
博士論文

Passenger Forecast and Staffing at Airport Immigration

(空港の入国審査場における到着客予測とスタッフ配置に関する研究)

ドワン　フン　フィー





Abstract

In the period after the war Tokyo was the central hub of intercontinental
flights in Asia. Narita Airport has traditionally served as Tokyo’s airport for
international traffic. Over the last few decades Narita Airport has lost its
position as Asia’s main transfer hub. Its Asian competitors have increased
their capacity while Narita’s capacity has stagnated. In addition its Asian
competitors have consistently won airport awards for the best service. Im-
migration at Narita Airport has received complaints from passengers about
long waiting times during peak hours. Narita Airport has asked us to help
to reduce the waiting times for foreign passengers. In this thesis we achieve
this by setting the number of staff during the day such that the waiting time
is at most 10 minutes for a certain percentage of the passengers.

We have developed three models: an arrival forecasting model, a queue-
ing model and a staffing model. Based on the flight schedule and the number
of passengers on each flight we first make a distributional forecast with the
arrival probabilities at each time of the day. The arrival forecast is then
used as input for the staffing model. To meet a certain service level require-
ment the staffing model determines the staffing function, i.e. the necessary
staffing levels during the day. We can then simulate the performance of the
staffing function with the queueing model.

Statistical models and discrete-event simulation models are commonly
used for arrival forecasting. However statistical models require a large
amount of historical data and simulation models generally require many
iterations. We have developed a different approach to determine the ar-
rival probabilities by using the sum of random variables and the convolution
operation. We have collected data at Narita Airport to infer the proba-
bility distributions of the parameters used in the arrival forecasting model.
In addition we have developed a Monte Carlo simulation model and a de-
terministic approximation. All three models give reasonable results when
compared to the observed arrival rates of a single flight and multiple flights.

In the staffing literature a queueing system is often assumed to be in
steady-state condition in each staffing interval. From observation data we
have shown that the immigration queueing system is heavily overloaded dur-
ing long periods of the day. Three queueing models have been implemented
that can deal with overload: the numerical integration of ODE, the deter-
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ministic fluid model and the stationary backorder-carryover approach. We
have counted the passenger arrivals and the number of open service coun-
ters, and recorded the queues at Narita immigration on five occasions. The
estimated waiting times by all three models are in close agreement with
the observed waiting times. The deterministic fluid model is our preferred
model because of the short computation times while still being accurate if
a 1-minute time interval is used.

Staffing at airport immigration has been studied in the literature be-
fore but uncertainty in passenger arrivals due to flight delays was not taken
into account. First we have assessed the service level performance of the
deterministic staffing model. We found that the daily service level perfor-
mance with uncertain demand is inadequate. Second we have extended the
deterministic staffing model into a probabilistic model for which we have
determined the appropriate quantiles to set the staffing levels. Third we
have determined the appropriate parameter values for square-root staffing
at immigration. And fourth we have developed an iterative algorithm to
meet a service level requirement in each staffing interval.
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Chapter 1

Introduction

1.1 Background

Airport Competition

In the period after the war Tokyo was the central hub of intercontinental
flights in Asia. Tokyo’s role as the main transfer hub has eroded continuously
after the introduction of longer range airplanes in the 1970s and the liber-
alization of global air transport. Other Asian metropolises expanded their
airports while the capacities of Tokyo’s airports stagnated. These days the
Asian airport system is a multiple hub system. The neighboring airports
in East and South-East Asia have several competitive advantages: expand-
able operating areas, lower fees, professional airport management, extensive
services and offensive competition strategies [20].

Narita Airport has traditionally served as Tokyo’s hub for international
traffic while Haneda Airport handled domestic traffic. This situation changed
in 2010 when Haneda Airport opened a fourth runway as well as a third
terminal dedicated to international flights. Narita Airport now faces com-
petition both at the national and international level. Throughout the years
Narita Airport’s efforts to expand have been opposed by nearby residents.
The consequences of the limited growth in flight slots can be seen in Figure
1.1. Incheon International Airport (ICN) surpassed Narita Airport (NRT)
in terms of the number of international passengers in 2010. The airports
in Hong Kong (HKG), Singapore (SIN), Bangkok (BKK) also serve more
passengers than Narita Airport [83].

Not only has Narita Airport fallen behind in terms of international pas-
senger volume, its competitors also rank higher in terms of overall service.
In a global benchmark of airport excellence [71] Narita Airport placed 16th
while its Asian competitors in Singapore, Seoul, Hong Kong and Beijing
placed in the top five (Table 1.1). One of the services at Narita Airport that
can to be improved is immigration. According to the news site Japan Today
[44] ministry officials said that “many people arriving at Narita airport—
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Figure 1.1: The top 5 Asian airports in terms of international passenger
volume from 2005 to 2011.

Table 1.1: Ranking of the Skytrax World’s Best Airports Awards.

2012 2013 2014

1 Incheon Singapore Changi Singapore Changi
2 Singapore Changi Incheon Incheon
3 Hong Kong Amsterdam Schiphol Munich
4 Amsterdam Schiphol Hong Kong Hong Kong
5 Beijing Capital Beijing Capital Amsterdam Schiphol
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Table 1.2: Ranking of the Skytrax Best Immigration Awards.

2012 2013 2014

1 Incheon Singapore Changi Singapore Changi
2 Singapore Changi Incheon Incheon
3 Hong Kong Amsterdam Schiphol Munich
4 Amsterdam Schiphol Hong Kong Hong Kong
5 Beijing Capital Beijing Capital Amsterdam Schiphol

both foreign nationals and Japanese—have complained about the long lines
at immigration, especially during peak times when several aircraft arrive
one after the other.” Narita Airport’s competitors on the other hand have
some of the best immigration services in the world (Table 1.2). Incheon
Airport claims it has the world’s fastest and most convenient immigration
service with processing times that are more than three times faster than
the international standard [41]. In order to improve its competitiveness, the
decision makers at Narita Airport immigration asked us to help to reduce
the waiting times.

Waiting Time

For service facilities it is not only the number of minutes in the waiting
line that is important but also how the passenger experiences those waits.
Maister [53] was the first to investigate the psychological aspect of waiting.
He proposed a general law of service:

S = P − E (1.1)

where S stands for service, P for perception and E for expectation. If
a passenger perceives the received service higher than than his expected
level, then he will be satisfied. Durrande-Moreau [18] reviewed 10 years
of empirical research and concluded that there is a hierarchy among the
factors that affect the customer experience. First the real waiting time
and expectation are the main factors. Second, individual factors such as
habit, motivation, mood and time pressure are decisive factors. And third,
environmental factors (e.g. background music, information signs) have not
been proven to be effective in altering the customers’ perceptions. In this
thesis the focus will be on improving the real waiting time.

The mathematical study of waiting lines identifies several elements in a
queueing system that can affect the waiting time. First, a shorter service
time will reduce the waiting time. At immigration the service procedure
could be made faster by improving IT technology. Automated gates have
been installed at Narita Airport immigration but the results of the experi-
ment are unknown to us. The queue discipline, i.e. the order in which the
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Figure 1.2: Immigration at the South wing and the North wing of Narita
Terminal 1 [60].

passengers are served, also plays a role in the resulting waiting time. At
Narita foreign passengers with a reentry permit have a higher priority than
other foreign passengers. Another option would be to adjust the flight ar-
rivals such that the arrival rate at immigration has lower peaks. However the
flight schedule is not something that can be influenced by immigration man-
agement. An element that immigration managers can control is the number
of staff at the service counters. We will explore methods to determine the
required number of staff to meet a waiting time constraint.

Narita Immigration

Narita Airport has two terminals: Terminal 1 and Terminal 2. In this
report we will only discuss the immigration service at Terminal 1. Terminal
1 has a satellite configuration that concentrates the gates at the end of the
fingers. Terminal 1 is divided into a North wing and a South wing. The
North wing is mainly occupied by the SkyTeam airline alliance while the
Star Alliance (including ANA) is located in the South Wing. Each wing has
its own immigration service (Figure 1.2). More flights arrive at the South
Wing. Figure 1.3 shows the layout of the immigration area at the South
Wing. There are two entrances. Passengers from gates 51 to 58 arrive at
the left entrance while the passengers from gates 29B to 47 arrive at the
right entrance. Gate 29B is a bus gate which means that the passengers are
transported from the aircraft to the gate by bus.

The people arriving at immigration can be categorized into six types:
airline crew, Japanese passengers, foreign passengers without a reentry per-
mit, foreign passengers with a reentry permit and passengers that use the
automated gates. In this report we will refer to the foreign passengers with
a reentry permit as reentry passengers and those without a reentry permit
as foreign passengers. These two groups combined will be called alien pas-



1.2. RESEARCH OBJECTIVES 5

Figure 1.3: The immigration area at the South Wing of Terminal 1.

sengers. Figure 1.3 shows how the service counters are typically allocated
for each type. The service counters allocation per passenger type changes
dynamically during the day based on the flight schedule and the experience
of the immigration managers. The figure shows just one possible scenario
but the relative position of the service counters is always the same. On the
right side, service counters 1 to 7 are often used for Japanese passengers.
Service counters 8 to 11 are allocated to reentry passengers. Counters 12
to 17 are for all other foreign passengers. On the left side, counters 18 to
20 are always used for the airline crew. The automated gates 21 and 22
are fixed. Service counters 23 to 32 are also used for foreign passengers but
these will be only opened if there is not enough capacity on the right side.
In our study we will not consider the queues for the airline crew and the
automated gates.

1.2 Research Objectives

To determine the required staffing levels we need to develop three models:
an arrival forecasting model, a queueing model and a staffing model. Based
on the flight schedule we first estimate the passenger arrivals at immigration.
The number of arrivals is the input for the staffing model which provides
the necessary number of staff such that the waiting time does not exceed
10 minutes for a certain percentage of the passengers. The waiting time
performance can determined by a queueing model with the arrival rate and
the number of staff as input.

The arrival forecasting model gives the arrival probabilities at each time
of the day. In the call center literature various forecasting models have been
proposed: a doubly stochastic Poisson model [79], time series methods [73], a
mixed effects model [2], and a multiplicative model with Bayesian techniques
[78]. These forecasting models however require large amounts of historical
data that is not available in our case. In the airport literature discrete-event
simulation models [64, 55] and a deterministic arrival model [52] have been
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applied to airport immigration. We develop a faster method based on the
sum of random variables and the convolution operation to determine the
arrival probabilities.

Immigration is a collection of different queueing systems for foreign pas-
sengers, reentry passengers and Japanese passengers. In this thesis we only
consider the immigration service for foreigners and we combine the foreign
passengers with and without a reentry permit. Classical queueing theory
assumes steady-state [32]. However at immigration the arrivals are non-
stationary and the foreign queueing system is frequently overloaded. We
compare three queueing models that are appropriate for overloaded sys-
tems: the numerical integration of differential equations, the deterministic
fluid model and the stationary backlog-carryover approach. In the literature
the performance of these models have not been compared. We have gath-
ered data at Narita immigration on multiple days to validate the models
with actual waiting times.

Staffing has been studied to a great extent in the context of call cen-
ters. Traditional staffing models assume a constant arrival rate and use
the steady-state queueing theory. However assuming a constant arrival rate
is unrealistic in most cases. For non-stationary arrivals we can use simple
heuristics such as the square-root staffing formula or the pointwise station-
ary approximation [29]. In recent years the effect of uncertain demand on
the staffing requirements has been studied [15] and solutions have been pro-
posed with the newsvendor problem [17] and stochastic programming [6]. In
the airport literature immigration staffing has been solved with a determin-
istic model [52] but delay uncertainty was not taken into account. In their
discussion of a staffing model for airline services at an airport Green, Kole-
sar, and Whitt [29] suggest that “Future research should assess and address
the uncertainty in demand.” We extend the deterministic model with de-
lay uncertainty by introducing staff probabilities. Furthermore we develop
an iterative algorithm to meet a service level requirement in each staffing
interval.

The objectives of this study can be summarized as follows: (1) develop
a fast method to forecast the passenger arrivals under uncertain conditions,
(2) determine an appropriate queueing model for the overloaded foreign
queueing system, and (3) develop heuristics to quickly obtain the required
staffing levels to meet a service level requirement.

The arrival forecasting model is discussed in Chapter 2. In Chapter
3 we investigate the appropriate queueing models for Narita immigration.
The staffing model for uncertain demand is described in Chapter 4. The
conclusions of our study and suggestions for further research are discussed
in Chapter 5.



Chapter 2

Arrival Forecasting

In this chapter we will forecast the passenger arrivals at immigration. There
are two types of forecasts: a point forecast that gives the expected arrival
rate at each time, and a distributional forecast that gives the arrival prob-
abilities at each time of the day. A point forecast can be obtained from the
distributional forecast. Our objective is to determine the arrival probabili-
ties based on flight arrival times and the number of passengers.

First we review the forecasting models that have been proposed for air-
port immigration arrivals and customer arrivals at call centers. Then we
develop our arrival forecasting model for Narita immigration based on the
sum of random variables. The model requires the probability distributions
of the flight delay, the disembarkation delay, the disembarkation rate and
the walking speed. We will describe the statistical properties of these pa-
rameters and how we gathered the data for these parameters at Narita im-
migration. In the last section we compare the distributional forecast and
the point forecast with the observed arrival rates for a single flight and for
multiple flights.

2.1 Literature Review

In this section we review arrival forecasting models that have been used for
airport immigration and call centers.

2.1.1 Airport Arrivals

Airport models that forecast the passenger flow through the whole terminal
have been developed since the 1970s. These models have been used for
terminal design, airport planning and staff scheduling. An overview of these
total airport terminal models are given by Tosic [76] and Wu and Mengersen
[86]. In this section we will discuss studies that deal specifically with the
passenger flow to immigration or customs.

7
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Nikoue et al. [64] developed a passenger flow prediction model for immi-
gration at Sydney International Airport. For their study they had access to
three data sources. First, passenger tracking tools (DWELL) were placed
throughout the terminals: 400 Wi-Fi access points, 130 people-counters and
50 Bluetooth sensors. Second, they had access to the Flight Information
Display System (FIDS). The FIDS data contained information about the
gate, the estimated and scheduled time of arrival. And third, they could use
the data that was recorded at immigration by the Australian Department
of Immigration and Multicultural and Indigeneous Affairs (DIMIA). The
immigration dataset contained the time stamp, nationality, origin airport
and flight number of each passenger. They did not have any information
on the number of passengers on a flight, the changes in the estimated time
of arrival, or the time of departure at the origin airport. Furthermore the
Wi-Fi location data had low accuracy and a low frequency of collected sig-
nals. For example more than 80,000 devices were observed on a day but
only 500 devices could be used to determine the flow to immigration. They
used the DIMIA and FIDS data to generate a distribution of the number
of passengers of each flight. The DWELL data was used to determine the
walking time but because of the lack of useful tracking data they could not
determine the walking time as a function of the congestion in the terminal.
Instead they only determined the walking speed distribution for each gate.

Mason, Ryan, and Panton [56] developed a staffing model for customs
personnel at Auckland International Airport in New Zealand. Their initial
approach was to use historical flight loads in their simulations but the fore-
cast was not sufficiently accurate for the model. Instead they consulted with
the airlines to determine the flight loads and the scheduled flight times.

A staffing and scheduling model for immigration staff at Auckland Inter-
national Airport was developed by Mason, Ryan, and Panton [55]. Predic-
tion of the arrival flow to immigration of Auckland International Airport is
more difficult that at other airports because passengers need to collect their
luggage before going to immigration. This means that it is also necessary to
model the baggage flow from the aircraft to the baggage claim, and to model
the tendency of passengers in a group to wait until everyone has picked up
their luggage. However they did not have to develop the immigration arrival
model themselves because Auckland International Airport had already de-
veloped simulation models for the arrivals. The simulation model produced
a deterministic arrival distribution with one-minute intervals.

Littler and Whitaker [52] also developed an algorithm for immigration
staffing at a New Zealand airport terminal where the baggage claim was
placed before the immigration service. Initially they developed a detailed
event-based simulation model with stochastic parameters for the flight load
and service processes. However they found it was difficult to use a simulation
model for staffing with a service level. Instead they developed a simpler de-
terministic model. The stochastic variations in the arrivals was small so the
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expected number of arrivals could be use for setting staffing requirements.
In the forecast model the transport and service rates were deterministic and
an approximation was used to estimate the proportion of passengers of a
flight who finished the luggage pick-up at each time.

2.1.2 Call Center Arrivals

Ibrahim et al. [39] identified several key features of a call center arrival
process. The arrival rate is non-stationary and varies with the time of the
day. There can be considerable daily, weekly and yearly seasonal patterns.
There can also be significant correlations between different periods of the
same day and between successive days. And the variance is much larger
than the mean instead of equal as for the Poisson distribution. They also
distinguished between two types of models: single day models and multiple
day models. Gans, Koole, and Mandelbaum [24] reviewed arrival forecast
methods and argued that more accurate distributional forecasts are essential
for highly utilized call centers.

Single Day Arrival Models

For single day arrival models, the day is divided in p time intervals. Let
X = {X1, . . . , Xp} be the vector with the number of arrivals in each interval.
The random variable Xj has a Poisson distribution with mean Λj .

The uncertainty in the arrival rate can be captured with a doubly stochas-
tic Poisson model [79]. Assume that the deterministic arrival rate function
λ(t) describes the variation of the arrivals over the day. Then we intro-
duce a busyness factor B which is a random variable with mean E[B] = 1.
Uncertainty is added to the arrival rate function as follows

Λ(t) = Bλ(t). (2.1)

Avramidis, Deslauriers, and L’Ecuyer [3] studied this model where the busy-
ness factor has a gamma distribution with V ar[B] = 1/γ. As a conse-
quence vector X has a negative multinomial distribution with parameters
(γ, λi, . . . , λk) where λi =

∫ ti
t(i−1)

λ(t)dt. For the negative multinomial distri-

bution there exist equations for the maximum likelihood estimators of these
parameters.

Channouf and L’Ecuyer [11] proposed a model where the dependence
between time intervals is modeled via a normal copula. A copula is used
to describe the correlation between two random variables. Compared to
the model by Avramidis, Deslauriers, and L’Ecuyer it provided a better
estimation of the correlations and variance of the arrival rates.
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Multiple Day Arrival Models

In these models the arrival rates are modeled over several days or several
months. Again we assume a Poisson process for the arrival rate during
interval j but now we also consider the day of the week di = {1, . . . , 7}
where 1 refers to Monday, 2 to Tuesday and so on [39]. Xi,j is then the
arrival count in interval j on day i and it has a Poisson distribution with
mean Λi,j . Often a square-root transformation Yi,j =

√
Xi,j + 1/4 is applied

to stabilize the variance for Poisson data [9].
Taylor [73] compared five time series methods for forecasting intraday

arrivals in half-hour intervals. The arrival rate functions that they investi-
gated featured intraweek and intraday seasonal cycles. The methods include
seasonal autoregressive integrated moving average (ARIMA), exponential
smoothing method and dynamic harmonic regression. For short-term fore-
casts the exponential smoothing method was most accurate. For long-term
forecasts (more that a week ahead) the best results were achieved with a
simple method that averages past observations on the same day of the week.

Aldor-Noiman, Feigin, and Mandelbaum [2] proposed a mixed effects
model where the transformed arrival counts is a linear function of fixed
and random effects. Fixed effects are the day-of-the-week effect αdi , the
interaction between days θdi,j , and the interval-of-the-day effect βj . Random
effects are the daily volume deviation from the fixed weekday effect Di, and
the noise or residual effects εi,j . The model can be formulated as

Yi,j = αdi + βj + θdi,j +Di + εi,j . (2.2)

A multiplicative model with Bayesian techniques was proposed by Wein-
berg, Brown, and Stroud [78]. The model parameters are estimated with
Markov chain Monte Carlo sampling methods. The advantage is that it can
provide distributional forecasts but at the cost of long computational times.
An additional advantage is that the experience of call center managers can
be incorporated in the model.

The arrival models for call centers require large amounts of data to esti-
mate the model parameters. Brown et al. [9] analyzed the data of 101 days
of quarter-hourly arrival rates from a bank call center. Ibrahim et al. [39]
collected data over 275 days with half-hour intervals. Aldor-Noiman, Feigin,
and Mandelbaum [2] did a case study of an Israeli Telecom company call
center with 150 agents. The data consisted of arrival counts from February
2004 to December 2004.

2.2 Immigration Arrival Model

The arrival models for immigration that were discussed in the literature
review, produced point forecasts. However we are interested in a distribu-
tional forecast for Narita immigration. Also these models use simulation to
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Figure 2.1: The arrival process of one flight.

estimate the arrival rate. In general simulation requires many iterations and
can be relatively slow. The models for call centers require large amounts
of counting data to estimate the model parameters. This amount of data
is unavailable for our study. The only data of the passengers arrivals was
obtained from the observations that we conducted for several afternoons.
We also did not have access to the data of the immigration computer sys-
tem, nor were there any passenger tracking tools available. Our objective is
to develop a distributional arrival forecasting model without requiring large
amounts of counting data and with relatively high computational speed.

There are two pieces of available information that we can use to forecast
the arrivals at immigration: the number of passengers on a flight and the
flight schedule. The immigration office receives the number of arriving pas-
senger of each flight from the airlines on the day of arrival. If forecasting
is done days or weeks in advance then the number of passengers needs to
be estimated. The information about the expected time of arrival of the
flights is continuously updated during the day. The expected time of arrival
is only an estimation and the flight delay is an uncertain parameter. Other
uncertainties in the arrival process from the gate to immigration are shown
in Figure 2.1. The flight delay is the difference between the actual time of
arrival (ATA) at the gate and the expected time of arrival (ETA). When the
aircraft arrives at the gate, passengers need to wait inside the aircraft until
the disembarkation procedure (DIS) starts. We will call this time inside the
aircraft the disembarkation delay. Passengers exit the aircraft with a certain
rate. The orange bars represent the number of passengers disembarking dur-
ing a time interval. After disembarkation the passengers walk from the gate
to immigration. The walking time or the walking speed is another uncertain
parameter. The arrival rate at immigration is represented by the green bars.
Ideally we would like to forecast the number of passengers arriving at each
queueing system for foreign, reentry and Japanese passengers.

In this section we describe our method to estimate the probability of
having k passengers arriving during an interval while including the flight
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delay distribution, the disembarkation delay distribution and the walking
time distribution.

