
L1 and L2 errors give the averaged global error in different norm spaces. The
local slope in error convergence can also be calculated as an estimation of
convergence rate,

s = − log efine − log ecoarse

logN fine − logN coarse
, (4.64)

where N is proportional the reciprocal of mesh spacing ∆x.
Figure 4.6 (a) shows the measured numerical error in this convergence

study. The distribution of L∞ error is non-uniform and generally follows the
first-order slope because CSF-type surface tension models adopt first-order
modeling of the fluid interface. Its magnitude is also found to be larger than
L1 and L2 errors by orders, showing a localization of numerical error near
the interface. On the other hand, the convergence rate of L1 and L2 errors
is found between 1 and 2. For example, a power law-based fitting of the L2

error (dashed line in Figure 4.6 (a)) implies that the exponent for the order
is approximately 1.67, and the local slopes of L2 error (Figure 4.6 (b)) also
fall in that range. It is a reasonable result because errors are averaged out in
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a global sense for L1 and L2 norms, and thus the strongest ones are partially
compensated by the low velocity region far away from the interface. This
observation is very similar to the LS study by [61].

In this way, convergent results have been obtained for the surface tension
calculation by using the simplified CLSVOF method. In fact, it is reported
that VOF-based calculation does not converge with mesh refinement [62,63].
Hence, it is expected that the present model can substantially improve the
computation of surface tension in fluid phase and capillary force on solid
particles.

4.5.3 Drop attached to a particle

In this test, a liquid drop attached to a fixed particle with specified contact
angle is simulated. It serves as a test of the capillary force calculation newly
introduced in the current method.

The dimensions of the computational domain is 2 mm by 4 mm by 2
mm. A solid particle with diameter of 2 mm is fixed at the position of
(1.0, 1.5, 1.0)× 10−3. A spherical drop whose radius is 0.5 mm is centered at
(1.0, 2.823, 1.0)× 10−3. The fluid density is 1000 kg/m3, the viscosity is 0.02
Pa s, and the surface tension is 0.04 N/m. The contact angle on the particle
surface is set to 120 ◦. According to the geometrical configuration of the drop
and solid, the capillary force acting on the particle stemming from pulling
surface tension can be analytically calculated, see [64]. A typical snapshot
of this drop-particle systems is shown in Figure 4.7.

The relative error in the calculated capillary force is plotted as a function
of grid resolution in Figure 4.8. It is seen that the relative error decreases
below 5% when using a mesh spacing of dp/∆x > 30. The convergence rate
is at best first-order, as indicated by Figure 4.9, which is naturally consistent
with the accuracy of surface tension calculation.
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Figure 4.7: Drop placed on the particle surface.
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4.6 DNS of floating particles

Solid particles floating on free surface are widely observed in daily life and
powder processes, which is a typical gas-solid-liquid three-phase system where
the flow behavior is mainly dominated by the hydrodynamic and capillary
forces. In this section, the dynamics of floating particles are performed by
using the present DNS method. The computational results are first validated
thoroughly under various conditions and contact angles for a single floatation
system similar to that discussed in [38]. Next the problem is further extended
to the cases of dual and multiple particles among which capillary actions
arise causing a spontaneous clustering of particles. The present results show
that the DEM-VOF-DNS method can simulate a complex three-phase system
involving coupled interaction between particle and fluid interface with ease.

4.6.1 Equilibrium of a floating sphere

Under certain conditions, a solid particle can be “clipped” to the free surface,
even if its density is heavier than surrounding fluids. The dynamics and
equilibrium of such a problem are discussed in this section to justify the
proposed three-phase DNS model.

For such a sphere embedded between binary fluids, its steady state is
found by the balance of its gravity, buoyancy from surrounding fluid, and
capillary force stemming from the local contact line intersecting on its surface.
For the sake of simplicity, constant density and viscosity are assumed for
the two fluids separated by the interface. As the geometry illustrated in
Figure 4.10 (a), the balance of forces in vertical direction gives

F s = (ms −mf )g (4.65)

where the capillary force F s along the contact ring is

F s = γ · 2πR cos θ · cos
(π
2
− θ +

π

2
− θC

)
, (4.66)

in which θ subtends the angle between the horizontal orientation and the
contact ring. Therefore the balance equation yields a relationship between
the subtending angle θ and known physical conditions,

cos θ · cos(θ + θC) +
2

3
Bo = 0 , (4.67)

in which Bo is the modified Bond number based on density difference, particle
radius, gravity, and surface tension,

Bo =
(ρs − ρf )R

2g

γ
. (4.68)
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Note that the Bond number can be possibly negative for light particles.
If Eq. (4.67) is to be satisfied with a meaningful solution for θ, a necessary

condition is clearly that

|Bo| ≤ 3

2
. (4.69)

Since the dimensionless Bond number indicates the ratio between gravita-
tional and surface tension forces in the floating system, this condition is
straightforwardly explained as an upper limit for the buoyant weight of the
particle beyond which the balance owing to capillary force is broken down.

For a neutral 90 ◦ contact angle (see Figure 4.10 (b)), Eq. (4.67) further
simplifies to

θ =
1

2
arcsin

(
4

3
Bo

)
, (4.70)

for which it is required for the Bond number that

|Bo| ≤ 3

4
. (4.71)

Case of neutral contact angle

The simpler case with a neutral contact angle condition is first simulated. A
spherical particle is placed at the center of a cubic domain whose size is 4
mm. The particle diameter is D = 2 mm. Uniform meshes are used with
a spacing of ∆x = 1/16 mm, resulting in a size factor of D/∆x = 32. The
fluid density is 1000 kg/m3 and viscosity is 0.1 Pa s. Two types of solid
particles are chosen for density of 937.5 (light) or 1062.5 (heavy) kg/m3. A
constant gravitational body force equal to 10.0 m/s2 is applied in the vertical
direction. A fixed time step ∆t = 5×10−5 sec is used to advance the system.

The simulation simply starts with a quiescent state, where particle is
placed at the domain center with the interface filling up to half the domain
height. Then it is released and allowed to move freely and reach a steady
state, see Figure 4.11.

