


 Scattering Theory 

  in the Energy Space 

for Nonlinear Klein-Gordon and 

 Schrodinger Equations

非線型クラインゴル ドンおよびシュレディンガー方程式

に対するエネルギー空間での散乱理論

中西賢次



Scattering Theory in the Energy Space

for Nonlinear Klein-Gordon and

Schrodinger Equations

Kenji Nakanishi

Graduate School of 'dathematical Sciences, University of Tokyo,

3-8-1 Komaba, "Ieguro, Tokyo 153-891-1, .Japan

Preface.

In this paper we study the scattering theory for nonlinear Klein-Gordon eqnations

(NLKG):

and nonlinear Schrodinger equations (NLS):

iu - 6u + f(u) = 0,

where u = u(t, x) : IRI +n ---7 iC, U = au/at, 0 =ol- 6, n E Nand f : iC ---7 iC. Our

main objective is to prove that the wave operators and the scattering operators for

NLKG and for NLS arc well-defined and bijective in the whole energy spitce E (for

lLKG, E = HI EB £2 and for NLS, E = Jil). This means asymptotic completeness

of the wave operators. The typical form of the nonlinearity is f(u) = luIP-lu. Then

such results were known in the case where n ~ 3, m > 0 and 1 + 4/n < p <

1 + 4/(n - 2). and for NLKG in the case where n ~ 3, m = 0 and p = 1 + 4/{n - 2)

(in this case, E = iII EB £2). We extend such results in the following two cases.

In Part I, we will prove the asymptotic completeness for :'>JLKG in the case where

n ~ 3. m ~ 0 and p = 1 + 4/(n - 2), the Soboley critical case. Although the mass

term m2u is not so important if we deal only with the local behavior of the solutions,

it brings considerable difference to the asymptotic behavior of the solutions. In fact,

the a\'ailable proofs in the massless case (m = 0) dppends in an essential way on



the fact that in the massless case the distribution of thc' energy insidr of light

cones asymptotically gathers around the surface of thr cones, which dol'S not occur

in the massiYe case. Thus our extent ion from In = 0 to 111 ~ 0 is far from tri\·ial.

I\[oreover, we can do better eyen for the local estimates. The pssential difficnlty in the

Sobolev critical case is that because of the lack of local compactnpss of the Sobolpv

embedding, the standard energy estimates can not disproyc the possibility of infinite

concentration of the nonlinear part of the energy at the tip of light conI's. So it is

crucial to prove that such energy concentration can not occur to avoid singularities.

In the preceding works, concentration phenomena were denied by contradictions,

but no explicit estimate was known on the energy concentration. [n this paper

we will derive an estimate which explicitly bounds the energy concentration effect

(Lemma 4.3 in Part I).

In Part II, we will prove the asymptotic completeness for NLl~G and i\LS in the

case n < 3 and p > 1 + 4/n. The asymptotic completeness for n < 3 in thr whok

energy space has been one of the major open problems in this ficld, though t hrre arr

several results on the lower dimesional scattering for l\LS in a certain function space

smaller than the energy space. The main difficulty for n < 3 is that we can not prove

the Ylorawetz estimate, which has been essentially the only it priori estimatp to start

the proof of the asymptotic completeness in the energy space. In this paper we will

derive some variants of the Morawetz estimate which hold in any spatial dimension

(Lemmas 5.1 and 5.2). These estimates are wecker than the Morawetz estimate with

respect to the weight function, but they contain some important informations on

the asymptotic behavior of the energy which can not be obscrved by the ~Iorawrtz

estimate.

ACK OWLEDGEME TS: I would like to express my deep gratitude to Professors

Yoshio Tsutsumi and Kenji Yajima for thpir yaluable advices, suggestions and en­

couragement for this thesis.



Part I.

Scattering Theory for
Nonlinear Klein-Gordon Equation

with Sobolev Critical Power

1. I TRODUCTJO

In Part I, we study on the scattering theory in the energy space for nonlinear

Klein-Gordon equations (NLKG) of the following form:

Du + m2u + J(u) = 0, (1.1)

where u = u(t, x), (t. x) E JRI+n with n ~ 3, m ~ 0 and 0 = DZ- 6. For simplicity

we suppose that u is real "alued, though we can deal with compl('x or "ector valued

functions as well. Then f(-) is also a real valued function, and w(' are int('rested

particularly in the following nonlinearity:

with

p=2':=~,
n-2

(1.2)

(1.3)

which is the Sobolev critical exponent. In the case where m > 0, P < 2' and not

so small p, the scattering theory (namely, the existence of bijective wave operators)

is well-known [5, 7]. In the case where p = 2' and m = 0 C'\LW), the scatt('ring

theory has been obtained in a different way [2, 1, 12J. But neither method can be

applied to the remaining case where p = 2' and m > 0, so we present in this paper

another approach which can be applied to the case where p = 2' and m ~ O. We

should remark that in the radial case, one ('asily obtains the scattering result from

the a priori estimate derived in [6]. Unique global existence of solutions of (1.2)

with p = 2' and m ~ 0 is well-known (see, e.g., [10, 11, 14]).

Our approach is inspired by that of Bourgain's recent work [4] on the nonlin­

ear Schrodinger equation with the Sobolev critical exponent (NLS). We obtain the

scattering if \I'e have global a priori estimates of certain space-time Lebesgue-Besov

norms (which, for brevity, we call the ST-norms hereafter) by the ('nergy size. As­

suming that ST-norm is large ('nough, we have a poil)t in space-time where the

energy density is "ery highly concentrated. Since til(' wave component correspond­

ing to the concentrated ('nergy is also concentrated and decays wry soon, we can
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isolate the concentrated wa\'e and reduce the total energy size. illeaml"!lile. for

sufficiently small energy data. we obtain the ST-nOl'm estimate directly from the

Strichartz estimate. Thus, by indnction on the energy size, we obtain the desired

estimate for ST-norm by the energy. This is just the strategy which Bourgain took

in [4J.

:\low we should remark the essential differences between this paper and H). First,

we do not assume the radial symmetry, so we can not predict where the concentration

may occur in the space. Secondly, since l\LKG docs not haw the homogeneous

character such as in NLS and i\L\\', we haye to deal with finite time intervals and

infinite time intervals in different ways. In the cases of the critical :\LW and 1\LS,

the homogeneous character has always played an essential role (sec [2, I, 12, 'I]).

:\lext we compare the ma~sive case with the massless case. [6) is written for

the massless case. but the arguments are also valid in the massiYC case (if the

homogeneous spaces are replaced with the inhomogeneous connterparts), so that

there is no difficulty in the radial case. But, in the non ymmetric C'1.~e (alld Ihe

massless case) [2, 1, 12], the dilation identity for i\LW has played an essential role,

which does not yield any decay estimate for large time in the massive case.

'vVe overcome these difficulties by the finite propagation property, i\lorawel z-type

estimates which are rather stronger than that for NLS, and the decay properly of

the linear Klein-Gordon (LKG) equation for lower frequency which is faster than

that for the linear wave equation (L\V). In fact, for local ST-norm estimates, we

do not need the induction process. In the massless case m = 0, the local estimate

immediately becomes global by the homogeneity and so we obtain another proof of

the scattering, with global a priori estimate for ST-norm, which was obtained in the

special case where n = 3, m = 0 and f(u) = u5 in [1], using the scattering operators.

But in the massive case m > 0, for global ST-nOt'm estimate, we need the indnction

together with the decay property of LKG in low frequency.

The rest of Part I is organized as follows. In Section 2, we introduce sevNal

notations used in Part I, and mention some basic estimates. In Section 3, we show

that ST-norm concentration in time causes energy concentration in space-time. In

Section 4, we deriye a local ST-norm estimate. In Section 5. we deri\"(' a global

ST-norm estimate. In Section 6, we present the main resnlts of Part I: global a

priori estimates, scattering and continuous dependence on the illitial data both in

the strong topology and in the weak topology. In Section 7, we prove several lemmas

used in the previous sections.
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2. PRELIMI ARIES

As usual, we denote by C auxiliary positive constants. and sometimes denote

C(a. b, . .. } to indicate that the constant depends only on a, b, . .. \\'e denote by

B~,T the usual inhomogeneous Besov spaces (see, e.g.. [3]). \\'e will use mainly the

following particular space-time norm.

lIullc(/) := lIuIlL'·-'(J;L'('·-')(:.<nn,

lIullU;I) := lIuIlLPJ(J;B::.•), for j = 0, ... ,7,

where 1'5 = 00 and 1'j = 2 for j of 5. Sometimes we omit the interval r and write,

e.g., Ilull(o). Now we set the values of (Pj, q" aj). Denote X j := (lip" llq), a)}. Let

2(n2 + 2} 2n
Po:= (n+1)(n-2)' P6:=~'

X o := (~, -21,,~). X(:= (~, ~ - ~,o) ,
Po Po Po qo n

X 2 := X o+ (2' - 2}X(,

X 3 := (a3 , -2
1

, (2' - 2}ao), X,:= (~, ~ - ~, 0) ,, ~ ~ n

X 5 := X 3 + (2' - 2}X, = X, + (2' - 2}Xo,

X6:= (~,~,~), X7:= (1- ~,1- ~,-a2)'
P6 2 P6 P2 q2

There are two important numbers associated with Xi'

Ilj:= -k- n (~-D+aj,

v, := k+ n; 1 (~ - D.
Then we have

/10 = /11 = /13 = I)" = 116 = 1, /17 = 0, 112 = /15 = -1, (2.2)

Vo < V6 ::::: 0, V2 2:: 1, v5 > V3 + 1, V7 ::::: O.

For simplicity, we set m = 1. Then the equations are

Ou + u + f(u} = 0, (i'\LKG)

Ou+u=O. (LKG)

Let u be the solution of

{

ou+u=g,

u(O} = <p, u(O} = 1/;,

(2.3)

(2.4)
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when' U = au/at. Then. by the Strichartz e timate (see. e.g., [5. 7]). we have

lIu llu;(o,T)) + IlulI(7;(o,T)) + lIullI..~(o,T;III) + lIullI..~(o.n2)

::; CIIcpllJlI + GlIlJllu + CIIgll(2;(o.T)), (2.5)

for j = 0,1.6, and in the case n 2: 6. for j = 3,4 also. By [7, Lemma 3.1J, the

Sobolev embedding and Holder's inequality. we have

(2.6)

under the assumption (2.10). We fix a radially symmetric cut-off fuuction \ E

Gij"'(lRn ) satisfying X(x) = 1 for Ixl ::; 1 and A(X) = 0 for Ixl 2: 2. Define \J(x) =

X(2- j x). Denote by F'P = ij5 the Fourier transform of'P and defiue the Littlewood­

Paley dyadic decomposition:

'lj;j =F-'Xj,

'Pj ='Ij;j -'Ij;j-l'

(2.7)

Denote for any function 'P,

(2.8)

(2.9)

We define the energy and related quantites.

F(u) := 21 f(v)dv,

C(u) := uf(u) - F(u) = u3au (~~~)),

eo(u; t) := lul2+ l\7ul2+ m21ul2 Eo(u; t) := 1 eo(u)d:r,
R"

e(u; t) := eo(u) + F(u), E(u; t) :=1 e(u)d:r,
iii"

where \7u = (au/ax\ .... ,au/axn ). Now we givp the hypotheses on the nonlinearity.

(2.11)ifn 2: 6,

flO) = 0 and If(u) - f(v)1 ::; Glu - vl(lul + IvI)2'-2, (2.10)

Ij'(u) - j'(v)1 ::; Glu - vI 2
'-

2

C 2: O. (2.12)

These assumptions are the same as in [12] for the scattering of the (Titical NLW.

The single critical power (1.2) with p = 2' satisfies thpse assumptions. POI' other

examples of f, see [12]. Then, as is indieatPd in (2.9), we have in particular, F 2: O.

We define

[«(t) := w- 1 sin wt. (2.13)



Part I: Scattering for :'\onlinear Klein-Gordon with Critical Power

Then the integral equation associated to :\LKG is

u(t) = k(t)u(O) + I\(t)u(O) -fa' 1,'(1 - s)f(u(s))ds

3. ENERGY CONCE TRATION VIA SPACE-TIME ORM

In this section we show that ST-norm concentration in time causl's energy con­

centration in space-time. This result corresponds to that in [~. Section 2J. Hl're \\'e

take a Besov-space approach instead of the Littll'wood-Paley tlworem (which was

used in [4]). The arguments in this sl'ction work also in thl' ma sIess case, but for

simplicity we assume that m = 1. The objective of this section is til(' following

lemma.

Lemma 3.1. Assume (2.10). Let I be an inter'val and let u satisfy NLJ(C (2.3) on

I with Eo(u(t)) ::; E < 00 for' any t E J and

0< '1]/2 ::; Ilulleo;!) ::; 27] < 00. (3.1)

(3.2)

There exists a positive continuous function 7]0: [0, (0) ---+ (0, (0), sUfh that if 7] <
'1]0 (E), we have a subinterval J C I, cE IRn and R > 0 satisfying R ::; CIIJI and

r l\7u(tW + lu(tWdx > '1]20,

J1x-cl<R

r lu(tW"dx> '1]2'0,

J1x-cl<R

for any t E J. Mar-eaveI', if ll1fik *ulleo;J)::; '1]/4 for- some k 2: 2. we have R::; C22-
k

.

