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1 Introduction

One of the most significant problems in theoretical physics is quantization of gravity. In quantum field

theory, if one tries to quantize gravity theory, there appear nonrenormalizable divergences. String

theory is a candidate for a consistent theory containing the quantum gravity: it is known that the first

quantization theory of the string is free from ultraviolet divergences since ultraviolet divergences can

be interpreted as infrared divergences. In addition to gravity, string theory contains rich physics, such

as dualities and physics of branes. While they play central roles in modern theoretical physics, they are

non-perturbative aspects of string theory, and it is not easy to deal with them in the first quantization

theory of the string. It is because the first quantization theory of the string is defined as a perturbation

theory around a fixed background. To develop the understanding of the non-perturbative aspects of

string theory, it would be necessary to provide a non-perturbative formulation of string theory.

String field theory is a field theoretic approach for a non-perturbative formulation of string theory.

As in ordinary quantum field theory, a guiding principle in string field theory is a gauge symmetry.

Gauge symmetry of string field theory is expected to be closely related to reproductions of the first

quantized theory of the string, and the consistency of string theory. Therefore, it will be important

to construct an action of string field theory and to understand structures of string field theory. The

structures of bosonic string field theories are well-understood, while those of superstring field theories,

especially of closed superstring field theories, are less understood. In this thesis, we focus on the

heterotic string, a type of the closed string with supersymmetry, and discuss the construction of an

action of heterotic string field theory.

Bosonic strings field theories

Structures of bosonic string field theories are well-understood. The structure of open bosonic string

field theory [1, 2] and closed bosonic string field theory [3–8] can be understood in a framework of

A∞-algebras [9–13] and L∞-algebras [14,15], respectively. In these theories, interactions of strings are

described by string products satisfying algebraic relations called A∞-relations for the open string and

L∞-relations for the closed string, and the gauge invariances follow from them. It is known that the

tree-level scattering amplitudes correctly reproduce those in string theory [8,16–19], which is provided

by an integration over the moduli space of Riemann surfaces.

Open superstring field theories

The understanding of the structure of open superstring field theory is developing remarkably. The

open superstring in the Ramond-Neveu-Schwarz formalism consists of the Neveu-Schwarz (NS) sector

and the Ramond sector. Recently, the first construction of an action including the both sectors is

provided [20]. Let us introduce various approaches towards the construction of a complete action of

open superstring field theory.

A superstring field theory which is a simple extension of bosonic open string field theory [1] was

proposed by Witten [21]. The string field in the Witten theory carries natural picture, −1 for the

NS sector and −1
2 for the Ramond sector, and belongs to the small Hilbert space which is a Hilbert

space we usually use in the description of the superconformal ghost sector in terms of the βγ ghosts.
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While this theory has a nonlinear gauge invariance including the Ramond sector algebraically, it is not

consistent since it suffers from singularities which come from collisions of certain local operators [22].

The modification of [21] was provided by [23, 24] where the string field carries picture number 0

for the NS sector and −1
2 for the Ramond sector. In this modified theory, it is necessary to use an

operator which decreases the picture number by 2, and there is a difficulty with the nontrivial kernel

of the operator. This modified theory also suffers from similar singularities to those in the Witten

theory: it is pointed out in [25] that finite gauge transformation is singular.

A consistent theory for the NS sector of the open superstring was provided by Berkovits [26] based

on the large Hilbert space, the Hilbert space naturally defined in the description of the superconformal

ghost sector in terms of ξ, η, and ϕ [27]. The Berkovits theory has non-polynomial interactions.

Unlike in the bosonic theory, the A∞-structure is not manifest in the Berkovits theory, which makes

the quantization of the Berkovits theory difficult [28–32]. The reproduction of the perturbative S-

matrix in superstring theory was checked for four- and five-point amplitudes [33–35], but have not

been considered to all orders. In [35], a consistent theory for the NS open string field which belongs

to the small Hilbert space and carries natural picture was provided by partial gauge fixing of the

Berkovits theory. This partially-gauge-fixed theory does not have manifest A∞-structure, as in the

Berkovits theory.

The equations of motions including the Ramond sector which are based on the large Hilbert space

were constructed in [36].1) These equations of motions can be obtained by imposing the constraint

on the equations of motions derived from a “pseudo action” which is written using two Ramond

string fields [37]. The Feynman rules which lead to the reproduction of the perturbative S-matrix in

superstring theory with four external legs were proposed in [37]. The Feynman rules were modified

in [38] so that the perturbative S-matrix in superstring theory with five external legs are reproduced.

A construction of actions for the NS open string with the A∞-structure was given by Erler,

Konopka, and Sachs in [39]. They provided a systematic construction of the string product satis-

fying the A∞-relations and some other suitable properties. Utilizing the string products, an action

was constructed in the same form as that in the bosonic theory. The same technique is used for

the construction of an equation of motion including the Ramond sector [40]. It was shown based

on the equation of motion with the A∞-structure that this A∞-theory including the Ramond sector

correctly reproduces the perturbative S-matrix in superstring theory at tree level [41]. Also, it was

shown in [42] that the A∞-theory is related to the Berkovits theory by partial gauge fixing and field

redefinition. The relations between the structures of the A∞-theory and the Berkovits theory are

well-investigated [43,44].

Recently, the first construction of a complete action of open superstring field theory, including both

the NS sector and the Ramond sector, was provided by Kunitomo and Okawa [20]. It is known that

one can write an appropriate kinetic term for the Ramond string field which is restricted to certain

subspace of the small Hilbert space [45–50]. In [20], starting with the Berkovits action, the complete

action which contains the full interaction including the Ramond string field was constructed. In [51],

the relation of the equation of motion in [20] and that in A∞-formulation [40] is discussed.

1) Also in [36], the action of open superstring field theory which can preserve d=8 Lorentz invariance or N=1 d=4

super Poincare invariance is provided.
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Heterotic string field theories

The structure of heterotic string field theory is less understood than that in boson theories and open

superstring field theory. The heterotic string in the Ramond-Neveu-Schwarz formalism consists of the

NS sector and the Ramond sector, as in the open superstring. The difficulty stems from the complexity

of the string products defining bosonic theories: while the string products in [1] consist of only 1- and

2-string products, those in [8] consist of an infinite number of string products. Let us introduce the

previous works on heterotic string field theory.

In [52], the structure of the Berkovits action was represented in terms of functionals of the string

field with a certain algebraic property, which we will call the WZW-like structure. This WZW-like

structure was generalized to the NS sector of the heterotic string, and an action of NS heterotic string

field theory was provided in [52], which correctly reproduces the partial construction [53]. We call

the formulation based on the WZW-like structure the WZW-like formulation. As in the Berkovits

theory, the quantization of the WZW-like theory for the heterotic string seems to be difficult, and

the reproduction of the perturbative S-matrix in superstring theory was checked only for four-point

amplitudes [54]. An action of NS-NS closed string field theory was also constructed in the WZW-like

formulation [55,56]. 2)

The equations of motions including the Ramond sector were constructed in [57, 58] based on the

large Hilbert space. As in the open superstring, these equations of motion can be obtained by imposing

the constraint on the equations of motions derived from a “pseudo action,” which is constructed

perturbatively in [57]. The Feynman rules which reproduce the perturbative S-matrix in superstring

theory were discussed in [59].

The construction of action for the NS heterotic string with the L∞-structure was given by Erler,

Konopka, and Sachs [60] in almost the same manner as that in the A∞-theory. A systematic construc-

tion of string products satisfying the L∞-relations and some other suitable properties is provided by

a natural extension of that of the A∞-theory. Utilizing the string products, actions are written in the

same form as those in bosonic theories. The same technique is used for the construction of an equation

of motion including the Ramond sector [40]. It was shown based on the equations of motion with the

L∞-structure that this L∞-theory including the Ramond sector correctly reproduces the perturbative

S-matrix in superstring theory at tree level [41]. Also, an action for the NS-NS closed string and an

equation of motion for type II closed string field theory were provided in [60] and [40], respectively.

While the on-shell equivalence of the L∞-theory and the WZW-like theory is discussed in [61], the

relation between the actions in both formulations remains to be understood.

The present thesis

An explicit construction of a complete action of heterotic string field theory is one of the remaining

tasks. In this thesis, as a first step toward a complete action, we explicitly construct an action of

heterotic string field theory up to quartic order in the Ramond string field, which is all-order in the

NS string field at each order in the Ramond string field.

2)The type II closed superstring in the Ramond-Neveu-Schwarz formalism consists of four sectors: the NS-NS sector,

the NS-R sector, the R-NS sector, and the R-R sector.
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The present thesis is organized as follows. In part I, we provide reviews of bosonic string field

theories and the A∞- and L∞-algebras. The A∞- and L∞-algebras are closely related to the gauge

symmetry of bosonic string field theories, and play important roles also for the construction of super-

string field theories, which is the subject of part II and part III. Open bosonic string field theory and

its algebraic structure called A∞-algebras are reviewed In section 2. Closed bosonic string field theory

and its algebraic structure called L∞-algebras are reviewed in section 3. We also introduce string

products defining bosonic string field theories, which are the constituents of superstring products

introduced in part II.

In part II, we provide the action for the NS sector which we will use as a starting point of

construction of an action including the Ramond sector. We first review two successful and popular

formulations: the A∞/L∞-formulation in section 4, and the WZW-like formulation in section 5.

Then in section 6, based on structures introduced in sections 4 and 5, we define the dual WZW-like

formulation: utilizing string products which are dual to those in the A∞/L∞-formulation, an gauge

invariant action is provided by almost the same procedure as WZW-like formulation. Section 6 is

based on the original work [62], in collaboration with H. Matsunaga.

Part III is a main part of the present thesis. We provide a construction of an action of heterotic

string field theory including the Ramond sector. In section 7, we briefly review the construction of

complete action of open superstring field theory. In section 8, starting with the dual WZW-like action

for the NS sector, we naturally extend it to the heterotic string, and provide an action of heterotic

string field theory up to quadratic order in the Ramond string field. While the complete action of

open superstring field theory is quadratic order in the Ramond string field, it is not the case for the

heterotic string: interaction terms of higher order in the Ramond string field will be necessary. In

section 9, we construct an action of heterotic string field theory at quartic order in the Ramond string

field. Note that our action is all-order in the NS string field at each order in the Ramond string field.

The results in sections 8 and 9 are new results, based on the collaboration work with H,Kunitomo.

Finally, section 10 is devoted to a conclusion and discussions. Several appendices are provided to

supply details.

Concluding with the introduction, we should mention to another appealing construction of the

actions for heterotic and type II strings provided by Sen [63–65]. The kinetic term of the action

is written using an extra string field, which decouples from the interacting part of the theory. This

characteristic kinetic term is used in a construction of a covariant action for type IIB supergravity [66].

It will be important to understand the relation of this action and our action.
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Part I

Bosonic string field theories and

A∞/L∞-algebras

In part I, we introduce preliminaries on A∞- and L∞-algebras. They are closely related to the

gauge symmetry of bosonic string field theories, and play important roles also for the construction

of superstring field theories, which is the subject of part II and part III. We also introduce string

products MB for open string, and LB for closed string, which define bosonic string field theories, and

which are the constituents of superstring products introduced in part II.

2 Open bosonic string field theory and A∞-algebra

In this section we review open bosonic string field theory and A∞-algebras. In section 2.1, we review

open bosonic string field theory construct by Witten [1], whose interaction is cubic and is described by

the star product. The algebraic relations of the BRST operator and the star product, which guarantee

the gauge invariance of the theory, can be understood through a more general framework called A∞-

algebras [2,9–13]. We define A∞-algebras in terms of coalgebras in section 2.2, and write the Witten’s

open bosonic string field theory in terms of the A∞-algebras in section 2.3. We also provide open

bosonic string field theory whose interaction is described by general cyclic A∞-products, which we call

“open string with stubs”, in section 2.4.

2.1 Witten’s open bosonic string field theory

The open string is described by a holomorphic sector, which consists of the matter sector and the

reparameterization ghost sector in terms of b(z) and c(z), The string field Ψ of bosonic open string

field theory is a Grassmann-odd state with ghost number 1. For a pair of string fields, we use the

BPZ-inner product

⟨A,B⟩ = ⟨A|B⟩ (2.1)

which satisfies

⟨A,B⟩ = (−)ϵ(A)ϵ(B)⟨B,A⟩, (2.2)

where ϵ(A) denotes the Grassmann parity of A. Because of the anomaly in the bc reparameterization

ghost sector, the inner product ⟨A,B⟩ vanishes unless the sum of the ghost number of A and B equals

to 3.

The kinetic term for Ψ is given by

S =− 1

2
⟨Ψ, QΨ⟩, (2.3)
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where Q is the BRST operator which is nilpotent and BPZ-odd:

Q2 = 0, (2.4)

⟨QA,B⟩ = (−)ϵ(A)+1⟨A,QB⟩. (2.5)

Note that Q is Grassmann odd and ϵ(QA) = ϵ(A) + 1. The equation of motion and the gauge

transformation of this kinetic term are given by

E.O.M. : QΨ = 0, Gauge transformation : δΨ = QΛ, (2.6)

where Λ is a gauge parameter which is Grassmann even and carries ghost number 0. The equation

of motion and a gauge transformation correspond to the physical state condition and a change of the

choice of the representative of BRST cohomology in the first-quantization of strings.

The action of bosonic string field theory constructed by Witten [1] consists of the kinetic term

(2.3) and the cubic interaction which is described by the star product A∗B 3) which is associative and

cyclic:

(A ∗B) ∗ C = A ∗ (B ∗ C), (2.7)

⟨A ∗B,C⟩ = ⟨A,B ∗ C⟩, (2.8)

and on which Q acts as a derivation

Q(A ∗B) = (QA) ∗B + (−)ϵ(A)A ∗QB. (2.9)

Note that ϵ(A ∗B) = ϵ(A) + ϵ(B). The interacting action is given by

S =− 1

2
⟨Ψ, QΨ⟩ − 1

3
⟨Ψ,Ψ ∗Ψ⟩. (2.10)

The variation of the action is taken as

δS = −⟨δΨ, QΨ+Ψ ∗Ψ⟩, (2.11)

Then the equation of motion reads

QΨ+Ψ ∗Ψ = 0. (2.12)

The action is invariant under the gauge transformation

δΨ = QΛ +Ψ ∗ Λ− Λ ∗Ψ = QΛ + [[Ψ,Λ]]∗, (2.13)

where we defined the graded commutator 4) using the star product as

[[A,B]]∗ = A ∗B − (−)ϵ(A)ϵ(B)B ∗A. (2.15)

3) The star product of two open string fields is defined as a glueing of the right half of the first string and the left half

of the second string. It can be represented using conformal maps. See appendix A.
4) In this thesis we denote the graded commutator by [[, ]]: for operators A and B,

[[A,B]] = AB − (−)ABBA. (2.14)

In the present case, to denote that this graded commutator is with respect to the star product, we write ∗ in a superscript.
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The gauge invariance follows form the properties of Q and the star product.

The gauge symmetry of this theory can be fixed using the Batalin-Vilkovisky formalism [69, 70],

which was done in [67, 68] 5). It is shown [16] the tree-level scattering amplitudes of this theory

correctly reproduce those in the world-sheet theory, which are given by integrations over the moduli

spaces of open Riemann surfaces.

2.2 A∞-algebras

The properties which guarantees the gauge invariance of the Witten theory, namely (2.4), (2.5), (2.7),

(2.8), and (2.9) can be understood as an A∞-algebra [2, 9–13]. In this subsection we provide the

definition of cyclic A∞-algebras in terms of coalgebras. See also [72,73], where the general properties

of classical string field theory are discussed based on the A∞-algebras. We also define shifted structures

of the A∞-products and introduce their important properties.

2.2.1 Coalgebra and multilinear maps

Tensor algebras as coalgebras

Let C be a set. When a coproduct ∆ : C → C ⊗ C is defined on C and it is coassociative

(∆⊗ 1l)∆ = (1l⊗∆)∆, (2.16)

then (C,∆) is called a coalgebra. For open string, C corresponds to the tensor algebra T (H) of the

Z2-graded vector space H. In the language of open string field theory, H is the state space for the

string field, and the Z2-grading, called degree, equals to the Grassmann parity plus one:

deg(A) ≡ ϵ(A) + 1 mod Z2. (2.17)

We can construct a tensor algebra T (H) by

T (H) = H⊗0 ⊕H⊗1 ⊕H⊗2 ⊕ · · · . (2.18)

We can define a coassociative coproduct ∆ : T (H) → T (H) ⊗ T (H) and a set (T (H),∆) gives

coalgebra. The action of ∆ on Ψ1 ⊗ ...⊗Ψn ∈ H⊗n is given by

∆(Ψ1 ⊗ ...⊗Ψn) =
n∑

k=0

(Ψ1 ⊗ ...⊗Ψk)⊗ (Ψk+1 ⊗ ...⊗Ψn). (2.19)

We can naturally define a projector πn : T (H)→ H⊗n whose action on Ψ ∈ T (H) is given by

πnΨ̂ = Ψ̂n, where Ψ̂ =

∞∑
k=1

Ψ̂k ∈ T (H), Ψ̂k ∈ H⊗k. (2.20)

5)See also a helpful review paper of the Batalin-Vilkovisky formalism [71]. The gauge fixing of the Witten’s open

bosonic string field theory is contained as an example also in this paper.
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Let H0 be the degree zero part of H. The following geometrical series of Ψ ∈ H0 gives a special

element of T (H) called a group-like element:

1

1−Ψ
= 1 +Ψ +Ψ⊗Ψ +Ψ⊗Ψ⊗Ψ + · · · ∈ T (H), (2.21)

which satisfies

∆
1

1−Ψ
=

1

1−Ψ
⊗ 1

1−Ψ
. (2.22)

Multi-linear maps

From a multilinear map bn : Hn → H, a map bn : H⊗n → H is naturally defined by

bn(Ψ1 ⊗Ψ2 ⊗ ...⊗Ψn) = bn(Ψ1,Ψ2, ...,Ψn). (2.23)

The tensor product of two multilinear maps A : H⊗k → H⊗l and B : H⊗m → H⊗n, A⊗B : H⊗k+m →
H⊗l+n can also be defined naturally by

A⊗B(Ψ1 ⊗ ...⊗Ψk+m) = (−)B(Ψ1+...+Ψk)A(Ψ1 ⊗ ...⊗Ψk)⊗B(Ψk+1 ⊗ ...⊗Ψk+m). (2.24)

The identity operator on H⊗n is defined by

In = I⊗ I⊗ ...⊗ I. (2.25)

Multilinear maps with degree 1 and 0 naturally induce the maps from T (H) to T (H). They are

called a coderivation and a cohomomorphism respectively, and are the main focus of the rest of this

subsection.

