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Abstract

We analyzed nonlinear dynamics with the multiple time-scales structure emergent from the

brain, and mainly focused on the three distinctive time-scales: deterministic slow, deter-

ministic fast, and stochastic fast oscillations, with the aim at understanding the dynamics

generating macroscopic oscillatory phenomena, often observed as electroencephalographic

(EEG) signals�which re�ect huge information of cell assemblies in the brain and accord-

ingly would involve higher brain functions such as consciousness.

First, we developed a novel nonlinear time series analysis method called time series

dimension (TSD), which was derived from the conventional fractal dimension through a

key approximation. Owing to this approximation, the TSD was a function of the level of

dynamical noise behind time series, where the dynamical noise was de�ned in the sense of

the Gaussian white noise so that this noise was the origin of the stochastic fast oscillations.

Based on such a functional TSD, we succeeded in detecting the level of dynamical noise

included in unknown dynamics behind time series, so as to analyze any signal composed

of both the deterministic oscillations and the stochastic fast oscillations. Via applying the

TSD to EEG signals, we revealed that the visual inputs can control the level of dynam-

ical noise in the frontal lobe; this result suggests that temporal changes of the extracted

dynamical noise level contribute to characterizing nonlinear oscillatory phenomena.

Second, we developed an extended discrete-time neural network model, comprising ex-

citatory and inhibitory stochastic neurons with dynamic synapses, so as to analyze signals

composed of the deterministic slow oscillations and the deterministic fast oscillations. Ow-

ing to the mean �eld approximation, a set of variables representing neurons was converted

to a macroscopic variable resembling an EEG signal, and furthermore the stochastic model

was transformed into a discrete-time dynamical system. Via the bifurcation analysis, we

revealed that the interactions between the above two di�erent networks can generate the

two subtypes of phase-amplitude cross-frequency coupling phenomena, which were sepa-

rated by the cyclic saddle-node bifurcation of a one-dimensional torus in a map, named

MT1SNC bifurcation; this result suggests that the underlying dynamics of cross-frequency

coupling phenomena e�ectively switches between the two submodes, depending on external

environmental changes.

We believe that the aforementioned two mathematical analyses, namely nonlinear time

series analysis and bifurcation analysis will help us approach the comprehensive elucidation

of complex dynamics in the brain.
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Chapter 1

Introduction

1.1 Motivation

Our most interest�which would be among many neuroscientists, and should be solved

urgently�is to know the property of `macroscopic' neural oscillations, occurring in huge

complex neural networks in the brain. Fortunately, we can now easily observe or measure

one realization of the macroscopic oscillations, as an electroencephalographic (EEG) signal

with the high temporal-resolution. Analyzing the EEG signals may help us know, e.g.

�what the consciousness is� [2]; this theme is a big problem for us beyond this thesis.

Actually, many neuroscientists have believed that, the EEG signals re�ect key properties

concerned with consciousness, because the signals are formed from a collection of cell

assemblies (neural networks) such that the signals involve macroscopic rich information.

Furthermore, the EEG signals result from the interaction among various types of neurons;

this interaction may be one origin of the process of consciousness generation. Thus, we

have suggested that only one neuron does not include the component of consciousness, but

neural networks involve it.

To address how to reveal higher brain functions such as consciousness, probably con-

tained in EEG signals, we �rstly have to analyze the EEG signals e�ectively, by using

the time series analysis. The waveform of an EEG signal is characterized by oscillations,

so that until now almost neuroscientists especially have focused on the frequency and the

phase, both of which directly connect to the form of oscillations. This `linear' time series

analysis, based on the Fourier series, seems to be natural to analyze oscillations, but misses

`nonlinearity'.

In particular from the viewpoint of nonlinearity, a band-pass �lter is a good example

breaking dynamics underlying oscillations, although almost neuroscientists have used it as

preprocessing to extract well-known delta, theta, alpha, beta, or gamma waves, because

each of them has frequency-speci�c functional roles in the brain [3]. For several decades,

the linear time series analysis has revealed little by little, that how the external information

is coded in the frequency and the phase in EEG signals and accordingly, discussions given

by this analysis naturally have been concerned with synchronized phenomena [4]; this
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Figure 1.1. Relationship between the linear/nonlinear time series analysis and the ex-
tractable phenomena. (a) A case of the linear time series analysis. This
analysis can extract a universal set of linear phenomena associated with the
frequency or phase, but can view only synchronized phenomena through
phases, where this phenomenon is a subset of nonlinear phenomena. (b)
A case of the nonlinear time series analysis. This analysis can extract a
universal set of nonlinear phenomena, but with the phase, which is a subset
of linear phenomena, because even if a time series is embedded on a high-
dimensional state space, the state space still involves phase information.

conventional linear analysis seems to be awkward because synchronization is actually a

nonlinear phenomenon. If original EEG signals are separated into several frequency bands,

nonlinearity will be also reduced, so that a question, whether the linear time series analysis

can approach nonlinear dynamics which would re�ect consciousness, occurs [Fig. 1.1(a)].

It seems that this conventional analysis can view only synchronization, not other nonlinear

phenomena such as chaos, i.e., this approach implicitly has assumed that, consciousness is

involved in synchronized phenomena. Perhaps this assumption has been out of mind for

neuroscientists, but one should note that the linear time series analysis would be far from

the elucidation of consciousness, because synchronization is very small subset of nonlinear

phenomena [see Fig. 1.1(a)].

Besides there exists another linear aspect to analyze EEG signals, that is the averaging

�lter over multiple trials; this linear time series analysis aims at extracting very miniature

components, called evoked potentials (EPs), in common contained in multiple EEG signals

[5]. Typically EPs occur at the same timing over multiple trials, so that the averaging �lter

works well, but at the same time, this �lter clearly reduces nonlinearity by considering it

as background noise as well as the aforementioned band-pass �lter, and therefore this

type of linear time series analyses also views only synchronized phenomena; note that this

synchrony comes from one electrode on the scalp, whereas the aforementioned synchrony

comes from between more than two electrodes. Thus, the linear time series analysis, which

we explained two cases, is restricted to extractions of only synchronized phenomena [Fig.
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1.1(a)], so that a new type of time series analyses will be needed to bring us new insights

in the neuroscience �eld and to approach the answer to a question: what the consciousness

is.

The `nonlinear' time series analysis based on Takens' embedding theorem [6] has been

dramatically studied, especially in physics �eld, and has a possibility to answer the above

question because this type of time series analyses can reconstruct high-dimensional non-

linear dynamics only from time series. This analysis assumes that, a nonlinear dynamics

exists behind a time series, so that purely stochastic time series such as colored noise (frac-

tional Brownian motions) are out of the analysis [see Fig. 1.1(b)], but our interest in this

thesis is of oscillatory phenomena, consisting of a variety of nonlinearity, and therefore

such an assumption can be ignored. Here noise, in the sense of the Gaussian white noise,

is usually contained in a time series even if its origin is a deterministic dynamical system,

but the amount of actual noise is relatively less than deterministic components so that

the reconstruction of dynamics can be achieved. In addition, the reconstructed dynamics

includes rich information concerned with many nonlinear phenomena such as chaos and

o� course re�ects synchronized phenomena [see Fig. 1.1(b)], and therefore this dynamics

would also involves consciousness. However, commonly the dynamics is on a very-high-

dimensional state space, so that it seems that it is di�cult to extract brain functions such

as consciousness. Actually, the Lyapunov exponents [7], the correlation dimension [8], or

the causality [9] can be estimated from the reconstructed dynamics, but still these several

quantities have not directly been connected to brain functions.

To overcome this issue, recurrence plots (RPs) [10] have been developed to visualize

high-dimensional attractors, where a two-dimensional plane we can easily observe is pro-

duced. Although RPs are only 2-dimensional and composed of a set of only binaries,

surprisingly almost information are included in RPs [11], so that brain functions would be

also re�ected in a pattern composed of black (one) and white (zero) colors. This pattern

may characterize each of brain functions, but this approach has not been applied to EEG

signals well, because RPs e�ectively work if and only if the reconstructed dynamics and

its original dynamics are one-to-one. Clearly methods using RPs make the nonlinear time

series analysis easier for neuroscientists, than methods using other techniques, but the ex-

istence of noise, especially dynamical noise is a big problem to reconstructing dynamics,

where noise, hereinafter, is naturally supposed to the Gaussian white noise.

Commonly, noise is divided into two types from the viewpoint of dynamical systems,

namely observational noise and dynamical noise; the former is added to signals observed

from devices so that this noise does not a�ect a trajectory moving on an attractor behind

the signals; the latter a�ects system's dynamics directly so that the time evolution of the

system depends not only on a dynamical rule but also on dynamical noise. In the real world,

both types of noise would in�uence systems, and therefore the aforementioned nonlinear

time series analysis may not be suitable for such systems, called stochastic dynamical

systems. If a trajectory changes with noise, nonlinear quantities such as the Lyapunov
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Figure 1.2. Relationship between a novel nonlinear time series analysis and the ex-
tractable phenomena. This analysis is an extended version of the conven-
tional nonlinear time series analysis so that it can stll extract a universal set
of nonlinear phenomena and a subset of linear phenomena, namely phase.
In addition to such sets, the novel analysis can extract a subset of stochastic
phenomena, called Gaussian white noise (dynamical noise) e�ects, where this
noise drives variables constituting nonlinear dynamics so that the trajectory
can change stochastically.

exponents cannot be estimated accurately. O� course we can assume that the level of

dynamical noise is relatively less than that of deterministic components so that we can

reconstruct dynamics, but in the brain, neurons themselves would generate noise, which

will play a role of dynamical noise, and furthermore the resulting noise level possibly

be very high so that the temporal evolution of EEG dynamics is dominantly stochastic.

Thus, e�ective novel methods for analyzing dynamical noise behind time series should be

developed urgently, because almost real-world systems are in�uenced by dynamical noise

as mentioned above [see Fig. 1.2].

Actually, only the nonlinear time series analysis, which is one technology of our major

called mathematical engineering, is not enough to understand nonlinear dynamics under-

lying EEG signals, because this analysis cannot reconstruct a mathematical model gener-

ating a phenomenon, rather, it mainly aims at characterizing unknown dynamics (models).

Fortunately, another complementary technology is involved in mathematical engineering,

namely mathematical modelling, which is to mathematically reconstruct dynamical mod-

els behind time series [Fig. 1.3], herein EEG signals. Perhaps, one may think that the

combination between the nonlinear time series analysis and the mathematical modelling

is enough to research EEG dynamics, i.e. experimental knowledge are not needed well,
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Figure 1.3. A complementary study using the following two technologies: (1) nonlin-
ear time series analysis and (2) mathematical modelling. Technology (1)
is to extract features characterizing `unknown' dynamics behind time se-
ries, whereas technology (2) is to `reconstruct' dynamics using the prior
knowledge (features), where note that the reconstructed dynamics includes
variables associated with the features. Until the properties of the variables
and those of the features will be one-to-one, a cycle consisting of technolo-
gies (1) and (2) is repeated along the three arrows so that the reconstructed
model can predict unknown phenomena perfectly.

because the former technology, nonlinear time series analysis, can characterize unknown

models behind time series and therefore, someday it will be able to extract components

of consciousness, while the latter technology, mathematical modelling, can reconstruct the

dynamics�imagine here that a `perfect' model is provided, i.e. a phenomenon originating

from the model and the corresponding observed phenomenon are one-to-one. Based on this

reconstruction, we can clearly predict various unknown phenomena by e�ectively changing

parameters included in the model and accordingly, someday variables concerned with con-

sciousness will be able to be included in the model depending on the prior knowledge, that

are components of consciousness extracted by the nonlinear time series analysis described

above [see Fig. 1.3].

Therefore, it seems that because the aforementioned combinational methodology is

closed in the �eld of mathematical engineering, this �eld does not need any feedback from

EEG experimental knowledge, as long as the model is created once according to a prior

experimental result. However, the model as mentioned above has been assumed to be

pure, but actual models include some kinds of errors arising from discrepancies between

the models and the corresponding actual dynamics so that a perfect prediction using such

models cannot be achieved. Thus, interactive studies between mathematical engineers and

experimental neuroscientists cannot be avoided, and hence the following four steps will be

mainly recommended [see Fig. 1.4]:
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Figure 1.4. A �ow from an observation to a prediction. The �ow consists of the following
four steps: (1) projection of the observation on time series data, (2) time
series analysis for extracting features, (3) modelling a dynamical system
based on the features, and (4) simulation for validation whether the observed
phenomenon and reproduced one are one-to-one. After the validation at
step (4) �nishes, the bifurcation analysis may be performed to predict an
unobserved phenomenon, and accordingly another validation whether such
a predicted phenomenon can be observed in the real system is conducted.
The study consisting of this �ow will be achieved by a collaboration between
experimental scientists and mathematical engineers.
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(I) First, an experimenter observes a phenomenon as a time series, under a certain con-

dition by using a controlled device, where a high-dimensional dynamics behind the phe-

nomenon is converted to a one-dimensional signal, and furthermore the signal is formed as

a time series with a certain sampling time. Perhaps, this time series may be a multivariate

time series, especially for EEG recordings.

(II) Second, the experimenter characterizes the phenomenon with quantities such as fre-

quencies characterizing EEG signals, where skills concerned with the time series analysis

would be needed even for the experimenter, because if he has several techniques using

not only the linear time series analysis but also the nonlinear time series analysis, the

phenomenon can be quanti�ed by many kinds of features comprising a variety of aspects,

namely linearity and nonlinearity. These aspects provide us, for example not only the

fundamental frequency, the power, or the phase locking value between two EEG signals,

but also the Lyapunov exponents or the correlation dimension connected to chaos, or the

causality between two signals. Furthermore, recently information �ow using the technique

called transfer entropy (TE) [12] has been becoming a key element little by little�this new

type of techniques, TE, is actually out of linear or nonlinear time series analyses, because

the TE is based on the Shannon entropy, the �eld of the information theory, not the time

series analysis, but this new technology has been gradually approaching the time series

analysis because information �ow is similar to the causality; in addition, the quanti�cation

of information �ow among several brain regions would be a remarkable feature towards

modelling [13].

(III) Third, a modeler gets the above experimental condition including some parameters

and a set of features characterized by the experimenter, where these parameters are used

to model, but note that the experimenter cannot observe overall parameters such as the

coupling strength between two EEG signals. Therefore, a given set of parameters would

be a very small subset in a universal parameter set, controlling the phenomenon perfectly.

Based on given parameters (condition), the modeler creates a model approximating the

observed dynamics, where the model is commonly composed of some variables, parameters,

and functions connecting the variables; such functions are either linear or nonlinear. Per-

haps, a known model may be used for modelling in some situations, where only parameters

will be tuned, but such a model would not be able to reproduce the desired phenomenon

because the known model had been before used for reproducing another phenomenon.

(IV) Fourth, the modeler simulates the model on a computer and observes a time series,

not a continuous signal because in the numerical simulation, di�erential equations are dis-

cretized for example by the Runge-Kutta method with a certain small sampling time so

that we can get observation values with high accuracy, but a given observation value actu-

ally includes an error from a real value and furthermore, along the time evolution the error

will expand�we have implicitly assumed here that modelling is achieved by di�erential

equations, namely �ow, because EEG signals we are interested in might be continuous

signals. Based on the simulation, the modeler con�rms whether a phenomenon emergent
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from the model is qualitatively consistent with the actual phenomenon, by adapting fea-

tures characterized by the experimenter. If these phenomena given by the experimenter

and by the modeler are consistent, an integrated research�in which actual phenomena can

be explained by mathematics�will be achieved. However, only one iteration from steps

(I) to (IV) would not enough to �nish this project, where the following two causes might

hide: (i) validity of features characterizing phenomena and (ii) validity of models.

(i) Regarding the �rst cause, many experimental neuroscientists aim at �nding new unob-

served phenomena, so that the experimental skills are mainly needed rather than time series

analysis techniques, and thus overcoming this cause seems to be very di�cult, especially

for the nonlinear time series analysis, which possibly be out of their minds. Fortunately,

they are interested in the linear time series analysis, namely the frequency and the phase

of EEG signals because it has been believed that the frequency characterizing e.g. alpha

waves concerns brain functions, while the phase relates to information coding in the brain.

Therefore, interactions between mathematical engineers and experimental neuroscientists

are strongly needed even for a stage of the extraction of features characterizing phenomena,

namely at step (II).

(ii) Regarding the second cause, recently a tendency can be seen, that is, models are created

abstractly so that the bifurcation analysis�which is to reveal how a phenomenon changes

to another one�can be easily conducted, and therefore if the bifurcation type between

several phenomena becomes clear and if the control parameter inducing the bifurcation is

identi�ed, then we can facilitate or prevent to bifurcate systems. Thus, abstract models

are useful to analyze the models themselves in detail, but some assumptions are commonly

included in the models, for example concerned with coupling connections among neurons,

where uniform connections have been often used recently, mainly towards the mean �eld

theory. Thus, a probability that such abstract models can reproduce phenomena observed

in experiment is very low, so that we have to turn from step (IV) to (III), and another

model should be created towards an achievement of certain modelling.

Then, as well as the time series analysis, modelling also includes a problem whether

the model is linear or nonlinear, where surprisingly even a `perfect' linear model, namely

the harmonic oscillator system can exhibit a waveform such as an EEG signal, owing to

the e�ect of noise (Gaussian white noise). Note, however, that generating the waveform

similar to real-world phenomena is not of our main focus, because even if such a `linear'

waveform can be given by a simulation, the underlying nonlinear phenomena such as

chaos or even synchronization cannot be revealed. Nevertheless, several neuroscientists,

especially experimental neuroscientists tend to not care how to model, i.e. they only care

the similarity between the waveforms generated from a model and from the corresponding

real phenomenon. Actually this notion is considerable from the viewpoint of the following

proposition: �any phenomenon can be explained by mathematics�, but only this thought

might be very cheap for mathematical engineers, who aim at understanding the underlying

phenomena of given time series through the bifurcation analysis in addition to the above
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Figure 1.5. Relationship between modelling and the reproducible phenomena. Mod-
elling includes the following two layers: (1) modelling an observational signal
and (2) modelling the underlying dynamics, where each layer is constituted
by either linearity or nonlinearity. The properties of linearity (nonlinearity)
arising from layers (1) and (2) di�er with each other and are connected via
the integral. Towards modelling the following three cases are considerable:
(a) If both layers are linear (red arrows), the reproducible phenomena show
also linearity as a form of the harmonic oscillator system. (b) If layer (1)
is linear but layer (2) is nonlinear (green arrows), the reproducible phenom-
ena show nonlinearity owing to layer (2), where one can suppose that x
and f(x) are a phase and the Kuramoto model, respectively, while H1(x) is
sin(x) so that this modelling exhibits an oscillator-based EEG model. (c) If
both layers are nonlinear (blue arrows), the reproducible phenomena show
also nonlinearity. Perhaps this case is more suitable to model than case (b)
because modelling layer (1) in case (c) is constituted by only one element.

proposition. Therefore models should be created based on the prior knowledge given by

real-world dynamics.

To return the topic that modelling also includes a problem whether a model is linear or

nonlinear as well as a problem on the time series analysis, but modelling is more sensitive to

linearity than the time series analysis, because if a `linear' model is created, a phenomenon

emergent from the model becomes also linear [see the red arrows in Fig. 1.5], whereas in

the �led of the time series analysis, synchronized phenomena can be observed even if the

analysis is perfectly linear [see Fig. 1.1(a)]. Furthermore, we should note that linearity

arising from modelling is actually di�erent from that arising from the time series analysis,

because the former is a case on a di�erential equation, where a linear model means that

the dynamical rule describing a dynamics is linear, but the latter is a case on a signal

observed from a device (observation function) converting high-dimensional variables to a
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one-dimensional variable. Thus, we have to clearly understand such a discrepancy come

from between the modelling and the time series analysis, to precisely discuss the necessity

of nonlinearity based on both the modelling and the time series analysis; otherwise, perhaps

one may discuss the nonlinearity of them on a common level, although nonlinearity arising

from modelling occurs on a dynamical rule (di�erential equation), whereas that arising

from the time series analysis occurs on the integral of the dynamical rule [see Fig. 1.5].