Her-e C
J

= Cj(E, '1]) > 0 and n = n(n) > 0 ar'e ce7·tain constants.

P1'00J, r]o may be given by

(3.3)

with some large -y(n), which will be determined later. Ll't J = (T, T ' ), and let v be

the solution of LKG (2.4) with the same initial data as u at t = T. By the Strichartz

estimate, we have

lIull(6) ::; IIvll(6) + CIIulli~)-l ::; C(E) + C'I]2'-1 ::; C(E).

By the interpolation inequality and Holder'S inequality, we have

7]/2 ::; Ilulleo) ::; Cllull(6iOllulI~f"IJ~ ..~

::; C(E)llull~~~:,lllull~~I3':';;:,i2 ::; C(E)llull~,~IJ':';;:L"

where 0 < O,A < 1 and

1 1-0 ( n)_ = --, 0 = 1 - A + A 1 - - .
~ ~ 2

(3.4)
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Thus, denoting j3 = l/((J)..) < 00, we ha\'e some (to, c) E I x JR" such that eithPr for
some N E N

or

11/10 * u(to, c)1 ~ 7/~ /C(E).

(3.5)

(36)

In the latter case, let N := 1. If IIvk * ull(o) < 7//4, we ha\'e similarly

71/4 :S Ilu - ifJk * ull(o) :S C(E)llu -1/1k * ull~~B~;;.("

so that we may assume N ~ k in (3.5). By the Sobolev embedding, we ha\"e for
j ~ 1, (remember (2.2))

lI1/Ji * u(t)IIB:~., :S CII1/1J * u(t)IIf/I+ljpo :S C2i/po ll1/1J * u(t)1I1/1,

so that lI1/Ji*ull(o) :S C(E)(2iIII)I/PO So we have 119J*ull(0) :S .,,/4 if2i lJI :S C(E,7/).
Thus we may assume 2NIII ~ C(E, .,,). Next we seck J where (3.5) or (3.6) remains

valid. We treat only the case (3.5). The case (3.6) is similar. By the integral
equation we have

II'PN * u(t) - 'PN * u(to)IIHI :S II(k(t - to) - I)'PN * u(to)111/1

+ 1I]«(t - to)rpN * u(to)111/1 + IlL ]«(t - to)'PN * !(U(S))d.sll
lll

.

It is easy to see that the first and the second terms arc bounded by C2Nlt - tol £1/2

The third term is estimated by the Strichartz estimate as

... :S CII'PN * !(u)II(2:(to,t)) :S Cit - toI 1
/
p
'II'PN * !(u)IIL~(B:i.,)

By the Sobolev embedding, we have

II'PN * !(u)IIB:i., :S CII'PN * !(u)II B#;.;p,

:S C2
N

/r"II!(u)II B 'j' (3.7)
~.,

:S C2N/p'lluIlB,j, lIull~_~· 2 :S C(E)2N/p"
-.?:!r.2

where we used [7, Lemma 3.1] in the third step. Summing up, we obtain

II'PN * u(t) - 'PN * u(to)1I1/1 :S C(E){2Nlt - tol + (2Nlt - tol)l/P2).

By the embedding HI y B);;,'j/, this means that (3.5) remains valid for It - tol :S
2-N C(E, .,,). Let J be the intersection of this interval and I, then we have 1.11 ~

2-NC(E, .,,). f\ow we ha\'e only to find R :S C(E.7/)2-N satisfying (3.2). There

exists S :3 'P(1), ... ,'P(") satisfying

'Po = L Dkrp(k).
k~l
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(See, e.g.. [3]). Define IOjkl(x) = 2Jn<p(k) (2J.r). Then we have for general 10,

2
N

lION * IO(C) I = It <p~l * Ok<P(C)I
:'0 L JIIO(k) (Y)'VIO(c - 2- N y)1 dy

k

:'0 L 21\"n/2 (111O(klIlL,II'VcpIlL'(lx_cl<2-N //0) + 1I<p(k' ll u (lxl>llo)II'VcpIiL') .
k

Since lO(k) E S, if flo is sufficiently large, 1I<p(k)III>'(lxl>//Ol becon1('s small. Thus, in
the case (3.5), we obtain

rlIC(E) :'0 II'Vu(to)IIL'(lx_cl<2-N 110)

for any to E J, if flo:::: C(E,TI). Similarly, we have

2
N

(I-n/2) lION * IO(C) I :'0 IIlOoIlL,lllOlIu'(lx-cl<2-N//Ol + lI<PoIIL'(lxl>llo)I/<pIIL'"

with q = 2nl(n + 2), so that

Til! IC(E) :'0 lIu(to)IIL"(lx_cl<2-N Ro)

for any to E J, if flo :::: C(E, TI). In the case (3.6), we have similarly,

Til! IC(E) :'0 lIu(to)IIL'(lx-cl<Ro)'

Til! IC(E) :'0 lIu(to)IIL"(lx-cl<llo)'

for any t E J and flo :::: C(E, TI)· Taking u(n) and '}'(n) in (3.3) sufficicnt ly largc,
we have

thus we obtain the desired result.

(3.8)

o

4. LOCAL SPACE-TIME ESTIMATE

In this section we derive an estimate of ST-norm by the energy on finite time

interval. The key ingredient is a stronger version of the local i\,lorawetz estimate

(Lemma 4.3), which forbids time-like accumulation of concentrated energy. The

arguments in this section work also in the massless case, but for simplicity we assnme

that m = l.

The objective of this section is the following.

Proposition 4.1. Assume (2.10) and G :::: O. Let u be a solution of NLKG (2.3)

salisfying E(u) :'0 E < 00 and Ilull(o;(o,l) < 00. Then we have a bound D = D(E) <
00 for the space-time norm:

lIull(o;(o,l)) < B(E). (1.1)
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Proof. By [12], we have a unique global solution of :\LKG with finite energy and

locally finite ST-norm, whose energy is cons{'rv{'d. L{'t TJ > 0 h{' small and aSSUJll{'

111111(0;(0,1)) :::: N17 with N E N. We will show that if 7) = 71(E) is suffici('J]tly small,

N is bounded in terms of E and 7). We have 0 = To < T I < ... < TN ::; 1 such

that 111I11(0;('F,,'F
J
+,)) = 17· Denote f j = (Tj , TJ+I)' By Lemma 3.1, w{' obtain J] C f],

Cj E lR" and Rj > O. Choose t] E J] for each j. :'\ow we want to {'xtract a sequenc{'

dyadically cOI1\'erging to some point.

Lemma 4.2 (proved in Sect.?). Let v E N, JRv :::> 5 ..V E Nand #5:::: {4[JiI +
l]y(N-I). Then we have N mutually distinct ]Joints .rl,'" .~·.v E 5 satisfying

(-1.2)

for j = 1, ... , N.

By this lemma, if 111 E Nand {4[;n+T + 1]}(n+I)(2M-I) ::; iV, w{' obtain !II

mutually distinct points YI, ... ,YAI E {(t l , CI)' ... , (tN, CN)} satisfying

1
IYj - YAlI::; i6!Yj-1 - YMI· (,1.3)

We change the suffixes of {(f], Jj , t j ,Cj, R])} such that for j = J, ... ,.\1 we have

Yj = (tj, c]). Let 5 := {I, ... , M},

P := {j E 5 IIYj - YAII ::; 8R]},

Q := {j E 5 \ P llej -cAli::; 41t] - tAIl},
R:=5\(PuQ).

Now let us bound #P, #Q and #R. By a variant of Morawetz estimate [12, Propo­

sition 4.4], we have C4 (E) < 00 such that

Jr __111_1
2
_'-dxdt ::; C4 (E). (4.4)

loS's I I(t, x) - YAII

The left hand side is bounded from below as follows.

'" r 17
2
'0 d > 2'0'" _I_J]_I_ > 2'0#p 1

.. :::: ~ lJ 9Rj + IJjl t - 17 ~ 9Rj + IJ]I - 17 9CI (E,17) + l' (4.5)
jEP J ]EP

Thus, we obtain

#P::; C417-2 'O(9CI + 1).

We proceed to the bound of #Q. For j E Q we have It] - tAIl ::; Iy] - YM I ::;
IUltj - tAIl and Rj ::; Itj - tMIIU/8. Thus w{' have for j, k E Q with j < k,

1 IU I
Itk - tAIl::; IYk - YMI ::; i6IY] - YMI ::; 16lt] - tAIl::; "2lt] - tMI·
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Let Bj := {(tj,X) Ilx-c)1 < RJ and K = {(I.x)IO:'S I:'S 1.1·T-cMI < 51t - IMI}·
Then for j E Q. we ha\'e B) c K. :\ow we use a stronger \'ersion of the local

Morawetz estimate on a fat cone.

Lemma 4.3 (proved in Sect.7). Under the assumption of Proposition 4·1, let c > O.

Then we have C5 (E, c) < 00 such that

L sup r lul2
' dx :'S C5 (E. c).

)EN 2-'$ltl$2-,+1 J1xl<cltl

Applying this lemma on the cone K, we haw

Cs(E, 5) :0:: L sup r lul2' d.r
jEN 2-}~lt-t."'11~2-}+1 i1x- c"t!<5I t- ti\d

:0:: #QrFo

Thus, we obtain the bound for #Q. Now we have only to bound #R. For j E R, we

have ICj - cMI :'S IYj - YMI:'S Iej - cMIJ17/4 and

(1J17 1) 1
Rj+ltj-tMI:'S 84+4 IC)-CMI:'S2Icj-CMI.

Denote Hj = {(tM,x)llx - c)l:'S R) + Itj - tMI}. Then, by the energy identity and

positivity of the energy, we ha\'e

Ce(u)dx:O:: r e(u)dx.iSj il3}
For j,k E R with j < k, we have

and
_ I}
Bj C {(tM,.'C) llx - Cjl:'S 21cj - cMI

1 3
c {(tM,X) 121cj - cMI:'S Ix - c~t1:'S 21c) - cMI}·

So Hk n Hj = 0. Thus we have

E = je(u(IM))dX:O:: L Ce(u)dx
jEfl JB}

:0:: L I e(u)dx:o:: #R7)20,
jEll 13,

so that we obtain a bound for #R and the desired result. Restriction on the size of

7) comes only from Lemma 3.1. 0
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5. GLOBAL SPACE-TIME ESTIMATE

12

In this section we derive an estimate of ST-norm on lR by the ('Il('fgy. The' objective'

of this section (and in essence the most important result in Part I) is the following

proposition. Key ingredients arc contained in Lemmas 5.2, 5.3 and 5.4, which are'

proved in Section 7. Lemma 5.3 works only in the massi,'p case', and so We' assunw

that m= 1.

Proposition 5.1. Assume (2.10), (2.11) (ifn:::: 6) and G :::: O. Lelu be a solution

of NLKG (2.3) with finite energy E(u) :::: E < and locally finite 5T-no7"111. Then

we have a bound E = E(E) < such that

lIull(O;R) ::::E(E).

PTOOj. By [12], we have a unique global solution u with finite e'nergy and locally

finite ST-norm. By the local ST-norm estimate (Proposition 4.1), We' have'

Ilull(O;(T,T+I)) :::: C(E)

for any l' E JR. )low we have to make this estimate global. For that purpose', W('

use an induction argument on the size of the energy E. If E(u) is sufficiently small,

we obtain the desired global estimate simply by applying the Strichartz estimate to

the integral equation (see, e.g., [13, 6, 81 or the proof of Lemma 7.3). So what we

have to prove is that:

For any E > 0, ther'e exists 0 = o(E) > 0, continuous with respect to E E [0,00)

(in fact, it suffices that info~a<b o(a) > 0 for" any b > 0), such that if we have the

global estimate

Ilull(O;IR) :::: E(E,o) < 00, (5.1)

for' any solution of NLKG with locally finite 51'-nonn satisfying E(v) :::: E - 0, I,hen

we have also the estimate

lIull(O;IR):::: B(E,o) < (5.2)

for any solution of NLKG with locally finite 51'-no1"111 satisfying E(u) :::: E.

By the small data result mentioned above, we have E:(E) > C > 0 for sufficiently

small E. Now suppose that lIull(o;lR) > 3E'. Then we have To and 1" satisfying

Il u ll(0;(-oo,1o» > E', Ilull(o;(To,T'» > E' and lIull(o;(T',oo» > 8'. It suffice'S to bound IJ'
in terms of E, 0, E for some 0 = E:(E) > O. In the following, we use' two families of

positive small parameters {1]j} and {"j}' Those paramete'rs should be dete'rmined

in the order: E, 1]1,1]2,0, E, "5, ... , "I, such that all the conditions below are fulfilled

(in other words, latter parameters may depend on former one's). TIH'JI, in terms of

these parameters, a bound for E' will be given. First, we have' the' following le'mma,
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which claims that we ha"e either a very long interval with small ST-norm or vpry
high concentration of energy.

Lemma 5.2 (pro"ed in Sect.?). Vnder the assumptions oj Proposition 5.1. Jor any

'" > 0, L < and 0 < TJ ::; 170 (E) (1)0 is gillen in Lemma :1.1), then exists

M = M(E, TJ, "', L) > 0 such that iJ lIull(o;/o) ~ M Jor some intel'val 10 , then we have
a subinterval I C 10 such that IIUIl(o;1) ::; 17 and one oj the Jollowiug two conditions
holds.

