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Abstract

Three-dimensional (3D) fluorescence wide-field microscopy (WFM) is widely used in

biomedical research since 3D observation of cellular structure is possible with high

contrast. The 3D WFM images are obtained by piling up 2D images of different

in-focus planes. However, there is a problem that an out-of-focus blur obscures the

in-focus detail. Restoration of a clear object image of 3D WFM has been challenged.

For the purpose, this thesis gives importance to implement practical deconvolution

and improving accuracy of PSF estimation. The practical deconvolution means an

implementation of the deconvolution that has an appropriate imaging model with

a convergence guarantee on a PC. The practical deconvolution enables to estimate

accurate object image with computational cost expectation.

Also, improving accuracy of PSF estimation in this thesis is directly connected to

reflect WFM blur properties. WFM lens is designed to focus the specimen plane right

above a microscopy stage with the refractive index of immersion layer. However, the

3D WFM observes planes inside specimen; the refractive index of specimen causes

peculiar problems. First, the blur varies according to depth. As WFM focuses to

deeper plane of specimen, refractive index mismatch between immersion and specimen

layer causes severer blur. This causes the elongation in the axial axis. Second,

the PSF is specimen-dependent. Even if the pre-measured point spread function

(PSF) is given, the PSF is not accurate since the refractive index and the focal

distance of the point-like object for pre-measuring and those of the actual specimen

are different, which indicates that PSF pre-measurement is useless. Moreover, even

if it is in perfect imaging conditions, an imperfection of lens causes asymmetric blur.

Based on practical deconvolution for WFM, this thesis solves these problems through

depth-variant algorithm, blind deconvolution and asymmetric PSF model utilization.

Namely, this thesis covers the main causes of blur in WFM imaging condition and

optical system design.
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Chapter 3 proposes depth-variant deconvolution. For practical deconvolution,

generalized expectation maximization algorithm is introduced and applied to WFM

under depth-variant imaging model. PSF is estimated by fitting parameters of the

theoretical PSF to the pre-measured PSF. From comparison among existing deconvo-

lution methods, it is proven that the GEM has superior and practical deconvolution

method. A normalized correlation coefficient (COR) value between true object image

and deconvolution image is used for evaluation. However, the deconvolution result

shows that the axial blur is not perfectly suppressed in actual image; the author

supposed that the remained blur is caused by the inaccuracy of the pre-measured

PSF.

Chapter 4 focuses the inaccuracy of the pre-measured PSF. The inaccuracy occurs

since the refractive index and the focal distance vary when users switch the point-

like object for pre-measuring into the actual specimen. In this work, I propose the

blind deconvolution - the estimation parameters of equation based PSF from the

observed image. While Chapter 3 fits parameters to the pre-measured PSF, Chapter

4 fits parameters to the obtained PSF from the observed image. Experiments are

implemented using the opened data of micro-bead image, which enables to compare

performances to previous algorithms. Since blind deconvolution does not have the

true image, the COR cannot be used as evaluation indicators. The micro-bead has

determined diameter and hollow sphere shape; therefore, the diameter and the relative

contrast between shell and hollow inside can be used for performance indicators. From

the indicators, the author proves that the second work completely suppresses the

remained blur. However, despite the symmetric sphere shape of the micro-bead, the

deconvolution result shows the asymmetric shape.

Chapter 5 focuses the asymmetric result. The asymmetric result alludes that the

blur has an asymmetric shape. The author proposes a blind deconvolution using

depth-variant asymmetric PSF. While the theoretical PSF model used in the first
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and the second work considers axial asymmetric but x− y symmetric blur that spec-

imen causes, the third work utilizes xyz asymmetric PSF that not only the specimen

but also lens aberrations cause. In this work, the author devised new performance

indicators to evaluate symmetry of deconvolution results. Standard deviation values

of diameter and shell intensities along x, y and z axis are used as new indicators. This

chapter compares performances by indicators that are used in Chapter 4 and the new

indicators, which are conducted using the opened data of micro-bead image. Qualita-

tively, the deconvolution result images show that asymmetric distortions are removed.

Quantitatively, while transversal, axial diameter error and contrast in existing method

are 236nm, 477nm and 88%, ours have 180nm, 84nm and 98% values. These results

show the third work generates superior performances. Also, standard deviation val-

ues of diameter and relative contrast for symmetry evaluation are 143nm and 4.4%,

which are better than 198nm and 12.8% values in second work and show that the

asymmetry is corrected. Finally, with deconvolution results, the author summarizes

deconvolution quality, computational cost according to deconvolution methods, which

would be a helpful guide for 3D WFM users.

Differences in performance among three works can basically explain different char-

acteristics of WFM blur. Reflecting characteristics of blur is significantly important

key for determining the quality of the deconvolution result.
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Chapter 1

Introduction

1.1 Background

The invention of the microscope enables the exploration of microcosm, which has

revealed the secrets of nature. Particularly, in biology and medicine, the microscope

has found numerous discoveries that could not be obtained through our eyes. Among

the various types of microscopy, with modern microscopes, wide-field fluorescence

microscopy (WFM, commonly fluorescence microscopy means wide-field fluorescence

microscopy) has been one of the most major tools because of its high contrast, high

specificity and high ability of tracking. Emission of fluorescence light is brighter

than reflection of light, and this property allows fluorescent micrographs to have high

contrast. Colorizing biological structures of interests by different dyes shows high

specificity[3]. Moreover, WFM enables users to track activities of dyed region over

time because the fluorescence remains for many days or weeks.

Such WFM has been developed to observe 3D cellular structures by generating

a series of discrete 2D image planes that are referred to optical sectioning. Fig. 1.1

shows the acquisition of 3D WFM image. The 3D WFM is widely used now.
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Figure 1.1: Acquisition of 3D microscopy image[1]

However, it has several issues, such as out-of-focus blur obscuring the entire in-

focus detail and thereby reducing the contrast of the in-focus object[1]. Two major

approaches to overcome these problems have been devised. The first approach is to

apply new microscopy optics. Confocal microscopy, the most widely used approach,

suppresses out-of-focus blur by means of a pinhole. It, however, has two limitations,

namely, slow image acquisition and photobleaching[8]. The second approach is to

apply image restoration by a deconvolution algorithm. It enhances the resolution and

contrast of blurred WFM images without the limitations affecting the first approach.

Therefore, I mainly focus on the second approach.

1.2 Contribution

A goal of this dissertation is an accurate estimation of the object image from the

observation image. General imaging model for deconvolution is shown as Fig. 1.2,

where ⊗ represents the sum of multiples between a point spread function (PSF)

and an object. The object image that we want to retrieve is a discrete image of the
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Figure 1.2: Imaging model for deconvolution

object, which is blurred by a PSF. Photons of the blurry object arrive in CCD camera

following certain noise process. For achieving the goal, a practical deconvolution

algorithm and an accurate PSF are necessary.

Despite the progress of deconvolution algorithms for WFM, however, it is still a

big challenge to satisfy noise robustness and the convergence of an objective func-

tion. A guarantee of convergence of the objective function considering noise prevents

local minimum, thereby leads to accurate image deconvolution results. On the other

hand, as higher performance is needed, required computational cost is higher. Such

computational cost for users has not been handled as far as I know. This thesis calls

these issues as a practical deconvolution and handled it.

Even if the deconvolution process is perfect, without accurate PSF, the goal cannot

be achieved. Since 3D WFM has unique imaging condition, it has distinct PSF

characteristics from general camera model - depth-variant, specimen-dependent and

asymmetric properties. Reflecting these properties determine the accuracy of PSF.

Therefore, this thesis focuses on improving accuracy of PSF estimation.
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Following subsections illustrates main contributions for the accurate object image

estimation.

1.2.1 Practical Deconvolution

This subsection illustrates three contributions that are considered in WFM image

deconvolution.

Appropriate Noise Model

WFM only takes photons that are emitted from the dyed molecules in the dark

background. This means that taken photons are few. A probability that photons

arrive at CCD camera can be expressed by Poisson distribution. In case of many

photons, the imaging model can be approximated by Gaussian distribution. This is a

reason that a typical imaging model shows Gaussian distribution. However, in case of

WFM, the approximation cannot be applied due to a small quantity of photons. Also,

since photons are few, effect of noise is huge, relatively. Therefore, deconvolution for

WFM has to consider such effect of noise.

Guarantee Convergence

An Error on PSF and a noisy image are inevitable as shown in Fig. 1.2. Generally, for

the estimation of object image, iterative image deconvolution methods are mainly used

because non-iterative image deconvolution methods are sensitive to the error[1]. The

iterative methods restore the object image by maximizing objective function based

on statistics model. In this time, if the iterative methods cannot accurately update

the object image after iteration, inaccurate object image is estimated as iteration

is executed. Therefore, a guarantee convergence of objective function is directly

connected to an accurate image deconvolution, which links to the accurate object

image estimation.
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Implementation on a PC

An expectation of computational cost and performance can help users to select algo-

rithms to meet their requirements. Imaging model that has higher dimensions can

express actual imaging well and thereby the deconvolution using the model shows

higher performance. However, higher computational cost is also required. There-

fore, there is a trade-off between accuracy and computational cost. Required time

and memory according to an image size, data type and imaging model can show the

highest performance imaging model with a single PC at present.

1.2.2 Improving Accuracy of PSF Estimation

To improve accuracy of PSF estimation, the PSF model has to reflect its character-

istics. The author focused following characteristics.

Depth-variant PSF

The blur varies according to depth. WFM is designed to be suitable to the refractive

index of immersion layer. However, the refractive index of specimen layer is different

from immersion layer, which causes spherical aberration. Therefore, as the optical

system focuses on a deeper specimen, the blur becomes severer, which leads to the ax-

ial elongation of observation. Previous depth-invariant algorithms could not suppress

the elongation since their PSF is only appropriate to a single depth plane.

Specimen-dependent PSF

Generally PSF is unknown and the observed image is only given. There are trials to

PSF pre-measurement in previous works [6, 9]. The PSF pre-measurement is executed

by an observation of point-like object. They assumed that the pre-measured PSF

has same imaging condition. However, the pre-measurement is inadequate due to

the specimen dependence. The refractive index and the focal distance are changed
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when the point-like object for PSF pre-measurement is switched into the specimen

to be recorded. Therefore, the actual PSF is specimen-dependent; rather the PSF

estimation from the observed image which is called by blind deconvolution is more

accurate and suitable.

Asymmetric PSF

The aforementioned two properties came from the gap between actual and designed

imaging conditions. However, even if the actual imaging condition is ideal, the blur

has a unique asymmetric shape due to imperfection of lens. The lens imperfection

brings out various aberrations such as coma and astigmatism, consequently, which

occurs a complex asymmetric PSF shape. Ignoring the asymmetry, the deconvolution

result would be asymmetric and inaccurate.

As shown in Fig. 1.2, performance of the deconvolution algorithm is evaluated by

comparing between the estimated object image and the object. Fig. 1.3 summarizes

the goal and contributions on this dissertation.
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Figure 1.3: Goal and contributions on this dissertation
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1.3 Thesis Overview

This thesis is constructed as the following.

Chapter 1. Introduction

Chapter 2. Related Works

Chapter 3. Depth-variant Deconvolution

Chapter 4. Blind Deconvolution using Depth-variant PSF

Chapter 5. Blind Deconvolution using Depth-variant Asymmetric PSF

Chapter 6. Conclusion

In Chapter 2, previous work related to this dissertation will be reviewed. First,

WFM concept compared with other fluorescence microscopy will be introduced for

easier understanding the following contents. Next, from general imaging model to

the one for WFM will be illustrated as a fundamental study of the main discussion.

Computational cost according to imaging model is covered here. Existing PSF es-

timation methods and image deconvolution algorithms will also be handled and the

criteria (limitations) to be considered will be clarified. With the clarifying, in order

to apply distinct PSF properties in estimation, reasons of the properties will be illus-

trated. The handled PSF estimation and image deconvolution algorithms are utilized

in proposal sections in Chapter 3, 4, and 5. Finally, the dissertation classifies existing

studies based on the criteria and compared with the proposed algorithms.

In the following Chapter 3, 4, and 5, the details of proposed algorithms for accurate

image deconvolution will be introduced. Proposed practical image deconvolution that

is built in Chapter 3 is applied also in Chapter 4 and 5. From Chapter 3, 4, and 5

can be divided by adding PSF properties depth-variance, specimen-dependence, and

xyz asymmetry.

In Chapter 3, depth-variant deconvolution, which provides practical image de-

convolution for thick specimen, will be proposed. In this deconvolution, generalized

expectation-maximization (GEM) algorithm is first introduced to WFM. GEM al-
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gorithm is known as noise robustness and the guarantee convergence. However, the

GEM algorithm have been used for CT, MRI images but not appeared in WFM. Us-

ing the GEM algorithm, the accurate estimation of the object image is implemented.

Also, the deconvolution algorithm proposes the estimation of depth-variant paramet-

ric PSFs from the pre-measured PSF, which can generate noise-free depth-variant

PSFs. Using the generated PSF, the GEM deconvolution algorithm is implemented

on a PC. For evaluation, normalized correlation between a true object image and

the estimated object image will be used. Evaluation results will be compared with

existing algorithms and depth-invariant version.

In Chapter 4, blind deconvolution using depth-variant PSF, which enables to re-

move the remained blur in Chapter 3, will be proposed. In the deconvolution, PSF

is estimated from the observed image (blind deconvolution) and thereby reflects ac-

tual imaging conditions. From the analysis of intensities of the observed image, PSF

for centre of the object is initially generated. Then, an optimization of a statistical

model estimates depth-variant PSFs from the observed image. The estimated PSF

from the observation image removes the remained blur, and the effect will be illus-

trated. Experiments are implemented using open data in order to compare other

commercial software and algorithm. Since true image of the open data is unknown,

pre-information (diameter and shape) of the taken object will be evaluation indica-

tors.

In Chapter 5, blind deconvolution using depth-variant asymmetric PSF, which

corrects distortions as well as removes blurs, will be proposed. In the deconvolution,

estimated PSF includes lens distortions, which enables to estimate asymmetric PSF.

Parameters of the distortions are simplified to prevent over-fitting. PSFs and the

object image are estimated from the observation image as same as Chapter 4. For the

symmetry evaluation, degree of symmetry is measured from the deconvolution result

of the symmetric object. Standard deviation of diameters and relative contrast at each

9



axis will be evaluation indicator. Finally, this Chapter summarizes the performance

and computational cost according to deconvolution algorithms.

In Chapter 6, the discussion on deconvolution for 3D WFM, the contributions of

this dissertation, will be concluded and possible future works are summarized with

finishing the dissertation.

The entire structure of this dissertaion is illustrated in Fig.1.4.

Figure 1.4: Overview of this dissertation
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Chapter 2

Related Works

In this chapter, fluorescence microscopy concept and coordinates in the field of mi-

croscopy will be introduced. After exploring imaging models for deconvolution, the

author makes a brief survey of previous studies on deconvolution algorithms and PSF

estimations for WFM. The review will show the limitations in terms of practical de-

convolution and improving accuracy of PSF. Also, distinctions of our works will be

shown. Finally, previously proposed studies that are used in our proposed methods

will be addressed.

2.1 3D Wide-field Fluorescence Microscopy

2.1.1 Concept

The principle of fluorescence microscopy is to detect an emitted light that the

specimen illuminates. The emitted light is generated by shooting a light of a specific

wavelength to the specimen. The sample is labeled with fluorescent stains or fluores-

cent protein and it becomes itself the light source[2]. This is concept of a conventional

fluorescence microscopy, which is called wide-field fluorescence microscopy (WFM).

WFM has three merits as follows.
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high contrast: An emission of fluorescent is brighter than reflection of light

high specificity: Colorization biological structures of desired by multiple fluores-

cence labeling

high ability of tracking : Once stained, it remains for many days or weeks.

These merits show the reason that the WFM have been a key role in cell biol-

ogy. Fig.2.1 shows the high specificity of the WFM. With these merits, WFM

is utilized to genome analysis, protein expression, an observation of cell division

and so on. Furthermore, 3D micrograph technique was developed to investigate a

Figure 2.1: Fluorescence double-labeling of mammalian cells by Petra Bjrk. The
DNA in the cell nuclei are shown in blue. Microfilament are shown in green.[2]

3D structure of the specimen, which is called optical sectioning microscopy. The

3D wide-field micrograph is obtained by piling up a series of discrete 2D image

planes. Moving along an axial axis (z axis), the 2D images are captured [10]. Image

acquisition process for 3D WFM is represented by Fig. 2.2. However, 3D WFM

is faced with a limit in optical resolution. Even if lenses has perfect alignment and

no defects, diffraction causes out-of-focus blur and restricts the resolution [11]. This

thesis focuses on the limitation.
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Figure 2.2: Image acquisition process for 3D WFM

2.1.2 Confocal Microscopy versus Deconvolution of Wide-

field Microscopy

To overcome the limit of resolution, two major approaches have been conducted.

Fig.2.3 shows a schematic of confocal and wide-field microscopy.

Figure 2.3: Schematic of (a) confocal and (b) wide-field microscopy[1]

Confocal microscopy

The first approach is to apply new microscopy optics. Confocal microscopy, the

most widely used approach, suppresses out-of-focus blur by means of a pinhole. As
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shown in Fig.2.3(a), out-of-focus lights expressed as dotted line are blocked at pinhole.

The pinhole plays the role of cutting off most of out-of-focus intensities. However,

confocal microscopy cannot remove out-of-focus blur perfectly because the pinhole

size is restricted due to reducing the effect of noise. Besides, the amount of light

from the pinhole is limited, which causes problems such as slow image acquisition

and photobleaching[10]. In order to acquire images pixel by pixel or line by line, the

image acquisition of confocal microscopy is slow. Also the light concentration by the

pinhole bleaches the dye as shown in Fig.2.4 and causes cell damage.