Now we focus on the modelling in terms of nonlinearity, but especially towards EEG

dynamics modelling, a middle level actually exists, where this level of modelling is com-

posed of both aspects of linearity and nonlinearity [see the green arrows in Fig. 1.5]. First,

we shall introduce an example model, where an EEG signal is represented by a collec-

tion of many EEG oscillators such as delta, theta, alpha, beta, and gamma oscillators,

as components of the EEG signal, and furthermore each EEG oscillator is described as

the Kuramoto model [15]. Thus, this EEG model comprises both components of linearity

and nonlinearity, i.e., the following two assumptions exist: one is that the model can be

separated linearly into several frequency oscillators; another is that each oscillator is the

Kuramoto phase oscillator. Here note that the Kuramoto model involves the Hopf bifur-

cation originating from nonlinearity of the coupling term so that there exist the following

two dynamically distinctive regimes: one regime is the non-synchronized state, where the

phases among respective oscillators are incoherent; another regime is the synchronized

state, where the phases are de�nitely coherent. Because it has been strongly believed that

an EEG signal might possess frequency-speci�c brain functions and that the amplitude of

the signal would re�ect the synchronization among EEG oscillators, the aforementioned

two assumptions may be validated towards modelling. Furthermore, it is well known that

modi�ed versions [16, 17] of the Kuramoto model show a variety of nonlinear phenomena

including chaos. However, the EEG model based on the Kuramoto model has explicitly

comprised a concept of oscillations, as an aggregation of the frequencies so that a generation

mechanism of such oscillations cannot be revealed.

O� course, we can model an EEG signal as a form of a more microscopic level rather

than EEG oscillators, namely in terms of local �eld potentials (LFPs), where an LFP has

been assumed to be the Kuramoto phase oscillator. However, the model based on LFP

oscillators might be very similar to the above EEG model so that a problem how the

oscillations appear still remains to be explored.

Besides, a phenomenological EEG model has been proposed, called neural mass model

(NMM) [18] which is a `perfect' nonlinear model [see the blue arrows in Fig. 1.5], that is,

it has not been assumed that an EEG signal is a collection of EEG/LFP oscillators and

furthermore, the dynamics of the NMM is described by several nonlinear terms so that

we can answer the above problem: how the oscillations appear. In fact, the NMM can

show a variety of oscillatory phenomena including alpha waves, where the mechanism of

such phenomena indeed underlies the limit cycle attractor, generated due to nonlinearity

involved in the NMM. By tuning parameters e�ectively, a diverse limit cycle oscillator with
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the various velocities emerges so that key parameters switching among several frequency

bands can be identi�ed. This NMM or the modi�ed NMMs [19, 20] have been widely

used in the neuroscience community because the dynamics within the models have been

naturally expressed from the viewpoint of actual EEG dynamics. However, such models

are very abstract, and therefore it seems to us that the process of consciousness generation

we are strongly interested in, will not be revealed.

Although the NMM is a perfect nonlinear model in terms of both descriptions for the

underlying dynamics and for its observational process [see Fig. 1.5], expressing the com-

ponents of consciousness as a variable seems to be very di�cult, and therefore another

essential idea should be introduced. Herein we have to mention that the state of one neu-

ron is not involved in the NMM as a variable, whereas a cell assembly�an aggregation of

the neurons�is included in it as a variable. Thus, because the model has been created

from the viewpoint of the cell assembly, not the neurons, their interactions (between cell

assemblies and neurons) cannot be appeared as the resulting phenomena on the model.

Here, a remarkable point exists, that is, the interactions between a whole and its elements;

such interactions always can occur in the real-world systems, e.g. in the humans `system'

interacting in a room, in which each human interacts with other humans by speaking or

acting so that the `driven' human behaves according to an instruction of the `driving' hu-

man (a case of an interaction from elements to a whole) and in contrast, the behavior of

each human depends not only on his own mind but also on the atmosphere of the room,

generated from the moods originating from all humans' minds (a case of an interaction

from a whole to its elements). This analogical example can be directly applied to the in-

teraction between a cell assembly and each neuron, and consequently we shall put forward

a hypothesis that such interactions, especially from a whole to its elements, can generate

consciousness [see Fig. 1.6] [21]. Hence, the use of the mean �eld approximation sys-

tematized in the �eld called statistical mechanics, which can convert a set of microscopic

variables representing neurons to only one macroscopic variable representing an EEG or

LFP signal, will be a straitforward way to modelling .

1.2 Purpose

As mentioned above, the following two complementary technologies might be needed from

the viewpoint of the �eld of mathematical engineering, namely (1) nonlinear time series

analysis and (2) mathematical modelling, to analyze nonlinear dynamics generating the

macroscopic oscillations such as EEG signals. In addition, the process of consciousness

generation still remains to be explored. Therefore, hereafter we aim at developing the fol-

lowing two new tools associated with technologies (1) and (2), to approach the elucidation

of consciousness:

(1) Regarding the nonlinear time series analysis, a novel tool for analyzing the dynamical

noise, especially including in EEG dynamics and originating from stochastic neurons, will
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EEG data

time

electrode
scalp

macro level

micro level

cell
assembly

Figure 1.6. A hypothesis that the interaction between neurons (micro level) and EEG
dynamics (macro level) generates higher brain functions such as conscious-
ness and that the feedback from the macro to micro levels strongly connects
to the process of consciousness generation.

be introduced in Chapter 2.

(2) Regarding the mathematical modelling, an extended stochastic neural network model

will be introduced in Chapter 3, to understand the e�ect of the mean �eld approximation

on the model; this model is a more realistic neural network model than the previous version

[22] so that the model can reproduce a variety of macroscopic phenomena observed in EEG

signals such as cross-frequency coupling phenomena, connecting between the macroscopic

oscillations (EEG signals) and the microscopic neuronal �ring [see the summarize of the

purpose in Fig. 1.7].

Furthermore, we have to say that many kinds of nonlinear dynamics arising from this

thesis will be analyzed in terms of oscillatory phenomena; this means that such dynamics

comprise the multiple time-scales, from slow to fast oscillations and therefore, this study

views the various nonlinear phenomena from the linearity [see Fig. 1.8]. Thus, the study

sharing this viewpoint might play a key role that, someday many neuroscientists are going

to be attracted to the world of the underlying nonlinear dynamics generating e.g. chaos.

1.3 De�nitions of oscillations

Here we de�ne oscillations in the sense of stochastic dynamical systems, so that oscilla-

tions emergent from the systems can be widely divided into the following two distinctive

classes: (I) deterministic oscillations and (II) stochastic oscillations, both of which are
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Figure 1.7. Two representative purposes arising from Chapter 2 for (a) and from Chap-
ter 3 for (b). (a) The aim is to extract dynamical noise, driving variables
constituting nonlinear dynamics, from EEG data, where a novel nonlinear
time series analysis method is presented. (b) The aim is to understand the
underlying dynamics of cross-frequency coupling phenomena, where an ex-
tended neural network model is presented, and furthermore the model is
converted to a macroscopic model through the mean �eld approximation;
this conversion from the micro to macro levels is possibly associated with
the process of consciousness generation.
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brain involves, i.e., the nonlinear dynamics generating oscillations is ana-
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qualitatively di�erent with each other, because class (I) originates from the drift term on

systems, whereas class (II) originates from the di�usion term (dynamical noise) on systems.

Furthermore, we de�ne these classes such that the union between each class is equivalent

to the original oscillations on a certain domain. Note that we do not care the existence

of observational noise towards de�ning oscillations, because this kind of noise is out of

the description of dynamics and only depends on the observational environment, mainly

concerned with the property of observational devices.

We shall de�ne the velocity of each class of oscillations relatively, in terms of stochastic

dynamical systems so that the qualitative di�erence between classes (I) and (II) becomes

clearly; the construction of this de�nition will be helpful to strictly de�ne classes (I) and

(II). To de�ne the velocity, the following notion is needed, that is, because the di�usion

term is generally expressed as the meaning of the Gaussian white noise, oscillations ob-

served via the integrals of stochastic dynamical systems also re�ect the property of the

Gaussian white noise, more precisely that of the Wiener process, which is the integral of

the Gaussian white noise. Thus, we de�ne that the velocity of the stochastic oscillation

is faster than that of the deterministic oscillation, because actually one realization of the

Wiener process shows a very fast oscillation due to its de�nition. O� course, the drift

term can make an oscillation faster, but even if the velocity of the oscillation becomes

very fast owing to the formulation of the drift term, such an oscillation still contains more

fast oscillatory components originating from the di�usion term, because one realization

of the Wiener process contains the `in�nite' frequency. If and only if oscillatory compo-

nents originating from the drift term include the in�nite frequency, the velocity of the

deterministic oscillation will be equivalent to that of the stochastic oscillation, but such a

deterministic oscillation should be regarded as a stochastic oscillation, from the viewpoint

of mathematical modelling.

Throughout this thesis, we use the term, �stochastic fast oscillation� instead of stochas-

tic oscillation, to express more explicitly the property of this class of oscillations.

Finally, we shall introduce the de�nition associated with the following two subclasses:

(i) deterministic slow oscillations and (ii) deterministic fast oscillations so that the union

between these oscillations is equivalent to the original deterministic oscillation on a certain

domain. As a simple case, we start to consider the oscillation observed from e.g. the coupled

Stuart-Landau oscillators system generating the two-dimensional torus attractor�it has

been assumed that this system is not a�ected by dynamical noise at all because now we

are interested in pure deterministic oscillations. Clearly, such an oscillation involves the

two representative frequency components so that it can be divided into the two subclasses

(i) and (ii) on the frequency domain.

The objective towards analyses on Chapters 2 and 3 has been summarized in Fig. 1.9.

In Chapter 2, signals composes of the deterministic oscillations (class (I)) and the stochastic

fast oscillations (class (II)) will be analyzed, where class (I) is not divided into subclasses,

i.e., the velocity of the deterministic oscillation is out of the purpose of Chapter 2. In
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deterministic
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stochastic
oscillations

slow

fast

fast

Chapter 3 Chapter 2

oscillations = ∪

Figure 1.9. A set of oscillations is divided into the following two subsets: (1) deter-
ministic oscillations and (2) stochastic oscillations in terms of stochastic
dynamical systems. Subset (1) can be further divided into two sub-subsets:
(i) deterministic slow oscillations and (ii) deterministic fast oscillations in
terms of the frequency domain. In addition, subset (2) shows only the fast
oscillation due to the Gaussian white noise (dynamical noise), so that we
call this subset as stochastic fast oscillations. In Chapter 2, signals com-
posed of subsets (1) and (2) are analyzed. In Chapter 3, signals composed
of sub-subsets (i) and (ii) are analyzed.

contrast in Chapter 3, signals composed of the deterministic slow (class (i)) and fast (class

(ii)) oscillations will be analyzed, where cross-frequency coupling phenomena emergent

from the interaction between the deterministic slow and fast oscillations is observed.

1.4 Organization of the thesis

The rest of this thesis has been organized as follows:

In Chapter 2, the de�nition of a novel dimension is derived from that of the conventional

fractal dimension, to analysis signals composed of the deterministic oscillations and the

stochastic fast oscillations. Typically, it has been shown that this new type of dimensions,

named after time series dimension (TSD), can detect the level of the underlying dynamical

noise only from time series and can be applied to a variety of time series data, because the

TSD does not require any information included in dynamics generating time series so that

it can work as a model-free indicator, as we will explain in Chapter 2. Note that the TSD

is one of the nonlinear time series analysis because it can characterize nonlinear dynamics

driven by dynamical noise, but it dose not need embedding of a time series on a high-

dimensional state space with delay coordinates, and therefore the TSD should be located

in another world di�erent from the conventional nonlinear time series analysis theory. In

fact, the ability of the TSD has been demonstrated with the application of it to EEG
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signals, and based on this application, a possibility whether the TSD�which works even

if the dynamics behind a time series is �lled with noise�can open the door where many

features characterizing nonlinear phenomena strongly connected to noise are hidden, has

been discussed. The contents of Chapter 2 will be published in Phys. Lett. A.

In Chapter 3, a realistic stochastic neural network model�which is suitable to be ap-

plied to the mean �eld theory so that the model can be transformed into a macroscopic

model�is proposed to demonstrate whether the model can show cross-frequency coupling

phenomena, connecting the macroscopic and the microscopic properties, through the mean

�eld approximation. Note that this technology called mean �eld approximation would in-

volve crucial roles for uncovering the process of consciousness generation if there exists

the feedback from the macroscopic model to microscopic one, but the proposed model

has been formulated as a feedforward model because our main purpose in Chapter 3 is to

reveal the e�ect of the mean �eld approximation on the stochastic model. The proposed

stochastic model has been created as a discrete-time model so that the errors arising from

the numerical temporal evolution cannot appear, towards the application of the model to

real-world systems, especially for EEG dynamics. Accordingly, the stochastic model has

been converted to the corresponding discrete-time dynamical system, and therefore the

property of deterministic oscillations has been intensively investigated through the bifur-

cation analysis, where the deterministic slow and fast oscillations, realized by a subnetwork

composed of excitatory neurons and by that composed of inhibitory neurons, respectively,

are analyzed. Furthermore, it has been assumed that only the torus attractor corresponds

to real oscillatory phenomena, because the torus emergent from the proposed model can

be interpreted as the limit cycle attractor or the torus attractor in the corresponding

continuous-time dynamical system, but the periodic attractor perhaps corresponds to the

equilibrium point, due to the failure of convergence by the Euler method. The contents of

Chapter 3 was submitted to Frontiers in Computational Neuroscience.

Finally in Chapter 4, this thesis will be brie�y concluded, in terms of nonlinear dynam-

ics with multiple time-scales.
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Chapter 2

Analysis on signals composed of
deterministic and stochastic
oscillations

This chapter includes major parts of the contents in Ref. [1], which will be published in

the journal of Physics Letters A.

2.1 Introduction

In general, time series data�for example, biological, meteorological, and economic data�are

a collection of measurements recording the dynamical behavior of a system. When the un-

derlying dynamics of the system is stochastic, the associated time series will behave like

a stochastic process. Note, however, that the time series generated from deterministic

systems may also be associated with stochastic �uctuations if the measured signals have

been in�uenced by noise.

Typically, a time series contains two basic types of noise: dynamical noise and obser-

vational noise. The former refers to the noise a�ecting the system's dynamics, whereas the

latter describes the noise in�uencing the observed or measured signal of the system. The

system including these two distinctive kinds of noise is de�ned as follows [23]:

dxq = fq(x⃗)dt+ ρq(t)dWq(t), for q = 1, 2, ..., d, (2.1)

Xobs(t) = H(x⃗) + σXξX(t), (2.2)

where xq denotes the state variable, x⃗ = [x1, x2, ..., xd]
T is the state vector, function fq(·)

is either linear or nonlinear, and the dynamical noise is described by ρq(t)dWq(t). Here,

dWq(t) indicates the Wiener process, which follows a normal distribution with mean 0

and standard deviation
√
dt. To de�ne the dynamical noise as red noise, the process of

red-noise generation should be included in fq(x⃗). We explicitly assume that the temporal

change of ρq(t) is slow compared with the dynamics of xq. Note that Eq. (2.1) denotes a

d-dimensional stochastic dynamical system, and the corresponding observational process
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of this system is described by Eq. (2.2). Furthermore, from Eq. (2.1) and Eq. (2.2), it can

be seen that x⃗ is converted to a one-dimensional variable Xobs(t) through observational

function H(·) with observational noise σXξX(t), where ξX(t) follows a normal distribution

with mean 0 and standard deviation 1. Usually, the corresponding time series of {Xobs(t)}
is de�ned as follows:

{X(i)} = {Xobs(t)|Xobs(t) = Xobs(i∆t), i∈N}, (2.3)

where {Xobs(t)} is converted to a time series {X(i)} with sampling time ∆t.

In this study, we assume that the amount of dynamical noise can be described as a

time-dependent variable, which is denoted by ρq(t) in Eq. (2.1). For example, consider

a situation in which the amount of noise in a neural system is temporally adjusted by

input from other areas of the brain to improve brain functions. The amount of observa-

tional noise, denoted by σX in Eq. (2.2), is assumed to be constant. This assumption is

equivalent to the assumption that the measurement environment does not change during

the observational process. For a measured signal of the form Xobs(t) = xq(t) + σXξX(t),

the dynamical and observational noise levels have been de�ned as ρq(t)/σdynxq(t) and

σX/σdynxq(t), respectively, where σdynxq(t) indicates the standard deviation of the variable

xq. The time dependency of σdynxq(t) can be attributed to the fact that, in general, the

dynamical system [Eq. (2.1)] behaves as a nonstationary process.

From the system's dynamics of Eq. (2.1), it is clear that dynamical noise may in�uence

the behavior of the dynamical system. In fact, a large dynamical noise level increases the

probability of a large trajectory change. The steady state of the dynamical system may

drift into di�erent regions in the state space. Thus, knowing the dynamical noise level is

a fundamental to analyzing and understanding dynamical systems [24, 25].

However, dynamical noise is more di�cult to be estimated than observational noise

because the former is directly added to the dynamics of time evolution. If the dynamical

system is known, we can formulate algorithms for estimating the dynamical noise level

[26, 27]. Nevertheless, it should be noted that actual systems in the real world are usually

unknown. For these systems, few methods have been proposed to estimate the dynamical

noise level. For example, according to the work of Siefert et al. [28], an interesting quanti-

tative method for analyzing dynamical noise has been proposed. This method can estimate

the amount of noise in systems with unknown dynamics by using the Kramers-Moyal co-

e�cients [29, 30], but the method requires a `long' time series to estimate the mean and

variance of a trajectory moving on an attractor. On the other hand, Urbanowicz and

Holyst [31] proposed an important noise-level estimation method that assumes observa-

tional noise. Although they have suggested that their method is valid for observational

noise as well as dynamical noise, we have found that their algorithm does not necessarily

work well for estimation of the dynamical noise level.

In this paper, we propose a method for estimating the level of dynamical noise, which

can be applied to even `short' time series generated from unknown dynamics. This paper
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is organized as follows. First, in Section 2.2, we present some de�nitions that are useful for

the subsequent results. Next, in Section 2.3, we recall Urbanowicz and Holyst's method

[31], with the numerical veri�cation whether their method is applicable for even short time

series. Then, in Section 2.4, we introduce the proposed method and verify its e�ectiveness

as a dynamical noise indicator. Furthermore, in Section 2.5, our method is applied to

human electroencephalographic (EEG) data in order to illustrate its applicability to real-

world systems. Finally, discussions of the obtained results are presented in Section 2.6,

and some conclusions are provided in Section 2.7.

2.2 Preliminaries

We analytically derive some de�nitions for short and long time series as follows. First, we

de�ne

I1(c) =

∫ c

t0

∣∣Eτ+h[{Xobs(t)}]− Eτ [{Xobs(t)}]
∣∣

h
dτ, (2.4)

I2(c) =

∫ c

t0

∣∣Varτ+h[{Xobs(t)}]−Varτ [{Xobs(t)}]
∣∣

h
dτ, (2.5)

where 0<h≪1, and operators Eτ [·] and Varτ [·] denote the mean and variance, respectively,

and are de�ned as follows:

Eτ [{Xobs(t)}] =
1

h′

∫ τ+h′

τ
Xobs(t)dt, (2.6)

Varτ [{Xobs(t)}] =
1

h′

∫ τ+h′

τ
(Xobs(t)− Eτ [{Xobs(t)}])2 dt, (2.7)

with 0<h′≪1. The two quantities I1(c) and I2(c) indicate the sums of discrepancies |·|
of partial observational signals {Xobs(s)} over τ≤s≤τ + h with 0≤t0≤c and t0≤c≤T ; t0
and T are a starting point and an ending point of an observation, respectively. Then,

if {Xobs(s)} behaves as a stationary process, both quantities I1(c) and I2(c) are almost

equal to zero, even if c becomes large, because the mean and variance of the stationary

process do not change over time. However, in this study, we analyze signals observed

from a stochastic dynamical system [see Eq. (2.1)], in which variables usually behave

as nonstationary processes, so that observational signals also stand for nonstationarity.