Figure 4.12 shows representative snapshots of particles with different den-
sities floating at the interface. For non-neutrally buoyant particles (either
lighter or heavier than the surrounding fluid), the interface deforms to coun-
teract the gravity effect so that they are captured thereby. From the simula-
tion results, the subtending angle θ is measured. Figure 4.13 plots the angle
θ obtained with varying Bond number together with the analytical correla-
tion (4.70). It is seen that simulation results agree well with our prediction.
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Figure 4.10: Schematic diagram of the floating particle with (a) general and
(b) neutral contact angle.
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Figure 4.11: Initial configuration of the floating particle and fluid interface.
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(a) Light particle, θ = −15 ◦

(b) Heavy particle, θ = 10 ◦

Figure 4.12: Embedded particle with neutral contact angle.
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Table 4.2: Computational results of the subtending angle θ.
Bo θC Analytical Calculated Abs. err. Rel. err

Case 1
0.417

120 ◦ −13.4 ◦ −14.3 ◦ 0.9 ◦ 6.72%
Case 2 135 ◦ −26.9 ◦ −28.2 ◦ 1.3 ◦ 4.83%

Case of general contact angle

Next simulations are performed for non-neutral contact angles. In that case,
the solution for angle θ in the nonlinear equation (4.67) must be found nu-
merically. By using the same computational setting-up and resolutions as
the preceding test, we choose the Bond number equal to Bo = 0.417 > 0
so that the solid particle tends to sink and the meniscus must bend con-
cavely to cancel its weight. Two test cases with hydrophobic contact angles
of θC = 120 ◦ and 135 ◦ are computed.

Figure 4.14 plots the variation of particle velocity against time. At the
initial state, particles gain a sudden acceleration owing to the hydrodynamic
effects induced by the sliding contact line. The maximum velocity is approx-
imately two times higher in Case 2 (θC = 135 ◦) than that observed in Case
1 (θC = 120 ◦). This motion decays very soon under the viscous damping
of surrounding fluids in both cases. The particle adjusts its vertical position
and finally comes to a state of rest. Figure 4.15 shows the terminal states of
floating particles with different contact angles. Generally speaking, the larger
the contact angle is, the stronger hydrophobic effect should be generated by
the interface. Hence it is confirmed in those snapshots that the particle is
pushed to a more migrated position above the interface in Case 2. The values
of subtending angle θ measured from simulation results are summarized in
Table 4.2. They grees well with the analytical prediction, from which the
absolute error is approximately 1 ◦.

Similarly, we have also performed simulations of particle flotation with hy-
drophilic wetting conditions, i.e. θC < 90 ◦. The dimensionless Bond number
is Bo = −0.417 and contact angles are set to θC = 45 ◦ and 60 ◦, respectively.
These conditions simulate solid particles lighter than surrounding fluids and
the interface shape at equilibrium state shall coincides with the reflection of
previous hydrophobic tests about the domain center. Figure 4.16 illustrates
the floating particles at steady states with two different contact angles. As
expected, the interface has deformed in a way to defeat the rising trend of
light particles. In particular, for the current computation with light particles,
the simulation very soon becomes unstable if the original IB formulation is
used. The proposed IB model benefits from the stabilization of the virtual
momentum term and thus is able to overcome this problem.
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(b) θC = 135 ◦

Figure 4.14: Temporal change of the particle velocity.
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(a) θC = 120 ◦

(b) θC = 135 ◦

Figure 4.15: Embedded particle with hydrophobic contact angle.



238

(a) θC = 60 ◦

(b) θC = 45 ◦

Figure 4.16: Embedded particle with hydrophilic contact angle.



239

4.6.2 Interaction between floating particle pair

In comparison with a single floating particle whose motion is limited in ver-
tical direction, the capillary interaction between a pair of solid particles can
further lead to lateral motions, which has been analyzed and studied numer-
ically in [34, 38]. This section presents results for dual particles floating on
free surface in order to demonstrate this special inter-particle effect.

The length, width and height of the computational domain are 8 mm by 4
mm by 4 mm. Two spherical particles with diameter D = 2.0 mm are placed
at (2.75, 2.0, 2.0) × 10−3 and (5.25, 2.0, 2.0) × 10−3, respectively. The initial
height of the free surface is 2.5 mm, immersing most part of the particles.
The liquid density is ρl = 1000 kg/m3 and the gas density is ρg = 10 kg/m3

which gives a density ratio of ρl/ρg = 1000. The values of their viscosity are
set to µl = 0.1 Pa s and µg = 0.001 Pa s. The surface tension between them
is γ = 0.01 N/m and a 90 ◦ contact angle is prescribed for the solid surface.
The solid density is ρs = 1050 kg/m3 in this test. Simulation is performed
with grid number of 100× 50× 50 and time step fixed to ∆t = 0.25× 10−4

sec.
Figure 4.17 illustrates the initial and final states of the pair of floating

particles. Compared with their initial separation, particles have come close
and get in touch with each other. Figure 4.18 plots their relative distance and
velocity against time to show the transient behavior. Similar to the single
particle case, the beginning stage brings a sudden change in particle velocity
and position as the local contact line is being adjusted to keep compatible
with the prescribed contact angle boundary condition. Unlike the single par-
ticle case, the existence of particle paring breaks the symmetry of meniscus
shape around them and causes the lateral motion driven by capillary effects.
These results are in qualitative agreement with the reports of [38].
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(a) Initial state

(b) Final state

Figure 4.17: A pair of particles floating on the fluid interface.
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Figure 4.18: Relative motion between two floating particles.
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Table 4.3: Computational conditions for the particles self-assembly.
Particle radius (mm) 1.2
Particle density (kg/m3) 1050
Liquid density (kg/m3) 1000
Liquid viscosity (Pa s) 0.1
Gas density (kg/m3) 10
Gas viscosity (Pa s) 0.001
Surface tension (N/m) 0.015
Contact angle 90 ◦

Grid size (mm) 15/64
Spring coefficient (N/m) 1000
Restitution coefficient 0.9
Friction coefficient 0.3

4.6.3 Self-assembly among multiple floating particles

Finally we have extended the discussion to the problem of multiple (∼ 102)
particles behavior on a fluid interface by showing their motion driven by cap-
illary interaction. For the initial configuration, 100 particles are placed in a
10 by 10 lattice with some random perturbation on the fluid interface. The
computational domain is periodic in horizontal directions. Other computa-
tional parameters are summarized in Table 4.3.

