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Abstract Of Doctor Thesis Academic Year 2015

Category-enhanced Embedding

Model for Massive Text Data

Summary

This thesis addresses the effectiveness of using the category-enhanced embedding

method for massive text data to understand entities.

In the era of Big data, many real-world entities are mapped to the Web or to

databases, in the form of text, which creates a need to process them to extract

useful knowledge. Most of the entities do not have structured data on the Web;

therefore, we often need to process massive and various text data with the weakly

structured labels, which are often represented as categories. Categories that we

discuss here are not necessarily well structured, but they are groups which humans

use for understanding entities and where entities share underlying properties. For

example, e-commerce sites have categories for products and academic articles have

keywords; they are labeled by humans for searchability. We call such categories

”explicit categories”. Categories in this thesis also include communities or user

groups in social media; most of social media do not have explicit communities or

user groups, however we can divide them into similar user groups using commu-

nity detection algorithm. We call such categories ”implicit categories” since we do

not have explicit tags or labels for each category, but we know the algorithm how

to extract groups where entities share underlying properties. Using these cate-

gories in addition to entity information, the proposed method can learn similarity

among entities from categories and vice versa, and it can be used for analyzing

the landscape of entities.

In this thesis, we propose an embedding method that learns similarity among

categories and entities. Embedding methods embed an entity into a fixed dimen-

sional vector, and recent studies in natural language processing (NLP) concentrate

on this approach. One of the reasons this approach is popular is that the embed-

dings of infrequent words can be learned from frequent words. We extend this idea

to categories as well as entities since some categories or entities appear infrequently

compared to others. This is especially true with massive data, which often have
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various categories and entities, and thus traditional methods have difficulties to

apply.

We propose the Category Vector models, which train embeddings of the cate-

gories, entities, and words simultaneously, and we compare the proposing models

with the traditional model and the existing embedding models which do not take

categories into account. We conduct category inference tasks on categories (explicit

categories) of e-commerce sites in Japan and in the U.S., and the same inference

tasks on communities (implicit categories) of a microblogging service. We also an-

alyze the ways in which the Category Vector models capture the difference among

categories, and we compare the word embeddings that capture the local context

of words (i.e. word usage) and the learned embeddings of categories.

The proposing method can be widely applied for various massive data since the

method has less limitations than top-down methods using taxonomy or ontology,

which are often unavailable for various entities. Moreover, the proposing method

can make use of humans’ knowledge for entities compared to bottom-up approach

such as bag-of-words; the proposing method can capture how similar categories or

entities are from the massive dataset. The proposing method is scalable, therefore

we can apply for massive data in the industries. We expect that the Category

Vector models assist with decision making in industries by capturing the landscape

of entities and categories.
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Chapter 1

Introduction

1.1 Background

Recent years have seen an exponential growth of massive data, which is often

referred to as “Big data”. In this chapter, first we describe what the term “Big

data” refers to, and discuss the situations in which it appears. Second, we discuss

“categories”, which are often analysis units for humans and also are used in Big

data analysis. Third, we explain the “embedding” methods, which are employed in

natural language processing (NLP) for the scalability and applicability to massive

data. Finally, we describe the purpose of this thesis: why we apply the embedding

methods to handle categories in Big data.

1.1.1 Big data

The need to process massive amounts of data in order to explore certain tenden-

cies and to extract knowledge is growing rapidly as the amount of data explodes.

Many people refer to such large amounts of data as “Big data”. McKinsey Global

Institute reported that various domains can use Big data to create value through

(1)creating transparency, (2)enabling experimentation to discover needs, expose

variability, and improve performance, (3) segmenting populations to customize ac-

tions, (4)replacing/supporting human decision making with automated algorithms,

and (5)innovating new business models, products, and services [59]. Among differ-

ent types of data, text/numerical data are stored in various sectors, while video,

images, and audio information is stored in specific domains. The report also lists

techniques for analyzing Big data, including data mining, natural language pro-

cessing, and network analysis, which can be applied to marketing applications

such as branding campaigns, and modeling the purchase behaviors of customers.

Japanese Ministry of Internal Affairs and Communications reported in the White
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Figure 1.1: The type of data generated and stored varies by sector, cited from the

Big data report of McKinsey Global Institute [59]
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Figure 1.2: Development of Big data in the field of Blog, SNS, and EC sites. Data

are retrieved from the White Paper, “Information and Communications in Japan”.
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Table 1.1: Top 4 usage of media by industry. Data are retrieved from the White

Paper, “Information and Communications in Japan”.
Industry Top 1 Top 2 Top 3 Top 4

Commerce POS data 31.8% Sales logs 27.1% Access logs 22.1% Blog, SNS 21.3%

Finance/
Access logs 19.4%

Customer
18.7% Blog, SNS 16.6% Sales logs 16.0%

Insurance DB

Manufacture Sales logs 23.0% Blog, SNS 19.1% Access logs 18.6%
Customer

18.0%
DB

Energy/ CTI Voice
21.0% Access logs 20.6% Sales logs 18.5% Blog, SNS 18.0%

Water supply logs

Real estate Access logs 23.9% GPS data 20.0% Blog, SNS 18.6% POS data 18.4%

Service Blog, SNS 19.6% POS data 19.4% Access logs 18.4%
Customer

17.7%
DB

Information/
Sales logs 24.1% Access logs 18.4% POS data 18.2%

Customer
17.8%

Communication DB

Construction Access logs 19.5%
Customer

14.7%
Business

14.7% Blog, SNS 12.6%
DB Diaries

Transportation Sales logs 25.7%
Customer

16.6%
Financial

15.3% Access logs 14.4%
DB data

Paper, “Information and Communications in Japan” (2014) [平成 26年版 情報通

信白書]1 that the amount of the data has increased by 8.7 times during the 8 years

(from 2005 to 2013). As we can see in Figure 1.2, data of articles in blogs and so-

cial networking services (SNS), sales logs in e-commerce (EC) sites, and customer

databases (DB) are also growing; the amount has increased by 7.7 times during

the same period. According to the White Paper, the amount of these data is less

than 0.01% of the total distribution amount; however, they are used in various in-

dustries. Table 1.1 shows that many companies use sales logs, customer DB, and

blog/SNS, regardless of the industry. These media tools are useful for marketing

and advertisement purposes since they have various attributes for the customers

and users, activities of users, and massive texts generated by users — namely,

information regarding various entities in the real world. Here, real-world entities

mean objects or users in services, for example, products or customers in a Web

service. The information of such entities is electronically stored in databases. A

large number of companies try to extract useful information for their business from

massive information of such entities, which is one of the motivations of utilizing

Big data.

Although no clear definition is established for the term Big data, we intend

to mean not only the massive data, but the necessity for scalable algorithms and

1Retrieved from http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h26/pdf/

n3100000.pdf on August 12th 2015
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data management to extract knowledge. Boyd and Crawford defined Big data as

a cultural, technological, and scholarly phenomenon that rests on the interplay of

technology, analysis and mythology [9]. They claimed that Big data cannot be

defined from the amount of data, but that it is the phenomenon that can change

people’s view of knowledge. Mayer-Schönberger and Cukier claimed that it is only

the start to define Big data as massive data which cannot fit into the memory —

Big data challenge the way we perceive the world, and make the society shed some

of its obsession for causality in exchange for simple correlations: not knowing

why but only what [61]. Before Big data existed, we tested a small number of

hypotheses; however, using the Big data, we can discover the connections between

things we have not considered. In addition, as Mayer-Schönberger and Cukier also

pointed out, Big data is messy, varies in quality; therefore, we lose in accuracy

at the micro level we gain in insight at the macro level. Thus, modern Big data

approaches are often referred to as the way in which we let data speak for itself,

not so much seeking to assume hypotheses, but aiming to improve the model from

the larger set of data.

To know more about various real entities in the Web or the databases, therefore,

the ability to handle massive data, and to extract their tendency, and establish

their relationship is becoming increasingly important. Among massive data, our

thesis focuses on the massive text data since various types of information from

different industries is stored in a variety of ways in the text data. To process text

data, such as documents, we generally use vector representations for the text data.

In recent years, many researchers in the field of natural language processing (NLP)

focus on the embedding method, which can improve the model from massive text

data in an unsupervised way. Thus, it is considered to be a promising method for

the era of Big data.

1.1.2 Development of embedding methods

It is common to handle texts, or documents, in the form of vector representations

because it is easy to apply mathematical techniques to documents when we have

document vectors. Traditionally, it has been common to assign a dimension for

each word or sequence of words. The use of n-grams and bag-of-words (BOW),

which are widely employed for NLP, requires such a strategy to deal with text data.

An n-gram is a sequence of n words, appearing in a text. If n = 1, 2, 3 (called

unigram,bigram, and trigram, respectively), we can retrieve sequences shown in

the following from a sentence.

• each zebra has its own unique pattern

• Unigram: {each, zebra, has, its, own, unique, pattern}
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• Bigram: {each zebra, zebra has, has its, its own, own unique, unique pattern}
• Trigram: {each zebra has, zebra has its, has its own, its own unique, own

unique pattern}

Language models use n-grams to predict the next word from a given sequence of

words. N -gram model predicts better when n is larger; however, n-grams become

much more sparse with larger n. The main reason of the sparsity is Zipf’s law.

Zipf’s law states that the frequency of the k-th frequent word is proportional to 1/k

[105]. For example, the word okapi is much less frequent than zebra. Therefore,

it is hard to estimate the probability of “each okapi has its own unique pattern”,

although it sounds natural. The combinatorial explosion caused from this property

is also a problem. When we observe more data, we face new, infrequent words. We

cannot handle all possible combinations; therefore, we have to assign probabilities

to unseen sequences (which is called smoothing). We can use (n − 1)-grams to

estimate the probability of n-grams. This idea leads to back-off smoothing [46],

and Kneser-Ney smoothing [50] , and yet n-grams with n > 3 are difficult to

handle.

One of the promising approaches to avoid the sparsity of n-grams is the “embed-

ding method”. The embedding method projects a symbol to vectors or matrices.

Most of the embedding methods in NLP assign real-valued vectors to words since

words are key symbols.

Embeddings, which we will discuss in chapter 2 in details, are typically vec-

tor representations. The embedding method often assigns a real-valued vector

representation for each word, of which dimension is 100 to 1000, and it projects

some aspects of the meanings of words into vector representations. When we use

the embedding method, we can handle words or several words as vectors, and

we can calculate the similarities or dissimilarities from their vector representa-

tions. Therefore, we can avoid the combinatorial explosion without using external

knowledge.

Also, the embedding method can ease the harmful influence of Zipf’s law since

an embedding of an infrequent word (e.g., okapi) can acquire the relationship to

other words from the usage of the more frequent and similar word (e.g., zebra)

when they are learned as similar words in a model.

Now, how can we train the model to obtain embeddings that can represent the

word meanings? Bengio et al. took a neural network based approach: the neural

probabilistic language model [3]. The model is based on a feed forward neural

network, where each word has its embedding. Figure 1.3 shows the architecture of

the neural probabilistic language model. The vectors of the context words (words

seen in a certain word window) are concatenated in the input layer, and we project
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Figure 1.3: Neural probabilistic language model by Bengio et al. [3]

the concatenated vector to the middle layer using the matrix H. We calculate the

tanh of the vector in the middle layer, and using the matrix U , we project it to

the output layer, where the values represent the unnormalized distribution for the

word to be predicted. The model also has W , which projects the input vector

directly into the output layer; however, the main architecture is similar to the

feed forward neural network. In this model, vectors for words that share similar

context words are learned as similar vectors. While n-gram models handled words

completely separately, the neural network approach can augment training of the

vectors from sequences of similar words. The experiment showed that the neural

probabilistic language model performed better than the n-gram model in terms of

predicting the next word from previous words.

One of the key characteristics of this approach is that the similarity between

items are trained from preceding items through unsupervised learning. This ap-

proach is based on distributional hypothesis, which claims that we can extract the

meanings (discussed in chapter 2 in detail). Another key characteristic is that

there is no need to store all the fragments of sequences nor the set of items — we

only need to store the vector representations. These characteristics are useful for

Big data since the embedding approach does not require much additional memory

or storage size as the data increase. When we receive new data, we only have to

update the parameters (including embeddings) while the number of n-grams or

the vector size of BOW increases; therefore, much research adopts this approach.

Additionally, the embedding method, particularly when used with the neural net-

work approach, often learns embeddings through online learning. Therefore, we

can retrain embeddings from the learned models.
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The above discussion addressed the effectiveness of adopting word embeddings.

However, the embedding method also can be applied for entities that are accompa-

nied with semantic relationships. Various entities are present in Big data, and the

embedding method can ease the difficulties in the sparseness of entities as word

embeddings did. Wang et al. embedded a knowledge graph of entities as well as

a local context [92]. For a knowledge graph they used Freebase2 [7], which is a

large knowledge base contributed by community members. They combined the

model learning the word meanings from the local contexts, and the model learning

the word meanings from the knowledge base, which resulted in obtaining better

representations. Yu and Dredze also took a similar approach, embedding the se-

mantic resources from the Paragraph Database3 [27] and WordNet as well as the

local contexts [98]. Both studies aim to obtain embeddings for entities, which are

better at capturing semantic relationships, when they have external knowledge.

However, in the era of Big data, we should often take a bottom-up strategy to

handle various entities since taxonomies generally are not available and we typically

handle domain-specific data. Although WordNet and Freebase are large datasets

that provide semantic relationships among entities, they are far from complete in

describing all the knowledge. Moreover, we want to handle various entities that are

accompanied with diverse texts, rather than general terms. Therefore, we should

use the information of entities to generate embeddings.

A problem here is that the information of entities is typically not structured

as a knowledge graph. However, managing the entities with units or groups that

we use for analysis is often sufficient. The decision must be made regarding which

units or groups will be in the Big data analysis. This topic will be discussed in

the next section.

1.1.3 Categories

We often focus representations for documents that are connected with entities.

When we conduct clustering and classifying for analyses, we use representations

of entities, often generated from text. However, we have many entities when we

are dealing with Big data, and it is often the case that some of them contain

little information compared to others, or that some of them appear in the dataset

infrequently. We can use “categories” in these cases to gather various entities into

certain groups in which entities are similar in some aspects.

Categories discussed here are groups where real-world entities are expected

to share some properties. In the field of marketing, for example, demographic

2https://www.freebase.com; it is now read-only and they do not accept any contributions.
3http://www.cis.upenn.edu/~ccb/ppdb/
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characteristics (age, marital status, family size) are traditionally used as cate-

gories. Engledow et al. pointed out similarities in demographic characteristics

and purchase behaviors betweenthe United States and West Germany and indi-

cated the existence of a homogeneous cross-cultural elite of consumers, which may

have strategic importance for marketing [25]. Therefore, a motivation is to di-

vide customers based on age, marital status, and other customer attributes. The

way to divide customers is not necessarily via demographic characteristics. Us-

ing questionaires, Dawar and Parker divided customers into four clusters: brand-

oriented, price-oriented, physical appearance-oriented, retailer reputation-oriented

customers. They argued that this division is unrelated to the customers’ back-

ground cultures [21]. In addition to customers, entities including products in

e-commerce sites and articles in blogs or social media have groups which we can

use for analyses; products have categories (e.g., fashion, PC), articles have tags or

topics (e.g., politics, programming). These categories are given to navigate users

to the needed information quickly, and they are also useful for optimization of

the user experience. E-commerce sites use their product categories for search and

recommendations, and blog services or social media use tags for recommendations

and arrangements of their articles.

When we do not have explicit categories in advance in social media, we can use

user groups in social networks for the unit of analysis. As Wasserman and Faust

pointed out, traditional networks had boundaries such as classrooms or social

clubs; however, recent networks have less well-defined boundaries [93]. Generally,

users in social media also do not have explicit membership tags. Therefore, we

should extract groups from a network. We often assume that connected users in

social media are similar since people tend to be familiar with people who are similar

to them, as the proverb “birds of a feather flock together” indicates. McPherson

called such tendency “homophily”, which is the phenomenon that people are more

likely to associate and bond with others similar to them [62]. Also it is useful

to observe activities of connected groups instead of simply similar users because

we also expect the information diffusion in a network — so called word of mouth.

There have been many studies about the relationship between information diffusion

and a network. Rodrigues et al. investigated the diffusion of URLs in the social

media. They showed that users consume information of others living near them and

that there can be a tight relationship between the friendship link (mutual link) and

the distance of users [80]. Bakshy et al. investigated the role of social networks in

information diffusion and showed that the opportunity to obtain new information

for users is increased by the posts of their acquaintances, while users tend to click

URL links shared by close friends more than acquaintances [2]. These studies

indicate that the information tends to diffuse in a connected manner between
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similar users, and we often call such groups communities. Then, how can we extract

communities? Empirical studies have shown that many networks such as the Web,

social networks, and biological networks have the community structure; therefore,

we can extract the communities from a network structure. Several studies have

proposed the algorithms of community extraction, and some of them are applicable

to large networks.

Demographic characteristics, product categories, and communities discussed

above are the units for the massive data analyses, and we call them simply “cate-

gories” here. We showed the overview of the relationship among categories, enti-

ties, and their text data in Figure 1.4. Categories discussed here generally share

common properties or tendencies among entities. Sometimes they are manually

given — shopping sites have categories over products (fashion, electronics, home

appliances, etc.), news articles have topics (ubiquitous, greek economics, etc.), and

some marketing techniques use demographic groups (15-24 male, 45-54 female,

etc.). In this case, we have labels that describe the common properties within

each group. Sometimes, categories are sometimes extracted from network or ten-

dencies — clusters from entities’ activity, and communities from network (social

networks, citation network of academic papers, etc.). In this case, we do not have

any explicit categories beforehand. However, we can find groups in which entities

share certain properties or tendencies in some cases, as the notion of homophily

indicates.

Now, why do we often need categories to grasp various entities? Although

it is difficult to understand entities individually as the number of entities grows,

we often use demographic groups / given categories / communities in the analy-

sis. In the next section, we refer to Prototype theory, which indicates that the

categorization is a fundamental function for humans.

By these categories, we can model the relationships among entities without

using fine-grained taxonomy or structured data. . We often have categories re-

gardless of the data size, and we can obtain embeddings for entities and categories,

when we apply the embedding method for modeling both of them. Conversely, if

we handle each category individually, we cannot deal with the changing trend and

the large types of categories, each of which has few entities. For example, topics

or keywords of articles in newspapers and academic papers have changed with the

times. The topic “ubiquitous”, which once referred to articles about small devices

connecting to the wireless network, now relates to “wearable devices”, referring

to smart watches, and smart glasses, although they are labeled with different tags

(as shown in Figure 1.5).

Another example is categories in e-commerce sites: the number of categories
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can be large (e.g. more than 10,000 in Rakuten Ichiba4), while the products

are renewed periodically. If we take a traditional approach, topics in academic

papers can be modeled as a set of entities and their text data, while we cannot

use the similarity among topics for describing the relationship among entities in

this case. If we use the embedding method, we can obtain embeddings of entities

and categories simultaneously, and we can consider the local context of words, the

similarity among entities, and the similarity among categories, all of which can

improve the other embeddings. Thus, we can extract the similarity between the

topic “ubiquitous” and the topic “wearable devices” from their embeddings, and

we can obtain the embedding of a category that has few entities since the similarity

or dissimilarity among entities can help the algorithm to learn the similarity among

categories. Also, we can use the learned embeddings of categories to explore the

similarity and the dissimilarity among them; it can benefit community analyses

in social media. Therefore, it can be beneficial to take the embedding approach

to model categories in order to handle various entities with labels, categories, and

communities.