Figure 2.4: Example of photobleaching observed in a series of images captured at
different time points for a multiply-stained culture of Indian Muntjac deer epidermis
fibroblast cells[3]

Deconvolution of wide-field microscopy

In case of WFM, since the light concentration is weaker than confocal microscopy,

problems such as slow image acquisition and photobleaching do not exist. In addition,

purchase cost is reasonable. However, out-of-focus blurs come into CCD camera
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Table 2.1: Wide-field microscopy compared to confocal microscopy

No photo-
bleaching

Image
quality

Acquisition
time Price

Confocal X clear slow about $200,000
WFM O blurry fast about $35,000

as shown in Fig.2.3(b). The out-of-focus blurs make the observation image blurry.

Table.2.1 depicts comparison between confocal microscopy and wide-field microscopy.

A single problem of the WFM is a blurry image observation. This dissertation

proposes the deconvolution algorithm of WFM in order to obtain clear observation

image with no photobleaching, fast acquisition time and reasonable price.

2.2 Fundamentals on Imaging Model

For ilustrating specifics of previous works and proposals, this section define coordi-

nates and imaging models according to PSF characteristics.

2.2.1 Axes Definition

Prior to introducing related studies, the author introduces axes orientations and co-

ordinates to avoid confusion. Axes definition is shown in Fig. 2.5. The microscopy

coordinate system is orthogonal. The optical axis, defined as z axis, is an imaginary

line that passes through the center of the objective lens. The x axis and y axis repre-

sent row and column of 2D images to be at 90 degree from the z axis and at 90 degree

from each other. The origin is located right above the microscope stage and passes

the optical axis. Direction from the origin to specimen is regarded as positive direc-

tion for z axis. The opposite direction becomes negative direction for z axis. This

thesis uses z coordinate with depth. The deep depth means that the z coordinate is

far from the origin along positive direction of z axis.
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Figure 2.5: Axis definition in microscopy system

Subsequently, coordinates in object and image space are introduced. An object

position po = {xo, yo, zo} is defined by a position in the object image. An image

position pi = {xi, yi, zi} is defined by a position in the observed image. In case of

fixed depth, radial positions can be used. An object radial position and an image

radial position can be expressed as ro and ri, respectively. A PSF becomes a mapping

function between object and image position. The blurry object can be generated

between the object image and PSF. Then, photons of the blurry object arrive in CCD

camera. Since the emission of photons is random, a probability of the arriving can

be modeled by a Poisson noise model[1]. This thesis defines object, observed image

and PSF as f , g and h, respectively. Then the coordinates of imaging model can

be expressed as shown in Fig.2.6 Based on the definition, the thesis derives imaging

models.
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Figure 2.6: Coordinates of imaging model

2.2.2 Imaging Model Without Noise

Without noise process, the observation 3D image, g, could be modeled by the following

integral of multiples between a PSF hF (6) and object f that we want to retrieve:

g(pi) =
∫
f(po)hF (6)(pi,po)dpo

where

 hF (6)(pi,po) ≥ 0∫
hF (6)(pi,po)dpi = 1 for ∀po

(2.1)

where the PSF hF (6) has six dimensions (xi, yi, zi, xo, yo, zo). In Eq.(2.1), the first

condition for PSF makes image intensities greater than or equal to zero. The second

condition for PSF manages to maintain a constant sum of intensities. The aim is

to estimate the object f from the observation image g. As shown in Eq. (2.1), in

order to estimate the object f given the observation image g, a PSF estimation has

to be preceded. The WFM deconvolution method in the beginning assumed space-

invariance and symmetry for the sake of simplicity.
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The space-invariance reduces dimensions of PSF. Since a space-invariant PSF

model does not depend on object space, the PSF model hF (6)(pi,po) can be trans-

formed as hSI(3)(pi)
def
= hF (6)(pi, 0). The PSF hSI(3) represents 3D (xi, yi, zi) and

space-invariant PSF. Then the image model in Eq.(2.1) can be simplified like as:

g(pi) =

∫
f(po)hSI(3)(pi − po)dpo =

(
f ∗ hSI(3)

)
(pi) (2.2)

where ∗ denotes a convolution operator. The PSF symmetry assumption further

simplifies the image equation. To have point symmetry, the coordinates must be

equidistant from the origin, and the PSF is converted as: hSIS(1) (|pi − po|). hSIS(1),

where hSIS(1) denotes a space-invariant, symmetric and 1D PSF. Then the image

equation Eq.(2.2) is converted as follows:

g(pi) =

∫
f(po)hSIS(1) (|pi − po|) dpo

=
(
f ∗ hSIS(1)

)
(pi)

(2.3)

As depicted in Eq.(2.3), 6D PSF in Eq.(2.1) is converted to 1D PSF. However, the

PSF in Eq.(2.3) does not reflect that photons in WFM pass specimen layer. WFM

lens is designed to focus the specimen plane right above a microscopy stage with the

refractive index of immersion layer as blue line in Fig.2.7(a). If the refractive index of

specimen ns is same with one of immersion layer, the optical path passes the designed

path like as the red dotted line in Fig.2.7(b). In practice, the mismatch between the

refractive indices of the immersion layer ni and specimen layer ns causes axially

asymmetric blur, which is depicted as red line in Fig.2.7(b). The axial asymmetry

separates axial coordinates and radial coordinates in PSF so that they have different

spread. Since the radial symmetry is still remained, the PSF model in Eq.(2.3) can

be converted like as: hSIRS(2) (|ri − ro| , zi) where hSIRS(2) indicates a space-invariant,

radially symmetric and 2D PSF. The image model in Eq.(2.3) is transformed as
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Figure 2.7: Designed optical path and actual optical path

follows:

g(pi) =

∫
f(po)hSIRS(2) (|ri − ro| , zi − zo) dpo

=
(
f ∗ hSIRS(2)

)
(pi)

(2.4)

However, for thick specimens, the image model is not that simple as Eq.(2.4). It

is noticeable that as WFM focuses deeper inside in a specimen (the depth zo has

a bigger value), the mismatch increases. This phenomenon causes depth-variance of

PSF (dependence of depth zo). Then the PSF is converted to hDV RS(3) (|ri − ro| , zi, zo)

where hDV RS(3) denotes depth-variant, radially symmetric and 3D PSF. The image

model that reflects the depth-variance is as follows:

g(pi) =

∫
f(po)hDV RS(3) (|ri − ro| , zi − zo, zo) dpo (2.5)
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Table 2.2: Summary of PSF models
z (depth)

invariant variant
symmetric asymmetric

xy
variant

asymmetric
- - hF (6)

invariant
- hSI(3) hDV (4)

symmetric hSIS(1) hSIRS(2) hDV RS(3)

In terms of axial axis, PSF in Eq.(2.5) includes not only the difference between the

coordinates in image space and object space but also the axial location in object space,

which makes PSF in Eq.(2.5) depth-variant. On the other hand, PSF in Eq.(2.4)

does not include the axial location in object space. Since it is known that the radial

symmetry is marginal [1], most existing work[12, 13, 14, 15, 16, 17, 18, 19, 20] assumed

radial symmetry. Proposed deconvolutions in Chapter 3 and 4 also use this imaging

model. If the radial asymmetry is not ignored, the PSF is like as: hDV (4)(pi−po, zo),

where hDV (4) indicates the depth-variant, asymmetric and 4D PSF. The following

equation expresses the image model using the converted PSF:

g(pi) =

∫
f(po)hDV (4) (pi − po, zo) dpo (2.6)

The proposed deconvolution in Chapter 5 utilizes this imaging model for nonnegligible

radial asymmetry of PSF.

The image model for WFM deconvolution has been developed by adding PSF

characteristics - axial asymmetry, depth-variance, radial asymmetry. The progress

is expressed as equations from Eq.(2.3) to Eq.(2.6). Each PSF models according to

characteristics are summarized in Table.2.2. It is noticeable that dimensions of PSF

increases and the image model gets close to hF (6) as PSF expresses its shape freely

without restriction. The high dimensional PSF model requires expensive computa-

tional cost, but at the same time, it well expresses actual PSF shape and restores the

object more accurately.
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Figure 2.8: Digitized coordinates at relatively shallow and deep depth

2.2.3 Digitized Imaging Model

So far, coordinates of the image model have been continuous. Hereafter, image models

are depicted as discrete, because the observed images were digitized and the estimated

object cannot be continous. In other words, the image models have been illustrated

theoretically, but hereafter, the image models include both theory and illustration for

implementation.

When an image is digitized, its intensity is known only on a discrete grid. There-

fore, the smallest we can obtain is one voxel and the intervals of the continuous

coordinates can be approximated as one voxels. The size of a single voxel is the same

for an observed image, object and PSF.

Since the object that must be retrieved has a finite image size, the coordinates of

the digitized image have a finite range, in contrast to those in the continuous model.
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Also, the estimated object becomes an object image because the estmated one has

discrete coordinates. The digitized coordinates are depicted in Fig. 2.8. The finite

space is divided by X, Y and Z voxels, which are the numbers of observed image

voxels along the x-, y- and z-axes, respectively. Also, zc is defined as the centre

point of the area of interest of the object along the z-axis. Then, the digitized object

location can be represented like as:

po = (xo, yo, zo) : |xo| ≤
X − 1

2
∆xo, |yo| ≤

Y − 1

2
∆yo, |zo − zc| ≤

Z − 1

2
∆zo (2.7)

Where ∆xo, ∆yo and ∆zo represents one voxel size in object space along each axis.

The finite coordinates are represented by a blue box in Fig. 2.8. The reason that the

position of the centre of the object zc is included in the range of the digitized z-axis

is as follows. A PSF in the depth-variant image model is determined by an object

position zo that is a distance from the origin (0,0,0) along the z-axis. Therefore, we

determined the range of the digitized z-axis according to allocated pixels based on

the point zc. In general, the interesting part is located in the specimen layer, which

can be characterized by the condition zc ≥ 0. While images taken at shallow depths

are less affected by refractive index of the specimen layer as depicted in Fig. 2.8(a),

those taken at greater depths are significantly affected as depicted in Fig. 2.8(b).

The digitized observation image is given by

pi = (xi, yi, zi) : |xi| ≤
X − 1

2
∆xi, |yi| ≤

Y − 1

2
∆yi, |zi − zc| ≤

Z − 1

2
∆zi (2.8)

For easier understanding of the digitized image model, we define the current depth

of object as follows:

zn = zc +

(
n− Z − 1

2

)
∆zo (2.9)
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The depth-variant PSF hDV (4) in Eq.(2.6) is converted to hn and the subscript n of

PSF represents the fixed depth of the object. In the same manner as the continuous

model in Eq. (2.1), sum of PSF equals to one.

∑
pi

hn (pi) = 1 for ∀n (2.10)

Also, we rewrite the object image f(po) as the fn(po) to match the converted PSF

as follows:

fn(po) =

f(po) where zn = zo

0 where zn 6= zo

(2.11)

Namely, the Eq.(2.11) represents each x-y slice in 3D zero matrix. And the object

image satisfies following condition:
∑Z−1

n=0 fn(po) = f(po). Blurred image for each

slice of object image can be obtained by 3D space-invariant convolution.

gn (pi) = fn (po) ∗ hn (pi) (2.12)

Now, the image model in Eq.(2.6) can be converted to a digitized image model as

follows:

g (pi) =
Z−1∑
n=0

gn (pi) (2.13)

In this dissertation, the digitized image model in Eq. (2.13) is employed. Fig.2.9

(b) represents the calculation of the depth-variant model. The calculation of the

shift-invariant image model is depicted in Fig.2.9 (a). While image models using

shift-invariant PSFs such as hSIS(1), hSIRS(2) and hSI(3) can be calculated as a single

convolution operation, the depth-variant image model requires as many convolution

operations as the number of z stacks Z.

23



Figure 2.9: Shift-invariant imaging model and depth-variant imaging model (a) space-
invariant image model : single 3D convolution between object image and depth-
invariant PSF (b) depth-variant image model: sum of convolution results at every
x-y planes
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Figure 2.10: Convolution using fast Fourier transform

Convolution operation is calculated by a multiple of signals in the frequency do-

main for calculation speed. The calculation of a convolution operation is depicted in

Fig. 2.10. A single convolution operation requires two fast Fourier transform (space

to frequency domain), one multiplication and one inverse fast Fourier transform (fre-

quency to space domain).

g (pi) =
Z−1∑
n=0

IFFT (FnHn) (2.14)

Where Fn and Hn denote the object image fn and PSF hn in frequency domain,

respectively. As denoted in Eq.(2.14), the observed image is obtained by sum of

inverse fast Fourier transform of (FnHn). When PSF is loaded, even if PSF size is

smaller than image size, PSF size is expanded to observed image size in order to

multiple in frequency domain. Namely, the PSF voxels are placed in the center of

an array of all zeros and utilize this array to calculate multiple in frequency domain,

which is depicted in Fig. 2.10.
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Depth-variant deconvolution requires the same number of convolution operations

as of z stacks, resulting in high computational cost, as depicted in Fig. 2.9. This

may be a reason why most existing methods have not proposed it. At present, a

regular desktop PC can run programs with high memory requirements that could not

be executed in the past.

2.2.4 Summary of Existing Studies according to Imaging

Model

In the previous subsection, we examined various imaging models. The dimension

of the imaging model is variant to PSF characteristics. There are important PSF

characteristics shown below.

- Depth-variance

- Specimen-dependent PSF (blind deconvolution)

- Asymmetry

The PSF varies according to locations of image and object, which represents

the depth-variant PSF characteristic. This characteristic is because a spherical

aberration of WFM is caused by refractive indices mismatch between the immersion

medium and the specimen. As the optical system focuses on a deeper specimen, the

spherical aberration increases. This aberration phenomenon is the mechanism of the

depth-variant characteristics for 3D WFM.

Even if the PSF is measured previously, imaging condition between the PSF pre-

measurement and the actual imaging is different. In the procedure of switching the

point-like object for pre-measurement into the specimen, the focal distance and the re-

fractive index vary. This thesis calls the variance according to specimen by specimen-

dependence. To solve this problem, the PSF has to be estimated from the observed
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image. Unlike the general methods, in Chapter 4 and 5, blind deconvolution is used

for the accuracy not for user convenience.

Also, even if the specimen and imaging conditions are ideal, the PSF of WFM

has an asymmetric shape due to an imperfection of the lens. In case of a parametric

PSF that are used in existing studies, it is modeled by a symmetric PSF along x-

y axis. Because PSF asymmetry along z axis is relatively severer than along x-y

axis, they ignore the asymmetry along x-y axis. One study used a non-parametric

PSF[6], which has a risk to estimate an inaccurate PSF that loses its diffraction and

aberration pattern by noise.

These three characteristics cover all possible major causes of blurs in WFM imag-

ing condition and optical system design. Based on introduced three PSF charac-

teristics, the author classified previous studies and proposals, which is depicted in

Table.2.3. This thesis considers the asymmetry term in Table.2.3 to be satisfied when

the PSF is radially (x-y axis) as well as axially (z axis) asymmetric. The third row

in Table.2.3 shows deconvolution methods according to the PSF characteristics of

depth-variance and asymmetry. The reflection of PSF characteristics is an important

Table 2.3: Summary of existing studies on WFM deconvolution

Depth-variant 3 3

Asymmetric 3 3

PSF model hSIRS(2) hDV RS(3) hSI(3) hDV (4)

Non-blind
(specimen
-independent)

JOSA A92a[12]

Sig. Proc93[13]

SPIE96[14]

JOSA A04[15]

SPIE10[16]

Maalouf 10[17]

Chapter 3

JOSA A93[21]

Science95[22]
JOSA A07[6]

Blind
(specimen
-dependent)

JOSA A92b[18]

JOSA A99[19]

SPIE13[20]

Chapter 4

Applied Opt95[23]

PAMI10[24]

ISBI12[25]

Chapter 5

key of a deconvolution performance. As shown in Table.2.3, Depth-variant decon-

volution appeared in the 2000s. Because the depth-variant deconvolution became
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available on a PC as the development of a PC. Specifics between computational cost

and imaging model are addressed in Chapter 5. The proposed method in Chapter

3 uses the known PSF that is depth-variant radially symmetric, as existing studies

used[15, 16, 17]. Chapter 3 proposes a practical deconvolution using the PSF model,

which will be addressed in next section. On the other hand, proposed methods in

Chapter 4 and 5 utilize PSF models that are not used in existing methods. As shown

in Table.2.3, deconvolution methods in Chapter 4 and 5 estimates the object image

accurately by improving PSF accuracy. The proposed method in Chapter 5 includes

all significant characteristics depth-variance, specimen-dependence and asymmetry.

As for evaluation, the mean square error (MSE) or the normalized correlation

coefficient (COR) is used as performance indicators in general. These indicators only

can be utilized when the true image is known (non-blind approaches). Chapter 3

also utilizes the normalized correlation coefficient for evaluation. On the other hand,

blind approaches do not have the true image. Therefore, they evaluate performance

with actual image of micro-bead that has determined shape and diameter[25, 26].

The micro-bead has a determined diameter and a hollow sphere shape. Therefore,

the diameter and the relative contrast between shell and hollow inside are used for

performance indicators. Since proposed algorithms in Chapter 4 and 5 are also blind

approach, the author also used these indicators.

2.3 Image Deconvolution

From this section, the author considers the noise process. The noise process in imag-

ing model follows a Poisson model, since photons illuminated from specimen arrive

in the lens and consequently create a random number of light photons[1]. Among

many deconvolution algorithm methods under Poisson noise model, the author chose

generalized expectation-maximization (GEM) algorithm, which estimates the ideal
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image accurately by guaranteeing noise robustness and convergence. The GEM al-

gorithm has not appeared in WFM before the author proposed it. Every existing

deconvolution methods under Poisson noise model with regularization term approx-

imate differentiation of intensities at a present iteration as at a previous iteration,

which is not correct. This section introduces schemes of them in the following subsec-

tions. Also, the author theoretically proves that the GEM is more accurate method

than the deconvolution using approximated regularization term.