Figure 4.19 shows a series of snapshots of the particle configurations
during the simulation. The capillary attraction transpires among particles
caused by the deformation of the free surface. From the images, it is observed
that particles that are close to each other first gather in pairs (t = 2.0) and
then cluster in blocks (t = 4.0). Those clusters further attempt to establish
links through single arrays of particles (t = 6.0 and 8.0) and finally a stable
two-dimensional network structure is formed on the free surface during this
self-assembly process.

Effect of frictional force

It is remarkably noticed that in our previous results, the final structure con-
tains a large amount of tetragonal configurations of particles rather than the
most stable hexagonal ones. The reason is attributed to that a finite fric-
tional force was taken into account for the contact force between particles
via the friction coefficient µ = 0.3, see Table 4.3. When particles come close,
this fictional effect will prevent the relative sliding of contact surface and
lead to a lock of gathered structures. The effect of the friction coefficient
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Figure 4.19: Top-view snapshots of particle configuration.
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is thus investigated by setting its value to zero. Figure 4.20 displays the
particle structure obtained. It is confirmed that only the stable hexagonal
configuration will be visible in the final result if the friction is excluded.

The influence of friction on particle gathering behavior is also examined
by calculating the particle coordination number, C, which is defined as the
number of neighbors in direct contact with the central one. For the present
two-dimensional structure, C ∈ [0, 6]. The temporal change of mean coor-
dination number and its standard deviation are plotted in Figure 4.21 (a).
From this chart, the different systems with and without friction forces bifur-
cate after t > 4.0 sec, which is identified as the time instant when distinct
particle pairs begin to gather in larger clusters. The friction effect has effec-
tively prevented the formation of more inter-particle contacts. As a result,
in the histogram of coordination number by Figure 4.21 (b), the distribu-
tion without friction is shifted to the right side, showing a denser network in
the final structure. Especially a significant increase has been found for the
bulk coordination number C = 6 from the histogram. These results imply
that the surface roughness might be an important factor for the self-assembly
behavior of particles.
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Figure 4.20: Top-view snapshots of particle configuration (no friction).
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4.7 Connecting DNS and averaged models

As mentioned in the introductory remarks of this work, DEM-VOF type
methods and the current DNS method actually come from different hierar-
chies in multi-scale modeling of fluid-particle flows. The review paper by [65]
well addressed the relationship and difference between DNS and averaged
models. Macroscopic methods critically relies on various constitutive laws
and empirical closures for the description of unresolved terms, of which the
foremost is the drag law to calculate the hydrodynamic interaction between
fluid and particles. On the other hand, microscopic DNS methods are able
to play the role to provide such model equations or to put them to the test
under broad range of flow conditions unreachable in experiments.

We will focus on the a priori DNS study of drag correlations for their
importance in defining the interphase momentum exchange for Eulerian and
Eulerian-Lagrangian modeling of fluid-particle systems. In the past, dis-
coveries of drag laws have been attempted by using the Lattice Boltzmann
method (LBM) [66–68] and the IB method [69–71]. Unlike those previous
studies making efforts to derive novel correlations based on numerical ap-
proach, we are more interested in examining existing empirical equations
such as the Gidaspow model utilized in the DEM-VOF method in order to
justify their applications.

In this part, we will present numerical results of fixed bed simulations
of different particle packing states and flow conditions. First the (nearly)
creeping flow in a simple cubic (SC) array of fixed spheres is simulated and
the fluid force is validated against a semi-analytical solution. Next the hy-
pothetical flow driven by body force in a face-centered cubic (FCC) cell is
calculated and the fluid drag is compared with the equations of Ergun and
Wen-Yu with different parameters of the particle Reynolds number and void
fraction. In the last, a more realistic case in which the flow passing through
a random bed is simulated, which is a matter of common occurrence in flu-
idization systems. The pressure drop is directly compared with the Ergun’s
equation as well as that derived from the Wen-Yu drag correlation. In this
way, the connection between DNS and averaged models can be established
in the perspective of fluid-particle coupling.

4.7.1 Drag force in an SC solid bed

Following [24, 60, 72], the flow around a simple cubic (SC) array of fixed
spheres is simulated in the Stokes regime. The computational domain is a
unit SC cell with length L = 1.0 m and fully periodic boundary condition on
all six sides. The diameter of the sphere placed at the center of the domain
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Table 4.4: Convergence of non-dimensional drag force.
L/∆x (-) Um (m/s) F (-) Fana (-) Relative error
10 0.007901 28.84

19.16

55.74%
20 0.01062 22.21 15.90%
30 0.01146 20.58 7.380%
40 0.01192 19.77 3.191%
50 0.01214 19.42 1.366%

is d = 0.9 m, resulting in a solid volume fraction equal to εs = 0.3817. The
fluid filling up the gap between particle surfaces has density ρ = 1.0 kg/m3

and viscosity µ = 0.05 Pa s. A constant body force g = 0.1 N/kg is applied
along x-axis as an average pressure gradient. For this body force-driven flow,
the Reynolds number based on the diameter d and mean velocity Um (found
in the whole cell) is approximately Re ∼ 0.2, which is close to a creeping
flow. Simulations are performed on gradually refined grids of L/∆x = 10,
20, 30, 40 and 50 with a fixed time step ∆t = 0.2 ms. Figure 4.22 illustrates
the velocity contour and streamlines on vertical and diagonal slices of this
SC cell.

The convergence of results is examined by calculating the non-dimensional
drag force F exerted on the central sphere, which is defined as

F =
FD

3πµdUm
.

Note that the total drag force FD here includes both a periodic part and the
mean pressure gradient, see [73].

According to the Stokes solution by [73] and the curve fitting of [72], the
reference value of the dimensionless drag force is Fana = 19.16. Table 4.4
gives our results of mean velocity Um and the resulting dimensionless drag
F , whose values converge to Fana as the grid resolution increases. This space
convergence behavior is plotted in Figure 4.23 together with that of [72]
obtained by a continuous-forcing IB method [6]. Compared with their results,
the present results have a comparable rate of convergence close to second-
order of the best estimate based on the discretization schemes. Under low
resolutions, the current simulation generally yields smaller error, which might
owe to that the IB model of [11] is able to keep sharp fluid-solid surface with
less smearing than the others; when the grids are sufficiently fine, accuracy
of the result is satisfactory. Similar trend has been reported by [24] who has
adopted the same IB model.