1.1.4 Prototype theory

Categories are not just groups that share arbitrary attributes, but they can be

used for the unit of analysis. The necessity of using categories can be related to

humans’ cognitive process of categorization.

Prototype theory, one of the influential hypotheses in cognitive science, claims

that humans understand concepts from their prototypes, rather than rules, and

classify things using learned prototypes. Homa et al. found the phenomenon

that students learned prototypes when several dot patterns are shown to them

[40]. They showed to the students dot patterns, which are distorted from the

original patterns, and students were asked to classify them. After several days,

the students were again asked to classify dot patterns, and they could classify them

more accurately when the pattern were close to the prototypes, even though they

had never seen the prototypes before.. Later Rosch et al. formulated the basic

concept of prototype theory [83].

A prototype has typical or ideal features of its category, and it is sometimes a

central member of the category, or a person’s best idea about a category. Rosch,

who developed prototype theory, asked college students to rate how good each item

listed is as an example of the category furniture, and she ranked the items [82]. A

chair and a sofa were ranked as the best examples, a lamp was ranked number 31,

and a telephone was ranked number 60, as the worst example. In this case, the

4www.rakuten.co.jp
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prototype of the category furniture is a chair or a sofa, but the important point

is that a graded categorization is universal in humans, even though the rank itself

may vary in languages, cultures, or even in individuals. Prototype theory can be

supported by several experiments: the experiment by Homa et al. showed that

students learned prototypes of dot patterns showing distorted patterns [40, 41],

and Minda et al. discovered that simulations of the basic prototype model fit

well to the learning of visual categories through simulations of the basic prototype

model [66].

Prototype theory claims that we categorize objects without defining the bound-

aries of concepts; we recognize concepts or categories based on the central idea of

them. The central idea or object of the category is formed as we observe many

objects or things. This process is robust since we do not need to reconstruct rules;

we put the novel object distant from the prototype, and later we can form another

category when we observe similarly novel things.

Prototype theory suggests that humans’ cognitive process needs categories to

grasp entities. The experiments mentioned above indicate that humans build up

categories to distinguish even dot patterns. We can find a relationship between

this cognitive process of humans and the usage of categories, which we apply to

marketing and various analyses instead of investigating entities individually. Thus

we can use categories in analyses of Big data, which have various entities.

One of the possible reasons we use categories is that categories enable robust

analysis. The central idea of categories can reflect properties that most of the

entities in the categories have in common. The notion of graded categories in

prototype theory can also enhance the robustness for analyses since categories are

often not fine-grained. Namely, we should consider the similarity among categories;

some categories are similar when one category has several entities that are similar

to the entities in the other category.

1.2 Purpose

The purpose of this thesis is to apply an embedding method for data with cate-

gories, and to explore its effectiveness on massive text data. As we discussed in

this chapter, categories are groups that can be used for analyses on massive data,

such as categories for products and communities for social media, and they do not

necessarily have a hierarchy nor a taxonomy. We adopt the embedding method,

which can learn both of the relationship among entities and categories from the

dataset through unsupervised learning without any taxonomy. Since we train em-

beddings of words, entities, and categories at the same time from massive text
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Figure 1.5: An example of a category.

data, the model can learn the similarity among entities from their text data and

their categories, and also it can learn the similarity among categories from their

members. Embeddings of entities belonging to the same category are learned to

be similar embeddings. Therefore, we evaluate document representations or em-

beddings by the accuracy of experiments, where we infer the category of an entity.

Finally, we compare the word embeddings among categories to determine how our

model learned the relationship among them.

We focus on the embeddings of categories, rather than the categorization or

classification methods, since we aim to obtain better representations by taking

various categories into account. One might think that we can handle categories by

adding them as attributes to the document representations (i.e., the bag-of-words

model). With such representations, however, we cannot consider the similarities

among categories and the diversity of the items in groups; an item can be similar

to another item in a different category, or an item can be different from the other

item in the same category. For example, the diversity of the items in the recom-

mendation improves the performance [104]. Therefore, it is beneficial to consider

the similarities of categories in the representations. We also aim to use the em-

beddings as inputs to various categorization, classification, and clustering tasks.
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Since the embeddings are dense vectors, this method can avoid the bad effect from

the curse of dimensionality, which various studies have indicated [42, 4].

1.3 Contributions

The contributions of this thesis are as follows:

• We proposed the new embedding method to generate better entity represen-

tations considering categories.

• We showed the effectiveness of the proposed method in the different datasets:

e-commerce data and social media data.

• We proposed the method to analyze the difference in the local contexts in

which the words are used among categories.

To the best of our knowledge, it is the first work that models entities with

non-hierarchical categories learning embeddings of words, entities, and categories

simultaneously. Since the method requires only the non-hierarchical categories,

it can be widely applied for databases containing various entities (e.g. products,

users, and text data). The obtained representations from our models can be used

for understanding entities assisted by categories, which can help companies with

their marketing and advertisement strategies.

1.4 Outline

In chapter 2, we introduce the related works. In chapter 3, we formulate the re-

search question through discussion about categories and embedding methods. We

introduce the embedding methods for categories in chapter 4, and show the effec-

tiveness on the dataset in e-commerce sites. chapter 5 presents the application of

the embedding methods to social media, and shows the effectiveness on commu-

nity analysis. In chapter 6, we analyze users’ contents on social media to explore

the results of chapter 5 further. chapter 7 contains a discussion of the results of

the embedding methods for categories. The conclusion of this thesis is provided

in chapter 8.
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Chapter 2

Related Work

Here we introduce the methods to represent documents including embedding meth-

ods, and we discuss previous works related to various text categorization tasks.

2.1 Document representations

First, we descibe traditional methods to represent documents, and point out the

existing problems. Next, we describe embedding methods and explore how they

can improve the problems.

2.1.1 Traditional approaches

The “bag-of-words” (BOW) model is one of the simplest ways to represent docu-

ments as vectors. In this model, a document is represented as a multiset (or bag)

of its words, ignoring the word order. The vectors are generally very sparse, since

this model assigns one dimension for each word. By representing documents as

vectors, we can calculate the similarities among documents, taking cosines between

document vectors.

To weight each word in a document vector, we usually use “TF-IDF” (term

frequency - inverse document frequency) [85]. TF-IDF comes from the term fre-

quency (TF) and the inverse document frequency (IDF). The TF is a measure of

how frequently a word appears in a document. We typically use the count of a

word divided by the length of a document as the TF of the word:

TF (wi, dj) =
count(wi)∑

wk∈dj count(wk)
(2.1)

where wi is the i-th word of the document dj . The IDF is a measure of how rare a

word is in all the documents. It can be calculated from DF (document frequency),
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which is a measure of how often a word appears in all the documents. IDF is a

logarithm of the reciprocal of DF:

IDF (wi, D) = log
N

|d ∈ D : wi ∈ d|
(2.2)

where D is a set of documents, d is a document from D, and wi is a word. Unlike

TF, the value of IDF for a word does not vary among documents. TF-IDF is the

product of TF and IDF:

TFIDF (wi, dj) = TF (wi, dj) · IDF (wi, D) (2.3)

When the TF-IDF value for a word is high, the word can be thought of as a

characteristic word for the document, since the word appeared in the document

frequently, and it appears rarely in other documents.

One of the drawbacks of the BOW model is that we cannot consider the sim-

ilarities among words. One can avoid this drawback by using stemming to some

extent. Stemming algorithms convert inflected words to their word stems. A word

stem is not necessarily a linguistically valid root; however, the inflected words or

the derivatives should have the same word stem. One of the most famous stem-

ming algorithms for English is the Porter stemming [76]. The Porter stemming

has five steps, each of which has several converting rules for suffixes. For example,

the word sensibility will be converted as the following:

Step 1c (∗v∗)Y → I

• sensibility → sensibiliti

Step 2 ([C](V C)m[V ])BILITI → BLE(m > 0)

• sensibiliti → sensible

Step 5a ([C](V C)m[V ])E → ∅(m > 1)

• sensible → sensibl

where C denotes a consonant (e.g., s) or a consonant cluster (e.g., st), V denotes

a vowel (e.g., o) or a vowel cluster (e.g., oo), brackets denote that there is zero

or one of the element, m denotes a repetitive number, parentheses in the left side

denote the condition for preceding string of a suffix, and (∗v∗) denotes that the

stem contains a vowel. Stemming can reduce the dimensions of BOW vectors, but

it is language-dependent, and it cannot deal with synonyms from different stems

(e.g., say and speak, warranty and guarantee), and words from the same stem of

which meanings are different (e.g., universal, university, universe → univers).

We can introduce classes to handle similarity or dissimilarity among words

without using rules from prior knowledge. “Brown clustering” is one of such models
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[13]. It assigns classes for words, and it assumes that the conditional probability

of the current word given the previous word depends only on the classes of the

current word and the previous word. Therefore the conditional probability and the

joint probability of a text have the same form as a hidden Markov model (HMM).

P (wi|wi−1) = P (wi|C(wi))P (C(wi)|C(wi−1)) (2.4)

logP (w1, w2, ..., wn) =
n∑

i=1

logP (wi|C(wi))P (C(wi)|C(wi−1)) (2.5)

where C(wi) is the class of the word wi. We need to choose the good class assign-

ment to maximize the joint probability; however, the optimization is known to be

computationally hard. Generally, we perform Brown clustering in the agglomera-

tive way, and we can pick up k classes from the generated dendrogram. Classes

of Brown clustering can be used for the NLP applications such as part-of-speech

(POS) tagging [72], and dependency parsing [51].

2.1.2 Distributional hypothesis

The BOW model is widely used in NLP for its simplicity, But the major drawbacks

of the BOW model are that it ignores word order and also the relationships among

word types. The latter drawback can be solved using Brown custering, thus we

can use a similar idea. As Brown clustering tends to assign the same class to

words sharing their preceding words, we can regard words sharing their context

as similar words. This idea, which is often called “Distributional hypothesis”,

was first pointed out by Harris [38]: “The degree of semantic similarity between

two linguistic expressions A and B is a function of the similarity of the linguistic

contexts in which A and B can appear” [55]. Although Harris did not claim that

the meaning depends only on the context, the tendency that a word meaning

depends on its context is useful for data-driven fields, since the word meanings

can be learned without using prior knowledge. Thus, a large amount of recent

research in NLP has proposed various distributional semantic models, assuming

distributional hypothesis. DSMs can learn word representations based on the

context, and massive data can help to learn better representations. At the same

time, representations learned in distributional semantic models are dependent on

corpora that we use for training.

2.1.3 Embedding methods

Distributional semantic models typically adopt embedding methods. They are

called embedding methods because we embed words, sentences, or other concepts
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Table 2.1: An example of a word-document matrix. Example taken from [22]

Words d1 d2 d3 d4 d5

human 1 0 0 1 0

interface 1 0 1 0 0

computer 1 1 0 0 0

user 0 1 1 0 1

system 0 1 1 2 0

response 0 1 0 0 1

time 0 1 0 0 1

EPS 0 0 1 1 0

survey 0 1 0 0 0

into vectors or matrices. A word can be embedded in the following ways:

W : {wi, wi+1, ..., wk} → Rn (2.6)

W ′ : {wj , wj+1, ..., wl} → Rm×n (2.7)

where W and W ′ denote embedding methods, n denotes the dimension of the

embedding vectors in W , {m,n} denotes the dimensions of embedding matrices in

W ′, {i, j, k, l} denote the indexes of the set of words. Some embedding methods

use only embedding vectors, and others use both of the embedding vectors and

matrices to represent the dependency relation as a product of matrices.

(1) Matrix decomposition

First we introduce matrix decomposition methods. Deerwester et al. applied

matrix decomposition to a word-document matrix [22]. This technique is called

either “Latent Semantic Indexing (LSI)” or “Latent Semantic Analysis (LSA)”.

Table 2.1 is a word-document matrix, where each value is a count of a word

appearing in a document. A singular value decomposition (SVD) of the matrix

(M ∈ Rm×n) can be decomposed as follows:

M = UΣVT (2.8)

Σ =



σ1 · · · 0
...

. . .
...

0 · · · σr

0 · · · 0
...

...

0 · · · 0


(2.9)
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where U denotes an m × m orthogonal matrix, V denotes an n × n orthogonal

matrix, Σ denotes an m × n rectangular diagonal matrix, and r denotes a rank

of M. The diagonal entries of Σ (σ1...σr) are non-negative real numbers, and are

called singular values of M. SVD is often used for low-rank matrix approximation.

We can obtain the approximated matrix M̃ by preserving the k largest singular

values and replacing other values by zero:

M̃ = UΣ̃VT (2.10)

Σ̃ =



σ1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · σk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 0 · · · 0


(2.11)

This approximation is proved to minimize the Frobenius norm of the difference

between M and M̃. The co-occurence matrix of words can be calculated as MMT;

thus the approximate co-occurence matrix is:

M̃M̃T = UΣ̃VTVΣ̃TUT (2.12)

= UΣ̃Σ̃TUT (2.13)

=


v1
...

vm

[
v1 · · · vm

]
(2.14)

where v1...vm denote k-dimensional vectors for words. We can regard these vec-

tors as embeddings for words. Embeddings for the words in Table 2.1 are shown

in Table 2.2. Each dimension (d′1, d
′
2, d

′
3) can be interpreted as a topic, and an

entry value is considered to be a contribution ratio for the topic of a word. In a

similar way, we can retrieve the document embeddings, which are k-dimensional

vectors. The complexity of SVD is O(mn2) (m ≥ n), but for truncated SVD,

which calculates the decomposition only for the k largest singular values, a faster

algorithm can be applied using the stochastic approach [37]. The word-document

matrix is often large and sparse; thus, truncated SVD is useful since we only need

to analyze the low ranked matrices to analyze. The LSI (LSA) technique can also

improve the sparsity since similar documents or words can be merged into a single

dimension.

While we can regard documents as a global context, a local context can in-

fluence the word meaning or functionality more. To extract the semantic rep-

resentations, Bullinaria and Levy generated co-occurence matrices, where each
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Table 2.2: Word embeddings from UΣ̃ of Table 2.1

Words d′1 d′2 d′3

human -0.75 0.73 -0.68

interface -0.67 0.35 -0.92

computer -0.80 -0.41 -0.98

user -1.35 -0.83 0.15

system -2.17 0.92 0.55

response -0.88 -1.06 0.11

time -0.88 -1.06 0.11

EPS -1.02 0.84 0.31

survey -0.60 -0.53 -0.03

entry shows the co-occurence in a context window, and they compared the per-

formance of several distance measures: Euclidean, City Block, Cosine, Hellinger,

Bhattacharya, Kullback-Leibler, Ratios, pointwise mutual information, and posi-

tive pointwise mutual information in their proposed method [15]. Among them,

positive pointwise mutual information and Ratios performed the best. Ratios is

the pointwise mutual information (PMI) without the logarithm. PMI is defined

as follows:

PMI(X = x, Y = y) = log
p(X = x, Y = y)

p(X = x)p(Y = y)
(2.15)

where X and Y denote discrete random variables, and x and y denote outcomes

belonging to X and Y . This value is one of the co-occurrence measures of two

elements. It can be interpreted as a kind of information gain when X = x happens

compared to the conditional information of X = x when we know Y = y happens:

PMI(X = x, Y = y) = I(X = x) + I(Y = y)− I(X = x, Y = y) (2.16)

= I(X = x)− I(X = x|Y = y) (2.17)

= I(Y = y)− I(Y = y|X = x) (2.18)

where I(·) denotes the self-information: − log2 p(·). If x always occurs with y,

PMI is I(X = x) since p(X = x|Y = y) = 1, and if x and y occur independently,

PMI is 0. Positive pointwise mutual information (PPMI) is defined as follows:

PPMI(X = x, Y = y) = max(0, PMI(X = x, Y = y)) (2.19)

PPMI ignores less co-occurrence than the random occurrence. It assumes that x

and y co-occur independently even though x and y co-occurred less because the

corpus is insufficient, or either x or y is an infrequent word.

20



While PPMI captures semantic or syntactic aspects of words more than LSI(LSA),

we cannot obtain document representations directly from PPMI. Next we introduce

the neural network based approach, which can generate document representations

from word embeddings.

(2) Neural network based approach

The neural network based approach is one of the major embedding methods. Em-

beddings are parameters of neural network models, and we optimize them to train

the models. In the neural network based models, embeddings are often called “dis-

tributed representations” since each entity is represented by a pattern of activity

distributed over many computing elements, and each computing element is involved

in representing many different entities as Hinton explained [28]. After Bengio et

al. proposed the neural probabilistic language models [3], many algorithms and

techniques have been proposed to improve neural network based models for train-

ing word embeddings. One of the drawbacks of the neural probabilistic language

models is that the number of parameters is large, and the computation of training

the model is difficult. Several attempts have been made to reduce calculation time.

Morin and Bengio created a hierarchical binary tree of vocabulary from WordNet

[69]. Morin and Bengio used the is-a relationships to create a binary semantic tree

where a child node has is-a relationship to the parent node. Although the perplex-

ity of the language model with a semantic tree was higher than the original one,

the computation time was drastically improved. Mnih and Hinton extended this

idea and created a similar binary tree in a bootstrap way utilizing the log-bilinear

model, which requires less parameters [67]. The binary tree is generated from the

word embeddings of the previous learned model doing agglomerative clustering

among word embeddings. This model outperformed the original model, and it

improved the performance during iteration to build the binary tree.

Instead of pursuing the better language model, Collobert and Weston tried to

embed a sentence into a vector representation using a convolutional neural network

(CNN) to apply the same model to several tasks in NLP [19]. CNN is inspired

from the visual cortex in the brain and used for deep learning techniques for

computer vision and image processing since the parameters can be reduced from

fully connected neural networks. CNN has matrices which can be regarded as

filters, and it takes convolution between two-dimensional pixels and the matrices,

which results in obtaining images filtered several ways. CNN is often used with

“max pooling”, which extracts the maximum value from each two-dimensional

window. Jarrett et al. concluded that max pooling is useful for CNNs since max

pooling alleviates the need of absolute value rectification through the experiment on
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Figure 2.1: The architecture of the CNN model proposed by Collobert and Weston

[19].

several datasets [43], and Boureau et al. theoretically discussed the effectiveness

of max pooling [8]. Collobert and Weston used this architecture for NLP, because

CNN can solve the difficult point to generate document embeddings; the input

length is variable despite the restraint that the dimension of embeddings is fixed.

Figure 2.1 illustrates their architecture, which has 2 steps, the convolution step

and the max pooling step. The word has K features, and the model assigns

a vector representation for each feature value; therefore, each word has K × d

features. We take convolution with vectors of words in a window and the matrix

M , and we obtain convoluted vectors. Finally, we take the maximum value from

each dimension, and create a vector for the document (max pooling). We input

this document representation to the fully connected neural network that solves a

certain task, to train the whole network. This model can be used for multitask

learning; however, it consumes much time for training, and the performance is

lower for later models. However, the convolutional approach is improved in recent

research as the optimization techniques develop. Recent models aim to improve

the accuracy of tasks rather than to realize multitask learning.

