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Preface.

In this paper we study the scattering theory for nonlinear Klein-Gordon equations
(NLKG):
Ou +m?u + f(u) =0,
and nonlinear Schrédinger equations (NLS):
it — Au+ f(u) =0,
where v = u(t,z) : R*" -5 C, 4 = 0u/0t, 0=0? —A,neNand f:C— C. Our
main objective is to prove that the wave operators and the scattering operators for
NLKG and for NLS are well-defined and bijective in the whole energy space E (for
NLKG, E = H' & L? and for NLS, E = H'). This means asymptotic completeness
of the wave operators. The typical form of the nonlinearity is f(u) = |u/P~'u. Then
such results were known in the case where n > 3, m > 0 and 1+ 4/n < p <

1+4/(n—2), and for NLKG in the case where n >3, m =0 and p=1+4/(n—2)

(in this case, E = H' @ L?). We extend such results in the following two cases.

In Part I, we will prove the asymptotic completeness for NLKG in the case where
n >3, m>0and p=1+4/(n—2), the Sobolev critical case. Although the mass
term m?u is not so important if we deal only with the local behavior of the solutions,
it brings considerable difference to the asymptotic behavior of the solutions. In fact,

0) depends in an essential way on

the available proofs in the massless case (m




the fact that in the massless case the distribution of the energy inside of light
cones asymptotically gathers around the surface of the cones, which does not occur
in the massive case. Thus our extention from m = 0 to m > 0 is far from trivial

Moreover, we can do better even for the local estimates. The essential difficulty in the

Sobolev critical case is that because of the lack of local compactness of the Sobolev
embedding, the standard energy estimates can not disprove the possibility of infinite
concentration of the nonlinear part of the energy at the tip of light cones. So it is

crucial to prove that such energy concentration can not occur to avoid singularities.

ions,

In the preceding works, concentration phenomena were denied by contradi
but no explicit estimate was known on the energy concentration. In this paper
we will derive an estimate which explicitly bounds the energy concentration effect
(Lemma 4.3 in Part I).

s for NLKG and NLS in the

In Part II, we will prove the asymptotic completene:

in the whole

case n < 3 and p > 1+ 4/n. The asymptotic completeness for n <
energy space has been one of the major open problems in this field, though there are
several results on the lower dimesional scattering for NLS in a certain function space
smaller than the energy space. The main difficulty for n < 3 is that we can not prove
the Morawetz estimate, which has been essentially the only a priori estimate to start

the proof of the asymptotic completeness in the energy space. In this paper we will

derive some variants of the Morawetz estimate which hold in any spatial dimension
(Lemmas 5.1 and 5.2). These estimates are weeker than the Morawetz estimate with
respect to the weight function, but they contain some important informations on
the asymptotic behavior of the energy which can not be observed by the Morawetz

estimate.

ACKNOWLEDGEMENTS: I would like to express my deep gratitude to Professors
Yoshio Tsutsumi and Kenji Yajima for their valuable advices, suggestions and en-

couragement for this thesis.




Part'L
Scattering Theory for
Nonlinear Klein-Gordon Equation
with Sobolev Critical Power

1. INTRODUCTION

In Part I, we study on the scattering theory in the energy space for nonlinear
Klein-Gordon equations (NLKG) of the following form:
Ou +m*u + f(u) =0, (1.1)

where u = u(t, z), (t,z) € R™*" with n > 3, m > 0 and 0 = 9? — A. For simplicity

we suppose that u is real valued, though we can deal with complex or vector valued
functions as well. Then f(-) is also a real valued function, and we are interested
particularly in the following nonlinearity:
Ou + m*u + |uf/~?u =0, (1.2)
with
2n

_—— (1.3)

e

=

which is the Sobolev critical exponent. In the case where m > 0, p < 2* and not
so small p, the scattering theory (namely, the existence of bijective wave operators)
is well-known [5, 7]. In the case where p = 2* and m = 0 (NLW), the scattering

theory has been obtained in a different way (2, 1, 12]. But neither method can be

applied to the remaining case where p = 2* and m > 0, so we present in this paper
another approach which can be applied to the case where p = 2* and m > 0. We
should remark that in the radial case, one easily obtains the scattering result from
the a priori estimate derived in [6]. Unique global existence of solutions of (1.2)
with p = 2* and m > 0 is well-known (see, e.g., [10, 11, 14]).

Our approach is inspired by that of Bourgain’s recent work [4] on the nonlin-
ear Schrodinger equation with the Sobolev critical exponent (NLS). We obtain the

scattering if we have global a priori estimates of certain space-time Lebesgue-Besov

norms (which, for brevity, we call the ST-norms hereafter) by the energy size. As-

suming that ST-norm is large enough, we have a point in space-time where the
energy density is very highly concentrated. Since the wave component correspond-

ing to the concentrated energy is also concentrated and decays very soon, we can
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isolate the concentrated wave and reduce the total energy size. Meanwhile, for
sufficiently small energy data, we obtain the ST-norm estimate directly from the
ired

Strichartz estimate. Thus, by induction on the energy size, we obtain the des
estimate for ST-norm by the energy. This is just the strategy which Bourgain took
in [4].

Now we should remark the essential differences between this paper and [4]. First,

we do not assume the radial symmetry, so we can not predict where the concentration
may occur in the space. Secondly, since NLKG does not have the homogeneous
> and NLW, we have to deal with finite time intervals and
s. In the cases of the critical NLW and NLS,

the homogeneous character has always played an essential role (see [2, 1, 12, 4]).

character such as in N
infinite time intervals in different way

Next we compare the massive case with the massless case. [6] is written for
the massless case, but the arguments are also valid in the massive case (if the

vaces are replaced with the inhomogeneous counterparts), so that

homogeneous
there is no difficulty in the radial case. But, in the nonsymmetric case (and the

massless case) 1, 12], the dilation identity for NLW has played an essential role,

which does not yield any decay estimate for large time in the massive case.

We overcome these difficulties by the finite propagation property, Morawetz-type
estimates which are rather stronger than that for NLS, and the decay property of
the linear Klein-Gordon (LKG) equation for lower frequency which is faster than
that for the linear wave equation (LW). In fact, for local ST-norm estimates, we

In the massless case m = 0, the local estimate

do not need the induction process.
immediately becomes global by the homogeneity and so we obtain another proof of
the scattering, with global a priori estimate for ST-norm, which was obtained in the

special case where n = 3, m = 0 and f(u) = u® in [1], using the scattering operators.

imate, we need the induction

But in the massive case m > 0, for global ST-norm es

together with the decay property of LKG in low frequency.

The rest of Part I is organized as follows. In Section 2, we introduce sevel

al

notations used in Part I, and mention some basic estimates. In Section 3, we show
that ST-norm concentration in time causes energy concentration in space-time. In
Section 4, we derive a local ST-norm estimate. In Section 5, we derive a global
)

priori estimates, scattering and continuous dependence on the initial data both in

—norm estimate. In Section 6, we present the main results of Part I: global a

the strong topology and in the weak topology. In Section 7, we prove several lemmas

used in the previous sections.
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2. PRELIMINARIES

As usual, we denote by C auxiliary positive constants, and sometimes denote

C(a,b,...) to indicate that the constant depends only on a,b,.... We denote by

By, the usual inhomogeneous Besov spaces (see, e.g., [3]). We will use mainly the

following particular space-time norms.

llullaq) = U 2 -1 ;L2 =) (Rm))

= = (2.1)
[lellginy = Hu‘,,,“” for 3="0%n. T
where 75 = 0o and r; = 2 for j # 5. Sometimes we omit the interval I and write,
e.g., ||ul|o). Now we set the values of (p;,¢;,0;). Denote X; := (1/p;,1/q;,0;) Let
2(n? + 2)
J —_—
2 (n+1)(n—2)
il .
= 7> Xy =
Po 2 po
1 1 1 L
i =———n|—— + gj,
lj Pj ']/ 2 =
e M= 11 1
S 2 i
Then we have
o= =p3=pa=ps =1, pr =0, po = pis = — 1, (2.2)
<0, >l s>+l <0
For simplicity, we set m = 1. Then the equations are
Ou+u+ f(u) =0, (NLKG) (2.3)
Ou+u=0. (LKG) (2.4)

Let u be the solution of
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where @ = Ou/dt. Then, by the Strichartz estimate (see, e.g., [5, 7]), we have

[lellsco.ryy + Nl oy + [lell oo oy + el zoego.sn2
< Cllglla + Cllvllz: + Cllgll@ory: (2-5)
for j = 0,1,6, and in the case n > 6, for j = 3,4 also. By [7, Lemma 3.1], the
Sobolev embedding and Hélder’s inequality, we have
1 ()l < Cllullllullfy® < (‘;luuf"m o (2.6)

under the assumption (2.10). We fix a radially symmetric cut-off function x €
Cg°(R") satisfying x(z) = 1 for |z| < 1 and x(z) = 0 for |z| > 2. Define x;(z) =
x(277z). Denote by Fip
Paley dyadic decomposition:

$ the Fourier transform of ¢ and define the Littlewood-

(2.7)
1.
Denote for any function ¢,
¢ o(v/1+ [ER)F. (2.8)
We define the energy and related quantites.
F(u) =2 / f(v)dv,
Jo
F(u)
G(u) :==uf(u) — F(u) = u 30, 2
g (2.9)
eo(ust) := |a]* + }Tu]“’ +m?lul®.  Ep(u;t) / eg(u)dz,
e(u;t) := eg(u) + F(u), E(u;t):= / e(u)dz,
where Vu = (Qu/dzy, ..., du/dz,). Now we give the hypotheses on the nonlinearity.
f(0)=0 and U(“),_[(r”S('\”,,-‘(‘,,‘,;,‘,MJ‘ 2 (2.10)
If'(w) - f')| < Clu—v*2  ifn>6, (2.11)
G>0. (2.12)

These assumptions are the same as in [1 2] for the scattering of the critical NLW
The single critical power (1.2) with p = 2 satisfies these assumptions. For other
examples of f, see [12]. Then, as is indic ated in (2.9), we have in particular, /' > 0.
We define

K(t) :=w ' sinwt. (2.13)
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Then the integral equation associated to NLKG is

g ot
u(t) = K(t)u(0) + K(t)u(0) — / K(t —s)f(u(s))ds
Jo

3. ENERGY CONCENTRATION VIA SPACE-TIME NORM

In this section we show that ST-norm concentration in time causes energy con-

centration in space-time. This result corresponds to that in [4, Section 2]. Here we
take a Besov-space approach instead of the Littlewood-Paley theorem (which was
used in [4]). The arguments in this section work also in the massless case, but for
simplicity we assume that m = 1. The objective of this section is the following

lemma.

Lemma 3.1. Assume (2.10). Let I be an interval and let u satisfy NLKG (2.3) on
I with Ep(u(t)) < E < oo for anyt € I and

0 < n/2 < lullg;n < 27 < oo (3.1)

There ¢

s a positive continuous function ny: [0,00) — (0,00), such that if n <
no(E), we have a subinterval J C I, ¢ € R* and R > 0 satisfying R < C,

J| and

[Vu(t)|? + u(t)|?dz > n**,
<R (3.2)

u(t)[* dz > n*'°,

for any t € J. Moreover, if ||ty * ul|o;1) < 1/4 for some k > 2, we have R < Cy27%.
Here C; = C;(E,n) > 0 and a = a(n) > 0 are certain constants.
Proof. 1y may be given by

m(E) = (y+E)™" (3.3)

with some large y(n), which will be determined later. Let I = (T,T"), and let v be
the solution of LKG (2.4) with the same initial data as u at t = 7. By the Strichartz
estimate, we have
n Y[, 1120 —1 o y, 2°—1 v
lull@) < llvlle) + Cllullgy ™ < C(E)+Cny < C(E).
By the interpolation inequality and Holder’s inequality, we have

n/2 < llulloy < Cllulliglullfzss.
¥ (3.4)

18 7 >N ITIT N7
< O(B)|ullfe llull2h e < CENIT g

where 0 < 6, A < 1 and
1 1-6

(J:l—/\+/\<l—%).