(i) III> L,

(ii) III::; Land

r l\7u(tW + lu(tWcLr ~ TJ20,
J1x-c1<KI/I

JOI' some c E JRn and some tEl, where a = a(n) is the same as in Lemma
3.1.

By this lemma, if TJI ::; TJo(E) and B' ~ B I := (U(E, 111, "'" "2 I) + 111)N for some

N = N(E, TJI) E N, then only the following two cases may occur.

(i) There exist To ::; 1', < V, < VI ::; ... ::; TN < UN < I'N ::; 1" satisfying

IUj - Tjl ~ "'2' and lI u ll(o;(T"Uj)) ::; Iii = lIull(o;(u"I,».

(ii) There exists I C (1'0,1"), satisfying lIull(o;1) ::; 1)" III ::; "'2 1 and

r l\7u(tW + lu(tWdx ~ 1)~o =: ")2,
J1x-cl<K,IJI

for some c E JR and some tEl.

Now we show that energy concentration OCCIll'S also in the casc (i). Let v be the

solution of LKG (2.4) with the same initial data as u at t = To. Then, by the

Strichartz estimate IIvll(o;&) ::; G(E), if N = N(E, TJd is sufficiently large, we have

for some j ::; N, IIvll(o;(uj,"J») ::; TJf. 'ow we lise the de 'ay property of LKG in

low frequency to obtain the following lemma, which claims that after a long interval

with small ST-norm, the ST-norm may rally only from the high frequcucy.

Lemma 5.3 (proved in Sect.?). Assume (2,10), Let 0 < l' < V < V and let u be

a solution oj NLKG (2.3) on [1', V] satisJying Eo(u(t)) ::; E < 00 Jor any t E [1', V]
and lIull(o;(T,U)) :'0 TJ = lIull(o;(u,l'))' Let v be the solution oj LKG (2.4) with the same

initial data as u at t = 0, and assume Ilvll(o;(u,V)) :'0172', Thel'e exists 'h = 02(E) > 0,

continuously depending on E E [0, ) with the Jollowing pmpel·ty: Jor TJ :'0 Ih(E)

and any kEN, there exists L = L(E. TJ, k) < 00 such that iJ IT - VI > L then we

have II¢k * ull(o;(u,V» :'0 TJ/4.

If TJI :'0 02(E). we can apply this lemma on (1'),10). for k = "'3 lEN provided

"'2' > L(E. TJ" "'J I
). Then, we apply Lemma 3.1 to (U), Ij), to obtain (' E JRn,
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8 E (Vj , "j) and R < Cz(E, 1)1 )2- I
/

K3 satisfying

I' lV'u(8W + 11J(8Wd:r :::: 1)z (5.3)
J1x-cl</l

Thus, in both cascs, if wc sft

(5.4)

then we obtain some 8 E (To. T'), c E JR" and R < "I satisfying (5.3). Then we cut

off the concentrated energy by the following lemma.

1 e(u; 8)dx :::: I].
Ix-cl<R

For any K > 0, there exists 0, = 01 (E, 1), K) > 0 such that if R < 01, I,hen we havl'

T E (8,8+ 1) and a solution v of LKG (2.4) satisfying

Eo(v)::;E+K,

IIvIlL~(T,oo;L") < K, (5,5)

E(u- v;T)::; E -11/2.

Lemma 5.4 (proved in Sect.7). Assume (2.10) and G :::: o. Let u be a solution of

NLKG (2.3) with locally finite ST-norm and E(u) ::; E < 00. Let (8, c) E JR1
+".

R,1) > O. Suppose

By this lemma, if we set

"4 < o,(E,1)2,K5)'

we obtain some T E (8,8+ 1) and a solution v of LKG, satisfying (5.5) with

K = K5 and I] = 1)z. ~ow we can determine the size of the induction stcp as

dE) = 1)z/2 = 1)f" /4, where we set 1)1 := min(l]o(E), Oz(E)) (1)0 is defined in Lemma

3.1 and Oz is defined in Lemma 5.3). Then we may apply the induction hypothesis

to the solution W of NLKG with the same initial data as 'u - 1) at T, so that

IIWII(o;(T,oo)) ::::: B = B(E) < 00. Then, the desired estimate for u comes from the

following estimate. (2.11) is required only in this lemma.

Lemma 5.5 (proved in Sect.7). Assume (2.10) and (2.11) (ifn:::: 6). Let u,1I' be
two solutions of NLKG (2.3), v be a solution of LKG (2.4) satisfying (u(O), it(O)) =
(v(O), v(O)) + (IV(O), "i'(O)), Eo(u(t)), Eo(lV(t)) ::; E for any t :::: 0, II IV 11<0;(0,00)) ::;

!II, IIvIlL~(o,oo;Ln < I'; and lIull(o;(o,T) < 00 for any T > O. Thl'n, there exists
1';3 = 1';3(E,!II) > 0 and Bz(E, Af) < 00 such that if I'; < 1';3 we have lI u ll(o;(o, )) ::;

Bz(E,!II).

By this lcmma, if K5 < 1';3(E,B(E,I';)), then we have 11 11 11(0;('1',00)) ::; 8 z(E,B).
Since 8 < T' and IT - 81 < 1, by the local estimate, we have 8' < 11 1111(0;(5,00)) ::;

Bz + C(E), so that we obtain the desired global estimate. 0
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6. MAl RESULTS

The scaling u(t, x) t-t u' = An/2- 1U(At, AT) with A > 0 transforms a solution of

NLKG on [0, T] into a solution on [0, TIA] of another NLKG with t.he mass rn' = Am
and the nonlinearity l' = An/2+1f(Al-n/2} u' has the same energy as u, and l'
satisfies (2.10) and (2.11) with the same constants as f. So, in the case m = 0, we

obtain the global estimate from the local estimale by the scaling. We h'l\'e prQ\'ed

the local estimate in the case m = 1, but the argument is also valid in the casl'

rn = 0, if we replace the inhomogeneous spaces by the homogl'nl'ous ones. In fact.

the proof of the local estimate is more suited to :\L\\', rather than ;'\LKG, for we

used an estimate related to the conformal invariance of L\\- (in the proof of Lemma

4.3). That estimate holds globally for NLW, but not globally for i'\LKG. :\Ioreo\'('r,

once we have obtained the global estimate in the case rn = 1, we obtain the global

estimate for any rn > 0 by the scaling, and the estimate for the homogl'neous ST­

norm (e.g., lIull(1;IIl)) is independent of rn. (Remark that Ilull(1;IIl) ~ Cllull(o;lIl) by tl1<'

Sobolev embedding.) Thus we have obtained the global estimate indepl'ndent of m

for the homogeneous ST-norm :

Theorem 6.1. Let n ~ 3 and rn ~ O. Assume (2.10) and G ~ O. In the case wher'e

rn > 0 and n ~ 6, assume (2.11) in addition. Then, fOl' any finite enelgy solution

u of NLKG (1.1) with locally finite BT-norm, we have a global bound f01' BT-nonn:

lIull(1;~) ~ B < 00,

where B depends only on n, E(v) and the constants in (2.10) and (2.11).

It is well-known that one can derive a priori estimates for any (appropriate) ST­

norm from an estimate for a particular ST-nOl'm (see, e.g., [6, Proposition 2.6]).

From this estimate, we obtain the continuous dependence on the initial data.

Define the energy space

X := {(<p, 'I/»III(<p. 'l/J)lIi := 11\7<plli, + m2 11cplli, + 1I'l/Jllt, <). (6.1)

Corollary 6.2. Under the same assumption of Theorem 6.1, the finite energy so­

lution of NLKG (1.1) with locally finite BT-norm depends on the initial data con­

tinuously both in the strong topology of X and in the weak topology of X.

Proof. Suppose that the initial data converges weakly in X. Then the corresponding

solution converges weakly in X at t = 0, and, by the boundl'dness, converges weakly

in (1; lR), if we extract some subsequence. Then the limit function is also a finite

energy solution of NLKG with finite ST-norm, so by the uniqueness, the weak

continuity follows. Then, the strong continuity follows from th!' weak continuity

and the energy conservation. 0
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We have also the scattering result.
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Corollary 6.3. Let n ~ 3, In ~ 0 and G ~ O. Assume (2.10) and (2.11) (if

n ~ 6). Then any finite energy solution u of NLKG (1.1) with lotally finite ST­
norm approaches to some solutions v± of LKG

Dv± + m 2v± = 0,

as t -t ±oo in X. Mor'eover', the correspondences .U± : (u(O), iL(O)) >-t (1'±(0). v±(O))
define homeomorphisms in X and we have

E(u) = Eo(v±).

M± and AFi' are continuous also in the weak topology of X.

Proof. It suffices to consider the case t -t For simplicity, 11'(' consid('r th(' cas('

171 = 1. The arguments in the other cases are similar. Since lIullco;Ul) < 00, we haw

Ilull(o;(?'.",,)) -t 0 as T -t 00. By the Strichartz estimate, we hav('

III (-Sil~WS, cosws) f(u(S))dslix :s; Cllf(u)IIC2;(s,t)) :s; Cllulll~;(i,,,,,)) -t 0,

as t > S -t 00. So there exists the limit in X:

(1), IIt):= 1"" (-Si:WS, cosws) f(u(s))ds.

We may define

v+(t) := i«T)(u(O) + 1» + K(t)(u(O) + lIt).

Then we have

[I(u, u)(t) - (v+, v+)(t)llx = Ill""(1«t - s), i«t - S))f(U(S))dSL.

:s; CIIulll~;(t:"")) -t 0,

as t -t 00. This property uniquely determines v+, so M+ is a map in X. Since

IIv+(t)IIL2' -t 0 as t -t 00, by the Sobolev embedding we haw Ilu(t)II/Y -t 0, so

that

(6.2)

By the same argument as in [8J, we obtain the wave operator \\'+ = ",+1 We

consider the weak continuity. Suppose X 3 (cp+, tP+) converges to (cp+, tP+) weakly

in X. Let (cp",tP") := \·\'+(cp+,v+) and (cp,tP) := W+(cp+,tP+)· By the definition,

(cp", tP") = (u"(O), U"(O)) and (cp, V) = (u(O), U(O)) where u" and u an' th(' solutions

of

u"(t) = J«t)cp+ + J«t)tP+ - LJ«t - s)f(u"(s))ds, (63)

u(t) = i«t)cp+ + K(t)tP+ - LJ((t - s)f(u(s))ds. (6.4)
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By Theorem 6.1, {u"} is bounded in (0; IR), so is {J(u")} in (2; IR). So, after ex­

tracting some subsequence, we may assume that u" com'E'rges to some U
OO weakly

in (0; IR) and j(u") -+ j(UOO
) wE'akly in (2; IR). Then. by the Strichartz estimate,

letting IJ -+ 00 in (6.3), we have

UOO(t) = i«t)'P+ + J«t)7/J+ - j~ J«t - s)j(uOO(s))ds.

Thus we obtain U OO = u and IV+ is weakly continuous. Then, the strong continuity

follows from the weak continuity and (6.2). The continuity of .\1+ can be pro"ed in

a similar way. 0

7. PROOFS OF LEMMAS

In this section, we prove those lemmas in the previous sections whose proofs have

been postponed. As in Sections 4 and 5, we assume that m = 1.

Proof of Lemma 4.2. Let L:= IJV+l]. We may assume #S = (4L)"(N-I). Then,

there exists a cube C I :::J S. Now we take a finite number of cubes {CJ } and of points

{Xj} by the following procedure. First, let j = 1. Then, repeat the following routine

until #(CJ n S) = 1.

• Divide Cj into (4L)" disjoint subcubes, from which choose a subcube C that

contains the most points of S among the subcubes.

• Let Cbe the cube composed of 3" subcubes including C and all the neighboring

subcubes.

• If (Cj \ C) nS = 0, replace Cj by C, and repeat the routine. Otherwise, choose

a point Xj E (Cj \ C) n S and let Cj + 1 := C, increase j by 1 anel repeat the

routine.

It is obvious that this procedure enels in finite times, and we obtain a sequence of

cubes C I :::J ••• :::J CJ and of points XI,' .. , XJ-I E S. Let CJ n S = {.TJ}. Denote

by f j the length of the edges of CJ, anel let N j = #(Cj n S). By the construction,

we have

1 1
N j + 1 :::: (4L)"'Vj ' J+I::; 4l:fJ'

f j +1 ::; IXJ - Xjl ::; JVfj .

Thus we obtain 1 = N J :::: (4Lt"(J-I)NI = (4Lt"(J-I)#S = (4L)"(N-J), so that

J :::: N, and

Thus, XJ-N+I, .. . , XJ is the elesirE'eI sequence. o
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To prove Lemma 4.3. it is convenient to introduce the following norm.

IIf(t)lietL~ := I:: 2_J<St~~_J+I If(t)l·
JEN - -

Then, it is clear that

r' dt
Jo If(t)IT:S IIfllflL~

To derive estimates for el Loo-norms, we will use the follo\\'ing kmma.

18

(7.1)

(7.2)

Lemma 7.1. Let s > 0, O:S f(t) E Loo(O, 1) and O:S g(t) E LI(O, 1). Suppose that

for any 0 < S < T < 1 it holds that

[t'f(t)II:s 1s
T

tSg(t)dt.

Then we have

where 0 > 0 depends only on s.