249

Figure 4.22: Velocity contour and streamlines in the SC array of spheres.
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4.7.2 Drag force in an FCC solid bed

A unit cell with FCC arrangement of particles is displayed in Figure 4.24.
The size of the cell is L = 1, and totally N = 4 particles are contained. The
relationship between particle diameter and solid volume fraction is given as

εp =
2

3

πD3

L3
(4.72)

and here comes the void fraction

ε = 1− εp . (4.73)

The physical properties of the fluid filling up the void between solid particles
are ρ = 1.0 kg/m3 and µ = 0.05 Pa s.

Fully periodic boundary conditions are prescribed at all boundaries, and
a body force, g, is added in x-direction as a mean pressure gradient to drive
the flow motion. When the flow reaches steady state, the body force on the
fluid phase must be exactly balanced by the resistant force from the solid
particles, which gives the value of the drag force as

F d =
ερL3g

N
. (4.74)

At the same time, the mean velocity Um in the domain is estimated by

Um =
1

L3

∫
udV . (4.75)

Consequently, Reynolds number based on fluid density, viscosity, particle
diameter and mean flow velocity Um in the cell is obtained:

Re =
ρDUm
µ

. (4.76)

From this problem setting-up, we know that the value of fluid drag is exactly
prescribed in the simulation, while the flow condition indicated by Reynolds
number is indirectly controlled by the magnitude of external force. Hence
this approach is thought to be a force-based evaluation of drag correlations.

Recall that the expression of the fluid drag is generally written by

F d = β
Vp
εp

(u− v) . (4.77)

In the current FCC cell, this becomes

F d =
1

ε(1− ε)
βUmVp , (4.78)
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for which the relationship Um = εu between local and mean velocity is used.
The multiplier β is specifically defined by different drag laws. It is, in most
cases, a function of the void fraction ε and the particle Reynolds number.
Therefore in this test, values of void fraction ε = 0.9, 0.8, 0.7, 0.6 and 0.5
are tested for particle suspensions from dilute to dense regimes. The value
of body force g is varied simultaneously to achieve a range of Re numbers. A
uniform grid spacing ∆x = L/80 is used, except for the densest case ε = 0.5
where ∆x = L/100. The flow behavior is calculated with a fixed time step
∆t = 10−4 sec until the expected drag force is obtained for solid particles.

In our test, the simulation results are compared to the empirical equa-
tions of Ergun and Wen-Yu with the same void fraction and Re number. In
addition, another correlation frequently used in averaged models namely the
Hill-Koch-Ladd drag [66,67] is also considered for reference. The HKL drag
coefficient is given in a simplified form by

β =
18µε2(1− ε)

d2p
(F0 + 0.5F3Re) (4.79)

in which

F0 =


1+3

√
εp/2+

135
64
εp ln εp+16.14εp

1+0.681εp−8.48ε2p+8.14ε3p
if εp < 0.4,

10εp
ε2

if εp ≥ 0.4,
(4.80)

and

F3 = 0.0673 + 0.212εp +
0.0232

ε5
(4.81)

The resulting mean velocity obtained in each case with different void
fraction and driving force is summarized in Tables 4.5-4.9. Figure 4.25 depicts
the velocity contour on a middle slice parallel to the flow direction of the
FCC cell with void fraction ε = 0.8. The effect of the Reynolds number is
apparent: for lower Re = 0.16, the velocity profile around solid surface is
almost symmetric, while for higher Re = 76.3, the flow is stretched and wake
regions behind particle are found. As the void fraction increases, separation
of boundary layers can occur as shown by the streamline around ε = 0.9
solid phase in Figure 4.26, in which the vortex attached to the rear of the
particles is visible. On the other hand, lower void fraction leads to stronger
damping due to viscous friction and thus suppresses the flow separation.

The trend is more clearly demonstrated by flow simulations at Re ≈ 36
in Figure 4.27, for which the data is provided in Table 4.10. From the plot,
at low solid volume fraction (or high void fraction) the DNS results are close
to the Wen-Yu’s correlation. As the solid volume fraction approaches dense
packing, the agreement with Ergun’s equation is more remarkable.
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Figure 4.24: A face-centered cubic (FCC) configuration of particles.

This observation is reasonable according to the knowledge of those drag
laws and their validity domains. In fact, the Ergun’s equation is based on a
derivation of pressure drop through a close-packed random bed and the Wen-
Yu’s is obtained by fluidization experiments of solid particles. Later in the
Gidaspow model, they are combined for different flow regimes between which
a threshold based on void fraction is used to switch. Hence the application
of their hybrid model to general flow conditions seems to be sound and is
well supported by our DNS study.
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(a) Re = 0.16

(b) Re = 76.3

Figure 4.25: Flow velocity on central slice of FCC cell ε = 0.8.
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Figure 4.26: Velocity and streamline on central slice of ε = 0.9 andRe = 82.1.
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Table 4.5: Prescribed body force and resulting average velocity for ε = 0.9.
Body force (N/kg) Mean velocity (m/s) Re
0.5 0.191 1.39
5 1.66 12.0
10 2.99 21.7
20 5.34 38.8
50 11.3 82.1

Table 4.6: Prescribed body force and resulting average velocity for ε = 0.8.
Body force (N/kg) Mean velocity (m/s) Re
0.1 0.0181 0.165
0.5 0.0904 0.827
5 0.860 7.86
8 1.32 12.0
15 2.20 20.1
25 3.21 29.3
40 4.74 43.3
60 6.62 60.5
80 8.35 76.3

Table 4.7: Prescribed body force and resulting average velocity for ε = 0.7.
Body force (N/kg) Mean velocity (m/s) Re
0.5 0.0395 0.413
5 0.390 4.08
10 0.760 7.96
20 1.45 15.2
50 3.26 34.1
80 4.83 50.5
100 5.80 60.7
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Table 4.8: Prescribed body force and resulting average velocity for ε = 0.6.
Body force (N/kg) Mean velocity (m/s) Re
0.5 0.0213 0.246
5 0.191 2.20
10 0.378 4.36
20 0.736 8.48
50 1.72 19.9
100 3.21 37.0
150 4.55 52.4
200 5.78 66.5

Table 4.9: Prescribed body force and resulting average velocity for ε = 0.5.
Body force (N/kg) Mean velocity (m/s) Re
0.5 0.00910 0.113
5 0.0909 1.13
10 0.181 2.25
20 0.358 4.45
50 0.854 10.6
100 1.60 19.9
150 2.30 28.6
200 2.97 36.9

Table 4.10: Prescribed body force and resulting Reynolds number for Re ≈
36.