Arrival Time Distribution Function

Suppose a flight has N passengers on board and the first passenger leaves the
aircraft at time t0. Let τi be the time that passenger i arrives at immigration
relative to t0 and let Fi(t) be the distribution function of the arrival time of
passenger i

Fi(t) = P (arrival time of passenger i ≤ t) = P (τi ≤ t). (2.3)

We assume that the arrival times of the passengers are statistically indepen-
dent

P (τ1 ≤ t1, τ2 ≤ t2, . . . ) = F1(t1)F2(t2) . . . (2.4)

Let λ(t) be the arrival function then the total number of passengers A(t) of
the flight that have arrived at immigration by time t is

A(t) =

∫ t

0
λ(x)dx. (2.5)

Newell [63] treated the case that the arrival times are i.i.d., in other words
FA(t) = F1(t) = · · · = FN (t). The probability that k passengers have
arrived by time t is the probability of k successes in N trials [63]

P (A(t) = k) =
N !

(N − k)!k!
[FA(t)]k[1− FA(t)]N−k (2.6)

where success is defined as a passenger arriving by time t and failure if he
arrives after t. The expected number of cumulative arrivals is

E[A(t)] =
N∑
k=0

kP (A(t) = k) = NFA(t) (2.7)

with variance

V ar[A(t)] =

N∑
k=0

[k −NFA(t)]2P (A(t) = k) = NFA(t)[1− FA(t)]. (2.8)

Sum of Random Variables

However we are interested in the arrival probability P (λ(t) = k) instead of
the cumulative arrival probability P (A(t) = k). Also the arrival distribution
function Fi(t) is not identical for each passenger, therefore we cannot use
equation (2.6). Let FW (t′) be the walking time distribution function relative
to the disembarkation time δi of passenger i. FW (t′) can be assumed to be
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i.i.d for all passengers of a flight. The arrival distribution function Fi(t) is
not identical because the disembarkation time of each passenger is different

Fi(t) = FW (t− δi) (2.9)

where t = δi + t′.
To determine the arrival probability P (λ(t) = k) we divide the time

period into T intervals and let period j correspond to the interval (tj−1, tj ].
Let pij be the probability that passenger i arrives at immigration during
interval j. For clarity we drop the subscript j and write pi = pij . The
arrival probability is

pi = P (tj−1 < τi ≤ tj) = Fi(tj)− Fi(tj−1). (2.10)

Let the discrete random variable Xi describe the outcome of passenger i
arriving or not arriving at immigration during interval j. If passenger i
arrives then Xi takes the value 1 and 0 if he does not arrive during the
interval. The distribution function mi(x) for Xi is

mi(x) =

(
0 1

1− pi pi

)
. (2.11)

For passengers 1 and 2 the distribution functions of X1 and X2 are respec-
tively m1(x) and m2(x). Let S2 be the sum of the random variables X1

and X2. The distribution function a2(x) of S2 is equal to the convolution of
m1(x) and m2(x) given by [31]

a2(x) = m1 ∗m2 =
∑
v

m1(v) ·m2(x− v) (2.12)

for x = . . . ,−2,−1, 0, 1, 2, . . . . To determine the distribution of S3 = S2+X3

we convolve a2(x) with m3(x) of a third passenger. We continue this until
we have convolved all N passengers of a flight. The result is the sum of
N random variables SN = X1 + X2 + · · · + XN with distribution function
aN (x). Let λj be the total number of passenger arrivals during interval j.
The probability that k passengers arrive in the interval is then

P (λj = k) = aN (k). (2.13)

If we do the above procedure for all intervals j = 1, . . . , T then we get the
arrival probability matrix Z

Z =

1 2 . . . j . . . T



0
1

. . .
...

aNj(k) k
. . .

...
N

(2.14)
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where aNj(k) is the probability of having k arrivals during interval j. The
expected number of arrivals in interval j is

E[λj ] =

N∑
k=0

kaNj(k). (2.15)

The arrival probability matrix Z represents the arrival probabilities for a
flight without delay uncertainty.

Delay Uncertainty

Next we add the delay uncertainty to the arrivals. The delay uncertainty of
a flight is described by the delay function d(x)

d(x) =

(
. . . −2 −1 0 1 2 . . .
. . . p−2 p−1 p0 p1 p2 . . .

)
(2.16)

where the upper row indicates the delay time in minutes and the bottom
row indicates the probability for the delay time. There are two kinds of
delays: the flight delay df and disembarkation delay dd. We can determine
the overall delay function with the convolution of df and dd

d = df ∗ dd. (2.17)

Because a realization of the delay is identical for all passengers of a flight we
cannot add the delay uncertainty to the arrival distribution function Fi(t)
of the individual passengers. Instead we need to add the delay uncertainty
to the arrival probability matrix Z of the flight. The arrival probability
matrix Zd with delay uncertainty can be computed by the convolution of d
and each row of Z

Zd(k) = Z(k) ∗ d (2.18)

where Z(k) is the row of Z corresponding to k arrivals.

Multiple Flights

The last step is to combine the arrival probabilities of multiple flights. For
the arrival probability matrix Z of a flight, the column at interval j repre-
sents the distribution function aNj(x) of the random variable SNj . Let Z1

d

and Z2
d be the arrival probability matrix of respectively flight 1 and 2. Zd

is the arrival probability matrix of both flights combined. For interval j we
want to determine the distribution of the sum of the passengers of flight 1
and 2, i.e. Sj = S1

Nj + S2
Nj . The distribution function aj(x) of Sj is the

convolution of a1
Nj(x) and a2

Nj(x)

aj(x) = a1
Nj ∗ a2

Nj . (2.19)
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In other words we need to convolve the columns of Z1
d and Z2

d at the same
interval j. For n flights the arrival probability matrix Zd can be calculated
with

Zd(j) = Z1
d(j) ∗ Z2

d(j) ∗ · · · ∗ Znd (j) (2.20)

where Zd(j) is the column at interval j.

2.3 Parameters Estimation

For the immigration arrival model we need to determine the following pa-
rameters: the flight delay distribution df , the disembarkation delay distri-
bution dd, the disembarkation time of each passenger δi, the walking time
distribution function FW (t′) and the number of passengers on a flight N . In
this section we describe how the data for these parameters was collected at
Narita immigration and how we derived the distributions from the data.

2.3.1 Flight Delay

Literature Review

Flight delay is defined as the difference between the actual gate arrival time
(ATA) and the scheduled gate arrival time (STA). The causes for delays can
be derived from Figure 2.2 which shows the components of the scheduled
and actual flight times. The scheduled flight time consists of the taxi-out
time, the airborne time and the taxi-in time. In addition airlines add a
buffer time to cope with potential delays. The actual flight time shows that
there are four different delay components: the gate delay, the taxi-out delay,
the airborne delay and the taxi-in delay.

Tu, Ball, and Jank [77] modeled the gate delay. There are many factors
influencing the gate departure time. But instead of looking at each factor
separately the factors were grouped into three categories: seasonal trend,
daily propagation pattern and random residues. The seasonal trend includes
seasonal demand change, weather impact, and other seasonal factors. The
daily propagation pattern includes factors such as crew connection problems,
delay built-up from previous flights and other daily propagation factors.
The random residues contain mechanical problems, luggage problems, a late
passenger and other random factors. A smoothing spline model was used to
estimate the seasonal trend and the daily propagation pattern. To capture
the residual delay distribution a finite mixture model was applied.

Idris et al. [40] used linear regression to identify the main factors that
affect the taxi-out time. The most important factor was the take off queue
size. Other relevant factors were the runway configuration, the location of
the airline in the terminal, and the downstream restrictions (flow manage-
ment programs to regulate flights to weather-impacted destinations).
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(a) Scheduled flight time

(b) Actual flight time

Figure 2.2: Components of the scheduled and actual flight time. Adapted
from Skaltsas [70].

Willemain [84] analyzed the variations around daily average airborne
times between origin-destination pairs and the deviations from estimated
times en route. The deviations were decomposed into four components:
the regional airspace as a whole (day effect), the airspace at the departure
airports (origin effects), the en route airspace (residuals), and the airspace
at the arrival airports (destination effects). A simple model was used that
described the deviation as the addition of the four components. Numerical
estimates of the first three effects were obtained by a two-way analysis of
variance (ANOVA) without interaction effects. The en route effects were
the residuals after fitting the other three effects. Willemain et al. [85] in-
vestigated the influence of the origin airport, the destination airport, the
month of year, day of week, hour of day, aircraft type and carrier on the
flight’s estimated time en route. The route, month, hour of day and carrier
were found to be statistically significant influences.

Mueller and Chatterji [59] analyzed the arrival and departure delay char-
acteristics at ten major U.S. hub airports. The contribution of the delay
components to the overall delay was as follows: gate delay 50%, taxi out
delay 26%, airborne delay 16%, and taxi in delay 8%. The delays were mod-
eled by creating probability density functions. The Poisson distribution was
the best fit for the departure delay while the airborne and arrival delays
were best modeled with a normal distribution.



2.3. PARAMETERS ESTIMATION 17

Skaltsas [70] investigated how U.S. carriers adjust the buffer time. Using
linear regression models it was found that the flight distance and the time of
day were the most important factors that affect the buffer time. The results
also showed that the buffer time fluctuates greatly during the day.

Bai [4] analyzed the delays at Orlando International Airport using statis-
tical models. Multivariate regression, ANOVA, neural networks were used to
detect patterns of airport delay. Aircraft arrival delays were analyzed with
logistic regression. The following factors were found to contribute to the air-
craft delay: weather (precipitation), flight distance, season, weekday, arrival
time and the time spacing between two successive arriving flights. There
was a very high correlation between the delays at the airport of origin and
the destination airport. Also an interaction effect was found between the
flight distance and the time of day.

Narita Delay Data

To investigate the flight delays at Narita airport we used the online flight
schedule from the Narita Airport website [12]. The online flight schedule
contains the following information: scheduled time of arrival (STA), ex-
pected time of arrival (ETA), airline, flight code, departure city, stopover
city, gate, status and total travel time. The online flight schedule is updated
every 10 minutes. From November 1st 2013 until June 1st 2015 the flight
schedule was downloaded every 10 minutes from 4 AM until 12 PM (no
data was downloaded between January 19th and March 2nd 2014). This
data allows us to analyse the flight delay and how the ETA changes during
the day.

Delay with Scheduled Time of Arrival

The online flight schedule does not explicitly show the actual gate arrival
time (ATA). We assume that the ATA is equal to the last ETA when the
status of a flight changed to “ARRIVED”. The objective is to estimate
the delay probability distribution of a flight. From the literature it is clear
that there are many factors that influence the actual flight delay, including
time of day, day of week, month and flight distance. Figure 2.3 shows
the 2D-histogram of the probability of delay for each month, day of week,
hour of day and flight time. These plots were made with the data of all
flights but the top and bottom 1% were discarded to remove outliers. The
delay can range from -60 minutes to 137 minutes. The colors represent the
probabilities; blue means low probability and red means high probability.
The black line represents the expected delay. In general flights arrive earlier
than the STA, i.e. the delay is negative, because of the buffer that airlines
add to improve their on-time flight statistics [70]. The delay per month
shows that on average aircraft arrive 12 minutes before STA in April and
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Figure 2.3: 2D-histogram of the delay probability per month, day of week,
hour of day and flight time.

2 minutes before STA in August. If we look at the delay per day of week,
neither the average nor the distribution of the delay differ much per day.
Flights that arrive in the evening tend to have a positive expected delay
while during the rest of the day the delay is expected to be negative. The
expected delay for the flight time has a peculiar shape but it should be noted
that the number of samples is only several hundreds for flight times of 15
hours and more, while other flight times have thousands of samples.

Figure 2.4 shows the histogram of the delays of four flights over the whole
observation period. We see that the delay distribution is very different for
each flight. Figure 2.5 shows the 2D-histograms for the delays per month
and per day for flight 5J5054 which departs daily from Manila and arrives at
Narita in the morning. For this flight there is clearly a difference in the delay
distribution of each month. For the day factor we cannot detect a pattern.
We can conclude that we should use the monthly delay distribution of each
individual flight, and not apply the same delay distribution to all flights.

Delay with Expected Time of Arrival

Standard delay analysis deals with the difference between the ATA and the
STA. When the staffing decisions are made in real-time, the most accurate
prediction of the arrival time is the current ETA, not the STA. We can
expect that as the time period between the ETA and the flight schedule
update time tupdate becomes shorter, the error of the ETA becomes smaller.
Let δ = ETA − tupdate be the time period from tupdate until the ETA, and
let ε = ATA − ETA be the error of the ETA. Figure 2.6 shows the ETA
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Figure 2.4: Delay histogram for four flights.
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flight.
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Figure 2.6: Error of the ETA relative to the flight schedule update time.
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Figure 2.7: Error of the ETA for one flight.

error relative to the flight schedule update time. During the day the ETA is
continuously updated every 10 minutes. Because we have downloaded the
flight schedule for every 10 minute update we can analyze the changes of the
ETA during the day. At the end of the day the ATA is known, from which
the error distribution of the ETA can be determined. Figure 2.7 shows the
error of the ETA as a function of δ for flights UA7 and JL7. Note that a
negative error means that the actual arrival time of the flight turned out to
be before the ETA. We see that as the time until the ETA becomes shorter,
the absolute error becomes smaller.

We want to know the probability of the ETA error P (ε|δ) for each flight at
the flight schedule update time. From the flight schedule data that we have
collected for over a year we can determine the error probability distributions
for each δ. We combine the ETA error of all flights. Figure 2.8 shows the
probability distributions of the ETA error for various δ. We can see that
as δ becomes smaller, the variance also becomes smaller. It is also possible
for δ to be negative, for example when the flight status was not properly
updated after arrival. The red line represents the delay distribution with
the STA. There is a large difference between the STA curve and the ETA
curves for smaller δ.

2.3.2 Disembarkation

In this section we discuss how to estimate the time when each passenger
leaves the aircraft. To do so the disembarkation delay and the disembarka-



2.3. PARAMETERS ESTIMATION 21

60 40 20 0 20 40
delay

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18 delay distribution with ETA
δ (min)

STA
0
10
30
60
120
180
240
300
480

Figure 2.8: Delay probability distributions for various times before ETA.

tion rate need to be estimated. Since we could not get near the aircraft we
observed the people from the moment they entered the gate instead. When
we write “leaving the aircraft” it actually means passing through the gate
door.

Literature Review

Barickman, Sebenius, and Sohi [5] analyzed different embarkation and dis-
embarkation methods for the Airbus A380. They mentioned a statistic
from Boeing that the exit time is 3 seconds per person per aircraft exit.
Horstmeier and Haan [36] studied the handling times of turn round cycles
to prepare an airport for the A380. They interviewed experts who were
involved in these processes and found that the disembarkation rate fits a
lognormal distribution with an average of 19 passengers per minute per
bridge. We want to confirm that the same disembarkation rates apply to
the passenger flow through the gate door and for various types of aircraft.

Disembarkation Delay

The disembarkation delay is the time difference between the ATA and the
time that the first passenger leaves the aircraft. Some flights don’t arrive
at a gate. The passengers of these flights are transported by bus to a gate.
The time of first disembarkation has not been observed for these flights.
At Narita Airport we recorded the time of the first disembarking passenger
for 41 flights. Figure 2.9 shows the normalized histogram of the observed
disembarkation delay. The average disembarkation delay is 9.9 minutes. In
the same figure a normal distribution is plotted with the mean and standard
deviation of the observation data. As the number of samples is only 41 we
want to investigate the distributions of the mean and the standard deviation
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Figure 2.9: Disembarkation delay histogram.

with a Markov Chain Monte Carlo (MCMC) algorithm. The statistical
model for the disembarkation delay is as follows

D ∼ Normal(µ, σ)

µ ∼ Uniform(lµ, uµ)

σ ∼ Uniform(lσ, uσ)

(2.21)

where the disembarkation delay D is modelled as a Gaussian process, µ is
the mean and σ is the standard deviation. Both µ and σ have a continuous
uniform distribution bounded by a lower l and upper u limit parameter. In
other words we set the prior distributions as a uniform distribution and then
use the MCMC algorithm to find the posterior distribution of µ and σ by
fitting the model to the data. The posterior distribution is found by gen-
erating random samples from the prior distribution. The newly generated
samples are accepted or rejected based on a certain test and the current
sample value. It is therefore a Markov Chain. As the number of samples
increases, the distribution of the parameter converges to a stationary distri-
bution. The posterior distribution for the mean and standard deviation are
shown in Figure 2.10. The red lines are the average values of the posteri-
ors. The average of the mean and the average of the standard deviation are
respectively 9.9 and 3.7 minutes.

Disembarkation Rate

To estimate the rate of disembarkation we recorded the passengers passing
through the gate door for 10 flights on video. Figure 2.11 shows the cumula-
tive number of disembarking passengers for each flight. The disembarkation
rate seems to be constant except for the tail. If only the first 90% of the
passengers are considered then the average disembarkation rate is 38 pas-
sengers per minute (red line). An MCMC model was used to determine the
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Figure 2.10: Posterior distribution of the mean and standard deviation of
the disembarkation delay.
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Figure 2.11: Cumulative disembarkation rate of 10 flights.
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Figure 2.12: Posterior distribution of the disembarkation rate.

uncertainty of the disembarkation rate estimation. We made a statistical
model for the interarrival times as follows

τ ∼ Exponential(r)

r ∼ Uniform
(2.22)

where τ is the time between two consecutive passengers and r is the rate
parameter of the exponential distribution. Figure 2.12 shows the posterior
distribution of the rate. The average value of the posterior distribution is
38 passengers per minute. The minimum and maximum of the distribution
is 35 and 41 passengers per minute respectively. Assuming the same dis-
embarkation rate for all flights seems reasonable. From the literature study
we found an average rate of 19-20 passengers per minute per aircraft exit.
If we assume two aircraft exits are used then the observed disembarkation
rate corresponds to the value from the literature.

2.3.3 Walking Time

After disembarkation passengers walk from the gate to immigration. Ideally
we would record the walking time of each passenger by tracking them but
this was not possible. Instead we estimate the walking speed distribution
and then determine the walking time from the walking speed and the walking
distance.

Literature Review

Daamen [13] reviewed the free flow walking speeds in the literature. The
walking speed appears to be normally distributed with a mean of 1.34 m/s
and a standard deviation of 0.37 m/s.

Young [87] studied the passenger walking speed at San Francisco Inter-
national Airport and Cleveland Hopkins International Airport. It was found
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that the free-flow walking speed was similar to the walking speed in other
transportation terminals. The average free-flow walking speed in the airport
terminals was 1.34 m/s and approximately normally distributed with a stan-
dard deviation of 0.27 m/s. Also the free-flow walking speed did not vary
significantly with age, gender, travel type (business or leisure), group size,
number of bags carried, or direction of travel (departure or arrival). The
walking speed was however affected by the presence of a moving walkway.
About 20% of the passengers using moving walkways stood still or had very
low walking speeds. Others on the moving walkways were obstructed by
these passengers. The presence of a moving walkway reduced the average
walking speed. The average walking speed from the gate to immigration is
affected by the number of moving walkways, stairs, escalators and points
where passengers are walking at a slower pace or stop. Passengers reduce
their walking speeds when they are approaching a travel-path decision and
near information signs and boards. The number of these elements differ for
the path from each gate. We should therefore expect that the walking speed
is different for each gate.

Nikoue et al. [64] had access to the data of WiFi and bluetooth tracking
tools at Sydney International Airport. They extracted the walking paths
of each gate to immigration and found that the walking times were expo-
nentially distributed. However the data was noisy and inaccurate with low
sampling rates, making it impossible to determine the walking time distri-
bution for all gates. Instead they estimated the walking speed distributions.
The walking speed distribution of each gate was modelled as a mixture of
logistic distributions because the histogram of the walking speeds showed
multiple modes. The walking speed distribution for all gates combined has
a lognormal distribution.

Passenger Arrival Time

We model the total time from disembarkation to arrival at immigration for a
single passenger. We assume that disembarkation is a deterministic process
with a constant disembarkation rate r. If disembarkation starts at time t0
then the disembarkation time di of passenger i is

di = t0 +
1

r
(i− 1). (2.23)

The walking time is the distance divided by the walking speed. We assume
that the walking speed V is normally distributed with probability density
function

fV (v) =
1

σ
√

2π
e−(v−µ)2/2σ2

(2.24)
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where µ is the mean walking speed and σ is the standard deviation. The
cumulative distribution function is

FV (v) =

∫ v

−∞
fV (x)dx. (2.25)

Let t′ be the time relative to the disembarkation time di of a passenger.
Then the probability that the walking time τ ′ of the passenger falls within
the interval (t′1, t

′
2] for distance L is

P (t′1 < τ ′ ≤ t′2) = P (L/t′2 ≤ V < L/t′1)

= FV (L/t′1)− FV (L/t′2).
(2.26)

Let t be the time relative to the disembarkation start time t0, then t = di+t
′

for passenger i. For each passenger i we can calculate the probability pi that
the arrival time at immigration τi is within the interval (t1, t2]

pi = P (t1 < τi ≤ t2) = P (t1 − di < τ ′ ≤ t2 − di)
= FV (L/(t1 − di))− FV (L/(t2 − di)).

(2.27)

This is the same passenger arrival probability as in equation (2.10) but it
uses the walking speed distribution function. We then apply the procedure
described in section 2.2 to determine the expected arrival rate E[λ] in (t1, t2].

Observation

To calculate the arrival probability of a passenger we need to need to de-
termine the mean µ and standard deviation σ of the walking speed. We
will infer the walking speed parameters by using the observed disembarka-
tion start times, i.e. when the first passenger leaves the aircraft, and the
observed arrivals at immigration. Usually flights arrive close to each other
and we cannot distinguish which passenger arrivals at immigration belong
to which flight. However there were some flights that were isolated during
our observations. Figure 2.13 shows an example of the arriving passengers
at the left side of the immigration area on 2012/9/9. The dots represent
the ATA of the flights. The vertical lines represent the disembarkation start
times for the flights with the same dot color. In this example we can identify
two isolated flights: NH956 with disembarkation starting around 13:30 and
NH11 with disembarkation starting around 13:55. In total we have identified
ten isolated flights in our observation datasets.

