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Simultaneous Localization and Mapping lies at the heart of fully autonomous mo-

bile robotic systems. Last years have seen a prominent number of contributions

to the field backed by the recent advent of cheap yet reliable commodity sensors.

Successful SLAM systems lay a solid ground for achieving challenging tasks such

as disaster area exploration where network latencies, non availability of previously

acquired maps of any sort, severe viewing conditions ask for robots to show high

degrees of autonomy and less reliability on a remote human agent. Key aspects of

such SLAM systems include high speed robust tracking, online volumetric map con-

struction, dynamic obstacles handling and reliability in challenging environments

which can exhibit geometrical or photometric features scarceness. If the 2D SLAM

problem has widely been tackled during the past decade, 3D SLAM and its increased

load of information brings in additional challenges where memory consumption can

quickly grow out of the system boundaries and straightforward tracking methods

fail to keep up with real-time needs. In the present work, we derive a solution

to the full 3D SLAM problem which complies with mobile robotic systems and

their tight requirements. First, we proposed a map representation with associated

stepping and traversal iterators. The map bases on a limited depth octree data

structure which allocates all necessary memory beforehand to avoid online data al-

location latencies and guarantee memory contiguity. Memory is managed internally

and allows concurrent reading and modification on multi-core hardware. Our map

representation allows us to derive fast insertion, freeing, raycasting and neighbor

search algorithms. The enhanced speed we obtain is crucial to be able to build
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highly detailed maps online and in real-time. The memory compression is also such

that large workspaces and maps can be handled. The map is essentially multiscale.

The multiscale property is used by all algorithms for speed-ups but also as different

points have different noise amplitude, mapping proceeds by inserting each point at

the correct scale hence avoiding corruptions of more precise voxels with less precise

data. Then, we proposed a real-time agile tracker which builds on the association of

a direct optimization based dense photometric tracker and a model based geomet-

ric tracker. The geometric tracker builds on our map iterators to extract at high

speed the exact nearest neighbor in a 3D neighborhood around candidate points

and run subsequent ICP optimization. This tracker shows large basin of attraction

to the minimum cost solution with a marked convexity and hence converges in few

iterations only. The geometrical tracker can recover from relatively large six dimen-

sional sensor displacements and return results at high speed. These two conditions

guarantee convergence under fast and dexterous sensor motions. The photometric

tracker complements the geometric tracker’s behavior and adds more stability and

robustness against environments with poor geometric features. The photometric

tracker show tighter basin of attraction but, with good initialization from the geo-

metrical tracker counterpart, can yield subpixel motion estimates in few iterations

only. A sensor model associates each point at the input stage with a proper vari-

ance derived from a normal distribution approximation. The point noisiness is taken

into account during the tracking stage to yield more noise resilient estimates. Our

front-end methods are used in association with a back-end routine with runs loop

closure detection and optimization and hence allows to scale up the system for large

environments. Finally, all system components are blended in an architecture which

solves the full 3D SLAM problem at high speed. The architecture blends tracking,

sensing, map insertions, map freeing, drawing, loop detection and optimization in

a concurrent way and such that, at each moment, distinct threads request differ-

ent computational resources on the CPU or the GPU side. The architecture as it

has been designed allows solving the full 3D SLAM problem and rendering highly

detailed 3D maps in real-time without enforcing any high-end computing power re-
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quirements. Experimental results show how our framework provides with a fast and

reliable solution to the 3D SLAM problem and can be used as a backbone for mobile

robots operating under the most challenging conditions.
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Reconstruction of 3D models of small or large workspaces from static or mobile

sensory devices has been an active area of research for the past decades. Such

process lies at the intersection of multiple fields such as computer graphics, robotics

or computer vision. Applications can range from 3D medical reconstruction of a

body part anatomy from scans, augmented reality for gaming industry, scanning of

damaged buildings and infrastructures like bridges or power plants, automatic mesh

acquisition of a human body or an object, building indoor or outdoors maps for

autonomous robots navigation and so on.

In either static or dynamic settings, accurate reconstruction needs special handling

since measurements acquired from single or multiple sensory sources are inevitably

entailed with noise due to factors ranging from structural misalignment, too high or

too low temperatures, electro-magnetic interference, environment reflectance, direct

sunlight exposure, motion blur, saturation, scaling errors, quantization and so on.

For such a fundamental reason, sensory measurements are crossed with multiple

observation from the same or multiple sources then integrated into one statistically

consistent estimate. The process of combining these multiple measurements into a

more accurate estimate is called sensor data fusion and is central to all processes

which rely on sensory data to infer knowledge about the world. A well understood

example in the literature is Inertial Measurements Units (IMUs) which today are

ubiquitous in mobile devices technology. These sensors are made of two princi-

pal components. The first one is an accelerometer (usually perpendicularly aligned

3-axis accelerometers) which measures acceleration. The second component is a gy-

roscope which measures the angular speed around the gyroscope axis. These two

sensors provide with redundant measurements. By sensing the direction of the grav-

ity vector on a static setting the accelerometers can infer the roll and pitch of a the

sensor while the gyroscope can recover similar information by integrating the angu-

lar speed. However, each sensor is entailed which a characteristic source of noise and

hence used alone will provide a poor estimate of the anglar position. Accelerometers

provide slower response and can get affected by the noise coming from acceleration

due to the body motion which adds to the gravity value. Gyroscopes through the in-
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tegration process involved in computing angles are prone to drift but provide a faster

response. They are also not prone to errors due to motion acceleration. Based on

such observations it is clear how it is particularly appealing to fuse the information

provided by both sensors into one consistent estimate. This is done by statistical

tools like Kalman filters[1][2][3][4] or less computationally expensive complementary

filters [5]. Dynamic configurations introduce a fundamentally more complex problem

to solve since sensor positions at various timestamps also needs to be inferred. This

can be considered as a chicken and egg problem since accurate map estimates need

precise motion increment values while accurate sensor localization requires accurate

maps to be match against. The specific problem of recovering models and camera

positions from sequences of camera images is known as structure from motion within

the computer vision community. In robotics the more general process of recovering

the position of a mobile agents using its intrinsic sensor along with a map of its sur-

rounding environment is denoted Simultaneous Localization and Mapping (SLAM)

and will be the focus of the present work. It is considered as the fundamental key

to enable full or partial navigation in previously unknown environments. Robotic

mobile agents are seldom guaranteed the availability of maps to use for navigation

purposes. Robots need to build such map estimate from scratch as they navigate

through obstacles and in an incremental manner. This is particularly the case when

exploring mines, disaster areas or any other scenarios where no map is available.

SLAM takes on its full sense in indoors, densely populated outdoor scenarios like

forests or dense urban areas where direct satellite line of sight is not guaranteed or

the signal cannot be distinctly received and hence during which no global localiza-

tion tool like GPS can be based on. In such scenarios, a robot needs to solely rely on

its intrinsic sensory information in order to extract the necessary knowledge about

how to navigate, its current position, where and how to move to target points in

space.

SLAM has been an active research area and subject to a great load of research

in literature. It has also been subject to radical evolutions throughout the past

decades. In the recent years, it has particularly been boosted by the advance in
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parallel computing solutions such as GPGPUs, which makes it possible to deal with

increasingly dense and large chunks of data in real-time, and also by the advance in

laser and imagery sensors technology. Among the most important breakthroughs is

the advent of cheap and high quality RGB-D cameras such as the Microsoft Kinect

sensor which allows to reconstruct complete 3D colored slices of the world at high

frame rates. Such sensors made the 3D world easily accessible for a broader range

of the research community. As a consequence, research which can reconstruct very

large slices of the environment with high accuracy has been steadily maturing during

the past few years.

SLAM approaches can greatly vary with the sensor technology in use like 2D laser,

IMU, cameras, RGB-D cameras and so on. Cameras can be a very attractive choice

since they provide a cheap and dense solution to perform SLAM tasks. They are to-

day the preferred choice for applications where weight and compactness are critical

like aerial robots [6][7][8][9][10][11]. Cameras can however only sense projections of

the 3D world points on its camera image plane and hence have an inherent depth

ambiguity. The depth of the points projected on the camera plane can be recovered

using a multi-camera configuration like a stereo-camera system. In stereo vision two

cameras with known relative position are used and hence recovering a pixel in one

image and the other allow to compute the depth via triangulation. Stereo vision

has been one of the most popular and earliest solutions adopted to provide mobile

robots with 3D world recognition capabilities. Another solution to recover depth

data from cameras without losing the benefits of using single camera over a more

complex hardware setup consisting of multiple cameras, is to use multi-view depth

map estimation. Multi-view stereo (MVS) aims at recovering depth data by match-

ing and obtaining dense correspondences from a sequence of images acquired during

separated timestamps. MVS comes however at increasing computational complexity

since each pixel needs to run an optimization step to compute the most consistent

depth value from cross observation and matching in multiple frames. Another im-

portant problem remaining in this respect is recovering the scale of a scene. Since

the baseline distance between the acquired images is not exactly known, the depth
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map generated will only be true up to a scale factor. This scale factor can be recov-

ered by introducing an object with known dimensions in a scene, moving the camera

in a bootstrapping step with a known distance or using cameras in association with

other lightweight sensors like IMUs, which combined with cameras can provide more

accurate information on the nature of the sensory system motion. Camera and IMU

association, termed Vision Aided Inertial Navigation System (VINS), has become

an increasingly popular solution for weight constrained systems like UAVs. An in-

depth observability consistency and accuracy analysis of VINS has been tackled in

[12]. The association also allows faster motion estimation [11].

Stereo vision can be compared to more recent RGB-D sensors which have gained

immense popularity. Stereo vision systems can fail in textureless regions or regions

where texture patterns are repeated and hence where it is ambiguous to recover

the exact pixel matching. They are also considered in general a more expensive

alternative than consumer grade RGB-D sensors counterpart. RGB-D sensors on

the other hand, are more sensitive to material reflectance. In some cases surfaces can

induce light path distortion effects and hence inaccuracies. Another shortcoming of

RGB-D cameras is that the angle of view provided by current sensors is still too

narrow and hence using an RGB-D camera alone for navigation purposes require

improved treatment via robust algorithms in order to limit drift effects. However,

on the bright side, they also provide a viable solution in complete dark scenarios

and work regardless of the textured or textureless property of the environment.

Moreover, RGB-D cameras do not suffer from scale or depth ambiguity and hence

provide a readily usable solution for 3D localization and mapping scenarios. RGB-D

sensors often come in the form of an association of an RGB camera with an infrared

camera which by pattern emission or time-of-flight principles can recover the depth

information. As a result, RGB-D cameras are considered to be an easy solution to

create colored 3D point cloud of the environment, which can in turn be directly fed

to a tracker in order to compute incremental motions or to a mapper in order to

add new data to an incrementally built map. All these good properties of RGB-D

sensors added to affordable prices explain the immense literature which has been
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making central use of RGB-D cameras to perform 3D localization and mapping after

the recent birth of the Microsoft Kinect sensor [13][14][15][16][17][18].

2D lasers solutions have also been widely adopted during the past decade to

perform SLAM even though its impact in mobile robotics has been shadowed by the

recent popularity of RGB-D sensors. 2D lasers have been behind some of the first

systems which could map very large areas and run for very long time. They have very

appealing properties consisting in tens of meters range of detection and broad angle

of view while RGB-D sensors often provide measurements below ten meters only and

with a narrow viewing angle at the moment. However, these sensors can only sense

2D slices of the real 3D environment and usually show centimeter accuracy against

few millimeters only at very close ranges for cameras. Their simplicity and low

density make it a good candidate to use on mobile robots which have to navigate in

planar areas like office floors. Systems which have been extensively using lasers are

omnipresent in the robotics literature and range from wheeled robots [19], humanoid

robots [20] or UAVs [21][22][23]. Rotating 2D lasers are an alternative to bypass the

2D slicing limitation. By using a 2D laser on a tilting or rotating platform like the

PR2 robot one can acquire 3D point cloud of the world knowing the exact motion of

the moving platform. This howver require the robot to operate in a halt-scan-move

scenario which adds on the needed time to complete tasks and hinders the reactivity

of the robot.

Other SLAM approaches make use of Radio Signal Strength (RSS) in buildings

where the RSS map is discriminative enough to perform localization. Some other

approaches like FootSLAM [24][25] use IMUs only on pedestrians to recreate a nav-

igable foot map and localize with respect to this map. In general one can assume

that any sensor which can provide repeatable and discriminative enough data can

be fed to a statistical framework which can build a map representation or world

model then compute the sensor position with respect to such map.

The above discussion shades the light on the importance of smart use of multiple

sensor configurations. An increased number of sensors in use will require additional

calibration steps to setup the relative knowledge between the multiple sensors in
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use. Such calibration step will still inherently be prone to noise which will eventually

propagate into the online map and motion estimate as well. Then, measurements

from multiple sensory sources are not guaranteed to be perfectly synchronized due to

transmission and processing delays. This problem is referred to as Out of Sequence

Measurements (OOSMs) and has been the source of a broad range of approaches

in literature which try to limit or predict its impact on further system estimates

[26][27][28][29][30][31].

SLAM approaches can also be classified by the number of agents they can handle.

The simpler case considers a single mobile agent with intrinsic sensing capabilities

moving in its environment. Such robot does not hold any knowledge about other

mobile agents nor do these other mobile agents participate in any decision making

scenario. A more complex problem arises when each mobile agent seeks knowledge

about other mobile robots locations or actions in order to plan time efficient actions

or avoidance, optimal resource allocation such as worker robots in a warehouse, or

even active cooperation like cooperative object carrying. Many examples have been

provided in the literature to illustrate these scenarios and how to define the multi-

robot SLAM problem [32][33][34][35][36][37]. In the same way multiple sensors can

possess orthogonal properties which make them interesting to use in synergy, robots

can also show complementary properties. For example [38] uses an aerial robot

with a ground robot to explore damaged buildings. While the aerial robot can

show improved mobility in space and can avoid ground obstacles easily, it suffers

from severe battery limitations and hence time of flight constraints which makes

it difficult to explore very large areas. Ground robots on the other hand can be

much more energy efficient but show less ability to bypass large obstacles. The

cooperation between these two types of robots in [38] consist in carrying the aerial

robots as long as no obstacle is found and using an aerial robot when the obstacles

can not be cleared by the ground robot. Both robots relative position are known

and the maps built by each robot are fused into one map estimate which gives the

overall rendering of the damaged building. Multi-robots exploration requires each

robot to maintain a minimal knowledge about other robots. Such mutual knowledge
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is not always provided at start or can be lost at some point during the mission. The

robots hence need a way to discover relative positions either by comparing mutual

maps or by assigning rendez-vous or by discovering common landmarks. Multi-

agent SLAM systems can show much greater complexity and accurate multi-agent

map reconstruction can require optimization not only on the mobile robot’s own

trajectory but also on other agents trajectory [37].

