博士論文

Thermodynamics of Calcium Phosphate-based Solid Solution for Steelmaking

(鉄鋼精錬プロセスにおけるりん酸カルシウム系固溶体の熱力学)

鍾 明

Contents

Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Research background	2
1.2.1 Introduction of steelmaking and source of phosphorus in steel	2
1.2.2 Disadvantage of phosphorus for steel	4
1.2.3 Conventional methods of dephosphorization	6
1.2.4 Dephosphorization by multi-phase flux	9
1.3 Previous research	2
1.3.1 Reaction between solid CaO and liquid slag1	2
1.3.2 Reaction between solid 2CaO·SiO ₂ and liquid slag1	6
1.3.3 Phosphorus distribution ratio between liquid slag and metal and P2O5	
distribution ratio between solid solution and liquid slag2	1
1.3.4 Activity and activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5	
solid solution	5
1.3.5 Phase relationship of CaO-SiO ₂ -FeO-5mass%P ₂ O ₅ (-5mass%Al ₂ O ₃)	
system2	9
1.3.6 Formation free energies of solid solution between di-calcium silicate	
and tri-calcium phosphate	5
1.4 Research objective and significance	8
1.5 Outline of the thesis	9
References	0
Chapter 2 Experimental Method 4	2
2.1 Introduction	2
2.2 Experimental	2
2.3 Process of making tablet of the calcium phosphate-based solid solution	9
2.4 Methods of chemical analysis	3
2.4.1 Concentration of P in Fe and content of P_2O_5 in tablet	3
2.4.2 Content of SiO ₂ in tablet	7

2.4.3 Contents of CaO, MgO and FeO in tablet	58
2.5 Summary	60
References	. 61
Chapter 3 Thermodynamic Properties of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ Solid Solution	1 at
1823 and 1873K	. 62
3.1 Introduction	62
3.2 Experimental conditions	62
3.3 Experimental results	65
3.3.1 Chemical compositions of Fe and tablet	65
3.3.2 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution	78
3.3.3 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution after reaction	
	. 87
3.4 Discussion	99
3.4.1 Contents of FeO and MgO in the tablet after reaction	101
3.4.2 Activity coefficient of FeO in the tablet after reaction	102
3.4.3 Equilibrium concentration of P in molten iron	104
3.4.4 Phosphorus partition ratio between 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid	
solution and molten iron	105
3.4.5 Activity of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution	106
3.4.6 Activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution	
	107
3.5 Summary	108
References	109
Chapter 4 Thermodynamic Properties of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ Solid Solut	tion
Containing 8 and 24 mass% CaO at 1823 and 1873 K	110
4.1 Introduction	110
4.2 Experimental conditions	110
4.3 Experimental results	113
4.3.1 Chemical compositions of Fe and tablet	113
4.3.2 Slag compositions for the samples with the tablet turned into slag after	

reaction	123
4.3.3 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution containing	8
and 24 mass% CaO	126
4.3.4 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution containing	8
and 24 mass% CaO after reaction	132
4.4 Discussion	141
4.4.1 Contents of FeO and MgO in the tablet after reaction	143
4.4.2 Activity coefficient of FeO in the tablet after reaction	144
4.4.3 Equilibrium concentration of P in molten iron and phosphorus partition ratio between the mixture of 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution and CaO	
and molten iron.	
4.4.4 Activity and activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O	
solid solution containing 8 and 24 mass% CaO	148
4.4.5 Activity and activity coefficient of 3CaO·P2O5 in the 2CaO·SiO2	!-
3CaO·P2O5 solid solution saturated with CaO	150
4.4.6 Activity and activity coefficient of 2CaO·SiO ₂ and SiO ₂ in th	e
2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution saturated with CaO	152
4.5 Summary	155
References	156
Chapter 5 Thermodynamic Properties of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ Solid So	olution
Containing 8 and 24 mass% MgO at 1823 and 1873 K	157
5.1 Introduction	157
5.2 Experimental conditions	157
5.3 Experimental results	160
5.3.1 Chemical compositions of Fe and tablet	160
5.3.2 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution containing	8
and 24 mass% MgO	169
5.3.3 XRD pattern of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution containing	8
and 24 mass% MgO after reaction	174
5.4 Discussion	181
5.4.1 Contents of FeO and MgO and activity coefficient of FeO in the table	et
after reaction	

5.4.2 Equilibrium concentration of P in molten iron and phosphorus partition
ratio between the mixture of 2CaO·SiO2-3CaO·P2O5 solid solution and MgO
and molten iron
5.4.3 Activity and activity coefficient of P ₂ O ₅ in the 2CaO·SiO ₂ -3CaO·P ₂ O ₅
solid solution containing 8 and 24 mass% MgO
5.4.4 Activity of 3MgO·P ₂ O ₅ in the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution
saturated with MgO189
5.5 Summary
References191
Chapter 6 Summary of the Thermodynamic Properties of the Calcium Phosphate-based
Solid Solution and Prospect of Utilizing the Multi-phase Flux
6.1 Introduction
6.2 Content of FeO and activity coefficient of FeO in the tablet after reaction under
various conditions
6.3 Activity and activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid
solution under various conditions194
6.4 Effect of MgO on the activity of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid
solution196
6.5 Prospect of application of multi-phase flux
6.6 Summary
References
Chapter 7 Conclusions 208
Acknowledgement

Chapter 1 Introduction

1.1 Introduction

The iron and steel industry spends a large amount of natural resources and energy resources, and produces a large amount of greenhouse gas and dust. In current view, developing the technology not only for promoting the quality of product but also for achieving the eco-friendly manufacturing technique is instant.

Since impurities in steel decrease the usability, the impurities should be removed during the smelting process. Especially, phosphorus should be removed as much as possible for most of the steel products. For the current method of dephosphorization, it consumes much lime and the slag amount is huge. At the same time, due to CaO which remains unreacted or precipitates during solidification of dephosphorization slag, the slag is difficult to be reused. In consequence of the harm for environment and human, fluorite is strictly used although it can enhance the dissolution of CaO into slag. Under this condition, the concept of multi-phase flux for dephosphorization was considered.

In multi-phase flux, the solid solution between di-calcium silicate ($2CaO\cdot SiO_2$) and tricalcium phosphate ($3CaO\cdot P_2O_5$) is considered as the solid phase. In order to deeply understand and well apply the multi-phase flux for dephosphorization, not only the thermodynamics but also the kinetics about the calcium phosphate-based solid solution has been studied. Despite all that, the thermodynamic data about the calcium phosphate-based solid solution are still scarce. In current research, in order to offer the thermodynamic data not only for the scientific research but also for the industrial manufacture, the activity and activity coefficient of P_2O_5 in the calcium phosphate-based solid solution have been measured at 1823 and 1873 K which is considered as the steelmaking temperature. In addition, the other thermodynamic data about this system have been discussed.

1.2 Research background

1.2.1 Introduction of steelmaking and source of phosphorus in steel

There are three processes for steelmaking. The process of iron ore \rightarrow blast furnace \rightarrow basic oxygen furnace \rightarrow continuous casting is the main stream of steel production. The process of steel scrap \rightarrow refining \rightarrow continuous casting is getting popular recently. In addition, non-blast furnace ironmaking also has been adopted by a part of plants. **Figure 1.1** shows the steelmaking process which is the main stream process all over the world. The raw materials such as the iron ore, coke and lime are charged into a blast furnace, and iron ore is reduced into pig iron in the reducing atmosphere in a blast furnace. Then the pig iron is transferred by a torpedo car or ladle to basic oxygen furnace, and a part of impurities are removed by various methods. Finally the molten steel is cast, rolled and made products for different applications.

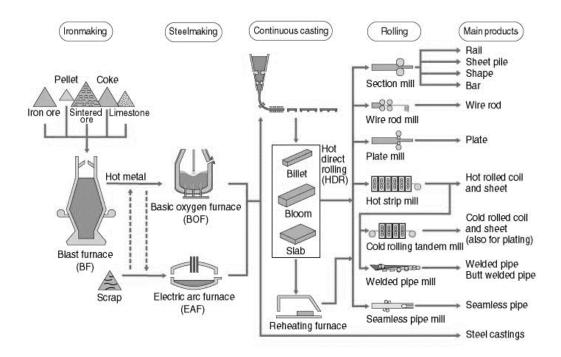


Fig. 1.1 Steelmaking process. Copy right by 1997-2002 KAWASAKI STEEL 21st Century Foundation and by 2003 JFE 21st Century Foundation.^[1]

The phosphorus in steel is mainly brought by iron ore. The P_2O_5 is reduced to phosphorus in blast furnace and the phosphorus dissolves in liquid iron as Eq. (1.1).

$$P_2O_5(s) + 5C(s) = 2\underline{P}(mass\%) + 5CO(g) \dots \dots (1.1)$$

In another words, the phosphorus cannot be removed at blast furnace and almost all the phosphorus dissolves in molten iron in which the concentration of phosphorus is about 0.1 mass%. During the molten iron is transferred from blast furnace to basic oxygen furnace by a torpedo car or ladle even in the basic oxygen furnace itself, the phosphorus is removed.

1.2.2 Disadvantage of phosphorus for steel

Usually, the phosphorus is considered as a harmful element in steel since it causes embrittlement for steel to decrease the plasticity and toughness of steel.^[2-6] From Fe-P phase diagram as shown in **Figure 1.2**, phosphorus has the biggest solubility in α -Fe at 1048 °C. With the decrease of the temperature the solubility decreases and then the redundant P segregates at the grain boundary of Fe as Fe₃P or Fe₂P, and the segregation cannot disappear by heat treatment due to the diffusion of P in Fe is slow.

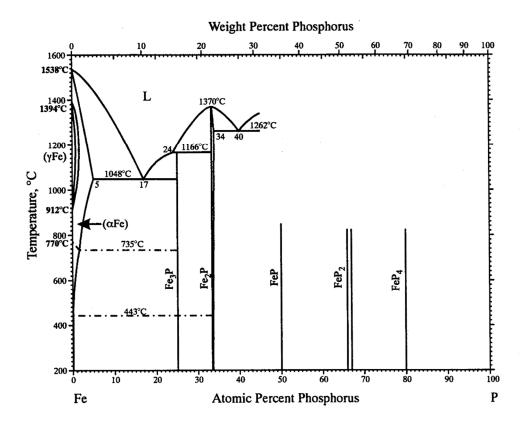


Fig. 1.2 Binary phase diagram for the Fe-P system.^[7]

Viswanathan confirmed the phosphorus segregation in austenite grain boundary which increased the fracture appearance transition temperature of steel by experiments.^[2] **Figure 1.3** shows the SEM image of auger specimens of Ni-Cr-C-0.02mass%P steel and Ni-Cr-C-0.0005mass%P steel. Comparing with the two samples, the typical intergranular fracture surface was clear in the Ni-Cr-C-0.02mass%P steel.

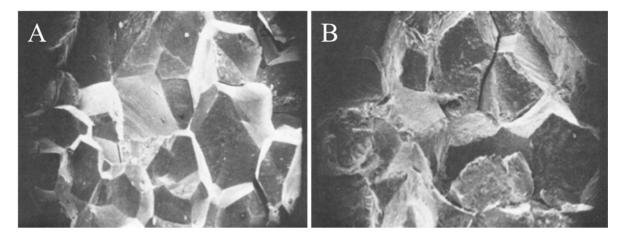


Fig. 1.3 SEM image of auger specimens. A: Ni-Cr-C-P-0.02mass%P steel. B: Ni-Cr-C-0.0005mass%P steel. The samples were treated to embrittle and fractured at -112.2 °C.^[2]

Viswanathan also studied the relationship between the phosphorous concentration at prior anstenite grain boundaries and the fracture appearance transition temperature as shown in **Figure 1.4**.^[2] It was obvious that the fracture appearance transition temperature increased with the increase of the phosphorous concentration at prior anstenite grain boundaries.

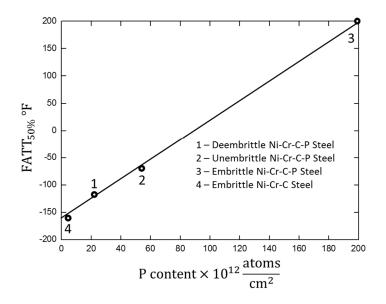


Fig. 1.4 Relationship between the phosphorous concentration at prior austenite grain boundaries and the fracture appearance transition temperature.^[2]

1.2.3 Conventional methods of dephosphorization

Momokawa *et al.*^[8] studied the relationship between the content of P in 41mass%CaO-59mass%Al₂O₅ slag and the oxygen partial pressure under a constant temperature and P₂ partial pressure as shown in **Figure 1.5**. From the results, the content of P in the 41mass%CaO-59mass%Al₂O₅ slag at 1550 °C at first decreased and then increased with the increase of oxygen partial pressure. For different oxygen partial pressures, the stable forms of P in slag were different. In the condition of Momokawa *et al.*'s experiments, when the oxygen partial pressure was smaller than 2.2×10^{-18} atm, the phosphide was predominant and when the oxygen partial pressure was larger than 2.2×10^{-18} atm, the phosphate was predominant.

In normal condition of steelmaking, the oxygen partial pressure is relatively high and the P in molten steel is removed by basic slag according to Reaction (1.2).

$$\underline{P}(\text{mass}\%) + \frac{5}{4} O_2(g) + \frac{3}{2} O^{2-} = (PO_4^{3-}) \dots \dots (1.2)$$

As this reaction is exothermic reaction, the referable conditions for dephosphorization are higher oxygen partial pressure, higher basicity and lower temperature.

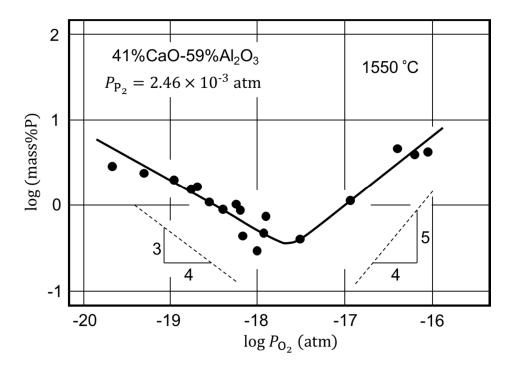


Fig. 1.5 Variation of P content in the 41mass%CaO-59mass%Al₂O₅ melt with various oxygen partial pressure of oxygen.^[8]

For dephosphorization by oxidation, the phosphorus capacity is defined as Eq. (1.3) by Wagner.^[9] The phosphorus partition ratio (L_P) is expressed as Eq. (1.4). These two parameters represent the ability of dephosphorization for slag. For achieving good effect of dephosphorization, the large phosphorus capacity and phosphorus partition ratio are expected in the process of dephosphorization. **Figure 1.6** shows the phosphate capacity for various systems.

$$C_{PO_4^{3-}} = \frac{(\text{mass}\% PO_4^{3-})}{P_{P_2}^{1/2} P_{O_2}^{5/4}} = \frac{K_{1.2} a_{O_2^{2-}}^{3/2}}{f_{PO_4^{3-}}} \dots \dots (1.3)$$
$$L_P = \frac{(\text{mass}\% P)}{[\text{mass}\% P]} \dots \dots (1.4)$$



Fig. 1.6 Phosphorus capacity for various systems.^[10]

For the traditional method of dephosphorization, CaO is commonly adopted as a cheap and efficient dephosphorization agent. In order to achieve better effect of dephosphorization, the excess CaO is added and then the BOF slag is difficult to be reused due to CaO remains unreacted or precipitates during solidification of dephosphorization slag. Meanwhile the consumption of lime and the amount of slag increase. Besides, the fluorite is strictly regulated used due to the harm for environment and human although it could enhance the dissolution of CaO into slag. In current steel industry, what the metallurgists are chasing is not only the top quality product but also how to achieve the eco-friendly technique. Under this condition, the use of multi-phase flux as a refining reagent was considered.

1.2.4 Dephosphorization by multi-phase flux

When the CaO tablet was dipped into the CaO-SiO₂-FeO-P₂O₅ slag, the existence of 2CaO·SiO₂-3CaO·P₂O₅ solid solution was confirmed by Suito *et al*.^[11] as shown in **Figure 1.7**. After dipping the CaO tablet into the CaO-SiO₂-FeO-P₂O₅ slag for 30 seconds, the layer of 2CaO·SiO₂-3CaO·P₂O₅ solid solution was found on the surface of the block CaO and after 5 minutes the layer of 2CaO·SiO₂-3CaO·P₂O₅ solid solution was found on the layer of 2CaO·SiO₂-3CaO·P₂O₅ solid solution was still there meanwhile the layer of CaO-Fe₁O was found between the block CaO and the layer of 2CaO·SiO₂-3CaO·P₂O₅ solid solution. Besides, it was also confirmed that the di-calcium silicate formed a pseudo-binary solid solution with tri-calcium phosphate over a wide range of compositions at the steelmaking temperature by Fix *et al*.^[12] as shown in **Figure 1.8**. These provided the possibility for utilizing the formed solid phase in the process of dephosphorization to decrease the consumption of CaO and the amount of slag.



Fig. 1.7 SEM image and schematic illustration of reaction between CaO particle and the CaO-SiO₂-Fe_tO-5mass%P₂O₅ system.^[11]

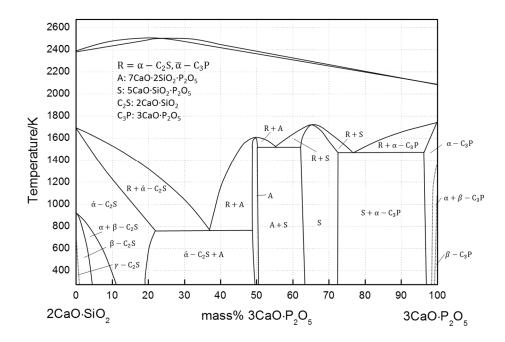


Fig. 1.8 Phase diagram for the 2CaO·SiO₂-3CaO·P₂O₅ pseudo-binary system.^[12]

Hasegawa *et al.*^[13] reported the advantage of multi-phase flux in the process of dephosphorization comparing with the conventional method as shown in **Figure 1.9**. In conventional method of dephosphorization, the activity of FeO decreases and the activity of P_2O_5 increases with the reaction due to the reduction of FeO and the generating P_2O_5 in slag. In order to obtain better effect of dephosphorization, the extra FeO and CaO are added into slag during reaction. In the process of dephosphorization by multi-phase flux, the activity of FeO and P_2O_5 could be maintained stable which means it is not necessary to add extra FeO and CaO during reaction. **Figure 1.10** shows the theoretical consumption of CaO for producing one ton steel comparing with the current value without fluoride, if all the phosphorus could be concentrated into $3CaO \cdot P_2O_5$, $4CaO \cdot P_2O_5$, $5CaO \cdot SiO_2 \cdot P_2O_5$ or $7CaO \cdot 2SiO_2 \cdot P_2O_5$ when the phosphorus concentration decreased from 0.1 mass% to 0.01 mass%. From this estimation, the use of multi-phase flux is considered to be effective for dephosphorization of steel.

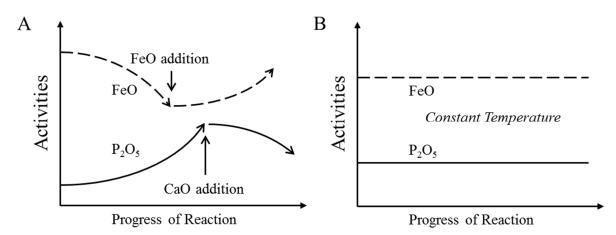


Fig. 1.9 Schematic illustration showing the variations of the activities of FeO and P₂O₅ within slag phase during the removal of phosphorous from molten iron.^[13] A: With homogeneous liquid slags. B: with heterogeneous slags of unit freedom degree.

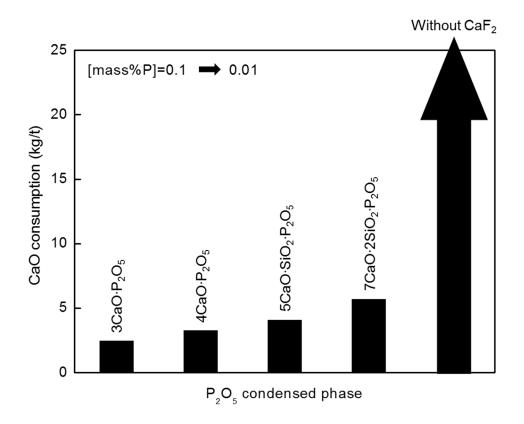


Fig. 1.10 Consumption of CaO for different P₂O₅ condensed phase in the process of dephosphorization. After K. Ito, Waseda University.^[14]

1.3 Previous research

1.3.1 Reaction between solid CaO and liquid slag

Suito *et al.*^[11] confirmed the existence of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution as shown in Figure 1.7. The similar phenomenon was observed by Kami *et al.*^[15] and Hamano *et al.*^[16] as shown in **Figures 1.11** and **1.12**.

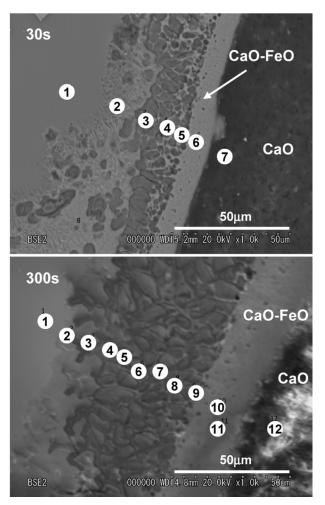


Fig. 1.11 SEM images of the interface between solid CaO and the CaO-SiO₂-FeO-P₂O₅

slag.^[15]

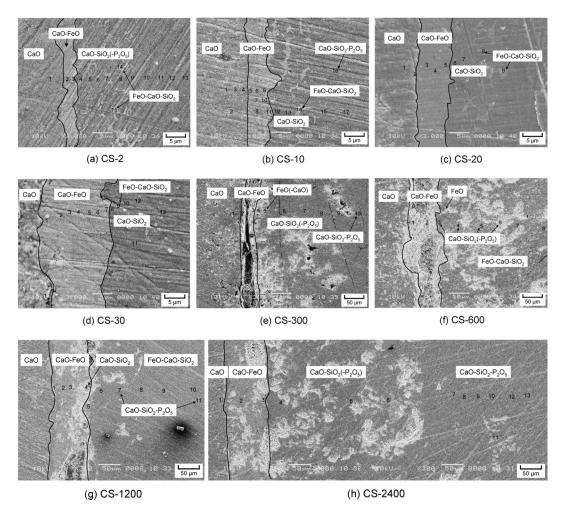


Fig. 1.12 SEM images of the interface between solid CaO and the FeO_x-CaO-SiO₂-P₂O₅ slag.^[16]

The relationship between the thickness of CaO-FeO layer and the reaction time has been studied by Kami *et al.* and Hamano *et al.*, respectively. The thickness of CaO-FeO layer increased with the squire root of reaction time with an approximate liner relationship reported by Kami *et al.* as shown in **Figure 1.13**. Similarly, Hamano *et al.* reported that the thickness of CaO-FeO layer increased with the squire root of reaction time at 1573 K as shown in **Figure 1.14**.

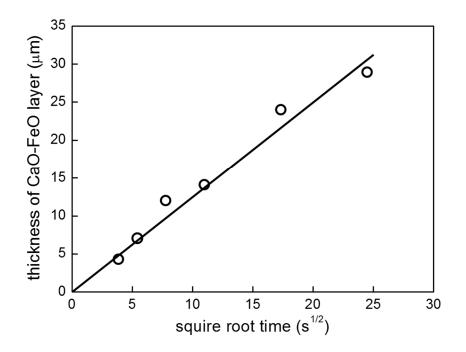


Fig. 1.13 Relationship between the thickness of CaO-FeO layer and the reaction time at 1673 K reported by Kami *et al.*^[15]

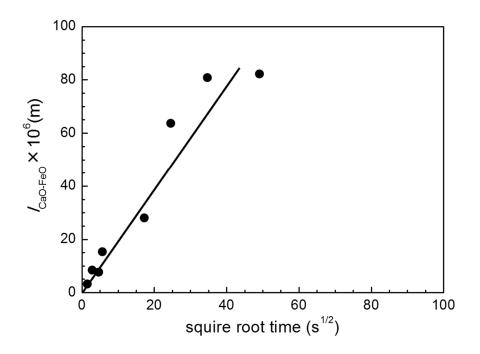


Fig. 1.14 Relationship between the thickness of CaO-FeO layer and the reaction time at 1573 K reported by Hamano *et al.*^[16]

In addition, Hamano *et al.* summarized the reaction mechanism between solid CaO and the FeO_x -CaO-SiO₂-P₂O₅ slag at 1573 K as shown in **Figure 1.15**. As the solid CaO contacted with the FeO_x -CaO-SiO₂-P₂O₅ slag, the CaO dissolved into slag because the initial composition of slag was unsaturated with CaO. With the dissolution of CaO, at the interface between CaO and slag the concentration of CaO increased which caused the increase of the CaO activity. Due to the increase of CaO activity, the 2CaO·SiO₂ formed and the concentration of FeO increased. Then the Fe²⁺ began to diffuse to both sides. The CaO-FeO layer formed at the CaO boundary. With reaction, the CaO continuously diffused into slag through the CaO-FeO layer, and meanwhile the thickness of CaO-FeO layer increased.

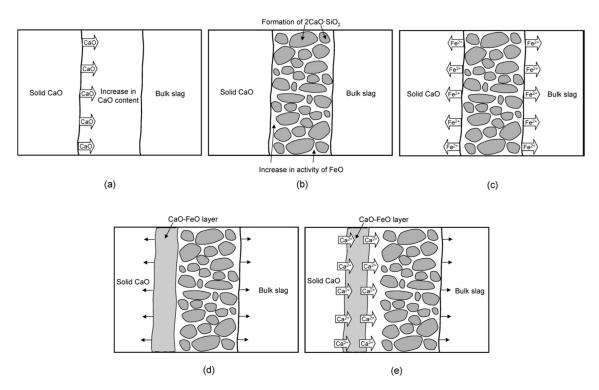


Fig. 1.15 Schematic of reaction mechanism between solid CaO and the FeOx-CaO-SiO2-P2O5

slag.^[16]

1.3.2 Reaction between solid 2CaO·SiO₂ and liquid slag

Yang *et al.*^[17-20] studied the reaction mechanism between solid $2\text{CaO}\cdot\text{SiO}_2$ and the homogeneous CaO-SiO₂-FeO_x-P₂O₅ slag or the heterogeneous CaO-SiO₂-FeO_x-P₂O₅ slag. After dipping the $2\text{CaO}\cdot\text{SiO}_2$ tablet into the CaO-SiO₂-FeO_x-P₂O₅ slag, the multi-phase area was found between solid $2\text{CaO}\cdot\text{SiO}_2$ and CaO-SiO₂-FeO_x-P₂O₅ slag as shown in **Figure 1.16**.

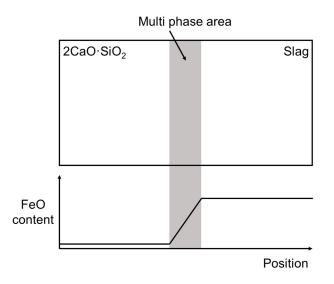


Fig. 1.16 Partition of the area near the interface between solid 2CaO·SiO₂ and the CaO-SiO₂-

FeO_x-P₂O₅ slag.^[17]

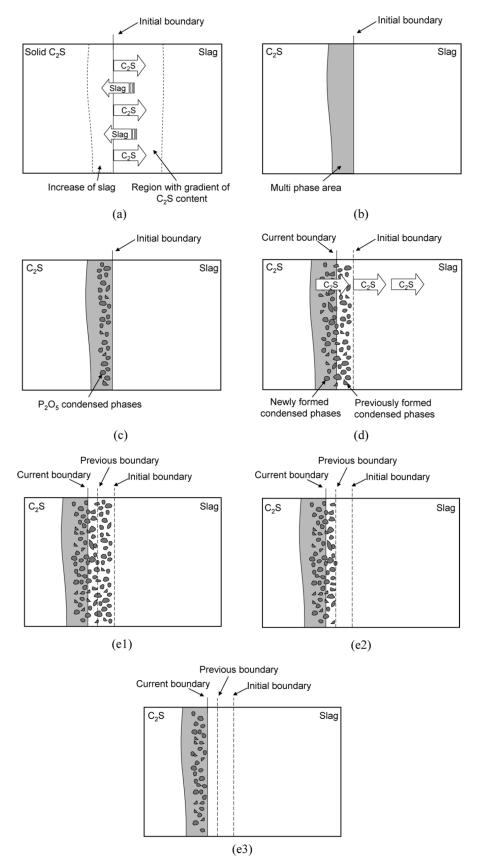


Fig. 1.17 Phosphorous behavior at interface between $2CaO \cdot SiO_2$ and the CaO-SiO₂-FeO_x-

P2O5 slag. "C2S" is short for 2CaO·SiO2.^[17]

Yang *et al.* summarized the reaction mechanism between solid $2CaO \cdot SiO_2$ and the homogeneous $CaO - SiO_2 - FeO_x - P_2O_5$ slag as shown in **Figure 1.17**. At first the solid $2CaO \cdot SiO_2$ dissolved into slag and at the same time the slag penetrated into solid $2CaO \cdot SiO_2$. Then at the interface between solid $2CaO \cdot SiO_2$ and the homogeneous $CaO - SiO_2 - FeO_x - P_2O_5$ slag, the multiphase area of the solid $2CaO \cdot SiO_2$ in liquid slag formed. And the concentration gradient of solid $2CaO \cdot SiO_2$ near the interface formed. In the multi-phase area the CaO and P_2O_5 reacted with $2CaO \cdot SiO_2$ to form P_2O_5 condensed phase. At this time, the multi-phase area was the mixture of P_2O_5 condensed phase and liquid slag phase. With proceeding the reaction, the solid $2CaO \cdot SiO_2$ continuously dissolved into slag and the multi-phase area shifted to the side of solid $2CaO \cdot SiO_2$ to form the new P_2O_5 condensed phase.

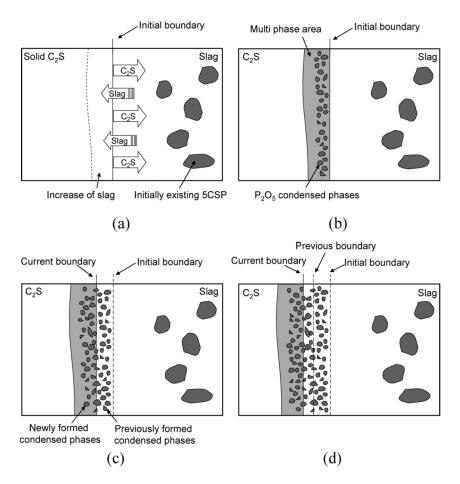


Fig. 1.18 Reaction behavior of phosphorus at the interface between 2CaO·SiO₂ and the heterogeneous CaO-SiO₂-FeO_x-P₂O₅ slag. "C₂S" and "5CSP" are short for 2CaO·SiO₂ and 5CaO·SiO₂·P₂O₅, respectively.^[18]

Figure 1.18 shows the reaction mechanism between solid $2CaO \cdot SiO_2$ and the heterogeneous $CaO \cdot SiO_2 \cdot FeO_x \cdot P_2O_5$ slag which was initially saturated with $5CaO \cdot SiO_2 \cdot P_2O_5$. At the beginning the solid $2CaO \cdot SiO_2$ dissolved into slag and the slag penetrated into solid $2CaO \cdot SiO_2$. Then the multi-phase area formed and the P_2O_5 condensed phase formed in the multi-phase area. As the initial slag was saturated with $5CaO \cdot SiO_2 \cdot P_2O_5$, the previously formed P_2O_5 condensed phase was remained and the multi-phase area shifted to the side of solid $2CaO \cdot SiO_2$ to form the new P_2O_5 condensed phase.

Kitamura *et al.*^[21] studied the mass transfer of P_2O_5 between liquid slag and $2CaO \cdot SiO_2$ -3CaO·P₂O₅ solid solution. The preheated 2CaO·SiO₂ rod was immersed into different compositions of slags with different reaction periods. Then the rod was quenched and the interface between the rod and slag was observed by electron probe micro-analyzer (EPMA).

In the first case, when P₂O₅ was transferred from slag to 2CaO·SiO₂-3CaO·P₂O₅ solid solution, a certain amount of CaO was consumed to form 2CaO·SiO₂-3CaO·P₂O₅ solid solution. The content of CaO in slag decreased and the content of SiO₂ increased then the liquidus composition changed to a larger CaO/SiO₂ ratio according to Shimauchi *et al.*'s research^[22] as shown in **Figure 1.19 A**. In this case, the 2CaO·SiO₂-3CaO·P₂O₅ solid solution dissolved in slag near the interface and the reaction layer formed between 2CaO·SiO₂-3CaO·P₂O₅ solid solution and slag as shown in **Figure 1.20 A**. On the contrary, when P₂O₅ is transferred from 2CaO·SiO₂-3CaO·P₂O₅ solid solution was larger than that in slag. The content of CaO in slag increased and the content of SiO₂ decreased then the liquidus composition changed to a smaller CaO/SiO₂ ratio as shown in **Figure 1.19 B**. In this case, no dissolved part was observed at the side of 2CaO·SiO₂-3CaO·P₂O₅ solid solution as shown in **Figure 1.20 B**.

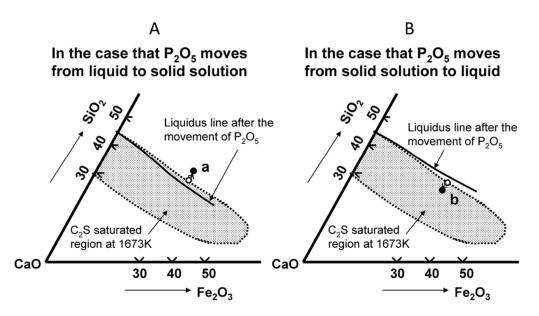


Fig. 1.19 Schematic change in liquid composition and liquidus line position after transfer of P2O5 between 2CaO·SiO2-3CaO·P2O5 solid solution and slag.^[21]

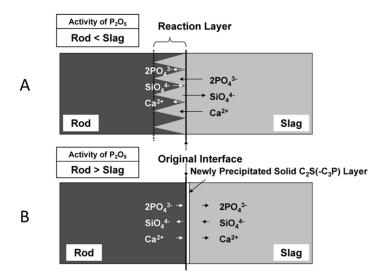


Fig. 1.20 Schematic of the phenomena at the interface between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid

solution and slag.^[21]

1.3.3 Phosphorus distribution ratio between liquid slag and metal and P₂O₅ distribution ratio between solid solution and liquid slag

Not only the phosphorus distribution ratio between the homogeneous slag and molten iron but also the phosphorus distribution ratio between the heterogeneous slag and molten iron has been studied by Suito *et al.*^[11] About 20 g of Fe-0.5mass%P alloy was dephosphorized at 1833 K for 30 minutes in an MgO crucible by the heterogeneous slag. The compositions were projected on the CaO-SiO₂-Fe_tO system as shown in **Figure 1.21** with the values of phosphorus distribution ratio.

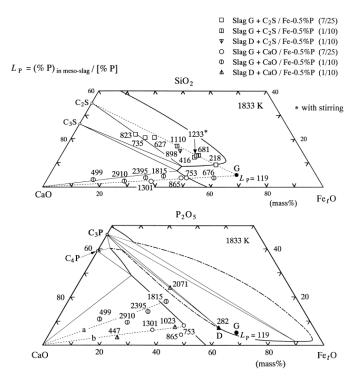


Fig. 1.21 Phosphorus distribution ratio between various heterogeneous slag and molten iron.^[11]

Inoue *et al.*^[23] measured the phosphorous distribution ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and slag. The phosphorous distribution ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and slag was shown in **Figure 1.22** with the phosphorous distribution ratio between the slag and molten iron expressed by Eq. (1.5).

$$logL'_{P} = 0.072\{(mass\%CaO) + 0.3(mass\%MgO)\} + 2.5 log(mass\%T.Fe) + 11570/7 - 10.52 \dots \dots (1.5)^{[24]}$$

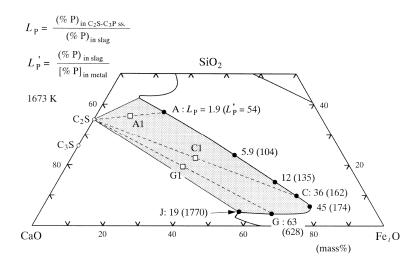


Fig 1.22 Phosphorous distribution ratio between $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution and slag.^[23]

Shimauchi *et al.*^[22] applied the chemical equilibration method to study the P₂O₅ distribution ratio between solid solution and liquid slag. The slag was melted at 1873 K completely, then cooling down slowly to 1673 K to achieve the equilibrium between solid solution and liquid slag. **Figure 1.23 A** shows the observed slag compositions in the CaO-SiO₂-Fe₂O₃ system. **Figure 1.23 B** shows the observed compositions of $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution. **Figure 1.23 C** shows the relationship between the P₂O₅ distribution ratio between $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution and slag and the T.Fe content. The linear relationship was observed and it was independent of the lime/silica ratio and P₂O₅ content. **Figure 1.23 D** indicated no clear influence of the 10mass% MgO or MnO addition on the P₂O₅ distribution ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and slag.