Po Ps
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Thus, denoting 8 = 1/()\) < o. we have some (0, ¢) € I x R™ such that either for

some N € N

20N (o % u(to, )| > 9’ /C(E) (3.5)
or
[0 * u(to, ¢)| > 1 /C(E). (3.6)
In the latter case, let N := 1. If [ = ul|(0) < m/4, we have similarly

M4 < =i x ullg) < CE)|u— e+ a1
i

so that we may assume N > k in (3.5). By the Sobolev embedding, we have for

1, (remember (2.2))

[l * w(®)llgoo, < Cllw; * w(t)||grsrsmo < C2P0||3h; * u(t)| 31,

so that |[v; xul|@) < C(E)(27|I])"/#. So we have | *ull) < n/4if27|I| < C(E,n)
Thus we may assume 2V|I| > C(E,n). Next we seek J where (3.5) or (3.6) remains
valid. We treat only the case (3.5). The case (3.6) is similar. By the integral
equation we have

llow *u(®) = on * uto)lan < |(K(t —to) = Dipn * ulto) |

ot Il
/ K(t—to)pn * f(u(s))ds|

1

Ji 7

+ || K (t — to)pn * ult) || m + ‘

It is easy to see that the first and the second terms are bounded by C2N|t — t,| E'/?

The third term is estimated by the Strichartz estimate as

< Cllow * f(W)ll@tony < CIt —tol " {lon * f ()| oo

By the Sobolev embedding, we have
llow * f(W)llgz2, < Cllen = f(w)l] 52

< 2V f(w)|,

(3.7)

< C2M/P2||ul], Jull7=* < C(B)2Y/%,

where we used [7, Lemma 3.1] in the third step. Summing up, we obtain
lon * u(t) — on * ulto)||m < C(E){2N|t — to] + (2|t — to])'/P2}.
By the embedding H' < BXM?  this means that (¢
2-NC(E,n). Let J be the intersection of this interval and I, then we have |.J| >
2-NC(E,n). Now we have only to find R < C(E.n)2 N satisfying (3.2). There

5) remains valid for |t — ;| <

exists S 3 o), ..., o™ satisfying
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(See, e.g., [3]). Define ;/A (x) = 27"o®)(27z). Then we have for general ¢,

| |

2Vlon *0(c) = [ o + ()

=h / o™ () Ve (c - 27%y)| dy

g (k !
22(z—cl<2-V Ro) + |2 || 22(121> ro) | Vol 22)

Since o) € S, if Ry is sufficiently large, [19™|| L2(2|> o) becomes small. Thus, in

the case (3.5), we obtain
1’/C(E) < IV ulto) | L2(je—c| <2~ Ro)
for any ty € J, if Ry > C(E, 7). Similarly, we have

oN(1-n/2)|

len * ()| < llollzellell 2+ r—c|<2-N Ro) + |[@ollze(2)> ro) |l 12

with ¢ = 2n/(n + 2), so that

1’ /C(E) < ||u(to)l|z2* (jo-ej<2- ro)

for any ty € J, if Ry > C(E,n). In the case (3.6), we have similarly,

1’ [C(E) < l[ulto)llz2e-cl<no)s
7’ [C(B) < ||uto)ll 2" (e—ef< o)
for any t € J and Ry > C(E,n). Taking a(n) and y(n) in (3.3) sufficiently large,
we have
W /C(B) > ", (3.8)

thus we obtain the desired result O
{. LOCAL SPACE-TIME ESTIMATE

In this section we derive an estimate of ST-norm by the energy on finite time
interval. The key ingredient is a stronger version of the local Morawetz estimate
(Lemma 4.3), which forbids time-like accumulation of concentrated energy. The
arguments in this section work also in the massless case, but for simplicity we assume
that m =1.

The objective of this section is the following.
Proposition 4.1. Assume (2.10) and G > 0. Let u be a solution of NLKG (2.3)
satisfying E(u) < E < oo and ||ul|(oy0,1)) < 00. Then we have a bound B = B(E) <

oo for the space-time norm:

[ull0:(0.1)) < B(E) (4.1)
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Proof. By [12], we have a unique global solution of NLKG with finite energy and
locally finite ST-norm, whose energy is conserved. Let 7 > 0 be small and assume
|lull0s0,1) = Nm with N € N. We will show that if y = 5(E) is sufficiently small,
N is bounded in terms of E and 7. We have 0 = Ty < 7} < -++ < Ty < 1 such
that ||ull(o;z;.1541)) = 7 Denote I; = (T}, Tj41). By Lemma 3.1, we obtain J; C I,

€ R" and R; > 0. Choose ¢

dyadically converging to some point.

j € J; for each j. Now we want to extract a sequence

Lemma 4.2 (proved in Sect.7). Let v € S, N € N and #S > {4[\/v +
1]}*™=1. Then we have N mutually distinct points ... x5 € S satisfying
1 : »
7 J\\Si;.r] 1 —oN| (4.2)
forj=1
By this lemma, if M € N and {4[v/n+ 1 + 1]}"tDCM=1 < N we obtain M
mutually distinet points y;,.. ., Ym € {(i,.r]) vvvvv (tn,cn)} satisfying
lys —yml < 35 \f/, 1= Yml. (4.3)
We change the suffixes of {(I}, Jj,;,¢;, R;)} such that for j = 1,....] M we have

i =5, c5)> Let S = {1,...;] M},
P:={j€S||y—yul <8R;},
Q:={j €S\ P|le; —cul < 4Jt; — tml},
R:=8\(PUQ).
Now let us bound #P, #@Q and #R. By a variant of Morawetz estimate [12, Propo-

sition 4.4], we have Cy(E) < oo such that

// Sl i), (4.4)
1<1M")*’/w\
The left hand side is bounded from below as follows.
e i 5 S
- ———dt > 7" ——— > ]
;/, 9R; + |Jj| ;{31(17 J; (4.5)
Thus, we obtain
#P < Cyy T(9C + 1).
We proceed to the bound of #@Q. For j € @ we have |t; — tu| < |y; — ym| <

V1T7|t; — ty| and R; < |t; — ty|V/17/8. Thus we have for j,k € Q with j <k,

1
te — ta] < ok —yml £ ”\1/,*}/11 -tm| < St —tul




——
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Let B; == {(t;,z) | |t —¢;| < R;} and K = {(t,z)|0 <t < 1, |z —cu| < St —tm i

Then for j € Q, we have B; C K. Now we use a stronger version of the local

Morawetz estimate on a fat cone.

Lemma 4.3 (proved in Sect.7). Under the assumption of Proposition 4.1, let ¢ > 0
Then we have C5(E, ¢) < oo such that

> sw / |uf* dz < C5(E, c).
T riii<e S

Applying this lemma on the cone K, we have

Cs(E,5) zz sup / [u|* da
jeN <2-3+1 J|z—cp|<Blt—tn

2-i<|t—tp|<2
> #Qi
Thus, we obtain the bound for #Q. Now we have only to bound #R. For j € R, we
—cuml| < lyi —yml < lej = en|V17/4 and
1VI7 1
R+ [t; —tm| < (h—l‘ + —1>

Denote B; = {(tum. z)| |z — ¢j| < R;j + |t; — ty|}. Then, by the energy identity and

have |

—cm| <

positivity of the energy, we have

/ e(u)dz > / e(u)dz,
J B; JB

For j,k € R with j < k, we have
1 V17 1
Jex — el < lyk —ym| < TG\!// —ym| < —m—lr, —cm| < |\4‘, — cm
and

5 1,
B; C {(tm,z) | |z — | < 5les — ¢ v}

1 -
c {(ta, ) | 5lei —eml < o —en
So By \f)’/ = @. Thus we have

B= /-,mu\,;)d., 22/ e(u)dz

> Z /” e(u)dz > #Rn*,

jER"

so that we obtain a bound for #R and the desired result. Restriction on the size of

|

1 comes only from Lemma 3.1.
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5. GLOBAL SPACE-T

In this section we derive an estimate of ST-norm on R by the energy. The objective
of this section (and in essence the most important result in Part 1) is the following
.3 and 5.4, which are

proposition. Key ingredients are contained in Lemmas
proved in Section 7. Lemma 5.3 works only in the massive case, and so we assume

that m = 1.

Proposition 5.1. Assume (2.10), (2.11) (if n > 6) and G > 0. Let u be a solution
of NLKG (2.3) with finite energy E(u) < E < oo and locally finite ST-norm. Then

we have a bound B = B(E) < oo such that
[[ulloz) < B(E).

Proof. By [12], we have a unique global solution u with finite energy and locally

finite ST-norm. By the local ST-norm estimate (Proposition 4.1), we have

[l oxrr1y) < C(E)
for any T € R. Now we have to make this estimate global. For that purpose, we
use an induction argument on the size of the energy E. If E(u) is sufficiently small,
we obtain the desired global estimate simply by applying the Strichartz estimate to
the integral equation (see, e.g., [13, 6, 8] or the proof of Lemma 7.3). So what we

have to prove is that:

e(E) > 0, continuous with respect to E € [0, 00)

For any E > 0, there exists
(in fact, it suffices that infocacpe(a) > 0 for any b > 0), such that if we have the
global estimate

[l osr) < B(E,€) < o0, (5.1)
for any solution of NLKG with locally finite ST-norm satisfying E(u) < E —¢, then

we have also the estimate

lulloz) < B(E,€) < oo,

for any solution of NLKG with locally finite ST-norm satisfying E(u) < E

By the small data result mentioned above, we have £(E) > C > 0 for sufficiently

small E. Now suppose that [|ul|oz) > 3B'. Then we have Ty and 7" satisfying
el 0x(=c0i10)y > B’ llullioz,7y) > B' and ||l 0:(77,00y) > B'- It suffices to bound B’
e, B for some ¢ = £(E) > 0. In the following, we use two families of

in terms of E
positive small parameters {r;} and {x;}. Those parameters should be determined

in the order: E, 1,1, ¢, B, K5, . ... k1, such that all the conditions below are fulfilled
(in other words, latter parameters may depend on former ones). Then, in terms of

a bound for B’ will be given. First, we have the following lemma,

these paramete:
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which claims that we have either a very long interval with small ST-norm or very

high concentration of energy.