SLAM problems can also differ through the inherent dimension of the problem

they try to solve. 2D SLAM approaches project the more general six dimensional

(if a minimal representation is used) localization problem on a 2D plane of choice.

In such configuration, the SLAM requirements are to estimate the XY position on

the plane along with an orientation angle and an estimate of the up-to-date map.

Needless to say that lower dimensional problems can usually be solved in shorter

time. 2D SLAM is a well understood problem and life-long systems over large areas

have already been provided in recent robotic literature. The obvious disadvantage

of 2D SLAM is that they constraint the problem to a plan and hence all information

carried out of such plan become unavailable which usually limits the navigation to

perfectly planar floors. This assumption is clearly violated when using aerial robots

or navigation through uneven grounds. 3D SLAM approaches on the other hand

usually try to build some sort of 3D representation of the environment (either dense

or sparse) along with the 6D position of the mobile agent. The problem is more

computationally expensive as dense three dimensional sensory data is an order of

magnitude more expensive to handle. With such aspect in mind, the reconstruction

of full and accurate 3D maps of large environments in real-time still remains a

challenge even with the availability of modern hardware. An interesting approach

lies at the boundary between 3D and 2D SLAM systems and is called 2.5D SLAM

or Manhattan world assumption. In a 2.5D SLAM the main assumption is such

that the world is made in majority of regular structures like walls. Such knowledge

around the world makes it possible to extract additional information without the

availability of complete 3D sensing capabilities. For example using a 2D laser with

an IMU (i.e plane and plane orientation sensing) makes it possible to recover a 3D
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representation if we can forecast how points lying off the ground will project on

average on the ground plane. Such 2.5D SLAM retains the complexity of a 2D

SLAM problem with the possibily to build full 3D dense maps. Of course if the

assumption is violated or is not respected by a majority of obstacles lying in the

scene then the computed localization and map estimates will be poor. An example

of a SLAM process using IMU and 2D laser data on an aerial robot is shown figure

1.

図 1.1: Mapping with 2.5D assumption

The map estimate built throughout a SLAM process can take on many forms.

They can represent a dense form of the world like occupancy grids [39][40] or signed

distance function based grids [41]. In other cases, maps can consist of a sparse

representation of the world. For instance the knowledge about the positions of well

chosen landmarks or features is enough to localize in a given environment [42]. A

landmark is considered to be good if it shows some properties like repeatability

under changes in viewpoint, lighting conditions or scale and discriminative power
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which allows to infer with high probabilities the identity of the landmark being

observed. If a sparse representation only is enough to localize accurately in the

environment, a sparse representation makes it harder to identify obstacles and plan

obstacle avoidance policies accordingly. A dense model on the other hand can store

rich representation about the world but such attribute comes at the expense of a

more involved process like raytracing to fuse new data with past map models.

Based on the above discussion, map representations can be sparse or dense but

tracking algorithms in use can also show dense or sparse properties. This brings us

to a fundamental difference between SLAM approaches which can be labeled either

dense or feature based. Feature based SLAM approaches extract form the set of

all sensory input only a small subset to represent knowledge about the world called

features. For instance, from a 100000 points made point cloud the feature number is

usually set to two order of magnitude less to about a 1000 representative points. The

advantage of such procedure can a be immediately understood as the dimensionality

of the problem to solve is reduced to only a subset of the full problem. As it

has been pointed out before, these features need to verify certain properties which

mainly are robustness against sensor dependent transform like affine transforms for

camera, lighting changes which can occur depending on viewing directions, scale

and also need to show enough discriminative power. To do so, at a detection stage

a feature based algorithm starts by extracting candidate points, usually corners or

blob features with some of the most successful approaches including Shi-Tomasi [43],

FAST [44] for corner detectors, SURF [45] and SIFT [46] for blob detectors. The

feature detection phase constructs a set of candidate points. In order to match these

detected features across frames it is essential to construct a discriminative knowledge

about each feature. Such knowledge is called a descriptor and aims at allocating a

discriminative vector to each feature. Such information is usually extracted from

some properties like gradients or intensity values in a neighborhood around the

candidate feature point. Examples of popular feature descriptor include SURF,

SIFR, BRISK [47] or FREAK [48]. All the descriptors share the common objective

of constructing a knowledge which can show robustness against viewpoint change,
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scale an so on. Computing descriptors can be very computationally demanding

and can induce an overall slowing of the SLAM pipeline. For such reasons, some

approaches use less expensive computation schemes such as small binary feature tests

like FERN [49] or simpler averages like sum of squared intensity difference or sum

of absolute intensity difference around the target point. Once correspondences have

been established, the last step of a feature based tracking pipeline is to compute the

incremental camera motion which minimizes an energy function given the matching

previously obtained. To do so, it is important to consider that the matching process

is not perfect and false associations can occur. Since the subset of extracted features

is relatively small, such false correspondences can yield serious errors during the

motion estimation step hence the need to adopt a strategy to deal with these so called

outliers. Dealing with outliers can either consist in lowering the impact of these

mismatching on the final output results or discriminating outliers and inliners then

using the subset of inliners only to estimate the incremental camera motion. The

first option consists in assigning variable weights on each residual to use in the total

energy function with higher weights being assigned to associations which are more

likely to be true. The second option is more popular and usually bases on Random

Sample Consensus (RANSAC) or other voting schemes in order to discriminate the

set of inliners from the set of outliers and retain only the inliners to compute the

updated motion estimate. Dense approaches on the other hand use all or a fraction

of the input sensory data without any computationally demanding discrimination

of sensory data as feature and non feature points. Doing so, dense approaches

make use of all the information available and which can be missed by feature based

approaches. In this regard, dense approaches usually yield superior estimates in

term of accuracy, but as it has been stated before have to often handle two order

of magnitude more data. Since every pixel or point at the sensory input stage

only requires a simple computation compared with feature based approaches, dense

approaches are usually good candidates for parallelization and have been recently

benefiting from the advances in parallel computing technologies. As a consequence,

dense approaches have steadily replaced feature based approaches in the most recent
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literature.

Finally, the remaining important distinction to make between SLAM approaches

bases on which statistical framework they use to represent and propagate uncer-

tainty inherent to the incremental motion estimation process. A popular approach

during the first half of the past decade consisted in the so called filtering process. In

its most popular form, a filter compresses all past data observations and interme-

diate estimates into one up-to-date average and expresses the uncertainty involved

in the process in a covariance matrix. Such compression can be seen as a lossy

procedure where past trajectory or knowledge can not be recovered but lies all av-

eraged and compressed in the most recent few first orders moments. Popular filters

used in robotics literature include Gaussian filters and more specifically Kalman

filters derivatives like linear, unscented, extended Kalman filters or information fil-

ters along with Monte Carlo based approaches. Gaussian filters have been behind

the first large scale successful SLAM approaches such as [42]. A shortcoming of

gaussian based filter is first the requirement on the uncertainty to follow a nor-

mal distribution, which is not always the case, then their computational complexity

scaling quadratically with the number of state variables. Early filtering based ap-

proaches represented joint probability over the mobile agent and world landmarks

such that at each update step, a new estimate of both the map and robot state

needs to be recomputed. Kalman Filter based approaches were rapidly replaced

by less expensive particle filter based systems [50][51][52][53] where the distribution

over the map and robot space is represented by a finite sample of particles. Each

particle then represents an estimate of a robot state and associated map. Of course,

more particles represent a more accurate system which samples more closely the

real distribution but this comes at the expense of an increasing computational com-

plexity. Particle filters can be considered more flexible to use for mobile robotics

since they can model random distribution and can be tuned according to the avail-

able computational resources. An early review of probabilistic derivation of SLAM

problems can be found in [54][55]. The second framework which has superseded

filtering based approaches in recent literature is based on graph optimization. The
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processing pipeline adds a new node to a graph each time a new estimate of the

world state is computed along with an edge representing the uncertainty of the in-

cremental motion. As such, the graph represents a discretization of the full SLAM

problem. It stores all past data which hence can be revisited, recomputed and prop-

agated again. This process can yield an ever growing graph and hence will end

in a loss of real-time capabilities of the system after some time. Uncertainty can

be minimized upon loop closures i.e when the robot navigates through previously

visited areas. In this case, an edge loops back to a previously created node and such

closing back represents an important constraint to reduce the uncertainty over the

whole loop trajectory. Loop detection in robotics literature can be based on match-

ing visual appearance [56][57][58] or any other frame to frame matching algorithm

such as laser scan-matching. In case of frame to frame matching, since the number

of node candidates to match against can be high, the matching can be performed at

lower levels then the transform between present and past nodes refined upon first

detection. Recent insights in sparse linear algebra in association with the full SLAM

derivation has led to increasingly fast and efficient graph optimization approaches.

The proposed literature for graph optimization is immense and has reached a state of

maturity [59][60][61][62][63][64][65] with g2o being probably the most used solution

in recent literature [66]. An overview of graph based SLAM formulation is provided

in [67]. An example of a 2D map of the 7th floor of Building 2 of the University of

Tokyo closed with laser scan-matching and optimized through iSAM [60] is shown

in figure 1.

Finally, the pioneering paper by Klein and Murray [68] showed how SLAM can

depart from the expensive joint probabilistic estimate of robot state and map at each

update and that the SLAM processing pipeline could be divided into two distinct

processes : the first one labeled front-end SLAM performs tracking ie computes the

robot state estimate at higher frame rates while the second process labeled back-

end SLAM updates map estimates at lower frame rates. The back-end SLAM also

maintains a graph to perform global optimization upon loop closure. New nodes

are added to the graph only when enough motion is detected or the quality of
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図 1.2: Large 2D environment with loop closing

tracking becomes poor. This last framework became mainstream in most recent

SLAM systems.

We have provided in this chapter a taxonomy of different SLAM approaches and

how they have evolved throughout the past two decades. In next chapter, we present

an in detail review of the most relevant SLAM literature for our work. An outline

of the present thesis is provided at the end of next chapter.
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Laser based approaches have been the corner stone of many of the life long SLAM

approaches in the past decade. As it has been previously pointed out, lasers have

excellent range and angle angle of view properties. The only limitation is most of the

high speed and affordable laser solution available such as Hokuyo [69] or Sick [70]

provide range measurements only relative to a plane. Tilting lasers or rotating heads

can provide a full point cloud but these systems introduce latencies and are very

sensitive to fast motions. Other technologies like Velodyne sensors [71] provide above

a million points 3D point cloud but such solution, if ideal for outdoor navigation

in large environments, is still not dense enough to model fine details compared to

high resolution camera based solutions. Visual SLAM on the other hand is still

a highly active research area in Simultaneous Localization and Mapping, robotics

and computer vision community and has been sustained by the recent blooming of

UAV research and smartphones market which both require lightweight and compact

sensing technologies to be used. In this context, cameras can be regarded as an

attractive sensor choice for on-board robotics sensing especially for systems where

weight considerations are of essence. They also provide a cheap, dense and high

speed solution for the Simultaneous Localization and Mapping process. Camera

sensors map 3D real world models to 2D projections on the camera image plane.

Doing so, a single frame captured from a camera alone fails to capture the real world

3D geometry without any knowledge on the visualized scene, effectively introducing

a scale ambiguity. 3D geometry can be recovered within a stereo or multiple camera

setup where the relative transform between the different camera sensors is provided

or must be inferred by multiview stereo through overlapping successive views. The

second option is particularly attractive since it takes advantage of the compactness

and low power alternative using a camera alone represents, which takes on it full

sense on recent tablets and smartphones. Monocular SLAM comes at the expense

of more complex algorithms which have to deal with depth map estimation and

denoising from multiview stereo in addition to the more fundamental tracking and

mapping issues. The robotics literature with the recent gain in popularity of UAV

navigation and UAV camera based stabilization systems have proposed multiple and
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different visual odometry and visual SLAM pipelines such as [9][11][7][72]. Visual

odometry approaches can be regarded as a subcomponent of full SLAM systems

since they consider the robust estimation of the egomotion of an agent in two or

multiple frames without consideration of the global consistency in the joint full map

and trajectory estimate. For small workspaces, robust and accurate visual odometry

approaches can prove fast and remarkably converge to a repeated map model without

introducing serious drift. RGB-D camera recently introduced to the consumer grade

market can be considered as an even more remarkable sensory solution for mapping

indoor scenes since they provide directly the depth information which has to be

computed through complex processing in the case of Monocular SLAM. RGB-D

based approaches have been increasingly gaining more maturity during the past

years and show great similarity with recent monocular SLAM approaches when it

comes to the tracking step. In the following section, we give a review of some of

the most relevant SLAM approaches as well as some of the applications on real-time

robotics systems.

2.1 Filtering Based Approaches

If early approaches in the 50s tackled reconstructing 3D structures from succes-

sive 2D images in an offline fashion, later approaches provide online computational

capability as a central attribute. Early real-time approaches include the work from

Davidson [42]. Davidson’s work is particularly interesting since it proved robust in

larger areas and for longer time than previously established. In an initialization

step, the metric scale is estimated by introducing an object of known dimensions

in the scene. The SLAM process relies on sparse salient features which first or-

der uncertainty along with position and velocity uncertainty is constantly updated

through an Extended Kalman Filter with a constant velocity motion model. Land-

marks are dynamically inserted and deleted from the map. A new landmark is not

immediately inserted to the map upon first observation but the depth estimate of

the feature is quantized in a closed range along the camera ray. The new landmark
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is effectively used in the EKF process only when the estimate on depth uncertainty

becomes below a threshold. Finally, given the number of landmarks N inserted

in the state vector the computational time requires is in O(N2). The system, la-

beled MonoSLAM, has been successfully applied in [73] to the HRP-2[74] robot

navigation. The need of a separate initialization process for new features has been

suppressed in Montiel et al. [75][76] by using a unified parametrization which does

not require any special initialization treatment of new landmarks before integration

in the EKF process. By using an explicit parametrization of the inverse depth,

depth estimates spanning finite and infinite values for low parallax motions show

gaussian uncertainty and hence can seamlessly be integrated through the EKF pro-

cess. Features at infinity can effectively contribute to the estimate of the bearing

of the sensor and take on finite values when enough parallax has been recovered.