Void fraction Solid volume fraction Body force (N/kg) Re
0.9 0.1 20 38.8
0.8 0.2 32 36.6
0.7 0.3 50 34.1
0.6 0.4 100 37.0
0.5 0.5 200 36.9
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Figure 4.27: Comparison of FCC drag force obtained for Re ≈ 36.
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4.7.3 Pressure drop through a random solid bed

Different from the regular FCC arrangement, in this test we consider the fluid
drag on a random configuration of solid particles. From a perspective of fluid
mechanics, the pressure gradient driving the flow must be balanced by the
total drag force on the solid bed, and for many industrial problems including
fluidization processes, it is also an important issue to find the pressure drop
when flowing through the bed at a given superficial velocity. Such correlation
is best known as the one attributed to Ergun. Hence, we will directly compare
the pressure drop obtained in simulations with Ergun’s equation.

On the other hand, we would also like to consider the possibilities offered
by other drag correlations. For a pressure gradient-driven uni-directional flow
in the domain V containing a homogeneous bed composed of N particles, the
balance of force indicates that

−∆p

∆y
· V = −∆p

∆y
·
∑
N

Vp +
∑
N

F drag
p ,

in which the LHS is the total pressure drop, the first term on the RHS is
the pressure force on particles and the second term on the RHS is the total
drag force. By using the volumetric relation

∑
N Vp = (1− ε)V , it is easy to

derive that

−∆p

∆y
=

1

ε

∑
N F

drag
p

V
.

Recall that the general form of the fluid drag is given by

F drag
p =

Vp
ε(1− ε)

βU ,

for which the relationship U = ε(u−vp) is used. Inserting this definition into
the balance between pressure gradient and fluid drag, an equation relating
the drag law and total pressure drop is obtained as

−∆p

∆y
=
U

ε2
β .

If the drag law of Ergun is adopted, it directly recovers the well-known Er-
gun’s equation of pressure drop through a particle bed,(

−∆p

∆y

)
Ergun

= 150
(1− ε)2

ε3
µ

d2
U + 1.75

1− ε

ε3
ρ

d
U2 .

Similarly, a prediction of pressure drop based on the drag law of Wen-Yu is(
−∆p

∆y

)
WenYu

=
3

4
Cd

1− ε

ε2
ρ

d
ε−2.65U2 .
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The current computation is thus intended to provide quantitative comparison
between the predictions of pressure drop by the Ergun’s and the Wen-Yu’s
correlations, via the numerical calculation by DNS.

The computational domain is a rectangular channel whose width is 1
m and length is 3 m. In its axial range of [0.5, 2.5], N = 64 particles are
randomly generated to form a close-packed solid bed with three types of void
fraction ε = 0.55, 0.60 and 0.65. At the near end to the solid bed, a constant
inlet velocity U is prescribed and the fluid is allowed to exit the domain from
the opposite end with pressure p = 0. Periodic boundary condition is set on
other four sides. This problem setting is illustrated in Figure 4.28.

The fluid density is ρ = 1.0 kg/m3 and viscosity is µ = 0.01 Pa s. Notice
that the inflow velocity U is equal to the superficial velocity passing through
the bed at a steady state, so the particle Reynolds number characterizing the
current system is defined as

Re =
UD

µ/ρ
(4.82)

with D the particle diameter calculated from the solid volume fraction ε.
The range of Re is selected to vary from 0 to 100 by changing the super-
ficial velocity U . Their values for each simulation case are summarized in
Table 4.11.

In order to check the convergence of DNS results, simulations are per-
formed on uniform grids with mesh refinements of 64× 192× 64 cells (∆x =
1/64), 80×240×80 cells (∆x = 1/80) and 100×300×100 cells (∆x = 1/100).
Note that for finer meshes, only results with U > 2.0 m/s are shown, as
their difference with low-resolution results at smaller Reynolds number is
not significant. The time step ∆t is adjusted to achieve a Courant number
CFL ∼ 0.2.

The pictures in Figure 4.29 show the velocity and pressure on the mid-
plane of the channel at conditions of ε = 0.65 and U = 3.0 m/s for which
Re = 82.6. The detached flow behind some particles can be clearly identified.
As for the pressure profile, a gradual loss can be observed from the inflow to
the outflow boundaries.

In Figure 4.30, the pressure drop measured at the two ends of the chan-
nel is plotted for all cases with respect to the Reynolds number. Basically,
the pressure drop grows nonlinearly as the superficial velocity rises. Among
different packing ratios, the dense packing of ε = 0.55 causes the most signif-
icant drop in pressure. For the DNS results, those obtained with the finest
grid (∆x = 1/100) are considered to be sufficiently convergent. At lower void
fractions (ε = 0.65 and 0.60), the DNS results lie between those of Ergun’s
and Wen-Yu’s equations. At this stage, it seems that the predictions of total
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Table 4.11: Superficial velocity and corresponding Reynolds number in each
test case.
Superficial velocity (m/s) Case 1 (ε = 0.65) Case 2 (ε = 0.60) Case 3 (ε = 0.55)
0.1 2.75 2.88 2.99
0.5 13.8 14.4 15.0
1.0 27.5 28.8 29.9
1.5 41.3 43.2 44.9
2.0 55.1 57.6 59.9
2.5 68.9 72.0 74.9
3.0 82.6 86.4 89.8
3.5 96.4 100.8 104.8
4.0 110.2 115.2 119.8

pressure drop (or mean drag force) are within an uncertainty domain that
is transitional between the two empirical correlations compared. However,
due to the nonlinearity of the flow behavior, at high solid volume fraction
(ε = 0.55) the DNS results have been heading upwards to be in good agree-
ment with the correlation by Ergun. On the other hand, the prediction based
on the Wen-Yu drag model deviates from them with underestimation of the
pressure loss.