Walking Speed Inference

The method of least-squares is used to minimize the error between the ob-
served arrival rate per minute and the estimated arrival rate E[λ] in order to
find the best fitting walking speed mean µ and standard deviation σ for the



2.3. PARAMETERS ESTIMATION 27

13:00 14:00 15:0013:30 14:30
0

10

20

30

40

50

60

70

80

NH1084 NH956 NH11 NH1051

NH206

NH950

NH1

NH210

NH208NH7

left

Figure 2.13: Arriving passengers at the left side of the immigration area on
2012/9/9.
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Figure 2.14: Observed and estimated arrival rates with the best fitting walk-
ing speed parameters for the 10 isolated flights.
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Table 2.1: Walking speed parameters (m/s) and flight details for the 10
isolated flights.

avg stdev dist pax gate

NH950 0.48 0.14 166 134 51
NH922 0.56 0.22 190 133 52
NH956 0.60 0.28 190 150 52
NH202 0.62 0.16 238 201 56
OZ102 0.64 0.29 343 329 35
DL622 0.68 0.32 253 45 24
CA929 0.69 0.33 625 224 46
KE2 0.71 0.34 179 193 17
OZ104 0.96 0.46 267 222 33
NH11 1.15 0.28 238 210 56

10 isolated flights. Figures 2.14 shows the observed and estimated arrival
rates with the best fitting walking speed parameters for each flight.

The walking speed parameters for each flight are shown in Table 2.1
together with the number of passengers, the distance and the gate. There is
a large variation in the mean walking speed and the standard deviation. The
highest walking speed is three times as high as the lowest. We expected that
flights from the same gate would have the same walking speed parameters.
For flights NH922 and NH956 arriving at gate 52 the parameters are similar
but for flights NH202 and NH11 at gate 56 the parameters are very different.
One possible reason is that the level of congestion in the terminal might
have been substantially different for those two flights. Another explanation
is simply that there was a measurement error. The total average of the
mean and the standard deviation of all the flights is respectively 0.71 m/s
and 0.28 m/s.

The number of samples is very limited and we don’t have parameter
estimations for every gate. It is also reasonable to assume that the walking
speed depends on the level of congestion in the terminal, and the number of
obstacles on the path to immigration. Collecting more data is recommended
for better parameter estimation and to analyse the factors that influence the
walking speed.

2.3.4 Number of Passengers

On the day of arrival the airlines inform immigration management about the
number of Japanese and foreigners on each flight who have to go through
immigration, i.e. the transfer passengers are excluded. The passenger data
is only known on the day of arrival which means that if long-term planning
is desired, the number of Japanese and foreign passengers on a flight need
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Figure 2.15: Types of passengers.

to be estimated. In the ideal case we would use historical passenger data of
a flight to estimate the number of passengers, but at best we have only five
historical values for a flight. However the flight schedule with the aircraft
type for each flight is known far in advance. In this section we will investigate
if we can estimate the number of each passenger type on a flight if only the
aircraft type is known.

The total number of passengers of a flight Nflight can be roughly esti-
mated with

Nflight = L× C (2.28)

where L is the flight load factor and C is the capacity of the aircraft type.
As shown in Figure 2.15 there are different types of passengers. After ar-
rival some passengers transit to another flight. For the passengers who go
through immigration, the Japanese and foreign passengers have separate
service counters. The foreigners with a reentry permit have special reentry
counters. The other foreigners can choose between service counters on the
left or right side of the immigration area (Figure 1.3). Overall there are four
sections at immigration with each section being a separate queueing system.
The number of passengers Nsection arriving at each section can be estimated
with

Nsection = Nflight × (1− ptransit)× pnation × psection (2.29)

where ptransit is the percentage of transit passengers, pnation is the percentage
of foreigners or Japanese passengers who will go through immigration and
psection is the percentage of reentry permit holders or the percentage of other
foreigners who go to either the left or right service counters. Below we will
discuss each parameter.

Aircraft capacity

The aircraft type that is used for a flight is known from the flight schedule
months in advance. The capacity C of an aircraft depends on the seats
configuration of the first/business class and the economy class. The exact
seats configuration data of each flight is however unavailable. Instead air-
craft data from The Travel Insider [74] will be used to estimate the average
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Figure 2.16: Passenger load factor for the international market (seasonally
adjusted). Source: IATA [37].

number of seats. If the aircraft type is not present in the database a capacity
of 155 passengers is assumed.

Load factor

IATA [37] publishes a monthly report on the air passenger market. The load
factor of the aviation industry is defined as the ratio of passenger-kilometers
traveled to seat-kilometers available. The published load factor is organized
by region, country or domestic/international flights. The load factor L of a
single flight is the ratio of the number of passengers to the aircraft capac-
ity. The load factor varies per flight but such data is unavailable. As an
estimation we assume that all flights have the same load factor. Figure 2.16
shows the monthly load factors from 2007 to 2014. The difference between
the load factor of any two months is at most 6 percent. In 2008 an increase
in oil prices and a collapse in world trade caused a significant decline of the
load factor [38].

Transit

To determine the number of passengers that go to immigration we need to
subtract the number of transit passengers. The exact number of transit
passengers on a flight is only known by the airlines but this information
is not provided to the immigration office. The monthly number of tran-
sit passengers is published by Narita Airport [60]. Figure 2.17 shows the
percentage of transit passengers for each month from 2003 to 2013. The
difference between two months can range from -6% to +6%. The transit
percentage peaks around June and December.
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Figure 2.17: Percentage of monthly transit passengers.
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Figure 2.18: Percentage of monthly foreign passengers.

Percentage Foreigners

When the passengers arrive at immigration, foreigners and Japanese passen-
gers join different queueing systems. The monthly passenger volume data
published by Narita airport [60] also contains the total number of Japanese
and foreigners separately. Figure 2.18 shows the ratio of the monthly num-
ber of foreign passengers to the total international passenger volume. The
percentage of foreigners peaks in April and is lowest in September. The
difference between two months can range of -7% and +11%.

Figure 2.19 shows the histogram of the true percentage of foreigners on
the flights that we obtained during the observation periods. We can see that
the range is very large with an average of 42%.
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Figure 2.19: Histogram of the percentage of foreign passengers on a flight.

Table 2.2: Percentage of reentry passengers per continent.

percentage

Continent
Africa 0.36
Asia 0.26
Europe 0.17
North America 0.15
Oceania 0.12
South America 0.53
Stateless 0.41

Reentry

The foreign passengers need to be divided into passengers with a reentry
permit and all other foreign passengers. The number of reentry passengers
is difficult to estimate because there is no information about the reentry
passengers on a flight or the monthly average. We did receive an internal
report from Narita Airport [61] with the overall statistics of the passenger
characteristics from 2011. Table 2.2 shows the percentage of the reentry
passengers from each continent. The differences between continents can be
quite large. The data in Table 2.3 gives the number of reentry passengers
per country however we do not know the percentage of each nationality on
a flight. Within a continent the reentry percentage varies significantly per
country. 71 percent of the passengers with a Filipino nationality have a
reentry permit while very few nationals from Hong Kong are reentry permit
holders.

We observed the number of arrivals at each queueing system on several
afternoons. This allows us to calculate the reentry percentage during the
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Table 2.3: Percentage of Asian reentry passengers per nationality.

percentage

Nationality
Philippines 0.71
China 0.46
Other 0.43
India 0.40
Korea 0.22
Thailand 0.20
Indonesia 0.19
Malaysia 0.16
Taiwan 0.08
Singapore 0.05
Hong Kong 0.02

Table 2.4: Observed percentage of reentry passengers.

flight percentage

2011-02-06 CA929 0.34
2011-02-06 NH922 0.37
2011-02-06 total 0.17
2011-11-27 NH202 0.12
2011-11-27 NH950 0.20
2011-11-27 total 0.14
2013-04-14 total 0.14
2013-04-15 total 0.09

observation periods. Generally multiple flights arrive at the same time so
we cannot distinguish the reentry passengers of each flight. However for four
isolated flights we have determined the number of reentry passengers on the
flight. Table 2.4 shows the reentry percentage of the isolated flights and the
total reentry percentage of all flights during four observation period.

Selection of Left or Right Foreign Service

At immigration the foreign passengers without a reeentry permit can go to
the service counters on the left side or the right side of immigration. The
right side is always open but the left side is only used during busy periods
and only if there is enough staff available. It is difficult to forecast how
many foreigners go to which side because we don’t know if the left side is
open. And the ratio between the left and right side is also hard to predict



34 CHAPTER 2. ARRIVAL FORECASTING

100 50 0 50 100 150 200 250 300
number of passengers

0

10

20

30

40

50 histogram of passenger estimation error

Figure 2.20: Histogram of the estimation error of the number of passengers
per flight.

because the passengers are often directed by the immigration staff to go to
a certain side. These problems make it impractical to forecast the arrivals
of the left and right side separately. Instead we treat the left and right side
as one system.

Comparison of Estimation with Observation

We compare the estimated number of passengers with the actual number of
passengers for the flights that arrived during the observation periods. We
consider the total number of passengers on the flight Ntotal, i.e. the Japanese
plus all foreign passengers combined. The estimated number of passengers
who go through immigration is

Ntotal = L× C × (1− ptransit). (2.30)

Figure 2.20 shows the histogram of the error of the estimations. On average
the formula estimates 51 passengers more on a flight than in reality. If
there are six flights arriving in an hour then the total error would be 300
passengers which is equivalent to one or two flights.

We can conclude that predicting the total number of passengers using
an average load factor, an average transit percentage and the aircraft seat
capacity is highly inaccurate. It is recommended that Narita airport builds
a database with historical flight data to improve the predictions or requests
early estimations from the airlines. From the analysis we can also conclude
that it is difficult to estimate of the percentage of reentry passengers and to
predict the side which the non-reentry foreign passengers will select. There-
fore we will only forecast the arrivals of all foreign passengers including
reentry permit holders as one group.
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2.4 Arrival Forecast

The theoretical framework of the arrival forecasting model was given in sec-
tion 2.2 and the parameters for the model were described in section 2.3.
In this section we will compare the results of the arrival forecasting model
with the observed arrival rates for both the point forecast and the distri-
butional forecast. We will also compare the results with a deterministic
approximation and a Monte Carlo simulation model.

2.4.1 Forecasting Models

Convolution Model

We will refer to the arrival forecasting model from section 2.2 as the con-
volution model. The output of the convolution model is a distributional
forecast. Table 2.5 shows the parameters and the distributions that are
used with the convolution model. The flight delay distribution depends on
δ, the time between the ETA update time and the ETA of the flight. We
then select from the empirical distributions in Figure 2.8 the distribution for
the corresponding δ. The disembarkation delay is assumed to be normally
distributed with a mean of 9.9 minutes and a standard deviation of 3.7 min-
utes. The disembarkation rate is assumed to be constant with a value of 38
persons/minute. The walking speed of a passenger is normally distributed
with a mean of 0.71 m/s and a standard deviation of 0.28 m/s.

From the analysis of the walking times we learned that the parameters of
the walking speed can vary significantly per flight and gate. However because
of the small number of observation samples we could not determine the exact
relationship. To take the uncertainty of the walking speed parameters into
account we let the mean of the walking speed also be normally distributed
with a mean of 0.71 and standard deviation of 0.22. The standard deviation
of the walking speed is kept fixed. The uncertainty in the walking speed
parameters is a flight property and not a passenger property because the
walking speed distribution is assumed to be the same for all passengers of the
same flight. We introduce the parameter uncertainty into the convolution
model as follows. We convert the distribution of the walking speed mean to
a walking time delay distribution dw using equation (2.26). The total delay
distribution d of a flight is then the convolution of all delay components

d = df ∗ dd ∗ dw (2.31)

where df is the flight delay distribution and dd is the disembarkation delay
distribution.
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Table 2.5: Parameters for the convolution model and Monte Carlo simula-
tion.

parameter distribution value unit

flight delay empirical f(tETA − tupdate) min
disembarkation delay Normal µ = 9.9, σ = 3.7 min
disembarkation rate constant 38 p/min
walking speed Normal µ = N(0.71, 0.22), σ = 0.28 m/s

Monte Carlo Simulation

We develop a Monte Carlo simulation model to validate the convolution
model and to use the generated arrival rate samples for performance evalu-
ation of a queueing system. For the Monte Carlo simulation model we use
the same parameters as for the convolution model (Table 2.5). The flight
delay and disembarkation delay are drawn randomly from the distributions
for each flight. The walking speed of each individual passenger is drawn ran-
domly from the normal distribution. The distributional forecast using the
convolution model and the Monte Carlo simulation model should produce
similar results when a 1-minute interval is used.

A disadvantage of the Monte Carlo simulation model is that it is slower
than the convolution method. For one flight the convolution method takes
0.5 seconds while a simulation with 1000 runs takes 2.3 seconds in total. An
advantage of the Monte Carlo simulation model is that it is simple to add
more uncertainties to the model. Also it is time resolution independent. The
convolution model becomes less accurate for larger time intervals because
the arrival probability matrix needs to be convolved with a delay distribution
that is resampled to the larger time interval.

Deterministic Approximation

A point forecast gives a single value of λj at each interval j. One way to
achieve that is to create a distributional forecast and then calculate the
expected value using equation (2.15).

Another approach, that will give a different point forecast, is to assume
an average flight delay and an average disembarkation delay for all flights.
Furthermore we assume that the passengers who disembark within the same
time interval, will all disembark at the same time. As a consequence the
passengers of that interval will have the same arrival distribution. Let t be
the time relative to the disembarkation start t0 of the flight. Time is divided
in intervals j = 1, 2, . . . of equal length ∆ = tj − tj−1. We assume that
all passengers disembarking in interval n leave the aircraft simultaneously
at time tn which is the time at the end of interval n. Let FW (t′) be the
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Table 2.6: Parameters for the deterministic approximation.

parameter distribution value unit

flight delay constant 0 min
disembarkation delay constant 9.9 min
disembarkation rate constant 38 p/min
walking speed Normal µ = 0.71, σ = 0.28 m/s
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Figure 2.21: The expected value of a distributional forecast with the convolu-
tion model (conv) and the arrival rate with the deterministic approximation
(approx) for a single flight without delay uncertainty.

walking time distribution for a passenger with t′ being the time relative to
his disembarkation time tn. The number of passengers that disembark in
interval n is represented by Dn. Then the expected number of passengers
from interval n who arrive at immigration in interval j is

E[λnj ] = Dn[FW (tj − tn)− FW (tj−1 − tn)]. (2.32)

The total number of passengers arriving in interval j from all disembarkation
intervals is

E[λj ] =
∑
n

Dn[FW (tj − tn)− FW (tj−1 − tn)]. (2.33)

The parameter values used for the deterministic approximation is shown
in Table 2.6. Figure 2.21 shows an example of the arrival rate with the ex-
pected value of the convolution model without delay uncertainty (conv) and
the deterministic approximation (approx) for a flight with 166 passengers.
The disembarkation start time is set to the same value for both methods.
The results are almost identical. The computational time for the distri-
butional forecast and the expected value is 500 ms while the deterministic
approximation only requires 6 ms.
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Figure 2.22: Comparison of the forecasting models with the observed arrival
rates for flight NH202 with deterministic delay.

2.4.2 Single Flight

We compare the results of the convolution model, the Monte Carlo simula-
tion model and the deterministic approximation with the observed arrival
rate of a single flight. We consider the case with and without delay uncer-
tainty. We select flight NH202 from the isolated flights. This flight had 201
passengers and it arrived at gate 56 which is 238 meters from immigration.
From Table 2.1 we know that the fitted mean walking speed (0.62 m/s)
for this particular flight is lower than the mean walking speed used in the
forecasting models (0.71 m/s).

Arrivals With Deterministic Delay

In this case we compare the flight arrivals with a deterministic flight delay
and disembarkation delay. Also we do not take the uncertainty of the walking
speed mean into account. Figure 2.22 shows the results of the convolution
model and the Monte Carlo simulation model together with the observed
arrival rates. The resolution is 1 minute on the time axis and 1 person on the
arrival rate axis. The arrival probabilities are very similar and the expected
values are practically identical. The passengers of the models arrive earlier
than the observed arrivals because of the higher mean walking speed used
in the models.

Arrivals With Delay Uncertainty

We assume that the flight ETA time is updated 60 minutes before the ETA.
The flight delay distribution for δ = 60 is shown in Figure 2.23 together
with the disembarkation delay distribution and the walking time delay due
to the uncertain walking speed mean. The convolution of these three delay
distributions gives the total delay distribution for the flight. The total delay
distribution is a probability mass function with 1-minute resolution.

Figure 2.24 shows the forecasts with delay uncertainty. We sum the prob-
abilities per 5 passengers to make the figure more clear. Without grouping
per 5 passengers the probabilities are so small that there would be no differ-
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Figure 2.23: Flight delay, disembarkation delay and walking time delay dis-
tributions.
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Figure 2.24: Comparison of the forecasting models with the observed arrival
rates for flight NH202 with delay uncertainty.

ence in the colors of the plots. The distributional forecast of the simulation
and convolution model are similar and the expected values overlap. Com-
pared to the case with deterministic delays the arrival probability plots are
more diffuse. The expected values with delay uncertainty are smaller and
have a wider distribution.

2.4.3 Multiple Flights

In this section we present the arrival forecasts with multiple flights. We con-
sider the flights in the six observation periods: five periods at the South wing
and one at the North wing (2013/10/5). Figure 2.25 shows the deterministic
approximation and the observed arrival rates per 5 minutes. For 2012/9/9
the deterministic approximation predicts the times of the peaks correctly.
For 2011/2/6 and 2013/10/5 the deterministic approximation is reasonable.
On the other days there are more mismatches of the arrival peaks. Overall
the deterministic approximation gives a reasonable indication of the level of
fluctuation in the arrival rates.

The distributional forecasts with the convolution model is shown in Fig-
ure 2.26 together with the expected values, the 95th percentile upper bound
and the observed arrival rates. The arrival probabilities are calculated with
a 1-minute accuracy and shown in the plots per 5 persons. The observed
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Figure 2.25: Deterministic approximation compared to the observed arrival
rates with a 5-minute interval.

arrivals exceed the 95th percentile at times but the upper bound does give
a reasonable indication of the maximum arrival rate per minute.

For practical use we propose to combine the convolution model with the
deterministic approximation to give the decision makers an indication of the
uncertainty (arrival probability), the trend (expected value), the upper limit
(95th percentile) and a sample path (deterministic approximation). Figure
2.27 shows the proposed forecast output with a 1-minute interval.

2.5 Conclusion

In this chapter we have reviewed the arrival forecasting models used for
call centers and airport service facilities. Because we do not have the re-
quired amount of historical arrival data we cannot apply regression models
or time series models. We have developed a distributional forecasting model
based on the sum of random variables and the convolution operation. The
forecasting model requires the distributions of the flight delay, the disem-
barkation delay and the walking speed. We have discussed how we gathered
data at Narita immigration to determine these distributions. In addition
we have also developed a Monte Carlo simulation model and a deterministic
approximation. The models give reasonable results when compared with
the observed arrival rates. For use in practice the distributional forecasting
model can give the decision makers at Narita immigration a good indication
of the trend, the variance and the upper bound of the arrival rates while the
deterministic approximation gives a sample path of the arrival rates.
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Figure 2.26: Distributional forecast compared to the observed arrival rates
with a 1-minute interval.
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Figure 2.27: Distributional forecast combined with the deterministic ap-
proximation with a 1-minute interval.
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Chapter 3

Queueing Models

A queueing system is a system where customers arrive, wait for service,
receive service and leave the system. There are six characteristics to describe
a queueing system [32]: the arrival pattern of customers, service patterns,
queue discipline, system capacity, number of service channels and stages of
service. The arrival pattern describes the probability distribution of the time
between two customer arrivals. The service pattern describes the probability
distribution of the service time. The queue discipline refers to the order in
which customers are served, usually First-Come-First-Served is used. The
system capacity is either finite or infinite. Each stage of service can have
one or more parallel service channels. Narita immigration is not a single
queueing system but a collection of multiple systems catering for different
types of passengers: foreign, reentry and Japanese passengers. There are
several approaches to model the queueing system depending on the system
characteristics. The input of a queueing system is the arrival rate λ(t), the
number of servers s(t) and the mean service time 1/µ. The output of interest
is the waiting time W (t).

In this chapter we first review the literature on queueing theory methods.
We implement three queueing models that can deal with overload to find the
most appropriate queueing model for the foreign passengers. These three
queueing models have not been compared in the literature before. For the
models we have gathered data at Narita Airport immigration. We present
the results of our observations. The output of the models are compared
with the observed waiting time values. In the last section we compare the
processing times at Narita Airport to those at Incheon Airport. They claim
to have the fastest immigration service in the world.

3.1 Literature Review

In this section we review queueing theory methods in order to determine
performance measures such as the queue length and the waiting time of

43
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a queueing system. We categorize the queueing theory methods in three
groups: methods that involve the stationary queueing theory, methods that
involve solving one or more ordinary differential equations (ODE) and de-
terministic methods.

3.1.1 Stationary Approximations

Stationary queueing theory deals with the long-term behavior of a queue-
ing system. In this section we discuss the steady-state solutions for the
queue length and waiting time. Then we will discuss methods to apply the
stationary queueing theory to non-stationary situations.

Let the stochastic variable X(t) represent the number of customers in
the system at time t, i.e. the total in the queue and in service. We assume
a Markovian process for the arrivals and service completions. The time
until the next customer arrival is exponential with rate parameter λ. The
time until the next service completion is also exponential with mean 1/µ,
in other words µ is the service rate of a single server. The queueing system
has s number of parallel servers. We assume that the queue has unlimited
capacity and there are no customer abandonments. A queueing system with
such characteristics is also indicated by the notation M/M/s. We want to
describe probabilistically how X(t) changes as a function of time. Let pn(t)
denote the probability that there are n passengers in the system after time
t has passed. These transition probabilities can be obtained by solving the
Kolmolgorov differential equations [32]

dpo(t)

dt
= −λp0(t) + µp1(t),

dpn(t)

dt
= λpn−1(t)−

(
λ+ nµ

)
pn(t) + (n+ 1)µpn+1(t) 1 ≤ n < s,

dpn(t)

dt
= λpn−1(t)−

(
λ+ sµ

)
pn(t) + sµpn+1(t) n ≥ s.

(3.1)

This set of equations can be written in matrix notation as

p′(t) = p(t)Q (3.2)

where Q is called the intensity matrix of infinitesimal generator. Once the
transition probabilities are known we can derive Lq(t), the expected number
of customers in the queue, with

Lq(t) =
∞∑

n=s+1

(n− s)pn(t). (3.3)

Suppose that limt→∞ pn(t) = pn then the steady-state solution can be ob-
tained from

0 = pQ. (3.4)
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For an M/M/s queueing system the steady-state probabilities are given by
[34]

p0 =

( s−1∑
n=0

(λ/µ)n

n!
+

(λ/µ)s

s!