Pmof. Let

Then we have

qj_1 :S TSqj + r J :S T 2Sqj+1 + T S1'j+1 + 1'j ~ ..

:S I:: 2(j-k)sl'k,
k?j

Thus we obtain

I:: qj:S I:: 2(j-k)srk :S Os I:: 1'k :S OslIgII/,I(o,I)'
j?1 k?j?1 k?1

Since

sup f(t) ~ (iJ + 1'J,
2-J~t~2-J+J

,ye obtain the desired result.

For the proof of Lemma 4.3, we introduce several notations.

Definition 7.2.

I' := lxi, ():=~, u,:= () . \lu, Uo:= \lu - Ou"

n-l
H(u) := -2-G(v) - F(v),

t2Qo(u; t) := (tit + ru, + (n - l)u)2 + (rit + tu r )2 + (t2+ .,.2)(luoI2 + u2),

t2Ql(U; t) := t2Qo + (t2+ 1'2);.
r

o
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l\ow we prove Lemma 4.3. We do not use the nonlinear term to ('stimate lul2
',

but use the quantity luol2 + u2/7'2, as in [12). Such an approach would be crucial iu

the proof of Lemma 5.4, where we must apply such estimates to a solution of LKG.

Proof of Lemma 4.3. It suffices to consider the time interval I E [0,1]. (For the

estimate on [-1,0] , just reverse the time direction.) We may assunw c > 1. We

work only with smooth solutions. The estimate for general finite energy solut ions

can be obtained by approximation arguments (see, e.g.. [6, 1-1, 1]). We use the'

inversional identity (see, e.g., [15, (2.20)], [9, (2.2a)]):

(Ou + u + j(u))m(u)

= 8,(eQ'(u)) + \7 . {-m(u)\7u + 2tx(e(u) - 2iJ.2)} + 4t(H(u) - u2
), (7.3)

where

m(ll) := 2(e + 1'2)U + 4t1'ur + 2(11. - l)tu,

t2Q'(u) := (e + 1'2)e(u) + 2u(2t1'ur + (71 - l)tu) - (n - 1)'1/.2

= t2Qo(u) + (e + 1'2)F(u) - (n - 1)\7 . (xu?) .

Integrating (7.3) over the truncated fat cone J( := {(t, x)IS < t < T, l' < et} for

o< S < T < 1, we obtain

[1 t2QO(U) + (e + r2)F(u)dX] t=T = 1 1'2Pc(u)(r,/c, x)dx
r<ct t=S cS<r<cT

+ r4t(u2 - H(u))dxdt, (7.4)lK
where Pc(u) is a certain quantity satisfying

IPc(u)(1'/c,x)1 ~ Cc (e(u) +~) (r'/c,x).

By the energy identity and Hardy's inequality, we have for c > 1,

1 (e(u) +;) (1'/c,x)dx $ C(E,c).
O<r/c<l r

(7.5)

Using Hardy's inequality and a variant of :\lorawetz estimate [12, Proposition 4.4],

we have

1 lu2 - H(u)1 1 u2 1 lul2'r<ct ---- dxdt ~ r<ct t--:2 dJ:dt + C r<ct --,dJ'dt ~ C(E, c).
O<t<1 t O<t<1 r O<t<1 t + r

Thus we may apply Lemma 7.1 to (7.4) and obtain

111 Qo(u)dxll ~ C(E, c).
r<ct t'ILOO

(7.6)
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:\'ext, integrate the inequality

2 (. I) (I 0 ) 1,,2a,(u ) = 2u u + -UT + \1. -u-f) - (n - 2)2
l' l' l'

(7"11 + tuT? n (t 2ll):::; --t-- + v· ~u u ,

O\'er f(. Then we have

[1 u2dx]T:::;1 (1+C-2)U2(1'/C,.c)dx+ r (ni+tuT)2dxdt.
r<ct 5 cS<r<cT ) 1\" t

By (7.5), we haw

1 dx
U2(1"/C.X):J::::; G(E.c).

O<r/c<l 1

By (7.6), we have

1 (1'u+luT)2
T<C' --3--dxdt :::; G(E, c).

0<t<1 I
So, we may apply Lemma 7.1 to (7.8) and obtain

111
;-dxll :::; G(E,c).

r<ct t l'Loo

By a Hardy-type inequality, we have (see, e.g., [12, Proposition 3.6])

1 ;-dx:::; G(c)1 ;- + (~)2u;dX.
r<ct r r<d t t

From this and the inequality

u2 (t-r)22 G{u2 (lu+ruT+(n-1)u)2+(1'U+tUT)2}
f} + -t- uT :::; f} + t2 '

we obtain

1
QI(u;t)dx:::;G(c)l Qo(u;t)+;-dx,

r<ct r<d t
so that

111
QI(U;t)dxll :::; G(E,c).

r<ct t'/-,OO

20

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

:"ow the desired result follows from the following Hardy-type inequality (seC' [12,

proof of Proposition 4.5]):

1
!'P12' dx :::; GII\1'PII~~-21 I'Po 12+ ~dx. (7.12)

r<R r<R r
D

Proof of Lemma 5.2. Suppose that N E JR, T1 < ... < TN +1 satisfies (TI , TN +1) C

fo and Ilull(o;I,) = TJ for f j = (Tj , Tj +I ). By Lemma 3.1, we obtain J] C f j , Cj E JR"
and R j > O. Choose tj E J j for each j. Suppose that we have for any j,

(7.13)
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Then, by the local ST-estimate (Proposition 4.1). it suffices to gN a bound for

ITN + I - Til in terms of E, 1), K and L under the assumption (7.13). D('note S =

{I, ... , N}. Let PeS satisfy that for any distinct j, k E P it holds

(7.14)

\low we will bound #P. Denote B) = {(tj,x)llx-c)1 < Rj }, 1\') = {(t,.r)llx-c)1 <
Rj + Itj - tl'! ~ tj} and J{ = U)EPJ{j' Then, by the energy identity and the

positivity of the energy, EK(t) := fK e(u; t)dx is nondecreasing. rrom (7.14), if

j E P. we have B j n K k = 0 for any other k E P. So, Edt) incr('ases at least by

fB, e(u)dx ~ 1)20 at t = tj. Thus we obtain

so that #p :'0 M:= [E1)-20]. NowwedivideSintornutuallydisjointsetsP,AI,···,A M

by the following procedure. First, set P = {I}, Al = ... = AM = 0, q(l) := 1 and

j = 2. l\ow repeat the following routine for j = 2, ... , N:

• If (7.14) is satisfied with any k E P, add j to P and then I('t q(j) := #P.

• Otherwise, choose some k E P such that (7.14) does not hold ilnd add j to

Aq(k)'

Then we obtain P, AI, .... AM satisfying S = PU Al U··· UA M (disjoint union) ilnd

we have (7.14) for any mutually distinct j, k E P. Now by a variant of Morawetz

estimate [12, Proposition 4.4], we have

In the case j E P. when j = k E P we have

where C I is given in Lemma 3.1, and we used (7.13). In the case j E A,,(k), we have

I(tj, Cj) - (tk, ck)1 + R) + IIjl :'0 21tj - tkl + Rk + 2Rj + 11)1

:'0 21t) - Til + (3CI (E, 1)) + I)L,
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where we usrd (7.13) and tk < tj • Thus we obtain

MG(E) > '" 7 2'0 IJjl
- D s. 7 21tj - Til + (3G I + I)L

JE

> "12'0 inf IJjl '" r dt
- J IIjl f0 il) 21t - Til + (3GI + 3)L

> 2'0 G-I I ITN +I - Til
- "I It I og (3G

I
+ 3)L .

Thus we obtain the desired result.
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Proof of Lemma 5.3. Let Uk = !Pk *U and Vk = "k * v. For t E (U, \ .), we haw

the integral equation:

Uk - Vk = - l' J(t - S)Vlk * f(u(s))ds.

We split the integral into those on [0, t - L] and [t - L, t], and denote by II, I 2 the

corresponding integrals. For II, we use the following decay estimnt e of LKG (src,

e.g., [7, Lemma 2.1]):

11J(t)'l/Jk * f(rp)lIa-I/' ~ GIW3
/
2

11'l/Jk * f(rp)lI a3/.
~., #,.,

~ C(k)IW3
/

2I1rpll;;;I,

where in the second step, we used similar estimates with (3.7). So wr obtain

IIIIIIL~(Uv.a-1/' ) ~ G(k, E) r- L
It - sl-3/2ds" ~., io

~ G(k,E)L- I / 2

By Lemma 7.3, if we set 271 ~ 6o(E), we have Ilull(6;('f',V)) ~ G(E). So we have also

Iluk - vkll(6;('f',v)) ~ G(E) and, by the Strichartz estimate,

III2 11(6;CU,v» ~ CIIull~~,(.}.",)) ~ G(E)7r-
l

,

so that IIIIII(6;Cu,V)) ~ G(E). By the complex interpolation and the Sobolev embed­

ding, we have as in (3.4),

III! IIco;cu,V)) ~ G(E)IIIIII~:'cu,v;a~)III 1I(6~1u,\,)) ~ G(E, k)L -O~/2

where e,'\ > 0 are the same as in (3.4). So, setting L sufficiently large relative to

G(E, k), we have IIII IIco;(u,v)) ~ "12
'. By the Strichartz estimate again, we have

III2 I1co;cu,v)) ~ G(E)7r- 1

Since 2* -1 > 1, if we set 62 (E) sufficiently small (for example, let 62(E) = b+E)-1

with large ,(n)), we have

lIukllco;(u,I') ~ IIvkllco;cu,I')) + IIII IIco;(u,V)) + III2I1co;(U,I')) < 77/4.
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o

Lemma 7.3. Assume (2.10). Let T > 0, let 'U be the solution oj NLKG (2.3) with
Eo(u(t)) :'0 E < 00 Jar any t E 10, T], and let v be the sollttion oj LKG (2...1) with the

same initial data at t = O. TheTe exists <50 = <5o(E) such that iJ Illlll(o;(O,T)) :'01) :'0 <50,
we have

lIull(6;(o,T)) :'0 Co(E), lIitll(7;(0,T)):'O Co(E).

IIvll(o;(o,T)) :'0 Co(E)1), IIw-ltill(o;(o,T)):'O Co(E).

Proof. By the Stricbartz estimate, we haye for j = 6 or 0,

lIull(j;(o,T)) + 1lti.1I(7;(o,T)) + IIw-lull(o;(o,T» :'0 C Eo(v) liZ + CIIJ(u) II (Z;(O,T))

:'0 C E I /2 + CII'ull(~;(ol.T» :'0 CEl/z + C1)Z'-I,

and

Ilvll(o;(O,T)) :'0 lIull(o;(o,T)) + CIIJ(u)ll(z;(O,T)) :'01) + C1)2·-'.

So, setting <50 < 1 and <50 < E, we obtain the desired result. o

and

Proof of Lemma 5.4. By translation, we may assume c = 0 and S = R. Lrt

J E N (large) and suppose S = R < 2-v Let E := 2-2J + 1/J < 1. From now on,

we denote by C any positive constant dependent only on E. By (7.11), there exists

some j E {J, ... ,2J} such that for T := 2-J we ha\'e

1 Q,(u;T)dx:'O C/J:'O CEo
r<.IT

By the energy conservation, we have

1 e(u;T)dx::c: 1 e(u;S)dx::c: 1).
r<T r<S

Let ( = X(x/2T) and vo = (u. Let v be the solution of LI<G with the same initial

data as vo at t =T and w = u - v. \Ne have for t =T,

J j. U2 1 u
2

lu\7(12dx:'O IT\7(12 2'dx :'0 C --:'jdx :'0 CE,
T~T r T~T7

so that, by Schwarz' inequality and the monotonicity of F (which follows from

G::C: 0),
Eo(v; T) :'0 Eo(u; T) + C.,fi :'0 E + C.,fi.

Similarly, we have

E(w; T) :'0 1 e(u; T)dx + c.,fi :'0 E -1) + c.,fi.
r>2T
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Moreover, we have at t = T,

(~) ~ ~If + 1 ((r U )2 ~ CIf((rU ? ~ C(r(r?i2 ~ CQ,(u).

Thus we obtain

1 Q,(v;T)dx ~ c1 Q,(u:T)dx ~ CE.
r<4T r<4T

Since v = 0 if t ~ T and r ~ 4T, lI'e haye from (7.4) (with J == 0),

[1 eQo(v; t)dX] U~ {r<1t 4tv2dxdt, (7,15)
r<4t T JT<t<U

for any U > T. Similarly, from (7.8), lI'e have

[1 V2(t)dX]U ~ {r<41 (rv+tvr)2dxdt. (7.16)
r<4' T Jr<t<u t

By the energy conservation for w-'v, we have

Ilv(t)lli, ~ Il v(T)lli, + Ilv(T)117,-'

~ CIIv(T)lli,·T2+ Ilv(T)lli,T2
~ GE,

since supp(v(T). veT)) c {xlr < 4T}. From (7.15). we have for allY U > T.

1 Qo(v:U)dx ~ -uT: 1 Qo(v;T)dx+ -u4 (r<4' v
2
dxdt

r<4U r<4T IT<t<u

~CE.