Lemma 5.2 (proved in Sect.7). Under the assumptions of Proposition 5.1, for any
k>0, L <ooand0 < n < n(E) (o is given in Lemma 3.1), there erists
M = M(E,n,&,L) > 0 such that if ||ul|0,15y > M for some interval Iy, then we have
a subinterval I C Iy such that ||ul|(p.ry < n and one of the Jollowing two conditions
holds.
(i) || > L.
(ii) |I| < L and
/ [Vu(®)]? + |u)|Pdz > p*e,
Jlw—c|<nll

for some ¢ € R* and some t € I, where o = a(n) is the same as in Lemma
21,
By this lemma, if n; < 7o(E) and B' > By := (M(E, 1, k1,%5") 4+ m)N for some
N = N(E,n) € N, then only the following two cases may occur.
(i) There exist Ty < T\ < U; < V; < -+ < Ty < Uy < Vy < T satisfying
|U; = T;| > 3" and llellosczy o) < m = llulloiw, v;))-
(ii) There exists I C (Tp, T"), satisfying ||ul|.) < m, |I| < k3" and

/ . [Vu(t)]? + u(t)Pdz > n* =: n,
Jz—c|<ri 1|

for some ¢ € R and some t € I.
Now we show that energy concentration occurs also in the case (i). Let v be the
solution of LKG (2.4) with the same initial data as u at ¢ = T;. Then, by the
Strichartz estimate |[v||oz) < C(E), if N = N(E,n,) is sufficiently large, we have
for some j < N, [[v|low;,v5) < n; . Now we use the decay property of LKG in
low frequency to obtain the following lemma, which claims that after a long interval

with small ST-norm, the ST-norm may rally only from the high frequency.

ume (2.10). Let 0 < T < U <V and let u be
So(u(t) < E < oo for any t € [T, V]

Lemma 5.3 (proved in Sect.7)
a solution of NLKG (2.3) on [T, V] satisfying
= |lull@wvy. Let v be the solution of LKG (2.4) with the same
52(E) > 0,

and ||ullo;ruy) <
initial data as u at t = 0, and assume ||v|o,u,vy) < 1. There exists 5,
continuously depending on E € [0,00) with the following property: for n < 6,(E)
and any k € N, there ezists L = L(E,n,k) < oo such that if |T'— U| > L then we

have [y, * ullw;wvy < n/4.

1

€ N provided

If ;1 < 85(F), we can apply this lemma on (7}, V). for k = «;

Ky > D(E, M.k3"). Then, we apply Lemma 3.1 to (U;,Vj), to obtain c ¢
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S € (U;,V;) and R < Co(E,m)2 /%3 satisfying
/ [Vu(S)? + [u(S)|*dx > . (5.3)
Jjz—c|<R

Thus, in both cases, if we set

Co(B,m)2 Y™ < kg, Kikg' < Ka, (5.4)

then we obtain some S € (Ty,T"), ¢ € R* and R < k4 satisfying (5.3). Then we cut

off the concentrated energy by the following lemma.

Assume (2.10) and G > 0. Let u be a solution of

“norm and E(u) < E < co. Let (S,c) € Rt

Lemma 5.4 (proved in Sect.7).
NLKG (2.3) with locally finite S
R,n > 0. Suppose

dz > 1.

For any k > 0, there exists 0, \(E,n, &) > 0 such that if R < &y, then we have
T € (S,S +1) and a solution v of LKG (2.4) satisfying
Ey(v) < E+k&,
o]l zo(y005227) < 5s (5.5)
E(u—v;T) < E—n/2.
By this lemma, if we set
Kq < 01(E, M2, K5),

we obtain some T € (S,S + 1) and a solution v of LKG, satisfying (5.5) with
5 and = 2. Now we can determine the size of the induction step as
= 15/2 = n{®/4, where we set n; := min(n(E), 02(E)) (o is defined in Lemma
3.1 and 4, is defined in Lemma 5.3). Then we may apply the induction hypothesis
to the solution W of NLKG with the same initial data as u — v at T, so that
[IW |l0:(r00)) € B = B(E) < 0o. Then, the desired estimate for u comes from the

following estimate. (2.11) is required only in this lemma.

Lemma 5.5 (proved in Sect.7). Assume (2.10) and (2.11) (if n > 6). Let u,W be
two solutions of NLKG (2.3), v be a solution of LKG (2.4) satisfying (u(0),%(0)) =
(w(0),5(0)) + (W (0), W(0)), Eo(u(t)), Ea(W(#)) < B for any t = 0, |Wl[e00) :
M, ||v|lieomzz) < € and ||ullo;ory < o° for any T > 0 Then, there exists
g3 = £3(E, M) > 0 and By(E, M) < 0 such that if e < g3 we have |[ul|(o;0,00)) <

Bo(E, M).

By this lemma, if x5 < e3(E, B(E,¢€)), then we have [|elloyzy00)) < Ba(E, B).
Since S < T" and |T — S| < 1, by the local estimate, we have B' < ||ull(0:s,00) <
(]

B, + C(E), so that we obtain the desired global estimate.
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6. MAIN RESULTS

The scaling u(t, z) = u' = A2 1u(\t, Az) with A > 0 transforms a solution of

NLKG on [0, T into a solution on [0, T/A] of another NLKG with the mass m’ = Am
and the nonlinearity f' = A"/2+!f(\!=/2.). 4/ has the same energy as u, and f’

satisfies (2.10) and (2.11) with the same constants as f. So, in the case m = 0, we

obtain the global estimate from the local estimate by the scaling. We have proved
the local estimate in the case m = 1, but the argument is also valid in the case
m = 0, if we replace the inhomogeneous spaces by the homogeneous ones. In fact,
the proof of the local estimate is more snited to NLW, rather than NLKG, for we
used an estimate related to the conformal invariance of LW (in the proof of Lemma

4.3). That estimate holds globally for NLW, but not globally for NLKG. Moreover,

once we have obtained the global estimate in the case m = 1, we obtain the global
estimate for any m > 0 by the scaling, and the estimate for the homogeneous ST-
norm (e.g., ||u|/(;x)) is independent of m. (Remark that ||u(|(z) < C|lul| o) by the
Sobolev embedding.) Thus we have obtained the global estimate independent of m

for the homogeneous ST-norm :

0. In the case where

Theorem 6.1. Let n > 3 and m > 0. Assume (2.10) and G
m > 0 and n > 6, assume (2.11) in addition. Then, for any finite energy solution
u of NLKG (1.1) with locally finite ST-norm, we have a global bound for ST-norm:

[ullum) < B < o0,

where B depends only on n, E(u) and the constants in (2.10) and (2.11)
It is well-known that one can derive a priori estimates for any (appropriate) ST-
norm from an estimate for a particular ST-norm (see, e.g., [6, Proposition 2.6]).
From this estimate, we obtain the continuous dependence on the initial data.
Define the energy space

L+ ll¥lf: <00} (6.1)

= {(, )| (e, V)| = IVollZ2 +m?|

Corollary 6.2. Under the same assumption of Theorem 6.1, the finite energy so-
lution of NLKG (1.1) with locally finite ST-norm depends on the initial data con-
tinuously both in the strong topology of X and in the weak topology of X.

Proof. Suppose that the initial data converges weakly in X. Then the corresponding

solution converges weakly in X at ¢ = 0, and, by the boundedness, converges weakly

in (1;R), if we extract some subsequence. Then the limit function is also a finite
energy solution of NLKG with finite ST-norm, so by the uniqueness, the weak

continuity follows. Then, the strong continuity follows from the weak continuity
O

and the energy conservation.




Part I: Scattering for Nonlinear Klein-Gordon with Critical Power
We have also the scattering result.
Corollary 6.3. Let n > 3, m > 0 and G > 0. Assume (2.10) and (2.11) (if
n > 6). Then any finite energy solution u of NLKG (1.1) with locally finite ST:

norm approaches to some solutions vs of LKG
Ovs +m?vy =0,
ast — xoc in X. Moreover, the correspondences M. : (u(0), @(0)) — (v4+(0),9+(0))

define homeomorphisms in X and we have
E(u) = Eo(vs).
] : »
My and MZ" are continuous also in the weak topology of X

Proof. Tt suffices to consider the case t — co. For simplicity, we consider the case
m = 1. The arguments in the other cases are similar. Since ||ul|m) < oo, we have

[lel(oy(z,00y) = O as T — oo. By the Strichartz estimate, we have

ot e
/ (—-Hn#.ms“;s) S(u(s))ds
s . i

as t > S — oo. So there exists the limit in X:
i sinws X
(®,0) := / ~ 22 cosws ) f(u(s))ds.
Jo w

va () := K (T)(u(0) + ®) + K (t)(i(0) + ¥).

< Ol @)llesey < Cllullfisoy = 0

We may define

Then we have

|| (uy ) (t) — (v, 04) (@) |l x = 1‘/ (K(t—s),K(t—s))f(u(s))ds
Jt

< (Hqu ' — 0,
as t — oo. This property uniquely determines v, so M, is a map in X. Since
[lvg ()]l 2= — 0 as t — oo, by the Sobolev embedding we have [|u(t)|| 2+ — 0, s0
that
E(u) = lim Eo(u;?) = Eo(vy). (6.2)
M;!. We

)Y ) converges to (g4, 1) weakly

By the same argument as in [8], we obtain the wave operator W,

consider the weak continuity. Suppose X 3
in X. Let (¢, %" ) = W, (%, ¥%) and (p,v) := Wi(p4,44). By the definition,
(", 0") = (u”(0),%*(0)) and (p,1) = (u(0),%(0)) where u” and u are the solutions

of

u’(t) = K ()" + K@)y */ K(t—s)f(u"(s))ds, (6.3)

(t) = K(t)ps + K(t)¢ / K(t— s)f(u(s))ds (6.4)
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R). So, after ex-

By Theorem 6.1, {u”} is bounded in (0;R), so is {f(«")} in (
tracting some subsequence, we may assume that u” converges to some u™ weakly
in (0;R) and f(u”) — f(u®) weakly in (2;K). Then, by the Strichartz estimate,
letting v — oo in (6.3), we have

ot

u®(t) = K (t)ps + K(t), / K(t — s)f(u™(s))ds.

Joo
Thus we obtain 4® = u and W, is weakly continuous. Then, the strong continuity

follows from the weak continuity and (6.2). The continuity of M, can be proved in
a similar way. O

7. PROOFS OF LEMMAS

In this section, we prove those lemmas in the previous sections whose proofs have

been postponed. As in Sections 4 and 5, we assume that m = 1.

Proof of Lemma 4.2. Let L := [{/v+1]. We may assume #S = (4L)YN-1)_ Then,
there exists a cube C; O S. Now we take a finite number of cubes {C;} and of points
{z;} by the following procedure. First, let j = 1. Then, repeat the following routine
until #(C; N S) = 1.
e Divide C; into (4L)” disjoint subcubes, from which choose a subcube ' that
contains the most points of S among the subcubes.
o Let C be the cube composed of 3” subcubes including C and all the neighboring
subcubes.
. H'(C'J\CN')FWS = @, replace C; by C, and repeat the routine. Otherwise, choose
a point z; € (C; \€)N S and let Cjn

routine.

, increase j by 1 and repeat the
whAn

It is obvious that this procedure ends in finite times, and we obtain a sequence of
cubes C; D +-+ D C; and of points zy,...,: zy_1 € S. Let C; NS = {z;}. Denote
by £; the length of the edges of Cj, and let N; = #(C; N S). By the construction,
we have

i e 1
Nin 2 g b < 376

Ui < |25 — 75| < VU,

Thus we obtain 1 = Ny > (4L)"*Y-YUN; = (4L)~*U-D
J > N, and

= (4L)"-), so that

\ V7
|2 — Zja| € VPV £ vr, < 4/4 < |zy — z5)/4

Thus, £5_y41,- .-,y is the desired sequence.
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To prove Lemma 4.3, it is convenient to introduce the following norm.

IOl =Y sup [f()] (7.1)

2-i<t<2-i+1

Then, it is clear that
1
dt _ &
[ 15O1F < Wl (72)
Jo t
To derive estimates for ¢! L*-norms, we will use the following lemma.