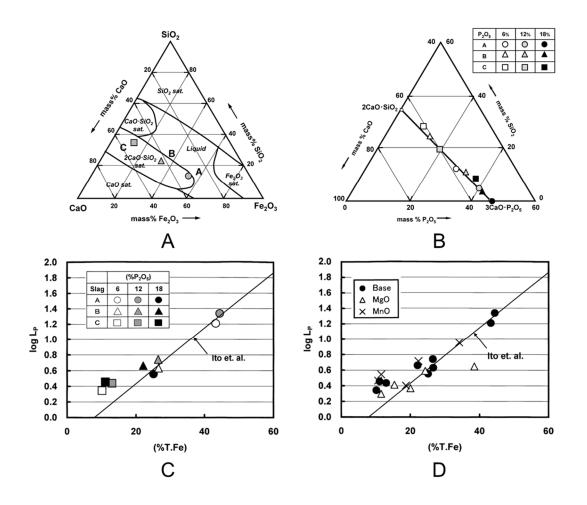


Fig. 1.23 A: Observed slag compositions in the CaO-SiO₂-Fe₂O₃ system. B: Composition of solid solution for each slag with various P₂O₅ contents in CaO-SiO₂-P₂O₅ system.
C: Relationship of P₂O₅ distribution ratio between solid solution and liquid slag with the T.Fe content. D: Influence of MgO and MnO addition on the P₂O₅ distribution ratio between solid

solution and liquid slag. In C and D the solid line was reported by Ito et. al.^[25]

Pahlevani *et al.*^[26] investigated the P₂O₅ distribution ratio between solid solution and liquid slag as shown in **Figure 1.24**. Figure 1.24 A shows the relationship between the P₂O₅ distribution ratio between solid solution and the CaO-SiO₂-P₂O₅-Fe₂O₃ slag and the T.Fe content. The P₂O₅ distribution ratio increased with the increase of the T.Fe content in slag, and in a low T.Fe content, the addition of Al₂O₃ increased P₂O₅ distribution ratio comparing with the effect of adding MgO or MnO measured by Shimauchi *et al.* as shown in Figure 1.24 B. In the case of adding MgO or MnO, the P₂O₅ distribution ratio decreased with the increase of CaO content in slag, but with the addition of Al₂O₃, the P₂O₅ distribution ratio barely changed.

Figures 1.24 C and D showed the influence of different slags on the P₂O₅ distribution ratio. The P₂O₅ distribution ratio in the CaO-SiO₂-P₂O₅-Fe₂O₃ slag was larger than that in the CaO-SiO₂-P₂O₅-FeO slag at different T.Fe contents in liquid phase as shown in Figure 1.24 C, and this tendency was more clear at different CaO contents in liquid phase as shown in Figure 1.24 D. Figure 1.24 E shows the effect of various added oxides on the P₂O₅ distribution ratio in the CaO-SiO₂-P₂O₅-FeO slag. It was found that the effect of adding MgO, MnO or Al₂O₃ on the P₂O₅ distribution ratio in the CaO-SiO₂-P₂O₅-FeO slag was smaller than that in the CaO-SiO₂-P₂O₅-Fe₂O₃ slag.

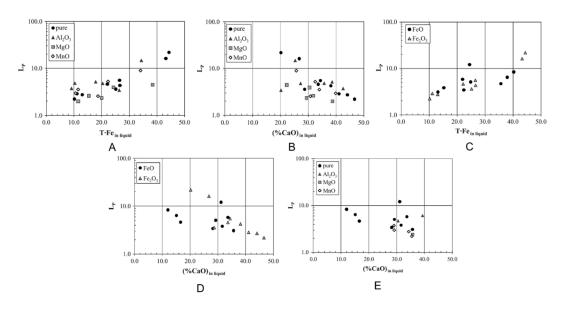


Fig.1.24 Influence of various additions on the P₂O₅ distribution ratio between solid solution and liquid slag at different T.Fe contents or CaO contents in liquid phase.^[26] In A and B, the CaO-SiO₂-P₂O₅-Fe₂O₃ system was adopted and the values of *L*_P with adding MgO and MnO were measured by Shimauchi *et al.*^[22] In C and D both the CaO-SiO₂-P₂O₅-Fe₂O₃ system and the CaO-SiO₂-P₂O₅-FeO system were adopted. In E the CaO-SiO₂-P₂O₅-FeO system was

adopted.

1.3.4 Activity and activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution

According to the activity of P_2O_5 in slag estimated by applying the regular solution model reported by Ban-ya *et al.*,^[27] the activity coefficient of P_2O_5 with the P_2O_5 content in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution was shown in **Figure 1.25**. The compositions of slag were shown in Figure 1.23 A.^[22]

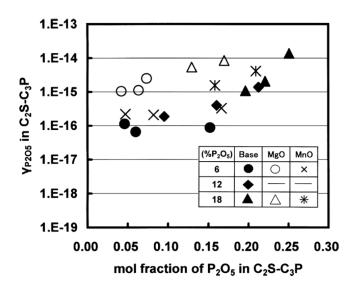


Fig. 1.25 Relationship between the activity coefficient of P_2O_5 and the content of P_2O_5 in the $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution.^[22]

Figure 1.26 shows the activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution with different additions in the CaO-SiO_2-P_2O_5-Fe_2O_3 system or the CaO-SiO_2-P_2O_5-FeO system.^[26] The activity coefficient with the addition of MgO or MnO was larger than that without addition, and the addition of Al₂O₃ decreased the activity coefficient of P₂O₅ both in the CaO-SiO_2-P_2O_5-Fe_2O_3 system and the CaO-SiO_2-P_2O_5-FeO system.

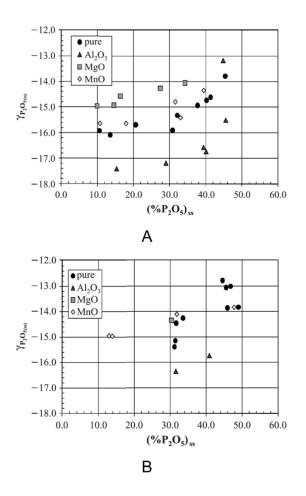


Fig. 1.26 Activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution. A: the 2CaO·SiO₂-3CaO·P₂O₅ solid solution was equilibrated with CaO-SiO₂-P₂O₅-Fe₂O₃ system. B: the 2CaO·SiO₂-3CaO·P₂O₅ solid solution was equilibrated with CaO-SiO₂-P₂O₅-

FeO system.^[26]

Hasegawa *et al.*^[28] estimated the activity of P₂O₅, CaO, SiO₂, 2CaO·SiO₂ and 3CaO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution by applying the regular solution model and the phase relationship. The equilibrium between molten Cu and 2CaO·SiO₂-3CaO·P₂O₅ solid solution was investigated. The regular solution model is expressed by Eqs. (1.6), (1.7) and (1.8), where R is the gas constant, $\Delta G_t^{\circ}(Ca_2SiO_4)$ and $\Delta G_t^{\circ}(Ca_3P_2O_8)$ are the Gibbs free energy changes of the phase transformations and Ω is the interaction parameter. **Figure 1.27** shows the activity of 2CaO·SiO₂ and 3CaO·P₂O₅ estimated by applying the ideal solution model by dot line and the regular solution model by solid line. **Figure 1.28** shows the activity of CaO by solid line, the activity of SiO₂ by dashed line and the activity of P₂O₅ by dashed dot line in the 2CaO·SiO₂- $3CaO \cdot P_2O_5$ solid solution.

$$RT \ln a_{Ca_2 SiO_4} = \Delta G_t^{\circ} (Ca_2 SiO_4) + RT \ln(1 - Y) + \Omega Y^2 \dots \dots (1.6)$$

$$RT \ln a_{Ca_3 P_2 O_8} = 2RT \ln a_{(1/2)Ca_3 P_2 O_8} = \Delta G_t^{\circ} (Ca_3 P_2 O_8) + 2RT \ln Y + 2\Omega (1 - Y)^2 \dots \dots (1.7)$$

$$Y \equiv n_{(1/2)Ca_3 P_2 O_8} / (n_{Ca_2 SiO_4} + n_{(1/2)Ca_3 P_2 O_8})$$

$$= 2n_{Ca_2 P_2 O_8} / (n_{Ca_2 SiO_4} + 2n_{Ca_2 P_2 O_8}) \dots \dots (1.8)$$

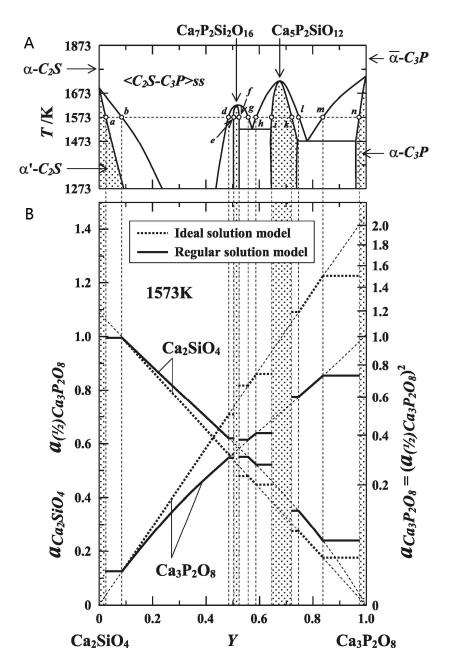


Fig. 1.27 A: Phase diagram of the Ca₂SiO₄-Ca₃P₂O₈ pseudo-binary system. B: Activities of Ca₂SiO₄ and Ca₃P₂O₈ as functions of the substitution ratio Y.^[28]

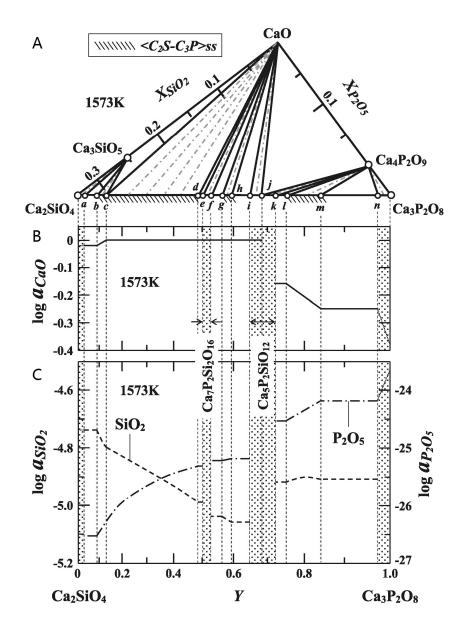


Fig. 1.28 A: Iso-thermal section of the ternary system CaO-SiO₂-P₂O₅ near the CaO apex at 1573 K. B: Activity of CaO at 1573 K. C: Activities of SiO₂ and P₂O₅ at 1573 K.^[28]

1.3.5 Phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅(-5mass%Al₂O₃) system

Gao *et al.* studied the phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅(-5mass%Al₂O₃) system at various temperatures and oxygen partial pressures.^[29-31]

The phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅ system with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K was shown in **Figures 1.29** and **1.30**. Figure 1.29 A shows the initial compositions. At first the mixture was completely melted at 1923 K and then cooling down slowly to achieve the equilibrium between solid phase and liquid phase. After keeping the sample for a long enough time, the sample was quenched and the morphology was analyzed by SEM and EDS. The observed solid phase was projected onto the CaO-SiO₂-P₂O₅ system as shown in Figure 1.29 B. All compositions were located close to the tie line between 2CaO·SiO₂ and 3CaO·P₂O₅. Figures 1.29 C and D show the projections of observed phases onto the CaO-SiO₂-FeO system. The solid solution containing with FeO was located around the area between 2CaO·SiO₂ and 3CaO·SiO₂. Comparing with the liquidus at 1673 K equilibrated with the metallic iron as solid curve shown in Figure 1.29 D shows the equilibrium phase sections according to the projections of the various observed phases and Figure 1.30 shows the phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅ system with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K.

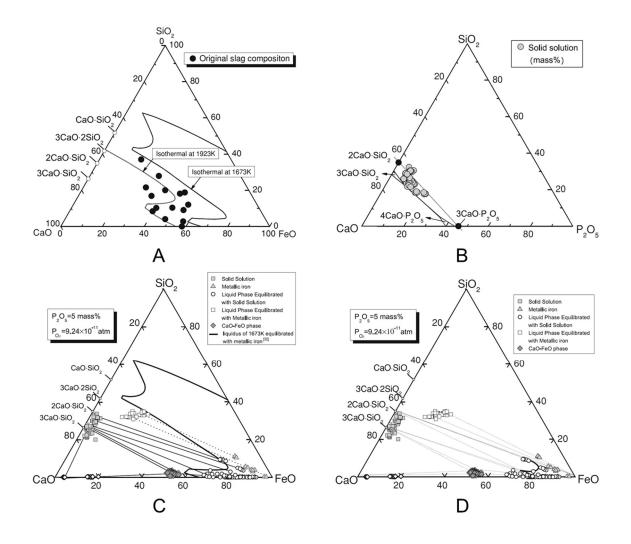


Fig. 1.29 A: Initial compositions of slag (mass%) in CaO-SiO₂-FeO system. B: Projections of compositions onto the CaO-SiO₂-P₂O₅ system (mass%). C: Projections of compositions onto the CaO-SiO₂-FeO system comparing with the liquidus equilibrated with metallic iron at 1673 K (mass%).^[32] D: Projections of compositions onto the CaO-SiO₂-FeO system with the phase sections (mass%).^[29]

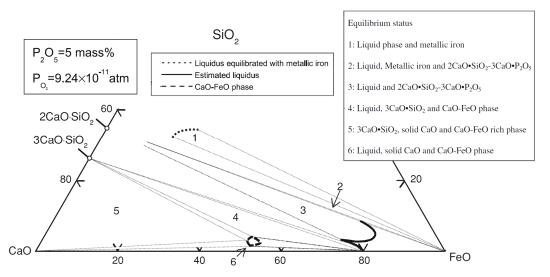


Fig. 1.30 Phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅ system with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K (mass%).^[29]

Gao *et al.* also investigated the phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅ system with oxygen partial pressure of 1.08×10^{-10} atm at 1623 and 1673 K.^[30] Figure 1.31 shows the liquidus and the phase sections of CaO-SiO₂-FeO-P₂O₅ system at 1623 and 1673 K with the oxygen partial pressures of 1.08×10^{-10} and 9.24×10^{-9} atm. Since the compositions of 2CaO·SiO₂-3CaO·P₂O₅ solid solution changed with the composition of slag, the projections of the compositions of solid solution were focused around an area rather than a point. Because the 3CaO·SiO₂-3CaO·P₂O₅)-slag. Comparing with the liquidus with the oxygen partial pressure of 9.24×10^{-9} atm at 1673 K, the liquidus with the oxygen partial pressure of 1.08×10^{-10} atm at 1623 K shrunk to the corner of FeO. Figure 1.32 shows the projection of phase relationship onto the three-dimensional space. The solid solution was closed to the CaO-SiO₂-P₂O₅ plane and the liquid phase equilibrated with the solid CaO was closed to the CaO-P₂O₅-FeO plane.

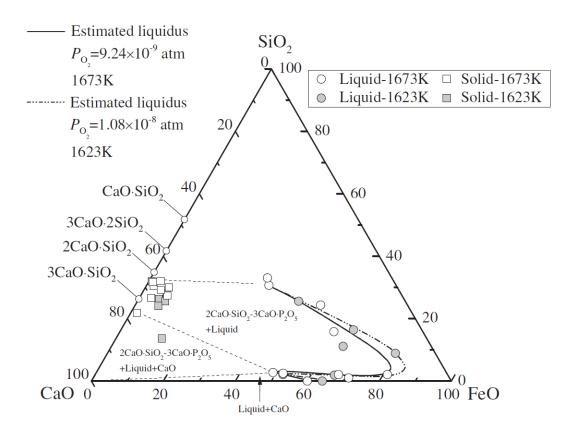


Fig. 1.31 Liquidus and phase sections of CaO-SiO₂-FeO-P₂O₅ system (mass%).^[30]

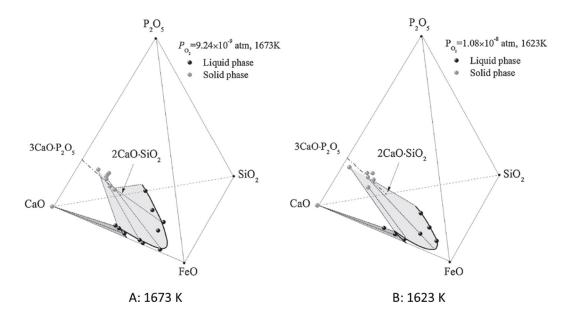


Fig. 1.32 Phase relationship of CaO-SiO₂-FeO-P₂O₅ system (mass%) in the tetrahedra.^[30]

Furthermore, the phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅-5mass%Al₂O₃ system with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K was also studied by Gao *et al.*^[31]

Ignoring the variation in Al₂O₃ content, the liquidus of CaO-SiO₂-FeO-P₂O₅-10mass%Al₂O₃ was summarized as shown in **Figure 1.33**. The liquid phase area enlarged comparing with that of the CaO-SiO₂-FeO_x system equilibrated with metallic iron.^[33] Comparing with the liquid phase area of CaO-SiO₂-FeO-Fe₂O₃-5mass%Al₂O₃ system with the oxygen partial pressure of 10^{-8} atm at 1573 K,^[34] the current liquid phase area also enlarged. Comparing with the CaO-SiO₂-FeO_x system equilibrated with metallic iron, the current CaO primary region shrunk a lot. **Figure 1.34** shows the effect of Al₂O₃ on the liquidus of CaO-SiO₂-FeO-5mass%Al₂O₃ system enlarged significantly at larger FeO content region comparing with the CaO-SiO₂-FeO-5mass%P₂O₅ system with the oxygen partial pressure of 9.24×10⁻¹¹ atm at 1673 K.

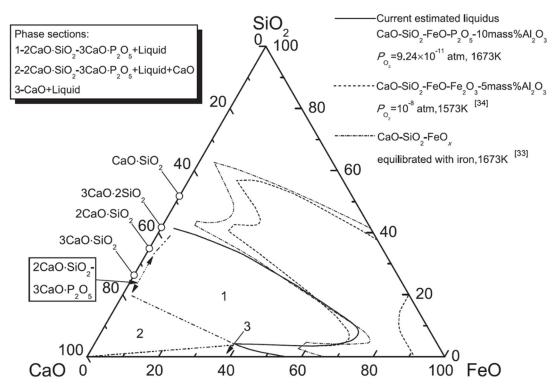


Fig. 1.33 Phase sections for CaO-SiO₂-FeO-5mass%P₂O₅-5mass%Al₂O₃ system with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K on the CaO-SiO₂-FeO ternary section.^[31]

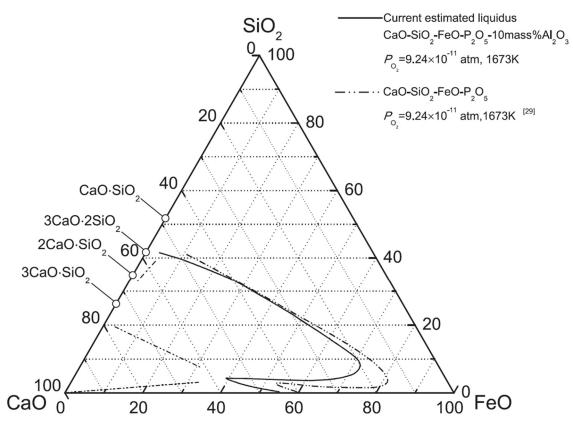


Fig. 1.34 Effect of Al₂O₃ addition on the liquidus with the oxygen partial pressure of 9.24×10^{-11} atm at 1673 K.^[31]

1.3.6 Formation free energies of solid solution between di-calcium silicate and tri-calcium phosphate

Takeshita *et al.*^[35] studied the formation free energies of solid solution between di-calcium silicate and tri-calcium phosphate by applying the chemical equilibration method. **Figure 1.35** shows the phase diagram of pseudo-ternary CaO-SiO₂-P₂O₅ system and the pseudo-binary $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ system. In Figure 1.35 A, there were several three-phase assemblages, and the three-phase assemblage with the lowest activity of P₂O₅ in the solid solution was $3CaO \cdot SiO_2 + 2CaO \cdot SiO_2 + 2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ in which the activity of P₂O₅ was fixed as expressed by Eq. (1.9).

$$3(Ca_{3}SiO_{3}) + \frac{4y - 3}{1 - y}(Ca_{2}SiO_{4}) + \{P_{2}O_{5}\} = \frac{1}{1 - y}(Ca_{(3 - y)}Si_{y}P_{(2 - 2y)}O_{(8 - 4y)}) \dots \dots (1.9)$$

y is the mole fraction of $2CaO \cdot SiO_2$ corresponding to the composition of point 3 in Figure 1.35. The molten copper was equilibrated with the mixture of $3CaO \cdot SiO_2+2CaO \cdot SiO_2+2CaO \cdot SiO_2-3CaO \cdot P_2O_5$ in the mixture of Ar, H₂ and H₂O gases and the reaction was expressed as Eq. (1.10) where [mass%P]_{Cu} denotes phosphorus in liquid copper.

$$3Ca_{3}SiO_{3}(s) + \frac{4y - 3}{1 - y}Ca_{3}SiO_{3}(s) + 2[mass\%P]_{Cu} + 5H_{2}O(g)$$
$$= \frac{1}{1 - y}Ca_{(3 - y)}Si_{y}P_{(2 - 2y)}O_{(8 - 4y)}(s) + 5H_{2}(g) \dots \dots (1.10)$$

The equilibrium constant was expressed as Eq. (1.11) assuming Henry's low.

$$\log K_{1.10} = 5\log(P_{\rm H_2}/P_{\rm H_2O}) - 2\log[\rm{mass}\%P]_{\rm Cu} \dots \dots (1.11)$$

From Eq. (1.11) the slope of $\log(P_{H_2}/P_{H_2O})$ and $\log[mass\%P]_{Cu}$ should be 2/5 which was confirmed by **Figure 1.36 A**. From the results shown in **Figure 1.36 B**, the Eqs. (1.12) and (1.13) were obtained by least squares method.

$$\log K_{1.10} = -22.23 + \frac{60600}{(T/K)} \pm 0.3 \dots \dots (1.12)$$
$$\Delta G_{1.10}^{\circ} = -1160000 + 425.7T \pm 9000 \text{ J/mol} \dots \dots (1.13)$$

The Gibbs free energy for the following reactions are available in the literatures.

$$(1/2)P_2(g) = [mass\%P]_{Cu}$$

$$\Delta G_{1.14}^{\circ} = -125000 + 0.54T \pm 5500 \text{ J/mol} \dots \dots (1.14)^{[36]}$$

$$P_{2}(g) + 5/2 O_{2}(g) = P_{2}O_{5}(l)$$

$$\Delta G_{1.15}^{\circ} = -1534500 + 506.3T \text{ J/mol} \dots \dots (1.15)^{[37]}$$

$$H_{2}(g) + 1/2 O_{2}(g) = H_{2}O(g)$$

$$\Delta G_{1.16}^{\circ} = -246000 + 54.8T \text{ J/mol} \dots \dots (1.16)^{[38]}$$

By referring the Eqs. (1.13), (1.14), (1.15) and (1.16), the Gibbs free energy for the reaction (1.9) is expressed as Eq. (1.17).

$$\Delta G_{1.9}^{\circ} = RT \ln a_{P_2O_5} = -1106000 + 194.7T \pm 20000 \,\text{J/mol} \dots \dots (1.17)$$

Where the activity of P₂O₅ is relative to hypothetical pure liquid P₂O₅ from 1528 K to 1598 K.

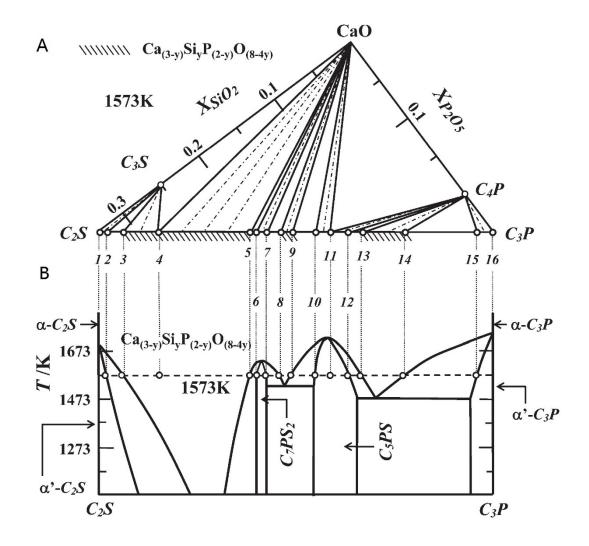


Fig. 1.35 A: Iso-thermal section of the ternary CaO-SiO₂-P₂O₅ system at 1573 K. B: Phase diagram of the pseudo-binary 2CaO·SiO₂-3CaO·P₂O₅ system.^[35]

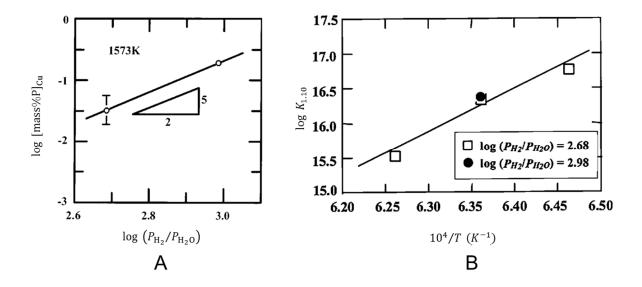


Fig. 1.36 A: Relationship between the logarithm of P concentration in Cu and the ratio between H₂ and H₂O at 1573 K. B: Relationship between the logarithm of $K_{1.10}$ and the reciprocal of T.^[35]

1.4 Research objective and significance

As introduced in previous sections, the phosphorus should be removed from molten iron and steel to avoid the embrittlement. In order to utilize the CaO efficiently, the concept of multiphase flux was considered. For deeper understanding and better application of the multiphase flux to commercial operation, it is necessary to clarify the thermodynamic properties about the calcium phosphate-based solid solution.

As the thermodynamic properties about the calcium phosphate-based solid solution are clear, the degree of dephosphorization for various compositions of the calcium phosphate-based solid solution can be estimated with various oxygen partial pressures and temperatures. Meanwhile combining with the previous researches, how to choose the corresponding composition of slag and how to control the slag operation are getting clear. For these reasons, it is urgent to obtain the thermodynamic properties especial the activity and activity coefficient of P_2O_5 for optimizing the dephosphorization by multi-phase flux.

About the activity and activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution, the regular solution model and the phase relationship were adopted for estimating the values although they have been measured so far. In order to eliminate the deviation of the regular solution model and the phase relationship, it is necessary to measure the activity and activity coefficient of P₂O₅ directly by chemical equilibration method. Since in practical manufacture, the excess CaO is added and the slag is containing a certain amount of MgO, not only the thermodynamic properties about the 2CaO·SiO₂-3CaO·P₂O₅ solid solution but also the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing with CaO or MgO should be studied. In current researches, the activity and activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution or containing with CaO or MgO and other related thermodynamic properties have been well studied.

1.5 Outline of the thesis

In **Chapter 1**, the overview about steelmaking, dephosphorization and multi-phase flux were introduced. Also the previous researches about the multi-phase flux and correlational researches about this topic were summarized. Meanwhile the research objective and significance about current research were proposed.

In **Chapter 2**, the experimental principle, method and parameters were explained in detail. Also the method of making tablet and the method of chemical analyses were presented particularly.

In **Chapters 3, 4** and **5**, the results and discussion of the thermodynamics about the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution, the mixture of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and CaO and the mixture of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and MgO were presented, respectively. In each chapter, the activity coefficient of FeO in the tablet after reaction, the equilibrium concentration of P in Fe, phosphorus partition ratio between the tablet and molten iron and the activity and activity coefficient of P_2O_5 were investigated, respectively. In Chapter 4, the activity of $3CaO \cdot P_2O_5$ in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution saturated with CaO was estimated and in Chapter 5, the activity of $3MgO \cdot P_2O_5$ in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution saturated with MgO was estimated.

In **Chapter 6**, the thermodynamic data introduced in Chapters 3, 4 and 5 were summarized and the effect of MgO on the activity of P₂O₅ in the calcium phosphate-based solid solution was discussed. Based on the thermodynamic data investigated in current research together with the previous researches, the application of multi-phase flux for the dephosphorization process was proposed and discussed.

The conclusions were presented as Chapter 7 by summarizing the previous chapters.

References

- 1. http://www.jfe-21st-cf.or.jp/chapter_2/2a_1_img.html
- 2. R. Viswanathan: Metall. Trans., 2 (1971), 809-815.
- 3. C.L. Briant and R.P. Messmer: Acta Metall., 30 (1982), 1811-1818.
- 4. C. L. Briant and S. K. Banerji: Metall. Trans. A, 10A (1979), 123-126.
- 5. C. L. Briant and S. K. Banerji: Metall. Trans. A, 10A (1979), 1729-1737.
- R. A. Mulford, C. J. Mcmahon, D. P. Pope and H. C. Feng: *Metall. Trans. A*, **7A** (1976), 1183-1195.
- 7. H. Okamoto: Bull. Alloy Phase Diagrams, 4 (1990), 404-412.
- 8. H. Momokawa and N. Sano: Metall. Trans. B, 13B (1982), 643-644.
- 9. C. Wagner: Metall. Trans. B, 6B (1975), 405.
- F. Tsukihashi and H. Sano: International conference 21st century steel industry of Russia and CIS, Moscow, (1994), 3, 14-18.
- 11. H. Suito and R. Inoue: ISIJ Int., 46 (2006), 180-187.
- 12. W. Fix, H. Heymann and R. S. Heinke: J. Am. Ceram. Soc., 52 (1969), 346.
- 13. M. Hasegawa and M. Iwase: Tetsu-to-Hagané, 95 (2009), 222.
- 14. F. Tsukihashi: Final report on innovative development of refining processes in steelmaking by multi phase flux, *ISIJ*, (2009), 2.
- 15. M. Kami, M. Terasawa, A. Matsumoto and K. Ito: Tetsu-to-Hagané, 95 (2009), 236-240.
- 16. T. Hamano, S. Fukagai and F. Tsukihashi: ISIJ Int., 46 (2006), 490-495.
- 17. X. Yang, H. Matsuura and F. Tsukihashi: ISLJ Int., 49 (2009), 1298-1307.
- 18. X. Yang, H. Matsuura and F. Tsukihashi: ISIJ Int., 50 (2010), 702-711.
- 19. X. Yang, H. Matsuura and F. Tsukihashi: Mater. Trans., 51 (2010), 1094-1101.
- 20. X. Yang, H. Matsuura and F. Tsukihashi: Tetsu-to-Hagané, 95 (2009), 268-274.
- S. Kitamura, S. Saito, K. Utagawa, H. Shibata and D. G. C. Robertson: *ISIJ Int.*, 49 (2009), 1838-1844.
- 22. K. Shimauchi, S. Kitamura, K. and H. Shibata: ISIJ Int., 49 (2009), 505-511.
- 23. R. Inoue and H. Suito: ISIJ Int., 46 (2006), 188-194.

- 24. R. Inoue and H. Suito: ISIJ Int., 46 (2006), 174-179.
- 25. K. Ito, M. Yanagisawa and N. Sano: Tetsu-to-Hagané, 68 (1982), 342.
- 26. F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: ISIJ Int., 50 (2010), 822-829.
- 27. S. Ban-ya: ISIJ Int., 33 (1993), 2.
- 28. M. Hasegawa, Y. Kashiwaya and M. Iwase: High Temp. Mater. Proc., 31 (2012), 421-430.
- X. Gao, H. Matsuura, I. Sohn, W. Wang, D. Min and F. Tsukihashi: *Metall. Mater. Trans. B*, **43B** (2012), 694-702.
- X. Gao, H. Matsuura, I. Sohn, W. Wang, D. Min and F. Tsukihashi: *Mater. Trans.*, 54 (2013), 544-552.
- 31. X. Gao, H. Matsuura, M. Miyata and F. Tsukihashi: ISLJ Int., 53 (2013), 1381-1385.
- M. Allibert *et al.*: SLAG ATLAS 2nd Edition, Verein Deutscher Eisenhüttenleute, Germany, (1995), 57, 126.
- M. Allibert *et al.*: SLAG ATLAS 2nd Edition, Verein Deutscher Eisenhüttenleute, Germany, (1995), 126, 138.
- H. Kimura, T. Ogawa, M. Kakiki, A. Matsumoto and F. Tsukihashi: *ISIJ Int.*, 45 (2005), 506.
- 35. H. Takeshita, M. Hasegawa, Y. Kashiwaya, and M. Iwase: *Steel Research Int.*, **81** (2010), 100-104.
- 36. M. Iwase, E. Ichise and N. Yamada: Steel Research, 56 (1985), 319-326.
- 37. E. T. Turkdogan and J. Pearson: J. Iron Steel Inst., 175 (1953), 393-401.
- O. Kubaschewski and C. B. Alcock: Metallurgical Thermochemistry, 5th edition, Pergamon Press, Oxford.

Chapter 2 Experimental Method

2.1 Introduction

The current research focuses on the thermodynamic properties about the calcium phosphatebased solid solution. The chemical equilibration method was applied which was commonly adopted for obtaining the thermodynamic data like the equilibrium constant, the Gibbs free energy, the activity, the interaction coefficient and so on. This method has been applied for decades in the field of physical chemistry as a very mature method.

In the field of metallurgy, the chemical equilibration method has been applied on the study of the equilibrium at the interface between slag and molten metal,^[1,2] the phase equilibrium,^[3] the equilibrium between molten metal and solid solution.^[4] In current experiments, the electrolytic iron was equilibrium with the tablet of the calcium phosphate-based solid solution, then the sample was quenched and finally the concentration of P in Fe and the compositions of tablet were analyzed by chemical analysis.

2.2 Experimental

The equilibrium between molten iron and the calcium phosphate-based solid solution is expressed in term of phosphorus as Eq. (2.1). In the case of the atmosphere is controlled by the mixture of CO and CO₂ gases, the equilibrium between molten iron and the calcium phosphatebased solid solution in term of phosphorus is expressed as Eq. (2.3) by Eqs. (2.1) and (2.2).

$$P_2O_5(l) = 2\underline{P}(\text{mass}\%) + 5\underline{O}(\text{mass}\%)$$
$$\Delta G_{2.1}^{\circ} = 832384 - 632.65T \text{ J/mol} \dots \dots (2.1)^{[5]}$$
$$\underline{O}(\text{mass}\%) + CO(g) = CO_2(g)$$
$$\Delta G_{2.2}^{\circ} = -166900 + 91.16T \text{ J/mol} \dots \dots (2.2)^{[6]}$$
$$P_2O_5(l) + 5CO(g) = 2\underline{P}(\text{mass}\%) + 5CO_2(g)$$
$$\Delta G_{2.3}^{\circ} = -2116 - 177.0T \text{ J/mol} \dots \dots (2.3)^{[5, 6]}$$
$$K_{2.3} = \frac{(f_P[\text{mass}\%P])^2}{a_{P_2O_5}} \left(\frac{P_{CO_2}}{P_{CO}}\right)^5 \dots \dots (2.4)$$

Eq. (2.4) was used to obtain the activity of P₂O₅. f_P is the activity coefficients of phosphorus in liquid iron relative to 1 mass% expressed as Eq. (2.5), and $a_{P_2O_5}$ is the activity of P₂O₅ relative to hypothetical pure liquid P₂O₅. The values of f_P could be estimated by Eqs. (2.2) and (2.6) and the reported interaction parameters in molten iron shown in **Table 2.1** after measuring the concentration of P in Fe. The oxygen partial pressure was controlled by the mixture of CO and CO₂ gases according to Eq. (2.7) with the corresponding flow rate shown in **Table 2.2**.

$$log f_{\rm P} = e_{\rm P}^{\rm P}[mass\%{\rm P}] + e_{\rm P}^{\rm O}[mass\%{\rm O}] + e_{\rm P}^{\rm C}[mass\%{\rm C}] \dots \dots (2.5)$$

$$\frac{\underline{C}(mass\%) + CO_2(g) = 2CO(g)}{\Delta G_{2.6}^{\circ} = 144700 - 129.5T \text{ J/mol} \dots \dots (2.6)^{[6]}}$$

$$CO(g) + 1/2 O_2(g) = CO_2(g)$$

$$\Delta G_{2.7}^{\circ} = -281000 + 85.23T \text{ J/mol} \dots \dots (2.7)^{[7]}$$

	j _		j	
	$e_i^j - e_i^j$	Р	С	0
	Р	0.054 ^[8]	0.126 ^[9]	0.13 ^[10]
i	С	0.051 ^[9]	0.243 ^[6]	-0.32 ^[6]
-	0	$0.07^{[10]}$	-0.421 ^[6]	-0.17 ^[11]

Table 2.1 Reference data about interaction coefficient.