Eade and Drummond[77] on the other hand take advantage of the independence of

landmarks pose estimates with known camera trajectory to derive a FastSlam[78]

particle filters based monocular SLAM system where each particle represents jointly

one estimate of the position and an estimate of each landmark position. The system

runs at frame rate with a computational complexity for M particles and k landmark

observations of O(Mk) which is significantly lower than the O(N2) computational

complexity of EKF based systems. Eade and Drummond also use an inverse depth

parametrization. Kalman filters are used independently in each particle’s map to

estimate the inverse depth parameter and a new landmark is inserted in a particle’s

map when the corresponding XY Z has small enough uncertainty. Grisetti et al.

later introduced the Gmapping framework [52][53] which is probably still one of the

most used SLAM approaches to date and the default navigation support for robots

like PR2 by WillowGarage [79]. Gmapping considers the problem of mapping using

grids and Rao-Blackwellized particle filters. Each particle stores the state informa-

tion along with a grid map estimate. Gmapping proposes two improvements : the

first one draws the particles from an improved proposed distribution based on the

sensor likelihood while more traditional approaches use the odometry model as the

proposal distribution. The sensor likelihoood can be established using any scan-
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matching based approach for laser based SLAM but the idea can be generalized

for other sensors. We recall here that scan-matching is the mean by which a laser

range data can be aligned with either a previous scan or a map. The second im-

provement Gmapping proposed consists in reducing the particles depletion risk and

keeping the richness of the particles representation by triggering a resampling step

only when the dispersion of the weight is above a threshold. In such case particles

are resampled according to their importance weight. Since resampling is performed

only when really needed, the risk of throwing away good particles is reduced.

2.2 Graph Optimization Based Approaches

Eade and Drummond [80] proposed to use local sub-maps updated through non

linear optimization called nodes which are incrementally inserted to a global graph.

Global optimization takes place upon new edge and node insertion. It allows to refine

the state estimates through loop closing and shared local landmarks constraints. The

local optimization effectively updates both a local mean estimate of local features

and an uncertainty matrix acting just like a filtering EKF counterpart. The local

update process uses an inverse depth parametrization to limit non linearity effects

which come through using XYZ parametrization. A new node is inserted if not

enough landmarks are retrieved or too much non linearity is detected (via the trace

of the Hessian matrix).

Klein and Murray’s PTAM [68] can be considered as one of the major break-

throughs in the SLAM literature. PTAM introduced the idea that tracking and

mapping can be split and run on two different threads with two different updating

frequencies. Doing so, tracking is no more probabilistically attached to the mapping

component, which is a major departure from filtering approaches of the same period

and achieved unprecedented degree of robustness and agility. The mapping thread

does not need to perform at tracking rate and is run through bundle adjustment

of carefully selected keyframes. One main difference between PTAM and Eade and

Drummond [80] is that only selected keyframes are used to construct the final map
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while in the second approach nodes are further filtered. In [68] features comprise

sparse textured patches as well as the keyframes where they first appear. The spar-

cification of the selected keyframes is a key element into real-time update of the

bundle adjustement step. During the tracking process, patches are retrieved with

comparing zero mean SSD scores of Fast features in an area around the projected

image plane location. The camera is tracked from the most recent keyframe through

robust non linear optimization based on Tukey M-estimator by minimizing the re-

projection error of 3D map points and corresponding patches in the input image.

Depth information on map points is retrieved by founding correspondences between

two adjacent keyframes by zero mean SSD comparison along the epipolar line. The

initial map scale is initialized through a user guided bootstrapping procedure where

the initial two keyframes are supposed to have a metrically fixed baseline. One main

shortcoming happens when tracking is lost and a map is started over. In such sce-

nario, a scale consistent with the first estimate might not be recovered. PTAM has

been further improved in [81] where the robustness of the system during fast motion

has been improved by using edglets which show more robustness than pixel patches

under motion blur. [81] also added an inter-frame rotation estimation to the tracking

procedure. A modified version of PTAM has been successfully used in the european

project sFly [6] to achieve autonomous navigation in GPS denied environments for

Micro Aerial Robots. sFly relies on PTAM to provide a high frequency (30Hz) non

drifting (as opposed to optical flow based approaches also used for UAVs platforms)

solution which is necessary to achieve good position control for the MAVs. It is

interesting to note that an additional EKF is used to fuse the output of PTAM with

an on-board IMU data in order to provide a scale metric state estimation of the

position of the robot since PTAM alone provides outputs which are scale ambiguous

and which depend on the bootstrapping step. Methods which associate IMU to

additional sensors like cameras or lasers are discussed in further section. The list of

modifications to PTAM has been described in [10]. First of all, in order to minimize

the computational complexity, the number of keyframes used is set to a maximum.

Setting the number of keyframes to infinite represents the original PTAM approach
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while setting it to two represents a pure visual odometry incremental approach.

Then, only features from higher pyramidal levels are retained which induces drastic

speed-ups during keyframe creation. Moreover, a speed controller allows to stabilize

the UAV upon failure and limits the jumps in scale estimate during reinitialization.

Finally, an inverted data structure is implemented which limits the number of points

which need to be reprojected only to the visible keyframes.

2.3 Dense Monocular Methods

An excellent summary of Feature based front-end SLAM pipeline in computer

vision can be found in [82] and [83]. However, with parallel computing solutions

becoming more mainstream and providing the latest mathematical inside in dense

SLAM approaches, dense methods have steadily replaced the feature based pipeline.

When feature based methods discriminate features and non feature data, dense

methods on the other hand tend to use all data available hence lowering the risk

of missing importance information. This provides both enhanced tracking accuracy

and dense reconstructions of the 3D world which has superior utility for planning

and navigation compared to sparse maps generated by feature based approaches. In

this section we review some of these most successful dense approaches.

Newcombe et al. introduced DTAM in [84] one of the pioneering approaches in

recent years which uses every pixel to perform live reconstruction and tracking.

DTAM starts with a bootstrapping step which relies on features tracked from stero

frames in order to initialize the first keyframe. Passed initialization, the system

solely relies on a dense derivation. On the mapping side, a keyframe is associated

with a cost volume where each pixel in the keyframe maintains a limited number

of depth candidates included in a restricted interval. Each new frame acquired

in the neighborhood of the keyframe adds in a total cost data average based on

a photometric error. An exhaustive search over all possible depth candidates can

solve the minimization problem but textureless regions will still have poor results.

In order to compute depths in textureless regions more accurately, DTAM takes the
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hypothesis that such regions have smooth depth variation and proposes to add a

Huber norm regularization term to the problem. The whole is further solved using a

primal-dual approach. On the other hand, tracking uses a coarse-to-fine scheme in

a Lucas-Kanade way to estimate the motion. The registration starts by estimating

the rotation through frame to frame alignment. The full 6D pose is then refined by

projecting the dense model on the image. Robustness is achieved by selecting only

pixels which photometric error is below a threshold. DTAM provided the first real-

time capable full dense reconstruction system and has achieved superior accuracies

when compared to other feature based methods.

Forster et al. proposed SVO [72] a semi-direct approach which removes the need

to explicitly run the feature detection-feature matching step on each frame. SVO

makes use of two parallel steps namely a real-time tracker and a mapper which adds

keyframes and initialized new depth data. The tracker starts by computing the

frame to frame transform by minimizing the photometric based reprojection error

of point maps on both frames. This provides outliers free good first guess of the

camera transform between two consecutive frames. A second step then proceeds to

frame to keyframe alignment while a last steps performs motion only and structure

only bundle adjustment. Local bundle adjustment can additionally be performed.

Everytime a new keyframe is inserted, a feature detector selects interesting points

to consider for the tracking step. Each feature depth is computed by using a filter.

The process starts by assigning an average scene depth value and matching pixels

along an epipolar line computed through the tracking result lying on an area defined

around the initialized depth value and which has the best patch to patch correlation.

The depth value is then computed through triangulation. Once the depth filter has

converged, the 3D point is added to the map and subsequently used for tracking

purposes.

Engel et al. introduced LSD-SLAM [85][86]. LSD-SLAM is a semi-dense approach

in the sense that only points close to strong enough gradient regions are considered

which partly removes the complexity DTAM has to go through to smooth regions

with uniform texture. LSD-SLAM builds on three components. The first component
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is a tracker which tracks live frames against keyframes by defining a photometric cost

function and running a robust Gauss Newton optimization step on Lie manifolds

which uses Huber weights. The second component is a depth estimation component

which is used to refine i.e add new pixels or replace the current keyframe if too

much motion has been accumulated. Keyframes are initialized by projecting points

from a nearby keyframe. New depth measurements are added through pixel-wise

stereo comparisons and merged with a filtering based approach. A propagated prior

allows to constraint the search interval. To ensure scale awareness, each keyframe

is scaled to have a mean depth equal to unity. Each keyframe is added to a third

component which maintains a pose graph. Constraints are added by direct image

alignment between the first keyframe and neighbouring keyframe in the graph. Such

alignment is performed to solve a similarity transform based problem to take into

account accumulated scale deviations. Once the best candidate to loop closure has

been found a solution to the global optimization problem is computed using g2o

[66].

2.4 RGB-D based methods

One of the early approaches to solve the full 6D SLAM problem has been proposed

by Nuchter et al. [87]. In their approach they use a tilting SICK 2D range laser

mounted on a mobile robot in a stop-scan-go to acquire 3D scans. Successive 3D

point clouds are first aligned combining odometry and an octree alignment heuristic

to provide a first guess of the 6D robot pose. Then, a point-to-point ICP step is per-

formed to refine the pose estimate. Data association during the ICP scan matching

has been sped up using KD-tree search methods. Finally, global optimization via

loop closure detection has also been implemented. Subsequent approaches in the

literature tried to emancipate the 6D SLAM problem from the need of readily avail-

able odometry, such as wheel encoders, which is the case when mapping with hand

held camera. Researchers have also proposed abundant literature to increase scan-

matching speed, to limit memory consumption, increase robustness to outliers or
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efficiently solve the problem on multicore machines and GPGPUs via adequate par-

allelization. In [88][89] Liu and Chen et al. used a human operated backpack where

several 2D laser cameras and IMU have been mounted. Lasers and IMus are used

in ICP based scan-matching to calculate the incremental pose between successive

nodes inserted in a graph. Other constraints which compute the tranforms between

distant camera images are also inserted. Optimization uses Levenberg-Marquardt

algorithm which minimizes a Sampson reprojection error. Loops are detected using

FAB-MAP[57] and the graph is further optimized using TORO [63]. The recent

advent of cheap and high quality RGB-D sensor such as the Microsoft Kinect or

more recently Microsoft Kinect2 has strongly stimulated 3D reconstruction and 6D

tracking methods. RGB-D sensors have been since, and more than ever, playing an

important role in many intersecting field such as computer vision, mobile robotics or

computed graphics with applications ranging from Simultaneous Localization and

Mapping in GPS denied environments, textured mesh reconstruction like live hu-

man 3D modeling [90] or augmented reality [13][15]. A review on Kinect-like RGB-D

sensors and some of the related recent reconstruction methods can be found in [91].

Henry et al. [92][93] has proposed one of the first approaches using a hand held

Microsoft Kinect sensor named RGB-D SLAM. The method starts by construct-

ing a sparse 3D point cloud of SIFT features detected from the RGB frame and

transformed into 3D points using the depth information. RANSAC is then run to

compute an initial transform estimate between two adjacent frames. Based on this

first visual based estimate, ICP refinement is run by finding neighbors between a

source point cloud and a target point cloud through fast kd-search based on euclidean

distance. ICP minimizes a point-to-point error for the sparse features and a point-

to-plane error for the dense points associations. In [93] reprojection error (referred

to RE-RANSAC) is proved to provide better tracking result and is used instead of

3D point euclidean distance (refered to EE-RANSAC) for 3D features error metric.

The non linear optimization is solved using Levenberg-Marquardt algorithm. New

keyframes are inserted in a global graph if the number of 3D SIFT features becomes

below a threshold. Each time a new keyframe is detected, an attempt to visually
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match SIFT features from previous keyframes takes place. Keyframes which are

matched against are those present in a neighborhood of the current pose and those

which have similar appearance using a vocabulary tree [94]. Global optimization

uses TORO [63]. Finally a surfel map [95] integrates all points from all keyframes

into one consistent and concise representation of the world. A surfel consists of a

location, a surface orientation, a patch size and a color and stores confidence about

each surfel. Surfels with low confidence are subsequently pruned from the map.

Endres et al. [96][97] also rely on matching sparse visual features from frame to a

subset of past keyframe and updating the motion estimate through RANSAC. They

again build a pose graph which is further optimized upon loop closure via g2o[66].

As a final step, a global map is created offline by concatenating all point cloud data

from keyframes into a volumetric octree based map by means of Octomap [40]. The

system runs at about 10Hz and shows few centimeters RMSE error.

Similarly, in [98] Hunag et al. introduce the FOVIS RGB-D based SLAM approach

for UAVs. They also rely on sparse features to compute the motion increment. Since

speed is of essence in their application, they rely on FAST feature detection coupled

with an 80bytes descriptor made of brightness values of neighboring pixels extracted

from different pyramidal levels of the input image. An initial position guess is

estimated with direct minimization of pixels from neighboring frames. This position

is further refined using nonlinear least square optimization of the sum of square

errors of the feature descriptors. Motion increments are computed by matching

against keyframes to allow slow accumulation of drift. The visual odometry step

runs on an on-board processor while loop closure detection global graph optimization

run on a remote machine. The MAV transmits RGB-D data to an off-board laptop,

which detects loop closures, computes global pose corrections, and updates a 3D

log-likelihood occupancy grid map. The visual odometry process of FOVIS runs at

30Hz.