1

1− λ/(sµ)

)−1

, (3.5)

pn =

{
(λ/µ)n

n! p0 0 ≤ n ≤ s,
(λ/µ)n

s!sn−s p0 n > s.
(3.6)

The probability of delay is

pd = 1−
s−1∑
n=0

pn. (3.7)

The steady-state value of the number of waiting customers Lq is equal to

Lq =
p0(λ/µ)sρ

s!(1− ρ)2
(3.8)

where ρ = λ/(sµ) is the utilization ratio or traffic intensity. A system is
underloaded when ρ < 1, critically loaded when ρ = 1 and overloaded when
ρ > 1. For the queue to be stable it is necessary that ρ < 1. The expected
waiting time can be determined with Little’s formula

Wq =
Lq
λ
. (3.9)

LetWq be the waiting time experienced by a customer. Then the probability
of a customer waiting longer than τ minutes is

P (Wq > τ) = (1− P (Wq = 0))e−sµ(1−ρ)τ

= (1−
s−1∑
n=0

pn)e−sµ(1−ρ)τ .
(3.10)

Simple Stationary Approximation

In the simple stationary approximation (SSA) the arrival rate and number
of servers are averaged over the period of interest

λ =
1

T

∫ T

0
λ(t)dt, (3.11)

s =
1

T

∫ T

0
s(t)dt. (3.12)

Green, Kolesar, and Svoronos [28] studied the accuracy of the simple sta-
tionary approximation for a sinusoidal arrival process. It was found that
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if the relative amplitude is 25% or more, the relative error is at least 10%
and often significantly larger. The simple stationary approach may provide
reasonable estimates for small systems with one or two servers, relative am-
plitudes less than 10% and infrequent events. During the period the system
can be temporarily overloaded but it needs to satisfy the condition

ρ =
1

T

∫ T

0

λ(t)

s(t)µ
dt < 1. (3.13)

As an example suppose two flights arrive in the same hour with re-
spectively 100 and 200 passengers. The average service time is 1 minute
per passenger and there are 8 servers. The average arrival rate is thus
λ = 300/60 = 5 passengers per minute. The traffic intensity of the sys-
tem is ρ = 0.625. The expected waiting time Wq is then 3.3 seconds and
the average queue length Lq is 0.3 passengers. The probability of no delay
P (Wq = 0) is 0.83.

Stationary Independent Period by Period Approach

In the example of the previous section the performance was calculated with
a constant arrival rate during the one hour period. But it is unrealistic to as-
sume that the arrivals at immigration are stationary. There will be a peak
in the number of passenger arrivals every time a flight arrives and after
that there will be a period with no passenger arrivals. Assuming steady-
state and Poisson arrivals during the whole hour would be unrealistic. In a
non-stationary environment the arrival rate fluctuates. Stationary queueing
theory only deals with the steady-state behavior of a queueing system but it
can be used in a non-stationary manner with the stationary independent pe-
riod by period approach (SIPP) and the pointwise stationary approximation
(PSA).

The PSA applies the stationary queuing theory with the instantaneous
arrival rate λ(t) and number of servers s(t) at each time t. Green and Kolesar
[27] studied the accuracy of the PSA and found that the estimations of the
expected delay, expected queue length, probability of delay and probability
of all servers busy become more reliable when the arrival rate and service
rate increase. The PSA provides an upper bound for the performance of
non-stationary queueing systems. The performance of the PSA is worse
when the traffic intensity increases.

The SIPP is similar to the PSA but instead of using the instantaneous
values of the arrival rate and service rate, the total time period is first divided
into intervals of arbitrary length. Then the stationary queueing theory is
applied to each interval independently with the average arrival rate and
average number of servers in the interval [26].

When the service times are medium to long, the system performance can
change significantly because of time lags in congestion [29]. A solution is
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Figure 3.1: Example of the SIPP.

to shift the arrival rate by the mean service time first and then apply the
stationary queueing models. The methods with this adjustment are called
the lagged PSA and lagged SIPP.

A major drawback of these approaches is that the system cannot be
overloaded at any time (PSA) or on average in an interval (SIPP). The
utilization ratio needs to be less than 1. In call centers with a high level of
service standard this is generally no problem but other service systems such
as airport facilities tend to be frequently overloaded.

As an example suppose the passengers of a flight arrive at immigration
from 12:00. The number of passenger arrivals per 10-minute interval are
known to be 50, 100, 20 and 0 passengers. The number of servers per
interval are respectively 6, 14, 2 and 4. The results of the SIPP are shown
in Figure 3.1. Each time interval is analyzed independently. In the third
interval the traffic intensity is larger than one and therefore no estimation
for the waiting time or queue length is available.

Effective Arrival Rate Approximation

If a customer arrives at time t and experiences waiting time Wq then he will
receive service during the window [t + Wq, t + Wq + 1/µ]. Customers who
arrive in a time interval but whose service window does not completely fall
within the same interval, will impact the demand for service in later time
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intervals. Thompson [75] developed an algorithm to adjust the demand for
service in each interval. In the first step the simple stationary approximation
(SSA) is used to determine the expected waitingWq for the total time period,
i.e. the waiting time is the same for all intervals. Then in the second step the
effective arrival rate in each interval is calculated. The effective arrival rate
during an interval is equal to the number of customers that receive service
in the interval. For interval j the arrival rate λj is increased by the number
of customers who arrived in previous intervals but are served in interval j.
And the arrival rate λj is decreased by the number of customers who arrived
in interval j but are served in later intervals. Once the effective arrival rates
are determined a stationary queueing model is applied to each interval.

The algorithm was developed for an interval-based arrival rate function.
For a continuous arrival rate function, the algorithm reduces to the calcula-
tion of the moving average [43]. The effective arrival rate at time t equals the
average of the original arrival rate during the window [t−Wq − 1/µ, t−Wq]

λeff(t) =

∫ t−Wq

t−Wq−1/µ
µλ(r)dr. (3.14)

Thompson [75] compared the performance of the effective arrival rate
approximation (EAR) with the SIPP approximation when setting staff re-
quirements. The EAR resulted in 8% fewer staff hours and a 3% higher
service level.

Stationary Backlog-Carryover Approach

In the PSA, SIPP and EAR approximation the arrival rate at time interval
t needs to be less than the service rate to ensure that there is no overloading
of the system. Also each interval is assumed to be independent. In reality
queueing systems can be overloaded for an extended period of time and the
queues that are built up during one interval will spill over into the next.
Stolletz [72] proposed the stationary backlog-carryover approach (SBC) to
solve this issue. In this approach a backlog is created when the service
capacity is insufficient. The backlog is carried over to the next interval as
additional demand.

The SBC works as follows. The time period of interest is divided into
time intervals. An appropriate interval length is the mean service time. The
number of arrivals b that could not be served in an interval is determined
using the Erlang B loss system, also known as an M/M/s/s system. In a
loss system there are no queues and customers are blocked from entering
the system when all servers are occupied. Let λt be the arrival rate for the
current interval and let bt−1 be the number of blocked passengers in the
previous interval, i.e. the backlog rate. The artificial arrival rate λ̃t in the
current interval is then

λ̃t = λt + bt−1 (3.15)
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The probability of blocking Pt(B) in the current interval is calculated with
the Erlang B blocking formula using the artificial arrival rate

Pt(B) =
(λ̃t/µ)st

st!
∑st

k=0
(λ̃t/µ)k

k!

(3.16)

where st is the number of servers in the current interval. The number of
blocked passengers bt for the current interval is

bt = λ̃tPt(B). (3.17)

Finally we determine the modified arrival rate λMt as

λMt = λ̃t − bt = λt + bt−1 − bt. (3.18)

The modified utilization ratio ρMt in the current interval is

ρMt =
λMt
stµ

. (3.19)

To estimate the queue length and waiting time in interval t we apply the
M/M/s model with λMt as the arrival rate. Even if the original traffic
intensity is larger than one, the modified traffic intensity is always smaller
than one. Therefore the SBC can also be applied in overload situations.

Figure 3.2 shows the results of the SBC for the same queueing system
as in the example of the SIPP. We can see the buildup of the queue during
both underloaded and overloaded intervals.

3.1.2 ODE Methods

In this section we will discuss methods to obtain the the transition proba-
bilities pn(t) by solving the set of differential equations p′(t) = p(t)Q (3.2)
or by solving a simpler set of ODE. Once the transition probabilities pn(t)
have been determined we can obtain the expected number of customers in
the queue Lq(t) at time t with

Lq(t) =
m∑

n=s(t)+1

[n− s(t)]pn(t). (3.20)

The expected waiting time from time t of joining the queue is the number
of customers in the queue at time t multiplied by the service time 1/µ

Wq(t) =
Lq(t)

µ
. (3.21)

This formula is only valid if the number of servers does not change during
the waiting time. When the waiting time is so long that the service rate
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Figure 3.2: Example of the stationary backlog-carryover approach.

changes, the formula for the waiting time needs to be modified. The waiting
time of a customer who arrives at the system at time t, depends not only on
the state transition probabilities and the number of servers at time t but also
on the number of servers after time t. In that case we also need to decide
how to deal with customers who are receiving service when the number of
servers decreases. The first way is to stop the service and let the customer
rejoin the queue. This is called a pre-emptive discipline. The second way is
to finish the current service task. This is called an exhaustive discipline.

Green and Soares [30] considered an M(t)/M/s(t) queuing system with
an exhaustive discipline and presented algorithms to calculate the waiting
time tail probability P (Wq(t) > τ) where Wq(t) is the waiting time experi-
enced by an individual arriving at time t. They derived an exact expression
for the waiting time probability for the special case where the number of
servers can change at most one time in the interval (t, t+τ ]. For the general
case where the numbers of servers can change infinitely an algorithm was
presented to calculate the tail probability and the upper and lower bound.
They also gave a recursion formula to calculate the expected waiting time
E[Wq]. For queueing systems with an pre-emptive discipline Ingolfsson et al.
presented exact expressions for the waiting time tail probability when the
number of servers changes once [43] and when multiple changes occur during
the waiting time [42]. Let v(t) be the total number of servers that begin
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or stop service in the interval (t, t+ τ ]. The number of service completions
during the interval is a Poisson process with mean

m(t, t+ τ) =

∫ t+τ

t
µs(u)du. (3.22)

In the case of multiple changes in the number of servers, the expression for
the waiting time tail probability is given by [42]

P (Wq(t) > τ) =

∞∑
q=v(t)+1

[
ps(t)+q(t)

q−v(t)−1∑
i=0

e−m(t,t+τ)m(t, t+ τ)i

i!

]
. (3.23)

The expected waiting time Wq(t) is then

Wq(t) = E[Wq(t)] =

∫ ∞
0

(
1− P (Wq(t) ≤ τ)

)
dτ =

∫ ∞
0

P (Wq(t) > τ)dτ.

(3.24)

Numerical Integration Approach

The set of differential equations of (3.1) describes the time-varying behavior
of the system but except for simple cases this set of an infinite number of
equations does not have an analytical solution. A transient solution can be
found by numerical integration if the number of equations is finite. This
can be achieved by setting a capacity limit m to the number of customers
in the system. The value of m is chosen such that the probability that the
capacity limit is exceeded is small. In the transient case both the arrival
rate and number of servers can vary with time. The equations of (3.1) then
become [49]

dpo(t)

dt
= −λ(t)p0(t) + µp1(t),

dpj(t)

dt
= λ(t)pj−1(t)−

(
λ(t) + jµ

)
pj(t) + (j + 1)µpj+1(t) 1 ≤ j < s(t),

dpj(t)

dt
= λ(t)pj−1(t)−

(
λ(t) + s(t)µ

)
pj(t) + s(t)µpj+1(t) j ≥ s(t),

dpm(t)

dt
= λ(t)pm−1(t)− s(t)µpm(t).

(3.25)
This is a system of ordinary differential equations that can be solved with
numerical integration methods such as the Runga-Kutta method [32].

Koopman [50] applied the numerical integration approach to analyse
the takeoff and landing queues of aircraft at J. F. Kennedy and LaGuardia
airports. He compared the expected queue lengths and the probability of
an empty queue for three different models: a transient queueing model with
Poisson service, a transient queueing model with fixed service times and a
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deterministic flow model. In the transient queueing models the differential
equations were solved numerically. The results were insensitive whether the
service time was assumed to be fixed or a Poisson one. The deterministic
flow model did not capture any stochastic delays. The numerical integration
approach on the other hand could describe the queues in both overloaded
and non-overloaded situations.

Kolesar et al. [49] developed an iterative method to generate and evaluate
schedules of police patrol cars. First steady-state queueing theory is used
to generate hourly staffing requirements. Then an integer linear program
is solved that satisfies the the constraints such as the length of tours of
duty and mealtime breaks while minimizing the number of police cars. The
resulting schedule is then evaluated with a time-dependent queueing model
that uses the numerical integration approach.

Bookbinder and Martell [7] optimized the allocation of firefighting heli-
copters among various bases in a region. The occurrence of a fire is assumed
to be a non-stationary Poisson process. The solution of the differential equa-
tions gives the probability of the number of fires during the day. This result
is used as the input for a dynamic programming algorithm that optimizes
the helicopter allocations. The available helicopters are allocated such that
the maximum expected queue length of all bases is minimized. The queue
lengths in each sector are weighed according to the relative fire damage of
the sector.

Randomization Technique

The randomization technique [32] is another computational method to solve
the set of differential equations in (3.1). The randomization technique ap-
proximates the continuous-time Markov chain (CTMC) by a discrete-time
Markov chain (DTMC). It is also known as Jensen’s method or as uni-
formization.

As discussed before the goal is to obtain the transition probability vec-
tor p(t) by solving p′(t) = p(t)Q where Q contains the elements qij . The

general solution of the ODE is p(t) = p(0)eQt. The randomization technique
decomposes the CTMC into a DTMC X = {Xn, n = 0, 1, ...} and a Poisson
process by applying a uniformization parameter γ ≤ max(qij) [16]. The
DTMC can be constructed with a probability transition matrix given by

P = I +
1

γ
Q. (3.26)

The solution for the transition probability vector of the DTMC is

p(t) = p(0)
∞∑
n=0

e−γt
(γt)n

n!
Pn. (3.27)
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Let

p
n

= p
n−1

P, n = 1, 2, ... (3.28)

with p
0

= p(0). Equation (3.27) can then be written recursively as

p(t) =
∞∑
n=0

e−γt
(γt)n

n!
p
n
. (3.29)

We see that p
n

describes the probability distribution of the states of X after
n transitions or jumps. The CTMC can thus be represented by a DTMC
where n jumps occur according to a Poisson process with rate parameter γ.

Ingolfsson et al. [43] compared the randomization technique with the
numerical integration approach and the randomization technique was just
as accurate but required only half of the computation time.

Closure Approximation

Closure techniques are used to reduce an infinite system of equations to a fi-
nite system by making a closure assumption. A closure assumption describes
a relationship between the variables of the system. Let m(t) be the mean
number of customers in an M/M/s queueing system then its derivative is

m′ = λ− µs+ µ
s−1∑
n=0

(s− n)pn. (3.30)

The derivative of the variance v(t) of the number of customers in the system
is given by

v′ = λ+ µs− µ
s−1∑
n=0

(2m+ 1− 2n)(s− n)pn. (3.31)

The closure assumption made by Rothkopf and Oren [67] expresses pn in
terms of the mean and variance by using the negative binomial distribution.
We can approximate pn as

pn =

(
r + n− 1

n

)
kr(1− k)n, n = 0, 1, 2, ... (3.32)

where k = m/v and r = m2/(v−m). The infinite set of differential equations
(3.1) is reduced to two differential equations that describe the transient
behavior of the mean and the variance of the number of customers. The
system can be solved by integrating the differential equations (3.30) and
(3.31) with pn given by (3.32) using standard numerical integration methods.

Ingolfsson et al. [43] found that the closure method is slower and less
accurate than the randomization technique and the numerical integration
method but it might be faster for systems larger than the ones they tested.
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Infinite-Server Approximation

Equation (3.1) is intractable but by making the assumption of an infinite
number of servers it is possible to obtain a solution for the time-dependent
behaviour of an M(t)/M/∞ system. The number of busy servers in an
infinite-server model (ISA) has a Poisson distribution with mean m∞(t). For
an M(t)/M/∞ system the mean number of busy servers m∞(t) is described
by an ordinary differential equation [19]:

m′∞(t) = λ(t)− µm∞(t). (3.33)

In an infinite-server model the number of customers in the system is equal
to the number of busy servers [43]. Therefore the number of customers in
the system also follows the Poisson distribution. If we solve (3.33) then
the transition probabilities pn(t) can then be determined by using a Poisson
probability mass function

pn(t) =
m∞(t)ne−m∞(t)

n!
. (3.34)

In their comparison of time-dependent queueing methods Ingolfsson et
al. [43] found that when calculating the probability of no delay, the relative
error of the ISA was 32% compared to the exact solution. However the ISA
performed better than the lagged PSA. On the other hand the lagged PSA
was on average 30% faster but in absolute terms the speed difference was
small.

Modified-Offered-Load Approximation

In the infinite-server approximation an exact solution is obtained for the
system performance at the cost of having an infinite number of servers. Pos-
sibly better results can be achieved with the modified-offered-load (MOL)
approximation [57]. It consists of two steps. In the first step the infinite-
server M(t)/M/∞ model is used to determine the expected number of busy
servers m∞(t). Then in the second step we apply the PSA with a stationary
M/M/s system but with an adjusted arrival rate. Equation (3.6) shows
that for an M/M/s system the steady-state probabilities are a function of
the offered load λ/µ, i.e. pn = f(λ/µ). Because for an M/M/s system the
expected number of busy servers is equal to λ/µ, the MOL approximation
is

pn(t) = f(λ(t)/µ) ≈ f(m∞(t)). (3.35)

This means that the stationary model can used at each time t with a modified
arrival rate

λMOL(t) = µm∞(t). (3.36)

Because we apply the PSA the system can never be overloaded. Massey and
Whitt [58] compared the MOL approximation with the numerical integration
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method for systems with slowly varying arrival rates. They found that the
MOL approach is accurate when the probability of delay is small.

3.1.3 Deterministic Fluid Approximations

Overload delays occur when the arrival rate λ is larger than the service rate
µs. Stochastic delays occur when λ < µs because of stochastic variations in
the interarrival times and the service times. When a system is overloaded
for a substantial amount of time, the fluid approximation works well [29].
In the fluid approximation the flow of customers in a system is modeled as
the flow of a fluid through a container. The arrival rate and service rate are
then deterministic. The fluid approximation can only estimate queues when
a system is overloaded. In underload situations the fluid approximation will
never predict any queues. In this section we will describe two approaches
for the fluid approximation.

Cumulative Flows

Suppose we divide the time period in intervals t = 1, 2, . . . and the average
arrival rate λ(t) and number of servers s(t) in each interval is known. With
the deterministic fluid approximation it is assumed that both the arrivals
and departures from a queue are evenly spaced in an interval. Queues build
up when λ(t) > s(t)µ and decrease when λ(t) < s(t)µ or stay zero if there
was no initial queue. The dynamic behaviour of the queue length Lq(t) can
be described as follows

Lq(t) = max{0, Lq(t− 1) + λ(t)− µs(t)}. (3.37)

An alternative way to describe the queue can be obtained by using the
cumulative flow diagrams [63, 62]. Let A(t) represent the cumulative number
of arrivals and D(t) represent the cumulative number of departures from the
queue. The cumulative arrivals equals

A(t) =
t∑
t=0

λ(t). (3.38)

The cumulative number of queue departures depends on the service rate
µs(t) but it can never exceed the number of cumulative arrivals at any time

D(t) = min{A(t), D(t− 1) + µs(t)}. (3.39)

The cumulative flow diagrams of A(t) and D(t) are plotted in Figure 3.3.
The queue length Lq(t) is equal to the vertical distance between the two
cumulative diagrams

Lq(t) = A(t)−D(t). (3.40)
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Figure 3.3: Cumulative diagrams.
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Figure 3.4: Example of the deterministic fluid approximation.

If we assume a FCFS queueing discipline, the waiting time W i
q experienced

by passenger i who arrives at the queue at t is then equal to the horizontal
distance between the two cumulative diagrams

W i
q(t) = D−1(i)−A−1(i). (3.41)

Newell [63] described various engineering applications of the determinis-
tic fluid model, e.g. queues at traffic lights and at airport baggage claims.
Neufville and Odoni [62] used this approach to analyse the flows and queues
at airports. For the example queueing system from previous sections the
queue length and waiting time are plotted in Figure 3.4. We see that the
deterministic method predicts no queues during periods with a traffic inten-
sity smaller than one.
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Asymptotic Limit

An alternative approach is to consider the asymptotic limit by scaling the
arrival rate and number of servers. The limit is deterministic and it can
interpreted as a fluid model. Let Q(t) be the queue length process of an
M(t)/M(t)/s(t) queue. The sample paths for Q(t) are the solutions to the
functional equation [54]

Q(t) = Q(0) +A1

(∫ t

0
λrdr

)
+A2

(∫ t

0
µr ·min{Q(r), sr}dr

)
(3.42)

where A1(·) and A2(·) are independent Poisson processes. Let k > 0 be
a multiplier then Qk(t) is the queue length process of an M(t)/M(t)/s(t)
queue with arrival rate kλ(t) and number of servers ks(t). Mandelbaum,
Massey, and Reiman [54] created a family of associated queue processes
Q1(t), . . . , Qk(t) and then determined the asymptotic behaviour of this fam-
ily as k → ∞. They found that the fluid limit Q(0)(t) = limk→∞

1
kQ

k(t) is
the solution to the ordinary differential equation

d

dt
Q(0)(t) = λ(t)−min{Q(0)(t), s(t)}µ (3.43)

Jiménez and Koole [46] studied a call center model with 32 servers.
They compared the fluid limit with a simulation model. The queueing sys-
tem was overloaded in the first half of the time and underloaded in the
second half. The fluid approximation compared favourably when ρ = 1.378
but performed worse with ρ = 1.125. It was also found that the stationary
approximation gave reasonable results in the underloaded period. They con-
cluded that the combination of the fluid approximation and the stationary
approximation is considerably better than the fluid approximation alone.

3.2 Observation

A queueing model requires as input: the arrival rate λ(t), the service time
1/µ and the number of servers s(t). To develop a model we need observation
data. The output of the model is the waiting time W (t). To validate the
model we also have to measure the true waiting times at Narita immigration.
In this section we describe how we measured the data and the results of the
observations.