Another way to obtain document embeddings is to use recursive models. Socher

et al. used modified recursive autoencoders and predicted sentiment distribution

over sentiment classes [89]. An autoencoder is a feed-forward neural network,

which is trained to generate the same values in output as the input values. The
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(reconstructed	
  embeddings)	

Figure 2.2: An example of the recursive autoencoder proposed by Socher et al.

[89].

number of nodes in the middle layer is usually smaller than the number of in-

put/output nodes; thus, we can regard an autoencoder as a data compression

algorithm. Principal component analysis (PCA) is also regarded as a data com-

pression algorithm, but autoencoders are more flexible since they are non-linear.

They constructed a tree from a sentence, where each node has an embedding, and

each pair of nodes is an input of an autoencoder, and the values in the middle

layer are an embedding for the phrase (Figure 2.2). Traditional autoencoders are

unsupervised; however, one of the purposes of this model is to predict sentiment of

sentences. Socher et al. modified the algorithm, introducing a matrix to map an

embedding to a distribution of sentiment classes, as in Figure 2.3. The root node

is the document representation of a sentence, and the matrix (W label) converts

to the distribution of sentiment classes. In this way, they were able to combine

unsupervised learning (autoencoders) and supervised learning (sentiment predic-

tion) in the model. The drawbacks are that words of the deep nodes in a tree are

compressed many times and can lose information, and that it is difficult to choose

the best weights for the reconstruction error and the cross-entropy error since it

is task dependent. Socher et al. used recursive neural network with parse trees,

merging embeddings of dependent elements, and they improved above-mentioned

problems [88]. They applied the same architecture to image processing of natural

scenes and natural language text, and the model outperformed previous models in

image processing. The POS tagger using this model performs slightly worse than

previous models, and the calculation time is much longer than the existing tool.
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Figure 2.3: Modification to an autoencoder for semi-supervised learning

In addition, it is also difficult to obtain correct parse trees.

While the computation of neural network based models is often difficult, Mikolov

et al. improved the training time drastically with their proposed Skip-gram model

and Continuous Bag-of-Words (CBOW) model [64]. These models are imple-

mented in the tool “word2vec”, which led to many studies of word embedding

methods since the models succeeded in producing high-quality word embeddings.

The middle layer of word2vec models is linear, and the models adopt a simpli-

fied approximation of the output layer; thus the models gain speed. Word2vec is

applicable to a large amount of data (e.g., Wikipedia). Therefore, we can obtain

better representations than the models above. Mikolov et al. also showed that

word2vec embeddings reserve the semantic and grammatical relationships (e.g.,

work : worked = sit : sat, man : king = woman : queen) to some extent through

the analogy test.

To benefit from good word embeddings of the Skip-gram and CBOW models,

Le and Mikolov extended those models and proposed “Paragraph Vector” models

[54]. A ”paragraph” does not necessarily mean a distinct section of a document

here, but a sentence or several sentences. The Paragraph Vector models consist

of two models: the paragraph vector with distributed memory (PV-DM) and the

paragraph vector with distributed bag of words (PV-DBOW) as shown in Figure

2.4. The PV-DM model is inspired from word2vec’s CBOW model, and it predicts

a target word from a paragraph combined with words in a context window. The

PV-DBOW model is inspired from word2vec’s Skip-gram model. The PV-DBOW

model predicts words in the window given the paragraph vector. In the models,

each paragraph has a unique vector in the same way as word vectors, and analogous

to word vectors, paragraph vectors are expected to be similar when paragraphs

have similar meanings. The paragraph vector can be used as a fixed-length fea-
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ture vector for tasks such as classification and clustering. Le and Mikolov showed

that these models outperformed the recurrent neural network based model and

the CNN model in the sentiment prediction task. Since the word2vec based mod-

els learn embeddings fast enough to apply to massive corpora in an unsupervised

way, these models can compute embeddings fast enough to process massive text

data. The Paragraph Vector models learn a paragraph embedding as a context

of word sequence in a paragraph without using any taxonomy or external knowl-

edge; therefore, the models can produce good representations of entities in today’s

massive data. We will discuss these models further in chapter 3.

Paragraph	  ID	   the	 cat	 sat	

on	

Concatenate	

Classifier	

Paragraph/	
word vectors	

(a) PV-DM model

Paragraph	  ID	  

the	 cat	 sat	 on	Classifier	

Paragraph vector	

(b) PV-DBOW model

Figure 2.4: Paragraph Vector Models

(3) Other approaches

Pennington et al. proposed GloVe, which is a log-bilinear model that can obtain

good word embeddings in terms of the analogy [73]. They aim to improve the

analogy test of word2vec, utilizing both of the global co-occurence (used in LSI)

and the local context windows (used in word2vec). They model assigns both of a

word embedding and a context embedding to each word, and it assumes that the

word k is useful in the context where the word i and the word j appear, when

the value of P (wk|wi)
P (wk|wj)

is much larger or smaller than 1, rather than the value of

P (wk|wi). They aim to improve the analogy task using the difference between
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word embeddings, and model P (wk|wi)
P (wk|wj)

as follows:

F ((wi − wj)
T w̃k) =

P (wk|wi)

P (wk|wj)
(2.20)

where F is the function, wi is the word embedding of i-th word, w̃i is the context

embedding of i-th word. Pennington et al. adopted the exponential as F and

supplementary terms for simplicity. They claimed GloVe outperformed word2vec

in analogy tasks.

However, Levy et al. showed that there is no significant difference among the

performance of GloVe, Skip-gram, and PPMI with SVD [57]. On the contrary,

GloVe did not outperform any of other models in their experiments. Levy et al.

also pointed out that the Skip-gram with negative sampling (an approximation

method for the output layer) can be regarded as implicit matrix factorization of

Shifted positive PMI (SPPMI), which has an additional term to PPMI [56]. SPPMI

is defined as follows:

SPPMIk(w, c) = max(0, PMI(w, c)− log k) (2.21)

where k denotes the hyper parameter, w denotes the target word, and c denotes

the context. SPPMI assumes less co-occurrence to be independent than a certain

degree of occurrence, log k. The hyper parameter k corresponds to the number of

negative samples of the Skip-gram model. Although SVD of the SPPMI matrix can

reproduce the result of the Skip-gram model, the Skip-gram model outperforms the

matrix decomposition method in the syntactic analogy experiment. This difference

can come from the handling of low frequency words; PMI-based methods usually

exaggerate them.

Although GloVe and PPMI with SVD can produce good representations of

words, there are no direct extensions on these models to produce document rep-

resentations. In that sense, it is relatively easier to extend neural network based

models such as word2vec and Paragraph Vector models.

2.2 Categorization and community analysis

As we discussed in chapter 1, categories are groups that people regard as mean-

ingful groups in a dataset. They can be entities sharing the same attributes or

labels, or extracted as communities from a network. We obtain embeddings of

entities and categories from our model, and we use them as an input for NLP

tasks, especially for classification. When entities have explicit labels or classes, we

often call such classification tasks categorization classification. In the first part
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of this section, we introduce traditional methods of categorization and its appli-

cations. When entities connect with each other but they do not contain explicit

attributes or classes, we usually extract groups from the network and then classify

the unknown entities. Such groups are often called communities, and we introduce

methods of community extraction and its applications in the latter part in this

section.

2.2.1 Categorization in use of machine learning

In this part, we introduce categorization from text data. We can categorize en-

tities with text using classification algorithms. Classification for more than two

classes is called multiclass classification. After we briefly describe the algorithms

of multiclass classification, we introduce applications of multiclass classification.

(1) Multiclass classification

Text categorization has been approached in various ways. First we introduce

classification algorithms that can deal with multiclass settings. These algorithms

often take probabilistic approaches.

The näıve Bayes model is a probabilistic classifier that predicts the class from

attributes of an instance [84, pp. 808–809]. Let x1, ..., xn be attributes and Ck be

the class k. The probability of the class k given the attributes can be decomposed

as the following using Bayes’ theorem:

p(Ck|x1, ..., xn) =
p(Ck)p(x1, ..., xn|Ck)

p(x1, ..., xn)
(2.22)

Since the model assumes that the attributes are conditionally independent each

other, we can decompose Equation 2.22 as follows:

p(C|x1, ..., xn) = αp(Ck)
∏
i

p(xi|Ck) (2.23)

where α is the normalizing factor. We often calculate p(Ck) from the frequency

of the class k, and we count the frequency of xi in the class k for p(xi|Ck). When

the attributes are sparse, we can utilize Laplace smoothing:

p(xi|Ck) =
#xi + λ

m+ λn
(2.24)

where #xi is the count of xi in the class k, m is the count of the instances in the

class k, and λ is the paramter for smoothing. This algorthm can be used for NLP,

where each attribute is a word, and it is applied for multiclass classification on

texts.
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Logistic regression can be extended to a multiclass classifier [5, pp. 209–210].

The logistic function is expressed as follows:

Logistic(z) =
1

1 + exp(−z)
(2.25)

If we put weights for each attribute in each class and values of attributes in z, we

obtain the following multiclass logistic regression:

p(Ck|x1, ...., xn) =
exp(ak)∑
j exp(aj)

(2.26)

ak =

n∑
i

wi,kvi (2.27)

where ak is the activation for class k, wi,k is the weight for the attribute i and the

class k, and vi is the value of attribute i. Unlike the näıve Bayes model, we have

to train logistic regression to obtain optimal parameters. Gradient methods are

widely used for this purpose.

Next, we extend binary classifiers to multiclass settings. Typically, we use

a set of binary classifiers for multiclass classification. Among binary classifiers,

support vector machines (SVM) are often used since the performance is generally

better than the other classifiers [20]. SVM maximize the margin from each in-

stance to the separating hyperplane; thus, SVM model is considered to be robust.

However, it is not easy to extend the SVM model to a multiclass classifier, unlike

the above models. Two approaches can be used to extend a binary classifier to a

multiclass classifier: one-versus-the-rest, and one-versus-one [5, pp. 182–184]. The

one-versus-the-rest classifier uses n − 1 binary classifiers, each of which classifies

its class k (Ck) from other n − 1 classes, where the number of classes is n. We

assign the class Ck if the classifier for Ck activates and other classifiers do not,

and we assign the class n if none of the classifiers activate. The drawback of this

approach is that we cannot assign any of n classes if the multiple classifiers acti-

vate. The one-versus-one classifier uses n(n−1)/2 binary classifiers, each of which

discriminates the class k (Ck) from the class l (Cl). We assign the class Ck from

the majority of the classifiers; thus, the one-versus-one classifier is more robust

than the one-versus-the-rest classifier. The drawbacks of this approach are that

the number of classifiers explodes when the number of classes increases, and that

we cannot assign any classes if none of the classifiers activate.

It is another option for multiclass classification to make a hierarchy of binary

classifiers. A decision tree is a tree of decision rules. A decision rule is not nec-

essarily a binary classifier; however, CART [12] and C4.5 [77], where each node

splits the feature space, are commonly used. Random Forests employ many de-

cision trees and use the result of the majority [11]. Yuan et al. proposed the
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hierarchical SVM model to categorize video genres, which outperformed decision

trees and the one-versus-one SVM classifier [99].

As the number of classes increases to 100 or 1000, it is generally difficult to

handle the data, even with the above methods. In such situations, we commonly

use k-nearest neighbors (k-NN) [5, pp. 124–127]. Let us assume there are N data

points with n classes, and we have a new data point. The k-NN algorithm infers

from the k nearest points to the new data point. There are several ways to infer

the class; one can infer from the majority of the nearest points, or one can consider

the distance to the data point to avoid adopting a frequent class. This algorithm

works for many classes, but drawbacks are that the result of the k-NN is affected

significantly by the local structure, and the computation is expensive when the

data points are many.

In recent years, deep learning techniques have been developed and recurrent

neural networks and convolutional neural networks are used for classification. Lai

et al. adopted the recurrent convolutional neural network approach, which has a

convolutional layer and a max pooling layer [52]. Their model has a full connected

neural network between the max pooling layer and the output, and each value

of the output vector is an unnormalized distribution for a class. Their model

outperforms previous neural network models (except the Paragraph Vector models)

as well as traditional methods such as BOW with SVM. Kim proposed a similar

architecture to sentence classification tasks [47]. Kim adopted word2vec’s word

vectors in the initial state1, and the model outperformed previous models in some

NLP tasks. These classification techniques are tightly linked to the model, and the

convolutional neural networks are often used for multiclass classification with upto

100 classes. Other neural network models can utilize k-NN or other traditional

methods, feeding in embeddings.

(2) Applications of categorization

We describe the application of the categorization techniques here. Mooney and Roy

adopted the Näıve Bayes approach to improve the content-based recommendation

for books[68]. They used the user ratings as the positive or negative labels for

books. The binary classifiers are trained to predict the quality of books. While

such recommender systems using “collaborative filtering” [32], which uses similar

users’ history, suffer from lack of feedbacks of new items (this is called the “cold

start problem”), this classifier can tell the popularity from the content. This

approach can perform less for the dataset, where each entity has small text data

1The vectors trained by another model or task are often called “pre-trained”. In the deep

learning field, it is common to use pre-trained vectors to obtain good optimization.
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and the number of evaluated data is also small. It is difficult to handle diverse

text since they treat each word as an independent attribute, and the evaluated

data are usually much smaller than the non-evaluated data; therefore, the learned

model does not have good scores for infrequent words in the training set. In such

situations, the embedding method can improve the performance since it can learn

the similarity among words and entities. Joachims et al. used SVM to categorize

documents in Reuters dataset and Ohsumed corpus, comparing it to Näıve Bayes

and C4.5 [44]. In their dataset, the number of categories is small (less than 100),

and one has to train many more classifiers as categories increase. Therefore, it is

difficult to apply for a dataset with a large number of categories.

Weigend et al. took the neural network approach and they introduced “meta-

topic”, where each topic belongs [94]. Their model consists of two parts: a meta-

topic network that predicts the probability of a meta-topic given the input, and a

network that predicts the probability of a topic given the meta-topic and the input.

Related to e-commerce applications, Shen et al. applied a graph algorithm along

with text categorization techniques to classify items to hierarchical categories in

eBay [87]. Although we aim to apply our model to non-hierarchical labels, we

can use the category hierarchy into models and improve the performance with our

model.

Several recently studies have used CNN, which is similar to the model discussed

above (as shown in Figure 2.1). Xu et al. used CNN for text hashing, where the

hash value of a sentence is similar to that of a similar sentence [95]. Although

traditional hashing algorithms only guarantee that the probability of identity be-

tween entities is high when the hashed value is the same, the hashed values by

their algorithm are similar when the entities are similar. Xu et al. also applied

CNN to the short text clustering, where the embeddings are used for the input of

k-means clustering [96]. Since the performance of neural networks often depends

on the initialization, most CNN approaches use “pre-trained” embeddings. Our

model can enhance the performance using embeddings trained by our model as

pre-trained embeddings.

While we discussed the techniques and the applications for multiclass classifi-

cation so far, we aim to produce good representations of entities with our model.

Although our model does not handle hierarchies of categories and our model does

not include the classification method itself, our model can be applied to the above

works to improve the performance.
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2.2.2 Community analysis

First, we describe the methods of community extraction from a network. These

methods can be applied to most of the networks since they do not have many

assumptions to data. Next we introduce community analyses. As we aim to use

embeddings of entities for community analysis and to classify unknown entities into

communities with our model, we introduce several analyses using communities in

networks and attempts to classify entities into communities from text data of

entities.Community extraction and analysis is a growing field in the area of social

network analysis, particularly after the popularization of social media.

(1) Community extraction

A community is a subgraph, in which nodes have dense connections. Therefore, it

is natural to find cliques, which are fully connected subgraphs, and extend them

to communities. The k-Clique Percolation is one of such community extraction

algorithms, where we find cliques with k nodes and regard adjacent k-cliques as

the same community [23]. This algorithm is simple; however, k-cliques with k ≥ 4

are rarely found in a large network. In addition, the amount of nodes connected

with a single node is too large in a scale-free network to find adjacent cliques,

which can lead to extracting a large amount of tiny communities. We can also

express a network as a Laplacian matrix and use the spectral clustering technique

on the matrix [17]. The Laplacian matrix (L) is defined as follows:

Li,j =


−1 (ni is adjacent to nj)

degree(ni) (i = j)

0 (otherwise)

(2.28)

where ni is the i-th node. We reduce the rank using eigendecomposition, and we

can apply clustering algorithm (e.g. k-means) to the row vectors in a low-ranked

matrix. This method can avoid extracting tiny communities. In addition, we have

to decide the number of communities in most of the cases, and the algorithm is

too complex to process a large network such as a social network.

Instead of extracting densely connected subgraphs directly, we can cut con-

nections that are expected to bridge among communities. Girvan and Newman

proposed a community extraction method scoring edges by means of the edge be-

tweenness [30]. The edge betweenness of an edge is defined as the number of

shortest paths from all vertices to all others that go through the edge, and an edge

that has high edge betweenness can be seen as a bridge between communities.

This method consists of two steps: removing the edge with the highest edge be-

tweenness and recalculating the edge betwennesses for the rest of the edges. Until
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all the edges are removed, these two steps are repeated. The complexity of this

algorithm is O(|E||V |2), where |E| denotes the number of edges and |V | denotes
the number of vertices. This method is often called “Newman-Girvan clustering”.

Later Newman proposed the measure of the goodness of a graph partition, called

Modularity, where vertices are connected with each other densely within every

community, and vertices have sparse connections to vertices in other communities

[71]. Modularity of a graph with n nodes and m edges is defined as follows:

Q =
1

4m

∑
ij

(Aij −
kikj
2m

)(sisj + 1) (2.29)

where A denotes the adjacency matrix, ki denotes the degree of the vertex i, and

the sisj represents the membership that indicates whether i and j belong to the

same community (sisj = 1) or not (sisj = −1). Some research includes mod-

ularity in Newman-Girvan clustering, which is also called “Newman clustering”.

It is difficult to compute the edge betweennesses in every repetition. Therefore,

the Newman clustering cannot be applied for large graphs such as today’s social

networks and the Web.

One can take other approaches to maximize modularity; however, the max-

imization of modularity is known to be NP-complete as Brandes et al. proved

[10]. Therefore, several greedy approaches, such as Newman [70] and Good et

al. [33], have been proposed. Among such algorithms, the Louvain method is a

simple and effective method for detecting communities in a large network [6]. It

conducts greedy optimization of modularity in several steps and it is applicable

to large networks. Modularity based clustering techniques are the most popular

community detection methods for large networks since extracted communities are

generally not too small to analyze.

One of the drawbacks of the modularity based methods is that vertices cannot

belong to multiple communities since they are essentially graph partition methods.

Ahn et al. proposed “Link communities”, which assigns communities to edges;

therefore, each member can belong to multiple communities [1]. Although this

algorithm is applicable to a large network, it adopts the minimum distance in the

hierarchical clustering of communities. Thus, one of the communities tends to

explode and others are very small.

(2) Community analyses

Before the expansion of social media, most researchers used topological structure

of social networks and ignored the node attributes that are often heterogenous.