Lemma 7.1. Let s > 0, 0 < f(t) € L(0,1) and 0 < g(t) € L'(0,1). Suppose that
for any 0 < S < T < 1 it holds that

’
[t F @)% s/ t°g(t)dt.

Then we have
Ifllez= < Cllgllz,

where C' > 0 depends only on s.

Proof. Let

Then we have

-1

Thus we obtain
S Y 2970 <0 m < Cullgllmo-
i>1 k>5>1 k>1
Since
sup  f(t) < ¢+ 715

2-i<t<2-i+1

o

we obtain the desired result.
For the proof of Lemma 4.3, we introduce several notations.

Definition 7.2.
up = 0-Vu, up:=Vu—0Ou,,

=1
2
12Qo(u;t) := (tu + ru, + (n — 1)u)? + (rie + tu,)? + (82 + %) (|luo|? + u?),

H(u) : G(u) — F(u),

2Qq(u;t) == 2Qo + (£ + 1?)
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Now we prove Lemma 4.3. We do not use the nonlinear term to estimate |u
but use the quantity |ug|* +u?/r?, as in [12]. Such an approach would be crucial in

the proof of Lemma 5.4, where we must apply such estimates to a solution of LKG.

Proof of Lemma 4.3. It suffices to consider the time interval ¢ € [0,1]. (For the
estimate on [—1,0] , just reverse the time direction.) We may assume ¢ > 1. We
work only with smooth solutions. The estimate for general finite energy solutions
can be obtained by approximation arguments (see, e.g., [6, 14, 1]). We use the

inversional identity (see, e.g., [15, (2.20)], [9, (2-2a)]):

(Ou + u+ f(u))m(u)
= 8,(2Q' () + V - {—m(u)Vu + 2tz(e(u) — 2a*)} + 4t(H (u) — u*), (7.3)

where
m(u) := 2(t* + r?) i + dtru, + 2(n — 1)tu,
£2Q' (u) == (8 + r*)e(u) + 2a(2tru, + (n — )tu) — (n — 1)u®
=£2Qo(u) + (2 + 1) F(u) — (n = 1)V - (zu?) .
Integrating (7.3) over the truncated fat cone K := {(t,z)|S < t < T,r < ct} for

0< S <T <1, we obtain
=T

/l 2Qo(u) + (2 + r"’)l"(u)ll.r] = / r2P.(u)(r/c,z)dz
r<ct Jes<r<er

t=5

+ / \t(u® — H(u))dzdt, (7.4)
JK
where P.(u) is a certain quantity satisfying

|Pe(u)(r/c, z)| < Ce (((u) i

By the energy identity and Hardy’s inequality, we have for ¢ > 1,

u?
/ (I (u) + ) (r/c,z)dz < C(E,c). (7
0<r/e<1 T

Using Hardy’s inequality and a variant of Morawetz estimate [12, Proposition 4.4],
g A 1 3

=~

we have

/ ™ jrat < c(8,0).
0 AR

r<ct
y<ict

Thus we may apply Lemma 7.1 to (7.4) and obtain

/’ Q“(u)tl.r‘ . C{E,c). (7.6)
Jr<et Il e
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Next, integrate the inequality

. t t 5 tu®
0,(u?) = 2u ([/ + ,,,’> +V- (—u’ll) (n— ‘2)—”,
& 3 )

(ri+ tu,)? t (@)
7+ tuy)* 4
sl A (fu-u)
t r
over K. Then we have
: 4 g " (ri+ tuy)?
[/ 41‘)11‘1'] < / 1+ c)ud(r/e,x)dx + / T dzdt.
Jr<et s Jes<r<er JK t (7.8)
By (7.5), we have
i s 1 .
/ w3(r/e, 1) < C(E,c)
Jo<r/e<t rs
By (7.6), we have
i+ )2
/m_, (Pt ) s < O(B, o).
0<i<1 t
So, we may apply Lemma 7.1 to (7.8) and obtain
R 7 i Sy, <4 ”Q
Tzd.l < C(E,¢). (7.9)
Jr<et 0Le
By a Hardy-type inequality, we have (see, e.g., [12, Proposition 3.6])
a2 9
T uydz.
From this and the inequality
ﬁ ¥ t—r 2“;_, <c i’ i (i + ru, + (n — 1)u)? + (ri+ Iu,)" .
2 t 2 2
we obtain
: 2
/ Q1 (u;t)de < Clc) / Qolust) + “T(Lr, (7.10)
Jr<et Jr<et t
so that
‘ Q;(!Li[)l[l" < C(E,c). (7.11)
Jr<et e Lo

Now the desired result follows from the following Hardy-type inequality (see [12,

proof of Proposition 4.5]):
/ ¢|*dz < C||Vyll%,
Jr<k

Proof of Lemma 5.2. Suppose that N € R, T} < - -+ < Ty satisfies (T}, Tn41) C
I and ||ul|0;1;) = 7 for I; = (T}, Tj41). By Lemma 3.1, we obtain J; C I;, ¢; € R"

and R; > 0. Choose t; € J; for each j. Suppose that we have for any j,

' A%
$ / [ipol? + 5da. (7.12)
Jr<r T

]

|Ii] <L and R;>&l|l|. (7.13)
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Then, by the local ST-estimate (Proposition 4.1), it suffices to get a bound for
|Txs1 — Ti| in terms of E, 7,k and L under the assumption (7.13). Denote S
il el N}. Let P C S satisfy that for any distinct j, k € P it holds

lek —¢j| > |t — t;| + Re + R;j. (7.14)

Now we will bound #P. Denote B; = {(t;,z)| |z —¢;| < R;}, Kj = {(t,2)[ |z —¢;| <
R; + |tj — t|,t > t;} and K = UJL,, Kj. Then, by the energy identity and the
positivity of the energy, Ek(t) := _[’h e(u;t)dz is nondecreasing. From (7.14), if
j € P, we have B; N Ki = @ for any other k € P. So, Ex(t) increases at least by

[, e(w)dz > 7 at t = t;. Thus we obtain

E= /r(u("['_\ 1))z > Ex(Tny) > #Pn*®,

Am

so that #P < M := [En~2¢]. Now we divide S into mutually disjoint sets P, A;,
by the following procedure. First, set P = {1}, A; =--- = Ay = @, ¢(1) := 1 and
j = 2. Now repeat the following routine for j =2,..., N:

o If (7.14) is satisfied with any k € P, add j to P and then let ¢(j) := #P.

e Otherwise, choose some k € P such that (7.14) does not hold and add j to

Aqk)-

Then we obtain P, Ay,. .., Ay satisfying S = PUA; U-- - Ay (disjoint union) and
we have (7.14) for any mutually distinct j,k € P. Now by a variant of Morawetz

estimate [12, Proposition 4.4], we have

M2 [ TR AT

keP
\ o
> el
= ,Z;/, 1> 63) — (s o) + B + |51

In the case j € P, when j = k € P we have
(82 ¢5) = (ts )| + Ry + 5] = B + 1] < (C(E,m) + 1)L,
where () is given in Lemma 3.1, and we used (7.13). In the case j € Ayx), we have

\(t5:¢5) — (b, )| + By + |11 < 20t — til + Re +2R; + |1

< 2|t; — Ty| + (3C(E,n) + 1)L,
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where we used (7.13) and #; < t;. Thus we obtain

. 13
OB IS e e St e
¢ )*;” 2t — Thl+ (3C; + )L
N it

> pPaingl Gk te

S ] 3t —Th| + (3C; +3)L

> kT

Thus we obtain the desired result.

Proof of Lemma 5.3. Let ux = ¥ *u and v = ¢ xv. For t € (U,V), we have

the integral equation:
ot
U — v = — / K(t — s)Uy * f(u(s))ds.
Jo

We split the integral into those on [0,¢ — L] and [t — L, ], and denote by Z,, Z, the
corresponding integrals. For Z;, we use the following decay estimate of LKG (see,
e.g., [7, Lemma 2.1]):

K (@) % F (@)l g < CleI=*2 1+ F(@)I,

‘(1 3/21(,,[[2°
< CR)E ey
where in the second step, we used similar estimates with (3.7). So we obtain

rt—L

)g('(k.E)/ [t — s|2ds

Jo

HI'”L‘(!'.\ 3B

< Gk, B)L™Y2,

By Lemma 7.3, if we set 2 < &o(E), we have ||ul|@rv) < C(E). So we have also
luk — vi|s:rvy) < C(E) and, by the Strichartz estimate,
1,127 =1 v Y2 —1
1Z2l6;wvy < Cllullioervy < CEN
so that ||Z,]|(6;w,vy) < C(E). By the complex interpolation and the Sobolev embed-
ding, we have as in (3.4),

1Tl < CEBIBIL 4 pmste STl < CUE, YL

(6;(U,V)) =

where 6, A > 0 are the same as in (3.4). So, setting L sufficiently large relative to

C(E, k), we have ||T;|o;wvy) < n* . By the Strichartz estimate again, we have
IZ2lloswvy < CE* "

Since 2* —1 > 1, if we set dy( E) sufficiently small (for example, let 6,(E) = (y+E) "

with large (n)), we have

[l s,y < Noklloswvy + |1Z3 [l oservyy + 1 Z2loswvyy < m/4-
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Lemma 7.3. Assume (2.10). Let T > 0, let u be the solution of NLKG (2.3) with
Eo(u(t)) < E < oo for any t € [0,T)], and let v be the solution of LKG (2.4) with the
same initial data at t = 0. There exists g = 0g(E) such that if ||[ul|o;0r)) < 1 < o,
we have

[lull@:0.ry) < Co(E), |ltllz: oy < Co(E),

ol :0m < Co(B)n, [l il (os0.1y) < ColE).-

Proof. By the Strichartz estimate, we have for j =6 or 0,

lllgscoury + Nitll oy + llw™itll ooy < CEo()'? + Cllf (u)ll@icoiry)

< CB"2 4 Clull% 5y < CEY2 + O,
and
ol ooy < lullogomy + CILF @ll@goy < n+Cn*
So, setting d; < 1 and &y < E, we obtain the desired result. [
Proof of Lemma 5.4. By translation, we may assume ¢ = 0 and S = R. Let
J € N (large) and suppose S = R < 272/. Let ¢ := 2-2) 4+ 1/J < 1. From now on,

we denote by C' any positive constant dependent only on E. By (7.11), there exists

2J} such that for T := 277 we have

/ Q(u;T)dz < C/J < Ce.
r<AT

some j € {J,

By the energy conservation, we have

/ e(u; T)dz > / e(u; S)dz > 1.
Jr<r r<S

Let ¢ = x(2/2T) and vy = Cu. Let v be the solution of LKG with the same initial

data as v at t = T and w = u — v. We have for # -

|[Vo? < [¢Vul? + 2| Vu||u V(| + |[uV¢[%

/ \uV(“"r/.r < / |r
Jr<ar

so that, by Schwarz’ inequality and the monotonicity of F' (which follows from

G >0),

and

2
u® .
—dz < Ce,

Eo(v;T) < Eo(w; T) + C/e < E+ Cv/e.
Similarly, we have

E(w;T) < / e(w;T)dz + CvVE < E—n+Cy/fe.