In fact, each of quantities I1(c) and I2(c) represents a margin between stationarity and

nonstationarity [see Fig. 2.1]. Note that in Eq. (2.4) and Eq. (2.5), if h is set to a very

small value, the partial signal {Xobs(s)} can be considered as a `semi-stationary' process.

Depending on whether the target signal is near stationarity, the present method works

either as a universal indicator among systems or as an intrinsic indicator for each system.

If the target signal is near stationarity, i.e., it is observed as a short time series, the method

can universally extract the dynamical noise level for many systems; if the target signal is

far from stationarity, i.e., it is observed as a long time series, the method can speci�cally
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cies introduced between stationarity and nonstationarity arising from the
fact that a partial short-term signal Xobs(s) with very short length h is
a semi-stationary process. (a) Four time series sorted in accordance with
the velocity of the instantaneous mean value of the time series from bot-
tom to top: the harmonic oscillator system, the Rössler system, the coupled
Hindmarsh-Rose neuronal system, and the Lorenz system. The time series
were obtained with ρq(t)/σdynxq (t) = 0.1. (b) A schematic example of the
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old value c∗1. If the accumulation I1(t) < ϵ1, we call this time series a short
time series, and I1(t) re�ects a more universal property among systems. If
I1(t) is large, we call this time series a long time series, and I1(t) re�ects
a more speci�c property of the system because the longer the time series
increases, the more its wave form di�ers from those of other time series.
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extract the dynamical noise level for each system so that the extracted levels are not

comparable among systems, but involve properties of their respective systems. Thus, it is

essential to �exibly determine a boundary between short and long time series.

To choose a threshold value c∗, by which we can de�ne whether a time series is short

or long, we use Eq. (2.4) and Eq. (2.5) with two upper bounds ϵ1 (0<ϵ1) and ϵ2 (0<ϵ2),

and compute c∗1 and c
∗
2 such that

I1(c
∗
1) = ϵ1, (2.8)

I2(c
∗
2) = ϵ2. (2.9)

Then, we de�ne the threshold value c∗ as follows:

c∗ = min (c∗1, c
∗
2) . (2.10)

The computation of c∗ is provided in Appendix A. This threshold value c∗ determines

whether the length Lseg(t0,∆t) of a time series {X(i)} is short or long. If the inequality

Lseg(t0,∆t) ≤ (c∗ − t0)/∆t (2.11)

is satis�ed, the time series is assumed to be short. Otherwise, the time series is referred

to as a long time series. Note that Eq. (2.4) and Eq. (2.5) de�ne I1(c
∗
1) and I2(c

∗
2) like

di�erences, rather than derivatives because {Xobs(t)} may be a non-smooth time series.

Equations (2.4) to (2.11) can be seen as a set of general de�nitions for the length of a time

series generated from a continuous-time dynamical system. Throughout this paper, when

we discuss whether a time series is short or long, we denote the length of the time series

as Lseg(t0,∆t), otherwise as N , which refers to the data size of the time series.

2.3 Previous method for noise-level estimation

First, we introduce the previous method for noise-level estimation, which uses coarse-

grained entropy [31]. Because this algorithm assumes observational noise, it may fail when

trying to estimate the level of dynamical noise.

2.3.1 Urbanowicz and Holyst's method

Suppose that a time series {X(i)} with i = 1, 2, ..., N is given. Furthermore, assume

that it is in�uenced neither by observational noise nor by dynamical noise, i.e. assume

a `clean' time series. Then, we construct M -dimensional delay coordinates as X⃗M (i) =

{X(i), X(i+Γ), ..., X(i+(M − 1)Γ), where M and Γ are an embedding dimension and an

embedding delay, respectively. We de�ne the correlation integral with a threshold value ε

for X⃗M (i) as

CM (ε) =
1

N2

N∑
i

N∑
p ̸=i

θ(ε− ∥X⃗M (i)− X⃗M (p)∥), (2.12)
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where θ(·) is the Heaviside function, de�ned as

θ(u) =

{
0 (u < 0),
1 (u ≥ 0).

(2.13)

For simplicity, we use the maximum norm. In addition, the term CM (ε) allows to de�ne

the coarse-grained correlation entropy, denoted by K2(ε), as follows [33, 34]:

K2(ε) = lim
ε→0

lim
M→∞

ln
CM (ε)

CM+1(ε)
≈− dlnCM (ε)

dM
. (2.14)

The term K2(ε) is an ideal entropy, which cannot be obtained in reality. In practice,

we obtain a noisy version of this entropy, i.e. Knoisy(ε) [31] instead of K2(ε), when the

Gaussian observational noise is added to {X(i)}; we call this Knoisy(ε) as the observed

coarse-grained entropy de�ned as follows:

Knoisy(ε) = − 1

Γ
g
( ε

2σ

)
ln ε+ [κ+ b ln(1− αε)]

×

(
1 +

√
π

√
ε2/3 + 2σ2 − ε/

√
3

ε

)
, (2.15)

where σ denotes the standard deviation of the Gaussian observational noise. The term

[κ + b ln(1 − αε)] represents the approximate form of K2(ε); κ is the correlation entropy;

b ln(1− αε) indicates the e�ect of the coarse graining. Here, we de�ne g(·) as follows:

g(v) =
2√
π

v exp(−v2)
Erf(v)

, (2.16)

where Erf(v) shows the error function de�ned as

Erf(v) =
2√
π

∫ v

0
exp(−t2)dt. (2.17)

We �t parameters κ, α, b, and σ by using Eq. (2.15) based on given time series data.

2.3.2 Examples

Here, we discuss some examples of short time series for which Urbanowicz and Holyst's

method does not produce estimates that su�ciently correlate with the actual dynamical

noise levels [see Figs. 2.2(a) to (d)]. In these examples, the relationship between the esti-

mated and the actual levels of dynamical noise has been investigated numerically with the

use of their method [31]. Time series data (sampled observational signals) were generated

with four types of systems, each of which was in�uenced by dynamical noise ρwdWw(t)

(w∈{x, y, z, xn, yn, zn}) and converted to observational signals {Xobs(t)}:
(I) The harmonic oscillator system was simulated with

dx = ydt+ ρxdW x(t), (2.18)

dy = −xdt+ ρydW y(t), (2.19)

Xobs(t) = x(t) + σXξX(t). (2.20)
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Figure 2.2. (a) to (d): Relationship between the noise level estimated with Urbanowicz
and Holyst's method and the actual dynamical noise level. (e) to (h): Rela-
tionship between the time series dimension (TSD) and the actual dynamical
noise level. Time series data were generated by the harmonic oscillatory
system for (a) and (e), the Lorenz system for (b) and (f), the Rössler system
for (c) and (g), and the coupled Hindmarsh-Rose neuronal system for (d)
and (h), respectively.

(II) The Lorenz system was simulated with

dx = [−10x+ 28y] dt+ ρxdW x(t), (2.21)

dy = [−xz + 28x− y] dt+ ρydW y(t), (2.22)

dz = [xy − (8/3)z] dt+ ρzdW z(t), (2.23)

Xobs(t) = x(t) + σXξX(t). (2.24)

(III) The Rössler system was simulated with

dx = [−y − z] dt+ ρxdW x(t), (2.25)

dy = [x+ 0.36y] dt+ ρydW y(t), (2.26)

dz = [0.4 + z(x− 4.5)] dt+ ρzdW z(t), (2.27)

Xobs(t) = x(t) + σXξX(t). (2.28)
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(IV) The coupled Hindmarsh-Rose neuronal system [35] with 100 neurons, the nth neuron

of which was in�uenced by the external input In, was simulated with

dxn =

yn − x3n + 3x2n − zn + In +

100∑
γ ̸=n

0.05θ(xγ)

dt+ ρxndW xn(t), (2.29)

dyn =
[
1− 5x2n − yn

]
dt+ ρyndW yn(t), (2.30)

dzn = [0.006{4(xn + 1.6)− zn}] dt+ ρzndW zn(t), (2.31)

Xobs(t) =
1

100

100∑
n=1

xn(t) + σXξX(t), (2.32)

see Eq. (2.13) for θ(·), where the amount ρw of the dynamical noise was constant over

time. The stochastic variable dWw follows a normal distribution of mean 0 and standard

deviation
√
dt. For systems (I) through (IV), the observational signal {Xobs(t)} has been

used to test Urbanowicz and Holyst's method, and for simplicity, we have assumed that

the signal is independent of observational noise σXξX(t) by setting σX = 0. Actually, in the

network composed of the Hindmarsh-Rose neurons [Eqs. (2.29) to (2.32)], a synchronized

chaotic oscillation appears [36]. Each value of {In} has been uniformly distributed between

1 and 5. Fifty time series of {Xobs(t)} were simulated with respect to each noise level,

which is de�ned as ρw/σdynw. Here σdynw indicates the standard deviation of the variable

w, and the initial condition of w follows the uniform distribution between 0 and 1 for each

noise level. Note that σdynw is not time-dependent because the simulation was conducted

repeatedly over multiple trials. The sampling time ∆t was set to 0.001, and the length

Lseg(0,∆t) of each time series was set to 100 points, in which the transient state following

the onset of the simulation was included in the tested time series, i.e., t0 = 0 hereafter.

The time series with length of Lseg(0,∆t) = 100 were identi�ed as short time series

by calculations of the quantities I1(c) and I2(c) [Eq. (2.4) and Eq. (2.5)], in which Eτ [·]
and Varτ [·] were calculated with an analysis window h′ = 0.005. Then, h was set to 0.001

so that a partial observational signal {Xobs(s)} over τ≤s≤τ + h can be considered as a

semi-stationary process. The upper bounds ϵ1 and ϵ2 [see Eq. (2.8) and Eq. (2.9)] have

been chosen as follows: ϵ1 = 1 and ϵ2 = 0.05. For these values, the corresponding threshold

values of c∗ [Eq. (2.10)] for the four systems given in Eqs. (2.18) to (2.32) were 1781∆t,

101∆t, 225∆t, and 103∆t, respectively. In the calculation of c∗ for each system, we have

used 100 time series of {Xobs(t)} with Lseg(0,∆t) = 50000. Consequently, for each system

we have obtained 100 threshold values for c∗. Finally, the average of these values has been

considered as the �nal threshold value c∗. When we estimated c∗, each system was a�ected

by dynamical noise with the noise level of 0.1 and simulated for di�erent initial conditions

(uniformly distributed between 0 and 1) over 100 trials.

A system with any noise level ρw/σdynw was simulated in two steps: �rst, a clean

system, without any noise, was simulated with an initial condition x⃗0, and the resulting

standard deviation σdynw was stored in memory; next, the system including dynamical
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noise was simulated using the same initial condition x⃗0 with the clean system, and then

the noise level was set to the same values over x, y, and z or over {xn}, {yn}, and {zn},
where ρw was obtained by multiplication between the arbitrarily set noise level and the

stored σdynw.

In Urbanowicz and Holyst's method, we have de�ned the estimated noise level as

σ̂/σdynw, where σ̂ represents the �tted standard deviation of the Gaussian observational

noise [see Eq. (2.15)]. Clearly, the numerical results show that Urbanowicz and Holyst's

method is not necessarily suitable for estimating the level of dynamical noise in the afore-

mentioned four systems [Eqs. (2.18) to (2.32)].

2.4 Proposed method for noise-level estimation

In this section, a novel method for detecting changes in the level of dynamical noise is

presented. Here consider two types of time series: (1) A series originating from a �ow

generated from a continuous-time dynamical system; (2) A series originating from a map

generated from a discrete-time dynamical system. The proposed method can be applied

to the former time series in the real world by calculating the fractal dimension developed

by Higuchi [32], even if the dynamical system is unknown. To avoid confusing the fractal

dimension with the correlation dimension in the reconstructed attractor, we call the fractal

dimension using the Higuchi method as the time series dimension (TSD) because the

Higuchi method considers a time series to be a �gure represented on a two-dimensional

space, in which the horizontal and vertical axes denote time and amplitude, respectively.

Here we assume that an observational signal is sampled with the time interval ∆t > 0.

Then, the TSD of the resulting time series re�ects both the deterministic and stochastic

components of the time series, and ranges from 1 to 1.5. When the dynamical system

underlying the time series contains only the deterministic component, the TSD of the time

series is 1 because the series locally resembles a line. In contrast, when the dynamical

system underlying the time series contains only the stochastic component that represents

the Gaussian dynamical noise, the TSD of the time series is 1.5, the fractal dimension of

the Wiener process [39]. Therefore, the relative dominance ratio between the deterministic

and stochastic components determines the TSD.

We stress the fact that in the present study, our focus is on a system [see Eq. (2.1)],

in which the deterministic and stochastic components are mixed. Furthermore, since the

observed signal [Eq. (2.2)] is sampled with the certain time interval, the corresponding

TSD depends not only on the amount of dynamical noise but also on the sampling time

∆t. If the deterministic component does not contribute to the system [Eq. (2.1)] at all,

the TSD is 1.5, independent of the amount of dynamical noise and of the sampling time,

as mentioned above. Further, the TSD does not require the power law.

In Section 2.4.1, we explain how to calculate the curve length of a given time series

from a stochastic dynamical system of the form [Eq. (2.1)] by introducing the Higuchi
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method [32]. In Section 2.4.2, we convert the curve length directly to the TSD. The target

time series is the sampled signal {Xρ⃗(i∆t)} (i = 1, 2, ..., N) of the variable xq perturbed by

dynamical noise with ρ⃗(t) = (ρ1(t), ρ2(t), ..., ρd(t)), or more precisely, with ρ⃗(i∆t); namely,

it has been assumed that {Xρ⃗(i∆t)} is in�uenced by dynamical noise, not by observational

noise. Hereinafter, we denote ρ⃗(i∆t) as ρ⃗, for simplicity. Finally, in Section 2.4.3, we

present a numerical investigation of the proposed method, in which the level of dynamical

noise has been estimated.

2.4.1 Curve length of time series

The Higuchi method [32] is based on the following expression [38] for calculating the curve

length,

L(q)(∆t, ρ⃗) =

N−1∑
i=1

∣∣Xρ⃗((i+ 1)∆t)−Xρ⃗(i∆t)
∣∣

∆t
, (2.33)

where L(q)(∆t, ρ⃗) is an ideal de�nition of the curve length, but this de�nition does not work

well when we try to get an appropriate TSD. The Higuchi method solves this problem by

course-graining the time series and creating some new time series sampled with ζk = k∆t,

in which k is a natural number. A larger k results in a larger sampling time ζk.

Consequently, in the Higuchi method, the modi�ed curve length L̃(q) associated to the

time series {Xρ⃗(i∆t)} corresponding to the variable xq is calculated as follows:

L̃(q)(ζk, ρ⃗) =
1

k

k∑
m=1

L(q)
m (ζk, ρ⃗), (2.34)

where

L(q)
m (ζk, ρ⃗) =

{⌊N−m
k ⌋∑

j=1

∣∣∣Xρ⃗((m+ jk)∆t)−Xρ⃗((m+ (j − 1)k)∆t)
∣∣∣


× N − 1⌊
N−m

k

⌋
k

}
/ζk. (2.35)

Here, the notation ⌊·⌋ denotes the rounding down; the term (N − 1)/(⌊(N − m)/k⌋k)
normalizes the curve length of a segment; and the variable L

(q)
m (ζk, ρ⃗) represents the curve

length of the segment with a starting pointm. Namely, the process of Eq. (2.35) constructs

k new segments {Xm
k (ρ⃗)} with m = 1, 2, ..., k, each segment of which is de�ned by

Xm
k (ρ⃗) =

{
Xρ⃗(m∆t), Xρ⃗((m+ k)∆t), Xρ⃗((m+ 2k)∆t), ..., Xρ⃗

((
m+

⌊
N −m

k

⌋
k

)
∆t

)}
.

(2.36)

Note that the Higuchi method targets the time series sampled with ζk, so that the process

of Eq. (2.35) performs division by ζk instead of ∆t [see Eq. (2.33)]. Then, any curve

length of the time series sampled with ζk can be calculated by coarse-graining of the time

series.
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2.4.2 Relationship between time series dimension and noise level

The de�nition of the TSD is based on the box-counting dimension [39], and is given as

follows:

D = lim
ϕ→0

logN(ϕ)

log (1/ϕ)
, (2.37)

where the variable N(ϕ) represents a minimal value of the total number of hyperspheres

or the hypercubes with size ϕ needed to entirely cover a structure like a coast line. When

the size ϕ and the variable N(ϕ) are substituted with the sampling time ζk and the curve

length L̃(q)(ζk, ρ⃗) of the time series associated with the variable xq, respectively, we get an

idealized version of the TSD instead of Eq. (2.37), as follows:

D(q) = lim
∆t→0

log L̃(q)(ζk, ρ⃗)

log (1/ζk)
. (2.38)

We show below the relationship betweenD(q) and ρ⃗ based on Eq. (2.38), where the TSD

is converted to an approximate version; note that only the approximate TSD depends on ρ⃗.

For simplicity, we investigate the situation in which only one variable xq of the dynamical

system [Eq. (2.1)] is observed in the observational process and furthermore, we assume

that observational noise does not in�uence the process. The TSD is calculated in the case

of ∆t→0 as shown in Eq. (2.38), so that the TSD is approximated as follows:

D(q) ≈ log L̃(q)(ζ1, ρ⃗)− log L̃(q)(ζ2, ρ⃗)

log 2
≡ D̃(q)(ρ⃗,∆t), (2.39)

where this approximate version is the proposed TSD [see examples in Fig. 2.3] and becomes

a function of ρ⃗ and of∆t; hereinafter, we denote this TSD as D̃(q)(ρ⃗) because∆t is constant

throughout this paper, i.e. ∆t = 0.001 except for Fig. 2.9. Note that if ∆t is small

enough so that the time series {Xρ⃗(i∆t)} behaves like a �ow, the di�erence log L̃(q)(ζ1, ρ⃗)−
log L̃(q)(ζ2, ρ⃗) re�ects almost entirely the stochastic component, thus the TSD does not

depend on ρ⃗ and always indicates 1.5, except at ρ⃗ = 0⃗. However, in this study we assume

that the observational signal is sampled with a certain sampling time ∆t, and consequently,

the TSD re�ects properties of both the deterministic and stochastic components and ranges

between 1 and 1.5 in a certain range of ρ⃗ [see Section 2.4.3]. Furthermore, it can be seen

that despite the fact that the approximate calculation [Eq. (2.39)] uses only two points

to form the power law between L̃(q)(ζk, ρ⃗) and ζk [see Fig. 2.3], these two points might

be essential to construct the power law; this view seems to be equivalent to the operation

of ∆t→0 included in the ideal de�nition [Eq. (2.39)] of the TSD. Namely, the power law

tends to converge to a slope formed by the two points as ∆t→0 [see Fig. 2.3]. Hence,

the proposed TSD becomes a more �exible version of the conventional Higuchi's fractal

dimension (which handles only fractal signals) and can be applied to any system.

