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Abstract

Symmetry allowed conical intersection plays a central role in excited state symmetry-forbidden re-

actions. As an illustrative example as such, we track the dynamical sequence of spatial-symmetry

breaking of B4 cluster, which has a rich electronic structure in the low-lying excited states, to see

how the relevant reaction proceeds. The semiclassical Ehrenfest method is used to detect the nonadi-

abatic electronic state mixing along the reactions. The essential feature of the nonadiabatic electron

dynamics is clarified in terms of electron flux and unpaired-electron distribution induced by the nona-

diabatic transitions. To facilitate understanding electron dynamics of symmetry breaking, we begin

with symmetry consideration in terms of the Hückel orbitals, which are shown to be qualitatively

useful enough to foresee the possible existence of symmetry allowed conical intersections.
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Chapter 1

General Introduction

Woodward-Hoffmann Symmetry-forbidden Reaction and Nonadiabatic Effects

The molecular symmetry can be used to predict whether a reaction can occur or to elucidate the

mechanism of one reaction. For example, according to the Woodward-Hoffmann rule (W-H rule) [1],

by identifying the conservation of orbital symmetry with respect to a specified symmetry element,

it is possible to predict whether or not the reaction along this direction can proceed. The W-H rule,

with its universal and simple applicability, has become the basic law employed by the chemists.

At the same time, the originators of the rule also pointed out the limitation of its application. For

example, before and after the reaction, the concerned symmetry element can not be destroied. Or

that it would be rashly concluded that the reaction is symmetry-forbidden because that the orbital

symmetry can not be conserved any more. However, the so-called symmetry-forbidden reactions

may not necessarily be forbidden in the real world. Such a topic is of great significance for quantum

mechanics and beyond the quantum chemistry which is built on the basis of the Born-Oppenheimer

approximation (BO approximation) [2].

BO approximation was proposed by Born and Oppenheimer in 1927 when they applied quantum

mechanics on the molecular system. In view of the fact that nuclei and electrons move in the different

kinematic scales, the nuclei can be regarded as static when solve the electronic wavefunction. And

then, under the fixed nuclear configuration, the corresponding eigenenergies and eigenfunctions of

the electronic states can be solved to obtain the electronic potential energy surface, and accordingly

the molecular properties as well as the chemical phenomena are discussed. So the quantum chem-

istry are also called “potential energy surface chemistry”. Since the obtained PES is adiabatic or

diabatic, if there is no external optical field, the electronic transition will not occur. As the modern

computing technology has been developed, quantum chemistry has become an indispensable tool in

the molecular science.

In fact, the original intention to propose BO approximation was due to the difficulty of calculating
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the nuclei-electrons kinetic-coupling terms, e. g. 〈ΦI |∂kΦJ 〉 which is also called nuclear derivative

term and is reasonably ignored according to the physical reality. However, such a approximation

is bound to fail sometimes. For example, when two or more PESs approach closely, the kinetic-

coupling term becomes significant [3]. It likes the “friction” interaction among nuclei and electrons

and via it the electrons gain the required energy from nuclear motion to carry out the nonadiabatic

transition. To the present topic, given a symmetric molecular Hamiltonian, any symmetric operator

belong to the point group should not break the molecular symmetry, which is the conservation of

symmetry predicted by fundamental rules of quantum mechanics. However, reactants in fact often

change their symmetries during a reaction, which is not strange to chemists. To deal with these

phenomena, such nonadiabatic terms ignored by the BO approximation must be revived.

To understand the nuclei-electrons kinetic-coupling interactions, here is an example of classical

mechanics employed to make an analogy. Concretely, compare the earth to the nuclei, and compare

a satellite and the atmosphere to different electron states. As known, there are gravity and friction

forces exist among the earth, the atmosphere, and the satellite. As the earth turns, if the satellite

orbit is far from the atmosphere, friction between them is trivial and each object moves in its own

orbit. But if the satellite and the atmosphere approach closely, the friction can be significant and

finally affects the satellite orbit bit by bit till it falls. Apparently, if the earth is regarded as static or

the friction is always ignored, these objects will move continually without alteration of their orbits.

From this point of view, there are three factors causing satellite falling: the motion of the earth, the

gravity and the friction forces.

If make an analogy in turn, it is easy to understand that there should be three factors to cause

nonadiabatic transition in a molecular system: the nuclear motion, the Coulomb interaction, and

the “friction” among nuclei and electrons. Wherein, the nuclear kinetic energy can be thought as the

energy source and the Coulomb interaction especially the “friction” are necessary conditions. So the

kinetic-coupling terms are crucial to the Woodward-Hoffmann symmetry-forbidden reaction. With

the development of nonadiabatic dynamics theory, a further detailed analysis on the mechanism of

these reactions has become possible and gave us motivation to do this work.

The History of Nonadiabatic Method

It may be better to make a brief introduction to the history of the nonadiabatic theory. The

earliest theoretical study on nonadiabatic dynamics was by Landau [3], Zener [4] et al. when

they studied the electron transfer process between two atoms in 1932. The Landau-Zener formula

emulates the transition probability at the crossing point of two diabatic potential energy curves. As

a development of it Zhu-Nakamura theory [5,6] is able to deal with the avoided crossing area of the

adiabatic potential curves. Yet they are one-dimensional. Semiclassical Ehrenfest theory (SET) [7,8]

namely the mean-field theory is naturally multidimensional. However, it is not consistent with the
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physical reality due to the artificial averaged nuclear path. The fewest switch surface hopping

(FSSP) method [9] can avoid the difficulty faced by SET and thereby has become the most popular

nonadiabatic method due to its easy-to-use. Yet it requires to distinguish individual potential energy

surface in advance and that is difficult for the situation of densely degenerated electronic states.

As seen, the above mentioned nonadiabatic theories are still based on the PES information

obtained by quantum chemistry methods and the time t is not yet explicitly included. Even the

theoretical framework of time-dependent nonadiabatic dynamics had been established early in the

1930s, lots of kinds of approximations have to be assumed due to the difficulty of carrying out the

“on-the-fly” scheme at the ab initio level.

What the “on-the-fly” means that the nuclear dynamics is driven by the electronic potential

energy gradient. Considering the fact that the matter wave of nuclear is weak, it is reasonable

to treat nuclei “classically”. It is the so-called semiclassical theory which is as important as BO

approximation to the molecular science. When the nonadiabatic effect is not obvious, such a scheme

is well known as ab initio molecular dynamics (ABMD) which has been widely applied [10,11].

So far, a brief summary can be made about the mentioned approximations. Firstly, without any

approximation, the total molecular wave function can be expressed as

Ψ(r,R, t) =
∑

I

χI(R, t)ΦI(r;R) (1.1)

which called Born-Huang expansion [12]. Wherein χ and Φ are nuclear and electronic wavefunctions

respectively. It is proposed according the fact that nuclei and electrons in a molecule are in the

different kinematic scales. And it is mathematically complete. But due to the difficulty of solving

the nuclei-electrons coupled terms, nuclei are regarded as static and then the electronic wave function

can be obtained by solving the matrix equation

Hel(r;R)ΦI(r;R) = VI(R)ΦI(r;R) (1.2)

which is the so-called BO approximation. Wherein Hel is the electronic Hamiltonian. By virtue

of BO approximation the adiabatic or diabatic potential energy surfaces can be obtained. And

accordingly lots of nonadiabatic methods such as Landau-Zener formula, Zhu-Nakamura theory,

and FSSP method etc. were proposed to deal with the crossing or avoided crossing areas where

nonadiabatic effects are obvious. But the time t is not explicitly included so that these methods

usually concentrate on estimating the nonadiabatic transition probability by virtue of the stationary

potential energy surfaces. Considering that solving the time-dependent nuclear wavefunction is

generally impossible except for the smallest molecular system, in order to describe the nuclear

dynamics economically and consider the time t explicitly in the electronic wavepacket dynamics, the

electronic state can be expressed as

Ψ(r, t;R(t)) =
∑

I

CI(t)ΦI(r;R(t)) (1.3)
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which is called semiclassical approximation because the collective nuclear positions are treated as

“classical” parameters and the nuclear path is driven by the real-time electronic potential. However,

the coupled terms are usually difficult to calculate.

When it comes to the present theme, what we need is not only a truly multidimensional on-

the-fly method but also can deal with nuclei-electrons kinetic-coupling terms at the ab initio level.

Such a work has been carried out over ten years in our group [13, 14]. At the early stage the

nonadiabatic electronic wavepacket dynamics was carried by the mean field path and today the

branching nuclear paths can also be tracked. These technologies have been applied to study the

proton transfer dynamics [15], proton-electron transfer dynamics [16] and so on. In the present

thesis, it is used to study the Woodward-Hoffmann symmetry-forbidden reaction, or say molecular

spatial symmetry-breaking process.

The Present Work

As a case study the high symmetry molecule cyclic-B4 was chosen. Along the directions of its six

harmonic vibrational normal modes, there are various symmetry elements can be used. For example,

during the ground state diamond-square-diamond (dsd) rearrangement process (see Chapter 2), all

the symmetry elements of the D2h point group (the stable geometry of this molecule is D2h) can

be maintained. However, the situation of excited states is complicated. The potential energy

curves are densely degenerated that many crossing and avoided crossing points co-exist. In spite of

tracking the same reaction coordinate, the molecular symmetry will be broken due to the passage of

these areas. Such symmetry-breaking processes are usually accompanied by obvious nonadiabatic

electronic transitions that have been known as Woodward-Hoffmann symmetry-forbidden reactions.

However, how the transition occurs? What happened before the transition? It is the most important

subject of this thesis that we want to emphasize.

To analyze the pre-transition process, a very useful quantum mechanics quantity of “electron

flux” [17] is employed. It is a quantity that can be produced only by the complex wavefunctions

which are used in the current electronic wavepacket dynamics. And it is an important feature that

beyond quantum chemistry methods which use real wavefunctions.

Since we aim at clarifying the spatial symmetry-breaking mechanism by analyzing the nonadi-

abatic interactions, of necessity, the irreducible representations of molecule orbital bases should be

idenified in advance. Instead of the self-consistent field (SCF) [18] procedures, the Hückel theory [19]

is recalled to do such a work because the bond matrix in the Hückel method is thought to describe

the bond nature of the molecule more concisely.

This thesis is organized as follows: as a preparation for dynamics study, analysis on the B4

molecule by the quantum chemistry calculation including the Hückel theory is in chapter 2. Chapter

3 introduces the employed nonadiabatic theory and the way of implementation. In chapter 4 we
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chose three excited states as initial states to carry out dynamics respectively. All of them are optical

allowed transition from the ground state. Wherein the 1B2u excited state is particularly discussed

in detail as an sample. A general conclusion is in chapter 5. Finally, as a reference, the Master’s

work [J. Phys. Chem. A 112 (2008) 9796, Bull. Korean Chem. Soc. 31 (2010) 895] is appended as

Appendix B in which quantum chemistry methods are used to study the absorption and emission

spectra of firefly oxyluciferin molecule in solvent in order to investigate the color-tuning mechanism

in firefly luminescence, which is typical “potential energy surface chemistry”.
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Chapter 2

Choose B4 as Case Study

2.1 Introduction

Boron atoms form various non-classical bonds to avoid empty 2p orbital left [1–3], which is important

for chemists to develop valence structures theory. The concept of “3c-2e bond” proposed by Lipscomb

and co-workers in 1954 [4] is a landmark work. It is very interesting to study not only the ground

sate but also excited states of “electron-deficient” molecule, which owns more valence orbitals than

electrons. Those irregular bonds lead to anomalous structures in ground state. The Lipscomb theory

has successfully explained almost all the sorts of strange topological models of boranes [5], with the

most famous example being diborane for the bridge hydrogen bond. The deltahedra structure

has now been thought as the key unit for boron chemistry [6]. Among them, the compounds

containing rhomboidal B4 framework which was first noticed by Lipscomb in 1966 when he studied

the fluxionality of boranes, is known as the so-called diamond-square-diamond (dsd) rearrangement

(Fig. 2.1) [7]. It occurs by pseudo-rotation or pseudo-reflection process according to the detailed

symmetry of individual polyhedra. In this conjunction several selection rules such as geometry-

allowed (-forbidden) and orbital symmetry-allowed (-forbidden) have been reported in the frame of

three-center theory [8–13].

Pure boron cluster B4 as well as its ions are also studied both theoretically and experimen-

tally [14–21]. Now it is widely recognized that the global minimum of neutral B4 is singlet with

D2h geometry but not D4h due to the pseudo-Jahn-Teller effect [14, 22]. We here simply call them

cyclic-B4 regardless of the global minimum. Its bonding characters, such as σ-π double aromaticity

and sp hybridization have been discussed by high level ab initio calculations [17–19]. On the other

hand, Reddy et al. simulated the photodetachment process of B−1
4 with considering nonadiabatic

coupling between the ground and excited states [23,24]. To the best of our knowledge, it is the only

nonadiabatic electronic dynamics of B4 reported so far. Besides, for their focus was vibrational cou-
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pling, nuclear dynamics was limited within small displacements along normal modes. Considering

the high symmetry of B4, a real-time nonadiabatic excited state dynamics is anticipated. Take dsd

process for example, and we readily observe a crossing of degenerate orbitals forming conical inter-

sections and/or avoided crossings on the potential energy surfaces [2]. We here dynamically track

those series of symmetry breaking with the method of nonadiabatic electron wavepacket dynam-

ics. These dynamical processes constitute a theoretical foundation for chemical reaction theory for

the class of the so-called symmetry forbidden reactions (in the terminology of Woodward-Hoffmann

rule of conservation of orbital symmetry), in which symmetry-allowed conical intersections are usu-

ally involved. Therefore the present work serves also as a basic dynamical process of symmetry

breaking (or mixing of electronic states belonging to different irreducible representations) caused by

nonadiabatic interactions.

1

2

3

4

1

2

3

4

2

1

3

4

1

2

3

4

θ

(a) Pseudo-rotation

(b) Pseudo-reflection

FIG. 2.1: Diamond-square-diamond process. The angle B2-B1-B4 (θ) defines a reaction coordinate

retaining D2h.

Nonadiabatic electron wavepacket scheme is quite useful to track the electronic state dynamics

[25]. In this theory, electron wavepackets are propagated and bifurcated along branching nuclear

paths, which are in turn driven under the nonadiabatic couplings [26]. This general scheme is

called the theory of phase space averaging and natural branching (PSANB) [27]. With the help

of sophisticated ab initio quantum chemistry, tracking nonadiabatic electronic dynamics has now

become feasible. However, it is quite often sufficient to track the electronic state mixing only along

representative nuclear paths that are an average of those possible branching paths. This is the so-

called semiclassical Ehrenfest theory, the theoretically correct form of which has been derived from

the path-branching representation with correction terms that are missing from the intuitive way of
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derivation [26]. These progresses have been employed to study several systems, such as bonding

process of diborane [28], proton-electron transfer of Phenol-(NH3)3 and so on [29, 30]. (For more

general scope and recent progress in the theory of nonadiabatic dynamics, see [27,31–34].)

We begin the present studies with clarifying and visualizing orbital symmetry by applying the

Hückel theory. Although nothing quantitatively accurate can be expected in this theory, it is still

quite often useful for qualitative understanding of chemistry. Not only to see molecular orbital

bases belonging to each irreducible representation, but also to locate a position of possible conical

intersections we will see that the Hückel theory is still useful and instructive.