At immigration there are multiple queueing systems: queues and service
counters for foreigners, reentry passengers and Japanese passengers (see Fig-
ure 1.3). For the foreign passengers there are two clusters of service counters
on the left and right side of immigration. Each cluster is also a separate
queueing system. In general each passenger type has its own queueing sys-
tem with a separate input source. However the foreign passengers on the
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Table 3.1: Service time for each passenger type in seconds.

mean std

Japan 13 7
foreign 63 25
reentry 59 34

right side can use the service counters of the reentry permit holders if these
are free. Therefore these two systems have to be analyzed together. In Fig-
ure 1.3 we can see that the type of waiting line is different for the Japanese,
foreign and reentry passengers. Foreign passengers line up in a snake queue
on both sides. When the service counters for foreigners are open on both
sides then the foreign passengers can freely choose which side to go to but
immigration staff will usually try to direct the passengers to the side which
they think is less crowded. Japanese passengers line up in parallel queues.
Reentry passengers also line up in parallel queues.

3.2.1 Observation Results

We visited the immigration area of the South Wing of Terminal 1 on five
occasions: 2011/2/6, 2011/11/27, 2012/9/9, 2013/4/14 and 2013/4/15. The
North Wing immigration area was observed on 2013/10/5. The observation
time period was usually from around 13:00 to 16:00. During these times we
recorded videos of the arrivals and the queues. The number of arrivals and
open service counters were counted manually on the spot.

In this section the results of the observations on 2011/11/27, 2013/4/14
and 2013/4/15 are presented. The measurements of the other days are
incomplete. The data from 2011/2/6 was used to determine the service
times.

Service Times

The service time is defined as the period from the moment a passenger leaves
the queue until the time he leaves the service counter. From the video
recordings 132 random samples were taken for Japanese passengers, 105
random samples for foreign passengers and 50 random samples for reentry
passengers. The distributions of the service times are shown in Figure 3.5.
The mean and standard deviation in seconds are shown in Table 3.1. The
average service time for foreigners is similar to the average service time for
reentry passengers. The average service time for Japanese passengers is four
times shorter.

Brown et al. [9] showed that the service time distribution for call cen-
ters tends to be approximately lognormal. We plotted the fitted lognormal
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Figure 3.5: Service time distribution per passenger type.

distribution in Figure 3.5. The lognormal distribution follows the observed
service time distribution remarkably well for all three passenger types.

Arrivals

The passenger arrivals at the immigration entrances and the arrivals at the
tail of the waiting lines of each queueing system were counted either in real-
time on the spot or afterwards from the video recordings. There were several
difficulties with counting the passengers. During busy periods the number
of Japanese arriving at parallel queues was too large to count accurately.
The foreign passengers could be counted more easily because there is only
one entry for a snake queue. However during peak times the queue could
extend far beyond the entry point. The passengers arriving at the tail of
the queue were not visible for the observer in real-time or from the video
recordings.

The arrival time recording precision is seconds but for most calculations
we use the total arrivals per minute and for visualization of the arrivals larger
time intervals are more practical. The number of passenger arrivals per 10
minutes are shown in Figure 3.6. For the foreign passengers there are service
counters on the left and right side of the immigration area. On 2011/11/27
there were few foreign arrivals on the left side. On 2013/3/14 the foreigner
arrivals were reasonably balanced between the left and right side. Overall
we can observe large fluctuations in the number of arrivals. The ratio of
foreign and Japanese passengers was also very different for each day. For
the three observation periods the average percentage of aliens (foreign plus
reentry passengers) was respectively 0.40, 0.66 and 0.48.

Service Counters

We counted the number of open service counters during the observation
periods. Because it was difficult to count from the video recordings we had
one observer on the spot who registered the number of service counters that
were in use for each queueing system for every couple of minutes.
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Figure 3.6: Observed number of arrivals per 10 minutes.

The number of open service counters are plotted in Figure 3.7. We see
that the service counters are adjusted constantly. The service counters for
foreign passengers on the right side were always open while the left side was
only used when the capacity on the right side was insufficient. On average
there were 9 service counters for foreign passengers, 4 on the left side and 5
on the right side. 4 service counters were available for reentry passengers.
Japanese passengers could line up in front of 5 service counters on average.

Queue Lengths

The queues were recorded on video to measure the waiting times and the
queue lengths. The queue lengths were determined for every 5-10 minutes.
Counting the number of waiting passengers could not be done 100% accu-
rately because of the video resolution and because some passengers were
outside of the view or blocked by other passengers. Figure 3.8 shows a
screenshot of a video recording that was used to determine the number of
Japanese passengers in front of the service counters. In this screenshot is it
also difficult to distinguish where the Japanese queues end and the reentry
queues start.

The queue lengths on 2011/11/27 are shown in Figure 3.9. We see that
the foreign queue at the right side is at the worst point twice as long as on
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Figure 3.7: Observed number of open service counters.

Figure 3.8: Screenshot of the Japanese queue.
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Figure 3.9: Observed queue lengths.
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Figure 3.10: Interpolation of waiting times.

the left side.

Waiting Times

The waiting times were measured for random passengers from the video
recordings. We need to interpolate these observed waiting times to estimate
the waiting time of the other passengers in the queue. Figure 3.10 shows how
the waiting times are interpolated. The blue bars represent the observed
waiting times for the passengers arriving at t = 2, 5, 10. We make the
assumption that the waiting time changes linearly between each observed
waiting time. The observed arrival times of all passengers are indicated by
the purple dots. After linear interpolation we can estimate the waiting time
of each arrived passenger as shown by the red arrows.

The waiting times on three observation days are shown in Figure 3.11.
These waiting times represent the time spent in the queue for a passenger
arriving at time t. The waiting times for foreign passengers can differ sig-
nificantly between the left and right side. At the same time of the day there
can be a difference of more than 10 minutes. The maximum waiting time
experienced by any foreign passenger is 25 minutes. The passengers with
a reentry permit have a much shorter waiting time than the other foreign-
ers. The waiting times for Japanese passengers are very short. The average
waiting times during the observation period are shown in Table 3.2.

Because the interpolated waiting times per passenger are known, it is
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Figure 3.11: Observed waiting times.

Table 3.2: Observed average waiting times in minutes.

foreign reentry Japan pax
left right right right all

2011-11-27 6.8 7.2 2.8 0.7 2.9
2013-04-14 8.4 10.8 1.4 0.3 5.3
2013-04-15 4.6 3.4 0.9 0.7 2.0
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Figure 3.12: Cumulative histograms of the observed waiting times on
2011/11/27.

possible to draw a distribution for the waiting time. Figure 3.12 shows the
cumulative histograms for the waiting times on 2011/11/27. The red lines
indicate the 80% level. For the foreigners on the left side 80% has a waiting
time less than 10 minutes. On the right side the waiting time is 18 minutes
at this level. For the reentry and Japanese passengers the waiting times are
respectively at most 6 and 2 minutes for 80% of the people.

3.3 Immigration Queueing Models

Ingolfsson et al. [43] did a comparison of seven queueing theory methods
and compared the computational speed and accuracy for calculating the
waiting time probability. The seven methods were: numerical integration
approach (NUM), randomization method (RND), closure approximation
(CLS), infinite server approximation (ISA), modified offered load approx-
imation (MOL), effective arrival rate approximation (EAR) and lagged sta-
tionary approximation (LST). For their experimental design they used a
sinusoidal arrival rate function and a discretized sinusoidal function for the
number of servers. The waiting time probabilities were calculated at 5-
minute intervals for 640 different cases. They assumed that the numerical
integration approach is the exact solution. For a target waiting time of 0
minutes, the ranking in order of decreasing accuracy was RND, MOL/EAR,
ISA, LST, CLS. For a target waiting time larger than zero the ranking be-
came RND, CLS, ISA, MOL/EAR, LST.

In this section we compare the numerical integration approach, the deter-
ministic fluid approximation and the SBC approach. The last two methods
were not studied by Ingolfsson et al. We also don’t use artificial functions
for the number of arrivals and servers. And instead of assuming that the
numerical integration approach is exact, we compare the results with the
observed queue lengths and waiting times of three observation periods.
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Figure 3.13: Observed traffic intensities.

3.3.1 Traffic Intensity

From the literature review we know that models based on the stationary
queueing theory can only be applied if the traffic intensity ρ is less than one.
The exception is the SBC approximation which can be used for all values of
ρ. The numerical integration methods and the deterministic fluid approxi-
mations can also be used in overload situations. But fluid approximations
cannot capture stochastic delays. The value of the traffic intensity depends
on the length of the time interval. In general the traffic intensity is lower
for longer time intervals. We plot the traffic intensity for a interval length
of 10 minutes and 30 minutes (Figure 3.13). Note that we only calculate
the traffic intensity for the left foreign queueing system because for the right
side we don’t know the exact service rate because the foreign passengers can
also use the reentry counters if these are free. For the left foreign counters
the traffic intensity is always high and often exceeds one for both inter-
val lengths. For the reentry queueing system the 30-minute interval length
does not give any overload situations but for the 10-minute interval length
the traffic intensity exceeds one in one period. A similar conclusion can be
drawn for the Japanese queueing system.

In Table 3.3 the percentage of intervals that are overloaded are shown
for interval lengths of 1, 10 and 30 minutes. The foreign queueing system is
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Table 3.3: Percentage of overloaded intervals for time intervals of 1, 10 and
30 minutes.

foreign left reentry japan

2011-11-27 1 0.45 0.15 0.17
10 0.36 0.05 0.06
30 0.20 0.00 0.00

2013-04-14 1 0.32 0.16 0.02
10 0.39 0.00 0.00
30 0.50 0.00 0.00

2013-04-15 1 0.21 0.08 0.14
10 0.25 0.00 0.04
30 0.12 0.00 0.00

overloaded during a substantial amount of time for all three interval lengths.
The reentry queueing system is frequently overloaded if a time interval of
1 minute is used and sporadically overloaded if a 10-minute interval length
is used. Overload occurs for the Japanese queueing system with interval
lengths of 1 and 10 minutes.

3.3.2 Service Time

In queueing models the service time distribution is often assumed to be expo-
nential. Exponential service times allow us to analytically solve the queueing
model. The exponential distribution has one parameter: the mean of the
service times. According to Green, Kolesar, and Whitt [29] the most impor-
tant parameter for any service time distribution is the mean and the second
most important parameter is the squared coefficient of variation (SCV). The
SCV is defined as the square of the variance divided by the mean. For an ex-
ponential distribution the SCV is equal to 1. If the SCV is smaller than 1 the
exponential distribution will be too conservative. In general the exponential-
distribution assumption for the service times is a reasonable approximation
if the SCV is smaller than 2. The SCV of the Japanese service times is 0.31,
0.165 for foreign service times and 0.34 for reentry service times. However
the exponential-distribution assumption can still be adequate for small SCV.
Kolesar [48] analyzed the congestion at ATM’s. The measured service times
were not exponentially distributed and the SCV was only 0.25. Simulations
showed that there was no practical difference between a queueing model
with the empirical service time distribution and an exponential service time
distribution.

We found that using the average service time did not give optimal results
for the queueing models of the foreign and reentry passengers. We compared
the error between the observed waiting times and the estimated waiting
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times when using service times smaller and larger than the average. A
service time of 90% of the average gives the best results. For the Japanese
passengers the average of the observed service times gives good results.

3.3.3 Queueing Models

Based on the percentages of overload time we can conclude that for the
foreign queueing systems we can only use queueing theory methods that
can deal with overload. For the reentry and Japanese queueing systems we
could use the steady-state queueing theory with the longer interval lengths
but with an interval length of 1 minute there will also be overload. Therefore
we will analyse the immigration queuing systems with three models that can
deal with overload: the stationary backlog-carryover approach (SBC), the
numerical integration approach (NUM) and the deterministic fluid approx-
imation with cumulative flows (DET).

We choose 1 minute as the interval length for higher accuracy. Also this
is an appropriate interval length for analysing the foreign and reentry queues
with SBC. A shorter interval length however increases the computation time.
The computation time for a 3 hour period with 1 minute intervals is 15 ms
for DET, 87 ms for SBC and 1 minute for NUM. The numerical integration
approach is much slower than the other two models.

The input for each model is the observed arrival rate, the observed num-
ber of open counters and the service time. For the foreign and reentry
queueing systems we use a service time of 90% of the average while for the
Japanese queueing system the service time is the average observed value.

All queueing systems are modeled as independent systems except for the
right foreign system. The foreign passengers on the right side can also use
the reentry service counters if these are free. We adjust the service rate for
the right foreign system as follows. First the queues for the reentry system
is calculated. Then at each time interval we check if the reentry service
counters are open but there is no queue. When there is no queue we add the
available service counters to the right foreign system. However we cannot
add the full service capacity. By minimizing the error between the observed
and estimated waiting times it was found that we can add only 50%-80% of
the available service capacity. We can interpret this factor as the efficiency
of using shared service counters. With the additional service counters we
then calculate the queues for the right foreign system. Figure 3.14 shows
the difference between the estimated queue lengths with and without the
additional service capacity for an efficiency factor of 80%. We will use an
average efficiency factor of 60% for the models in the remainder of this
chapter.
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Figure 3.14: Observed and estimated queue lengths for the right foreign
queueing system without (left) and with (right) the available service capacity
from the reentry queueing system.
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Figure 3.15: Estimated queue lengths compared with observed queue lengths
on 2011/11/27.

3.3.4 Model Results

Queue Lengths

Figure 3.15 shows the estimated queue lengths for the three queueing models
with the observation data from 2011/11/27. All three models give almost
identical results and follow the trend of the observed queues quite well except
for SBC with the Japanese system. It is not unexpected that SBC performs
poorly for the Japanese system because the interval length is longer than
optimal for this model. The optimal interval length would be equal to the
average Japanese service time, i.e. 13 seconds instead of 1 minute.

Waiting Times

Figure 3.16 shows the observed and estimated waiting times for three ob-
servation days. In general SBC gives higher maximum waiting times than
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Figure 3.16: Estimated waiting times compared with observed waiting times
on 2011/11/27, 2013/4/14 and 2013/4/15.

DET and NUM. For the left foreign system all three models fit the obser-
vation data well. For the right foreign system SBC tends to produce longer
waiting times than observed while DET gives lower waiting times than ob-
served on 2013/4/14. This is also influenced by the estimation of the free
reentry service counters. All three models give good results for the reentry
system. For the Japanese queues on 2011/11/27 and 2013/4/15 DET and
NUM give good results. SBC however produces much lower peaks than the
observed values because of the inappropriate interval length as explained in
the previous section. Note that for 2011/11/27 the queue lengths estimated
by all three methods were very similar but the estimated waiting times can
differ more significantly.

3.3.5 Combining Foreign and Reentry Service

In this section we investigate two scenarios where we combine the left for-
eign, right foreign and reentry service counters. The current setup where
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Figure 3.17: Estimated waiting times for the combination of right foreign
and reentry service counters.

foreigners can use reentry counters when these are free, has an efficiency of
0.5 to 0.8. Without a priority queueing system for reentry passengers the
full capacity can be utilized. The effect of each scenario is calculated with
the deterministic fluid approximation. Because the average service time for
the reentry passengers is almost the same as for the other foreign passengers
we can simply add the arrival rates and service counters.

In the first scenario the foreign service counters are still split between
left and right side but the reentry service counters are merged with the
right foreign counters. The resulting waiting times are shown in Figure
3.17. The maximum waiting time goes down from 21 minutes to 14 minutes
on 2011/11/27, down from 20 to 15 minutes on 2013/4/14, and down from
10 to 8 minutes on 2013/4/15. Of course this comes at the cost of the
reentry passengers whose original maximum waiting times were only 10, 5
and 3 minutes respectively.

In the second scenario we merge both left and right foreign service coun-
ters and the reentry service counters into one service system for all alien
passengers. The resulting waiting times are shown in Figure 3.18. Here
we see that this scenario is also very beneficial for the foreign passengers
who were originally on the left side. In this scenario the maximum waiting
times drop from 21 to 10 minutes on 2011/11/2, from 25 to 15 minutes on
2013/4/14, and from 14 to 8 minutes on 2013/4/15. We can conclude that
removing the priority of the reentry passengers has a large impact on the
maximum waiting time for the foreign passengers.
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Figure 3.18: Estimated waiting times for the combination of left foreign,
right foreign and reentry service counters.

3.4 Processing Times

Managers at Narita Airport immigration have stated that they wish to re-
duce the waiting times to the same levels as Incheon Airport. In this section
we will compare the processing times of Narita Airport immigration and
Incheon Airport immigration.

Incheon Airport Immigration

According to Incheon Airport’s brochure [41] their immigration service is
“the world’s fastest, most convenient.” More specifically it is stated that
“The average immigration processing time for arriving passengers at In-
cheon Airport is only 12 minutes compared to 45 minutes internationally,
while departure processing takes only 19 minutes as opposed to 60 minutes
worldwide.” The international average processing time refers to the “ICAO
Service Target Average.”

If we look at the the ICAO document [66] where the service target av-
erage is specified, we find that the international processing times are not
actual worldwide averages but only recommendations for airports. For the
departing passengers the recommendation is “a total time period of 60 min-
utes for the completion of departure formalities for all passengers [. . . ] from
the time of the passenger’s presenting himself at the first processing point
at the airport [. . . ] to the scheduled time of his flight departure.” For the
arriving passengers the recommendation is “clearance within 45 minutes of
disembarkation from the aircraft of all passengers.” In other words the pro-
cessing time recommendations do not refer to the time at immigration only
but the total time it takes for a passenger to go through all service facilities.
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Table 3.4: Average processing times at Incheon Airport.

2005 2010 2012

departure 29 18 19
arrival 20 13 12

According to Incheon Airport they have developed the world’s fastest im-
migration service by [41] “harnessing the latest advances in IT and biotech-
nology.” More information about the systems deployed at Incheon Airport
to reduce the processing times is given in an ICAO working paper [65]. In-
cheon Airport utilized two IT systems: the Congestion Relief System and
the U-Immigration System. The Congestion Relief System was introduced
in 2004 with the purpose of easing congestion in the passenger terminals.
This was achieved by forecasting the passenger flows two hours in advance
and by deploying more personnel to bottlenecks in the traffic flow. Fore-
casting was done by the statistics-based Passenger Forecasting System that
predicted the total number of passengers per hour. The system provided the
information for flexible personnel deployment with small teams that were
placed at congestion points. This resulted in more personnel at peak times.
The U-immigration System is an automatic immigration service and it was
introduced in 2008. It was used by 14% of the departing passengers in 2009
and it reduced processing time up to 60%. Overall the introduction of the IT
systems resulted in 30% personnel savings and a 40% reduction in processing
time.

The Incheon immigration processing times were measured twice a year:
once in the low season and once in the high season. The average measured
times in minutes are shown in Table 3.4. We see that after the introduction
of the IT systems the immigration processing times reduced greatly for both
arrival and departure. It is however unknown how the processing times
were measured. It was not stated whether the measurements were done on
peak days and during which hours of the day. We also don’t know how
the passengers were selected and if it included both Koreans and foreigners.
Most importantly it is not clear how they defined the immigration processing
time, whether it refers strictly to only the immigration service or whether
it also encompasses all other arrival and departure services before and after
immigration as in the ICAO definition.

Narita Airport Processing Times

We define the processing time as the total time from arriving at the airport
to leaving immigration, i.e. the sum of the walking time, the waiting time
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Table 3.5: Average processing times at Narita Airport.

foreign reentry Japan all

2011-11-27 18 14 11 13
2013-04-14 21 12 10 16
2013-04-15 15 12 10 12

and the service time at immigration,

Tprocess = Twalk + Twait + Tservice. (3.44)

Using the observation data we can estimate the waiting time and the service
time of each passenger. We don’t have data of the walking time of individual
passengers. Therefore we estimate the average walking time from each gate
by using the walking speed distribution as described in the arrival forecasting
chapter. The average walking time on a day varies between 9 and 10.5
minutes. The observed average waiting times were shown in Table 3.2. The
average waiting times of all passengers during the three observation periods
were 2.9, 5.3 and 2.0 minutes. The average service times for Japanese,
foreign and reentry passengers are respectively 0.22, 1.1 and 0.98 minutes
(Table 3.1). If these data are combined then the average processing times
have the values as shown in Table 3.5.

The average processing time of all passengers combined ranges from 12
to 16 minutes. The average processing time for arrivals at Incheon Airport
is 12 minutes. One could conclude that that Incheon Airport immigration is
more efficient. However we can see that the results can be easily manipulated
by selecting different days. Also the largest portion of the processing time
consists of 9 to 10 minutes walking. We cannot draw any conclusions about
the performance of the immigration service only because we don’t know the
average walking times and waiting times at Incheon airport.

3.5 Conclusion

In this chapter we have reviewed multiple queueing approaches. An impor-
tant distinction is that some approaches can deal with overload and other
approaches cannot. A queueing system is overloaded if the traffic intensity
is larger than one. From observation data the traffic intensities were deter-
mined for the queueing systems at Narita immigration and we found that the
foreign queueing system is frequently overloaded. Overload also occurs for
the reentry and Japanese queueing systems when a 1-minute time interval is
used. We have implemented three queueing models that can cope with over-
load: the numerical integration of ODE, the stationary backlog-carryover
approach and the deterministic fluid model. These three models have not
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been compared in the literature before. The estimated waiting times from
the three models give good results compared to the observed waiting times.
Even though the deterministic model cannot capture stochastic delays in
underload situations while the other two methods can, the results with a
1-minute interval are just as good for the foreign queues and even for the
reentry and Japanese queues. The deterministic fluid model requires the
shortest computation time which makes it our preferred method to calcu-
late the waiting time performance of a queueing system. Finally we have
compared the total processing timse from arriving at the gate to leaving im-
migration with the processing times published by Incheon Airport. Because
it is unknown how the processing time was exactly defined and measured by
Incheon Airport, we cannot conclude if Narita immigration performs better
or worse.



Chapter 4

Staffing

Staff planning consists of four steps [15]. First the customer demand is
forecasted. Based on the demand the staffing requirements, i.e. then num-
ber of staff for each interval of the day, are determined. The third step is
shift scheduling where the number of employees are determined while taking
shift requirements into account. The last step is rostering to determine the
employee assignments to each shift. In real-time the staffing levels can be
adjusted by calling additional employees who are doing other jobs. We will
deal only with setting the staffing requirements.