Multi-linear maps as a coderivation

A linear operator b : C → C with degree one is called coderivation if it satisfies

∆b = (b⊗ 1l)∆ + (1l⊗ b)∆. (2.26)

From a map bn : H⊗n → H which carries the degree one, the coderivation bn : T (H) → T (H) is

naturally defined by

bnΨ̂N =

N−n∑
k=0

(Ik ⊗ bn ⊗ IN−n−k)Ψ̂N , Ψ̂N ∈ H⊗N≥n ⊂ T (H), (2.27)

and bn vanishes when acting on H⊗N<n. We will call bn a n-coderivation . The n-coderivation bn

satisfies

π1bnΨ̂ = π1bnΨ̂n, where Ψ̂ =

∞∑
k=1

Ψ̂k ∈ T (H), Ψ̂k ∈ H⊗k. (2.28)

The explicit actions of the one-coderivation b1 and the two-coderivation b2 is given by

b1 : 1 → 0

Ψ1 → b1(Ψ1)

Ψ1 ⊗Ψ2 → b1(Ψ1)⊗Ψ2 + (−)deg(Ψ1)deg(b1)Ψ1 ⊗ b1(Ψ2)

Ψ1 ⊗Ψ2 ⊗Ψ3 → b1(Ψ1)⊗Ψ2 ⊗Ψ3 + (−)deg(Ψ1)deg(b1)Ψ1 ⊗ b1(Ψ2)⊗Ψ3

+(−)(deg(Ψ1)+deg(Ψ2))deg(b1)Ψ1 ⊗Ψ2 ⊗ b1(Ψ3),

(2.29)
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b2 : 1 → 0

Ψ1 → 0

Ψ1 ⊗Ψ2 → b2(Ψ1,Ψ2)

Ψ1 ⊗Ψ2 ⊗Ψ3 → b2(Ψ1,Ψ2)⊗Ψ3 + (−)deg(Ψ1)deg(b2)Ψ1 ⊗ b2(Ψ2,Ψ3).

(2.30)

Given two coderivations bn and cm which are derived from bn : H⊗n → H and cm : H⊗m → H
respectively, the graded commutator [[bn, cm]] becomes the coderivation derived from the map [[bn, cm]] :

H⊗n+m−1 → H which is defined by

[[bn, cm]] =
n−1∑
k=0

bn(Ik ⊗ cm ⊗ In−k−1)− (−)deg(bn)deg(cm)
m−1∑
k=0

cm(Ik ⊗ bn ⊗ Im−k−1) (2.31)

The action of the coderivation on the group-like element is given by

bn
1

1−Ψ
=

1

1−Ψ
⊗

(
π1bn

1

1−Ψ

)
⊗ 1

1−Ψ
=

1

1−Ψ
⊗ bn(Ψ⊗n)⊗

1

1−Ψ
. (2.32)

Multilinear maps as a cohomomorphism

Given two coalgebras C,C ′, a cohomomorphism f : C → C ′ is a map of degree zero satisfying

∆f = (f ⊗ f)∆. (2.33)

A set of degree zero multilinear maps {fn : H⊗n → H′}∞n=0 naturally induces a cohomomorphism

f : T (H) → T (H′), which we denote as f = {fn}∞n=0. Its action on Ψ1 ⊗ · · · ⊗ Ψn ∈ H⊗n ⊂ T (H) is

defined by

f(Ψ1 ⊗ · · · ⊗Ψn) =
∑
i≤n

1≤k1<···<ki=n

1

1− f0
⊗ fk1(Ψ1, . . . ,Ψk1)⊗

1

1− f0
⊗ fk2−k1(Ψk1+1, . . . ,Ψk2)⊗

1

1− f0
⊗

· · · ⊗ 1

1− f0
⊗ fki−ki−1

(Ψki−1+1, . . . ,Ψn)⊗
1

1− f0
. (2.34)

Its explicit actions are given as follows:

f : 1 → 1
1−f0

Ψ → 1
1−f0 ⊗ f1(Ψ)⊗ 1

1−f0
Ψ1 ⊗Ψ2 → 1

1−f0 ⊗ f1(Ψ1)⊗ 1
1−f0 ⊗ f1(Ψ2)⊗ 1

1−f0 + 1
1−f0 ⊗ f2(Ψ1,Ψ2)⊗ 1

1−f0 .

(2.35)

One of the important property of a cohomomorphism is its action on the group-like element:

∆f
( 1

1−Ψ

)
= (f ⊗ f)∆

1

1−Ψ
= (f ⊗ f)

( 1

1−Ψ
⊗ 1

1−Ψ

)
=

(
f

1

1−Ψ

)
⊗

(
f

1

1−Ψ

)
. (2.36)

We can see that the cohomomorphisms preserves the group-like element : f 1
1−Ψ = 1

1−Ψ′ . Then,

Ψ′ = π1f
1

1−Ψ and one can write

f
1

1−Ψ
=

1

π1f
1

1−Ψ
. (2.37)
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2.2.2 Cyclic A∞-algebra

Cyclic A∞-algebra (H,M, ω)

Let H be a graded vector space and T (H) be its tensor algebra. A weak A∞-algebra (H,M) is a

coalgebra T (H) with a coderivation M = M0 +M1 +M2 + ... satisfying

(M)2 = 0. (2.38)

We denote the collection of the multilinear maps {Mk}k≥0 also by M. In particular, if M0 = 0,

(H,M) is called an A∞-algebra. In the case of an A∞-algebra, the part of (2.38) that correspond to

an n-fold multilinear map H⊗n → H is given by

Mn ·M1 +Mn−1 ·M2 + · · ·+M2 ·Mn−1 +M1 ·Mn = 0. (2.39)

We can act it on B1 ⊗B2 ⊗ ...⊗Bn ∈ H⊗n to get the A∞ relations for the multilinear maps {Mk}:

0 =
∑

i+j=n+1

n−i∑
k=0

Mj(B1, ..., Bk,Mi(Bk+1, . . . , Bk+i), Bk+i+1, . . . , Bn). (2.40)

We can define an inner product ⟨A,B⟩ : H⊗2 → C satisfying the same property as (2.2). Given an

operator On, we can define its BPZ-conjugation O†n as follows 6):

⟨B1,On(B2, ..., Bn+1)⟩ = (−)deg(On)(deg(B1)+1)+deg(B2)+...+deg(Bn)⟨O†n(B1, ...Bn), Bn+1⟩. (2.43)

A set (T (H),M, ω) is called cyclic A∞-algebra if each Mn is BPZ-odd:

M †n = −Mn. (2.44)

The Maurer-Cartan element for an A∞-algebra (H,M) is given by

F(Ψ) := π1M
1

1−Ψ
=M1(Ψ) +M2(Ψ,Ψ) +M3(Ψ,Ψ,Ψ) + · · · . (2.45)

The Maurer-Cartan equation for an A∞-algebra (H,M) is given by F(Ψ) = 0, which correspond to

the equation of motion in string field theory based on the A∞-algebra(H,M).

A∞-structure of the shifted product

We can define the shifted structure of A∞-products M, shifted by some field G with even degree,

by

Mn,G(B1, ..., Bn) = π1M
( 1

1− G
⊗B1 ⊗

1

1− G
⊗ ...⊗ 1

1− G
⊗Bn ⊗

1

1− G
)
. (2.46)

6) We can define an inner product ⟨A,B⟩ : H⊗2 → C using the graded symplectic form ⟨ω| : H⊗2 → C satisfying

⟨ω|A⊗B = (−)deg(A)deg(B)+1⟨ω|B ⊗A, by:

⟨A,B⟩ = (−)deg(A)⟨ω|A⊗B. (2.41)

Then, BPZ-conjugation O†
n of the operator On is defined by

⟨ω|I⊗On = ⟨ω|O†
n ⊗ I. (2.42)

12



The BPZ properties of the shifted products follow from the original products M: if M is BPZ-odd,

Mn,G is also cyclic:

⟨B1,Mn,G(B2, ..., Bn+1)⟩ = (−)deg(B1)+deg(B2)+...+deg(Bn)⟨Mn,G(B1, B2, ..., Bn), Bn+1⟩. (2.47)

One important property of the shifted structure is that the products M shifted by G (2.46) satisfy

the A∞-relations

0 =

n∑
i=1

n−i∑
k=0

Mn−i+1,G(B1, ..., Bk,Mi,G(Bk+1, ..., Bk+i), Bk+i+1, ..., Bn) (2.48)

if G is a solution for the Maurer-Cartan equation for M:

F(G) = π1M
1

1− G
= 0. (2.49)

To show (2.48), let us consider the action of coderivation M on 1
1−G ⊗B1⊗ 1

1−G ⊗ ...⊗
1

1−G ⊗Bn⊗ 1
1−G :

M
( 1

1− G
⊗B1 ⊗

1

1− G
⊗ ...⊗ 1

1− G
⊗Bn ⊗

1

1− G
)

=

n∑
k=0

1

1− G
⊗B1 ⊗

1

1− G
⊗ ...⊗Bk ⊗

1

1− G
⊗

(
π1M

1

1− G
)
⊗ 1

1− G
⊗Bk+1 ⊗ ...⊗Bn ⊗

1

1− G

+
n∑

i=1

n−i∑
k=0

1

1− G
⊗B1 ⊗

1

1− G
⊗ ...⊗ 1

1− G
⊗

(
π1M

( 1

1− G
⊗Bk+1 ⊗

1

1− G
⊗ ...⊗Bk+i ⊗

1

1− G
))

⊗ 1

1− G
⊗ ...⊗ 1

1− G
⊗Bn ⊗

1

1− G
. (2.50)

Acting π1M on both sides and using M2 = 0, one can obtain

0 =
n∑

k=0

Mn+1,G(B1, ..., Bk,F(G), Bk+1, ...Bn)

+

n∑
i=1

n−i∑
k=0

Mn−i+1,G(B1, ..., Bk,Mi,G(Bk+1, ..., Bk+i), Bk+i+1, ..., Bn). (2.51)

Thus, it is shown from (2.51) that the shifted products (2.46) satisfy the A∞-relations (2.48) if G is a

solution for the Maurer-Cartan equation (2.49).

Another important property is that the G-shifted 1-product M1,G annihilates the Maurer-Cartan

element F(G) for arbitrary G with even degree. It directly follows from M2 = 0:

M1,G(F(G)) = π1M
( 1

1− G
⊗

(
π1M

1

1− G
)
⊗ 1

1− G

)
= π1MM

( 1

1− G
)
= 0. (2.52)

Generally, the gauge transformation is generated by the operator which annihilates the equation of

motion. Since the equation of motion is given by the Maurer-Cartan element,M1,G generate the gauge

transformation.
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2.3 Coalgebraic representation

In this subsection we see that the Witten theory can be written in terms of the A∞-algebra. We define

the degree of the string fields as Grassmann parity plus one:

deg(A) ≡ ϵ(A) + 1 mod Z2. (2.53)

For instance, Ψ is degree even. We define 2-string product m2 by

m2(A,B) = (−)deg(A)A ∗B. (2.54)

Q and m2 carries degree 1: since ϵ(QA) = ϵ(A) + 1 and ϵ(A ∗B) = ϵ(A) + ϵ(B),

deg(QA) = deg(A) + 1, deg(m2(A,B)) = deg(A) + deg(B) + 1. (2.55)

In terms of the degree, the symmetric properties of the inner product and the cyclicity of Q and m2

are written as

⟨A,B⟩ = (−)(deg(A)+1)(deg(B)+1)⟨B,A⟩, (2.56)

⟨QA,B⟩ = (−)deg(A)⟨A,QB⟩, (2.57)

⟨A,m2(B,C)⟩ = (−)deg(A)+deg(B)⟨m2(A,B), C⟩. (2.58)

The properties of Q and the star product (2.4), (2.9), and (2.7) can be written using m2 as

0 = Q2, (2.59)

0 = Qm2(A,B) +m2(QA,B) + (−)deg(A)m2(A,QB), (2.60)

0 = m2(m2(A,B), C) + (−)deg(A)m2(A,m2(B,C)). (2.61)

They are the A∞-relations (2.40) with the products M1 = Q,M2 = m2,Mn≥3 = 0. Introducing a

one-coderivation Q derived from Q, and a two-coderivation m2 derived from m2, they can be written

as

0 = Q2, (2.62)

0 = Qm2 +m2Q, (2.63)

0 = m2m2. (2.64)

Finally we define

MB = Q+m2, (2.65)

and they can be summarized into the nilpotency of MB:

(MB)2 = 0. (2.66)

The action in terms of m2 is written as

S = −1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,m2(Ψ,Ψ)⟩, (2.67)
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and its variation is taken as

δS = −⟨δΨ,FB(Ψ)⟩, (2.68)

where FB(Ψ) is the Maurer-Cartan element defined by

FB(Ψ) = π1M
B 1

1−Ψ
= QΨ+m2(Ψ,Ψ). (2.69)

The equation of motion correspond with the Maurer-Cartan equation

FB(Ψ) = 0, (2.70)

We define the shifted BRST operator QΨ by

QΨB =MB
1,Ψ(B) = QΛ +m2(Ψ,Λ) +m2(Λ,Ψ) = QΛ + [[Ψ, B]]∗. (2.71)

Note that

m2(A,B) + (−)deg(A)deg(B)m2(B,A) = (−)deg(A)A ∗B + (−)deg(A)deg(B)+deg(B)B ∗A

= (−)ϵ(A)+1
(
A ∗B − (−)ϵ(A)ϵ(B)B ∗A

)
= (−)ϵ(A)+1[[A,B]]∗. (2.72)

Since (MB)2 = 0, this shifted BRST operator QΨ annihilate the Maurer-Cartan element FB(Ψ):

QΨFB(Ψ) = 0, (2.73)

and QΨ generates the gauge transformation

δΨ = QΨ(Λ). (2.74)

To write the action in terms of MB, we introduce a parameter t ∈ [0, 1] and t-parameterized field

Ψ(t) satisfying Ψ(0) = 0 and Ψ(1) = Ψ, which is a path connecting 0 and the string field Ψ in the

space of string fields. Using this Ψ(t), the action can be written as

S = −⟨Ψ, 1
2
QΨ+

1

3
m2(Ψ,Ψ)⟩

= −
∫ 1

0
dt ∂t⟨Ψ(t),

1

2
QΨ(t) +

1

3
m2(Ψ(t),Ψ(t))⟩

= −
∫ 1

0
dt ⟨∂tΨ(t), QΨ(t) +m2(Ψ(t),Ψ(t))⟩

= −
∫ 1

0
dt ⟨∂tΨ(t), π1M

B 1

1−Ψ(t)
⟩. (2.75)

In the third line we act ∂t and use the cyclicity of Q and m2 to move ∂tΨ(t) to the first slot of the

inner product. Note that t-dependence is topological since the equation of motion does not depend

on t.
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2.4 Open bosonic string field theory with stubs

We can construct a gauge-invariant action of open bosonic string field theory in terms of more general

cyclic A∞-products [2]. Let us consider A∞-products {MB
k }k≥1 where MB

1 = Q and MB
n carries ghost

number 2− n, and they are cyclic

⟨B1,Mn(B2, ..., Bn, Bn+1)⟩ = (−)deg(B1)+...+deg(Bn)⟨Mn(B1, B2, ..., Bn), Bn+1⟩. (2.76)

We denote a coderivation derived from MB
k by MB

k , and define MB by

MB =

∞∑
n=1

MB
n = MB

1 +MB
2 +MB

3 + · · · . (2.77)

The A∞-relations can be written by

(MB)2 = 0. (2.78)

Some lowest order of the A∞-relations read

0 = Q2, (2.79)

0 = QMB
2 (A,B) +MB

2 (QA,B) + (−)deg(A)MB
2 (A,QB), (2.80)

0 = QMB
3 (A,B,C) +MB

2 (QA,B,C) + (−)deg(A)MB
2 (A,QB,C) + (−)deg(A)+deg(B)MB

2 (A,B,QC)

+MB
2 (M

B
2 (A,B), C) + (−)deg(A)MB

2 (A,M
B
2 (B,C)). (2.81)

Note that MB = Q+m2 is the special case of this general class of products. A typical realization of

MB
2 is the open string star product with “stubs” attached to each of the inputs and the output:

MB
2 (Ψ1,Ψ2) = (−)deg(A)e−L0

(
(e−L0Ψ1) ∗ (e−L0Ψ2)

)
. (2.82)

The Feynman diagrams with this product and propagators do not cover the whole moduli space. A

set of products {MB
k }k≥3 which cover the missing regions can be defined by the decomposition of the

moduli space of punctured Riemann surfaces, in almost the same manner as the closed string products.

We refer to such general A∞-products as open string with stubs. It is known that thus defined string

products naturally satisfy the A∞-relations [17,18].