St端 ckler and S. Behnke [14][99][100] have used octrees allocated on the CPU side

to represent a surfel map which stores joint shape and color distribution in a multi-

resolution fashion. Each node of the octree stores up to six surfels depending on the
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viewing direction and where each surfel updates two sufficient statistics to recover

the mean and covariance of stored 3D points. Then, each surfel is associated with

a shape and texture histograms based descriptor describing the local neighbourhod

in order to improve the quality of data associations between surface in subsequent

registration step. Also, in order to speed-up the data association step, the 26 neigh-

bouring nodes are precomputed. The approach also uses the RGB-D sensor model

to set the maximum mapping depth depending on the depth value. Each map in-

sertion then consists of two order of magnitude less data to insert. Keyframe to

current view registration is performed first using a Levenberg-Marquardt non linear

least squares minimization then the solution is refined through Newton’s method by

adding second order derivatives. A global graph is also built and further optimized

upon constraint detection via g2o[66]. The method has been shown to perform at

10Hz on a resolution at 5 cm. Memory storage requires some 50Mb for a chair

model.

Tykkala et al. [15][101] have developped an incremental approach which mini-

mizes the photometric error between sensory images and selected keyframes. The

approaches extract points with salient gradients then minimizes a photometric error

with a weighted gauss-newton non linear optimization. The weight are computed

with a Tukey weighting function. The tracking step takes about 20 ms on a low end

GPU. In [101] the method is augmented with post-processing watertight poligoniza-

tion step from input point clouds using the Poisson method.

Steinbrucker et al. in [102] depart from the sparse features estimation approaches

and write down a direct minimization of the linearized photometric error between

consecutive frames. Since such reprojection error is non convex, they derive a result-

ing linearized energy term which is solved in a coarse to fine approach to cope with

large camera motions. This approach proved fast (10Hz on CPU) given small frame

to frame motions. Kerl et al. introduced DVO, an impressive fast and high quality

keyframe to frame dense approach. In [103] Kerl provides a probabilistic derivation

to estimate the frame to frame RGB-D camera motion by direct minimization of the

photometric error. Such derivation allows to extract the role of motion prior and
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and the sensor model. Using a suitable motion prior allows to track faster camera

movements while a suitable sensor model distribution allows to cope more efficiently

and minimize the impact of outliers on the final estimate. DVO proceeds on a coarse

to fine scheme with a Gauss-Newton solving approach. The weight assigned to the

residuals are derived from a t-distribution following a robust estimation scheme. Ex-

tensive experimentation showed how t-distribution outperforms Tukey based one in

modeling the residuals and hence yields improved accuracy even in the presence of

dynamic objects in the scene. [103] can be seen as a generalization of [102]. DVO in

[104] has been extended to optimize both intensity and depth error using keyframe

to frame direct minimization. A new keyframe is inserted in a global pose graph

when an entropy based ratio between selected frames is below a threshold. Candi-

dates keyframes to loop detection are taken in a radius around the current keyframe

and matched against in a coarse resolution. Upon loop closure constraint detection,

the graph is optimized using g2o[66]. DVO showed improved tracking performance

compared to other state-of-art systems. Also, the combination of both photometric

and depth error minimization yields superior results and each of the errors used

alone and provides more robustness in case of environments lacking either texture

or structure. Steinbruecker et al. [105] used DVO to reconstruct and optimize the

camera trajectory and generate a keyframe based map of an entire office. They

presented a multiscale SDF stored as an octree on the GPU side in order to fuse

all keyframes in one volumetric map bearing in mind memory requirements. The

camera sensor model is taken into consideration when selecting the octree’s level to

write into and an efficient octree representation on the GPU is thoroughly described.

The approach needs about 200 MBytes to store an environment with the size of a

room.

Newcombe pioneered the KinectFusion method in [13][106]. The approach recon-

structs in real-time high quality dense mesh representations of small workspaces.

Memory allocations and computations are all run on GPGPUs. The original ap-

proach uses geometric data only to calculate pose increments and update a dense

map. The dense map representation used by KinectFusion is a bounded 3D voxel
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uniform grid at fix resolution which represents a Signed Distance Function [41]. In

practice, the map only represents a truncated signed distance function TSDF which

represents values for an interval around the zero crossing surface only. Each voxel

stores the current signed distance value to the zero surface as well as the accumu-

lated weight. A map is incrementally generated by projection of the map voxels

on the current image and updating a weight through a bounded running average.

Bounds on the weight allow smooth handling of dynamic scenarios as well. Render-

ing the current camera view is done through raycasting the SDF. Sensor pose esti-

mate is recovered through dense ICP. Point correspondences are generated through

fast projective data association between the sensory image and a map surface pre-

dicted by raycasting. Grossly incorrect correspondences are eliminated by setting a

threshold on euclidean distance and normals angles. The minimizing criteria is the

point-to-plane distance. The energy function is linearised around the previous pose

estimate and a solution is obtained via Cholesky decomposition. KinectFusion by

using frame to model tracking could close small loops without use of any global op-

timization scheme and shows superior results in terms of accuracy compared to the

frame to keyframe approach. The whole pipeline on a room sized environment can

be reconstructed at 30Hz on a high end GPU. Zeng et al. [107] extended the original

KinectFusion method by representing the TSDF as an octree allocated on the GPU

instead of the more memory demanding uniform grid. Doing so their approach re-

quires 10 times less memory and runs slightly faster than the original KinectFusion.

Whelan on the other hand in [108] introduced Kintinuous an extension to KinectFu-

sion for larger scale environments through a different approach. Whelan uses SDF

volumes which vary dynamically as the camera enters larger unexplored space. As

the camera pose shifts away from the center of the SDF, previously mapped region

is extracted in the form of a mesh representation and added to a pose graph. New

unmapped area is then inserted. The graph loop detection bases on DBoW [58]

and pose graph optimization is handled by isam [60]. In [109][110] the approach is

further augmented by adding color as well as a photometric constraint in the camera

pose optimization. The photometric constraint is expressed between two consecu-
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tive RGB-D frames in order to avoid SDF sampling and unusual coloring due to

changing lighting conditions artifacts and consist in minimizing the difference of

intensity values between correspondences found by projective data association. The

ICP based geometric error and the frame to frame resulting photometric error are

combined through a weighted sum. Adding both pose graph and map deformation

steps upon loop closure constraints, Kintinuous shows high quality reconstructed

maps over larger scale maps and overcome two main limitations of Newcombe’s

KinectFusion which are bounded volume reconstruction and poor quality tracking

in planar areas (given enough texture).

Bylow et al. [16][111] also used TSDF to represent the live constructed map

and a frame to model tracking approach to estimate the camera motion. They use

a direct minimization on the signed distance function extracted by projecting the

sensor cloud in the TSDF. They proved that such direct minimization outperforms

the ICP and projective association based approach by KinectFusion especially in

the case of faster motion. Their approach uses depth data only and hence is a pure

geometric method.

2.5 Discussion

Early structure from motion or SLAM approaches were mainly incremental sys-

tems which estimated successive odometry while loop closing was performed offline.

The successive gaussian filtering (Extended Kalman Filter, Unscented Kalman filter,

Information Filter...) based approaches were considered the first real-time systems

robust against drift which can operate in relatively large areas. Gaussian filters

approaches were gradually outclassed by faster monte-carlo based ones. Particle

filters hence proved a more flexible and practical solution for many robotics applica-

tions where real-time speed and problem size was of essence. Recent insights in the

structure of SLAM graph optimization and its relation with sparse linear algebra

provided with clues on how to dramatically improve the execution speed in batch

and incremental modes [59][66].
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The fundamental question which remains here is how do filtering based approaches

compare to graph optimization based ones ? Such analysis has been carried out by

Stradat et al. in [112]. They investigate some of the most successful filtering and

bundle adjustement for Monocular SLAM based methods but their finding can be

generalized to other forms of SLAM systems. The conlusion they reached to is

that bundle adjustment is superior to filtering approaches in almost all cases and

independently of the scene structures and the nature of motion. Hence with full

SLAM solutions computable in near real-time more recent systems abandoned the

full probabilistic state propagation and instead compute a solution by separating two

different process : a tracking process which computes incremental odometry and a

mapping process which adds new data to a map and runs global optimization such

as it has been pioneered in [68]. These two processes have also been conveniently

labeled as front-end SLAM and back-end SLAM in further systems. Almost all

recent approach follow the front/back-end separation and run global optimization

in background while a certain form of odometry is used to compute the incremental

motion.

On the front-end side, most of the approaches following the advent of cheap RGB-

D sensing technologies were feature based at first. Feature based approaches can

be attractive since they allow to map the initial problem from 100000 points made

clouds usually dealt with to a two order of magnitude reduced problem but poten-

tially miss valuable data. If feature based applications can yield enough camera

tracking accuracy for most of robotics application, the map created conventionally

contains sparse points only, which comes short for robotics systems which need to

perform subsequent planning, object recognition and manipulation tasks. Later ap-

proaches use a dense formulation on all or most of available sensory data in the

input stage to estimate odometry. The formulation can either be written for image

intensities or depth map values hence yielding a photometric or geometric approach

respectively. Dense approaches as opposed to sparse feature based approaches use

all available data and hence yield approaches with superior accuracies averaging

an increased time required for processing data. The last time constraint does not
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hold true anymore in the past years since the problem can easily be parallelized

which yield important speed-ups on modern hardware, while the feature descrip-

tor computation step, even with the availability of GPU based implementation like

CUDA-SIFT, remains the speed limiting factor. This is why some approaches have

combined keypoints detection routines with a rather cheaper patch of neighboring

pixels from which correspondences are found using classical metrics such as sum of

squared differences (SSD) or sum of absolute differences (SAD). Dense approaches

usually try to minimize a sort of reprojection error. With RGB-D sensors, both

depth image and RGB image can be used for odometry computation. Expressing an

intensity error yields accurate motion estimates with environments with enough tex-

ture while expressing a depth error yields accurate motion estimates in environments

with important geometrical features. The depth term also adds robustness against

sudden changes in pixel intensity values due to auto-exposure. Such dense optimiza-

tion schemes yield good results for certain ranges and types of camera motions but

ICP based methods can perform better for certain faster and larger camera motions.

Moreover, model based front-end approaches proved superior accuracies compared

with frame to frame or even less drift prone frame to keyframe methods. This can

be easily understood by means of which frame to model matching is equivalent to

frame to all past keyframes matching which is naturally superior in comparison.

Then, the live reconstructed 3D model usually updates a weight parameter which

incrementally denoises the registered sensor inputs at each new sensory data inte-

gration. Maintaining a live reconstructed map however asks for choosing clever data

structures to preserving fast points access while limiting memory requirements. An

important limitation of model based approaches is such that the model can usu-

ally not be efficiently updated in case of important change in past data which is

usually the case of loop closing update. In such case, most of the time, a simple

solution consists in recreating the maps by reinserting all frames over again. Also,

ICP based method depend on which scheme is used to find neighbors. KinectFusion

relies on projective data association which limits the approach to small incremental

displacements and works well for specific kind of motions in general. Moreover, ex-
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pressing a frame to frame depth geometric solution can be seen seen as performing

a point-to-plane ICP with projective data association.

In SLAM application, the underlined map can take many forms in the literature

: a set of landmarks, sparse feature cloud, successive keyframes stored in a graph,

point clouds, volumetric voxel based volumes such as TSDF volumes or surfel vol-

umes. Such maps can be characterized by the memory compression ratios, stored

data, explicit or implicit information storage and so on. Most approaches relied

on keyframe representation in the form of graph to perform incremental odome-

try estimate while the reconstruction of volumetric maps is performed in an offline

batch step. Keyframes as such represent redundant information as the intersection

between successive keyframes is most often non null. Storing keyframes indefinitely

can quickly limit the space which can be mapped at once. The availably of a

dense volumetric map is of essence for most of robotics applications which are re-

quired to interact with the environment or change it. Robots acting redundantly

in common areas like work offices or homes can rely on a preprocessing mapping

step then perform 3D navigation on previously acquired data. For the later case,

offline batch reconstruction is enough to guarantee operation success. For robots

which act in previously unknown environments, live dense reconstruction is neces-

sary. [113] and [114] run an odometry estimation thread inside a UAV’s processor

while the live reconstruction is performed by a remote base station. KinectFusion

derived approaches use TSDF representation to generate a dense representation of

the workspace. The map in a TSDF form presents advantages over probabilistic

occupancy maps counterparts since surface can be readily generated by looking for

the zero crossing interface. Occupancy maps on the other hand have longer history

for robotics applications since they represent a more natural way to express free, un-

known and mapped space which in turn makes easier to use for planning applications.

OctoMap [40] is an example of a widely spread occupancy grid solution for robotics

applications. Octomap is particularly attractive since it models free, unknown and

occupied space in a compressed octree based data structure. Regular grids provide

the fastest way to partition dense volumetric maps but the memory requirements for
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mapping 3D environments with resolution down to few millimeters renders mapping

volumes larger than a room infeasible in practice. Further solutions like Kintinu-

ous proposed rolling volumes to shift a working buffer as the camera moves and

store slices not visible anymore on the disk. If such approach added flexibility to

KinectFusion, it still proves difficult to support revisiting of previously seen areas.

Moreover RGB-D camera usually show an accuracy quadratically decreasing with

the depth of the image and hence with increased covariance associated with further

points [115]. Such far points are usually associated with grid cells at higher scales

which is harder to model using regularly spaced grids. KinectFusion does not take

such point into consideration which makes it more prone to error during large scale

changes. Such operation increasingly adds on the map corruption. Pre-cited ap-

proaches like [105][100] use octree based structures to store the map and effectively

associate further points from the camera center with cells at lower levels essentially

modelling larger scales. Tree based approaches provide higher compression ratios

at the expense of increasing time to insert and access points. More fundamentally,

neighbors search on a tree can be computationally expensive which can limit the

number of points usable in real-time. [100] typically uses thousands of points to

achieve real-time processing while a common RGB-D sensor point cloud is made up

of two order of magnitude more points. [105] allocates the tree structure on the

GPU. In order to respect the memory contiguity constraint to maximize memory

fetches on GPU devices, each tree node consists in a cubic volume called brick that

subdivides into 256 cells which can yield a waste of memory allocated for non occu-

pied space. OctoMap [40] uses an octree scheme with one global root. This tyically

yields a tree with non negligible depth. Cloud insert time using raycasting at 5mm

takes 25 seconds for 100000 rays which one again shows how tree based approaches

are more challenging to use as a real-time solution for online live reconstruction.
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2.6 Thesis Outline

Throughout this thesis, we derive a complete and practical framework to solve the

full SLAM problem in 3D with focus on time and memory efficiency. Our framework

specially targets robotics application and hence aims at providing a complete solu-

tion to build live maps and track robot position with high accuracy, which is the first

essential brick of a fully autonomous robotic system that also runs subsequent recog-

nition and planning algorithms. Our framework does not require the availability of

high-end GPU to run and we only require the availability of point clouds (or depth

map with known camera parameters such as RGB-D camera inputs). The issue of

estimating depth for monocular camera through multiview stereo is not tackled and

we refer the reader to appropriate literature like [84]. Given a point cloud at the

input stage we use the sensor noise characteristic to compute the scale each point is

to be mapped to. We also extract normal data and intensity gradient when possible.