Jr>aT
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Moreover, we have at t =T,

,..’ . .
Q) <2 +2 (5 + 1) G

and

,,I"’ - )"<(,( r)v"') < OC )
a2 2 o ]
7 (Gu)* < CrG) 5 < CQilu

Thus we obtain

IA
a

/ Qi(v;T)dz < C Q,(u; T)dx
Jr<aT

Jr<ar
Since v = 0 if t > T and r > 4T, we have from (7.4) (with f = 0),

N U .
[/ t2Qo (v; I)zl.r] < /,\ o At dadt, (7.15)
Jr<at T T<t<l

for any U > T'. Similarly, from (7.8), we have
L

i+ tv,)2
[/ ':vz(f)n'.:} = / \ PR (7.16)
r<at T T<t<l t
By the energy conservation for w™'v, we have
le@)liza < ()7 + 1505+
< Ollo(D)|72- T2 + [[0(T)|I7:T° < Ce,

since supp(v(T), (7)) C {z|r < 4T}. From (7.15), we have for any U > T,

/ ANEAI / Qo(v; T)dz + i/
Jr<al r<dT [ JT<t<l

& vidxdt
Ce.

IA

From this and (7.16), in the same way we obtain

Lo

From these estimates, (7.10) and (7.12), we have for any ¢ > T

dz < CEe.

@7 = / v¥ (t)dw < Ce.
Jr<at
Thus we obtain the desired result. (]
We will prove Lemma 5.5 for n < 5 and n > 6 separately. First, we consider the
easier case n < 5.

Proof of Lemma 5.5 for n < 5. By [6, Proposition 2.6] we have the following

estimate. (That proposition is written for the massless case, but the arguments are
valid also in the massive case. We get the estimate on unbounded intervals by a

simple limiting argument because the estimate is independent of the length of the

interval.)

W llcgo.00) < *Mi(E, M) < c0.
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By the Strichartz estimate and Hélder's inequality, we have

|2l G0,00) \’,’,’.“ = ("([;);i—z)‘
where
1l TR T
= == =0, =§ Tt T fa Iy
p 2 g 2 2nin

with sufficiently small §, say 1/20. So we may assume
[lPlla(o,00) < €1(E4€),

where £, \y 0 as e \, 0. For > 0, there exist 0 =Ty < T} < - -+ < Ty < T4y =

such that

hia

Gy <1 and
Let ' =u — v — W. Then we have the integral equation

ot
POI=T:) +/ K(t—s)(f(W) — f(T' + v+ W))(s)ds, (7.17)
T;

where T; is the solution of LKG with the same initial data as I' at ¢ = T;. By the

Strichartz estimate, we have

ICllg(zy r) + Eo(T; T)'/2 < CE(T; T;)'? + C|| f (W) — (T +v+ W)l

By (2.10) and Holder’s inequality, we have
lF (W) = F(C + v+ W)z < CUIT +2lle + Wlle)* ~*lv + Tl

Denote ¢;(T) := ||T||g(r; ) + Eo(T;T)'/2 and §; := ¢;(Tj4+1). Let gy := 0. Then
¢;(T) is continuous with respect to 7' and

¢;(T;) = Eo(T; 'Ij,)w < Gj-1,

4(T) < C1Gj—1 + Calg;(T) + &1 +0)* *(g;(T) + £1),
for some C,Cy > 1. We set C5(39)* "2 < 1/4 and (2C))%e, < . If &, < ¢;(T) < 1.
we have

4;(T) < C1g;-1 +¢;(T)/2,

so that ¢;(T) < 2C1q;-1. Thus, if 2C\q;—1 < 7, by the continuity, we have ¢;(T) <
2C1Gj—1 < n for any T < Ty, so that g; < 2C\gj—1. If §; < &1, we have either

§; < ey or §j < 20131 < 2C1€;. So, if we set

200 e <,

then we obtain g; < (2C;)’g; < 7 for any j and the desired result follows.
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The proof in the case n > 6 is more complicated, because we do not have a simple
estimate for the difference of two solutions, as in the case n < 5. In particular, we
cannot estimate the energy norm of the difference, so we introduce the following

substitute.

(@, 0) I = Hl&'m; + K@)y ! (7.18)

[(3:0,00))

We will use the following variant of the Strichartz estimate.

Lemma 7.4. Let

l1<p<p <oo, (7.19)
2(n—1) ,  2(n—1) yi
— e R AR, 7.20
n+ 1 =il s n— 3 [ ]
1
= (7.21)
p
1 i
””*1)(** )<7——). (7.22)
q q 2
1. n—11 1 bt arr
SRSy o e — (7.23)
P 2 gq P 2 ¢
Then we have
‘ rt (‘:L‘.‘H*.\\
‘!/ —f(s)ds < Cllfllzeor;bg ) (7.24)
Jo w

L¥ (01587 )
where C > 0 depends only on the exponents (p,q,0,p'.q'.0").

Proof. First we consider a weaker estimate where the third exponents of Besov spaces

are replaced with 2:

it piw(t—s)
/  f(s)ds
0 w

In the case (in addition to (7.19)(
2

¥ = el 1
oo 0=
P 2 q 2 3

7.25) is the standard (generalized) Strichartz estimate (see, e.g., [5, 7, 13]). For
8 g |

< C||fllerior

1,1-’(0.1':1;;,’ )

23))

sufficiently small £ > 0, let
0> =
ﬂ') =

+iwt

et

< Clt— s £(5) g,

f(s)

By,
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From this and the Hardy-Littlewood-Sobolev inequality, we obtain (7.25) for this

27),

exponent. By the complex interpolation between the case (7.26) and the case (

and by the Sobolev embedding, we obtain (7.25) in the case

l+nfl 1l 1 <0
P 2 q 2 7

Then, by the duality argument and the interpolation, we obtain (7.

maining case. If (p,q,0,p,q',0’) satisfies (7.19)(7.23), then (p+.q,04,p%, ¢, 0%)

25) in the re-

with

P+
satisfy (7.19)-(7
Hoélder’s inequality, we have

LP+(Bgh) N LP~(B;,) < L¥(Bg.)s

3) for sufficiently small £ > 0. By the interpolation inequality and

and by the duality argument we have
LP+(Bg3) + LP (Bia) = A(BIs):

with the exponents (p+,q,0+,p..¢,0%)- O

So, (7.24) follows from (7.
Then we have the following estimate for W-norm.

Lemma 7.5. Let n > 6. Let u be the solution of

Ou+u=g,
u(0) =, u(0)=1.

Then we have for any T > 0,
1 (T), wT)|lw < (e, ¥)llw + Cllgllsi0my-
Proof. Let v be the solution of LKG with the same initial data as u at t = 7' Let

w be the solution of

Ow +w = gX(o,1)
w(0) = ¢, w(0)=1,

istic function of the interval (0, 7). Then we have

where x(o) denotes the characte
v=mw for t > T, so that by Lemma 7.4 we have

loll@soon < Nlwll@io00n < N2 ©)llw + llglls:or)s
which is the desired result.
Proof of Lemma 5.5 for n > 6. We have some M, = M(E, M) < oo such that
W lls0.00 < Ma(E, M)/3 < o0,

for j = 3,0 or 6, by [6, Proposition 2.6]. (That proposition is written for the

massless case, but the arguments are valid also in the massive case. We get the
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estimate on unbounded intervals by simple limiting argument because the estimate
is independent of the length of the interval.) By the Strichartz estimate and the

complex interpolation, we have for j = 3 or 0,

C(E)E? < &9(B, ),

1ol Gso,00)) < CH"H'},; 7S [[v] :«.::lu.xv] &
where 1/p; = (1 —0)/ps and g5 \, 0 as € N\, 0. For n > 0, there exist 0 = To<T <
.-+ < Tn < Tn4+1 = oo such that

W ll @iy a0 + IW stz 230y + 1IW ll @itz 25000 <
and
NYpsy < M,.
Let T = u — v — W. Applying Lemmas 7.4 and 7.5 to (7.17), we have
1Dz oy + DT, D))

< OO, D(T))llw + CIF W) = £ + v+ W)l sy -

By [8, Lemma 2.3(3)] and the Sobolev embedding, we have
IF(W) = F(T +v+W)lle < C(IT +vllay + W) * M0 + vllsy
+C(

< (P + vl + W l)* ~?IIT + vllgs)-

T + |0 + [Wll)* ~IIT + vll)

Denote Q;(T) := |IT |z ry + | (T(T), D(T)) lw and @; := Q;(Tj41). Let @y :=0.

Q;(T) is continuous with respect to 7" and

(L) < Qj,

Q;(T) < C1Qj1 + C([Tllo) + &2 +1)* ~*(Q;(T) +€2).-
While Q;(T) < n, we have [lul|@r;m) < 2n+é&2 < E. So, by [6, Proposition 2.6],
we have ||ul|(sz;.19) < C(E). Since [|[W||g;zyr) <7 < E and [ol6;23.my) < C(E),
we have

1Tl iy 1) < CIT oz | I’H:,;,[’j,_,” < C(E)Q;(T)?,

where 0 < 4 < 1 and
1 g 1=0

E pP3 Ps
Thus we obtain
Q;(T) < C1Qj-1 + Co(Q5(T)? + €2+ 0)” ~*(Q4(T) + £2),
as long as Q;(T') < n. Then, by a similar argument with the case n < 5, if we set
Cy(37)¥ -2 < 1/4 and (20,)"*ley < n'/?, then we obtain Q, < (2C1)e2 < M7 for

any j, from which the desired result follows. O
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Part II.

Energy Scattering for
Nonlinear Klein-Gordon and Schrédinger Equations
in Spatial Dimensions 1 and 2

1. INTRODUCTION
In Part II, we study the scattering theory in the energy space for nonlinear Klein-
Gordon equations (NLKG):
Ou + m?u + |ulP~'u = 0, (E1)
and for nonlinear Schrodinger equations (NLS):
i — Au + |ul? lu=0, (1.2)

where u = u(t,z), (t,z) € R, 4 = gu/ot, O = 9} — A, m > 0, n < 2 and
p > 1+4/n. We will prove that the wave operators and the scattering operators
for (1.1) and for (1.2) are well-defined and bijective in the whole energy space E
(for NLKG, F = H' @ L? and for NLS, E = H'). It is well known that there
exist injective wave operators defined everywhere in E. So, the main problem is

the surjectivity, which means the asymptotic completeness of the wave operators.

Such results are known in the case where n > 3 and p > 1+ 4/n, in the case of
small energy data and, in the NLS case, in certain function spaces smaller than the

energy space (see, e.g., [4, 5, 6, 7, 8, 9, 10, 14, 15, 16]). But, as far as the author

knows, no result is known for the scattering in the whole energy space when n <

In particular, this is the first result on the large data scattering of NLKG for n <
which was left as one of the major open problems in [13, pp. 247]. The difficulty for
n < 2 consists mainly in the two points: the breakdown of the Morawetz estimate
and the unintegrability of the time decay order of the free equations. We overcome
the first difficulty by certain variants of the Morawetz estimate with space-time
weights. Such estimates seem to have first appeared in [11] for n > 3. Moreover,
we do not need the integrability of the time decay order if we use the argument of
‘separation of localized energy’, which was invented by Bourgain [3] and was used

also in Part 1.
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2. NOTATIONS AND CONVENTIONS

In this section, we introduce several notations and conventions. In order to state
the results and the proofs in a unified way for both NLKG and NLS, we use several
notations whose meanings differ depending on whether we are considering NLKG
or NLS. As usual, we denote by C' auxiliary positive constants, and sometimes write
as C(a,b,...) to indicate that the constant depends only on a,b,... and that the
dependence is continuous (we will use this convention for constants which are not
denoted by ‘C’"). We fix n and p, and so we ignore the dependence of the constants
on n and p. We denote by By, the usual inhomogeneous Besov spaces (see, e.g., 1]
We will use the following space-time norms. We will sometimes abbreviate them as
‘ST-norms’.