From this and (7.16), in the same way we obtain

r V2(~) d.T ~ CE
Jr<4U U

From these estimates, (7.10) and (7.12), we have for any t > T,

Il v (t)llr,· = 1 v2' (t)dx ~ CE.
r<4t

Thus we obtain the desired result. o
We lI'ill prove Lemma 5.5 for n ~ 5 and n ~ 6 separately. First, we consider the

easier case n ~ 5.

Proof of Lemma 5.5 for n :s 5. By [6, Proposition 2.6J we have the following

estimate. (That proposition is written for the massless case, but the arguments are

valid also in the massive case. We get the estimate on unbounded intervals by a

simple limiting argument because the estimate is independent of the length of th('

interval.)
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By the Strichartz estimate and Holder's inequality. WP ha\"p

where

25

1 1
P= 2" - 0,

n-2
n+2

with sufficiently small 0, say 1/20. So we may assume

where £1 '\, 0 as £ '\, 0" For 77 > 0, there exist 0 = To < T, < . ". < TN < TN+1 = 00

such that

Let f = u - v - W. Then we have the integral equation

f(t) = fj(t) +l I«t - s)(J(lV) - J(f + v + lV))(s)ds, (7.17)

where f j is the solution of LKG with the same initial data as f at I =~. By t1w

Strichartz estimate, we ha\'e

By (2.10) and Holder's inequality, we have

IIJ(W) - J(f + v+ 1V)lIq/"i ::; C(11f + vile + IIWlle)2"-21Iv + file.

Denote qj(T) := IIfllclTj,T) + Eo(f; T)I/2 and (iJ := qj(Tj+l)' Let q_, := O. Then

qj(T) is continuous with respect to T and

qj(Tj ) = Eo(f;Tj )I/2::; qj-l,

qj(T) ::; CI(iJ-1 + C2(qj(T) + £1 + 7))2"-2(qj(T) + £.),

for some C1, C2 ::::: 1. We set C2(37)j2'-2 < 1/4 and (2C.)2£1 < 7). If £1 ::; qJ(T) ::; 7).

\\"e have

qJ(T) ::; CI(iJ-I + qj(T)/2,

so that qj(T) ::; 2CI(iJ-I' Thus, if 2Ct (iJ-1 < 7), by the continuity, we have qj(T) ::;

2C1qj_1 < '1/ for any T ::; TJ+l, so that (iJ ::; 2C1qj_l. If (iJ ::; £1, we have either

qj ::; £) or qj ::; 2C1qj_l ::; 2C'£I. So, if we set

(2C.)N+l£) < '1/,

then we obtain qj ::; (2C.)J£1 < '1/ for any j and the desired result follows. 0
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The proof in the case n ::::: 6 is more complicated. becausp we do not have a simple

estimate for the difference of two solutions. as in the case n ::s: 5. In particular. we

cannot estimate the energy norm of the difference, so we introduce the following

substitute.

II(cp,1/»III1':= Ilk(t)cp+ 1\(1)1/>11 .
(3;(0,00))

We will use the following variant of the Strichartz estimate.

Lemma 7.4. Let

l<p<p'<

2(n - 1) < q < ? < q' < 2(n - 1)
n+1 - n-3'
1 n 1 n ,
-+--a-2=-+--a,
p q p' q'

1 (1 1) 1 (1 1)- + (n - 1) - - - - 1 > 0 > - + (n - 1) - - - ,
p q2 p' q'2

1 n-ll 1 n-11- + --- - 1 > - + ---.
p 2 q p' 2 q'

Then we have

lilt e±iw(t-s) II
--!(s)ds ::s: CII!IILP(o,T;Bq.~),

o W LP'(O,T;B:/,I)

whet'e C > 0 depends only on the exponents (p,q,a,p',q',a').

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

Pmof. First we consider a weaker estimate where the third exponents of Besov spaces

are replaced with 2:

II
r' e±iw(t-s) !(S)dSII ::s: CII!IILP(o,T;I3~.,).

io w LPI(O,T;B:,',2)

In the case (in addition to (7.19) (7.23))

~ +~ (~ - ~) - 1> 0 > 2. +~ (2. - ~)
p 2 q 2 - - p' 2 q' 2 '

(7.25) is the standard (generalized) Strichartz estimate (sec, e.g., [5. 7, 13]). For

sufficiently small I': > O. let

( ~, ~,a) = (I':) + _1 - ~.a) .
p q 2 n-1 n

(2. 2. a') = (~ ~ __1_ + ~ a__2_ + ~I':)
p" q" n' 2 n - 1 n' n - 1 n .

Then, (7.19) (7.23) are satisfied and, by [7, Lemma 2.1]' we have

Il
e±iwt !(s)11 ::s: Cit - SII-";;-t'II!(s)IIB' .

w ~2 q,2
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From this and the Hardy-Littlewood-Sobolev inequality, we obtain (7.25) for this

exponent. By the complex int!'rpolation between the case (7.26) and the case (7.27),

and by the Sobolev embedding, we obtain (7.25) in the case

1 n-1(1 1)- +-- - - - - 1 < O.
P 2 q 2 -

Then, by the duality argument and the interpolation, we obtain (7.25) in the re­

lnaining case. If (p,q,a,p',q',a') satisfies (7.19) (7.23), then (p±.q,a±,p~,q',a~)

with

.2.- = ~ ± c, a± = a ± c, .,.. = - ± c a~ = a' ± c,
p± P p± p'

satisfy (7.19) (7.23) for sufficiently small c > O. By the interpolation inequality and

Holder's inequali ty, we have

LP'+(B;:2) n LP~ (B::~2) y LP' (B;:,l),

and by the duality argument we have

LP+(B:,~) + LP-(B:,"2) t-' £1'(B;,(x,)'

So, (7.24) follows from (7.25) with the exponents (p±,q,a±,p~,q',a~). 0

Then we have the following estimate for IV-norm.

Lemma 7.5. Let n ~ 6. Let u be the solution of

{

Ou+u =g,

u(O) = <p, u(O) = 'Ij;.

Then we have for any T ~ 0,

II(u(T),u(T))llw:S 11(<p,'Ij;)1I1V + Cllgll(5;(0,T».

Proof. Let v be the solution of LKG with the same initial data as u at t = T. Let

w be the solution of

{

Ow + w = gX(O,Tj,

w(O) = <,0. w(O) = 'Ij;,

\\'here Y(O,T) denotes the characteristic function of the interval (0, T). Then we have

v = w for t > T, so that by Lemma 7.4 we have

IIvll(3;(T,oo» :S IIw ll(3;(0,oo)) :S 11(<,0, 'Ij;)lIw + Ilgll(5;(0,T)),

which is the desired result. o

Proof of Lemma 5.5 for n ~ 6. We have some !lIz = !lf2 (E,!If) < 00 such that

IIWII(j;(o,oo» :S lvIz(E, !If)/3 < 00,

for j = 3,0 or 6, by [6, Proposition 2.6J. (That proposition is written for the

massless case, but the arguments are valid also in the massive cas!'. We get th!'
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estimate on unbounded inten'als by simple limiting argument because the estimate

is independent of the length of the intervaL) By the Strichartz estimate and the

complex interpolation, we have for j = 3 or 0,

Ilvll(j;(O,oo)) :s; Cllvll~f"Li" Ilvlli.;:[o,oo)) :s; C(E)c°:s; 02(E,0),

where 1/pj = (1 - O)lp6 and 02 '" 0 as 0 '" O. For 17 > 0, there exist 0 = To < T, <
. < TN < TN+, = 00 such that

and

N'/P3 17 :S; J\h.

Let f = u - v - W. Applying Lemmas 7.4 and 7.5 to (7.17), we have

11f1l(3;(Tj ,T)) + II(f(T),t(T))llw

:s; CII(f(Tj ), t(Tj))llw + CII.f(W) - f(f + v + \V)11(5;(7~,T))

By [8, Lemma 2.3(3)] and the Sobolev embedding, we have

IIf(W) - f(f + v + lV)II(5) :s; C(11f + vll(l) + 1I 1V11(l))2'-2I1f + vll(3)

+ CUlf + vll(o) + IllVlI(o))2'-2I1 f + vll(4)

:s; C(lIf + vll(o) + 111V1I(o))2'-2I1f + vlb)

Denote Qj(T) := IIfll(3;(Tj;r)) + II (f(T) , t(T)) IIII' and Qj := Qj(Tj+,). Let Q-, := O.

Qj(T) is continuous with respect to T and

Qj(TJ) :s; Qj-h

Qj(T) :s; C,Qj_1 + C(llfll(o) +02 + 7))2'-2(Qj(T) +02)

While Qj(T) :s; 17, we have Ilulb;(7j,T)) :s; 217 + 02 < E. So, by [6, Proposition 2.6]'

we have lIull(6;(Tj,T)) :s; C(E). Since IIWII(6;(Tj,T)) :s; 7) < E and Ilvll(6;("/~,T)) :s; C(E),
we have

11f1l(o:(T"T)) :s; Cll f ll?3;(T"T))IIfIl!.;:fT"T)) :s; C(E)QJ(T)/!,

where 0 < {3 < 1 and
1 {3 1- {3
-=-+--.
Po P3 P6

Thus we obtain

as long as Qj(T) :s; 17. Then, by a similar argument with the case n :s; 5, if we set

C2(317)2'-2 < 1/4 and (2C,)N+'02 < 17'//!, then we obtain Qj :s; (2C,)J 02 < 17'//! for

any j, from which the desired result follows. 0



1. H. Bahom·j and P. Gerard) High frequency approximation of solutions to cr-itical nonlinear wave
equations, Prepublications 97-34, Uniyersite de Paris-Sud, ~lai 1997.

2. H. Baholll'i and J. Shatah, Global estimate for the critical semilinem' wave equation\ to appra.r
in Annalcs lHP) Analyse non lineail'e,

3. J. Bergh and J. Lofstrom, Inte,polation spaces, Springer, Berlin/Heiderbrrg/:"lew York, 1976.
4. J. Bourgain, Global wellposedness of defocusing 3D c.itical NLS in the radial case, preprint 98.
5. P. Brenner) On space-time means and everywhe"e defined scattering 0JJenllor's for' nonlmear

Klein-Gorelon equations, l\lath. Z. 186 (1984), 383 391.
6. J. Ginibre, A. Soffer, and G. Vela, The global Cauchy pmblem fa.· the c.iticalnon-linear wave

equation. J. Funct. Anal. no (1992). 96-130.
7. J. Ginibre and G. Vela, Time decay of finite energy solutions of the non Imear Klein-GorYlon

and Schr-ijdinger equations, Ann. lnst. Henri. Poincare, 43 (1985), 399 442.
8. J. Ginibre and G. Vela, Scattering theory in the eneryy space for a class of non-linear wave

equations, Commnn. l\lath. Phys. 123 (1989), 535-573.
9. \1. Grillakis, Regularity (l1ld asymptotic behavior of the wave equation With a critical nonlin­

earity, Ann. of Math. 132 (1990), 485~509.
10. M. Grillakis, Regularity fa" the wave equation with a critical nonlinearity, Comm. Pure AIlP!.

Math., 45 (1992), 749~774.

11 L. Kapitanski, Global and unique weak solutions of nonlinear wave equations Math. Res. Let­
ters, 1 (1994), 211-223.

12. K. Nakanishi, Unique global existence and aSy11"tptotic behaviour of solutions for' wave equatIOns
with non-coercive critical nonlinearity) to appear in Camm. Partial Different jaJ Equatiolls.

13. H. Pecher, Nonlinear small data scattering fa" the wave and Klein-Gor'don equations, ~Iath.

Z. 185 (1984), 261-270.
14. J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear' wave equatiolls

with critical gmwth, I\lRN (1994), no. 7, 303 309.
15. 'V. Strauss) Nonlinear wave equations, CBMS Lecture Notes) voL 73, ArneI'. ~lath. Soc. Prov­

idence, Rl, 19 9.

Part I: Scattering for Xonlinear Klein-Gordon with Critical Pow(>r

REFERENCES

29



Part II.
Energy Scattering for

Nonlinear Klein-Gordon and Schrodinger Equations
in Spatial Dimensions 1 and 2

1. I TRODUCTIO

In Part II, we study the scattering theory in the energy space for uOldinear Klein­

Gordon equations (NLKG):

(1.1)

and for nonlinear Schr6dinger equations (I\LS):

(1.2)

where u = u(t. x), (t. x) E IRI +n
, it = au/at, 0 = al - ..'J., m > O. n S 2 and

p > 1 + 4/n. We will pro\"e that the wave operators and the scattering operators

for (1.1) and for (1.2) are well-defined and bijective in the whole energy space E

(for NLKG, E = HI Ell £2 and for NLS, E = H'). It is well kuown that there

exist injective wave operators defined everywhere in E. So, the main problem is

the surjectivity, which means the asymptotic completeness of the wave operators.

Such results are known in the case where n :::: 3 and p > 1 + 4/n, in the case of

small energy data and, in the j LS case, in certain function spaces smaller than the

energy space (see, e.g.. [4, 5, 6, 7, 8, 9, la, 14, 15, 16]). But, as far as the author

knows, no result is known for the scattering in the whole energy space when n S 2.