Using Eqs. (2.34), (2.35), and (2.39), we can calculate the TSD. If the right-hand side

of Eq. (2.39) is smooth with respect to ρr (r = 1, 2, ..., d), we can compute its derivative in
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Figure 2.3. Diverse scaling property of time series data with Lseg(0, 0.001) = 10000, ob-
served through (a) the harmonic oscillatory system, (b) the Lorenz system,
(c) the Rössler system, and (d) the coupled Hindmarsh-Rose neuronal sys-
tem, each system of which was a�ected by dynamical noise with the noise
level of 0.1. For each panel, both the horizontal and vertical axes are dis-
played by log scales, and the time series dimension (TSD) was calculated as

a slope of the approximate line given by only two points
(
1/ζ1, L̃

(q)(ζ1, ρ⃗)
)

and
(
1/ζ2, L̃

(q)(ζ2, ρ⃗)
)
, indicated by �lled red circles.

order to reveal the monotonic relationship between the TSD and the noise level. However,

when the Higuchi method is applied to the time series to calculate its curve length, the

resulting TSD becomes a non-smooth function because the absolute function is contained

in the curve length calculation [Eq. (2.35)] and consequently, the derivative of Eq. (2.39)

does not exist at certain points. In order to circumvent this problem, we conduct piecewise

di�erentiation, excluding the non-smooth set de�ned as follows:

Ω∗
r =

{
ρr

∣∣∣ lim
∆ρr→+0

D̃(q)(ρ⃗+∆ρ⃗r)− D̃(q)(ρ⃗)

∆ρr
̸= lim

∆ρr→−0

D̃(q)(ρ⃗+∆ρ⃗r)− D̃(q)(ρ⃗)

∆ρr

}
∪{−∞,∞} , (2.40)

where ∆ρ⃗r is a small deviation around ρr such that ∆ρ⃗r = (0, 0, ...,∆ρr, ..., 0, 0) and

implicitly depends on time. Using the following set

Ω(S,E)
r =

{
ρr

∣∣∣ lim
∆ρr→+0

D̃(q)(ρ⃗+∆ρ⃗r)− D̃(q)(ρ⃗)

∆ρr
= lim

∆ρr→−0

D̃(q)(ρ⃗+∆ρ⃗r)− D̃(q)(ρ⃗)

∆ρr
,

S < ρr < E,S < E, S∈Ω∗
r, E∈Ω∗

r, (S,E) ∩ Ω∗
r = ∅

}
, (2.41)

which sorts the di�erentiable domains, we can perform piecewise di�erentiation of Eq.

(2.39) by ρr ∈ Ω
(S,E)
r as follows:

∂D̃
(q)
pw(ρ⃗)

∂ρr
=

1

log 2

[
1

L̃
(q)
pw(ζ1, ρ⃗)

∂L̃
(q)
pw(ζ1, ρ⃗)

∂ρr
− 1

L̃
(q)
pw(ζ2, ρ⃗)

∂L̃
(q)
pw(ζ2, ρ⃗)

∂ρr

]
.

(2.42)
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Subindex �pw� indicates that the functions D̃(q)(ρ⃗) and L̃(q)(ζk, ρ⃗) are piecewisely and

su�ciently smooth over interval (S,E) for ρr. If r ̸=q [see Eq. (2.1)], the TSD D̃(q)(ρ⃗) does

not change with ρr because the dynamical noises {ρr(t)dWr(t)}r ̸=q are integrated twice

over t when they in�uence the variable xq and the integrated Wiener process becomes

smooth [see the propagation of dynamical noises in Appendix B]; namely, the derivative

of D̃
(q)
pw(ρ⃗) with respect to ρr is zero. Consequently, if the following inequality

∂D̃
(q)
pw(ρ⃗)

∂ρq
> 0 (2.43)

is satis�ed over the concatenation of S and E, and if D̃(q)(ρ⃗) is continuous with respect

to ρq, then D̃(q)(ρ⃗) increases with ρq, so that the noise level can be estimated by the

TSD. Here, we can easily prove that the absolute function within L̃(q)(ζk, ρ⃗), see Eq.

(2.35), is continuous with respect to ρq by using the (ϵ, δ)-de�nition of limit [40] and

consequently, L̃(q)(ζk, ρ⃗) is a continuous function. Note that the inner operation, the

increment of Xρ⃗(i∆t), of the absolute function is also continuous [Eq. (2.35)] because

Xρ⃗(i∆t) continuously changes with the dynamical noise level.

Further, we analytically derive an inequality including ∆t, ρ⃗, and the length Lseg(0,∆t)

of the time series for the case of linear stochastic dynamical systems [see Appendix C].

Moreover, we summarize our analytic result in the form of a proposition related to the

monotonic relationship between the TSD and the noise level [see Proposition C.1 in

Appendix C]. Additionally, the monotonic relationship between D̃(q)(ρ⃗) and ρq on the

(Lseg(0,∆t), ρq/σdynxq)-plane is numerically illustrated for the case of a harmonic oscilla-

tor.

2.4.3 Numerical investigation

In the proposed method, we can detect changes in the level of dynamical noise by using

the TSD. Here, we numerically investigate the relationship between the TSD and the noise

level in the harmonic oscillator system [Eqs. (2.18) to (2.20)], the Lorenz system [Eqs.

(2.21) to (2.24)], the Rössler system [Eqs. (2.25) to (2.28)], and the coupled Hindmarsh-

Rose neuronal system [Eqs. (2.29) to (2.32)], through which we observed short time series

of {Xobs(t)} with the length Lseg(0,∆t) = 100, and generated TSDs among 50 trials to

create the monotonic properties, with respect to each noise level. As well as in Section

2.3.2, the transient state following the onset of the simulation was included in the tested

time series and the initial condition of variables for each trial followed uniform distributions

between 0 and 1. The obtained results, depicted in Figs. 2.2(e) through 2.2(h), show that

the TSD increases with the noise level, which ranges from 0 to 5 [see Fig. 2.4], and further,

the detailed monotonically increasing properties were similar among systems, so that there

exists a possibility that the TSD can be a universal value related to the dynamical noise

level [see Fig. 2.5].
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Figure 2.6. The e�ect of the length of time series and the dynamical noise level on
the monotonic properties among systems: (a) the harmonic oscillatory sys-
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However, if the length of the time series increases to include properties of the respective

system, the monotonic behavior di�ers among systems, as shown in Fig. 2.6. Actually,

we displayed the (Lseg(0,∆t), ρw/σdynw) diagrams to reveal the e�ect of the length of

time series on the monotonic behavior for the four systems. Each parameter point on

the (Lseg(0,∆t), ρw/σdynw) diagram indicates the average value of 100 TSDs calculated

from time series generated from the corresponding system; namely, for each point in the

(Lseg(0,∆t), ρw/σdynw)-plane, we generated TSDs among 100 trials as well as Fig. 2.4,

where each simulation was conducted for initial conditions following the uniform distribu-

tion between 0 and 1. In particular, the diagrams for the Lorenz system and for the coupled

Hindmarsh-Rose neuronal system showed speci�c monotonic behavior, which is di�erent

from the other systems [see Figs. 2.6(b) and 2.6(d)]. Note, however, that the TSD can still

estimate the noise level for each system. In conclusion, the TSD can estimate the level of

dynamical noise for a system on the basis of a monotonic relation.

2.5 Application to EEG data

We applied the proposed method to human EEG data [see Fig. 2.7]. Two healthy subjects

gave written informed consent prior to participation in the experiment. The EEG study

was approved by the ethics committees of RIKEN and the University of Tokyo. EEG

signals from 63 electrodes were obtained during eyes-open and eyes-closed resting periods.

We ran the experiment in a sound-proof, dimly lit room. A cycle of the measurement

consists of the eyes-open and eyes-closed periods, each of length 35 s. The cycle of 70 s
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Figure 2.7. (a) A representative EEG signal obtained from electrode Fp2 during the
eyes-open and eyes-closed resting periods. (b) The estimated noise level with
Urbanowicz and Holyst's method. (c) The time series dimension (TSD), and
(d) the variance. The arrows indicate the onset of the eyes-open or eyes-
closed state. (e) A typical time series of the eyes-open state, the TSD of
which was 1.22. (f) A typical time series of the eyes-closed state, the TSD
of which was 1.12.
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was repeated 10 times for two subjects. Sound stimuli (500 Hz or 1 kHz beep) were used

to ask subjects to open or close their eyes. Subjects were required to be �xated on a white

cross on a black background on a CRT display in the eyes-open condition. The reference

electrodes were placed on both the left and right earlobes, and the sampling frequency was

set to 1 kHz. Then, the frequencies of the low- and high-pass �lters were set to 250 Hz

and 0.016 Hz, respectively.

When we applied Urbanowicz and Holyst's method and our proposed method to the

EEG signals, we used an analysis window with 1500 points, shifting along the time axis

every 30 points [see Figs. 2.7(b) and 2.7(c)]. No preprocessing was performed.

By applying the proposed method, we found that the di�erence between the eyes-open

and eyes-closed brain states becomes evident [see Fig. 2.7(c)]. Analysis of the 63 time

series of the EEG signals showed that the TSD of electrode Fp2 can be used to robustly

discriminate between the eyes-open and eyes-closed states [please see detailed TSD analysis

results in Appendix D]. With respect to each subject, the Wilcoxon rank sum test was

applied to two datasets: TSDs (11400 points) of the eyes-open period and TSDs (11400

points) of the eyes-closed period, both of which include 10 trials; 1140 TSDs were calculated

in the eyes-open or eyes-closed periods for each trial. The results showed that the median

of the eyes-open dataset was signi�cantly greater than that of the eyes-closed dataset

(P < 0.0001 for two subjects); medians of the eyes-open and eyes-closed datasets were

1.24 and 1.18 for subject 1 and 1.19 and 1.16 for subject 2, respectively. The TSD is less

in�uenced by disturbances such as eye movement [see Fig. 2.7(c)] so that the TSD of each

state of the eyes-open and eyes-closed is temporally stable, i.e., if we set an appropriate

threshold value, each state can be de�nitely distinguished. In contrast, Urbanowicz and

Holyst's method did not clearly discriminate between the eyes-open and eyes-closed states

[see Fig. 2.7(b)]. The variance of the time series also di�ered between the eyes-open and

eyes-closed states [see Fig. 2.7(d)], where an analysis window similar to those applied to

Figs. 2.7(b) and 2.7(c), was used for dynamically obtaining the variance, but the di�erence

between the states was smaller than that using the TSD [see Fig. 2.7(c)]. Moreover, the

variance is very sensitive to disturbances so that the time series of the variance �uctuates

over a wide range of amplitudes. Thus, the proposed method can estimate the level of

the dynamical noise more reliably and distinguish the eyes-open and eyes-closed states

robustly.

2.6 Discussions

A novel dimension called TSD, for estimating the level of dynamical noise perturbing in

time series, observed through stochastic dynamical systems has been proposed. We have

de�ned the dynamical noise in the sense of the Wiener process, and based on this de�nition,

it has been validated whether a monotonic relationship between the TSD and the dynamical

noise level is achieved among four speci�c systems [see Section 2.4.3]. The TSD may be a
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well-de�ned dimension because it has been derived directly from the scaling property [see

Fig. 2.3] of the conventional Higuchi's fractal dimension so that the TSD does not require

the power law and is applicable to non-fractal signals. Furthermore, the applicability of the

TSD to real time-series data has been demonstrated with the application of the proposed

method to human EEG signals. The obtained results have shown that the estimated TSD

temporally changes due to visual inputs [see Fig. 2.7(c)].

Possibly due to the noise-induced order [41], the variance of the eyes-opened period

was low compared to that of the eyes-closed period [see Fig. 2.7(d)]. In particular, the

dynamical neural noise caused by the light stimulus may play a role in realizing the noise-

induced order. Typical time series [see Figs. 2.7(e) and 2.7(f)] of the eyes-open and

eyes-closed states have implied that the TSD re�ects the relative dominance ratio between

the deterministic and stochastic components. In the case of the eyes-open state [see Fig.

2.7(e)], the TSD was larger corresponding with miniature �uctuations in the EEG data.

In the case of the eyes-closed state [see Fig. 2.7(f)], the TSD was smaller corresponding

with large �uctuations in the EEG data.

The proposed TSD may also work as an e�ective indicator of dynamical noise even for

transient time series data (containing transient components). We have supported our claim

with the numerical analysis presented in Section 2.4.3. In particular, short time series with

the length Lseg(0,∆t) = 100, obtained from four di�erent systems, have shown a similar

monotonically increasing property of the TSD with respect to the dynamical noise level,

as depicted in Fig. 2.4. Thus, the present method may be used to analyze time series

containing transient behavior.

On the other hand, if one has multivariate time series, especially two time series, one

may be able to adjust their monotonic properties so that the universal monotonicity holds

for both of them, by changing the length of time series [see Fig. 2.8] or by resampling

time series [see Fig. 2.9]. Let us consider the situation that we have two monotonic

properties and try to �t these properties with each other. As a particular example, we

try to make a monotonic property generated from the harmonic oscillator system, equal

to each of monotonic properties generated from the Lorenz system, the Rössler system,

and the coupled Hindmarsh-Rose neuronal system. Here, each system is assumed to be

a�ected by dynamical noise with level 0.1. The lengths of the time series associated with

these four systems have been �xed to 4313, 179, 563, and 318 points, respectively so

that the beginning of this simulation has been equivalent to Fig. A.1(a) in Appendix

A; these lengths correspond to ⌊c∗/∆t⌋ derived from two upper bounds ϵ1 = 2.5 and

ϵ2 = 0.06 [see Eqs. (2.8) and (2.9)], where ⌊·⌋ denotes the rounding down. As the length

Lseg(0,∆t) = 4313 of the time series decreases, the root mean square (RMS) errors [see

Eq. (A.1)] between two systems also decrease, as shown in Fig. 2.8. Among three pairs

of two systems (i.e. (i) the harmonic oscillator system vs. the Lorenz system, (ii) the

harmonic oscillator system vs. the Rössler system, and (iii) the harmonic oscillator system

vs. the coupled Hindmarsh-Rose neuronal system), when we change the length of time
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series associated with the harmonic oscillator system from 4313 to 50, the RMS errors

indicate very small values (less than 0.05) at certain length of time series, see Fig. 2.8.

The lengths corresponding to the minimal values of the RMS errors are 184, 629, and

359 for pairs of systems (i) through (iii), respectively. Thus, we can �exibly control the

monotonic properties to work them universally by changing the length of time series.

Finally, we discuss the case of adjusting the monotonic property of a system by re-

sampling the corresponding time series data. We have simulated 100 short time series

of {Xobs(t)} with the lengths of Lseg(0,∆t) = 4313, as well as Fig. 8, corresponding to

the harmonic oscillator system a�ected by dynamical noise. Five monotonic properties,

each of which corresponds to the sampling time 0.0001, 0.001, 0.01, 0.1, and 1 of ∆t,

respectively, have been generated. At this point it is worth to remember that the TSD

actually depends on ∆t as well as ρ⃗, although until now we have considered a �xed sam-

pling time ∆t = 0.001. Now, consider the monotonic property obtained by using a very

small sampling time, namely ∆t = 0.0001. This property almost does not depend on the

noise level except at ρ⃗ = 0⃗, and then the resulting TSD always indicates around 1.5 so that

the property cannot work as an indicator of the dynamical noise level. Next, suppose that

we resample the time series, which was sampled at ∆t = 0.001, by new sampling times

of 0.01, 0.1, and 1, respectively. As ∆t increases, the monotonic property changes; that

is, the slope of the monotonically increasing behavior gradually decreases. If ∆t is a very

large value for example ∆t = 1, the monotonic behavior tends to be unstable, but the

increasing property still holds. Thus, along with the resampled multivariate time series

data in a plausible way, the resulting TSDs may work universally.

2.7 Conclusions

A method, based on the TSD, for detecting changes in the level of the dynamical noise in

stochastic dynamical systems has been proposed. It has been shown that the TSD has a

monotonic relationship with the level of dynamical noise. This novel TSD is an extended or,

rather, a �exible version of the conventional Higuchi's fractal dimension because the TSD

can handle any stochastic dynamical system, including non-fractal signals. Furthermore, a

theory of the TSD has been presented for the case of linear stochastic dynamical systems.

This theory should be extended to cover more general systems, such as systems a�ected

by dynamical noise as well as observational noise. In addition, the method has been

applied to EEG data, in which the TSD has shown robustness to sudden disturbances. We

believe that the proposed method may help us understand the behavior of various complex

dynamical systems, including the brain.
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Chapter 3

Analysis on signals composed of
deterministic slow and fast
oscillations

3.1 Introduction

Neurons in the brain process information through diverse neural dynamics emergent from

interaction among neurons via synapses. The relation of the underlying structure of neural

network to its dynamics, such as oscillatory or synchronized activity, largely remains to

be explored.

A variety of oscillatory phenomena in the brain have been studied with the local �eld

potential and an electroencephalogram. The recorded neural activity can provide useful

indices of distinctive brain functions, which indicates a possibility that the oscillatory

phenomena correlate with brain functions [3]. Additionally, the recorded neural activity

represents various types of oscillatory wave forms and can be categorized according to the

frequency, whose plural bands can temporally coexist in the same or di�erent brain regions

[47, 45]. Cross-frequency coupling emerges when the slow and fast oscillatory components

interact with each other. Among the sorted frequency bands, neighboring bands recorded

in the same brain region typically di�er in the brain function [43, 44, 45, 46]. A relationship

between the slow and fast oscillations can be explained by the power spectrum, in which

the power is inversely proportional to the frequency [48]. Such a relation between the power

and the oscillatory frequency implies that spatially widespread slow oscillations modulate

the local neural activity [47, 45, 49].

The mechanism underlying oscillatory phenomena is based on inhomogeneity of net-

works composed of multiple types of neurons. In the brain, there exist at least two kinds

of neurons, namely, excitatory and inhibitory neurons, which exhibit di�erent response

properties [50]. In particular, an excitatory neuron shows slow �ring whereas an inhibitory

neuron shows fast �ring.

Another fundamental structure for the investigation of oscillatory phenomena is synap-

tic connectivity. Synapses that exhibit rapid changes in the coupling strength among neu-

rons with a short-term plasticity mechanism are called dynamic synapses [51, 52, 53, 54].



40 Chapter 3 Analysis on signals composed of deterministic slow and fast oscillations

Two types of dynamic synapses exist: short-term depression and facilitation synapses.

Both of these are characterized with transiently decreasing releasable neurotransmitters

and with transiently increasing calcium concentration in the presynaptic terminal, where

synaptic transmission e�cacy decreases or increases; this variation is determined by the

ratio of two time constants associated with recovery from the transient decrease or increase

[52, 53]. The distribution of dynamic synapses in the brain di�ers among brain regions;

for example, a lot of depression synapses are within the parietal lobe, while facilitation

synapses are within the prefrontal lobe [54].

Properties on neural network models involving dynamic synapses have been intensively

investigated. Synaptic facilitation enhances the working memory function [55]. Further-

more, the combination of depression and facilitation synapses contributes to �exible in-

formation representation [56]. Stochastic neural network models and their corresponding

mean �eld models have been e�ectively used to consider the properties of neural networks,

including those of dynamic synapses [57, 22]. Synaptic depression contributes to the desta-

bilization of network activity, the generation of an oscillatory state, and spontaneous state

transitions among multiple patterns in an associative memory network [58].

In this study, we have hypothesized that cross-frequency coupling is generated by the in-

teraction between the excitatory and inhibitory networks, where excitatory and inhibitory

neurons generate the slow and fast oscillations, respectively [Fig. 3.1(a)]. We therefore

focus on a stochastic model composed of excitatory and inhibitory neural networks and

dynamic synapses. Furthermore, the present model considers the decay process of the

synaptic current. We analyze a macroscopic mean �eld model reproducing the overall

network dynamics associated with the stochastic model. By adjustments of parameters

specifying properties on synaptic currents and dynamic synapses, rich bifurcation struc-

tures of the network dynamics are expected to be found. In the following, �rst, we describe

a stochastic network including dynamic synapses. Then, we get a mean �eld model which

represents macroscopic properties of neurons. Subsequently, we investigate the bifurca-

tion structures in the present model, and demonstrate various solutions in the dynamical

systems of not only the excitatory or inhibitory network but also the inhomogeneous net-

work composed of both excitatory and inhibitory neurons. The �nal part discusses the

consequence of the bifurcation analysis.

3.2 Method

This section consists of three parts. The �rst part describes the short-term plasticity. The

second part explains the stochastic model, which is formulated using an inhomogeneous

network with dynamic synapses. The third part introduces a mean �eld theory in which the

stochastic model is converted to the corresponding microscopic and macroscopic mean �eld

models; the microscopic model is implemented for approximating the stochastic properties,

where the noise average is introduced; the macroscopic model is used for elucidating the

comprehensive properties of the present model.
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Figure 3.1. A hypothesis of emergent dynamics considered in the present model. (a)
Cross-frequency coupling, in which two distinctive frequency components
coexist, can emerge in the inhomogeneous network with dynamic synapses.
The three types of networks, excitatory, inhibitory, and inhomogeneous net-
works, have been investigated with the assumption that neurons are recur-
rently and fully connected with each other. (b) Short-term plasticity. The
synaptic current is evoked with transiently decreasing releasable neurotrans-
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terminal. The emergent dynamics of these two transient responses are due
to the action potentials of presynaptic neurons. In this study, networks with
depression-dominant synapses have been investigated.
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3.2.1 Mechanism of synaptic transmission

Here, we describe the short-term plasticity, which is one of the key components of the

present model [Fig. 3.1(b)]. First, after the membrane potential exceeds a certain threshold

value, the action potential is generated and reaches a synaptic terminal. Second, voltage-

gated calcium channels open, and the calcium ions �ow through channels into the terminal.