We then build a multi-level pyramid expressing our data at changing scales. We use

a parallel mapping and tracking approach. Moreover, the pipeline assigns GPU and

CPU resources to run in parallel. The tracking stage bases in its most fundamental

aspect on a frame to model ICP tracking where the model consists of an up-to-date

world map representation stored efficiently in an octree-like data structure. The ICP

tracker can be augmented by frame to keyframe photometric tracker to account for

planar areas which can lack geometric features but can be rich in textured regions.

Doing so, the tracker ensures model tracking enhanced accuracy and robustness in

scenarios where either geometric or photometric data becomes scarce. The mapping

stage inserts the new point cloud data in the online map. The stage also checks

for loop closures and runs graph optimization upon detection of a closing loop con-

straint. After optimization, the map is rebuilt. The online stage is appended by an

offline stage where point decimation is performed. The online reconstructed model

consist in an octree-like structure while the final model can be stored in various for-

mats such as octrees or point clouds. The outline of the present work is as follows :

in an introductory chapter we presented a taxonomy of SLAM problems while chap-
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ter 2 provided the most relevant references to our work and how they compare to

each other. We provide an outline of our research in the end of chapter 2. Chapter

3 describes pre-processing steps needed at the input stage. These include RGB-D

camera calibration, noise model computation, multiple sensors calibration as well as

the point cloud online processing pipeline. This pipeline can include steps such as

depth reconstruction, undistortion, filtering, color projection, normals and gradients

estimation as well as pyramid building. Chapter 4 describes our map memory effi-

cient data structure and the mapping component of the system. Chapter 5 derives

the set of tracking formulas and algorithms and which break into model based ICP

traking and direct optimization approaches. Chapter 6 introduces the architecture

of the system as well as the back-end solution we adopted. It also presents a set of

experiments we performed to evaluate the suitability of our approach. Every chapter

is associated with a set of experiments and finishes with a conclusion. Comparison

with other state-of-art approaches are given when appropriate.



第3章

Pre-processing
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Sensory data can be provided through multiple means like IMUs, cameras, RGB-

D cameras, lasers, GPS, wheel odometry and so on. Here, we separate between

two classes of sensors, those which provide direct odometry and hence a guess or

motion prior like GPS or IMU and those like lasers and cameras which directly

provide a partial observation of the world and can be used to provide more accurate

tracking results through more sophisticated algorithms. These two roles can be more

easily understood through the following factorization which writes an incremental

solution of the full SLAM problem. The objective of our system is to maximize the

probability estimate of the joint trajectory and map which can be factorized :

p(x1:t,m1:t|z1:t, u1:t−1) = p(mt|x1:t, z1:t)p(x1:t|z1:t,m1:t−1, u1:t−1) (3.1)

where u represents the system’s odometry and the observations of the world are

denoted z. m represents the map incrementally acquired while x is the mobile

agent’s trajectory. From this factorization, we can see how the full system can be

solved by first tracking, then from the up-to-date tracked position along with the

most recent sensor measurement the map can be expanded. The posterior over the

trajectory p(x1:t|z1:t,m1:t−1, u1:t−1) can be further written :

p(x1:t|z1:t,m1:t−1, u1:t−1) ∝ p(zt|x1:t, z1:t−1,m1:t−1, ut−1)p(x1:t|z1:t−1,m1:t−1, u1:t−1)

(3.2)

with :

p(x1:t|z1:t−1,m1:t−1, u1:t−1) ∝ p(xt|x1:t−1, z1:t−1,m1:t−1, ut−1)p(x1:t−1|z1:t−1,m1:t−1, u1:t−2)

(3.3)

In an incremental scenario, we assume that most recent observations don’t de-

pend on older ones. This is known as the Markovian assumption. The Markovian

assumption serves well the incremental SLAM purposes but can be easily violated

when dynamic objects are introduced to the scene. Nevertheless it provides an

important implication to further simplify the equations above and yields a better
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understanding of the process incurred. Bearing the Markovian assumption in mind,

the whole solution can be hence expressed as :

p(x1:t|z1:t,m1:t−1, u1:t−1) ∝ p(zt|xt)p(xt|xt−1, ut−1)p(x1:t−1|z1:t−1,m1:t−1, u1:t−2)

(3.4)

The equation above shows how the a new posterior on the trajectory and for

the incremental SLAM is computed at each step by integrating a motion model

along with the sensor likelihood p(zt|xt). Approaches for exploiting such likelihood

are explained in chapter 5. The motion model p(xt|xt−1, ut−1) can be obtained

from odometry measurements. In our case, a speed based motion model is used by

default when no direct or only partial direct odometry is used (like in the case of IMU

data which computes only a fraction of the state vector). A much simpler model

to adopt is one which takes only white noise into consideration. Motion models if

correctly derived allow to cope with motions at even higher speed. The equation also

shows how direct odometry measurements and partial world observations interact to

derive trajectory posteriors. In the following, we review two classes of prerequisites :

offline calibration steps for estimating sensors noise characteristics, sensor intrinsic or

extrinsic parameters estimation then online pre-processing in order to build denoised

and suitable data for the tracker to use.

3.1 Generic Sensor Representation

Sensors have different characteristics, noise models and parameters. Still, the set

of most common parameters across different sensor categories can be expressed in a

generic enough way which is the approach we take hereafter. Each generic sensory

vector input stores vertex (vx, vy, vz) ∈ R
3 coordinates, normal vector (nx, ny, nz) ∈

R
3, intensity gradient vectors (gx, gy, gz) ∈ R

3, RGB with intensity data (r, g, b, i) ∈

N
4 then grayscale intensity and scale level (gr, l) ∈ N

2. Each type of data is only

allocated as needed, as different types of sensors can provide all or only a subset of

the precited data. The sensory vectors are stored in a 2D map form in order to take
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advantage of sensor neighboring information if available such as in the case of an

RB-D sensor or camera. In addition, each sensor has intrinsic parameters, extrinsics

parameters which describe the sensor position in a global coordinates system then

noise parameters which we limit to offset and scale noise parameters. Once again,

data which is not relevant to a given sensor class is discarded and set to default

values. Finally, the data stack is sampled at the different pyramids levels to enable

speed-ups during the tracking stage. The default sensory information is acquired on

the CPU side through usual links like USB or ethernet. The data is then sent on the

GPU side where all preprocessing operations take stage. These operations are also

implemented to be generic enough and include bilateral filtering, edge filtering, data

truncating, denoising, utndisortion, vertex computation, normal data computation,

RGB and intensity projection, grayscale intensity and scale computation, grayscale

intensity gradient computation then finally pyramid extraction. Finally, data which

holds only partial or poor information such as no RGB data or a noisy normal vector

is set to non valid. These operations act on pixels or a pixel’s neighborhood and

therefore highly benefit from the parallelization power of GPUs. Once the sensory

pipeline is finished the data is sent back to the CPU side to be fed to the tracking

stage. Some sensors however need a separate pipeline since they don’t fit in the

generic sensor representation. This is notably the case for IMU or MARG sensors

for which a separate data fusion step between magnetic data, accelerometer data

and gyro data is needed.

As it has been pointed out before, direct odometry measurements can be provided

by multiple sources such as velocity models, gyros, accelerometers or other forms.

These different sources supply with partial or whole information about the trajectory

increments and can sometimes be redundant as it is the case with accelerometers

and gyros. This is why a fusion center shown in blue is necessary to compute one

estimate from all these sensory inputs. The data fusion center runs two separate

Kalman Filters, one for positional estimates and the second for angular estimates.

When trajectory vector elements are not observed at the sensor stage a white noise

is used as a prediction step while a speed model is used at the observation step of the
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filter. For the angular filter a quaternion based formulation is used. The complete

derivation of the filters is straightforward and abundant in the literature. We refer

the reader to appropriate references like [116].

3.2 World Observations

In this section we handle the case where sensory input is an observation of the

world. This include the case of 2D laser sensors, RGB cameras and so on. Raw

data as such provides vertex data. The neighboring relationship between successive

points can also yield precious information about the underlying surface. Then, color

information if available can be crossed with vertex data to provide with colored

point clouds. Such data is preprocessed and fed directly to the tracker in order

to increment accurate updates of the positions given a guess provided by direct

odometry. The whole pipeline is described hereafter using the Microsoft Kinect 2

sensor as an example of input sensory data.

3.2.1 Calibration

The Offline calibration step is a prerequisite to any computing involving cam-

eras. The aim of this step is to compute intrinsic parameters corresponding to focal

lengths and center position but also, for RGB-D cameras for instance, the extrinsic

parameters which allow to project vertex data extracted from the depth data using

intrinsic parameters onto the RGB camera frame in order to associate each vertex

with its corresponding RGB data. In the case of the Microsoft Kinect2 sensor we also

include an intensity level which associates the underlying surface vertex with an ap-

propriate reflectivity value. For multiple sensors scenario, the relationship between

each of the sensors involved in the sensing loop also needs to be recovered. When

multiple sensors look at the same area these extrinsic parameters can be extracted

by matching common parts of the image data accross the different sensor frames.

This is the case in a classic stereo camera pair setup. However, his relationship can
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be harder to recover when sensors point at divergent parts of the world. For the

case of cameras and single RGB-D cameras, we base our calibration process on a

classic implementation of chess board based calibration as widely used in the com-

puter vision community. Figures 3.2.1 and 3.2.1 show respectively a chess pattern

as seen from the RGB camera and infrared camera. Multiple samples at different

viewing angles allow to compute a best fit for the intrinsic parameters. For RGB-D

cameras, we validate a chess pattern only when it is simultaneously viewed by both

RGB and infrared camera. Doing so, a best fit for the stereo transform between the

two camera frames can be estimated. This is shown in the figure below :

図 3.1: Chess Pattern as viewed from the RGB camera

Note that the Miscrosoft Kinect 2 at an initialization step streams factory cali-

brated intrinsics which are usually good enough to work directly with. Once this

step has been completed, each sensor is ready to use but the multi-sensors setup

requires a step further. If the setup is convergent a classic cross frame matching

is performed and the transform between each sensor pair can easily be recovered.

The divergent setup is however slightly more difficult to deal with. Since sensors

don’t point at the same region of the world, immediate cross matching cannot be

performed. In order to recover the extrinsics between divergent sensors we tested
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図 3.2: Chess Pattern as viewed from the IR camera

two procedures which are shown in the figures below. In the first one the second

camera is static and starts by initializing a static frame. The frame is temporally

filtered. The first camera on the hand initializes then builds in an incremental slam

fashion a frame graph until an overlapping region with the second camera’s frame is

found. The graph is made of multiple successive frames and associated transforms.

Once the overlapping region is detected extrinsics can be computed in a straightfor-

ward fashion. The alignment can be performed in a geometrical fashion using ICP

or by using direct frame to frame optimization using color data or both depending

on which data is available in the input stage. As such the procedure does not need

particular environments or setups to complete but any environment should provide

reasonable estimates. Needless to say that environments at smaller scales will pro-

vide with best accuracies. Note that larger point clouds can accumulate larger drift

values which in return can affect the accuracy of the extrinsic parameters to recover.
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The experiment is repeated and results appropriately averaged. The procedure men-

tioned above consist in a minimization between one frame from one sensor and a

open graph made up of multiple successive frames. Since the graph is open, as it

expands through time it adds on drift which hence affects the quality of extrinsics

estimate. In a second procedure we tried to limit the impact of drift by constructing

a closed graph. The graph consist of two branches. The first one consist of an open

graph from the first sensor to the second while the second branch consist of the

open graph from the second sensor to the first one. The cross frame transforms are

computed through ICP or direct optimization. Once the graph is completed a loop

closure constrain is inserted and the whole graph optimization takes place. Note

that the inter frame transform covariance is properly scaled to a factor to account

for sensors with different precisions.

3.3 Sensor Model

Multiple factors can corrupt the data provided by sensors. Understanding the

impact of noise and sensory errors on the quality of sensory output and hence on

the reconstruction algorithms in general is of primary importance and has been an

important issue in the literature. We give below a brief description of the most

common of such errors and their source :

• Maximum range : Sensor have a range where they behave almost linearly. Out

of that range the maximum or minimum output voltage is returned.

• Nonlinearity : The sensitivity to the changes in a measurable variable is sup-

posed to be constant, hence describing a linear relation. In practice, this is

never the case.

• Null-shift error : describes the constant bias error when the sensor is static.

• Misalignements errors : These come from two sources. The first is the small

additive angles that exist between sensory components. The second comes

from misalignement of the whole sensor with the containing board.
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• Cross-Axis sensitivity : Describes how much of ouput is seen on an axis given

an input on a diferent axis.

• Quantization errors.

• Technology related noise such as photon noise in a CCD camera and so on.

Multiple sources with different noise distribution and levels can add up and

which are usually represented by a gaussian noise.

Moreover, some of the sensor properties can change through time or with tem-

perature like sensitivity or zero-bias. In a robust system, this change should also be

taken into consideration to derive a full sensor model. Additionally, the underlying

technology in use can bring additional effects such as rolling shutter distortion on

CMOS sensors, optical distortions, distance ambiguity on phase shift based time-

of-flight sensors and so on while fast motions can provide with even noisier signals.

The quality of a sensor data is directly impacted by the degree of noise inside the

sensor itself but can can also be affected by the scene viewed. For instance, for

an IMU higher accelerations can corrupt more strongly the angular estimates while

surfaces with low diffuse reflection or high specular reflection can result in a poor

laser data and distortion in comparison with the real world geometry.