In particular, this is the first result on the large data scattering of ;\lLKG for n S 2,

which was left as one of the major open problems in [13, pp. 247]. The difficulty for

n S 2 consists mainly in the two points: the breakdown of the l\lorawetz estimate

and the unintegrability of the time decay order of the free equations. We overcome

the first difficulty by certain variants of the Morawetz estimate with space-time

weights. Such estimates seem to have first appeared in [11] for n :::: 3. Moreover,

we do not need the integrability of the time decay order if we usc the argument of

'separation of localized energy', which was invented by Bourgain [3J and was used

also in Part 1.
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2. TOTATIONS AND CONVENTIO S

31

In this section, we introduce sevcral notations and com·entions. In order to statc

the results and the proofs in a unified way for both NLKG and NL , we use several

notations whose meanings differ depending on whether we arc considcring NLKG

or \lLS. As usual, we denote by C auxiliary positive constants, and somctimes write

as C(a, b, . . ) to indicate that the constant depends only on (I, b,. and that thc

dependence is continuous (we will use this convention for constants which are not

denoted by 'C'). We fix nand p. and so we ignore the dependence of the constants

on nand p. We denote by B:,r the usual inhomogeneous Besov spaccs (see, e.g., [1]).
We will use the following space-time norms. \\"c will sometimes abbreviatc thcm as

'ST-norms'.

(B; I) := LOO(I; B~~oo(lR")), (X;I):= Lq(I x !ROl
),

(K;I):= U(I;B;,~(!ROl)), (R;I):= L"(I;B;,~(!ROl)), (2.J)

(Y; I) := Lq(I; B;,~(!Rn)), (Y;I) := U/P(I; B;,~(!R")),

where p = (2n + 4)ln, lip + lip = 1, (p - l)lq + lip = lip, U = pI(2q), Uj' =
nip - nlq and

UK = {1 /2,
1.

in the NLKG case,

in the NLS case,
(2.2)

The condition that p > 1 + 41n is equivalent to that q > p. We will sometimes omit

the interval 1 in (2.1). For simplicity, we set m = 1 for NLKG. Then the equation

is

Du + u + lulP-1u = 0 (\lLKG).

We fix a smooth cut-off function h satisfying

hE C (IR), 0:::: h :::: 1, h(t) = {Ol,' t 2: 1,
t:::: O.

(2.3)

(2.4)

Denote by F<p = ip the Fourier transform of <p and define thc Littlewood-Paley

dyadic decomposition:

'l/Jj= r 1h(2 - Tjl~1) E S(!Rn),

<Pj := 'l/JJ - 'l/Jj-I E S(!Rn) for j E N,

<Po :='l/Jo·

(2.5)
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We define the energy and several related quantites.

32

(2.6)

f(u):= luIP-lu, F(u):= _2_lul'l+
I

,
p+1

G(u) := ~(ilf(u)) - F(u) = (1 - p: 1) luIP+' 2: lu l;+' ,
.= {lit l2 + l\7ul2+ lul2, in the :\LKG case,

eLtu; t) . l\7ul2 + lul2, in the NLS case,

eN(u) := eLtu) + F(u).

ELtu; t):= r eLtu; t)dx, EN(u; t):= r eN(u; t)d.r,
JTJ!." J" ..

where \7u = (au/cJx I , ... , au/ax,,). EN is a conserved quantity for NLKG and NLS,

and E L is a conserved quantity for the free equations. Denote (a) := J1+1Oj2.
Denote for any function cp,

cp(w):= r'cp((O)F,

cp(t.):= rlcp(-1~12)F

Using these notations, we define

(2.7)

{
,.

U( )
.= w- Sll1wt,

t. _ie-illt ,

in the NLKG case.

in the LS case.
(2.8)

(3.1)

Then the integral equations associated to NLKG and :'\'LS are respectively

u(t) = U(t)u(O) + U(t)it(O) -lU(t - s)f(u(s))ds, (2.9)

u(t) = iU(t)u(O) -lU(t - s)/(u(s))ds. (2.10)

3. BASIC ESTIMATES ON ST-NORMS

In this section we collect basic and well-known estimates on the space-time norms

introduced in the previous section. By the Sobolev embedding, we have for any

j E N.

lIull(B) :::: Gllulll-1"(lI')' Ilull(x):::: CIIull(l')'
IIcpj * ull(B) :::: G2-uJ ll u IlL1"(JI')'

By the Sobolev embedding and the "'ell-known nonlinear estimates for the Besov

norms (sec, e.g., [9, Lemma 3.1]), we have

IIJ(u)II(I<) :::: Gllull(K)llulli;;, (3.2)
IIf(u) - f(u)II(Y) :::: Gllu - ull(l')(llull(Y) + Ilull(Yj}P , (3.3)
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(3.4)

(3.5)

(3.8)

By the complex interpolation and the Sobolev embedding. w'e have

lIull(x) ::; Cllullf~q)lIull;;rq·

lIull(l') ::; CIIull;,~~/Pllullt(q)lIull~!.!(J~~)'

We have the following decay estimate for ["(t) (see. e.g.. [9])

IIU(t)",IIB~.2 ::; CIW"II",IIB~." (3.6)

where /-L = n(I/2 - 1/p) = 1+ l/q - p/q. So, by Young's inequality, we han' for any

T> 0,

111'U(t - S)V(s)dSII ::; C111' It - sl-Pllv(s)IIB"~ dsll° (Y;(O,T» ° p I,'(O,T)

::; CllvlI(Y;(o,T)) (3.7)

Denote

{
DU + u in the NLKG case,

eqdu):= iu _ i'.'~' in the NLS case.

Then, by the Strichartz estimate (see, e.g., [4, 9]), we have for any I > 0,

Edu; t)'/2 + Ilull(K;(o,t» + Ilull(x;(o,t» ::; CEdu; 0)'/2 + Clleqdu)II(I{;(o,,))· (3.9)

Using the above estimates, we have the following lemma.

Lemma 3.1. Let u be a solution of (2.3) or (1.2) on an inter'val J = (5, T) with

Edu; 5) ::; E < 00 and lIull(x;/) = 1). Let v be the solution of the fl'ee equation with

the same initial data as u at t = 5. There exists a constant 1)o(E) E (0,1) such that

if 1) ::; 1)o(E) we have

lIu - vll(K;/) + lIu - vll(x;/) < 1),
IIvll(x;/) < 217, Ilull(K;/)::; C(E).

Proof. By (3.9) and (3.2), we have

Ilu - vll(K;/) + lIu - vll(x;J) ::; Cllf(u)II(i<;J)

::; Cllull(K;!)lIull(';:I)
::; C1)P- 1llull(K;/).

Now we set 1)0 so small that Crfo- 1 < 1/2. Then we have

lIull(K;/) ::; 2I1vll(l(;J) ::; C(E),

(3.10)

(3.11)

(3.12)

where the last inequality follows from the Strichartz estimate. Thus, from (3.11),

we have

Ilu - vll(K;!) + Ilu - vll(x;/) ::; C(E)lr ' · (3.13)

Setting 1)0 so small that C(E)rfo- 2 < 1, we obtain the desired estimatp. 0
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4. DlSTRIDUTIO OF ST-NORMS
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In this section we prove the following lemma, which relates the time-di:;tribution of

the ST-norm with the space-time distribution. The lemma is merely a reproduction

of Lemma 3.1 of Part I in the present context, and the idea is essentially due to [3J.
Since (2.3) and (1.2) are H1-subcritical, the situation is much simpler than those in

[3J and Part I.

Lemma 4.1. Let u satisfy (2.3) or (1.2) on an inte1"1Jal I with EII"(u) :::; E <
Suppose that lIull(x;J) = 1] E (0,1]o(E)J (1]0 is given by Lemma 3.1). Let s ~ l.

Then, them exist a subinterval J C I, R > 0 and e E JR" satisfying IJ I ~ C (E, 1]) ,

R:::; C(E,1]) and

r rnin(lu(t)l, IU(I)IS) dx ~ C(E,1). s),
J1x-cl<R

for any I E J.

Proof. By Lemma 3.1 and (3.4), we have

1] = Ilull(x) :::; Cllull({<q)llull~~)/q :::; C(E)llulI~~)/q,

so that we have some T E I, e E JR" and j E ]\/ U {OJ such that

Iruj<p, *u(T, e)1 ~ C(E,1]).

On the other hand, by (3.1), we have

Iru'<pj * u(T, e)1 :::; rUjC(E),

(4.1)

(4.2)

(4.3)

(4.4)

so that we have j :::; C(E,1]). By the Sobolev embedding and Holder's inequality,

we ha,"e

(4.5)

so that we have III ~ C(E,1]). From the equation and the Sobolf"" f'mbedding, we

have

1I<p, * (u(l) - u(T))IIL~ :::; C(j)lIu(t) - u(T)IIn-' :::; C(E, 1])11 - TI- (46)

Thus, we have some interval J C I such that IJI ~ C(E,1]) and we have (4.3) for

any T E J (of course, the constant C should be changed). Denote

<I> := {~oo -lj;-l if j ~ 1, ( )
'f' ifj=O. 4.7

Then we have for any I E J,

C(E,1]) :::; l<pj * u(l, e)1 = If 2
j
"<I>(2

j
y)u(t" e - Y)dyl

:::; 2jnll<I>IIL~llu(I)IIU(lx_cl<R) + 2j "/211<I>1I,,2(lxl>2JIl)llu(t)II,,2

:::; C(E,1]) {lIu(t)lk'<Ix-cl<R) + 11<I>IIL2<1xl>2J Il)} .
(4.8)
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Since <l> E S, we can make 11<l>IIL2(lxl>2JR) arbitrarily small if we takr R sufficirntly

largr. Thus we obtain some R ~ O(E.1)) such that for any t E J. we haw

Ilu(t)IIL1(lx-cl<R) 2 O(E.1)).

Denote

..-\.:= l1ul9 lul'd.", B:= llul>1 luldx.
Ix-cl<R Ix-cl<R

Then, from (4.9) we haye for t E J,

(4.9)

(no)

O(E,1)) ~ B+llul~' luldx
Ix-cl<R (,1.11)

~ B + 0(R)A 1
/' ~ O(E,1)){rl +B + (A + B)I/S},

so that we obtain the desired estimate:

A+B 2 O(E,1),s).

5. MORAWETZ-TYPE ESTIMATES

(4.12)

o

In this section, we derive certain variants of the \10rawetz e timatr with space­

time weights. Such an estimate for \'LKG was deriyed for n 2 3 in [11, Proposition

4.4J. Here \I'e are concerned only with the asymptotic behaviour of the solutions for

large time. The estimate (5.3) for NLS is a new estimate, which might be useful

also for n 2 3.

Lemma 5.1. Let u be a global solution of NLKG (2.3) with EN(u) = E < In

the case n = 2, we have

Jf ~ + (t)2G(U) dxdt < OlE) (5.1)
jRl+2 (t) + Ixl (t)3 + Ixl3 - ,

where U w is the projection of (iL, \7u) to the tangent space of the hyperboloid

t2 - Ixl 2 = constant. In the case n = 1, we have

Jf min(luI2,G(u)) dxdt < OlE). (52)
jRl+l (t) 10g(ltl + 2) log(max(r - t, 2)) - .

Lemma 5.2. Let u be a global solution of NLS (1.2) with EN('u) = E < Then

we have

Jj' 12t\7u + ixul
2 + (t;2 G(U) dxdt < OlE). (5.3)

jRl+n (t)3 + 11:1 3 (t) + Ixl 3
-
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For the proof of the aboye estimates. we introduce seyeral notations.

r=lx[. O=~, ,\=~, 8= (-;.r).

U r = O· \7u. Uo = \7u - OUr'

1 .
tK(u) = 2{-luI2 + l\7ul2 + lul2 + F(u)} .

1
ts(u) = 2 {R(iuu) + l\7ul2 + F(u)}.
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(5.4)

(5.8)

(56)

Proof of Lemma 5.1. It suffices to prove the' estimate for C2 solutions and on the

interval (2,00). We have the following identity (see [11, Proof of Lemma ·1.2 (4.4)]):

R{(Ou + u+ f(u))rnh} = ~003? (-mhoou+ eK(u)80 + 1~12 oog)
lu 12 lul2

+--f-+TOg+C(u)g, (5.5)

where (00, OJ, . .. ,an) = (_00, ot, ... ,an) = (0,., \7) and

n -1 e - r 2

g=~+~, mh=8·(u,\7u)+ug,

(n - 3)(n + 3) . t2 - r2 (t2 - 7.
2)2

Og = 2,\3 + 3(n - 1)~ +15~.

Since 9 is smooth for t > 0, we can integrate (5.5) over (2. T) x IRn for T > 2, and

by the divergence theorem we obtain

[1 .- t lul2. ] t=T
" -RUmh + tK(u)>. + Tg dx

1=2

= rr1 IUwl
2

+ ~Og + G(u)gdrdt. (5.7)
12 IR"'\ 2

The left hand side is bounded by the energy, and

li
T 1 ~09dXdtl::; ciT11urdxdt

2 R" 2 2 _" t

is also bounded by the energy. In the case n ~ 2, the remaining terms in thl' right

hand side of (5.7) are nonnegative. So we obtain the desired result in til(' case n = 2.