Utilizing {MB
k }k≥1, the gauge-invariant action can be written as

S = −1

2
⟨Ψ, QΨ⟩ −

∞∑
n=2

1

n+ 1
⟨Ψ,MB

n (

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ)⟩

= −
∞∑
n=1

1

n+ 1
⟨Ψ,MB

n (

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ)⟩

= −
∫ 1

0
dt ⟨∂tΨ(t), π1M

B 1

1−Ψ(t)
⟩. (2.83)

Utilizing the cyclicity of Mn, its variation is taken as

δS = −⟨δΨ, π1MB 1

1−Ψ
⟩ = −⟨δΨ,FB(Ψ)⟩. (2.84)
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We define the shifted BRST operator QΨB = MB
1,Ψ(B). Since QΨ annihilate the Maurer-Cartan

element FB(Ψ), this action is invariant under the gauge transformation

δΨ = QΨΛ

=MB
1,Ψ(Λ)

= QΛ +M2(Ψ,Λ) +M2(Λ,Ψ) +M2(Ψ,Ψ,Λ) +M3(Ψ,Λ,Ψ) +M3(Λ,Ψ,Ψ) + · · · . (2.85)

The gauge invariance follows from the A∞-relations of MB.

In terms of MB, one can find that the action, the equation of motion, and the gauge transformation

are written using the same structure as those with the MB = Q+m2:

S = −
∫ 1

0
dt ⟨∂tΨ(t), π1M

B 1

1−Ψ(t)
⟩, (2.86)

δS = −⟨δΨ,FB(Ψ)⟩ = −⟨δΨ, π1MB 1

1−Ψ
⟩, (2.87)

δΨ = QΨΛ = π1M
B
( 1

1−Ψ
⊗ Λ⊗ 1

1− ψ
)
. (2.88)

These expressions are common with string field theories based on the cyclic A∞-products with certain

quantum number(s). We will see in section 4 that the NS open string field theory can be formu-

lated on the basis of the cyclic A∞-products, and the action, the equation of motion, and the gauge

transformation are written in the same form.
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3 Closed bosonic string field theory and L∞-algebra

In this section, we provide brief reviews of bosonic closed string field theory, whose construction [3–7]

was completed by Zwiebach in [8], and the L∞-algebras [8, 14,15].

3.1 Zwiebach’s Closed bosonic string field theory

The string field Ψ of bosonic closed string field theory is a Grassmann even state with ghost number

2 which is annihilated by b−0 = b0 − b̄0 and L−0 = L0 − L̄0:

b−0 Ψ = 0, L−0 Ψ = 0, (3.1)

where b0, b̃0, L0, and L̃0 are the zero modes of the b ghost in the holomorphic sector, the b̃ ghost

in the antiholomorphic sector, the energy-momentum tensor T (z) in the holomorphic sector, and the

energy-momentum tensor T̃ (z̄) in the antiholomorphic sector, respectively. For the state satisfying

(3.1) we use the inner product

⟨A,B⟩ = ⟨A|c−0 |B⟩, (3.2)

where c−0 = 1
2(c0− c̄0) and ⟨A|B⟩ is the BPZ inner product. c0 and c̃0 are the zero modes the c ghost in

the holomorphic sector and the c̃ ghost in the antiholomorphic sector, respectively. This inner product

satisfies

⟨A,B⟩ = (−)(A+1)(B+1)⟨B,A⟩. (3.3)

For the closed string, we define the degree to be equal to Grassmann parity, Here and in what follows

a state in the exponent of (−) represents its degree, or equivalently its Grassmann parity. Because of

the anomaly in the conformal ghost sector, the inner product ⟨A,B⟩ vanishes unless the sum of the

ghost number of A and B equals to 5.

The kinetic term for Ψ is given by

S =− 1

2
⟨Ψ, QΨ⟩, (3.4)

where Q is the BRST operator which is nilpotent and BPZ-odd:

Q2 = 0, (−)A⟨QA,B⟩ = ⟨A,QB⟩. (3.5)

The equation of motion and a gauge transformation correspond to the physical state condition and a

change of the choice of the representative of BRST cohomology in the first-quantization of strings:

E.O.M. : QΨ = 0, Gauge transformation : δΨ = QΛ, (3.6)

where Λ is a gauge parameter which is Grassmann odd, carries ghost number 1, and is annihilated by

b−0 = b0 − b̄0 and L−0 = L0 − L̄0.

The cubic and higher interaction vertices are described by the string products [Ψ, ...,Ψ] which are

graded symmetric upon the interchange of the arguments and cyclic:

[Bσ(1), . . . , Bσ(k)] = (−)σ({B})[B1, . . . , Bk], (3.7)

⟨B1, [B2, ..., Bn+1]⟩ = (−)B1+B2+...+Bn⟨[B1, B2, ..., Bn], Bn+1⟩ (3.8)
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where σ denote the permutation from {1, ..., n} to {σ(1), ..., σ(n)}, (−)σ({B}) is the sign factor of the

permutation from {B1, ..., Bn} to {Bσ(1), ..., Bσ(n)}, and we write [B] = QB. The string products

satisfy the following relation called the L∞-relations:

0 =
∑
σ

n∑
m=1

(−)σ({B}) 1

m!(n−m)!
[ [Bσ(1), . . . , Bσ(m)], Bσ(m+1), . . . , Bσ(n)], (3.9)

A few orders of (3.9) read

0 = Q2, (3.10)

0 = Q[B1, B2] + [QB1, B2] + (−)B1 [B1, QB2], (3.11)

0 = Q[B1, B2, B3] + [QB1, B2, B3] + (−)B1 [B1, QB2, B3] + (−)B1+B2 [B1, B2, QB3]

+ [[B1, B2], B3] + (−)B3B2 [[B1, B3], B2] + (−)B1 [B1, [B2, B3]]. (3.12)

In particular (3.12) means that the deviation of the associativity of the 2-product is compensated by

the BRST variation of the 3-product. The interacting action is given by

S = −1

2
⟨Ψ, QΨ⟩ −

∞∑
n=2

1

(n+ 1)!
⟨Ψ, [

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ]⟩

= −
∞∑
n=1

1

(n+ 1)!
⟨Ψ, [

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ]⟩. (3.13)

Note that the n-string product carries ghost number −2n+ 3.

The L∞-relations of the string products are closely related to the gauge invariance. Utilizing their

commutativity and cyclicity, the variation of the action can be taken as

δS = −
∞∑
n=1

1

n!
⟨δΨ, [

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ]⟩, (3.14)

and the equation of motion is given by

∞∑
n=1

1

n!
[

n︷ ︸︸ ︷
Ψ, ...,Ψ] = 0. (3.15)

The action is invariant under the gauge transformation

δΨ =

∞∑
m=0

1

m!
[

m︷ ︸︸ ︷
Ψ, ...,Ψ,Λ]. (3.16)

The gauge invariance follows from the cyclicity and the L∞-relations:

δS = −
∞∑
n=1

1

n!
⟨δΨ, [

n︷ ︸︸ ︷
Ψ, ...,Ψ]⟩ = −

∞∑
n=1

1

n!

∞∑
m=0

1

m!
⟨Λ, [[

n︷ ︸︸ ︷
Ψ, ...,Ψ],

m︷ ︸︸ ︷
Ψ, ...,Ψ]⟩ = 0. (3.17)

In addition to the gauge invariance, the L∞-relations would be important also for the reproduction

of the scattering amplitudes in the first-quantization of strings, which are given by the integration over

moduli spaces of punctured Riemann surfaces. The closed string products {LB
k }k≥1 are defined by a

decomposition of the moduli space of punctured sphere. See appendix A, or [8,19] for more details. It

is known that string products defined by the decomposition of the moduli space of punctured Riemann

surfaces naturally satisfy the L∞-relations [8, 19].
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3.2 L∞-algebras

In this subsection we define L∞-algebras in terms of coalgebras, which is the key structure of the

closed string field theory. Discussions are parallel to those for open string and A∞-algebras. The main

differences are the definition of the degree and the state space: for closed string the degree equals to

the Grassmann-parity, and the L∞-algebra is a structure on the symmetrized tensor algebra while the

A∞-algebra is a structure on the (unsymmetrized) tensor algebra. We also define the shifted structures

of the L∞-products and introduce their important properties.

3.2.1 Coalgebra and multilinear maps

Symmetrized tensor algebras as coalgebras

Let C be a set. When a coproduct ∆ : C → C ⊗ C is defined on C and it is coassociative

(∆⊗ 1l)∆ = (1l⊗∆)∆, (3.18)

then (C,∆) is called a coalgebra. For closed string, C corresponds to the symmetrized tensor algebra

S(H) of the Z2-graded vector space H. In the language of closed string field theory, H is the state

space for the string field, and the Z2-grading, called degree, equals to the Grassmann parity. The

symmetrized tensor product ∧ for elements of H is defined by

Φ1 ∧ Φ2 = Φ1 ⊗ Φ2 + (−)deg(Φ1)deg(Φ2)Φ2 ⊗ Φ1 , Φi ∈ H. (3.19)

This product satisfies the following properties:

Φ1 ∧ Φ2 = (−)deg(Φ1)deg(Φ2)Φ2 ∧ Φ1, (3.20)

(Φ1 ∧ Φ2) ∧ Φ3 = Φ1 ∧ (Φ2 ∧ Φ3), (3.21)

Φ1 ∧ Φ2 ∧ ... ∧ Φn =
∑
σ

(−)σ{Φ}Φσ(1) ⊗ Φσ(2) ⊗ ...⊗ Φσ(n). (3.22)

We can construct a symmetrized tensor algebra S(H) by

S(H) = H∧0 ⊕H∧1 ⊕H∧2 ⊕ · · · . (3.23)

We can define a coassociative coproduct ∆ : S(H)→ S(H)⊗S(H) and a set (S(H),∆) gives coalgebra.

The action of coproduct ∆ on Φ1 ∧ ... ∧ Φn ∈ H∧n is given by

∆(Φ1 ∧ ... ∧ Φn) =
∑
σ

n∑
k=0

(−)σ 1

k!(n− k)!
(Φσ(1) ∧ ... ∧ Φσ(k))⊗ (Φσ(k+1) ∧ ... ∧ Φσ(n)). (3.24)

We can naturally define a projector πn : S(H)→ H∧n whose action on Φ ∈ S(H) is given by

πnΦ̂ = Φ̂n, where Φ̂ =

∞∑
k=1

Φ̂k ∈ S(H), Φ̂k ∈ H∧k. (3.25)

Let H0 be the degree zero part of H. The following exponential map of Φ ∈ H0 gives a special element

of S(H) called a group-like element:

e∧Φ = 1+Φ+
1

2
Φ ∧ Φ+

1

3!
Φ ∧ Φ ∧ Φ+ · · · ∈ S(H), (3.26)
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which satisfies

∆e∧Φ = e∧Φ ⊗ e∧Φ. (3.27)

Multi-linear maps

From a multilinear map bn : Hn → H which is graded symmetric upon the interchange of the

arguments, a map bn : H∧n → H is naturally defined by

bn(Φ1 ∧ Φ2 ∧ ... ∧ Φn) = bn(Φ1,Φ2, ...,Φn). (3.28)

The symmetric tensor product of two multilinear maps A : H∧k → H∧l and B : H∧m → H∧n,
A ∧B : H∧k+m → H∧l+n, can also be defined naturally by

A ∧B(Φ1 ∧ ... ∧ Φk+m)

=
∑
σ

(−)σ({Φ})+B(Φσ(1)+...+Φσ(k))

k!m!
A(Φσ(1) ∧ ... ∧ Φσ(k)) ∧B(Φσ(k+1) ∧ ... ∧ Φσ(k+m)). (3.29)

The identity operator on H∧n is defined by

In =
1

n!
I ∧ I ∧ ... ∧ I = I⊗ I⊗ ...⊗ I. (3.30)

Note that we need the coefficient 1
n! . Multilinear maps with degree 1 and 0 naturally induce the maps

from S(H) to S(H). They are called a coderivation and a cohomomorphism respectively.

Multi-linear maps as a coderivation

A linear operator b : C → C which raise the degree one is called coderivation if it satisfies

∆b = (b⊗ 1l)∆ + (1l⊗ b)∆. (3.31)

From a map bn : H∧n → H which carries the degree one, the coderivation bn : S(H) → S(H) is

naturally defined by

bnΦ̂N = (bn ∧ IN−n)Φ̂N , Φ̂N ∈ H∧N≥n ⊂ S(H), (3.32)

and bn vanishes when acting on H∧N<n. We will call bn a n-coderivation . The n-coderivation bn

satisfies

π1bnΦ̂ = π1bnΦ̂n, where Φ̂ =

∞∑
k=1

Φ̂k ∈ S(H), Φ̂k ∈ H∧k. (3.33)

The explicit actions of the one-coderivation b1 and the two-coderivation b2 is given by

b1 : 1 → 0

Φ1 → b1(Φ1)

Φ1 ∧ Φ2 → b1(Φ1) ∧ Φ2 + (−)deg(Φ1)deg(b1)Φ1 ∧ b1(Φ2)

Φ1 ∧ Φ2 ∧ Φ3 → b1(Φ1) ∧ Φ2 ∧ Φ3 + (−)deg(Φ1)deg(b1)Φ1 ∧ b1(Φ2) ∧ Φ3

+(−)(deg(Φ1)+deg(Φ2))deg(b1)Φ1 ∧ Φ2 ∧ b1(Φ3),

(3.34)
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b2 : 1 → 0

Φ1 → 0

Φ1 ∧ Φ2 → b2(Φ1,Φ2)

Φ1 ∧ Φ2 ∧ Φ3 → b2(Φ1,Φ2) ∧ Φ3 + (−)deg(Φ1)deg(b2)Φ1 ∧ b2(Φ2,Φ3)

+(−)deg(Φ2)deg(Φ3)b2(Φ1,Φ3) ∧ Φ2.

(3.35)

Given two coderivations bn and cm which are derived from bn : H∧n → H and cm : H∧m → H
respectively, the graded commutator [[bn, cm]] becomes the coderivation derived from the map [[bn, cm]] :

H∧n+m−1 → H which is defined by

[[bn, cm]] = bn(cm ∧ In−1)− (−)deg(bn)deg(cm)cm(bn ∧ Im−1). (3.36)

The action of a coderivation on a group-like element is given by

bn(e
∧Φ) =

(
π1bn(e

∧Φ)
)
∧ e∧Φ =

1

n!
bn(Φ

∧n) ∧ e∧Φ. (3.37)

Where we promise 0! = 1.

Multilinear maps as a cohomomorphism

Given two coalgebras C,C ′, a cohomomorphism f : C → C ′ is a map of degree zero satisfying

∆f = (f ⊗ f)∆. (3.38)

A set of degree zero multilinear maps {fn : H∧n → H′}∞n=0 naturally induces a cohomomorphism

f : S(H) → S(H′), which we denote as f = {fn}∞n=0. Its action on Φ1 ∧ · · · ∧ Φn ∈ H∧n ⊂ S(H) is

defined by

f(Φ1 ∧ · · · ∧ Φn) =
∑
i≤n

∑
k1<···<ki

e∧f0 ∧ fk1(Φ1, . . . ,Φk1) ∧ fk2−k1(Φk1+1, . . . ,Φk2)∧

· · · ∧ fki−ki−1
(Φki−1+1, . . . ,Φn). (3.39)

Its explicit actions are given as follows:

f : 1 → e∧f0

Φ → e∧f0 ∧ f1(Φ)

Φ1 ∧ Φ2 → e∧f0 ∧ f1(Φ1) ∧ f1(Φ2) + e∧f0 ∧ f2(Φ1 ∧ Φ2).

(3.40)

One of the important property of a cohomomorphism is its action on the group-like element:

∆f(e∧Φ) = (f ⊗ f)∆e∧Φ = (f ⊗ f)(e∧Φ ⊗ e∧Φ) = f(e∧Φ)⊗ f(e∧Φ). (3.41)

We can see that the cohomomorphisms preserves the group-like element : f(e∧Φ) = e∧Φ
′
. Then,

Φ′ = π1f(e
∧Φ) and one can write

f(e∧Φ) = e∧π1f(e∧Φ). (3.42)
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3.2.2 Cyclic L∞-algebra

Cyclic L∞-algebra (H,L, ω)

Let H be a graded vector space and S(H) be its symmetrized tensor algebra. A weak L∞-algebra

(H,L) is a coalgebra S(H) with a coderivation L = L0 + L1 + L2 + ... satisfying

(L)2 = 0. (3.43)

We denote the collection of the multilinear maps {Lk}k≥0 also by L. In particular, if L0 = 0, (H,L)
is called an L∞-algebra. In the case of an L∞-algebra, the part of (3.43) that correspond to an n-fold

multilinear map H∧n → H is given by

Ln · L1 + Ln−1 · L2 + · · ·+ L2 · Ln−1 + L1 · Ln = 0. (3.44)

We can act it on B1 ∧B2 ∧ ... ∧Bn ∈ H∧n to get the L∞ relations for the multilinear maps {Lk}:

0 =
∑
σ

n∑
m=1

(−)σ({B})

m!(n−m)!
Ln−m+1(Lm(Bσ(1), . . . , Bσ(m)), Bσ(m+1), . . . , Bσ(n)), (3.45)

where π1Ln(B1 ∧ ... ∧Bn) = Ln(B1, ..., Bn).