2.2 A Symmetry Consideration in Terms of the Hückel The-

ory

Since the study is on nonadiabatic electron wavepackets passing through the so-called symmetry-

allowed conical intersections [35], it is needed beforehand to identify the irreducible representations

of molecular symmetry and the spatial distribution of the bases of them.

2.2.1 Basic Bond Matrices

Writing a reasonable bond matrix is at the core of applying Hückel theory. The basis set chosen to

carry out the Hückel calculations is as follows. According to the previous studies, it is convenient to

reorient three 2p orbitals of boron into radial (pr), tangential (pt) and perpendicular (pπ) sets [18,36].

With 2s, we have four trial models primarily to be considered (Fig. 2.2).

2s p πp tp r

1

4

3

2

Z

Y

X

Y

FIG. 2.2: Trial basis sets for Hückel method

One may doubt that whether or not such a grouping is reasonable since it disregards mixing

among different models. It is just the thing to be answered after relative discussions later. So, by

setting the Coulomb integrals of each set of bases to α and resonance integrals of edges are to β
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(positive overlap) or −β (negative overlap), corresponding bond matrices are

2s, pπ =

















−λ 1 a 1

1 −λ 1 b

a 1 −λ 1

1 b 1 −λ

















, pt =

















−λ −1 a 1

−1 −λ 1 b

a 1 −λ −1

1 b −1 −λ

















, pr =

















−λ −1 −a 1

−1 −λ 1 −b

−a 1 −λ −1

1 −b −1 −λ

















,

(2.1)

where

−λ =
α− ε

β
(2.2)

while ε is energy eigenvalue, and relative definitions are

αr =

∫

χrĥχrdτ, (2.3)

βrs =

∫

χrĥχsdτ, (2.4)

and

ε =

∫

ϕĥϕdτ
∫

ϕϕdτ
, (2.5)

wherein ĥ is 1-e effective Hamiltonian

ĥ = −
h̄2

2me

∇2 + V (~r). (2.6)

and ϕ is just the eigenfunction need to be solved; χr is AO basis.

Unusual parameters aβ and bβ are introduced to describe the bondings B1-B3 and B2-B4.

Generally, they are ignored when apply Hückel method to cyclic-compounds, such as for benzene

and cyclicbutane but be considered here in advance. In addition, the minus sign before resonance

integral usually does not appear in bond matrix. Writing them outside is to emphasize the anti-

bonding character between two bases. Note that 2s, pπ and pr have the same determinant as

det(2s, pπ, pr) = λ4 − (a2 + b2 + 4)λ2 − (4a+ 4b)λ+ a2b2 − 4ab, (2.7)

while for pt it is

det(pt) = λ4 − (a2 + b2 + 4)λ2 + (4a+ 4b)λ+ a2b2 − 4ab (2.8)

which implies the special role of pt model.

Suppose β varies in 4-order inverse proportion to nuclear distance [37] during dsd and bond

lengths of edges are set equal to constant 1, a and b are given as (2 cos θ/2)−4 and (2 sin θ/2)−4 with

use of the angle defined in Fig. 2.1. Vary θ, the geometric variation on bond combination during

dsd process can be investigated (Fig. 2.3). Since β is negative so the value of −λ in fact indicates

orbital energy. It can be seen that only pt gives three bonding orbitals, while each of the rest sets

of 2s, pr and pπ, has merely one bonding orbital to be available
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-3

0

3

θ: 30 45 60

-λ

2s, pπ, pr

-3

0

3

θ: 30 45 60

pt

FIG. 2.3: Geometric variation on −λ of 2s, pr, pπ and pt sets along ω1(Ag) mode predicted by

Hückel theory.

2.2.2 Description of sp Hybridization in the Hückel framework

Since there are 12 valence electrons involved in 2s and 2p atomic orbitals, sp hybridization is a

key to perform good calculation in the Hückel framework. sp hybridization of the cyclic-B4 has

been studied with the extended Hückel method as well as ab initio calculations with large basis

sets [18, 36]. By the extended Hückel method [38], Hoffman et al. have shown that the degenerate

orbitals at square are mixing of s, pt and pr. Wang et al. found that among six occupied valence

orbitals, the highest three ones are typical pr, pπ and pt, while the lowest three ones are mainly 2s

with hybridization of pr or pt, respectively (6-311+g(2df) basis set). But the other 2s-based orbital

becomes anti-bonding and hence unoccupied [19].

Further, 2s-pt hybridization is given as

ϕ1 =
√
2
2 2s+

√
2
2 2px(y)

ϕ2 =
√
2
2 2s−

√
2
2 2px(y),

(2.9)

which are depicted in Fig. 2.4,

+ =

+ =

+
ϕ1 ϕ2s p

2s pt sp
5

1

3

4

2

8

7
6

FIG. 2.4: 2s-pt hybridization for Hückel method
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with corresponding bond matrix is

sp =









































−λ 1 0 a 0 0 0 0

1 −λ 0 0 0 0 b 0

0 0 −λ 1 0 b 0 0

a 0 1 −λ 0 0 0 0

0 0 0 0 −λ 1 0 a

0 0 b 0 1 −λ 0 0

0 b 0 0 0 0 −λ 1

0 0 0 0 a 0 1 −λ









































. (2.10)

Together with original pr and pπ sets, in D2h point group of B4 they are decomposed into

Γpπ
= b2g ⊕ b3g ⊕ 2b1u

Γpr
= 2ag ⊕ b2u ⊕ b3u

Γsp = 2ag ⊕ 2b1g ⊕ 2b2u ⊕ 2b3u

(2.11)

In this way, twelve valence electrons fill into six bonding orbitals comfortably, while pr and pπ

are typical 4c-2e bonds (see Fig. 2.5). Besides, four degenerated pairs at the square are well

reproduced. If parameters a and b are set to zero, the degenerated orbitals of pr and pπ would

become non-bonding at all and even distortion could not separate them, which obviously destructs

all the results reported. So the interaction between para-atoms is important for cyclic-B4, even

though they may be weak. Finally, after summing up occupied orbital energies of sp, as well as pr

and pπ, D4h is still at the maximum, and the electronic potential favors to distort this molecule.

-3

0

3

θ: 30 45 60

-λ

pπ, pr

b1u (ag)

b3g (b2u)b2g (b3u)

b1u (ag)

-3

0

3

θ: 30 45 60

sp

b1g b3u
b2uag b1g
b3u
b2uag

FIG. 2.5: Geometric variation on −λ of pr, pπ and sp sets along ω1(Ag) mode predicted by Hückel

theory.

As seen, pesudo-rotation path relates to ω1(Ag) mode. For excited study later, pesudo-reflection

path which relates to ω6(B1g) is also simulated in the similar way. The character table is then
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changed into C2h and the irreducible representations are decomposed into

Γpπ
= 2bg ⊕ 2au

Γpr
= 2ag ⊕ 2bu

Γsp = 4ag ⊕ 4bu

(2.12)

Assumptions are also changed (see Fig. 2.6):

1. The variable is the bond length of B1-B2 with initial value of 1.

2. θ is invariable.

3. Initial δ = 50◦.

1

2

3

4

δ

X

Y

FIG. 2.6: Diagram of ω6(B1g) vibration used for Hückel treatment.

As a result, solutions of −λ are exhibited in Fig. 2.7. Crossed orbitals in ω1(Ag) direction become

to avoided crossing along this path.

-3

0

3

R: 0.9 1.0 1.1

-λ

pπ, pr

au (ag)

bg (bu)

bg (bu)

au (ag)

-3

0

3

R: 0.9 1.0 1.1

sp

ag

ag
ag

ag

bu

bu

bu

bu

FIG. 2.7: Geometric variation on −λ of pπ, pr and sp sets along ω6(B1g) mode predicted by Hückel

theory.

2.2.3 Hückel Molecular Orbitals As the Bases of Irreducible Representa-

tions

As λ is known, molecular orbital can be solved simultaneously. Firstly, symmetric functions of each

irreducible representation are listed as below:
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pπ

ψ(b2g) =
√
2
2 (χ2 − χ4)

ψ(b3g) =
√
2
2 (χ1 − χ3)

ψ1(b1u) =
√
2
2 (χ1 + χ3)

ψ2(b1u) =
√
2
2 (χ2 + χ4),

(2.13)

pr

ψ1(ag) =
√
2
2 (χ1 − χ3)

ψ2(ag) =
√
2
2 (χ2 − χ4)

ψ(b2u) =
√
2
2 (χ1 + χ3)

ψ(b3u) =
√
2
2 (χ2 + χ4),

(2.14)

sp

ψ1(ag) =
1
2 (ϕ1 + ϕ4 + ϕ5 + ϕ8)

ψ2(ag) =
1
2 (ϕ2 + ϕ3 + ϕ6 + ϕ7)

ψ1(b1g) =
1
2 (ϕ1 − ϕ4 + ϕ5 − ϕ8)

ψ2(b1g) =
1
2 (ϕ2 − ϕ3 + ϕ6 − ϕ7)

ψ1(b2u) =
1
2 (ϕ1 − ϕ4 − ϕ5 + ϕ8)

ψ2(b2u) =
1
2 (ϕ2 − ϕ3 − ϕ6 + ϕ7)

ψ1(b3u) =
1
2 (ϕ1 + ϕ4 − ϕ5 − ϕ8)

ψ2(b3u) =
1
2 (ϕ2 + ϕ3 − ϕ6 − ϕ7).

(2.15)

Notice the atomic orbital bases are χ for pπ and pr while ϕ for sp (refer to Fig. 2.2 and Fig. 2.4).

Then, substitute them into secular equation HC=CE, and the following equations are obtained:

pπ




−λ− b 0

0 −λ− a









c(b2g)

c(b3g)



 = 0 (2.16)





−λ+ a 2

2 −λ+ b









c1(b1u)

c2(b1u)



 = 0, (2.17)

pr




−λ+ a −2

−2 −λ+ b









c1(ag)

c2(ag)



 = 0 (2.18)





−λ− a 0

0 −λ− b









c(b2u)

c(b3u)



 = 0, (2.19)

sp




−λ+ a 1

1 −λ+ b









c1(ag)

c2(ag)



 = 0 (2.20)





−λ− a 1

1 −λ− b









c1(b1g)

c2(b1g)



 = 0 (2.21)
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



−λ− a 1

1 −λ+ b









c1(b2u)

c2(b2u)



 = 0 (2.22)





−λ+ a 1

1 −λ− b









c1(b3u)

c2(b3u)



 = 0. (2.23)

To get non-zero C, determinant of H need to be zero and thus λ are determined. With normality

conditions, C are solved easily. Finally, combine C with corresponding symmetric bases from Eq.

(2.13) to Eq. (2.15), Hückel molecular orbitals are determined.

Take θ = 80◦ for example, molecular orbital coefficients and diagrams are shown in Table 2.1

and Fig. 2.8.

Table 2.1: Hückel-MO coefficients ζ, as well as −λ, at geometry of θ = 80◦.

pπ pr

b1u b3g b2g b1u ag b2u b3u ag

−λ -2.276 0.181 0.366 1.728 -2.276 0.181 0.366 1.728

ζ1 0.488 0.707 0.000 0.511 0.488 0.707 0.000 0.511

ζ2 0.511 0.000 0.707 -0.488 -0.511 0.000 0.707 0.488

ζ3 0.488 -0.707 0.000 0.511 -0.488 0.707 0.000 -0.511

ζ4 0.511 0.000 -0.707 -0.488 0.511 0.000 0.707 -0.488

sp

ag b2u b3u b1g ag b2u b3u b1g

−λ -1.278 -1.129 -0.944 -0.730 0.730 0.944 1.129 1.278

ζ1 0.337 0.303 0.398 0.369 0.369 0.398 0.303 0.337

ζ2 0.369 0.398 0.303 0.337 -0.337 -0.303 -0.398 -0.369

ζ3 0.369 -0.398 0.303 -0.337 -0.337 0.303 -0.398 0.369

ζ4 0.337 -0.303 0.398 -0.369 0.369 -0.398 0.303 -0.337

ζ5 0.337 -0.303 -0.398 0.369 0.369 -0.398 -0.303 0.337

ζ6 0.369 -0.398 -0.303 0.337 -0.337 0.303 0.398 -0.369

ζ7 0.369 0.398 -0.303 -0.337 -0.337 -0.303 0.398 0.369

ζ8 0.337 0.303 -0.398 -0.369 0.369 0.398 -0.303 -0.337
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p π p r

sp

1b1u b2g 4agb3g 2b3u2b2u2ag2b1u

1ag 2b1g3b3u3b2u3ag1b1g1b2u 1b3u

FIG. 2.8: The Hückel MOs arising from the independent basis sets. Bonding and anti-bonding

orbitals are separated by dotted lines.

2.2.4 Symmetry-allowed Conical Intersections Foreseen with the Hückel

Theory

We henceforth concentrate on the dynamics starting from D2h (diamond shape) with the initial

reaction coordinate θ as in Fig. 2.1. Figure 2.9(a) displays the θ-dependence of the orbital energies

of the selected Hückel MO’s, which are relevant to the low-lying excited states. The orbital energies

have been calculated with the following parameters: Hrr(2s) = −15.2 eV, Hrr(2p) = −8.5 eV,

Hrs = (K/2)Srs(Hrr +Hss), K = 1.75 [38]. The overlap integrals Srs are borrowed from those of

STO-3G basis sets with bond length of edges fixed at 1.5 Å. The irreducible representations denoted

there should be referred to as in Fig. 2.8.

In terms of these MOs, we next attempt to draw the θ-dependent curve of the relevant excitation

energies of single excitation. As known well, the excitation energy ∆Ei→a from an occupied MO i

to an unoccupied one a is estimated with a simple formula

∆Ei→a = (E0 − ǫi + ǫa)− E0 = ǫa − ǫi, (2.24)

where E0 is the Hückel ground state energy. The orbital energies can be seen as above in Fig.

2.9(a). The spin multiplicity is out of the scope of the Hückel framework. Figure 2.9(b) shows the

resultant potential energy curve along θ. Since the configurations of excitation to 2b3u and b2g are

not included, only curves are displayed there that basically increase as θ.
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2ag -> 3ag (Ag)

1b1g -> 3ag (B1g)

1b1u -> 3ag (B1u)

2ag -> b3g (B3g)

1b1g -> 2b2u (B3u)

2ag -> 2b2u (B2u)

1b1u -> 2b2u (B3g)

FIG. 2.9: (a) Hückel MO energy in the mode of ω1(Ag) along the reaction coordinate θ. Those

below 1b1u and high-lying than 2b1u are omitted in this panel. (b) Excitation energies for the selected

excited states estimated with the Hückel MO energies as presented in panel (a). The configurations

of excitation to 2b3u and b2g are not included, which are responsible for the reflection symmetry

with respect to θ = 90◦. These features are to be compared with the ab initio adiabatic potential

curves of Fig. 4.2.

Each of the curves in this panel is labeled in terms of the excitation configuration i→a along

with the resultant symmetry of the total wavefunction. We observe many crossings between the

curves. Except for that between the states of 2ag→ b3g (B3g) and 1b1u→2b2u (B3g), every crossing

represents a symmetry-allowed conical intersection. The crossing between these two B3g states

should be avoided along this one-dimensional coordinate (ω1 mode), but the Hückel theory assigns

it to be a direct crossing (due to an exact degeneracy), since these are treated as pseudo-diabatic

wavefunctions.