2.3.1 Image Deconvolution under Poisson Noise Model

An estimated observed image λ in this subsection is defined by sum of multiples

between the determined PSF h and the object image f . From λ definition, the

operator ⊗ is defined as follows.

λ =
∑
po

f (po)h (pi,po)
def
= f ⊗ h (2.15)

The observed image in this subsection is renamed by k.

k = g (pi) (2.16)

Then, the objective function is easily derived. Under Poisson noise assumption, the

objective function can be expressed as:

p (g|f, h) =
∏
pi

λke(−λ)

k!
(2.17)

The objective function is the conditional probability - the observation probability

given the true object image and the PSF. General image deconvolution under Poisson

noise model maximizes the objective function in Eq.(2.17).
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2.3.2 Richardson Lucy Algorithm

Richardson Lucy (RL) algorithm is a deconvolution method that maximizes the ob-

jective function in Eq.(2.17), iteratively. Since RL algorithm is most widely used in

WFM deconvolution, the author introduces the concept and the specific.

To estimate the ideal image that maximize Eq. (2.17), a derivative of Eq. (2.17)

should be found. Since the direct derivative of Eq. (2.17) is difficult, the objective

function is replaced with the negative log-likelihood function that is obtained by a

negative logarithm of the objective function:

Jdata(f) =
∑
pi

(λ− k log(λ) + log(k!))

=
∑
pi

(f ⊗ h− g log(f ⊗ h) + log(g!))

(2.18)

For the non-trivial task of the negative log-likelihood functional, RL algorithm

estimates the object image using the principle of an optimization transfer[27]. The

optimization transfer principle converts the minimization problem of a negative log-

likelihood function Jdata to the minimization problem of the surrogate functions

Φ(f ; f s), where f s is the estimated object image f at the sth iteration. It is ver-

ified that the sequence of the minimizers of the surrogate functions converges to the

minimizer of the negative log-likelihood function, supposing that the surrogate func-

tion satisfies the following conditions[27]:

Φ(f ; f s) ≥ Jdata(f)

Φ(f s; f s) = Jdata(f
s)

(2.19)
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To design a surrogate function for the Poisson likelihood function given the sth esti-

mated image f s = [f s(1), f s(2), ...], the author describes the following identity [27]:

λ = f ⊗ h =

(
f s ⊗

(
h

f s ⊗ h

))(
f

f s
(f s ⊗ h)

)
(2.20)

After taking the logarithm of Eq.(2.20), applying the convex inequality derives

−logλ = −log (f ⊗ h) ≤
(
f s ⊗

(
h

f s ⊗ h

))
log

(
f

f s
(f s ⊗ h)

)
(2.21)

Combining negative log-likelihood in Eq.(2.18) with the inequality in Eq.(2.21) leads

to the following surrogate function:

Φ(f ; f s) = −
∑
pi

f ⊗ h+
∑
pi

g f s ⊗ h

f s ⊗ h
log

(
f

fk
f s ⊗ h

)
(2.22)

It is remarkable that the surrogate function in Eq.(2.22) satisfies the condition in

Eq.(2.19). The minimization solution of the surrogate function can be yielded by the

derivative with respect to f :

∂Φ(f ; f s)

∂f
= −

∑
pi

h+
f s

f
h⊗ g

f s ⊗ h
(2.23)

Then, the object image that satisfy the derivative with zero is derived in Eq.(2.24),

which is called Richardson Lucy (RL) algorithm [28, 29]:

f s+1 = f s
(
h⊗ g

h⊗ f̂ s

)
(2.24)

The PSF is normalized as
∑

pi
h = 1. However, it often causes a noise amplifi-

cation problem because of ill-posed problem. To prevent the ill-posed problem, the
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objective function should incorporate a regularization term that penalizes intensity

variations.

2.3.3 One Step Late Algorithm

This part introduces image deconvolution using the approximated regularization func-

tion. WFM image usually has a low SNR, which leads to noise amplification decon-

volution results. Therefore, deconvolution algorithm should penalize difference of

intensities to suppress noises. Therefore, the cost function (negative objective func-

tion) is modified as follows:

Jpenalized(f) = Φ(f ; f s) + γR (f) (2.25)

where γ is the regularization parameter. f(po) that minimize Eq. (2.25) would be an

ideal image.

R (f) =
∑

ψ ([Df ]n) (2.26)

where D = [dij] is a matrix used for determining the difference adjacent pixels.

Generally total variation regularization is chosen as the regularization constraint.

Total variation regularization preserves edges due to its linear penalty on difference

between adjacent pixels, it can be defined by [30, 31]:

ψ (f) =
√
f 2 + ε2 (2.27)

where a small positive number ε is used for making the function differentiable. Min-

imizing the cost function in Eq.(2.25), the ideal image can be estimated as follows:

f̂ = arg min Jpenalized(f) =
∂Jpenalized(f)

∂f

=
∂Φ(f ; f s)

∂f
+ γ

∂R (f)

∂f

(2.28)
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However, the total variation penalty couples each pixel in the restoration with

its adjacent neighbors in such a way that a direct derivative for minimizing the cost

function is not possible[14]. As the means of solving this problem, one step late

(OSL) algorithm approximates the difference between adjacent pixels as the difference

between the value of a current pixel and the values of the neighboring pixels from the

previous iteration [32, 25]. The final form using OSL can be determined as follows:

f s+1 =

(
h⊗ g

h⊗ f̂ s

)
f s

1− γdiv(R(f s))
(2.29)

where div stands for the divergence. However, a restored image using the approxima-

tion is not accurate since this method does not converge to the solution monotonically.

2.3.4 Generalized Expectation-Maximization Algorithm

Although it is not possible to yield the minimizer of Eq. (2.25) directly in a pixel-

wise iterative procedure, it is possible to determine the minimizer of Eq. (2.25) by a

sub-iteration procedure. A non-separable quadratic surrogate function of the regu-

larization term can be defined as [27]:

ψ ([Df ]n) ≤ q([Df ]n ; [Df s,m]n) (2.30)

where f s,m is the estimated image at the mth sub-iteration and q denotes a quadratic

surrogate function. This can be done by designing a separable quadratic surro-

gate function of the regularization function. Using De Pierro’s additivity trick, the

quadratic surrogate function can be converted as follows [33, 34]:

q([Df ]n ; [Df s,m]n) =q

(∑
p

|dnp|
dn

(
dnp
|dn|

dnp (f − f s,m) + [Df s,m]

)
; [Df s,m]

)

≤
∑
p

|dnp|
dn

q

(
dnp
|dn|

dnp (f − f s,m) + [Df s,m] ; [Df s,m]

) (2.31)
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The quadratic function q(t; q) = ψ(q) + ˙ψ(q)(t− q) + 1
2
c̆(q)(t− q)2, with c̆ that guar-

antees the first inequality. One may determine the optimal curvature c̆ by following

the Hubers method [35]. The inequality in Eq. (2.30) is due to a convex inequality, in

which equality is completed if f = f s,m. From Eq.(2.30)and Eq. (2.31), the surrogate

function of the regularization function Rs(f ; f s,m) meets the following condition [27]:

R (f) ≤
∑
n

∑
p

|dnp|
dn

q

(
dnp
|dn|

dnp (f − f s,m) + [Df s,m] ; [Df s,m]

)
= Rs (f s,m) (2.32)

Then, the surrogate function of the regularization function is designed as the addi-

tively separable function. The derivative of the surrogate function with respect to f

can be derived as follows as [27]:

∂Rs(f ; f s,m)

∂f
=
∂R(f)

∂f

∣∣∣∣
f=fs,m

+ (f − f s,m)c̆ (2.33)

By using the surrogate function of Eq. (2.32), the minimizer f s,m can be yielded as

follows:

fk,s+1 = arg min (Φ(f ; f s)) + γRs (f ; f s,m) (2.34)

Taking the derivative of the surrogated cost function in Eq. (2.34) and computing it

to zero derives the following quadratic equation [27]:

0 = −
∑

h+
f s

f

[
g ⊗ h

h⊗ f s

]
+ γ

(
∂R(f)

∂f

∣∣∣∣
f=fs,m

+ (f − f s,m) c̆

)
(2.35)

The solution of the quadratic equation in Eq. (2.35) can be derived analyti-

cally [27], which is expressed as follows:

f (s,m+1) =


√
b2(f (s,m))+c̆a(f (s,m))−b(f (s,m))

c̆
, when a

(
f (s,m)

)
< 0

a(f (s,m))√
b2(f (s,m))+c̆a(f (s,m))+b(f (s,m))

when a
(
f (s,m)

)
≥ 0

(2.36)
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where č and m represent curvature and sub-iteration, respectively. a
(
f (s,m)

)
and

b
(
f (s,m)

)
are defined as

a
(
f (s,m)

)
= f (s,m)

{
h⊗ g

h⊗ f (s,m)

}
b
(
f (s,m)

)
=

1

2

(
1 + γ

∂R
(
f (s,m)

)
∂f

− čf (s,m)

) (2.37)

several iterations of the procedure would reach the minimum solution of the cost

function defined in Eq. (2.25). I depicted the scheme of GEM algorithm in Fig. 2.11 In

Figure 2.11: Concept of GEM algorithm

Fig. 2.11, the negative log-likelihood function, surrogate function, quadratic surrogate

function and separable quadratic surrogate function are denoted as Jdata + γR (f),

Jpenalized(f) = Φ(f ; f s)+γR (f), Φ(f ; f s)+γRQ(f ; f s,m) andRS(f ; f s,m), respectively.

This iterative technique guarantee the convergence of cost function, which was proven

to be effective in medical image reconstruction problems [36, 33, 34]. However, GEM

has a problem of slow converge speed toward the final result.
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2.3.5 Summary of Existing Studies according to Deconvolu-

tion Algorithm

Practical image deconvolution for WFM should satisfy appropriate noise model and

guarantee of convergence. Existing algorithms that are introduced are summarized

in Table.2.4.

Table 2.4: Summary of existing studies according to deconvolution algorithm
convergence

not guaranteed guaranteed

noise
sensitive -

RL algorithm
[18, 23, 37, 38, 17, 24, 16]

robust
OSL algorithm

[5, 21]
GEM algorithm

Image deconvolution that satisfies both noise robustness and convergence has not

been applied in WFM. For the practical image deconvolution, the authour first intro-

duced the GEM algorithm to WFM and the proposal is described in Chapter 3.

2.3.6 Acceleration of Iterative Deconvolution

To accelerate the converge speed, the acceleration with GEM algorithm is used in

Chapter 3 and 4. Iterative image deconvolution algorithms are nonlinear and provide

more effective restoration than simple techniques such as linear inverse filtering. A

chronic problem of iterative image deconvolution is slow convergence speed. To in-

crease the speed of convergence, Biggs proposed an acceleration method using vector

extrapolation [4]. The acceleration method predicts where each pixel in the image is

going from the correction obtained by an each iteration. A new point cs is predicted,

and an existing iterative image restoration algorithm is applied to generate the next
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estimate f s+1 and gradient ls as follows:

cs = f s + αs
(
f s − f s−1

)
= f s + αs

(
ϕ
(
f s−1

)
− f s−1

)
= f s + αsls−1

f s−1 = cs + ls = ϕ (f s)

αs+1 =
(ls)T ls−1

(ls−1)T ls−1

(2.38)

Fig. 2.12 shows an illustration of the acceleration method. The vector extrapo-

lation enables to accelerate iterative image deconvolution algorithms by predicting

subsequent point using previous points.

Figure 2.12: Illustration of the acceleration method.

In their experiments, RL deconvolution achieves an average speed up of 40 times

after 250 iterations [4], which is depicted in Fig. 2.13.

The acceleration method shows considerable promise in accelerating other types

of iterative image deconvolution.
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Figure 2.13: Blurred and restored images using RL. (a) blurred, (b) unaccelerated
RL (250 iteration), (c) accelerated RL (250 iteration), (d) unaccelerated RL (10000
iteration)[4]

2.4 PSF for WFM

In order to estimate an accurate object image f , an accurate PSF estimation have

to be preceded. This section introduces three PSF models that are utilized in this

dissertation. First PSF model is the experimental PSF, which is an observation of the

point-like object. Second one is the most popular Gibson’s parametric PSF, which is a

depth-variant and radially symmetric PSF model. Last one is the Zernike polynomial

parameterized PSF, which is a depth-variant and asymmetric PSF model. Chapter 3

proposes the estimation of parameters in Gibson’s model to the experimental PSF.

Chapter 4 proposes the estimation of parameters in the Gibson’s PSF model from

the observed image. Chapter 5 proposes the estimation of parameters in the Zernike

polynomial PSF model from the observed image.
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2.4.1 Experimental PSF

In experimental PSF approach, images of one or more point-like objects are recorded.

The blur from the point-like object itself is regarded as PSF, which follows literally

the meaning of PSF. A fluorescence micro-bead is typically used for the point-like

object. The size of the micro-bead should be smaller than a resolution of WFM. The

resolution of WFM is defined as follows [39]:

resolution =
λ

2 NA
(2.39)

where λ and NA represent the wavelength of the emitted light and the numerical

aperture.

Figure 2.14: Sequential focal planes through experimentally determined PSF. Dis-
tances above and below focus are shown from +2.0 µm to -2.0 µm. [5]

3D experimental PSF is obtained by recording micro-bead images moving the fo-

cus, which is represented in Fig. 2.14. The experimental PSF images are also recorded

moving along an axial axis in the same way with the specimen image recording.

Recorded 3D image leaving the micro-bead at a certain position becomes the 3D PSF

at one depth. However, it is necessary to obtain experimental PSFs at all depths

since PSFs at several depths are different. To obtain depth-variant PSFs, there was a

study to get experimental PSFs at several depths, which is depicted in Fig. 2.15 [6].

Experimental PSF has an advantage that the PSF reflects the actual experimental

setup [5]. Therefore, the obtained PSF include all types of aberration symmetric and
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Figure 2.15: Depth-variant experimental PSFs [6]

asymmetric factors of PSF. However, making the same condition of the experimental

PSF measurement as of the actual imaging is almost impossible; the object position

and the refractive index of specimen can be changed. Besides, noises in the recorded

experimental PSF is regarded as blur [1]. Since the micro-bead is smaller than the

resolution of WFM, not surprisingly the recorded image has many noises compared to

signal. Moreover, general biologists or medical scientists have a difficulty to making

samples with micro-bead at certain multiple depths.

2.4.2 Parametric PSF: Gibson’s Model

Theoretical parameterized PSF is calculated based on equations from the optical

physics. The Gibson’s model is based on Kirchhoffs integral formula. This model

generates a 3D WFM PSF by substituting optical parameters. These parameters are

refractive indices and optical distances (z coordinates in object and image space).
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The Gibson’s PSF model is given as [40]

hDV RS(3)) (|ri − ro| , zi, zo) =

∣∣∣∣∫ 1

0

eik0Λ(zi,zo,ρ)J0 (|ri − ro| k0NAρ) ρdρ

∣∣∣∣2 (2.40)

where k0 denotes the vacuum wave number, NA is the numerical aperture, and

Λ (zi, zo, ρ) represents the optical path difference (OPD) between the design and ac-

tual conditions. J0 denotes the Bessel function of the first kind of the zero.

The depth-variance (axial shift-variance) is caused by the mismatch between ob-

ject and immersion layer, which is the change of the PSF as a function of the position

along the optical axis of the object plane [40]. An optical path of WFM is designed

for specimens that are mounted immediately above the coverslip in a medium that

is index matched to the immersion layer. In actual system, however, actual optical

path does not pass as designed. Because a position that WFM focuses is different

from the position immediately above the coverslip and refractive index of specimen

is also different from the immersion layer. I depicted the designed and actual optical

path in Fig. 2.16. The optical path difference (OPD) between designed and actual

optical path causes spherical aberration, which makes asymmetric PSF along z axis.

Fig. 2.17 shows Spherically aberrated PSF.

The bigger OPD makes more severe blur. In other words, taking the focus on a

deeper layer in specimen (along z axis, as distance from origin increases) makes severe

blur. The OPD equation that reflects the depth-variant characteristic is as follows:

Λ (zi, zo, ρ) =

zo

√
ns2 − NA2ρ2 + tg

√
ng2 − NA2ρ2 − tg∗

√
ng∗2 − NA2ρ2 − ti∗

√
ni∗2 − NA2ρ2

+

(
zo − zi + ni

(
tg
ng
− tg∗

ng∗
− zo
ns

+
ti∗

ni∗

)√
ni2 − NA2ρ2

)
(2.41)
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Figure 2.16: Optical path difference.

where ng, ns and ni represent the actual refractive indices of the coverslip, specimen

and immersion layer, while tg∗ and ti∗ are the design values for the thickness of cover-

slip and the immersion layer. ni∗ and tg are actual refractive index of immersion layer

and actual thickness of coverslip. From the Eq. (2.41), mismatch between designed

and actual imaging condition causes the OPD.

In practice, a corrective ring on the objective exists to minimize the contribution

of coverslip-induced aberrations, OPD is simplified and defined by [41]:

Λ (zi, zo, ρ) =

zo

√
ns2 − NA2ρ2 − ti∗

√
ni∗2 − NA2ρ2 +

(
zo − zi + ni

(
− zo
ns

+
ti∗

ni∗

)√
ni2 − NA2ρ2

)
(2.42)

From Eq. (2.40) (2.42), Gibson’s PSF model has x-y symmetric and z asymmetric

shape; Gibsons model covers only diffractions and spherical aberration. Since the
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Figure 2.17: x-z slice through the focus distribution of a NA = 1.3 lens. Left: no
spherical aberration; right: imaging into a medium with refractive index 1.4 at a
depth of 10 micron [7]

PSF is obtained by the equation, there is no noise. Gibson’s PSF model can generate

depth-variant PSF at any depth by controlling zo and zi values. However, to generate

depth-variant PSFs, obtaining parameters (ni, ns, zo) that reflects actual imaging

condition must be preceded. Besides, Gibson’s model would be less accurate than

a Zernike polynomial PSF model due to excluding x-y asymmetric factors such as

coma, curvature of filed and astigmatism aberration.