The number of staff impacts the cost and the service level. We want to
balance service quality and staffing cost. This can be viewed as an opti-
mization problem with the objective to find the number of staff such that
the sum of the staffing cost and the cost of waiting is minimized. In prac-
tice the number of staff not is determined through optimization [8]. In the
staffing literature it is common [15] to view staffing as a constraint satis-
faction problem with the objective to find the least number of staff while
meeting a target service level requirement. The reasons for using the con-
straint satisfaction approach are the difficulty of quantifying the waiting cost
and the custom of using service level agreements in call centers. Common
performance metrics for call centers are the service level and the expected
waiting time. The service level P (W < τ) ≥ α specifies the percentage of
customers α that wait at most a target waiting time τ . In hospital emer-
gency departments it is common to use the probability that the waiting time
exceeds a given maximum waiting time, and the length of stay [15]. The
input for the staffing model are the arrival forecast and the service level
requirement, and the output is the staffing function s(t).

First we review the staffing literature for different types of arrival rate
input. In the airport literature there is a lack of staffing models that include
uncertain demand [29, 52]. Our objective is to develop a staffing model that
can deal with uncertainty in the delay. We assess the performance of the
deterministic staffing model when the delay is uncertain. Then we extend

75
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the deterministic model by converting the deterministic staffing function
into a staff probability matrix. We propose a quantile-based solution to
set the staffing requirements. We will also assess the performance of the
square-root staffing formula for uncertain demand and we determine the best
multiplication factor to the meet daily service level requirement. Finally we
develop an iterative algorithm to meet the service level at each time interval.

4.1 Literature Review

The literature on staffing in call centers is large [24, 1]. Green, Kolesar,
and Whitt [29] reviewed staffing methods for time-varying arrivals and dis-
cussed mainly simple heuristics. Defraeye and Nieuwenhuyse [15] provided
an overview of staffing and scheduling approaches with non-stationary de-
mand and included other application fields such as hospital emergency de-
partments. In this section we will discuss staffing methods categorized by
the type of demand: a constant arrival rate, non-stationary arrival rates and
uncertain arrival rates.

4.1.1 Staffing with Constant Arrival Rate

In this section we will discuss several methods for staffing with a constant
arrival rate. First we treat constraint satisfaction approaches and then op-
timization approaches.

Constraint Satisfaction Approaches

Deterministic Approximation

If we apply a naive deterministic approximation, with a constant time be-
tween arrivals of 1/λ and a constant service time of 1/µ, then the optimal
staffing level equals the offered load r = λ/µ [21, 25, 29]

s = r =
λ

µ
. (4.1)

This simple approach is effective for large systems with customer abandon-
ments and if the performance requirement is not very high, e.g. a delay
probability of about 0.5 [29]. Without abandonment the staffing level must
always be above the offered load [21].

Whitt [80, 81] derived a fluid approximation for the steady-state be-
haviour of the M/GI/s + GI model. An important feature of the model
is customer abandonments because abandonments stabilize the queue. If
the system is overloaded (λ > µs) without abandonments then the system
would not reach steady-state. The fluid approximation for the abandonment
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rate B is the arrival rate minus the service rate

B = [λ− µs]+ (4.2)

where y+ = max{0, y}. The abandonment probability is

P (Ab) =
B

λ
=

[λ− µs]+

λ
. (4.3)

Customers who do not abandon, wait a length of time w. Let F (w) be the
time-to-abandon cdf then

F (w) = P (Ab). (4.4)

If the service level requirement is moderate, e.g. P (w < τ) ≥ 0.8, and the
abandonment requirement is P (Ab) ≤ β then the optimal staffing level is
[29]

s∗ =
λ(1− x∗)

µ
, where x∗ = min{F (τ), β}. (4.5)

Infinite-Server Approximation

If the number of busy servers rarely reaches the maximum capacity or if there
are customer abandonments then it might be appropriate to approximate the
system by a system with an infinite number of servers [25]. Infinite-server
approximations are discussed in [63, 25, 82]. In an infinite-server system the
customers do not interact and are thus independent. The arriving customers
are served immediately which means that the number of customers in the
system equals the number of busy servers. In an infinite-server system with
Poisson arrivals, the number of customers in the system N is Poisson with
parameter equal to the offered load r

P (N = k) =
rke−r

k!
. (4.6)

The probability of delay for a system with a finite number of servers is then
approximated with

P (W > 0) ≈ P (N ≥ s) = 1−
s−1∑
k=0

rke−r

k!
. (4.7)

If the target delay probability α is specified then we can find the optimal
number of servers s such that

P (N ≥ s) ≤ α < P (N ≥ s− 1). (4.8)
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Normal Approximation

For large values of r the Poisson distribution of N can be approximated by
the normal distribution with mean µ and variance σ2 [22]. If we standardize
then (N −µ)/σ is normally distributed with mean 0 and standard deviation
1. Because the original distribution is Poisson, the normal approximation
has mean and variance equal to the offered load, i.e. µ = r and σ =

√
r.

The probability of delay can then be written as [29]

P (W > 0) ≈ P (N ≥ s) = 1− P (N < s)

= 1− P
(
N − r√

r
<
s− r√
r

)
≈ 1− Φ(β)

(4.9)

where Φ is the cdf of the normal distribution with mean 0 and variance 1,
and β is a quality of service parameter. Given a target delay probability α,
the optimal number of servers can then be determined with a square-root
formula [25, 45]

s = µ+ zασ = r + β
√
r (4.10)

where zα is the z-score for 1− α. Thus β is specified by

α = 1− Φ(β). (4.11)

A simple thumb of rule [29] is to set β = 2 which is equivalent to a probability
of delay equal to 0.02. We can interpret the square-root staffing formula
as the offered load plus a safety staffing part. The safety staffing part is
necessary to deal with stochastic variability.

Heavy-Traffic Limit

Halfin and Whitt [33] found another square-root-staffing formula by consid-
ering simultaneously the heavy-traffic limit λ → ∞ and the infinite-server
limit s→∞ while keeping the service time 1/µ fixed for an M/M/s queue
[29]

s− r√
r
→ β (4.12)

where β ∈ (0,∞). In this limit the probability of delay becomes

P (W > 0) ≈ HW (β) =

[
1 +

βΦ(β)

φ(β)

]−1

(4.13)

where Φ is the cdf and φ is the pdf of the standard normal distribution.
HW (β) is called the Halfin-Whitt delay function. The asymptotic result in
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(4.12) suggests a square-root formula s ≈ r + β
√
r where we determine β

for given α with the Halfin-Whitt delay function

α =

[
1 +

βΦ(β)

φ(β)

]−1

. (4.14)

For small values of α the normal approximation and the heavy-traffic limit
approach give similar results but the asymptotic approach is uniformly more
accurate [8].

Steady-State Queueing Model

A common staffing method is the smallest staffing level (SSL) approach
[26, 29, 15]. The SSL uses a steady-state queueing model to determine the
performance for different number of servers and then selects the smallest
number of servers for which the performance requirement is met. Suppose
the performance required is defined by the service level, i.e. the probability
that α percent of the customers are served within τ minutes. The optimal
number of staff is then determined iteratively [15]

s = argmin{k ∈ N : P (Wk > τ) < α} (4.15)

where Wk is the waiting time with k number of servers. For an M/M/s
system there exists an analytical expression for the service level (see equation
(3.10) in the queueing models chapter).

Optimization Approaches

Deterministic Approximation

Grassmann [25] discussed three models to maximize the total profit: a de-
terministic model, an infinite-server model and a steady-state model. The
total profit per time unit is defined as

T (s) = mB + gE − wQ− cs (4.16)

where m is the revenue from sales per time unit, B is the number of busy
servers, g is the revenue per customer, E is the number of customers leaving,
Q is the number of customers waiting, w is the waiting cost per customer,
and c is the maintenance cost per time unit.

For the deterministic model the queue length at time t is t(λ − sµ) if s
less than the offered load r and the queue length is 0 otherwise. The total
profit is then

T (s) = ms+ gµs− wt(λ− sµ)/2− cs s < r,

T (s) = mr + gµr − cs s ≥ r.
(4.17)
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However if s < r then the queue length will increase forever. Therefore we
can consider only s ≥ r. Total profit maximization or cost minimization is
achieved with staffing to the offered load s = r = λ/µ.

Infinite-Server Approximation

Grassmann [25] developed a simple stochastic model where the customers
being served are assumed to be independent. The infinite-server model is
used for the approximation of the number of customers in the system N .
The queue length is N − s if s ≤ N and 0 if s ≥ N . The total profit is then

T (s) = ms+ gµs− w(N − s)− cs s ≤ N,
T (s) = mN + gµN − cs s ≥ N.

(4.18)

The expected profit E[T (s)] is maximized if E[T (s)] > E[T (s − 1)] and
E[T (s)] > E[T (s + 1)]. Let D(s) = T (s + 1) − T (s) be the marginal profit
then equivalently the expected total profit is maximized if E[D(s)] ≤ 0 ≤
E[D(s− 1)]. The marginal profit can be written as

D(s) = m+ gµ+ w − c s < N,

D(s) = −c s ≥ N.
(4.19)

The expected marginal profit is

E[D(s)] = −c+ (gµ+ w − c)P (N > s). (4.20)

Then it follows that

P (N > s) ≤ c/(m+ gµ+ w) ≤ P (N > s− 1). (4.21)

If we define α = c/(m + gµ + w) then we can find the optimal number
of servers iteratively until P (N > s) < α. If the arrivals are assumed to
be Poisson then N is also Poisson. Using the normal approximation as
discussed above we can determine the optimal staffing level with the square-
root formula s = r + zα

√
r.

Steady-State Queueing Model

The last model discussed by Grassmann [25] is the equilibrium model. Be-
cause of the steady-state assumption, the revenue per time unit and the
revenue per customer are independent of the number of servers. Let Lq(s)
be the number of waiting customers. Using a similar marginal approach as
for the infinite-server model, the number of servers is optimal if

Lq(s)− Lq(s− 1) ≤ c/w ≤ Lq(s− 1)− Lq(s). (4.22)

The values of Lq(s) are determined with the analytical expressions from the
stationary queueing theory.
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Heavy-Traffic Limit

Borst, Mandelbaum, and Reiman [8] used asymptotic optimization to deter-
mine the optimal number of staff at large call centers for different trade-offs
between efficiency and service quality. The overall cost per time unit C(s, λ)
consists of the staffing cost F (s) and the waiting cost D(W ) for a customer
waiting W time units

C(s, λ) = F (s) + λE[D(W )]

= F (s) + λπ(s, λ)G(s, λ)
(4.23)

where π(s, λ) = P (W > 0) and G(s, λ) = E[D(W )|W > 0]. For the M/M/s
model they let λ → ∞ and searched for the asymptotically optimal s that
minimizes C(s, λ).

Three regimes were considered: an efficiency-driven regime where staffing
cost dominates waiting cost (F � G), a quality-driven regime where waiting
cost dominates staffing cost(G � F ), and a quality-and-efficiency-driven
regime (QED) where staffing cost and waiting cost are balanced (F ≈ G).
They derived a square-root staffing rule

s = r + β(·)
√
r (4.24)

where the expression for β(·) depends on the cost functions and the regime.
If we assume linear staffing cost c per agent per time unit and linear waiting
cost w per customer per time unit, then in the QED the factor β can be
determined with a unimodal function

β

(
w

c

)
= argmin

{
y > 0 : cy +

wHW (y)

y

}
(4.25)

where HW (·) is the Halfin-Whitt delay function. Numerical experiments
showed that the approximation for the QED is also accurate for the other
regimes.

4.1.2 Staffing with Time-varying Arrival Rates

In this section we discuss various approaches to determine the staffing levels
when the arrival rate varies during the day.

Stationary Independent Period-by-Period Approximation

A common approach is to divide the day in n staffing intervals. It is then
assumed that in each interval i the arrival rate λi is constant and that
the intervals are independent. For a given quality-of-service requirement,
the number of staff si is determined with a steady-state queueing model
[29]. This approach is called the stationary independent period-by-period
approximation (SIPP).
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Figure 4.1: Staffing with cumulative diagrams.

Related is the pointwise stationary approximation (PSA). A steady-state
queueing model is used to determine the number of staff s(t) at each time t.
Then the staffing level si in a staffing interval is the average or the maximum
of all s(t) in the interval.

Alternatively we can use any of the staffing approaches for a constant
arrival rate, such as staffing to the offered load and the square-root staffing
rule, to set the staffing levels in each interval independently.

Deterministic Fluid Model

In the deterministic fluid model the buildup of the queue can be analyzed
from the cumulative arrivals A(t) and the cumulative departures from the
queueD(t) [63]. We know thatD(t) ≤ A(t) because at any time there cannot
be more total customers departing from the queues than total arrivals. The
waiting time Wj of passenger j is the horizontal distance between the two
cumulative diagrams (Figure 4.1). We can set the performance requirement
that the waiting time of any passenger is less than Wmax, i.e. Wj ≤ Wmax.
The time before which each passenger must be served is indicated by F (t) =
A(t − Wmax), i.e. it is the cumulative arrivals shifted by the maximum
allowed waiting time. The performance requirement is met if

F (t) ≤ D(t) ≤ A(t). (4.26)

We discretize time with a unit interval, t = 1, 2, . . . . For given A(t) the
cumulative departures are determined with

D(t) = min{D(t− 1) + µs(t), A(t)}. (4.27)

If the staffing objective is to minimize the total number of servers then this
objective is achieved if s(t) is set at each time interval such that D(t− 1) +
µs(t) ≤ A(t). Any resulting cumulative departures diagram has the same
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total number of servers. If the left-hand side is larger than A(t) there will be
unused servers during that time interval. If there are no other requirements
then it makes sense to set s(t) such that D(t) = A(t) because the waiting
time becomes zero for all passengers. In other words the number of servers
equals the offered load s(t) = λ(t)/µ = [A(t)−A(t− 1)]/µ.

Littler and Whitaker [52] used the cumulative diagrams to determine the
immigration staffing levels at an airport in New Zealand. They defined an
objective that minimizes the maximum slope of the line segments of D(t)

min max
t
{s(t)}. (4.28)

Simulation-Based Heuristics

Feldman et al. [21] developed a simulation-based iterative staffing algorithm
(ISA) for time-varying queues. They considered an M(t)/M/s(t)+M model,
i.e. including abandonments, and an M(t)/M/s(t) model (in the electronic
companion of [21]). The performance requirement is the probability of delay

P (W (t) > 0) ≤ α (4.29)

where α is the target probability. This requirement is equivalent to

P (N(t) ≥ s(t)) ≤ α. (4.30)

The time horizon is divided in intervals. The ISA works iteratively. Let
sn(t) be the number of staff in interval t for iteration n and let Nn(t) be the
number of customers in the system if there are sn(t) servers. The algorithm
starts with setting the staffing function s0(t) to a large value so that the
probability of delay P (N(t) ≥ s(t)) is very small. Then in each iteration
i the system is simulated (with discrete-event simulation) multiple (5,000)
times with si(t) to determine the probability distribution of Ni(t). In the
next iteration i+ 1 the staffing level si+1(t) is set to the lowest number for
which the performance requirement is met in iteration i

si+1(t) = arg min{k ∈ N : P (Ni(t) ≥ k) ≤ α}. (4.31)

The algorithm stops when the change in the staffing levels is very small.
The ISA works well when compared with simulation results.

Defraeye and Nieuwenhuyse [14] adapted the ISA so that it can be used
for small number of arrivals, for staffing intervals and for a performance
requirement based on the excessive waiting time probability P (W (t) > τ) ≤
α instead of the delay probability P (W (t) > 0) ≤ α.

Dynamic Programming

Dynamic programming (DP) gives a procedure for determining the optimal
sequence of interrelated decisions [34]. A DP problem has N stages and
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each stage n has a number of states s. At each stage a policy decision xn
needs to be made. An important property is that the decision in a stage
is independent of the decisions in the previous stages. We want to find the
optimal policy that describes the optimal decision x∗n for each possible state
s such that the total cost of the overall policy is minimized. The solution
procedure starts by prescribing the optimal policy decision x∗N at the last
stage for each possible state. Then given the optimal policy at stage n+1 the
optimal policy for stage n is determined with a recursive cost relationship.
Let the cost fn(s, xn) be the sum of the immediate cost csxn at stage n plus
the minimum future cost f∗n+1(xn) from stages n + 1 onward. Let x∗n be
the value of xn that gives f∗n(s), the minimum of fn(s, xn). The recursive
relationship is then [34]

f∗n(s) = min
xn
{csxn + f∗n+1(xn)}. (4.32)

With the DP procedure we successively find f∗N (s), f∗N−1(s), . . . , f∗1 (s), for
each of the possible states s and the corresponding optimal policy decisions
{x∗N , x∗N−1, . . . , x

∗
1}.

Fu, Marcus, and Wang [23] considered a transient queueing model with
non-stationary arrivals. The objective is to set staffing levels in each time
period of the day in order to minimize the expected cost. The time horizon

is divided into N periods with length τ . Let the random variable X
(n)
t (i, s)

be the number of customers in the system at time t into period n, given
i customers at the beginning of the period and s servers throughout the
period. Let k be the cost per server per period. Then the cost cn(i, s) in
period n is the sum of the system occupancy cost and the staff cost

cn(i, s) =
1

τ

∫ τ

0
E[X

(n)
t (i, s)]dt+ ks. (4.33)

Let Xn be the number of passengers at the beginning of period n and let
σn be the number of servers assigned to period n if there are i initial cus-
tomers. The optimization problem is to find the staffing policy matrix σ
that minimizes the expected total cost

min
σ

N∑
n=1

E[cn(Xn, σn(Xn))]. (4.34)

The staffing problem can be solved with dynamic programming. The recur-
sive equation of the dynamic program is

f∗n(i) = min
s
{cn(i, s) + E[f∗n+1X

(n)(i, s)]} (4.35)

where the number of passengers X(n) in the system can be determined by
numerical integration of the ODE of the transient M(t)/M/s(t) queue. The
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optimal policy σ∗n(i) is determined by backward induction

σ∗n(i) = arg min
s
{cn(i, s) + E[f∗n+1X

(n)(i, s)]}. (4.36)

Roubos, Bhulai, and Koole [68] viewed the staffing problem as a Markov
decision process (MDP) problem and solved it with dynamic programming.
The goal of a MDP problem is to optimize the performance of a Markov
chain [34]. Let xt be the states of the Markov chain. In each state we make
a decision about which action at out of several actions to take. The action
affects the transition probabilities pt from state xt to state xt+1 and the
short-term cost and long-term cost. For each state we want to determine
the optimal action while taking both the short-term and long-term cost into
account.

They considered a service system with N workplaces for st permanent
staff and ft flexible staff. The objective is to minimize the cost to meet a
service level requirement SL by varying the number of flexible staff ft over
the day. Customer arrivals occur according to a non-homogeneous Poisson
process with parameter λt. The day is divided into m intervals with length
θ. The cost for permanent and flexible staff are respectively c1 and c2. There
is a penalty cost P if the service level requirement is not met at the end of
the day. The problem can then be formulated as follows

min
m∑
i=1

(c1siθ + c2fiθ) + P ISL<α. (4.37)

This optimization problem is converted to a MDP problem. The state xt rep-
resents the weighted service level realized up to t, i.e. xt =

∑t−1
i=1 λiSLi/

∑t−1
i=1 λi.

After observing xt we decide on action at from action space At = {0, . . . , N−
st}. Taking action at means that at flexible staff are scheduled at t. The
transition probabilities pt are obtained through simulation. Given xt and λt,
the service level xt+1 is determined by assuming steady-state and simulating
for each combination of xt and at. This results in pt(xt, at, xt+1), the prob-
ability of moving from state xt to xt+1 after choosing action at. The direct
cost is ct(xt, at) =

∑t−1
i=1(c1siθ + c2fiθ) + P Ii=mISL<α where the permanent

staff st can be determined with the SIPP approach. The optimal policy is
then obtained by dynamic programming.

4.1.3 Staffing with Uncertain Arrival Rates

In this section we discuss staffing models for when the demand is uncertain.

Mean Arrival Rate

In practice and in the staffing literature distributional forecasts are made
from historical data. Then it is common to use the mean of the distributional
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forecast as the basis for staffing [17]. With the mean arrival rates any of the
staffing methods for time-varying arrival rates can be applied.

Arrival Rate Randomization

To deal with forecasting errors in the deterministic model, Grassmann [25]
randomized the arrivals by assuming that λ is normally distributed. Then
the offered load r has a normal distribution with mean E[r] and standard
deviation Std[r]. For the deterministic model the total profit T (s) was
described in equation (4.17). The goal is to maximize the expectation of the
total profit E[T (s)] for a finite time span τ . Its derivative is

E′[T (s)] = E[T ′(s)] = −c+ P (r > s)(m+ gµ+ wτµ/2). (4.38)

This gives the optimality condition

P (r > s) = c/(m+ gµ+ wτµ/2) = α. (4.39)

We can interpret α as the chance that there are not enough servers. The
required number of servers is then

s = E[r] + zαStd[r] (4.40)

with zα being the z-score for 1− α.
For the infinite-server model of Grassmann [25], randomization of the

arrivals does not change the optimality condition P (N > s) ≤ α ≤ P (N >
s−1), see equation (4.21). Only the distribution of the number of customers
in the system N is affected. For Poisson arrivals with known r, the number
of customers in the system is Poisson with E[N |r] = r and V ar[N |r] = r.
If we randomize r then the distribution of N is affected as follows

E[N ] = E[E[N |r]] = E[r],

V ar[N ] = V ar[E[N |r]] + E[V ar[N |r]] = V ar[r] + E[r].
(4.41)

If N is normally distributed after randomization, the optimal number of
staff is

s = E[N ] + zαStd[N ] = E[r] + zα
√
V ar[r] + E[r]. (4.42)

Arrival Rate Bounds

Jongbloed and Koole [47] used the SIPP approach with an M/M/s queue
and the service level requirement P (W > τ) < α. In each interval the
arrivals are described by a Poisson variable X with parameter λ being drawn
from distribution H. The distribution of X is then a Poisson mixture

PH(X = x) =

∫ ∞
0

λx

x!
e−λdH(λ). (4.43)
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The mixing distribution H can be determined from historical data with a
parametric approach or with a maximum likelihood estimator. Then the
lower and upper bounds of λ are the 5% and 95% quantiles of the mixing
distribution.

Because P (W > τ) is increasing in λ for an M/M/s queue, the upper
and lower bounds can be used in two ways. In the first case the staffing levels
cannot be adjusted once the staffing requirements have been set. One needs
to consider a worst-case scenario. Staffing with the upper bound then gives
the guarantee that there is a 95% chance that the service level requirement
is met.

In the second case it is assumed that it is possible to call additional staff
with flexible contracts. The lower bound gives the number of fixed staff and
the upper bound indicates how many flexible staff are needed.