Table 2.2 Oxygen partial pressure and corresponding rate of flow.

T/K	CO/CO ₂	P ₀₂ /atm	Flow (mL/min)
1823	110/1	5.22×10 ⁻¹²	366
1873	110/1	1.41×10 ⁻¹¹	366
1873	20/1	4.25×10 ⁻¹⁰	347

For the experiments with the large $3CaO \cdot P_2O_5$ content in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution at 1873 K, the ratio CO/CO_2 was 20/1 in order to obtain a suitable concentration of P in Fe after reaction and for the other experiments, the ratio CO/CO_2 was 110/1.

As iron phase exists, the metal crucible like platinum crucible and molybdenum crucible could not be used. Although Al₂O₃ crucible is commonly adopted in the metallurgical experiments, Al₂O₃ could react with 2CaO·SiO₂ to form slag. From the phase diagram of the CaO-SiO₂-MgO system as shown in **Figure 2.1**, MgO does not react with 2CaO·SiO₂ to form slag in the present condition. Therefore the MgO crucible was used in the present research.

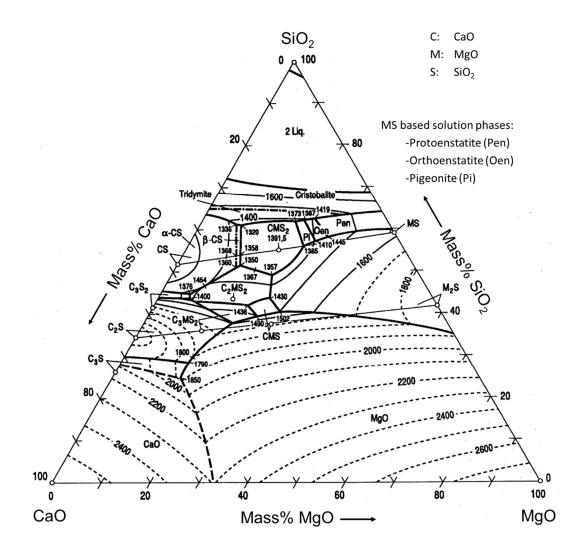


Fig. 2.1 Phase diagram of CaO-SiO₂-MgO.^[12]

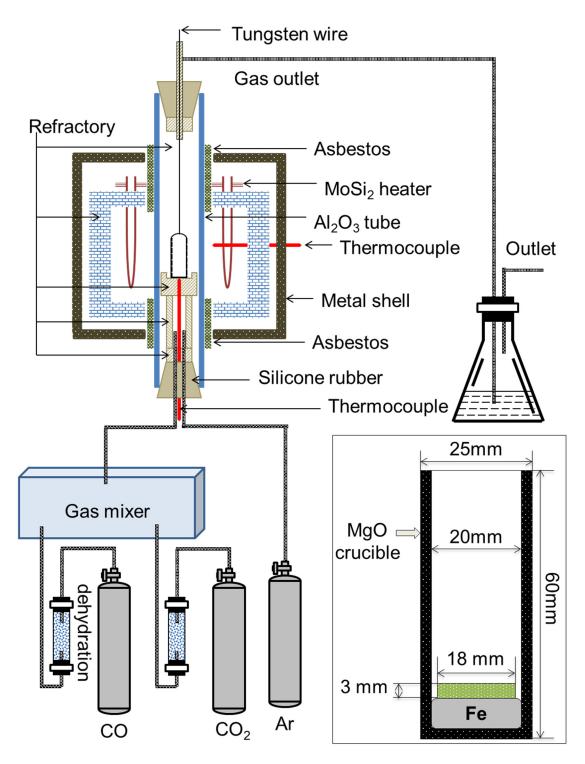


Fig. 2.2 Schematic of experimental apparatus.

Figure 2.2 shows the schematic of experimental equipment. The detail of experimental procedure is expressed as following.

The resistance furnace with MoSi₂ heater was applied. The experimental temperatures were 1823 and 1873 K. The B-type platinum rhodium thermocouple placed at the side of reaction

tube was used to control the temperature. And the bottom B-type platinum rhodium thermocouple was used to measure the temperature just under the crucible. Before each experiment the true temperature inside the tube was measured with a B-type platinum rhodium thermocouple from the top of the tube.

In order to achieve equilibrium as quickly as possible, only 10 g electrolytic iron was used as the metal phase and for some experiments the Fe₃P and graphite were added in advance to avoid the composition change of tablet after reaction and achieve equilibrium quickly. **Table 2.3** shows the impurity constituents of electrolytic iron and Fe₃P. The impurity contents of electrolytic iron were obtained by chemical analysis and those of Fe₃P were obtained from the supplier.

Nama				mas	ss%			
Name	Р	Si	Ca	Mg	Al	Na	Ni	Ti
Iron	0.0003	ND	0.0006	ND	-	-	-	-
Fe ₃ P	-	-	-	0.0300	0.0080	0.0200	0.0030	ND

Table 2.3 Content of impurity constituent of iron and Fe₃P.

ND: negative detection

About 10 g electrolytic iron was put into the MgO crucible (high 60 mm, outer diameter 25 mm, inner diameter 20 mm). The synthesized tablet was put on the surface of the electrolytic iron. The procedure of making tablet is introduced in Section 2.3. At first the crucible was located at the upper end of the furnace tube and the air in tube was replaced by Ar gas with the flow rate of 2 L/min for 2 minutes. Then the atmosphere was changed to the mixture of CO and CO₂ gases. After five minutes the sample was put into the hot zone of the furnace.

After the equilibrium was established, the crucible was taken out from the furnace and quenched in Ar stream. After cooling down to room temperature, the tablet was separated from the surface of solidified iron and the solidified iron was separated from crucible. The tablet was ground to fine powder for chemical analysis and XRD. The solidified iron was cleaned, polished

and cut into piece with the weight around 1 g. Phosphorus concentration in Fe was analyzed by the molybdenum-blue spectrophotometric solvent extraction method or the phosphomolybdate blue spectrophotometric method depending on the concentration. P₂O₅ content in tablet was analyzed by the phosphomolybdate blue spectrophotometric method. ICP-OES was adopted for the analysis of CaO, MgO and FeO contents in tablet. Gravimetry was used for SiO₂ content in tablet.

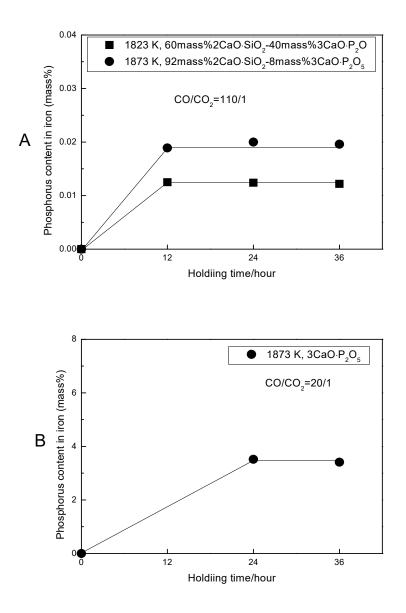


Fig. 2.3 Time for attainment of equilibrium.

Figure 2.3 A shows the concentration of P in Fe reacted with the 2CaO·SiO₂-3CaO·P₂O₅ solid solution tablet for different reaction times at 1823 and 1873 K. For these two compositions

of solid solutions, the equilibrium was attained within 12 hours. Finally 24 hours was adopted for the subsequent experiments in order to ensure equilibrium for various compositions of solid solutions which was confirmed by the experiment with high P concentration in Fe after reaction as shown in **Figure 2.3 B. Figure 2.4** shows the composition changes of the tablets after reaction for different reaction times. The initially composition of the 92mass%2CaO·SiO₂-8mass%3CaO·P₂O₅ solid solution barely changed for different reaction times. Therefore, 24 hours was enough for equilibrium.

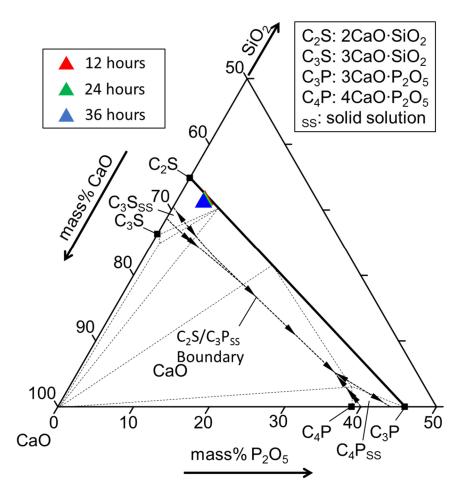


Fig. 2.4 Change of the composition which initially was the 92mass%2CaO·SiO₂-8mass%3CaO·P₂O₅ solid solution after reaction with Fe at 1873 K with different reaction times. The boundary and tie lines in the phase diagram were determined at 1773 K by Gutt.^[13]

2.3 Process of making tablet of the calcium phosphate-based solid solution

The tablet was made by sintering the mixture of various ratios of reagent grade MgO, SiO₂, CaHPO₄·2H₂O and CaO. The CaO was obtained by the calcination by CaCO₃ according to the Eq. (2.8).

$$CaCO_3(s) = CaO(s) + CO_2(g)$$

 $\Delta G_{2.8}^{\circ} = 161000 - 137.17T \text{ J/mol} (2.8)^{[14]}$

As the CaCO₃ was decomposed into CaO and CO₂ at 1173 K, 1473 K was chosen to make the CaCO₃ decomposing completely. The CaO crucible was used for calcination. The 70 g of reagent grade of CaCO₃ was charged into a crucible and it was kept at 1473 K for 12 hours in air. The CaO with the crucible was cooling down in air and then the CaO was ground into fine powder. The formation was confirmed by XRD as shown in **Figure 2.5**.

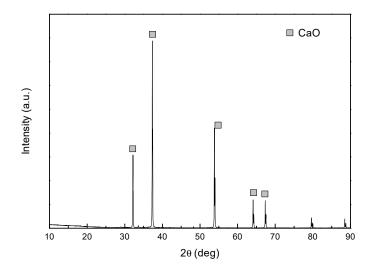


Fig. 2.5 XRD pattern of CaO sintered from calcium oxide.

For preparing the tablet, the raw materials were mixture and ground for 20 minutes. The weight of CaHPO₄·2H₂O was calculated by the mass balance of P, and the weight of CaO was calculated by the mass balance of Ca. The mixture was heated in air at 1873 K in a Pt crucible for 24 hours, quenched by Ar stream and then ground into fine powder. **Figures 2.6**, **2.7** and

2.8 show the XRD patterns of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution for different sintering times. The XRD patterns of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution sintered for 24 hours, 48 hours and 72 hours at 1873K were almost the same. Therefore, 24 hours was enough to form target phase. Sintering process was repeated twice totally for 48 hours.

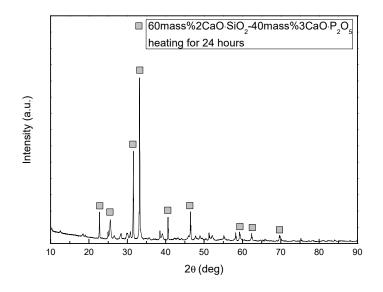


Fig. 2.6 XRD pattern of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution sintered for 24 hours at 1873 K.

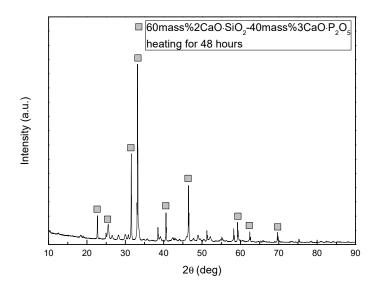


Fig. 2.7 XRD pattern of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution sintered

for 48 hours at 1873 K.

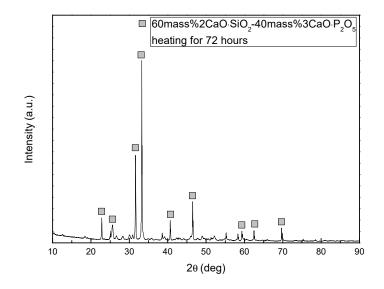


Fig. 2.8 XRD pattern of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution sintered for 72 hours at 1873 K.

The XRD pattern of the $60mass\%2CaO\cdot SiO_2-40mass\%3CaO\cdot P_2O_5$ solid solution are close to the XRD pattern of $7CaO\cdot 2SiO_2 \cdot P_2O_5$ extremely. According to the pseudo binary phase diagram of $2CaO\cdot SiO_2-3CaO\cdot P_2O_5$ as shown in **Figure 2.9**, for the $60mass\%2CaO\cdot SiO_2$ -

40mass%3CaO·P₂O₅ solid solution, the 7CaO·2SiO₂·P₂O₅ phase appears at the temperature lower than 900 °C and the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution may include a little amount of 7CaO·2SiO₂·P₂O₅ at room temperature. Since the lack of reference XRD pattern about the 2CaO·SiO₂-3CaO·P₂O₅ solid solution system, it is difficult to know the accurate XRD pattern of a certain composition of solid solution. In current research, the formation of each composition was confirmed by XRD and found that when the compositions changed in some range, the XRD patterns were almost the same and similar like the XRD pattern of the phase at a low temperature. In Figure 2.9, the compositions marked by the solid triangles presented the compositions of solid solution which could preserve shape after sintering and the open triangles presented the compositions of solid solution which were easily broken by external force or by itself after sintering. After preparing the powder, about 1.5 g powder was charged into a steel dies and pressed into a cylindrical tablet (diameter: 18 mm, thickness: 3 mm) at 50 MPa.

Fig. 2.9 Pseudo binary phase diagram between 2CaO·SiO₂ and 3CaO·P₂O₅.^[15] "R": 2CaO·SiO₂-3CaO·P₂O₅ solid solution, "A": 7CaO·2SiO₂·P₂O₅, "S": 5CaO·SiO₂·P₂O₅.

2.4 Methods of chemical analysis

For each sample, the concentration of P in Fe after reaction was analyzed and in order to get the accurate composition of tablet after experiment, all the possible compositions in tablet were analyzed.

2.4.1 Concentration of P in Fe and content of P₂O₅ in tablet

Depending the concentration of P in Fe two different methods were applied. When the concentration of P in Fe was greater than 0.005 mass%, the phosphomolybdate blue spectrophotometric method was adopted and when the concentration of P in Fe was smaller than 0.005 mass%, the molybdenum-blue spectrophotometric solvent extraction was adopted. For the analysis of P_2O_5 in tablet, the phosphomolybdate blue spectrophotometric method was applied.

For these two methods, the necessary chemical reagents were as following: concentrated HCl, concentrated HNO₃, concentrated HClO₄, NaHSO₃ (100 g/L), (NH₄)₆Mo₇O₂₄·4H₂O (20 g/L in 35 vol% H₂SO₄), N₂H₄·H₂SO₄ (1.5 g/L), KH₂PO₄·2H₂O, SnCl₂·2H₂O (30 g/L in 10 vol% HCl) and CH₃COCH₂CH(CH₃)₂.

The calibration line of P with different concentrations was prepared with the following procedure.

0.8787 g KH₂PO₄ which had been heated at 383 K to remove the crystal water previously was dissolved into a 1L of water and the concentration of P was 0.2 g/L. Then this solution was diluted to 0.004 g/L and 0.01 g/L for standard solution, respectively.

To eliminate the influence of Fe background two calibration lines were prepared. For measuring the concentration of P in Fe, 0 mL, 1 mL, 2 mL, 4 mL, 6 mL, 8 mL, 10 mL, 15 mL, 20 mL and 25 mL standard solutions (0.004 g/L) and 1 g pure Fe powder were used to prepare the standard solutions. For measuring the P_2O_5 content in tablet, 0 mL, 2 mL, 4 mL, 6 mL, 8 mL and 10 mL standard solutions (0.01 g/L) were used.

After samples were dissolved in the mixture of 20 mL HCl and 10 mL HNO₃, about 15 mL HClO₄ was added to oxidize phosphorus in the solution.

After evaporating HClO₄, the solution was filtrated with filter paper (retain particle size: 7 μ m) to separate the solid SiO₂ precipitated in the solution.

10 mL NaHSO₃ solution was added to the solution and heated to eliminate the effect of Fe in solution on the P analysis.

Then (NH4)6M07O24 solution and N2H4·H2SO4 solution were added to the solution and heated for 20 minutes. The solution was diluted to 100 mL and cooling down to room temperature.

The absorbance of each sample was measure by the spectrophotometer (U-2001 HITACHI), with the 10 mm, 20 mm and 40 mm cell respectively at 825 nm wavelength. **Table 2.4** shows the absorbance and **Figures 2.10** and **2.11** show the calibration lines of P. After using a period of time, the calibration line should be demarcated again.

	speed opnotonie die niedied.							
C _P /ppm	ABS			C _P /ppm		ABS		
With Fe	10 mm	20 mm	40 mm	Without Fe	10 mm	20 mm	40 mm	
0.00	0.009	0.018	0.031	0.00	0.003	0.007	0.004	
0.04	0.029	0.060	0.107	0.20	0.089	0.183	0.352	
0.08	0.043	0.090	0.167	0.40	0.176	0.354	0.688	
0.16	0.079	0.162	0.308	0.60	0.238	0.475	0.923	
0.24	0.113	0.226	0.444	0.80	0.349	0.698	1.271	
0.32	0.148	0.298	0.580	1.00	0.433	0.855	1.401	
0.40	0.183	0.369	0.718	-	-	-	-	
0.60	0.267	0.538	1.032	-	-	-	-	
0.80	0.354	0.707	1.281	-	-	-	-	
1.00	0.439	0.866	1.401	-	-	-	-	

Table 2.4 Absorbance of standard solutions with the phosphomolybdate blue

	1 .		.1 1
cnect	rophotor	netric n	nethod
spece	JUDIUU		icuiou.

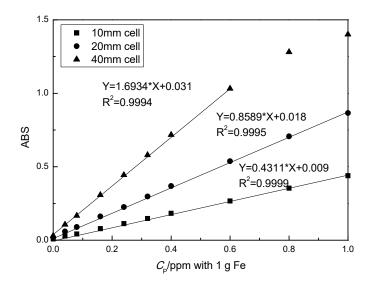


Fig. 2.10 Calibration line of P with Fe background with the phosphomolybdate blue

spectrophotometric method.

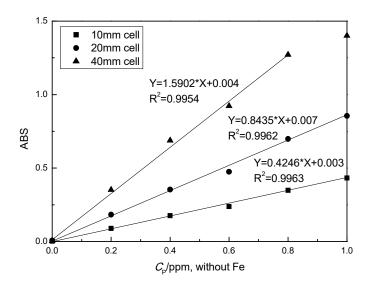


Fig. 2.11 Calibration line of P without Fe background with the phosphomolybdate blue spectrophotometric method.

The liner relationship between the absorbance and the concentration of P was obtained in the range of current concentration. The analysis method for steel and tablet were similar with the method of preparing standard solution. For analyzing the concentration of P in Fe, about 1 g

sample was added and the 20 mm cell was adopted. For analyzing the content of P_2O_5 in tablet, about 0.1g tablet powder was added and also the 20 mm cell was adopted. In the case of P_2O_5 analysis in tablet, the solid SiO₂ could be separated from solution and the solid SiO₂ gathered by filter paper (retain particle size: 4 µm) was supplied for analyzing the SiO₂ content in tablet.

solvent extraction method.					
C _P /ppm	ABS				
With Fe	10 mm				
0.00	0.009				
0.08	0.029				
0.16	0.043				
0.32	0.079				
0.48	0.113				
0.64	0.148				
0.80	0.183				
1.20	0.267				
1.60	0.354				
2.00	0.439				

Table 2.5 Absorbance of standard solutions with the molybdenum-blue spectrophotometric

solvent extraction method.

When the concentration of P in Fe is less than 0.005 mass%, the molybdenum-blue spectrophotometric solvent extraction method was adopted. Sample solution, 8 mL HClO4 and water were put in a separating funnel. After shaking well adding 10 mL (NH4)₆Mo₇O₂₄ solution and shaking well again. And then 10 mL CH₃COCH₂CH(CH₃)₂ solution was added and the solution was shaken 1 minute. Then the aqueous phase was removed and 10 mL HClO4 (25 vol%) was added, after shaking and standing the aqueous phase was removed. Then adding 10 mL SnCl₂ solution and shaking for 30 seconds, the absorbance of aqueous phase was measured by spectrophotometer with 10 mm cell at 700 nm wavelength. **Table 2.5** shows the absorbance

and **Figure 2.12** shows the calibration line of P for the molybdenum-blue spectrophotometric solvent extraction method.

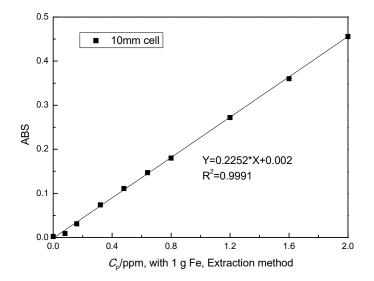


Fig. 2.12 Calibration line of P with the molybdenum-blue spectrophotometric solvent extraction method.

2.4.2 Content of SiO₂ in tablet

The chemical reagents for SiO₂ analysis were as follows: H₂SO₄ (50 vol%), concentrated HF and K₂S₂O₃. Filtrated SiO₂ during the P₂O₅ analysis in tablet was adopted for SiO₂ analysis.

The filter paper with tiny SiO₂ particles was put into Pt crucible and heated till all the filter paper burned out. The Pt crucible including SiO₂ particles was weighted. Then 2 mL H₂SO₄ (50 vol%) and 2 mL HF were added into the Pt crucible and the crucible was heated to evaporate SiO₂. After cooling down to room temperature, the Pt crucible was weighted. The SiO₂ content can be obtained from the difference of weight.

2.4.3 Contents of CaO, MgO and FeO in tablet

For the analysis of CaO, MgO and FeO contents in tablet, the inductively coupled plasma optical emission spectrometry (ICP-OES, SPS 7800, Seiko Instruments Inc.) was adopted. For making calibration lines of Ca, Mg and Fe, the 0 g/L, 0.002 g/L, 0.004 g/L, 0.006 g/L and 0.008 g/L standard solutions were prepared and the examples of calibration lines were shown in **Figures 2.13**, **2.14** and **2.15**. About 0.1 g powder of tablet was dissolved in HCl and the solution was diluted and supplied for the ICP-OES analysis. According to the analyzed results, there was little Fe₂O₃ in tablet after reaction, and the iron oxide was considered as FeO in the following chapters.

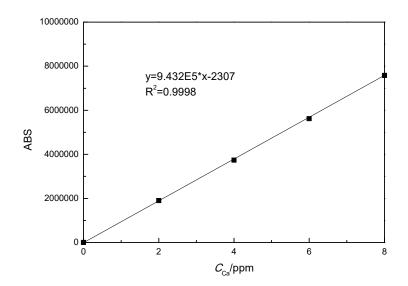


Fig. 2.13 Calibration line of Ca.

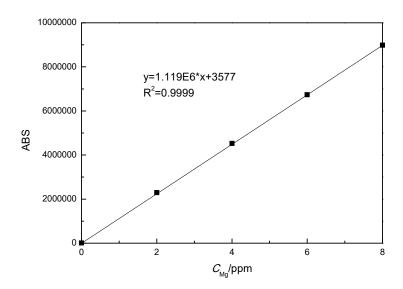


Fig. 2.14 Calibration line of Mg.

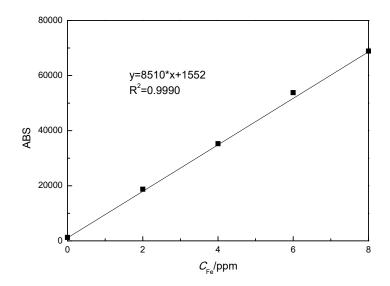


Fig. 2.15 Calibration line of Fe.

2.5 Summary

In this chapter, the experimental principle, method and parameter were introduced. The process of making tablet of the calcium phosphate-based solid solution was explained in detail. The chemical analysis methods for different components were represented, respectively.

References

- 1. G. Li, T. Hamano and F. Tsukihashi: ISIJ Int., 45 (2005), 12-18.
- 2. A. Sobandi, H. G. Katayama and T. Momono: ISIJ Int., 37 (1997), 1043-1049.
- 3. X. Gao, H. Matsuura, I. Sohn, W. Wang, D. Min and F. Tsukihashi: *Metall. Trans. B*, **43B** (2012), 694-702.
- 4. Y. Zhao, K. Morita, and N. Sano: Metall. Trans. B, 26B (1995), 1013-1017.
- 5. E. T. Turkdogan: ISIJ Int., 40 (2000), 964-970.
- 6. S. Ban-ya and S. Matoba: Tetsu-to-Hagané, 48 (1962), 925-932.
- E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 7.
- 8. K. Yamada and E. Kato: *Tetsu-to-Hagané*, **65** (1979), 264-272.
- 9. H. G. Hadrys, M. G. Frohberg and J. F. Elliott: *Metall. Trans.*, 1 (1970), 1867-1874.
- 10. D. Dutilloy and J. Chipman: Teans. Metall. Soc. AIME, 218 (1960), 428.
- 11. H. Sakao and K. Sano: Japan Inst. Metals, 23 (1959), 671-674.
- M. Allibert *et al.*: SLAG ATLAS 2nd Edition, Verein Deutscher Eisenhüttenleute, Germany, (1995), 134.
- 13. W. Gutt: Nature, 197 (1963), 142-143.
- E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, (1980), 8.
- 15. Fit, W., H. Heymann, R. Heinke: J. Am. Ceram. Soc., 52 (1969), 346-351.

Chapter 3 Thermodynamic Properties of the 2CaO·SiO₂-3CaO·P₂O₅ Solid Solution at 1823 and 1873K

3.1 Introduction

In this chapter, the thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution at 1823 and 1873 K were measured and discussed.

3.2 Experimental conditions

The initial compositions of tablets after sintering are shown in **Table 3.1** and projected onto the ternary phase diagram of the CaO-SiO₂-P₂O₅ system as shown in **Figure 3.1**. The initial conditions of experiments are shown in **Table 3.2**. For the experiments at 1873 K, a certain amount of extra Fe₃P and graphite were added in advance in order to achieve equilibration quickly.

			-		
Na	CaO	SiO ₂	P2O5	2CaO·SiO ₂	3CaO·P ₂ O ₅
No.	/mass%	/mass%	/mass%	/mass%	/mass%
A01	64.7	33.5	1.8	96.0	4.0
A02	64.2	32.1	3.7	92.0	8.0
A03	63.8	30.7	5.5	88.0	12.0
A04	62.9	27.9	9.2	79.9	20.1
A05	61.9	24.4	13.7	70.0	30.0
A06	60.8	20.9	18.3	60.0	40.0
A07	60.0	18.6	21.4	53.3	46.7
A08	58.9	15.2	25.9	43.5	56.5
A09	57.9	11.9	30.2	34.0	66.0
A10	56.9	8.7	34.4	25.0	75.0

Table 3.1 Initial compositions of tablets.

A11	55.8	5.2	39.0	15.0	85.0
A12	54.8	1.7	43.5	5.0	95.0
A13	54.2	0.0	45.8	0.0	100.0
B01	64.2	32.1	3.7	92.0	8.0
B02	62.9	27.9	9.2	80.0	20.0
B03	61.9	24.4	13.7	70.0	30.0
B04	60.8	20.9	18.3	60.0	40.0
B05	59.7	17.4	22.9	50.0	50.0
B06	58.6	13.9	27.5	40.0	60.0
B07	57.5	10.4	32.1	30.0	70.0
B08	56.4	7.0	36.6	20.0	80.0
B09	55.3	3.5	41.2	10.0	90.0
B10	54.2	0.0	45.8	0.0	100.0

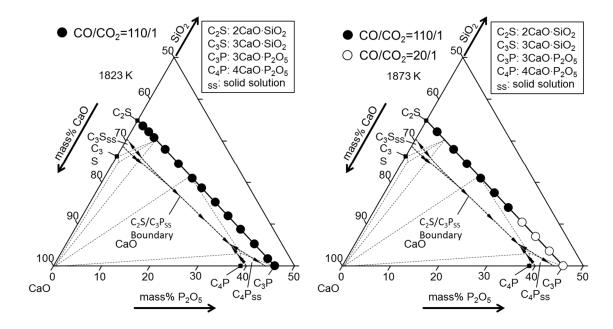


Fig. 3.1 Initial compositions of tablets on the CaO-SiO₂-P₂O₅ system. The boundary and tie lines in the phase diagram were determined at 1773 K by Gutt.^[1]

No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g	Graphite/g	Fe ₃ P/g
A01	1823	110/1	12.2836	2.4374	-	-
A02	1823	110/1	12.5552	1.9562	-	-
A03	1823	110/1	12.3017	2.0486	-	-
A04	1823	110/1	12.4715	1.6639	-	-
A05	1823	110/1	12.5124	1.9128	-	-
A06	1823	110/1	12.3383	1.8027	-	-
A07	1823	110/1	12.2874	1.7594	-	-
A08	1823	110/1	12.4077	1.7399	-	-
A09	1823	110/1	12.3856	1.8787	-	-
A10	1823	110/1	12.4528	1.7791	-	-
A11	1823	110/1	12.2444	1.8229	-	-
A12	1823	110/1	12.3040	1.8574	-	-
A13	1823	110/1	12.5713	1.9685	-	-
B01	1873	110/1	9.9630	1.4345	0.1848	0.0050
B02	1873	110/1	9.7859	1.4597	0.1855	0.0172
B03	1873	110/1	9.8078	1.4825	0.1866	0.0253
B04	1873	110/1	9.7786	1.4849	0.1866	0.0354
B05	1873	110/1	9.4885	1.4359	0.1854	0.3410
B06	1873	110/1	9.1414	1.5038	0.1851	0.6904
B07	1873	20/1	9.9741	1.5125	0.0310	0.1160
B08	1873	20/1	9.5852	1.5226	0.0102	0.4361
B09	1873	20/1	9.0478	1.5082	0.0163	1.0591
B10	1873	20/1	7.5935	1.4970	0.0203	2.4391

Table 3.2 Initial conditions of experiments.

3.3 Experimental results

3.3.1 Chemical compositions of Fe and tablet

The concentration of P in Fe and the contents of P₂O₅, SiO₂, CaO, MgO and FeO in tablet after reaction are shown from **Table 3.3** to **Table 3.8**. The dilution ratio was based on that the weighted sample dissolved into a 100 mL volumetric flask was defined as 1. In Tables 3.6, 3.7 and 3.8, the values of Test/ppm were the concentrations of Ca, Mg and Fe in the solution measured by ICP-OES. **Table 3.9** summarized the analyzed the concentration of P in Fe and the compositions of tablets. Since the inevitable analytical error, the total mass% is not 100 but near to 100.

	Weight	Dilution	Cell		P in Fe	Ave P
No.	/mg	ratio	/mm	ABS	/mass%	/mass%
4.01	985.7	0.5	10	0.140	0.00274	0.00076
A01 -	995.4	0.5	10	0.143	0.00278	0.00276
4.02	1140.7	0.5	10	0.164	0.00281	0.00282
A02 -	1186.0	0.5	10	0.170	0.00282	0.00282
4.02	998.7	0.5	10	0.250	0.00506	0.00.001
A03 —	949.1	0.5	10	0.235	0.00496	0.00501
4.0.4	1205.5	10	20	0.096	0.0078	0.0001
A04 -	1133.6	10	20	0.097	0.0084	0.0081
A05	1160.6	10	20	0.074	0.0059	0.0059
	1092.5	10	20	0.130	0.0123	
A06 —	1092.5	10	20	0.128	0.0121	0.0124
	1138.6	10	20	0.139	0.0126	0.0124
	1138.6	10	20	0.139	0.0126	
A07	1007.4	10	20	0.163	0.0172	0.0175

Table 3.3 Concentration of P in Fe.

	1003.6	10	20	0.168	0.0177	
4.00	1124.7	10	20	0.241	0.0235	0.0220
A08 –	1126.5	10	20	0.247	0.0241	0.0238
1.00	1010.2	10	20	0.166	0.0174	0.0170
A09 –	893.5	10	20	0.154	0.0181	0.0178
4.10	993.2	50	20	0.202	0.110	0 111
A10 -	995.8	50	20	0.206	0.112	- 0.111
A 1 1	804.0	50	20	0.189	0.126	0.100
A11 -	996.5	50	20	0.236	0.129	0.128
A 10	1065.7	50	20	0.267	0.138	0.15
A12 -	1063.8	50	20	0.309	0.162	0.15
4.10	998.2	50	20	0.420	0.237	0.001
A13 -	996.5	50	20	0.362	0.204	0.221
D01	1017.6	10	20	0.188	0.0199	0.0201
B01 -	1021.3	10	20	0.192	0.0203	
D02	1002.3	20	20	0.228	0.0497	0.0409
B02 -	1038.3	20	20	0.237	0.0499	0.0498
D02	993.5	50	20	0.199	0.108	0.100
B03 -	1010.0	50	20	0.204	0.109	0.109
D04	1017.3	100	20	0.247	0.266	0.2(1
B04 -	993.6	100	20	0.232	0.256	0.261
D05	521.9	200	20	0.166	0.674	0.661
B05 -	502.7	200	20	0.155	0.648	0.661
DOC	609.8	400	20	0.177	1.24	1.20
B06 -	694.3	400	20	0.203	1.27	1.26
D07	678.5	50	20	0.169	0.133	0.127
B07 –	626.6	50	20	0.144	0.120	0.127

DAQ	934.0	200	20	0.246	0.578	- 0.557
B08 –	878.0	200	20	0.216	0.535	0.337
D00	472.6	500	20	0.136	1.49	1.40
B09 –	610.2	500	20	0.170	1.48	- 1.49
D10	571.6	1000	20	0.188	3.53	2.52
B10 —	496.2	1000	20	0.164	3.51	3.52

Annotation: the analysis data was based on the calibration curve: ABS= $0.8517 \times C_P(ppm)+0.016$ for the phosphomolybdate blue spectrophotometric method, ABS= $0.2367 \times C_P(ppm)+0.012$ for the molybdenum-blue spectrophotometric solvent extraction method. The samples tested with the 20 mm cell was analyzed by the phosphomolybdate blue spectrophotometric method. The samples tested with the 10 mm cell was analyzed by the molybdenum-blue spectrophotometric solvent extraction method.

	Weight	Dilution	Cell		P ₂ O ₅	Ave P ₂ O ₅
No.	/mg	ratio	/mm	ABS	/mass%	/mass%
4.01	101.3	50	20	0.142	1.83	1.02
A01 -	102.0	50	20	0.143	1.83	1.83
A 0.2	105.6	50	20	0.288	3.58	2 50
A02 -	102.7	50	20	0.282	3.60	3.59
A03 -	105.9	50	20	0.440	5.46	5 4 4
A05 -	102.2	50	20	0.422	5.42	5.44
A 0.4	103.3	100	20	0.357	9.09	0.19
A04 -	101.4	100	20	0.357	9.26	9.18
105	101.9	100	20	0.522	13.5	12.6
A05 -	101.1	01.1 100 20	20	0.524	13.6	13.6
106	102.4	100	20	0.705	18.1	18.2
A06 –	102.7	100	20	0.709	18.2	

Table 3.4 Content of P₂O₅ in tablet after reaction.