Figure 3.3 shows an example of data acquired with a kinect 2 sensor. The envi-

ronment consists of a white lambertian like wall along with a black smooth monitor

screen. The apparent noise levels from the figure is clearly more important for the

screen points. Finally another limitation comes from the quantization resulting as

sensors use a finite number of sensory elements to sense the world geometry or pho-

tometric properties. This can consist in a fixed image resolution for a camera or a

finite number of dots on the IR pattern used by the Microsoft Kinect Sensor and so

on. As the depth of the scene increases the expected results get quantized to closed

achievable sensory resolution. Finally, we make an important distinction between

the precision and the accuracy of a sensor. The precision describes the variability

of the sensory result and is directly impacted by the random noise inside the sensor

while accuracy is how does the sensory data compare to the ground truth which
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図 3.3: Point cloud captured with a Kinect 2 sensor

is affected by systemic errors like poor intrinsic or parameter calibration or can be

impacted by the environment itself. The precision of a sensor is usually character-

ized by a distribution. It is important to note that measured data and output data

can be different values. For instance, a Microsoft Kinect measures disparity while

we are interested in the accuracy and the precision of the output 3D point cloud.

From the disparity measure an estimate of the depth Z is computed then using a

pinhole camera projection model the values of X and Y coordinates are extracted.

Even if a thorough study of input sensor noise model is performed, extrapolating

the result on the output value, which most of the case is linked to the input with a

complex non linear relationship, is difficult and the most simple assumption which

uses a linear model on the input data and a linear approximation of the input-output

transformation does most of the time not hold in real. Moreover since each sensor is

fundamentally different in terms of technology and input-output relationship, vari-

ous works have tried to derive a model for each sensor in particular like stero cameras

[117], Microsoft Kinect [115] or Swiss Ranger [118]. The Kinect2 sensor works with

the time-of-flight principle. It send a signal and receives it back with a phase shift.
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This phase shift is linearly related to the distance to the obstacle. In order to make

one frame (one 512*424 frame) Kinect2 captures 10 different 512*424 images : 3

different frequencies with 3 different initial phases and one with the projector off.

These 10 frames are sent through USB 3.0. The phase shift relates to the computed

depth through an approximately linear relationship but in order to derive the phase

shift the input image signals are combined in a non linear relationship fashion.

A precise modeling of the entire sources of noise is usually a hard problem. For the

present work we write a simple linear model which sums up the most important error

contributions commonly met within most of sensors. We write our model directly on

the output. It takes into account the zero-bias, the scale then a normally distributed

noise. Even such a simple model where the fixed parameters are correctly estimated

and the precision correctly quantized can largely contribute to the accuracy of each

sensor and to the accuracy of the system as a whole. In our system, the sensor model

first contributes to derive results as close as possible to the ground truth but also

selects the appropriate scale to write the map and which accounts for the precision

at each point data. Conversely, when such model in neglected, both trajectory,

accuracy and memory can largely be impacted as more map cells are needed to

store a noisy signal. Also, assuming a linear model with normally distributed noise,

section 4 describes how new data are fused throughout time inside a single cell

effectively resulting in a smooth signal. Kinect2 works according to time of flight

principle. It send a signal and receives it back with a phase shift. This phase shift is

linearly related to the distance to the obstacle. The signal input s0, s1, s2 is related

to the phase through the relation :

φi = arctan(
f(s0, s1, s2)

g(s0, s1, s2)
) (3.5)

where f and g are linear. Furthermore, the corrected depth is recovered through

an approximately linear relation. Supposing that the input signal variance is known
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the impact on the output signal Vo can be recovered trough the relation :

σ2

o =
∂Vo

∂Vi

2

σ2

i (3.6)

Thus, if the input signal is assumed to be normally distributed, the input-output

relationship is usually non linear and the normal distribution for the ouput does

not hold anymore. However since the variance of the true underlying distribution is

finite, the filtered output signal converges to a normal distribution. We hence write

the output sensory value as:

Vo = V0 +K ∗ (Vi) + w(D, t) (3.7)

where the term w(D, t) is an overestimating normally distributed noise which

denotes the variability of the sensor and Vi is the non corrected sensory output.

For most of sensors in presence, we hence proceed to comparing the sensor data

to ground truth values to derive the null shift and the scale factor after what the

variance of the underlying normally distributed noise assumption is estimated. For

the Kinect2 sensor, we record the values at center and extremes of the sensor facing

planar surfaces ranging from white rough planes to dark smooth surfaces. The figure

below represents the results for a white rough wall surface which we can assume close

enough to the lambertian case. A hundred sample data has been taken for the center

pixel and for the corner pixel of the kinect2 sensor and the variability of the signal

has been recorded at different to trace the evolution to the system noise at different

distance values from the target.

Figure 3.4 shows four graph of the center pixel and corner pixel of the image data

provided by the Kinect 2 sensor with and without mean filtering. We notice that

corner pixels induce noisier outputs compared to the center pixels. The position to

the plane is of another impacting factor as the emitted signal strength falls quadrat-

ically with the distance to the object and hence is more prone to noise at longer

ranges. We truncated the data to 5m as a maximum measured range. The stan-

dard deviation varied from few millimeters to few centimeters for longer distances

to the plane and for corner pixels. We also noticed that smooth object induces on
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図 3.4: Standard deviation of the distance to plane

average twice as much noisy signals while the curves obtained were acquired with

a material which has close diffuse properties to lambertian surfaces. From these

observations, when using the Kinect2, sensor ranges under 2 meters are mapped

at the highest possible resolution while ranges between 2 and 4 meters fall under

the next resolution. Ranges beyond 4m are conservatively mapped at even lower

resolution. The graph also highlights how proper filtering can dramatically increase

the precision of the sensor but in practice, and especially since the present system is

to be implemented on robotic platforms, fast motions prevent from using temporal

filtering hence the conservative values we took to assign the resolution of each point

in the cloud based on the range distance measured.
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3.3.1 Input data

図 3.5: Input Filtered data from an RGB-D sensor

Figure ?? shows an example of data extracted after bilateral filtering from the

Kinect2 sensor. Kinect2 works according to time of flight principle. It sends a signal

and receives it back with a phase shift. This phase shift is linearly related to the

distance to the obstacle. In order to make one frame (one 512*424 frame) Kinect2

captures 10 different 512*424 images : 3 different frequencies with 3 different initial

phases and one with the projector off. These 10 frames are sent through USB

3.0 and transformed into meaningful IR and depth data as shown in the Figure.

Kinect2 Also sends a higher resolution JPEG compress RGB data captured from an

onboard RGB camera which is uncompressed and from which point cloud coloration

is performed. The raw data directly extracted from the Kinect 2 sensor is shown in

figure 3.3.1

As it often the case with time-of-flight based sensors, edge regions are considered

high noise regions which brings the need to implement an appropriate edge filter in

addition to a bilateral filter to fill the wholes.
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図 3.6: Raw input from Kinect 2 sensor

3.3.2 Filtering data

Bilateral filtering is one of the most popular methods to reduce noise in input.

The operation performed on raw depth data takes the simple form :

I(u) =

∑
i∈N

wiIi
∑

i∈N
wi

(3.8)

Such that :

wi = exp(
−(I(u)− I(ui))

σ2

I

)exp(
−||u− ui||

σ2

U

) (3.9)

where the variance of the space and intensity gaussian kernels are empirically

chosen. The result of applying bilateral filtering to the input is shown in figure 3.3.2

Next step consists in removing the saturated pixels and reducing the noise around

the edges through edge filtering and truncating to min and maximum values which

ensures limited and noise attenuated depth data. The influence of edge filter only

is shown in figure 3.3.2
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図 3.7: Bilateral filtered raw data

The filters discussed here are spatial filters as they operate on a neighborhood to

attenuate the noise in the current frame. Previous section showed how a temporal

filter can reduce dramatically the noise. To illustrate the importance of a statistical

filter like a mean filter figure 3.3.2 shows the discrepancy from the mean computed

on the environment shown in figure 3.3.2. Darker colors in figure 3.3.2 denote higher

discrepancy values. We can notice that corner pixels or pixels with far range show

higher noise values as expected. Hence for mapping applications, for instance where

a map of has to be created and saved for robot to use during later operation as a

base for localization, a mean filter is implemented and allows to build more accurate

and noise free maps. Such operation however requires the operator to map in a stop

and go fashion as movement during the filtering process can induce errors which

hinder the objectives we first pursued to justify the use of a temporal filter. For

online SLAM this step is skipped. Another process to reduce the impact of noise

over time is described in chapter 4 of the present work.
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図 3.8: Edge filtered raw data

図 3.9: Mean Filter applied to test environment
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図 3.10: Test environment for mean filter

3.3.3 Vertex Extraction

Depth data along with calibrated intrinsic camera parameters allows to recon-

struct a point cloud. For that, given a point u associated with depth z, the vertex

point p ∈ R
3 associated with the pixel is defined by π−1 :

π−1(u) = p = (
z ∗ (u− cx)

fx
,
z ∗ (v − cy)

fy
, z) (3.10)

The point cloud which results from such operation is shown in figure 3.3.3

3.3.4 Normals Extraction

Multiple methods have been proposed in the literature to compute normals from

a point cloud among which computing normals directly from depth as the cross

vector p(u+1, v)Xp(u, v+1), using Principal Component Analysis on the covariance
∑

i∈N
(p(u) − p(ui))(p(u) − p(ui))

T , integral images or difference of normals. In

the present work we use the PCA based method. The normal is associate to the

eigenvector corresponding to the smallest eigenvalue α which is extracted from the
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図 3.11: Colored Point Cloud

covariance matrix A. The eigenvector lies on the perpendicular to the image A−αI.

An example of the estimated normals are shown in figure 3.3.4.

図 3.12: Normal Estimation
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図 3.13: Normal Estimation

3.3.5 RGB Projection

First let’s define the point p = (x, y, z) ∈ R
3 and let’s denote π the function which

projects the 3D point p with its associated pixel u. For camera model following

classic convention (x axis to the right and z pointing out of the camera) with a local

center of reference at the optical center (cx, cy) and with focals (fx, fy) we have :

π(p) = u = (
fx ∗ x

z
+ cx,

fy ∗ y

z
+ cy) (3.11)

The point p is first transformed to p′ in the local RGB camera frame centred on

the RGB camera center. It is then projected on the RGB camera image in order to

assign the corresponding RGB triple using π(p′). The result of RGB coloration is

shown is figure 3.3.5.

3.3.6 Grayscale and Scale

Each vertex in the input point cloud is assigned an RGB value and normal data.

Moreover, a grayscale value is computed. This grayscale value will be central in
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図 3.14: Colored Point Cloud

the photometric tracking stage later described. A sensor model precomputed at an

offline stage maps a point p to a corresponding level l. In our model lower levels are

assigned to less accurate vertices. This is important to ensure that noisier data does

not corrupt data acquired at closer ranges which usually provides superior accuracy

as it has been demonstrated in a previous section.

3.3.7 Intensity Gradients

Normals data is central to geometrical tracking introduced in a later chapter.

For photometric tracking a prerequisite is to compute the intensity gradient which

essentially provide direction and intensity of photometric data variation. These are

computed using a classic Sobel filter. An example is provided in figure 3.3.7.
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図 3.15: Intensity Gradients

3.3.8 Pyramid of Data

Finally the last step is to compute sensory data at lower scales. These lower scale

version are central to making the tracker able to cope with larger and faster motions.

A second important role of the pyramid is such that data at lower accuracy level

is compared against pyramid data at lower scales. A pyramid reconstruction of our

sensory stage is shown in the figures below. A pyramid example is shown for three

different levels and for multiple components of our sensory data.
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図 3.16: Point Cloud at level 0

図 3.17: Point Cloud at level 1
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図 3.18: Point Cloud at level 2
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図 3.19: Point Cloud Normals at level 0
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図 3.20: Point Cloud Normals at level 1

図 3.21: Point Cloud Normals at level 2
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図 3.22: Intesity Gradients at level 1

図 3.23: Intensity Gradients at level 2
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Such pyramid data is built for the whole pipeline. The pyramid form of data

along with the direct odometry based guess forms the output of the pre-processing

stage and hence the input for the tracking and mapping stages.

3.4 Conclusion

The present chapter has discussed all preprocessing operations needed to form

a denoised data as input for the tracking and mapping stage. The discussion has

considered all aspects of the pipeline focusing on the role of odometry and observa-

tion in the sensing pipeline. A model of sensory input and a simple linear model of

sensory errors has also been proposed and a precision test for the case of the Kinect2

sensor has been acquired. Such model allows to assign each point in the cloud to an

appropriate scale to preserve poor estimates from corrupting more accurate ones.

Then, the different stages of the sensor preprocessing pipeline have been explained

and the importance of proper filtering has been stressed. Next chapter will describe

our map representation, map stepping and map fusion algorithms.





第4章

Multi-Resolution 3D volumetric

Map
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The ability of creating 3D maps of surrounding environments has been one of

the most attractive research areas in recent years with application spanning a large

scoop such as augmented reality, video gaming, architecture, navigable space for

mobile robots or for the visually impaired. For large environments, map creation is

usually paired with solving a tracking problem to extract the sensors position first,

then holding such position information, create a mapping of the surroundings. In the

robotics community such combination is known as SLAM as it has been described

in the first chapters of the present work. In the previous section, we established how

the input to the mapping stage is a pyramid of data comprising vertex, normals,

color, scale and gradient attributes. Our goal is, given successive and overlapping

input pyramid data, how to fuse all estimates into one consistent map. As it has

been pioneered in the work by Klein and Murray [68], mapping can be run parallel

to the tracking step at lower frequencies. Moreover as it widespread in the keyframe

based approaches, mapping cleverly chosen sparser data and tracking against such

data can induce less drift than mapping every frame coming along. This is especially

the case when the mobile robot is idle. Thus, the mapping process runs at an order

of magnitude lower frequency than its tracking counterpart. However, the longest

running path of our system comprises tracking and mapping in series even though

most of our system will be performing tracking alone. The longest running loop of

our system determines its reactivity and hence mapping at high speed is a primary

objective we pursue in this section. Another central issue about mapping, especially

for the robotic field, is whether a volumetric map is generated or not. A volumetric

map allows to create a 3D map representation where the distance between any two

points in the map is readily extractable or can be identified as unknown to the sys-

tem yet. This contrasts with the pure keyframe representations like [104] where the

map consist in a succession of interconnected graph nodes storing the input sensory

data. Obstacle avoidance on such map representation can be more cumbersome and

dynamic obstacles can be handled poorly or not at all which limits its use for live

navigation of mobile agents. Also, note that nodes in a graph can store redundant

information which impacts both the memory consumption and needs for a process
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to determine how to retrieve information from multiple redundant sources. A more

memory efficient representation is to maintain a global volumetric map model where

old information is fused with new one which guarantees no redundancy and allow

to readily extract the necessary information from the map without the need of any

disambiguation process. Another advantage of volumetric maps is the ability to

extract parts of the map to visualize or the ability to traverse the world which is

necessary for planning applications. However, even if model maps are more memory

efficient, on the other hand they can require important computational resources to

insert new point clouds which become even more of a problem when the map model

needs to be reconstructed in a live scenario. Volumetric maps can be created in

real-time such as [13] or offline like [96][97]. An advantage of real-time availability is

to be able to use model to frame tracking based algorithms which often show higher

accuracy and are less prone to drift. Also, the ability to inspect or plan on the fly

using the reconstructed map is another prerequisite to achieve autonomous naviga-

tion. Volumetric maps require to specify two fundamental aspects : the underlying

map representation i.e which data is going to be stored in the map then which data

structure is to use in order to achieve a good trade-off between speed and memory

management. With respect to the second aspect of a map description, tree based

structures can provide good map compression but yield increased latency. Trees can

also be used to represent efficiently maps at different scales. Plain arrays have also

been used but they require important memory resources at high resolution map-

pings which constraint most of them to small workspaces. Plain arrays can make

data available for access at optimal speed. This is especially the case for the original

KinectFusion approach [13]. A solution to the workspace limitation shortcoming has

been proposed by [108] who has used rolling volumes which store back to drive parts

of the buffer which lie far from the sensor view. A shortcoming of this approach is

that revisiting previously mapped areas becomes more difficult to implement and

the global field of view of the agent has not been larger in essence. This makes it

harder to implement on a real robot which can show pseudo random movements and

trajectories in the space. A popular example of trees is the Octomap [40] framework
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which stores a multi-scale volumetric 3D map in the form of a voxel octree. The

whole tree has a single root which breaks into 8 children until reaching the mini-

mum voxel size allowed. Octomap discriminates free occupied and unknown space.