Newsvendor Problem

The newsvendor problem deals with inventory management for uncertain
demand. Suppose there is a single time period and the newsvendor needs to
order quantity x to sell during the period but the demand is uncertain. The
demand is described by a random variable D with pdf f , cdf F and mean
E[D]. The newsvendor buys quantity x for price c per unit. If at the end
of the period x ≥ D then the remaining units (x−D) have a holding cost h
per unit. On the other hand if x < D then there is a penalty b per unit for
lost sales (D − x). The total cost C(x,D) at the end of the period is then
[69]

C(x,D) = cx+ b[D − x]+ + h[x−D]+. (4.44)

The objective of the newsvendor is to minimize the total expected cost

E[C(x,D)] = cx+ bE[D − x]+ + hE[x−D]+

= bE[D] + (c− b)x+ (b+ h)

∫ x

0
F (z)dz.

(4.45)

By equating the derivative to zero, the optimal order quantity x∗ can be
determined

x∗ = F−1

(
b− c
b+ h

)
. (4.46)

Ding and Koole [17] formulated the staffing problem as a newsvendor
problem with the objective to minimize the total staffing cost while meeting a
service level constraint. The total cost consists of the initial staffing cost and
the traffic management cost. The staffing level is determined with a steady-
state model to meet a service level requirement. Initial staffing is usually
done weeks or months in advance. The initial staffing level s is based on
the distributional arrival forecast described by the random variable Λ with
cdf FΛ. During the day a more accurate arrival rate forecast λ is available.
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The number of staff is then adjusted (this is called traffic management) to
the correct staffing level S(λ). Let c be the cost per agent. The overstaffing
cost is (co − c) per agent and the understaffing cost is (cu + c) per agent.
The total cost C(s, λ) is the sum of the initial staffing cost and the traffic
management cost

C(s, λ) = cs+ (co − c)[s− S(λ)]+ + (cu + c)[S(λ)− s]+

= cS(λ) + co[s− S(λ)]+ + cu[S(λ)− s]+.
(4.47)

The goal is to minimize the expected total cost

E[C(s,Λ)] = cE[S(Λ)] + coE[s− S(Λ)]+ + cuE[S(Λ)− s]+. (4.48)

This is a newsvendor problem with demand S(Λ) and its cdf H. The solution
for the newsvendor problem is thus

s∗ = H−1

(
cu

co + cu

)
. (4.49)

Ding and Koole [17] showed that H−1(p) = S(F−1
Λ (p)) for 0 ≤ p ≤ 1 and

proved the monotonocity of S for the M/M/s and M/M/s+G models with
a service level constraint. The optimal staffing level becomes

s∗ = S

(
F−1

Λ

(
cu

co + cu

))
. (4.50)

In other words the optimal staffing level should be determined according to
the cu/(co + cu) quantile of the arrival distribution forecast.

Bassamboo, Randhawa, and Zeevi [6] developed a staffing model that
also has the form of a newsvendor problem. They assumed an M/M/s +
M queueing model with a doubly stochastic Poisson arrival process. The
arrival rate Λ is a random variable with mean λ and cdf FΛ. Customers are
impatient with the abandonment times being exponentially distributed with
mean 1/γ. The total cost C(s) is defined as the sum of the staffing cost and
the customer cost. The customer cost consists of the waiting time cost w
per customer per time unit and the cost of abandonment a per customer.
The cost of staffing is c per agent per time unit. The expected queue length
in steady state is Q = E[N − s]+ and the abandonment rate is γQ. The
objective is to find s that minimizes the expected total cost in steady state

E[C(s)] = (w + aγ)E[N − s]+ + cs. (4.51)

The objective function is approximated by ignoring stochastic variability in
the customer arrivals and service times, and only considering uncertainty
in the arrival rate. The system is approximated by a fluid model with
arrival rate Λ. The approximate abandonment rate is the arrival rate minus
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the total service rate, i.e. E[Λ − µs]+. The queue length can then be
approximated as

Q = E[N − s]+ ≈ 1

γ
E[Λ− µs]+. (4.52)

The approximate objective function becomes

E[C(s)] = (w/γ + a)E[Λ− µs]+ + cs. (4.53)

The solution for this newsvendor problem is

FΛ(µs∗) = 1− c

w/γ + a
. (4.54)

Let FΛ = FΛ − 1 be the tail distribution function of FΛ then the optimal
number of servers is

s∗ =
1

µ
F
−1
Λ

(
c

w/γ + a

)
(4.55)

They derived the following rule of thumb. If the coefficient of variation
of the random arrival rate CV = Std[Λ]/E[Λ] = σ/λ is larger than 1/

√
r

then uncertainty dominates variability and the newsvendor approximation
is accurate. If CV < 1/

√
r then variability dominates and the square-

root staffing rule s = r + β
√
r can be used to improve the solution of the

newsvendor approach.

Stochastic Programming

In the previous section a closed-form solution was derived for the newsvendor
problem. For more difficult cases the stochastic program can be formulated
as a linear programming problem. Suppose the random demand D has a
discrete distribution with outcomes d1, . . . , dK and probabilities p1, . . . , pK .
We can write the expected total cost as a weighted sum [69]

E[C(x,D)] =
K∑
k=1

pkC(x, dk). (4.56)

The linear programming problem is then

min
K∑
k=1

pkC(x, dk)

s.t. C(x, dk) ≥ (c− b)x+ bdk, k = 1, . . . ,K

C(x, dk) ≥ (c+ h)x− hdk, k = 1, . . . ,K

x ≥ 0.

(4.57)

Liao et al. [51] studied a call center model with doubly stochastic Poisson
arrivals. The staff have two types of jobs: handle incoming calls first and
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alternatively do back-office jobs that can be delayed. The day is divided
into n intervals and in each interval i the mean arrival rate Λi is random

Λi = Θfi, for i = 1, . . . , n (4.58)

where Θ is a random variable describing the busyness of the day, and fi de-
scribes the shape of the arrival rate intensity in each interval. The busyness
variable Θ has a discrete distribution with outcomes θl and probabilities pθl
for l = 1, . . . , L.

The back-office workload is represented by the random variable A, the
number of staff needed to do the back-office workload during a single period.
The discrete probability distribution of A has outcomes ak and probabilities
pak for k = 1, . . . ,K. The number of staff vi required to handle the calls
in interval i are determined with an SIPP approach and an M/M/s model.
For a given number of staff v, there is an expression for the steady-state
waiting time probability P (Wi ≤ τ |θ)(v) = Fθi(v). Given the service level
requirement P (Wi ≤ τ) ≥ SLi and the arrival rate sample θfi, the required
number of staff can be determined with

vi(θfi) = F−1
θi (SLi). (4.59)

Let s be the number of staff during the day, let vi be the number of staff
required to handle the call arrivals θfi in interval i, and let a be the number
of staff required to handle the back-office workload in an interval. Note that
s is assumed to be constant over all intervals. The staff salary cost is c and
the overtime cost (for doing the delayed backoffice jobs) is r per agent per
period, with c < r < u. The daily total cost is the sum of the salary cost
during normal time, the under-staffing cost and the overtime cost

C(s, θ, a) = ncs+ u
n∑
i=1

[s− vi(θfi)]− + r

[
a−

n∑
i=1

[s− vi(θfi)]+
]+

. (4.60)

The objective is to minimize the expected daily total cost

E[C(s, θ, a)] =
L∑
l=1

K∑
k=1

pθlpakC(s, θl, ak). (4.61)

They proved that the expected daily total cost E[C(s, θ, a)] is convex in s.
Two approaches were used to solve the stochastic problem: a linear pro-
gram and a robust program. The model was extended by allowing overflows
between successive periods. The overflow equals the backlog bi−1 from a
previous period. The backlog is determined with the Erlang B model as in
the stationary backlog-carryover approach (SBC). Overflow can be viewed

as under-staffing by bi−1(s)
µ agents in the current period. Thus we can add

an additional under-staffing penalty cost u bi−1(s)
µ to C(s, θl, ak).



4.1. LITERATURE REVIEW 91

4.1.4 Airport Staffing

Green, Kolesar, and Whitt [29] discussed how queueing theory is used by
airlines to schedule airport personnel at for example, check-in and ticket
counters. Scheduling is often done with 15-minute staffing intervals. The
arrival rate is based on the flight departures and contact ratios, which is
the percentage of arrivals for each type of passengers that require service
at different service counters (e.g. economy and first class). There are no
passenger abandonments. The expected service times are a few minutes but
can vary by the time of day. The service standards are fairly high and can
vary throughout the day. Service standards could be defined as 85% of the
passengers served in less than 5 minutes. The SIPP approach is commonly
used to determine the required number of staff during the day.

United Airlines [35] developed a shift scheduling system for its employees
at reservation offices and customer service agents at airport. The system
produced $6 million labor cost savings per year. The staffing requirements
were determined by a forecasting model and a queueing model. For the
reservation offices the forecast was based on historical call volumes and an
autoregressive moving average technique was used. Poisson arrivals and
exponential service times were assumed for the queueing model which proved
to be valid. The queueing model provided the number staff for 30-minute
intervals such that a certain percentage of passengers was served within a
desired waiting time. For check-in personnel they used passenger loads and
arrival trends to forecast the work load. A similar queueing model was used
for staffing airport personnel. Integer and linear programming techniques
were then used to determine monthly shift schedules.

Brusco et al. [10] improved the airport personnel scheduling model for
United Airlines. The staffing requirements were determined by using the
flight schedule and forecasts of passengers, luggage and cargo loads. The
passenger forecasts for check-in counters were based on passenger arrival
curves at the airport, and the percentage of passengers that require different
types of service at the counters. The arrival curves, contact ratios and service
times are time-dependent and have different values depending on the time of
the day, day of the week and type of queue. A queueing model was used to
calculate the required number of employees per 15-minute interval. Based
on the staffing function and other personnel requirements a tour-scheduling
model generated schedules for full-time and part-time shifts.

Littler and Whitaker [52] developed a staffing algorithm for immigration
personnel at a New Zealand airport. Their performance requirement was
that 100% of all passengers are processed from landing through immigra-
tion within a specified time. Because the performance requirement refers
to a whole flight the stochastic variations in the queueing system can be
ignored and a deterministic model is justified. Cumulative diagrams were
used to determine the staffing requirements. Their staffing problem was
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more complicated because the baggage claim is placed before immigration
at the New Zealand airport. A simple model was introduced to estimate the
percentage of passengers who picked up their luggage at each time.

Mason, Ryan, and Panton [56, 55] developed a staffing heuristic for cus-
toms personnel at Auckland International Airport in New Zealand. The
performance requirement was that 85% of the passengers of a flight needs
to be finish customs within 45 minutes and the other passengers have to be
processed within 15 minutes later. The staffing levels per 15 minute interval
were calculated once a week. An algorithm was implemented to test if a
reduction in staff hours in one of the intervals if feasible. It tries to find an
optimum by reducing the number of periods with the most number of staff
smax and continues with smax − 1 and so on. Testing for feasibility is done
with a simulation program. The algorithm stops when a local optimum has
been found.

4.2 Staffing at Narita Immigration

The decision makers at immigration of Narita Terminal 1 base their staffing
decisions on the expected flight arrival times, the number of (non-transit)
foreign and Japanese passengers on each flight, and four TV screens that
display the inbound and outbound immigration areas at the South and North
wings of Terminal 1. When staff are not needed, they stay at a location
10 minutes from the immigration area. During peak times it is possible to
request additional staff from Terminal 2. Arrival forecasting and staffing are
mainly experienced-based which can lead to suboptimal staffing levels and
excessive waiting times. The decision-makers at Narita Airport Immigration
want to limit the maximum waiting time of a foreign passenger to 10 minutes.
In this chapter we will deal only with the number of staff for foreign service
counters. It is assumed that there is only one queue for all foreign passengers
and reentry permit holders join the same queue as the other foreigners.

4.2.1 Staffing Model

Important characteristics of the foreign queueing system are long periods
with overload and uncertainty of the arrival rate. Call centers are com-
monly assumed to be underloaded and many studies use the PSA or SIPP
approach where the steady state queueing theory is used in independent
time intervals [47]. In the studies that include overload it is also assumed
that there are customer abandonments because these stabilize the queue
[80, 81]. At immigration however there are no abandonments because all
passengers must go through immigration. The deterministic staffing model
by Littler and Whitaker [52] is appropriate for overload but they did not
consider uncertainty in the flight arrivals. In the reviewed papers that deal
with uncertain demand, the methods either deal with only one time period
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[25, 17], or the staffing level is assumed to be constant over the whole day
[51], or a steady-state queueing model is used [47].

There are two approaches to staffing: a constraint satisfaction approach
and a cost optimization approach. In practice the constraint approach is
commonly used because it is difficult to quantify the waiting time cost and
because the performance requirement is often described by the service level.
Another important consideration is the practical use of the staffing model.
At Narita immigration the decision makers want a support tool to help them
make decisions. The output of the model is just one of the factors that they
take into account. Other factors are the real-time queues and the availability
of the staff. A constraint satisfaction approach is more intuitive for the
decision makers because the main goal is to keep the maximum waiting
time under 10 minutes. Therefore we define the staffing problem at Narita
immigration as a constraint satisfaction approach. The computational speed
is also a factor in practice which means that simple heuristics are preferred.

The objective is to minimize the staff cost while meeting a service level
constraint. The service level is defined in [43] as SL(t) = P (W (t) ≤Wmax),
and the complementary service level as SL(t) = P (W (t) > Wmax). The
latter is also called the waiting time tail probability [30], the excess wait
probability [14] or the total service factor [8]. For our discussion we define
the service level as the excess wait probability

SL(t) = P (W (t) > Wmax). (4.62)

A lower service level is thus better. We will refer to SL(t) as the interval
service level. As in [68] the performance requirement is to achieve the desired
service level over the whole day where the service level is weighed by the
arrival rate in each time interval

SL =

∑
λ(t)P (W (t) > Wmax)∑

λ(t)
≤ α. (4.63)

We will refer to SL as the daily service level. We assume that the target ser-
vice level at Narita immigration is that at most 1% of the foreign passengers
have a waiting time longer than 10 minutes, i.e. Wmax = 10 and α = 0.01.

Grassmann [25] suggested the following procedure to find an appropriate
staffing model. Start with the simplest model and validate the model. If the
results are unsatisfactory then add more features to the model and validate
the new model. This is done recursively until an appropriate model has been
found.

4.2.2 Deterministic Staffing

In this section we apply the deterministic fluid model from section 4.1.2.
First we discuss the deterministic staffing model for a single flight and deter-
mine the waiting time performance for the case of uncertain walking speeds.
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Figure 4.2: Arrival rate probabilities with the expected arrival rate of a
single flight (left) and the cumulative diagrams (right).

Then we extend it to multiple flights and test the performance with sim-
ulations that include uncertain flight delays and uncertain disembarkation
delays.

Single Flight

We consider the case of passenger arrivals of a single flight without flight
delay uncertainty and without disembarkation delay uncertainty but with
variability in the individual walking speed. Figure 4.2 (left) shows the arrival
probabilities for a flight with 85 foreign passengers. The expected flight
delay is 2 minutes and the expected disembarkation delay is 10 minutes.
The maximum allowed waiting time Wmax for any passenger of the flight is
10 minutes. We use a deterministic fluid model with the arrival rate λ(t)
equal to the expected value of the arrival probabilities at each time. Let
A(t) =

∑
λ(t) be the cumulative arrivals and let D(t) be the cumulative

departures from the queue then the waiting time requirement is met if

A(t−Wmax) ≤ D(t) ≤ A(t). (4.64)

The target cumulative curve A(t − Wmax) is shown in Figure 4.2 (right).
There are many curves D(t) that meet this requirement. We want to min-
imize the total number of staff. When D(t) < A(t) all staff s(t) are fully
used. When D(t) = A(t) we can avoid overstaffing by setting s(t) = λ(t)/µ.
However this still allows many curves. As in [52] we set the objective to
minimize the maximum of the number of staff during the period, i.e. min-
imize the maximum slope of curve D(t). We achieve this by drawing curve
D(t) such that it touches curve A(t−Wmax) as shown in Figure 4.2 (right).
We developed the following iterative heuristic to find s(t) and the corre-
sponding D(t). It is based on the idea of a constant number of staff during
the peak time and afterwards until the queue has vanished, see Figure 4.3
(left). First set the number of staff s(t) to one over the entire arrival period.
Then the waiting time is calculated with a deterministic queueing model.
If the waiting time requirement is not met, increase the number of staff by
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Figure 4.3: Staffing a single flight with the deterministic fluid model.

one over the entire time period and repeat the process until the maximum
waiting time is less than the allowed maximum waiting time

s∗(t) = arg min{s : Ws(t) ≤Wmax} (4.65)

We now have a constant staffing function but after the arrival peak has
passed and the waiting time has become zero, the same staffing level is no
longer needed. Therefore we determine when the waiting time has reached
zero as in Figure 4.3 (right), and set the number of staff to one for all times
after that to serve the late arrivals. Furthermore we can also reduce the
number of staff at the beginning of the period when the waiting time is also
zero. The number of staff is an integer therefore the maximum slope of the
curve cannot be exactly minimized but the waiting time requirement is still
met as shown in Figure 4.3 (middle).

We simulate the waiting time performance with the resulting staff func-
tion s(t) when there is walking speed variability. The waiting time proba-
bility P (W (t) = k) at each time interval t is determined by simulating the
system 200 times with a random walking speed for each passenger. The
waiting time probabilities are shown in Figure 4.4. The plot also includes
the 99% quantile line which indicates the waiting times Wp(t) for which
P (W (t) ≤ Wp(t)) = 0.99. We can conclude that the deterministic model
performs well for a single flight if the delays are deterministic and the walk-
ing speed is random.

Multiple Flights

Now we consider multiple flights on the same day. It is assumed that the
flight schedule data is updated at 13:00 and all flights before this time have
been processed at immigration. The goal is to find the total staffing function
for all flights from 13:00. As in the deterministic model for a single flight,
the expected flight delay and the average disembarkation delay are used.

For each individual flight we determine the expected arrival rate λfl(t)
and the staffing function sfl(t). The total arrival rate λ(t) =

∑
λfl(t) and

the total staffing function s(t) =
∑
sfl(t) are the sum of respectively the
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Figure 4.4: Waiting time probabilities for the case of staffing a single flight.
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Figure 4.5: Output of a deterministic queueing system with multiple flights.

expected arrival rate and the staffing function of all individual flights. How-
ever we allow the staffing function to be non-integer with a step size of 0.1
because summing multiple flights will lead to overstaffing if the staffing func-
tions of the individual flights are rounded up to the nearest integer. Also a
staffing interval of 10 minutes is used, i.e. the number of staff is averaged
over 10 minute intervals and the staffing level is constant and equal to the
average of each interval. An example output of a deterministic queueing
system for 44 flights is shown in Figure 4.5. The maximum waiting time
experienced by any passenger is less than 10 minutes.

Performance Simulation

We have collected the flight schedule updates for 514 days from 2013 to
2015 with the actual ETA of the flights during the day. In general the flight
schedules do not change much on a weekly basis. However because the
actual ETA are used the resulting daily schedules are different for each day.
The number of passengers of each flight is unknown therefore the passenger
load is estimated with the average of the flight data that we collected on
the observation days or by using the aircraft type as described in the arrival
forecasting chapter. It is assumed that the passenger load is constant over
the year. The daily service level SL (after 13:00) is calculated with 200
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Figure 4.6: Example of the waiting time performance with multiple flights.

Figure 4.7: A flight arriving at the end of the staffing period without other
flights nearby (a) and with another flight arriving around the same time (b).

simulations of the queueing system. Figure 4.6 shows an example of the
simulation results for one day. The left plot shows the expected arrival
rates and the number of staff. We can see that the staffing function lags
the arrival rates. The middle plot shows the interval service level SL(t) for
a target maximum waiting time of 10 minutes. The 99% quantile of the
waiting time probabilities is shown in the right plot.

The service level plot shows that the worst service levels occur when
the number of arrivals are the lowest. At the end of the day the 99%-
quantile waiting time increases indefinitely which means that there are still
passengers in the queue without any staff available. This can be explained
with Figure 4.7. In plot (a) there is a single isolated flight with s1(t) being
the the staffing function for the flight according to the deterministic model
and λ1(t) being the actual arrival rate. If the actual flight arrival time is at
the end of the staffing period then there are not enough staff available after
arrival and the waiting time increases indefinitely. In plot (b) the staffing
periods of two flights overlap. If flight 1 arrives at the end of its staffing
period it can still use the staff that were allocated for flight 2 if that flight
arrived at the beginning of its staffing period. Flight 2 can also utilize the
unused staff of flight 1. The more overlapping flight, the better the service
level becomes on average.

The daily service level of the example is 0.17. In other words the target
service level requirement of 0.01 is not met for this day. Table 4.1 shows
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Table 4.1: Daily service level statistics for various number of samples.

samples 2 5 10 20 50 100

service level
mean 0.123 0.134 0.129 0.131 0.131 0.130
std 0.020 0.021 0.019 0.020 0.018 0.017
min 0.100 0.100 0.100 0.099 0.098 0.095
max 0.138 0.156 0.156 0.159 0.167 0.167
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Figure 4.8: The service level (left), the total passenger volume (middle), and
the service level vs. total passenger volume (right) for 100 days.

the daily service level averaged over various number of days. The samples
are taken with equal distance between each sample. The mean daily service
level is 0.13 with a range from 0.095 to 0.167. The number of samples do
not affect the mean and the standard deviation of the daily service level
significantly.

In Figure 4.8 (left) the daily service level is plotted for 100 days. The
total number of passengers for the flights in the flight schedule is shown in
Figure 4.8 (middle). The correlation between the daily service level and
the number of passengers is -0.70. The correlation is clearly visible if we
plot the daily service level and the number of passengers in one figure as in
Figure 4.8 (right). Staffing for days with more passengers results on average
in lower daily service levels. The number of passengers correlates strongly
with the number of flights. As explained above the more overlapping flights,
the better the service levels that can be achieved.

Maximum Waiting Time

In the previous sections the staffing function was determined for Wmax = 10
minutes. Figure 4.9 shows the staffing functions for a single flight with a
target maximum waiting time of 5, 10 and 15 minutes. As the maximum
waiting time increases, the staffing level goes down and the length of the
staffing period increases. The total number of staff over the whole period is
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Figure 4.9: Staffing functions of a single flight for different Wmax.