2.4.3 Parametric PSF: Zernike Polynomial PSF Model

Zernike polynomial PSF model hDV (4)(pi, zo) is a parametric PSF that include all

aberrations, which is expressed as the multiple of magnitude of complex-valued am-

plitude PSFs at excitation and emission wavelength.

hDV (4)(pi, zo) =

∣∣∣∣−h(pi, zo;λ = λem)2

∣∣∣∣ (2.43)
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where
−
h(pi, zo;λ = λem) is complex-valued amplitude PSF at emission wavelength.

The complex-valued amplitude PSF is the 3D Fourier transform of an amplitude

optical transfer function that has values only on a spherical cap of radius ni/λ limited

by the aperture angle[42]. The complex-valued amplitude PSF is defined by[43]:

−
h(pi, zo;λ) =∑

kx

∑
ky

p(kx, ky)Λ (kx, ky, zo, ni, ns) e
2iπzi
√

(ni/λ)2−(kx+ky)2e2iπ(kx(xi)+ky(yi))
(2.44)

where Λ (kx, ky, zo, ni, ns) indicates aberration function that the refractive index mis-

match induces and it represents depth-variance of PSF[43]. λ represents wavelength.

When the complex-valued amplitude PSF at emission wavelength is numerated, cor-

responding emission wavelengths (λ = λem) is used. The pupil fuction p(kx, ky)

in Eq. (2.44) can express lens imperfection. With perfect lens, the pupil function

p(kx, ky) has all ones in
√
k2
x + k2

y ≤ ni/λ. However, actual lens has defects. Distorted

pupil function have various values in
√
k2
x + k2

y ≤ ni/λ and it makes asymmetric PSF

shape. Hanser’s PSF model expresses the distorted pupil function as combination of

modulus ω and phase φ functions as follows:

p(kx, ky) = ω(kx, ky)e
i2πφ(kx,ky) (2.45)

Modulus and phase functions are expressed by Zernike polynomials [43].

ω(kx, ky) =
∑
n

MnZn(kx, ky)

φ(kx, ky) =
∑
n

NnZn(kx, ky)

(2.46)
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where Zn represents Zernike polynomials. The pupil function of Hanser’s model

consists of 79 Zernike polynomials. The other part of Eq. (2.44) can be seen in the

reference paper in detail[43].

The Zernike polynomial PSF model has every advantage of the Gibson’s model -

no noise, simple generation of depth-variant PSFs. The point that the Zernike poly-

nomial PSF model is superior to Gibson’s model is that the Zernike polynomial PSF

model can express all type of aberration; Zernike polynomial PSF has an asymmetric

shape along all directions. However, like as Gibson’s model, it is difficult to obtain

the modulus and phase parameters that reflect actual imaging condition.

2.4.4 Summary of PSF Estimation Methods

Table.2.5 compares existing PSF estimation methods.

Table 2.5: Comparison of WFM PSF Models

Experimental
Parametric PSF

PSF (noisy) Gibson’s PSF
Zernike

polynomial PSF

PSF
Depth-variance 3 3

Specimen-dependence
xyz Asymmetry 3 3

Existing PSF methods do not reflect specimen-dependence. From the most widely

used Gibsons model, this thesis proposes new PSF estimation methods. Table.2.6

summarizes proposed method with utilizations of PSF models.

Table 2.6: Summary of proposed PSF estimation methods
Chapter 3

(experimental
PSF +

Gibson’s PSF)

Chapter 4
(Gibsons PSF
from observed

image)

Chapter 5
(Zernike PSF
from observed

image)

PSF
Depth-variance 3 3 3

Specimen-dependence 3 3

xyz Asymmetry 3
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Chapter 3 (Proposal 1) proposes fitting the Gibson’s theoretical PSF to the ex-

perimental PSF, which is applicable to real data when imaging condition of actual

data is same as of experimental PSF. And it has advantages of simple PSF genera-

tion at any depths and no noise. Chapter 4 (Proposal 2) utilizes Gibson’s theoretical

PSF. Chapter 4 estimates optical parameters in Gibson’s theoretical PSF from the

observed actual image, which can be applicable to any real data. Chapter 5 (Proposal

3) utilizes Zernike polynomial theoretical PSF which is further accurate PSF model.

Chapter 5 also can be applicable to any real data since parameters are estimated from

the observed actual image.

2.5 Summary

In this chapter, 3D WFM concept and existing works are introduced to share the

core goal with the readers of this thesis. The author has aimed to estimate accurate

object image. The object image is estimated by deconvolution algorithm and PSF

information. As a foundation of main discussion, imaging model according to PSF

properties, deconvolution algorithms and existing PSF estimation methods have been

reviewed. It is confirmed that photons of WFM image follow Poisson distribution

and include many noise since arrived photons in CCD are few. Also, for accurate

deconvolution, it is reviewed that convergence of iterative algorithm is significant.

On the other hand, from the distinct characteristics of WFM, it is revealed that PSF

has unique characteristics - depth-variance, specimen-dependence and asymmetry. It

is reviewed that reflecting these characteristics is connected to PSF dimensions and

computational cost.

The author divided criteria to two parts practical image deconvolution and im-

proving PSF estimation. Practical image deconvolution includes criteria to be consid-

ered in deconvolution process. When deconvolution algorithm is implemented, appro-
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priate noise model (noise considered imaging model under Poisson distribution), the

convergence and implementation on a PC should be considered. The author unites

these three criteria to one criteria called as practical image deconvolution. Improv-

ing PSF estimation part has three criteria (depth-variance, specimen-dependence and

asymmetry) that are covered in PSF characteristics.

Table.2.7 shows the overview of the image deconvolutions which are proposed in

this thesis. The main discussion starts from depth-variant deconvolution for practical

deconvolution with 3D WFM. With introduction GEM algorithm to WFM image with

depth-variant imaging model is proposed in Chapter 3. As removing blurs along opti-

cal axis from specimen-dependent PSF estimation, blind deconvolution using depth-

variant deconvolution is proposed in Chapter 4. Finally, as correcting distortions

from asymmetric PSF modeling, blind deconvolution using depth-variant asymmetric

PSF is proposed in Chapter 5. Also, computational cost and performance according

to deconvolution methods are summarized in Chapter 5.

Table 2.7: Research matrix of the deconvolution algorithms proposed in this thesis
Chapter 3 Chapter 4 Chapter 5

Practical image
deconvolution

3 3 3

PSF

Depth-
variance

3 3 3

Specimen-
dependence

3 3

xyz
Asymmetry

3
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Chapter 3

Depth-variant Deconvolution

This chapter addresses the challenging problem on the practical image deconovlu-

tion. Specifically, the author aims to propose the deconvolution that guarantees con-

vergence of objective function under the appropriate imaging model. Of course, the

deconvolution should be implemented on a PC. The practical deconvolution provides

accurate object image estimation result when a PSF is given.

However, existing deconvolution methods in WFM have not satisfied appropriate

imaging model and convergence. the author proposes to use GEM algorithm as an

image deconvolution. The GEM algorithm yields a pixelwise iteration that converges

to the minimizer of the objective function that assumes a few photons.

The author also proposes a new PSF estimation methods that is applicable to

actual image. The method estimates PSF by fitting a parameteric Gibson’s model

to a point-like object image. Then, depth-variant PSFs are generated shifting object

and image coordinate along z axis. Since the PSF obtained by the proposed method

involves the actual imaging condition from the point-like object image, which is ap-

propriate for the actual image. While the experimental PSF has noise that confuses

with blur, estimated PSF model has no noise because the PSF is generated by using

mathematical formula.
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A flowchart of the proposed method is depicted in Fig.3.1. From step A to step

B show the proposed PSF estimation. From the estimated PSF, step C generates

depth-variant PSFs by shifting depth parameters. Finally, in step D, introduced

GEM algorithm is implemented using the generated PSFs.

Figure 3.1: Flow chart of depth-variant deconvolution

This chapter verifies the effectiveness of the depth-variant GEM algorithm in

comparison with classic methods such as the depth-invariant RL method, the depth-

variant RL method, and the depth-invariant GEM method in simulations and exper-

iments using microbeads. From this chapter, it is confirmed that the introduction of

the GEM algorithm based on depth-variant imaging model can be practical deconvo-

lution for WFM, which is the main contribution of this chapter.

3.1 Introduction

Despite depth variant charcteristic of PSF, many existing methods assume a depth-

invariant PSF for simplicity and restored the observed image using well-developed

shift-invariant deconvolution algorithm such as the RL algorithm [19, 14, 12, 44, 45].

Since the actual PSF is unknown, some methods obtain the PSF by using an image of

point-like obejct and use the estimated PSF for deconvolution. Others try to estimate
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both the unknown PSF and the ideal image simultaneously through blind deconvolu-

tion approaches [19, 45]. However, the deconvolution results of such depth-invariant

deconvolution algorithms are limited since the PSF used for the deconvolution does

not reflect actual imaging condition. Besides, the PSF changes along the depth direc-

tion, which leads to unaccurate deconvolution results. To overcome these limitations,

two studies proposed a depth-variant (DV) PSF estimation: experimentally obtained

depth-variant PSF [6] and analytically computed PSF [15]. The former method re-

quires placing the point-like object at each depth in micrometer unit, this is not

easy for typical users. The latter method generate depth-variant PSFs based on a

parametric Gibson’s model [40]. However, this method is only applicable to actual

images since the actual optical parameters cannot be known, therby the investigator

tested only simulation images with known parameters. To my knowledge, there have

been no studies on depth-variant deconvolution for practical observed images except

for one recent study for confocal microscopy [46], probably due to the demanding

expensive computations.

Because the intensity at each pixel in WFM follows a Poisson random vari-

able [15, 44], most existing deconvolution methods for 3D WFM are based on the

RL algorithm [28] that maximizes the Poisson likelihood function using the expecta-

tion maximization optimization approach. Even though the depth-variant RL method

is more accurate than depth-invariant ones, its deconvolution result is still insufficient

due to its noise sensitivity. Because the maximization of the likelihood function is

ill-posed in the sense that the solution is not unique, deconvolution result of RL yields

a noisy image [1, 27]. Therefore, one must incorporate a regularization function based

on a priori information on the true image to yield a more enhanced image [14, 12, 44].

Regularized RL methods using a depth-variant PSF have been seldom stud-

ied except for recent two studies for confocal microscopy [47, 48]. On the con-

trary, there exist several studies on regularized depth-invariant deconvolution meth-
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ods [14, 12, 44, 21, 49, 50]. The performance of depth-invariant methods is not satis-

factory because the depth-variant PSF is only suitable to certain depth. In addition,

the performance of many existing methods are limited since ineffective regularization

functions were used. It is well known that the most useful a priori information is that

of an ideal image with small intensity variations in the spatial domain, which requires

a coupled regularization function defined by intensity differences in adjacent pixels.

However, probably for simplicity, existing methods are based either on the intensity of

each pixel (not the difference between pixels) or on approximations for computing dif-

ferences between neighboring pixels [32, 47, 50]. I suppose that the scarcity of coupled

regularization functions can be attributed to the belief that performing an RL-type

pixelwise update is impossible for a coupled regularization function [14]. Although

there are investigations based on the coupled roughness penalty function [48, 21],

the methods require the simultaneous optimization of entire pixels, which is often

computationally intractable. Existing regularized deconvolution methods with DV-

PSF do not provide RL type iterative update algorithm to minimize negative Poisson

likelihood plus regularization function.

3.2 Proposed Method

3.2.1 PSF Estimation

To estimate an accurate the image, two different techniques are investigated: experi-

mental PSF and theoretical PSF. The experimental PSF treats the image of point-like

object itself as a PSF. While the experimental has advantage of reflecting actual imag-

ing condition, it regards recorded noise as blur also. Therefore, it is difficult to apply

the experimental PSF to actual image deconvolution, directly. On the other hand,

the theoretical PSF is analytically computed equation, which does not include any
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noise. However, it is also hard to apply the deconvolution for the actual image since

optical parameters of the theoretical PSF is unknown.

I propose a new PSF estimation method by fitting a parameteric theoretical PSF

model in Eq. (2.40) and Eq. (2.41) to a point-like object image [51, 52]. The PSF

estimation and generation process can be illustrated by Fig. 3.2.

Figure 3.2: PSF estimation and generation process

For this, acquiring the 3D image of a micro-bead is proceded, which is experimental

PSF. The micro-bead should be smaller than the Abbe’s resolution in Eq. (2.39).

A theoretical PSF (in this chapter, h means hSIRS(3)) is calculated with pixel size

and numerical aperture in accordance with WFM specification. Then, the proposed

method estimate unknown parameters in theoretical PSF by minimizing the negative

log-likelihood function. The likelihood function assume the Poisson distribution.

p (hexp|h) =
∏
pi

hhexpe(−h)

hexp!
(3.1)
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where hexp is experimental PSF. The Eq. (3.1) represents a probability of a point

source observation. I convert maximization of likelihood to minimization of negative

log-likeihood. The negative log-likelihood is defined as follows:

(
ẑo, n̂i, n̂s, n̂g, t̂g

)
= arg min

zo,ni,ns,ng ,tg

∑
pi

(h− hexp log (h))


= arg min

zo,ni,ns,ng ,tg

∑
pi

(h (|ri − ro| , zi; zo, ni, ns, ng, tg)

−hexp log (h (|ri − ro| , zi; zo, ni, ns, ng, tg)))

}
(3.2)

In the experiment section, I report the experimental PSF and my proposed PSF

results. In order to reduce a processing time for parameter estimation, the negative

log-likelihood using simplified OPD equation is as follows:

(ẑo, n̂i, n̂s)

= arg min
zo,ni,ns

∑
pi

(h (|ri − ro| , zi; zo, ni, ns)− hexp log (h (|ri − ro| , zi; zo, ni, ns)))


(3.3)

These can find the optimal parameters and the location of the micro-bead using a non-

linear optimization method. When minimizing the negative log-likelihood function,

I used the simplex method [53]. Among estimated parameters, controlling estimated

zi and zo can generate depth-variant PSF.

3.2.2 GEM Algorithm

Since the depth-variant RL method is sensitive to noise, it is desired to impose a

regularization function that discourages large variations in restored images to alleviate

the noise effect. The regularized penalized cost function is defined as Eq. (2.25) and

53



Eq. (2.27). To suppress noises, I utilize GEM algorithm that is mentioned in related

works part.

3.3 Experimental Results

3.3.1 PSF Estimation

In first experiment, I tested how well the proposed method fit the experimental PSF. I

prepared a sample of a diluted solution of 0.2µm diameter Fluoresbrite Yellow Green

Fluorescent Microspheres (Polyscience Inc., PA, USA) and dried the solution onto a

cover slip. Then, the sample was imaged using a 40, 0.95 NA objective lens with

an Olympus IX-71 inverted microscope. Using the 65×65×59 acquired image with

spacings of 0.11×0.11×0.64 µm, we estimated the PSF parameters and the location of

the microbead using the method defined in Eq. (3.3). To estimate the parameters that

minimize the objective function defined in Eq. (3.3), we used the simplex optimization

method [54].

The acquired experimental PSF is depicted in Fig. 3.3 and Fig. 3.4. It can be seen

that the experimental PSF includes non-negligible noise. I estimated parameters of

theoretical PSF in Eq. (2.40) and Eq. (2.41). The generated PSF based on estimated

parameters is represented in Fig. 3.5 and Fig. 3.6.

Fig. 3.7(a) and Fig. 3.7(b) show the xz sections of the acquired microbead image

and the estimated PSF image (the estimated center location of the microbead on the

z axis is 26.9 µm), respectively, whereas Fig. 3.7(c) and 3.7(d) show the xy sections of

the acquired bead and the estimated PSF image (a slice at z =36.7 µm), respectively.

The estimated ni and ns values are 1.53 and 1.13, respectively.

The normalized correlation coefficient (COR) value of the acquired image and the

estimated PSF image is used for evalutation of the fitting result. The COR value is

calculated as follows:
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Figure 3.3: x-y profiles of experimental PSF

COR =

∑(
(fac − fac)(fe − fe)

)√∑
(fac − fac)2

∑
(fe − fe)2

(3.4)

where fac and fe denote the acquired image and the estimated image, respectively. hac

and he represent avarage of the acquired image and he estimated image, respectively.

The COR value in this experiment was 0.903 (close to 1), which shows the validity

of the proposed fitting method.
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Figure 3.4: x-z profile of experimental PSF

3.3.2 Simulations

We conducted simulation studies to evaluate the performance of the proposed method

in comparison with the invariant Richardson-Lucy (INV-RL) method, the invariant

generalized expectation maximization (INV-GEM) method, and the depth-variant

Richardson-Lucy (DV-RL) method. First, we generated a synthetic 20µm diame-

ter microsphere object with its center location on the z axis being at a depth of

10µm. Then, we convolved the synthetic object using the constructed PSF model

under Poisson noise. We generated such synthetic noisy and blurred observed images

(65×65×111, with spacings of 0.5 µm for the x, y, and z axis) for five different signal

to noise ratios (SNRs) and attempted to restore the true object using the INV-RL,

INV-GEM, DVRL, and DV-GEM methods. We repeated iterations of the four meth-

ods for 200 times, which ensures the relative change of objective function value is less

than 1× e−5 for all the methods. We also tested the performance of the INV-RL and

the DV-RL method with a stopping strategy [55], which attempts to avoid restoring

noisy image by early termination of the iteration before convergence. To do that, we

compute mean square error between restored image and true image, and terminate

the iteration when the error is minimized. Although this strategy is not applicable
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Figure 3.5: x-y profiles of estimated PSF

for real experimental data since true image is not available, we report this results for

comparison purpose.