Such distinction is very precious for planning applications. Octomap’s unique root

model makes it harder to use efficient parallelization on tree operations. Moreover,

Octomap acts relatively slowly and hence can be challenged when mapping hundred

thousands rays at sensor update speed.

The underlying representation stored in the map can be either implicit like Signed

Distance Function (SDF) or Truncated Signed Distance Function (TSDF) volumes

[41] or explicit like occupancy grids [39] and surfel maps [95]. Most SDF based maps

applied to SLAM problems store the distance to the surface along with a weight

factor. The weight factor updates as data is redundantly fed to the same voxel cell.

The SDF stores minimum data and hence SDF based approaches have generally

a smaller footprint. In SDF volumes, data cannot be readily read from voxels

but has to be extracted by averaging neighboring cell information. This includes

surface position and orientation. Such operation can account for important latencies

especially if the data structure associated with the SDF module has high latency

stepping such as trees. Surfel maps on the other hand store necessary surface data

at each voxel in an explicit fashion. Vertex position, normals, RGB and probability

of occupancy all have to be stored in an explicit way. Doing so, they have higher

memory requirements. On the bright side, data is readily available and does not

need interpolation to be usable.

In this chapter we describe our main map structure which holds the key to on-

line reconstruction of large volumes without any workspace limitation and with still

conserving real-time update and access attributes. We thoroughly test the compu-

tational capabilities and the memory cost associated with our map structure. The

tests have been conducted on a million data at for high resolution down to 5mm.

They all showed how our approach allows real-time operation and outperforms other

”naive” ones. On the memory cost side, we map a large room and record the mem-

ory requirements for the structure as well as different offline storage format. The
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online memory cost is such that a large building can be mapped at high resolution

especially for the case of mobile robots which do not require full resolution to achieve

their tasks. Next chapter will describe our front-end tracking algorithms and how

they take the most of our structure to enable fast, agile and robust tracking.



第5章

Direct and Model Based Tracking
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Front-end approaches come in different flavors in the literature following which

sensing technology they base on, the range of movement required to cope with and

the desired accuracy. For laser based method this step called scan-matching aims at

aligning a laser scan with a previous scan or an online map. It divides in ICP [119]

based methods [120], correlative methods [121], greedy hill-climbing methods [122]

or direct optimization like Hector Mapping [123]. ICP has been arguably the most

popular of these approaches and can, with good initialization, converge to an accu-

rate solution in few iterations. ICP based methods suffer from two main constraints.

The first one, as already pointed out, requires initialization of the optimization pro-

cess in a convex neighborhood of the solution. Further initializations can result in

false solutions or can be blocked in local minimums. The second constraint remains

in the nearest neighbor search performed at the beginning of each iteration of the

algorithm. This step is seen as the most time consuming point of the algorithm

and can without appropriate structures or search strategies hinder real-time per-

formance. In order to speed up the nearest neighbor step, well established method

use KD-trees or regular trees like octrees or hierarchical trees or dynamically con-

figure at runtime which partitioning can yield more speed-up such as the approach

taken in the widely used open-source implementation FLANN [124]. Strategies for

speed-up include limiting the neighbor search to a neighborhood around the input

point, requiring only an approximate nearest neighbor, or searching the neighbor

on a common projection of the 3D space. A comparison of ICP variants is pro-

vided in [125] and a comparison of nearest neighbor search implementations can be

found in [126]. The ICP algorithm can be used to align any set of ordered or non

ordered point clouds. They provide a good compromise between speed, range and

precision and will be the preferred class of algorithm we base our fame to model

tracking on. Monocular SLAM approaches on the other hand have for a long time

primary used a feature based tracking like PTAM [68] where corner or blob detectors

extract interesting points in an input image, descriptors are computed for all or a

set of these features, associations are computed and an outliers robust optimization

scheme like RANASAC iterate to find the best transform between two successive
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frames. Associations can be found at higher speeds using a fast search scheme like

vocabulary trees [94] or indexes. Direct optimization methods on the other hand go

back to Lucas and Kanade’s gradient descent based approach but with the advent

of more affordable paralell programming have only recently increasingly superseded

feature based approach in literature. Some very recent successful approaches include

DTAM [84], DVO [103][104], SVO [72] and LSD-SLAM [127][85][86]. An early de-

scription of visual tracking methods is provided in [128] while a complete description

of recent feature based tracking pipeline is provided in the excellent set of tutorials

by Scaramuzza and Fraundorfer [82][83]. Direct optimization methods in contrast

to feature based approaches use all or most of the data available ie all or a large

set of pixels in the input stage without computing a discriminating descriptor for

each point to include in the optimization step. By doing so, they retain most of the

important information which in contrast can be skipped by labeling only a small

fraction of entry points as features and hence provide higher tracking accuracies.

Dense approaches like DTAM use all pixels available while most recent methods

guarantee more speed-up using only pixels associated with strong gradient which

has been labeled as semi-dense methods like [127] or semi-direct scheme like SVO

[72] combining direct alignment with light feature based refinement.

This chapter introduces four tracking methods, two of which are geometric meth-

ods while the two others are photometric. These algorithms can further be classified

as direct optimization based and model based. All the proposed approaches are

dense in the sense that no feature extraction scheme is extracted but all pixels from

the input stage are used as such. We propose a full derivation of each of these algo-

rithms as well as strategies for additional speedups and robustness. We have tested

their speed and convergence properties which mainly showed the superiority of the

model based geometric tracker while the direct optimization photometric tracker

proved the most valuable photometric alternative. This approach has essentially de-

scribed front end approaches. A SLAM system made solely of front end algorithms

can behave well locally but starts to accumulate serious drift and global errors as

the sensor moves away from the starting point and explores large environments. The
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solution to the full 3D SLAM problem is discussed in next chapter.





第6章

Full 3D SLAM
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We describe in this chapter our full system architecture as well as how to solve the

full 3D SLAM. In the last chapter, we introduced four tracking approaches. Among

these four, the model based geometric tracker and the direct photometric optimiza-

tion tracker proved more performing than the other algorithms. We therefore chose

to use them in cascade to allow our system even increased robustness in the case of

systems with poor geometric features or poor photometric features. Used alone a

geometric tracker alone can fail in flat areas where not enough or noisy geometric

features as shown in figure 6. For the same scenario, if enough photometric features

can be extracted from the scene, using the geometric and the photometric trackers

in cascade allows correct tracking as shown in figure 6. Conversely, as shown in

figure 6, using the photometric tracker alone in areas with poor photometric fea-

tures can result in bad quality tracking and in consequence failed mapping while the

geometric counterpart can converge nicely 6. For such reasons, and especially for

systems which need to guarantee a degree of robustness against failure like disaster

area exploring robots, using both tracking schemes in cascade is important.

6.1 Back-end SLAM

As it has been shown in last chapter, front-end SLAM systems are characterized

with an accuracy and a precision. The accuracy of the system can be impacted

by the systemic errors like poor calibration, approximations, or by the environment

itself. As the camera moves further away, dynamic objects, occlusions, decreasing

overlapping can deprive the incremental tracking of precious information and hence

result in erroneous estimates. The tracking result is also entailed with variable noise

as the process is impacted with various random noise sources. As new views are

added by the mapper, the incremental accuracy is such that the process seems to map

accurately but when the camera moves further and drift accumulates, comparison

of the last and first frames indicates a clear global error. Such phenomenon is

exacerbated when the mobile agent loops back to previously seen areas and the

error is such that the tracker cannot possibly recover a mapping good enough to
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図 6.1: Tracking with a geometric tracker alone. In environments with little geo-

metric features failure can happen.

transit from the first and last views. Loop closure if not properly handled can

create enormous corruption in the map, and eventually cause global localization

failure. This is shown in figures 6.1.1 and 6.1.1. Figure 6.1.1 shows an experiment

conducted in a room of 25m2. The camera traverses the room and loops back.

Figure 6.1.1 shows the reconstructed environment with an apparent loop closure

artifact in the center of the image. The artifact is zoomed further in figure 6.1.1.

The amplitude of the error in this case is small and is not likely to seriously corrupt

the map, cause high tracking errors or complete loss. The experimentation section

presents a second case where the trajectory has been modified to pass through more

error prone views and the resulting loop closure error is drastically more severe.

6.1.1 Loop Detection

In order to solve the loop closing problem two essential components are neces-

sary. The first one is a loop detector. The loop detection in literature has taken
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図 6.2: Tracking with a geometric tracker and a photometric tracker. In environ-

ments with little geometric features tracking converges.

many forms such as matching visual appearance [56][57][58] or any other frame to

frame matching algorithm such as laser scan-matching. Classifier based approaches

which create a dictionary of visual words can scale to very large environments. The

matching step essentially labels each frame to match against using visual words only

and hence a simple word proximity criteria can prune away most of the candidates

and return a small number of candidates only. If the detection step is fast and

scales nicely with the number of frames, a major drawback is the possible necessity

of training the classifier either once by collecting samples from the environment to

map and hence the most likely features or by reconfiguring the classifier on the fly

during the online operation as new features come in. Without a sparse classifica-

tion the return frames can be large and the benefit of the approach hindered by

poor configuration. The need to reorganize can either impact the online operation

or work against the present work’s objectives where environments are supposed to

be completely random and unknown. For this reason we choose a frame-to-frame
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図 6.3: Tracking with a photometric tracker alone. In environments with little

photometric features failure can happen.

approach and use the photometric matcher to complete the match as it has showed

an attraction basin large enough to find correspondences from frame far apart from

each other. As a consequence, in addition to the online map update by the front-end

SLAM counterpart, the back-end SLAM manages a graph. The graph essentially

stores the sensory data from all sensory input along with a position estimate and

an information matrix. The detection step consists in scanning all the frame from

the past data and returns the best match candidates. These candidates are further

scanned in order to compute a more precise transform. The candidate with the

highest score is selected to be the closing view. If the score is above a threshold the

loop closure is further confirmed. Note that the lack of convexity of the photometric

matcher calls for a higher number of iterations to scan potential candidates than

actually required for the tracker. Each single scan runs for a fraction of a millisec-

ond on multi-core CPU and hence limits in practice the number of frames to scan

to some 100 frames for strict real-time requirements.



— 第 6章 ： Full 3D SLAM — 97

図 6.4: Tracking with a geometric tracker alone. In environments with little photo-

metric geatures and enough geometric features tracking converges.

図 6.5: Looping back trajectory. Loop closure issue occurs.
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図 6.6: Looping back trajectory. Loop closure issue occurs.

6.1.2 Loop optimization

Recent insights in sparse linear algebra in association with the full SLAM deriva-

tion has led to increasingly fast and efficient graph optimization approaches. The

proposed literature for graph optimization is immense and has reached a state of

maturity [59][60][61][62][63][64][65] with g2o being probably the most used solution

in recent literature. For the present case we use the most recent g2o [66] framework

to solve the graph optimization problem. Upon loop closure detection, and if a

certain threshold in the quality of the detection holds, the loop optimization takes

place. The information matrix associated with each edge can be expressed as :

I = (JTJ)−1 (6.1)

where the matrix J denotes the jacobian of the tracking problem. This matrix es-

sentially captures the quality of the tracking. Increments with fewer associations will

essentially have less information and hence less weight in the optimization process.

Also note how the weights defined in chapter 5 improve the quality of optimization



— 第 6章 ： Full 3D SLAM — 99

as noisier data are assigned smaller weights which in return translate in less infor-

mation. As such, branches which are likely to be corrected are first those which

yield fewer number of associations then those on which noisy points prevail. Note

how each dimension of our six dimensional tracking vector act with a certain degree

of independence as the number of associations found can be high but contribute

in one degree of freedom only. In such case the information matrix will change in

consequence to accommodate for the fact that one degree of freedom is noisy while

the other are computed with a higher degree of confidence. The graph optimization

essentially results in new position estimates for each frame stored in the graph while

the online map stores all past data in a fused form. The fact that data has been

fused in the online map means that rolling back in the past is impossible. In this re-

gard, when the graph is optimized the sub map stored in the limited depth structure

is erased. Since the local submaps are essentially allocated sequentially the erasing

operation requires a stack pointer manipulation and a contiguous array erase only

and hence runs fast. A reinsertion operation then takes place where all the frame

sensory data are inserted all over using the corrected position estimates. Since the

insertion operation is fast as it has been proven in chapter 4, a redrawing of a whole

room completes in about a second. On the overall the whole detection, optimization

and redrawing of local submaps takes about a little more than a second to finish.