4.07	104.5	250	20	0.344	21.6	21.0
A07 -	101.8	250	20	0.340	21.9	21.8
100	104.0	200	20	0.506	25.6	25.5
A08 -	105.6	200	20	0.510	25.4	25.5
A09 -	103.3	250	20	0.475	30.2	30.2
A09 -	103.0	250	20	0.473	30.2	50.2
A10 -	106.3	250	20	0.515	31.8	31.9
Alt	102.8	250	20	0.500	32.0	51.9
A11 -	100.4	250	20	0.568	37.2	37.2
	101.4	250	20	0.574	37.2	51.2
A12 -	103.0	500	20	0.337	43.0	43.4
A12	103.1	500	20	0.343	43.7	тт
A13 -	105.2	500	20	0.366	45.7	45.8
A15	103.7	500	20	0.362	45.8	чэ.0
B01 -	100.3	50	20	0.263	3.44	3.47
D 01	99.9	50	20	0.266	3.50	5.77
B02 -	100.9	100	20	0.328	8.53	8.6
D02	102.6	100	20	0.338	8.66	0.0
B03 -	102.8	100	20	0.469	12.0	12.1
D03	101.0	100	20	0.463	12.1	12.1
B04 -	101.9	250	20	0.259	16.7	16.8
D04	100.4	250	20	0.259	16.9	10.8
B05 -	99.3	200	20	0.406	21.5	21.6
D03	100.2	200	20	0.411	21.6	21.0
B06 -	100.9	200	20	0.485	25.3	25.3
000	99.8	200	20	0.479	25.2	20.0
B07 -	100.1	200	20	0.607	31.9	31.8
107	99.8	200	20	0.602	31.7	51.0

D09	99.8	200	20	0.688	36.3	26.2		
B08 —	99.6	200	20	0.688	36.3	- 36.3		
	102.9	250	20	0.650	41.6	41.0		
B09 -	98.4	250	20	0.630	42.1	- 41.9		
D10	99.5	250	20	0.704	46.6	16.5		
B10 -	100.6	250	20	0.709	46.4	- 46.5		
Annotati	on: the	analysis data	was	based on	the ca	libration curve:		
ABS=0.8	ABS= $0.8692 \times C_P(\text{ppm}) + 0.001.$							

Table 3.5 Content of SiO_2 in tablet after reaction.

No.	Weight (1)	Crucible	Weight (2)	Weight (3)	SiO ₂	Ave SiO ₂
INO.	/mg	/g	/g	/g	/mass%	/mass%
A01	101.3	23.88375	23.91909	23.88600	32.67	32.78
A01	102.0	23.94926	23.98384	23.95030	32.88	32.78
A02	105.6	23.88691	23.91986	23.88678	31.33	31.26
A02	102.7	23.95081	23.98330	23.95127	31.19	51.20
A03	105.9	23.88436	23.91620	23.88471	29.74	29.61
A05	102.2	23.94974	23.98012	23.95000	29.47	29.01
A04	103.3	23.88476	23.91555	23.88762	27.04	27.32
A04	101.4	23.95050	23.97960	23.95162	27.59	21.32
A05	101.9	23.88527	23.91188	23.88710	24.32	23.85
A03	101.1	23.95095	23.97526	23.95162	23.38	23.83
A06	102.4	23.88706	23.90644	23.88721	18.78	19.74
A00	102.7	23.94970	23.97326	23.95200	20.70	19.74
A07	104.5	23.88572	23.90547	23.88597	18.66	18.94
A07	101.8	23.94969	23.96956	23.95000	19.21	10.74
A08	104.0	23.88668	23.90323	23.88786	14.78	14.76

	105.6	23.95097	23.96736	23.95179	14.74	
4.00	103.3	23.88695	23.89852	23.88678	11.36	11 47
A09 -	103.0	23.95038	23.96256	23.95063	11.58	11.47
A 10	106.3	23.88588	23.89614	23.88669	8.890	0.010
A10 -	102.8	23.94997	23.95984	23.95085	8.745	8.818
A 1 1	100.4	23.88407	23.89170	23.88648	5.199	5 150
A11 -	101.4	23.94950	23.95585	23.95066	5.118	5.159
A 1 2	103.0	23.88614	23.88885	23.88695	1.845	1 710
A12 -	103.1	23.95027	23.95239	23.95075	1.591	1.718
D01	100.3	23.88259	23.91439	23.88541	28.89	20.5
B01 -	99.9	23.94606	23.97863	23.94858	30.1	29.5
D02	100.9	23.88390	23.91011	23.88458	25.30	25.00
B02 -	102.6	23.94652	23.97219	23.94667	24.87	25.09
DO2	102.8	23.88398	23.90699	23.88497	21.42	21.00
B03 -	101.0	23.94465	23.96963	23.94687	22.53	21.98
D04	101.9	23.88296	23.90427	23.88444	19.46	10 (7
B04 -	100.4	23.94564	23.96581	23.94585	19.88	19.67
DAG	99.3	23.88136	23.89897	23.88195	17.1	167
B05 -	100.2	23.94354	23.96126	23.94503	16.20	16.7
DOC	100.9	23.88109	23.89358	23.88148	11.99	10.5
B06 -	99.8	23.94359	23.95692	23.94405	12.9	12.5
D07	100.1	23.88044	23.89188	23.88129	10.58	10.0
B07 -	99.8	23.94339	23.95454	23.94362	10.9	10.8
Daa	99.8	23.88188	23.88857	23.88135	7.23	7 10
B08 -	99.6	23.94413	23.95108	23.94398	7.13	7.18
DOO	102.9	23.88097	23.88462	23.88101	3.508	2.40
B09 -	98.4	23.94246	23.94693	23.94353	3.46	3.49

Annotation: the weight (1) is the weight of sample. The weight (2) is the weight of Pt crucible after the filter paper burned. The weight (3) is the weight of crucible after evaporating the SiO₂.

Table 3.6 Content of CaO in tablet after reaction.							
No.	Weight	Dilution	Test	CaO	Ave CaO		
INO.	/mg	ratio	/ppm	/mass%	/mass%		
4.01	102.6	100	4.921	67.10	67 11		
A01 -	101.9	100	4.888	67.11	67.11		
A 0.2	105.6	100	4.531	60.03	60.56		
A02 -	102.7	100	4.484	61.08	60.56		
A 02	103.5	100	4.750	64.21	64.5		
A03 -	97.4	100	4.507	64.7	04.5		
A 0.4	103.3	100	4.571	61.91	(0.(9		
A04 -	101.4	100	4.309	59.45	60.68		
105	101.9	100	4.289	58.88	59.81		
A05 -	101.1	100	4.389	60.73	39.81		
106	102.0	100	4.572	62.71	62.08		
A06 -	104.8	100	4.752	63.44	63.08		
107	101.7	100	4.412	60.69	60.9		
A07 -	99.5	100	4.326	60.8	60.8		
4.09	104.0	100	4.170	56.09	56.66		
A08 -	105.6	100	4.320	57.23	56.66		
4.00	96.2	100	4.059	59.0	50.2		
A09 -	97.2	100	4.128	59.4	59.2		
A10	102.6	100	4.150	56.59	57.1		

SiO₂/mass%=[weight (2) - weight (3)]/[weight (1)]×100000/%

71

	96.2	100	3.955	57.5	
	102.3	100	4.167	56.99	
A11 -	99.8	100	4.107	57.5	57.3
	102.9	100	4.187	56.93	
A12 -			4.187	57.5	57.2
	99.1	100			
A13 -	99.5	100	3.994	56.2	56.4
	98.3	100	3.976	56.6	
B01 -	97.7	100	4.267	61.1	61.1
	101.9	100	4.441	60.97	
B02 -	97.4	100	4.023	57.8	58.0
D02	96.1	100	4.001	58.2	58.0
D02	96.9	100	4.003	57.8	5()
B03 -	96.4	100	3.857	56.0	56.9
D04	95.7	100	3.974	58.1	
B04 -	98.0	100	4.040	57.7	57.9
DOC	96.9	100	3.990	57.6	57 A
B05 -	97.2	100	3.972	57.2	57.4
DOC	96.6	100	3.934	57.0	56.6
B06 -	96.0	100	3.852	56.1	56.6
D07	103.0	100	4.038	54.85	55.26
B07 -	102.3	100	4.070	55.66	55.26
DOQ	100.4	100	3.842	53.54	52 (2
B08 -	103.3	100	3.965	53.7	53.62
DOO	103.6	100	3.948	53.31	50.70
B09 -	102.6	100	3.823	52.13	52.72
D10	100.6	100	3.726	51.82	
B10 -	101.5	100	3.719	51.26	51.54

Na	Weight	Dilution	Test	MgO	Ave MgO
No.	/mg	ratio	/ppm	/mass%	/Mass%
4.01	102.6	1	3.526	0.5699	0.5(50
A01 -	101.9	1	3.452	0.5618	0.5659
A 0.2	105.6	1	3.711	0.5828	0.5893
A02 -	102.7	1	3.689	0.5957	0.3693
A03 -	103.5	1	4.516	0.7236	0.721
A05	97.4	1	4.212	0.717	0.721
A04 -	103.3	1	3.226	0.5179	0.5020
A04	101.4	1	2.972	0.4861	0.3020
105	101.9	1	2.310	0.3760	0.3831
A05 -	101.1	1	2.379	0.3902	
106	102.0	1	2.402	0.3905	0.3966
A06 -	104.8	1	2.544	0.4026	
107	101.7	1	2.911	0.4747	
A07 -	99.5	1	2.861	0.477	0.476
1.00	104.0	1	2.460	0.3923	0.3975
A08 -	105.6	1	2.564	0.4027	0.3973
4.00	96.2	1	1.580	0.272	0 272
A09 -	97.2	1	1.599	0.273	0.273
A 10	102.6	1	4.941	0.7987	Λ 011
A10 -	96.2	1	4.772	0.823	0.811
A 11	102.3	1	2.178	0.3531	0.252
A11 -	99.8	1	2.122	0.353	0.353
A 1 C	102.9	1	1.791	0.2887	0.204
A12 -	99.1	1	1.778	0.298	0.294

Table 3.7 Content of MgO in tablet after reaction.

A 1 2	99.5	1	1.581	0.264	0.200	
A13 -	98.3	1	1.587	0.268	0.266	
D01	97.7	100	0.261	4.43	4 29	
B01 -	101.9	100	0.254	4.134	4.28	
D0 2	97.4	10	2.453	4.18	4.10	
B02 -	96.1	10	2.433	4.20	4.19	
D02	96.9	10	3.288	5.63	5 ((
B03 -	96.4	10	3.305	5.69	5.66	
D04	95.7	10	2.143	3.71	2 (7	
B04 -	98.0	10	2.141	3.62	3.67	
D05	96.9	10	1.621	2.77	2.52	
B05 -	97.2	10	1.560	2.66	2.72	
DAG	96.6	10	1.673	2.87	2.96	
B06 -	96.0	10	1.644	2.84	2.86	
D07	103.0	1	3.124	0.5030	0.5007	
B07 -	102.3	1	3.185	0.5163	0.5097	
DAQ	100.4	1	3.788	0.6257	0 (255	
B08 -	103.3	1	3.894	0.6252	0.6255	
DOO	103.6	1	5.416	0.8670	0.9502	
B09 -	102.6	1	5.156	0.8334	0.8502	
D10	100.6	1	6.851	1.129	1 101	
B10 -	101.5	1	6.565	1.073	1.101	
<i></i>						

Table 3.8 Content of FeO in tablet after reaction.

No	Weight	Dilution	Test	FeO	Ave FeO
No.	/mg	ratio	/ppm	/mass%	/Mass%
A01	102.6	1	1.747	0.2191	0.2164

	101.9	1	1.692	0.2137		
A02 -	105.6	1	2.253	0.2745	0 2527	
	102.7	1	3.454	0.4328	0.3537	
	103.5	1	2.890	0.3593	0.351	
A03 -	97.4	1	2.589	0.342		
4.0.4	103.3	1	2.308	0.2875	0.2988	
A04 -	101.4	1	2.444	0.3101		
4.05	101.9	1	3.831	0.4838	0.4002	
A05 -	101.1	1	3.887	0.4947	0.4893	
100	102.0	1	2.102	0.2652	0.2676	
A06 -	104.8	1	2.199	0.2700		
7	101.7	1	1.866	0.2361	0.021	
A07 -	99.5	1	1.747	0.226	0.231	
4.0.0	104.0	1	2.556	0.3162	0.3276	
A08 –	105.6	1	2.781	0.3389		
	96.2	1	2.246	0.300	0.286	
A09 -	97.2	1	2.051	0.272		
A 10	102.6	1	5.499	0.6896	0.697	
A10 -	96.2	1	5.260	0.704		
A 1 1	102.3	5	3.660	2.302	2 216	
A11 -	99.8	5	3.612	2.33	2.316	
A 1 O	102.9	1	3.501	0.4378	0 425	
A12 -	99.1	1	3.331	0.433	0.435	
A 1 2	99.5	1	3.861	0.499	0 467	
A13 -	98.3	1	3.317	0.434	0.467	
D01	97.7	1	1.285	0.169	0.172	
B01 -	101.9	1	1.406	0.1775	0.173	

B02 -	97.4	1	2.484	0.328	0.331	
	96.1	1	2.498	0.334	0.331	
B03 -	96.9	1	4.345	0.577	0.575	
B03 -	96.4	1	4.295	0.573		
B04 -	95.7	1	2.384	0.321	0.317	
B04 -	98.0	1	2.387	0.313	0.517	
B05 -	96.9	1	2.005	0.266	0.261	
B03 -	97.2	1	1.925	0.255	0.201	
B06 -	96.6	1	2.421	0.322	0.319	
БОО	96.0	1	2.347	0.315		
B07 -	103.0	1	1.734	0.2166	0.2087	
B0/ -	102.3	1	1.596	0.2007		
B08 -	100.4	1	2.307	0.2957	0.2759	
B08 -	103.3	1	2.056	0.2561	0.2739	
B09 -	103.6	1	5.245	0.6514	0.7038	
	102.6	1	6.029	0.7561	0./038	
B10 -	100.6	1	2.384	0.3049	0.3192	
DI0 -	101.5	1	2.631	0.3335	0.3172	

Table 3.9 Compositions of tablets and concentration of P in Fe after reaction.

		-					
No. –		P in Fe					
	P ₂ O ₅	SiO ₂	CaO	MgO	FeO	Total	/mass%
A01	1.83	32.8	67.1	0.566	0.216	102.5	0.00276
A02	3.59	31.3	60.6	0.589	0.354	96.4	0.00282
A03	5.44	29.6	64.5	0.721	0.351	100.6	0.00501
A04	9.18	27.3	60.7	0.502	0.299	98.0	0.0081
A05	13.6	23.9	59.8	0.383	0.489	98.1	0.0059

A06	18.2	19.7	63.1	0.397	0.268	101.7	0.0124
A07	21.8	18.9	60.8	0.476	0.231	102.2	0.0175
A08	25.5	14.8	56.7	0.398	0.328	97.7	0.0238
A09	30.2	11.5	59.2	0.273	0.286	101.5	0.0178
A10	31.9	8.82	57.1	0.811	0.697	99.3	0.111
A11	37.2	5.16	57.3	0.353	2.32	102.3	0.128
A12	43.4	1.72	57.2	0.294	0.436	103.1	0.150
A13	45.8	0	56.4	0.266	0.467	102.9	0.221
B01	3.47	29.5	61.1	4.28	0.174	98.5	0.0201
B02	8.6	25.1	58	4.19	0.331	96.2	0.0498
B03	12.1	22	56.9	5.66	0.575	97.2	0.109
B04	16.8	19.7	57.9	3.67	0.317	98.4	0.261
B05	21.6	16.7	57.4	2.72	0.261	98.7	0.661
B06	25.3	12.5	56.6	2.86	0.319	97.6	1.26
B07	31.8	10.8	55.3	0.51	0.209	98.6	0.127
B08	36.3	7.18	53.6	0.626	0.276	98.0	0.557
B09	41.9	3.49	52.7	0.85	0.704	99.6	1.49
B10	46.5	0	51.5	1.1	0.319	99.4	3.52

3.3.2 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution

The phases of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution were analyzed by XRD as shown from **Figure 3.2** to **3.19**. In all samples the CaO, SiO₂ and P₂O₅ phases were not detected. For some compositions the phase at low temperature was detected since the eutectoid appeared during quenching. From **Figure 3.2** to **3.19**, the detected phases were marked and the rest phase was considered as the 2CaO·SiO₂-3CaO·P₂O₅ solid solution.

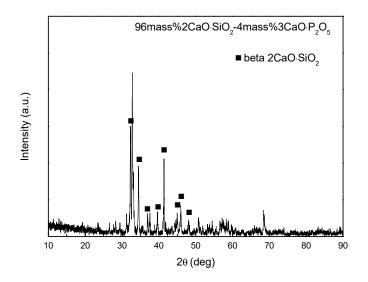


Fig. 3.2 XRD pattern of the 96mass%2CaO·SiO₂-4mass%3CaO·P₂O₅ solid solution.

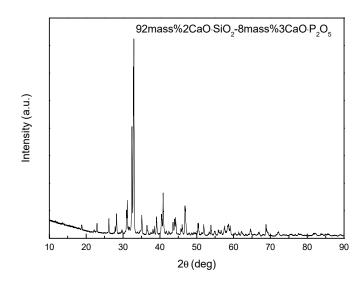


Fig. 3.3 XRD pattern of the 92mass%2CaO·SiO₂-8mass%3CaO·P₂O₅ solid solution.

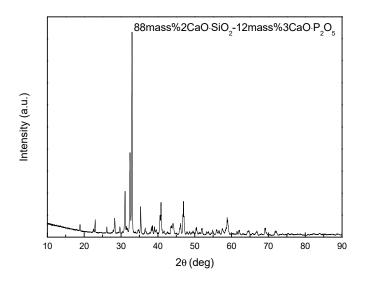


Fig. 3.4 XRD pattern of the 88mass%2CaO·SiO₂-12mass%3CaO·P₂O₅ solid solution.

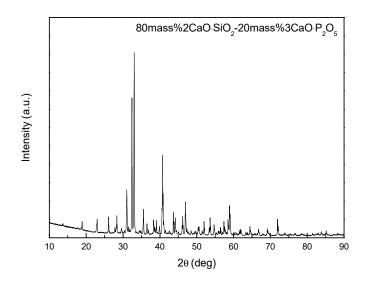


Fig. 3.5 XRD pattern of the 80mass%2CaO·SiO₂-20mass%3CaO·P₂O₅ solid solution.

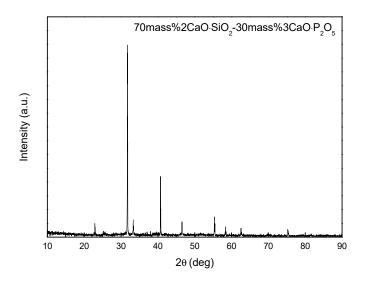


Fig. 3.6 XRD pattern of the 70mass%2CaO·SiO₂-30mass%3CaO·P₂O₅ solid solution.

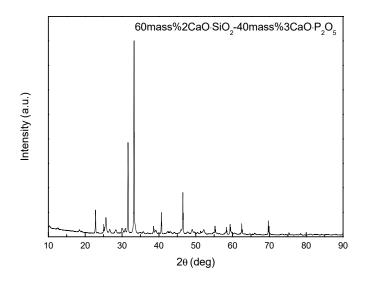


Fig. 3.7 XRD pattern of the 60mass%2CaO·SiO₂-40mass%3CaO·P₂O₅ solid solution.

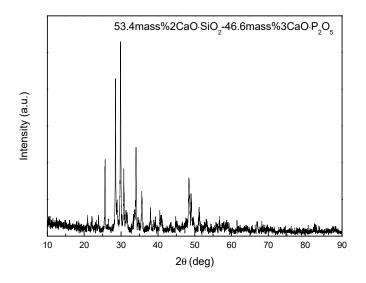


Fig. 3.8 XRD pattern of the 53.4mass%2CaO·SiO₂-46.6mass%3CaO·P₂O₅ solid solution.

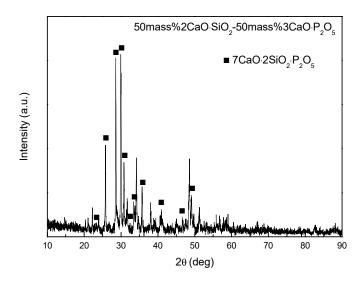


Fig. 3.9 XRD pattern of the 50mass%2CaO·SiO₂-50mass%3CaO·P₂O₅ solid solution.

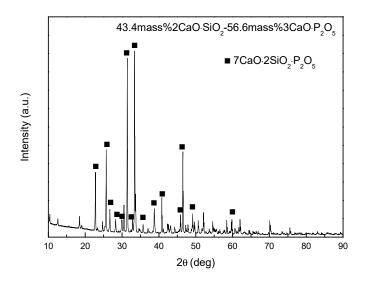


Fig. 3.10 XRD pattern of the 43.4mass%2CaO·SiO₂-56.6mass%3CaO·P₂O₅ solid solution.

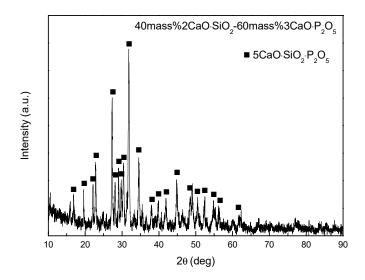


Fig. 3.11 XRD pattern of the 40mass%2CaO·SiO₂-60mass%3CaO·P₂O₅ solid solution.

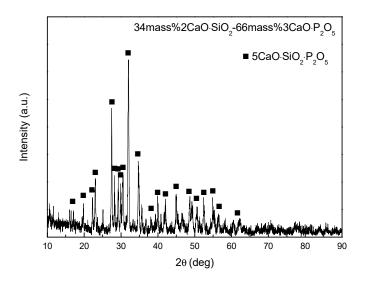


Fig. 3.12 XRD pattern of the 34mass%2CaO·SiO₂-66mass%3CaO·P₂O₅ solid solution.

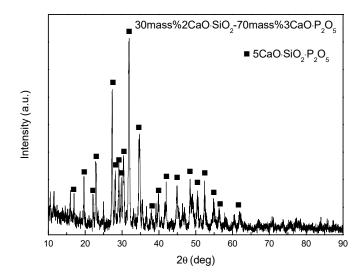


Fig. 3.13 XRD pattern of the 30mass%2CaO·SiO₂-70mass%3CaO·P₂O₅ solid solution.

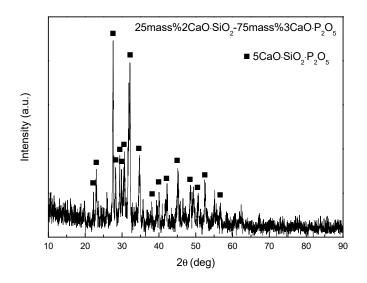


Fig. 3.14 XRD pattern of the 25mass%2CaO·SiO₂-75mass%3CaO·P₂O₅ solid solution.

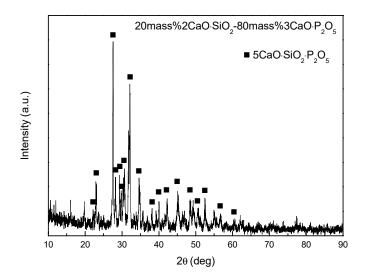


Fig. 3.15 XRD pattern of the 20mass%2CaO·SiO₂-80mass%3CaO·P₂O₅ solid solution.

Fig. 3.16 XRD pattern of the 15mass%2CaO·SiO₂-85mass%3CaO·P₂O₅ solid solution.

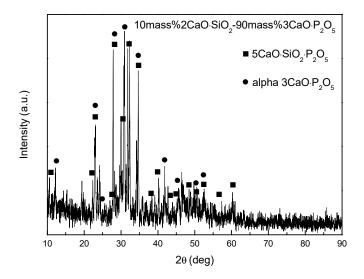


Fig. 3.17 XRD pattern of the 10mass%2CaO·SiO₂-90mass%3CaO·P₂O₅ solid solution.

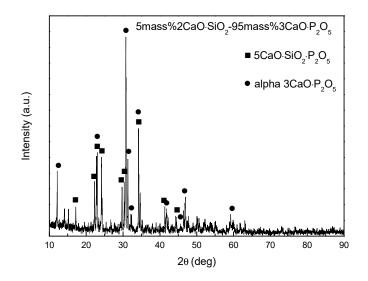


Fig. 3.18 XRD pattern of the 5mass%2CaO·SiO₂-95mass%3CaO·P₂O₅ solid solution.

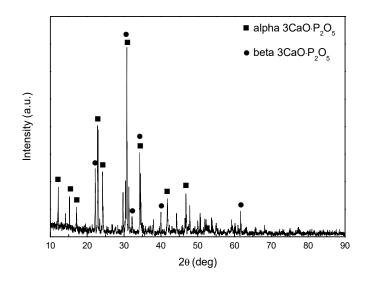


Fig. 3.19 XRD pattern of the pure 3CaO·P₂O₅.

3.3.3 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution after reaction

The phases of tablet after reaction were analyzed by XRD as shown from **Figures 3.20** to **3.42**. The XRD pattern after reaction was almost the same comparing with that before reaction. For some samples, the MgO phase was detected since the tablets were contaminated with the MgO crucible particles during separate from the solidified steel in the MgO crucible.

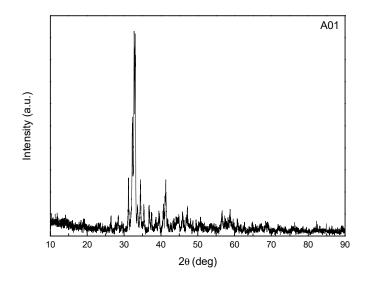


Fig. 3.20 XRD pattern of sample A01 after reaction.

Fig. 3.21 XRD pattern of sample A02 after reaction.

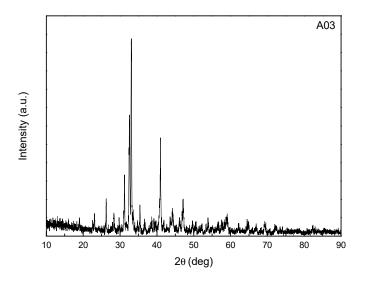


Fig. 3.22 XRD pattern of sample A03 after reaction.

Fig. 3.23 XRD pattern of sample A04 after reaction.

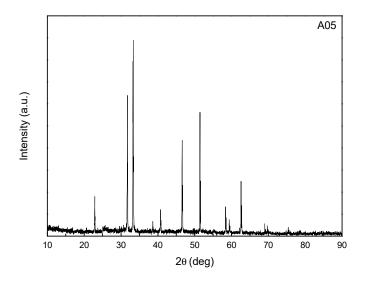


Fig. 3.24 XRD pattern of sample A05 after reaction.

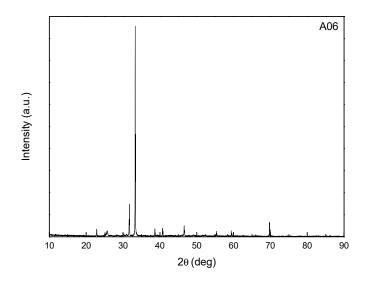


Fig. 3.25 XRD pattern of sample A06 after reaction.

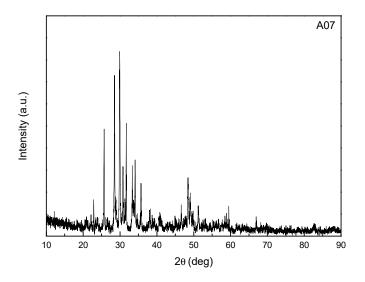


Fig. 3.26 XRD pattern of sample A07 after reaction.



Fig. 3.27 XRD pattern of sample A08 after reaction.

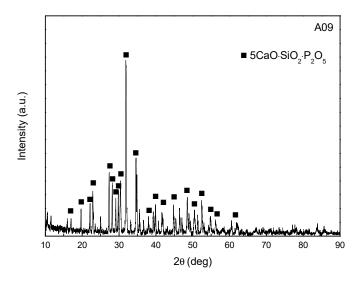


Fig. 3.28 XRD pattern of sample A09 after reaction.

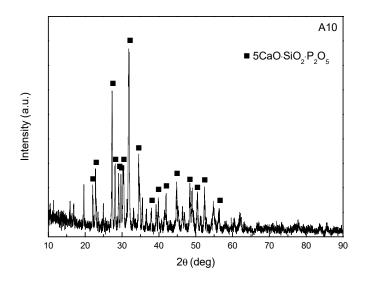


Fig. 3.29 XRD pattern of sample A10 after reaction.

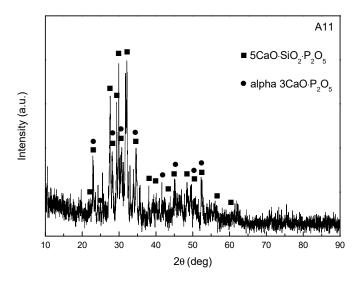


Fig. 3.30 XRD pattern of sample A11 after reaction.

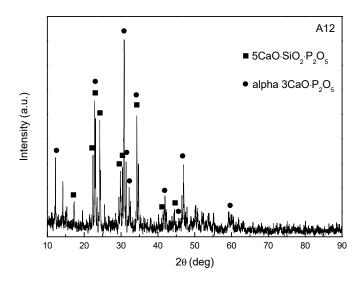


Fig. 3.31 XRD pattern of sample A12 after reaction.

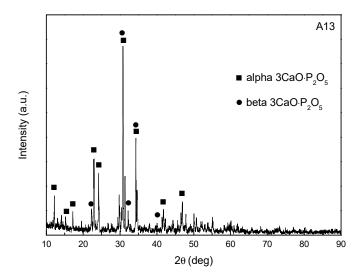


Fig. 3.32 XRD pattern of sample A13 after reaction.

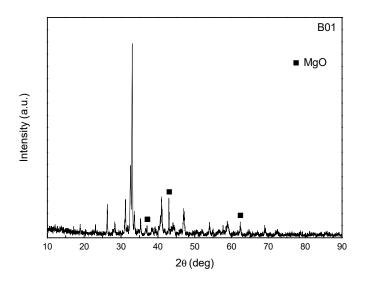


Fig. 3.33 XRD pattern of sample B01 after reaction.

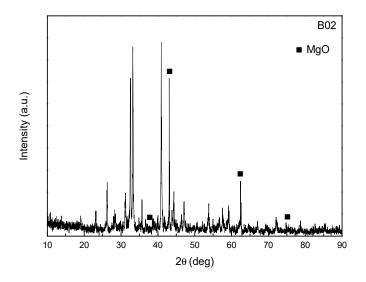


Fig. 3.34 XRD pattern of sample B02 after reaction.

Fig. 3.35 XRD pattern of sample B03 after reaction.

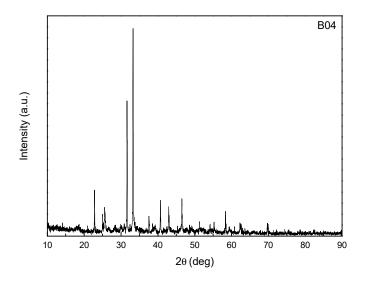


Fig. 3.36 XRD pattern of sample B04 after reaction.

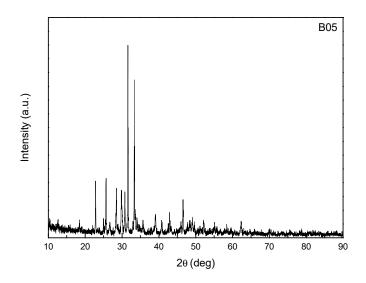


Fig. 3.37 XRD pattern of sample B05 after reaction.

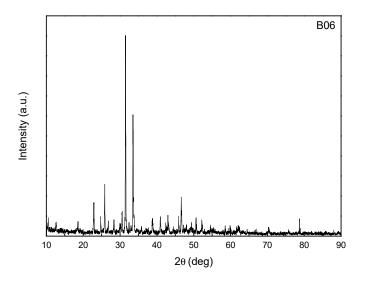


Fig. 3.38 XRD pattern of sample B06 after reaction.

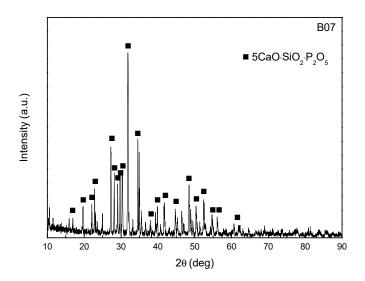


Fig. 3.39 XRD pattern of sample B07 after reaction.

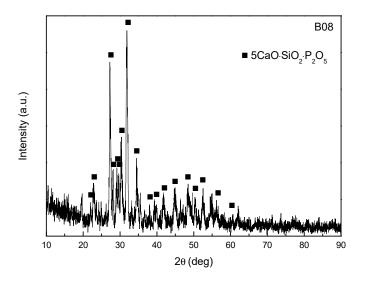


Fig. 3.40 XRD pattern of sample B08 after reaction.

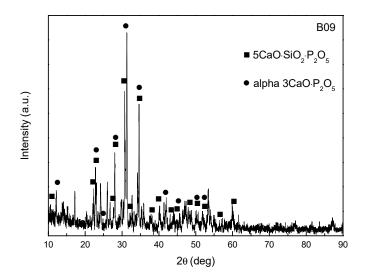


Fig. 3.41 XRD pattern of sample B09 after reaction.

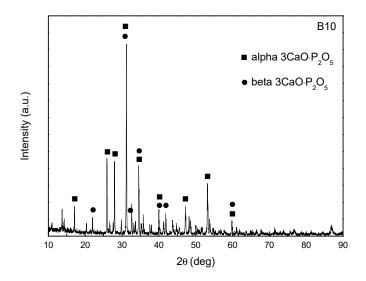


Fig. 3.42 XRD pattern of sample B10 after reaction.

3.4 Discussion

From the analyzed compositions shown in Table 3.9, the mole fraction of $3CaO \cdot P_2O_5$, P_2O_5 and FeO after reaction were shown in **Table 3.10**. The content of $3CaO \cdot P_2O_5$ in the solid solution was calculated from the analyzed P_2O_5 content.

No.	3CaO·P ₂ O ₅ /mol%	P ₂ O ₅ /mol%	FeO/mol%
A01	2.3	0.734	0.170
A02	4.6	1.55	0.300
A03	7.2	2.28	0.287
A04	12.5	4.04	0.257
A05	19.4	6.14	0.432
A06	28.1	8.11	0.234
A07	32.8	9.89	0.205
A08	42.2	12.5	0.315
A09	52.6	14.6	0.271
A10	60.5	16.2	0.684
A11	75.3	19.1	2.29
A12	91.4	22.6	0.444
A13	100.0	24.3	0.485
B01	4.7	1.52	0.141
B02	12.7	4.01	0.284
B03	18.9	5.81	0.496
B04	26.5	8.00	0.281
B05	35.4	10.5	0.238
B06	46.1	12.8	0.302
B07	55.5	16.1	0.207

Table 3.10 Compositions of tablets after reaction.

B08	68.2	19.2	0.285
B09	83.6	22.8	0.741
B10	100.0	26.3	0.348

The compositions were projected on the CaO-SiO₂-P₂O₅ phase diagram as shown in **Figure 3.43**. The compositions after reaction changed from the initial compositions, but no liquid phase was observed for all the samples.

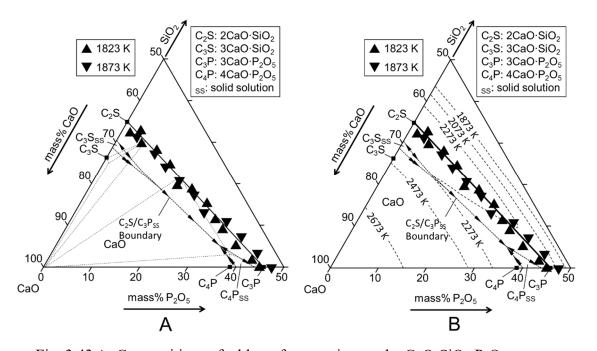


Fig. 3.43 A: Compositions of tablets after reaction on the CaO-SiO₂-P₂O₅ system.B: Compositions of tablets after reaction on the liquidus surface of CaO-SiO₂-P₂O₅ system.^[2]

3.4.1 Contents of FeO and MgO in the tablet after reaction

Figure 3.44 shows the relationship between the P₂O₅ content and the FeO and MgO contents in tablet after reaction. For most samples, the contents of FeO and MgO were smaller than 1 mass%. The contents of FeO and MgO barely changed with the increase of P₂O₅ content. Since the tablet was contaminated with more or less MgO crucible particles and metallic iron particles when the tablet was separated from the surface of solidified iron in the MgO crucible, contents of FeO and MgO were larger for some samples.