This is because datasets of social network analysis, such as Zachary’s Karate Club
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dataset2 and American College Football dataset3 , had not included rich attribute

information of nodes [103]. However, it is not so difficult to extract attribute

information of current social media users. Some research has improved the perfor-

mance of community detection using both topological information and attribute

information on social network services. Tang et al. proposed a joint optimization

framework to integrate multiple data sources, which outperformed existing repre-

sentative methods of community detection in social media [91]. Guneman et al.

proposed a method for detecting homogeneous communities, that is, communities

that are densely connected and have similar attributes, by integrating results of

subgraph clustering and subgraph mining [36].

2.3 Document representations with categories

To obtain better representations of entities, we can utilize categories or relation-

ships among entities if such data are available. One can use taxonomy to produce

good representations of entities considering their relationship. WordNet4 [65],

which is a lexical database for English, has groups of cognitive synonyms con-

nected by conceptual-semantic and lexical relations. Resnik [79] searched classes

of words that follow a certain verb, and generated object classes for verbs. This

approach handles similar words (e.g. okapi and zebra) and gathers them into the

same class (e.g., animal). One of the serious drawbacks to this method, however,

is that we need a taxonomy that has a large coverage of vocabulary. WordNet has

only English terms; therefore, we have to use other taxonomies to apply for texts

in different languages. In addition, there can be technical or colloquial terms that

do not agree with the WordNet taxonomy, and it is difficult to select connections

between words, which suits the purpose of an application.

In contrast, categories including tags and communities, which do not necessar-

ily have tree structures, can tie entities weakly. It does not mean that the entities

are other kinds if they belong to different categories since categories can be alike.

We aim to use this weakly structured data, and we take the embedding approach

to achieve this purpose.

2A social network of a karate club, of which the instructor left with half of the members later

and formed another club. Zachary studied this network to model the fission from the social

network among members [100].
3A network where each edge represents a game match between teams. Girvan and Newman

used this network to validate their community extraction algorithm regarding divisions as com-

munities [30].
4https://wordnet.princeton.edu
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Chapter 3

Category-enhanced Embedding

Method

In this chapter, we discuss the definition of entities and categories. Then we de-

scribe the proposed model, which captures the similarity among entities enhanced

by category information.

3.1 Definition of entities and categories

First, we define entities discussed in this thesis. We assume an entity has the

following properties:

Assumption Properties of an entity

1. An entity has a text item or items, which describe the entity or are

generated from the entity.

2. A set of entities has certain criteria for grouping, which humans can use

to understand the entities.

We handle massive text data, where various entities have their own text items,

which we also call “contents”. Although we do not limit the amount of text

items, we focus on entities with text fragments, for which traditional methodologies

have difficulties. In addition, we assume that entities can be divided into groups,

which help humans to understand the entities, since we aim to use such groups

for obtaining better representations of entities. We do not make an assumption

on the number of groups. However, a group should have multiple entities.

Second, we define categories:

Definition Categories
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1. A category is a set of entities, divided by certain criteria.

2. An entity joins one or more categories.

3. (Explicit Categories) An explicit category corresponds to a property or

a tag of entities.

4. (Implicit Categories) Implicit categories are generated from the criteria

for grouping of entities.

Categories help humans to understand the entities by grouping and extracting

a part of the essential properties or aspects of entities. As discussed regarding

humans’ categorization in chapter 1, humans use the ability to categorize things

to understand them. Therefore, this definition almost always holds true for entities

in the real world.

Explicit categories make up a set of entities that shares a property or tag.

Categories in e-commerce sites and tags in blog articles are examples of explicit

categories. Conversely, implicit categories make up a set of entities that does

not share a property or tag explicitly; however, the entities share characteristics

within a category. Communities in networks are examples of implicit categories.

Communities are generated from community detection algorithms, and a large

amount of research supports the claim that entities in the same community are

similar and share some characteristics.

If we use categories for analyses, we often want to use their labels that describe

their characteristics or central idea concisely. For explicit categories, we can use

property names or tag names for labels of categories. For implicit categories, we

cannot use shared property names of entities. However, we can use the descriptions

of entities and extract the keywords of categories, which can give the characteristics

of implicit categories. To summarize, the definition of labels is as follows:

Definition Labels

1. A label describes the characteristics of a category.

2. A label is a name of the shared property or tag of an explicit category, or

it is generated from text items or descriptions of entities of an implicit

category.

We can formulate the relationship between entities (E) and categories (C) as

the following:

∃f : E → C, ∀ei ∈ E, ∃cj ∈ C such that f(ei) = cj (3.1)

∀ei ∈ E, ∃tj such that tj ∈ ei, tj = w1w2...wn(j) (3.2)
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where tj denotes the text fragment of an entity, wl(1 ≤ l ≤ n(j)) denotes the

l-th word in the Tj , and n(j) denotes the length of Tj . Practically, we suppose

n(j) should take a value up to several thousand since the consistency in a text

can decrease for the long length of texts. The projection f corresponds to the

certain criteria to divide the entity set. Entities share a property in an explicit

category. Therefore, we can realize the projection f using properties of entities as

the following:

g : E → P, ∀ei ∈ E, ∃pk ∈ P such that g(ei) = pk (3.3)

h : P → C, ∀pk ∈ P, ∃!cj ∈ C such that h(pk) = cj (3.4)

f : E → C, ∀ei ∈ E, ∃cj ∈ C such that h(g(ei)) = cj (3.5)

where P denotes properties. For implicit categories, there are no explicit P . How-

ever, we assume that the projections g and h can be done with the projection f ,

which is the algorithm for dividing the entity set, such as accomplished with the

community detection algorithm.

3.2 Requirements for the category-enhanced model

Our goal is to obtain better representations for entities. Entities in the real world

are not often well-structured. Therefore, we cannot assume we have rigid tax-

onomies. However, we can regard entities as weakly-structured since each entity

belongs to a category, as we assumed in the previous section. We call a model

utilizing category information as well as entities’ contents “the category-enhanced

model”. We want to apply this model for entities either with explicit or implicit

categories.

We also want to embed category information into entities’ representations,

which can be generated from text items. Although it seems easy to make entities

hold category information, we should consider similarities among categories; some

categories are similar, some are dissimilar. Therefore the category-enhanced model

should produce representations for categories utilizing the information of entities,

as well as representations for entities enhanced by categories.

Additionally, we use this model for massive data, where each text item can

be short. The training method of this model is necessarily applicable to a large

amount of data, since the number of entities and categories can be large. The

category-enhanced method should also produce representations from text frag-

ments in which various words are used. This means that the model should consider

the similarities among words.

Once we have trained the model, we want to obtain representations just from
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text items in case we do not have the category information and any prior entity

information (e.g., new entities). Moreover, we would want to infer the possible

category for the entity from the representations. Therefore the trained model

should produce representations from text items, and the representations should

enable us to infer the possible categories more accurately than traditional methods.

In summary, the requirements are as follows:

Requirements The category-enhanced model

1. The model learns the representations of entities from categories and the

representations of categories from entities.

2. The training method of the model is applicable to massive data, where

the number of entities and categories can be large.

3. The model produces representations considering the similarities among

words.

4. The trained model produces representations from text items of new en-

tities, and the representations enable us to infer the possible categories.

3.3 Our methodologies

To satisfy the requirements for the category-enhanced model, we adopt the em-

bedding method approach. As discussed regarding the properties of embedding

methods in chapter 2, embedding methods can learn similarities among words in

an unsupervised way, and they are generally applicable to massive data using on-

line learning. We take the approach similar to the Paragraph Vector models [54],

which learn paragraph representations considering word similarities. We use the

Paragraph Vector models to produce entity embeddings, and then we extend them

to handle category information.

3.3.1 Entity vector models

Although the Paragraph Vector models do not consider categories in their model,

they can produce entity embeddings. We add little modification on the Paragraph

Vector models to deal with entities instead of paragraphs, and we call the modified

Paragraph Vector models the “Entity Vector models”. First, we describe the

algorithms of Entity Vector models, which closely resemble those of Paragraph

Vector models (as shown in Figure 3.1). The entity vector with distributed memory

(EV-DM) predicts a target word from an entity and words in a context window. To

train EV-DM from a word sequence (w1, w2, ..., wT ), we maximize the average log
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probability of a target word (wt) given context words (wt−c, ..., wt−1, wt+1, ..., wt+k)

and the entity (em):

1

T

T∑
t=1

log p(wt|em, wt−k, ..., wt+k) (3.6)

where k is the window size of the context, and T is the length of a document. The

entity vector with distributed bag-of-words (EV-DBOW) predicts words in the

window given the entity. For training, we maximize the average log probability of

words in a window given the entity:

1

T

T∑
t=1

∑
−k≤j≤k

log p(wt+j |em) (3.7)

The entity vector and word vectors are concatenated or averaged in the middle

layer, and the inner product of the vector in the middle layer and a vector in the

output layer is used to calculate the posterior probability. Both models define the

posterior probability in the form of a softmax function:

P (wi|wj) =
exp(u⊤i vj)∑
k exp(u

⊤
k vj)

(3.8)

where vj denotes an input vector of wj , and ui denotes an output vector of wi. As

the entity embeddings appear only in the input layer, we use an input vector of

pm for entity embedding of m-th entity.

The difference between Paragraph Vector models and the Entity Vector models

here is that an entity can have several texts, while a paragraph corresponds to one

set of sentences since we do not assign an entity embedding to each text, but to

each entity. Therefore, the same entity vector can appear in different texts in the

models. However, the paragraph vector appears only once in a specific text.

In this way, the entity vector models train entity vectors and word vectors

simultaneously. We update parameters using stochastic gradient descent (SGD)

in the same way as in the Paragraph Vector models. SGD is one of the typical

algorithms for “online” learning techniques because it updates parameters for each

instance. Our object function here is the average log likelihood, and we can calcu-

late the gradient vector of this object function (g). We apply the update function

as follows in iterative way1:

vt+1 = vt + ηg(vt) (3.9)

1Although we maximize the object function here, normally we minimize the object function.

Therefore, we call the algorithm, stochastic gradient descent. The update function here is to

maximize the object function.

38
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(a) The model of entity vector with distributed memory (EV-DM)

En#ty	  ID	  

the	 cat	 sat	 on	Classifier	

Entity embedding	

(b) The model of entity vector with distributed bag-of-words (EV-

DBOW)

Figure 3.1: The Entity Vector Models.

where vt is the parameter v at the time of t, and η is called the “learning rate”. The

performance of this algorithm generally depends on the learning rate, and SGD

sometimes diverges the parameters. Therefore we often decrease the learning rate

from ηmax to ηmin throughout the training period to converge the parameters.

Instead of updating all the output layer parameters, hierarchical softmax (HS)

or negative sampling (NEG) is used because the gradient of the softmax function

has a large number of terms. We aim to produce good representations for entities

and words instead of obtaining the posterior distribution. Therefore, we can take

an approximate approach for the output layer.

While we can assume vocabulary as a fixed set, we usually have unseen entities

in the test set. To handle unseen entities, these models can train entity embeddings

for new ones while fixing word vectors. The entity vector can be used as a fixed-

length dense feature vector for tasks such as classification and clustering.

3.3.2 Category vector models

We call the category-enhanced embedding method the “Category Vector models”.

To integrate categories into the embedding method, we follow the approach of

the Paragraph Vector models. We model the category vector models as the extra

context. As the entity vector plays a role of context for its text items, the embed-

ding for a category, the category vector, plays a role of context shared along items
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in the category. In this way, the category information can help to learn entity

embeddings, and the entity information can help to learn category embeddings,

simultaneously.

The category vector models consist of two models as in entity vector models:

the vector of the category with distributed memory (CV-DM) and the vector of

the category with distributed bag of words (CV-DBOW), as shown in Figure 3.2.

In both models, each category is mapped to a unique vector.

Entity
ID

great trail running

shoes

Concatenate

Classifier

Category/
entity/word
embeddings

Category
ID

(a) The model of the category vector with distributed memory (CV-DM)

great trail running shoesClassifier

Entity IDCategory
ID

Concatenate

Category/
entity embeddings

(b) The model of the category vector with distributed bag of

words(CV-DBOW)

Figure 3.2: Category Vector Models.

The CV-DM model predicts a target word from an entity (em) and a category

(cn), combined with words in a context window (wt−k, ..., wt+k). The objective of

the CV-DM model is to maximize the average log posterior probability:

1

N

∑
i,j

1

Ti,j

Ti,j∑
t=1

log p(wt|wt−k, ..., wt+k, em, cn) (3.10)

where N is the number of training instances, and Ti,j is the word size of paragraphs

belonging to the m-th entity and n-th category. The vectors of a category, an

entity, and words in a context window are concatenated or averaged in the middle

layer, which is used to calculate the posterior probabilities.
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The CV-DBOW model predicts words in a 2k word window from an entity

(em) and a category (cn). The objective of the CV-DBOW model is to maximize

the average log posterior probability:

1

N

∑
i,j

1

Ti,j

Ti,j∑
t=1

∑
−k≤l≤k

log p(wt+l|em, cn) (3.11)

The vectors of a category and an entity are concatenated in the middle layer, and

we take the inner product of the vector in the middle layer and a vector in the

output layer to calculate the posterior probability.

To update parameters, we use AdaGrad [24] as well as SGD in update equa-

tions. AdaGrad can avoid poor convergence and divergence of frequently updated

vectors. The update rule of AdaGrad is as follows2:

vt+1,i = vt,i +
η√∑t
τ=1 g

2
τ,i

gt,i (3.12)

where vt is a vector (word, paragraph, category) at the time t, and
∑t

τ=1 g
2
τ,i is

the sum of the the i-th dimension of gradients squared in the history. Compared

to SGD, AdaGrad decreases the learning rate throughout the training phase since

the squared gradient history
∑t

τ=1 g
2
τ,i increases as it iterates. In addition, the

AdaGrad is more robust against the initial learning rate, since the AdaGrad can

adjust the learning rate according to gradients in the past. The drawback is that

AdaGrad requires almost twice more the memory size of SGD since AdaGrad

stores the history of gradients for each dimension of parameters.

We can also use Adam [48] if the memory size allows. Adam is more robust

against the hyper-parameters, such as learning rate, although SGD and AdaGrad

depend on the initial learning rate and sometimes require several trials to set the

right value. Recent studies use this technique to optimize deep neural networks

[97, 35, 18]. Adam estimates the first moment vectors and the second moment

vectors as it updates parameters from an instance. The update rule is as follows:

mt+1 = β1mt + (1− β1)gt (3.13)

ut+1 = β2ut + (1− β2)g
2
t (3.14)

m̂t+1 =
mt+1

1− βt
1

(3.15)

ût+1 =
ut+1

1− βt
2

(3.16)

vt+1 = vt + α
m̂t+1√
ˆut+1 + ϵ

(3.17)

2Again, we maximize the object function here.
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where mt is the first moment vector at the time of t, ut is the second moment

vector, m̂, n̂ are the bias-corrected moment estimates, α is the step size, β1, β2 are

the hyper-parameters for decay rates for the moment estimates, and ϵ is to avoid

the 0-division. The experiment by Kingma and Ba showed that α = 0.001, β1 =

0.9, β2 = 0.999, ϵ = 10−8 are good hyper-parameter settings for several tasks,

and they claimed that these default settings can work well in other tasks [48].

The drawback is that Adam has more hyper-parameters than SGD and AdaGrad,

which means it requires more effort to find the best hyper-parameters when it does

not work in the default settings, and that Adam requires almost three times more

memory size than SGD since Adam stores the first and second moment estimates

for each dimension of parameters.

In the same way as the Entity Vector models and the Paragraph Vector models,

either HS or NEG is used to approximate computation in the output layer. While

the algorithm is similar to word2vec models and the Paragraph Vector models, we

change the initialization of input vectors (word, entity, category) as follows:

vi =
ri√
d

(3.18)

where vi is the i-th element of a vector v, d is the dimension, and ri is a uniform

random variable on [-0.5, 0.5]. As Glorot and Bengio pointed out, this initializa-

tion technique is heuristic but commonly used [31]. Our preliminary experiments

showed that we sometimes have bad convergence (where embeddings agglomerate

in some point) using the word2vec’s initialization, while this heuristic technique

always worked.

3.3.3 Inference of categories

We can use the embeddings of categories themselves to see the similarity and

dissimilarity among categories; however, it is more useful to infer the category

from the new instance. For example, in the e-commerce site, we can reduce the

misclassification of products if we can infer the correct category for a new product.

In social media analysis, it is rare to have all the network data. The inference can

help to classify the users into known communities.

To infer the category of an instance from a trained model, we fix the learned

word vectors and train the embeddings of entities and categories. We can only

obtain the sum of embeddings of entities and categories since there is one degree

of freedom between an embedding of a category and an embedding of an entity.

Thus, we use the summed vector of these two vectors for inference of its category.

We compute the summed vectors of the category vectors and the paragraph vectors

in the training set, and we find the closest vector to the summed vector of the test
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Figure 3.3: The summed vectors of category and paragraph vectors. We regard

the category of the closest item in the training set as the best candidate for the

test instance. Here, we infer that the test instance (e3) belongs to the category 1

(sg1) because the closest instance (e4) belongs to the category 1.

instance from the training set, as in Figure 3.3. We adopt the cosine similarity

between normalized vectors to find the most similar item, and we can adopt the

category of the most similar item in the training set.

3.3.4 Joint model

To obtain better performance, we can combine two models. After we have trained

two models separately (e.g., the SGV-DM model and the SGV-DBOW model),

we have learned embeddings of words, entities, and categories, which are di-

dimensional vectors for the i-th model and dj-dimensional vectors for the j-th

model. In the joint model, we concatenate two entity/category vectors of dimen-

sions di, dj from two models horizontally. The concatenated vectors are (di + dj)-

dimensional vectors, as shown in Figure 3.4. As mentioned in the previous section,

we use the normalized summed vector of the category vector and the paragraph

vector in the training set; therefore, we concatenate two normalized summed vec-

tors from the models. We can concatenate two different models (CV-DM and

CV-DBOW models) or the same models with different settings (CV-DM with HS

and CV-DM with NEG). For the test instance, after we have trained a summed

vector using each model, we concatenate two of the normalized vectors. We find

the most similar item in the concatenated vectors in the training set to infer the

category of the test instance.
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Figure 3.4: Joint model of two models. These models are trained separately, and

the joint model combines the embeddings of an entity and/or a category.

3.3.5 Multilingual model

The embedding methods can learn the relationships among the words in differ-

ent languages from multilingual corpus. Several studies have been conducted on

models of multilingual word representations. These models can benefit from mono-

lingual corpus, which is easy to obtain, and use a small multilingual dictionary or

parallel corpus to constrain the distributed representations in different languages.

Mikolov et al. trained distributed representations for words in each language and

then calculated the linear transformation matrix of vectors from one language to

another using parallel data [63]. They achieved good precision for translation of

words between English and Spanish. Klementiev et al. formulated the acquisi-

tion of multilingual distributed representations as a multi-task learning problem,

which requires co-occurrence statistics from parallel data [49]. Hermann and Blun-

som proposed a bilingually aligned word representation model [39], and Pham et

al. extended the paragraph vector models to multilingual models [75], which re-

quire sentence alignment. These three models are reported to improve document

classification tasks on crosslingual documents. However, it is usually very rare

to obtain word alignment or sentence alignment in massive dataset, which the

aforementioned methods require.