This diagram of the excitation energy should be compared with Fig. 4.2, in which the similar

potential curves are reproduced with the ab initio Configuration Interaction calculations. The

comparison should be made in the range of the angle θ smaller than 90◦. Reasonable but only

qualitative agreement is seen with respect to the presence of the conical intersections. Although it

is too much to demand the Hückel theory to provide accurate information regarding the location

(angle here) and energy of the crossing points, it is yet instructive to use the Hückel theory for

understanding the mechanism and guessing the positions of conical intersections. Indeed we will

refer to the conical intersections found here in the later study to characterize the nonadiabatic

dynamics of symmetry breaking. This situation reminds of the Walsh rule based on the Hückel

theory to predict whether the molecular shape of AB2 type is linear or bent.
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Chapter 3

Theoretical Methods and

Implementation

3.1 Theoretical Background

The theoretical frame we work with to propagate nonadiabatic electron dynamics is outlined first

along with illustrative quantities to highlight the resultant dynamics. The mass-weighted coordinates

are used throughout.

3.1.1 Nonadiabatic Electronic Dynamics

The electronic state is expressed by

Ψ(r, t;R(t)) =
CSF
∑

I

CI(t)ΦI(r;R(t)) (3.1)

which means that the electronic wavepackets are propagated along a nuclear path R(t). Basis

functions ΦI(r;R(t)) can be rather arbitrary but here we adopt configuration state functions (CSF),

which are assumed to be orthonormal at each nuclear configuration. The time-dependent variational

principle for the Schrödinger equation gives coupled equations of motion for the coefficients {CI(t)}

are [1]

ih̄
∂

∂t
CI =

CSF
∑

J

(

H
(el)
IJ − ih̄

nuc
∑

k

ṘkX
k
IJ −

h̄2

4

nuc
∑

k

(Y k
IJ + Y k∗

JI )

)

CJ (3.2)

wherein

H
(el)
IJ =

〈

ΦI

∣

∣

∣
Ĥ(el)

∣

∣

∣
ΦJ

〉

, Xk
IJ =

〈

ΦI

∣

∣

∣

∣

∂

∂Rk

∣

∣

∣

∣

ΦJ

〉

and Y k
IJ =

〈

ΦI

∣

∣

∣

∣

∂2

∂R2
k

∣

∣

∣

∣

ΦJ

〉

. (3.3)

Note that the second-order terms Y k
IJ are missing in the conventional form of the SET. We here

neglect these terms throughout this work anyway, which is justified by the presence of h̄2. In what
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follows, the expectation values represented in terms of the ket and bra vectors indicate integration

over only the electronic coordinates.

Obviously, the first term in the right-hand side of Eq. (3.2) comes from interactions among

electronic states, while the second and third terms represent the kinematic couplings with the motion

of nuclei. Since CSFs form a quasi-diabatic basis set, most of nonadiabatic effects are actually

contributed from the first term. In case where Ĥ(el) happens to have a symmetry at a given molecular

geometry, the adiabatic electronic states (in the Born-Oppenheimer approximation) belonging to

different irreducible representations are not mixed together by H
(el)
IJ , and spatial-symmetry breaking

is realized only through Xk
IJ . Therefore nuclear motions as those in the vibrational modes can cause

the electronic state mixing of different symmetries, and the initial electronic wavefunction of an

irreducible representation can be contaminated by other electronic states of different irreducible

representation, which we refer to as symmetry-breaking. Thus the nuclear kinematic coupling terms

are critically important in this work.

3.1.2 Nonadiabatic Nuclear Dynamics

The nuclear path solutions R(t) are obtained with the Euler-Lagrange variational principle, which

bring about the force matrix F(R) [2], a matrix representation of the force operator F̂k to drive the

nuclear motion in the kth direction, which is defined as

Fk
IJ = 〈ΦI |F̂

k|ΦJ 〉

= −

[

∂H
(el)
IJ

∂Rk

+
∑

K

(

Xk
IKH

(el)
KJ −H

(el)
IK Xk

KJ

)

]

+ ih̄
∑

l

Ṙl

[

∂X l
IJ

∂Rk

−
∂Xk

IJ

∂Rl

]

. (3.4)

If the basis functions were complete, this matrix element becomes dramatically simpler as

Fk
IJ = 〈ΦI |

∂H(el)

∂Rk

|ΦJ 〉. (3.5)

Note that if the off-diagonal matrix elementsXk
IJ are negligibly small in the adiabatic representation,

the force matrix has only the diagonal elements, which are equivalent to the ordinary forces given by

the energy gradients of the individual potential energy surfaces (or the Hellmann-Feynman forces).

If Xk
IJ is not small, on the other hand, the nuclear motion coupled with the dynamics of electronic-

state mixing can branch into many pieces in a cascade manner, mimicking the nuclear wavepacket

bifurcation and deformation. The paths thus branching eventually proceed to their individual adi-

abatic potential surfaces, which are usually specified in terms of the electronic state symmetry in

spectroscopic notations. After all, the total wavefunction is represented by coherent superposition

of those branching pieces of electronic and nuclear wavefunctions. (See the examples of full quantum

electronic and nuclear quantum calculations of wavepacket bifurcation through avoided crossing in
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refs. [3, 4] and conical intersections in [5,6], and the relevant experimental observation in [7].) Such

a wavepacket bifurcation can be well described in mixed quantum and classical representation, the

algorithms of which are provided in refs. [8–11].

The mean-field paths in the SET [12–17] appear to be as a special case of the present theory if

we take a force average in the kth direction over the electron wavepacket such that

R̈k = 〈Ψ(r,R, t)|F̂k|Ψ(r,R, t)〉 =
∑

I,J

C∗
IF

k
IJCJ

= −
∑

I,J,K

C∗
I

(

Xk
IKH

(el)
KJ −H

(el)
IK Xk

KJ

)

CJ −
∑

IJ

C∗
I

∂H
(el)
IJ

∂Rk

CJ , (3.6)

which is equivalent to the Hellmann-Feynman force

R̈k = −

〈

Ψ(R(t))

∣

∣

∣

∣

∂H(el)

∂Rk

∣

∣

∣

∣

Ψ(R(t))

〉

, (3.7)

only if the electronic basis set happens to be complete.

To reproduce branching nuclear paths, more faithful treatment of the force matrix is needed. In

fact, developed progresses have been reported both in theoretical and experimental aspects [3, 4, 9,

18, 19]. But for the present work, tracking the branching paths is not our focus in this particular

study. B4 has six vibrational normal modes (Fig. 3.1) and each relates to its own irreducible

representation orbitals. Therefore this paper is devoted to observation of the way how these normal

modes can be mixed up together as the total electron wavepackets develop through the nuclear

kinematic couplings.

+

_

+

_

ω 1 (Ag) ω 4 (Ag)ω 2 (B1u) ω 3 (B3u) ω 6 (B1g)ω 5 (B2u)

FIG. 3.1: Normal modes of vibration of rhombo-B4.

3.1.3 Electron Flux Analysis

The dynamical flow of electrons within a molecule can be directly monitored in terms of the proba-

bility current density ~j(r, t) that satisfies the continuity equation

∂ρ(r, t)

∂t
+∇~j(r, t) = 0. (3.8)

In quantum mechanics ~j(r, t) is defined as

~j(r, t) =
h̄

2ime

[ψ∗∇ψ − ψ∇ψ∗] (3.9)
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which we simply call Schiff flux [20], where me and ψ are the mass and wave function of the involved

particles. For many-electron systems it is redefined as

~j(r, t) =
h̄

2ime

[∇rγ(r
′, r)−∇r′γ(r

′, r)]

=
h̄

2ime

NO
∑

i

ni [λ
∗
i (r

′)∇rλi(r)−∇r′λ
∗
i (r

′)λi(r)] , (3.10)

where ∇r and ∇r′ are the nabla with respect to r and r′, respectively, and {λi} are the natural

orbitals with real-valued occupation numbers ni. Since our nonadiabatically time-propagated elec-

tronic wavefunctions attained as the solutions of Eq. (3.2) are complex-valued, so are the resultant

natural orbitals. As seen from Eq. (3.9), only complex-valued wave functions can give non-zero

flux. Indeed, stationary-state electronic wavefunctions like most of the eigenfunctions of the elec-

tronic Hamiltonian Ĥ(el) are real-valued, and thereby electron flux given by them are identically

zero everywhere. This is simply because there is no directionality both in space and time in those

stationary waves. Therefore appearance of nonzero flux, irrespective of the sign, indicates the break-

down of the stationarity, which suggests that the waves involved begin to proceed ahead to a certain

direction in space-time. (See refs. [21–26] for applications of electron flux in chemical dynamics.)

Consequently, integration of Eq. (3.8) gives how the electronic charge redistributes in time. This

is not an easy task though, partly because the flux itself fluctuates pretty much both in time and

space [21–24]. However, in this paper, we just monitor the flux ~j(r, t) by directly calculating γ(r′, r)

from the time-dependent electron wavepackets, without resorting to the integration of Eq. (3.8),

because qualitative monitoring of the symmetry breaking is the present purpose.

Incidentally the total flux arising from the dynamics of a molecule should preserve the total

symmetry in the total space-time representation. For instance, the total flux that is consisted of

both electronic and nuclear counterparts should appropriately reflect translational and/or rotational

symmetries in total. However, the present work treats only the electronic flux at each nuclear

configuration. Manz and his group have been studying such total electronic and nuclear flux [25,26].

Also, we should recall that the couplings among the electronic configurations can contribute to

~j(r, t) only if they can remain in γ(r′, r). For instance, the coupling between double excited con-

figurations and a doubly occupied ground state configuration do not make a contribution to ~j(r, t),

although these combinations are known to need to represent the dynamical electron correlation.

3.1.4 Unpaired Electron Population Analysis

Another useful quantity to detect the change in electronic states in excited states is the unpaired

electron density [27–30]. It is defined with the spin-free first order density matrix as

D(r) = 2γ(r, r)−

∫

γ(r, r′)γ(r′, r)dr′. (3.11)
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The physical meaning will appear more evident if we express the diagonal element of D(r) with the

natural orbitals {λi} having occupation numbers ni

D(r) =
NO
∑

i

ni(2− ni)λ
∗
i (r)λi(r). (3.12)

As seen in Eq. (3.12), phenomena dominated by doubly occupied natural orbitals, such as concerted

reactions, are not featured by large values of D(r). On the other hand, nonadiabatic transitions and

double excitation due to electron correlation will result in large D(r) values, with the components

of ni = 1 giving the largest.

3.2 Integrals Calculating of Coupling Term

As mentioned, to put the above theory into practice at ab initio level, there are several technical

problems have to be ironed out. One of them is to calculate the nuclear derivative coupling term.

By using one-electron coupling constant, expression of Xk
IJ can reduce from CSF bases to MO

bases. After a series of derivation (detailed derivations of this section refer to Appendix A) it

becomes

Xk
IJ =

MO
∑

ij

aIJij (U
k
ij + SkR

ij ). (3.13)

aIJij is the one-electron coupling constant with the form as

aIJij = 〈ΦI |â
†
i âj |ΦJ 〉, (3.14)

where â†i and âj are creation and annihilation operators for molecular orbitals φi and φj , respectively.

Uk
ij is defined from nuclear derivatives of MO coefficients as

∂ciµ
∂k

=

MO
∑

m

cmµ U
k
mi. (3.15)

And SkR
ij is defined as

SkR
ij ≡

AO
∑

µν

ciµc
j
νS

kR
µν

=

AO
∑

µν

ciµc
j
ν

〈

χµ|
∂χν

∂Rk

〉

, (3.16)

where {χµ} are AO bases used to form MO by linear combinations. The way to obtain them are

introduced in the following sections based on GAMESS package.

3.2.1 Prepare One-electron Coupling Constants aIJij

By the definition of aIJij , some properties about it can be easily deduced. Such as
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1. aIJij = aJIji

2. If aIJij 6= aIJji , then at least one of them is zero.

3. For the following three situations, aIJij can be known directly:

• if i = j, I 6= J , then aIJij = 0

• if i 6= j, I = J , then aIJij = 0

• if i = j, I = J , then aIJij = 1

4. For i 6= j, I 6= J , there are four situations:

(a) i > j, I > J

(b) i < j, I > J

(c) i > j, I < J

(d) i < j, I < J

Since aIJij = aJIji , only one pair of (a) and (b) or (c) and (d) are needed.

Firstly let us prepare (c) and (d). GAMESS has prepared aIJij in I < J orders when calculate

energy gradient. However, since the density matrix calculation need only picking up non-zero aIJij ,

so GAMESS saves data just in ij order without knowing i < j or i > j. So according to property

2, we can judge the relation and then make anther part zero . Once obtained (c) and (d), (a) and

(b) are known immediately. And the rest part can been determinate by property 3. Thus all of the

aIJij can be obtained.

3.2.2 Prepare the Skeleton Integral SkR
ij

GAMESS has prepared electron coordinate derivative coupling in AO basis sets, namely 〈χµ|∂rχν〉.

Since the one-center Gaussian function χµ(r −Rk) has the relation of

〈

χµ|
∂χν(r −Rk)

∂Rl

〉

= −
〈

χµ|
∂χν(r −Rk)

∂r

〉

δkl, (3.17)

So 〈χµ|∂kχν〉 can be obtained by this relation. And then multiply MO coefficients to obtain SkR
ij .

δkl is Kronecker delta function.

Besides SkR
ij , there are the other two integrals SkL

ij and Sk
ij are needed for calculating XIJ . They

are defined by

SkL
ij =

MO
∑

µν

ciµc
j
ν

〈 ∂χµ

∂Rk

|χν

〉

(3.18)

and

Sk
ij =

MO
∑

µν

ciµc
j
ν

∂〈χµ|χν〉

∂Rk

= SkL
ij + SkR

ij . (3.19)
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Sk
ij are also denoted as Sa

ij below. Notice that SkL
ij and SkR

ij has the relation of

SkR
ij = SkL

ji . (3.20)

So SkL
ij and Sk

ij can be known once SkR
ij obtained.

3.2.3 Prepare U Matrix Uk
ij

Determining U matrix needs solving CPHF equation [31–33], which comes from the nuclear derivative

of Fock matrix
∂Fij

∂a
= −(ǫj − ǫi)U

a
ij +

virt
∑

k

occ
∑

l

Ua
klAij,kl +Ba

0,ij . (3.21)

Relative definitions are as follows,

Aij,kl = 4(ij|kl)− (ik|jl)− (il|jk), (3.22)

Ba
0,ij = F a

ij − Sa
ijǫj −

occ
∑

k

occ
∑

l

Sa
kl{2(ij|kl)− (ik|jl)}, (3.23)

Sa
ij =

AO
∑

µν

ciµc
j
ν

∂Sµν

∂a
, (3.24)

F a
ij = haij +

d.o.
∑

k

{2(ij|kk)a − (ik|jk)a}, (3.25)

haij =

AO
∑

µν

ciµc
j
ν

∂hµν
∂a

, (3.26)

(ij|kl)a =
AO
∑

µνρσ

ciµc
j
νc

k
ρc

l
σ

∂(µν|ρσ)

∂a
. (3.27)

The superscript ‘a’ implies skeleton derivative without derivatives of MO coefficients.