Third, neurotransmitters within the vesicles are released in the synaptic cleft owing to

the concatenation of vesicles and the membrane. Released neurotransmitters bind to the

receptors, and then a synaptic current is induced in the connected neurons. The amplitude

of the synaptic current decays with a certain time constant.

When a lot of action potentials appear in a presynapse within a short period, e�cacy of

the synaptic transmission transiently decreases or increases. Finally, the synaptic vesicles

are retrieved and the neurotransmitters are restored in the reusable synaptic vesicles [51,

52, 53, 54].

3.2.2 Model

We investigate a discrete-time network model composed of the excitatory (E) and the

inhibitory (I) subnetworks, which consist of NE excitatory and NI inhibitory neurons,

respectively. The ith neuron belonging to network ξ(ξ∈{E, I}) is denoted by sξi (t). This

variable indicates either the quiescent regime [sξi (t) = 0] or the activated regime [sξi (t) = 1].

The state is updated in accordance with the following dynamics:

Prob[sξi (t+ 1) = 1] = gβξ [h
ξ
i (t)], (3.1)

gβξ [h
ξ
i (t)] =

1

2
{1 + tanh[βξhξi (t)]}, (3.2)

where hξi (t) =
∑Nξ

j ̸=i[J
ξξ
ij a

ξ
j(t)] +

∑Nη

j=1[J
ξη
ij a

η
j (t)] + Iξ with η∈{E, I|η ̸=ξ}. The variables

hξi (t) and a
ξ
j(t) represent the total input for the ith neuron on network ξ and the synaptic

activity with short-term plasticity, respectively; 1/βξ = T ξ denotes the noise intensity; Jξξ
ij ,

Jξη
ij , and I

ξ indicate the connection from the jth neuron to the ith neuron on network ξ

(coupling within a subnetwork), the connection from the jth neuron on network η to the ith

neuron on network ξ (coupling between subnetworks), and the external input, respectively.

The short-term plasticity can be modeled by use of the synaptic activity aξi (t) and

two variables, xξi (t) and u
ξ
i (t). The synaptic activity a

ξ
i (t) increases with the presynaptic

neural activity. This increase is proportional to the product of xξi (t) and uξi (t), which

represents the synaptic transmission e�cacy [52, 55, 59]. If there is no synaptic activation,

aξi (t) converges to its steady state aξi (t) = 0 with a time constant τ ξa . The ratio xξi (t) of

releasable neurotransmitters decreases with the increase of presynaptic activation. Then,

xξi (t) returns to the steady state xξi (t) = 1 with τ ξR. The calcium concentration uξi (t)
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changes depending on the presynaptic activity and returns to the steady state uξi (t) = U ξ
se

with τ ξF. The dynamics can be summarized as follows:

aξi (t+ 1) = aξi (t)−
aξi (t)

τ ξa
+ sξi (t)x

ξ
i (t)u

ξ
i (t)/U

ξ
se, (3.3)

xξi (t+ 1) = xξi (t) +
1− xξi (t)

τ ξR
− sξi (t)x

ξ
i (t)u

ξ
i (t), (3.4)

uξi (t+ 1) = uξi (t) +
U ξ
se − uξi (t)

τ ξF
+ U ξ

se(1− uξi (t))s
ξ
i (t). (3.5)

3.2.3 Mean �eld theory

The dynamic mean �eld model was developed according to the following two steps. The

�rst step is the derivation of a microscopic mean �eld model. The second step is the

development of a macroscopic mean �eld model.

First, Eq. (3.1) and Eq. (3.2) are converted to the following forms:

⟨sξi (t+ 1)⟩ = gβξ [⟨hξi (t)⟩], (3.6)

⟨hξi (t)⟩ =

Nξ∑
j ̸=i

[
Jξξ
ij ⟨a

ξ
j(t)⟩

]
+

Nη∑
j=1

[
Jξη
ij ⟨a

η
j (t)⟩

]
+ Iξ, (3.7)

where the notation ⟨·⟩ indicates the noise average. Similarly, the following equations,

corresponding to Eqs. (3.3) to (3.5), are obtained:

⟨aξi (t+ 1)⟩ = ⟨aξi (t)⟩ −
⟨aξi (t)⟩
τ ξa

+ ⟨sξi (t)x
ξ
i (t)u

ξ
i (t)⟩/U

ξ
se, (3.8)

⟨xξi (t+ 1)⟩ = ⟨xξi (t)⟩+
1− ⟨xξi (t)⟩

τ ξR
− ⟨sξi (t)x

ξ
i (t)u

ξ
i (t)⟩, (3.9)

⟨uξi (t+ 1)⟩ = ⟨uξi (t)⟩+
U ξ
se − ⟨uξi (t)⟩

τ ξF
+ U ξ

se⟨(1− uξi (t))s
ξ
i (t)⟩. (3.10)

Here, we have assumed that Jξξ
ij and Jξη

ij are of the orders of 1/Nξ and 1/Nη, respectively, so

that the correlation between sξi (t) and x
ξ
i (t) is negligible whenNξ→∞ [57] . The correlation

between sξi (t) and u
ξ
i (t) is also ignored as Nξ→∞. Furthermore, in the previous study, it

was found that the correlation between xξi (t) and u
ξ
i (t) is negligible when the number of

neurons is large enough [22], while it has been reported that the independence between

xξi (t) and u
ξ
i (t) is maintained if there is no facilitation [60]. Consequently, we assume the

following:

⟨sξi (t)x
ξ
i (t)u

ξ
i (t)⟩ = ⟨sξi (t)⟩⟨x

ξ
i (t)⟩⟨u

ξ
i (t)⟩, (3.11)

⟨sξi (t)u
ξ
i (t)⟩ = ⟨sξi (t)⟩⟨u

ξ
i (t)⟩. (3.12)
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As shown in the Results section, the dynamic mean �eld model is consistent with the

simulation on the stochastic model. By using the above relations, we get the following

microscopic mean �eld model:

mξ
i (t+ 1) = gβξ

 Nξ∑
j ̸=i

(
Jξξ
ij A

ξ
j(t)
)
+

Nη∑
j=1

(
Jξη
ij A

η
j (t)

)
+ Iξ

 , (3.13)

Aξ
i (t+ 1) = Aξ

i (t)−
Aξ

i (t)

τ ξa
+mξ

i (t)X
ξ
i (t)U

ξ
i (t)/U

ξ
se, (3.14)

Xξ
i (t+ 1) = Xξ

i (t) +
1−Xξ

i (t)

τ ξR
−mξ

i (t)X
ξ
i (t)U

ξ
i (t), (3.15)

U ξ
i (t+ 1) = U ξ

i (t) +
U ξ
se − U ξ

i (t)

τ ξF
+ U ξ

se(1− U ξ
i (t))m

ξ
i (t), (3.16)

where we have set mξ
i (t)≡⟨sξi (t)⟩, A

ξ
i (t)≡⟨aξi (t)⟩, X

ξ
i (t)≡⟨xξi (t)⟩, and U

ξ
i (t)≡⟨uξi (t)⟩.

We represent the �xed point as m̄ξ
i , Ā

ξ
i , X̄

ξ
i , and Ū

ξ
i . The �xed point for Eqs. (3.14)

to (3.16) is obtained as follows:

Āξ
i =

τ ξa Ū
ξ
i m̄

ξ
i X̄

ξ
i

U ξ
se

, (3.17)

X̄ξ
i =

1

1 + τ ξRŪ
ξ
i m̄

ξ
i

, (3.18)

Ū ξ
i =

U ξ
se(1 + τ ξFm̄

ξ
i )

1 + τ ξFU
ξ
sem̄

ξ
i

. (3.19)

Using these equations, we get the �xed point m̄ξ
i as follows:

m̄ξ
i = gβξ

[ Nξ∑
j ̸=i

Jξξ
ij

(
τ ξa m̄

ξ
j(1 + τ ξFm̄

ξ
j)

1 + (τ ξF + τ ξR)U
ξ
sem̄

ξ
j + U ξ

seτ
ξ
Fτ

ξ
Rm̄

ξ
jm̄

ξ
j

)

+

Nη∑
j=1

Jξη
ij

(
τηa m̄

η
j (1 + τηFm̄

η
j )

1 + (τηF + τηR)U
η
sem̄

η
j + Uη

seτ
η
Fτ

η
Rm̄

η
j m̄

η
j

)
+ Iξ

]
. (3.20)

We derive the macroscopic mean �eld model with uniform connections where weights

Jξξ
ij and Jξη

ij are given by

Jξξ
ij =

Jξξ
0

Nξ
, (3.21)

Jξη
ij =

Jξη
0

Nη
. (3.22)

Here Jξξ
0 and Jξη

0 are the parameters specifying the strength of the uniform connections.

Because of this uniformity of the synaptic connections, the variables mξ
i , A

ξ
i , X

ξ
i , and

U ξ
i can be substituted with their averages mξ

0 = (1/Nξ)
∑Nξ

i=1m
ξ
i , A

ξ
0 = (1/Nξ)

∑Nξ

i=1A
ξ
i ,
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Xξ
0 = (1/Nξ)

∑Nξ

i=1X
ξ
i , and U

ξ
0 = (1/Nξ)

∑Nξ

i=1 U
ξ
i . The macroscopic mean �eld model for

the network with uniform connections is given by

mξ
0(t+ 1) = F ξ

m(Ω(t)), (3.23)

Aξ
0(t+ 1) = F ξ

A(Ω(t)), (3.24)

Xξ
0(t+ 1) = F ξ

X(Ω(t)), (3.25)

U ξ
0 (t+ 1) = F ξ

U (Ω(t)), (3.26)

where

F ξ
m(Ω(t)) = gβξ

[
Jξξ
0 A

ξ + Jξη
0 Aη + Iξ

]
, (3.27)

F ξ
A(Ω(t)) = Aξ − Aξ

τ ξa
+mξXξU ξ/U ξ

se, (3.28)

F ξ
X(Ω(t)) = Xξ +

1−Xξ

τ ξR
−mξXξU ξ, (3.29)

F ξ
U (Ω(t)) = U ξ +

U ξ
se − U ξ

τ ξF
+ U ξ

se(1− U ξ)mξ, (3.30)

with the state vector Ω(t) de�ned as

Ω(t) =
[
mE

0 (t),m
I
0(t), A

E
0 (t), A

I
0(t), X

E
0 (t), X

I
0(t), U

E
0 (t), U

I
0(t)
]T
. (3.31)

By modifying Eq. (3.20), the �xed point for the macroscopic mean �eld model can be

calculated as follows:

m̄E = fE(m̄
E, m̄I), (3.32)

m̄I = fI(m̄
I, m̄E), (3.33)

where

fξ(m̄
ξ, m̄η) = gβξ

[
Jξξ
0

(
τ ξa m̄ξ(1 + τ ξFm̄

ξ)

1 + (τ ξF + τ ξR)U
ξ
sem̄ξ + U ξ

seτ
ξ
Fτ

ξ
Rm̄

ξm̄ξ

)

+ Jξη
0

(
τηa m̄η(1 + τηFm̄

η)

1 + (τηF + τηR)U
η
sem̄η + Uη

seτ
η
Fτ

η
Rm̄

ηm̄η

)
+ Iξ

]
. (3.34)

After solving the above equations simultaneously, we get the steady state m̄E
0 and m̄I

0. By

substituting m̄E
0 and m̄I

0 into the following steady state equations

Āξ
0 =

τ ξa Ū
ξ
0 m̄

ξ
0X̄

ξ
0

U ξ
se

, (3.35)

X̄ξ
0 =

1

1 + τ ξRŪ
ξ
0 m̄

ξ
0

, (3.36)

Ū ξ
0 =

U ξ
se(1 + τ ξFm̄

ξ
0)

1 + τ ξFU
ξ
sem̄

ξ
0

, (3.37)
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we obtain the steady state Āξ
0, X̄

ξ
0 , and Ū

ξ
0 .

Here, we investigate the �xed point by considering small deviations δmξ
0(t), δA

ξ
0(t),

δXξ
0(t), and δU

ξ
0 (t) around the �xed point as follows:

mξ
0(t) = m̄ξ

0 + δmξ
0(t), (3.38)

Aξ
0(t) = Āξ

0 + δAξ
0(t), (3.39)

Xξ
0(t) = X̄ξ

0 + δXξ
0(t), (3.40)

U ξ
0 (t) = Ū ξ

0 + δU ξ
0 (t). (3.41)

By neglecting the higher order components, we get the following locally linearized equation:

δmE
0 (t+ 1)

δAE
0 (t+ 1)

δXE
0 (t+ 1)

δUE
0 (t+ 1)

δmI
0(t+ 1)

δAI
0(t+ 1)

δXI
0(t+ 1)

δU I
0(t+ 1)


= K



δmE
0 (t)

δAE
0 (t)

δXE
0 (t)

δUE
0 (t)

δmI
0(t)

δAI
0(t)

δXI
0(t)

δU I
0(t)


, (3.42)

where K is the Jacobian matrix

K =



KEE
mm KEE

mA KEE
mX KEE

mU KEI
mm KEI

mA KEI
mX KEI

mU

KEE
Am KEE

AA KEE
AX KEE

AU KEI
Am KEI

AA KEI
AX KEI

AU

KEE
Xm KEE

XA KEE
XX KEE

XU KEI
Xm KEI

XA KEI
XX KEI

XU

KEE
Um KEE

UA KEE
UX KEE

UU KEI
Um KEI

UA KEI
UX KEI

UU

KIE
mm KIE

mA KIE
mX KIE

mU KII
mm KII

mA KII
mX KII

mU

KIE
Am KIE

AA KIE
AX KIE

AU KII
Am KII

AA KII
AX KII

AU

KIE
Xm KIE

XA KIE
XX KIE

XU KII
Xm KII

XA KII
XX KII

XU

KIE
Um KIE

UA KIE
UX KIE

UU KII
Um KII

UA KII
UX KII

UU


, (3.43)

and each element of this matrix is given as follows:

Kξξ
mA =

∂F ξ
m

∂Aξ
= g′βξ [h

ξ]Jξξ
0 , (3.44)

Kξη
mA =

∂F ξ
m

∂Aη
= g′βξ [h

ξ]Jξη
0 , (3.45)

where

g′βξ [h
ξ] =

βξ

2
[1− tanh2(βξhξ)], (3.46)

hξ = Jξξ
0 A

ξ + Jξη
0 Aη + Iξ. (3.47)
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Furthermore, the remaining elements of matrix K are given by

Kξξ
Am =

U ξXξ

U ξ
se

, (3.48)

Kξξ
AX =

mξU ξ

U ξ
se

, (3.49)

Kξξ
AU =

mξXξ

U ξ
se

, (3.50)

Kξξ
AA = 1− 1

τ ξa
, (3.51)

Kξξ
Xm = −U ξXξ, (3.52)

Kξξ
XX =

(
1− 1

τ ξR

)
−mξU ξ, (3.53)

Kξξ
XU = −mξXξ, (3.54)

Kξξ
Um = U ξ

se(1− U ξ), (3.55)

Kξξ
UU =

(
1− 1

τ ξF

)
− U ξ

sem
ξ, (3.56)

and the other elements are zeroes. We analyzed the stability of the �xed point using this

Jacobian matrix.

3.3 Results

In this section, we analyze a variety of bifurcation structures associated with the present

model by regarding τ ξa , J
ξξ
0 , and Iξ as the bifurcation parameters. First, we investigate the

excitatory network, in which we have set JEI
0 = 0 and JEE

0 > 0, and the inhibitory network,

in which we have set J IE
0 = 0 and J II

0 < 0. Then, we analyze the network model composed

of both excitatory and inhibitory neurons. When examining the above two subnetworks, we

omit the superscripts attached to variables and parameters for simplicity. In the following,

we analyze the depression-dominant region, namely, τ ξR = 70 and τ ξF = 6 with U ξ
se = 0.1,

T ξ = 0.8, and Nξ = 104.

Both the excitatory and inhibitory networks exhibit distinctive oscillatory states, as

shown in the (J0, I) phase diagram [Fig. 3.2(a)]. The oscillatory state on the excitatory

network (OSE) changes into the steady state via the Neimark-Sacker (NS) bifurcation when

J0 decreases/increases or I increases from the region of the OSE state. When J0 decreases

and I increases in the region of the steady state, the oscillatory state on the inhibitory

network (OSI) is generated by the NS bifurcation. The bifurcation diagrams in Fig. 3.2(b)

and Fig. 3.2(c) show the appearance of these oscillatory states via the NS bifurcations

from the steady state. The bifurcation diagram with respect to J0 on I = −1 [Fig. 3.2(b)]

shows the emergence of the OSE state. The mean neural activity m0 in the steady state

increases with J0, while the steady state destabilizes via the NS bifurcation at J0 = 1.63,
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and then the OSE state appears. Owing to the second NS bifurcation at J0 = 3.48, the

OSE state disappears, and the stable steady state reappears. The bifurcation diagram

with respect to J0 on I = 1 [Fig. 3.2(c)] shows the appearance of the OSI state. The mean

neural activity m0 in the steady state decreases with decreasing J0 while the steady state

destabilizes via the NS bifurcation at J0 = −4.73, and then the OSI state appears.

The aforementioned bifurcation diagrams with respect to J0 on I = −1 and on I = 1

show good agreement with those in the stochastic model [Fig. 3.3(a) and Fig. 3.3(b)].

To quantify the oscillatory frequency, we applied the Fourier transform to the oscillatory

time courses, where 4096 time steps were used for the calculation. The frequency of the

�rst typical peak in the derived power spectrum was converted to the corresponding time

step, hereby called the `period'. The oscillation in the inhibitory network tends to be faster

than that in the excitatory network. In the parameter region shown in Fig. 3.2(a), the

period of the OSI state ranges from 4.99 to 6.00 time steps whereas that of the OSE state

ranges from 33.9 to 78.8 time steps.

Figures 3.2(d) and 3.2(e) show the bifurcation structures of the excitatory and in-

hibitory networks, respectively. Both the OSE and OSI states represent oscillations on the

closed curve.

In the excitatory network, the period of the OSE state ranges from 44.0 to 75.9 time

steps. The (τa, I) phase diagram [Fig. 3.2(d)] shows the distribution of the OSE state.

The period increases as τa and I decrease. In the inhibitory network, the period of the

OSI state ranges from 3.94 to 8.00 time steps. The (τa, I) phase diagram [Fig. 3.2(e)]

shows that the area of the OSI state expands and the period tends to increase as τa and I

increase.

The typical OSE and OSI states represent oscillations both in the stochastic model

and in the macroscopic mean �eld model [Fig. 3.4]. The red curves in Fig. 3.4(a)

and Fig. 3.4(d) indicate the time courses of the average values of the variables s0(t)[=

(1/N)
∑N

i si(t)], a0(t)[= (1/N)
∑N

i ai(t)], x0(t)[= (1/N)
∑N

i xi(t)], and u0(t)[= (1/N)
∑N

i ui(t)].

The OSI state demonstrates a faster oscillation relative to that of the OSE state. The

macroscopic mean �eld model is similar to the stochastic model in the time courses [Fig.

3.4(a) and Fig. 3.4(d)], in the power spectra [Fig. 3.4(b) and Fig. 3.4(e)], and in the orbits

in the state space (Fig. 3.4(c) and Fig. 3.4(f)].