We can define an inner product ⟨A,B⟩ : H⊗2 → C satisfying the same property as (3.3). Given

the operator On, we can define its BPZ-conjugation O†n as follows 7):

⟨B1,On(B2, ..., Bn+1)⟩ = (−)On(B1+1)+B2+...+Bn⟨O†n(B1, ...Bn), Bn+1⟩. (3.48)

A set (S(H),L, ω) is called cyclic L∞-algebra if each Ln is BPZ-odd:

L†n = −Ln. (3.49)

The Maurer-Cartan element for an L∞-algebra (H,L) is given by

F(Φ) := π1L(e
∧Φ) = L1(Φ) +

1

2
L2(Φ,Φ) +

1

3!
L3(Φ,Φ,Φ) + · · · . (3.50)

The Maurer-Cartan equation for an L∞-algebra (H,L) is given by F(Φ) = 0, which correspond to the

equation of motion in string field theory based on the L∞-algebra (H,L).

L∞-structure of the shifted product

We can define the shifted structure of L∞-products L, shifted by some field G with even degree, by

Ln,G(B1, ..., Bn) =

∞∑
m=0

1

m!
Ln+m(

m︷ ︸︸ ︷
G, ...,G, B1, ..., Bn). (3.51)

7)We can define an inner product ⟨A,B⟩ : H⊗2 → C using the graded symplectic form ⟨ω| : H⊗2 → C satisfying

⟨ω|A⊗B = (−)AB+1⟨ω|B ⊗A, by:

⟨A,B⟩ = (−)A⟨ω|A⊗B. (3.46)

Then, the BPZ-conjugation O†
n of the operator On is defined by

⟨ω|I⊗On = ⟨ω|O†
n ⊗ I. (3.47)
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The BPZ properties of the shifted products follows from the original products L: if L is BPZ-odd,

Ln,G is also cyclic:

⟨B1, Ln,G(B2, ..., Bn+1)⟩ = (−)B1+B2+...+Bn⟨Ln,G(B1, B2, ..., Bn), Bn+1⟩. (3.52)

One important property of the shifted structure is that the products L shifted by G (3.51) satisfy

the L∞-relations [74]

0 =
∑
σ

n∑
k=1

(−)σ({B})

k!(n− k)!
Ln−k+1,G

(
Lk,G(Bσ(1), ..., Bσ(k)), Bσ(k+1), ..., Bσ(n)

)
, (3.53)

if G is a solution for the Maurer-Cartan equation for L:

F(G) = π1L(e
∧G) = 0. (3.54)

To show (3.53), it is convenient to represent them in the coalgebraic notation: we write

Ln,G(B1, ..., Bn) = π1L(B1 ∧ ... ∧Bn ∧ e∧G). (3.55)

Recall that L is a coderivation and it acts on B1 ∧ ... ∧Bn ∧ e∧G as

L(B1 ∧ ... ∧Bn ∧ e∧G) = π1L(e
∧G) ∧B1 ∧ ... ∧Bn ∧ e∧G

+
∑
σ

n∑
k=1

(−)σ({B})

k!(n− k)!
π1L(Bσ(1) ∧ ... ∧Bσ(k) ∧ e∧G) ∧Bσ(k+1) ∧ ... ∧Bσ(n) ∧ e∧G

= F(G) ∧B1 ∧ ... ∧Bn ∧ e∧G

+
∑
σ

n∑
k=1

(−)σ({B})

k!(n− k)!
Lk,G(Bσ(1), ..., Bσ(k)) ∧Bσ(k+1) ∧ ... ∧Bσ(n) ∧ e∧G .

(3.56)

Acting π1L on both sides and using L2 = 0, one can obtain

∑
σ

n∑
k=1

(−)σ

k!(n− k)!
Ln−k+1,G(Lk,G(Bσ(1), ..., Bσ(k)), Bσ(k+1), ..., Bσ(n)) = −Ln+1,G(F(G), B1, ..., Bn).

(3.57)

Thus, it is shown from (3.57) that the shifted products (3.51) satisfy the L∞-relations (3.53) if G is a

solution for the Maurer-Cartan equation (3.54).

Another important property is that the G-shifted 1-product L1,G annihilated the Maurer-Cartan

element F(G) for arbitrary G with even degree. It directly follows from L2 = 0:

L1,G(F(G)) = π1L(π1L(e
∧G) ∧ e∧G) = π1LL(e

∧G) = 0. (3.58)

Generally, the gauge transformation is generated by the operator which annihilates the equation of

motion. Since the equation of motion is given by the Maurer-Cartan element, L1,G generates the gauge

transformation, as we will see in the next subsection.
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3.3 Coalgebraic representation

To conclude this section, let us describe closed bosonic string field theory in the coalgebraic represen-

tation. String products in closed bosonic string field theory can be represented by a set of multilinear

maps LB
n : HB

∧n → HB:

[Ψ1,Ψ2, ...,Ψn] = LB
n (Ψ1,Ψ2, ...,Ψn) = LB

n (Ψ1 ∧Ψ2 ∧ ... ∧Ψn), (3.59)

and the set of {LB
n} naturally defines a set of coderivations {LB

n}. Because of the L∞ relations (3.9)

for the original products, LB =
∑∞

n=1 L
B
n is nilpotent

(LB)2 = 0. (3.60)

The cyclicity of original string products (3.8) corresponds to LB
n
†
= −LB

n . Therefore the algebraic

properties of the string products is encoded to the fact that (HB,L
B, ωB) defines a cyclic-L∞ algebra.

We can transform the action in terms of the string products L and the group-like element e∧Φ. Let

t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Ψ(t) satisfying Ψ(0) = 0

and Ψ(1) = Ψ, which is a path connecting 0 and the string field Ψ in the space of string fields. Using

this Ψ(t),

S = −
∞∑
n=1

1

(n+ 1)!
⟨Ψ, LB

n (

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ)⟩

= −
∫ 1

0
dt

∞∑
n=1

1

(n+ 1)!
∂t⟨Ψ(t), LB

n (

n︷ ︸︸ ︷
Ψ(t),Ψ(t), ...,Ψ(t))⟩

= −
∫ 1

0
dt
∞∑
n=1

1

n!
⟨∂tΨ(t), LB

n (

n︷ ︸︸ ︷
Ψ(t),Ψ(t), ...,Ψ(t))⟩. (3.61)

In the last line we act ∂t and use the cyclicity of the string products to move ∂tΨ(t) to the first slot of

the inner product. The action can be represented using the coderivations and the group-like element

as follows:

S = −
∫ 1

0
dt⟨∂tΨ(t), π1L

B(e∧Ψ(t))⟩

= −
∫ 1

0
dt⟨π1∂t(e

∧Ψ(t)), π1L
B(e∧Ψ(t))⟩, (3.62)

where we denote the one-coderivation derived from ∂t as ∂t. Note that we conventionally use the

group-like element in the first slot of the inner product of (3.62). This expression is useful in a case

of the superstring.

Utilizing the cyclicity, the variation of the action can be taken as

δS = −⟨δΨ,FB(Ψ)⟩, (3.63)

where FB(Ψ) is the Maurer-Cartan element of the L∞-algebra (HB,L
B, ωB) which is given by

FB(Ψ) = π1L
B(e∧Ψ) =

∞∑
n=1

1

n!
LB
n (

n︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ). (3.64)
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The equation of motion is given by the Maurer-Cartan equation

FB(Ψ) = 0. (3.65)

Note that t-dependence is topological: the equation of motion does not depend of t. We define the

shifted BRST operator QΨ(B) = LB
1,Ψ(B) = π1L

B(e∧Ψ ∧ B). Since (LB)2 = 0, this shifted BRST

operator QΨ annihilate the Maurer-Cartan element FB(Ψ):

QΨFB(Ψ) = π1L
B
(
e∧Ψ ∧ π1LB(e∧Ψ)

)
= π1L

BLB(e∧Ψ) = 0, (3.66)

which means that QΨ generates the gauge transformation

δΨ = QΨΛ =

∞∑
m=0

1

m!
[

m︷ ︸︸ ︷
Ψ, ...,Ψ,Λ]. (3.67)

Note that the shifted BRST operator QΨ is BPZ-odd:

⟨QΨA,B⟩ = (−)A⟨A,QΨB⟩. (3.68)

These expressions of the action, the equation of motion, and the gauge transformation

S = −
∫ 1

0
dt ⟨∂tΨ(t), π1L

B(e∧Ψ(t))⟩, (3.69)

δS = −⟨δΨ,FB(Ψ)⟩ = −⟨δΨ, π1LB(e∧Ψ)⟩, (3.70)

δΨ = QΨΛ = π1L
B(e∧Ψ ∧ Λ) (3.71)

are common with string field theories based on the cyclic L∞-products. We will see in section 4 that

the NS heterotic string field theory can be formulated on the basis of the cyclic L∞-products, and the

action, the equation of motion, and the gauge transformation are written in the same form.
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Part II

Formulations of superstring field theories for

the Neveu-Schwarz sector

The goal of part II is to define dual WZW-like action for the NS sector which we will use as a starting

point of construction of an action including the Ramond sector. We first review two successful and

popular formulations: the A∞- and L∞-formulation in section 4, and the WZW-like formulation in

section 5. Then in section 6, based on structures introduced in sections 4 and 5, we define the dual

WZW-like formulation: utilizing string products which are dual to those in the A∞/L∞-formulation,

an gauge invariant action is provided by almost the same procedure as WZW-like formulation.

4 A∞- and L∞-formulation for the NS sector

In this section, we provide a brief review of the L∞-formulation [60]: we construct the NS super-

string products LNS which satisfy the L∞-relations and a consistency condition for a state space, and

are cyclic. A gauge-invariant action for heterotic string field theory can be constructed in terms of

them. To begin with, let us first introduce the superconformal ghost sector which we use to describe

superstrings.

Superconformal ghost sector

In the heterotic string, one of the holomorphic and antiholomorphic sectors is supersymmetric and

the other is bosonic. We choose the holomorphic sector to be supersymmetric, which consists of the

matter sector, the reparameterization ghost sector in terms of b(z) and c(z), and the superconformal

ghost sector. The antiholomorphic sector is bosonic, and it consists of the matter sector and the

reparameterization ghost sector in terms of b̃(z̄) and c̃(z̄). We describe the superconformal ghost

sector in terms of ξ(z), η(z), and ϕ(z) [27], where ξ(z) and η(z) are fermionic and ϕ(z) is bosonic.

They are related to the description by β(z) and γ(z) as follows:

β(z) = ∂ξ(z)e−ϕ(z), γ(z) = eϕ(z)η(z). (4.1)

We can consider the two Hilbert spaces for the superconformal ghost sector. One is called the

large Hilbert space, the Hilbert space for the system of ξ(z), η(z), and ϕ(z) . For a pair of states of

heterotic string V1 and V2 which belong to the large Hilbert space and are annihilated by b−0 and L−0 ,

the inner product is defined by

⟨V1, V2⟩ = ⟨V1|c−0 |V2⟩. (4.2)

The inner product in the large Hilbert space is nonvanishing when the sums of the ghost number and

the picture number of the two input states are (4,−1).
The other is called the small Hilbert space, the Hilbert space we usually use in the description of

the superconformal ghost sector in terms of β(z) and γ(z). A state Φ in the small Hilbert space is
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annihilated by the zero mode of η(z):

ηΦ = 0, (4.3)

where we denote the zero mode of η(z) by η:

η =

∮
dz

2πi
η(z). (4.4)

Since η is nilpotent and there exists an operator ξ satisfying

η2 = 0, [[ξ, η]] = 1, ξ2 = 0, ⟨ξA,B⟩ = (−)A+1⟨A, ξB⟩, (4.5)

the cohomology of η is trivial in the large Hilbert space and ηξ works as a projector on the small

Hilbert space. For the heterotic string, the consistency with the L−0 constraint requires ξ to be the

zero mode of ξ(z):

ξ =

∮
dz

2πi

1

z
ξ(z). (4.6)

For a pair of states of heterotic string Φ1 and Φ2 which belong to the small Hilbert space and are

annihilated by b−0 and L−0 , the inner product is defined by

⟨⟨Φ1,Φ2⟩⟩ = ⟨ξΦ1,Φ2⟩. (4.7)

The inner product in the small Hilbert space is nonvanishing when the sums of the ghost number and

the picture number of the two input states are (5,−2).
For the open string, which consists of the supersymmetric holomorphic sector, we can define the

small and large Hilbert spaces in the same manner. The inner product for a pair of states of open NS

string ϕ1 and ϕ2 which belong to the large Hilbert space is defined by

⟨ϕ1, ϕ2⟩ = ⟨ϕ1|ϕ2⟩. (4.8)

The inner product in the small Hilbert space is related to that in the large Hilbert space in the same

manner as the case of heterotic string:

⟨⟨Ψ1,Ψ2⟩⟩ = ⟨ξΨ1,Ψ2⟩. (4.9)

Note that we do not need to impose the subsidiary condition with b−0 and L−0 on states, and ξ can

be chosen arbitrary line integral of ξ(z) as long as the conditions (4.5) are satisfied [35]. The inner

product in the large/small Hilbert space is nonvanishing when the sums of the ghost number and the

picture number of the two input states are (2,−1)/(3,−2) for open string.

4.1 Regularization of the Witten theory

Covariant open superstring field theory proposed by Witten [21] was the natural extension of the

bosonic theory [1]. The action for the NS sector is given by 8)

SWitten = −1

2

⟨⟨
Ψ, QΨ

⟩⟩
− g

3

⟨⟨
Ψ,X (i)(Ψ ∗Ψ)

⟩⟩
, (4.10)

8) For superstring, we use the star product as a glueing of two string fields, see appendix A. Note that, in oscillator

representation, the Neumann coefficients differ depending on the theories.
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where the string field Ψ is a state in the small Hilbert space carrying ghost number 1 and picture

number −1, the natural picture for the NS sector. The cubic interaction contains the local insertion

of the picture changing operator at the midpoint of the string

X (i) = [[Q, ξ(i)]]. (4.11)

On the one hand, the midpoint insertion of local operators does not break the associativity of cubic

interaction, which enables the action to be (formally) gauge-invariant without higher interactions.

On the other hand, it can make the theory singular: the singularity can arise from the collisions of

local operators. Actually, in the Witten theory, collisions of the picture changing operators make the

scattering amplitude and the gauge symmetry singular [22]. Since then, the construction of the theory

for the string field belonging to the small Hilbert space in the natural picture with the consistent

gauge invariance has been a problem to be solved, even for the NS sector.

Recently, the breakthrough for this problem was found and such a consistent theory was con-

structed. It is leaded by the work by Iimori, Noumi, Okawa, and Torii [35]. In this work, the consistent

theory for open string field belonging to the small Hilbert space in the natural picture is provided

by the partial gauge fixing of the large Hilbert space formulation constructed by Berkovits [26]. The

problematic local insertions of the picture changing operator are replaced with its line integrals, and

the theory does not suffer from any divergences. Since the Berkovits theory has nonpolynomial in-

teraction, so does the partially gauge fixed theory, but the theory obtained in [35] does not have a

manifest A∞-structure.

The use of the line integral typically breaks the associativity of the 2-string product describing

the cubic interaction, and then for the gauge invariance the higher vertices become necessary, even

for open string. The novel construction of the higher vertices which satisfy A∞/L∞-relation was

given by Erler, Konopka, and Sachs, for open NS string [39] and for NS heterotic and NS-NS closed

string [60], which provides the actions in terms of the vertices, with the same structure as bosonic

theories. The same technique is used for the construction of the equations of motion including the

Ramond sector [40]. Also, it is shown based on the A∞ and L∞ structure that these theories correctly

reproduce the scattering amplitude in first quantized string [41].

In this section we review the L∞-formulation provided in [60]. In the rest of this subsection, we see

explicitly how the Witten theory is regularized. In subsection 4.2 and 4.3, we focus on heterotic string

field theory. We provide the all-order construction of the NS L∞-products and the gauge-invariant

actions in terms of them. For open string with and without stubs, the construction of the NS A∞-

products is parallel to the NS L∞-products. In subsection 4.4, we mention it and provide the actions

for open string with and without stubs.

Regularization of the Witten theory

Let us see how one can regularize the Witten theory. The string field Ψ is Grassmann odd, belongs

to the small Hilbert space, and carries ghost number 1 and picture number −1: The kinetic term for

open string field Ψ is given by

S2 = −
1

2

⟨⟨
Ψ, QΨ

⟩⟩
. (4.12)
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Since Q2 = 0, S2 is invariant under the following linearized gauge transformation

δ0Ψ = QΛNS (4.13)

where ΛNS is a gauge parameter which is Grassmann even, belongs to the small Hilbert space, and

carries ghost number 0 and picture number −1. We denoted the order of the string field by subscripts.

As a regularization of (4.10), we give the cubic interaction in the following form:

S3 = −
1

3

⟨⟨
Ψ,MNS

2 (Ψ,Ψ)
⟩⟩
, (4.14)

MNS
2 (Ψ1,Ψ2) =

1

3

(
XMB

2 (Ψ1,Ψ2) +MB
2 (XΨ1,Ψ2) +MB

2 (Ψ1,XΨ2)
)
, (4.15)

where X = [[Q, ξ]] is a picture changing operator andMB
2 is the 2-string product of the string products

{MB
k }k≥1 which define bosonic open string field theory.9) MB

2 commutes with Q. One can choose

MB
2 (A,B) = m2(A,B) = (−)deg(A)A ∗ B. Note that η acts as a derivation with respect to MNS

2 and

then MNS
2 (Ψ,Ψ) belongs to the small Hilbert space. The gauge transformation at next order δ1Ψ is

given by

δ1Ψ =MNS
2 (Ψ,ΛNS) +MNS

2 (ΛNS,Ψ), (4.16)

then S2 + S3 is invariant under δ0Ψ+ δ1Ψ at cubic order in fields:

δ0S3 + δ1S2 = ⟨⟨ΛNS, QMNS
2 (Ψ,Ψ) +MNS

2 (QΨ,Ψ) +MNS
2 (Ψ, QΨ)⟩⟩ = 0, (4.17)

which follows from the derivation property of Q with respect to MNS
2 :

QMNS
2 (Ψ1,Ψ2) +MNS

2 (QΨ1,Ψ2) + (−)deg(Ψ1)MNS
2 (Ψ, QΨ) = 0. (4.18)

Recall that the degree of the string field is defined by Grassmann parity plus one.