Due to the properties of U matrix, it is convenient to divide it into four parts such as

1. i ∈ occ, j ∈ occ

2. i ∈ virt, j ∈ virt

3. i ∈ occ, j ∈ virt

4. i ∈ virt, j ∈ occ

For situation 4, Eq.(3.21) can be written as

(ǫj − ǫi)U
a
ij −

virt
∑

k

occ
∑

l

Ua
klAij,kl = Ba

0,ij (i ∈ virt, j ∈ occ) (3.28)

or a more compactly form as

virt
∑

k

occ
∑

l

Ua
klCij,kl = Ba

0,ij (i ∈ virt, j ∈ occ), (3.29)
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wherein

Cij,kl = [(ǫj − ǫi)δikδjl −Aij,kl]. (3.30)

So it becomes a matrix problem of

CU = B (3.31)

wherein C is [ij, kl] array while B and U are [ij] (or [kl]) array. Notice that here U only includes

the elements belong to situation 4. Since GAMESS has prepared C and B so that U can be solved

by

U = C−1B. (3.32)

Once the subspace (i ∈ virt, j ∈ occ) of U has been determined, use the relation of

Ua
ij + Ua

ji + Sa
ij = 0 (3.33)

situation 3 (i ∈ occ, j ∈ virt) can be obtained easily. At last, use another important relation of

Ua
ij = −

1

2
Sa
ij , (i, j ∈ occ or i, j ∈ vir), (3.34)

subspace of U for situation 1 and 2 can be also determined.

3.3 Unique-Continuity of Molecular Orbitals

Another problem is to ensure the unique-continuity of MO. To be bases to construct CSF, MOs

are generated by SCF procedure at current nuclear configuration independently. So the choosing of

the phase factor is arbitrary. Especially at the degenerated point, the MO order may be exchanged

before and after the nuclear dynamics step, and CSF will lose original feature and result in failed

dynamics at all.

3.3.1 Theoretical Method

The following method proposed by Yonehara et al. aims at settling this problem [34]. Firstly, the

overlap matrix

Sij = 〈φi(t−∆t)|φj(t)〉 (3.35)

is introduced. The closer to δij it is, the better orbital uniformity along nuclear path. Assume

|φi(t−∆t)〉 has been known by last step calculation, |φj(t)〉 can be expressed by linear combination

of trial MOs

|φj(t)〉 =

MO
∑

k

Ckj |φ̃k(t)〉, (3.36)

where |φ̃k(t)〉 are from current SCF step.
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To determine Ckj , a new overlap matrix

Oik = 〈φi(t−∆t)|φ̃k(t)〉 (3.37)

is formed. Notice the relation

Sij =

MO
∑

k

OikCkj . (3.38)

To get qualified Sij , the formal solution of Ckj is

C = O−1. (3.39)

But such a C can not be used directly to form |φj(t)〉 since it is not exactly orthogonal that may break

the orthonormality of |φ̃k(t)〉. One way to preserve the orthonormality is to make O a orthogonal

matrix before executing Eq.(3.39), e.g., by Gram-Schmidt algorithm to do O= QR, and C is given

by

C = Q−1 = QT. (3.40)

Meanwhile, for numerical stability, it is not necessary to put the whole space of O into Gram-Schmidt

procedure as it is once formed. Only subspaces with strong mixing need rotation.

Finally, once |φj(t)〉 is obtained, corresponding orbital energy is given by

εj(t) =
MO
∑

k

C2
kj ε̃k(t), (3.41)

wherein ε̃k(t) is primary orbital energy of |φ̃k(t)〉.

3.3.2 Numerical Illustration

By the above procedures, we study a collinear collision reaction between B+ and H2 to show the

necessity for MO continuity. Set the initial nuclear distances as RB−H = 4.0 Å and RH−H = 0.8 Å

and start from the second exicted state by CIS/STO-3G method, and give relative kinetic energy of

1.57 eV to the system; the results are shown as below.

Since our foucs is not on the reaction but is on the MO before and after the correction, so we

track the MO by plotting its eigenvector and eigenvalue. Concretely, the MO coefficients in the

atomic orbital bases are plotted as in Fig. 3.2. It can be seen clearly that if without correction,

SCF procedure at isolate nuclear configurations cannot describe the dynamics. To understand it in

a more straight way, the energies of the pairs of mixing MOs are shown as in Fig. 3.3. It can be

seen that if without correction, the MOs lose their charactistics and are not qualified to construct

the CSF any more.
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FIG. 3.2: MO coefficients before (the left ones) and after (the right ones) uniform correction of the

B++H2 collision reaction. Abscissa is time till 50 fs.

29



-1.2

-0.9

-0.6
H

ar
tr

ee

2, 3-th MO 4, 5, 6-th MO

2-th 3-th

-0.2

-0.1

0.0

H
ar

tr
ee

4-th 5-th 6-th

FIG. 3.3: The energies before (the left ones) and after (the right ones) uniform correction of selected

mixing MO pairs of the B++H2 collision reaction.. Abscissa is time till 50 fs.

Reference

[1] T. Yonehara, and K. Takatsuka, J. Chem. Phys. 128 (2008) 154104.

[2] K. Takatsuka, J. Phys. Chem. A 111 (2007) 10196.

[3] Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, Phys. Rev. Lett. 90 (2003) 248303.

[4] Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, J. Chem. Phys. 119 (2003) 7913.

[5] Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, J. Chem. Phys. 132 (2010) 124307.

[6] Y. Arasaki, K. Wang, and V. McKoy, K. Takatsuka, Phys. Chem. Chem. Phys. 13 (2011) 8681.

[7] P. M. Kraus, Y. Arasaki, J. B. Bertrand, S. Patchkovskii, P. B. Corkum, D. M. Villeneuve, K.
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Chapter 4

Symmetry Breaking Dynamics of

the Low-lying Excited States of B4

This chapter are numerical resutls. We first see the ground state to get a global insight of the PES,

and then choose one excited state to give a detailed analysis while other two excited states are

discussed in a similar way.

Since the present work aims at tracking nonadiabatic dynamics of symmetry breaking rather

than accurate energy prediction, STO-3G basis set is used to perform most of the calculations.

Configuration interaction is performed in the level of single and double excitations [1, 2] with four

core orbitals being frozen. 1891 CSFs are generated by GUGA (Graphical Unitary Group Approach)

which has been packaged in GAMESS [3] (2013/05/01 version). These CSF are also applied in the

study of electron wavepacket dynamics.

Equations (3.2) and (3.6) should be solved simultaneously. However, due to different time scales

of electrons and nuclei, integrators and intervals can be chosen independently. The fourth order

Runge-Kutta method is used as integrator to propagate Eq. (3.2), and integration interval is set to

be 0.05 attoseconds. To save computational cost, in contrast to multistep Runge-Kutta, multi-value

method is used to propagate nuclear phase space. So the third and the fourth order Taylor series

of Ṙk and Rk are calculated respectively at each step. Derivatives higher than the second order are

obtained approximately by the corresponding difference equations. Time interval is set to be 2.5

attoseconds, which is 50 times longer that of electronic dynamics. At these settings, total energy

is generally conserved at the level of 10−8 hartrees except downgrading to 10−6 level in passing

through the “crossing” areas.
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4.1 Ground State: 1Ag

4.1.1 SCF-MO

HFSCF-MOs at the stationary structure (D2h, θ = 78◦, bond length is 1.501 Å) are shown in Fig.

4.1. Comparison with Fig. 2.8 shows that the nodal structure of the molecular orbitals generated

in these two sets of molecular orbitals are essentially same, and thus it turns out that the Hückel

orbitals are very useful to understand the molecular symmetry intuitively and graphically. Other

points we notice with respect to the relevant MO calculations in the literature are: (1) Unoccupied

2s-based orbital noticed by Wang et al. [4] is actually the lowest sp anti-bonding orbital in Hückel-

MO. (2) The 2ag bonding orbital surprisingly becomes unoccupied according to extended Hückel

calculations [5]. (3) Hybridization inevitably mixes a little pr and pt by any SCF procedure. But

for cyclic-B4, it is safe to say that pπ, pr 4c-2e bonds and 2s-pt hybridization are robust.

Although the first singlet excited state is claimed to be the single occupancy of 2b2u, the excitation

to 3ag is also competitive. The two are just LUMO+1 and LUMO here and evolve closely in the

excited dynamics.

1ag

HOMO LUMO

1b2u

HOMO LUMO

1b3u

HOMO LUMO

1b1g

HOMO LUMO

1b1u

HOMO LUMO

2ag

HOMO LUMO

3ag

HOMO LUMO

2b2u

HOMO LUMO

b3g

HOMO LUMO

b2g

HOMO LUMO

2b3u

HOMO LUMO

2b1u

HOMO LUMO

3b3u

HOMO LUMO

2b1g

HOMO LUMO

3b2u

HOMO LUMO

4ag

HOMO LUMO

FIG. 4.1: RHF/STO-3G predicted MO lies in the xy sections with z = 0.1 bohr. Black dots indicate

nuclei.

4.1.2 Adiabatic Potential Energy Surfaces

As known, the D4h structure is in fact a saddle point with one weak imaginary frequency along

ω1(Ag) mode to connect the two D2h minima. The two optimized structures (θ = 78◦ or 102◦)

identified in the present calculations are in the reasonably correct range as compared with other

high accuracy methods [6–8]. The barrier is so tiny (0.025 eV) that 1.5×hν1 (0.06 eV), with ν1
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being the vibrational frequency of ω1(Ag) mode, is enough to cause dsd rearrangement to occur at

the ground state (see Fig. 4.2). Besides, bond lengths of edges are well preserved around 1.5 Å

during the reaction coordinate θ. Also, the charges on the atoms is almost invariant (at most 0.04)

during dsd. The so-called bond order analysis in the Mulliken overlap population formalism gives

about 0.9 population on edge, but merely weak bonding or anti-bonding exists between diagonals.
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FIG. 4.2: Potential energy surfaces of the low-lying excited states as deformed along the dsd ω1(Ag)

mode. These curves represent the one-dimensional change along θ of the states listed in Table 4.1.

The bond order analysis reduced on six occupied valence orbitals shows that the bonding sp

and pπ orbitals form the skeleton of cyclic-B4 (Fig. 4.3). At the diagonal (central) area, although

gross bond order is nearly zero, there is in fact comparative bonding or anti-bonding area in sp

bonding orbitals, which mutually cancel out. The necessity of employing a and b in Hückel theory

is suggested here again. The orbital 2ag coming from the pr set makes only a small contribution to

the bonding, and for this reason loss of electrons from this orbital is still kept stable as seen later.

The most important information in Fig. 4.2 relevant to the present dynamics is the curve

crossing feature among the excited states, which is magnified in the middle part of the figure. The

characterization of the excited states involved is summarized in Table 4.1. This table contains main

electronic configurations, their belonging irreducible representation of D2h, oscillator strength and

excitation energy. All of these quantities have been calculated at the geometry of the ground state

minimum (θ = 78◦). The individual excitation energies are not necessarily meaningful but suggest
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the relative height of the states. The potential curve crossing feature in Fig. 4.2 is compared with

that expected by the Hückel calculations, Fig. 2.9(b). Except for one avoided crossing between two

B3g states, namely Se and Sf , all the rest crossings indicate symmetry-allowed conical intersections.

On passing through those conical intersections, nonadiabatic interactions induces symmetry breaking

from D2h by the mixing among them.

-0.2

0.0

0.2

1ag

B1-B2
B1-B3
B2-B4

1b1g 1b2u 1b3u 1b1u 2ag

FIG. 4.3: Standard bond order of B4 reducing on dominant occupied natural orbitals.

Table 4.1: CISD/RHF/STO-3G predicted nine singlet excited states of rhombo-B4.

Dominant CSF Symmetry Oscillator Excitation

Configurationa Coefficient Strength Energy(eV)

Sa Φ2ag→3ag
≡Φa 0.772 Ag - 7.04

Sb Φ2ag→2b2u≡Φb 0.762 B2u 0.121390, y-allowed 7.86

Sc Φ1b1g→3ag
≡Φc 0.897 B1g - 8.05

Sd Φ1b1u→3ag
≡Φd 0.917 B1u 0.000518, z-allowed 8.25

Se Φ2ag→b3g≡Φe 0.893 B3g - 8.49

Sf Φ1b1u→2b2u≡Φf 0.875 B3g - 8.61

Sg Φ1b1g→2b2u≡Φg 0.880 B3u 0.021416, x-allowed 8.74

Sr Φ2ag→b2g≡Φr 0.905 B2g - 9.36

Ss Φ1b1g→b3g≡Φs 0.932 B2g - 10.09
a “→”denotes single excitation

4.2 Excited State: 1B2u

4.2.1 Distincts of Different Point Groups

We here show a case study of symmetry breaking dynamics by tracking a SET path starting from the

excited state, which we call Sb, the main configuration of which is single excitation from 2ag orbital

to 2b2u one as listed in Table 4.1. This state has relatively large oscillator strength in y-direction for

the excitation from the ground state. Through such an illustrative case study, we hereby investigate

how the electronic states of different symmetry can mix through nonadiabatic interactions and how
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the resultant states may behave vibrationally and electronically.

Since Sb has two singly occupied orbitals 2b2u and 2ag, once being excited, B4 spontaneously

vibrates along the ω1(Ag) direction with no initial nuclear momentum. To demonstrate the dynam-

ical change by the electronic state mixing as much as possible, we do not provide much energy to

vibrational modes, actually only zero point energy along the two Ag modes is assigned. Nevertheless,

the electronic state mixing develops in a consecutive manner.

In view of the complexity of those nonadiabatic dynamics, the following materials are used to

make the processes easier to be tracked: (1) Time section tables (Table 4.2). The studied time scale,

about 400 fs, is divided into several sections in light of the change of molecular symmetry. Dominant

configurations in our interested states are summarized in this table. Orbital symmetries may change

in different time sections but names in Fig. 4.1 are continuously adopted as new symmetry labeled.

(2) Time variation of the concerned physical quantities, e.g. nuclear distances and CSF population,

etc. (Fig. 4.4). Nuclear velocity is certainly an important factor for the kinematic coupling dynamics

but it is not attached because essential information can be easily guessed in the nuclear distance

panel.

4.2.2 Dynamics of Symmetry Breaking

Giving zero point energy to ω1(Ag) mode (0.02 eV), we let Sb start its dynamics, as shown in

Table 4.2 and Fig. 4.4. We first overview the geometrical change by taking a close look at the

nuclear distance panel, Fig. 4.4(a) and Table 4.2. Although initial momentum is given towards the

directions to the square, a complete direction reversal happens rapidly. Occupancy of 2b2u orbital

strongly drives rhombic B4 to be narrower (smaller θ) and even if much more initial kinetic energy

be assigned, and dsd is hard to occur. If excitation to 2b2u is replaced with that to 2b3u, dsd should

be much easier. Thus the vibration is limited in the primary diamond section, simply called half-

period ω1(Ag) vibration. Such a narrower structure caused by 2b2u was also observed through bond

shortening from B4 to B4
−1 [8]. The regular D2h point group is just retained only up to 38 fs before

the σ(xy) symmetry element begins to be slightly destroyed. Such a quasi-D2h state lasts about 20

fs before z-symmetry is markedly broken and the ω2(B1u) out-of-plane vibration is realized due to

the nonadiabatic interaction. Furthermore, upon entering C2v(z) section, the σ(xz) continuously

begins to lose at about 126 fs, leading to a quasi-C2v(z) state. At this time the quasi-state exists

just within 5 fs and the y-symmetry is rapidly broken down. ω5(B2u) becomes thus involved. The

last symmetry element σ(yz), which is related to ω3(B3u) or ω6(B1g), begins to be lost from 215 fs.