Table 4.2: Daily service level statistics of 100 days for different Wmax.

wait max 5 10 15

service level
mean 0.393 0.130 0.049
std 0.024 0.017 0.011
min 0.347 0.095 0.026
max 0.466 0.167 0.075

the same because all allocated staff are fully utilized.

For Wmax = 5, 10, 15 Table 4.2 shows the 100-day statistics for the daily
service level. IfWmax increases, the mean of the daily service levels decreases.
From the results we can conclude that the deterministic model does not
provide the required daily service level of 0.01 for any Wmax in the table.
The deterministic method also does not provide a way to adjust the staffing
levels to meet the service level requirement.

4.2.3 Staff Probabilities

In the deterministic model the delay was deterministic. In this section we
discuss how to extend the deterministic model with flight and disembarka-
tion delay uncertainty.

Staff Probability Matrix

For the arrival forecast we added delay uncertainty by the convolution of the
flight arrival probability matrix and the delay distribution. We will perform
a similar procedure for the staffing function. Figure 4.10 shows the steps of
the procedure. First the staff function s(t) (left plot) is converted to a staff
probability matrix S with probabilities equal to one (middle plot). Let d be
the total delay distribution of a flight. We add the delay uncertainty by the
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Figure 4.10: Procedure to add delay uncertainty to a deterministic staffing
function of a single flight.

convolution of the staff probability matrix and the delay distribution of the
flight

Sd(r) = S(r) ∗ d (4.66)

where S(r) is the rth row of S, i.e. the probabilities of r number of staff
over time. The resulting staff probability matrix is shown in the right plot
of Figure 4.10.

For the arrival forecast the arrival probability matrix of each flight was
calculated and then the arrival probabilities of all flights were summed with
the convolution operation. We will do a similar procedure for the staff
probability matrix. For each flight in a flight schedule we first determine the
staff probability matrix. Then we convolve the staff probability distributions
of each flight at time interval t, i.e. the columns of the staff probability
matrices at t, to obtain the total staff probability distribution. Let Sid(t) be
the probability distribution at time interval t of the staff probability matrix
Sid of flight i then the total distribution S(t) is given by

S(t) = S1
d(t) ∗ S2

d(t) ∗ · · · ∗ Skd (t) (4.67)

where k is the number of flights. Figure 4.11 shows an example of the arrival
probabilities (left) and the staff probabilities (middle) for the flights after
13:00. In the figure the expected values and the 5% and 95% quantiles are
also plotted. The range of the quantiles is smaller for the staff probabilities
than for the arrival probabilities. In the right plot the expected values are
compared. When the expected values increase both curves are similar but
when the expected values decrease the staff curve lags the arrival curve.

Staffing with Quantiles

We propose a quantile-based staffing heuristic where the staff level is set to a
certain quantile of the staff probability matrix. Let q be the quantile and let
X(t) be the number of staff for time interval t with probability distribution
S(t) then the staffing function is

s(t) = arg min{k ∈ N : P (X(t) ≤ k) ≥ q}. (4.68)



4.2. STAFFING AT NARITA IMMIGRATION 101

14 16 18 20 22
0

10

20

30

40

50

60 arrival probability
exp
0.05
0.95

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

14 16 18 20 22
0

5

10

15

20

25

30

staff probability
exp
0.05
0.95

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

14 16 18 20 22
0

5

10

15

20

25 expected values
λ(t)

s(t)

Figure 4.11: Example of arrival probabilities, staff probabilities and the
expected values.
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Figure 4.12: The mean daily service levels for different quantiles.

For q = 0.3, 0.4, . . . , 0.9 and 0.95 the daily service levels were calculated for
100 days. The mean of the daily service levels are shown in Figure 4.12
(left). The dotted lines represent the 5% and 95% bounds. The right plot
shows the same curves but zoomed in for service levels up to 0.05. For a
target service level with Wmax = 10 and α = 0.01 the appropriate quantile
is 80%.

Figure 4.13 shows an example of the service level on one day when staffing
with an 80% quantile. The daily service level is 0.007. The worst interval
service level is 0.07 at 21:00. The waiting time percentile plot shows that at
the end of the day there is a chance that the queues are not empty.

Staff Cost

The staffing levels are determined per 10-minute staffing intervals. Let c be
the cost per agent per staffing interval. The total staff cost C is then

C = c
∑
i

s(i) (4.69)

where s(i) is the number of staff at staffing interval i. We let c = 1 then
the total staff cost is simply the sum of the staff per 10 minutes over the
day. For 100 days the daily service level and the total number of staff were
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Figure 4.13: Example of the waiting time performance on one day when
staffing with the 80% quantile of the staff probabilities.

0.0 0.2 0.4 0.6 0.8 1.0
service level

200

300

400

500

600

700

800

900 total staff for Wmax = 5

0.0 0.2 0.4 0.6 0.8 1.0
service level

200

300

400

500

600

700

800

900 total staff for Wmax = 10

0.0 0.2 0.4 0.6 0.8 1.0
service level

200

300

400

500

600

700

800

900 total staff for Wmax = 15

Figure 4.14: The total number of staff and the daily service levels of 100
days. The colors represent different quantiles q = 0.95, 0.9, 0.8, . . . , 0.3.

calculated for different values of q. The result is shown in Figure 4.14. Each
color represents a different quantile. From left to right the quantiles start
at 0.95 and decrease to 0.3.

If the mean daily service level and the mean total number of staff is
calculated over the 100 days then the total staff-service level curves for Wmax

equal to 5, 10 and 15 minutes are shown in Figure 4.15. This figure allows
us to determine the average additional staff cost if we want to improve the
service level. For a service level of 0.1 the mean number of staff is 379. To
improve the service level to 0.05 requires an additional 29 staff. To achieve
a service level of 0.02 requires an extra 42 staff. And if we want to improve
the service level from 0.02 to 0.01 we need to add another 31 staff.

Update Time

Up to now we have assumed that the flight schedule is updated at 13:00 and
only considered the flights from that time. However the flight schedule is
updated continuously during the day every 10 minutes. To investigate the
effect of the update time we calculated the 100-day mean of the daily service
level for various update times: 6:00, 9:00, 12:00, 15:00, 18:00 and 21:00. The
daily service level is thus the weighted service level from the update time
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Figure 4.15: The mean total staff and the mean daily service level per
quantile for Wmax = 5, 10, 15.
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Figure 4.16: The mean daily service level at different update times and
different quantiles.

to the end of the day. Figure 4.16 shows how the mean daily service level
changes for q = 0.7, 0.8, 0.9. The daily service levels decrease from 6:00 to
12:00 and increase from 15:00 to 21:00. In other words if we want to have a
constant daily service level when staffing at different update times, we have
to staff with higher quantiles for update times in the morning and in the
evening. The red dotted lines represent the 5% and 95% bounds of the daily
service levels. The plots show that the variance of the daily service level
increases significantly after 18:00. This means that we need to add extra
staff during these periods.

4.2.4 Square-Root Staffing

The square-root staffing (SRS) formula, s = r+β
√
r, consists of the offered

load r = λ/µ plus safety staffing to deal with stochastic uncertainty. The
difficulty lies in finding the appropriate value of β. In this section we de-
termine the service levels for different values for β, ranging from 0 to 1.5
with a step size of 0.1. The arrival rate is equal to the expected value of the
arrival probabilities. SRS is applied with a staffing interval of 10 minutes.
An example of SRS with β = 1 is shown in Figure 4.17. We see that the
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Figure 4.17: An example of the performance of SRS with β = 1.
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Figure 4.18: The mean daily service level as a function of β for Wmax =
5, 10, 15.

worst service levels are after 18:00 when the arrival rates are lowest. The
daily service level with Wmax = 10 is 0.009.

Figure 4.18 shows the mean daily service level averaged over 100 days for
β = 0, 0.1, 0.2, . . . , 1.5. The dotted lines indicate the 5% and 95% quantile
of the service level distribution. The statistics for the daily service levels of
100 days with Wmax = 10 are shown in Table 4.3. If the target daily service
level is 0.01 then β = 1.1 provides good average performance.

Staff Cost

For 100 days the total staff and the daily service level are calculated for
different values of β. Figure 4.19 shows the results for each separate day.
Each group of dots with the same color represents a different value of β.
From left to right the value of β goes from 1.5 to 0 with a step size of 0.1. If
we take the mean of the service levels and the total staff for each β then the
resulting total staff-service level curves are shown in Figure 4.20. Because
the staffing levels vary linearly with β the curves are exactly the same as
in Figure 4.18 with the x-axis and y-axis transposed. This figure allows us
to determine the average additional staff cost if we want to improve the
service level. For example in the case of Wmax = 10 to improve the service
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Table 4.3: Daily service level statistics of 100 days for different β values with
Wmax = 10 minutes.

beta 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

service level
mean 0.188 0.101 0.055 0.031 0.017 0.010 0.005 0.003
std 0.016 0.012 0.007 0.004 0.003 0.002 0.001 0.001
min 0.143 0.072 0.035 0.020 0.008 0.005 0.002 0.001
max 0.226 0.125 0.073 0.040 0.024 0.014 0.008 0.005
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Figure 4.19: The total staff and the daily service level for different Wmax.
The colors represent different values of β = 1.5, 1.4, . . . , 0.

level from 0.1 to 0.05 requires an additional 29 staff. A similar additional
cost of 30 staff is required to improve the service level from 0.02 to 0.01. In
Figure 4.21 the total staff as a function of the service level for SRS and the
staff probability quantile (spq) are shown. In general SRS gives better cost
performance but the difference is small except for Wmax = 15.

Update Time

The mean daily service level over 100 days for different update times and
values for β are shown in Figure 4.22. The mean daily service level decreases
from 6:00 to 12:00 after which it stays constant. In contrast the daily service
level with the staff probability quantile tends to increase for update times
in the evening. Similar to staffing with the staff probability quantile the
variance increases in the evening.

4.2.5 Iterative Algorithm

As can be seen in Figures 4.13 and 4.17 the service levels are worse when the
arrival rates are lower. This means we have to add additional staff during
these periods. Up to now the performance requirement was the daily service
level SL ≤ α. Now we want to limit the service level during any staffing
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Figure 4.20: The mean total staff and the mean daily service level per β
over 100 days.
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Figure 4.21: Comparison of the total staff per service level with SRS and
staff probability quantile.
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Table 4.4: Service levels and total staff with the iterarive algorithm and
deterministic staffing.

wait max 5 10 15

SL 0.01 0.008 0.007
max SL(t) 0.032 0.03 0.03
staff 613 480 414

interval. This means we impose a new constraint SL(t) ≤ γ.

We propose the following iterative algorithm to meet the new constraint.
The initial staffing levels can be determined with any of the previously dis-
cussed methods. Then we calculate the service level at each time interval
SL(t). For each staffing interval where the service level is not met, we add one
extra staff member. Then the service levels SL(t) are calculated again. We
stop if the constraint has been satisfied for all t or else we add another staff
member to the intervals with excessive waiting time probabilities. An effect
of adding additional staff is that the daily service level will also decrease. If
the initial staffing levels were determined for α and we add additional staff
then the final daily service level can be much smaller than α.

We apply the iterative algorithm for various initial staffing levels. The
update time is 13:00, Wmax = 10 minutes and the performance requirement
is SL(t) ≤ 0.03. First we determine the initial staffing function according to
the deterministic model. For a target waiting time of 10 minutes the 100-day
average of the daily service level was 0.13 (Table 4.2). We then apply the
iterative algorithm to add staff to the staffing intervals where the constraint
SL(t) ≤ 0.03 is violated. The resulting the multiple-day average of the daily
service level, the maximum service level at any interval, and the total staff
are shown in Table 4.4. We can see that changing the target maximum
waiting time from 10 minutes to 5 minutes requires a large increase in the
total number of staff.

Table 4.5 shows the results of the iterative algorithm with initial staffing
levels according to SRS. If we start with β values from 0 to 0.6 the resulting
service levels and total staff are very similar. The original staffing levels
were shown in Table 4.3. A daily service level of 0.01 could be achieved with
β = 1.1. If we start with β = 1.1 and then adjust the staffing levels with
the iterative algorithm to meet SL(t) ≤ 0.03 the daily service level drops
to 0.005. This means we are overstaffing because we can satisfy the same
constraint with less total staff if the initial staffing level is set with β = 0.1.

Table 4.6 shows the results of the iterative algorithm if the initial staffing
levels are determined with the staff probability quantile. For quantiles from
0.30 to 0.70 the daily service level and the total number of staff are similar.
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Table 4.5: Service levels and total staff for Wmax = 10 with the iterative
algorithm and square-root staffing.

beta 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

SL 0.01 0.01 0.009 0.009 0.007 0.005 0.004 0.002
max SL(t) 0.03 0.03 0.03 0.03 0.03 0.029 0.028 0.028
staff 477 478 478 481 488 501 517 538

Table 4.6: Service levels and total staff for Wmax = 10 with the iterative
algorithm and the staff probability quantile.

quantile 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95

SL 0.01 0.01 0.01 0.01 0.009 0.005 0.002 0
max SL(t) 0.03 0.03 0.03 0.03 0.03 0.029 0.025 0.017
staff 473 472 471 470 474 498 552 604

If we compare these results with the iterative algorithm with SRS then we
can achieve the same service level performance but with less total staff when
the initial staffing levels are determined with the staff probability quantile.

4.3 Conclusion

In this chapter we have reviewed the staffing literature for constant arrival
rates, time-varying arrival rates and uncertain arrivals. Many models in the
literature assume steady-state in the staffing intervals or assume abandon-
ments if the queueing system is overloaded. Both assumptions don’t seem
appropriate for staffing at immigration. In the airport literature a determin-
istic fluid model was applied to the immigration service at an airport in New
Zealand. However uncertainty in delay was not considered. We assessed the
performance of the deterministic model when demand is uncertain and the
requirement is that the weighed service level SL for the remainder of the day
is less than 0.01. Simulation results show that the service level requirement
cannot be met. We then extended the deterministic model by introducing
staff probabilities. The staffing levels are determined with quantiles. In ad-
dition we have also applied the square-root staffing formula and determined
the best value of β to meet the service level requirement. Although these
staffing models give good performance for the daily service level, during pe-
riods with low arrival rates and at the end of the day the service levels SL(t)
can reach unsatisfactory levels. We imposed a new constraint SL(t) < 0.03
and we developed an iterative algorithm to adjust the staffing levels in the
staffing intervals where the new constraint is violated.
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Conclusion

The purpose of our research is to reduce the waiting times for foreign passen-
gers at Narita Airport immigration by optimizing the staffing levels. To do
so we have developed three models: an arrival forecasting model, a queueing
model and a staffing model. Based on the flight schedule and the number
of passengers on each flight we first make a distributional forecast. The
arrival forecast is then used as input for the staffing model. To meet a cer-
tain service level requirement the staffing model gives the staffing function,
i.e. the required number of staff during the day. We can then simulate the
performance of the staffing function with the queueing model.

The first step is to forecast the number of passenger arrivals at immi-
gration. In the literature statistical models and discrete-event simulation
models are commonly used. Statistical models require a large amount of
historical data and simulation models generally require many iterations. We
have developed a different approach to determine the arrival probabilities
by using the sum of random variables. For a flight it is assumed that the
walking time probability distribution is the same for each passenger. Then
the arrival probabilities for the passengers of the flight without delay un-
certainty are determined by the convolution of the distribution functions of
every passenger at each time interval. Adding delay uncertainty to the flight
requires the convolution of the arrival probabilities and the delay probability
distribution. To calculate the arrival probabilities of the combined passen-
gers of multiple flights we again apply the convolution operation. We call
this forecasting model the convolution model.

The forecasting model requires knowledge of the probability distributions
of the flight delay, the disembarkation delay, the disembarkation rate and
the walking speed. To determine these probability distributions we gathered
data at Narita Airport. Flight delay is defined as the difference between the
estimated and the actual flight arrival time. In the literature on flight delays
the scheduled arrival time is used as the estimated arrival time. However we
estimate the flight delay with the more accurate estimated arrival time from
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the real-time online flight schedule which is updated every 10 minutes. We
have collected every flight schedule update for more than 1 year. We found
that the delay probability distribution of a flight depends on the length of
time between the estimated time of arrival and the flight schedule update
time. The second uncertain parameter is the disembarkation delay. After
an aircraft arrives at the gate, the passengers have to wait a certain time
before disembarkation. We have recorded the time when the first passenger
leaves the aircraft for 41 flights. A Markov Chain Monte Carlo algorithm
was used to infer the distribution of the mean and the standard deviation
of the disembarkation delay. For 10 flights the disembarking passengers at
the gate were recorded on video. We found that the disembarkation rate is
relatively constant for all flights. After disembarkation the passengers walk
from the gate to immigration. Because the walking times could not directly
measured we assumed that the walking speed is normally distributed and we
inferred the walking speed mean and standard deviation from the observed
arrival rates of 10 isolated flights.

In addition we have developed a Monte Carlo simulation model and
a deterministic approximation. All three arrival forecasting models give
reasonable results when compared to the observed arrival rates of a single
flight and multiple flights. For use in practice the convolution model can give
the decision makers at Narita immigration a good indication of the trend,
the variance and the upper bound of the arrival rates while the deterministic
approximation can give a sample path of the arrival rates. The Monte Carlo
simulation model can be used to provide the arrival rate samples for the
performance simulation of the staffing function.

The second step in our research is to develop a queueing model for the
immigration service of foreign passengers. The purpose of the queueing
model is to estimate the waiting time if the number of arrivals and staff
are known. Traditional queueing theory studies the steady state of a queue-
ing system. However at immigration the arrival rate is non-stationary and
uncertain. Traditional queueing theory also assumes that the system is
non-overloaded, i.e. the average arrival rate is less than the service capac-
ity. However at immigration overload occurs frequently. In the literature
there are various queueing approaches that can deal with overload. We have
implemented three queueing models: the numerical integration of the Kol-
mogorov differential equations, the deterministic fluid approximation and
the stationary backlog-carryover approach. In the literature there has not
been a comparison of these three models. Also artificial arrival rates are
commonly used in the literature to compare queueing models. Instead we
use actual arrival rates and validated the models with actual waiting times.

To compare the three queueing models we gathered data at Narita Air-
port. We recorded videos of the queues to determine the waiting times and
service times. We also counted the number of arrivals and the number of
staff during five afternoons. The input of the queueing models is the ob-
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served arrival rate, the observed number of staff and the observed service
time. The output is the waiting time at each time of the day. We com-
pared the output of the queueing models with the observed waiting times.
All three models give good estimations of the waiting times. The numerical
integration approach however requires long computation times. The deter-
ministic fluid approximation is easy to implement, the fastest and accurate
if a time interval of 1 minute is used. It is our preferred queueing model for
the performance evaluation of the staffing function.

The final part of our study is to determine the staffing requirements for
foreign passengers in order to support the decision makers at Narita im-
migration. In the call center and hospital staffing literature there are two
approaches to determine the staffing function: the optimization approach
and the constraint satisfaction approach. The optimization approach is
rarely used in practice because of the difficulty of quantifying the wait-
ing cost. For our staffing model we use the constraint satisfaction approach
where the objective is to minimize the number of staff while meeting a ser-
vice level requirement. The service level is defined as the excessive waiting
time SL(t) = P (W (t) > Wmax). We want to keep the daily service level
SL =

∑
λ(t)SL(t)/

∑
λ(t), i.e. the service level weighed by the arrival rate

λ(t) over the remainder of the day, under a certain percentage. For the
foreign passengers the performance constraint is SL ≤ 0.01 with Wmax = 10
minutes. The performance evaluation is done with the deterministic queue-
ing model and the arrival rate samples generated by the Monte Carlo sim-
ulation model.

In the staffing literature of call centers it is frequently assumed that the
system is in steady-state during each staffing interval or that there are cus-
tomer abandonments in the case of overload. At immigration there are no
abandonments and the steady-state assumption is inappropriate because of
severe overload. In the airport staffing literature a deterministic fluid model
has been applied for immigration staffing but uncertainty in delay was not
taken into account. We analyzed the waiting time performance of the de-
terministic fluid model with uncertain demand and we concluded that the
performance is inadequate. We have extended the deterministic fluid model
with delay uncertainty by converting the deterministic staffing function into
staff probabilities. The staffing levels are then set by determining the ap-
propriate quantiles of the staff probabilities. In addition we also applied the
square-root staffing approach, s = r+ β

√
r, to our problem and determined

the appropriate values of β to meet the service level requirement. With both
methods we can satisfy the daily service level SL requirement. However dur-
ing periods with low arrival rates and at the end of the day the service level
in an interval SL(t) can reach unsatisfactory levels. We propose a new ser-
vice level constraint: the service level during any interval SL(t) should be
at most 0.03. To meet this new constraint we have developed an iterative
algorithm. The initial staffing levels can be set according to the determin-
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istic fluid model, the staff probability quantiles or the square-root staffing
formula. Then the service level in each interval SL(t) is calculated. If the
constraint is violated in any staffing interval, the number of staff in that
interval is increased by one. We do this iteratively until the performance
constraint is satisfied in each staffing interval.

In practice we can support the decision makers at Narita immigration
with our models. First we can provide the arrival forecast with the arrival
probabilities, the expected arrival rate, the 95% upper bound and a sample
path with the deterministic approximation. Second we can provide a staff
forecast with the staff probabilities and the upper bound of the required
number of staff. Using the quantiles for the staff probabilities or the square-
root staffing formula we can also give a recommendation for the staffing
function such that the daily service level requirement is met. If a more
robust solution is desired then the iterative algorithm can be used but it
will require longer computation time to generate arrival rate samples and to
simulate waiting time probabilities of the queueing system.

For future research we can improve the arrival forecasting model and
extend the staffing model. We have collected all of our data manually by
counting and video recordings. Passenger tracking systems have recently
been implemented in various airports all over the world to monitor the
movement and waiting times of the passengers. Such systems should be
implemented to collect more historical data and more accurate data. Ad-
ditional walking time measurements are recommended to derive accurate
walking speed distributions for each gate. The estimated times of arrival
that we have collected every 10 minutes for more than a year can be further
analyzed and a statistical model could be developed to predict the flight
delay.

The staffing model can be extended in several ways. We have focused
only on the foreign passengers and we have simplified the queues for the
foreigners by combining the reentry and non-reentry passengers. Staffing
is only one of the steps in personnel management. Further research should
include the scheduling and rostering of immigration staff. We can also con-
sider staffing of immigration at multiple terminals simultaneously because
the staff can be moved between terminals during peak times. We have only
looked at the arrival immigration service but on the departure side there is
also an immigration service which poses different challenges because we also
have to consider the check-in and security check before departure immigra-
tion.
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