The NS 2-product MNS
2 is no longer associative, even if MB

2 is the associative star product

MB
2 (A,B) = m2(A,B) = (−)deg(A)A ∗B. Then δ1S3 ̸= 0, and we need higher corrections to compen-

sate it. We write the quartic interaction in terms of a product MNS
3 as

S4 = −
1

4
⟨⟨Ψ,MNS

3 (Ψ,Ψ,Ψ)⟩⟩. (4.19)

We assume that MNS
3 is degree odd, cyclic, and of suitable ghost and picture numbers, and that η

acts as a derivation with respect to MNS
3 and then MNS

3 (Ψ,Ψ,Ψ) belongs to the small Hilbert space.

We also assume the gauge transformation is given by the same product:

δ2Ψ =MNS
3 (ΛNS,Ψ,Ψ) +MNS

3 (Ψ,ΛNS,Ψ) +MNS
3 (Ψ,Ψ,ΛNS), (4.20)

then the variation of the action at this order reads

δ2S2 + δ1S3 + δ0S4 =
⟨⟨
ΛNS,QMNS

3 (Ψ,Ψ,Ψ) +MNS
3 (QΨ,Ψ,Ψ) +MNS

2 (Ψ, QΨ,Ψ) +MNS
2 (Ψ,Ψ, QΨ)

+MNS
2 (MNS

2 (Ψ,Ψ),Ψ) +MNS
2 (Ψ,MNS

2 (Ψ,Ψ))
⟩⟩
. (4.21)

9) As in the star product, for superstring we use MB
k as a glueing of string fields, see appendix A. Note that, in

oscillator representation, the Neumann coefficients differ depending on the theories.
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This gauge invariance holds if the product MNS
3 satisfy the A∞-relation:

0 =QMNS
3 (Ψ1,Ψ2,Ψ3)

+MNS
3 (QΨ1,Ψ2,Ψ3) + (−)deg(Ψ1)MNS

2 (Ψ1, QΨ2,Ψ3) + (−)deg(Ψ1)+deg(Ψ2)MNS
2 (Ψ1,Ψ2, QΨ3)

+MNS
2 (MNS

2 (Ψ1,Ψ2),Ψ3) + (−)deg(Ψ1)MNS
2 (Ψ1,M

NS
2 (Ψ2,Ψ3)). (4.22)

As in the case of bosonic theories, if the interactions and the gauge transformation are given by the

A∞-products, the gauge invariance follows from the A∞-relations. Introducing coderivations Q and

MNS
k which are derived from Q and MNS

k , the nilpotency of Q, (4.18), and (4.22) can be written as

QQ = 0, QMNS
2 +MNS

2 Q = 0, QMNS
3 +MNS

2 MNS
2 +MNS

3 Q = 0, · · · , (4.23)

and they can be summarized by introducing the generating function MNS =
∑

n=0M
NS
n+1 as

[[MNS,MNS]] = 0. (4.24)

Here we write MNS
1 = Q. We also require MNS

n (Ψ, ...,Ψ) belongs to the small Hilbert space for any

n. It is satisfied if η acts as a derivation with respect to MNS
n , which can be written as

[[η,MNS]] = 0, (4.25)

where η is a one-coderivation derived from η. We call (4.25) the η-derivation property of MNS. A

gauge-invariant action for open string can be constructed in terms of the string products satisfying

(4.24) and (4.25).

Gauge-invariant actions for the open string with stubs, heterotic string, and NS-NS closed string

can be constructed in the same manner: in terms of the A∞- or L∞-products with η-derivation

properties. In the following we focus on the heterotic string, and review the construction of the L∞-

products {LNS
k }k≥1 from the string products defining closed bosonic string field theory {LB

k }k≥110),
and operators η and ξ. Hereafter we write LB

k for a coderivations derived from LB
k , and define LB =∑∞

n=0 L
B
n+1. We may symbolically write LB to denote a set of string products {LB

k }k≥1.

4.2 The NS L∞ products

To construct a gauge-invariant action of heterotic string field theory, in this subsection we provide the

construction of the NS products {LNS
k }k≥1 which describe fundamental interactions of string fields.

We introduce coderivations LNS
k which are derived from LNS

k , and define LNS(τ) by

LNS(τ) =
∞∑
n=0

τnLNS
n+1. (4.26)

Hereafter we consider the construction of this coderivation LNS from LB, η, ξ, and X = [[Q, ξ]]. We

require the N -th product LNS
N to carry the same ghost number as LB

N , 3 − 2N , and picture number

N − 1. We also require LNS to satisfy the L∞-relation and the η-derivation property,

0 = [[LNS(τ),LNS(τ)]], (4.27)

0 = [[η,LNS(τ)]], (4.28)

10) For superstring we use LB
k as a glueing of string fields, see appendix A. Note that, in oscillator representation, the

Neumann coefficients differ depending on the theories.
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and to be cyclic, (LNS)† = −LNS. The construction in this subsection also works for the NS open

string by replacing LB to MB.

In the construction, it is convenient to label the picture number of the product by its deficit relative

to what is needed for the NS products. We write NS products as

LNS = L[0]. (4.29)

Since N -th NS-product carries picture number N − 1, the picture number of the product of deficit

picture d is N − 1 − d. The same notation will be used for the gauge products λ which are defined

shortly.

4.2.1 Defining differential equations

In this subsubsection, the differential equations which lead to the suitable properties of products are

derived perturbatively in the picture deficit.

L∞-relation of L[0](τ)

Let us consider the condition for the L∞-relations for L[0](τ). We first check the initial condition:

at τ = 0, we identify

L[0](0) = Q, (4.30)

and the L∞-relations (4.27) at τ = 0 is the nilpotency of Q: [[L[0](0),L[0](0)]] = [[Q,Q]] = 0. Differen-

tiating (4.27) by τ , the right hand side of (4.27) becomes

∂τ [[L
[0](τ),L[0](τ)]] = 2[[L[0](τ), ∂τL

[0](τ)]]. (4.31)

Then, the following differential equation ensures L[0](τ) to satisfy the L∞-relations:

∂τL
[0](τ) = [[L[0](τ),λ[0](τ)]], (4.32)

where λ[0](τ) is defined by the sum of coderivations {λ[0]
n+2}n≥0 which are derived from a set of products

{λ[0]n+2}n≥0 called gauge products:

λ[0](τ) =

∞∑
n=0

τnλ
[0]
n+2. (4.33)

N -th gauge product λ
[0]
N carries ghost number 2−2N and picture number N −1. Utilizing this, (4.31)

becomes homogeneous in [[L[0](τ),L[0](τ)]]:

∂τ [[L
[0](τ),L[0](τ)]] = 2[[L[0](τ), [[L[0](τ),λ[0](τ)]]]] = [[[[L[0](τ),L[0](τ)]],λ[0](τ)]]. (4.34)

Since the L∞-relation is satisfied at τ = 0, [[L[0](0),L[0](0)]] = 0, this homogeneous differential equation

ensures the L∞-relation at arbitrary τ , [[L[0](τ),L[0](τ)]] = 0.
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η-derivation property of L[0](τ)

The logic to derive the condition for η-derivation property of L[0] is almost the same as that for

the L∞-relations. At τ = 0, it holds: [[η,L[0](0)]] = [[η,Q]] = 0. Differentiating by τ , the right-hand

side of (4.28) becomes

∂τ [[η,L
[0](τ)]] = [[η, ∂τL

[0](τ)]]

= [[η, [[L[0](τ),λ[0](τ)]]]]

= [[[[η,L[0](τ)]],λ[0](τ)]]− [[[[η,λ[0](τ)]],L[0](τ)]]. (4.35)

If we take the choice of λ[0] so that the second term vanishes, the differential equation becomes

homogeneous in [[η,L[0](τ)]]. Then [[η,L[0](0)]] = 0 leads to the solution [[η,L[0](τ)]] = 0, and therefore

the product L[0] has η-derivation property at arbitrary τ .

Such a product λ[0] can be constructed in terms of the product with deficit picture 1

L[1](τ) =

∞∑
n=0

τnL
[1]
n+2 (4.36)

which commutes with L[0](τ) and η

[[L[1](τ),L[0](τ)]] = 0, (4.37)

[[η,L[1](τ)]] = 0. (4.38)

The following identification provides the suitable definition of λ[0]:

L[1](τ) = [[η,λ[0](τ)]]. (4.39)

In the reverse direction, λ[0] is given by L[1] as

λ[0](τ) = ξ ◦ L[1](τ), (4.40)

where ξ◦ is an operation satisfying

[[η, ξ ◦ b]] + ξ ◦ [[η,b]] = b. (4.41)

For the cyclicity of L[0], one can define ξ◦ by any cyclic assignment of the ξ. One conventional choice

is as follows: for n-coderivation bn, ξ ◦ bn is a coderivation derived from a map

ξ ◦ bn ≡
1

n+ 1

(
ξbn − bn(ξ ∧ In−1)

)
. (4.42)

Next, let us consider how such products L[1] satisfying (4.37) and (4.38) can be constructed.

Commutativity of L[1] and L[0]

The condition for products L[1](τ) to commute with L[0](τ) can be derived again in the parallel

way. We identify L
[1]
2 = LB

2 . Then,

L[1](0) = LB
2 . (4.43)
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Utilizing (4.43), we find (4.37) holds at τ = 0, because of the L∞-relation of LB: [[L[1](0),L[0](0)]] =

[[LB
2 ,Q]] = 0. Differentiating (4.37) in τ , the left-hand side of (4.37) becomes

∂τ [[L
[1](τ),L[0](τ)]] = [[L[1](τ), [[L[0](τ),λ[0](τ)]]]] + [[∂τL

[1](τ),L[0](τ)]]

= [[[[L[1](τ),L[0](τ)]],λ[0](τ)]]− [[[[L[1](τ),λ[0](τ)]],L[0](τ)]] + [[∂τL
[1](τ),L[0](τ)]]

= [[[[L[1](τ),L[0](τ)]],λ[0](τ)]] + [[∂τL
[1](τ)− [[L[1](τ),λ[0](τ)]],L[0](τ)]]. (4.44)

It is sufficient to require L[1](τ) to satisfy the following differential equation:

∂τL
[1](τ) = [[L[1](τ),λ[0](τ)]] + [[L[0](τ),λ[1](τ)]], (4.45)

where λ[1] is the new gauge product

λ[1](τ) =
∞∑
n=0

τnλ
[1]
n+3. (4.46)

Then, (4.45) becomes homogeneous in [[L[1](τ),L[0](τ)]] utilizing the L∞-relation of L[0]:

∂τ [[L
[1](τ),L[0](τ)]] = [[[[L[1](τ),L[0](τ)]],λ[0](τ)]] + [[[[L[0](τ),λ[1](τ)]],L[0](τ)]]

= [[[[L[1](τ),L[0](τ)]],λ[0](τ)]]− 1

2
[[λ[1](τ), [[L[0](τ),L[0](τ)]]]]

= [[[[L[1](τ),L[0](τ)]],λ[0](τ)]], (4.47)

which ensures [[L[1](τ),L[0](τ)]] = 0 at arbitrary τ , since it holds at τ = 0.

η-derivation property of L[1]

Since we want to identify L[1](τ) = [[η,λ[0](τ)]], we require L[1] to satisfy η-derivation property

[[η,L[1](τ)]] = 0. (4.48)

Differentiating in τ , the left-hand side of (4.48) becomes

∂τ [[η,L
[1](τ)]]

= [[η, [[L[1](τ),λ[0](τ)]] + [[L[0](τ),λ[1](τ)]]]]

= [[[[η,L[1](τ)]],λ[0](τ)]]− [[[[η,λ[0](τ)]],L[1](τ)]] + [[[[η,L[0](τ)]],λ[1](τ)]]− [[[[η,λ[1](τ)]],L[0](τ)]]

= [[[[η,L[1](τ)]],λ[0](τ)]] + [[[[η,L[0](τ)]],λ[1](τ)]]− [[L[1](τ),L[1](τ)]]− [[[[η,λ[1](τ)]],L[0](τ)]]. (4.49)

If there exist the new products

L[2](τ) =

∞∑
n=0

τnL
[2]
n+3 (4.50)

which satisfy

0 = [[L[1](τ),L[1](τ)]] + 2[[L[2](τ),L[0](τ)]], (4.51)

0 = [[η,L[2]]], (4.52)
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the identification11)

[[η,λ[1](τ)]] = 2L[2](τ), (4.53)

or equivalently λ[1](τ) = 2ξ ◦ L[2](τ) provides the suitable choice of λ[1]: utilizing (4.51) and the η-

derivation property of L[0], the differential equation (4.49) becomes homogeneous in [[η,L[1](τ)]], which

imply the η-derivation property of L[1] (4.48) at arbitrary τ since (4.48) holds at τ = 0.

Summary so far

In this subsubsection, we have demonstrated that the NS string products LNS = L[0] satisfying

0 = [[L[0](τ),L[0](τ)]], 0 = [[η,L[0](τ)]], (4.54)

can be constructed by introducing the products L[d] satisfying

0 = [[L[0](τ),L[1](τ)]], 0 = 2[[L[0](τ),L[2](τ)]] + [[L[1](τ),L[1](τ)]], (4.55)

0 = [[η,L[1](τ)]], 0 = [[η,L[2](τ)]]. (4.56)

We can define such products L[d] by differential equations

∂τL
[0](τ) = [[L[0](τ),λ[0](τ)]], ∂τL

[1](τ) = [[L[1](τ),λ[0](τ)]] + [[L[0](τ),λ[1](τ)]], (4.57)

where λ[d] are the gauge products defined by

λ[0](τ) = ξ ◦ L[1](τ), λ[1](τ) = 2ξ ◦ L[2](τ). (4.58)

For the cyclicity of L[d], one can define ξ◦ by (4.42). In that way, we can define a product with suitable

properties by introducing a new products with a certain properties.

4.2.2 Generating functions

To complete the all-order construction of the products L[0] from LB, let us consider the generating

functions of L[d]:

L(s, τ) =

∞∑
m=0

smL[m](τ) =

∞∑
m=0

∞∑
n=0

smτnL
[m]
m+n+1, (4.59)

and require L(s, τ) to satisfy

0 = [[L(s, τ),L(s, τ)]], (4.60)

0 = [[η,L(s, τ)]]. (4.61)

We illustrate the products contained in the generating functions in figure 1. Note that the lowest

three orders in s of (4.60) and (4.61) give (4.54), (4.55), and (4.56). At τ = 0 and s = 0, L(s, τ) is

identified with the string products LB and LNS, respectively:

L(s, 0) = LB(s) =

∞∑
n=0

snLB
n+1, L(0, τ) = L[0](τ) = LNS(τ). (4.62)

11)Note that the coefficient is just a convention for the natural L∞-relation.
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Figure 1: The products contained in the generating functions L(s, τ) and λ(s, τ).

Such products L(s, τ) can be constructed by the following differential equations

∂τL(s, τ) = [[L(s, τ),λ(s, τ)]], (4.63)

ξ ◦ ∂sL(s, τ) = λ(s, τ), (4.64)

where λ(s, τ) is the generating function for the gauge products with deficit picture λ[d], defined by

λ(s, τ) =
∞∑

m=0

smλ[m](τ) =
∞∑

m=0

∞∑
n=0

smτnλ
[m]
m+n+2. (4.65)

Note that the lowest two orders in s of (4.63) and (4.64) give (4.57) and (4.58).

The L∞-relations and the η-derivation properties

Differentiating [[L(s, τ),L(s, τ)]] in τ , and utilizing (4.63), we obtain the following differential equa-

tion

∂τ [[L(s, τ),L(s, τ)]] = [[[[L(s, τ),L(s, τ)]],λ(s, τ)]]. (4.66)

This homogeneous differential equation leads to the L∞-relations at arbitrary τ since the initial con-

dition at τ = 0 corresponds to the L∞-relations of LB: [[L(s, 0),L(s, 0)]] = [[LB(s),LB(s)]] = 0.

Differentiating [[η,L(s, τ)]] in τ , we obtain the following differential equation which is homogeneous

in [[η,L(s, τ)]]:

∂τ [[η,L(s, τ)]] = [[[[η,L(s, τ)]],λ(s, τ)]]− 1

2
∂s[[L(s, τ),L(s, τ)]] + [[L(s, τ), ξ ◦

(
∂s[[η,L(s, τ)]]

)
]], (4.67)

where we used the L∞-relation of L(s, τ) and the definition of ξ◦ (4.41). This homogeneous differential

equation ensures the η-derivation property at arbitrary τ , since [[η,L(s, τ)]] = 0 holds at τ = 0:

[[η,LB(s)]] = 0 .
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The logic of the recursive construction

To conclude this subsubsection, we explain the logic of the recursive construction of LNS from LB.