Through the comparison by Figure 4.30, it is elucidated for the validity
and applicability of different drag laws in the current dense random packing
system. The two empirical drag laws involved in Gidaspow’s model are likely
to be discriminated at a considerably dense fraction of solids (ε > 0.4 for the
current test). This seems to corroborate Gidaspow’s claim of connecting
them at some threshold void fraction ε0, although the exact choice of its
value is still arguable. Finally, it is also important to note that the present
comparative study is not qualitative but quantitative focusing on the overall
trend of fluid-particle interaction under specific conditions. For random beds,
many factors may more or less influence the prediction of pressure drop
effect, such as the different random packing of particles, size of computational
domain, and the negative pressure region formed at the exit from the solid
bed. Hence more detailed studies are to be investigated for this topic.
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Figure 4.28: Randomly packed solid bed to measure pressure drop (ε = 0.6).
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(a) Velocity

(b) Pressure

Figure 4.29: Flow passing through the random bed: ε = 0.65, U = 3.0 m/s.
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4.8 Conclusions

In this study, we described the DEM-VOF-DNS method for the direct nu-
merical simulation of gas-solid-liquid flows, in which the VOF two-phase flow
simulation and the DEM particle tracking is coupled by using the IB method.
The foremost of our interest of research is an accurate and efficient model-
ing of the interphase coupling term involving the major contributions from
flow-particle hydrodynamic force and particle-interface capillary actions in a
typical three-phase system.

To realize this objective, a revised model inclusive of general fluid actions
is proposed within the existing IB framework. Numerical test of particle
sedimentation shows that this model can correctly predict the solid behav-
ior and bring in considerable improvements for unsteady particle motions.
Another development in this study is made by using a simplified CLSVOF
technique for the modeling of the fluid interface and capillary action, together
with which an iterative extension method is employed to prescribe general
contact angle boundary conditions on particle surfaces. Through our test of
parasitic currents and drop attachment, this technique can largely facilitate
the interface representation and outperform a conventional VOF method in
the calculation of surface tension.

The present DNS method is applied to the three-dimensional simulation
of particles floating on an interface, which is a representative three-phase
phenomenon where the hydrodynamic and capillary actions dominate the
systematic behavior. It is first thoroughly investigated for the equilibrium
state of a single particle. In terms of the position of the contact ring on
the particle surface, satisfactory agreements have been obtained between the
simulation results and analytical solutions under various physical conditions
and capillary contact angles. After that the capillary attraction among mul-
tiple particles floatation is simulated by using the proposed method. The
pairing of two particles and the self-assembly gathering of 102 particles are
successfully computed. It is hence shown that the DEM-VOF-DNS method
is able to capture the complex motions of three-phase systems, and fully
resolve the fluid-particle interactions of hydrodynamic and capillary forces
with good accuracy and simplicity in comparison with existing methods.

In the final part, efforts have been made to establish some preliminary
connection between the DNS and averaged model of fluid-particle flows. DNS
studies of the interphase momentum transfer or the drag correlation are per-
formed to compare with the empirical equations employed in the volume-
averaging approach. The results are very encouraging: (a) for the (nearly)
creeping flow in the SC array of spheres, the calculated drag force accurately
reproduces the Stokes solution when fluid grids are gradually refined, (b) in
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an ordered, periodic FCC fluid cell, our DNS results of fluid drag is gener-
ally compatible with the Wen-Yu correlation, and (c) for the pressure drop
through a close-packed random bed the results agree well with the Ergun
equation. This validates the application of Gidaspow’s hybrid model com-
bining those two equations for their adaptation at different solid fractions
and flow regimes. Further investigations based on DNS will be conducted
to extract model equations of capillary and liquid bridge forces that can be
adopted in large-scale simulation of wet particle beds.
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Chapter 5

Conclusions

5.1 Summary of main work

In this thesis, a numerical framework has been presented to simulate three-
phase problems that are relevant in many natural and industrial flows such as
those in the wet ball milling and twin screw kneading processes, for which the
prime and central aim is the development of an accurate, robust and efficient
numerical solver able to predict the macroscopic behavior of gas-solid-liquid
flows interacting with complex geometries. The main contents and results of
this work are summarized as follows.

In Chapter 1 the key elements required to achieve our main purpose of
research are first analyzed and some fundamental numerical techniques suit-
able for solving reduced aspects in a typical gas-solid-liquid system have been
extensively reviewed and compared. Consequently, we made up the mind to
adopt an integrated strategy that couples the VOF method (description of
fluid interface and movement), the DEM (Lagrangian tracking of particles),
the IB method (modeling of general boundaries on regular grids) and the SDF
model (representation of arbitrary-shaped walls and rigid motions) as neces-
sary building-blocks in the present computational framework. Next for the
modeling of three-phase flows, revelations based on our literature survey of
current status have figured out three problems to be addressed for a practical
and self-contained numerical methodology: (a) the effective computation of
two-phase flows within complex geometries for real situations, (b) the appro-
priate modeling of gas-solid-liquid three-phase flows with complex geometries
and correct resolution of the macroscopic flow behaviors from an engineering
perspective and (c) the numerical functionality of direct simulation of gas-
solid-liquid problems serving for the validation and development of closure
correlations and subgrid models to supplement the preceding macroscopic
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modeling.
As a point of departure, Chapter 2 describes a numerical method namely

the VOF-IB method to perform three-dimensional simulations of two-phase
flows in general geometries. This method adopts a VOF approach to capture
and advance the fluid interface, and it integrates the fluid solver with the
IB modeling of arbitrary-shape walls and moving bodies. The shape and
movement of solid geometries are efficiently represented by an auxiliary SDF
field with local coordinate transformation. Various validation tests have been
conducted using the present method, and the computational results are in
good agreements with reference solutions and experimental data. Hence,
the adequacy and suitability of the present VOF-IB method are shown to
successfully simulate complicated two-phase flows interacting with general
geometries.