Fig. 3.8(a) and 3.8(b) show the xz profile of the true microsphere-shape synthetic

object and that of the noisy blurred image used for simulation. Fig. 3.8(c) 3.8(h)

show the restored images using the INV-RL, INV-RL with stopping strategy, INV-

GEM, DV-RL, DV-RL with stopping strategy, and DV-GEM methods. For depth-

invariant methods such as INV-RL and INV-GEM, we used the PSF model at z =10

µm for deconvolution. Fig. 3.9(a) and 3.9(b) show the xy section (at z = 10 µm)

of the true object and the noisy blurred image. Fig. 3.9(c) 3.9(h) show the restored
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Figure 3.6: x-z profile of estimated PSF

images using the INV-RL, INV-RL with stopping strategy, INV-GEM, DV-RL, DVRL

with stopping strategy, and DV-GEM methods, respectively. As one can see in the

figures, invariant methods such as INV-RL and INV-GEM were unable to effectively

restore the xz section of the true object. Although the DV-RL method was able to

restore the spherical shape in the xz profile, the image was noisy because the method

does not incorporate a regularization function. Although the stopping strategy was

able to reduce noise a little bit more than the INVRL and DV-RL methods without

stopping strategy, the resulting images (Figs. 3.8(d), 3.8(g), 3.9(d) and 3.9(g)) are

still noisy. Compared with other methods, the DV-GEM method restored the true

object more effectively even in the presence of noise.

Table 3.1: COR values of true object image and restored images obtained by using
the four methods.

Restoration methods
SNR (dB) Noisy and blurred INV-RL INV-GEM DV-RL DV-GEM

30 .724 .955 .955 .975 .975
25 .723 .949 .951 .969 .973
20 .719 .932 .944 .950 .966
15 .706 .883 .944 .898 .965
10 .670 .769 .949 .778 .960
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Figure 3.7: Micro-bead image and fitted PSF: (a) xz profile of acquired microbead
image; (b) xz profile of estimated PSF image; (c) xy profile of acquired image at z =
36.7 µm; (d) xy profile of estimated PSF image at z = 36.7 µm.
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Figure 3.8: Images of xz profiles in simulation: (a) true image; (b) blurred and noisy
image (SNR=15dB); (c) INV-RL; (d) INV-RL (stopping) (e) INV-GEM; (f) DV-RL;
(g) DV-RL (stopping); (h) DV-GEM.

To study the statistical properties of the INV-RL, INV-GEM, DV-DL and DV-

GEM methods, we repeated the restoration 10 times using 10 different noise real-

izations. Table.3.1 shows the average COR values between the true object and the

restored images for the 10 restorations obtained by using the four methods. As

shown in the table, the proposed DV-GEM method outperformed the other methods.

Note that the performance of the depth-variant methods was better than that of the

depth-invariant methods. In addition, the DV-GEM method outperformed the DV-

RL method for all SNR cases. In particular, if the noise is severe, the performance

of the DV-GEM method was much better than that of the DV-RL method. When
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Figure 3.9: Images of xy profiles in simulation: (a) true image; (b) blurred and noisy
image (SNR=15dB); (c) INV-RL; (d) INV-RL (stopping) (e) INV-GEM; (f) DV-RL;
(g) DV-RL (stopping); (h) DV-GEM.
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the SNR was very good (e.g., 30 dB case), the performance of the DV-RL was al-

most the same as that of the DV-GEM method. For the INV-GEM method and the

DV-GEM method, we selected the regularization parameter manually in a way such

that restored images are smooth enough. One may attempt to automatically tune

the regularization parameter using methods such as generalized cross validation [56].

We defer investigation on the automatic regularization parameter tuning to a future

study.

Table 3.2: Computation time of the four methods per iteration (unit is second).

INV-RL INV-GEM DV-RL DV-GEM
computation time .65 .92 72.95 73.24

We also report computation time of the four methods implemented using MAT-

LAB (Mathworks, USA). Table.3.2 shows computation time of the four methods per

iteration on a workstation that has two Intel Xeon X5650 processors (2.67GHz) and

96 GB memory. As expected, depth-variant methods required much more compu-

tation time due to computationally intensive depth-variant convolution operation.

However, the DV-GEM method required only slightly more computation time than

the DV-RL method. Note that computation time for depth-variant methods can be

reduced using a parallel processing algorithm and/or more advanced computers.

3.3.3 Bead Experiment

We also tested the performance of the proposed method for real images in comparison

with the conventional methods such as the INV-RL method, the INV-GEM method,

and the DVRL method. We acquired the image of 20µm diameter Fluoresbrite Yellow

Green Fluorescent Microspheres (Polyscience Inc., PA, USA) under the same condi-

tion as in the acquisition of the 0.2µm diameter microbeads for the PSF estimation.

Then, we attempted to restore the true object using the four methods. Fig. 3.10(a)
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shows the xz section of the acquired image while Figs. 3.10(b) - 3.10(e) show the

results using INV-RL, INV-GEM, DV-RL, and DV-GEM methods, respectively. For

the depth-invariant methods such as INV-RL and INV-GEM, we used a PSF at z =

17.97 µm, which is around the center of the slices of the acquired microbead image, for

deconvolution. As one can see in Figs. 3.10(b) and 3.10(c), the restored images based

on the depth-invariant PSF have longer support size than the true image especially

along the z axis. This result is consistent with the results from the simulations in the

preceding subsection and results from previous investigations [57]. This problem can

be reduced by using the DV-PSF for deconvolution. Fig. 3.10(d) and 3.10(e) show

the restored images using the DV-RL method and the DV-GEM method, respectively.

As one can see in the figures, both methods yielded better deconvolved images than

the depth-invariant based methods in the sense that the support size along the z axis

is closer to the truth. As expected, the DV-RL method generated a noisier image

than the DV-GEM method. It is to be noted that unlike in the results from the

simulation studies, the axial blur along the z axis are not removed completely. We

suspect the experimental PSF is not accurate. Because it is hard to say the refractive

index and the focal distance is not changed in the procedure of switching the point-

like bead into the 20µm bead. Also, we suspect that the performance might be even

more enhanced by using a blind deconvolution method that allows reflecting actual

imaging condtion. We handle this problem in the next chapter. Fig. 3.11(a) shows

that xy section of the acquired image at z = 17.97 µm and Figs. 3.11(b) 3.11(e) show

the results using INV-RL, INV-GEM, DV-RL, and DV-GEM methods, respectively.

As one can see in the figures, the total variation (TV) penalty function was able to

reduce noise in the restored images without blurring edges very much.
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Figure 3.10: Images of xz profiles in real experiments: (a) observed; (b) INV-RL; (c)
INV-GEM; (d) DV-RL; (e) DV-GEM.
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Figure 3.11: Images of xy profiles at z = 17.97 µm in real experiments: (a) observed;
(b) INVRL; (c) INV-GEM; (d) DV-RL; (e) DV-GEM.

3.4 Discussion and Conclusion

Thic chpater investigated the deconvolution of 3D WFM images using the GEM al-

gorithm that is based on penalized maximum likelhood estimation method and the

depth-variant PSF. Using an estimated depth-variant PSF by fitting a parameter-

ized Gibson’s PSF model to an experimental microbead image, the proposed method

applied the GEM algorithm for the deconvolution of 3D WFM images.

The proposed method is implemented on a PC using simuation and real images. In

simulations experiments, the author evaluated performances by mean square error and

normalized correlation coefficient. The proposed method showed better performance

than the depth-invariant RL method, the depth-invariant GEM method, and the

depth-variant RL method. And the proposed method clearly removed the axial blur
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in the simulation image. This result shows that the GEM algorithm could be a

practical deconvolution method for WFM.

In real experiments, the auhtor conducted a qualitative performance evaluation

since the ideal image is unknown. While the proposed method removes axial blur

effectively in simulation experiments, the axial blur in the actual image could not

removed completely. The result alludes that the experimental PSF is not accurate.
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Chapter 4

Blind Deconvolution using

Depth-variant PSF

This chapter addresses the challenging probelm on the axial blur removing in real im-

ages. In the previous chapter, even though previous chapter conducts depth-variant

GEM deconvolution based on pre-PSF, the axial blur in the actual bead image is

not completely suppressed relatively in comparison with simulation result. The re-

sult indicates that the PSF pre-measurement is meaningless. Therefore, the author

assumed that the PSF should be estimated directly from captured images without

any pre-measurement.

To the purpose, the author initially estimates PSF from intensity analysis of the

observed image and refines the PSF from the maximum likelihood method in this

chapter. A flowchart of the proposed method is depicted in Fig.4.1. From step A-a

to step A-b shows the difference from the prior chapter. As depicted in Fig.4.1, the

PSF is estimated from the observed image not an experimental PSF. This chapter

binds step A-a, A-b and B as step 1 - estimation of depth-invariant PSF. Step C is

handled as step 2 - generation of depth-variant PSF. Step D is introduced as step 3

- accelerated depth-variant GEM algorithm.
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Figure 4.1: Flow chart of blind deconvolution using depth-variant PSF

The proposed deconvolution algorithm is implemented using a open data, for

the comparision to exisitng studies. Since true object image of the open data is

unknown, performances are evaluated by known diameter (length) of the object and

known shape. These evaluation indicators are already used in the existing studies,

the author also used the indicator for the comparision.

The major contributions of this study are as follows. First, a new practical WFM

image deconvolution algorithm that reflects the depth variance of a PSF and actual

imaging conditions is proposed. Second, it showed remarkable experimental results

compared to commercial softwares and showed that the proposed algorithm solved

the problem of the axial blurs.

4.1 Introduction

Aiming to improve the resolution and contrast of 3D WFM through image deconvolu-

tion, numerous studies have been carried out[1]. Most of them have conducted depth-

invariant image restoration owing to a simplicity of PSF modelling[21, 37, 44, 25]. If

the specimen is thin enough, the depth variance of PSF can be ignored, and their

methods suppress the blur effectively, thereby increasing the resolution of 3D WFM
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up to that of confocal microscopy[58]. However, in case of an average size of common

specimen (10−20µm), the axial blur along the z axis still remains [15]. For instance,

the diameter of the blurred image of a 2500nm bead was measured as 4760nm (with

axial blur) and 2867nm (with transverse blur), and after deconvolution of these values

under the assumption that the specimen is thin enough, these results were respec-

tively 4000nm and 2664nm[26]. These deconvoluted values indicate that the restored

image is lengthened along the optical axis. This phenomenon, called elongation, oc-

curs when the image is restored by using a depth-invariant PSF which is only suitable

for a specific plane[6]. In consideration of the fact that the general size of an animal

cell is 10 − 20µm, namely, much thicker than the 2500nm bead, the depth variance

of PSF cannot be neglected. To handle the elongation problem, several researches

have considered a depth-variant PSF. However, they tried only simulation[15] or bead

experiments accompanied with pre-PSF measurement[6].

As for the pre-PSF measurement performed in previous studies, it was assumed

that an actual PSF can be approximated by the captured 3D image of a point-

like micro-bead. However, the pre-PSF measurement is meaningless because in the

process of replacing a micro-bead with a cell specimen, the actual imaging condition

changes. When users switch specimen into another specimen, the refractive index

and the focal distance varies. This change makes the difference between the actual

PSF and the result of pre-PSF measurement. In addition, a point-like micro-bead is

merely a ‘point-like’ sphere and cannot be a perfect point source.

4.2 Proposed Method

The proposed method in this chapter consists of three steps. Step 1 and Step 2 are

PSF estimation processes. They are divided into PSF estimation for central depth
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of object and depth-variant PSF generation. Step 3 is image deconvolution using the

estimated PSFs in prior steps.

4.2.1 PSF Estimation

Step 1. Estimation of depth-invariant PSF

In step 1, an initial PSF is estimated first. Before the procedure for estimating PSF

is explained, the method for generating the initial PSF and its specific setting are

explained. The accuracy of the estimated PSF depends on the initial PSF. To generate

the initial PSF, the Gibson’s PSF model, which is based on Kirchhoffs integral formula

(one of the most widely used PSF models for WFM), was applied [40]. This model

generates a 3D WFM PSF by substituting optical parameters. These parameters

are refractive indices and optical distances, which are determined by analyzing the

intensity profile and objective lens information. The Gibson’s PSF model is given as

eq. (2.40).

A schematic of the optical path in a WFM is shown in Fig. 4.2. The OPD,

Λ (zi, zo, ρ), causes spherical aberration, which is modelled as [45]

Λ (zi, zo, ρ) = zo

√
ns2 − NA2ρ2 +

(
zo − zi −

zoni
ns

√
ni2 − NA2ρ2

)
, (4.1)

where ns and ni represent the refractive indices of the specimen and the immersion

layer. Since the components of a specimen are usually similar to those of water, ns

is set as the refractive index of water. Meanwhile ni depends on the composition of

immersion layer. In the case an oil-immersion objective is used, ni is taken as the

refractive index of oil.

Unknown parameter zo denotes the position of the object on the z axis. The initial

zo setting is calculated from the intensity profile of the captured image. To make it

easier to understand, setting of parameter zo is depicted in Fig. 4.2. The object part
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Figure 4.2: Schematic of optical path in WFM; the left graph illustrates the nor-
malized intensity along the z axis to help understanding of initial parameter zo.
When the initial parameter zo is set, the normalized intensity that is bigger than
[(min (g (zi)) + max (g (zi))) /2] in the centre of the x and y axes is supposed to be
the object.

is set as normalized intensities greater than [(min (g (zi)) + max (g (zi))) /2] at the

origin of the x and y axes. zo is then set as the central position zc of the object part,

under the assumption that the lowest position of the object part as zo = 0. Then the

initial PSF, h (|ri − ro| , zi; zo = zc) (in this chapter, h means hDV RS(3)), is generated

by using Equation (2.40) and (4.1).

After the initial PSF is generated, a single PSF for the overall region is estimated.

In this step, a non-parameterized and image-based PSF model is used, while the

initial PSF is derived from the parameterized equation. This is because the non-

parameterized PSF estimation is quicker than parameterized PSF estimation.
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Then the blind version of RL algorithm is used for estimating PSF.

f̂ s+1 =f s
(
h⊗ g

h⊗ f̂ s

)
ĥs+1 =hs

(
f ⊗ g

f ⊗ ĥs

) (4.2)

The blind RL algorithm iteratively estimates the true object f and the non-

parameterized PSF h simultaneously from the acquired image g and the initial PSF,

h (|ri − ro| , zi; zo = zc). The initial f is the acquired image, g. In this step, however,

the blind algorithm is utilized only for estimating the PSF. The estimated PSF,

ĥ = hstep1, is considered as the actual PSF corresponding to the centre of the object.

Step 2. Generation of depth-variant PSF

To construct depth-variant PSFs from a non-parameterized model, it is required to

estimate PSFs for each depth. That estimation, however, is difficult and takes a lot of

computational time. If the PSF is converted to a parameterized model, depth-variant

PSFs could be effectively generated by controlling parameter zo.

To do so, it is necessary to estimate zo of Eq. (2.40) that minimizes a negative

log-likelihood of a given hstep1(pi) Poisson distribution.

(ẑo) = arg min
zo

∑
pi

(h (|ri − ro| , z; zo)− hstep1 log (h (|ri − ro| , z; zo)))

 (4.3)

Eq. (4.3) is minimized by a simplex method, which is a simple and fast mathematical

optimization [53]. Iteratively, Eq.(4.3) is implemented until convergence. A parame-

terized PSF, hstep2(|ri − ro| , zi; zo) = h(|ri − ro| , zi; ẑo), that reflects the position of

the object can then be obtained. The PSF equation, namely, (2.40)(4.1), into which

zo = ẑo is substituted becomes the actual parameterized PSF for the central depth of
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the object. And then, depth-variant PSFs are generated by shifting parameter zo in

accordance with the axial resolution of the acquired image.

4.2.2 Image Deconvolution

Step 3. Accelerated depth-variant GEM algorithm

In this step, a penalized depth-variant RL algorithm is used for restoring the depth-

variant image. An image following a Poisson distribution is relatively weaker in

respect to noise than a Gaussian distribution; thus, the penalized version of the RL

algorithm[32] was chosen. To guarantee convergence, the GEM algorithm is used,

which is defined as Eq. (2.36).

This iterative technique, however, is slow to converge toward the final result. To

increase the speed of convergence, vector extrapolation is applied [4]. The acceleration

method predicts where each pixel in the image is going from the correction obtained by

each iteration. We restore the image using combination of Eq. (2.36) and Eq. (2.38).

4.3 Experimental Results

Datasets of the C. Elegans embryo cell and fluorescent micro-bead images were

used in two experiments. The first experiment on cells aimed to show the ap-

plicability and the qualitative performance of the proposed algorithm for biologi-

cal images. The second experiment on beads, applied the proposed algorithm to

the images of a fluorescent micro-bead whose size and shape were given. It was

thus possible to evaluate the performance of the proposed algorithm quantitatively

by comparing its quantitative performance to those of three different deconvolu-

tion software packages (Huygens Pro, AutoDeblur, Deconvolution Lab) as reported

by Griffa[26] and another depth-invariant method by Soulez[25]. The datasets can
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be downloaded from the website of the Biomedical Imaging Group (BIG) in EPFL

(http://bigwww.epfl.ch/deconvolution).