Figure 3.5 shows the dynamical structure of a network composed of the above excitatory

and inhibitory subnetworks. Here, we use the parameter values corresponding to the typical

OSE and OSI states described above; namely, JEE
0 = 2 and J II

0 = −10, respectively. The

parameter point (JEI
0 , J IE

0 ) = (0, 0) indicates the direct product system composed of the two

subnetworks, in which each network independently exists. The (JEI
0 , J IE

0 ) phase diagram

(Figure 5A) shows the four distinctive types of neural dynamics in the network: the steady

state (SS) and an oscillatory state with a single frequency component with a closed curve

(OS1C), one with two frequency components with a 2-dimensional torus (OS2T), and one

with two frequency components with a closed curve (OS2C). The number of zero-Lyapunov
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Figure 3.2. A dynamical qualitative change between the excitatory and inhibitory net-
works with depression synapses. (a) (J0, I) phase diagram. The colored
areas denote two distinctive oscillatory regions, namely, OSE and OSI re-
gions, which appear via the NS bifurcation sets from the region of the steady
state (the white region) and can be separated by J0 = 0, indicated by the
vertical dotted line. NS bifurcation sets are indicated by the dashed curves.
(b) A bifurcation diagram and the corresponding oscillatory period with
respect to the positive coupling strength (J0 ≥ 0), where a relatively low
external input (I = −1) acts on the excitatory network. A set of the stable
�xed point is indicated by the solid curve and the OSE state is indicated by
the open circles with the dotted lines; the dashed curve indicates a set of
the unstable �xed point. (c) A bifurcation diagram and the corresponding
oscillatory period with respect to the negative coupling strength (J0 ≤ 0)
for I = 1. In panels (b) and (c), the stable steady state and the OSE or OSI
state are exchanged via the NS bifurcation points, indicated by the �lled
circles. (d) (τa, I) phase digram for the OSE region in which the coupling
strength is positive (J0 = 2). (e) (τa, I) phase digram for the OSI region in
which the coupling strength is negative (J0 = −10). The oscillatory periods
in both the OSE and OSI regions change depending on τa and I.
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and the macroscopic mean �eld (blue) models. The models show good agree-
ment in the distribution of orbits and in the oscillatory period. In both
panels (a) and (b) for the macroscopic mean �eld model, the notation is the
same with Fig. 3.2(b) and Fig. 3.2(c). The open blue circles indicate maxi-
mal or minimal values of the OSE state for (a) or the OSI state for (b) and
indicate the corresponding oscillatory period. In each bifurcation parameter
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maximal and minimal values exceeded a certain threshold value, a pair of
two red open circles was plotted; the red cross indicates the averaged value
of the stochastic variable. (a) A bifurcation diagram and the corresponding
oscillatory period of the excitatory network on I = −1. (b) A bifurcation
diagram and the corresponding oscillatory period of the inhibitory network
on I = 1.
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Figure 3.4. Simulation results of the excitatory and inhibitory networks with depression
synapses. The dynamics on the stochastic and the macroscopic mean �eld
models are illustrated in red and blue, respectively. The excitatory and
inhibitory networks exhibit relatively slow (the left side) and fast oscillations
(the right side), respectively. (a, d) Raster plots and time courses of the
variables of the stochastic and macroscopic mean �eld models. The dots
indicate 50 of 104 excitatory or inhibitory neurons (where si(t) = 1). Each
of the stochastic variables, s0(t), a0(t), x0(t), and u0(t) and each of the
macroscopic variables, m0(t), A0(t), X0(t), and U0(t) are indicated as time
courses by the thin and thick solid lines and the thin and thick dashed lines,
respectively. Note that the time courses of s0(t) and a0(t) and those ofm0(t)
and A0(t) for (a) are almost overlapping, respectively. (b, e) Power spectra
of the variables s0(t) and m0(t). The two arrows indicate the fundamental
low and high frequency components. (c, f) Closed curves in the state space.
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exponents determines whether the attractor is the closed curve or the 2-dimensional torus.

If the dynamics shows the OS2T state, two zero-exponents appear, whereas if the OS1C

or OS2C state emerges in the system, only one zero-exponent appears.

Both the OS1C and OS2C states exhibit quasi-periodic oscillations on a one-dimensional

torus in a map (MT1), and they are generated from the SS state via the NS bifurcation

set; note that the MT1 is equivalent to the closed curve described above. On the other

hand, the OS2T state shows quasi-periodic oscillations on a 2-dimensional torus in a map

(MT2). These three oscillatory states, namely OS1C, OS2C, and OS2T states, can be sep-

arated by the following three sets of bifurcations: the NS bifurcation of MT1 (MT1NS),

the saddle-node (SN) bifurcation of MT2 (MT2SN), and the cyclic SN bifurcation of MT1

(MT1SNC) [61]. Because the MT1NS bifurcation here is subcritical, there exists a speci�c

hysteresis region between the OS1C and OS2T states.

By introducing a `slice' into the quasi-periodic attractors, we can interpret the bifur-

cations of quasi-periodic oscillations, as those of the �xed point almost equivalently [Fig.

3.5(b)]; however, note that the slice has a width of radius ϵ, di�erently from the Poincaré

section. Let us de�ne a `section' Σ as a codimension-one plane so that we can de�ne the

slice as follows:

Σϵ = {Ω∈R8|dist(Ω,Σ) < ϵ}, (3.57)

where dist(·, ·) denotes the Euclidean distance between a point and a plane. For example,

if a MT1 is applied to the slice, it will be converted to an `isolated' point, and if a MT2

is applied to the slice, it will be converted to a 1-dimensional torus in a section (ST1),

respectively. Although the isolated point and ST1 are not invariant sets, we apply the

conventional bifurcation theory into them, to understand the quasi-periodic bifurcations

more clearly.

Here we analyze the MT1 and MT2, by using the slice. When the MT1NS bifurcation

occurs, a MT2 appears along with the destabilization of the MT1; in the corresponding

slice, the isolated point loses its stability, and accordingly a ST1 emerges around it. On the

other hand, when the MT2SN bifurcation occurs, a stable MT2 and a saddle one merge and

disappear, and the trajectory on the stable MT2 goes onto a MT1; in the corresponding

slice, a stable ST1 and a saddle one collides, and accordingly an isolated point appears. The

bifurcation diagram of trajectories in the slice, with respect to JEI
0 , declares the qualitative

di�erence between the OS1C and OS2T states [Fig. 3.5(c)]. The isolated point, which is

one realization of the OS1C state, starts to oscillate via the MT1NS bifurcation, and

changes to a ST1, which is one realization of the OS2T state. On the other hand, via the

MT2SN bifurcation the ST1 suddenly changes to an isolated point; this abrupt change is

due to the subcritical MT1NS bifurcation.

To understand the property of the MT1SNC bifurcation, we introduce a cyclic SN

bifurcation of a zero-dimensional torus in a map (MT0SNC) [Fig. 3.6(a)]; note that the
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Figure 3.5. (JEI
0 , J IE

0 ) phase diagram, emergent from the network composed of the ex-
citatory and inhibitory subnetworks with depression synapses. In this net-
work, JEE

0 = 2, IE = −1, and τEa = 2.5 were set for the excitatory subnet-
work, and J II

0 = −10, II = 16, and τ Ia = 12.5 for the inhibitory subnetwork,
respectively. The Lyapunov exponents were calculated in each parameter
point, where the number of zero-exponents determines the color; the pa-
rameter points with only one and two zero-exponents are denoted by red
and blue colors, respectively, whereas the points with all the negative ex-
ponents are marked by the white color. The SS region bifurcates into the
OS1C or OS2C region via the NS bifurcation set, indicated by the dashed
curve. The OS1C and OS2T regions are separated by the MT1NS or the
MT2SN bifurcation set, whereas the OS2C and OS2T regions are separated
by the MT1SNC bifurcation set. Note that the MT1NS and MT2SN bifur-
cation sets are overlapping because the hysteresis region between them is
very narrow.
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Figure 3.6. A schematic de�nition of the isolated point and ST1 in the slice. The slice
has a width of radius ϵ. Via the slice, the MT1 and MT2 are converted to
an isolated point and a ST1, respectively

zero-dimensional torus is equivalent to the �xed point. Before the MT0SNC bifurcation

occurs, there exists a pair of a stable �xed point and a saddle one, and therefore the

unstable set of the saddle point is generating a 1-dimensional torus. Via the MT0SNC

bifurcation, in which the stable �xed point and the saddle one collide, the unstable set

of the saddle point is stabilized and accordingly an MT1 appears. Next, we consider the

MT1SNC bifurcation [Fig. 3.6(b)]. Before this bifurcation occurs, there exists a pair of a

stable MT1 and a saddle one, and thus the unstable set of the saddle MT1 is generating

a 2-dimensional torus; in the corresponding slice, there exists a pair of a stable isolated

point and a saddle one so that the unstable set of the saddle isolated point can form a

1-dimensional torus. Via the MT1SNC bifurcation, the stable MT1 and the saddle one

merge and disappear, and accordingly an MT2 appears with stabilization of the unstable

set of the saddle MT1; in the corresponding slice, an ST1 appears similar to the MT0SNC

bifurcation. The bifurcation diagram of trajectories in the slice, with respect to J IE
0 ,

declares the qualitative di�erence between the OS2C and OS2T [Fig. 3.5(d)]. As well

as the MT1NS bifurcation, the isolated point, corresponding to the OS2C state, starts to

oscillate via the MT1SNC bifurcation, and changes to the ST1, corresponding to the OS2T

state.

Actually, the di�erence between the MT1NS and MT1SNC bifurcations becomes clear,

by the consideration of both a state just before the bifurcations and a state just after
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Figure 3.7. Representative bifurcation diagrams of trajectories in the section for (a) and
(c) and of Lyapunov exponents for (b) and (d) with respect to JEI

0 or J IE
0 , re-

spectively. (a, b) The OS1C and OS2T states were separated by the MT1NS
and MT2SN bifurcations. (c, d) The OS2T and OS2C states were separated
by the MT1SNC bifurcation. (a) A bifurcation diagram of trajectories in
section AI

0 = 1.7 whose slice has ϵ = 0.001, with respect to JEI
0 . The OS1C

state is indicated by the solid line, while the OS2T state is indicated by
dotted lines; maximal and minimal values of the orbits are indicated by the
open circles. (b) A bifurcation diagram of the Lyapunov exponents with
respect to JEI

0 . The �rst, second, and third Lyapunov exponents are plotted
by the blue, green, and red colors, respectively. The multiplicity 2 of the
exponents is indicated by notation �M2�. For the upper diagram, the calcu-
lation of the Lyapunov exponents was conducted with the increase of JEI

0 ,
whereas for the lower diagram, it was conducted with the decrease of JEI

0 .
(c) A bifurcation diagram of trajectories in section AE

0 = 0.8 whose slice has
ϵ = 0.001, with respect to J IE

0 . The OS2C state is indicated by the solid
curve. (d) A bifurcation diagram of the Lyapunov exponents with respect
to J IE

0 .
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(b)

(a)

Figure 3.8. Illustrations of (A) the MT0SNC and (B) MT1SNC bifurcations. Each of
the stable �xed point, saddle point, and MT0SNC bifurcation point for (A),
and each of the stable MT1, saddle MT1, and MT1SNC bifurcation point
for (B), are indicated by the red, yellow, and orange colors, respectively. In
the slice, indicated by the green box, the MT1 is referred to as the isolated
point. Before the bifurcation occurs, the unstable set of the saddle point
(or the saddle MT1) is generating a 1-dimensional torus (or a 2-dimensional
torus), indicated by the dotted curve for (A) (or the gradation area for (B)).
Via the MT0SNC (MT1SNC) bifurcation, the unstable set is stabilized, and
accordingly an MT1 (or an MT2) appears, indicated by the solid curve for
(A) (or the uniformly �lled area for (B)); in the slice, the unstable set of
the isolated point, indicated by the dotted curve for (B), is stabilized and
changes to a stable ST1, indicated by the solid curve for (B).
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Figure 3.9. Qualitative di�erence between (a) the MT1NS and (b) MT1SNC bifurca-
tions. (a) A section AI

0 = 1.7 whose slice has ϵ = 0.001; trajectories on the
OS2T and OS1C states are plotted by the cyan and blue colors, respectively.
Each parameter of these states was set to be near the MT1NS bifurcation
points: JEI

0 = −0.139 and JEI
0 = −0.142. (b) A section AE

0 = 0.8 whose slice
has ϵ = 0.001; trajectories on the OS2T and OS2C states are plotted by the
cyan and blue colors, respectively. Each parameter of these states was set
near the MT1SNC bifurcation points: J IE

0 = 3 and J IE
0 = 3.12.

the bifurcations, together with the slice. As mentioned above, in the MT1NS bifurcation,

an ST1 appears around the isolated point within the slice [Fig. 3.5(g)]; however, in the

MT1SNC bifurcation, an ST1 also appears, but it is formed on the isolated point [Fig.

3.5(h)]. Therefore, we can distinguish these bifurcations, by investigating whether the ST1

involves the isolated point within the slice.

The qualitative di�erence between the MT1NS bifurcation and the MT2SN or MT1SNC

bifurcation is also evident with the consideration of the property of the Lyapunov exponents

near the bifurcation points [Fig. 3.5(e) and Fig. 3.5(f)]. Indeed, when the OS1C state

bifurcates into the OS2T state, the two negative exponents approach zero simultaneously,

which is a property of the MT1NS bifurcation. However, when the OS2T bifurcates into

the OS1C or the OS2C state, only one negative exponent starts to decrease; this is a

property of the MT2SN or MT1SNC bifurcation.

Figures 3.10, 3.11, and 3.12 show the typical oscillatory states in the model composed of

excitatory and inhibitory neurons. For each typical oscillatory state in the stochastic model,

the average values of the variables sξ0(t)[= (1/Nξ)
∑Nξ

i sξi (t)], a
ξ
0(t)[= (1/Nξ)

∑Nξ

i aξi (t)],

xξ0(t)[= (1/Nξ)
∑Nξ

i xξi (t)], and u
ξ
0(t)[= (1/Nξ)

∑Nξ

i uξi (t)] are indicated by red curves. The

corresponding values in the macroscopic mean �eld model are indicated by blue curves.

The power spectra of the oscillatory time courses were obtained using the variables sI0(t)

and mI
0(t). The macroscopic mean �eld model is similar to the stochastic model in the
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time courses [Figs. 3.10(a), 3.10(b), 3.11(a), 3.11(b), 3.12(a), and 3.12(b)], in the power

spectra [Figs. 3.10(c), 3.11(c), and 3.12(c)], in the orbits in the state space [Figs. 3.10(d),

3.11(d), and 3.12(d)] , and in the orbits in the slice [Figs. 3.10(e), 3.11(e), and 3.12(e)].

Figure 3.10 shows the appearance of the OS1C state in the network dynamics. The

typical OS1C state [Fig. 3.10(a) and Fig. 3.10(b)] exhibits only fast oscillations both in

the stochastic model and in the macroscopic mean �eld model. The excitatory subnetwork

shows a low active state with fast oscillations. On the other hand, the inhibitory subnet-

work indicates a highly active state with fast oscillations. The power spectra [Fig. 3.10(c)]

of the oscillatory time courses exhibit a single large peak that indicates fast oscillations.

Figure 3.11 shows the appearance of the OS2T in the network dynamics. The typical

OS2T state [Fig. 3.11(a) and Fig. 3.11(b)] shows the slow and fast oscillations both in

the stochastic model and in the macroscopic mean �eld model. The excitatory subnetwork

displays only the slow oscillations. On the other hand, the inhibitory subnetwork exhibits

both the slow and fast oscillations. The power spectra [Fig. 3.11(c)] of the oscillatory time

courses display two large peaks that indicate the slow and fast oscillations, respectively.

The slice [Fig. 3.11(e)) in the state space describes the dynamical structure of the OS2T

state, where a closed curve appears in the slice.

Figure 3.12 shows the appearance of the OS2C state in the network dynamics. The

typical OS2C state [Fig. 3.12(a) and Fig. 3.12(b)] also exhibits the slow and fast oscillations

both in the stochastic model and in the macroscopic mean �eld model. The excitatory

subnetwork shows only the slow oscillation. On the other hand, the inhibitory subnetwork

exhibits both the slow and fast oscillations as well as the OS2T state. The modulation of

the amplitude is clearer than that in the OS2T state. The power spectra [Fig. 3.12(c)]

of the oscillatory time courses exhibit two large peaks that indicate the slow and fast

oscillations, respectively.

3.4 Discussion

We analyzed a stochastic model composed of excitatory and inhibitory neural networks

and dynamic synapses and derived the mean �eld model. The analysis of the mean �eld

model revealed overall dynamical properties of the network. The excitatory and inhibitory

subnetworks represent the slow and fast oscillations, respectively. As a result of the interac-

tion between the excitatory and inhibitory subnetworks, diverse oscillatory states with two

major frequency components appear; this oscillatory state corresponds to cross-frequency

coupling. The bifurcation analysis has clari�ed the dependency of oscillatory states on

the weights JEI
0 and J IE

0 of the connection between the excitatory and inhibitory networks.

Furthermore, we have found that the states of the cross-frequency coupling can be classi�ed

into two subtypes, namely, OS2T and OS2C states.

The present model is an extension of an excitatory neural network model with dynamic

synapses [22]. The previous model, which corresponds to the excitatory network in this
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Figure 3.10. A typical oscillatory state with a single frequency component on a closed
curve (OS1C) in the network with depression synapses. Both the excita-
tory and inhibitory subnetworks exhibit the fast oscillations on the closed
curve, whereas the amplitude of excitatory oscillations is miniature. (a,
b) Raster plots and time courses of the variables of the stochastic and
macroscopic mean �eld models. The dots indicate 50 of 104 excitatory or
inhibitory neurons (where sEi (t) = 1 and sIi(t) = 1). Each of the stochastic
variables sE0 (t), a

E
0 (t), x

E
0 (t), and u

E
0 (t) for the excitatory subnetwork and

sI0(t), a
I
0(t), x

I
0(t), and uI0(t) for the inhibitory subnetwork, and each of

macroscopic variables, mE
0 (t), A

E
0 (t), X

E
0 (t), and U

E
0 (t) for the excitatory

subnetwork and mI
0(t), A

I
0(t), X

I
0(t), and U

I
0(t) for the inhibitory subnet-

work are indicated as time courses by the thin and thick solid lines and
the thin and thick dashed lines, respectively. (c) Power spectra of the vari-
ables sI0(t) and mI

0(t). The arrow indicates the representative frequency
component, which exhibits a high frequency. (d) A closed curve in the
state space, in which the slice is indicated by the green box. (e) A section
with aI0 = 1.7 and AI

0 = 1.7 whose slice has ϵ = 0.001. The isolated point
appears in the slice because the emergent attractor was the closed curve.
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Figure 3.11. A typical oscillatory state with the two major frequency components on
a 2-dimensional torus (OS2T) in the network with depression synapses.
The excitatory and inhibitory subnetworks exhibit the slow and fast oscil-
lations on the torus, respectively, whereas the amplitude of the inhibitory
oscillations sI0(t) and mI

0(t) is less modulated by the phase of excitatory
slow oscillations. In panels (a) and (b), the notation is similar to that of
Fig. 3.10. (c) Power spectra of the variables sI0(t) and m

I
0(t). The two ar-

rows indicate the representative low and high frequency components. (d)
A torus in the state space, in which the slice is indicated by the green box.
(e) A section with aI0 = 1.7 and AI

0 = 1.7 whose slice has ϵ = 0.001. The
closed curve appears in the slice because the emergent attractor was the
2-dimensional torus.
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Figure 3.12. A typical oscillatory state with the two major frequency components on a
closed curve (OS2C) in the network with depression synapses. The excita-
tory and inhibitory subnetworks exhibit the slow and fast oscillations on
the closed curve, respectively, whereas the amplitude of inhibitory oscil-
lations sI0(t) and m

I
0(t) is evidently modulated by the phase of excitatory

slow oscillations. In panels (a) and (b), the notation is similar to that of
Fig. 3.10. (c) Power spectra of the variables sI0(t) and m

I
0(t). The two ar-

rows indicate the representative low and high frequency components. (d) A
closed curve in the state space, in which the slice is indicated by the green
box. (e) A section with aE0 = 0.8 and AE

0 = 0.8 whose slice has ϵ = 0.001.
The isolated point appears in the slice because the emergent attractor was
the closed curve.
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study, was modi�ed in terms of the following three aspects. First, we analyzed the depen-

dency of the network dynamics on the coupling strength Jξξ
0 of the network and on the

external input Iξ; these parameters were �xed in the previous study [22]. The analysis

revealed that these parameters can be crucial for the generation of a variety of oscillatory

states. The second point concerned the introduction of an additional variable aξi (t) corre-

sponding to the synaptic activity, with the parameter τ ξa representing the time constant for

the decay process. The third point was the combination of the excitatory network with the

inhibitory one, where the parameters JEI
0 and J IE

0 were introduced to indicate the coupling

weights between these networks.