Until the x-symmetry is finally crashed, the quasi-Cs(yz) state actually survives almost 59 fs.

Such a series of dynamical change can be highlighted more vividly in terms of quantities to

characterize electron dynamics, which will be studied below.
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Table 4.2: Time sections of nonadiabatic dynamics starting from Sb.

Sb−I 0∼[38]∼62 fsa (D2h)

Configurations (B2u) Φb, Φh, Φi, Φj

Orbitals 1b1g, 1b1u, 2ag, 3ag, 2b2u, b3g, 2b3u

Notes 1b1u∼2ag begins to break z-symmetry after 38 fs.

Sb−II 62∼[126]∼131 fs (C2v(z)
b)

Configurations (B2) Φb, Φh, Φi, Φj , Φf

Orbitals 1b1g(a2), 1b1u(a1), 2ag(a1), 3ag(a1), 2b2u(b2), b3g(b2), 2b3u(b1)

Notes 1b1u(a1)∼2ag(a1) breaks z-symmetry at all after 62 fs. 3ag(a1)∼2b2u(b2)

begins to break y-symmetry after 126 fs.

Sb−III 131∼[215]∼273 fs (Cs(yz)
c)

Configurations (A
′

) Φb, Φh, Φi, Φj , Φf , Φd, Φa

Orbitals 1b1g(a
′′

), 1b1u(a
′

), 2ag(a
′

), 3ag(a
′

), 2b2u(a
′

), b3g(a
′

), 2b3u(a
′′

)

Notes 3ag(a
′

)∼2b2u(a
′

) breaks y-symmetry at all after 131 fs. 1b1g(a
′′

)∼2ag(a
′

)

begins to break x-symmetry after 215 fs.

Sb−IV 273∼400 fs (C1)

Configurations (A) Φb, Φh, Φi, Φj , Φf , Φd, Φa, Φg, Φq

Orbitals 1b1g(a), 1b1u(a), 2ag(a), 3ag(a), 2b2u(a), b3g(a), 2b3u(a)

Notes 1b1g(a)∼2ag(a) breaks x-symmetry at all after 273 fs.
a the second subsection means quasi-state (for the definition refer to the text)

b means C2 lies in z-axis.

c means σh lies in yz-plane.

The electronic configurations in this table should be referred to Tabs. 4.1 and 4.3.

Table 4.3: Involved configurations in the present systema . Some of them are introduced for Sd and

Sg discussions.

Φh 2ag⇒3ag, 2b2u Φi 1b1u→b3g Φj 1b1g→3ag

Φl 1b1u, 2ag⇒3ag Φm 1b1u, 2ag⇒2b2u Φn 1b1u, 2ag⇒3ag, 2b2u

Φo 1b1g, 2ag⇒3ag, 2b2u Φp 2ag→2b3u Φq 1b1g→2b3u
a “⇒”denotes double excitation

37



1.5

2.0

2.5

3.0

0 80 160 240 320 400fs

−30

0

30

(a) Nuclear Distance (Å)

out−of−plane bending
(degree)

B1−B2
B1−B3

B1−B4
B2−B3

B2−B4
B3−B4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 80 160 240 320 400fs

(b) CSF Population

Φb
Φh

Φi
Φj

Φf
Φd

Φa
Φg

Φq

−10

0

10

0 80 160 240 320 400fs

(c) Molecular Orbital (eV)

1b3u
1b1g

b3g
2b3u

 0

 0.5

 1

 1.5

 2

0 80 160 240 320 400fs

(d) NO Occupancy Number

1b1u
2ag

2b2u
3ag

FIG. 4.4: Selected quantities along dynamics starting from Sb. Panels (c) and (d) share the same

key labels.

4.2.3 Electron Flux Associated with Symmetry Breaking

We first see what happens in the electron flux induced by the nonadiabatic couplings. The first

breaking z-symmetry directly indicates the existence of nonzero asymmetric z-vector electronic flux,

simply called z-flux (without special information, all the flux discussed subsequently is asymmetric

since symmetric flux does not affect the molecular point group). See Fig. 4.5 for the evolution

of the electron flux. Among seven involved orbitals in the Sb-I time section, z-allowed electronic

transitions are produced by the interactions 1b1u∼2ag, 1b1u∼3ag and 2b2u∼b3g (“∼”denotes orbital

interaction). As suggested in Eq. (3.10), the flux due to, for instance 1b1u∼2ag, arises from the

density matrix γ(r′, r) that contains 1b1u and 2ag symmetries. Recall that those γ(r′, r) are resulted

only from two different Slater determinants, which are composed of the same molecular orbitals

except for only counterpart; one is 1b1u orbital and the other 2ag orbital. Thus the flux of 1b1u∼2ag is
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likely generated mainly between an electronic configurations of excitation 1b1u→2b2u and 2ag→2b2u.

Likewise, the flux 1b1u∼3ag should come from the interaction between the ground configuration

and 1b1u→3ag. Also, 2b2u∼b3g suggests the presence of interaction between the configurations of

2ag→2b2u and 2ag→b3g.

1b1u x 2ag

(Sb) 38 fs

3ag (a1) x 2b2u (b2)

126 fs

1b1g (a") x 2ag (a

215 fs

’)

FIG. 4.5: Electron flux at selected time points. They are induced by the set of molecular orbitals

indicated. Those at 38 fs and 215 fs are xz-section at y = 0 bohr, and 126 fs is yz-section at x = 0

bohr.

The more intense interaction happens, the more violent electronic flux is produced. At selected

time point such as 38 fs, the largest z-vectors of the three orbital intersections induced flux reach

4.8 × 10−4, 1.1 × 10−4 and 1.9 × 10−4, respectively, in atomic units (the following data for flux

just indicate the largest vectors in the discussed direction). It turns out that once z-symmetry

begins to be a little destroyed, more symmetry-adapted configurations with respect to the degraded

point group can be involved. Such as Φf (B2) after 62 fs, which excites the population of 1b1u(a1)

completely, makes a stronger interaction of 1b1u(a1)∼2ag(a1) become possible. Evidently, the above

three values achieves 7.4× 10−3, 1.7× 10−3, 3.8× 10−3 at 63 fs and are becoming larger. Thus the

z-symmetry inevitably collapses.

The correlation between electron flux and state-mixing is summarized as follows: As shown

above, the leading interaction for z-flux is 1b1u∼2ag. Generally, flux favors interacting orbitals

where virtual excitation happens readily [9], and the effective flux requires both concerned orbitals

to participate the relevant configurations. In the Sb case, while 2ag is singly occupied and 1b1u is

partly occupied at the beginning (see panel (d) in Fig. 4.4), the population of the latter orbital is

much varied by Φf (B2) subsequently. In addition, the partial occupation of b3g suppresses the y-flux

inducer 3ag∼2b2u to some extent by its own 2b2u∼b3g, which assists to break z-symmetry in the

early stage. Despite of zero initial kinetic energy, ω2(B1u) vibration is caused prior to other non-Ag

modes, which is in fact a characteristic of Sb dynamics. Thus the physical (geometrical) propaga-

tion of electronic distribution due to nonadiabatic interactions manifests itself as the electron flux.

Incidentally, z-allowed 1b3u(b1)∼2b3u(b1) as well as 2ag(a1)∼3ag(a1) induced z-flux are insignificant
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to the magnitude of 10−5.

Notice the crossing between 3ag and 2b2u at 35 fs and 60 fs (see panel (c) in Fig. 4.4), which

is just before the above mentioned z-symmetry broken process. Even if 3ag∼2b2u interaction is not

explicitly involved in the current time section, its significance has been coming in. In this way, the

electron flux exhibits a sensitive reflection of the kinetic-coupled electronic dynamics.

Subsequently, by a chance of MO crossing point around 126 fs, 3ag(a1)∼2b2u(b2) induced y-flux

just becomes activated (e.g. 5.0 × 10−4 at 126 fs). Since it is a strong interaction, y-symmetry is

broken rapidly by y-flux. This is the origin of short-lived quasi-C2v(z). Φd(A
′

) and Φa(A
′

) appear

after 155 fs and enhance further destruction of the y-symmetry, and thereby allow ω5(B2u) to be

involved.

In D2h group, the only possible x-flux interaction is 1b3u∼2ag. It comes into view at 215 fs

(1.2 × 10−4) as the interaction concerning 2ag(a
′

) is released by 1b1u(a
′

)∼2ag(a
′

) to some extent

(see panel (d) in Fig. 4.4). But 1b3u(a
′′

)∼2ag(a
′

) itself is so weak and effective configurations with

1b3u(a
′′

) are always few. Instead, 1b1g(a
′′

)∼2ag(a
′

) is a stronger interaction to induce the x-flux

(e.g. 2.2× 10−4 at 215 fs) in Cs(yz) group. However, the relative configuration concerning 1b1g(a
′′)

of Φj (see Table 4.3) is energetically unfavorable. That is why the quasi-Cs(yz) state lasts so long.

Until Φg(A) and Φq(A) arise after 340 fs, interaction concerning 1b1g(a) just becomes more apparent

and ω6(B1g) gets participated significantly.

The similar dynamics of electron flux develops, reflecting the further electronic state mixing.

These nonadiabatic interactions last long without dissociation of B4, which leads the electronic

states to more and more complicated situation as time passes. However, the feature of nonadia-

batic transitions through conical intersections and the resulting appearance of the electron flux is

essentially similar to those described as above for the early stage dynamics.

4.2.4 Radical Characters

In recent synthesis chemistry, reactivity of compounds having σ- or π-boryl radicals is intensely

studied in both theoretical and experimental aspects [10,11]. In excited state dynamics, we are par-

ticularly interested in the mixing between the σ- and π-states, which will be created by spontaneous

breaking of spatial symmetry.

In Fig. 4.6 are shown snapshots of the three-dimensional distributions of the unpaired electron

at three selected times: At 38 fs, molecular symmetry is the same as the initial one. As seen in

the figure, the radicals (actually two radicals, 0.99 and 0.95 unpaired electrons belonging to 2ag

and 2b2u orbitals, respectively) are widely distributed in the σ-plane, and interestingly they are

delocalized on four boron atoms in the σ-plane. As z-symmetry is broken, the σ-π orthogonality is

not preserved and one unpaired electron transfers from 2ag(a1) to 1b1u(a1) (e.g. at 126 fs). As a

result, radicals are pushed to be localized mostly on the two diagonal pairs of atoms (B1 and B3),
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and small components of the π radical are seen on B2 and B4. However, such clear π radicals do not

remain long and indeed σ-π radical oscillation centered mainly on B2 and B4 atoms follows from

90 fs to 215 fs (see panel (d) of Fig. 4.4). Then, as y-symmetry has been broken, by a chance of

1b1g(a
′′)∼1b1u(a

′) as well as 3ag(a
′)∼2b2u(a

′) MO crossing points, simultaneously with a nuclear

velocity minimum (see panel (a) of Fig. 4.4), where nonadiabatic flux becomes relatively apparent,

the σ-σ flux is enhanced while σ-π flux decreases after 215 fs. After all 1b1u(a
′) stops oscillation and

ends with nearly double occupancy. Since the single occupied 2b2u(a
′) is partly replaced by single

occupied 3ag(a
′), the σ radicals become more delocalized again.

Due to the initial conditions chosen here, the molecular shape of out-of-plane motion does not de-

velop to a large extent, remaining more or less close to the planar structure. However, it is obviously

inappropriate to track the unpaired electron density with the SET after when the wavepacket has

well bifurcated due to nonadiabatic interactions. Path-branching dynamics will isolate the π-radical

component more clearly.

4.2.5 Spectral Representation of the Electronic State Mixing

As above we have tracked the electronic state mixing due to a series of nonadiabatic interactions

through conical intersections only with theoretical quantities. The most appropriate experimental

means to date to track electronic state mixing are time-resolved photoelectron spectroscopy [12] and

high-harmonic spectroscopy [13]. The angle resolved photoelectron spectra, as well as the energy-

resolved one, are well known to give very rich information about the electronic state transitions

[14–16].

FIG. 4.6: Spatial distribution of unpaired electron density of Sb dynamics. Contour line is 0.03.

Balls of gray, red, green, blue indicate, the nuclei of B1, B2, B3, B4 of Fig. 2.1, respectively.
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We here study a possible induced emission spectrum to track the time evolution of electronic

states. Although the SET cannot represent the path-branching dynamics, it has been shown that

the electronic state mixing is very well reproduced by SET as long as the relevant path branching is

not expected to be significant [17]. One can make use of this good property of SET to approximately

deduce how the electronic state mixing can proceed qualitatively.

In the expansion of the total electron wavepacket in Eq. (3.1), here in this particular subsection,

we choose the adiabatic wavefunctions ΨI(r;R(t)) as expansion basis. Then the spectral lines are

anticipated to be found at the energy ∆E0I = EI(R(t))− E0(R(t)) (in the unit of cm−1, it means

ω0I), where the suffix 0 denotes the ground state, with the intensity

2mω0I

3h̄e2
|µ0I |

2 |CI(t)|
2
, (4.1)

where µ0I and ω0I are the related dipole moment and frequency, respectively. We demonstrate in

Fig. 4.7 such a spectral representation for the excited state. The weights |CI(t)|
2
are summarized

at each spectral line in this figure. It is well observed that starting from the single Sb state (top

panel in Fig. 4.7), the total wavefunction is evolved in time to be a state of more and more

complicated superposition of many adiabatic states. Although these spectra do not have quantitative

accuracy, we clearly see the evolution of electronic state mixing caused by the nonadiabatic couplings.

Well-designed stimulated emission experiments like the stimulated emission pumping spectroscopy

(SEP) [18] should be able to detect the similar spectra, at least partly, and will give a powerful

means to track the electron dynamics through nonadiabatic transitions.

Table 4.4: Eigenstate wavefunctions of Sb spectra.

∆E (cm−1) Configuration Coefficient ∆E (cm−1) Configuration Coefficient

A 60719 2ag→2b2u 0.741 H 73873 2ag→b3g 0.435

B 60608 2ag→2b2u 0.741 1b1u→2b2u 0.467

C 65729 1b1u→2b2u 0.848 I 47464 2ag→3ag 0.742

D 51774 2ag→3ag 0.660 J 55782 1b1g→3ag 0.716

E 55233 2ag→2b2u 0.491 K 59455 2ag→2b2u 0.532

1b1u→2b2u 0.447 1b1g→2b2u 0.470

F 61762 2ag→2b2u 0.468 O 60951 1b1g→2b2u 0.592

1b1u→3ag 0.587 P 64159 1b1u→3ag 0.680

G 72214 2ag→b3g 0.615 Q 69384 2ag→b3g 0.852
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FIG. 4.7: Spectral representation of the time-evolution of Sb. The logarithmic values of the spectral

intensity are plotted against the photo-emission energy. The state characters corresponding to the

individual spectral line are summarized in Table 4.4.
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4.3 Excited State: 1B1u

The following two sections are nonadiabatic excited state dynamics studies in the states of Sd and

Sg, which are similarly discussed to Sb case.