Specific parameter settings and parameter curves in the case of the above-

described experiments with a fluorescent bead and C. Elegans embryo cell are

described in the following. Since the datasets were taken by an oil-immersion lens,

the refractive index of the immersion layer is set as ni = 1.518. The refractive index

of the specimen is set as ns = 1.333, which is the refractive index of water. Curves of

parameter zo for PSF fitting are shown in Fig. 4.3. It can be seen from the figure that

the parameter-fitting procedure needs only few iterations and that the parameter

curves all converge. In our experiments, the iteration was stopped if the parameter

did not change three times in a row.
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Figure 4.3: Stability of parameter zo optimization

The regularization parameters were set as γ = 0.5 × 10−5 and 0.1 × 10−3 for the

cell and bead experiments, respectively.

4.3.1 Cell Experiment

The dataset is the observation image of a C. Elegans embryo cell with a ×100, 1.4NA

oil UPlanSApo objective. Enough image stacks should be taken to allow overall shape

of a specimen to be observed. Unfortunately, the dataset did not satisfy this condition

and bring artefacts on boundaries of the restored image. To avoid the boundary effect,
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a dataset that is pre-processed by a minimum filter is used. The specific procedure

is as follows:

First, after a 672× 712× 216 matrix was generated, the raw data of a C. Elegans

embryo image (672×712×104) was put in the centre of the generated matrix (57-160

plane along z axis). Then, intensity values for the unfilled areas were determined by

the minimum filter. Undetermined values bordering determined values were calcu-

lated as follows. The minimum values obtained by the minimum filter were found

in the 3 × 3 matrix of neighbouring determined pixels, and the unfilled pixels right

above or below the neighbouring determined pixels were filled in. In this way, the

whole matrix was fully filled and could be used for the experiments. Through this

procedure, enough z stacks could be obtained until most of the intensities along the

z axis disappeared, thereby reducing artefacts at the boundary.

The data cube used was composed of 672 × 712 × 216 voxels of size 64.5 ×

64.5 × 200nm. The PSF size (x × y × z) was set to 151 × 151 × 57 voxels of size

64.5 × 64.5 × 200nm. After deconvolution, the restored image was cropped to the

original volume 672× 712× 104. The dataset was composed of three stacks of images

corresponding to three wavelengths. CY3 (red 634nm), FITC (green 531nm) and

DAPI (blue 447nm) staining represented the point-wise spots of protein, microtubule

filaments and chromosomes in the nuclei, respectively. Each wavelength image was

processed separately.
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Figure 4.4: Result of image restorations by proposed algorithm and by Deconvolu-

tionLab
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Table 4.1: Experimental conditions for comparison.
Algorithm PSF

(b) RL (DeconvolutionLab) PSF data from BIG
(c) Depth-invariant PSF in step 2
(d) GEM (Proposed algorithm) Depth-invariant PSF in step 2
(e) Proposed depth-variant PSF

To compare the performance of the proposed algorithm with those of existing

algorithms, the results of deconvolution by a commercial software package Decon-

volutionLab as well as those obtained by the proposed deconvolution algorithm are

depicted in Fig. 4.4. All the experiments using ours and DeconvolutionLab were

implemented with the same number of iterations 150. Table.4.1 summarizes the ex-

perimental conditions. The x-y, y-z and x-z profiles shown in Fig. 4.4 are depicted

when z = 63, x = 260 and y = 450 pixel, respectively. Performance of each algorithm

was examined in terms of qualitative visibility and computational cost.

In raw data, the image detail is represented in a narrow intensity range. The

acquired images corresponding to the CY3, FITC and DAPI channels have intensity

ranges of (215-2842), (209-2929) and (206-2687), respectively. Each image was decon-

voluted, the ranges were widened to (0-45898), (0-24773) and (0-16292), respectively.

An observed image of a C. Elegans embryo cell is shown in Fig. 4.4(a). Since the

image is blurry and unsharpened, it is difficult to identify its cellular components.

A set of images restored by using DeconvolutionLab with a PSF downloaded from

BIG, which was generated without consideration of actual aberration, is shown in

Fig. 4.4(b). As shown in the figure, only components that had strong intensity re-

mained, and even the remaining components are blurry. The result of image restora-

tion using the depth-invariant PSF which was estimated in step 2 of the proposed

algorithm is shown in Fig. 4.4(c). The result is still blurry, but it is improved from

the viewpoint of observing specific components. It can be inferred from this result

that the downloaded PSF did not reflect the actual imaging condition.
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The result obtained with the proposed accelerated generalized expectation-

maximization (GEM) algorithm with the depth-invariant PSF is shown in Fig. 4.4(d).

The proposed algorithm had a clearer visibility than DeconvolutionLab after the

same number of iterations since the image restoration was designed to guarantee

the convergence and converge fast by means of vector extrapolation. The result of

deconvolution by the proposed algorithm used depth-variant PSFs is depicted in

Fig. 4.4(e). While the restored image in Fig. 4.4(d) is almost the same as that in

Fig. 4.4(e), the restored image in Fig. 4.4(f) shows that the elongation phenomenon

was suppressed by our depth-variant GEM image algorithm. Moreover, it seems

that the depth-variant GEM algorithm removed blur more effectively than the

depth-invariant one, as represented in the pink elliptical area in Fig. 4.4(f). When

the observed C. Elegans embryo cell image in Fig. 4.4(a) is compared with the

restored image in Fig. 4.4(e), it becomes clear that the proposed algorithm improves

the visibility of the cellular structure. In addition, blue chromosomes, green filaments

and red spots can be distinguished.

The processing time when DeconvolutionLab was used was five hours. The depth-

invariant version of the proposed algorithm took only 113 minutes, which is obviously

much faster than DeconvolutionLab. While the proposed depth-variant algorithm

achieved better performance than that of the depth-invariant one in terms of qualita-

tive visibility, it took more computational time (27.5 hours) than the depth-invariant

version. In other words, a trade-off between performance and computational time

exists.

4.3.2 Bead Experiment

Observations of a InSpeck green fluorescent hollow bead with a diameter of 2500nm

were used as a fluorescent micro-bead dataset. The observations were taken with an

Olympus Cell R microscope with a ×63, 1.4 NA oil-immersion objective. The data
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cube was composed of 256 × 256 × 128 voxels with size 64.5 × 64.5 × 160nm. The

PSF size (x× y × z) was set to 151× 151× 57 voxels of size 64.5× 64.5× 160nm.

The diameter of the restored image was measured in terms of the full width at

half maximum (FWHM), which is depicted in Fig. 4.5. As the FWHM value became

closer to the real diameter (2500nm), the method was regarded as better one.

Figure 4.5: Full width at half maximum (FWHM).

The relative contrast between the border and the centre of the sphere used as a

performance indicator because it was already known that the fluorescent bead was

empty inside. When the relative contrast is calculated, the maximum intensity in the

sphere is regarded as the border intenstiy. I described how to calculate the relative

contrast in Fig. 4.6. As the relative contrast became higher, the boundary between

the shell of the fluorescent bead and the hollow bead inside became more clearly

distinguishable.
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Figure 4.6: Calculation of relative contrast

Observed images and images restored by the proposed algorithm are shown in

Fig. 4.7. The images were normalized by dividing maximum intensity. Images ob-

served along the transverse axis and the optical axis are shown in Fig. 4.7(a) and (d),

respectively. Images of a clear sphere shape restored from the ambiguous images in

Fig. 4.7(a) and (d) respectively are shown in Fig. 4.7(b) and (e). Intensity profiles

along the centre line (dotted line) in Fig. 4.7(a) and (b) are plotted in Figure 2(c), in

which the horizontal axis represents the position of the transverse axis. Blue and red

lines depict the intensity of the observed and restored images, respectively. As can be

seen from Fig. 4.7(c), the border between the shell of the bead and the centre of the

hollow sphere is definitely distinguishable. The relative contrast was calculated from

the transverse intensity profiles in Fig. 4.7(c). The axial intensity profiles shown in

Fig. 4.7(f) show the same tendency as those shown in Fig. 4.7(c).
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Figure 4.7: Blind depth-variant deconvolution results of 3D real fluorescence micro-

bead images. Transverse intensity profiles in (c) are cuts along the blue dotted line

in image (a) and the red dotted line in image (b). Axial intensity profiles in (f) are

cuts along the blue dotted line in image (d) and the red dotted line in image (e).
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It is apparent from Fig. 4.7(a) and (d) that the observed image is especially blurred

along the optical axis in comparison to the transverse axis. As shown by the restored

image and the intensity profile in Fig. 4.7(e) and (f), respectively, the proposed algo-

rithm clearly removed the blur along the optical axis. This result demonstrates that

the elongation phenomenon was effectively suppressed.

x-y and x-z bead image changes during iteration of image restoration are depicted

respectively in Fig. 4.8 and Fig. 4.9. The bead surrounding blurs are almost removed

during 10 iteration. After 40 iteration, the estimated image takes a hollow sphere

form. shell of sphere and the hollow inside are quite distinct over 60 iteration.

Figure 4.8: x-y bead image changes during iteration of image restoration.
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Figure 4.9: x-z bead image changes during iteration of image restoration.

Changes in the objective function, FWHM and relative contrast value during

iteration of image restoration of the fluorescent bead image are shown in Fig. 4.10(a),

(b) and (c), respectively. The objective function represents a negative log-likelihood

function, which is calculated from Eq. (4.3). The smaller the negative log-likelihood

function, the more accurately the true object is estimated. In Fig. 4.10(a), it is clear

that the objective function converges enough. The iteration is stopped when the

variation of obejctive function is less than 100. The results were obtained after 87

iterations. In Fig. 4.10(b), the axial FWHM value changes rapidly for ten iterations,
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whereas the transverse FWHM curve changes smoothly. In Fig. 4.10(c), the relative

contrast rapidly increases in the early stage, namely, a similar tendency with the axial

FWHM curve.

Figure 4.10: (a) Objective function curve; (b) transverse and axial FWHMs computed

at each iteration; (c) relative contrast curve.
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Table 4.2: Performance comparison of previous [25] and proposed methods; As
FWHM gets closer to true diameter (2500), the performance of the deconvolution
method is better.

Raw data Huygens Au.Deblur Dec.Lab ISBI12 Proposed
Transverse
FWHM (nm)

2867 2709 2709 2664 2736 2655

Axial
FWHM (nm)

4760 4000 4640 4160 2977 2349

Relative
Contrast (%)

18 53 78 68 88 97

To compare the quantitative evaluation, bead diameter and relative contrast after

previous deconvolution methods were applied to the images are listed in Table.4.2.

As previously mentioned, the bead diameter was calculated as FWHM.

Parameter values of the observed image are presented in the ‘Raw data’ column.

From the FWHM values of raw data, it is clear that the blur was far severer along

the optical than transverse axis. As the FWHM of a deconvolution result gets closer

to the true diameter (2500), the deconvolution has better performance. As shown

in Table.4.2, the axial FWHM value given by the proposed algorithm was superior

to those given by the other algorithms, which was closest to the true value. This is

because all of them except our algorithm assumed depth-invariant PSFs; thus, this

result indicated the importance of applying depth-variant PSFs. The error in the

axial FWHM value given by the proposed algorithm is 151nm, which is less than

the voxel size along the optical axis (160nm). Although the error in the transverse

FWHM value given by the proposed algorithm is 155nm, which is equivalent to 2.34

pixels on the transverse axis, the proposed algorithm gives the best transverse FWHM

value. Besides, the relative contrast given by the proposed algorithm is also superior

to those values given by the other algorithms. That is, the relative contrast given by

the proposed method algorithm is 97%, and those values given by the other algorithms

do not surpass 90%.
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4.4 Discussion and Conclusion

This study was undertaken to design a deconvolution algorithm for 3D WFM. Our

proposed method removed axial blur effectively and solved the elongation problem

via an accurate PSF estimation and a depth-variant image restoration. The proposed

algorithm estimates a parameterized PSF reflecting actual imaging conditions, and

it generates depth-variant PSFs controlling the depth parameter. A depth-variant

image restoration algorithm, which is accelerated by vector extrapolation, was im-

plemented. Results of the C. Elegans embryo cell and fluorescent bead experiment

show that the proposed algorithm removes axial blur that could not be removed by

algorithms developed in previous studies. Moreover, the performance values given by

the proposed algorithm are superior to those given by a commercial software package

used in this study. These findings suggest that 3D WFM images should be restored

by a depth-variant deconvolution, and they imply that the PSF from an observation

is more accurate than PSF measurement.

According to the result of the experiment with fluorescent beads, the restored

image has a shape of an asymmetric sphere. In this study, however, it was assumed

that the PSF is x-y symmetric. To improve the quality of the restorated image,

modelling the depth-variant asymmetric PSF is considered as the next task. Further,

the proposed algorithm is also applicable to other image models that have a space-

variant PSF.
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Chapter 5

Blind Deconvolution using

Depth-variant Asymmetric PSF

For correcting distortions that occurs in deconvolution result, in this chapter, the

author proposes a new deconvolution algorithm that uses a depth-variant asymmet-

ric PSF. The proposed method estimates an actual PSF based on 3D asymmetric

depth-variant model designed by Hanser [43], which reflects actual imaging condition

including all aberration information. The depth-variant asymmetric PSF model is

designed from a pupil function. The pupil function is composed of Zernike polyno-

mials and parameters that represent degrees of aberrations. Since parameters are

estimated from the observed image it reflects the actual imaging condition.

A flowchart of the proposed method is depicted in Fig.5.1. The process is same

as the proposed method Chapter 3, however, the used PSF model is different. While

Chapter 3 uses Gibson’s PSF model, thie chapter uses Zernike polynomial PSF to

reflect asymmetric PSF characteristic. Therefore, the pink boxed region - step A-a,

step A-b and step B are different from the prior chapter. This chapter binds pink

boxed rigion (step A-a, A-b and step B) as step 1 - estimation of depth-invariant PSF
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for central depth of object. Step C is handled as step 2 - generation of depth-variant

PSF. Step D is illustrated as step 3 - accelerated GEM algorithm.

Figure 5.1: Flow chart of blind deconvolution using depth-variant asymmetric PSF

The author tests the proposed algorithm through actual images of C. Elegans

embryo cell and micro-bead as same as prior chapter. The micro-bead has determined

diameter and hollow sphere shape. The diameter and the relative contrast between

shell and hollow inside is used for performance indicators. Also, to evaluate symmetry,

the author added standard deviation values of diameter and shell intensities along

x, y and z as symmetry indicators. The author shows performances according to all

indicators - diameter, relative contrast and standard deviations. Experimental results

show distortion free and more accurate deconvolution result.

Moreover, the author summarizes performance and computational cost according

to deconvolution algorithms, thereby, which makes users have easier and wiser choice

among various algorithms. An analysis of the computational cost in terms of image

size is also addressed, which makes users predict computational cost according to

image size.
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5.1 Introduction

The estimation of 3D WFM PSF is tricky because the PSF has unique characteristics

such as depth-variance, axial asymmetry and specimen-dependence. Axial asymme-

try occurs by mismatch between the refractive indices of the immersion medium and

the specimen. As the WFM focuses on a deeper depth of specimen, this mismatch

becomes severe. This is why the PSF has depth-variant characteristic. Besides,

specimen-dependence is because each sample has different refractive index and differ-

ent focal point (depth) for that.

A simple existing method to obtain 3D WFM PSF is an observation of a point-like

object at each depth[6]. The observation is called an experimental PSF and it reflects

an imaging condition such as actual diffraction and aberration information. However,

the experimental PSF has a difficulty to place the point-like object at specific depths,

and it involves noises. And above all, the imaging condition of experimental PSF is

different from one of actual imaging; therefore, the experimental PSF is not practi-

cal. On the other hand, most existing studies use Gibson and Lanni PSF parametric

model[40]. The parametric PSF model is noise free, however, it is also not practical

since it contains unknown parameters such as the actual depth and the actual refrac-

tive index of specimen. To apply actual images, the authors have already proposed

a blind depth-variant deconvolution method in Chapter 4, which estimates the PSF

directly from the captured images. Its experimental results outperform the previous

methods in terms of suppressing blur along optical (depth) axis. This result indicates

that the blind deconvolution is promising way to achieve accurate deconvolution re-

sult. However, the deconvolution result image of a perfect sphere object showed a

distorted sphere shape. This result implies that PSF include non-ignorable radial

asymmetry as well as depth-variance, axial asymmetry and specimen-dependence.

To involve the radial asymmetry in PSF, this paper utilizes Hanser’s PSF model

[43]. The Hanser’s PSF model can express radial asymmetry of PSF through de-
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sigining distorted pupil fuction of lens[43]. We simplify parameters of the Hanser’s

PSF model so as to be applicable to practical image. Then, we directly estimate

practical parameters of the simplified Hanser’s PSF model from the observed image.

Details are described in proposed method section. Deconvolution results show that

our proposed method improves distortion as well as out-of-focus blur. Moreover, we

compare performances and computational costs of previous and our algorithms.

5.2 Proposed Method

We first introduce our simplified Zernike polynomial PSF model. Then we describe

process of our deconvolution algorithm. Our method is composed of three steps -

estimation of depth-invariant PSF for central depth of object (step 1), generation

of depth-variant PSF (step 2) and accelerated generalized expectation-maximization

(GEM) algorithm (step 3). Since step 1 and 2 are based on the simplified Zernike

polynomial PSF model, step 1 and 2 of the proposed method are different from our

previous method in Chapter 4.

Subsequently, memory requirement for our algorithm is described, which helps

users to select suitable PSF model in accordance with required performance and

memory specifications. Also, performance indicators for quantitative performance

evaluation in bead experiment are introduced. Due to lack of symmetry indicators,

we devised new indicators for quantitative evaluation. We also introduce them in

detail.