For convenience, let us label the products with their picture (not deficit picture), L
[d]
N = L

(N−1−d)
N and

λ
[d]
N = λ

(N−1−d)
N , and write

L(n)(s) =

∞∑
m=0

smL
(n)
m+n+1 , λ(n+1)(s) =

∞∑
m=0

smλ
(n+1)
m+n+2. (4.68)

The generating functions L(s, τ) and λ(s, τ) are expanded in powers of τ as

L(s, τ) =

∞∑
n=0

τnL(n)(s) , λ(s, τ) =

∞∑
n=0

τnλ(n+1)(s). (4.69)

Picking up the τn−1 part of the differential equation ∂τL(s, τ) = [[L(s, τ),λ(s, τ)]], we obtain

nL(n)(s) =
∑

n1+n2=n−1
[[L(n1)(s),λ(n2+1)(s)]]. (4.70)

We call (4.70) as A (n) to denote the explicit n dependence. A (n) determines L(n)(s) from L(n1)(s)

for n1 ≤ n− 1 and λ(n2+1)(s) for n2 + 1 ≤ n.
The τn part of differential equation λ(s, τ) = ξ ◦ ∂sL(s, τ) determines λ(n+1)(s) from L(n)(s) :

λ(n+1)(s) = ξ ◦ ∂sL(n)(s). (4.71)

We call (4.71) as B(n+ 1) to denote the explicit n dependence. More explicitly, its sm part reads

λ
(n+1)
m+n+2 = (m+ 1)ξ ◦ L(n)

m+n+2. (4.72)

The construction starts with the initial condition: L(s, 0) = L(0)(s) = LB(s). One can determine

λ(1)(s) by B(1), then L(1)(s) by A (1), then λ(2)(s) by B(2), and then L(2)(s) by A (2). Thus the

iterated use of B(n) and A (n) determines L(n)(s) recursively in n, then one can obtain L(s, τ), and

LNS(τ) = L(0, τ). The procedure is illustrated in figure 2.

4.2.3 Solutions by path-ordered exponentials

Utilizing the above constructed gauge products, the NS products LNS can be written as the similarity

transformation of Q:

LNS(τ) = G−1(τ)QG(τ), (4.73)

where G(τ) and its inverse G−1(τ) are defined by the following path-ordered exponential maps:

G(τ) =
←
P exp

(∫ τ

0
dτ ′λ[0](τ ′)

)
= 1l +

(∫ τ

0
dτ1λ

[0](τ1)

)
+
∞∑
n=2

(∫ τn−1

0
dτnλ

[0](τn)

)
· · ·

(∫ τ1

0
dτ2λ

[0](τ2)

)(∫ τ

0
dτ1λ

[0](τ1)

)
= 1l + τλ

[0]
2 +

τ2

2

(
λ
[0]
2 λ

[0]
2 + λ

[0]
3

)
+
τ3

3!

(
λ
[0]
2 λ

[0]
2 λ

[0]
2 + 2λ

[0]
2 λ

[0]
3 + λ

[0]
3 λ

[0]
2 + 2λ

[0]
4

)
+ · · · ,

(4.74)
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Figure 2: The logic of the recursive construction of NS products LNS =
∑∞

n=1 L
(n−1)
n . By

recursive application of B(n) and A (n), one can define products carrying higher

picture number from LB =
∑∞

n=1 L
(0)
n .

G(τ)−1 =
→
P exp

(
−
∫ τ

0
dτ ′λ[0](τ ′)

)
= 1l +

(
−
∫ τ

0
dτ1λ

[0](τ1)

)
+

∞∑
n=2

(
−
∫ τ

0
dτ1λ

[0](τ1)

)(
−
∫ τ1

0
dτ2λ

[0](τ2)

)
· · ·

(
−
∫ τn−1

0
dτnλ

[0](τn)

)
= 1l − τλ[0]

2 +
τ2

2

(
λ
[0]
2 λ

[0]
2 − λ

[0]
3

)
− τ3

3!

(
λ
[0]
2 λ

[0]
2 λ

[0]
2 − λ

[0]
2 λ

[0]
3 − 2λ

[0]
3 λ

[0]
2 + 2λ

[0]
4

)
+ · · · . (4.75)

The ← (→) over P denote the ordering of the operations in which the “late-time” operator will act

from the right (left). For more detail of the path-ordered maps, see appendix B. The important

property of G and G−1 is that they satisfy the following differential equations

∂τG(τ) = G(τ)λ[0](τ), (4.76)

∂τG
−1(τ) = −λ[0](τ)G−1(τ), (4.77)

and the initial conditions G(0) = 1l and G−1(0) = 1l. It follows from these properties that (4.73) pro-

vides the solution for the differential equation ∂τL
[0](τ) = [[L[0](τ),λ[0](τ)]], with the initial condition

L[0](0) = Q, and therefore LNS = L[0] satisfies the L∞-relation.

In fact, L∞-relations follows only from the fact that the NS products LNS are written as the

similarity transformations of the nilpotent operator Q. That is, any choice of the gauge products

leads to the L∞-relations of LNS. One can derive the condition of the gauge products so that the

NS products satisfy the η-derivation property and are cyclic, based on the representation using the

path-ordered exponential maps, see appendix C.
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4.3 Action for heterotic string field theory in the L∞-formulation

Utilizing the above constructed product LNS = {LNS
k }k≥1, the gauge-invariant action of heterotic

string field theory in the L∞-formulation is constructed by [60].

The string field Φ in the L∞ formulation carries ghost number 2 and picture number −1 and

belongs to the small Hilbert space Hsmall: ηΦ = 0. We use the inner product in the small Hilbert

space introduced in (4.7), which satisfies

⟨⟨A,B⟩⟩ = (−)(A+1)(B+1)⟨⟨B,A⟩⟩. (4.78)

The NS products LNS which are constructed in the previous subsection satisfy the L∞-relations,

the η-derivation properties, and the cyclicity: for the inner product in the large Hilbert space,

⟨B1, L
NS
n (B2, ..., Bn+1)⟩ = (−)B1+B2+...+Bn⟨LNS

n (B1, B2, ..., Bn), Bn+1⟩, (4.79)

and for the inner product in the small Hilbert space,

⟨⟨B1, L
NS
n (B2, ..., Bn+1)⟩⟩ = (−)B1+B2+...+Bn⟨⟨LNS

n (B1, B2, ..., Bn), Bn+1⟩⟩, (4.80)

which follows from (4.79), the η-derivation property of LNS
n , and that Bi belongs to the small Hilbert

space: ηBi = 0. Note that if all Bi belong to the small Hilbert space, LNS
n (B2, ..., Bn+1) also belongs

to the small Hilbert space, which follows from the η-derivation property of LNS
n .

Utilizing these cyclic L∞-products, the gauge-invariant action is given in the same form as closed

bosonic string theory by

SEKS =

∞∑
n=0

κn

(n+ 2)!
⟨⟨Φ, LNS

n+1(

n+1︷ ︸︸ ︷
Φ,Φ, ...,Φ)⟩⟩,

=

∫ 1

0
dt

∂

∂t

( ∞∑
n=0

κn

(n+ 2)!
⟨⟨Φ(t), LNS

n+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩⟩

)

=

∫ 1

0
dt
∞∑
n=0

κn

(n+ 1)!
⟨⟨∂tΦ(t), LNS

n+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩⟩

=

∫ 1

0
dt⟨⟨∂tΦ(t), π1LNS(e∧Φ(t))⟩⟩, (4.81)

where we introduced the t-parametrized string field Φ(t) with t ∈ [0, 1] satisfying Φ(0) = 0 and

Φ(1) = Φ. Note that π1L
NS
n (B1 ∧ ... ∧ Bn) = LNS

n (B1, ..., Bn) and LNS
1 = Q. We call this action the

L∞-action. Utilizing the cyclicity of LNS, the variation of the action is taken as

δSEKS =

∞∑
n=0

κn

(n+ 1)!
⟨⟨δΦ, LNS

n+1(

n+1︷ ︸︸ ︷
Φ,Φ, ...,Φ)⟩⟩ =

⟨⟨
δΦ, π1L

NS(e∧Φ)
⟩⟩
, (4.82)

and the equation of motion is given by

0 =

∞∑
n=0

κn

(n+ 1)!
LNS
n+1(

n+1︷ ︸︸ ︷
Φ,Φ, ...,Φ) = π1L

NS(e∧Φ). (4.83)
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Note that this t-dependence is topological, since it does not appear in the variation of the action.

Since the equation of motion is annihilated by π1L
NS( · ∧ e∧Φ):

π1L
NS(π1L

NS(e∧Φ) ∧ e∧Φ) = π1L
NSLNS(e∧Φ) = 0, (4.84)

the action is invariant under the following gauge transformation

δΦ =

∞∑
n=0

κn

n!
LNS
n+1(Λ

NS,

n︷ ︸︸ ︷
Φ,Φ, ...,Φ) = π1L

NS(ΛNS ∧ e∧Φ), (4.85)

where ΛNS is the gauge parameter in the small Hilbert space carrying ghost number 1 and picture

number −1. Note that π1L
NS( · ∧e∧Φ) is BPZ-odd. One can find that the action (4.81), the variation

of the action (4.82), and the gauge transformation (4.85) are given in the same form as those in bosonic

theory (3.69), (3.70), and (3.71).

For later use, we provide other expressions of the action. Utilizing ⟨⟨A,B⟩⟩ = ⟨ξA,B⟩,

SEKS =

∫ 1

0
dt

∞∑
n=0

κn

(n+ 1)!
⟨∂tξΦ(t), LNS

n+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩. (4.86)

Then, using the language of coalgebra, we can represent the action as follows:

SEKS =

∫ 1

0
dt ⟨π1(ξt e∧Φ(t)), π1

(
LNS(e∧Φ(t))

)
⟩, (4.87)

where ξt is a one-coderivation derived from ∂tξ
12). Utilizing LNS = G−1QG, the action can be

transformed as

SEKS =

∫ 1

0
dt ⟨π1(ξt e∧Φ(t)), π1

(
G−1QG(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π1

(
G(ξte

∧Φ(t))
)
, π1Q

(
G(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π1

(
G(ξte

∧Φ(t))
)
, Q π1

(
G(e∧Φ(t))

)
⟩. (4.88)

In the last line we used π1Q = Qπ1. This expression is originally obtained for the NS open string

in [42]. For the heterotic string, see also [61]. This expression is important to clarify the WZW-like

structure which the L∞-formulation naturally possesses, which is discussed in section 6.

4.4 Action for open NS string field theory in the A∞-formulation

The NS A∞-products MNS(τ) for open superstring can be constructed in the same way as LNS(τ), by

replacing the starting string products LB with MB. We denote the gauge product for open string by

µ instead of λ.

The string field Ψ in the A∞-formulation carries ghost number 1 and picture number −1 and

belongs to the small Hilbert space Hsmall: ηΨ = 0. As heterotic string field theory, the gauge-invariant

12)We will define ξX for the more general class of X later. We write ξt = ξ∂t . For X = ∂t, definitions are equivalent.
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action is given in the same form as bosonic theory:

SEKS = −
∞∑
n=0

gn

n+ 2
⟨⟨Ψ,MNS

n+1(

n+1︷ ︸︸ ︷
Ψ,Ψ, ...,Ψ)⟩⟩,

= −
∫ 1

0
dt

⟨⟨
∂tΨ(t), π1

(
MNS 1

1−Ψ(t)

)⟩⟩
, (4.89)

where Ψ(t) with t ∈ [0, 1] is the t-parametrized string field satisfying Ψ(0) = 0 and Ψ(1) = Ψ. The

variation of the action and the gauge transformation are also in the same form as bosonic theory:

δSEKS = −⟨⟨δΨ, π1
(
MNS(

1

1−Ψ
)
)
⟩⟩, (4.90)

δΨ = π1M
NS(

1

1−Ψ
⊗ ΛNS ⊗ 1

1−Ψ
), (4.91)

where ΛNS is the gauge parameter for open NS string carries ghost number 0 and picture number

−1. The gauge invariance follows from the A∞-relations and the cyclic properties of the NS products

MNS. The action can be written in the following form [42]:

SEKS = −
∫ 1

0
dt

⟨
∂tξΨ(t), π1

(
MNS(

1

1−Ψ(t)
)
)⟩

= −
∫ 1

0
dt

⟨
π1(ξt

1

1−Ψ(t)
), π1

(
MNS(

1

1−Ψ(t)
)
)⟩

= −
∫ 1

0
dt

⟨
π1G(ξt

1

1−Ψ(t)
), Qπ1G(

1

1−Ψ(t)
)
⟩
. (4.92)

Note on the case of the star product

If MB
2 is associative, MB

2M
B
2 = 0, higher products are not necessary for A∞-relations, and can be

set to zero: MB
N>3 = 0. Then, MB consists of MB

1 and MB
2 :

MB(s) = MB
1 + sMB

2 . (4.93)

In this case, one can set M[d≥2] = 0 and µ[d≥1] = 0. The nonvanishing products are the NS products

with deficit picture 0 and 1, M[0] and M[1], and the gauge products with deficit picture 0, µ[0]. The

generating functions are truncated:

M(s, τ) = M[0](τ) + sM[1](τ), µ(s, τ) = µ[0](τ). (4.94)

Since µ(s, τ) = µ[0](τ), G(s, τ) equals to G(τ):

G(s, τ) =
←
P exp

(∫ τ

0
dτ ′µ[0](τ ′)

)
= G(τ), (4.95)

and therefore

M(s, τ) = G−1(τ)MB(s)G(τ). (4.96)

Then one can find that, similarly to M[0] = G−1(τ)QG(τ), M[1] also can be written as the similarity

transformation of MB
2 :

M[1] = G−1(τ, 0)MB
2G(0, τ). (4.97)
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It follows from (4.97) that M[1] is also nilpotent:

[[M[1],M[1]]] = 0. (4.98)

Note that (4.98) can be derived from the A∞-relation of MNS(s, τ). For more details, see appendix C.
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5 WZW-like formulation

In this section, a successful approach to the formulation for superstring field theory for Neveu-Schwarz

sector, which is called WZW-like formulation, is reviewed.

Originally, an action for open superstring field theory using the string field ϕ in the large Hilbert

space is constructed in [26]:

S = − 1

2g2

∫ 1

0
dt
(
∂t⟨e−gϕ(t)ηegϕ(t), e−gϕ(t)Qegϕ(t)⟩+ ⟨e−gϕ(t)∂tegϕ(t), [[e−gϕ(t)Qegϕ(t), e−gϕ(t)ηegϕ(t)]]∗⟩

)
,

(5.1)

where ϕ(t) is a string field parameterized by t satisfying ϕ(0) = 0 and ϕ(1) = ϕ, g is a coupling constant,

and [[A,B]]∗ ≡ A ∗B− (−)ϵ(A)ϵ(B)B ∗A is the graded commutator using the star product. In [52], the

algebraic structure for the action (5.1) to be gauge-invariant is elucidated: the gauge-invariant action

for NS open string can be formulated in the following Wess-Zumino-Witten-like form:

S =

∫ 1

0
dt⟨Ψt, ηΨQ⟩, (5.2)

where the functionals ΨQ and Ψt are given by ΨQ = e−ϕ(Qeϕ) and Ψt = e−ϕ(∂te
ϕ). The important

properties of ΨQ and ΨX for operators X = η, ∂t, δ
13) which acts as a derivation with respect to the

star product are the following relations:

0 = QΨQ + gΨQ ∗ΨQ, (5.3)

(−)XXΨQ = QΨX + g[[ΨQ,ΨX]]
∗. (5.4)

The gauge invariance of the Berkovits action follows from these relations. The formulation based on the

functionals satisfying the algebraic relations, which we call the WZW-like formulation, is generalized

to the heterotic string and the all-order action for heterotic string field theory was constructed in this

way [52], which correctly reproduces the partial construction [53]. Later, the action for type II closed

string field theory is also constructed using this WZW-like formulation [55,56].

In the WZW-like formulation, the actions are written in terms of the functional of string field ΨQ

and ΨX with a certain algebraic property, and the A∞/L∞ structures are not manifest. It makes the

quantization of WZW-like theory difficult. If the action is written in terms of the cyclic L∞- or A∞-

products, the classical Batalin-Vilkovisky (BV) master action is obtained by replacing the fundamental

string field with the string field carrying unconstrained ghost number. While the classical BV master

action for the Berkovits theory has been constructed partially [28–32], its complete form remains

unknown. The reproduction of scattering amplitudes in the first quantization of string is checked for

some lower point amplitudes [33–35], but there has been no all-order consideration.

In the first two subsections of this section, we summarize the the algebraic properties for ΨQ

which we call a pure-gauge-like field and ΨX which we call an associated field, and see how the

gauge-invariant action for heterotic string field theory can be constructed using them. After that, we

provide the explicit construction of ΨQ and ΨX using the string field in the large Hilbert space. In the

13)We write Ψt for Ψ∂t .
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last subsection, we explain the construction for open string with and without stubs, and the specific

property for open string without stubs, which we call Z2-reversing. The relation of the Berkovits

theory and the A∞-theory is well-understood using this Z2-reversing [42–44].

5.1 Pure-gauge-like field and Associated fields

In this subsection we summarize the the algebraic properties for ΨQ which we call a pure-gauge-like

field and ΨX which we call an associated field. In this subsection and the following subsections, we do

not specify the parameterization of ΨQ and ΨX. We assume that the parameter t is carried only by the

t-parameterized fundamental string field, then ∂t acts only on it. We also assume the t-parameterized

fundamental string field vanishes at t = 0. It will be shown that the t-dependence is topological: the

equation of motion is independent of t.