(BT} = L®(7; Bz7,(R™), (X;1I) = LI XR"),
(K;1):=L°(I; B;5(R")), (K;I):= LP(I; B35 (R")),
(¥; 1) = LA L, B3 (BE)), (Vi 1) := Ll (1; B4 (R")),

[

where p = 2n+4)/n, 1/p+1/p=1, (p—1)/q+1/p =1/p, 0 = p/(2q), oy
n/p—n/q and

1/2, in the NLKG case, 22)
oK = 2.2
e 1 in the NLS case.

The condition that p > 1+ 4/n is equivalent to that ¢ > p. We will sometimes omit
the interval 7 in (2.1). For simplicity, we set m = 1 for NLKG. Then the equation

is
Ou + u+ |ul? lw=0 (NLKG). (2.3)

We fix a smooth cut-off function h satisfying

heC®R), 0<h<1, h@)=4> 2L (2.4)
N, g N g = &

' = 0, t<0

Denote by Fy = @ the Fourier transform of ¢ and define the Littlewood-Paley

dyadic decomposition:

;= F1h(2 —277|€|) € S(R"),
—1pj1 € S(R") for j € N,
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We define the energy and several related quantites.

fl) = [fP~u, Fu):= }l—;ﬂ“/“l
| . : 2 [u[P+!
G(u) :=R(af(u)) — F(u) = (l T 1) [ufpt! > T
|| + |Vul> 4 |u|?>, in the NLKG case, (2.6)
ep(ust)= . - : .
|Vul* + |ul?, in the NLS case,

en(u) := ey (u) + F(u),

/I en(u;t)dz,

where Vu = (0u/dz, ..., 0u/dx,). Ey is a conserved quantity for NLKG and NLS

and Ey is a conserved quantity for the free equations. Denote (a) := /1 + |a|?

Er(u;t) == / er(u;t)dz, Ey(u;t) =

Denote for any function ¢,

() = Fo((E)F, o
= 2.7
p(A) = F (=€) F.
Using these notations, we define
U = w'sinwt, in the NLKG case, @28)
| e, in the NLS case. a
Then the integral equations associated to NLKG and NLS are respectively
it
u(t) = U(t)u(0) + U(t)u(0) — / U(t — s) f(u(s))ds, (2.9)
Jo
ot
u(t) = iU@)u(0) — [ U(t — s)f(u(s))ds. (2.10)
Jo

3. BASIC ESTIMATES ON ST-NORMS

In this section we collect basic and well-known estimates on the space-time norms
introduced in the previous section. By the Sobolev embedding, we have for any
JEN,

llulley < Cllullzge@y,  Ilullx) < Cllulley), 3.1)
Hv"/ H ”va <C27||u \l/,‘vuly-
By the Sobolev embedding and the well-known nonlinear estimates for the Besov
norms (see, e.g., (9, Lemma 3.1]), we have
: 1 9
[1f )l gy < Cllullemyllullfxys (3.2)
[|f(w) = fF)l 37y < Cllu = vllevy(lulleyy + llvllr)” 1 (3.3)
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By the complex interpolation and the Sobolev embedding, we have
llullxy < CllullCi A llwll 5 (3.4)

|1

I 112/a 11, ((2/0=21a (3.5)

|ullvy < Clul (J Pl el Foor -
We have the following decay estimate for U(t) (see, e.g., [9])

IU@elise, < CltI™llellse, (3.6)
where = n(1/2—1/p) =1+1/q—p/q. So, by Young’s inequality, we have for any
PER0;

ot ot |
H/ U(t — s)v(s)ds 20 H/ [t — s|~#[|v(s)|| gox ds
0 1Jo P2l Lago

< ('H"H(f:(n.l))- (38.7)

(¥;(0,1))

Denote

(3.8)

() Ou + u, in the NLKG case,
€4 u) =
i it — Au, in the NLS case.

Then, by the Strichartz estimate (see, e.g., [4, 9]), we have for any ¢ > 0,

eqr(u)ll (ko0 (3-9)

Er(u; )2 + lullx0a) + lullxiony < CEL(w0)'* +C
Using the above estimates, we have the following lemma.

Lemma 3.1. Let u be a solution of (2.3) or (1.2) on an interval I = (S,T) with
Ep(u;S) < E < oo and ||ul|(x;1y = 1. Let v be the solution of the free equation with
the same initial data asu at t = S. There exists a constant no(E) € (0,1) such that
if n < no(E) we have
llu = vli;n + lluw = vlixn < 0
=N iy : (3.10)
[lellxsny < 20, Nullisn < C(E)-
Proof. By (3.9) and (3.2), we have
[lw = vl + llw = vllxsny < ClF @)l &:n
< Cllullsn|lullfxl (3.11)
< O Mlullgean-
Now we set 7 so small that Crfy ' < 1/2. Then we have
[leellzesry < 2llvllesny < C(E), (3.12)
where the last inequality follows from the Strichartz estimate. Thus, from (3.11),
we have

[l = vl sy + I = vllexsny < C(E)pP. (3.13)

Setting 7o so small that C(E)nf 2 < 1, we obtain the desired estimate. O
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4. DISTRIBUTION OF ST-NORMS

In this section we prove the following lemma, which relates the time-distribution of

the ST-norm with the space-time distribution. The lemma is merely a reproduction
of Lemma 3.1 of Part I in the present context, and the idea is essentially due to [3].
Since (2.3) and (1.2) are H'-subcritical, the situation is much simpler than those in
(3] and Part L.
Lemma 4.1. Let u satisfi 3) or (1.2) on an interval I with Ex(u) < E
Suppose that ||lullx;y = n € (0,m(E)] (no is given by Lemma 3.1). Let s > 1.
Then, there a subinterval J C I, R > 0 and ¢ € R* satisfying |J| > C(E,n),
R<C(E,n) and

0.

/i min(|u(t)], |u(t)|®) dz > C(E, 7, ), (4.1)
Jiz—cl<r

forany t € J.
Proof. By Lemma 3.1 and (3.4), we have

ullflullzl"? < CB)|lulliy (4.2)

1= |lullxy <C K) ‘“H(/x) (B)

so that we have some 7' € I, ¢ € R" and j € NU {0} such that

127%¢; xu(T, ¢)| > C(E,n)- (4.3)
On the other hand, by (3.1), we have
[2=p; * u(T, )| < 27 C(E), (4.4)

so that we have j < C(E,n). By the Sobolev embedding and Holder’s inequality,
we have
= |lullorsn < CEB)I|VA, (4.5)
so that we have |I| > C(E,n). From the equation and the Sobolev embedding, we
have
lles * (u(t) — u(T))lz= < CH)[ult) — w()lu— < CE,n)t—T|. (4.6)
Thus, we have some interval J C I such that |J| > C(E,n) and we have (4.3) for
any T € J (of course, the constant C' should be changed). Denote
ho — . ifj =1,
e Yo — Y1 1/ = (4.7)
Yo ifgi=0"
Then we have for any t € J,

C(E,n) < |gj *xu(t,c)| = }/ 2" (2 y)u(t, c — y)dy

< 29710 g [ (t) | 2 (ol <) + 27| B[ 2 g2 ) () 2

< C(B,n) {Ilu@)|le(a-ci<ry + 1@/l L2(ei>2 ) } -

(4.8)
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Since ® € S, we can make ||®||2(z1525 ) arbitrarily small if we take R sufficiently

large. Thus we obtain some R < C(E,n) such that for any t € J, we have

w(®)lz(e—ci<r) = C(E ). (4.9)

/“q |ul*dz, B:= /“}, |u|dz. (4.10)
z—c|<R Jlz—c|<R

Then, from (4.9) we have for t € J,

Denote

C(E,n) < B+ /‘“K, |u|dx
Jiz—c|<R (4.11)

< B+ C(R)AV* < C(E,n){A+ B+ (A+ B)'*},
so that we obtain the desired estimate:

A+ B > C(E,n,s). (4.12)

5. MORAWETZ-TYPE ESTIMATES

In this section, we derive certain variants of the Morawetz estimates with space-
time weights. Such an estimate for NLKG was derived for n > 3 in [11, Proposition
4.4]. Here we are concerned only with the asymptotic behaviour of the solutions for
large time. The estimate (5.3) for NLS is a new estimate, which might be useful

also for n > 3.

Lemma 5.1. Let u be a global solution of NLKG (2.3) with Ex(u) = E<oo. In

the case n = 2, we have
3 ()G (u)

// <f‘T e

where u,, is the projection of (i, Vu) to the tangent space of the hyperboloid

(5.1)

|z

t? — |2|*> = constant. In the case n = 1, we have

i min(|ul?, G(u)) : o .
//;m (t) log(|t| + 2) log(max(r — ¢, 2)) L )

Lemma 5.2. Let u be a global solution of NLS (1.2) with Ex(u) = E < 0o. Then

we have

v :
// 2tvutiouf | 0°GW) 4 o o), (5.3)
e

1) + |z]? r) + |z|?
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For the proof of the above estimates, we introduce several notations

rT= >
=
ur = 0-Vu, ug=Vu-—_0u,,
4 ) : : (54)
Ui (u) = = {— ul® + |Vul|® + |u|” + l"(u)}.
1
1,-(!1':3{‘)\ ) \Tu\'*]‘(u)}

Proof of Lemma 5.1. Tt suffices to prove the estimate for C? solutions and on the

interval (2,00). We have the following identity (see [11, Proof of Lemma 4.2 (4. 1)]):

R{(Ou +u + f(u))mn} Zz?“\)? (*IH/, 0%u + Uk (u)Oq +

a=0
+ “T (5.5)
O - (i, Vu) + ug,
(n=3)(n+3) : (# (5%
n-— n- AG =
Ly LA

Since g is smooth for ¢ > 0, we can integrate (5.5) over (2,T) x R" for T > 2, and

by the divergence theorem we obtain

t H
[/ 7>}e.',,77,,+/,\(u)7\f‘“

12
| Og + G(u)gdzdt. (5.7)

The left hand side is bounded by the energy, and

T
‘/ / Juf* U g dwdt <(/ / ]“‘ dudt (5.8)
12 R

is also bounded by the energy. In the case n > 2, the remaining terms in the right
hand side of (5.7) are nonnegative. So we obtain the desired result in the case n = 2.
In the case n = 1, we have g > 0 only if r < |t|. So we integrate (5.5) over the

region {(t,z) |2 <t < T,r < t}. Then we have by the divergence theorem,

{/ —Rumip, + g (u)~
Jr<t

t

A

ol
2 Jret

+R —my (1 + uy) + V2l (u)de. (5.9)

Jocr=t<T

2 =1
Juf?
+ —gdz
) 9 -

Og + G(u)g dudt
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By the energy estimate on the surface of the light cone, the last term of (5.9) is

estimated as

/ Qi+ Vul®> + |u]* + F(u)dz < C(E).
2<r=t<T

So, as in the case n = 2, we obtain

B TR -
/ —— + G(u)gdzdt < C(E).
S Jra A
By the energy estimate on the surface of the light cones, we have
/ |u(r +t,z)|’dz < C(E),
Jr
for any t € R. Now we integrate (5.12) multiplied with
) 1
L) log(Je] + 2))2

w(t)

over R. Since w(t) is integrable, we obtain

// |ul*w(t — r)dzdt < C(E).

From (5.11) and (5.14), we obtain
// min(|ul?, G(u)) max(g, w(t — r))dzdt < C(E),
t>2

where we denote

'y g(t,z), ifr<t,
t,x) =
9(t.z) {n. if > 1.