In Chapter 3, an Eulerian-Lagrangian numerical model, specifically the
DEM-VOF method, is presented for three-dimensional simulations of gas-
solid-liquid flows. The treatment of the fluid motion in general comes from
our previous attempts. The particle phase is tracked by the DEM as discrete
entities. The fluid-particle coupling is achieved by the volume-averaging tech-
nique wherein a well-established empirical closure is adopted for the descrip-
tion of hydrodynamic forces. In particular, the modeling of arbitrary-shaped
walls and moving boundaries that can influence both the fluid phase and the
particle phase are tackled by the introduction of SDF representation and IB
method, which is tailored to be an efficient approach unified for gas-solid-
liquid systems interacting with complex geometries. Special attentions when
computing fluid-particle interactions near those boundaries are raised and
their treatments are also discussed, with which the enhanced performance
and realistic flow behavior obtained are remarkable. Various model verifica-
tions and validation tests are performed in this study to show the validity and
capability of the DEM-VOF method. By comparing with analytical solutions
and experimental data, we generally find good agreements from the simula-
tion results in the macroscopic respects of free surface deformation, water
displacement, and the shape of solid beds, thereby highlighting its promising
potential in accurately modeling complicated gas-solid-liquid flows in engi-
neering problems. The DEM-VOF method is also successfully applied to the
simulation of a laboratory twin screw kneader system yielding satisfactory
predictions of the agitation of gas-solid-liquid mixture by the stirring pad-
dles. To the best of our knowledge, the proposed method is the first report
that successfully couples the DEM to a VOF solver with non-trivial wall
boundaries.

The work of Chapter 4 developed a DNS method for microscopic model-
ing of gas-solid-liquid flows. The discretization of the fluid-particle systems is
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accomplished by an improved IB method accounting for increased accuracy
in unsteady flows and generalized fluid actions. A simplified CLSVOF cal-
culation takes care of the particle-interface capillary interaction with general
static contact angles. This DNS method can fully resolve the gas-solid-liquid
interaction inclusive of both hydrodynamic and capillary forces and open to
other effects as well, without any empirical constitutive models. Numerical
tests are performed to show the validity of proposed models; in particular
the motions of floating particles on fluid interface are studied as a system
dominated by hydrodynamic and capillary interactions that can be solved by
using this DNS method with ease. In the last part of this chapter, the usage
of the DNS approach to evaluate the applicable domain of empirical drag cor-
relations adopted in the DEM-VOF method closes the current framework by
establishing a preliminary connection between microscopic and macroscopic
levels of numerical modeling.

In this way, the implementation of proposed numerical methods has shed
some light on the modeling of gas-liqluid and gas-solid-liquid flows in com-
plex geometries. Different new technologies for the simulations of indus-
trial multiphase flows have been developed, namely the VOF-IB method, the
DEM-VOF method and the DEM-VOF-DNS method. The author believes
that the present computational techniques have filled many gaps and would
be a versatile tool to deepen our knowledge of complex three-phase systems
encountered in scientific and industrial applications.

5.2 Future work

Further developments are to be investigated in two directions. For the ap-
plication of the DEM-VOF method to engineering problems, improvements
in computational efficiency and robustness are desirable. For example, the
adaptive mesh refinement (AMR) technique can be implemented to save sim-
ulation time and resource, the implicit calculation of the fluid-particle inter-
action force by iterative procedures will make the scheme more stable for
larger time steps, and the coarse grain model (CGM) [1] is effective for DEM
simulations with large amounts of solid particles. For some industrial prob-
lems, it is also important to treat heat transfer in a gas-solid-liquid system,
which may require the modeling of fluid-particle heat convection, interparti-
cle heat conduction and heat radiation.

On the other hand, it is expected in the DNS approach for its contribution
to the advancement of model developments of fluid-particle interactions. This
may involves the innovative correlations of drag force taking into account
the granular temperature (suggested by [2–4] but still not realized) and the
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additional capillary stress when the free surface penetrates into the solid
layer (see [5]). Those effective models could be important in some certain
situations. Our focus has been recently spotted on the DNS-based calculation
and modeling of the liquid bridge force among multiple particles. Figure 5.1
depicts our preliminary results in twin and triple particle systems with a
15 ◦ contact angle, where the arrows indicate the liquid bridge force (i.e. the
sum of the capillary force and pressure force) computed numerically, which
is however extremely difficult to be derived analytically.
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(a) Dual liquid bridge

(b) Triple liquid bridge

Figure 5.1: Formation of particle-particle liquid bridges.
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Appendix A

Momentum equation for a solid
particle in ambient flow

In this section, the momentum equation that governs the particle motion
as considered in the DEM-VOF method (Chapter 3) is explained. We note
that, the model formulation of the DEM-VOF method generally falls within
the class of methodology of Eulerian-Lagrangian volume-averaging approach,
which has already been well established in some past studies, see e.g. [1]. For
the sake of brevity, they will not be repeated here. Instead of that, we will
focus on some necessary physical considerations, in particular the role of the
viscous force, and show its consistency by examining particle behaviors in
several hypothetical flow conditions. The discussions in this section is grate-
fully attributed to our private communication with Prof. Takeo Kajishima
(The Osaka University) and Prof. Shu Takagi(The University of Tokyo).

The Navier-Stokes equation is written for a viscous fluid as follows:

Du

Dt
= −1

ρ
∇p+ 1

ρ
∇ · τ + g , (A.1)

in which p is pressure and τ is the viscous stress. Now we consider a small
solid particle moving in that fluid, for which the motion is described by

mp
dvp
dt

= −Vp∇p+ Vp∇ · τ + F f +mpg . (A.2)

On the RHS of this equation, the first two terms correspond to “far-field”
pressure gradient and viscous forces [2] under the assumption that the ambi-
ent flow field does not change suddenly around the particle position, and the
third term represents an effective fluid action based on the local flow condi-
tion. In the fluid-particle flow numerically studied in this work, the effective
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drag force F d makes the dominant contribution, which is usually written in
terms of the slipping velocity between phases,

F d = β(u− v) . (A.3)

The fluid-particle interaction is also inclusive of lift and added-mass forces
and it writes

F f = F d + F l + F am . (A.4)

In fact, by substitution of the NS equation to eliminate the ambient forces,
one can easily obtain that

mp
dvp
dt

= ρVp
Du

Dt
+ F d + F l + F am + (mp − ρVp)g , (A.5)

which is consistent and equivalent with the fluid force derived for inviscid
flow in [3] (see their Eq. (3.13)), except for the drag term owing to viscous
friction on solid surface. It is also important to note the difference between
the operators of d(•)

dt
and D(•)

Dt
, of which the former follows the particle frame

and the latter is in the fluid frame.