Giving zero point energy to ω4(Ag) mode (0.08 ev), Sd started nonadiabatic dynamics is shown in

Table 4.5 and Fig. 4.8. Similarly, the nuclear path associated with electronic behavior is analyzed as

below. As 3ag∼2b2u starts to affect y-symmetry from 82 fs (4.1×10−4, see Fig. 4.9), similar to that

occurs in Sb case, just 5 fs is spent in passing through the quasi-D2h state. Such an action can be seen

as a characteristic behavior of 3ag∼2b2u interaction. Then, fresh symmetry-adapted configurations of

Φn(B2) and Φf (B2) arises in the regular C2v(y) point group. But for the reason of double excitation,

the population of Φl(B2), Φn(B2) and certainly Φm(B2) is hard to increase markedly among the

five displayed configurations. So the main interaction thereafter is Φd(B2)∼Φf (B2) which really is

3ag(a1)∼2b2u(a1). As a result, vibration switches between ω1(Ag)+ω5(B2u) and ω4(Ag)+ω5(B2u).

Obviously, it is a relatively simply case that neither x-flux nor z-flux is induced during 400 fs and

the dominant interactive realm spans merely the four frontier orbitals. However, if we notice the

stable π radical, the interesting characteristic of Sd state can be understood. By comparasion with

Sb case, it is easy for one to think that the difference is due to the initial kinetic energy. In Sb case,

the ω1(Ag) results in a smaller θ which implicates higher vibrational exciation energy. On the other

hand, in Sd case the ω4(Ag) extends the molecular framework that σ-π nonadiabatic interaction is

weakened. It is a factor but not the root cause. Even if we replace initial mode with ω1(Ag), Sd

cannot induce obvious z-flux as Sb does. Though 1b1u is initially excited in Sd, its partner 2ag is hard

to be excited sequentially. In D2h section, the only symmetry-adapted single excitation correlating

to 2ag is 2ag→2b1u, which is obviously unfavorable in energy. And then in C2v(y) group, even the

most likely candidate of 2ag(a1)→b3g(b2) is still inexpectant. Since that implicates the vigorous

3ag(a1)∼2b2u(a1) would be replaced by 3ag(a1)∼b3g(b2) or 2b2u(a1)∼b3g(b2), what is unreasonable.

From this point of view, it is the robust in-plane electronic behavior that unexpectedly ensures the

stability of out-of-plane electron, what makes the stable π radical a necessity of Sd (see Fig. 4.10).
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Table 4.5: Time sections of Sd started nonadiabatic dynamics.

Sd−I 0∼[82]∼87 fs (D2h)

Configurations (B1u) Φd, Φl, Φm

Orbitals 1b1u, 2ag, 3ag, 2b2u

Notes 3ag∼2b2u begins to break y-symmetry after 82 fs.

Sd−II 87∼400 fs (C2v(y))

Configurations (B2) Φd, Φl, Φm, Φn, Φf

Orbitals 1b1u(b2), 2ag(a1), 3ag(a1), 2b2u(a1)

Notes 3ag(a1)∼2b2u(a1) breaks y-symmetry at all after 87 fs.
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FIG. 4.8: Selected quantities of Sd started dynamics. panels (c) and (d) share the same key labels.
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(Sd) 82 fs: 3ag x 2b2u

FIG. 4.9: Flux at selected time points of Sd dynamics: xy-section, z=0.0 bohr.

FIG. 4.10: Spatial distribution of unpaired electron density of Sd dynamics. Contour line is 0.03.

Each panel shows a three-dimensional distribution viewed from +X, +Y, or +Z direction. Balls of

gray, blue, green, red indicate, respectively, B1, B2, B3 and B4.
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4.4 Excited State: 1B3u

For Sg case, to observer an interesting behavior, the dynamics is selected starting from the stillness

and the results are shown in Table 4.6 and Fig. 4.11. Same as Sb, occupied 2b2u makes B4 to

be narrower and the molecule vibrates naturally along half-period ω1(Ag) mode before symmetry-

broken. But there is notable difference from Sb that the vibrational amplitude is larger in either edges

or diagonals in spite of nothing initial kinetic energy is assigned. It can be explained by the NO bond

order analysis of 1b1g and 2ag orbitals (see Fig. 4.3) that loss of electron from the former weakens

all the bonds while the latter almost unaffectedly. Another important difference from previous is

that the wavefunction actually proceeds with oscillations. It originates in the Rz-flux induced by

1b1g∼2ag interaction. Empirically, if a flux induced up to 4×10−4 level towards an unitary direction

lasts beyond 4 fs, the corresponding molecular symmetry could be affected. But in the current case,

such a curl flux in the xy-plane prevents the x- or y-symmetry from being readily destroyed. As

the y-flux begins to act at 86 fs (3.8 × 10−4 see Fig. 4.12), it is immediately cancelled out by

Rz-flux (4.1 × 10−4) and even be reversed soon by the oscillation. And the extended vibrational

amplitude separates 3ag from 2b2u in energy making the interaction between them weaken, even the

very capable 3ag∼2b2u spends nearly 37 fs in breaking y-symmetry. Only after 123 fs, the molecule

barely enters the C2v(y) group.

Once enter the C2v(y) group, 1b1g(b1)∼2ag(a1) turns more domimnant at inducing x-flux. By

virtue of the newcomer Φc(B1), which causes 3ag(a1) more excited, strengthes 3ag(a1)∼2b2u(a1)

at 150 fs, and the y-symmetry escapes totally from troublesome interactions concerning about 1b1g

after 156 fs (see Fig. 4.12). At the same time, x-symmetry is broken to some extent which is enough

to accept new configurations under the quasi-Cs(xy) group and the really interesting part is yet to

come.

The characteristic orbital of Sg state is 1b1g which relates to ω6(B1g) vibration. It requires at least

a C2h group and such a contidion is satisfied until enter Cs(xy), which has a subgroup of C2h. Recall

Hückel MO energy evolution along ω6(B1g) (Fig. 2.7). The two pr-bu orbitals corresponds to 2b2u

and 2b3u respectively. If one of them becomes occupied, along ω6(B1g) direction the pseudo-reflection

dsd process (see panel (b) in Fig. 2.6) does not occur in rigious C2h group. But in the current case,

in-plane bu symmetry has disappeared so that the 2b2u(a
′

) and 2b3u(a
′

) have the possibility to cross.

Indeed they are. As half occupied 1b1g(a
′

) caused ω6(B1g) vibration proceeds, the crossing between

2b2u(a
′

) and 2b3u(a
′

) occurs evidently. Then 2b3u(a
′

) becomes naturally occupied and the pseudo-

reflection rearrangement inevitably happens. Such an excited state dsd process is accompanied by

repeated bonding formation and dissociation (see Fig. 4.13).

Since z-flux has been discussed in Sb and the effect is not obvious here, interaction concerning

pπ orbitals are negelected.
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FIG. 4.11: Selected quantities of Sg started dynamics. (c) and (d) share the same key labels.

(Sg) 86 fs: 3ag x 2b2u 156 fs: 1b1g (b1) x 2ag (a1)

FIG. 4.12: Flux at selected time points of Sg dynamics: xy-section, z=0.0 bohr.
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Table 4.6: Time sections of Sg started nonadiabatic dynamics.

Sg−I 0∼[86]∼123 fs (D2h)

Configurations (B3u) Φg, Φo, Φp

Orbitals 1b1g, 2ag, 3ag, 2b2u, 2b3u

Notes 3ag∼2b2u begins to break y-symmetry after 86 fs.

Sg−II 123∼156 fs (C2v(y))

Configurations (B1) Φg, Φo, Φp, Φc

Orbitals 1b1g(b1), 2ag(a1), 3ag(a1), 2b2u(a1), 2b3u(b1)

Notes 3ag(a1)∼2b2u(a1) breaks y-symmetry at all after 123 fs. 1b1g(b1)∼2ag(a1)

begins to break x-symmetry after 123 fs.

Sg−III 156∼400 fs (Cs(xy))

Configurations (A
′

) Φg, Φo, Φp, Φc, Φa, Φq, Φb

Orbitals 1b1g (a
′

), 2ag (a
′

), 3ag (a
′

), 2b2u (a
′

), 2b3u (a
′

)

Notes 1b1g(a
′

)∼2ag(a
′

) breaks x-symmetry to a certain extent after 156 fs.

165 fs 193 fs 220 fs

FIG. 4.13: Bond order density at selected time points of Sg dynamics: xy-section, z=0.0 bohr.

4.5 Conclusions

We have studied the dynamics of spatial symmetry breaking caused by a series of passages through

symmetry-allowed conical intersections in the low-lying excited states of cyclic-B4 molecule.

Prior to a real-time track of the nonadiabatic transitions, we attempted to characterize the

molecular symmetry in terms of the Hückel molecular orbitals because of their very transparent and

simple properties in a way for them to be built from atomic orbital basis functions to molecular

orbitals. Among six occupied valence orbitals, one σ and one π 4c-2e orbitals and four sp hybridiza-

tion orbitals are reproduced by Hückel theory. It suggests that such a way of bonding is necessary

to form electron-deficient bonds of B4, which makes a stable four-member ring without relying on

the deltahedral structure of boron. Besides, the study suggests that the Hückel method can be used
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to foresee what kind of conical intersections may exist. This is because wavefunctions consisting of

the Hückel molecular orbitals can be regarded as the simplest approximation to the diabatic bases.

Although either the crossing energy or location is not numerically accurate, if used appropriately, it

is quite instructive.

Then we attempted to track the symmetry-breaking nonadiabatic dynamics from the view point

of electron dynamics. Actually we applied the semiclassical Ehrenfest theory, which cannot follow

path-branching dynamics. We have first examined the feature of the potential curves in the reaction

retaining D2h symmetry, and observed a rich yet clear structure of conical intersections among

seven low-lying states. By dissecting the marked areas where transition occurs, it is found that

the nonadiabatic process usually obeys the following procedures: (1) As molecule vibrates, nuclear

kinematic interactions generate asymmetric electronic flux. (2) Accumulated asymmetric flux starts

to affect the molecular symmetry at a quasi-symmetric state. (3) Once the symmetry is slightly

destroyed, the forbidden interactions turn to be allowed and enhance the flux more. (4) Thus

enhanced flux breaks the symmetry to larger extent.

It has been suggested that such time evolution of the electron wavepackets through nonadiabatic

state-mixing may be able to be detected by time-dependent induced photoemission in electronic spec-

troscopy. We have demonstrated the time-series of an “assumed instantaneous emission spectrum”

by calculating the spectral positions and the associated intensities as well of B4 molecule.

We hope the present work serves as a very basic building block with which to construct more large-

scale quantitative study for nonadiabatic dynamics through symmetry-allowed conical intersections

in excited state chemical reactions.
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Chapter 5

General Conclusions

This thesis employs ab initio nonadiabatic electron dynamics method developed from semiclassical

Ehrenfest theory to study the symmetry-breaking process of cyclic-B4 cluster. We simultaneously

track the nuclear path and the electronic wavepackets (in terms of such as configuration population,

occupancy number of natural orbitals, and probability current, etc.). By analyzing the interac-

tions among them, numerical results show that the kinetic-coupling terms are the key to break

the symmetric electronic Hamiltonian, which agrees with the fundamental rule of quantum mech-

anism. Briefly speaking, symmetric nuclear vibration generates asymmetric electron flow through

the kinetic-coupling term and vice versa the induced asymmetric electron flow affects the symmetric

nuclear configuration. So the kinetic-coupling can be also called “friction”term. Symmetry rules in

the Group theory direct the reaction throughout the process.

One may doubt that how accurate the numerical results are. Indeed it is necessary to point

out the limitations when employ a theoretical method. Prior to the dynamics chapter, Hückel

theory is used to identify the irreducible representations and gives a useful and instructive result.

As seen from Fig. 2.9(b) and Fig. 4.2, the Hückel predicted conical interactions can be accepted

just at the level of the symmetric characteristics of electronic states. For crossing energy, it is

undependable. However, for large scale molecules (especially those have any symmetries), a Hückel

guess on the locations of the conical interactions along any particular reaction coordinates may be

a good reference qualitatively for more expensive calculations. For example, tell people in which

direction there should be conical interactions. Besides, all the time points mentioned in the dynamics

are very sensitive to numerical calculations such as integration schemes, initial conditions or even the

machines. Since the processes those pass through the avoided crossing areas are highly nonlinear.

Thus, rather than focus on how many femtoseconds a process exactly take (38 fs, or 36 or 40 fs), the

key issue is the certain phenomena appeared in the characteristic electronic state. For example, the

z-symmetry must be broken prior to the y- and the x-symmetry-breaking in the 1B2u state case. So,
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we actually created nothing new rule. The numerical study is just a tool to discovery the existing

but unrevealed connections among the concepts such as kinetic-coupling, conical interactions and

the Group theory and visualize them.

At last, here we take a brief introduction of next work. The present thesis studies the symmetry-

breaking process using cyclic-B4 as a case since it is a high symmetric molecule. Vice verse, how

the symmetry-generating process works? This time take B6 for instance, which has no stationary

planar structure at the singlet ground state state. This is due to the essential of hexa-atom molecule

which can be illustrated by the Hückel theory too. One of the ground state stationary structure of

B6 is C2 symmetry, which is non-planar. Interestingly, once excited, the molecule may transform

into various quasi-planar geometries such as C2v, C2h or even D2h alike. Tracking these processes

may be a complement to the present thesis, what is underway.
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Appendix A

These derivations are referred by section 3.2.

A1. Derivation of Xk
IJ =

∑MO
ij aIJij (U

k
ij + SkR

ij )

First use one-electron constant to reduce the derivative coupling integral from CSF bases to MO

bases as

Xk
IJ = 〈ΦI |∂k|ΦJ 〉 =

MO
∑

ij

aIJij 〈φi|∂k|φj〉 =

MO
∑

ij

aIJij d
k
ij , (5.1)

wherein

dkij = 〈φi|∂k|φj〉 =
〈

AO
∑

µ

ciµχµ

∣

∣∂k
∣

∣

AO
∑

ν

cjνχν

〉

=

AO
∑

µν

ciµc
j
ν〈χµ|∂kχν〉+

AO
∑

µν

ciµ(∂kc
j
ν)〈χµ|χν〉. (5.2)

By the definition of Eq. (3.19), we have

Sk
ij =

AO
∑

µν

ciµc
j
ν〈χµ|∂kχν〉+

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij −

AO
∑

µν

ciµ(∂kc
j
ν)〈χµ|χν〉+

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij −

AO
∑

µν

ciµ(

MO
∑

m

cmν U
k
mj)〈χµ|χν〉+

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij −

MO
∑

m

Uk
mj(

AO
∑

µν

ciµc
m
ν )〈χµ|χν〉+

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij −

MO
∑

m

Uk
mj(Sim) +

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij −
MO
∑

m

Uk
mj(δim) +

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉

= dkij − Uk
ij +

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉. (5.3)

Considering another important relation between Sk
ij and Uk

ij by Eq. (3.33), dkij is expressed as

dkij = −

AO
∑

µν

ciµc
j
ν〈∂kχµ|χν〉 − Uk

ji. (5.4)
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On the other hand, since 〈φi|φj〉 = δij (the orthogonality of MO), its nuclear derivative is zero;

namely ∂k〈φi|φj〉 = 0. This gives the relation of

〈∂kφi|φj〉 = −〈φi|∂kφj〉 = 〈φj |∂kφi〉
⋆ = 〈φj |∂kφi〉, (5.5)

and the last step is due to their real numbers in numerical calculation. Thus the definition of dkij in

Eq. (5.2) becomes

dkij =
1

2
(〈φi|∂k|φj〉 − 〈φj |∂k|φi〉). (5.6)

Note that it is antisymmetric matrix which has the relation of

dkij = −dkji. (5.7)

So Eq. (5.4) can be rewritten as

dkij =

AO
∑

µν

ciµc
j
ν〈χµ|∂kχν〉+ Uk

ij = SkR
ij + Uk

ij , (5.8)

herein use the relation of real matrix that 〈∂kχµ|χν〉 = 〈χν |∂kχµ〉
⋆ = 〈χν |∂kχµ〉 and then interchang

subscripts. So far Eq. (3.13) has been deduced.