Compared to obtaining word alignment or sentence alignment, it is relatively

easy to obtain the category alignment or topic alignment. For example, some

global e-commerce companies have marketplaces in several countries with different

product taxonomies. Rakuten, which is one of the largest shopping sites in Japan,

is such a company, and they have e-commerce sites in Japan, North America,

Europe, Southeast Asia, and Taiwan. They have rich taxonomy in Japanese and
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Figure 3.5: Multilingual model for Japanese and English texts. We have the

alignment among categories, and we train the embeddings of words / entities /

categories in both languages simultaneously.

English since the number of products is large, while the new marketplaces have

less rich taxonomy. They have category alignment among marketplaces in different

languages, but they do not have product alignment for most of the products.

The embedding method can help to capture the similarity or dissimilarity among

categories from multiple language sources, and therefore the rich taxonomy and

products in Japanese or English can help to classify products in other language

domains. Even if there is difficulty to obtain the product correspondence in the

multilingual data, we can sometimes obtain universal categories or an interlingual

correspondence table among categories or topics since categories are often a fixed

set. This means that the quality of embeddings in a language can be improved

by adding additional training data in another language, even though there is no

word-level or sentence-level correspondence between the two languages.

To train the model from multiple languages, we assign word embeddings and

entity embeddings separately according to the language or the site, but we assign

the same embeddings to corresponding categories in multiple languages. In this

way, we can train the model giving the training set merged multiple languages

without translating the contents. We use the same algorithm for training the

model and inference of categories. We can also merge multilingual models trained

with different settings.
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3.3.6 Implementation

We implemented the Entity Vector models and the Category Vector models de-

scribed previously in Python and C++. Our implementation partially uses word2vec

implementation of “gensim” written by Řeh̊uřek [78], and utilizes Cython and

BLAS (Basic Linear Algebra Subprograms) library. We published the implemen-

tation as an open source software (GNU LGPL license) and the code is available

at GitHub: https://github.com/rakuten-nlp/category2vec.

3.4 Analysis of the relationship between word usage

and categories

We modeled the embeddings of a category, and an entity is learned as a context

of its text data. Therefore, our model captures not only the sequence of surface

representations, but also local contexts of words that can be characteristic in cer-

tain categories. Now, how do we confirm that the model learned the difference

on the local contexts of words (i.e. word usage) among categories, particularly

implicit categories? We propose here the methods for capturing the differences

of word usage among categories to deepen an insight into the relationship among

categories.

3.4.1 Overview of the analysis framework

Next, we explain the overview of our framework to analyze how word usage is

different by categories. For the analysis, we exploit the Skip-gram model (one of

the word2vec models) to capture the local context of words in each community.

After training the Skip-gram model, each word obtains a word vector as the word

embedding (or distributed representations).

Our framework is divided into three main parts.

1. First, we train the Skip-gram model using the whole text, or sampled text

data from the whole data. As the initial state generally affects the embed-

dings through training, we compute the word embeddings from the whole or

sampled dataset, and we use these as “pre-trained” data in the next step.

2. Using the pre-trained data, we retrain the Skip-gram model from the text

data of each category. Since the word embeddings in a category are expected

to reflect how the word is used in the categories, they provide us with ways to

explore the differences in the use of language among the groups. We obtain

the set of word embeddings for each category.
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3. Using the trained word embeddings, we analyze the differences in the use

of language among categories. If entities use a word in a similar way in

different categories, the word embeddings among groups become similar, and

if entities use a word in different way, the word embeddings among groups

become dissimilar. We compute a similarity measure among categories.

3.4.2 Training word embeddings in each category

Here, to grasp how words are used in each category, we train word embeddings

in each group. As mentioned previously, each word embedding is expressed as a

word vector, which reflects the context in which the word appears. This feature

can be used to analyze how the word is used differently among categories.

First, we sample d% (d: arbitrary constant) from the whole entities to create

unbiased corpus by categories. Second, we train the Skip-gram model giving the

unbiased corpus, and we obtain word embeddings. Third, we sample c/Ni% text

data (Ni:entities in the i-th category, c:constant) from each entity group, and create

a balanced corpus for each category. The reason we balance the number of entities

in categories is to avoid the influence of content length. If we input larger corpus,

then we update the embeddings more times, which can make the embeddings go

away from the pre-trained embeddings. Finally, we use previously learned word

embeddings as pre-trained embeddings, and we retrain word embeddings giving

text data sampled from a category. Here we obtainM word embeddings for a single

word (M : the number of categories). We use the word embeddings to explore the

differences of word usage among categories.

As to the implementation, we use “word2vec” 3, the original implementation

by Mikolov et al. [64], and modify the code for retraining. The Skip-gram model

simplifies the neural network and adopts surrounding words as a context instead

of adopting several preceding words for the target word, as shown in Fig. 3.6. The

posterior probability of the Skip-gram model is shown as below:

p(wt+j |wt) =
exp(vTwt+j

· vwt)∑
k exp(v

T
wk

· vwt)
(3.19)

where vwk
represents the word embedding for the word wk, wt is a target word,

andwt+j is a context word (j ̸= 0). The posterior is expressed as a softmax func-

tion, and the number of terms of its gradient increases linearly to the vocabulary

size; therefore, the training time becomes considerably long. Mikolov et al. pro-

posed HS and NEG to reduce calculation time in the same way as done with the

Entity Vector models and the Category Vector models.

3The original code is available at https://code.google.com/p/word2vec/
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Figure 3.6: The Skip-gram model learns word vectors to maximize the posterior.

Trained word embeddings have the following characteristics: words having

similar contexts are projected to similar vectors in the vector space. Still, we

cannot completely solve the problem of polysemies and homonyms in adopting

the embedding methods. However, we focus on the fact that word embeddings

represent the context where the words are mainly used, and that similar word

embeddings indicate that the words are often used in the same way.

3.4.3 Analysis of the differences in the use of language among

categories

(1) Detecting ambiguous words among categories

First, we address the following question: how is the same word is used in different

senses among categories? In this part we use the embedding method that can

capture contexts for each word, which enables us to grasp the set of words that

potentially co-occurs with the word. Thus, by seeing how the contexts for the word

are different among categories, we can expect to detect ambiguous words among

categories — that is, words that are used in different local contexts depending

on categories. Please note, the term ambiguous words among categories does not

mean that the term actually has several meanings, but that the term is used in

several contexts among categories, which can mean that the term is likely to have

multiple meanings. We do not step into the definition of the meanings and the

methodologies to extract meanings. Here we only discuss the difference in local

contexts since the local contexts characterize the categories.

To obtain prospective words that used in several local contexts, we calculate

how similar a word is between a pair of categories. More specifically, for each

word and each pair of categories, we calculate cosine similarity between the word

embedding of one category and the word embedding of the other. Then we try

to detect ambiguous words from highly dissimilar words by using the context as
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clues: that is, the set of words that potentially co-occurs with the word.

(2) Word-usage-based similarity among categories

To determine whether categories have similar word usage, we first define the sim-

ilarities based on the word usage. We will describe them in the following manner.

Definition of similarity between categories based on word usage:

We define word-usage-based similarity between the category i and the category j,

Simword(i, j), as follows.

Simword(i, j) =
1

N

N∑
a=1

|Sia ∧ Sja|
|Sia ∨ Sja|

(3.20)

where a is an index of word, wa is a word, via is a distributed representation for a

word wa in the category i, “·” means inner product, and Sia = {wb|top 30 of via ·
vib}. N is the number of “target words” for community i and j. Target words

are taken from words in the whole tweets that appear at least 100 times both in

tweets in categories i and j.

Since word embeddings are trained differently in categories, wa has different

representations according to categories. Sia means a set of similar words to wa

used in the similar local contexts in the category i, and Simword(i, j) is the average

of Jaccard similarity between the sets of similar words to a target word in the

categories i and j.

We can compare this similarity score to the learned categories to explore

whether the close categories in their attribute or their network property are also

close in the similarity measure.

In the next chapter, we apply the models and the analysis framework men-

tioned above to explicit and implicit categories. For explicit categories, we use

e-commerce data, in which thousands of categories are manually tagged. We show

the effectiveness of the category-enhanced models in inferring the category of items

from their text descriptions, which helps with manual category tagging of prod-

ucts. For implicit categories, we use social media data, through which users are

connected with networks. We also apply the analysis framework for category-

enhanced models to see how we can extract the characteristics of implicit categories

with embedding methods.
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Chapter 4

Embedding Method for

Categories

We often have labels or categories for each item of documents. Such labels and

categories are regarded as explicit categories, as discussed in chapter 3. Among

datasets having explicit categories, e-commerce sites have large number of cate-

gories in which each product belongs (e.g., Electronics, Apparel, and Furniture &

Interior). Items that belong to the same category have similar descriptions; there-

fore, we can use BOW or Entity Vector models to infer correct categories, taking

their similarities. However, it is more useful if we have the document representa-

tions that contain category information in addition to item information. This is

the case particularly for e-commerce sites, which update product information pe-

riodically and sometimes label products with incorrect categories. However, if we

can generate embeddings of category and words (both of which can be considered

as fixed sets), we do not need to store all the data records. For this purpose, we use

the Category Vector models for classification of products and we show the effec-

tiveness by comparing the Category Vector models to the BOW and Entity Vector

models on the task where we classify the products into thousands of categories.

4.1 Dataset

Rakuten Ichiba1 is the largest e-commerce site in Japan, and Rakuten.com Shop-

ping2 is an online marketplace in the U.S. We use 2.5M items from Rakuten

Ichiba (Japanese) and 3.0M items from Rakuten.com Shopping (English). We

call them R-JA data and R-EN data, respectively. We use 25,705 items from R-

1http://www.rakuten.co.jp
2http://www.rakuten.com
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JA data and 23,877 items from R-EN data as the test data and the rest as the

training data. Each item consists of a title, a description, and a category, e.g.,

Books/Architecture, or Movies & TV/Comedy. We concatenate the title and the

description for each product, and we use it as an input. For Japanese data, we use

MeCab3 and UniDic4 to tokenize.

Categories are constructed in a tree structure, and each category except the

top-level category has a parent category, as shown in Figure 4.1. There are 21,764

leaf categories in the training set of R-JA, and 8,245 leaf categories in the training

set of R-EN. We manually created a correspondence table where leaf categories of

R-JA correspond to those of R-EN categories. Note that a leaf category in one

language can correspond to multiple leaf categories in another language. For ex-

ample, the category “Hard Disk Drives/Internal” in English data corresponds to

two categories (“HDD/2.5-inch” and “HDD/3.5-inch”) in Japanese data as shown

in Figure 4.2. We convert R-JA categories to R-EN categories using the corre-

spondence table since R-JA has more categories than R-EN. We concatenate the

training set of R-EN and the training set of R-JA with R-EN categories (we call

this R-MIX data). R-MIX data have 5.5M items with 8,783 categories. No overlap

occurs between Japanese word/product IDs and English word/product IDs.

Computers Books Toys

Storage	Devices

Top-level
categories

Optical	Devices	&	Media

Accessories Hard	Drives SSD USB	Flash/Key

Internal External Leaf	categories

Figure 4.1: Categories in a tree structure. Categories with red frames are top-level,

and categories filled with orange color are leaf categories, where items belong.

4.2 Experiment

Here we call the Entity Vector models “Product Vector” models, which contain

the PrV-DM model (from the EV-DM model) and the PrV-DBOW model (from

3https://code.google.com/p/mecab/
4http://sourceforge.jp/projects/unidic/
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Computers	  

Storage	  Devices	  

Hard	  Disk	  Drives	  

SSD	   USB	  Flash/Key	  

Internal	   External	  

パソコン・周辺機器	  
(PCs,	  Peripheral	  devices)	  

パソコンパーツ	  
(Components)	  	  

外付けドライブ	  
・ストレージ 	  
(External	  drives)	  

メモリー	  
(Memory)	  	  

HDD（内蔵型）	  
(Internal	  HDD)	  	  

SSD	  

HDD（外付け）	  
(External	  HDD)	  	  

フラッシュメモリ	  
(Flash	  memory)	  	  2.5	  インチ	  

(2.5-‐inch)	  	  
3.5	  インチ	  
(3.5-‐inch)	  	  

Figure 4.2: Category trees in English and Japanese. A dashed orange line denotes

the correspondence between two languages.

the EV-DBOW model), and we use Category Vector models, where we use Prod-

uct ID as Entity ID. To confirm that the Category Vector models learn category

information, we compare the BOW model, the Product Vector models and the

Category Vector models by inferring a category of a product from its description.

We also compare the joint model of Product Vector models, the joint model of the

Category Vector models, and the Category Vector models trained from the mul-

tilingual corpus. For this purpose, we use Rakuten Ichiba data and Rakuten.com

Shopping data described in section 4.1.

4.2.1 Task

In this section we will describe the details of the task. We measure the quality of

the category and product embeddings by comparing the accuracy of the inference

task, where each model infers a true category from its embeddings of products.

For the BOW model, we computed TF-IDF for each word in the training set

and obtained TF-IDF vectors in the test set using IDF of the training set. To ob-

tain embeddings for products, first we trained the Product/Category vector mod-

els until the algorithm iterated through the training data for specific times. We

trained the Product/Category vector models, exploring several values of hyper-

parameters enumerated in Table 4.1. Preliminary experiments showed that the

dimension of 300 and the iteration of 30 times is sufficient to saturate the accu-

racy, and that the 5 negative samples perform better than 15 negative samples,

despite the study of Levy et al., which showed that more negative samples for

52



Product	  ID	   the	 cat	 sat	

on	

Concatenate	

Classifier	

Product/	
word vectors	

(a) PrV-DM model
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Figure 4.3: Product Vector Models

Product	  
ID	  

great	 trail	 running	

shoes	

Concatenate	

Classifier	

Category/	
Product/	
word vectors	 Category	  

ID	  

(a) CV-DM model

great	 trail	 running	 shoes	Classifier	

Product/	
Category vectors	

Product	  ID	  Category	  ID	  

Concatenate	

(b) CV-DBOW model

Figure 4.4: Category Vector Models.

word embeddings improve analogy tasks [57]. Second we fixed word embeddings

from the trained model and use them to calculate a product embedding in Prod-
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Table 4.1: Parameters explored in this task. PrV denotes Product Vector, and

CV denotes Category Vector. The iteration, dimension, and #negative samples

are explored only in preliminary experiments.

Hyper-parameter Explored Values / Settings Methods

model DM, DBOW PrV, CV

output layer HS, NEG PrV, CV

update rule SGD, AdaGrad CV

dimension 200, 300 PrV, CV

#negative samples 5, 15 PrV, CV

alpha / η
0.001, 0.005, 0.025,

PrV, CV
0.05, 0.1, 0.15, 0.2

iterations 10, 15, 30, 35 PrV, CV

window size 5 PrV, CV

subsampling none PrV, CV

uct Vector models or the sum of a category embedding and a product embedding

in the Category Vector models from each product in test data. In all the cases,

we computed cosine similarity between a embedding in the test set and learned

embeddings in the training set, and extracted the most similar item in the training

set to infer its category. We regarded the category of the most similar item as the

best category candidate of the test instance. Finally, we calculated the accuracy

of this inference task both in R-JA and R-EN data, using the BOW model, and

the Product Vector models and the Category Vector models.

In addition to seeing how the BOW model and the Product/Category Vector

models perform, we trained the Category Vector models using R-MIX data and the

same learning rate as R-EN data, and saw how the multilingual category vector

models improved the accuracy. Since the R-MIX dataset is aligned with R-EN

categories, we used the test set of R-EN data and compared it with the result of

R-EN.

As to joint models, we also combined two models from Product Vector mod-

els in different conditions (PrV-DM/PrV-DBOW, HS/NEG), or Category Vector

models in different conditions (CV-DM/CV-DBOW, HS/NEG, SGD/AdaGrad).

We trained the vector of the test instance in each model separately, and we con-

catenated these vectors horizontally from two models for test.

We used the implementation described in subsection 3.3.6 to train the Product

Vector models and the Category Vector models.

54



Figure 4.5: Centroids of category embeddings in R-JA. Each point denotes the

centroid of a top-level category.

4.2.2 Results

First we observe the learned category embeddings. As we have a large number

of leaf categories, we calculated the centroid vectors of top-level categories (as

shown in Figure 4.1) from the category embeddings for simplicity. We reduced the

dimension of centroids from 300 to 2 to plot in the planar space using principal

component analysis (PCA). The centroids are shown in Figure 4.5, where each

point denotes a top-level category and the size of a point denotes the size of its

leaf categories. We can see the tendency that the similar categories are located

in the similar space, as the categories “Grocery” and “Sweets, Snacks” are close

to each other, and the categories “Sports & Outdoors”, “Mens Fashion”, “Ladies

Fashion”, “Shoes”, and “Inner-wear, Underwear, Nightwear” are also close to each

other.

As to the inference task, we show the results in Table 4.2 (R-JA data), Table

4.3 (R-EN data), and Table 4.4(R-MIX data). We showed the best learning rate

(including AdaGrad’s η) for each model and output layer. For joint models, we

list only the best combinations.
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Table 4.2: Category inference task in R-JA data

Model
Output Layer

HS NEG

BOW 47.70%

PV-DM SGD 38.04% 19.84%

PV-DBOW SGD 49.03% 48.27%

CV-DM SGD 46.61% 7.15%

CV-DBOW SGD 52.15% 48.89%

CV-DM AdaGrad 51.35% 46.65%

CV-DBOW AdaGrad 55.23% 56.02%

Joint Model

PV-DBOW SGD HS +
49.71%

PV-DBOW SGD NEG

CV-DBOW SGD HS +
53.97%

CV-DBOW SGD NEG

CV-DBOW AdaGrad HS +
57.14%

CV-DBOW AdaGrad NEG

Table 4.3: Category inference task in R-EN data

Model
Output Layer

HS NEG

BOW 59.42%

PrV-DM SGD 49.65% 31.14%

PrV-DBOW SGD 59.20% 59.47%

CV-DM SGD 47.74% 7.55%

CV-DBOW SGD 42.39% 36.33%

CV-DM AdaGrad 59.14% 55.26%

CV-DBOW AdaGrad 55.82% 57.11%

Joint Model

PrV-DBOW SGD HS +
60.99%

PrV-DBOW SGD NEG

CV-DM SGD HS +
49.21%

CV-DBOW SGD HS

CV-DM AdaGrad HS +
61.02%

CV-DM AdaGrad NEG

In R-JA data, the Category Vector models outperform the Product Vector

models and the BOW model. The CV-DBOW model with AdaGrad and NEG
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Table 4.4: Category inference task in R-MIX data

Model
Output Layer

HS NEG

CV-DM SGD 58.19% 1.23%

CV-DBOW SGD 58.72% 50.61%

CV-DM AdaGrad 61.30% 58.63%

CV-DBOW AdaGrad 59.89% 61.58%

Joint Model

CV-DM SGD HS +
62.55%

CV-DBOW SGD HS

CV-DM AdaGrad HS +
63.91%

CV-DBOW AdaGrad NEG

performs the best among the Category Vector models, and among joint models,

the joint model of the CV-DBOW model with AdaGrad and HS, and the same

model with AdaGrad and NEG performs the best. Joint models improve the

accuracy compared to a single model, and we can find the true category out of

21K categories with the accuracy of 57.14% with the joint Category Vector model.