Remarks on difference model formulations A special topic on model-
ing fluid-particle flows concerns the choice of particle equations with different
formulations like Eq. (A.2) or Eq. (A.5). Theoretically both of them are, as
a matter of course, the same, whereas subtle difference may exist in a nu-
merical sense. Eq. (A.2) is clearly a pure relation of fluid actions (pressure
gradient and viscous stress) and it is related to the volume-averaged form
of fluid-particle momentum equations, indicating an explicit conservation of
momentum. On the other hand, Eq. (A.5) recasts the explicit force-based
interaction into an implicit form depending on the change of local fluid mo-
mentum (fluid density and acceleration).

Both model formulations have been historically adopted. A rather new
and thorough comparison has been made in [1]. Basically, Eq. (A.2) cor-
responds to their “Set I” or “II”, and the Eq. (A.5) corresponds to their
“Set III”. They have critically figured out that, since the action of fluid
stress is directly calculated, the model formulation of “Set I/II” (and equiva-
lently Eq. (A.2)) can better predict the particle behaviors under complicated
dynamic situations, especially for those cases with pressure fluctuations or
non-uniform pressure gradients, while “Set III” (or Eq. (A.5)) is usually prob-
lematic. This becomes an evidence for the present choice of model formula-
tion targeting better generality and performance for complicated multiphase
flows.
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In the sections that follow, several thought experiments are presented
to illustrate the problem of such an equation of motion applied to some
test particles in steady, hypothetical systems. Note that only the fluid drag
among the effective forces is considered hereinafter.

A.1 Sedimentation in infinite, quiescent fluid

In this case (Figure A.1 (a)), according to the assumption of the inert sur-
rounding fluid (i.e. u = 0), a simple relationship between hydrostatic pressure
and the buoyant force is yielded,

− Vp∇p = −ρVpg . (A.6)

Hence the momentum equation (A.2) becomes

mp
dvp
dt

= F d + (mp − ρVp)g . (A.7)

If a proper drag correlation is adopted for F d, e.g. the Stokes’ drag law,
then a terminal velocity for the particle sedimentation could be calculated
from the steady state of this equation. In this case, the viscous force does
not contribute to the particle motion.

A.2 Transportation in horizontal channel flow

Next the transportation of a neutrally buoyant particle in a horizontal chan-
nel is considered, see Figure A.1 (b), which should simply follow the flow at a
steady state. In this Poiseuille-like flow, the pressure gradient applied along
the channel is balanced by the viscous shear, giving that

−∇p+∇ · τ = 0 . (A.8)

Therefore for a particle at steady motion it is obtained that

F d = 0 , (A.9)

which implies that vp = u as our expectation. On the other hand, if the
viscous force is neglected, it happens that the pressure gradient force must
be balanced by the effective drag instead, which leads to a non-physical result
that vp > u.

In numerical simulations, it is also common to generate a periodic channel
by adding an external body force. The analysis of such body force-driven
flows is similar to our discussion above.
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A.3 Motion in vertical channel flow

This case is illustrated in Figure A.1 (c), for which the particle might be mov-
ing upwards, downwards, or keeping motionless in the frame of the channel
wall. In any case, the NS equation (A.1) for fluid motion at steady state
indicates that

−∇p+∇ · τ + ρg = 0 . (A.10)

Inserting this into the particle momentum equation (A.2), one arrives at a
simple expression,

mp
dvp
dt

= F d + (mp − ρVp)g , (A.11)

which is a familiar restatement of the balance between the fluid drag and
buoyant weight of an immersed object. Again, reasonable result cannot be
obtained if the viscous force is neglected.

A.4 Discussion and recap

As commented in Chapter 3, it is a common practice to drop the ambient vis-
cous force exerted on solid particles because of its negligible effect compared
to other forces in many engineering applications, e.g. fluidized bed [4,5] and
beads mill [6]. In this section, however, we discussed some cases where this
force cannot be ignored or incorrect particle behavior could be deduced. As
a matter of course, such steady, hypothetical cases are rather “rare” in real-
world problems, but they are still able to provide a critical examination of
the validity of our numerical modeling of fluid-particle systems.

In particular, we would like to discuss why the viscous term could be
reasonably neglected in many engineering problems. The reason is basically
twofold. Firstly, the fluid carriers often considered such as water and air are
generally low-viscosity ones. In many mesoscale and large-scale applications,
Reynolds number is thus sufficiently high so that the (ambient) viscous effect
never distinguishes so strongly as the others, e.g. the pressure gradient as
driving force.

What’s more, it merely has a lesser influence in comparison with the effec-
tive fluid drag F d, which is naturally a result of the scale separation between
ambient flow and flow around particles. As the characteristic scale of particle
size is typically one order smaller than that of the flow system, thus so is the
particle Reynolds number Rep compared with the flow Reynolds number Re.
In other words, the effective skin friction or drag force is more dominant than
the far-field viscous term in most cases. This can be elucidated by the verifi-
cation example of flow through fixed particle bed calculated in Section 3.4.2.
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Figure A.1: Schematic diagram of particle motion in different flow cases.

As mentioned, the pressure drop in this porous layer is approximately 2×104

Pa/m based on empirical equation. Based on our numerical test, deviation
from this value will be below 10% if one sets the boundaries to be non-slip
(viscous term is very small since the flow is uniform at average scale). The
viscous effect is even smaller if we only consider the pressure loss of a laminar
flow through the same channel, which is roughly 0.1 Pa/m. Therefore, for
many problems of interest, the role of the viscous term is not important. We
also note that, this may not be true for fluid-particle flows at microscales, for
instance, those found in microchannels, which requires a well-balanced state
between the driving pressure gradient and viscous force.
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