A2. Derivation of SkR
ij = SkL

ji

SkR
ij =

AO
∑

µν

ciµc
j
ν〈χµ|∂kχν〉 =

AO
∑

µν

ciµc
j
ν〈∂kχν |χµ〉 =

AO
∑

µν

ciνc
j
µ〈∂kχµ|χν〉 = SkL

ji (5.9)

wherein use the relation of real matrix: 〈χµ|∂kχν〉 = 〈∂kχν |χµ〉
⋆ = 〈∂kχν |χµ〉 and then interchang

subscripts.

A3. Derivation of Ua
ij + Ua

ji + Sa
ij = 0

Since Sij = δij , so ∂aSij = 0. On the other hand,
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Appendix B

Abstract

The first singlet excited state geometries of various isomers and tautomers of firefly oxyluciferin

(OxyLH2), as well as their fluorescence spectra in aqueous solution, were studied using time depen-

dent density functional theory (TDDFT). With changing pH in aqueous solution, three fluorescence

peaks, blue (450 nm), yellow-green (560 nm), and red (620 nm) correspond to neutral keto and eno-

lic forms, the monoanionic enolic form, and the monocationic keto form respectively. A counterion,

Na+, was predicted to cause a blue shift in the fluorescence of anionic OxyLH2. The contributions

of a charge transfer (CT) state upon electronic excitation of the planar and twisted structures were

predicted. CT was large for the twisted structures but small for the planar ones. The differences

between pK and pK∗ of various oxyluciferin species were predicted using a Forster cycle. A new

possible light emitter, namely, the monocation keto form (keto+1), was considered.

B1. Introduction

Bioluminescence and Chemiluminescence

The bioluminescence produced by various natural firefly luciferases and their mutants range in color

from green (∼530nm) to red (∼635nm) [1–6]. The most accepted mechanism is that the reaction

of firefly luciferin (LH2), which binds to the active site of firefly luciferases and in the presence of

ATP, Mg 2+, and O2, is catalyzed by the enzyme resulting in an electronic excited state oxyluciferin

(OxyLH2) (see Fig. 5.1). The reaction proceeds via a highly energetic dioxetanone intermediate

formed by chemically initiated electron-exchange luminescence (CIEEL) [7–10]. Visible light is

emitted as the first excited singlet state (S1) of OxyLH2 decays to the ground state (S0). A topic

of great interest is the exact nature of the interactions between luciferases and luciferin which cause

the same substrate to emit multicolor light.
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FIG. 5.1: Supposed mechansim in bioluminescence of firefly.

In early studies due to the complexity of the biosystem, attempts to reveal the details of the

enzymatic reactions using radioactive substrates and spectroscopic techniques failed [9, 11]. Later

the chemiluminescence of firefly luciferin-AMP (or its analogs), in basic solvent (potassium tert-

butoxide in dimethylsulfoxide (DMSO) or imidazolate in water) and oxygen, was examined in detail

in the laboratory (see Fig. 5.2) [4, 9, 11]. Taking the chemiluminescence in DMSO as an example,

the peak of emission spectrum changes shifts red (630nm) to yellow-green (555nm) with an increase

in the amount of potassium tert-butoxide [4,9,11–15]. One explanation invoked two tautomers, viz.

the keto and enol forms with the equilibrium determined by the concentration of the base: keto emits

red and enol yellow-green light. Given the similarity of the emission spectra between chemi- and

bio- luminescence, their mechanisms were thought to be the same, namely pH-dependent keto-enol

tautomerism [11–13].

So, OxyLH2 was synthesized long ago and its absorption and fluorescence spectra were measured

in various solvents (such as ethanol, DMSO, and water at different pH) to obtain more detailed

information on the color modulation [16–18]. IR and NMR showed that OxyLH2 exists as an

enolic form in neutral media (see Fig. 5.3) [19]. The 371 nm and 425 nm absorption peaks in

DMSO correspond to the neutral enolic form and to this species after deprotonation at 6′-H [20]. In

aqueous solution, these two absorption peaks shift to 370 nm and 415 nm [17]. The 10 nm blue shift

of the anionic enolic form is caused by increasing solvent polarity and is supported by theoretical

results [21, 22]. On the other hand, fluorescence peaks at 450 nm and 570 nm in aqueous solution

correspond to enol0 and its form with deprotonation at 6′-H. The 620 nm peak was thought to be

produced by the keto form [17]. Later the 570 nm peak was separated into 556 nm and 587 nm

peaks, which correspond to enol-2 and enol-1 [23].
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FIG. 5.2: Supposed mechanism in chemiluminescence of luciferin-AMP.

Emission Spectra in Solvent

Interestingly, previous theoretical studies did not agree with these results very well. For example,

according to SAC-CI (symmetry-adapted cluster-configuration interaction) and CASSCF (complete

active space self-consistent field) and TDDFT (time-Dependent density functional theory), enol-1

always has a lower emission energy than keto-1 and enol-2 has the lowest emission energy [21,24,25].

At the same time, it was reported that 5,5-dimethyl-OxyLH2, an analogue of OxyLH2 which could

emit only red light (630 nm) in chemiluminescence according to the tautomerism model as it exists

only in the keto form, was found to emit yellow-green light (560 nm) with luciferase [1]. A theoretical

explanation of this result involved the nearby protein residues and AMP with the electrostatic effect

of the protein causing the keto form to be a higher energy emitter [24]. Furthermore, Nakatsu et al.

reported on the basis of X-ray structural analyses of firefly luciferases that green (560 nm) and red

light (613 nm) correspond to tight and loose structures of the active sites respectively [2]. Thus the

tautomerism mechanism seems not be necessary to explain the multicolor bioluminescence of firefly

luciferins. On the other hand, Ando et al. found that red emission components (620 nm peak and

670 nm peak) were insensitive to pH implicating that pH-sensitive luciferases remain important in

studies of bioluminescence [26]. In a word, the details of tautomerism and the fluorescence spectra of

oxyluciferin in solvent need to be expounded further prior to considering the even more complicated
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case of bioluminescence.
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FIG. 5.3: Forms of oxyluciferin and its analogues.

Proton transfer (PT) and excited state intramolecular proton transfer (ESIPT) are the keys to

understanding tautomerism. PT can be analyzed in terms of the pK and pK∗ values of corresponding

OxyLH2 species. A Forster cycle [27] is employed here to study the changes in acidity and basicity of

OxyLH2 from the ground state to the lowest excited state. Further, the predicted emission spectra

are compared with experimental emission spectra to explain the multicolor fluorescence of OxyLH2.

In addition, luciferin-AMP in water with imidazole and in DMSO with potassium tert-butoxide

produce similar red chemiluminescence (λmax= 650 nm and λmax= 630 nm respectively) [9]. The

emitter was thought to be keto-1 and the blue shift in λmax appeared to be in a progression from

more to less polar surroundings [11,12]. However, the predicted shift was to the red with decreasing

solvent polarity [21,24]. Therefore, other factors that can lead to different shifts in the wavelengths

are assessed such as changes in pH, or the effects of a counter ion [17], Na+.

Density functional theory (DFT) and TDDFT are employed to predict the ground and excited

states of OxyLH2. Previously some properties of OxyLH2 were predicted with similar methods [22].

This work adopts another point of view. Notably, TDDFT has been criticized for its predictions
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on OxyLH2 due to the possibility of charge transfer (CT) states for which TDDFT with the usual

exchange-correlation functionals is known to have difficulties [25,28,29]. Herein, any CT contribution

to the excited state is examined before employing TDDFT.

B2. Computational Methods

Spectrum Prediction

The 6-31+G* basis set, which includes diffuse functions and d-type polarization functions, was

employed except for molecules containing Na where the 6-31G* set was used instead.

All the S0 geometries of OxyLH2 species were optimized [30] by B3LYP [34] (Becke’s hybrid

exchange functional and the correlation functional of Lee, Yang, and Parr) in Gaussian03 [35]. The

S1 geometries were optimized with TD B3LYP in Turbomole [36]. The local correlation function

SVWN3 or SVWN5 in B3 depends on whether Gaussian03 or Turbomole was used. SVWN3 is

included in B3 Gaussian03 and SVWN5 in B3 in Turbomole. For OxyLH2 molecules, the results with

the two functionals were compared and there is no significant difference on geometric predictions.

In order to consider solvent effects on excitation energies, the polarized continuum model (PCM)

[37, 38] in Gaussian03 was adopted but not the conductor-like screening model (COSMO) which

interfaces with Turbomole. So excitation energy predictions were performed with TD B3LYP in

Gaussian03.

Charge Transfer State

Before using TDDFT to predict OxyLH2 emission energies, a possible problem needs to be addressed.

LH2 was found to have a CT state as its first excited state [39]. Thus TDDFT may underestimate

excitation energies of OxyLH2 due to possible CT contributions [24, 25] similar to the case of LH2.

Herein, charge distribution analysis was carried out. As a specific example, at the TD B3LYP

optimized S1 geometries of keto-1 (TDDFT may still be effective in geometry optimization although

its energy prediction of the CT state is somewhat contentious [40]), atomic charge distributions were

predicted for the essentially planar structures (which are minima in both S1 and S0 [21, 22, 24, 25])

and twisted structure (which once was assigned to the red emitter but recently discounted due to

the small oscillator strengths of the S1→S0 transition [24, 25], see Fig. 5.3) by CIS (configuration

interaction with single excitations) method. The planar form showed a small CT contribution, with

only 0.118 negative charges transferred from the benzothiazole moiety to the thiazoline. In contrast

0.708 electrons were transferred in twisted keto-1, which was thought to possess a twisted charge

transfer (TICT) state upon electronic excitation. The CT contribution in the planar OxyLH2 species

is small and TDDFT should be adequate for predicting the electronic excitations. Further indication

of the adequacy of TD B3LYP for the prediction of the emission of keto-1 at 556 nm comes from
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comparison with the previous CASSCF result [25] of 527 nm.

When discussing the effects of counter ions on the excited state geometries of OxyLH2 Na-

complexes the PCM water model must be included. However, large CT occurs from OxyLH2 to Na

upon excitation in the gas phase. Thus, in order to employ PCM during excited state geometry

optimization, CIS in Gaussian03 was adopted.

B3. Fluorescence of Oxyluciferin in Aqueous Solution

Identify Fluorescence Emitters

Now consider the absorption spectra and the steady state fluorescence spectra of OxyLH2 in actual

aqueous solutions. The spectra are mainly affected by changes in pH (Table 5.1).

Table 5.1: Predicted absorption and emission spectra, λmax, in nm, and oscillator strengths, f ,

predicted for OxyLH2 in PCM water with TD B3LYP/6-31+G*.

absorption spectraa emission spectra

water/gasb water/water exp [17] water/gas exp [17]

λmax f λmax f λmax λmax f λmax

enol0 388 0.66 389 0.66 370 454 0.66 450

keto0 411 0.43 420 0.45 459 0.30

enol-1 489 0.75 478 0.69 415 508 0.60 560

keto-1 507 0.80 512 0.77 559 0.57

enol-2 499 0.57 495 0.58 573 0.48

keto+1 517 0.33 517 0.31 606 0.08 620
a Absorption spectra predicted by TD B3LYP/6-31+G*//B3LYP/6-31+G*; and emission spectra

by TD B3LYP/6-31+G*// TD B3LYP/6-31+G*. b Water/gas means an excitation energy

calculation in PCM water based on geometry optimization in the gas phase. Similarly,

water/water means an excitation energy calculation in PCM water based on geometry

optimization in PCM water.

The two absorption wavelength maxima, 370 nm in acidic and 415 nm in basic solutions, indicate

there were at least two ground state species, that probably correspond to the neutral form and that

deprotonated at 6′-H, namely enol0 and enol-1. The 4-H in enol-1 is unlikely to be deprotonated

for there is no change in the maximum wavelength upon increasing the pH, while the absorption

spectrum of enol-2 was predicted to red shift (approximately 15 nm) compared with the monoanions.

Comparing the results of water/gas and water/water for OxyLH2 molecules, the PCM solvent model

causes only small changes in the absorption spectra after geometry optimization. Thus, for excited
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state geometry optimization, solvent effects on geometries were not included and computations were

of the type water/gas.

In experiments the fluorescence spectra exhibited three wavelength maxima at different pH

(pH>9, 560 nm; 8>pH>3, 450 nm; pH<3, 620 nm). The maximum at 450 nm (blue fluores-

cence) should be produced by enol0 as supported by the TDDFT predictions and the experiments,

considering that only blue fluorescence was observed in ethanol [17], which inhibited proton transfer,

or with MeOLH2 (6′-methoxyluciferin), which has no 6′-H for deprotonation. With increasing pH,

enol0 is doubtlessly ionized to enol-1 and the maximum at 560 nm (yellow-green fluorescence) likely

corresponds to enol-1. Note keto-1 has more reasonable predicted emission spectrum comparing

with experiment. If it is the yellow-green light emitter, excited state PT or hydrogen migration

mechanism between enol-1 and keto-1 needs further studied. Here only discuss the changes of the

acidity and the basicity of them upon excitation. For example, could such a ionization occur in

the excited state? Will the monoanion (enol-1) transform into a dianion (enol-2) before a radiative

transition? The pK∗
a (superscript of aster denotes excited state) for the 6′-H was thought to decrease

upon electronic excitation [4, 9, 15, 17, 23, 41]. A Forster cycle [27], which incorporates the acidity

and the basicity of various species of OxyLH2, is given in Fig. 5.4 and used to discuss changes from

pK to pK∗.

Taking enol0 and enol-1 as examples, together with enol0∗ and enol-1∗, corresponding Forster

cycle is illustrated on the left-hand side of Fig. 5.4. ∆Edeprot and ∆E∗
deprot are the energies required

for deprotonation of enol0 in S0 and S1 states respectively. The smaller the deprotonation energy,

the higher the acidity of either electronic state. So the value of ∆∆Edeprot, which is the difference

between ∆Edeprot and ∆E∗
deprot, implicates the acidity change of enol0 upon electronic excitation.

Similarly, taking the cycle of keto0 and keto+1 on the right-hand side of Fig. 5.4 as an example,

∆Eprot and ∆E∗
prot are the energies released upon protonation of keto0. The more energy that is

released, the higher the basicity of keto0. So the value of ∆∆Eprot, which is the difference between

∆Eprot and ∆E∗
prot, implicates the basicity change of keto0 upon electronic excitation.

Fig. 5.4 shows the energy values associated with the following different cycles and provides the

information as below:

1. The acidity of 6′-H in enol0 increases markedly upon electronic excitation as well as in keto0:

∆∆Edeprot(enol0) = 0.59 ev, ∆∆Edeprot(keto0) = 0.54 ev. So the ionization of 6′-H could occur

in the excited state.

2. If enol-1 or keto-1 do not lose the proton in the ground state, it is impossible for them to

transform to enol-2 by deprotonation in the excited state as they show less change of acidity

upon excitation: ∆∆Edeprot(enol−1) = 0.09 ev, ∆∆Edeprot(keto−1) = −0.08 ev.