5.2.1 PSF Parameterization

We use Zernike polynomial PSF model that can describe depth-variant and asymmet-

ric characteristics of a WFM PSF. However, Zernike polynomial PSF model has too

many parameters (79 parameters) and it can lead a bad estimated result although
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well fitted data. Also, involving all types of aberration parameters requires expensive

computational cost; choosing several parameters of major aberrations is required. We

propose to remove of phase part φ and minor aberration parameters in modulus part

ω which are minor influence factors to PSF. Then the distorted pupil function in

Eq. (2.46) is simplified as:

p(kx, ky) = ω(kx, ky) =
∑

n=4,7,8,12

MnZn(kx, ky) (5.1)

Among various aberrations due to lens imperfection, coma and spherical aberration

are major influence factor to PSF, we parameterized amplitudes of following aber-

rations - defocus M4, spherical M7, x-coma M8 and y-coma M12 aberration. These

aberration factors are dominant than other aberrations [59]. As piston and tilt aber-

ration have no effect on the PSF, we set M0 = M1 = M2 = 0. In addition, location

(depth) in z axis in the object space, zo is also involved. Namely, unknown and to

be estimated parameters are set as 5 parameters - depth zo, defocus M4, spherical

M7, x-coma M8 and y-coma M12. We defined the aberration parameters vector as

M = {M4,M7,M8,M12}.

The author that proposed Zernike polynomial PSF not only derived the PSF

model but also successfully reconstructed an observation of a point-like object [43].

Few previous studies proposed that such reconstruction of a point-like object can

be utilized as PSF [6, 60]. However, the reconstruction is not accurate because the

observation of an point-like object is different from a sample to observe. Therefore,

we directly estimate PSF from observed image (which is called blind deconvolution)

to reflect observation environment and specimen-dependence of PSF. All process of

our algorithm is implemented based on the simplified Zernike polynomial PSF model.
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5.2.2 Blind Deconvolution

Step1: estimation of depth-invariant PSF for central depth of object

Before estimating the PSF, first we generate an initial PSF. Most algorithms generate

initial PSF as no aberration PSF. Since accuracy of PSF estimation result relies on

initial PSF, we generate an initial aberrated PSF through analyzing the observed

image, which is already proposed in our previous chapter. An initial parameter for

depth zo is determined under the assumption that the object is placed in normalized

intensities bigger than [(min (g (0, 0, zi)) + max (g (0, 0, zi))) /2]. Then, the central

position zc in the object becomes the initial depth. Other initial parameters that

represent degrees of lens aberrations M are assumed as 0. Applying these initial

parameters to the parameterized PSF model in Eq. (2.43) and Eq. (2.44) generates

the initial PSF hinit.

After the initial PSF generation, we find depth-invariant PSF using blind

Richardson-Lucy (RL) algorithm, which plays a role in modification of the PSF.

This procedure is the same with our previous chapter except PSF model for initial

PSF generation. The found depth-invariant PSF hstep1 is regarded as the PSF for

the center of the object and it is non-parameterized.

Step2: generation of depth-variant PSF

This step parameterizes and generates depth-variant PSFs. For keeping the form of

WFM PSF and easy generation of depth-variant PSFs, the estimated depth-invariant

PSF should be parameterized. Eq. (5.2) illustrates the depth-invariant PSF fit-

ting to the simplified Zernike polynomial PSF model. zo and aberration parameters
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M4,M7,M8 and M12 in pupil function are alternatively and iteratively estimated.

(ẑo) = arg min
zo

∣∣∣∣∣∣
∑
pi

{
hDV (4) (pi, zo; M)− hstep1 log

(
hDV (4) (pi, zo; M)

)}∣∣∣∣∣∣
(
M̂
)

= arg min
M

∣∣∣∣∣∣
∑
pi

{
hDV (4) (pi,M; zo)− hstep1 log

(
hDV (4) (pi,M; zo)

)}∣∣∣∣∣∣
(5.2)

Since the effect of refractive index mismatch on actual PSF is relatively bigger than

one of aberration parameters in pupil function, parameter estimation of PSF starts

from zo estimation. After estimation of zo and M, depth-variant asymmetric PSFs

are then easily computed by shifting the parameter zo in accordance with the axial

resolution of the acquired image. The image location in z axis zi also should be

shifted as much as zo moved. All the generated PSFs are normalized so its sum adds

up to 1. Depth-variant PSFs generated this way become practical PSFs that reflect

actual imaging condition since parameters are found from the observed image.

Step3: accelerated GEM algorithm

Using generated depth-variant asymmetric PSFs, the depth-variant GEM algorithm

is implemented. GEM algorithm is well known as a solution of ill-posed problem

and guarantees convergence [27]. The accelerated GEM algorithm is introduced in

Chapter 4.

5.2.3 Memory Requirement

Table.5.1 shows memory requirements corresponding to each PSF model. Second,

third and forth column in Table.5.1 represent memory requirements for space-

invariant PSF (hSIRS(2) and hSI(3)), depth-variant PSF (hDV RS(3) and hDV (4)) and

space-variant PSF (hF (6)), respectively. X, Y and Z in Table.5.1 represent observed
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Table 5.1: Memory requirements of the proposed deconvolution using each PSF model
hSIRS(2), hSI(3) hDV RS(3), hDV (4) hF (6)

image g loading XY ZD

PSF h loading

XY ZD XY Z2D (XY Z)2Dsum of multiples

between f and h

sum of multiples

between g and h∑
(fh)

total variation R(f) 7XY ZD

Total memory 11XY ZD (8 + 3Z)XY ZD (8 + 3XY Z)XY ZD

Table 5.2: Memory requirements according to image sizes with double data type
x× y × z voxel size hSIRS(2) and hSI(3) hDV RS(3) and hDV (4) hF (6)

256× 256× 128 (exp 1) 0.688GB 24.5GB 1.50PB
672× 712× 216 (exp 2) 8.47GB 505GB 228PB

image size along x, y and z-axis. D in Table. 5.1 denotes data size per voxel. For

example, image with double data type has 8 bytes for 1 voxel.

As shown in Table.5.1, adding depth-variance (variance along z axis) increases

total memory required (11XY ZD → (8 + 3Z)XY ZD). In addition, adding radial-

variance (variance in x-y plane) increases the total memory required even more ((8 +

3Z)XY ZD → (8 + 3XY Z)XY ZD). From this, it can be noted that total memory

requirement for our deconvolution method depends on the degree of space-variance.

The total amount of memory requirements of our deconvolution method is sum

of memory requirements of followed procedures in image loading, PSF loading, two

sums of multiples and total variation. Eq.(2.37) shows that our deconvolution method

involves these procedures. In case of PSF loading, even if PSF size is smaller than

image size, PSF size is expanded to observed image size in order to multiple in

frequency domain. We generated PSFs so that the sum of all the pixels of the PSF

be unity. Since the sum of PSF in the whole image domain is impossible, we assumed

that intensity spreads inside the PSF size. Total variation for all types of PSF involves

derivatives of pixels and it requires 7 times of image size (front, back, left, right, top
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and bottom from reference image). Memory requirement for total variation holds

a large percentage in space-invariant algorithm, however not in depth-variant and

space-variant algorithms.

In case of deconvolution using a space-invariant radially symmetric PSF, sum of

multiples can be replaced with a convolution operation. Since the PSF is space-

invariant, sum of multiples can be calculated by a single convolution operation. On

the other hand, deconvolution using depth-variant PSFs requires depth-variant PSFs

as a number of depth and the sum of multiples can be replaced with a convolution

operation for every single depth, regardless of radial asymmetry. In case of deconvolu-

tion using a space-variant PSF, space-variant PSFs are needed as a number of pixels

and the sum of multiples cannot be replaced with a convolution operation. Therefore,

deconvolution using space-variant PSFs requires huge amounts of memory.

Memory requirements for images that will handle in expeirment section are also

depicted in Table.5.2. Table.5.2 assumes double data type. The memory requirement

for each experiment and other possible image sizes can be obtained by formulas in

Table.5.1, this means the memory requirement of the proposed algorithm according

to various image sizes can be expected easily. We will compare expected memory re-

quirements in Table.5.2 and actual computational memory in the experiment section.

Total memory requirements for 256 × 256 × 128 voxels using a space-invariant

radially symmetric PSF, depth-variant PSFs and space-variant PSFs are approx-

imately 0.688GB, 24.5GB and 1.5PB, relatively. Total memory requirements for

672× 712× 216 voxels using a space-invariant radially symmetric PSF, depth-variant

PSFs and space-variant PSFs are approximately 8.47GB, 505GB and 228PB. These

expected memory requirements are depicted in 2nd and 3rd row of Table.5.2. At

present, a regular desktop PC can have 512GB RAM on Windows 8 Pro and Enter-

prise. From these values, depth-variant deconvolution is possible in the present.
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5.2.4 Evaluation Method

As introduced in related works, image deconvolution result of micro-bead can be

utilized to evaluate deconvolution performances since the bead has determined di-

ameter and hollow sphere shape. The diameter and relative contrast between shell

and hollow inside were used as performance indicators. The diameter of the restored

image was measured in terms of the full width at half maximum (FWHM). As the

FWHM value becomes closer to the real diameter, the method is regarded as better

one. The relative contrast between the border and the center of the sphere also used

as a performance indicator because it was already known that the fluorescent bead is

empty inside. As the relative contrast value becomes higher, the boundary between

the shell of the fluorescent bead and the hollow bead inside becomes more clearly

distinguishable.

However, these values do not show symmetry of the sphere. Therefore, we

added performance indicators that represent symmetry - standard deviation values

of FWHM and intensity peak ratio. The intensity peak ratio is depicted in Fig.5.2.

Figure 5.2: Intensity peak ratio
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After obtaining FWHM and intensity peak ratio along x, y and z axis, their

standard deviation values are calculated by:

σFWHM =

√√√√{(XF − F̄
)2

+
(
YF − F̄

)2
+
(
ZF − F̄

)2
}

3

σPA =

√√√√{(XP − P̄
)2

+
(
YP − P̄

)2
+
(
ZP − P̄

)2
}

3

(5.3)

XF , YF and ZF denote FWHM along x, y and z axis. XP , YP and ZP denote

intensity peak ratio along x, y and z axis. F̄ represents average of FWHM values,

which is calculated by F̄ =
(
XF +YF +ZF

3

)
. Similarly, P̄ represents average of intensity

peak ratio, which is calculated by P̄ =
(
XP +YP +ZP

3

)
. Standard deviation values in

Eq. (5.3) express the symmetry of diameter and intensity symmetry, respectively. As

their values become smaller, the result has symmetric shape and better performance.

In the following section, we evaluate and compare performances of the proposed

and previous algorithms not only qualitatively but also quantitatively by introduced

performance indicators-FWHM, relative contrast and standard deviation values of

FWHM and intensity peak ratio.

5.3 Experimental Results

Datasets for experiments are observations of fluorescent micro-bead and C. Elegans

embryo cell; the datasets can be downloaded from the website of the Biomedical

Imaging Group (BIG) in EPFL (http://bigwww.epfl.ch/deconvolution). The follow-

ing section shows the deconvolution result of the proposed algorithm to the images

of a fluorescent micro-bead whose size and shape were given. It is thus possible to

evaluate the performance of the proposed algorithm quantitatively by comparing size
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and shape of deconvolution result. Lastly, the C. Elegans embryo cell experiment

shows the validity of proposed method to biological images.

5.3.1 Bead Experiment

In this section, an observation of InSpeck green fluorescent hollow bead with a di-

ameter of 2500nm was used (http://bigwww.epfl.ch/deconvolution/?p=bead). The

observation was taken with an Olympus Cell R microscope with a ×63, 1.4 NA oil-

immersion objective. The downloaded data cube was composed of 256 × 256 × 256

voxels. We cropped the data as 256×256×128 voxels with size 64.5×64.5×160nm so

as to compare performances of previous methods and ours. Because previous methods

also used the cropped version. The PSF size (x × y × z) was set to 151 × 151 × 57

voxels of size 64.5× 64.5× 160nm. The regularization parameter in bead experiment

was set as γ = 0.1× 10−3.

Fig.5.3 summarizes bead image deconvolution results of previous and our algo-

rithms. Fig.5.3 (a) shows the cropped raw data and yellow dotted line in Fig.5.3

represents 2500nm. The bead shape in deconvolution result fits closer to yellow dot-

ted line, the deconvolution algorithm shows better performance. We also summarized

FWHM (bead diameter), relative contrast, standard deviation of FWHM and stan-

dard deviation of intensity for each algorithm in Table.5.3. These quantitative results

correspond to the deconvolution result in Fig. 5.3. To easier understand, FWHM

and relative contrast values of deconvolution result of each algorithm are plotted

on a graph, which is depicted in Fig. 5.4. We also make a graph of computational

costs for each algorithm, which is represented in Fig. 5.5. First, we compared

blind and non-blind deconvolution results. The PSF for non-blind deconvolution

is the downloaded PSF in the website of the Biomedical Imaging Group (BIG) in

EPFL (http://bigwww.epfl.ch/deconvolution/?p=bead). The PSF for blind decon-

volution is found by our proposed PSF estimation method with Gibson and Lanni
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Figure 5.3: Comparison of Deconvolution methods for 3D data of a fluorescence bead

Table 5.3: Comparison of Deconvolution methods for 3D data (256 x 256 x 128) of a
2500 nm diameter bead

ISBI12 (b) (c) (d) (e)
Blind 3 3 3 3

Depth-dependent 3 3

Asymmetric 3 3

FWHM
Reconstruction
Error

Transverse (nm) 236 243 153 155 180
Axial (nm) 477 1834 670 151 84

Standard Deviation (nm) - - - 190 143

Intensity
Relative Contrast (%) 88 86 94 97 98
Standard Deviation (%) - - - 12.8 4.4

Comp.
Cost

Processing Time (min) - 4.6 80 155 164
Memory (GB) - 2.04 1.82 22.2 22.2

PSF model[40]. For the sake of comparision, we used a single Gibson and Lanni

PSF in this experiment so that the PSF has depth-invariant and radially symmetric

characteristics, which is the same condition as the downloaded PSF. Fig.5.3 (b) and

(c) depict their deconvolution results.

While the deconvolution result of non-blind deconvolution in Fig.5.3 (b) is still

blurry, the blind algorithm result in Fig.5.3 (c) has a remarkable contrast between
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shell and hollow inside of micro-bead. Both transverse (x-y axis) and axial (z axis)

diameters of the bead in the deconvolution result are elongated since they do not

consider depth-variance.

Their quantitative performance values are summarized in (b) and (c) column

in Table.5.3. Their relative contrast values are 86 and 94%, respectively, which is

consistent with the qualitative result. Transverse FWHM values of the non-blind and

blind deconvolution are 2743 and 2653nm, respectively. Axial FWHM values are 4333

and 3170nm, respectively. The blind algorithm has closer FWHM value to the true

diameter (2500) than one of non-blind algorithm. However, their FWHM values still

far from the true diameter, which is also in accordance with qualitative performance

evaluation result. Their processing time and the used memory are 4.6, 80 minutes and

2.04, 1.82 GB, respectively. Through the qualitative and quantitative performance

evaluation in non-blind and blind deconvolution experiments, it is shown that blind

deconvolution is more suitable for actual WFM image than non-blind deconvolution.

Although computational cost is more required in blind deconvolution, we focused

accuracy of deconvolution results.

We depict blind deconvolution results using depth-variant radially symmetric PSF

and proposed depth-variant asymmetric PSF in Fig.5.3 (d) and (e). The Fig.5.3 (d)

is the result of our previous work and its PSF model is also Gibson and Lanni model.

The proposed depth-variant asymmetric PSF is the simplified Zernike polynomial

model that is introduced in proposed method section. Both results remove axial

blurs that could not be suppressed by using depth-invariant algorithms. However,

the result of deconvolution using depth-variant radially symmetric PSF exists artifact.

Besides, the shell has a distorted sphere shape. On the contrary to this, the result

of deconvolution using depth-variant asymmetric PSF shows a perfect sphere shape

and no artifacts. This result shows the validity of asymmetric PSF model.
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Quantitative results of blind deconvolution using depth-variant radially symmet-

ric PSF and proposed depth-variant asymmetric PSF are summarized in (d) and

(e) column in Table.5.3. The FWHM values are as follows: deconvolution results

using radially symmetric PSF (transverse 2655nm, axial 2349nm) and asymmetric

PSF (transverse 2680nm, axial 2416nm). While deconvolution using asymmetric

PSF has slightly the worse transverse FWHM, its axial FWHM values has far closer

to 2500nm than FWHM values of deconvolution using radial symmetric PSF. The

relative contrast values of depth-deconvolution result using radially symmetric and

asymmetric PSF are 97 and 98%, respectively. The deconvolution using asymmetric

PSF is slightly better than the one using radially symmetric PSF. Standard devia-

tion values of FWHM and intensity peak ratio as follows: x-y symmetric (190.3nm,

12.8%) and x-y asymmetric PSF (142.7nm, 4.4%). In the view of the symmetry, the

deconvolution using asymmetric PSF shows remarkable performances. It is consistent

with qualitative performance evalution.

Also, we compared actual computational costs in Table.5.3 with expected memory

requirements in Table.5.2 that are calculated by formulas in Table.5.1. In case of

deconvolution using space-invariant PSF, the difference between actual and expected

memory is 1.2GB, approximately. In case of deconvolution using depth-variant PSF,

the difference is 2.8GB. Though they are slightly different from expected costs, they

are acceptable errors to expect memory requirements. Also, as expected, actual

computational costs for the depth-variant image deconvolution requires much larger

processing time and memory requirements than invariant ones. Plus, there is no

difference of memory requirements between two depth-invariant algorithms or two

depth-variant algorithms, which correponds to the expected result in Table.5.2.