In the case n = 1, we have 9 ~ 0 only if r ::; Itl. So we integrate (5.5) over the

region {(t,x) 12 < t < T,r < t}. Then we have by the divergence theorem,

[1 t 1 1
2 ]I=T

-3?u7nh + tK(u)>. + T.iJ dX
r<L ~2

= iT1 M + ~Og + G(u)g dxdt
2 r<I'\ 2

+ 3? r -mh(U + ur ) + l2eg (u)dx. (5.9)
J2<r;:.t<T
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By the energy estimate on the surface of tht' light cone. the last terlll of (5.9) is

estimated as

... = V; l<r=«1' luol
2 + lul

2 + F(u)d.T

:S j2 f IOu + \7u12 + lul 2 + F(u)dr :S C(E).
2 J2<r=t<T

So, as in the case n = 2, we obtain

(5.10)

fOOl IU~12 + G(u)gdxdt:S C(E).
J2 r<L

(5.11)

(5.13)

(5.12)

w(t) := 1W/2(t)'/2(log(ltl + 2))3/2

over R Since w(t) is integrable, we obtain

If lul2W(t - 1")dxdt :S C(E). (5.14)
RI+l

From (5.11) and (5.14), we obtain

If min(luI2, G(u)) max(g, w(t - 1"))dxdt :S C(E), (5.15)
'>2

By the energy estimate on the surfact' of the light cones, we have

LIU(1" + t,xWdx:S C(E),

for any t E R Now we integrate (5.12) multiplied with

1

where we denote

g(t x) .= {g(t, x),
, . 0,

if1"< t,

ifr ~ t.
(5.16)

Since for 1" < t we have

max(g,w(t -1")) ~ IgI 1
/
3{W(t -1·W/3

_ (t+r)I/3

- 21/ 3 ).(t - 1//3(log(lt - rl + 2)) (5.17)

C ( t )1/3
~tjog(t+2) (i) ,

we obtain the desired result from (5.15). 0

Proof of Lemma 5.2. We will lise the following new lTIultiplier:

r (n-1-it e)
m p := 2);Ur + --).-- + >.3 u. (5.18)
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We have the following identity for a general multiplier m = a· \7u + .Q u with

a: IRJ+n --t IRn and 9 : IR1+n --t iC (cf. [13, Theorem 2.2]).

8
~{(iu - ~U + j(u))m.} = -i'.5 {a. u\7u + lul2g}

{
I [? } "+\7.~ -\7um.+afs (u)+ 1~-\7g +L8,u8,aJ8;u+G(u)~g

t.J;;1

+ 1~12 R(ig _ C::.g) + (2\7'.5g - iL) . ~'.5(fi\7U) + (2Rg - \7. a)fs(u). (5.19)

:'Jow let Tn = Tnp . Then the last term in (5.19) vanishes, and we ha"e

n _ I 12 1
L 8i u8i aj 8j u + ~ ~(i.9) + (2\7'.5g - iL)· 2'.5(\7uu)
i,j=l

_ 2t2
1

[2 2r2
[ 12 r2

[[2 xt", _) (5.20)- >:3 \7u + ~ Uo + 2).3 U + 2~0(\7UU

[2t\7u + iXU[2 2,·2 2
= 2).3 + ~Iuol ,

-~C::. _ (n -l)(n - 3) 6(n - 3)t
2

15t
4

(5.21)
g- ).3 + ).5 +).7'

so that 1~C::.gl < G/).3. Thus we obtain

R{(iu - C::.u + j(u))mp } ~ 8t {~'.5(uur) _ I~~t}

+ \7. R {-\7um + ~fs(u) _[uI2 ((n - 1)x + 31.t2)}
p ). 2).3 2).5

12t\7u+ ixul
2

G() (~ f.-) (5.22)
+ 2).3 + u ). +).3

2r2
2 luJ2

+ ~Iuol - G>:J'
Integrating this inequality oyer (1,00) x IRn , we obtain the desired result as in the

proof of Lemma 5.1. 0

As was shown in [11] and Part I, [[u/rIlL' is an important quantity to control the

energy when n 2: 3. Although we can not have u/r E U(IRn
) for n ~ 2, we still

have the following decay estimate for lIu/(x)[[L"

Lemma 5.3. Let u be a global solution of (2.3) or (1.2) with EN(u) = E < 00.

Then we have

r{j,' IU[2 }(P+ll/2 dt
JR ~"(x)2dx (t) ~ C(E). (5.23)
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(5.25)

Pmoj. By Holder's inequality, we have

J(1:)I: dX ~ (J IUIP+1dX)2/(P+ll (J (.r)-2(P+ll/(P-1)dr) 1-2/(P+ll.
(5.2-1)

From (5.1).Since n ~ 2, the second integral term in the right hand side is finitr.

(5.11) or (5.3). we have

1{I lul2 }(P+ll/2 dt if lulP+1

~dx - < C --d.rdt
!R r<ltl/2 (x) (t) - r<ll1/2 (t)

<cif G(U)dxdt
- r<ll1/2 (t)
~C(E),

and

1{I lul2 }(P+ll/2 dt 1C(E)
~dx - < -----u-dt < C(E).

!R • r>ltl/2 (x) (t) - !R (t) P -

Thus we obtain the desired result.

(5.26)

o

6. WEIGHTED GLOBAL ESTIMATE FOR ST-NORMS

In this section we will prove the following lemma, which i. a reproduction of

Lemma 5.2 of Part I for the present subject, but the situation is simpler because of

the subcriticality. There is a similar argument in [2]. Here we use the grnrralized

:\Iorawetz estimates and the finite propagation property. We do not have the finite

propagation property for NLS in the strict sense as in 1\LKG, but we have crrtain

approximate finiteness of propagation (Lemma 6.2 below).

Lemma 6.1. Let u be a global solution of (2.3) or (1.2) with E N(1t) = E < 00.

Let 0 = To < T1 < "', I j = (T,-\- Tj ), 0 < 17 ~ 17o(E) (170 is as in Lemma 3.1) and
17/2 ~ lIullv:;/» ~ 17 for any j. Let S be the totality of the indices j, which may be
finite or infinite. Then. there exist tj E I j for each j E S such that

'" 1 < C(E. ). (6 1)
U (tj + 1) log(t, + 2) - 17 .
,ES

Lemma 6.2. Let u be a global solution of NLS (1.2) with EN(u) = E < 00. Let B
be a compact subset of jRn. Then, for any R > 0 and T > 0, we have

f' lu(T,x)12dx~ f'!u(O,xWdx-C(E)T/R, (6.2)
Ja(Rl Ja

wheTe B(R) := {x E jRn I 3 y E B s.t. Ix - yl ~ R}.

Pr·ooj. Define

d(x) := inf Ix - yl·
yEa

(6.3)
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Then, x E B(R) if and only if d(x) ::::: R. and we have l\7d(:r)I ::::: 1. V;P define

X(x) = h(l- d(.7:)/R).

Then we have

()
{

1' xEB,
X x = 0, x E JRn \ B(R),

40

(6.4)

(6.5)

(6.6)

and l\7xl ::::: C/R. By the equation (1.2), we han'

8dlxullh = 2R(xu. '((-i~u + if(u)))
C

= 4;}(x(\7>..lu, \7u) 2: -fiE,

where (".) denotes the inner-product in £2(JRn). From this we obtain the desired

result. 0

Proof of Lemma 6.1. By Lemma 4.1, for each .i E S, there exist Jj C f l , Cj E JR"

and R> 0 such that IJjl 2: C(E,1)), R ::::: C(E,1)) and

1 min(luI2G(u(t)))dx 2: C(E,I)), (6.7)
Ix-c,I<1l

for any t E Jj . Let tj = inf Jj. ]\ow, in order to use the finite propagation property,

we consider the following proposition for j. k E S:

!cj - ckl ::::: Mltj - tkl + 2R,

lej - cd > Mltj - td + 2R,

(6.8)

(6.9)

where 1II = 1 in the NLKG case, while in the NLS case 1II = !IJ(E,17) should be

taken so large that CI /2 2: C2 /M, where C2 = C2 (E) is the constant in (6.2) and

CI = C1(E, '17) is the constant in (6.7). Let PI := 1, and define Pa+1 for a = 1,2,.

inductively as the minimal k E S satisfying (6.9) for j = PI,· .. ,Pa' Denote P =

{PI,P2, ... }. For j E P, denote A j := {k E S I k 2: j and (6,8) holds}. By the

definition of P, we have S = U1EP A j . Using the generalized :--Iorawetz estimates

(Lemmas 5,1 and 5.2) and (6.7), we have

#PC(E.1))

2: L!! ,min(lu I2,G(u)). dxdt
jEP Ix-cjISAllt-t,I+31l C(!IJ, R)(lt - tll + 1) 10g(lt - III + 2)

> L L r C(E,I)) dt
- jEP kEAj JJk (t + 1) log(t + 2) (6.10)

> L C(E,1))
- kES (tk + 1) log(tk + 2)'
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So. the desired result follows if we call estimate as #P:::: G(E,77). Let k E P and

P
k

= {j E P I j :::: k}. In the :\LKG case, by the finite propagation property and

the definition of P, ,ve have

E ~1 eJl·(u;tk)dx
U'EP B(c"R+lt,-L.1l

~ L r eN(U; tj)dx ~ #PkG(E, 1)),
jEP. JB(e, ,II)

(6.11)

where E(c, r) = {x E jRn Ilx - cl < r}. So #p is bounded. In the NLS case, using

Lemma 6.2 step by step, we obtain

E ~! IU(tkWdx
U,EP B(c,,1I+Alltj-L.1l

~ L 1 lu(tjWdx - #PkG2 //II ~ #PkG,/2,
jEP, 8(e,,1I)

so that #p is bonnded.

7. SPACE-TIME LOCALIZED ENERGY

(6.12)

D

(7.1)

In this section, we show that if the ST-norm is sufficiently large, there ('xists a

very long interval with small ST-norm, in which somewhere a certain amount of

energy is localized. The length of the interval is much larger than the spatial extent

of the localized energy, and the quantity of the ST-norm is smaller than that of the

localized energy.

Lemma 7.1. Let u be a global solution of (2.3) 01' (1.2) with EN(u) = E < . Let
V,c > 0 and 1II < 00. There exists v, = vI(E) > 0, N = N(E,v,/II,c) < 00 with

the following properties. If v :::: VI and llull(x;1) > N on some interval I, then ther"e
exist (S, T) C I, c E jRn and R E (1,00) such that IT - SI > i\I R and that for t = S

or t = T we have

Ilullfx;(s,T)) + Ilullk(s,T)) :::: v2
:::: r eN(u; t)dx,

J1x-cl<R

II (:~)c) L, < c.

Pr·oof. We divide I into subintervals Ij = (Tj_ l , Tj) such that 1)/2 :::: ll u ll(X;I,) ::::

77 := 770(E)/2 for any j. By Lemma 4.1, for any j, there exist tJ E I j , R' < G(E)

and Cj E jRnsuch that

(7.2)



Part II: Energy Scattering for :\LKG and NLS in R1 and R'2 42

\Ye may assume 11.' ~ 1. Now we set vl(E) := JCI (E)/2. By the finite propagation

property for I"LKG and by Lemma 6.2 for :\LS, there exists 1 ::s A < C(E) such

that for any t we ha\"e

(7.3)

1\0'" for each j, we divide Ii into subintervals J~ with k E P, C Z, such lhat J~ =
(S~_l> st), st = ti' lIull(x;Ji) + lIull(K;J~) ::s /1 and #P, < C(E, v). By Lemma 5.3,

we have some L < C(E.e) such that we have some Tl E (SLl> SL, + L(Si I - I,))
for k > 0 and Tl E (S~ - L(S~ - til· st) for k ::s 0 satisfying

II (~~12) Ill"' < e

Now let M' = M'(E, M,e) be a large constant satisfying

M'A-L>MA(L+l),

M'11.'- L > !II(R' + A(L+ 1)).

Suppose that for any kEPi we have

{
ISLt - S~I < M'(R' + AISLt - t,l), if k > 0,
ISLt - S~I < !II'(11.' + AIS~ - til), if k ::s O.

Then we ha\"e for any k E P"

Then, we have

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

By Lemma 6.1, there exists N = N(E, v, !II,e) such that if lIull(x:J) > N lh('n for

some j (7.8) does not hold. Thus, for this j, there exists som(' k E P, such that

(7.6) does not hold. Assume that k > O. Then, by (7.5), we have

S~ - Tt > st - Si_, - L(SL - t,)

~ M'(11.' + AISi_1 - til) - L(SLI - t,)

:::: M(11.' + A(L + 1)(SLt - ij))

~ M(11.' + AIT1- til)·

Thus we obtain the desired result with t = S := Tl, T := Si, c := c) and 11.
11.' + AITt - til. In the case k ::s 0, the argument is similar. 0
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8. SEPARATION OF THE LOCALIZED E ERGY

43

In this section. we show that we can separate the localized energy obtaincd in

tbe previous section. if its spatial extent is sufficiently small relati\'e to the lcngth

of tbe interval with tbe small ST-norm where the localization occurs. Rcmark that

tbe absolute size of the spatial cxtent of the localized energy might be ill fact \wy

large. For brevity, we consider only the case t = S in (7.1).

Lemma 8.1. Let u be a global solution of (2.3) or (1.2) with EI",,(lI) = E <
Assume that for some v > 0. c > 0, c E jRn, R > 1, and T > S > 0, we have

lI u lllx;(s,T» + lIu llk(s,T)) ::; v2
::; r e,y(u; S)d.r. (8.1)

J1x-cl<Jl

and

II (:~~)L< c (8.2)

We have some positive V2 = v2(E) and co = colE, v) such. I,hal, if II ::; 112 and

c ::; colE, v), then there exists a solution v of the free equation satisfying

v2

E,y(u - v; T) < E - 4' (8.3)

ELlv;T) < 2v2
, (8.4)

Ilvll(x;(T,oo» < C(E, v) (IT ~ SI) a, (8.5)

whel'e a is a positive constant dependent only all nand p.