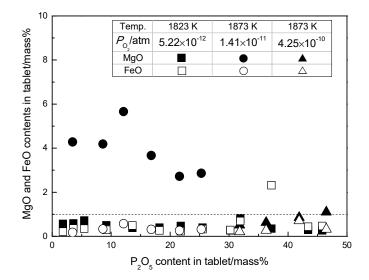


Fig. 3.44 Contents of FeO and MgO in the tablet after reaction.

3.4.2 Activity coefficient of FeO in the tablet after reaction

Since the oxygen partial pressure was controlled by the mixture of CO and CO₂ gases and the tablet was equilibrium with molten iron, the activity of FeO in the tablet was constant at a certain temperature and oxygen partial pressure. The activity of FeO was calculated by Eq. (3.1) and the oxygen partial pressure listed in Table 2.2.

FeO(l) = Fe(l) +
$$1/2 O_2(g)$$

 $\Delta G_{3.1}^{\circ} = 256000 - 53.68T \text{ J/mol} \dots \dots (3.1)^{[3]}$

At 1823 K with the oxygen partial pressure of 5.22×10^{-12} atm, the activity of FeO relative to hypothetical pure liquid FeO is 6.72×10^{-11} . At 1873 K with the oxygen partial pressure of 1.41×10^{-11} atm, the activity of FeO is 1.74×10^{-10} . At 1873 K with the oxygen partial pressure of 4.25×10^{-10} atm, the activity of FeO is 9.51×10^{-10} . The activity coefficient of FeO was calculated and shown in **Figure 3.45** and **Table 3. 11** as a function of $3CaO \cdot P_2O_5$ content in the solid solution.

At a certain temperature and oxygen partial pressure, the activity coefficient of FeO was almost constant. The activity coefficient of FeO with the oxygen partial pressure of 1.41×10^{-11} atm at 1873 K was larger than that with the oxygen partial pressure of 5.22×10^{-12} atm at 1823 K and smaller than that with the oxygen partial pressure of 4.25×10^{-10} atm at 1873 K.

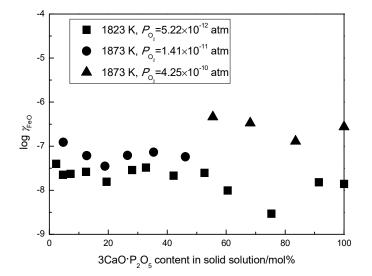


Fig. 3.45 Activity coefficient of FeO in tablet after reaction.

No.	γ _{FeO}	(mass%P) [mass%P]	$a_{P_2O_5}$	$\gamma_{P_2O_5}$
A01	3.96×10 ⁻⁸	2.84×10^{2}	2.74×10 ⁻²⁵	3.73×10 ⁻²³
A02	2.24×10 ⁻⁸	5.82×10^{2}	2.86×10 ⁻²⁵	1.84×10 ⁻²³
A03	2.34×10 ⁻⁸	4.76×10^{2}	9.06×10 ⁻²⁵	3.97×10 ⁻²³
A04	2.61×10 ⁻⁸	5.1×10 ²	2.4×10 ⁻²⁴	5.9×10 ⁻²³
A05	1.56×10 ⁻⁸	1.0×10 ³	1.3×10 ⁻²⁴	2.0×10 ⁻²³
A06	2.87×10 ⁻⁸	6.35×10^2	5.59×10 ⁻²⁴	6.90×10 ⁻²³
A07	3.27×10 ⁻⁸	5.36×10 ²	1.12×10 ⁻²³	1.13×10 ⁻²²
A08	2.13×10 ⁻⁸	4.82×10^{2}	2.09×10 ⁻²³	1.67×10 ⁻²²
A09	2.48×10 ⁻⁸	7.34×10^{2}	1.16×10 ⁻²³	7.95×10 ⁻²³
A10	9.82×10 ⁻⁹	1.28×10^{2}	4.97×10 ⁻²²	3.07×10 ⁻²¹
A11	2.93×10 ⁻⁹	1.27×10^{2}	6.73×10 ⁻²²	3.52×10 ⁻²¹
A12	1.51×10 ⁻⁸	1.23×10^{2}	9.46×10 ⁻²²	4.19×10 ⁻²¹
A13	1.39×10 ⁻⁸	8.85×10^{1}	2.21×10 ⁻²¹	9.11×10 ⁻²¹
B01	1.23×10 ⁻⁷	8.01×10^{1}	1.45×10 ⁻²³	9.55×10 ⁻²²
B02	6.12×10 ⁻⁸	8.22×10^{1}	9.21×10 ⁻²³	2.30×10 ⁻²¹
B03	3.51×10 ⁻⁸	5.33×10 ¹	4.70×10 ⁻²²	8.08×10 ⁻²¹
B04	6.20×10 ⁻⁸	2.99×10 ¹	3.16×10 ⁻²¹	3.95×10 ⁻²⁰
B05	7.30×10 ⁻⁸	1.49×10 ¹	3.09×10 ⁻²⁰	2.95×10 ⁻¹⁹
B06	5.76×10 ⁻⁸	9.29×10^{0}	2.11×10 ⁻¹⁹	1.65×10 ⁻¹⁸
B07	4.59×10 ⁻⁷	1.12×10^{2}	3.10×10 ⁻¹⁸	1.92×10 ⁻¹⁷
B08	3.34×10 ⁻⁷	2.93×10 ¹	9.38×10 ⁻¹⁷	4.88×10 ⁻¹⁶
B09	1.28×10 ⁻⁷	1.25×10^{1}	1.79×10 ⁻¹⁵	7.87×10 ⁻¹⁵
B10	2.73×10 ⁻⁷	5.89×10^{0}	8.53×10 ⁻¹⁴	3.24×10 ⁻¹³

Table 3.11 Thermodynamic data of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution.

3.4.3 Equilibrium concentration of P in molten iron

Figure 3.46 shows the relationship between the equilibrium concentration of P in molten iron and the $3CaO \cdot P_2O_5$ content in the solid solution. The concentration of P in Fe increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. And for a constant composition of solid solution, the equilibrium concentration of P in molten iron with the oxygen partial pressure of 1.41×10^{-11} atm at 1873 K was larger than that with the oxygen partial pressure of 5.22×10^{-12} atm at 1823 K. At 1873 K as the oxygen partial pressure changed from 1.41×10^{-11} atm to 4.25×10^{-10} atm, the equilibrium concentration of P in molten iron decreased.

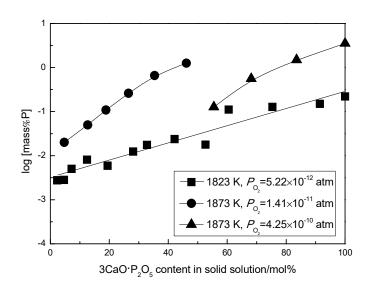


Fig. 3.46 Equilibrium concentration of P in molten iron.

3.4.4 Phosphorus partition ratio between 2CaO·SiO₂-3CaO·P₂O₅ solid solution and molten iron

The phosphorus partition ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and molten iron (mass%P)/[mass%P] was shown in Table 3.11. **Figure 3.47** shows the relationship between the phosphorus partition ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and molten iron and the $3CaO \cdot P_2O_5$ content in the solid solution. The phosphorus partition ratios decreased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution at both temperatures. At 1873 K when the oxygen partial pressure changed from 1.41×10^{-11} atm to 4.25×10^{-10} atm, the phosphorus partition ratio increased.

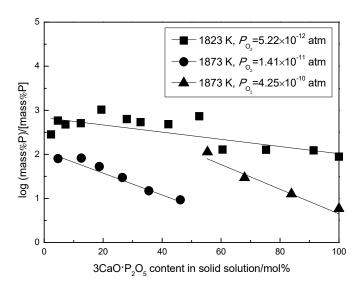


Fig. 3.47 Phosphorus partition ratio between 2CaO·SiO₂-3CaO·P₂O₅ solid solution and molten iron.

3.4.5 Activity of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution

The activity of P_2O_5 was shown in Table 3.11. Figure 3.48 shows the relationship between the activity of P_2O_5 relative to hypothetical pure liquid P_2O_5 in the solid solution and the $3CaO \cdot P_2O_5$ content. The activity of P_2O_5 increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution at 1823 and 1873 K. The activity of P_2O_5 at 1873 K was larger than that at 1823 K.

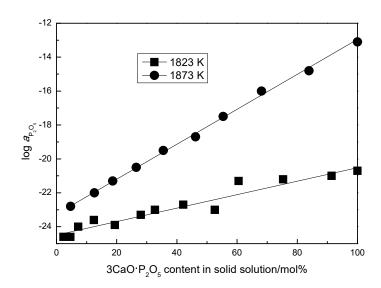


Fig. 3.48 Activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution.

3.4.6 Activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution

Figure 3.49 shows the activity coefficient of P₂O₅ in the solid solution comparing with those reported by Pahlevani *et al.*^[4] and Hasegawa *et al.*^[5] with the values shown in Table 3.11. In Figure 3.49, the mole fraction of P₂O₅ in Pahlevani *et al.*'s research was estimated by the analyzed contents of SiO₂, P₂O₅ and CaO. The dashed line means the pure $3CaO \cdot P_2O_5$ that containing 25 mol% P₂O₅. Due to the analytical error, the P₂O₅ contents for some samples were beyond 25 mol%. The activity coefficient of P₂O₅ in large $3CaO \cdot P_2O_5$ content region increased from about 10^{-20} to 10^{-12} when the temperature increased from 1823 K to 1873 K. At both temperatures, the activity coefficient of P₂O₅ increased with the increase of P₂O₅ content in the solid solution. On the contrary, Pahlevani *et al.* reported that the activity coefficient of P₂O₅ in the solid solution was between 10^{-17} and 10^{-13} . Comparing with the values reported by Pahlevani *et al.*, the current values were smaller. Besides, the activity coefficient of P₂O₅ calculated according to the activity of P₂O₅ measured by Hasegawa *et al.* at 1573 K increased with the increase of P₂O₅ content in the solid solution was between 10^{-17} and 10^{-13} . Comparing with the values reported by Pahlevani *et al.*, the current values were smaller. Besides, the activity coefficient of P₂O₅ calculated according to the activity of P₂O₅ measured by Hasegawa *et al.* at 1573 K increased with the increase of P₂O₅ content in the solid solution and the current values were larger than those because of the higher temperature.

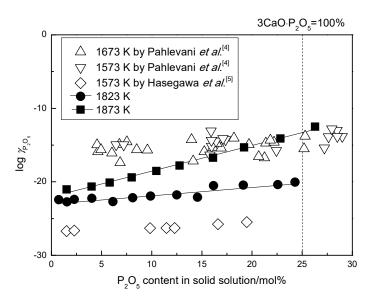


Fig. 3.49 Activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution.

3.5 Summary

By applying chemical equilibration method, the equilibrium of phosphorus between the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution tablet and liquid iron has been measured at 1823 and 1873 K with the oxygen partial pressure of 5.22×10^{-12} atm or 1.41×10^{-11} atm or 4.25×10^{-10} atm. After reaction, the contents of MgO and FeO in tablet were less than 1 mass% for most samples. At a certain temperature and oxygen partial pressure, the activity coefficient of FeO was constant. The equilibrium concentration of P in molten iron increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The phosphorus partition ratio between $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and molten iron decreased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The activity of P_2O_5 relative to hypothetical pure liquid in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution changed from 2.74×10^{-25} to 2.21×10^{-21} at 1823 K and from 1.45×10^{-23} to 8.53×10^{-14} at 1873 K with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ content in the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ content in the increase of the $3CaO \cdot P_2O_5$ content in the increase of the $3CaO \cdot P_2O_5$ content in the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution changed from 1.84×10^{-23} to 9.11×10^{-21} at 1823 K and from 9.55×10^{-22} to 3.24×10^{-13} at 1873 K with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution.

References

- 1. W. Gutt: *Nature*, **197** (1963), 142-143.
- 2. Drewes, E.-J., M. Olette: Arch. Eisenhüttenwes., 30 (1977), 163-175.
- 3. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 7.
- 4. F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: *ISIJ Int.*, **50** (2010), 822-829.
- 5. M. Hasegawa, Y. Kashiwaya and M. Iwase: High Temp. Mater. Proc., 31 (2012), 421-430.

Chapter 4 Thermodynamic Properties of the 2CaO·SiO₂-3CaO·P₂O₅ Solid Solution Containing 8 and 24 mass% CaO at 1823 and 1873 K

4.1 Introduction

Since the excess lime is added into slag for a better effect in practical dephosphorization process, it is necessary to study the thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO. In this chapter, the thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO at 1823 and 1873 K were measured and discussed.

4.2 Experimental conditions

The initial compositions of tablets were the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO as shown in **Table 4.1** and **Figure 4.1**. In Figure 4.1, the tablets with the compositions marked by open circles turned into slag after reaction at 1873 K and the compositions of slag were analyzed by SEM and EDS. The initial conditions of experiments are shown in **Table 4.2**.

	CaO	SiO ₂	P ₂ O ₅	2CaO·SiO ₂	3CaO·P ₂ O ₅	CaO
No.	/mass%	/mass%	/mass%	/mass%	/mass%	/mass%
C01	71.8	21.2	7.0	60.8	15.2	24
C02	70.2	15.9	13.9	45.6	30.4	24
C03	68.5	10.6	20.9	30.4	45.6	24
C04	66.9	5.3	27.8	15.2	60.8	24
C05	66.0	2.7	31.3	7.6	68.4	24
D01	71.8	21.2	7.0	60.8	15.2	24

Table 4.1 Initial compositions of tablets.

D02	70.2	15.9	13.9	45.6	30.4	24
D03	68.5	10.6	20.9	30.4	45.6	24
D04	66.9	5.3	27.9	15.2	60.8	24
D05	66.0	2.7	31.3	7.6	68.4	24
E01	65.9	25.7	8.4	73.6	18.4	8
E02	63.9	19.2	16.9	55.2	36.8	8
E03	61.9	12.8	25.3	36.8	55.2	8
E04	59.9	6.4	33.7	18.4	73.6	8
E05	58.9	3.2	37.9	9.2	82.8	8
F01	65.9	25.7	8.4	73.6	18.4	8
F02	63.9	19.2	16.9	55.2	36.8	8
F03	61.9	12.8	25.3	36.8	55.2	8
F04	59.9	6.4	33.7	18.4	73.6	8
F05	58.9	3.2	37.9	9.2	82.8	8

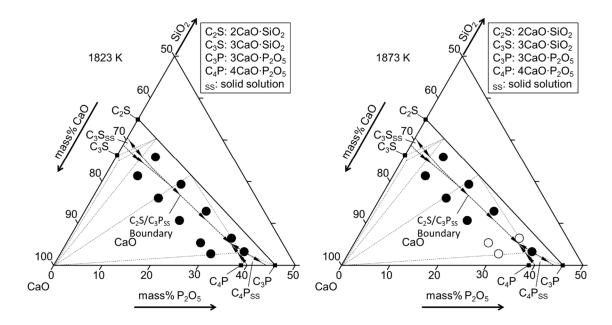


Fig. 4.1 Initial compositions of tablets on the CaO-SiO₂-P₂O₅ system. The boundary and tie lines in the phase diagram were determined at 1773 K by Gutt.^[1]

	th the $2CaO\cdot S_1O_2-3C$	CaO·P ₂ O ₅ solid solution	on containing 24 ma	ss% CaO
No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g
C01	1823	110/1	9.8661	1.4952
C02	1823	110/1	9.9741	1.5155
C03	1823	110/1	11.0208	1.5357
C04	1823	110/1	11.8368	1.3535
C05	1823	110/1	11.4988	1.5821
D01	1873	110/1	10.5323	1.5100
D02	1873	110/1	10.4915	1.5322
D03	1873	110/1	10.0162	1.5185
D04	1873	110/1	10.7550	1.4791
D05	1873	110/1	11.3649	1.4735
Wi	th the 2CaO·SiO ₂ -30	CaO·P2O5 solid soluti	on containing 8 mas	s% CaO
No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g
No. E01	Temp./K 1823	CO/CO ₂ 110/1	Fe/g 11.8083	
				Tablet/g
E01	1823	110/1	11.8083	Tablet/g 1.4959
E01 E02	1823 1823	110/1 110/1	11.8083 9.8845	Tablet/g 1.4959 1.5342
E01 E02 E03	1823 1823 1823	110/1 110/1 110/1	11.8083 9.8845 11.4012	Tablet/g 1.4959 1.5342 1.4815
E01 E02 E03 E04	1823 1823 1823 1823	110/1 110/1 110/1 110/1	11.8083 9.8845 11.4012 11.3510	Tablet/g 1.4959 1.5342 1.4815 1.5311
E01 E02 E03 E04 E05	1823 1823 1823 1823 1823 1823	110/1 110/1 110/1 110/1 110/1	11.8083 9.8845 11.4012 11.3510 10.7208	Tablet/g 1.4959 1.5342 1.4815 1.5311 1.4228 1.4228
E01 E02 E03 E04 E05 F01	1823 1823 1823 1823 1823 1823 1823 1873	110/1 110/1 110/1 110/1 110/1 110/1	11.8083 9.8845 11.4012 11.3510 10.7208 9.9975	Tablet/g 1.4959 1.5342 1.4815 1.5311 1.4228 1.5200
E01 E02 E03 E04 E05 F01 F02	1823 1823 1823 1823 1823 1823 1873	110/1 110/1 110/1 110/1 110/1 110/1 110/1 110/1	11.8083 9.8845 11.4012 11.3510 10.7208 9.9975 9.9044	Tablet/g 1.4959 1.5342 1.4815 1.5311 1.4228 1.5200 1.5163

Table 4.2 Initial conditions of experiments.

4.3 Experimental results

4.3.1 Chemical compositions of Fe and tablet

The concentration of P in Fe, the contents of P₂O₅, SiO₂, CaO, MgO and FeO in tablet after reaction are shown from **Table 4.3** to **4.8**. In Tables 4.6, 4.7 and 4.8, the values of Test/ppm were the concentrations of Ca, Mg and Fe in the solution measured by ICP-OES. **Table 4.9** summarized the analyzed the concentration of P in Fe and the compositions of tablets.

No.	Weight	Dilution ratio	Cell	ABS	P in Fe	Ave P	
110.	/mg		/mm	ADS	/mass%	/mass%	
C01	1041.5	0.5	10	0.227	0.00480	0.00470	
C01 -	1080.7	0.5	10	0.233	0.00477	0.00479	
C03	1077.0	1	10	0.245	0.00914	0.00017	
C02 -	1087.2	1	10	0.249	0.00920	0.00917	
<u>C02</u>	1096.7	10	20	0.166	0.0157	0.0152	
C03 -	1105.4	10	20	0.160	0.0149	0.0153	
C04	1168.8	20	20	0.082	0.0130	0.015	
C04 -	1394.0	20	20	0.113	0.0159	0.013	
C05	1045.8	20	20	0.084	0.0150	0.016	
C05 -	1470.0	20	20	0.116	0.0155	0.016	
D01 -	1006.6	0.5	10	0.238	0.00522	0.00553	
D01 -	984.1	0.5	10	0.261	0.00584	0.00555	
D02	674.8	10	20	0.073	0.0095	0.0002	
D02 -	610.3	10	20	0.065	0.0090	0.0093	
D02	754.4	10	20	0.118	0.0154	0.0150	
D03 -	655.3	10	20	0.100	0.0146	0.0150	
E01	620.4	0.5	10	0.077	0.0027	0.0028	

Table 4.3 Concentration of P in Fe.

	627.2	0.5	10	0.080	0.0028	
E02	922.5	1	10	0.073	0.0035	0.0025
E02 —	1021.9	1	10	0.084	0.0035	0.0035
E02	1272.6	10	20	0.108	0.00825	0.00826
E03 —	1323.9	10	20	0.114	0.00846	0.00836
E04	1271.1	10	20	0.250	0.0212	0.0214
E04 —	1151.6	10	20	0.232	0.0216	0.0214
E05	1042.0	10	20	0.464	0.0498	0.0491
E05 —	986.7	10	20	0.429	0.0484	
E01	1275.6	1	10	0.103	0.00351	0.0036
F01 —	1124.7	1	10	0.095	0.0036	
F02	1017.0	1	10	0.154	0.00664	
F02 —	779.6	1	10	0.119	0.00667	0.00666
F02	1119.4	10	20	0.290	0.0282	0.02(7
F03 —	1054.1	10	20	0.244	0.0250	0.0267
E05	975.2	10	20	0.656	0.0761	0.0724
F05 —	1113.8	10	20	0.695	0.0707	0.0734

Annotation: analysis data based the calibration the was on curve: ABS= $0.8595 \times C_P(\text{ppm}) + 0.018$ for the phosphomolybdate blue spectrophotometric method, $ABS=0.2252 \times C_P(ppm)+0.002$ for the molybdenum-blue spectrophotometric solvent extraction method except sample C02. For sample C02 the calibration curve was adopted as: ABS= $0.2367 \times C_P(\text{ppm})+0.012$. The samples tested with the 20 mm cell was analyzed by the phosphomolybdate blue spectrophotometric method. The samples tested with the 10 mm cell was analyzed by the molybdenum-blue spectrophotometric solvent extraction method.

	Table 4.4 Content of P_2O_5 in tablet after reaction.									
No.	Weight	Dilution	Cell	ABS	P_2O_5	Ave P ₂ O ₅				
110.	/mg	ratio	/mm	AD5	/mass%	/mass%				

C01	101.7	100	20	0.266	6.91	6.04
C01 -	102.9	100	20	0.271	6.97	6.94
C (0 2)	100.9	100	20	0.529	13.8	12.0
C02 -	101.4	100	20	0.529	13.7	13.8
C 02	104.2	100	20	0.794	20.5	20 (
C03 -	102.3	100	20	0.786	20.7	20.6
C04	102.4	200	20	0.538	28.1	28.2
C04 -	103.3	200	20	0.546	28.3	28.2
C05 -	102.8	200	20	0.608	31.7	21.7
C05 -	103.8	200	20	0.610	31.6	31.7
D01	107.4	100	20	0.284	6.99	6 00
D01 -	106.4	100	20	0.280	6.97	6.98
D02 -	101.0	200	20	0.261	13.7	12.9
D02 -	105.7	200	20	0.275	13.8	13.8
D03 -	102.2	200	20	0.393	20.5	20.6
D03	102.2	200	20	0.394	20.6	20.0
E01 -	107.7	100	20	0.352	8.70	8.73
LUI	107.0	100	20	0.352	8.75	8.75
E02 -	104.8	100	20	0.673	17.2	17.2
E02 -	105.3	100	20	0.671	17.1	17.2
E03 -	106.5	200	20	0.527	26.5	26.5
E03	103.7	200	20	0.512	26.5	20.3
E04 -	104.9	200	20	0.680	34.8	34.7
E04	103.8	200	20	0.668	34.6	34.1
E05 -	104.0	250	20	0.590	38.0	38.0
E03	102.5	250	20	0.581	38.0	50.0
F01 -	104.3	100	20	0.337	8.59	8.58
101	106.1	100	20	0.342	8.57	0.00

F02 —	108.3	100	20	0.691	17.2	17.2
	103.0	100	20	0.660	17.2	17.2
E02	102.5	200	20	0.506	26.5	26.5
F03 -	103.6	200	20	0.510	26.4	26.5
F05 —	104.4	250	20	0.594	38.2	29.6
	105.3	250	20	0.612	39.0	38.6

Annotation: the results based on the calibration curve: $ABS=0.8436 \times C_P(ppm)+0.007$ except sample C02 with the calibration curve: $ABS=0.8692 \times C_P(ppm)+0.001$.

Table 4.5 Content of SiO₂ in tablet after reaction.

N	Weight (1)	Crucible	Weight (2)	Weight (3)	SiO ₂	Ave SiO ₂
No.	/mg	/g	/g	/g	/mass%	/mass%
C01	101.7	23.87524	23.89837	23.87666	21.35	21.23
01	102.9	23.93771	23.95958	23.93787	21.10	21.25
C02	100.9	23.87912	23.89431	23.87880	15.37	15.47
C02	101.4	23.94025	23.95547	23.93968	15.57	13.47
C03	104.2	23.87344	23.88728	23.87635	10.49	10.69
003	102.3	23.93652	23.94868	23.93757	10.86	10.68
C04	102.4	23.87509	23.88096	23.87567	5.166	5.187
C04	103.3	23.93645	23.94252	23.93714	5.208	5.187
C05	102.8	23.87444	23.87730	23.87483	2.403	2.469
005	103.8	23.93582	23.93910	23.93647	2.534	2.409
D01	107.4	23.87405	23.89688	23.87468	20.67	20.64
D01	106.4	23.93585	23.95829	23.93637	20.60	20.04
D02	101.0	23.87240	23.88951	23.87254	16.80	16.49
D02	105.7	23.93390	23.95160	23.93450	16.18	10.49
D03	102.2	23.87281	23.88301	23.87302	9.775	9.878

	102.2	23.93458	23.94495	23.93475	9.980	
E01	107.7	23.87136	23.89951	23.87258	25.00	25.05
E01 -	107.0	23.93406	23.96118	23.93432	25.10	25.05
E02 -	104.8	23.87047	23.89158	23.87180	18.87	18.74
E02 -	105.3	23.93259	23.95305	23.93346	18.60	10.74
E03 -	106.5	23.86812	23.88286	23.86840	13.58	13.63
E03 -	103.7	23.93072	23.94500	23.93082	13.67	13.03
E04 -	104.9	23.86871	23.87555	23.86872	6.511	6 5 1 7
E04 -	103.8	23.93048	23.93743	23.93066	6.522	6.517
E05 -	104.0	23.87168	23.87210	23.86871	3.260	2 257
E03 -	102.5	23.93367	23.93367	23.93013	3.454	3.357
E01	104.3	23.87128	23.89862	23.87199	25.53	25.60
F01 -	106.1	23.93318	23.96101	23.93377	25.67	25.60
E0 2	108.3	23.87123	23.89037	23.87163	17.30	17 41
F02 -	103.0	23.93272	23.95157	23.93353	17.51	17.41
E02	102.5	23.86849	23.88217	23.86920	12.65	12 79
F03 -	103.6	23.92984	23.94440	23.93103	12.91	12.78
E05	104.4	23.87128	23.87128	23.86791	3.228	2 262
F05 -	105.3	23.93292	23.93336	23.92989	3.295	3.262
-						

Annotation: the weight (1) is the weight of sample. The weight (2) is the weight of Pt crucible after the filter paper burned. The weight (3) is the weight of crucible after evaporating the SiO₂.

	Table 4.6 Content of CaO in tablet after reaction.							
Na	Weight	Dilution	Test	CaO	Ave CaO			
No.	/mg	ratio	/ppm	/mass%	/mass%			

Table 4.6 Content of CaO in tablet after reaction.

C01 -	101.1	100	4.953	68.54		
	104.4	100	5.031	67.42	67.98	
G 00	97.6	100	4.630	66.4	66.3	
C02 -	98.2	100	4.642	66.1	66.3	
C 02	102.0	100	4.766	65.37	(5.27	
C03 -	102.1	100	4.771	65.37	65.37	
C04	101.2	100	4.549	62.89	(2.(0	
C04 -	100.8	100	4.646	64.48	63.69	
C05	102.0	100	4.589	62.94	(2.45	
C05 -	101.6	100	4.644	63.95	63.45	
D01	104.0	100	5.098	68.58	(9 (2	
D01 -	101.4	100	4.977	68.67	68.63	
D02 -	103.5	100	5.104	68.99	(7.05	
	105.7	100	5.055	66.91	67.95	
D02	103.5	100	4.932	66.67	(5.97	
D03 -	103.1	100	4.795	65.07	65.87	
E01 -	106.3	100	4.734	62.30	62 17	
E01 -	108.3	100	4.802	62.03	62.17	
E0 2	104.7	100	4.349	58.11	58.44	
E02 -	106.0	100	4.452	58.76	38.44	
E02	108.2	100	4.496	58.13	59 27	
E03 -	105.9	100	4.421	58.40	58.27	
E04	106.7	100	4.282	56.14	56 52	
E04 -	103.0	100	4.191	56.92	56.53	
E05	103.9	100	4.304	57.95	57 00	
E05 -	102.6	100	4.228	57.65	57.80	
F01	107.2	100	4.663	60.85	60.19	

	105.2	100	4.476	59.52	
	104.7	100	4.372	58.42	
F02	103.2	100	4.204	56.99	57.71
F03	106.8	100	4.518	59.18	59.13
F03	102.7	100	4.336	59.07	59.15
F05	103.8	100	4.190	56.47	56.85
F03 -	106.4	100	4.352	57.22	56.85

Table 4.7 Content of MgO in tablet after reaction.

N	Weight	Dilution	Test	MgO	Ave MgO
No.	/mg	ratio	/ppm	/mass%	/mass%
C01	101.1	1	2.972	0.4875	0.4990
C01 -	104.4	1	3.075	0.4885	0.4880
C02 -	97.6	1	4.565	0.776	0.771
C02	98.2	1	4.537	0.766	0.771
C03 -	102.0	1	2.248	0.3655	0.3650
0.05	102.1	1	2.244	0.3645	0.3030
C A	101.2	1	1.988	0.3258	0.3305
C04 -	100.8	1	2.037	0.3351	0.3303
C05 -	102.0	1	1.528	0.2484	0.2534
05	101.6	1	1.583	0.2584	0.2334
D01 -	104.0	1	4.120	0.6570	0.6465
D01 -	101.4	1	3.888	0.6359	0.0403
D02	103.5	1	3.323	0.5325	0.5225
D02 —	105.7	1	3.406	0.5344	0.5335
D02	103.5	1	4.612	0.7390	0.7404
D03 —	103.1	1	4.611	0.7417	0.7404

E01 -	106.3	1	1.791	0.2794	0 2785
EUI -	108.3	1	1.812	0.2775	0.2785
E02 -	104.7	1	1.461	0.2314	0.2320
E02 -	106.0	1	1.486	0.2325	0.2320
E03 -	108.2	1	2.537	0.3889	0.3947
E03 -	105.9	1	2.557	0.4004	0.3947
E04 -	106.7	1	1.708	0.2655	0 2672
E04 -	103.0	1	1.671	0.2691	0.2673
E05 -	103.9	1	1.842	0.2940	0.2962
E03 -	102.6	1	1.846	0.2984	0.2902
F01 -	107.2	1	2.502	0.3871	0.3914
F01 -	105.2	1	2.510	0.3957	0.3914
F02 -	104.7	1	2.270	0.3596	0.3565
г02 -	103.2	1	2.199	0.3534	0.5505
F03 -	106.8	1	4.200	0.6522	0.6688
FU3 -	102.7	1	4.244	0.6853	0.0000
F05 -	103.8	1	2.637	0.4213	0.4283
г 0 3 -	106.4	1	2.793	0.4353	0.4283

Table 4.8 Content of FeO in tablet after reaction.

N	Weight	Dilution	Test	FeO	Ave FeO	
No.	/mg	ratio	/ppm	/mass%	/mass%	
C01	101.1	1	3.042	0.3872	0 2022	
C01	104.4	1	3.078	0.3794	0.3833	
<u> </u>	97.6	1	3.329	0.439	0.416	
C02 -	98.2	1	2.994	0.392	0.416	
C03	102.0	1	2.933	0.3700	0.3919	

	102.1	1	3.283	0.4137	
C04	101.2	1	3.663	0.4657	0.4690
C04 -	100.8	1	3.698	0.4721	0.4689
<u> </u>	102.0	1	2.857	0.3604	0.2625
C05 -	101.6	1	2.878	0.3645	0.3625
D01	104.0	1	6.130	0.7584	0.7401
D01 -	101.4	1	5.830	0.7398	0.7491
D02	103.5	1	6.848	0.8514	0.0550
D02 -	105.7	1	7.053	0.8586	0.8550
D02	103.5	1	7.603	0.9452	0.0411
D03 -	103.1	1	7.507	0.9369	0.9411
D 01	106.3	1	6.921	0.8378	0.0411
E01 -	108.3	1	7.107	0.8444	0.8411
E 0 2	104.7	1	7.324	0.9001	0.0057
E02 -	106.0	1	7.506	0.9112	0.9057
E02	108.2	1	5.559	0.6611	0 (220
E03 -	105.9	1	4.993	0.6067	0.6339
E04	106.7	1	2.719	0.3279	0.2266
E04 -	103.0	1	2.763	0.3452	0.3366
E05	103.9	10	1.130	1.399	1 270
E05 -	102.6	10	1.084	1.359	1.379
E01	107.2	10	1.074	1.289	1 075
F01 -	105.2	10	1.031	1.261	1.275
E02	104.7	10	1.723	2.118	2 127
F02 -	103.2	10	1.729	2.156	2.137
F02	106.8	1	2.019	0.2433	0.0470
F03 -	102.7	1	2.001	0.2507	0.2470

F05 -	103.8	1	2.487	0.3083	0.2899
F03 -	106.4	1	2.244	0.2714	0.2899

Table 4.9 Compositions of tablets and concentration of P in Fe after reaction.

No.		P in Fe					
INO.	P_2O_5	SiO ₂	CaO	MgO	FeO	Total	/mass%
C01	6.94	21.23	67.98	0.4880	0.3833	97.0	0.00479
C02	13.8	15.47	66.3	0.771	0.416	96.8	0.00917
C03	20.6	10.68	65.37	0.3650	0.3919	97.4	0.0153
C04	28.2	5.187	63.69	0.3305	0.4689	97.9	0.015
C05	31.7	2.469	63.45	0.2534	0.3625	98.2	0.016
D01	6.98	20.64	68.63	0.6465	0.7491	97.6	0.00553
D02	13.8	16.49	67.95	0.5335	0.8550	99.6	0.0093
D03	20.6	9.878	65.87	0.7404	0.9411	98.0	0.0150
E01	8.73	25.05	62.17	0.2785	0.8411	97.1	0.0028
E02	17.2	18.74	58.44	0.2320	0.9057	95.5	0.0035
E03	26.5	13.63	58.27	0.3947	0.6339	99.4	0.00836
E04	34.7	6.517	56.53	0.2673	0.3366	98.4	0.0214
E05	38.0	3.357	57.80	0.2962	1.379	100.8	0.0491
F01	8.58	25.60	60.19	0.3914	1.275	96.0	0.0036
F02	17.2	17.41	57.71	0.3565	2.137	94.8	0.00666
F03	26.5	12.78	59.13	0.6688	0.2470	99.3	0.0267
F05	38.6	3.262	56.85	0.4283	0.2899	99.4	0.0734

4.3.2 Slag compositions for the samples with the tablet turned into slag after reaction.

The slag compositions for the samples with the tablet turned into slag after reaction as shown in Figure 4.1 marked by the open circles were measured by SEM and EDS. No obvious boundary was observed because of the resolution limit. The slag compositions analyzed by SEM and EDS were shown in **Table 4.10** and projected onto the liquidus surface of the CaO-SiO₂-P₂O₅ system as shown in **Figure 4.2**. There was no dependency between the content of P₂O₅ and the contents of MgO and FeO as shown in **Figure 4.3**. Both solid phase and liquid phase were detected and meanwhile the saturated amount of CaO was detected. Since the lack phase relationship for these three compositions, the further discussion was not conducted in the following content.

No.	P2O5/mass%	SiO ₂ /mass%	CaO/mass%	MgO/mass%	FeO/mass%
D04-01	19.1	4.8	76.1	0.0	0.0
D04-02	20.7	13.2	61.5	0.0	4.6
D04-03	28.4	5.4	58.7	1.6	5.9
D04-04	36.1	4.8	58.3	0.0	0.8
D04-05	31.9	7.7	58.7	0.5	1.2
D04-06	18.5	7.5	67.2	0.1	6.7
D04-07	38.8	0.0	61.0	0.2	0.0
D04-08	32.2	16.2	51.3	0.3	0.0
D04-09	34.4	0.1	64.2	0.0	1.3
D04-10	24.3	10.2	54.8	2.1	8.6
D04-11	32.0	4.7	58.7	1.2	3.4
D04-12	37.8	6.7	52.8	0.2	2.5
D05-01	32.2	0.0	65.1	0.9	1.8
D05-02	36.0	10.5	53.0	0.0	0.5

Table 4.10 Slag compositions of the samples D04, D05 and F04.