In R-EN data, on the other hand, one of the Product Vector models (PrV-

DBOW) outperforms the Category Vector models and the BOW model. Among

the Category Vector models, the CV-DM model with AdaGrad and HS performs

the best. However, among the joint models, the Category Vector models perform

better than the BOW model and slightly better than the Product Vector models.

We can find the true category out of 8K categories with the accuracy of 61.02%

in R-EN data if we use the joint model of the CV-DM model with AdaGrad and

HS and the same model with AdaGrad and NEG.

As to multilingual models, we can see that the Category Vector models trained

with multilingual data (R-MIX) outperform the BOW model, the Product Vector

models, and the Category Vector models in R-EN data. Most of the multilingual

models in R-MIX data outperform the same models in R-EN data except for the

CV-DMmodel with SGD and NEG. Among the Category Vector models in R-MIX,

the joint model of the CV-DM model with AdaGrad and HS and the CV-DBOW

model with AdaGrad and NEG performed the best, with the accuracy of 63.91%.

To see the effect of the enhancement of adding R-JA to R-EN, we took the dif-

ference of accuracy between R-MIX and R-EN for each category. Here we used the

best joint models, which are CV-DM AdaGrad HS + CV-DM AdaGrad NEG (R-

EN) and CV-DM AdaGrad HS + CV-DBOW AdaGrad NEG (R-MIX). We listed

the categories in Table 4.5, where the accuracy difference is high and the items in
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Table 4.5: Accuracy difference of each category

Category
AccR MIX #items #items

−AccR EN in R-EN in R-JA

Computers/Computer Accessories/
31.3% 104,538 217

Batteries & Adapters/Batteries

Toys/Vehicles/Trains & Train Sets 28.6% 1,179 0

Home & Outdoor/Furniture, Décor &
23.5% 1,890 0

Storage/Bedding & Linens/Bedskirts

Toys/Dolls & Stuffed Animals/ Dolls 18.2% 1,016 0

Consumer Electronics/Personal Electronics/
18.2% 1,352 1,081

Portable GPS/GPS Accessories

Consumer Electronics/Personal Electronics/
-23.1% 948 0

Cell Phones & Accessories/Data Connectivity

Books/Science/
-21.4% 6,314 7,338

Earth Sciences・Geography

Books/Fiction/
-17.6% 2,266 0

Fantasy・General

Home & Outdoor/Furniture, Décor &
-16.7% 3,034 879

Storage/Decor & Artwork/Torches & Lights

Books/Juvenile Fiction/
-16.7% 1,417 0

Science Fiction

the test set are greater than 10. We also listed the number of items in the training

set from R-EN and R-JA. The multilingual model infers the true category better

than the monolingual model, for the categories of “Computers/Computer Acces-

sories/Batteries & Adapters/Batteries”, “Toys/Vehicles/Trains & Train Sets” etc.

The category ”Consumer Electronics/Personal Electronics/Portable GPS/GPS

Accessories” contains about the same amount of R-EN items and R-JA items

as R-MIX. The Japanese descriptions of GPS Accessories contain manufacturer

names (e.g., Panasonic, Pioneer) and some specifications (e.g., display size, dis-

play resolution), which can improve the shared category vector. Though 4 cat-

egories where R-MIX improves the model contain few or no R-JA items, R-JA

items can move nearby categories away. For the categories “Consumer Elec-

tronics/Personal Electronics/Cell Phones & Accessories/Data Connectivity” and

“Books/Science/Earth Sciences・Geography” etc., the multilingual model infers

the true category worse than the monolingual model. R-JA disturbs the category
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vector of ”Books/Science/Earth Sciences・Geography”, and it can be the cause of

R-JA having many books specializing in Japanese geography in the category, and

books in R-EN specializing more in whole earth geography. Again, three categories

have no R-JA items in R-MIX. There are three book categories, which can suggest

that the descriptions are more descriptive than other categories (e.g., electronic

devices), and multilingual models cannot assist in learning better category embed-

dings without any word alignment. In addition, the correspondence between R-JA

categories and R-EN categories can be problematic in some cases. However, the

overall accuracy increased by 2.89%, which indicates that the multilingual data

without word/product alignment can help the Category Vector model to learn the

better category representations directly and indirectly.

4.3 Discussion

Our experiments on product data in e-commerce sites show that the Category Vec-

tor models perform better than the BOW model and the Product Vector models

in Japanese data, and the Category Vector models perform slightly worse than

the Product Vector models in English data. The joint Product/Category Vector

models outperform single Product/Category models, and the joint model of Cate-

gory Vector models with AdaGrad performs slightly better than the joint Product

Vector models. Our experiment on multilingual data shows that the Category

Vector models can gain performance from the different language source, which in-

dicates the embedding models with categories can train better entity embeddings

enhanced by multilingual data.

The reason the Product Vector models can outperform the Category Vector

models in R-EN data while the Category Vector models perform better in R-JA

can come from the difference in the distribution of the word frequency. We plotted

the word frequency in R-JA and R-EN in Figure 4.6, which reveals that the fre-

quency in R-EN drops faster than that in R-JA. It indicates that models trained

from R-JA need to have good word embeddings more than models trained from

R-EN, and it reveals that models of R-JA have more parameters to be well-trained.

The Category Vector models have more parameters to be updated (category em-

beddings), and the number of parameters leads to the difficulty in optimization.

Therefore, models of R-EN can be affected more from the increase of parameters.

When we compare the models in R-JA data and R-EN data, we can see that

DBOWmodels outperform DM models in R-JA data both in the Paragraph Vector

models and the Category Vector models, while the DM models perform about the

same or better than DBOW models in Category Vector models in R-EN data.
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Figure 4.6: The word frequency and the rank in R-JA and R-EN on a log–log scale

(rank 1–100000).
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This difference may come from the average length of the content. R-JA data have

shorter descriptions (36.4 words) compared to R-EN data (65.5 words). The DM

models predict the single target word in each step, while the DBOWmodels predict

the word distribution consistent with the description. Therefore, if the description

is longer, the DBOW models can perform worse.
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Chapter 5

Embedding Method for

Communities

In the previous chapter, we applied the category-enhanced embedding method to

datasets with explicit categories. In this chapter, we apply the same method to

datasets with implicit categories. Among such datasets, the dataset of social media

has interesting aspects since social media contain much information of users and

their contents, despite their frequent lack of structured information. The feature

applies to user-generated contents, and among them social media have massive

data, which are used for marketing and advertising.

The popularization of social media enables large-scale research for exploring

the relationship between friendship and similarity. Extensive research has been

conducted across fields relating to “homophily”, which is a tendency that people

who are connected have to be similar to each other [62]. For example, Romero et

al. [81] studied the interplay between social network and the topics they speak

about — similarity of the topics in which they are interested. This result indi-

cates that close relationships, “strong ties”, tend to occur between similar people,

while acquaintances, “weak ties”, can give people opportunities to have access to

new information, which agrees with the discussion in The Strength of Weak Ties

by Granovetter [34]. However the question — are they similar because they are

connected or are they connected because they are similar? — remains unanswered

[86].

Investigating the relationship between friendship and similarity has the poten-

tial to enhance Web-related applications such as targeted advertising and viral

marketing in online social network. As Lim et al. pointed out [58], one of the

important problems in targeted advertising and viral marketing in online social

network is to identify the adequate target audience: that is, users of the adequate
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demographics who are also highly connected among themselves. Detecting users

with the right demographics enables the right product-audience matching. At the

same time, the connection among people can facilitate word-of-mouth advertising.

Thus, investigating the relation between connection and features, such as interests

and word usage, which people exhibit can provide insights for the problem. For

this purpose, we extract communities from a social network and explore how we

can model communities and users in our embedding models.

Among social media, Twitter1 is used for various research purposes since the

data are available from the API. Twitter is a micro-blogging service, and it is

primarily used as a social networking service (SNS), where users can post 140-

character contents (“tweets”), and users can re-post others’ entries (“retweet” or

“RT”) or message to specific users (“mention”). Each user has a wall that displays

contents written by their following users. Following is unilateral activity; therefore,

it is possible that the user A followed by the user B does not follow the user B. A

characteristic of Twitter is that most of the users post personal entries or messages

in public; thus, Twitter has been used for a large number of studies in the field of

social network analysis recently.

We focus on a conversation network since the tie among users who had con-

versations is stronger than the following relationship, and it is suitable to extract

communities, where users are assumed to be similar and relatively densely con-

nected with each other. We extract the communities from the conversation net-

work, and we assess how well the embedding model can grasp the relationship

among communities, users, and their contents. In this chapter we show the ef-

fectiveness of the Category Vector models over the BOW model and the Entity

Vector models through the inference task, in which each model classifies users into

their communities.

5.1 Dataset

We collected tweets and profiles with time stamps ranging from January 1, 2012 to

December 31, 2012, from 7.4 million users, who were detected tweeting in Japanese

by the Twitter API 2. From this group of data, which contains 4.9 billion tweets,

we extracted mentioning tweets to collect mention connections. We constructed a

graph in which an edge is created for two users (nodes) if there are bi-directional

(mutual) mentions 3. This period contains 404 million links, of which 125 million

1https://twitter.com
2https://dev.twitter.com/docs/api
3It is possible to weight the edge based on the number of mentions, but in this research, we

consider unweighted graph for simplicity.
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links are mutual links (i.e., both users mentioned to each other at least once).

5.2 Community extraction and labelling

Before we conduct the inference task, we extract communities from the conversa-

tion network. To see the characteristics of the extracted communities, we collected

users’ biographies and place a label for each community from the keywords.

5.2.1 Community extraction from conversation network

The size of the conversation network is large; therefore, we use the Louvain method

[6] for community extraction, which is one of the modularity based methods and is

applicable to a large graph, as discussed in chapter 2. We used publicly available

code 4.

Applying the Louvain method [6], we obtained 34,835 communities. To ex-

plore the characteristics of communities well, we need various users in a commu-

nity. Therefore, we target only the relatively large communities for the rest of

this analysis. We selected communities including more than 10,000 users, which

account for 97.7% of whole users in the dataset. As a result, the total number of

communities that we targeted for the analysis became 38.

5.2.2 Labeling community from user profile information

For each community, we extracted users’ profile texts, which users can set by the

profile function on Twitter. Then we calculated the TF-IDF (term frequency,

inverse document frequency) score [85], which is one of the most general numerical

statistics for keyword extraction, to calculate the importance of words in each

community and extract keywords for each community. We extracted the top 20

words for each community and used them as they represent the characteristics of a

community. Then we labeled each community to characterize them by using these

keywords as clues for labeling.

We extract the keywords of each community and label the communities as

follows:

4https://sites.google.com/site/findcommunities/
5HS stands for “high school”.
6A Japanese talent agency promoting groups of male idols.
7A kind of Japanese rock’n roll band style.
8Woman who likes comics depicting male homosexual love.
9Japan football league fans.

10Fans of a boy idol group.
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Table 5.1: Fraction of workers who chose the corresponding rating for each com-

munity

Community
Rate

Label5
adequate inadequate unable to judge

1 80% 10% 10% Johnny’s fans6

2 100% 0% 0% HS students in Tohoku

3 80% 5% 15% DJs and Raggae fans

4 95% 0% 5% University students in Kansai

5 100% 0% 0% University students in Kyushu

6 90% 5% 5% Visual-kei7

7 45% 25% 30% Ethnic Korean

8 95% 5% 0% HS students in Chiba/Ibaraki

9 100% 0% 0% HS students in Tochigi/Gunma

10 70% 10% 20% Fujoshi8

11 90% 0% 10% Bike fans

12 95% 0% 5% J-league fans9

13 85% 0% 15% Online game fans

14 90% 0% 10% HS in Okayama

15 100% 0% 0% HS in Shizuoka

16 100% 0% 0% HS students in Niigata

17 80% 5% 15% Disney fans

18 75% 0% 25% Darts and basketball fans

19 100% 0% 0% University students in Aichi/Mie

20 95% 5% 0% Tsukuba University & surrounding area

21 95% 0% 5% Fans of indie label

22 80% 20% 0% University students in Tokyo

23 60% 30% 10% No Nukes, leftists, housewives

24 95% 5% 0% HS students in Osaka

25 95% 0% 5% HS students in Nagano/Yamanashi

26 80% 5% 15% First-person shooting game fans

27 90% 5% 5% University students in Iwate

28 90% 5% 5% Korean Pop

29 85% 10% 5% Japanese comedy fans

30 95% 5% 0% HS students in the Metropolitan area

31 85% 5% 10% Anime and music game fans

32 85% 5% 10% Fans of vocaloid and singers

33 85% 5% 10% Japanese Pop fans

34 100% 0% 0% Gambling, mobile game fans

35 85% 5% 10% Female idol fans

36 75% 5% 20% “Furry” lovers

37 75% 10% 15% Fans of “Arashi”10and local idol group

38 95% 5% 0% University students in Hokkaido

• We crawl the biography of each user on Twitter profiles.

• For each community, we aggregate the biography texts of users who belong to

the community, creating one document that corresponds to the community.
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• We calculate the TF-IDF score of all words in each community and extract

the top 20 keywords as salient keywords for each community.

• We label each community manually using phrases associated with common

features of the top 20 keywords.

To validate the labels, we conducted a user study and evaluated the results.

We conducted the user study using a crowdsourcing service in Japan, “Lancers”
11. We provided the label we created and the top-20 keywords for each community.

Then we asked 20 highly acclaimed workers to judge the label for each community

by choosing from the following options: (1) adequate, (2) inadequate, (3) unable

to judge. For each worker, we paid USD 2.4 for completing the set of tasks: that

is, judging the labels for all 38 communities. In the case when a worker chose an

inadequate label for a community, we asked the worker to provide a more adequate

label.

In all the communities, we were able to make sense of the representative words

and label the communities. In Tables 5.6 – 5.10, we show a label and the top-

3 words instead of top-20 words for each community. We were able to group the

communities into three major types (namely all except for one community, “Ethnic

Korean”): (a) same/neighboring high schools, (b) same/neighboring universities,

and (c) interest-based communities.

We summarize the results of the evaluation from crowdsourced workers in Ta-

ble 5.1. For each community, we show the fraction of workers who chose the

corresponding rating. We can see that for most of the communities, the majority

of workers agree that the label is adequate. More specifically, for 32 out of 38

communities (84% of the communities), more than 80% of the workers agree that

the label is adequate. Although we asked workers to use a search engine when

they could not make sense of the word, some words are polysemous words that

are used differently in different communities, and it might be difficult for some

workers to make sense of them. This would produce some fraction of an unable

to judge rating. In the case where workers chose the inadequate rating, they were

required to provide an alternative label. In most of the cases, the provided labels

were not different substantially from the original label; for example, they added

auxiliary information to the original label.

5.3 Experiment

Here we describe the procedure that is used to prepare the corpus for training and

the test, and to train the models.

11http://www.lancers.jp
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5.3.1 Training BOW/embedding models of users

To balance the data size of each community, we randomly sampled 10,000 users

from each, and used all the tweets generated by the selected users in the dataset

(that is, for a year). We tokenize the tweets with MeCab12 and IPAdic13. We used

tweets of 9,000 users for the training set, and 1,000 users for the test set. The data

size is shown in Table 5.2.

Table 5.2: Data size of the training set and the test set.

Data size Words Lines Users

Training Set 12,847 MB 1,732M 127,662K 342,000

Test Set 1,433 MB 193M 14,197K 38,000

As to embedding models, we used the Entity Vector models and the Category

Vector models. Here we call the Entity Vector models “User Vector Models”

(consisting of UV-DM and UV-DBOW models), and the Category Vector models

“Community Vector Models” (consisting of CmV-DM and CmV-DBOW models)

respectively. We used a user ID for an entity ID (as in Figure 5.1), and a community

ID for a category ID (as in Figure 5.2).

User	  ID	   the	 cat	 sat	

on	

Concatenate	

Classifier	

User/	
word vectors	

(a) UV-DM model

User	  ID	  

the	 cat	 sat	 on	Classifier	

User vector	

(b) UV-DBOW model

Figure 5.1: User Vector Models.

In the BOW model, we created a BOW vector for each user, weighting each

word by a TF-IDF score. We also stored the IDF scores for words in the training
12https://code.google.com/p/mecab/
13available from the website of MeCab
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User	  ID	   the	 sat	 on	

cat	

Concatenate	

Classifier	

Community/	
User/	
word vectors	Community	  

ID	  

(a) CmV-DM model

the	 cat	 sat	 on	Classifier	

Community/	
User vectors	

User	  ID	  Community	  ID	  

Concatenate	

(b) CmV-DBOW model

Figure 5.2: Community Vector Models.

set, to utilize the same IDF score for the test set. We implemented the BOW

model in C++ with OpenMP and it took almost 5 days to process the whole test

set on Intel Xeon E5-2680 v2 2.8GHz (10 cores).

For the embedding models, we explored the hyper-parameters shown in Ta-

ble 5.3. At this time, the explored parameters are smaller than those in chapter 4

since the data size is much larger. However, because the number of the entities

is smaller than those in chapter 4, we can adopt Adam [48] for the update rule

at this time. We trained the model giving the training set 10 times, and we used

the learned word embeddings to train the embeddings of test instances. We used

the implementation mentioned in chapter 3. It took 1.9 hours for an iteration of

training the DM models and 3 hours for an iteration of training the DBOW models

on Intel Xeon E5-2650 v2 2.6GHz (8 cores).

In the same way as chapter 4, we calculated the cosine similarity between an

embedding of the test instance and the learned embeddings in the training set,

and chose the most similar item in the training set to infer its community.
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Table 5.3: Parameters explored in this task. UV denotes User Vector models, and

CmV denotes Community Vector models.

Hyper-parameter Explored Values / Settings Methods

model DM, DBOW UV, CmV

output layer HS, NEG UV, CmV

update rule
SGD, AdaGrad UV, CmV

Adam CmV

dimension 300 UV, CmV

#negative samples 5 UV, CmV

alpha / η 0.025 UV, CmV

iterations 10 UV, CmV

window size 5 UV, CmV

subsampling none UV, CmV

5.4 Results

First, we show learned community embeddings in the Community Vector mod-

els. We extracted the community embeddings from the CmV-DBOW model with

AdaGrad and NEG, and performed the PCA to reduce the dimension to two. We

plotted the community embeddings along with their labels in Figure 5.3. Since

the high school communities are agglomerated in a certain area, we plotted their

embeddings in the magnified space as in Figure 5.4. As we can see in the figure,

the embeddings of high school communities and university communities are plot-

ted close to each other, although there are some exceptions such as the community

“Tsukuba University & surrounding area” and “High school students in Osaka”.

The community “Ethnic Korean” is close to other high school communities because

there are students in Korean schools in the community. Although we can see some

tendencies among interest-based communities, as the community “Visual-kei” is

close to “Indies” (both of them are music fans), the interest-based communities

are more scattered in the plot area.