Since for r < t we have
max(g, w(t —r)) > |g|"*{w(t — r)}?3
t+r)?

t — )3 (log(|t — r| +2))

c " 1/3
nog(’wz)(W) :

Proof of Lemma 5.2. We will use the following new multiplier:

®i n—1—it ¢
my = 2/\—11, - T T 5t u.

)
>

P

we obtain the desired result from (7

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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We have the following identity for a general multiplier m = a - Vu + gu with

a:R"" 5 R* and g : R*" — C (cf. [13, Theorem 2.2]).

R{(ii — Au+ f(u))m} = iy {n -aVu + ui"g/}

+ V~"R{~th +abg(u) + %Tu} + Z O;u d;a; 0ju + G(u)Rg

ig=1

r |lu

% / 1
)‘ R(ig — Ag) + (2VSg —a) - »)Q(IIVU] + (2Rg — V - a)ls(u). (5.19)

Now let 7 = my,. Then the last term in (5.19) vanishes, and we have

n

h B 1
S O da; Ou+ S-Rig) + (2VSg — a) - 53(Vua)
ig=1 £
9 . el o B R 5.20
=5 |Vl e =|ul*+ 2;;&(‘71111) (5:20)
_ [2tVu + izuf?
N 2\
g S 2142 s
= (n—1)(n—3) F)(V}*J)f Lt ];f (5.21)
A3 N
so that |RAg| < C/A3. Thus we obtain
R (it — Au+ f)rip} > 0 { Taur) - 14
R{ (i u u))mp} 2 0 q 3 uu, 2N
2z g — 1)z
+v<§re{-v”m,, 3 j\’f/g(u; — |uf? <(”~_>,\xl
[2tVu + dzul® n-1 # (5.22)
+T+ G(u) T+F
2 Juf?
e o e

Integrating this inequality over (1,00) x K", we obtain the desired result as in the

proof of Lemma 5.1. o

As was shown in [11] and Part I, [[u/r||,2 is an important quantity to control the
energy when n > 3. Although we can not have u/r € L*(R") for n < 2, we still

have the following decay estimate for [|u/{z)(|2.

Lemma 5.3. Let u be a global solution of (2.3) or (1.2) with Ey(u) = E < occ.

Then we have

(5.23)
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Proof. By Holder’s inequality, we have

.‘“‘_, . " 2/(p+1 B e e 1-2/(p+1
—dr < |u|Ptda / (2™ P=Ndy
(z) 2 v (5.24)

Since n < 2, the second integral term in the right hand side is finite. From (5.1),

(p+1)/2 ; p +
1t [ufP*?

; = / / M gzt
(t) o 4 w2 (B

77 ; 5.25
e // Cl) gy 523
~ S e B

(5.11) or (5.3), we have

S st

< C(E)
and
IS 2 p+1)/2 s
2 it E
/ {/ ‘L‘)d.,} el / € (H’)‘rll < O(E). (5.26)
JrR UWUr>|t)/2 <I> f) JR <’>
Thus we obtain the desired result. Al

6. WEIGHTED GLOBAL ESTIMATE FOR ST-NORMS

In this section we will prove the following lemma, which is a reproduction of
Lemma 5.2 of Part I for the present subject, but the situation is simpler because of
the subcriticality. There is a similar argument in [2]. Here we use the generalized
Morawetz estimates and the finite propagation property. We do not have the finite
propagation property for NLS in the strict sense as in NLKG, but we have certain

approximate finiteness of propagation (Lemma 6.2 below).

Lemma 6.1. Let u be a global solution of (2.3) or (1.2) with Ex(u) = E < oc.
Lt 0=Ty <Ty <---, I; = (T;-1,T}), 0 < < mo(E) (o is as in Lemma 8.1) and
/2 < ||lull(x:1;) < 0 for any j. Let S be the totality of the indices j, which may be
finite or infinite. Then, there exist t; € I; for each j € S such that
1

S GlEa (6.1)
1292 (t; + 1) log(t; +2)
Lemma 6.2. Let u be a global solution of NLS (1.2) with Ex(u) = E < 0o. Let B
be a compact subset of R*. Then, for any R >0 and T > 0, we have

/ |u(T, z)|*dz > / |u(0,z)|*dz — C(E)T/R, (6.2)
B(R) /s

where B(R) := {z € R" |*y € B s.t. |z — y|<R}.

Proof. Define

d(z) = :‘nlft\.r -yl
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Then, z € B(R) if and only if d(z) < R, and we have |Vd(z)| < 1. We define

x(z) = h(1 —d(z)/R) (6.4)
Then we have
1, z€B, 5
) = (6.1
x(@) {(1. z €R"\ B(R), i3]

and |Vx| < C/R. By the equation (1.2), we have
(‘)VH\“H‘/;' = 2R(xu, x(—iAu +if(u)))

c (6.6)
=43 (x(Vx)u,Vu) > —=E,
R
where (-,-) denotes the inner-product in L*(R"). From this we obtain the desired
1]

result.

Proof of Lemma 6.1. By Lemma 4.1, for each j € S, there exist J; C I, ¢; € R"
and R > 0 such that |J;| > C(E,n), R < C(E,n) and

/‘ min(|u|?, G(u(t)))dz > C(E,n), (6.7)
z—c;|<R

for any t € J;. Let t; = inf J;. Now, in order to use the finite propagation property,
we consider the following proposition for j, k € S:
les — ekl < Mt — 4| + 2R, (6.8)
lej — ek| > Mt; — t| + 2R, (6.9)
where M = 1 in the NLKG case, while in the NLS case M = M(E,7) should be
taken so large that Cy/2 > C‘,/.'\I‘ where (', =0y (I'.‘) is 1]1(' constant in (G '7) and

inductively as the minimal k € S sdll%f\lll;., (6. J for Ji= Pisess Pa- Denote P =
{p1,p2,...}. For j € P, denote A; := {k € S| k> j and (6.8) holds }. By the
definition of P, we have S = |J

(Lemmas 5.1 and 5.2) and (6.7), we have

pzl"'lf' Using the generalized Morawetz estimates

#PC(E,n)
A : 2
> Z // : . min(|u _(,(u))‘ At
26 )) oeerticsysan OOL B — ;] + D log(t = 5] +2)

C(E,n)
= 121“24 /,,A T Dlogit 72" (6.10)

C(E,n)
> P . . S AL S
z (te + 1) log(ty +2)°
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So, the desired result follows if we can estimate as #P < C(E,7). Let k € P and
P. = {j € P|j <k}. In the NLKG case, by the finite propagation property and

the definition of P, we have

E 2/ en(u; ty)dx
Ujep Bles RtIti—tl)

. (6.11)
= / en(u;t;)dz > #P.C(E, ),
B(c;,R)

JEP:
where B(c,r) = {z €R" | |z —¢| < }. So #P is bounded. In the NLS case, using
Lemma 6.2 step by step, we obtain
B>

/ lu(ty)|*dz
JUjep Blej R+M|t;—ti])

s / |u(t;)[*dz — #PCa/M > #P,C1 /2,
J B(e;,R) g

JEP:

(6.12)

so that #P is bounded. (]

7. SPACE-TIME LOCALIZED ENERGY

In this section, we show that if the ST-norm is sufficiently large, there exists a
very long interval with small ST-norm, in which somewhere a certain amount of
energy is localized. The length of the interval is much larger than the spatial extent
of the localized energy, and the quantity of the ST-norm is smaller than that of the

localized energy.

Lemma 7.1. Let u be a global solution of (2.3) or (1.2) with Ex(u) = E <o0. Let
v.e >0 and M < o0o. There ezists v; = v(E) > 0, N = N(E,v, M,¢) < oo with
the following properties. If v < vy and ||ul|(x;) > N on some interval I, then there
erist (S,T) C I, c € R* and R € (1,00) such that |T — S| > MR and that fort = S

ort =T we have

eeliEesgsiryy + Nelliesgsiry < v* < / en(u;t)dr,
Jlz—c|<R

(7.1)
=

<

Proof. We divide I into subintervals I; = (Tj_,T;) such that n/2 < |ullexsry) <
1 = 19(E)/2 for any j. By Lemma 4.1, for any j, there exist t; € I;, R’ < C(E)
and ¢; € R"such that

/ |u(t;)|? dz > C1(E).
Jig—cj|<r!
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We may assume R’ > 1. Now we set 14 (E) := \/C, C1(E)/2. By the finite propagation
property for NLKG and by Lemma 6.2 for NLS, there exists 1 < A < C(E) such

that for any ¢ we have

/ ex(ust)dr > V2. (7.3)
Jz—c;|<R'+Ajt—t;

Now for each j, we divide I; into subintervals J;i with k € P; C Z, such that Ji
(5180 S =ty [feall sy + [laa| s Sv and #P; < C(E,v). By Lemma 5.3,
we have some L < C(E
for k > 0 and T} € (S{ — L(Si — t;), S;) for k < 0 satisfying

S A HEE o ; o T € (S7 ]
such that we have some T} € (S;_,.Si_, + E(Siey —t3))

T
u(T}) R (7.4)
—c,
Now let M' = M'(E, M, ¢) be a large constant satisfying
M'A—L>MXL+1), -
MR —L> M(R' + AL +1)). (7.9)
Suppose that for any k € P; we have
|Si_, —Si| < M'(R'+AISi_; —t;]), ifk>0, (76)
.0
7 —Si| < MR +MSL—t;), ifk<0. ;
Then we have for any k € P,
|Si —t;| + R < @M'N)MR'. (7.7)
Then, we have
|I;] < @M'XN)CEMR' < C(E, v, M, e). (7.8)

By Lemma 6.1, there exists N = N(E, v, M,¢) such that if |[ul[(x;) > N then for
some j (7.8) does not hold. Thus, for this j, there exists some k € P; such that

(7.6) does not hold. Assume that k > 0. Then, by (7.5), we have

Si—T] > 8] - St_y — L{Siy —t3)
> MR+ N|Si_, — 1) — I{SL_, — t3)

(7.9)
> M(R' + ML+ 1)(S{_, — t;))
> M(R' + AT} — ;).
Thus we obtain the desired result with ¢ = S := T}, T := S}, ¢ := ¢; and R :=

R' + AT} - t;|. In the case k <0, the argument is similar. a
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8. SEPARATION OF THE LOCALIZED ENERGY

In this section, we show that we can separate the localized energy obtained in
the previous section, if its spatial extent is sufficiently small relative to the length
of the interval with the small ST-norm where the localization occurs. Remark that
the absolute size of the spatial extent of the localized energy might be in fact very

large. For brevity, we consider only the case t = S in (7.1).

Lemma 8.1. Let u be a global solution of (2.3) or (1.2) with Ex(u) = E < oco.
Assume that for somev >0,e>0,c€R*, R>1, and T > S > 0, we have

H”H.(z\'us;r]) At H”Hfl\ (S.T)) < v < / en(u; S)dz, (8.1)
J|z—e|<R
and
u(S)
— S (8.2)
‘ {x—c)||L2

We have some positive v» = vo(E) and g = eo(E,v) such that if v < vy and
2 S 2

e < eo(E,v), then there ts a solution v of the free equation satisfying

Ex(u—uv;T)< E — T (8.3)
Ep(v;T) < 202, (8.4)

3 Rany .

[l (x:(r.00)) < C(E,v) (m> s (8.5)

where « is a positive constant dependent only on n and p.