Shifted structure

To begin with, let us recall the shifted structure. The shifted products of LB are defined by

[B1, B2, · · · , Bn ]A =

∞∑
m=0

1

m!
[A,A, · · · , A︸ ︷︷ ︸

m

, B1, B2, · · · , Bn ]. (5.5)

Let G be a solution for the Maurer-Cartan equation for LB:

0 = π1L
B(e∧G) = QG +

1

2
[G,G] + 1

3!
[G,G,G] + · · · . (5.6)

The G-shifted products are defined by

[B1, ..., Bn]G =

∞∑
m=0

1

m!
[ G,G, · · · ,G︸ ︷︷ ︸

m

, B1, ..., Bn], (5.7)

and they satisfy the L∞-relations

∑
σ

n∑
k=1

1

k!(n− k)!
(−)|σ|

[
[Biσ(1)

, . . . , Biσ(k)
]G , Biσ(k+1)

, . . . , Biσ(n)

]
G = 0. (5.8)

In particular we write QG for the G-shifted 1-product: QGB = [B]G . From the L∞-relation of the

G-shifted LB, QG is nilpotent:

(QG)
2B = −[π1LB(e∧G), B]G = 0, (5.9)

and acts on the G-shifted 2-product [B1, B2]G as a derivation:

QG [B1, B2]G + [QGB1, B2]G + (−)B1 [B1, QGB2]G = −[π1LB(e∧G), B1, B2]G = 0. (5.10)

Because of the shift, the operators X = {η, ∂t, δ} are not derivations on the shifted product:

X
[
B1, . . . , Bn

]η
G =

n−1∑
i=1

(−)X(B1+···+Bk−1+1)
[
B1, . . . ,XBk, . . . , Bn

]
G + (−)X[XG, B1, . . . , Bn]G , (5.11)
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where X in the exponent of (−) represents its Grassmann parity. In particular,

[[X, QG ]]B = (−)X[XG, B]G . (5.12)

The shifted products are cyclic, which follows from that of string products LB:

⟨B1, [B2, · · · , Bn+1]G⟩ = (−)B1+B2+···+Bn⟨[B1, · · · , Bn]G , Bn+1⟩. (5.13)

Pure-gauge-like field

The key ingredient in WZW-like theories is the pure-gauge-like field ΨQ(t) which is a solution for

the Maurer-Cartan equation for LB:

0 = FB(ΨQ(t)) = π1L
BeΨQ(t) = QΨQ(t) +

1

2
[ΨQ(t),ΨQ(t)] +

1

3!
[ΨQ(t),ΨQ(t),ΨQ(t)] + · · · . (5.14)

In other words, it is a solution for the equation of motion of bosonic string field theory. ΨQ(t) is

Grassmann-even and carries ghost number 2 and picture number 0.

Associated fields

For the derivation operators X = η, ∂t, δ on the string products LB, [[X,LB]] = 0, XΨQ(t) is

annihilated by the ΨQ(t)-shifted BRST operator QΨQ(t). Acting with X on (5.14), we can directly

check it:

0 = Xπ1LB(eΨQ(t)) = (−)Xπ1LB
(
XΨQ(t) ∧ eΨQ(t)

)
= (−)XQΨQ(t)(XΨQ(t)). (5.15)

Here we used QΨQ(t)B = π1L
B(B∧eΨQ(t)). Since QΨQ(t) is nilpotent and cohomology of Q is trivial in

the large Hilbert space, XΨQ(t) is QΨQ(t)-exact. The associated fields ΨX(t) can be defined to satisfy

(−)XXΨQ(t) = QΨQ(t)ΨX(t). (5.16)

We write Ψt(t) for Ψ∂t(t). Ψη(t) is Grassmann-even and carries ghost number 2 and picture number

−1, and Ψt and Ψδ(t) are Grassmann-odd and carry ghost number 1 and picture number 0.

For X,Y = η, ∂t, δ, the following relation can be derived from (5.16):

QΨQ(t)

(
XΨY(t)− (−)XYYΨX(t)− (−)X[ΨX(t),ΨY(t)]ΨQ(t)

)
= 0. (5.17)

We may write

FXY(t) = XΨY(t)− (−)XYYΨX(t)− (−)X[ΨX(t),ΨY(t)]ΨQ(t), (5.18)

then (5.17) reads QΨQ(t)FXY(t) = 0.

5.2 Gauge-invariant action in the WZW-like form

The gauge-invariant action can be written in the following form which we call the WZW-like form:

SWZW = −
∫ 1

0
dt⟨Ψt(t), ηΨQ(t)⟩. (5.19)

Here we explicitly write the t-dependence of the functionals. In the following we see that this action

is gauge invariant, which follows from the WZW-like relations (5.14) and (5.16).
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Variation of the action

Let us take the variation of the action. First, consider the variation of the integrand:

δ
⟨
Ψt(t), ηΨQ(t)

⟩
=

⟨
δΨt(t), ηΨQ(t)

⟩
+

⟨
Ψt(t), ηδΨQ(t)

⟩
. (5.20)

Utilizing
⟨
Fδt, ηΨQ(t)

⟩
= 0, the first term on the right-hand side of (5.20) becomes⟨
δΨt(t), ηΨQ(t)

⟩
=

⟨
∂tΨδ(t) + [Ψδ(t),Ψt(t)]ΨQ(t), ηΨQ(t)

⟩
. (5.21)

The second term on the right-hand side of (5.20) can be transformed as follows:⟨
Ψt(t), ηδΨQ(t)

⟩
=

⟨
Ψt(t), ηQΨQ(t)Ψδ(t)

⟩
=

⟨
QΨQ(t)ηΨt(t),Ψδ(t)

⟩
=

⟨
− ηQΨQ(t)Ψt(t)− [ηΨQ(t),Ψt(t)]ΨQ(t),Ψδ(t)

⟩
. (5.22)

The second term on the right-hand side of (5.21) and the second term on the right-hand side of (5.22)

are canceled because of the cyclicity of LB
ΨQ(t). Then, the variation becomes a total derivative in t:

δ
⟨
Ψt(t), ηΨQ(t)

⟩
=

⟨
∂tΨδ(t), ηΨQ(t)

⟩
−

⟨
ηQΨQ(t)Ψt(t),Ψδ(t)

⟩
=

⟨
∂tΨδ(t), ηΨQ(t)

⟩
+

⟨
Ψδ(t), η∂tΨQ(t)

⟩
= ∂t

⟨
Ψδ(t), ηΨQ(t)

⟩
. (5.23)

Integrating over t, the variation of the action is given by

δSWZW = −
∫ 1

0
dt δ⟨Ψt(t), ηΨQ(t)⟩ = −

∫ 1

0
dt ∂t⟨Ψδ(t), ηΨQ(t)⟩ = −

[
⟨Ψδ(t), ηΨQ(t)⟩

]1
0

(5.24)

Since the pure-gauge-like field and associated field vanish at t = 0, the variation of the action becomes

δSWZW = −⟨Ψδ, ηΨQ⟩. (5.25)

Here we omit the argument t = 1 of the fields. The variation of the action does not depend on t, and

therefore t-dependence is topological. The equation of motion is given by

ηΨQ = 0. (5.26)

Note that, to identify ηΨQ = 0 as an equation of motion, we actually need to impose the regularity

condition on Ψδ: an arbitrary variation of fundamental string field provides arbitrary Ψδ. See also [44].

Gauge invariance

Since the equation of motion belongs to the kernels of QΨQ
and η, they generate the gauge trans-

formations in WZW-like action:

Ψδ = QΨQ
Λ̃ + ηΩ̃. (5.27)

The gauge parameters Λ̃ and Ω̃ carry ghost number 0 and picture number 0 and 1, respectively. The

gauge invariance follows from the nilpotency of QΨQ
and η.
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5.3 Realization of the pure-gauge-like field and associated fields

In this subsection we introduce an explicit realization of the pure-gauge-like and associated fields as

functionals of the string field. We use a string field Ṽ of heterotic string field theory which is a

Grassmann-odd state in the large Hilbert space of ghost number 1 and picture number 0. It satisfies

the constraints

b−0 Ṽ = 0 , L−0 Ṽ = 0 . (5.28)

We introduce a t-parametrized string field Ṽ (t) satisfying Ṽ (0) = 0 and Ṽ (1) = Ṽ .

Pure-gauge-like field

The pure-gauge-like field ΨQ can be defined in the same manner as the pure gauge construction in

the bosonic theory: it is obtained by the successive infinitesimal gauge transformation of the bosonic

theory from 0 along the gauge orbit parameterized by τ . The pure-gauge-like string field ΨQ is

obtained by replacing the gauge parameter in bosonic theory with the string field Ṽ in WZW-like

theory. Note that Ṽ is Grassmann odd and carries ghost number 1 and picture number 0, the same

as the gauge parameter in bosonic theory. Then, ΨQ is defined by the following differential equation:

∂τΨQ[τ ] = QΨQ[τ ]Ṽ . (5.29)

The pure-gauge-like string field ΨQ[τ ] satisfies

ΨQ[0] = 0, ΨQ[τ ] =

∫ τ

0
dτ ′QΨQ[τ ′]Ṽ . (5.30)

Their explicit forms are given by 14)

ΨQ[τ ] = τQṼ +
κτ2

2
[Ṽ , QṼ ] +

κ2τ3

3!

(
[Ṽ , QṼ ,QṼ ] + [Ṽ , [Ṽ , QṼ ]]

)
+
κ3τ4

4!

(
[Ṽ , QṼ ,QṼ ,QṼ ] + [Ṽ , [Ṽ , QṼ ,QṼ ]] + [Ṽ , [Ṽ , [Ṽ , QṼ ]]] + 3[Ṽ , [Ṽ , QṼ ], QṼ ]

)
+ · · · ,

(5.31)

QΨQ[τ ]B = QB + κτ [QṼ ,B] +
κ2τ2

2

(
[[Ṽ , QṼ ], B] + [QṼ ,QṼ ,B]

)
+
κ3τ3

6

(
[[Ṽ , QṼ ,QṼ ], B] + [[Ṽ , [Ṽ , QṼ ]], B] + 3[QṼ , [Ṽ , QṼ ], B] + [QṼ ,QṼ ,QṼ ,B]

)
+ · · · .

(5.32)

We can check that it satisfies the Maurer-Cartan equation by differentiating (5.14) in τ :

∂τFB(ΨQ) = πLB
(
∂τΨQ ∧ e∧ΨQ

)
= QΨQ

(∂τΨQ) = QΨQ
QΨQ

Ṽ = −[FB(ΨQ), Ṽ ]ΨQ
. (5.33)

Since ΨQ(τ = 0) = 0, FB(ΨQ) = 0 holds at τ = 0, and then this homogeneous differential equation

ensures that FB(ΨQ) = 0 holds at arbitrary τ .

14) ΨQ agree with the pure gauge in closed bosonic string field theory [75].
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Associated fields

The associated fields are required to satisfy (−)XXΨQ = QΨQ
ΨX. Differentiating it by τ , one

can derive the differential equation which defines ΨX. Let us define I(τ) = QΨQ
ΨX − (−)XXΨQ and

consider its differentiation in τ :

∂τI(τ) = [Ṽ , I(τ)]ΨQ
+QΨQ

(
∂τΨX − XṼ − [Ṽ ,ΨX]ΨQ

)
. (5.34)

We define the associated fields ΨX[Ṽ ] by the following differential equation:

∂

∂τ
ΨX[τ ] = XṼ + κ

[
Ṽ ,ΨX[τ ]

]
ΨQ[τ ]

(5.35)

with the initial condition ΨX[τ = 0] = 0. Then, the equation (5.34) becomes ∂τI(τ) = [Ṽ , I(τ)]ΨQ
,

and leads to the vanishing of I(τ) at arbitrary τ since I(τ = 0) = 0, which means (−)XXΨQ = QΨQ
ΨX.

The explicit forms of ΨX in lower order is given by

ΨX[τ ] =τXṼ +
τ2

2
[Ṽ ,XṼ ] +

τ3

6

(
2[Ṽ , QṼ ,XṼ ] + [Ṽ , [Ṽ ,XṼ ]]

)
+
τ4

24

(
3[Ṽ , QṼ ,QṼ ,XṼ ]

+ 2[Ṽ , [Ṽ , QṼ ,XṼ ]] + [Ṽ , [Ṽ , [Ṽ ,XṼ ]]] + 3[Ṽ , [Ṽ , QṼ ],XṼ ] + 3[Ṽ , QṼ , [Ṽ ,XṼ ]]
)
+ · · · .

(5.36)

Note that ΨX is invertible as a function of XṼ . In particular, Ψδ is invertible as a function of δṼ ,

which guarantees the regularity condition, and ηΨQ provides correct equation of motion.

Gauge transformation in terms of Ṽ

We can solve Ψδ = QΨQ
Λ̃ + ηΩ̃ for δṼ perturbatively. For the computation, see [52] 15):

δQṼ = QΛ̃ +
1

2

(
2[QṼ , Λ̃]− [Ṽ , QΛ̃]

)
+

1

12

(
6[[Ṽ , QṼ ], Λ̃] + 6[QṼ ,QṼ , Λ̃]− 6[Ṽ , [QṼ , Λ̃]]

− 4[Ṽ , QṼ ,QΛ̃] + [Ṽ , [Ṽ , QΛ̃]]
)
+ · · · , (5.37)

δηṼ = ηΩ̃− 1

2
[Ṽ , ηΩ̃] +

1

6

(
− 2[Ṽ , QṼ , ηΩ̃] +

1

2
[Ṽ , [Ṽ , ηΩ̃]]

)
+ · · · . (5.38)

5.4 Z2-reversing property in open superstring based on the star product

5.4.1 Characterizations and parameterizations for open string

The above construction works also for the open string, basically by replacing the starting string

products LB with MB and the inner product ⟨A,B⟩ = ⟨A|c−0 |B⟩ with ⟨A,B⟩ = ⟨A|B⟩. The degree for
open string field is defined to be Grassmann parity plus one.

15) We can redefine the gauge parameter Λ̃ to Λ̃′ so that the gauge parameter only appears as QΛ̃′ [52], then the gauge

transformation can be written as

δQṼ = QΛ̃ +
1

2
[Ṽ , QΛ̃] +

1

6
[Ṽ , QṼ ,QΛ̃′] +

1

12
[Ṽ , [Ṽ , QΛ̃′]] + · · · .
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Characterizations

The pure-gauge-like string field is defined as a solution for the Maurer-Cartan equation for MB:

0 = π1M
B 1

1−ΨQ
= QΨQ +MB

2 (ΨQ,ΨQ) +MB
3 (ΨQ,ΨQ,ΨQ) + · · · . (5.39)

ΨQ is degree even. Since MB
n carries ghost number 1 − n and picture number 0, ΨQ carries ghost

number 1 and picture number 0. The associated string fields are defined by (−)XXΨQ = QΨQ
ΨX, the

same equation as (5.16). Note that the shifted structure for the open superstring is defined by

MB
n,ΨQ

(B1, ..., Bn) = π1M
B
( 1

1−ΨQ
⊗B1 ⊗

1

1−ΨQ
⊗ ...⊗ 1

1−ΨQ
⊗Bn ⊗

1

1−ΨQ

)
. (5.40)

Ψη is degree even and carries ghost number 1 and picture number −1, and Ψt and Ψδ are degree odd

and carry ghost number 0 and picture number 0.

Recall that the shifted structure for heterotic string is defined by

[B1, ..., Bn]ΨQ
= π1L

B(B1 ∧ ... ∧Bn ∧ eΨQ). (5.41)

The relations in subsections 5.2 and 5.3 hold also for the open string with the reinterpretation

[B1, ..., Bn]ΨQ
←→ π1M

B(B1 ∧ ... ∧Bn ∧ eΨQ) =
∑
σ

(−)σ({B})MB
n,ΨQ

(Bσ(1), ..., Bσ(n)). (5.42)

For example, the commutator of X = {η, ∂t, δ} and QΨQ
, and FXY read

[[X, QΨQ
]]B = (−)X

(
MB

2,ΨQ
(XΨQ, B) + (−)deg(B)XMB

2,ΨQ
(B,XΨQ)

)
, (5.43)

FXY = XΨY − (−)XYYΨX − (−)XMB
2,ΨQ

(ΨX,ΨY)− (−)X+(X+1)(Y+1)MB
2,ΨQ

(ΨY,ΨX). (5.44)

Using the BPZ inner product ⟨A,B⟩ = ⟨A|B⟩ for the open string, the WZW-like action is given

by

SWZW =

∫ 1

0
dt
⟨
Ψt(t), ηΨQ(t)

⟩
. (5.45)

The equation of motion ηΨQ = 0 and the gauge transformations Ψδ = QΨQ
Λ̃ + ηΩ̃ can be derived

and checked in the same manner as the heterotic string. The gauge parameters Λ̃ and Ω̃ carry ghost

number −1 and picture number 0 and 1, respectively.

Parameterizations

The string field ϕ of open superstring field theory is a Grassmann-even state in the large Hilbert

space of ghost number 0 and picture number 0. We do not need b−0 and L−0 conditions. We introduce

a t-parametrized string field ϕ(t) satisfying ϕ(0) = 0 and ϕ(1) = ϕ. The construction in subsection

5.3 works, with the following reinterpretation of the shifted structure:

∂τΨQ[τ ] = QΨQ[τ ]ϕ, (5.46)

∂τΨX[τ ] = Xϕ+MB
2,ΨQ[τ ](ϕ,ΨX[τ ]) + (−)X+1MB

2,ΨQ[τ ](ΨX[τ ], ϕ). (5.47)
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Without stubs

If we use the star product as MB
2 :

MB
2 (A,B) = m2(A,B) = (−)deg(A)A ∗B, (5.48)

MB
2 is associative: [[MB

2 ,M
B
2 ]] = 0, and we can set MB

n≥3 = 0. Then the shifted structures become

QΨQ
B = QB +MB

2 (B,ΨQ) +MB
2 (ΨQ, B), (5.49)

MB
2,ΨQ

(A,B) =MB
2 (A,B) (5.50)

and the differential equations (5.46) and (5.47) become

∂τΨX[τ ] = Xϕ− [[ϕ,ΨX[τ ]]]
∗, (5.51)

the common form to X = Q, η, ∂t, δ. Note that ϕ is degree odd. The solutions are given by

ΨX[τ ] = e−τϕ(Xeτϕ). (5.52)

For these ΨX, FXY = 0 holds, and the action (5.45) can be transformed into the standard WZW-like

form:

SWZW = −1

2

∫ 1

0
dt
(
∂t⟨e−ϕηeϕ, e−ϕQeϕ⟩+ ⟨e−ϕ∂teϕ, [[e−ϕQeϕ, e−ϕηeϕ]]∗⟩

)
. (5.53)

Note that the action can be transformed into the standard WZW-like form if Fηt = 0, see [52].