As to the inference task, we summarize the result in Table 5.4. Most of the

embedding models outperform the BOW model, of which accuracy is 19.61%,

and the Community Vector models outperform the User Vector models except

for the CmV-DBOW model with SGD and HS. Among the Community Vector

models, models with AdaGrad outperformed the other models, and the models

with Adam performed the worst. Although Adam is used for deep neural networks,

we did not get good optimizations in our models. The reason could be that the

algorithm is almost linear except for the approximation of the softmax function,
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Figure 5.3: Learned Community Vectors.

and it is relatively easy for SGD and AdaGrad to optimize. The CmV-DBOW

with AdaGrad and NEG achieved the best accuracy, 42.49%.

Using the result of CmV-DBOW with AdaGrad and NEG (the best model),

we listed the communities with high and low accuracy in the inference task in

Table 5.5. We can see that users in the communities “K-POP”, “High school

students in Okayama”, and “Johnny’s fans” are easy to be inferred, while the model

does not classify users in the communities “High school students in Metropolitan

area”, “University students in Tokyo”, and “No nukes / leftists / housewives”

into the correct communities. While the model classifies high school communities

in low accuracy, it classifies users in two communities, “High school students in

Okayama” and “High school students in Osaka” in high accuracy. For interest-

based communities, the communities “K-POP” and “Johnny’s fans” have high

accuracy while the Community Vector model infers users in the community “No

nukes / leftists / housewives” with low accuracy.
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Table 5.4: Community Inference Task

Model
Output Layer

HS NEG

BOW 19.61%

UV-DM SGD 23.64% 23.40%

UV-DBOW SGD 13.96% 12.05%

UV-DM AdaGrad 31.40% 30.44%

UV-DBOW AdaGrad 36.15% 34.16%

CmV-DM SGD 24.79% 34.01%

CmV-DBOW SGD 13.78% 19.14%

CmV-DM AdaGrad 34.06% 37.53%

CmV-DBOW AdaGrad 38.02% 42.49%

CmV-DM Adam 22.75% 29.56%

CmV-DBOW Adam 6.72% 10.38%

Table 5.5: Accuracy Ranking by Community in Inference Task

Rank Community Accuracy

1 K-POP 73.9%

2 HS in Okayama 65.5%

3 Johnny’s fans 64.1%

4 HS in Osaka 63.1%

5 FPS game fans 51.3%

6 Female idols 51.2%

33 University students in Iwate 30.2%

34 HS in Shizuoka 29.5%

35 HS in Nagano / Yamanashi 27.2%

36 No nukes / leftists / housewives 25.8%

37 University students in Tokyo 25.3%

38 HS in Metropolitan area 24.7%
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Figure 5.4: Learned Community Vectors (high school communities).

5.5 Discussions

In this chapter, we extracted communities genuinely from the network, and we

classified users into communities using their contents. To understand the commu-

nities, we extracted keywords from their biographies, and we labeled them. As

to classification task, the embedding methods outperform the BOW model, and

the Community Vector model (i.e., the embedding method considering categories)

performed the best among embedding methods.

We used the Louvain method to extract communities. It is applicable to large

networks and therefore commonly used in community analysis. However, it has

two problems: one problem is that a user cannot join to multiple communities,

and another problem is that it often produces one or a couple of big communities
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along with many small communities. The first problem is because we cut the

edges, which are likely to bridge among densely connected subgraphs. The latter

problem, which is called “the resolution limit problem”, which is not an easily

solvable phenomenon in modularity maximization, as Lancichinetti and Fortunato

discussed [53]. Therefore, both of problems are caused from the modularity, which

the Louvain method and other methods use to score how well the algorithm divides

a network into communities. We can use other algorithms than modularity-based

methods; however, it is usually computationally hard to apply such community

detection algorithms, as we discussed in chapter 2. As to the resolution limit

problem, we can modify the maximization algorithm, accepting lower states of

modularity as Fortunato et al. suggests [26], or modify the score itself, as Chen et

al. suggests [16].

We labeled communities using keywords created from biographies gathered

within each community. Keywords are scored with TF-IDF. However, this method

can exaggerate greatly the characteristics that differ from other communities. Due

to the resolution limit problem, we tend to have a big community. In addition,

large communities have less consistent characteristics. The community “No nukes /

leftists / housewives” can be too large since the size of the community is the largest;

they have over 1.4 million members. Therefore the keywords of this community

can be overemphasized since the TF-IDF score reduces when a term is used in

different communities. Probably because of this size, the accuracy in the inference

task for this community is low as shown in Table 5.5.

Among high school communities, the embedding model classifies users in two

communities, “High school students in Okayama” and “High school students in

Osaka” in high accuracy. When we see the posts by users in these communities,

we observed that they tend to use dialects in their posts. Their dialects tend to

appear in auxiliary verbs or particles, which can be one of the reasons why the

embedding models perform better than the BOW model; the embedding models

catch the local contexts of words, while the BOW model ignores the word order.

Another reason for the improvement in accuracy can be the distribution of word

frequency in colloquial expressions. Figure 5.5 shows the distribution in ranking

of word frequency, and the distribution has a fat tail that is fatter than that for

R-EN data in chapter 4.

We also saw the distribution of community embeddings that reflects the ten-

dency of contents generated by users, and we observed that embeddings of high

school and university communities are agglomerated. Therefore it is indicated that

high school communities and university communities are similar to each other since

they are connected for environmental reasons. We will explore the difference be-

tween high school / university communities and interest-based communities in the
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Figure 5.5: The word frequency and the rank in Twitter data on a log–log scale

next chapter.
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Table 5.6: Labels, Keywords and Types of the top-38 communities (1)
Community id 1 2

Type interest-based high schools

Label Johnny’s fans High school students in Tohoku

(Japanese) ジャニーズ 東北地方の高校

Keyword-1 ftr 磐城 (Iwaki)

[slang meaning a boys idol] [high school in the area]

Keyword-2 hyphen 湯本 (Yumoto)

[slang meaning fans of a boy idol group] [high school in the area]

Keyword-3 drdr 松陵 (Shoryo)

[slang used by Johney’s fan] [high school in the area]

Community id 3 4

Type interest-based universites

Label DJs and Reggae fans University students in Kansai

(Japanese) DJ、レゲェ 関西地方の大学

Keyword-1 fundoshi 関大 (Kandai)

[DJ event] [univ in the area]

Keyword-2 Selector 同志社 (Doshisha)

[Reggae DJ] [univ in the area]

Keyword-3 REGGAE オリター (Oritaa)

[slang used by univ students]

Community id 5 6

Type universites interest-based

Label University students in Kyushu Visual-kei

(Japanese) 九州地方の大学 ヴィジュアル系

Keyword-1 九大 (Kyudai) Teru

[univ in the area] [name of a vocal of Visual kei band]

Keyword-2 西南 (Seinan) ドエル (Doeru)

[univ in the area] [slang used by fans of a Visual kei band]

Keyword-3 福岡大学 (Fukuoka University) ハイヲタ (Haiwota)

[univ in the area] [slang used by fans of a Visual kei band]

Community id 7 8

Type others high schools

Label Ethnic Korean High school students in Chiba/Ibaraki

(Japanese) 韓国・朝鮮系 千葉県、茨城県の高校

Keyword-1 (Hangul) 鉾 (Hoko)

[high school in the area]

Keyword-2 (Hangul) 柏陵 (Hakuryo)

[high school in the area]

Keyword-3 (Hangul) 松国 (Matsukoku)

[high school in the area]
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Table 5.7: Labels, Keywords and Types of the top-38 communities (2)

Community id 9 10

Type high schools interest-based

Label High school students in Tochigi/Gunma Fujoshi

(Japanese) 栃木県、群馬県の高校 ボーイズラブ、腐女子

Keyword-1 白楊 (Hakuyo) 捏造 (lit. forgery)

[high school in the area] [figment]

Keyword-2 栃 (Tochi) 受け (Uke)

[character related to the area] [slang used by Fujoshi]

Keyword-3 宇工 (Uko) 語句 (phrase)

[high school in the area]

Community id 11 12

Type interest-based interest-based

Label Bike fans J-league fans

(Japanese) バイク、ツーリング J-リーグ

Keyword-1 ニコツー (niconico touring) ゼルビア (Zerubia)

[community of touring] [soccer club of J-league]

Keyword-2 新居浜高専 (Niihama-Kosen) アビスパ (Abisupa)

[college] [soccer club of J-league]

Keyword-3 レースシム (Race Simulation) SOCIO

[word related to soccer]

Community id 13 14

Type interest-based high schools

Label Online game fans High school students in Okayama

(Japanese) MMO、オンラインゲーム 岡山県の高校

Keyword-1 トミーウォーカー (Tommy Walker) 芳泉 (Housen)

[game company] [high school in the area]

Keyword-2 バロックナイトイクリプス (Baroque night eclipse) 西大寺 (Saidaiji)

[title of online game] [high school in the area]

Keyword-3 PBW 就実 (Shujitsu)

[kind of online game] [high school in the area]

Community id 15 16

Type high schools high schools

Label High school students in Shizuoka High school students in Niigata

(Japanese) 静岡県の高校 新潟県の高校

Keyword-1 沼津 (Numazu) 北越 (Hokuetsu)

[high school in the area] [high school in the area]

Keyword-2 星陵 (Seiryo) 五泉 (Gosen)

[high school in the area] [high school in the area]

Keyword-3 宮北 (Miyakita) 敬和学園大学 (Keiwagakuin University)

[high school in the area] [univ in the area]

76



Table 5.8: Labels, Keywords and Types of the top-38 communities (3)
Community id 17 18

Type interest-based interest-based

Label Disney fans Darts and basketball fans

(Japanese) ディズニーマニア ダーツとバスケットボール

Keyword-1 パレ (Pare) TDO

[slang meaning parades] [abbreviation of a darts organization]

Keyword-2 ミキヲタ (Mikiwota) FiGARO

[slang meaning huge Disney fans] [name of darts bar]

Keyword-3 栗鼠 (Risu) -

[slang meaning Chip’n Dale] [a special character]

Community id 19 20

Type universities universities

Label University students in Aichi/Mie Tsukuba University & surrounding area

(Japanese) 愛知県、三重県の大学 筑波大学周辺コミュニティ

Keyword-1 椙山 (Sugiyama) UEC

[university in the area] [university related to the university]

Keyword-2 南山 (Nanzan) 筑波大学 (Tsukuba University)

[university in the area]

Keyword-3 中京 (Chukyo) klis

[university in the area] [abbr. a department of the university]

Community id 21 22

Type interest-based universities

Label Fans of indie label University students in Tokyo

(Japanese) インディーズ系バンド 東京都の大学

Keyword-1 NUBO 立教 (Rikkyo)

[indie label] [univ in the area]

Keyword-2 BAW 立教大学 (Rikkyo Univ)

[indie label] [univ in the area]

Keyword-3 OAT 法政 (Hosei)

[indie label] [univ in the area]

Community id 23 24

Type interest-based high schools

Label No Nukes, lefists, housewives High school students in Osaka

(Japanese) 原発・左翼・主婦 大阪府の高校

Keyword-1 原発 (Nuclear power plant) 岸城 (Kishiki)

[high school in the area]

Keyword-2 被曝 (Exposure) 日根野 (Hineno)

[high school in the area]

Keyword-3 主宰 (To preside over) ヒガスミ (Higasumi)

[high school in the area]
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Table 5.9: Labels, Keywords and Types of the top-38 communities (4)

Community id 25 26

Type high schools interest-based

Label High school students in Nagano/Yamanashi First-person shooting game fans

(Japanese) 長野県、山梨県の高校 FPSゲーム

Keyword-1 美須々 (Misuzu) SuddenAttack

[high school in the area] [slang used by FPS game fans]

Keyword-2 松商学園 (Matsusho-gakuen) osu

[high school in the area] [slang used by FPS game fans]

Keyword-3 巨摩 (Koma) サドンアタック (Sudden Attack)

[high school in the area] [slang used by FPS game fans]

Community id 27 28

Type universities interest-based

Label University students in Iwate Korean Pop

(Japanese) 岩手県の大学 K-POP

Keyword-1 岩手大学 (Iwate University) ジェジュン (Jejung)

[Korean pop talent]

Keyword-2 盛岡大学 (Morioka University) ヌナ (Nuna)

[univ in the area] [Korean pop talent]

Keyword-3 盛岡 (Morioka) shawol

[place in the area] [slang used by Korean pop fans]

Community id 29 30

Type interest-based high schools

Label Japanese comedy High school students in the Metropolitan area

(Japanese) お笑い 東京、神奈川、埼玉の高校

Keyword-1 エージェンシー (lit. agency) 松が谷 (Matsugaya)

[abbr. of Yoshimoto Creative Agency] [high school in the area]

Keyword-2 NSC 大宮西 (Omiyanishi)

[school for comedians] [high school in the area]

Keyword-3 nsc 瀬谷 (Seya)

[school for comedians] [high school in the area]

Community id 31 32

Type interest-based interest-based

Label Anime and music game fans Fans of vocaloid and singers

(Japanese) 音ゲー・ギャルゲー・ニコニコゲーム系 ニコニコ歌系

Keyword-1 ミサカ (Misaka) UTAU

[character in a anime] [singing synthesizer application]

Keyword-2 ニコマス (Nikomasu) こえる (to exceed)

[slang used by a music game fans]

Keyword-3 ACV 真似 (mimicry)

[a game title]
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Table 5.10: Labels, Keywords and Types of the top-38 communities (5)
Community id 33 34

Type interest-based interest-based

Label Japanese Pop Gambling, mobile games fans

(Japanese) J-POP パチンコ、ネット麻雀、携帯ゲーム

Keyword-1 Leaders マジモン (Majimon)

[monster game]

Keyword-2 一座 (Ichiza) 鳳東 (Otorihigashi)

[show] [slang used by a gambling fans]

Keyword-3 Lead サミタ (Samita)

[a group of J-POP] [slang used by a gambling fans]

Community id 35 36

Type interest-based interest-based

Label Girl idol fans ”Furry” lovers

(Japanese) アイドル ケモナー

Keyword-1 クノ (Kuno) ケモノ (Kemono)

[slang used by a female idol fans] [Furry]

Keyword-2 アイドリング (Idoling) 組合 (association)

[a group of female idols]

Keyword-3 AKIHABARA ケモナー (Kemonaa)

[slang used by ”Furry” lovers]

Community id 37 38

Type interest-based university

Label Fans of “Arashi” and local girl idol University students in Hokkaido

(Japanese) 嵐、ローカルアイドル 北海道の大学

Keyword-1 ゴゴイチ (Gogoichi) 北星 (Hokusei)

[slang used by “Arashi” fans] [high school in the area]

Keyword-2 磁石 (Jishaku) 北海学園大学 (Hokkaigakuen University)

[slang used by “Arashi” fans] [high school in the area]

Keyword-3 nr 札 (Satsu)

[slang used by “Arashi” fans] [character related to the area]
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Chapter 6

Analysis of Word Usage Using

the Embedding Method

In the previous chapter, we applied the category-enhanced embedding method

which learns community embeddings for the community inference task. The Com-

munity Vector models (i.e., the models of implicit categories) perform the best in

the task. Although the Category Vector models perform well in the task of the

category inference in e-commerce data compared to the BOW model, the Commu-

nity Vector models improved the accuracy more. Additionally, there are difference

between high school / university communities and interest-based communities,

as we saw from the plot of community embeddings through PCA. To investigate

the reason for the improvement in the inference task and the differences between

community types, we analyze word usage through the word embeddings learned

from the contents generated by users. We take the difference in word embeddings

learned differently from the corpus of each community. We also see the network

ties between communities to explore the relationship between the word usage and

network structure.

6.1 Datasets

We follow the methodology described in section 3.4. We sampled the 1% from the

whole dataset to create the training set for pre-training. Next we create a corpus

for each community. We sample the fraction of 10, 000/Ni (Ni:the number of users

in the i-th community) from users’ contents in each community. We use all the

data for the community with 10,000 users, and we choose the communities with

more than 10,000 users; therefore, we can balance the size of the corpora.
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Table 6.1: Hyper-parameters in the Skip-gram model

Hyper-parameter Value / Setting

output layer NEG

update rule SGD

dimension 200

#negative samples 5

alpha 0.025

window size 10

subsampling 10−3

Table 6.2: List of Community Ambiguous Words

1 ã

2 talk

3 � (Hangul;laughing)

4 ミート (miito)

5 des

6 知識人 (Chishikijin)

7 町長 (Chōchō)

6.2 Training word embedding models

We trained the Skip-gram model under the hyper-parameters shown in Table 6.1.

We adopt NEG, which is reported to perform better than HS in several tasks.

The value of alpha decreases to 0.001 during pre-training, and resets to 0.025

and decreases to 0.001 once again during training from the sampled community

contents. We train the total of 38 models. Therefore, we have 38 embeddings for

a single word.

6.3 Detecting ambiguous words among communities

As we pointed out in chapter 4, we use the term ambiguous words for the words

used in several (local) contexts. Therefore, we do not discuss the definition of

meanings here. We show some sensible examples in which a word is used in the

different local contexts in different communities. As described in section 3.4, we

present a rank list in Table 6.2. From highly-dissimilar words, we show an example,

“ミート (miito)”, which is the fourth dissimilar word in the rank list.

The pronunciation of “ミート (miito)” corresponds to both the English word

“meat” and “meet” for Japanese people. The Japanese language has many loan
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words from European languages, and the pronunciations of such words are some-

times similar to the original words. However, Japanese people typically do not use

the word “ミート (miito)” for meat and meet, because they use words rooted in

Japan, although they can understand the meaning of the word because they know

the English word “meat”/“meet”. Thus, it can be inferred that the word is a kind

of slang term, which is used by people who share contexts for the word. With

these in mind, we then conducted the analysis.

In Table 6.3 and Table 6.4, we show the top-10 context words for each com-

munity, with corresponding scores.

In community-13 (Online game fans), most of the potentially co-occurring

words are words related to foods. Since the word “ミート (miito)” can mean

meat in English as noted above, we can infer that people in this community use “

ミート (miito)” to mean meat.

In contrast, in community-17 (Disneyland fans), at a glance it is not clear

what the word “ミート (miito)” stands for. However, it is easy to see that these

words reflect the characteristics of the community, which is mainly composed of

female users who are enthusiastic fans of Disneyland; (1) the face mark (a kind of

emoticon) (> <) and ??♡ are typically used by some young females, (2) it is also

typical word usage by some young females to repeat the same word such as “do

do” and “please please”, (3) the word “Inn” is a slang term, which means to enter

somewhere in Disneyland, and which is used by enthusiastic fans of Disneyland.

From usage in the tweets in this community, we found that the word “ミート

(miito)” stands for meeting in Tokyo Disneyland. It seems that they use this loan

word for expressing meeting in a particular situation.

Although we used a simple measure (cosine) for the word similarity between

communities and a naive method to compute them, it is possible to develop a

more adequate measure of similarity and an efficient computation method to au-

tomatically extract such ambiguous words across communities, which is one of the

interesting topics for future work. Particularly, we think such an analysis could

enhance cultural studies, by comparing slangs across communities.