Depending on the synaptic properties, the network dynamics changes; the decay time

constants τEa and τ Ia of the synaptic activity determine, respectively, the frequency of

the slow oscillation in the excitatory network [Fig. 3.2(d)] and that of the fast oscilla-

tion in the inhibitory network [Fig. 3.2(e)]. A variation of the frequency band of neural

activity, such as delta, theta, alpha, beta, and gamma waves, can be observed in the

brain and has been suggested to be correlated with brain functions [3]. The synaptic

parameters may contribute to modulate the oscillatory properties and brain functions. In-

deed, aminomethylphosphonic acid (AMPA) synapses have a relatively short time constant,

whereas N-methyl-D-aspartate (NMDA) synapses have a longer time constant; this di�er-

ence between these synaptic properties should a�ect the generation of neural oscillations

and functions.

We have found that the generation mechanism of the OSI state, as shown in the phase

diagram [Fig. 3.2(a)], is qualitatively consistent with physiological experiments [62, 63].

Inhibitory interneurons in the rat hippocampal CA3 region show a relatively fast oscillation,

which is referred to as the gamma oscillation. This gamma oscillation is blocked by the

AMPA or gamma-aminobutyric acid (GABA) type-A receptor antagonist. The AMPA-

type synapses send the excitatory input to the interneurons, while the GABA type-A

synapses send recurrent inhibitory connections among the interneurons. On the phase

diagram [Fig. 3.2(a)], we can consider these antagonists as the realizations of the external

input II and the absolute value of the coupling strength J II
0 , respectively. Thus, the

OSI state observed in the present model can be interpreted as the gamma oscillations in

inhibitory interneuron networks.

In the network composed of both excitatory and inhibitory subneurons, network dy-

namics shows phase-amplitude cross-frequency coupling as shown in Figs. 3.11 and 3.12.

The properties of this oscillatory phenomenon are similar to those of the cross-frequency

coupling between the theta (relatively slow) and gamma oscillations observed in the hip-

pocampus [64].

Various oscillatory phenomena, including the cross-frequency coupling, may contribute

to information coding in the brain. The presence of distinctive oscillatory states in our

model implies that a variety of information coding schemes can exist in the neural network.

We showed that the oscillatory state with the two major frequency components can be
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classi�ed into the OS2T and OS2C states [Fig. 3.11 and Fig. 3.12], respectively [see the

detailed structures of the OS2T and OS2C states in Appendix E]. In the OS2T state, the

peaks of the fast oscillation are broadly distributed on the phase of the slow oscillation.

On the other hand, in the OS2C state, the phase of the fast oscillation is locked by the

slow oscillation; thus, the peaks of the fast oscillation appear in speci�c phases of the slow

oscillation. The phase of the neural activity can be utilized to encode certain information.

Indeed, the physiologically observed cross-frequency coupling has been suggested to provide

a basis for the e�ective communications among neurons [64].

The mechanisms and functions of the oscillatory phenomena must be further explored

in the future. In the present model, we used the binary-state and discrete-time neuron

model; in the future, the oscillatory phenomena observed in the present model should

be evaluated with a more realistic network model that re�ects detailed properties of the

cerebral cortex.
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Chapter 4

Conclusions

In this study, a variety of nonlinear dynamics have been analyzed in terms of multiple time-

scales the brain involves to form macroscopic oscillations shown in e.g. EEG signals, where

it has been believed that the oscillations are associated with the facilitation of information

processing by adaptively changing the properties of themselves. Thus, this study has

been performed with both aspects of nonlinearity and linearity, i.e., nonlinear dynamics

emergent from the brain has been analyzed from the viewpoint of frequencies�which are

separated linearly�forming oscillations. Towards analyses of brain dynamics, actually a set

of oscillations has been divided into the following two subsets: (I) deterministic oscillations

and (II) stochastic fast oscillations, and furthermore subset (I) has been divided into the

following two sub-subsets (Ia) deterministic slow oscillations and (Ib) deterministic fast

oscillations, in terms of stochastic dynamical systems so that the dynamical noise has been

de�ned in the sense of the Gaussian white noise.

In Chapter 2, signals composed of deterministic oscillations (subset (I)) and stochastic

fast oscillations (subset (II)) have been analyzed, where a novel nonlinear time series

analysis method had been strongly required because the conventional nonlinear time series

analysis methods based on Takens' embedding theorem, in general, have been suitable only

for deterministic dynamical systems, not for stochastic dynamical systems. Typically, it

has been considered that the essential di�erence between the deterministic and stochastic

dynamical systems is whether the dynamical noise drives variables in the state space so

that the trajectory temporally evolves stochastically, although many conventional nonlinear

time series analysis methods mainly have aimed at characterizing deterministic trajectories.

Accordingly, a novel nonlinear time series analysis method, called time series dimension

(TSD), has been developed to overcome the aforementioned drawback, where the novel

dimension, TSD, enabled to detect the level of underlying dynamical noise only from time

series data and furthermore, the TSD does not require any information associated with the

dynamics generating time series and works even if the length of time series is very short so

that there exist a possibility that the TSD can open the door where nonlinear time series

analysis methods including the TSD have been broadly used in the neuroscience �eld.
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In Chapter 3, signals composed of deterministic slow oscillations (sub-subset (Ia)) and

deterministic fast oscillations (sub-subset (Ib)) have been analyzed, where an extended

discrete-time neural network model, comprising excitatory and inhibitory stochastic neu-

rons, has been introduced so that the corresponding macroscopic model can be derived

through the mean �eld approximation. Now it has been considered that this mean �eld ap-

proximation is a key technology to approach the elucidation of the process of consciousness

generation because it has been hypothesized that the interactions between microscopic el-

ements (herein the stochastic model) and macroscopic ones (herein the macroscopic model

via the mean �eld approximation) originate from consciousness. Note, however, that it

has been investigated only in the case of the feedforward interaction from the microscopic

to macroscopic elements, because to study the feedback interaction between them, prior

knowledge resulting from experiments using an integration between EEG recordings and

external stimulation inputs to brain dynamics�for example, the transcranial magnetic

stimulation (TMS) or the transcranial alternating current stimulation (tACS)�should be

needed to model, where the external stimulation (pseudo macroscopic element) plays a

role of EEG dynamics and a�ects synaptic plasticity to get some evidences that the feed-

back interaction concerns consciousness. To return, through the mean �eld approximation,

the original stochastic model has been converted to the corresponding macroscopic model,

namely eight-dimensional discrete-time dynamical system so that this system can generate

the deterministic slow and fast oscillations, each of which originates from the excitatory

subnetwork and from the inhibitory subnetwork, respectively. It has been revealed that the

system involves the following two kinds of phase-amplitude frequency-coupling phenom-

ena: oscillatory state with two frequency components on two-dimensional torus (OS2T)

and that with two frequency component on closed curve (OS2C) by use of the bifurcation

analysis. Furthermore, it has been identi�ed that these states can be separated by the

cyclic bifurcation of a one-dimensional torus in a map (MT1SNC).

It has been believed that the aforementioned two kinds of analyses, namely (1) nonlinear

time series analysis and (2) bifurcation analysis, make us approach the elucidation of

brain oscillatory dynamics with multiple time-scales. In particular, analysis (1) will lead

many neuroscientists to the world �lled with nonlinear dynamics, while analysis (2) will be

helpful to clarify functional roles of phase-amplitude cross-coupling phenomena, connecting

between macroscopic and microscopic dynamics.
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Appendix A

How to determine the threshold
value c∗ in Eq. (2.10)

In this appendix, a procedure for determining the threshold value c∗ for a given observa-

tional signal is presented. This threshold value provides a boundary between short and

long time series for the TSD analysis. An optimal length or analysis window for the TSD is

assessed, based on the threshold value and accordingly, the time series within the analysis

window will be converted to the TSD in turn along the time axis. Actually depending on

the length of time series, the function of the TSD can be changed from the viewpoint of the

monotonic behavior, which can be seen between the TSD and the level of dynamical noise

[Fig. 2.6]. The diagrams, consisting of the two upper bounds ϵ1 and ϵ2 [Eq. (2.8) and Eq.

(2.9)] with the monotonic properties, are described. On the diagrams, the similarity among

typical monotonic properties�for which the upper bounds can be selected reasonably for

a given observational signal�is plotted.

Here we regard a monotonic property consisting of TSDs, as a function of the two

upper bounds ϵ1 and ϵ2. Furthermore, assume that ϵ1 and ϵ2 vary from 1 to 9.5 and from

0.01 to 0.095, respectively; note that if these bounds are set to very large values, they

cannot work as the plausible boundary because short time series de�ned in the sense of

this study mean that the time series is referred to as a process close to a semi-stationary

process; i.e., it only includes small discrepancies between stationarity and nonstationarity

[Fig. 2.1]. We have generated the (ϵ1, ϵ2) diagrams in terms of the similarity among the

following four systems: (I) the harmonic oscillator system, (II) the Lorenz system, (III)

the Rössler system, and (IV) the coupled Hindmarsh-Rose neuronal system [Eqs. (2.18)

to (2.32)], depicted in Fig. A.1(a), in which each parameter point indicates the similarity

among four monotonic properties generated from the systems. This similarity has been



76 AppendixA How to determine the threshold value c∗ in Eq. (2.10)

ε1

0.01

0.095

1 9.5 1 9.5 1 9.5 1 9.5
0.2

0.3

R
M

S
 e

rro
r

ε
2

(a) ω = 0.1 ω = 0.2 ω  = 0.4 ω = 0.8

100

105(b)

c
i*
 /
 Δ

t

c1*

c2*

system

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Figure A.1. E�ects of the two upper bounds ϵ1 and ϵ2, on the monotonic property of the
TSD. (a) The (ϵ1, ϵ2) diagrams in accordance with the noise level ω from
left to right: 0.1, 0.2, 0.4, and 0.8. The horizontal axis is ϵ1 ranged from
1 to 9.5 in steps of 0.5, while the vertical axis is ϵ2 ranged from 0.01 to
0.095 in steps of 0.005. Each parameter point on the diagrams represents
the similarity of the monotonic properties among four systems: (I) the
harmonic oscillator system, (II) the Lorenz system, (III) the Rössler system,
and (IV) the coupled Hindmarsh-Rose neuronal system, where the similarity
was evaluated by the RMS error so that a smaller error is indicated by a
lighter color. The two green curves are boundaries of the RMS error of 0.22.
(b) Examples of threshold values for c∗1 and c

∗
2 on a point (ϵ1, ϵ2) = (1, 0.01),

indicated by open blue rectangles in (a). The vertical axes are displayed
by the log scale. The arrows indicate the threshold values of c∗, by which
we set the length of short time series and calculated RMS errors for (a);
namely, we used ⌊c∗/∆t⌋ as the length of each short time series.
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measured by the RMS error de�ned as follows:

RMS =

√√√√ 1

|Ω|(V 2 − V )

∑
ω∈Ω

V∑
e=1

∑
f ̸=e

∣∣∣D̃(e)
mean(ωρ⃗e)− D̃

(f)
mean(ωρ⃗f )

∣∣∣2,
(A.1)

D̃(e)
mean(ωρ⃗e) =

1

100

100∑
λ=1

D̃
(e)
λ (ωρ⃗e), (A.2)

where D̃
(e)
λ (ωρ⃗e) denotes the TSD of a time series sampled with ∆t = 0.001 observed

from d-dimensional system (e) [Eqs. (2.18) to (2.32)], corresponding to the λth sim-

ulation; e represents the index of systems (I) through (IV) so that V = 4; ω is the

level of dynamical noise, which indicates an element of a set Ω = {0, 0.1, 0.2, ..., 1}; and
ρ⃗e = (σ

(e)
dynx1

, σ
(e)
dynx2

, ..., σ
(e)
dynxd

). Then, σ
(e)
dynxq

for q = 1, 2, ..., d is the standard deviation

of a time series associated with the variable xq included in system (e). Here |Ω| represents
the number of elements in Ω, namely |Ω| = 11. The size |ρ⃗e| of ρ⃗e di�ers among systems;

that is, |ρ⃗1|, |ρ⃗2|, |ρ⃗3|, and |ρ⃗4| are respectively 2, 3, 3, and 300, each of which corresponds

to the number of variables contained in system (e) [Eqs. (2.18) to (2.32)].

Towards an application of the (ϵ1, ϵ2) diagrams to the real-data analysis, in fact, we

have used the same lengths of ⌊c∗/∆t⌋ among the four systems, where ⌊·⌋ denotes the

rounding down; the length ⌊c∗/∆t⌋ corresponds to the upper limit value of the length

of short time series. For the sake of clarity, the above simulation has re�ected transient

behavior, where the initial condition of variables follows the uniform distribution between

0 and 1. We have applied time series data with the following four kinds of noise levels:

0.1, 0.2, 0.4, and 0.8, respectively, to a set of ϵ1 and ϵ2; i.e., we accumulated discrepancies

between stationarity and nonstationarity until their accumulation reached ϵ1 or ϵ2 [Eqs.

(2.4) to (2.9)], so that only the two (ϵ1, ϵ2) diagrams associated with the noise levels of 0.1

and 0.8 show the relatively small RMS errors less than 0.22 [see Fig. A.1(a)].

Here we show the two typical points on one (ϵ1, ϵ2) diagram realized with the noise level

of 0.1 [Fig. A.2(a)] and on the other (ϵ1, ϵ2) diagram realized with the noise level of 0.8 [Fig.

A,2(b)]; namely, point (ϵ1, ϵ2) = (2.5, 0.06) for noise level 0.1 and point (ϵ1, ϵ2) = (1, 0.03)

for noise level 0.8. For the noise level of 0.1, the monotonic behavior can be clearly seen

among the four systems [see Fig. A.2(a)]. In this case, ⌊c∗/∆t⌋ of short time series were

4313, 179, 563, and 318 for systems (1) through (4), respectively. On the other hand, for

the noise level of 0.8, the monotonic behavior has not been observed among three systems

except for the harmonic oscillator system [see Fig. A.2(b)], because in this case, the lengths

of short time series were 304, 4, 11, and 75 for systems (1) through (4), respectively. This

irregularity tends to happen when the time series applied to ϵ1 and ϵ2 has been a�ected by

the large dynamical noise level so that the length ⌊c∗/∆t⌋ of short time series, especially

generated from the Lorenz system, the Rössler system, and the coupled Hindmarsh-Rose

neuronal system, has been very short [see Fig. A.1(b)]. Therefore, in order to select the
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Figure A.2. Two examples of monotonic properties among four systems: (I) the har-
monic oscillator system, (II) the Lorenz system, (III) the Rössler system,
and (IV) the coupled Hindmarsh-Rose neuronal system, where for both
panels (a) and (b), the RMS errors over monotonic properties were less
than 0.22. The lengths of time series used here were obtained as the upper
limit values ⌊c∗/∆t⌋ of short time series, through the uses of ϵ1 and ϵ2 as in
Fig. A1. (a) Monotonic behavior. The time series were observed through
systems with the noise level of 0.1, and applied to (ϵ1, ϵ2) = (2.5, 0.06).
Each length of time series for systems (I) through (IV) was 4313, 179,
563, and 318, respectively. (b) When the noise level was �xed to 0.8 and
(ϵ1, ϵ2) = (1, 0.03), monotonic behavior did nor appear for all systems.
Only the harmonic oscillator has shown the monotonic property. In this
case, each length of time series for systems (I) through (IV) was 304, 4, 11,
and 75, respectively.

upper bounds ϵ1 and ϵ2�which in turn set the upper limit value of the length of short

time series�we should use nearly clean data, i.e. the noise level should be less than 0.1,

especially when we have multivariate time series data and try to work their monotonic

properties universally [Fig. 2.8].
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Appendix B

Propagation of dynamical noise

In this appendix, how the property of dynamical noise propagates among variables and

along the integrals is shown. Suppose that a two-dimensional stochastic dynamical system

with state variables x1 and x2 is given by

dx1 = f1(x1, x2)dt+ ρ1dW1(t), (B.1)

dx2 = f2(x1, x2)dt+ ρ2dW2(t), (B.2)

where function fq(·) with q∈{1, 2} is linear or nonlinear, and the term ρqdWq(t) denotes

the dynamical noise such that the variable dWq(t) follows a normal distribution with mean

0 and standard deviation
√
dt.

Consider the e�ect of dynamical noises ρ1dW1(t) and ρ2dW2(t) on the variable x1.

As shown in Eq. (B.1), the variable x1 is in�uenced by W1(t), where the property of

the Wiener process W1(t) is sent to x1(t); we describe this situation using the following

phrase: W1(t) drives x1(t). The function f1 involves not only x1(t) but also x2(t), so that

the dynamics of x2(t) is in�uential on that of x1(t); namely, W2(t) contributes to the time

evolution of x1(t). However, W2(t) does not drive x1(t), i.e., the property of W2(t) is not

directly transferred to x1(t), because W2(t) is integrated over t when the variable x2(t)

within f1 is substituted with the solution x2(t) of Eq. (B.2). Thus, instead of W2(t),

the integrated Wiener process V2(t) drives x1(t), where one realization of the Wiener

process can be regarded as a continuous function of time, and is integrable by means of the

fundamental theorem of calculus. The aforementioned driving process has been illustrated

in Fig. B.1. Because the process V2(t) is a smooth function, the TSD D̃(1)(ρ⃗) of the time

series associated with the variable x1 is not changed due to dynamical noise ρ2dW2(t), even

if coe�cient ρ2 becomes large enough. Thus, the monotonic relationship between D̃(q)(ρ⃗)

and ρr (r∈{1, 2}) can be observed in the case of r= q. If r ̸=q, the left-hand side of Eq.

(2.43) becomes zero.

Next, we consider a two-dimensional linear stochastic dynamical system given by

dx1 = x2dt+ ρ1dW1(t), (B.3)

dx2 = −x1dt+ ρ2dW2(t), (B.4)
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x2(t)
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V2(t)
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Figure B.1. Directions of driving forces in a two-dimensional dynamical stochastic sys-
tem. Stochastic variables W1(t) and V2(t) drive only x1(t), whereas W2(t)
and V1(t) drive only x2(t).

where f1(x1, x2) and f2(x1, x2) have been substituted with x2 and −x1 in Eqs. (B.1) and

(B.2), respectively. Provided the initial condition x1(0) = 1 and x2(0) = 0, the following

solution can be obtained:

x1(t) = cos(t) + ρ1{cos(t) ∗ η1(t)}+ ρ2{sin(t) ∗ η2(t)}, (B.5)

x2(t) = − sin(t)− ρ1{sin(t) ∗ η1(t)}+ ρ2{cos(t) ∗ η2(t)}, (B.6)

where the variable ηq(t) denotes white Gaussian noise such that ηq(t) = dWq(t)/dt.