D05-03	31.4	11.8	52.1	2.1	2.6
D05-04	21.4	2.7	73.5	1.8	0.6
D05-05	26.4	0.5	71.9	1.2	0.0
D05-06	0.0	0.1	87.9	2.1	9.9
D05-07	33.4	1.1	63.4	2.1	0.0
D05-08	31.8	8.6	58.8	0.5	0.3
D05-09	4.4	0.2	88.2	2.6	4.6
D05-10	33.2	8.2	57.3	0.0	1.3
D05-11	0.0	1.9	90.6	0.3	7.2
D05-12	22.4	6.4	68.2	0.9	2.1
F04-01	31.1	13.0	53.4	0.6	1.9
F04-02	33.1	12.1	53.6	0.0	1.2
F04-03	33.4	12.7	53.0	0.1	0.8
F04-04	31.8	9.6	57.3	1.3	0.0
F04-05	29.2	11.7	58.5	0.6	0.0
F04-06	8.2	2.7	81.3	5.9	1.9
F04-07	0.0	1.8	88.2	1.2	8.8
F04-08	25.3	8.0	65.1	0.1	1.5
F04-09	43.5	2.8	53.7	0.0	0.0
F04-10	37.6	0.6	61.1	0.7	0.0
F04-11	40.3	1.3	56.7	1.1	0.6
F04-12	32.3	12.3	54.5	0.0	0.9

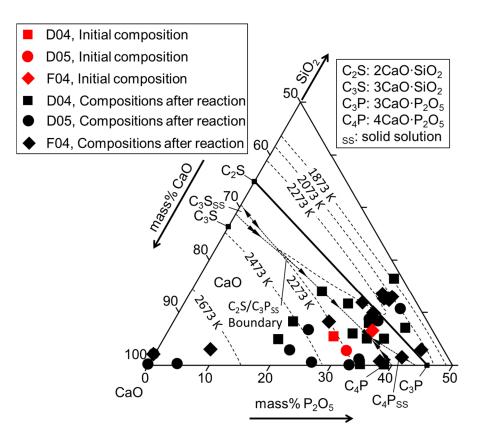


Fig. 4.2 Slag compositions of the samples D04, D05 and F04 on the liquidus surface of the

CaO-SiO₂-P₂O₅ system.^[2]

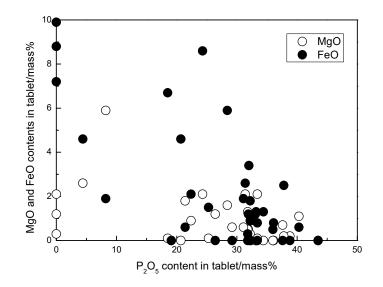


Fig. 4.3 Relationship between the content of P₂O₅ and the contents of MgO and FeO.

4.3.3 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO

The phases of the $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution containing 8 and 24 mass% CaO were analyzed by XRD as shown from **Figure 4.4** to **4.13**. In all samples, the SiO₂ and P₂O₅ phases were undetected, but the CaO phase was detected. The eutectoid appeared during quenching.

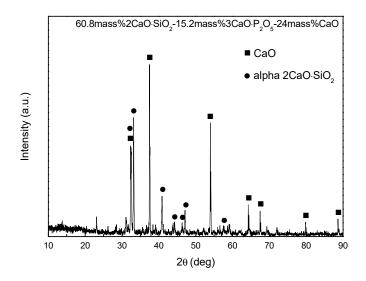


Fig. 4.4 XRD pattern of the 60.8mass%2CaO·SiO₂-15.2mass%3CaO·P₂O₅ solid solution-

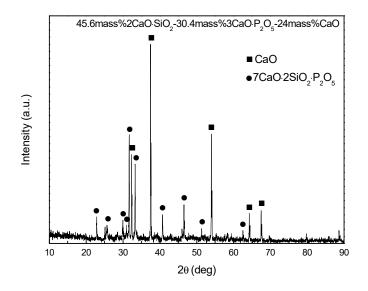


Fig. 4.5 XRD pattern of the 45.6mass%2CaO·SiO₂-30.4mass%3CaO·P₂O₅ solid solution-

24mass%CaO.

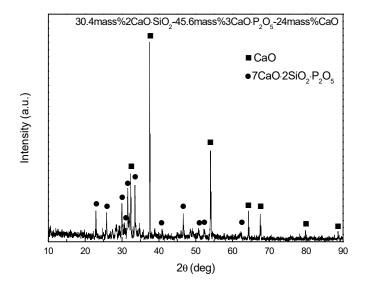


Fig. 4.6 XRD pattern of the 30.4mass%2CaO·SiO₂-45.6mass%3CaO·P₂O₅ solid solution-24mass%CaO.

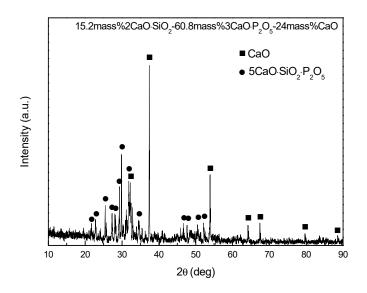


Fig. 4.7 XRD pattern of the 15.2mass%2CaO·SiO₂-60.8mass%3CaO·P₂O₅ solid solution-

24mass%CaO.

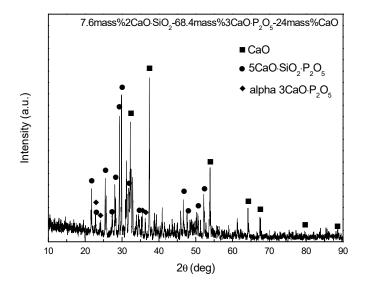


Fig. 4.8 XRD pattern of the 7.6mass%2CaO·SiO₂-68.4mass%3CaO·P₂O₅ solid solution-

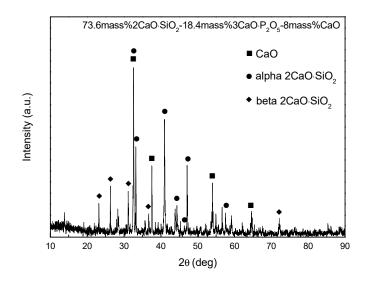


Fig. 4.9 XRD pattern of the 73.6mass%2CaO·SiO₂-18.4mass%3CaO·P₂O₅ solid solution-

8mass%CaO.

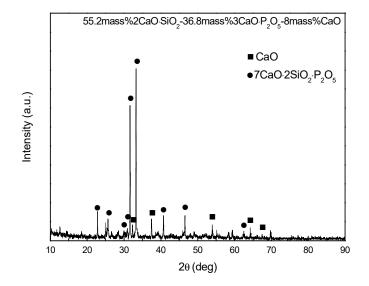


Fig. 4.10 XRD pattern of the 55.2mass%2CaO·SiO₂-36.8mass%3CaO·P₂O₅ solid solution-

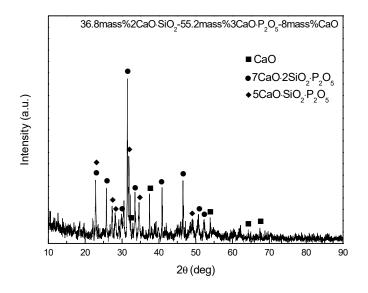


Fig. 4.11 XRD pattern of the 36.8mass%2CaO·SiO₂-55.2mass%3CaO·P₂O₅ solid solution-

8mass%CaO.

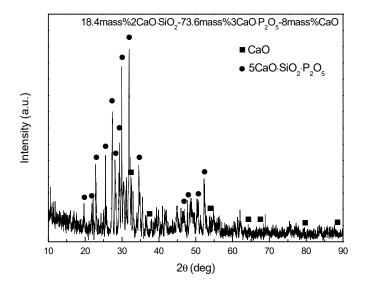


Fig. 4.12 XRD pattern of the 18.4mass%2CaO·SiO₂-73.6mass%3CaO·P₂O₅ solid solution-

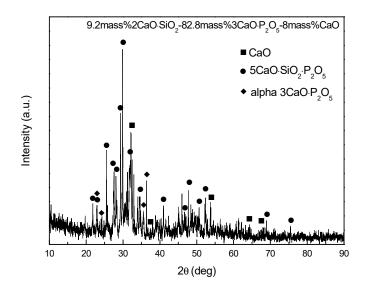


Fig. 4.13 XRD pattern of the 9.2mass%2CaO·SiO₂-82.8mass%3CaO·P₂O₅ solid solution-

4.3.4 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO after reaction

The phases of the tablet after reaction were analyzed by XRD as shown from **Figure 4.14** to **4.30**. The CaO phase was detected in the whole samples except the sample F05. The eutectoid appeared during quenching.

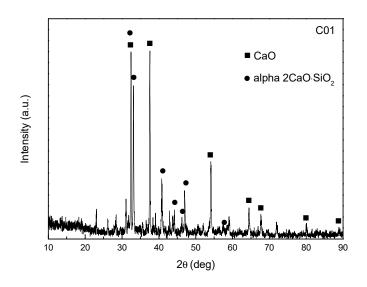


Fig. 4.14 XRD pattern of sample C01 after reaction.

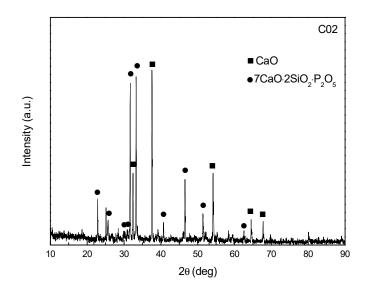


Fig. 4.15 XRD pattern of sample C02 after reaction.

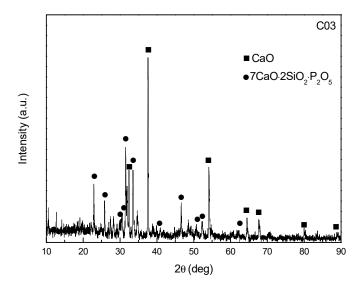


Fig. 4.16 XRD pattern of sample C03 after reaction.

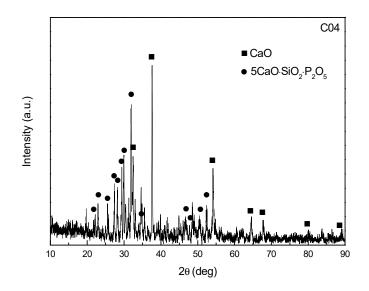


Fig. 4.17 XRD pattern of sample C04 after reaction.

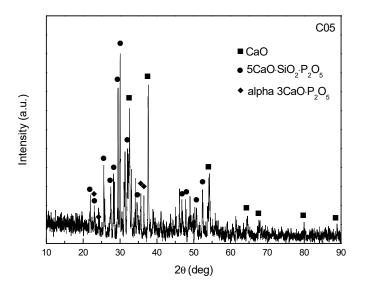


Fig. 4.18 XRD pattern of sample C05 after reaction.

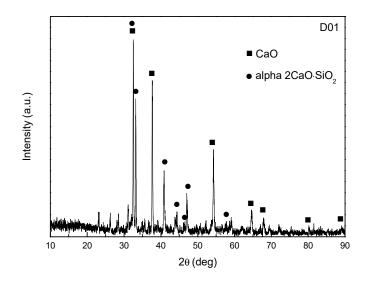


Fig. 4.19 XRD pattern of sample D01 after reaction.

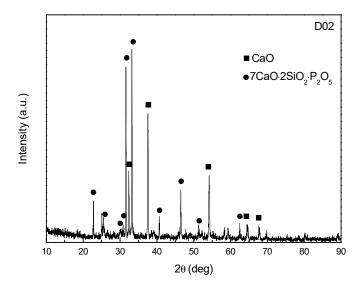


Fig. 4.20 XRD pattern of sample D02 after reaction.

Fig. 4.21 XRD pattern of sample D03 after reaction.

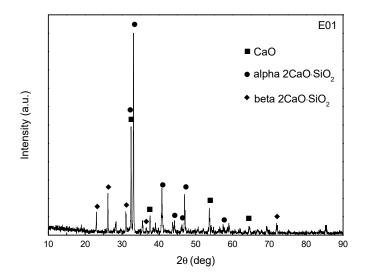


Fig. 4.22 XRD pattern of sample E01 after reaction.

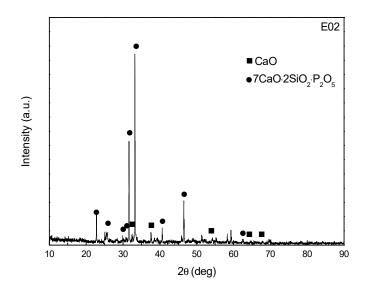


Fig. 4.23 XRD pattern of sample E02 after reaction.

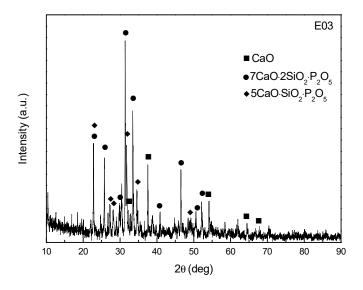


Fig. 4.24 XRD pattern of sample E03 after reaction.

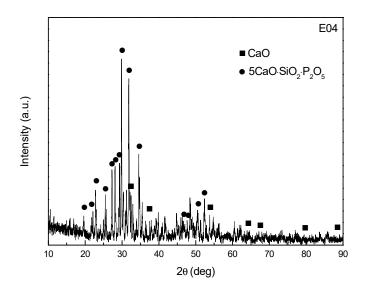


Fig. 4.25 XRD pattern of sample E04 after reaction.

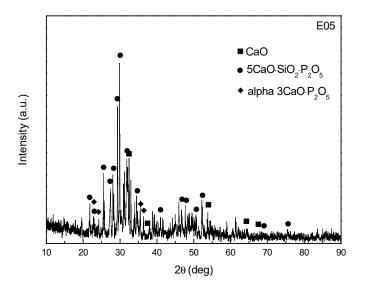


Fig. 4.26 XRD pattern of sample E05 after reaction.

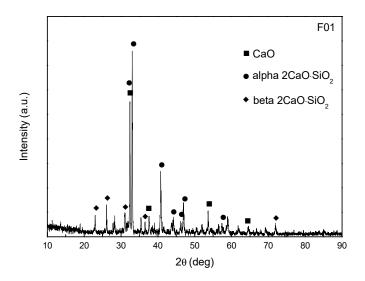


Fig. 4.27 XRD pattern of sample F01 after reaction.

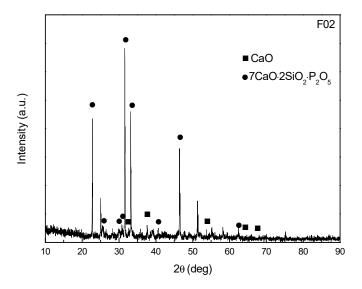


Fig. 4.28 XRD pattern of sample F02 after reaction.

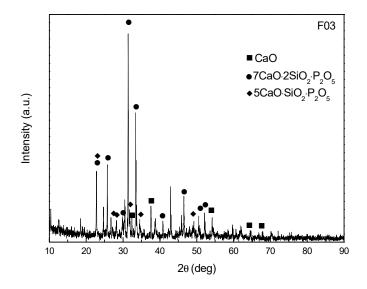


Fig. 4.29 XRD pattern of sample F03 after reaction.

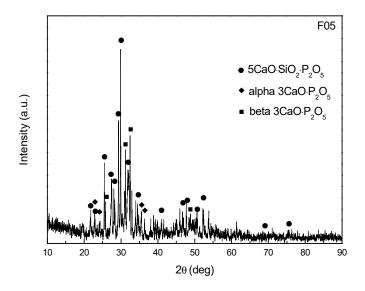


Fig. 4.30 XRD pattern of sample F05 after reaction.

4.4 Discussion

From the compositions as shown in Table 4.9, the mole fraction of $3\text{CaO}\cdot\text{P}_2\text{O}_5$ and P_2O_5 in the $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution, the mole fraction of FeO and the mass fraction of extra CaO in tablets after reaction were shown in **Table 4.11**. The content of $3\text{CaO}\cdot\text{P}_2\text{O}_5$ in the $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution was calculated from the analyzed P_2O_5 content. The extra content of CaO was calculated by the total content of CaO minus the parts consumed by $2\text{CaO}\cdot\text{SiO}_2$ and $3\text{CaO}\cdot\text{P}_2\text{O}_5$. The mole fraction of P_2O_5 in the solid solution was calculated from the content of $3\text{CaO}\cdot\text{P}_2\text{O}_5$.

No.	3CaO·P ₂ O ₅ /mol%	P2O5/mo1%	FeO/mol%	Extra CaO/mass%
C01	12.2	3.89	0.327	20.9
C02	27.4	8.37	0.371	22.0
C03	44.9	13.0	0.363	21.7
C04	69.7	18.9	0.455	21.2
C05	84.5	22.0	0.359	21.8
D01	12.5	4.01	0.635	22.7
D02	26.2	8.02	0.741	21.2
D03	46.9	13.5	0.865	23.9
E01	12.9	4.11	0.730	5.3
E02	28.0	8.53	0.845	3.3
E03	45.1	13.1	0.600	1.4
E04	69.3	18.8	0.342	3.3
E05	82.7	21.6	1.39	6.6
F01	12.4	3.98	1.12	2.4
F02	29.5	8.95	2.01	5.2
F03	46.7	13.5	0.233	3.9

Table 4.11 Compositions of tablets after reaction.

F05	83.4	21.7	0.298	5.1	

The compositions were projected on the CaO-SiO₂-P₂O₅ system as shown in **Figure 4.31**. The compositions in which the CaO phase was detected were marked as solid circles.

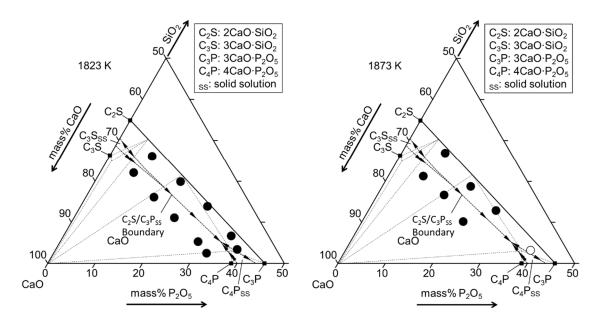


Fig. 4.31 Compositions of tablets after reaction on the CaO-SiO₂-P₂O₅ system. In the compositions marked by the solid circles CaO phase was detected by XRD. In the composition marked by the open circles CaO phase was undetected by XRD.

4.4.1 Contents of FeO and MgO in the tablet after reaction

Figure 4.32 shows the relationship between the P_2O_5 content and the FeO and MgO contents in tablets after reaction. The contents of MgO and FeO barely changed with the change of P_2O_5 content. Since the tablet was contaminated with more or less metallic iron particles when the tablet was separated from the surface of solidified iron, the content of FeO was larger for some samples. For most samples, the contents of FeO and MgO were smaller than 1 mass%.

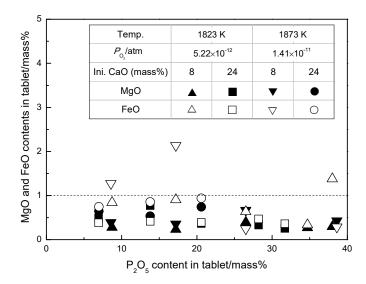


Fig. 4.32 Contents of FeO and MgO in the tablet after reaction.

4.4.2 Activity coefficient of FeO in the tablet after reaction

According to the activity of FeO introduced in Chapter 3, the activity coefficient of FeO relative to hypothetical pure liquid FeO was calculated and shown in **Table 4.12** and **Figure 4.33** as a function of $3CaO \cdot P_2O_5$ content in the solid solution. At a certain temperature and oxygen partial pressure, the activity coefficient of FeO was almost constant. The activity coefficient of FeO was in the range from 4.83×10^{-9} to 7.45×10^{-8} .

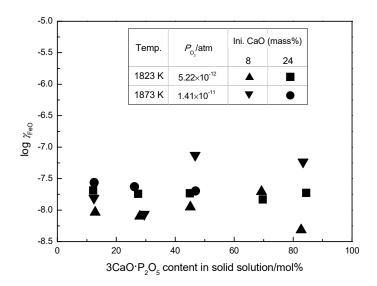


Fig. 4.33 Activity coefficient of FeO in the tablet after reaction.

			24 IIIa8870 V	cuo.		
No.	$\gamma_{ m FeO}$	(mass%P) [mass%P]	$a_{P_2O_5}$	$\gamma_{P_2O_5}$	$a_{3CaO \cdot P_2O_5}$	$\gamma_{3CaO\cdot P_2O_5}$
C01	2.05×10 ⁻⁸	6.58×10 ²	8.28×10 ⁻²⁵	2.13×10 ⁻²³	9.49×10 ⁻⁶	7.80×10 ⁻⁵
C02	1.81×10 ⁻⁸	6.88×10 ²	3.05×10 ⁻²⁴	3.64×10 ⁻²³	3.49×10 ⁻⁵	1.27×10 ⁻⁴
C03	1.85×10 ⁻⁸	6.08×10 ²	8.54×10 ⁻²⁴	6.56×10 ⁻²³	9.79×10 ⁻⁵	2.18×10 ⁻⁴
C04	1.48×10 ⁻⁸	8.5×10 ²	8.2×10 ⁻²⁴	4.4×10 ⁻²³	9.4×10 ⁻⁵	1.3×10 ⁻⁴
C05	1.87×10 ⁻⁸	8.9×10 ²	9.3×10 ⁻²⁴	4.3×10 ⁻²³	1.1×10 ⁻⁴	1.3×10 ⁻⁴
D01	2.74×10 ⁻⁸	5.73×10 ²	1.08×10 ⁻²⁴	2.71×10 ⁻²³	4.77×10 ⁻⁶	3.81×10 ⁻⁵
D02	2.35×10 ⁻⁸	6.6×10 ²	3.1×10 ⁻²⁴	3.8×10 ⁻²³	1.4×10 ⁻⁵	5.2×10 ⁻⁵
D03	2.01×10 ⁻⁸	6.22×10 ²	8.06×10 ⁻²⁴	5.96×10 ⁻²³	3.55×10 ⁻⁵	7.57×10 ⁻⁵
E01	9.21×10 ⁻⁹	1.4×10 ³	2.8×10 ⁻²⁵	6.9×10 ⁻²⁴	3.2×10 ⁻⁶	2.5×10 ⁻⁵
E02	7.95×10 ⁻⁹	2.3×10 ³	4.4×10 ⁻²⁵	5.18×10 ⁻²⁴	5.1×10 ⁻⁶	1.8×10 ⁻⁵
E03	1.12×10 ⁻⁸	1.41×10 ³	2.53×10 ⁻²⁴	1.94×10 ⁻²³	2.90×10 ⁻⁵	6.42×10 ⁻⁵
E04	1.97×10 ⁻⁸	7.24×10^{2}	1.68×10 ⁻²³	8.97×10 ⁻²³	1.93×10 ⁻⁴	2.78×10 ⁻⁴
E05	4.83×10 ⁻⁹	3.41×10 ²	9.12×10 ⁻²³	4.22×10 ⁻²²	1.04×10 ⁻³	1.26×10 ⁻³
F01	1.55×10 ⁻⁸	1.1×10 ³	4.6×10 ⁻²⁵	1.15×10 ⁻²³	2.0×10 ⁻⁶	1.6×10 ⁻⁵
F02	8.64×10 ⁻⁹	1.22×10^{3}	1.57×10 ⁻²⁴	1.76×10 ⁻²³	6.93×10 ⁻⁶	2.35×10 ⁻⁵
F03	7.45×10 ⁻⁸	4.40×10^{2}	2.58×10 ⁻²³	1.92×10 ⁻²²	1.14×10 ⁻⁴	2.43×10 ⁻⁴
F05	5.84×10 ⁻⁸	2.32×10^{2}	2.05×10 ⁻²²	9.44×10 ⁻²²	-	-

Table 4.12 Thermodynamic data of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO.

4.4.3 Equilibrium concentration of P in molten iron and phosphorus partition ratio between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and CaO and molten iron

Figure 4.34 shows the relationship between the equilibrium concentration of P in molten iron and the $3CaO \cdot P_2O_5$ content in the solid solution. The concentration of P in molten iron increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The phosphorus partition ratio between the mixture of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and CaO and molten iron was shown in **Figure 4.35** and Table 4.12. The phosphorus partition ratio decreased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution.

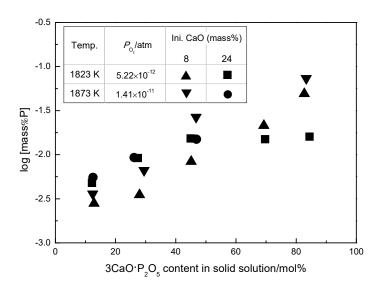


Fig. 4.34. Equilibrium concentration of P in molten iron after reaction.

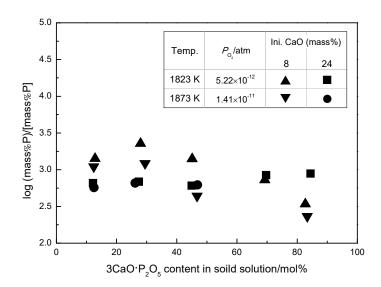


Fig. 4.35 Phosphorus partition ratio between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and CaO and molten iron.

4.4.4 Activity and activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO

Figures 4.36 and **4.37** show the activity and activity coefficient of P₂O₅ as a function of $3CaO \cdot P_2O_5$ content in the solid solution with the values shown in Table 4.12. The activity and activity coefficient of P₂O₅ increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. For a constant composition of solid solution, the activity and activity coefficient of P₂O₅ barely changed with the change of the temperature. Comparing with the P₂O₅ activity estimated by Hasegawa *et al.*^[3] at 1573 K, the current values measured at higher temperature were larger. The activity of P₂O₅ changed from 2.8×10^{-25} to 2.05×10^{-22} and the activity coefficient of P₂O₅ changed from 5.2×10^{-24} to 9.44×10^{-22} .

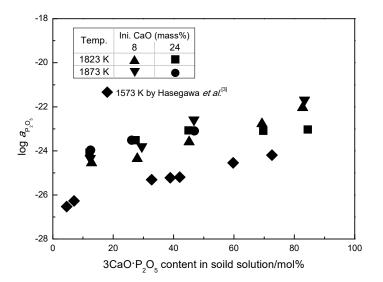


Fig. 4.36 Activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO.

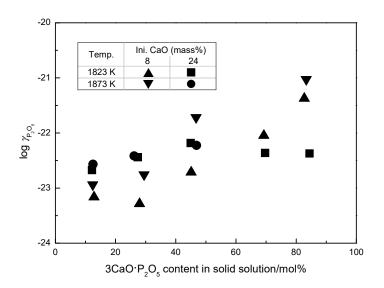


Fig. 4.37 Activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution containing

8 and 24 mass% CaO.

4.4.5 Activity and activity coefficient of 3CaO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO

For the compositions in which the CaO phase was detected after reaction as shown in Figure 4.31 marked by solid circles, the activity and activity coefficient of $3CaO \cdot P_2O_5$ were calculated from the activity of P_2O_5 by Eqs. (4.1) and (4.2). The activity and activity coefficient of $3CaO \cdot P_2O_5$ in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution saturated with CaO were shown in Table 4.12. Figures 4.38 and 4.39 show the activity and activity coefficient of $3CaO \cdot P_2O_5$ in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution saturated with CaO as a function of $3CaO \cdot P_2O_5$ content. The activity and activity coefficient of $3CaO \cdot P_2O_5$ increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. For a constant composition of solid solution, the activity and activity coefficient of $3CaO \cdot P_2O_5$ barely changed with the change of the temperature. The activity of $3CaO \cdot P_2O_5$ changed from 1.6×10^{-5} to 1.26×10^{-3} .

$$\begin{aligned} 3\text{CaO}(s) + P_2(g) + 5/2 \ O_2(g) &= 3\text{CaO} \cdot P_2 O_5(s) \\ \Delta G_{4.1}^\circ &= -2198000 + 504T \ \text{J/mol} \dots \dots (4.1)^{[4]} \\ P_2(g) + 5/2 \ O_2(g) &= P_2 O_5(l) \\ \Delta G_{4.2}^\circ &= -1655480 + 571.0T \ \text{J/mol} \dots \dots (4.2)^{[5]} \end{aligned}$$

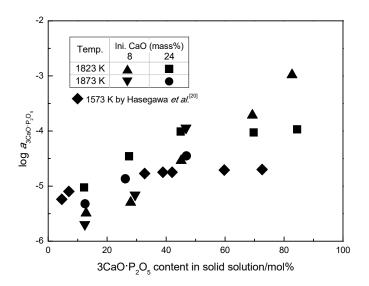
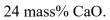



Fig. 4.38 Activity of 3CaO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and

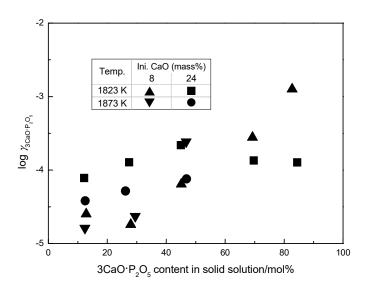


Fig. 4.39 Activity coefficient of 3CaO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO.

4.4.6 Activity and activity coefficient of 2CaO·SiO₂ and SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO

By the Gibbs-Duhem equation as Eq. (4.3) for the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ pseudo-binary system, the activity of $2CaO \cdot SiO_2$ in the solid solution was calculated from the activity of $3CaO \cdot P_2O_5$.

 $x_{3Ca0 \cdot P_2 0_5} d \ln a_{3Ca0 \cdot P_2 0_5} + x_{2Ca0 \cdot Si0_2} d \ln a_{2Ca0 \cdot Si0_2} = 0 \dots \dots (4.3)$

The relationship between the activity coefficient of $3CaO \cdot P_2O_5$ and the mole fraction of $3CaO \cdot P_2O_5$ in the solid solution was expressed with a linear function by the least square method at the mole fraction of $3CaO \cdot P_2O_5$ from 0.122 to 0.845 at 1823 K and from 0.124 to 0.469 at 1873 K as shown by Eqs. (4.4) and (4.5), respectively.

$$\ln \gamma_{3\text{CaO} \cdot \text{P}_2\text{O}_5} = 3.0962 x_{3\text{CaO} \cdot \text{P}_2\text{O}_5} - 10.551 \text{ at } 1823 \text{ K} \dots \dots (4.4)$$
$$\ln \gamma_{3\text{CaO} \cdot \text{P}_2\text{O}_5} = 4.8787 x_{3\text{CaO} \cdot \text{P}_2\text{O}_5} - 11.346 \text{ at } 1873 \text{ K} \dots \dots (4.5)$$

The activity coefficient of $2CaO \cdot SiO_2$ was shown in **Figure 4.40** and the activity of $2CaO \cdot SiO_2$ was shown in **Figure 4.41**.

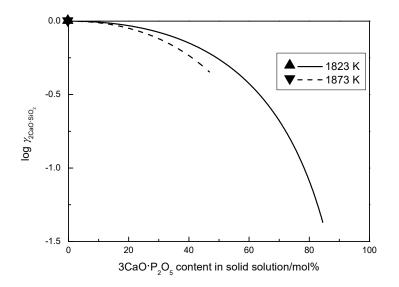


Fig. 4.40 Estimated activity coefficient of 2CaO·SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO.

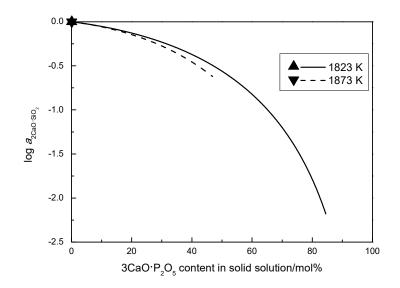


Fig. 4.41 Estimated activity of 2CaO·SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO.

The activity and activity coefficient of $2CaO \cdot SiO_2$ in the $2CaO \cdot SiO_2 \cdot 3CaO \cdot P_2O_5$ solid solution saturated with CaO decreased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The temperature dependency of the activity and activity coefficient of $2CaO \cdot SiO_2$ was small within the experimental error. Moreover, the activity of SiO_2 relative to solid SiO_2 in the $2CaO \cdot SiO_2 \cdot 3CaO \cdot P_2O_5$ solid solution saturated with CaO was calculated from the activity of $2CaO \cdot SiO_2 \cdot 3CaO \cdot P_2O_5$ solid solution saturated with CaO was calculated from the activity of $2CaO \cdot SiO_2$ by Eq. (4.6) as shown in **Figure 4.42** and the activity coefficient of SiO_2 was shown in **Figure 4.43**. Temperature dependency of the activity and activity coefficient of SiO_2 was small. The activity of SiO_2 in the solid solution saturated with CaO decreased monotonically from 1.0×10^{-4} to 6.9×10^{-7} with the increase of the $3CaO \cdot P_2O_5$ content up to 84.5 mol% at 1823 K.

$$2\text{CaO}(s) + \text{SiO}_2(s) = 2\text{CaO} \cdot \text{SiO}_2(s)$$
$$\Delta G_{4.6}^{\circ} = -119000 - 11T \text{ J/mol} \dots \dots (4.6)^{[6]}$$

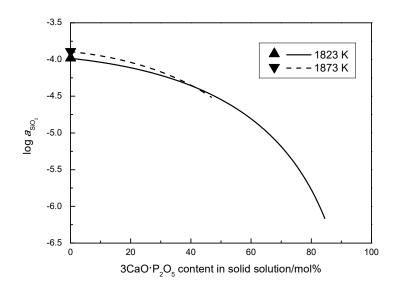


Fig. 4.42 Estimated activity of SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated

with CaO.

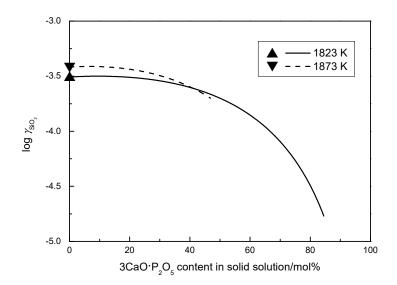


Fig. 4.43 Estimated activity coefficient of SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO.

4.5 Summary

By applying the chemical equilibrium method, the equilibrium of phosphorus between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and CaO and molten iron was measured at 1823 K with the oxygen partial pressure of 5.22×10^{-12} atm and 1873 K with the oxygen partial pressure of 1.41×10^{-11} atm. The activity of P₂O₅ relative to hypothetical pure liquid P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO increased from 2.8×10^{-25} to 2.05×10^{-22} and the activity coefficient of P₂O₅ increased from 5.2×10^{-24} to 9.44×10^{-22} with the increase of the 3CaO·P₂O₅ content in the solid solution from 12.2 to 84.5 mol%. Since the CaO phase was detected for some samples after reaction, the activity of 3CaO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO was estimated from 1.6×10^{-5} to 1.26×10^{-3} . The activity of 2CaO·SiO₂ estimated by the Gibbs-Duhem equation and the activity of SiO₂ in the solid solution saturated with CaO decreased with the increase of the 3CaO·P₂O₅ content in the solid solution and the activity of SiO₂ in the solid solution saturated with CaO decreased with the increase of the 3CaO·P₂O₅ content in the solid solution and the activity of SiO₂ in the solid solution saturated with CaO decreased with the increase of the 3CaO·P₂O₅ content in the solid solution and the activity of SiO₂ in the solid solution saturated with CaO decreased with the increase of the 3CaO·P₂O₅ content in the solid solution.

References

- 1. W. Gutt: *Nature*, **197** (1963), 142-143.
- 2. Drewes, E.-J., M. Olette: Arch. Eisenhüttenwes., 30 (1977), 163-175.
- 3. M. Hasegawa, Y. Kashiwaya and M. Iwase: High Temp. Mater. Proc., 31 (2012), 421-430.
- 4. A. Tagaya, F. Tsukihashi, and N. Sano: *Trans. ISS*, **11** (1991), 63-69.
- 5. E. T. Turkdogan: ISIJ Int., 40 (2000), 964-970.
- 6. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 8.

Chapter 5 Thermodynamic Properties of the 2CaO·SiO₂-3CaO·P₂O₅ Solid Solution Containing 8 and 24 mass% MgO at 1823 and 1873 K

5.1 Introduction

Since there is more or less MgO in the metallurgical slag, it is necessary to study the thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing a certain amount of MgO to investigate the effect caused by MgO.

5.2 Experimental conditions

The initial compositions of tablets were the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution containing 8 and 24 mass% MgO as shown in **Table 5.1** and **Figure 5.1**. The tablets with the compositions marked by open circles in Figure 5.1 turned into slag after reaction at 1873 K. The initial conditions of experiments are shown in **Table 5.2**.