3. Keto+1 could be formed from enol0 or keto0 by protonation in the excited state because
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the corresponding ∆E∗
prot is markedly larger than ∆Eprot in the corresponding Forster cycle:

∆∆Eprot(enol0) = 0.78 ev, ∆∆Eprot(keto0) = 0.56 ev, implying the basicity of 5-C in enol0 or of

the 4-carbonyl oxygen in keto0 greatly increases upon electronic excitation.

enol0

enol0*

enol-1

enol-1*

enol-2

enol-2*

keto-1

keto-1*

keto0

keto0*

keto+1

keto+1*
3.18ev

2.59ev

2.50ev

2.42ev

2.96ev

2.40ev

¡÷Edeprot

¡÷Edeprot

¡÷Eprot

¡÷Eprot

*

*

FIG. 5.4: Excitation energies (S0→S1) of OxyLH2 predicted by TD B3LYP/6-31+G*//B3LYP/6-

31+G* in PCM water. These energies are used in the construction of the Forster cycles discussed

in the text.

Taking a comprehensive view, it can be deduced that no fluorescence maximum in aqueous so-

lution corresponds to enol-2 as it cannot be formed in either the ground or excited state. The

yellow-green fluorescence (λmax=560 nm) emitter correspondeds to enol-1. The observed single ex-

ponential fluorescence decay of OxyLH2 in the yellow-green region in aqueous solution (pH=7.8)

supports this conclusion [17]. In addition, at much greater concentration of H+ (pH<3), the neu-

tral forms (3<pH<8, λmax=450 nm) could be protonated. Keto+1 is a possible red light emitter

(λmax=620 nm). The present theoretical prediction (606 nm) agrees very well with the earlier

experimental result.

Effects of Counterions

In order to mimic the experimental environment in the chemiluminescence experiments which were

carried out in DMSO with added potassium tert-butoxide [11, 12], Nakatani et al. added K+ ions

to the various anionic forms of OxyLH2 in their calculations and the emission spectra shifted to

the blue compared to the computations without the K+ [24]. To our knowledge, that was the
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first attempt to consider the counterions in the computational models of OxyLH2 fluorescence. As

NaOH was used to alter the pH in aqueous solution in several experiments [17], the [enol-2]-2Na

tight ion pair complex (see Fig. 5.3) was considered to reveal the effects of counterions. The model

is somewhat oversimplified as in the real aqueous solution the Na+ also would interact explicitly

with water molecules.

Inclusion of Na+ causes a 10∼20 nm blue shift in the emission spectra, λmax, of the anions

(Table 5.2). Charge distribution analysis in the exited state shows Na+ is well formed in PCM

water. In order to ensure that this blue shift effect is due to the Na+ but the geometric changes, Na

was deleted from the optimized geometries of the complexes and emission energies were calculated.

Virtually no differences are seen (compare the first and third sets of data in Table 5.2).

Table 5.2: Emission spectra, λmax, in nm, and oscillator strengths, f , predicted for anionic OxyLH2

and the complexes with Na by TD B3LYP/6-31+G*//CIS/6-31G* in PCM water.

anion Na added Na deleteda

λmax f λmax f λmax f

enol-1 507 0.80 499 0.80 506 0.81

keto-1 509 0.78 500 0.77 506 0.79

enol-2 555 0.52 544 0.63 552 0.61
a Na deleted: energies calculated at geometries without Na, which were simply deleted from the

previously optimized complexes geometries with Na.

Table 5.3: Kohn-Sham Frontier orbital eigenvalues, in eV, predicted for anionic OxyLH2 and the

complexes with Na by B3LYP/6-31+G* in PCM water. Energy gaps between HOMO and LUMO

are reported.

anion Na added Na deleted

HOMO LUMO ∆E HOMO LUMO ∆E HOMO LUMO ∆E

enol-1 -4.65 -2.09 2.56 -4.77 -2.17 2.60 -4.66 -2.10 2.56

keto-1 -5.19 -2.70 2.49 -5.32 -2.77 2.55 -5.18 -2.68 2.50

enol-2 -3.61 -1.26 2.35 -4.40 -1.95 2.45 -4.20 -1.77 2.43

How does the Na+ affect the spectra? Taking enol-2 and its Na-complex for example, their Kohn-

Sham (KS) frontier orbitals, HOMO and LUMO, are shown in Fig. 5.5. Clearly the HOMO and

LUMO have very similar characteristics with or without the Na, viz., there is no orbital contribution

from the Na. Thus, Na+ affects the emission energies neither by sharing the negative charge of enol-2

nor by significantly changing the forms of the HOMO and LUMO. However, the Na+ does change

the KS eigenvalues of enol-2, which makes the energy gap to be larger. The ∆ELUMO−HOMO of
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enol-2 is 2.35 eV, and with Na+ included the gap is 2.45 eV. The KS frontier orbital eigenvalues

of enol-1, keto-1, and enol-2 are given in Table 5.3. Na+ stabilizes the HOMO, and as a result the

spectra shift a little to the blue. Accordingly, the blue shift of keto-1 chemiluminescence, which

occurs on going from water/imidazole to DMSO/potassium tert-butoxide [9,11], may due to the K+

counterions in DMSO.

FIG. 5.5: Kohn-Sham frontier orbitals for enol-2 and the [enol-2]-2Na complex predicted with the

B3LYP/6-31+G* method in PCM water.

B4. Conclusions

In this study, the mechanism for the fluorescence color tuning of firefly oxyluciferin in aqueous

solution was expounded with the use of the TDDFT B3LYP/6-31+G* model. From the predicted

emission spectra of various isomers and tautomers of OxyLH2, they are shown to be good emitters

in the visible light region. Each species cannot be considered as a fluorescent emitter solely due to

agreement between the predicted emission energy and experiment. Keto-1, for example, which was

thought to produce the red fluorescence, has no corresponding fluorescence peak in aqueous solution.

However, it is still a candidate as the red light emitter in chemi- and bioluminescence for different

reaction conditions from those discussed.

In the excited state, neutral OxyLH2 more easily loses its 6′-H proton or gains a proton at 5-C

or 4-O. Excited state intramolecular proton transfer may occur. Counterions, such as Na+ and K+,

cause the emission wavelength of anionic OxyLH2 to shift a little to the blue. Charge transfer within

OxyLH2 is insignificant in the planar forms, and the efficient TDDFT approach proved powerful in

studying the series of OxyLH2 molecules.

This report has focused on fluorescence in aqueous solution, which must be differentiated from

chemi- or bioluminescence.

65



Reference

[1] B. R. Branchini, M. H. Murtiashaw, R. A. Magyar, N. C. Portier, M. C. Ruggiero, and J. G.

Stroh, J. Am. Chem. Soc. 124 (2002) 2112.

[2] T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, and H. Kato,

Nature 440 (2006) 7082.

[3] V. R. Viviani, Cell. Mol. Life. Sci. 59 (2002) 1833.

[4] T. N. Vlasova, O. V. Leontieva, and N. N. Ugarova, Biolumin. Chemilumin.: Prog. Perspect.

(2005) 69-72.

[5] B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C.

Ruggiero, and J. G. Stroh, Biochem. 43 (2004) 7255.

[6] B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson, L. C. Helgerson, and M.

Zimmer, Biochem. 38 (1999) 13223.

[7] M. Matsumoto, J. Photochem. Photobiol. C, 5 (2004) 27.

[8] G. Orlova, J. D. Goddard, and L. Yu. Brovko, J. Am. Chem. Soc. 125 (2003) 6962.

[9] E. H. White, E. Rapaport, H. H. Seliger, and T. A. Hopkins, Bioorg. Chem. 1 (1971) 92.

[10] H. Fraga, D. Fernandes, J. Novotny, R. Fontes, and J. C. G. Esteves da Silva, ChemBioChem.

7 (2006) 929.

[11] T. A. Hopkins, H. H. Seliger, and E. H. White, J. Am. Chem. Soc. 89 (1967) 7148.

[12] E. H. White, E. Rapaport, T. A. Hopkins, and H. H. Seliger, J. Am. Chem. Soc. 91 (1969)

2178.

[13] E. H. White, M. G. Steinmetz, J. D. Miano, P. D. Wildes, and R. Morland, J. Am. Chem.

Soc. 102 (1980) 3199.

[14] W. C. Rhodes, and W. D. McElroy, J. Biol. Chem. 233 (1958) 1528.

[15] O. V. Leontieva, T. N. Vlasova, and N. N. Ugarova, Biochem. (Moscow) 71 (2006) 51.

[16] R. A. Morton, T. A. Hopkins, and H. H. Seliger, Biochem. 8 (1969) 1598.

[17] O. A. Gandelmann, L. Yu. Brovko, N. N. Ugarova, A. Yu. Chikishevb, and A. P. Shkurimov,

J. Photochem. Photobiol: B. 19 (1993) 187.

[18] N. Wada, and R. Shibata, J. Phys. Soc. Jap. 66 (1997) 3312.

66



[19] H. Suzuki, and T. Goto, Agric. Biol. Chem. 36 (1972) 2213.

[20] N. Suzuki, M. Sato, R. Okada, and T. Goto, Tetrahedron 28 (1972) 4065.

[21] A. M. Ren, and J. D. Goddard, J. Photochem. Photobiol: B. 81 (2005) 163.

[22] A. M. Ren, J. F. Guo, J. K. Feng, L. Y. Zou, Z. W. Li, and J. D. Goddard, Chin. J. Chem.

26 (2008) 55.

[23] N. N. Ugarova, L. G. Maloshenok, and I. V. Uporov, Biochem. (Moscow) 70 (2005) 1262.

[24] N. Nakatani, J. Hasegawa, and H. Nakatsuji, J. Am. Chem. Soc. 129 (2007) 8756.

[25] T. Yang, and J. D. Goddard, J. Phys. Chem. A. 111 (2007) 4489.

[26] Y. Ando, K. Niwa, K. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama,

Nat. Photonics 2 (2008) 44.

[27] J. Catalan, J. Am. Chem. Soc. 123 (2001) 11940.

[28] K. Fujimoto, S. Hayashi, J. Hasegawa, and H. Nakatsuji, J. Chem. Theory. Comput. 3 (2007)

605.

[29] M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel, F. Neese, T. Frauenheim, and

M. Elstner, J. Phys. Chem. B 109 (2005) 3606.

[30] V. R. Viviani, T. L. Oehlmeyer, F. G. C. Arnoldi, and M. R. Brochetto-Braga, Photochem.

Photobiol. 81 (2005) 843.

[31] A. Kitayama, H. Yoshizaki, Y. Ohmiya, H. Ueda, and T. Nagamune, Photochem. Photobiol.

77 (2003) 333.

[32] V. Viviani, A. Uchida, N. Suenaga, M. Ryufuku, and Y. Ohmiya, Biochem. Biophys. Res.

Commun. 280 (2001) 1286.

[33] V. R. Viviani, F. G. C. Arnoldi, A. J. S. Neto, T. L. Oehlmeyer, E. J. H. Bechara, and Y.

Ohmiya, Photochem. Photobiol. Sci. 2 (2008) 159

[34] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.

[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.

Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,

V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.

Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.

67



Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.

W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.

Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,

K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,

B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.

Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.

Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN-03, Revision A.1,

(2003) Gaussian, Inc., Pittsburgh, PA.

[36] R. Ahlrichs, M. H. Bar, P. Baron, R. Bauernschmitt, S. Bocker, P. Deglmann, M. Ehrig,

K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Haser, H. Horn, C. Hattig, C. Huber, U.

Huniar, M. Kattannek, A. Kohn, C. Kolmel, M. Kollwitz, K. May, C. Ochsenfeld, H. Ohm,

H. Patzelt, O. Rubner, A. Schafer, U. Schneider, M. Sierka, O. Treutler, B. Unterreiner, M.

V. Arnim, F. Weigend, P. Weis, and H. Weiss, TURBOMOLE-V5-7-patches, Copyright (C)

(2004) University of Karlsruhe.

[37] T. Mineva, and N. Russo, Int. J. Quantum Chem. 61 (1997) 665.

[38] H. Houjou, Y. Inoue, and M. Sakurai, J. Am. Chem. Soc. 120 (1998) 4459.

[39] F. Eckert, and A. Klant, AIChE J. 48 (2002) 369.

[40] C. Van Caillie, R. D. Amos, Chem. Phys. Lett. 317 (2000) 159.

[41] J. Jung, C. A. Chin, P. S. Song, J. Am. Chem. Soc. 98 (1976) 3949.

68



List of Publications

[1] Zhong-wei Li, Ai-min Ren, Jing-fu Guo, Tianxiao Yang, John D. Goddard, and Ji-kang Feng,

J. Phys. Chem. A 112 (2008) 9796-9800.

“Color-tuning mechanism in firefly luminescence: theoretical studies on fluorescence of oxylu-

ciferin in aqueous solution using time dependent density functional theory ”

[2] Zhong-wei Li, Chun-gang Min, Ai-min Ren, Jing-fu Guo, John D. Goddard, Ji-kang Feng, and

Liang Zuo, Bull. Korean Chem. Soc. 31 (2010) 895-900.

“Theoretical study of the relationships between excited state geometry changes and emission

energies of oxyluciferin ”

[3] Zhong-wei Li, Takehiro Yonehara, and Kazuo Takatsuka, Chem. Phys. 464 (2016) 14-25.

“Nonadiabatic electron wavepacket study on symmetry breaking dynamics of the low-lying

excited states of cyclic-B4 ”

69



Ackownledgement

This thesis is the result of six years study since 2009 at the Graduate School of Arts and Science,

University of Tokyo. It represents not only the work I typed before a computer; it is a record of the

experiences I have encountered from many unforgettable persons who I wish to acknowledge.

First and foremost, I wish to thank my advisor, Prof. Kazuo Takatsuka, who has been supportive

since I first came to Komaba as a foreign student. Especially after my returning to China in 2013, the

discussion between us had to be carried out by internet. He guided me academically and emotionally

over these years with unbelievable patience. During the most difficult times of life when studied

abroad, he gave me shelter as a spiritual pillar.

I also wish to thank our Assistant Prof. Dr. Satoshi Takahashi who takes care of group’s affairs

meticulously and responsibly besides his own research work. Though we focus on different areas of

research, as a faculty, he has been concerned about my growth continuously and more than once

helped me out of trouble at the crucial moment.

Thanks also to my seniors in the group. Thanks to Dr. Takehiro Yonehara who has ever spared

no effort to help me promote the research process. The most of my study notes just come from

his careful instruction. Thanks to Dr. Kengo Nagashima for sharing the valuable experiences in

implementing the complex algorithms even at his busiest moments. Without his help, I would have

taken much more time for the key programming step. Special thanks to my tutor Dr. Kota Hanasaki,

who devotes himself to hard work all the time. No matter how late the evening or how early the

morning, his desk lamp at the office was lighted, what was as a lighthouse to me.

Thanks also to Dr. Manabu Kanno, Dr. Yasuki Arasaki, Mrs. Yukiko Kousaka, Dr. Michihiro

Okuyama, Dr. Kentaro Yamamoto, Dr. Shin-ichi Koda, and everyone I met at Takatsuka group for

continued support and friendship. It is a great pleasure to have met with you! And thanks Japanese

goverment MEXT scholarship for financial support.

Special acknowledgements go to the faculty at the Graduate School of Arts and Science. I

remember I used to answer a friend in China about something like, “Can you imagine how difficult

to educate a Ph. D student? They guided me using their lives.”

Lastly, please allow me to thank my parents, whom I thought ordinary persons, yet have ever

borne and loved me quietly by their own ways.

70