Convolutions cos(t) ∗ ηq(t) and sin(t) ∗ ηq(t) re�ect the properties of the Wiener pro-

cess Wq(t) and the integrated Wiener process Vq(t), respectively [see Fig. B.2]. In the

convolution,

ξ(cos)(t) = cos(t) ∗ ηq(t)

=

∫ t

0
ηq(ψ) cos(t− ψ)dψ, (B.7)

the term cos(t) integrates the Gaussian noise ηq(t). This characteristic of cos(t) is similar

to the step function. In the process of Eq. (B.7), cos(t − ψ) indicates 1 when ψ = t and

generates a curve along the time axis until ψ = 0, where time ψ goes to the past. Suppose

that time t goes up to t+ δt in which δt > 0 and δt is a small deviation. Here, within the

small area between ψ = t and ψ = t + δt, cos(t + δt − ψ) is almost 1, and therefore, the

term cos(t) in Eq. (B.7) has the role of integrating the Gaussian noise ηq(t). Further, in

the convolution,

ξ(sin)(t) = sin(t) ∗ ηq(t)

=

∫ t

0
ηq(ψ) sin(t− ψ)dψ, (B.8)
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Figure B.2. A schematic representation of convolutions cos(t) ∗ ηq(t) and sin(t) ∗ ηq(t).
The Gaussian noise (a) is integrated over t once or twice when it is convo-
luted with the step function U(t) or with the ramp function R(t), respec-
tively. The function cos(t) also has the role of integrating the Gaussian noise
once as well as the step function, as shown in (b), because the small area
between cos(t− ψ) and cos(t+ δt− ψ) is almost δt as well as that between
U(t−ψ) and U(t+ δt−ψ) (see shaded areas in (b)). Further, the function
sin(t) has the role of integrating the Gaussian noise twice as well as the
ramp function, as shown in (c), because the small area between sin(t − ψ)
and sin(t+ δt−ψ) resembles that between R(t−ψ) and R(t+ δt−ψ) (see
shaded areas in (c)). The wave forms corresponding to the Wiener process
Wq(t) and cos(t) ∗ ηq(t) are shown in (d), whereas the wave forms corre-
sponding to the integrated Wiener process Vq(t) and sin(t)∗ηq(t) are shown
in (e).
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the term sin(t) integrates the Gaussian noise ηq(t) twice. This characteristic of sin(t) is

similar to the ramp function. Note that the ramp function can be obtained by convoluting

step functions. In Eq. (B.8), sin(t − ψ) is 0 when ψ = t. Suppose again that time t goes

up to t + δt. Here, within the small area between ψ = t and ψ = t + δt, sin(t + δt − ψ)

behaves like a ramp function, and therefore, the term sin(t) in Eq. (B.8) has the role of

integrating the Gaussian noise ηq(t) twice. Thus, W1(t) and V2(t) drive x1(t), while V1(t)

and W2(t) drive x2(t) [see Fig. B.1 and Eqs. (B.5) and (B.6)].
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Appendix C

Theory of time series dimension

In this appendix, the monotonic relationship between the TSD D̃(q)(ρ⃗) and the standard

deviation ρ⃗(t) of the time-dependent Gaussian dynamical noise is shown. First, the analytic

solution of a linear stochastic dynamical system, obtained via the Laplace transform [42],

is introduced. Next, an inequality for the monotonic relationship between the TSD and

the noise level, occurring in linear stochastic dynamical systems, is derived. Finally, the

success rate of the derived inequality�i.e. the ratio between the number of successful trials

satisfying the aforementioned inequality, and the number of total trials�is numerically

illustrated in the case of a harmonic oscillator.

C.1 Linear stochastic dynamical system

The linear stochastic dynamical system with state vector x⃗ = (x1, x2, ..., xd) is given by

dxq =

(
d∑

l=1

aqlxl

)
dt+ ρq(t)dWq(t), for q = 1, 2, ..., d, (C.1)

where ρq(t) is an element of ρ⃗(t) = (ρ1(t), ρ2(t), ..., ρd(t)). This system is the linear version

of Eq. (2.1), where fq(x⃗) is substituted with the linear combination of x⃗; aql represents

the connection from the variable xl to the variable xq. Note that Eq. (C.1) denotes

a d-dimensional linear stochastic dynamical system. Under any initial condition, if the

temporal change of ρq(t) is negligible compared to that of the deterministic component,

the solution xq(t) of Eq. (C.1) is represented by

xq(t) = Fq(t) +

d∑
l=1

ρl(t) {Gql(t) ∗ ηl(t)}

= Fq(t) +

d∑
l=1

ρl(t)ξql(t), (C.2)

where ηq(t) = dWq(t)/dt follows a normal distribution of mean 0 and standard deviation

1. The functions Fq(t) and Gql(t) are time-dependent and contribute to the deterministic

component and stochastic components, respectively; Gql(t) ∗ ηl(t) denotes the convolution
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between the terms Gql(t) and ηl(t). We cannot give an explicit form of the functions

Fq(t) and Gql(t), but let us show an example of them by considering the following two-

dimensional dynamics:

dx1 = x2dt+ ρ1dW1(t), (C.3)

dx2 = −x1dt+ ρ2dW2(t), (C.4)

where we have set (a11, a12, a21, a22) = (0, 1,−1, 0) in Eq. (C.1). Additionally, we have

assumed that ρ1 and ρ2 are constant over time, for simplicity. By applying the Laplace

transform to the above system and considering initial condition x1(0) = 1 and x2(0) = 0,

we obtain

x1(t) = cos(t) + ρ1 {cos(t) ∗ η1(t)}+ ρ2 {sin(t) ∗ η2(t)}

= cos(t) +
2∑

l=1

ρlξ1l(t), (C.5)

and

x2(t) = − sin(t)− ρ1 {sin(t) ∗ η1(t)}+ ρ2 {cos(t) ∗ η2(t)}

= − sin(t) +

2∑
l=1

ρlξ2l(t), (C.6)

for t≥0.

C.2 Monotonic relationship between time series dimension
and noise level

We derive the inequality for the monotonic relationship between D̃(q)(ρ⃗) and ρq, holding

in a linear stochastic dynamical system [Eq. (C.1)]. First, the curve length [Eq. (2.34)

and Eq. (2.35)] is written in terms of the time series associated with the variable xq as

given in Eq. (C.2). This yields

L̃(q)(ζk, ρ⃗) =
(N − 1)

k2ζk

k∑
m=1

 1⌊
N−m

k

⌋ ⌊N−m
k ⌋∑

j=1

∣∣∣J (q)
ρ⃗ (m, j, k)

∣∣∣
 , (C.7)

where

J
(q)
ρ⃗ (m, j, k) =

{
Fq((m+ jk)∆t) +

d∑
l=1

ρlξql((m+ jk)∆t)

}

−

{
Fq((m+ (j − 1)k)∆t) +

d∑
l=1

ρlξql((m+ (j − 1)k)∆t)

}
.

(C.8)
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In the above expressions and the latter arguments, we have denoted ρ⃗(i∆t) as ρ⃗ for sim-

plicity. As a next step, we de�ne the following sets:

Ωpq(ρ⃗,m, k) :=
{
j
∣∣ J (q)

ρ⃗ (m, j, k) > 0
}
, (C.9)

Ωzq(ρ⃗,m, k) :=
{
j
∣∣ J (q)

ρ⃗ (m, j, k) = 0
}
, (C.10)

Ωnq(ρ⃗,m, k) :=
{
j
∣∣ J (q)

ρ⃗ (m, j, k) < 0
}
. (C.11)

Then, the summation over j in Eq. (C.9) can be written in the following form:

⌊N−m
k ⌋∑

j=1

∣∣∣J (q)
ρ⃗ (m, j, k)

∣∣∣ =
∑

j∈Ωpq(ρ⃗,m,k)

J
(q)
ρ⃗ (m, j, k)−

∑
j∈Ωnq(ρ⃗,m,k)

J
(q)
ρ⃗ (m, j, k).

(C.12)

Next, in order to perform piecewise di�erentiation of L̃(q)(ζk, ρ⃗) with respect to ρq, we have

removed the non-smooth points by using the set de�ned as

Ψ(q)(m, k) :=
{
ρ⃗
∣∣ Ωzq(ρ⃗,m, k) = ∅

}
, (C.13)

which sorts the di�erentiable domains. Consequently, with ρ⃗∈Ψ(q)(m, k), Eq. (C.9) can

be converted to a piecewise smooth function as follows:

L̃(q)
pw(ζk, ρ⃗) =

(N − 1)

k2ζk

k∑
m=1

 1⌊
N−m

k

⌋
 ∑

j∈Ωpq(ρ⃗,m,k)

J
(q)
ρ⃗ (m, j, k)−

∑
j∈Ωnq(ρ⃗,m,k)

J
(q)
ρ⃗ (m, j, k)


 ,

(C.14)

where subindex �pw� in the left-hand side has been used to indicate that the function is

piecewisely and su�ciently smooth with respect to ρ⃗. Therefore, its derivative with respect

to ρq exists and is given by

∂L̃
(q)
pw(ζk, ρ⃗)

∂ρq
=

(N − 1)

k2ζk

k∑
m=1

[
1⌊

N−m
k

⌋{ ∑
j∈Ωpq(ρ⃗,m,k)

{ξqq((m+ jk)∆t)− ξqq((m+ (j − 1)k)∆t)}

−
∑

j∈Ωnq(ρ⃗,m,k)

{ξqq((m+ jk)∆t)− ξqq((m+ (j − 1)k)∆t)}

}]
, (C.15)

where we have used the fact that elements and sizes of sets Ωpq(ρ⃗,m, k) and Ωnq(ρ⃗,m, k)

are not changed due to di�erentiation with respect to ρq; namely, Ωpq(ρ⃗,m, k) = Ωpq(ρ⃗+

dρ⃗q,m, k) and Ωnq(ρ⃗,m, k) = Ωnq(ρ⃗ + dρ⃗q,m, k) where dρ⃗q is a small deviation around

ρq such that dρ⃗q = (0, 0, ..., dρq, ..., 0, 0), and dρ⃗q implicitly depends on time. Finally, by

substituting Eqs. (C.14) and (C.15) in Eq. (2.42), the inequality

1

L̃
(q)
pw(ζ1, ρ⃗)

∂L̃
(q)
pw(ζ1, ρ⃗)

∂ρq
>

1

L̃
(q)
pw(ζ2, ρ⃗)

∂L̃
(q)
pw(ζ2, ρ⃗)

∂ρq
(C.16)
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is obtained. If the above inequality is satis�ed, and if L̃(q)(ζk, ρ⃗) [Eq. (C.7)] is a continuous

function, then a monotonic relationship between the TSD D̃(q)(ρ⃗) and ρq is achieved as a

whole. We can easily prove that the absolute function in Eq. (C.7) is continuous by using

the (ϵ, δ)-de�nition of limit [40], and then L̃(q)(ζk, ρ⃗) is also continuous. Note that the inner

operation, the increment of Xρ⃗(t), of the absolute function is continuous with respect to ρ⃗

because Xρ⃗(t) changes with ρ⃗. This conditional equation is built on the appropriate values

of∆t, N , and ρ⃗. Note that L̃
(q)
pw(ζ1, ρ⃗) and L̃

(q)
pw(ζ2, ρ⃗) can easily be obtained from Eq. (C.14)

by using k = 1 and k = 2, respectively. Likewise, ∂L̃
(q)
pw(ζ1, ρ⃗)/∂ρq and ∂L̃

(q)
pw(ζ2, ρ⃗)/∂ρq

can be obtained from Eq. (C.15) by considering k = 1 and k = 2, respectively.

The aforementioned analysis can be summarized in the following proposition.

Proposition C.2.1 (Monotonic relationship between the TSD and the noise level). Con-

sider the d-dimensional linear stochastic system [Eq. (C.1)]. Assume that only the variable

xq is observed during the observational process and that observational noise does not in-

�uence the process. Then, if condition Eq. (C.16) is satis�ed, there exists a monotonic

relationship between the TSD D̃(q)(ρ⃗) and the noise level ρq(t)/σdynxq(t).

The (Lseg(0,∆t), ρq/σdynxq) diagram [see Fig. C.1] shows the success rate in which the

derived inequality [Eq. (C.18)] holds given a noise level (uniformly distributed between

0.01 and 1) and length (uniformly distributed between 10 and 500) of a time series taken

from the harmonic oscillator system [Eq. (C.3) and Eq. (C.4)] simulated with the initial

condition x1(0) = 1 and x2(0) = 0. The variable x1(t) was used as a target time series;

namely, its curve length L̃(1)(ζk, ρ⃗) was calculated. We calculated the inequality [Eq.

(C.16)] 100 times on each parameter point in the diagram to obtain the success rate. We

de�ne the success rate as the ratio between the number of successful simulations satisfying

the inequality [Eq. (C.16)] and the number of total simulations. In this simulation, ρ1 and

σdynx1 were constant for each trial. Then, the dynamical noise level of x2(t) was �xed at

0.1 for each trial. The sampling time ∆t was set to 0.001. As a result, a larger size of data

satis�es the inequality in a wider range of the noise level. Note that when the inequality

is simulated, Prob[J
(q)
ρ⃗ (m, j, k) = 0] = 0 because ρ⃗ is optionally given, and thereby any

used ρ̂q is within (S,E), that is ρ̂q ∈ Ω
(S,E)
q [see Eq. (2.40) and Eq. (2.41)]. Moreover,

we have revealed that the original inequality [Eq. (43)] also shows the same diagram with

Fig. C.1, where D̃
(1)
pw(ρ1 +0.0001, ρ2)− D̃

(1)
pw(ρ1, ρ2) was used for calculation of the success

rate. Then, the correlation coe�cient between success rates of the original and the derived

inequalities is more than 0.999. Thus, the derived inequality is valid for linear stochastic

dynamical systems.
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Figure C.1. The (Lseg(0,∆t), ρ1/σdynx1) diagram in which the harmonic oscillator sys-
tem was simulated. A larger success rate for the inequality is indicated by
a lighter color.
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Appendix D

TSD analysis results on EEG signals

In this appendix, multivariate TSD time series derived from 63-dimensional EEG data

are shown. For the channel location on the human brain, the readers are referred to Fig.

D.1. The EEG data during a cycle consists of measurements recording two distinctive

brain states: eyes-open state and eyes-closed state, where the length of each state was 35

s so that the total length of the cycle was 70 s. This cycle was repeated 10 times and

accordingly, TSD time series among 10 trials as well as the mean TSD time series over 10

trials are depicted [see Figs. D.2 to D.13].

To understand which site exhibits the di�erence between the eyes-open and eyes-closed

states visually, two-dimensional topographies plotting TSD values are presented with re-

spect to each trial and to each state [see Figs. D.14 to D.18]. Clearly, sites located in the

frontal lobe change their noise levels due to visual inputs, especially for subject 1 [see Fig.

D.17].

One can suppose that a TSD time series is the temporal change of a set of variables

ρ1(t), ρ2(t),...,ρ63(t) [Eq. (2.1)] and that the corresponding set of variables x1, x2..., x63 is

a part of dynamics generating EEG data so that the underlying system can be regarded

as a system composed of coordinates with more than 63 dimensions. However, perhaps

an EEG data is not multivariate, that is, there exists a possibility that each EEG signal

belongs to its speci�c system so that EEG signals cannot be analyzed collectively.
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Figure D.1. A channels location on the human brain.
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Figure D.2. TSD time series converted from EEG data obtained from 63 channels during
trial 1. Displaying 70 s, �rst half of which corresponds to the eyes-open
state, while latter half corresponds to the eyes-closed state.
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Figure D.3. TSD time series converted from EEG data obtained from 63 channels during
trial 2. The notation of the time axis is the same with Fig. D.2.
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Figure D.4. TSD time series converted from EEG data obtained from 63 channels during
trial 3. The notation of the time axis is the same with Fig. D.2.
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Figure D.5. TSD time series converted from EEG data obtained from 63 channels during
trial 4. The notation of the time axis is the same with Fig. D.2.
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Figure D.6. TSD time series converted from EEG data obtained from 63 channels during
trial 5. The notation of the time axis is the same with Fig. D.2.
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Figure D.7. TSD time series converted from EEG data obtained from 63 channels during
trial 6. The notation of the time axis is the same with Fig. D.2.
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Figure D.8. TSD time series converted from EEG data obtained from 63 channels during
trial 7. The notation of the time axis is the same with Fig. D.2.
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Figure D.9. TSD time series converted from EEG data obtained from 63 channels during
trial 8. The notation of the time axis is the same with Fig. D.2.
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Figure D.10. TSD time series converted from EEG data obtained from 63 channels
during trial 9. The notation of the time axis is the same with Fig. D.2.
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Figure D.11. TSD time series converted from EEG data obtained from 63 channels
during trial 10. The notation of the time axis is the same with Fig. D.2.
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Figure D.12. TSD time series averaged over 10 trials depicted in Figs. D.2 to D.11 with
respect to each channel. The notation of the time axis is the same with
Fig. D.2.
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Appendix E

Overviews of phase-amplitude
cross-frequency coupling phenomena

In this appendix, attractors generating phase-amplitude cross-frequency coupling phenom-

ena are shown in detail. In particular, two regimes, called oscillatory state with two

frequency components in two-dimensional torus (OS2T) and that with two frequency

components in closed curve (OS2C) are depicted, where these states appear on an eight-

dimensional discrete-time stochastic neural network model with dynamic synapses [Eqs.

(3.1) to (3.5)], via the uniform connections [Eq. (3.21) and Eq. (3.22)] within the ex-

citatory/inhibitory network and between the excitatory and inhibitory networks. First,

projections of such two kinds of 8-dimensional attractors on the two-dimensional planes,

among all pairs of variables, are shown [see Figs. E.1 and E.2], where these attractors can

be observed as the forms of a 2-dimensional torus in a map (MT2) and a one-dimensional

torus in a map (MT1), respectively, and the attractors actually appear on a discrete-time

dynamical system converted from the original stochastic model by use of the mean �eld

approximation. Next, the time courses of variable mI
0(t), re�ecting the speci�c feature of

cross-frequency coupling phenomena, are shown [see Fig E.3], for both cases of the OT2T

and OS2C states, where the values of parameter J IE
0 , separating between the OS2T and

OS2C states, were determined so as to make such two states approach the bifurcation

point, called cyclic saddle-node bifurcation of 1-dimensional torus in map (MT1SNC).

By observing all the 2-dimensional projections, we can clearly understand which vari-

ables contribute to generating the MT2 [Fig. E.1] or MT1 [Fig. E.2]. Regarding projections

of the MT2, it has been revealed that variables mI
0(t), X

I
0(t), U

I
0(t), and A

I
0(t), building

the inhibitory subnetwork (I), are associated with the generation of the MT2, because each

projection composed of such variables is �lled with a trajectory, whereas other projections

composed of variables building the excitatory subnetwork (E) only show closed curves. As

well as projections of the MT2, those of the MT1, especially associated with subnetwork

I, show the closed curves undergoing the e�ect of the MT1SNC bifurcation on the MT2 so

that the property of the closed curves was qualitatively di�erent from that of the general

closed curve. In addition, other projections of the MT1, associated with subnetwork E,
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show a very similar trajectory with those of the MT2, and thus it has been clari�ed that

subnetwork I strongly connects to the generation of cross-frequency coupling phenomena,

but note that the interaction between subnetworks E and I is also essential to generate the

MT2 and MT1.

To make the OS2T and OS2C states approach the MT1SNC bifurcation, the bisection

method was used, and accordingly a set of the values J IE
0 = 3.1 and J IE

0 = 3.2 corre-

sponding to the MT2 and MT1, respectively, tells us the di�erence between the OS2T and

OS2C states clearly [Fig. E.3], where these values were actually chosen on the way to

convergence of the bisection method, because the purpose here is to understand the e�ect

of the MT1SNC bifurcation on the cross-frequency coupling phenomena in detail, not to

search the bifurcation point.

By observing the two regimes of mI
0(t) re�ecting cross-frequency coupling phenomena

[see Fig. E.3], we can assess how the information coding is performed within oscillatory time

courses. First, it has been found clearly that both the OS2T and OS2C states include slow

and fast oscillatory components; this suggests that cross-frequency coupling phenomena

can encode two kinds of information simultaneously as a single oscillation. Next, it has

been revealed that there exists a qualitative di�erence between the OS2T and OS2C states,

that is, whether the same oscillatory phenomenon appears repeatedly in a speci�c phase

of the slow oscillatory component; this suggests that the choice between the two states

is adaptively conducted depending on the complexity of information to be transferred, in

order that the bran encodes information e�ectively, where relatively simpler information

will be transferred on the OS2C state, otherwise on the OT2T state.
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Figure E.1. Projections of an eight-dimensional neural network model generating the
OS2T state on two-dimensional planes, among all the pairs of variables.
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Figure E.2. Projections of an eight-dimensional neural network model generating the
OS2C state on two-dimensional planes, among all the pairs of variables.
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