No.	CaO	SiO ₂	P2O5	MgO	2CaO·SiO ₂	3CaO·P ₂ O ₅	MgO
INO.	/mass%	/mass%	/mass%	/mass%	/mass%	/mass%	/mass%
G01	47.8	21.2	7.0	24.0	60.8	15.2	24.0
G02	46.2	15.9	13.9	24.0	45.6	30.4	24.0
G03	44.5	10.6	20.9	24.0	30.4	45.6	24.0
G04	42.9	5.3	27.8	24.0	15.2	60.8	24.0
H01	47.8	21.2	7.0	24.0	60.8	15.2	24.0
H02	46.2	15.9	13.9	24.0	45.6	30.4	24.0
H03	44.5	10.6	20.9	24.0	30.4	45.6	24.0
H04	42.9	5.3	27.8	24.0	15.2	60.8	24.0

Table 5.1 Initial compositions of tablets.

I01	57.9	25.7	8.4	8.0	73.6	18.4	8.0
I02	55.9	19.2	16.9	8.0	55.2	36.8	8.0
I03	53.9	12.8	25.3	8.0	36.8	55.2	8.0
I04	51.9	6.4	33.7	8.0	18.4	73.6	8.0
J01	57.9	25.7	8.4	8.0	73.6	18.4	8.0
J02	55.9	19.2	16.9	8.0	55.2	36.8	8.0
J03	53.9	12.8	25.3	8.0	36.8	55.2	8.0
J04	51.9	6.4	33.7	8.0	18.4	73.6	8.0

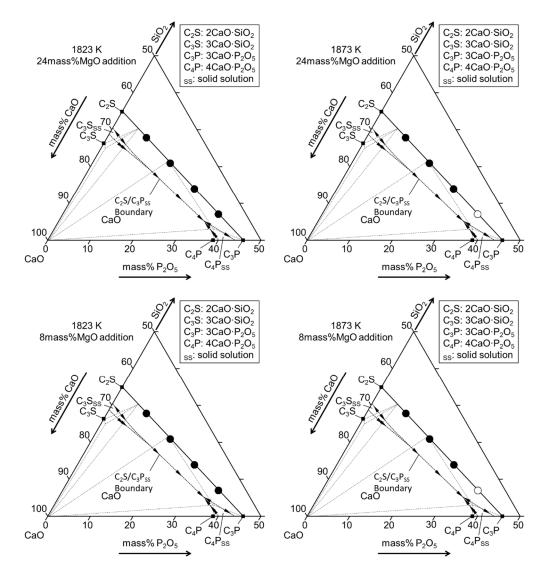


Fig. 5.1 Initial compositions of tablets on the CaO-SiO₂-P₂O₅ system. The boundary and tie lines in the phase diagram were determined at 1773 K by Gutt.^[1]

Wit	h the 2CaO·SiO ₂ -3C	aO·P2O5 solid solution	on containing 24 mas	ss% MgO
No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g
G01	1823	110/1	12.4883	1.5053
G02	1823	110/1	10.6410	1.4873
G03	1823	110/1	12.8895	1.4812
G04	1823	110/1	12.9600	1.5198
H01	1873	110/1	14.6774	1.4730
H02	1873	110/1	10.6351	1.4910
H03	1873	110/1	12.4712	1.5014
H04	1873	110/1	9.8099	1.4786
Wi	th the 2CaO·SiO ₂ -30	CaO·P2O5 solid soluti	on containing 8 mas	s% MgO
No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g
I01	1823	110/1	11.9418	1.5043
I02	1823	110/1	9.9766	1.4720
I03	1823	110/1	11.0544	1.4987
I04	1823	110/1	10.7003	1.4990
J01	1873	110/1	13.9198	1.4777
J02	1873	110/1	11.2496	1.5003
J03	1873	110/1	11.5870	1.4917
J04	1873	110/1	10.2708	1.4805

Table 5.2 Initial conditions of experiments.

5.3 Experimental results

5.3.1 Chemical compositions of Fe and tablet

The concentration of P in Fe, the contents of P₂O₅, SiO₂, CaO, MgO and FeO in tablet after reaction are shown from **Tables 5.3** to **5.8**. In Tables 5.6, 5.7 and 5.8, the values of Test/ppm were the concentrations of Ca, Mg and Fe in the solution measured by ICP-OES. **Table 5.9** summarized the analyzed the concentration of P in Fe and the compositions of tablets.

No.	Weight	Dilution ratio	Cell	ABS	P in Fe	Ave P	
INO.	/mg	Dilution latio	/mm	ADS	/mass%	/mass%	
C01	1543.8	1	10	0.173	0.00492	0.00506	
G01 -	1275.4	1	10	0.151	0.00519	0.00506	
C 02	1243.4	10	20	0.144	0.0118	0.0124	
G02 -	1181.4	10	20	0.149	0.0129	0.0124	
C 02	1232.7	10	20	0.213	0.0184		
G03 -	1698.6	10	20	0.271	0.0173	0.0179	
G04 -	1362.2	10	20	0.373	0.0303	0.0292	
G04 -	1574.2	10	20	0.397	0.0280		
1101	1095.9	1	10	0.197	0.00790	0.00709	
H01 -	981.0	1	10	0.180	0.00805	0.00798	
1102	741.4	10	20	0.126	0.0170	0.0171	
H02 -	636.9	10	20	0.112	0.0171	0.0171	
1102	870.6	10	20	0.185	0.0223	0.0220	
H03 -	852.9	10	20	0.177	0.0217	0.0220	
10.1	1338.2	1	10	0.185	0.00608	0.00.00	
I01 —	1115.3	1	10	0.168	0.00661	0.00635	
I02	1236.5	1	10	0.221	0.00786	0.00903	

Table 5.3 Concentration of P in Fe.

	1141.9	1	10	0.264	0.0102	
102	1290.3	2	10	0.342	0.0234	0.0206
I03 -	1099.5	1	10	0.443	0.0178	0.0206
I04 -	1100.7	10	20	0.371	0.0373	0.0372
104 -	980.5	10	20	0.330	0.0370	
10.1	1511.8	1	10	0.335	0.00979	0.00995
J01 -	1598.9	1	10	0.367	0.0101	
J02 -	1122.3	2	10	0.256	0.0219	0.0212
J02 -	1350.3	2	10	0.316	0.0206	0.0213
J03 —	1336.1	5	10	0.228	0.0374	0.0260
	1254.9	5	10	0.207	0.0363	0.0369

Annotation: the analysis data was based on the calibration curve: ABS= $0.8595 \times C_P(ppm)+0.018$ for the phosphomolybdate blue spectrophotometric method, ABS= $0.2252 \times C_P(ppm)+0.002$ for the molybdenum-blue spectrophotometric solvent extraction method. The samples tested with the 20 mm cell was analyzed by the phosphomolybdate blue spectrophotometric method. The samples tested with the 10 mm cell was analyzed by the molybdenum-blue spectrophotometric solvent extraction method.

No.	Weight	Dilution	Cell	ABS	P2O5	Ave P ₂ O ₅		
	/mg	ratio	/mm	ADS	/mass%	/mass%		
C01	104.1	100	20	0.274	6.97	6.07		
G01 -	102.7	100	20	0.270	6.96	6.97		
C02	106.0	250	20	0.222	13.8	12.0		
G02 -	104.2	250	20	0.220	13.8	13.8		
<u> </u>	103.1	500	20	0.169	21.3	21.1		
G03 —	101.6	500	20	0.163	20.9	21.1		
G04	112.2	250	20	0.469	28.0	27.9		

Table 5.4 Content of P₂O₅ in tablet after reaction.

	109.8	250	20	0.456	27.7	
1101	103.6	100	20	0.270	6.90	6.01
H01 -	101.0	100	20	0.264	6.92	6.91
H02 -	106.4	250	20	0.222	13.7	13.8
H02 -	103.1	250	20	0.218	13.9	13.8
Н03 -	104.7	500	20	0.167	20.8	21.0
п05 -	102.8	500	20	0.167	21.2	21.0
101	104.6	100	20	0.333	8.45	0 17
I01 -	107.6	100	20	0.344	8.49	8.47
102	106.1	100	20	0.662	16.8	16.9
I02 -	104.4	100	20	0.654	16.8	16.8
102	107.3	500	20	0.198	24.1	24.2
I03 -	109.2	500	20	0.204	24.5	24.3
104	109.7	250	20	0.551	33.7	22.7
I04 -	108.6	250	20	0.545	33.6	33.7
10.1	108.2	100	20	0.335	8.23	0.20
J01 -	106.2	100	20	0.333	8.32	8.28
102	103.2	100	20	0.634	16.5	16.5
J02 -	106.2	100	20	0.653	16.5	16.5
102	108.0	500	20	0.199	24.2	24.0
J03 -	102.2	500	20	0.186	23.8	24.0
Annotati	on: the results	based on the c	alibration	curve: ABS=	0.8436× <i>С</i> _Р (рр	om)+0.007.

Table 5.5	Content	of SiO ₂	in tablet	after reaction.
-----------	---------	---------------------	-----------	-----------------

No	Weight (1)	Crucible	Weight (2)	Weight (3)	SiO ₂	Ave SiO ₂
No.	/mg	/g	/g	/g	/mass%	/mass%
G01	104.1	23.85968	23.88078	23.86069	19.30	19.73

	102.7	23.92143	23.94515	23.92445	20.16		
C 02	106.0	23.85904	23.87763	23.86098	15.71	16.00	
G02 -	104.2	23.92281	23.94094	23.92398	16.28	16.00	
C (1)	103.1	23.85875	23.87103	23.85989	10.81	10.00	
G03 -	101.6	23.92284	23.93443	23.92369	10.57	10.69	
<u> </u>	112.2	23.8539	23.86095	23.85505	5.258	5 275	
G04 -	109.8	23.91869	23.92466	23.91885	5.291	5.275	
1101	103.6	23.85705	23.88118	23.85899	21.42	20.00	
H01 -	101.0	23.92163	23.94446	23.92369	20.56	20.99	
1102	106.4	23.85740	23.87610	23.85835	16.68	16.20	
H02 -	103.1	23.92213	23.93944	23.92303	15.92	16.30	
1102	104.7	23.85740	23.86851	23.85740	10.61	10.00	
H03 -	102.8	23.92141	23.93310	23.92217	10.63	10.62	
	104.6	23.86589	23.89214	23.86546	25.51	24.02	
I01 -	107.6	23.92820	23.95397	23.92798	24.15	24.83	
102	106.1	23.86378	23.88561	23.86570	18.77	10.62	
I02 -	104.4	23.92708	23.94716	23.92786	18.49	18.63	
102	107.3	23.86346	23.87847	23.86526	12.31	10.26	
I03 -	109.2	23.92623	23.94140	23.92785	12.41	12.36	
10.4	109.7	23.85503	23.86296	23.85603	6.317	(217	
I04 -	108.6	23.91919	23.92657	23.91971	6.317	6.317	
101	108.2	23.86446	23.89086	23.86486	24.03	24.10	
J01 -	106.2	23.92681	23.95253	23.92687	24.16	24.10	
102	103.2	23.86327	23.88240	23.86408	17.75	10 17	
J02 -	106.2	23.92583	23.94645	23.92672	18.58	18.17	
102	108.0	23.86304	23.87708	23.86338	12.69	12 (0	
J03 -	102.2	23.92569	23.93895	23.92618	12.50	12.60	

Annotation: the weight (1) is the weight of sample. The weight (2) is the weight of Pt crucible after the filter paper burned. The weight (3) is the weight of crucible after evaporating the SiO₂.

	Table 5.6 Content of CaO in tablet after reaction.							
Ne	Weight	Dilution	Test	CaO	Ave CaO			
No.	/mg	ratio	/ppm	/mass%	/mass%			
C01	102.2	100	3.363	46.04	45.00			
G01 -	101.8	100	3.338	45.87	45.96			
C03	109.2	100	3.454	44.25	44.26			
G02 -	102.9	100	3.270	44.46	44.36			
C03	102.8	100	3.148	42.84	40.71			
G03 -	102.8	100	3.129	42.58	42.71			
<u> </u>	110.6	100	3.273	41.40	41 40			
G04 -	101.5	100	3.015	41.56	41.48			
1101	106.5	100	3.492	45.87	45.55			
H01 -	109.1	100	3.527	45.23	45.55			
1102	103.8	100	3.277	44.17	44.24			
H02 -	102.6	100	3.249	44.30	44.24			
1102	104.2	100	3.178	42.67	42.65			
H03 -	104.9	100	3.196	42.62	42.65			
10.1	100.6	100	3.981	55.36	55.00			
I01 -	102.0	100	4.113	56.41	55.89			
102	106.2	100	4.108	54.12	52.07			
I02 -	105.8	100	4.070	53.82	53.97			
103	102.3	100	3.855	52.72	52.51			

SiO₂/mass%=[weight (2) - weight (3)]/[weight (1)]×100000/%

	105.8	100	3.955	52.30		
104	107.8	100	3.860	50.09	50.95	
I04	102.4	100	3.777	51.60	50.85	
10.1	103.6	100	4.118	55.61	55 (5	
J01 —	107.1	100	4.263	55.69	55.65	
10.2	105.4	100	3.976	52.77	52.80	
J02	102.9	100	3.885	52.82	52.80	
J03 —	107.4	100	3.982	51.87	52.26	
	105.1	100	3.970	52.85	52.36	

Table 5.7 Content of MgO in tablet after reaction.

N	Weight	Dilution	Test	MgO	Ave MgO	
No.	/mg	ratio	/ppm	/mass%	/mass%	
C01	102.2	100	1.448	23.50	22.42	
G01 -	101.8	100	1.432	23.33	23.42	
C02	109.2	100	1.501	22.80	22.12	
G02 -	102.9	100	1.454	23.43	23.12	
C02	102.8	100	1.468	23.68	22.00	
G03 -	102.8	100	1.465	23.64	23.66	
G04 -	110.6	100	1.537	23.05	22.00	
G04 -	101.5	100	1.403	22.92	22.99	
1101	106.5	100	1.498	23.33	22.16	
H01 -	109.1	100	1.512	22.98	23.16	
1102	103.8	100	1.465	23.41	22.52	
Н02 —	102.6	100	1.462	23.63	23.52	
1102	104.2	100	1.481	23.57	22.72	
H03 -	104.9	100	1.511	23.89	23.73	

101	100.6	10	4.534	7.475	7 521
I01 -	102.0	10	4.666	7.587	7.531
I02 -	106.2	10	5.075	7.925	7.801
102	105.8	10	4.897	7.676	7.001
103 -	102.3	10	4.815	7.806	7.864
105	105.8	10	5.053	7.921	/.804
I04 -	107.8	10	4.982	7.664	7 9 4 1
104	102.4	10	4.951	8.018	7.841
J01 -	103.6	10	5.220	8.358	8.383
JUI	107.1	10	5.429	8.407	0.303
102	105.4	10	5.500	8.654	0 ((0
J02 -	102.9	10	5.387	8.682	8.668
J03 -	107.4	10	5.515	8.516	Q 520
JUS -	105.1	10	5.401	8.523	8.520

Table 5.8 Analysis data for the content of FeO in tablet after reaction.

N.	Weight	Dilution	Test	FeO	Ave FeO	
No.	/mg	ratio	/ppm	/mass%	/mass%	
C01	102.2	1	4.707	0.5926	0 (0(0	
G01	101.8	1	4.914	0.6211	- 0.6069	
G02	109.2	1	5.357	0.6312	0.6431	
602	102.9	1	5.238	0.6550	0.0431	
G03	102.8	1	5.215	0.6528	0.6446	
003	102.8	1	5.084	0.6364	0.0440	
G04	110.6	1	3.395	0.3950	0.4514	
604 —	101.5	1	4.006	0.5078	0.4314	
H01	106.5	1	6.984	0.8438	0.8568	

	109.1	1	7.374	0.8697	
1102	103.8	10	1.081	1.340	1 222
H02 -	102.6	10	1.041	1.306	1.323
1102	104.2	10	1.048	1.294	1 290
H03 -	104.9	10	1.047	1.284	1.289
I01 -	100.6	1	3.659	0.4680	0.4822
101 -	102.0	1	3.934	0.4963	0.4822
I02 -	106.2	1	4.146	0.5023	0.4986
102 -	105.8	1	4.069	0.4949	0.4980
102	102.3	1	3.720	0.4679	0 4775
I03 -	105.8	1	4.004	0.4870	0.4775
10.4	107.8	1	2.661	0.3176	0 2297
I04 -	102.4	1	2.863	0.3598	0.3387
10.1	103.6	1	6.189	0.7687	0.7(90
J01 -	107.1	1	6.386	0.7672	0.7680
102	105.4	1	4.373	0.5339	0.5270
J02 -	102.9	1	4.333	0.5418	0.5379
102	107.4	1	3.615	0.4331	0.4272
J03 -	105.1	1	3.440	0.4212	0.4272

Table 5.9 Compositions of tablets and concentration of P in Fe after reaction.

N		P in Fe					
No.	P ₂ O ₅	SiO ₂	CaO	MgO	FeO	Total	/mass%
G01	6.97	19.73	45.96	23.42	0.6069	96.7	0.00506
G02	13.8	16.00	44.36	23.12	0.6431	97.9	0.0124
G03	21.1	10.69	42.71	23.66	0.6446	98.8	0.0179
G04	27.9	5.275	41.48	22.99	0.4514	98.1	0.0292

H01	6.91	20.99	45.55	23.16	0.8568	97.5	0.00798
H02	13.8	16.30	44.24	23.52	1.323	99.2	0.0171
H03	21.0	10.62	42.65	23.73	1.289	99.3	0.0220
I01	8.47	24.83	55.89	7.531	0.4822	97.2	0.00635
I02	16.8	18.63	53.97	7.801	0.4986	97.7	0.00903
I03	24.3	12.36	52.51	7.864	0.4775	97.5	0.0206
I04	33.7	6.317	50.85	7.841	0.3387	99.0	0.0372
J01	8.28	24.10	55.65	8.383	0.7680	97.2	0.00995
J02	16.5	18.17	52.80	8.668	0.5379	96.7	0.0213
J03	24.0	12.60	52.36	8.520	0.4272	97.9	0.0369

5.3.2 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO

The phases of the $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution containing 8 and 24 mass% MgO were analyzed by XRD as shown from **Figure 5.2** to **5.9**. In all samples, the CaO, SiO₂ and P₂O₅ phases were undetected but the MgO phase was detected. The eutectoid appeared during quenching.

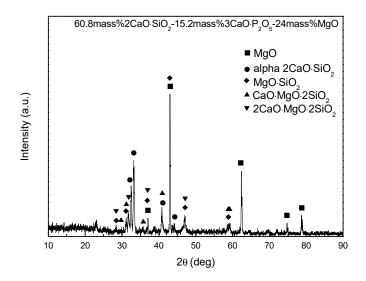


Fig. 5.2 XRD pattern of the 60.8 mass% 2 CaO·SiO_2-15.2 mass% 3 CaO·P_2O_5 solid solution-

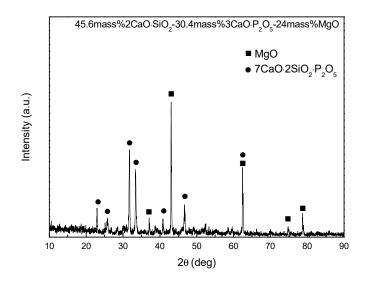


Fig. 5.3 XRD pattern of the 45.6mass%2CaO·SiO₂-30.4mass%3CaO·P₂O₅ solid solution-

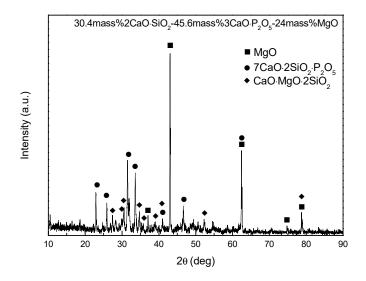


Fig. 5.4 XRD pattern of the 30.4mass%2CaO·SiO₂-45.6mass%3CaO·P₂O₅ solid solution-24mass%MgO.

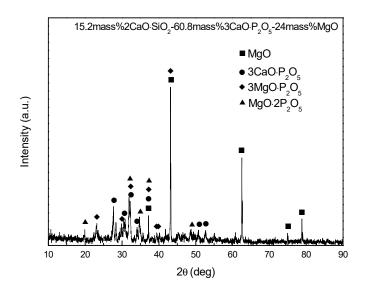


Fig. 5.5 XRD pattern of the 15.2mass%2CaO·SiO₂-60.8mass%3CaO·P₂O₅ solid solution-

24mass%MgO.

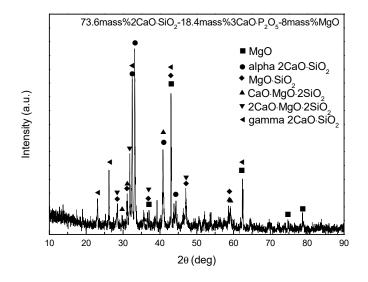


Fig. 5.6 XRD pattern of the 73.6mass%2CaO·SiO₂-18.4mass%3CaO·P₂O₅ solid solution-

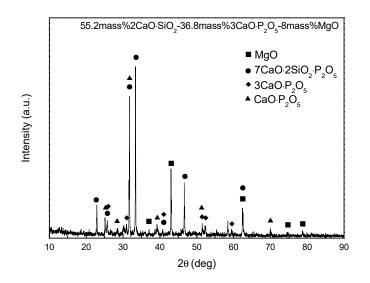


Fig. 5.7 XRD pattern of the 55.2mass%2CaO·SiO₂-36.8mass%3CaO·P₂O₅ solid solution-

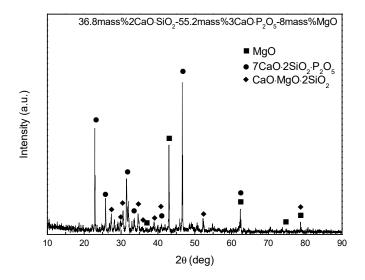


Fig. 5.8 XRD pattern of the 36.8mass%2CaO·SiO₂-55.2mass%3CaO·P₂O₅ solid solution-8mass%MgO.

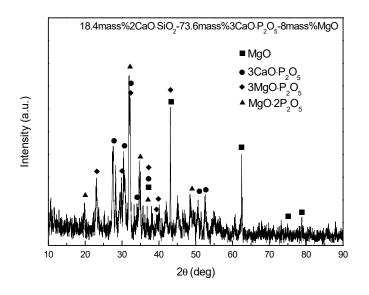


Fig. 5.9 XRD pattern of the 18.4mass%2CaO·SiO₂-73.6mass%3CaO·P₂O₅ solid solution-

8mass%MgO.

5.3.3 XRD pattern of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO after reaction

The phases of the tablet after reaction were analyzed by XRD as shown from Figure 5.10 to 5.23. The MgO phase was detected in the whole samples. The eutectoid appeared during quenching.

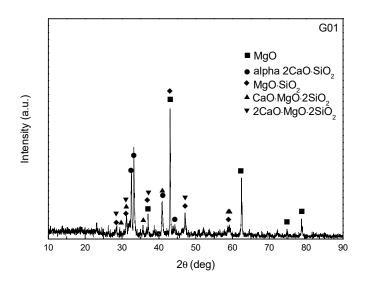


Fig. 5.10 XRD pattern of sample G01 after reaction.

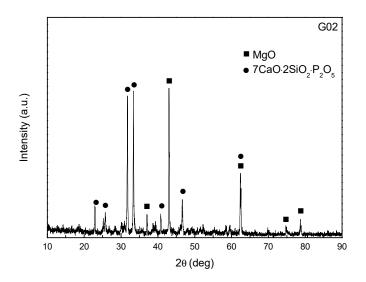


Fig. 5.11 XRD pattern of sample G02 after reaction.

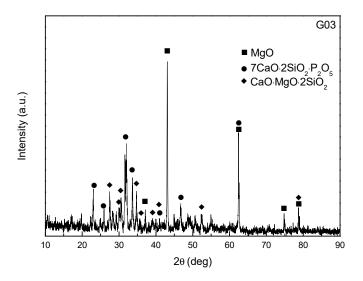


Fig. 5.12 XRD pattern of sample G03 after reaction.

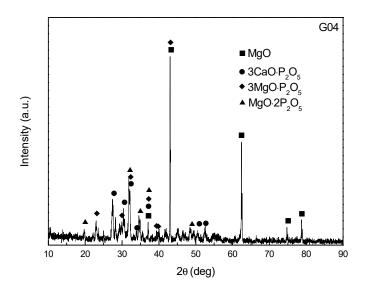


Fig. 5.13 XRD pattern of sample G04 after reaction.

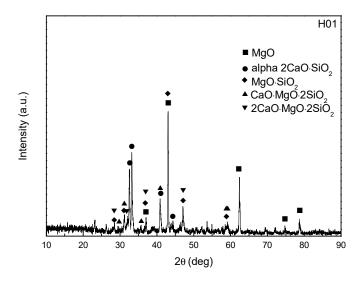


Fig. 5.14 XRD pattern of sample H01 after reaction.

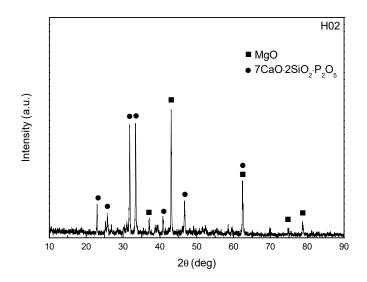


Fig. 5.15 XRD pattern of sample H02 after reaction.

Fig. 5.16 XRD pattern of sample H03 after reaction.

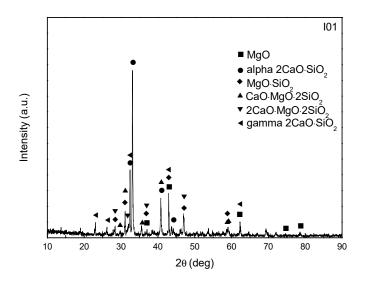


Fig. 5.17 XRD pattern of sample I01 after reaction.

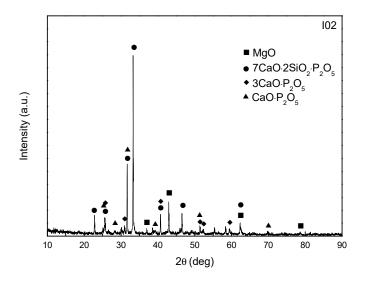


Fig. 5.18 XRD pattern of sample I02 after reaction.

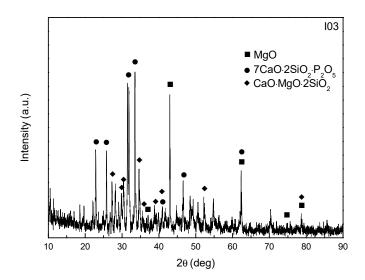


Fig. 5.19 XRD pattern of sample I03 after reaction.

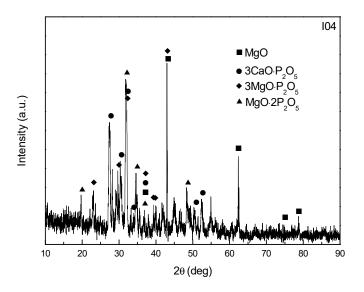


Fig. 5.20 XRD pattern of sample I04 after reaction.

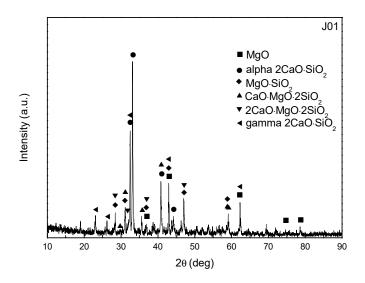


Fig. 5.21 XRD pattern of sample J01 after reaction.

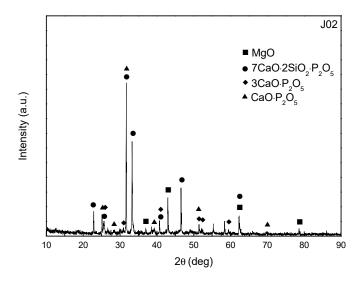


Fig. 5.22 XRD pattern of sample J02 after reaction.

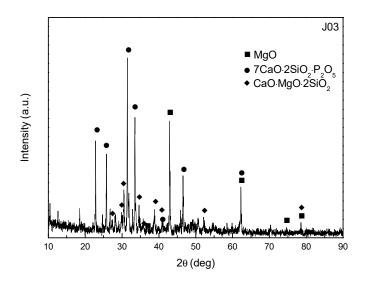


Fig. 5.23 XRD pattern of sample J03 after reaction.

5.4 Discussion

From the compositions as shown in Table 5.9, the mole fraction of $3\text{CaO}\cdot\text{P}_2\text{O}_5$ and P_2O_5 in the $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution, the mole fraction of FeO in tablets after reaction were shown in **Table 5.10**. The content of $3\text{CaO}\cdot\text{P}_2\text{O}_5$ in the $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution was calculated from the analyzed content P_2O_5 . The mole fraction of P_2O_5 in the solid solution was calculated from the content of $3\text{CaO}\cdot\text{P}_2\text{O}_5$. The compositions were projected onto the CaO-SiO_2-P_2O_5 system as shown in **Figure 5.24**.

No.	3CaO·P ₂ O ₅ /mol%	P2O5/mol%	FeO/mol%
G01	13.0	4.10	0.473
G02	26.7	8.42	0.516
G03	45.5	13.7	0.533
G04	69.1	19.2	0.393
H01	12.2	4.02	0.664
H02	26.4	8.40	1.05
H03	45.6	13.6	1.06
I01	12.6	4.06	0.404
I02	27.6	8.51	0.437
I03	45.4	13.0	0.439
I04	69.3	19.0	0.326
J01	12.7	4.02	0.641
J02	27.8	8.55	0.473
J03	44.6	12.9	0.389

Table 5.10 Compositions of tablets after reaction.

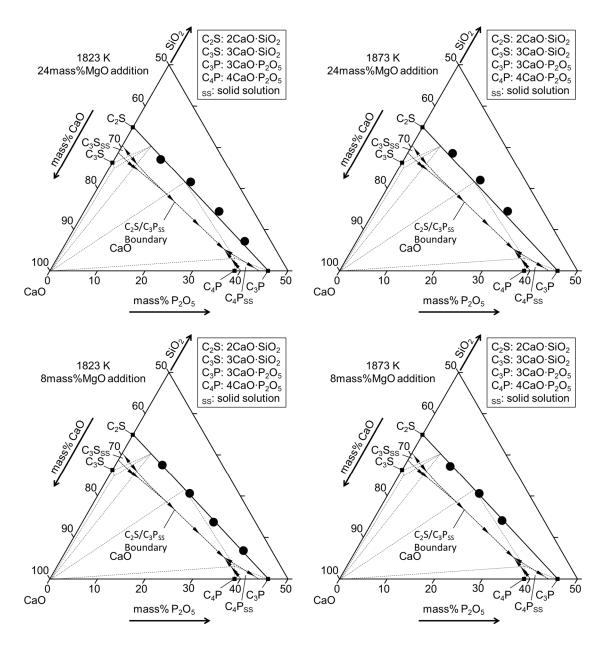


Fig. 5.24 Compositions of tablets after reaction on the CaO-SiO₂-P₂O₅ system.

5.4.1 Contents of FeO and MgO and activity coefficient of FeO in the tablet after reaction

Figure 5.25 shows the relationship between the P_2O_5 content and the FeO and MgO contents in tablets after reaction. The content of FeO was smaller than 1 mass% for most samples. The content of MgO after reaction was almost the same from the initial content.

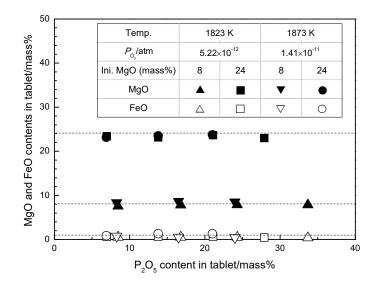


Fig. 5.25 Contents of FeO and MgO in the tablet after reaction.

According to the activity of FeO introduced in Chapter 3, the activity coefficient of FeO relative to hypothetical pure liquid FeO was calculated and shown in **Table 5.11** and **Figure 5.26**. At a certain temperature and oxygen partial pressure, the activity coefficient of FeO was almost constant. The activity coefficient of FeO was in the range from 1.30×10^{-8} to 4.47×10^{-8} .

Table 5.11 Thermodynamic data of the 2CaO·SiO ₂ -3CaO·P ₂ O ₅ solid solution containing 8 an	d
---	---

24 mass% MgO.								
No.	$\gamma_{ m FeO}$	$a_{3Mg0\cdot P_2O_5}$						
G01	1.42×10 ⁻⁸	8.28×10^{2}	9.24×10 ⁻²⁵	2.22×10 ⁻²³	6.65×10 ⁻¹²			
G02	1.30×10 ⁻⁸	6.55×10^{2}	5.59×10 ⁻²⁴	6.83×10 ⁻²³	4.03×10 ⁻¹¹			
G03	1.26×10 ⁻⁸	6.91×10 ²	1.17×10 ⁻²³	8.90×10 ⁻²³	8.44×10 ⁻¹¹			

G04	1.71×10 ⁻⁸	5.59×10 ²	3.16×10 ⁻²³	1.69×10 ⁻²²	2.27×10 ⁻¹⁰
H01	2.62×10 ⁻⁸	5.15×10 ²	2.26×10 ⁻²⁴	5.78×10 ⁻²³	8.99×10 ⁻¹²
H02	1.66×10 ⁻⁸	4.74×10^{2}	1.05×10 ⁻²³	1.30×10 ⁻²²	4.17×10 ⁻¹¹
H03	1.64×10 ⁻⁸	5.11×10 ²	1.75×10 ⁻²³	1.32×10 ⁻²²	6.94×10 ⁻¹¹
I01	1.66×10 ⁻⁸	6.53×10^{2}	1.46×10 ⁻²⁴	3.61×10 ⁻²³	1.05×10 ⁻¹¹
I02	1.54×10 ⁻⁸	9.09×10 ²	2.96×10 ⁻²⁴	3.51×10 ⁻²³	2.13×10 ⁻¹¹
103	1.53×10 ⁻⁸	5.78×10^{2}	1.56×10 ⁻²³	1.18×10 ⁻²²	1.12×10 ⁻¹⁰
I04	2.06×10 ⁻⁸	4.35×10^{2}	5.17×10 ⁻²³	2.75×10 ⁻²²	3.72×10 ⁻¹⁰
J01	2.72×10 ⁻⁸	4.13×10^{2}	3.53×10 ⁻²⁴	8.69×10 ⁻²³	1.40×10 ⁻¹¹
J02	3.67×10 ⁻⁸	3.87×10 ²	1.64×10 ⁻²³	1.93×10 ⁻²²	6.50×10 ⁻¹¹
J03	4.47×10 ⁻⁸	3.19×10 ²	4.99×10 ⁻²³	3.85×10 ⁻²²	1.98×10 ⁻¹⁰

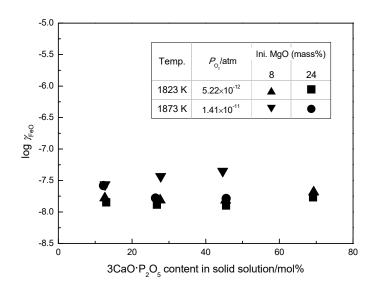


Fig. 5.26 Activity coefficient of FeO in the tablet after reaction.

5.4.2 Equilibrium concentration of P in molten iron and phosphorus partition ratio between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and MgO and molten iron

Figure 5.27 shows the relationship between the equilibrium concentration of P in molten iron and the $3CaO \cdot P_2O_5$ content in the solid solution. The concentration of P in molten iron increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The phosphorus partition ratio between the mixture of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and MgO and molten iron was shown in **Figure 5.28** and Table 5.11. The phosphorus partition ratio decreased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution.

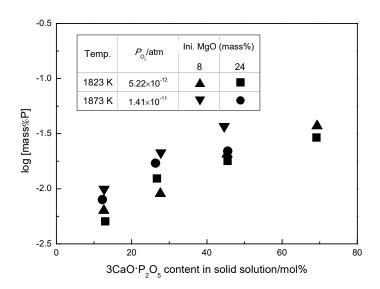


Fig. 5.27 Equilibrium concentration of P in molten iron.