Proof. By the finiteness of the energy, there exists some ¢’ € R" with d := |c
C(E,v) such that
/ ex(u; S)dr < v*/2. (8.6)
Jz-¢'|<2

Let v be the solution of the free equation satisfying
v(S) = xru(S),
9(S) = xru(S), in the NLKG case,

(8.7)

where xp = h(2 — |z — ¢|/T) is a cut-off function (h is given in (2.4)), and I' €

(1, R + d) should be taken such that

/ xpen (u; S)dz = (8.8)
Such a choice of T is possible, since for I' = 1 we have
/ Xaen(u; s)da < / en(u; S)dz < v?/2 (8.9)
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by (8.6), and for I' = R + d we have

/ \;‘.‘Ad’ n(u; s)dr > / ex(u; S)dx > v?, (8.10)
J Jiz—c|<R+d
by (8.1). Then we have
[IV2(S)12 < [IxeVu(S)||2: + C(E)(a + a®), (8.11)
where
y - (S
as= Ju(S)Vxrlia < € | 2
(s ' = (8.12)
< C(d) Hl—)— ’ < C(B,v)e.
{x—c) |2
So, we have
Er(v;S) < Ex(v;S) < / xien(u; S)dx + C(E, v)e (8.13)
<12+ C(E,v)e.
So, taking o(F, v) sufficiently small, we have Ey(v;S) < 2v%. Let w:=u—v. Ina
similar way as above, we have
(IVw(S)|22 < [I(1 = xr)Vu(S)|22 + C(E)(a + a?), (8.14)
where a is the same as in (8.12). So, taking £y = £(E, v) small again if necessary,
we have
Ex(w;S) < /(l — xr)’en(u; S)dz + C(E,v)e
< /(l — x}en(u; S)dz + C(E,v)eg (8.15)

< E— 12+ C(E,v)e
< B—12/2,

In the NLKG case, by the decay property of the linear Klein-Gordon (see, e.g., [9])

and the support property of v, we have,

v@llzs, < Clt— 812 (|00l g + 155 12

< Clt — S|7™2Ey (v) /202 < (:(
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for any t € R. We obtain the same estimate for NLS in a similar way. By the
interpolation inequalities and the Strichartz estimate, we obtain

3

[vll(x:(r00)) < Cllv| vlf;

1-8
L4(T,00;B.%

(T ,00iB1Y
ks 18-
< Ov |l gy oon 19l oo rion: B2,

r nB(1-7)/2 (8.17)
< T=

> np(1-v)/2
< C(E,v) (;i l‘) :

where so = axp/q > 0,7 = p/q, s = oxy—3(1—) and 3 € (0, 1) should be chosen
such that (1 — 3)so + Bs; > 0. In the NLKG case, we obtain from the Strichartz
estimate in the same way as in the proof of Lemma 3.1,

llw™ bl x5m) < C(E). (8.18)
Then, by the energy identity, (3.2) and the duality between w(K) and (K'), we have

o
En(w;T) = Ex(w; S) + / 2R (0w + w + f(w),w)dt

JS
T
= Ex(w; S) + / 2R(f(w) — f(u),w)dt
JS
< Bx(ws 8) + € (Jullylwllosn + el lullcn) — (8:19)
X [lw™ bl sy
< Enx(w; S) + C(EW,
where I = (S,T) and (-,-) denotes the inner-product in L*(R"). Since p > 2, if we
set 1, = 1,(E) sufficiently small, then we have C(E)v” < v*/4 in the last member
of (8.19) and we obtain the desired result. In the NLS case, similarly we have

En(w;T) = En(w; S) + / 2R (i — Aw + f(w), w + iw)dt

Js

(f(w) = f(u), —iAw + if(u) + iw)dt

A A (8:20)
< En(w; ) +C (lwllfzylwlucn + lullfxh lullon)

X (Il gy + 1 (@)l xre)) »

where I = (S, T). By Holder’s inequality, the complex interpolation and the Sobolev

embedding, we have
1 @)l zore) < CllllLanrmn)

< Ojullre;nylull;

< C(B). ()

1
L(I;B%, 5) =
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So we obtain Ex(w; T) < Ey(w; S)+C(E)v? and the desired result as in the NLKG

case.

9. PERTURBATION ARGUM

In this section, we show that if we can separate the wave component corresponding

to the localized energy as in the previous section, we can estimate the ST-norm of

the solution by the ST-norm of the remaining component, provided the separated
wave component has decayed sufficiently in the sense of ST-norms. The idea and

the proof of the lemma below are essentially due to [3].

Lemma 9.1. Let u be a global solution of (2.3) or (1.2) with Ex(u) = E < oo.
Let v be a global solution of the free equation with Ey(v) < 2E, and let w be the
global solution of the same equation as u and with the same initial data as u — v at

t = 0. For any L < oo, there exists k = k(E, L) > 0 such that if [|wl|(x;0.00)) < L

and ||v]|(xi0,00)) < K, we have ||ull(x;0,.00)) < C(E, L)

Proof. By (3.5), we have

wiooy S CRHPEYP = ¢, (9.1)

v

Let 17 € (0,70(E)). There exist 0 =Ty < Ty < --- < Ty < Ty41 = such that
llwllxyzy a0y <n and  NYip < L. (9-2)

Then, by Lemma 3.1 and (3.5), we have

llwll ooy a0 < C(B)n' %7 =: 1. (9.3)
Let I' = u — v — w. Then we have the integral equation
t
Pt =14(t) +/ Ut —s)(f(w) — f(T +v+w))(s)ds, (9.4)
T;

where I'; is the solution of the free equation with the same initial dataas I' at t =
By (3.7) and (3.3), we have for I = (T},T) with T > T,
[Ty < I3llvsny + Cllf (w) = £(C + v +w)llwp

< |ITjlleviny + CUIT + llvsny + llwllrsn )P~ v + Tlloyrsny- (9.5)
Moreover, since
rTj+1
]‘_H]([) = Lylt)= / U(t — s)(f(w) — F(T +v+w))(s)ds, (9.6)
Jr;

we have

I vy 1,000 < T 5llcv 23,000

+ C(IT + vl|(v; y + ey )~ o + Cllvsen z- - (97)

Tj+1)
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Denote p; == |||l (vi(7;.00)) and ¢;(T) := ||T||(vyz;.1))- Then g;(T) is continuous with

respect to T and we have

po=0, ¢i(T;)=0, (9.8)
¢;(T) < p;j + Ci(g;(T) + &' + 1) (g;(T) + &), (9.9)
pi1 < pj+ Ci(g;(Tjn) + & + ') (g5(Tha) + &), (9.10)

where C; is the constant in (9.5) and (9.7). Now we fix 7 so small that C,(37)P~" <
1/4, and we set & so small that we have 2¥*1x" < . If &' < ¢;(T) < 7, we have
from (9.9),
O (2 \P (90 (T < "[/(’1-) «
¢(T) < pj+Ci(37)" " (2¢;(T)) <pj + =5 (9.11)
so that g;(T) < 2p;. Now suppose 2p; < 7). Then, by the continuity of q;(T), we
have ¢;(T) < max(s',2p;) < 7' for any T < Tj;,. Then, from (9.10), we have
piv1 < pj + C1(37)P(max(x', 2p;) + #') < max(x', 2p;). (9.12)
Thus we obtain p; < 27’ < 7/'/2 and ¢;(Tj1) < 7' for any j < N. Then, by the
Sobolev embedding, we have
lullxio00p < Cllullivio.00p < CNY' < C(E, L). (9.13)
m}

10. GLOBAL SPACE-TIME INTEGRABILITY

v solution

To obtain the scattering result, it suffices to show that any finite energ
has a finite global space-time norm. So, the following proposition is essentially the

main result of Part II. The strategy for the proposition is inspired by [3].

Proposition 10.1. Let u be a global solution of (2.3) or (1.2) with finite energy
En(u) = E < 0o. Then we have

[lul|(x;m) < C(E). (10.1)

Proof. Here we use the induction argument on the size of Ey(u) as in [3] and Part
I. For small energy data, the desired estimate can be easily obtained directly by the
Strichartz estimate as in Lemma 3.1. So, the proof will be finished if for any £ > 0
we can derive (10.1) for any solution u with Ey(u) < E from the hypothesis that
we have (10.1) for any solution u with Ey(u) < E — 4, where § = 0(E) > 0 satisfies
that

inf 6(E) >0, (10.2)

I
0<E<LE'
for any E' > 0. For (10.2), it suffices that 4 is a positive continuous function of

E. Now, assume the induction hypothesis with 6 = v2/4, where v = v(E) =
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min[zq(l:‘).l/-_leJ.y/f/'_’) is given by Lemmas 7.1 and 8.1. Suppose that u is a
solution satisfying Ex(u) < E and ||u||x.z) > 3B. We will show that there exists
some bound By < C(E) for B (B, depends on the induction hypothesis). There
exist Tp < T such that ||u||(x;—com0)) > Bs llullx:remy > B and ||ull(xy7y,000) > B-

By the induction hypothesis, we have ||ul|x:zy < Ci(E) for any solution u with
Enx(u) < E — 6. Let k := k(E,Ci(E)) be given by Lemma 9.1. Then, there
exists M = M(E) such that the right hand side of (8.5) becomes smaller than &
if T —S| > MR. Lete¢ :
use Lemma 7.1 on the interval (7p, 7}) if we assume B > N(E,v(E), M(E),c(E)).
Assume t = S in (7.1). Then, by Lemma 8.1, we have a solution v of the free

eo(E,v(E)) be given by Lemma 8.1. Now we can

equation satisfying
EL(v) <2< E, Eny(u—-vT)<E-§, (10.3)
[[o]l(xser,000) < K- (10.4)
Now we can use the induction hypothesis on the solution w of NLKG (or NLS)
with the same initial data as u — v at t = 7. Then, by Lemma 9.1, we obtain
[lull(x;(ri00)) < Ca2(E). Since T' < Ti, we obtain B < Cy(E). In the case t = T in
(7.1), we obtain similarly that ||u|(x;—cc,z)) < C2(E), provided B > N. Thus, we
|ul|(x;r) < Bo(E) := 3max(N, C,) for any solution u of (2.3) with Ey(u) < E,

under the induction hypothesis. Thus we obtain the desired result.

have

11. SCATTERING
After we obtained the global space-time integrability (Proposition 10.1), it is easy
to derive the scattering result (see, e.g., [4, 8]). So, we merely state the results.

Theorem 11.1. Let m > 0, n <2 and p > 1 +4/n. Then, there exist homeomor-
phisms Wy on H' @ L? with the following property. For any (p,v) € H' &

Ov +m?v =0,
(11.1)
{ (v(0),9(0)) = (¢, ¥).

and let us be the global solution to

v be the solution to

Dus + mPug + |us| " us =0,
: (11.2)
(ux(0), 22(0)) = Wi(p,9).
Then we have
lim [|(v(t),9(t)) — (us(t), us ()| marz = 0. (11.3)
o0

t
WI'W_ is also a homeomorphism on H' &
b

Moreo s property uniquely determines Ws. Thus the scattering operator S =

it
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Theorem 11.2. Let n < 2 and p > 1+ 4/n. Then, there exist homeomorphisms

W on H' with the following property. For any ¢ € H', let v be the solution to
+ g p 3 1

w—Av=0,
(11.4)
v(0) = ¢,
and let us be the global solution to
iy — Aug + |usfP'us =0,
. (11.5)
u+(0) = Wip.
Then we have
,]im lv(t) — us(t)|[m = 0. (11.6)

Moreover, this property uniquely determines Wy. Thus the scattering operator S =

Wi 'W_ is also a homeomorphism on I,
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