6.4 Similarity among communities in word usage

Now we know some of words are used differently by communities. We can ex-

tract the similarities if we accumulate the difference in word embeddings between

communities. As we described the embedding model of categories in chapter 3,

embeddings of the categories are modeled as context vectors. If the model captures

the difference in word usage among categories, similar categories in Equation 3.20
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Table 6.3: Context words for the word “ミート (miito)” in community-13 (Online

game fans)

Word Score

早食い (speed-eating) 0.821099

フローズン (frozen) 0.802880

ドスヘラクレス (Dos hercules; a character name) 0.800420

クランチ (crunchy) 0.792865

ラード (lard) 0.791672

ホットドリンク (hot drink) 0.782958

アサイ (an abbreviation of “Asai meat”; a company name) 0.778490

銀シャリ (white rice) 0.778290

シモフリトマト (marbled tomato; an item name) 0.775939

レッグ (leg) 0.775758

Table 6.4: Context words for the word “ミート (miito)” in community-17 (Disney

fans)

Word Score

イン (in) 0.844532

タイミング合え (timing suits) 0.803420

次いつ (when next) 0.801293

ぜひぜひ (please please) 0.801245

(> <)!!! 0.792765

するする (do do) 0.790120

まなみん (“Manamin”; nickname for a girl’s name) 0.789295

??♡ 0.787898

それでもよければ (if it is still OK) 0.785390

きんかん (“Kinkan”; a fruit name) 0.782860

have similar embeddings in the vector space.

Table 6.5 shows the top-10 similar community pairs based on the word usage,

and Table 6.6 shows the top-10 dissimilar community pairs in the same manner.

We can see that communities sharing a generation have similar word usage. More

specifically, high school students have similar word usage with respect to one an-

other, although they are not physically close. This held true for university students.

When we compare these results to the community embeddings, we can see that

the embeddings of communities listed in Table 6.5 are also close to each other,

as Figure 5.3 shows. Interestingly, communities listed in Table 6.6 are relatively

distant to each other in the embedding space. From this tendency we can con-
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firm that the embedding model of categories captures the difference in word usage

among the groups.

Table 6.5: Top-10 similar community pairs based on the word usage

HS students in Metropolitan area HS students in Chiba/Ibaraki

University students in Aichi/Mie University students in Kansai

University students in Kansai University students in Tokyo

University students in Aichi/Mie University students in Tokyo

University students in Aichi/Mie University students in Hokkaido

University students in Kansai University students in Kyushu

Universtiy students in Aichi/Mie University students in Kyushu

HS students in Chiba/Ibaraki HS students in Tochigi/Gunma

University students in Hokkaido University students in Tokyo

HS students in Metropolitan area HS students in Tochigi/Gunma

Table 6.6: Top-10 dissimilar community pairs based on the word usage

Online game fans High school students in Osaka

Online game fans High school students in Okayama

DJs and Reggae fans “Fujoshi”

Anime and music game fans High school students in Okayama

Anime and music game fans High school students in Osaka

“Fujoshi” High school students in Okayama

“Fujoshi” High school students in Osaka

“Fujoshi” Darts and basketball fans

Anime and music game fans DJs and Reggae

Ethnic Korean Online game fans

6.5 The relationship between the similarity in network

property and the similarity in word usage

We extract communities from a network, and we see that people do not connect

with distant people, even though their manners of writing can be very similar (e.g.,

users in high school communities). This property can be tricky for online marketing

and ads; within communities, we can assume that the information propagates over

similar people, while we are not sure that the information can propagate from one

to other communities. It can be important to see how communities are connected

with each other. Therefore, we define the similarity score in the same manner as

the similarity score in word usage.
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Definition of similarity between communities based on a network:

We define the network-based similarity between community i and community j ,

Simnet(i, j) simply as the edge density between them shown in the following:

Simnet(i, j) =
|Ei,j |
|Vi||Vj |

(6.1)

where |Ei,j | is the number of edges between the community i and j, and |Vi| is the
number of nodes (users) in the community i.

Table 6.7 shows the top-10 similar community pairs, and Table 6.8 shows the

top-10 dissimilar community pairs based on the network property Simnet. From

here we can say that the similar communities in word usage are not highly con-

nected (i.e., interacted), and the connected communities are not close to each other

in the embedding space.

Table 6.7: Top-10 similar community pairs based on the social network

Anime and music game fans University students in Tokyo

Anime and music game fans “Fujoshi”

Anime and music game fans Fans of vocaloid and singers

Anime and music game fans No Nukes, leftists, housewives

Anime and music game fans Fans of “Arashi” and local female idols

Anime and music game fans Online game fans

Anime and music game fans “Visual kei”

University students in Tokyo High school students in Iwate

“Visual kei” University students in Tokyo

Fans of indies University students in Tokyo

Table 6.8: Top-10 dissimilar community pairs based on the social network

Ethnic Korean Bike fans

High school students in Shizuoka Darts and basketball fans

Bike fans High school students in Shizuoka

Bike fans High school students in Niigata

Ethnic Korean Darts and basketball fans

High school students in Okayama Darts and basketball fans

Bike fans High school students in Okayama

Bike fans Disney fans

Ethnic Korean Tsukuba University & surrounding area

DJs and Reggae fans High school students in Shizuoka

We only focused on highly similar/dissimilar communities in terms of word us-

age and highly connected/disconnected communities. Here we would like to obtain
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a broad view of the relationship between these two similarities. First, we created

a correlation chart that depicts the relationship between the two similarities for

all community pairs. The chart is shown in Figure 6.1 (a). The horizontal axis

corresponds to the word-usage-based similarity, Simword, and the vertical axis cor-

responds to the network-based similarity, Simnet. We can see that there seem to

be no correlations (the correlation coefficient: 0.06463). But we know that there

are several types of communities in the target network — high school community,

university community and interest-based community — and the embeddings of

high school communities and university communities are agglomerated. Thus we

can categorize each point on the map based on the type of the community pair to

explore the characteristics for each community type. For example, the similarity

between school communities can have a different pattern from the similarity be-

tween interest-based communities. Therefore we examine where each type of pair

is located on the map.

As a result, we found clear patterns. Figure 6.1 (b) shows a correlation map

where points are colored based on the type of community pair - blue for community

pairs in the university category, red for community pairs in the high-school category

and green for community pairs in the interest-based category.

We can examine the map by viewing it in terms of four types:

(i) group that has similar word usage and a large amount of interaction

(ii) group that has similar word usage but a small amount of interaction

(iii) group that has dissimilar word usage but a large amount of interaction

(iv) group that has dissimilar word usage and a small amount of interaction

Now we see that university communities can be categorized into type (i), high-

school communities can be categorized into type (ii), and interest-based communi-

ties belong to type (iii) and (iv). This observation is consistent with the tendency

we saw in the previous section by using top-10 similar pairs.

From this observation, we can see that (1) communities based on the mem-

ber’s attributes — high-school or university — tend to have similar word usage,

regardless of the interactions they have with respect to one another, while (2)

communities based on the member’s interests tend to have different word usage,

regardless of the interactions they have with respect to one another. It is also

suggested that even when people have a common attribute, such as students, the

patterns derived from the social network and word usage can differ depending on

another attribute, such as generation. These observations suggest the complex

relations among social interaction, word usage, and other factors such as their

interests and attributes.
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Figure 6.1: Social-network-based similarity and word-usage-based similarity.
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6.6 Discussion

In this chapter, we explored the relationship among the communities in a network

and their word usage extracted from a large dataset from Twitter. We found that

we can detect ambiguous words among communities (that is, words that are used

for multiple meanings depending on the communities) by exploiting the embedding

method. We also revealed that there are no clear correlations among community-

level similarity in interaction and community-level similarity in word usage when

we take community as the unit of analysis, but there exist specific patterns based

on the types of communities, which are created from people’s profile information

describing their interests and attributes.

Although the study of Lim et al. [58] and the study of Bryden et al. [14]

would be the most related to the analysis described in this chapter, our analysis is

different from the extraction of keywords that can characterize communities. Lim

et al. detected highly interactive communities with common interests based on

the behavioral information of users, the content of hashtags, and mentions. They

showed that those communities are more cohesive and connected; however, they

focused on only the frequency of words, while we handle words, entities, and com-

munities as embeddings, which enable us to process the words more flexibly and

robustly. Bryden extracted communities from a conversation network of Twitter,

and extracted the keywords in their tweets that can characterize the communities,

while our analysis explored not only the characteristics of communities but also

similarities among communities. Our research deals with many more users (7M)

than Lim et al. (18 K) and Bryden et al. (189 K).
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Chapter 7

Discussion

To show the effectiveness of the Category Vector models, we conducted two in-

ference tests on e-commerce data (a dataset with explicit categories) and social

media data (a dataset with implicit categories), and we analyzed how our propos-

ing model learned the embeddings of categories that can characterize them. We

discuss the limitations and the future perspective of our models and our analysis.

7.1 Category Vector models

Here we discuss the issues and the limitations of the Category Vector models.

7.1.1 Optimization issues in training models

As we pointed out in chapter 4, the text instances in R-EN are longer than in

R-JA, and this factor can affect the performance in the inference task. Here we

have several problems: how to choose proper dimension size of embeddings, and

how to choose the models and the approximation techniques (and other hyper-

parameters). If we have long descriptions, then we should increase the embedding

dimension as well. However, practically the dimension is chosen from the limitation

of the RAM. We saw DBOW models perform better than DM models except for

the case when the description length is relatively long and the frequency of words

drops faster. Also, when we employ SGD for the update, use of NEG often drops

the performance, while DBOW models with NEG often work fine when we use

AdaGrad. From the evaluations, we can say that DBOW models with AdaGrad

and NEG often perform well. However, we can explore the relationship between

hyper-parameters and the data properties.

It is sometimes difficult to obtain a good optimization since the number of pa-

rameters is larger than for the Entity Vector models (Paragraph Vector models),
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and the number of updating is unbalanced among categories (very frequent), en-

tities (very infrequent), and word (some of them are very frequent and others are

infrequent). We improved the accuracy utilizing AdaGrad, which mitigates the

fluctuation affected by the hyper-parameter unlike SGD. However, such an adap-

tive method cannot solve the unbalanced updates among parameters entirely; we

need the better method to obtain the better optimization.

Similar to this problem, the training set is sometimes very large in this setting,

which leads to the long training time. For example, it took more than a day to

train one of our models (SGV-DBOW model) from the social media data used in

chapter 5. To obtain optimized models in a shorter time, we can explore how many

samples are sufficient for training embeddings of categories and entities since we

do not need to use all the data every time in the iterations.

7.1.2 The limitation of the models

One of the important limitations to our models is that there is a difficulty in

handling the polysemies and ambiguous words since we usually assign a vector for

each surface of the term. This limitation is widely applied to other embedding

methods and there are no gold-standard way to avoid them. We could assign

multiple embeddings for each surface; however, it is difficult to estimate how many

embeddings we should assign for a certain surface. Mnih et al. tried to assign

several embeddings for words, of which local contexts are near to the separating

hyperplane in clustering [67]. However, their method tends to assign multiple

embeddings for infrequent words, of which local contexts are not enough.

7.1.3 Possible improvements on joint models and multilingual mod-

els

To obtain better embeddings of the categories and entities, we can use the joint

model, in which we merge the embeddings from two models. We can also use the

joint model of three or more models in different hyper-parameters, although it

requires more memory space and calculation time.

As to multilingual models, we can use three or more language sources, or we

can use the models to complement the correspondence table among different lan-

guages in a bootstrap way. Multilingual models usually have constraints between

the word or phrase embeddings in different languages, using multilingual corpus

and word/phrase alignment e.g. bilingually-constrained recursive auto-encoders

(BRAE) by Zhang et al. [101]. We used the same category vectors between En-

glish and Japanese data, but we can introduce a matrix to constrain the category
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vectors among different languages to make the embeddings more flexible.

7.1.4 Applications of the models

As shown in experiments, the Category Vector models are widely applied for mas-

sive text data with categories since they require non-hierarchical categories, which

are generally easily obtained. If properties or tags are not available for obtaining

categories, they can also use other methods, such as community detection algo-

rithms, can be used. In addition, the training time is short enough to process all

of the data — whole English Wikipedia articles can be processed within several

hours with a workstation — and the learned representations are dense vectors,

therefore they can be used for machine learning techniques such as SVM and lo-

gistic regressions and so on.

In the e-commerce domain, embedding models using the categories can en-

hance the tasks such as named entity recognition (NER), property extraction, and

product linking to identify the product. A number of papers describe such tasks.

Ghani et al. extracted attribute and value pairs from product descriptions in a su-

pervised way [29]. Mauge et al. proposed property extraction from the eBay free

text product database [60]. The method consists of unsupervised property dis-

covery/extraction from unstructured listings, and supervised property synonym

discovery using a clustering algorithm. Zhao et al. tackled product linking us-

ing semi-supervised training from little labeled data [102]. They used a grouping

and self-training approach to link products from product attributes. Joshi et al.

used word representations of word2vec for the NER task, and showed that word

vectors trained from in-domain data are more effective than word vectors trained

from out-of-domain data [45]. Our models discussed in this thesis can replace

the representations of products and they can be used to further improve methods

mentioned above.

As many companies gather customer information, the importance of analyz-

ing customers activity in their site has been rising. Generally their customers and

their activities is various; the matrices of products and customer activity, including

purchased items are typically sparse. To mitigate this sparsity, we can apply the

category-enhanced method since customers and products can have their embed-

dings in the form of dense vectors. For example, we can apply the Category Vector

models to the purchase history. Considering sets of purchased products as entities,

we can regard a customer as a category, and each customer as an embedding. We

can train the customer embeddings from product ID and its product descriptions

and see which customers are similar in the purchase activity. We handled the

data in which an entity belongs to a single category; however, our models are also
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applicable to data that includes many-to-many relationships between categories

and entities. Utilizing product and customer vectors, it is possible for companies

to analyze their service and their customers more flexibly.

In the social media domain, some studies try to embed the network itself (e.g.,

such as Tang et al.’s LINE [90]). Among such studies, our method can extend the

work of Perozzi et al.; they applied the word2vec to the node sequence obtained

from random walks on the network [74]. They succeeded in extracting the node

embeddings, and they showed that the embedding method of NLP is also applicable

to the network data. Our models can also apply to the sequence of random walks

on social media, and they can extract the embeddings of nodes, their attributes,

and communities. For example, we can apply the Category Vector models to

activity logs, such as log data of passengers in transportation, to classify people

into several segments or communities.

Social media are used to investigate what people say about certain products

and what types of information people are interested in. They use various words to

express their various opinions. Their opinions and word usages can vary by their

backgrounds, which cannot be obtained easily. In such cases, we can utilize com-

munity detection algorithms to divide users into communities in which users are

supposed to be alike. At the same time, we should consider the similarity between

communities and users since users can be alike even if they belong to other com-

munities. In marketing and advertising, we can also apply the category-enhanced

method to obtain such similarities between communities and users. Once we have

obtained the embeddings of users and communities, we can capture how user com-

munities are distributed, and we can also predict some future user activities using

their embeddings.

7.2 Analysis of word usage using the embedding method

In this section, we discuss the issues of the methodologies we took to analyze the

difference in local contexts among categories.

7.2.1 Limitations and issues of detecting ambiguous words

While we detected a certain kind of ambiguous words, ambiguous words among

communities, in chapter 6, there are several issues and limitations. One of the

issues in this detection is that the result hugely depends on the method by which

we divide a sentence into words. In English and other European languages, it

is easy to split a sentence into words. However, the Japanese language has no

spaces between words, and there is a difficulty in dividing noun phrases. When
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we divide the noun phrases correctly, we can use the dictionary that covers most

of the words. However, it can decrease the accuracy in colloquial texts. We listed

the ambiguous words among communities in chapter 6, and the most of the words

listed in the high rank come from the mistaken division. One of the limitations is

that we cannot always extract the ambiguous words that have multiple meanings

just from their local contexts. As Mnih et al. tried to extract ambiguous words

in their experiment [67], the local contexts of infrequent words fluctuate often. In

our experiment, we filtered ambiguous words among communities of low frequency;

however, it can be hard to set an adequate threshold in order to extract ambiguous

words.

7.2.2 Issues of extracting similarity in word usage

While we use the model trained from globally sampled data and use the model

for a pre-trained model, retraining can distort some word embeddings through

training. If the word embeddings of highly frequent words change, the embeddings

of infrequent words are left behind since they are rarely updated during training.

To avoid this issue, we can fix the embeddings for highly frequent words and

grammatical words.

We discussed that the Category Vector models can capture the dialect since

it classified users who have dialects in chapter 5. This tendency was held true in

the analysis in chapter 6, since the communities which have dialects are shown

in the most dissimilar community pairs. While we used the word embedding

method “word2vec” to extract the difference in local contexts, the algorithms of

“word2vec” and the Category Vector models are similar. Therefore, we can use

other embedding methods such as PPMI with SVD and GloVe to ensure that the

embedding method can capture the dialects or characteristic styles of writing.

7.2.3 Applications and future works

We showed in chapter 6 that the relationship among closeness in network and

similarity in word usage can reveal the characteristics of communities, which is

the high school communities do not connect with each other, while the university

communities connect with each other more. This result can help to increase the

accuracy of the community inference task, which we conducted from the users’

contents in chapter 5. Although it is rare to have an entire network of social

media, we can use the local network structure to increase the accuracy of the task.

Furthermore, the result can bring the insight to infer the communities in the global

network simply from their generated contents and the local network structure.
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Chapter 8

Conclusion

In this thesis, we proposed the embedding models — the Category Vector models

— which learn embeddings of the categories, entities, and words. We focus on

the categories because there are various entities in the massive data without any

taxonomies or external knowledge, and the categories bind entities loosely. We

model the categories to analyze entities in massive text data. The models train

embeddings, which maximizes the posterior probability of a target word or words

in a window given a category and an entity ID as well as the context words.

The learned embeddings can be used to plot to the planar space to see how the

categories or entities are distributed.

We applied the models to e-commerce data and social media data. Regard-

ing e-commerce data, the models capture the similarity and dissimilarity among

categories of products, and the models classify the products into thousands of cate-

gories with better accuracy than the previous models. Our target e-commerce sites

have a category alignment between English data and Japanese data, and when we

merged the data and used the data for training, the multilingual models classified

the products in a higher rate than the monolingual models. As to social media,

we saw the characteristics of communities in the embedding space; high school

communities and university communities are gathered in a certain area, while the

interest-based communities are scattered. Again, the models outperformed the

previous models in the inference task; they can be used for the inference of com-

munity structure in the whole network from the locally sampled data.

To understand our proposed embedding method further, we conducted the

analysis of word usage among communities using social media. We regarded com-

munities as categories extracted from networks, and we observed that close com-

munities in the embedding space in our models are also close to each other in

the proposed measure, the word-usage-based similarity. This result indicates that
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our embedding models can learn the differences in word usage. We also examined

the relationship between the word-usage-based similarity and the network-based

similarity to understand communities better, and we found that each type of com-

munity has its own tendency in these similarity scores; university communities

are connected to each other relatively highly, and they tend to write in a simi-

lar manner. High school communities are not connected to each other, and they

also tend to write in a similar way, while the interest-based communities use the

characteristic style of writing regardless of their interactions.

In the time of Big data, it is becoming increasingly important for us to pro-

cess various entities, which have weak structures between themselves, to extract

the tendencies or relationships of entities directly from the data. The embedding

approach is often suitable for such processing, and we expect that models of cat-

egories will be strong tools for online recommendations and ads. We also expect

our method to eventually leads to new methodologies or techniques for managing

different categories of a variety of types of massive data.
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