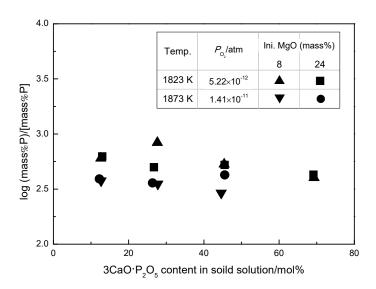


Fig. 5.28 Phosphorus partition ratio between the mixture of $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution and MgO and molten iron.

5.4.3 Activity and activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO

Figures 5.29 and **5.30** show activity and activity coefficient of P_2O_5 as a function of $3CaO \cdot P_2O_5$ content in the solid solution with the values shown in Table 5.11. For a constant composition of solid solution, the activity and activity coefficient of P_2O_5 barely changed with the change of the temperature and the extra MgO content. The activity of P_2O_5 changed from 9.24×10^{-25} to 5.17×10^{-23} and the activity coefficient of P_2O_5 changed from 2.22×10^{-23} to 3.85×10^{-22} .

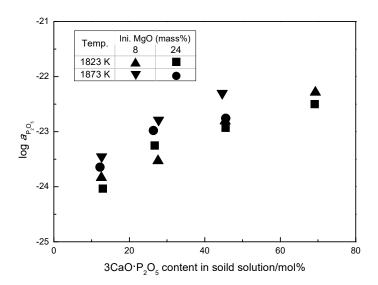


Fig. 5.29 Activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO.

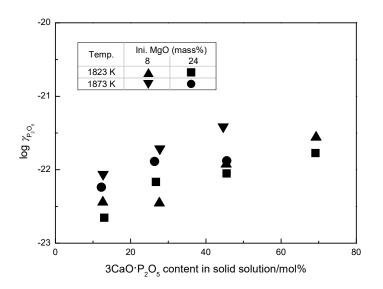


Fig. 5.30 Activity coefficient of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing

8 and 24 mass% MgO.

5.4.4 Activity of 3MgO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO

Since the MgO phase was detected after reaction, the activity of $3MgO \cdot P_2O_5$ was calculated from the activity of P_2O_5 by Eqs. (5.1) and (5.2). The activity of $3MgO \cdot P_2O_5$ in the $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution saturated with MgO were shown in **Figure 5.31** with the values in Table 5.11. The activity of $3MgO \cdot P_2O_5$ increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. For a constant composition of solid solution, the activity of $3MgO \cdot P_2O_5$ barely changed with the change of the temperature and the MgO content. The activity of $3MgO \cdot P_2O_5$ changed from 6.65×10^{-12} to 3.72×10^{-10} .

$$3MgO(s) + P_2(g) + 5/2 O_2(g) = 3MgO \cdot P_2O_5(s)$$
$$\Delta G_{5.1}^{\circ} = -1993000 + 510.0T \text{ J/mol} \dots \dots (5.1)^{[2]}$$
$$P_2(g) + 5/2 O_2(g) = P_2O_5(l)$$
$$\Delta G_{5.2}^{\circ} = -1655480 + 571.0T \text{ J/mol} \dots \dots (5.2)^{[3]}$$

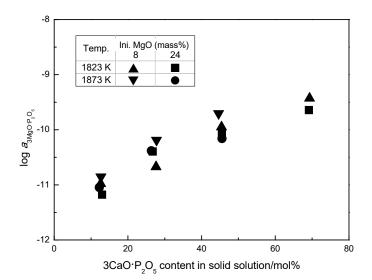


Fig. 5.31 Activity of 3MgO·P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO.

5.5 Summary

By applying the chemical equilibrium method, the equilibrium of phosphorus between the mixture of $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution and MgO and molten iron was measured at 1823 K with the oxygen partial pressure of 5.22×10^{-12} atm and 1873 K with the oxygen partial pressure of 1.41×10^{-11} atm. The activity of P₂O₅ relative to hypothetical pure liquid P₂O₅ in the 2CaO·SiO₂- $3\text{CaO}\cdot\text{P}_2\text{O}_5$ solid solution containing 8 and 24 mass% MgO increased from 9.24×10^{-25} to 5.17×10^{-23} and the activity coefficient of P₂O₅ increased from 2.22×10^{-23} to 3.85×10^{-22} with the increase of the $3\text{CaO}\cdot\text{P}_2\text{O}_5$ content in the solid solution saturated with MgO was estimated from 6.65×10^{-12} to 3.72×10^{-10} with the increase of the $3\text{CaO}\cdot\text{P}_2\text{O}_5$ content in the solid solution saturated with method.

References

- 1. W. Gutt: *Nature*, **197** (1963), 142-143.
- E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 14.
- 3. E. T. Turkdogan: ISIJ Int., 40 (2000), 964-970.

Chapter 6 Summary of the Thermodynamic Properties of the Calcium Phosphate-based Solid Solution and Prospect of Utilizing the Multi-phase Flux

6.1 Introduction

In this chapter the thermodynamic properties about the calcium phosphate-based solid solution measured in the Chapters 3, 4 and 5 were summarized. Moreover the prospect of application of multi-phase flux on the dephosphorization process was primitively introduced.

6.2 Content of FeO and activity coefficient of FeO in the tablet after reaction under various conditions

Figure 6.1 shows the content of FeO in the tablet after reaction under various conditions. The content of FeO barely changed with the increase of P_2O_5 content in the tablet. For most samples, the content of FeO was smaller than 1 mass%.

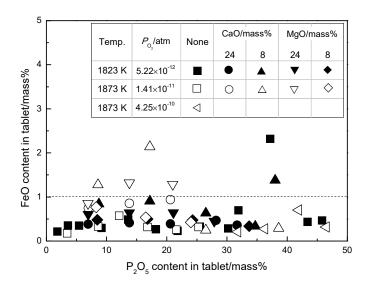


Fig. 6.1 Content of FeO in the tablet after reaction.

Figure 6.2 summarized the activity coefficient of FeO in the tablet after reaction under various conditions. The activity coefficient of FeO was maintained at a stable value at a constant temperature and oxygen partial pressure and the activity coefficient of FeO with the oxygen partial pressure of 4.25×10^{-10} atm at 1873 K was larger than the others.

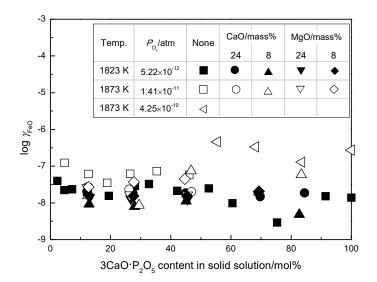


Fig. 6.2 Activity coefficient of FeO in the tablet after reaction.

6.3 Activity and activity coefficient of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution under various conditions

The activity and activity coefficient of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution under various conditions in current research were summarized in **Figures 6.3** and **6.4** comparing with the values conducted by Hasegawa *et al.*^[1] and Pahlevani *et al.*^[2] All the activity and activity coefficient of P₂O₅ were very small, because of this the method of multiphase flux could be applied for dephosphorization. The current values and the values conducted by Hasegawa *et al.* increased with the increase of the 3CaO·P₂O₅ content in the solid solution. The values conducted by Pahlevani *et al.* barely changed with the increase of the 3CaO·P₂O₅ content in the solid solution. The temperature dependency for the values conducted by Pahlevani *et al.* was not clear.

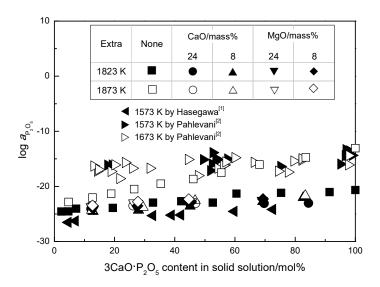


Fig. 6.3 Activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution under various conditions.

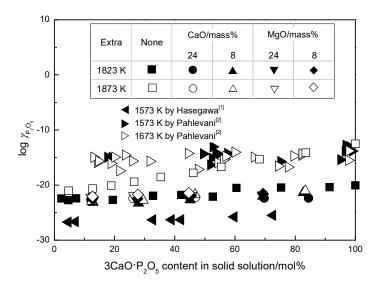


Fig. 6.4 Activity coefficient of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution under

various conditions.

6.4 Effect of MgO on the activity of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution

At a certain temperature for a certain composition of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution, the product of a_{CaO}^3 and $a_{P_2O_5}$ is constant from Eq. (6.1). The activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO was smaller than that in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution unsaturated with CaO as described in Chapters 3 and 4.

$$3CaO(s) + P_2O_5(l) = 3CaO \cdot P_2O_5(s)$$
$$K = \frac{a_{3CaO} \cdot P_2O_5}{a_{CaO}^3 a_{P_2O_5}} \dots \dots (6.1)$$

For the effect of MgO on the activity of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution, the comparison of P_2O_5 activity was shown in **Figure 6.5**. Obviously, the activity of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO marked by solid circles and squares was larger than the activity of P_2O_5 in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with CaO marked by open circles and squares.

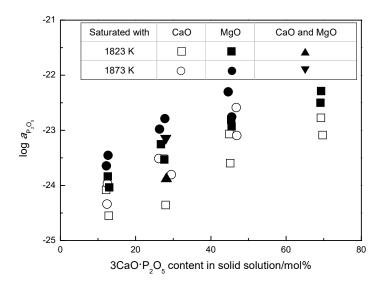


Fig. 6.5 Comparison of P₂O₅ activity.

In Figure 6.5 the solid triangles presented the activity of P2O5 in the 2CaO·SiO2-3CaO·P2O5

solid solution saturated with CaO and MgO with the experimental conditions and results as shown in **Tables 6.1**, **6.2** and **6.3**. The phases of CaO and MgO in tablets were detected by XRD before and after reaction as shown in **Figures 6.6**, **6.7** and **6.8**. The activity of P_{2O5} in the 2CaO·SiO₂-3CaO·P_{2O5} solid solution saturated with CaO and MgO was larger than that saturated with CaO and smaller than that saturated with MgO.

No.	Compositions of tablets/mass%								
	CaO	SiO ₂	P ₂ O ₅	MgO	$2CaO \cdot SiO_2$	$3CaO \cdot P_2O_5$	MgO	CaO	
K01	55.6	10.9	9.5	24.0	31.2	20.8	24.0	24.0	
K02	55.6	10.9	9.5	24.0	31.2	20.8	24.0	24.0	

Table 6.1 Initial compositions of tablets.

Table 6.2 Initial conditions of experiments.

No.	Temp./K	CO/CO ₂	Fe/g	Tablet/g
K01	1823	110/1	9.8366	1.4975
K02	1823	110/1	9.9548	1.4937

Table 6.3 Chemical analyzed results and activity of P2O5.

NL	Compositions of tablets/mass%					P in iron	3CaO·P ₂ O ₅	<i>a</i>	
No.	P ₂ O ₅	SiO ₂	CaO	MgO	FeO	Total	/mass%	/mol%	$a_{P_2O_5}$
K01	9.3	10.0	52.9	23.0	0.760	96.0	0.00603	28.2	1.31×10 ⁻²⁴
K02	9.2	10.0	51.7	23.5	1.25	95.7	0.0142	28.0	7.22×10 ⁻²⁴

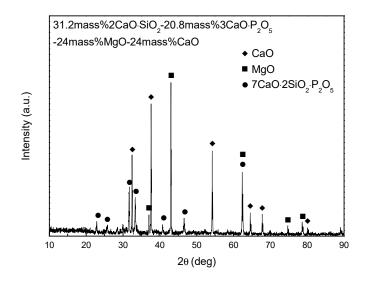


Fig. 6.6 XRD pattern of 31.2mass%2CaO·SiO₂-20.8mass%3CaO·P₂O₅ solid solution-

24mass%MgO-24mass%CaO.

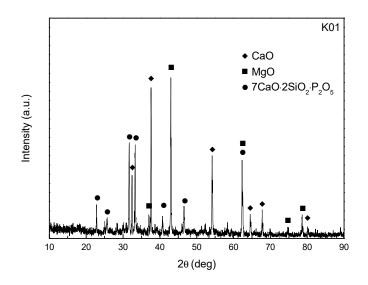


Fig. 6.7 XRD pattern of sample K01 after reaction.

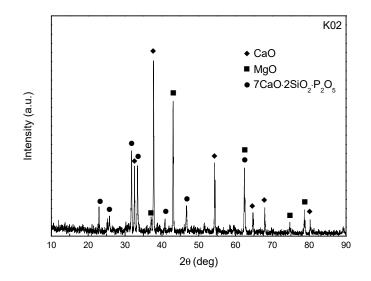


Fig. 6.8 XRD pattern of sample K02 after reaction.

The compositions of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO after reaction were projected onto the CaO-MgO-SiO₂ system and the CaO-MgO-P₂O₅ system as shown in Figures 6.9 and 6.10. In both systems, the compositions were located in the threephase equilibrium region at 1645 or 1273 K, but it was not the case at 1823 or 1873 K since the activity of P₂O₅ increased with the increase of the 3CaO·P₂O₅ in the solid solution. In addition, not only 2CaO·SiO₂ and 3CaO·P₂O₅ could form solid solution but also 2CaO·SiO₂ and 2MgO·SiO₂, and also 3CaO·P₂O₅ and 3MgO·P₂O₅ could form solid solution in a certain composition range as shown in Figures 6.9 and 6.10. For the 2CaO·SiO₂-3CaO·P₂O₅ solid solution, the composition range of solid solution enlarges with the increase of the temperature,^[5] and it is assumed that the composition range of solid solution also enlarges with the increase of the temperature for the 2CaO·SiO₂-2MgO·SiO₂ and the 3CaO·P₂O₅-3MgO·P₂O₅ solid solutions since the phase relationships at 1823 and 1873 K are unavailable for these two systems. Based on this assumption, the initial composition was simply considered as the mixture of 2CaO·SiO₂-3CaO·P2O5 solid solution and MgO and after reaction once one of these two kinds of solid solutions formed, the extra CaO is generated as explained by Figure 6.11. According to the similarity between Ca²⁺ and Mg²⁺ ions, the various solid solutions were probable to from the

complex $2CaO(MgO) \cdot SiO_2 - 3CaO(MgO) \cdot P_2O_5$ solid solution. Since the activity of P_2O_5 in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution saturated with CaO and MgO was smaller than that saturated with MgO, the extra generated CaO was unsaturated. The final component of the mixture of $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution and MgO was the $2CaO(MgO) \cdot SiO_2 - 3CaO(MgO) \cdot P_2O_5$ solid solution-MgO with a certain amount of dissolved CaO.

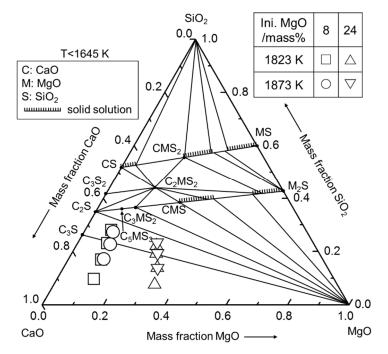


Fig. 6.9 Projection of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution initially containing 8 and 24 mass% MgO after reaction on the CaO-MgO-SiO₂ system. The phase relationship was measured at less than 1645 K.^[3]



Fig. 6.10 Projection of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution initially containing 8 and 24 mass% MgO after reaction on the CaO-MgO-P₂O₅ system. The phase relationship was measured at 1273 K.^[4]

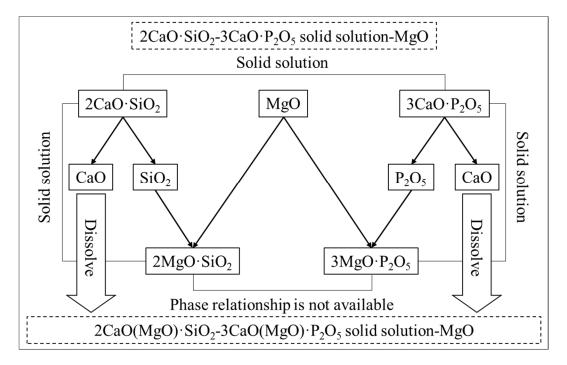


Fig. 6.11 Demonstration for the composition change of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO.

For the CaO-MgO-SiO₂-P₂O₅ quaternary system the several feasible compositions were shown in **Figure 6.12**. The mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and MgO is located on the triangle plane shown in Figure 6.12 A. If only the 3CaO·P₂O₅-3MgO·P₂O₅ solid solution could form, the composition was located on the plane as shown in Figure 6.12 B. If only the 2CaO·SiO₂-2MgO·SiO₂ solid solution could form, the composition was located on the plane as shown in Figure 6.12 C and if both of 2CaO·SiO₂-2MgO·SiO₂ and the 3CaO·P₂O₅-3MgO·P₂O₅ solid solutions could form the composition was located on the plane as shown in Figure 6.12 C and if both of 2CaO·SiO₂-2MgO·SiO₂ and the 3CaO·P₂O₅-3MgO·P₂O₅ solid solutions could form the composition was located on the plane shown in Figure 6.12 D.

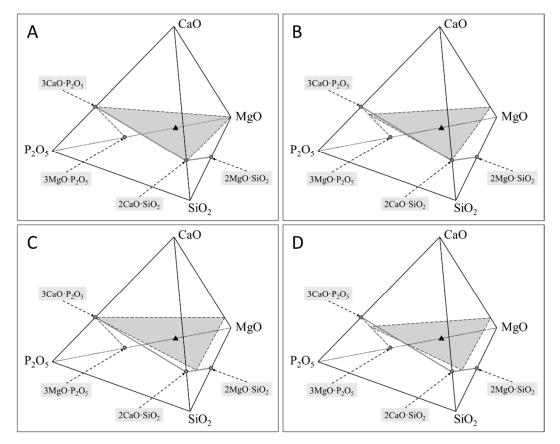


Fig. 6.12 A: Composition as the 2CaO·SiO₂-3CaO·P₂O₅ solid solution-MgO.
B: Composition as the 2CaO·SiO₂-3CaO(MgO)·P₂O₅ solid solution-MgO-CaO.
C: Composition as the 2CaO(MgO)·SiO₂-3CaO·P₂O₅ solid solution-MgO-CaO.
D: Composition as the 2CaO(MgO)·SiO₂-3CaO(MgO)·P₂O₅ solid solution-MgO-CaO.

6.5 Prospect of application of multi-phase flux

According to the activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution at 1823 K, the relationship between the logarithm P₂O₅ activity and the mole fraction of 3CaO·P₂O₅ in the solid solution was fitted with a liner relationship by least square method as Eq. (6.2). The equilibrium concentration of P in molten iron under various oxygen partial pressures was calculated by Eq. (6.3) as shown in **Figure 6.13**. When the oxygen partial pressure was 10^{-12} atm, the 2CaO·SiO₂-3CaO·P₂O₅ solid solution barely has ability of dephosphorization. On the contrary, when the oxygen partial pressure was 10^{-10} atm, the whole composition of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution has huge ability of dephosphorization.

$$\log a_{P_2O_5} = 3.9987 x_{3CaO \cdot P_2O_5} - 24.446 \ (R^2 = 0.9385) \dots \dots (6.2)$$
$$P_2O_5(l) = 2\underline{P}(mass\%) + 5/2O_2(g)$$
$$\Delta G_{6.5}^{\circ} = 1400000 + 603T \ J/mol \dots \dots (6.3)^{[6, 7, 8]}$$

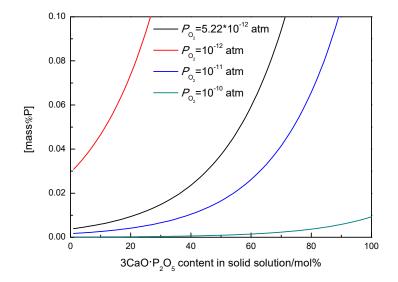


Fig. 6.13 Equilibrium concentration of P in molten iron with various oxygen partial pressures.

Base on above calculation, if the oxygen partial pressure could be controlled at a reasonable value, $2CaO \cdot SiO_2$ could be applied as a dephosphorization agent. But if only $2CaO \cdot SiO_2$ is adopted after forming $2CaO \cdot SiO_2$ - $3CaO \cdot P_2O_5$ solid solution, the consumption of CaO is larger than P₂O₅ to decrease the basicity of slag. From this view, $2CaO \cdot SiO_2$ is not the first choice for

dephosphorization although the slag could be well recycled. At present, CaO is still recommended as the dephosphorization agent and how to utilize the unreacted CaO is deserved to develop.

The concept is as following. At first the CaO is added into BOF slag for the first time dephosphorization and after dephosphorization the solid phase is separated from the heterogeneous slag. At this time, the solid phase is the CaO wrapped with the 2CaO·SiO₂- $3CaO·P_2O_5$ solid solution. In order to utilize the unreacted CaO, the solid phase should be crushed and agglomeration again. At this time, the solid phase considered as the mixture of $2CaO·SiO_2-3CaO·P_2O_5$ solid solution and CaO still has the huge ability of dephosphorization which could be applied for another time of dephosphorization. With the increase of reusing times, the contents of $3CaO·P_2O_5$ and MgO increase in the solid solution which decrease the effect of dephosphorization. As shown in **Figure 6.14** at first CaO is adopted and with the increase of reusing times, composition of solid phase shifts along the arrow. When the CaO is saturated or the CaO is unsaturated but the composition is near the $2CaO·SiO_2-3CaO·P_2O_5$ solid solution with low content of CaO·P_2O_5 as shown in the green region, the solid phase has the ability of dephosphorization. But when the composition is located in the red region, it is recommended to replace the solid phase to new CaO.

For the solid phase which has been applied several times for dephosphorization in BOF slag, even if it drastically loses the ability of dephosphorization, it still could be applied in the process of pretreatment since the low temperature and high concentration of P in pig iron as shown in **Figure 6.15**. In the process of dephosphorization at BOF furnace, the slag is continuously used only the solid phase is replaced. The advantage is it could decrease the volume of slag and the consumption of CaO. In addition, the BOF slag is easily to be reused. Finally the solid phase could be utilized as phosphate fertilizer.

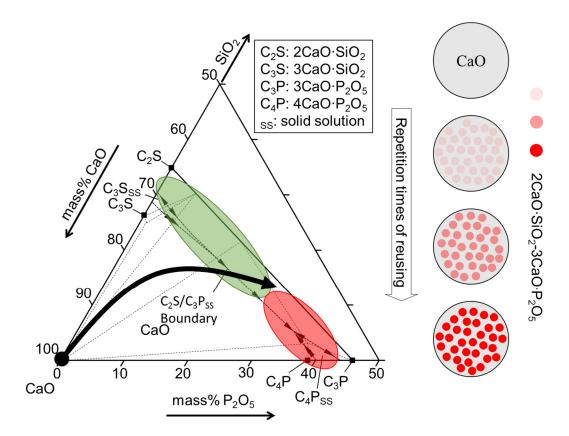


Fig. 6.14 Composition change for the solid phase in the multi-phase flux.

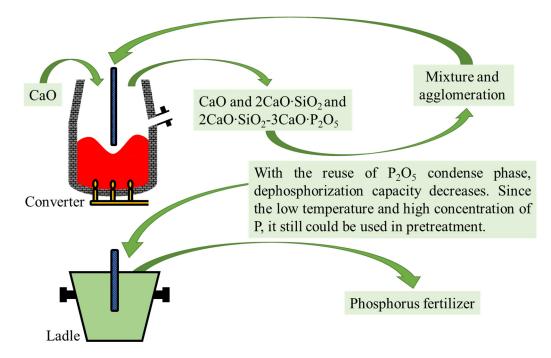


Fig. 6.15 Flow chart for applying multi-phase flux with CaO as the initial dephosphorization

agent.

6.6 Summary

In this chapter, the activity coefficient of FeO in the tablet after reaction under various conditions was summarized. In addition, the activity of P₂O₅ in the calcium phosphate-based solid solution was summarized comparing with the values reported by Hasegawa *et al.* and Pahlevani *et al.* Moreover, the effect of MgO on the thermodynamics of the calcium phosphate-based solid solution was discussed. The activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO was larger than that saturated with CaO. The CaO was unsaturated in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution including 8 or 24mass% MgO and the component of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO was considered as the mixture of the 2CaO(MgO)·SiO₂-3CaO(MgO)·P₂O₅ solid solution and MgO with a certain amount of dissolved CaO. Finally the innovative dephosphorization process was proposed according to the current and previous researches.

References

- 1. M. Hasegawa, Y. Kashiwaya and M. Iwase: High Temp. Mater. Proc., 31 (2012), 421-430.
- 2. F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: ISLJ Int., 50 (2010), 822-829.
- M. Allibert *et al.*: SLAG ATLAS 2nd Edition, Verein Deutscher Eisenhüttenleute, Germany, (1995), 134.
- M. Allibert *et al.*: SLAG ATLAS 2nd Edition, Verein Deutscher Eisenhüttenleute, Germany, (1995), 133.
- 5. W. Fix, H. Heymann and R. S. Heinke: J. Am. Ceram. Soc., 52 (1969), 346-351.
- 6. E. T. Turkdogan: ISIJ Int., 40 (2000), 964-970.
- 7. S. Ban-ya and S. Matoba: Tetsu-to-Hagané, 48 (1962), 925-932.
- E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 7.

Chapter 7 Conclusions

Generally speaking phosphorus is a harmful element for steel. It causes cold brittlement and temper brittlement to decrease the plasticity and the toughness. In order to meet the requirement of high quality steel, phosphorus should be removed as much as possible. As a cheap and efficient dephosphorization agent, CaO is commonly adopted. The excess CaO is added into slag in order to achieve better dephosphorization efficiency and thus the amount of slag and the consumption of CaO increase. Meanwhile due to CaO which remains unreacted or precipitates during solidification of dephosphorization slag, the slag is difficult to be reused. In consequence of the harm for environment and human, fluorite is strictly used although it can enhance the dissolution of CaO into slag. Under this condition, the concept of multi-phase flux was considered. In order to deeper understand and better apply this method, it is eagerly to obtain the thermodynamic data of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution which is considered as the main solid phase in the multi-phase flux. For this reason, the thermodynamics of the calcium phosphate-based solid solution for steelmaking were studied in current research.

Chapter 1 mainly introduced the research background and the previous researches. CaO could react with SiO₂ to form 2CaO·SiO₂ on the surface of the block CaO and prevent dissolution of CaO into slag. Even so, the 2CaO·SiO₂ could react with P₂O₅ to form a kind of P₂O₅ condensed phase which was considered as the solid phase in the multi-phase flux. According to previous researches, the P₂O₅ condensed phase was confirmed as a binary solid solution between 2CaO·SiO₂ and 3CaO·P₂O₅ and in order to utilize the solid solution the current research was proposed. About this topic, the reaction mechanism between solid CaO or 2CaO·SiO₂ and slag, the distribution of P₂O₅ between solid solution and liquid slag and the activity of P₂O₅ in the P₂O₅ condensed phase estimated by applying the regular solution model have been studied. The phase relationship of CaO-SiO₂-FeO-5mass%P₂O₅(-5mass%Al₂O₃) system has been well studied. The current research focuses on the thermodynamics about the calcium phosphate-based solid solution for steelmaking and the activity of P₂O₅ was measured directly by chemical equilibration method.

The chemical equilibration method was adopted for experiments as introduced in **Chapter** 2. The experimental principle and parameters were introduced. The oxygen partial pressure was controlled by the mixture of CO and CO₂ gases. The vertical-resistance furnace with an Al₂O₃ tube (outer diameter: 60 mm, inner diameter: 50 mm, length: 1000 mm) was applied for the experiments. Before each experiment, temperature was measured by a B-type thermocouple from the top of the tube and the suitable hot zone with temperature of 1823 K \pm 1 K or 1873 K \pm 1 K was determined. Temperature during the experiment was monitored by a B-type thermocouple placed at the bottom of an MgO crucible. The electrolytic iron was equilibrium with the artificial tablet in an MgO crucible for 24 hours which was confirmed long enough to reach equilibrium by preliminary experiments. After the equilibrium was established, the sample was quenched by Ar stream. The molybdenum-blue spectrophotometric solvent extraction method or the phosphomolybdate blue spectrophotometric method was adopted for analyzing the concentration of P in iron. The content of P₂O₅ in the tablet was analyzed by the phosphomolybdate blue spectrophotometric method. The content of SiO₂ in the tablet was analyzed by the gravimetry. The contents of CaO, FeO and MgO in the tablet were analyzed by ICP-OES. The formation of phases in the tablet was confirmed by XRD. The tablet was made by sintering the mixture with various ratios of reagent grade SiO₂, MgO, CaHPO₄·2H₂O and CaO obtained by the calcination of reagent grade CaCO₃. The mixture was heated in air at 1873 K in a Pt crucible for 24 hours, quenched by Ar stream and then ground into fine powder. These steps were repeated twice to obtain the powder for making tablet. About 1.5 g of powder was charged into a steel dies to be pressed into a cylindrical tablet (diameter: 18 mm, thickness: 3 mm) at 50 MPa.

The thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅ solid solution at 1823 and 1873 K were studied in **Chapter 3**. Since the tablet was contaminated with more or less MgO crucible particles and metallic iron particles when the tablet was separated from the surface of solidified iron in the MgO crucible after reaction, contents of FeO and MgO were larger for some samples. Except the irregular points, both of the contents of FeO and MgO were smaller than 1 mass%. In addition, the activity coefficient of FeO in the tablet after reaction was estimated. At a certain

temperature and oxygen partial pressure, the change of activity coefficient of FeO was not clear. For a constant temperature and oxygen partial pressure, the concentration of P in molten iron increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution. The activity and activity coefficient of P₂O₅ in the $2CaO \cdot SiO_2 - 3CaO \cdot P_2O_5$ solid solution increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution increased with the increase of the $3CaO \cdot P_2O_5$ content in the solid solution at a certain temperature and the values at 1873 K was larger than those at 1823 K.

In practical dephosphorization process, the excess lime is added into slag for a better effect of dephosphorization. In Chapter 4, the compositions of tablets were the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% CaO. The contents of FeO and MgO in tablet after reaction and the activity coefficient of FeO in the tablet were discussed at first. Later the concentration of P in molten iron and phosphorus partition ratio between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and CaO and molten iron were discussed. The activity and activity coefficient of P2O5 in the 2CaO·SiO2-3CaO·P2O5 solid solution containing 8 and 24 mass% CaO at 1823 and 1873 K increased with the increase of the 3CaO·P₂O₅ content in the solid solution. For a constant composition of solid solution, the activity and activity coefficient of P₂O₅ barely changed with the change of the temperature. For the compositions in which the CaO phase was detected after reaction, the activity and activity coefficient of 3CaO·P₂O₅ were calculated by the estimated activity of P₂O₅ and the activity of CaO which was unit. The activity and activity coefficient of 3CaO·P2O5 increased with the increase of the 3CaO·P₂O₅ content in the solid solution. For a constant composition of solid solution, the activity and activity coefficient of 3CaO·P2O5 barely changed with the change of the temperature. Furthermore, the activity of 2CaO·SiO₂ in the solid solution was calculated with the estimated activity of 3CaO·P₂O₅ by using the Gibbs-Duhem equation. The activity of 2CaO·SiO₂ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution decreased with the increase of the 3CaO·P₂O₅ content in the solid solution and the temperature dependency of the activity of 2CaO·SiO₂ was not clear within the experimental error range.

Since there is more or less MgO in metallurgical slag and the MgO is also adopted as the refractory it is necessary to study the thermodynamic properties of the 2CaO·SiO₂-3CaO·P₂O₅

solid solution containing 8 and 24 mass% MgO at 1823 and 1873 K. In **Chapter 5** the content of FeO in tablet after reaction and the activity coefficient of FeO were discussed at first. Later the concentration of P in Fe and phosphorus partition ratio between the mixture of 2CaO·SiO₂-3CaO·P₂O₅ solid solution and MgO and molten iron were discussed. The activity and activity coefficient of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution containing 8 and 24 mass% MgO at 1823 and 1873 K increased with the increase of the 3CaO·P₂O₅ content in the solid solution. For a constant composition of solid solution, the activity and activity coefficient of P₂O₅ barely changed with the change of the temperature. The MgO phase was detected in each composition after reaction and the activity of 3MgO·P₂O₅ was calculated by the estimated activity of P₂O₅ and the activity of MgO which was unit.

Chapter 6 summarized the thermodynamic properties of the calcium phosphate-based solid solution determined in Chapters 3, 4 and 5 and proposed the application of multi-phase flux. The activity of P₂O₅ in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO was larger than that saturated with CaO. From the phase relationship of CaO-MgO-SiO₂ system and CaO-MgO-P₂O₅ system, it was inferred the extra CaO was generated with an unsaturated amount in the 2CaO·SiO₂-3CaO·P₂O₅ solid solution saturated with MgO. Finally the prospect of application of multi-phase flux was proposed. In the process of dephosphorization at BOF, the liquid slag is continuously used only the solid phase is replaced. After losing the ability of dephosphorization at BOF the solid phase is used for dephosphorization at the process of pretreatment and finally the solid phase is utilized as the phosphate fertilizer.

In current research, the thermodynamics of the calcium phosphate-based solid solution were measured directly. It provided the necessary urgent basic thermodynamic data for dephosphorization. Combining with present and previous researches, the method of multi-phase flux is realizable.

Acknowledgement

As time goes by, whilom strange streets, buildings, customs and the whilom freshness are leaving. When I could know the food names in cafeteria only through smelling and I could expertly open the laboratory doors at midnight even without any light, I realize that I am also leaving from this devoted indelible place. Three years is not very long, but it is long enough to imprint every tree and bush of here on my heart. Whenever think back to the days when I tried my best to enter this world-renowned university, I feel a bit speechless mood. At this moment I cannot accurately express my emotion, because I love here and you more than I can say.

Dear Professor Fumitaka Tsukihashi, at first I'd like to express my heartfelt thanks and great respect to you. Up to now, I could remember the day of the first interview on Jan. 9th, 2012. From that moment, it is no exaggeration to say you altered the course of my life and made me closer to my dream. During these three years, I gain so much suggestions and care from you and the more important, you teach me not only how to be an eligible scholar but also how to develop the personality charm.

Meanwhile, I wish to express my sincere gratitude to dear Associate Professor Hiroyuki Matsuura. It's hard to forget that on the night of Sept. 28th, 2012, we met for the first time and the scene you were working with your whole heart hit me very deep. I know you are my role model and I must work hard to be a respectable scholar like you in the future. Thank you very much for suggestions from you and since the precious suggestions I was short on a few detours.

I am also grateful to the members of the thesis evaluation committee: Professor Kazuki Morita (Graduate School of Engineering, The University of Tokyo), Professor Kazuo Terashima (Graduate School of Frontier Sciences, The University of Tokyo) and Associate Professor Toshihiro Okamoto (Graduate School of Frontier Sciences, The University of Tokyo). Thank you very much for your very valuable constructive opinions and suggestions about my thesis and future work.

I am appreciated to the members from Tsukihashi · Matsuura group: Professor Volodymyr Shatokha, Professor Guangqang Li, Professor Baokuan Li, Professor Zhangfu Yuan, Professor Xiaojun Hu, Professor Deyong Wang, Associate Professor Likun Zang, Associate Professor Guohua Zhang, Lecturer Canguo Wang, Dr. Yang Cui, Dr. Xiao Yang, Dr. Xu Gao, Dr. Xiaorui Zhang, Dr. Wonjin Choi, Dr. Sokur Yuliia and so on. Thank you very much for your kind concern.

For the students once or now together with me in the lab: Mr. Shota Amano, Mr. Masato Kurehashi, Mr. Gouji Kaneda, Mr. Katsuki Goto, Mr. Kyohei Kenmotsu, Mr. Hiroshi Yamaguchi, Ms. Yusheng Lang, Mr. Masayuki Sato, Mr. Hiroaki Nishi, Mr. Fuminori Katabe, Mr. Yoshifumi Inose, Mr. Akihiro Sanada, Mr. Koki Yano, Mr. Hiroki Kitao, Mr. Toshiki Nonaka, Mr. Songjie Tang, Mr. Hiroyuki Tate, Mr. Kanta Iwaya, Mr. Kohei Kondo, Mr. Hitoshi Mukai, Ms. Yan Wu, Mr. Guodong Sun, Mr. Minggang Li, Ms. Qian Zhou, Mr. Kiyotaka Saito, Mr. Ryosuke Shimakura, Mr. Stsunori Suzuki and Mr. Kazuaki Hirakawa, because of you the exotic life is no longer alone and because of you, I could gain the happiness not only from research.

My appreciation is also given to Ms. Yuko Shoji. Thank you very much for helping me on the daily life.

The last gratitude is for my parents. You gave me the life. I am loving you better than words can tell with saying nothing at all.

June 2015