During this time the robot could have moved away which can, after returning to

normal tracking operation account for a too much displacement for the system to

track correctly. In this case we can either call for stationary behavior on the part

of a mobile robot for one second time or reduce the navigation speed. For such a

reason, during optimization and redrawing, the model based geometric tracker is

disabled and only the photometric tracker is kept running as a local copy of the last

keyframe is saved and tracking is performed against. Moreover, since we use pho-

tometric matching for loop detection, we are guaranteed that areas of matching are

also areas where photometric features are strong enough and hence where a photo-

metric tracker alone can achieve good accuracy. Doing so, during the time required

for optimization and redrawing the system can still be reactive enough. During
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this short period the number of iterations assigned to the photometric tracker is

increased.

6.2 Experimentation

6.2.1 Room Experiment

We use a calibrated kinect2 sensor for the present experiment. We walk with a

handheld camera through a 25 m2 room and run our system. The current scenario

contains one loop only. The experiment was recorded at human natural speed. A

step by step reconstruction is shown in figure 6.2.1.

The upper view of the whole open loop reconstruction is shown in figure 6.2.1.

The figure shows an overall good reconstruction with small incremental drift merely

discernible. However as the drift accumulates and the front-end SLAM loops back

to previously visited areas, a loop closure artifact becomes apparent. 6.2.1 shows

a zoomed view on the loop closure point. The error is severe and even if it does

not result on a tracking loss, continuing the experiment will lead to overwriting

the previously stored map and more serious drift. Note that the corrupted map also

results in an increased memory consumption in order to store additional noisy points.

Therefore, upon loop closure, the loop detection routine detects a loop closure and

computes a transform between the last acquired frame and the closing frame. This

transform is added to the graph as a new constraint. The optimization step takes

place and new position estimates are computed. Note that using the geometric

tracker alone or the photometric tracker alone result in a different trajectory. For

example figure 6.2.1 shows the loop closure point using a geometric only for tracking.

As it can be seen the amplitude of the error is higher which shows the benefit of

using a combination of a geometric and a photometric tracker.

The full result of the whole process is shown in figure 6.2.1. The figure shows some

views taken from the reconstructed environment. Note how the environment looks

coherent without apparent major distortions. Some RGB color artifacts appear

in the scene as a result of the change in luminosity during the experiment. This
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phenomenon can further be dealt with by taking into account the angle of view

during the RGB data fusion. The data shown is rendered as a point cloud. Further

meshing can also take place to provide with even more visually appealing result.

For mobile robots the reconstruction shown has greater value.

Finally, figure 6.2.1 shows the runtime profile of the experiment. The computa-

tional time of each of the major threads is recorded at each frame. All the exper-

iments have been run on a laptop computer with a intel i7-4900MQ CPU and a

low end Nvidia Geforce GT 730M GPU. As the figure shows that the system guar-

antees a 20Hz runtime on this low end configuration. It is important to highlight

that the sum of all thread computational time is far more superior than the 50ms

required for our system. This shows the benefits of our parallel architecture which

runs different threads on different resources which guarantees both higher update

speeds and optimal use of our system resources. The system can be separated in

two main update steps. The first one runs the sensor and the mapper in parallel

while the second runs the tracker and the drawer in parallel. Each two threads in

each step executes mainly on either CPU or GPU side. As a result, the update time

can roughly be expressed as :

∆t = max(δtsensor, δtmapper) +max(δttracker, δtdrawer) (6.2)

The sensor thread requires a 20ms in rounded up average to compute the sensor

pyramid. This can be contrasted by the 12ms only required by the CPU in parallel

to register new point clouds in the map. With slightly better GPU the processing

time of the sensor thread can easily drop to about 10ms only. The tracking time

is the sum of the required time to complete each of the geometric and photometric

tracker. The photometric tracker used for this experiment has been run on one core

only whereas it can be trivially parallelized on multiple cores for additional speedup.

With four cores we expect a bit more than twice as a speedup. Moreover, with finer

parameter tuning the execution time can drop further as the number of iterations

has been used without parameter optimization in mind. The mapper has a 12 ms

running time which is fast enough for most applications. The drawer’s execution
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time varies from few milliseconds to 15ms. Note that most of the time the drawer has

little to run. The sudden increase in the drawer time happens when new areas which

are not stored yet in buffer need to be drawn. For incremental drawing few areas

of the image only are refreshed whereas during initialization and looping back large

chunks of the map are modified. The drawing time stays fast enough. We should

highlight here that the experiment has been conducted with 5 levels of tracking and

mapping. For most of the robotics navigation applications, the requirements are

much lower than those experimented in this section as the maximum level depth

can be set to 2 which brings the mapping time further down and has very strong

impact on the tracker execution time as it has been shown in the previous chapter.

Moreover, upon loop closure, the loop closure detection time was about 30ms while

the graph optimization time was about 10 ms as the number of optimization steps

was set relatively low. The redrawing time was the biggest source of system latency

and required one second to complete.

6.2.2 Two Floors Laboratory Structure

The next experiment considers the case of large environments. A handheld kinect2

sensor travels a structure which consists of two large and one small room, two small

kitchen spaces, two corridors, stairs which spread accross two floors. The environ-

ment presents three loops through each of the main three rooms and a number of

source of noise and inaccuracies. Most notably the floor in the corridor was made

of a material with high reflectivity which strongly corrupts the point cloud acquired

with the kinect2 sensor. Moreover, large uniform walls with little texture spread

all along the stair area which marks the transition between the two floors. The

overall walk accounts for about a 100m in linear displacement and 150 rad of an-

gular displacement mostly due to body motions during the experiment. The overall

reconstructed environment is shown in figure : 6.2.2.

As it can be shown in the figure the overall reconstruction presents little visual

global error, the structure alignments over the floors does not present major dis-
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turbances even though the environment presented serious mapping challenges and

multiple sources of severe noise. Note that the trajectory crosses multiple times

narrow doors where the field of view shrinks to a small window only with little

salient texture only. These areas of transition accounted for most of the visual er-

rors observed. Small and fine details in the map were inserted with high accuracy

and loops closed correctly. Both the photometric tracker and geometric tracker

were used in cascade for the whole experiment. Note that either approach’s result

is discarded when the score falls under a precomputed threshold. Throughout the

entire reconstruction process tracking was not lost, ie both approach never failed si-

multaneously. The geometric tracker failure indicates strong corruption in the map

which never happened through the experiment even in areas with high geometrical

frequencies whereas the geometric traker failure happened twice : once during the

transition through a narrow door and multiple times in the transition area marked

with large white structure with scarse texture. In these cases the geometric tracker

result alone was conserved and sufficed to carry on the experiment without any ma-

jor decrease in the accuray. Note that using either of the approaches alone in such

complex environment result in either large global localization errors with non neg-

ligible translational error along the geometrically ambiguous corridors (when using

the geometric tracker alone) or early global failure due to tracking loss (when using

the photometric tracker alone). This is shown in figure 6.2.2. Note that using both

the geometric and photometric tracker solves the tracking loss issue but without fur-

ther reasoning on each of the tracker’s performance also results in important global

error.

The scores for each tracker has been recorded troughout the experiment and plot-

ted in figure 6.2.2. Note that only frames which preceed a map write has been

conserved in the plot and denote the lowest score before new keyframe insertion.

These scores take two factors into consideration : the number of data assocations

and the noisiness of points in the point cloud processed. The point clouds recorded

on the first floor were taken from closer range than those acquired in the second

floor. Moreover, rooms and the corridor in the first floor presented high textured
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areas whereas the stairs presented scarse texture and the second floor corridor had

minimal texture only. This is translated by higher scores on the first part of the plot,

low ones in the middle part which correspond to the stairs area then average scores

in the last part of the plots which presented less texture and longer range data. Note

that the photometric tracker score slumped multiple times especially in the middle

part which corresponds the the stairs area. The point clouds corresponding to the

the point of failure are further provided in figure 6.2.2 and provide concrete exam-

ples of challenging environments to map. Note how the geometric tracker performs

uniformly accross the experiment with now major drop that would indicate serious

mapping failure.

6.3 Conclusion

In this chapter we describe the overall architecture of our system and how we solve

the full SLAM problem. The system can scale to larger workspaces and conserves

a good runtime profile when putting all the previously described components all

together. This is due to good allocation of system resources and concurrent execution

between the macro threads of our system. Experiments have shown how the system

can keep with tight speed update requirements even when run on low end hardware

using a high number of depth levels. Concrete experiments have shown that the

system is robust enough to run through large and challenging environments and

with limited global error.
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図 6.7: Step by step reconstruction of a room sized environment.
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図 6.8: Upper view of the full room reconstruction. Serious artifacts appear upon

loop closure in (a). These are corrected in (b)
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図 6.9: Zooming on the loop closure point. Serious artifacts appear upon loop

closure in (a). These are corrected in (b)
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図 6.10: Loop closure error using the geometric tracker alone.
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図 6.11: Step by step reconstruction of a room sized environment.
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図 6.12: Runtime profile of the system.
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図 6.13: Reconstructed lab environment.
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図 6.14: Using the geometric tracker alone (on the left) or the photometric approach

alone (on the right).
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図 6.15: Geometric and photometric trackers scores.
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The present research has presented a solution for the full 3D SLAM problem. This

solution can be adapted for real-time robotic navigation in unknown and challenging

environments or in order to quickly create highly detailed dense volumetric maps.

Such map representations can later be used for visually appealing rendering or as a

base for robotic localization. Our contribution to the field is threefold :

• We proposed a map representation with associated stepping and traversal it-

erators. Our map formulation allowed us to derive fast insertion, freeing,

raycasting and neighbor search algorithms. The enhanced speed we obtain

is crucial to be able to build highly detailed maps online and in real-time.

The memory compression is also such that large workspaces and maps can be

handled. Finally, the map is essentially multiscale. The multiscale property is

used by all algorithms for speed-ups but also as different points have different

noise amplitude, mapping proceeds by inserting each point at the correct scale

hence avoiding corruptions of more precise voxels with less precise data.

• A real-time agile tracker which builds on the association of a direct optimiza-

tion based dense photometric tracker and a model based geometric tracker.

The geometric tracker builds on our map iterators to extract at high speed

the exact nearest neighbors in a 3D neighborhood around candidates points

and run subsequent ICP optimization. This tracker shows large basin of at-

traction to the minimum cost solution with a marked convexity and hence

converges in few iterations only. The photometric tracker complements the

geometric tracker’s behavior and adds more stability and robustness against

environments with poor geometric features. A sensor model associates each

point at the input stage with a proper variance derived from a normal distri-

bution approximation. The point noisiness is taken into account during the

tracking stage to yield more noise resilient estimates.

• An architecture which solves the full 3D SLAM problem at high speed. The

architecture blends tracking, sensing, map insertions, map freeing, drawing,

loop detection and optimization in a concurrent way and such that at each
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moment distinct threads request different computational resources on the CPU

or the GPU side. The architecture as it has been designed allows to solve the

full 3D SLAM problem and render highly detailed 3D maps in real-time.

図 7.1: Comparison of our approach with other state-of-art approaches.

Figure 7 shows a comparison chart of our approach with some of the other state-

of-art approaches. Each of the approaches compared with has different properties,

use different tracking strategy, mapping representation or hardware support. In

terms of speed, our approaches reaches equivalent performance with the GPU based
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KinectFusion[13] without requiring a high end GPU to run. Conversely, it offers

superior flexibility as the multiscale character allows to tradeoff quality for speed on

the fly. Note that compared with KinectFusion, we have neither workspace limita-

tions nor tight memory constraints. We also support revisiting as a natural property

and very fast point look-up routines at any level of resolution. Stuckler’s approach

[14][99][100] uses a multiscale data structure but that comes at the expense of lower

runtime speed, accuracy and agility. Henry et al. [92][93] also use ICP as a geometric

registration support and feature based tracking but show significantly slower update

speed mainly due to their costly ICP implementation. Moreover, the online map

reconstruction routine accounts for a significant part of the computational burden.

DVO by Kerl et al. [103][104] is one of the most recent and promising approaches for

dense implementation on mobile robot. DVO essentially updates a graph and does

not propose a routine to build multiscale maps online. In this regard it proposes

less features than our approach for robot navigation and shows less agility.

Throughout this work experiments were conducted with high precision and quality

requirements whereas for most robotics scenarios and tasks lower degree of resolution

is enough to get through most of the missions assigned. And advantage of our

approach is that it can be adapted on the fly with the hardware capabilities or the

system precision needs and hence yield increased speed, agility and lower memory

footprint.

We see our work as a strong building block behind complete autonomous mobile

agents. The online and real-time availability of dense 3D volumetric and multi-scale

maps with fast access properties allows to run all subsequent planning, recognition

or semantic discrimination tasks seamlessly based on the data streamed from the

3D SLAM process. This work has, by proposing all necessary algorithms and de-

scribing a proper architecture, essentially proven that highly detailed maps and agile

tracking can be achieved in dynamic environments, on low end hardware with high

load sensors, in an online fashion, exhibit high memory compression ratios and still

perform with high enough speed.
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The present work can be extended in many aspects and also beyond the 3D SLAM

realm. As part of an autonomous robotic navigation pipeline, planning algorithms,

object and attribute segmentation, semantic discovery can be further appended. Dy-

namic objects detection, discrimination and representation can also be a promising

subject of research. Our work can handle a certain degree of variability and envi-

ronment hazards as outliers rejection and weighting has been implemented in each if

our tracking approaches in order to cope with these. The remaining dynamic points

are treated as noise, inserted at first then subject to subsequent freeing. In highly

dynamic environments however, their impact can be acute and a routine which takes

into consideration the nature of obstacles and alleviates their effect inside the track-

ing and mapping components seems a promising complement for the present research

and a key for narrowing the bridge between mobile intelligent robots and the rest

of our societies. In addition, scaling up to very large environments is an important

subject to tackle. Even if our approach provides with high memory compression and

loop closing capabilities and as such guarantees a natural extension of our approach

to large environments, very large exploration scenario can break the boundaries of

the underlying system in use. Moreover, ever growing loops and associated drift

ask for a place recognition routine which can explore a higher number of candidate

without loosing the real-time benefits of our method. For very large environments

a promising direction is to augment our work with an additional level of hierarchy.

For instance, based on semantic or localization criteria, the system can upload or

offload corresponding submaps. Submaps can be handled in a hierarchically supe-

rior semantical graph whereas submaps are grown and explored with the process

described in the present work. Finally, we have essentially considered the case of

a single agent with no interaction with other agents. Collaborative mapping and

mutual tracking has been an active subject of research. Extending the present work

with such capabilities can also be an interesting path to explore.
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