We also compare existing algorithm[25] and its deconvolution result is depicted

in ISBI12 column in Table.5.3. The existing algorithm excutes blind deconvolution

using depth-invariant asymmetric PSF and its PSF model is Zernike polynomial
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model[43]. While our proposed algorithm simplifies parameters of Zernike polyno-

mial PSF model, our deconvolution result is superior to the existing algorithm. Plus,

a quantitative performance comparision between the existing algorithm and our pre-

vious (d) algorithm indicates that depth-variance is more significant factor than ra-

dial asymmetry. From the deconvolution results described in Table.5.3, Fig. 5.4 and

Fig. 5.5, we could draw several conclusions. The more reflects characteristics of PSF,

deconvolution algorithm has more remarkable performance in terms of removing ax-

ial blur. In view of the relative contrast value, blind deconvolution affected and

their results surpass 90%. From standard deviation values in Table.5.3, the blind

depth-variant deconvolution using asymmetric PSF has lower standard deviation of

both FWHM and intensity peak ratio, this result indicates the validity of applying

depth-variant asymmetric PSF.

From Table. 5.3 and Fig. 5.5, it is shown that the depth-variance is critical factor

for memory requirement and processing time for step 3. This is because depth-

varying convolution in depth-variant deconvolution requires convolution operations

as the number of z planes of observed image. Whereas depth-invarying convolution in

depth-invariant deconvolution can be computed with only a single convolution. With

regard to processing time, not only depth-dependence but also blind deconvolution is

critical factor. This is because non-blind deconvolution has a given PSF and it does

not require PSF estimation and generation procedures of step 1 and step 2. Processing

time for step 2 increases after each adding PSF characteristics. As the method adds

depth-variance ((b)→(c)) and asymmetry ((c)→(d)), the processing time for step 2

shows the gradual increase, which is depicted in Fig. 5.5.

The Flowchart is added in Fig.5.6 in order to enhance our experiment understand-

ing. The (b), (c), (d) and (e) in Fig.5.6 correspond to each deconvolution methods

in Fig.5.3 and Table.5.3.
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Figure 5.4: FWHM and relative contrast according to deconvolution methods
(b) non-blind (downloaded PSF) (c) blind (depth-invariant radial symmetric PSF)

(d) blind (depth-variant radial symmetric PSF) (e) blind (depth-variant asymmetric
PSF)

5.3.2 Cell Experiment

We tested the proposed algorithm to C. Elegans embryo cell images as biological data,

which shows the applicability and the qualitative performance. The dataset is the

observation image of a C. Elegans embryo cell with a ×100, 1.4NA oil UPlanSApo ob-

jective (http://bigwww.epfl.ch/deconvolution/?p=bio). Enough image stacks should

be taken to allow overall shape of a specimen to be observed. Unfortunately, the

dataset did not satisfy this condition and bring artifacts on boundaries of the re-

stored image. To avoid the boundary effect, a dataset that is pre-processed by a

minimum filter is used, which is also used in our previous work. The data cube after

pre-processing is composed of 672×712×216 voxels of size 64.5×64.5×200nm. The

PSF size (x × y × z) was set to 151 × 151 × 57 voxels of size 64.5 × 64.5 × 200nm.

After deconvolution, the deconvolution result was cropped to the original volume size

of 672×712×104. The dataset was composed of three wavelength image cubes stacks:

CY3 (red 634nm), FITC (green 531nm) and DAPI (blue 447nm) staining depicts the

point-wise spots of protein, microtubule filaments and chromosomes in the nuclei,
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Figure 5.5: Computational cost according to deconvolution methods
(b) non-blind (downloaded PSF) (c) blind (depth-invariant radial symmetric PSF)

(d) blind (depth-variant radial symmetric PSF) (e) blind (depth-variant asymmetric
PSF)

respectively. Deconvolution of each wavelength image was implemented. separately.

The regularization parameter in cell experiment was set as 0.1× 10−5.

We compared deconvolution results between the blind deconvolution using depth-

variant radially symmetric PSF (our previous work, Chapter 4) and one using depth-

variant asymmetric PSF (proposed), which is depicted in Fig. 5.7 (b) and (c), repec-

tively. Red spots of protein and green microtubule filaments in the deconvolution

result using asymmetric PSF has more sharp shapes than one in the deconvolution

result using radially symmetric PSF. It is remarkable that artifacts in boundaries of

the restoration result using radially symmetric PSF are removed clearly.

5.3.3 Computational Cost according to Image Size

This subsection addresses the computational cost for the C. Elegans embryo cell ex-

periment according to image size. The processing time in this subsection expresses
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Figure 5.6: Flowchart of methods that are used in bead experiment: (b) Non-blind
deconvolution using space invariant radially symmetric PSF (c) Blind deconvolution
using space-invariant radially symmetric PSF (d) Blind deconvolution using depth-
variant radially symmetric PSF (e) Blind deconvolution using depth-variant asym-
metric PSF
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Figure 5.7: Deconvolution result of C. Elegans embryo cell.
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processing time only for step 3. The cell data cube for deconvolution is 672×712×216

voxels with double data type. Based on Table.5.1, total memory requirements for de-

convolution using a space-invariant radially symmetric PSF, depth-variant PSFs and

space-variant PSFs are 8GB, 505GB and 228PB, relatively. In the cell experiment,

this paper expanded data size for avoiding boundary artifacts. As depicted in the

experiment section, we crop the deconvolution result as same as the observed image

size after implementation of our algorithm using the preprocessed data. Therefore,

expanded area in preprocessed image excutes depth-invariant deconvolution, which

can save memory and avoid artifacts on the boundary, simultaneously. The data cube

after pre-processing has upper and lower expanded parts along z-axis with original

data cube as the center. Memory requirement based on equations in Table.5.1 can

be obtained as follows:

Mpre = XY Zpre(3Z + 8)D (5.4)

where Mpre and Zpre denote memory requirement for preprocessed data and pre-

processed image size on z-axis, respectively. Eq.(5.4) is the sum result of depn-

invariant deconvolution in upper and lower expanded parts (image loading: XY ZD,

PSF loading: 2XY ZD, multiple operations: 4XY ZD, total variation: 7XY ZD)

and depth-variant deconvolution in original data parts (PSF loading: XY ZZpreD,

multiple operations: 2XY ZZpreD. Since image loading and total variation parts are

overlapped with depth-invariant deconvolution, their computation can be omitted).

Fig. 5.8 depicts a computational cost according to x-y image size. All procedures

were carried out in MATLAB 2014a on parallel Intel Xeon E5-2680 processors (2.8

GHz) 448GB RAM, running Windows 8. Memory and time for implementation of

the proposed algorithm increase proportionally to x-y image size. Memory and time

increase as increase rate of the image size. Fig. 5.8 shows that deconvolution with a

twice increased image size needs a twice increased memory and time. It is consistent

with our calculation in Eq.(5.4).
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Figure 5.8: Computational cost according to x-y image size

Figure 5.9: Computational cost according to z image size

Fig. 5.9 depicts a computational cost according to z image size. Memory and

time for implementation of deconvolution algorithm also increase proportionally to z

image size. In case of 238×224 pixel size x-y image, as 1 pixel size increases in z-axis,

computational time and memory increases 0.357 sec and 0.143GB, respectively. As

shown in Fig. 5.8 and Fig.5.9, the z image size has an effects on greater time and

memory than x-y size. This is because the increase of z image size means increase of

zim and zpre in Eq.(5.4).
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The preprocessed cell data in this paper has 712 × 672 × 214 pixel size, its x-y

resolution should be 9 times of the depicted 238×224 size in Fig. 5.8. Using Eq.(5.4),

we can caculate expected memory size for our algorithm. Supposing double precision

(8 byte), the memory size should be 244GB (712×672×214× (3×104+8)×8 byte),

approximately. As we expected, the experiment took up 11 minites per 1 iteration

and 246GB memory, the computational cost is 9 times of the depicted 238x224 size

in Fig.5.8 and Fig.5.9.

5.4 Discussion and Conclusion

The proposed method in this chapter removes blur clearly and solves distortion prob-

lem via blind deconvolution algorithm using depth-variant asymmetric PSF. The PSF

of the proposed method is consist of distorted pupil function and aberration function

that refractive index mismatch induces, its parameters express asymmetry and depth-

variance of PSF, effectively.

To obtain suitable parameters of the PSF model, the proposed algorithm estimates

PSF and specimen function using the observed image. The observed image indicates

a rough location of object. From this information, the proposed algorithm generates

initial PSF for central location of the object. Then, RL algorithm modifies the PSF

and a simplex algorithm parameterizes the modified PSF. Subsequently, depth-variant

PSFs are generated by shifting depth parameters and they are used for deconvolution

algorithm. The deconvolution algorithm in the proposed method is an accelerated

GEM algorithm.

While the proposed algorithm simplifies parameters of Zernike polynomial model,

it supresses distortions and asymmetry that are remained problem in deconvolution

using radially symmetric PSF. Moreover, the proposed algorithm performance sur-

passes one of previous works including existing algorithm using non-simplified Zernike
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polynomial PSF. Performance is verified through experiments of micro-bead that has

determined diameter and hollow sphere shape. The accuracy of the deconvolution re-

sults is evaluated by the FWHM (diameter) and relative contrast of the deconvolution

results since the dataset is an observation of a micro-bead given diameter and hollow

sphere shape. The symmetry of the deconvolution results is evaluated by standard

deviations of the FWHM (diameter) and intensity peak ratios.

Not only deconvolution performance but also computational costs for each algo-

rithms are handled in this paper. Also, the specific computational cost according to

algorithms and image size is described, which enables users to predict the computa-

tional cost.

The work in this chapter would have wide application in images including space-

variant blurs. Images of Hubble space telescope wide-field/planetary camera can be

possible application examples.
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Chapter 6

Conclusion

6.1 Summary

In order to overcome the resolution limit in WFM, in this thesis, deconvolution algo-

rithms, which can remove out-of-focus blurs and correct distortions, are proposed and

implemented on a PC. By introduction practical algorithm to WFM and improving

PSF estimation, novel deconvolution algorithms for 3D WFM are developed as shown

in Table.6.1.

Table 6.1: Overview of the deconvolution algorithms proposed in this thesis
Proposal 1 Proposal 2 Proposal 3

Practical image
deconvolution

3 3 3

PSF

Depth-
variance

3 3 3

Specimen-
dependence

3 3

xyz
Asymmetry

3
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Proposal 1: Depth-variant Deconvolution

The first work proposes a depth-variant deconvolution based on single PSF pre-

measurement. As fitting a formulated Gibson’s PSF to a pre-measured PSF, the

proposal 1 can get a parameterized PSF. Adjusting z coordinates in the param-

eterized PSF enables to obtain depth-variant practical PSFs with ease. Existing

methods - experimental PSF and formulated PSF have limitations such as noise

existence and unknown parameters; thereby they could not apply to actual images.

Using the obtained depth-variant PSFs, the author first brought a GEM algorithm

to WFM. The GEM accurately estimates the object image and avoids the ill-posed

problem. In this work, performance evaluation is implemented by MSE and COR

values through simulation experiments. The deconvolution result shows the axial

elongation that could not be suppressed by existing depth-invariant methods is

suppressed. Also, the deconvolution result of GEM algorithm shows noise robust

performance than existing algorithm. The proposed deconvolution algorithm GEM

algorithm based on depth-variant imaging model estimates the object image with

appropriate noise model and imaging model for 3D thick specimen, which is superior

to existing algorithms. The GEM algorithm is also used following proposals.

Proposal 2: Blind Deconvolution using Depth-variant PSF

The second work proposes depth-variant PSF estimation from the observed image.

The refractive index and focal distance are changed since the point-like object sample

for the pre-measurement and the actual specimen is different. The remained blur

in deconvolution result using the first work refers the inaccuracy of pre-measured

PSF. The method first estimates the position of the object roughly from an intensity

analysis of the observed image. Then, the initial PSF is generated based on the

roughly estimated object position. A maximum likelihood function estimator finds

the precise depth-invariant PSF from the initial PSF. The fitting of the parameterized
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Gibson’s PSF model to the precise depth-invariant PSF is implemented by simplex

method, which enables to simply generate practical depth-variant PSFs. Adjusting

z coordinates in the parameterized PSF model generates depth-variant PSFs. The

GEM deconvolution algorithm in this work is modified to converge the objective

function fast and save an implementation time. In case of the blind deconvolution

for actual image, MSE and COR values could not be used since the object image is

unknown. Therefore, the performances are evaluated by the diameter and the relative

contrast of the object since a diameter and hollow sphere shape of the object are

known. The quantitative and qualitative evaluation shows that the second proposal

suppresses the elongation perfectly.

Proposal 3: Blind Depth-variant Deconvolution using

Depth-variant Asymmetric PSF

The third work proposes an asymmetric PSF estimation utilizing a Zernike polyno-

mial PSF model, which prevents to distortion in deconvolution result. The Zernike

polynomial model can express the complex depth-variant and asymmetric PSF

characteristics by a combination of Zernike polynomials and aberration parameters.

Among a lot of aberration parameters, the author limited the parameters as z

location in object space, defocus, spherical, x-coma and y-coma aberrations that are

major factors to determine a PSF shape. The PSF model in the first and second

work covers only spherical and defocus aberration, which has a x-y symmetric shape.

First, the method estimates the location of object roughly. Then, the initial depth-

invariant PSF is generated based on the roughly estimated object location with no

aberration. A maximum likelihood estimator estimates the precise depth-invariant

PSF from the initial PSF. To easily obtain practical depth-variant asymmetric PSFs,

fitting the parameterized Zernike polynomial PSF model to the estimated PSF is

implemented by simplex method. The depth-variant PSFs are obtained by adjusting
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parameters related to z coordinates. Finally, the accelerated depth-variant GEM

deconvolution algorithm is implemented. Performance evaluation is implemented by

standard deviation values of diameter and relative contrast along each axis. From

standard deviation values, it is shown that the third work suppresses the asymmetric

intensity amplification. Finally, the third work summarizes the performance and

computational cost according to deconvolution methods, which enables users to

select algorithm that has desired performance and computational cost.

Fig. 6.1 depicts summarization of proposed deconvolution algorithms in this the-

sis.

Figure 6.1: Summarization of proposed deconvolution algorithms in this thesis
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6.2 Future Work

The results of discussion on this dissertation showed the limitations of proposed

methods and provided some directions for future works.

Shift-variant deconvolution

To support uneven specimen, shift-invariance of PSF is required. However, proposed

PSF models assume that the specimen is composed of even materials. Although the

proposed methods cover the difference between specimen and immersion layer, the

specimen inhomogeneity is not included. Typically, a targeted live cell is placed in

culture medium, which means the inhomogeneity is exist in specimen. Moreover, the

targeted cell has various cellular components. These factors cause shift-invariance of

PSF. To overcome this problem, shift-variant deconvolution could be an interesting

research direction.

PSF estimation using depth-variant PSFs

This thesis generates depth-variant PSFs after finding PSF in the central depth of the

object. Proposal 2 and 3 generate a PSF in the central depth from intensity analysis

of the observed image and estimate the PSF under the assumption that effect of the

illuminations in the central depth is the highest. The PSF estimation is implemented

under the depth-invariant imaging model. Then, depth-variant PSFs are generated

depending on the estimated PSF in the central depth.

However, in case object illuminations are not concentrated in the central depth,

the generated depth-variant PSFs become inaccurate. Particularly, it is difficult to

apply our proposed method to an object image that has distributed shape.

For robust PSF estimation regardless of intensities distribution, depth-variant

PSF estimation from every depth of the observed image could be a future work. For

that, more computational time for the PSF estimation will be required. Therefore,
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the author believes that the PSF estimation using depth-variant PSFs at several

depths would be a solution.

Deconvolution for other fluorescence microscopy

This thesis considered the problem of image deconvolution for WFM images, which

can applicable to other microscopy images. While the confocal microscopy has the

limitation of slow image acquisition and photobleaching, the confocal has been also

widely used for the higher resolution than WFM. To surpass even the high resolution

of the confocal microscopy, deconvolution algorithms for that is also has been studied

by researchers.

The confocal microscopy has similar properties with those of WFM. The PSF

for confocal microscopy also has the depth-variant and asymmetric PSF. Moreover,

the noise model follows Poisson distribution. Although PSF modeling for confocal

microscopy is slightly different, the properties are same with the WFM. Existing

deconvolution methods for confocal microscopy also has similar problems such as local

minimum in deconvolution algorithm and blurs[61]. Therefore, the author believes

that the proposed methods with transformed PSF for confocal microscopy can be

applied to the confocal microscopy images.

For another application to the fluorescence microscopy, stimulated emission

depletion (STED) microscopy with proposed deconvolution algorithm can be. Since

the STED is one of the fluorescence microscopy, it also follows Poisson distribution

with noise, which provides application availability of proposed algorithm. By mini-

mizing the region of illumination at the focal point using the selective deactivation

of fluorophores, the STED microscopy can see details smaller than half the wave-

length of light could not be resolved by using confocal microscope. As the STED

microscopy also has resolution limit, deconvolution for the STED began to appear[62].
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Use of images that suffers from depth-variant blurs

Astronomical images taken by Hubble space telescope wide-field/planetary also suf-

fer from the depth-variant blurs. In case of the astronomical images, the specimen

becomes the space that is taken.

Also, the medical images such as positron emission tomography (PET) have depth-

variance. In case of the PET images, specimen becomes the body that is observed.

PSF for the astronomical and PET images is also varying with the distance from

the camera. Proposed deconvolution algorithm with them enables to provide clear

images by removing depth-variant blurs.

Real-time implementation

If a real-time implementation is possible, users can observe a clear biological image

immediately. The execution time for proposed algorithms is discussed in the chap-

ter 5, yet the algorithm does not operate in real time. An image restoration step for

712x672x214 pixel size needs about 150 minutes and 246GB. Proposed algorithms

require convolution operations as much as the number of the observed image stacks.

Also, the PSFs are required as the number of the observed image stacks. Naturally,

the larger observed image size, the more memory and time are demanded.

For surpass the problem, new shift-variant deconvolution algorithms began to

appear[63]. Also, the development of hardware will bring the real-time implemen-

tation of proposed algorithm. The real-time of proposed methods will help live cell

observations with clear resolution.
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