Proof. By the finiteness of the energy, there exists some c' E jRn with d := Ie - c'1 <
C(E, v) such that

r e,y(u; S)dx ::; v2 /2.
J1x-c'1<2

Let v be the solution of the free equation satisfying

v(S) = xru(S),

v(S) = xru(S), in the NLKG case,

(8.6)

(8.7)

where Xr = h(2 - Ix - c'1/f) is a cut-off function (h is given in (2.'1)), and f E

(1, R + d) should be taken sucb that

Jx~e,y(v; S)d.'L = 1/
2 (8.8)

Such a choice of f is possible, since for f = 1 we have

(8.9)
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by (8.6), and for r = R + d \I'e have

/ Xh de ·(u:s)d.r:2: r e.~.(u:S)dr:2: v2, ( .10)
J1X-c'I<R d

by (8.1). Then \I'e lJa\'e

where

So, we have

a := Ilu(S)\7xrIlL' ::; Gil (xu~~) II L'

::; G(d) II (:~~) II L' < G(E, I/)E.

Edv; 5) ::; EN(v; 5) ::; / x~eN(u; S)dx + G(E, II)E

::; v2 + G(E, V)E.

(8.11)

(8.12)

(8.13)

So, taking Eo(E, II) sufficiently small. we have Edv; S) < 2112 Let UJ := U-"11. In a

similar way as above, we have

lI\7w(S)lIi, ::; 11(1 - xrl\7u(S)lIi, + G(E)(a + a2
). (8.14)

where a is the same as in (8.12). So, taking Eo = Eo(E, v) small again if necessary,

we have

EN(w;S)::; /(1- Ar)2eN (u;S)dx+G(E,v)E

::; / (1- x~)eN(u; S)dx + G(E, II)Eo

::; E - I} + G(E, V)Eo

::; E - v2 /2.

(8.15)

In the N"LKG case, by the decay property of the linear Klein-Gordon (sec, e.g., [9])

and the support property of "11, we have,

Ilv(t)IIB~~, ::; Glt - SI-n/2 (IIv(S)IIB~i + IIv(S)IIB~i)

(
r )n/2< Glt - SI-n/2E (v)1/2rn / 2 < G -- v

- L - It - SI '
(8.16)
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(8.17)

for any t E IR. \\"e obtain the same estimate for i\LS in a similar way. By the

interpolation inequalities and the Strichartz estimate, we obtain

II v ll(X;(T,oo» ~ CIIvlI~~~T,oo;B:o)ll'II~'(T,oo;B:")

~ G1'HII1'lli;;(T, »lIvlI~~Z;,~;B-\)

(
r ) "fJ(I--rl/2< G1'I-fJ+fJ~ __ 1'fJ(I-~)

- IT-SI

(
R+ 1 )nfJ(I-~)/2

~ G(E,1') IT- SI .

where So = aKP/q > 0" = p/q, SI = aK,-3(1-,) and fJ E (0,1) should bechoscu

such that (1 - fJ)so + fJSI > O. In the NLKG case, we obtain from the Slrichartz

etiOlate in the same way as in the proof of Lemma 3.1,

(8.18)

(8.20)

(8.21)

Then, by the energy identity, (3.2) and the duality bct,ween w(X) and (1\), wc havc

EN(w; T) = EN(w; S) + 1sT

2~(Ow + w + j(w), w)dt

=EN(w; S) +t' 2~(J(w) - j(u). w)dt

~ EN(w; S) + G (lIwllr~~l)lIwll(K;1) + Ilullr~:l)llulI(l<;I)) (8.19)

X Ilw-1wll(K;/)

~ EN(w: S) + G(E)1'p .

where I = (S, T) and (.,.) denotes the inner-product in L2(JRn). Since]J > 2, if we

set 1'2 = 1'2(E) sufficiently small, then we have G(E)1'P < 1'2/4 in thc last member

of (8.19) and \I'e obtain the desired result. In the ~LS case, similarly wc ha\'c

tEN(w; T) = EN(w; S) + is 2R(iw - t>w + j(w), 1V + iw)dt

= EN(w; S) + rT

2~(J(w) - j(u), -it>w + ij(u) + iw)dtis
~ EN(w; S) + G (1Iwllr~;ll)lIwlI(K;/) + IIv,lIr~;Jl)llulI(K;I))

x (1Iwll(K;1) + IIj(u) liLp(I XIR"») ,

where J = (S, T). By Holdcr's inequality, the complex interpolatioJl and thc Sobolcv

embedding, we have

Ilj(u)IIu(lxU(") ~ GllvWLpp(lXII!")

~ GllulI(K;l)llull~:,I(l;B~.,) ~ G(E).
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So we obtain EN(w; T) :::; EN(w; S)+C(E)vP and the desired result as in the ~LKG

~ 0

9. PERTURBATION ARGUME T

In this section, we show that if we can separate the wave component corresponding

to the localized energy as in the previous section. we can estimatr thr ST-norm of

the solution by the ST-norm of the remaining component, prodded the separated

wave component has decayed sufficiently in the sense of ST-norms. The idra and

the proof of the lemma below are essentially due to [3].

Lemma 9.1. Let u be a global solution of (2.3) or (1.2) with EN(u) = E <
Let v be a global solution of the fr'ee equation with ELlv) :::; 2E, and let w be the
global solution of the same equation as u and with the same initial data as u - v at

I, = O. FaT' any L < 00, there exists", = ",(E, L) > a such I.hal, if Ilwll(x;(o,oo)) < L

and Ilvll(x;(o,oo)) < "', we have Ilull(x;(o,oo)) < C(E, L).

Pmoj. By (3.5), we have

II v ll(l';(o,oo)) :::; C",,-2/PE2/p =: ",'. (!Jl)

Let "I E (0, "Io(E)). There exist a= To < T, < ... < TN < TN+, = 00 sn('h that

IIwll(x;(T,,1j+d) :::; "I and N'/Qr7:::; L.

Then, by Lemma 3.1 and (3.5), \I'e have

IIw ll(l';(1j,TH dl :::; C(E)r7'-2/P=: r(

(9.2)

(9.3)

Let f = u - v - w. Then \I'e have the integral equation

r(t) = fj(t) +l U(t - s)(J(w) - f(f + v + w))(s)ds, (9.4)

where f j is the solution of the free equation with the same initial data as r at I, = TJ·
By (3.7) and (3.3), we have for J = (Tj,T) with T > TJ ,

Ilfll(l';J) :::; IIfj ll(l';J) + CIIJ(w) - f(f + v + w)II(Y;1)

:::; IIfj ll(l';l) + C(11f + vll(l';1) + IIw ll(l';I))P-'lIv + fll(l';l)' (9.5)

;"Ioreover, since

1
1j+ 1

f H1 (t) = fj(t) + U(t - s)(J(w) - f(f + v + w))(s)ds,
T j

we have

(9.6)

IlfHdl(l';(TJ+"oo)) :::; IIfJII(l';(T"oo))

+ C(llf + vll(l';(1j,1j+I)) + IlwIIW;(1j,T,+I))y-'llv + f11(l';(1j,T,+I))' (9.7)
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Denote p) := IIfjll(l',(T},oo)) and qj(T) := 1IfIl(\·,(T,.T)). Then q)(T) is continuous with

respect to T and we have

Po = 0, q)(T)) = O. (9.8)

q)(T) ::; p) + Ct(qj(T) + ,,' + 17')P-t(q)(T) + ,,'), (9.9)

PHI::; Pj + Ct(q)(T)+t) + ,,' + 17')p-t(q)(T)+I) + ,,'), (9.10)

where Ct is the constant in (9.5) and (9.7). l\'ow we fix 77 so small that C t (317')P-t <
1/4. and we set" so small that we hm'e 2N + t,,' < 1( If ,,'::; q)(T) ::; 1)', we Itaw

from (9.9),

qj(T) ::; Pj + Ct(377')P-t (2q)(T)) ::; Pj + qj~T), (9.11)

so that qj(T) ::; 2pj' Now suppose 2p) < 77' . Then, by the continuity of q)(T), we

have qj(T)::; max(,,',2pj) < 77' for any T::; Tj+l • Then, from (9.10), we have

PHI::; Pj + C t (377
,),,-1 (max(,;;', 2pj) + ,;;') ::; max(,;;', 2p)). (9.12)

Thus we obtain Pj ::; 2j ,;;' < 77'/2 and qj(TH1 ) < 77' for any j ::; N. Thf'n, by tlte

Sobolev embedding, we have

Ilull(x,(o,oo)) ::; Cllull(l';(o,oo)) ::; CN77' ::; C(E, L). (9.13)

o

10. GLOBAL SPACE-TIME INTEGRABILITY

To obtain the scattering result, it suffices to show that any finite energy solution

has a finite global space-time norm. So, the following proposition is essentially the

main result of Part II. The strategy for the proposition is inspired by [3J.

Proposition 10.1, Let u be a global solution of (2.3) or' (1.2) with finite eneryy

EN(u) = E < Then we have

lIull(x,<l) < C(E). (10.1)

Proof. Here we use the induction argument on the size of EN(u) as in [3] and Part

I. For small energy data, the desired estimate can be easily obtained directly by the

Strichartz estimate as in Lemma 3.1. So, the proof will be finished if for auy E > 0

we can derive (10.1) for any solution u with EN(u) ::; E from the hypothesis that

we have (10.1) for any solution u with EN(u) ::; E - 0, where 0 = olE) > 0 satisfies

that

(10.2)

for any E' > O. For (10.2), it suffices that 0 is a positive continuous function of

E. Now, assume the induction hypothesis with 0 = v2 /4, where v = v(E) :=
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min(v, (E), v2(E), JEj2) is given by Lemmas 7.1 and .1. Suppose that u is a

solution satisfying EN(u) :::: E and Ilull(x;. l ~ 3B. \Ye will show that t}H're exists

some bound Bo < C(E) for B (Bo depends on the induction hypothrsis). Therr

exist To < T, such that lIull(x;(-oo,To)) > B, lIull(x;(To,Ttll > Band IllllI(x;(T"oo)) > B.
By the induction hypothesis, \I"e havr lIull(x:R) < C, (E) for any solution 1/ with

EN(u) :::: E - 5. Let K := K(E,C,(E)) be gin'n by Lemma 9.1. Thrn. thrre

exists M = M(E) such that the right hand side of (8.5) becomes smaller than K

if IT - SI > !IfR. Let c := co(E, v(E)) br giycn by Lemma 8.1. \'ow we can

use Lemma 7.1 on the interval (To,T,) if we assume B > N(E,v(E).M(E),c(E)).

Assume t = S in (7.1). Then, by Lemma 8.1, we ha\'e a solution v of thr frer

equation satisfying

EL(v) < 2v2 < E, EN(u - v;T) < E - 5, (10.3)

IIvll(x;(T.oo» < K. (lOA)

Now we can use the induction hypothesis on the solution IV of NLJ<G (or NLS)

with the same initial data as u - v at t = T. Then, by Lemma 9.1, we obtain

lIull(x;(T,oo» < C2(E). Since T :::: T" we obtain B :::: C2(E). In thr casr t = T in

(7.1), we obtain similarly that Ilull(x;(-oo,To)) < C2(E), provided B > N. Thus, we

have lIull(x;!!!) :::: Bo(E) := 3 ma.x(N, C2) for any solution u of (2.3) with EN(u) :::: E,
under the induction hypothesis. Thus we obtain the desired result.

o

11. SCATTERING

After we obtained the global space-time integrability (Proposition 10.1), it is easy

to derive the scattering result (see, e.g., [4, 8]). So, we merely state the results.

Theorem ILL Let m > 0, n:::: 2 and p > 1 + 4jn. Then, there exist homeomor­
phisms lV± on H' Ef) £2 with the following property. For any (<p, t/J) E H' Ef) £2, let

v be the solution to

{

Dv+m2v = 0,

(v(O),v(O)) = (<p,t/J),

and let u± be the global solution to

{

Du± + m2u± + lu±lv-I U ± = 0,

(u±(O),u±(O)) = IV±(<p,t/J).

Then we have

(ILl)

(11.2)

t~~oo II(v(t), v(t)) - (u±(t), u±(t))IIIIIE!lL2 = 0 (11.3)

MOI"eovel', this property uniquely determines W±. Thus the scattering opemtol' S =

Hit' W_ is also a homeomorphism on H' Ef) L2.
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Theorem 11.2. Let n :s; 2 and p > 1 + .!t/n. Then, there exi8t homeomorphisms

ll'± on HI with the following pmperty. FOI- any 'P E HI. let l' be Ihe solution to

{

ii, - ~v = O.

v(O) = 'P. (11.-1)

and let u± be the global solution to

{

iu'± - ~u± + lu±IP-I U ± = 0,

u±(O) = ll'±'P. (11.5)

Then we have

lim IIv(t) - u±(t)II 111 = O.
t--+±oo

(11.6)

Mor'eovel-, this pmperty uniquely deter'mines W±. Thus the scattering opel'atol' S =

W.;IW_ is also a homeomol7Jhism on HI
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