5.4.2 Z2-reversing property in open string and equivalence to the A∞-action

In the action (5.53), Q and η appears symmetrically and the action preserves its form under the

exchange of Q and η, which we call Z2-reversing property. In the following, we explain this Z2-

reversing property of the WZW-like action (5.53), and show the equivalence of the action (5.53) and

the A∞-action using it.

Z2-dual description

Let us first introduce the Z2-reversing property. We denote the action (5.53) with the explicit

dependence on its ingredients as

S(g, η,Q) = − 1

2g2

∫ 1

0
dt
(
∂t⟨e−gϕηegϕ, e−gϕQegϕ⟩+ ⟨e−gϕ∂tegϕ, [[e−gϕQegϕ, e−gϕηegϕ]]∗⟩

)
. (5.54)

For a derivation operator X = {Q, η, ∂, δ} which acts on the star product, it follows from 0 = X(1) =
X(e−gϕ ∗ egϕ) that

e−gϕ ∗ (Xegϕ) = −(Xe−gϕ) ∗ egϕ. (5.55)

Utilizing this and the properties of the inner product and the star product

⟨A,B⟩ = (−)ϵ(A)ϵ(B)⟨B,A⟩, ⟨A,B ∗ C⟩ = ⟨A ∗B,C⟩, ⟨A,B ∗ C⟩ = (−)ϵ(C)(ϵ(A)+ϵ(B))⟨C ∗A,B⟩,
(5.56)
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the action (5.54) can be transformed as follows:

S(g, η,Q) = − 1

2g2

∫ 1

0
dt
(
∂t⟨e−gϕηegϕ, e−gϕQegϕ⟩+ ⟨e−gϕ∂tegϕ, [[e−gϕQegϕ, e−gϕηegϕ]]∗⟩

)
= − 1

2g2

∫ 1

0
dt
(
− ∂t⟨e−gϕQegϕ, e−gϕηegϕ⟩+ ⟨e−gϕ∂tegϕ, [[e−gϕηegϕ, e−gϕQegϕ]]∗⟩

)
= − 1

2g2

∫ 1

0
dt
(
− ∂t⟨(Qe−gϕ)egϕ, η(e−gϕ)egϕ⟩ − ⟨(∂te−gϕ)egϕ, [[(ηe−gϕ)egϕ, (Qe−gϕ)egϕ]]∗⟩

)
=

1

2g2

∫ 1

0
dt
(
∂t⟨egϕ(Qe−gϕ), egϕη(e−gϕ)⟩+ ⟨egϕ(∂te−gϕ), [[egϕ(ηe−gϕ), egϕ(Qe−gϕ)]]∗⟩

)
.

(5.57)

The last line is in the same form as the first line, with replacing η ↔ Q and reversing the signs of

coupling constant g → −g and the action S → −S, and provides the Z2-dual description of the action:

S(g, η,Q) = −S(−g,Q, η). (5.58)

We call this property the Z2-reversing property.

Utilizing this Z2-reversing property, the action and its variation can be written in terms of the

functionals AX ≡ 1
−ge

gϕ(Xe−gϕ) which are Z2-dual to the functionals ΨX, as

SWZW = −
∫ t

0
dt⟨At(t), QAη(t)⟩, (5.59)

δSWZW = −⟨Aδ, QAη⟩. (5.60)

In particular, Aη is Z2-dual to pure-gauge-like field ΨQ, and satisfies

ηAη − gAη ∗Aη = 0. (5.61)

The equivalence of the Berkovits theory and the A∞-theory is shown based on this Z2-reversed ex-

pressions [42]. Let us see how this Z2-reversing plays important roles.

Equivalence to the A∞-action

For the open string without stubs, it is shown that the WZW-like action (5.45), or equivalently

(5.59) is equivalent to the A∞-action. In the A∞-formulation, the constraint and the equation of

motion for the fundamental string field Ψ are given by η and Q-based A∞ products MNS respectively:

Constraint : ηΨ = 0, E.O.M. : MNS 1

1−Ψ
= 0. (5.62)

In conventional WZW-like formulation, the constraint and the equation of motion for the pure-gauge-

like string field ΨQ = 1
ge
−gϕ(Qegϕ) are given by Q-based A∞ products Q+ gm2 and η respectively:

Constraint : QΨQ + gΨQ ∗ΨQ = 0, E.O.M. : ηΨQ = 0. (5.63)

We find that the roles of Q and η are reversed. While it is not problem on shell, this skew makes

it difficult to discuss the off-shell relation of these theories. However, if we start with the action in
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the Z2-dual description (5.59), the constraint and the equation of motion in terms of the functional

Aη = 1
−ge

gϕ(ηe−gϕ) are given by η-based A∞ products η − gm2 and Q, respectively:

Constraint : ηAη − gAη ∗Aη = 0, E.O.M. : QAη = 0. (5.64)

Q and η play the same role as those in the A∞-formulation. In fact, (5.62) can be written in terms of

the redefined string field Ψ′ = π1G
−1 1

1−Ψ as

Constraint : ηΨ′ − gΨ′ ∗Ψ′ = 0, E.O.M. : QΨ′ = 0. (5.65)

The identification Ψ′ = Aη provides not only the equivalence of the equation of motion, but also the

equivalence of the A∞-action and the WZW-like action for open string without stubs, which is shown

in [42]. Also, the relation between the A∞ structures on both sides is provided based on the small

Hilbert space in [43], and the relation between the gauge symmetries of the theories are provided based

on the large Hilbert space in [44].

For NS open string with stubs, NS heterotic string, and NS-NS closed string, the Z2-reversing

property of the WZW-like actions is not known, and the relation of the WZW-like actions and the

A∞- and L∞-actions remains to be understood.16) However, alternative WZW-like actions can be

constructed based on the Z2-dual characterization of the functionals [62], the generalization of the

constraint in (5.64), which is the content in the next section. They are shown to be off-shell equivalent

with L∞/A∞-actions, while the all-order relations with the conventional WZW-like actions have not

yet understood.

16) Their on-shell equivalence is discussed in [61].
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6 Dual WZW-like formulation

As mentioned in section 5.4, for NS open string with stubs, NS heterotic string, and NS-NS closed

string, it is not understood whether and how the WZW-like actions have the Z2-reversing property.

Then, in the WZW-like formulation, the constraint and the equation of motion require the pure-gauge-

like string field ΨQ to be annihilated by the Q-based L∞ products LB and η, respectively:

Constraint: 0 = QΨQ +
1

2
[ΨQ,ΨQ] +

1

3!
[ΨQ,ΨQ,ΨQ] + · · · , (6.1)

E.O.M.: 0 = ηΨQ. (6.2)

While, in the L∞-type formulation, the small Hilbert space constraint and the equation of motion

require e∧Φ to be annihilated by LB and η, respectively:

Constraint: 0 = ηΦ, (6.3)

E.O.M.: 0 = QΦ+
1

2
LNS
2 (Φ,Φ) +

1

3!
LNS
3 (Φ,Φ,Φ) + · · · . (6.4)

There is a skew between the roles of Q and η of both sides, which is one of the obstacle for the simple

relation between the A∞/L∞-type formulation and the WZW-like formulation.

In this section, starting with the generalization of the Z2-dual characterization of the functionals

(5.64), we introduce an alternative WZW-like formulation which is naturally related to the L∞-

formulation. We define the dual L∞-products

η, [ · , · ]η, [ · , · , · ]η, · · · , (6.5)

and introduce the pure-gauge-like field Aη and the associated fields AX which satisfy

0 = η Aη +
∞∑
k=2

1

k!

[ k︷ ︸︸ ︷
Aη, . . . , Aη

]η
, (6.6)

(−)XXAη = η AX +
∞∑
k=1

1

k!

[ k︷ ︸︸ ︷
Aη, . . . , Aη, AX

]η
, (6.7)

which are Z2-reversed versions of WZW-like relations in [52], namely (5.14) and (5.16). Then we show

that once Aη and AX are given as functionals of some dynamical string field, the gauge-invariant action

can be constructed in terms of them, as

Sη =

∫ 1

0
dt⟨At(t), QAη(t)⟩. (6.8)

The constraint and the equation of motions, which will be derived in section 6.3, are summarized as

Constraint: 0 = ηAη +
1

2
[Aη, Aη]

η +
1

3!
[Aη, Aη, Aη]

η + · · · , (6.9)

E.O.M.: 0 = QAη. (6.10)

There is not a skew of the roles of Q and η, and then they can be naturally related to those in the

L∞-type formulation. Besides, it is helpful in the construction of the action including the Ramond
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sector. The NS sector part of the complete action of open superstring field theory [20] is based on the

Z2-dual characterization (5.64), see also section 7. In the same way, the Z2-dual plays a crucial role

in the construction of the action of heterotic string field theory including the Ramond sector, which

is performed in sections 8 and 9.

In this section, we first introduce the dual products and show that the gauge invariance of the

action (6.8) follows from the WZW-like relations (6.6) and (6.7). Then we show that the L∞-action

is a WZW-like action which is parameterized by Φ, SEKS[Φ] = Sη[Φ]. The functionals appearing in

the L∞-action satisfy the relations (6.6) and (6.7), which provides the equivalence of (6.3) and (6.9),

and of (6.4) and (6.10). We also give another parameterization, a parameterization by the string

field in the large Hilbert space V : Sη[V ]. We show that the actions in different parameterizations,

namely Sη[V ] and SEKS[Φ], are equivalent under the identification of the pure-gauge-like fields Aη of

both sides, by almost the same procedure performed in [42], We also derive the relation between two

dynamical string fields Φ and V , and discuss the equivalence of Sη and the conventional WZW-like

action SWZW.

Note that we use Aη, AX for the functionals in the dual WZW-like formulation, while those in

the conventional WZW-like formulation are written as ΨQ, ΨX. This section is based on [62] in

collaboration work H. Matsunaga.

6.1 η-based L∞ products

Let us introduce the dual products Lη which play a role as a starting point of the dual WZW-like

formulation. We first summarize the required property of the dual products, and then we provide its

construction.

Properties of dual products

We require the dual products Lη

Lη =

∞∑
n=1

Lη
n, (6.11)

to be degree odd, to satisfy the L∞-relations, and to be cyclic:

[[Lη,Lη]] = 0, (Lη)† =− Lη. (6.12)

We also require that Q acts as a derivation with respect to Lη:

[[Q,Lη]] = 0, (6.13)

which we call the Q-derivation property. The n-th product Lη
n carries ghost number 3−2n and picture

number n− 2. We write

π1L
η
n(B1 ∧ ... ∧Bn) = [B1, ..., Bn]

η, (6.14)

and [B]η = ηB. The L∞-relations, the derivation properties with the operators X = {Q, ∂t, δ}, and
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the cyclic properties are written as

∑
σ

n∑
k=1

1

k!(n− k)!
(−)σ({B})

[
[Biσ(1)

, . . . , Biσ(k)
]η, Biσ(k+1)

, . . . , Biσ(n)

]η
= 0, (6.15)

X
[
B1, . . . , Bn

]η
=

n∑
i=1

(−)X(B1+···+Bk−1+1)
[
B1, . . . ,XBk, . . . , Bn

]η
, (6.16)

⟨B1, [B2, · · · , Bn+1]
η⟩ = (−)B1+B2+···+Bn⟨[B1, · · · , Bn]

η, Bn+1⟩, (6.17)

where (−)σ is the sign factor of the permutation from {B1, ..., Bn} to {Bσ(1), ..., Bσ(n)}.

Construction of the dual L∞-products Lη

Such products can be constructed using the cohomomorphism G which provides the NS heterotic

string products LNS = G−1QG. The product Lη is defined as the similarity transformation of η:

Lη = GηG−1. (6.18)

The Lη are degree odd, and the n-th product Lη
n carries ghost number 3 − 2n and picture number

n− 2. Lη satisfies the L∞-relations, which follow from its definition:

[[Lη,Lη]] = 2LηLη = 2GηG−1GηG−1 = 2GηηG−1 = 0. (6.19)

The Q-derivation properties of Lη follow from [[η,LNS]] = 0:

[[Q,Lη]] = [[Q,GηG−1]] = G[[G−1QG,η]]G−1 = G[[LNS,η]]G−1 = 0. (6.20)

The cyclicity of Lη follows from that of the gauge products, which leads to G−1 = G† and then

(Lη)† = (GηG−1)† = (G−1)† η†G† = −GηG−1. (6.21)

Expanding the path-ordered exponential G in τ , the explicit forms of Lη in lower orders read

Lη(τ) = η+ τ [[λ
[0]
2 ,η]] +

τ2

2

(
[[λ

[0]
3 ,η]] + [[λ

[0]
2 , [[λ

[0]
2 ,η]]]]

)
+

+
τ3

3!

(
2[[λ

[0]
4 ,η]] + 2[[λ

[0]
2 , [[λ

[0]
3 ,η]]]] + [[λ

[0]
3 , [[λ

[0]
2 ,η]]]] + [[λ

[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,η]]]]]]

)
+ · · ·

= η− τL[1]
2 +

τ2

2

(
− L

[1]
3 − [[λ

[0]
2 ,L

[1]
2 ]]

)
+

+
τ3

3!

(
− 2L

[1]
4 − 2[[λ

[0]
2 ,L

[1]
3 ]]− [[λ

[0]
3 ,L

[1]
2 ]]− [[λ

[0]
2 , [[λ

[0]
2 ,L

[1]
2 ]]]]

)
+ · · · . (6.22)

Note that Lη
2 = −L[1]

2 = −LB
2 .

Shifted dual products

The shifted products of Lη are defined by

[B1, B2, · · · , Bn ]ηA =
∞∑

m=0

1

m!
[A,A, · · · , A︸ ︷︷ ︸

m

, B1, B2, · · · , Bn ]η. (6.23)
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Let Aη be a solution for the Maurer-Cartan equation for Lη:

0 = π1L
η(e∧Aη) = ηAη +

1

2
[Aη, Aη]

η +
1

3!
[Aη, Aη, Aη]

η + · · · . (6.24)

The Aη-shifted dual products are defined by

[B1, ..., Bn]
η
Aη

=
∞∑

m=0

1

m!
[Aη, Aη, · · · , Aη︸ ︷︷ ︸

m

, B1, ..., Bn]
η, (6.25)

and they satisfy the L∞-relations∑
σ

n∑
k=1

1

k!(n− k)!
(−)σ({B})

[
[Biσ(1)

, . . . , Biσ(k)
]ηAη

, Biσ(k+1)
, . . . , Biσ(n)

]η
Aη

= 0. (6.26)

In particular we write Dη for the Aη-shifted 1-product: DηB = [B]ηAη
. From the L∞-relation of the

Aη-shifted Lη, Dη is nilpotent:

(Dη)
2B = −[π1Lη(e∧Aη), B]ηAη

= 0, (6.27)

and acts on the Aη-shifted 2-product [B1, B2]
η
Aη

as a derivation:

Dη[B1, B2]
η
Aη

+ [DηB1, B2]
η
Aη

+ (−)B1 [B1, DηB2]
η
Aη

= −[π1Lη(e∧Aη), B1, B2]
η
Aη

= 0. (6.28)

Because of the shift, the operators X = {Q, ∂t, δ} are not derivations on the shifted product:

X
[
B1, . . . , Bn

]η
Aη

=
n−1∑
i=1

(−)X(B1+···+Bk−1+1)
[
B1, . . . ,XBk, . . . , Bn

]η
Aη

+ (−)X[XAη, B1, . . . , Bn]
η
Aη
.

(6.29)

In particular,

[[X, Dη]]B = (−)X[XAη, B]ηAη
. (6.30)

The shifted dual products are cyclic, which follows from the cyclicity of the dual products:

⟨B1, [B2, · · · , Bn+1]
η
Aη
⟩ = (−)B1+B2+···+Bn⟨[B1, · · · , Bn]

η
Aη
, Bn+1⟩. (6.31)

6.2 Dual WZW-like action

As mentioned at the beginning of the section, the gauge-invariant action can be constructed using

the functionals of the string field satisfying certain relations which we call WZW-like relations. In

this subsection we do not specify the explicit parameterizations of the functionals but assume that

they are parameterized by t and vanish at t = 0. The gauge invariance follows from the WZW-like

relations, and does not depend on the specific choice of the parameterization of the functionals.

Pure-gauge-like field

The key ingredient of the dual WZW-like formulation is the pure-gauge-like field Aη which is

defined to satisfy (6.6), that is, Aη is defined to be a solution to the Maurer-Cartan equation for Lη:

0 = π1L
η(e∧Aη) = ηAη +

1

2
[Aη, Aη]

η +
1

3!
[Aη, Aη, Aη]

η + · · · . (6.32)

Aη is Grassmann even and carries ghost number 2 and picture number −1.
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Associated fields

Since Lη commute with X = {Q, ∂t, δ}, acting with X on 0 = π1L
η(e∧Aη), one can obtain

0 = Xπ1Lη(e∧Aη) = (−)Xπ1Lη(XAη ∧ e∧Aη) = (−)XDη(XAη). (6.33)

We find that XAη is annihilated byDη and then XAη should beDη-exact. We can define the associated

field AX to satisfy (6.7) which can be written as

(−)XXAη = DηAX. (6.34)

We write At fo A∂t . AQ is Grassmann even and carries ghost number 2 and picture number 0, and

AX={δ,∂t} is Grassmann odd and carries ghost number 1 and picture number 0.

From (6.34), we can derive the follow relation: for the pair of derivations X,Y = {Q, ∂t, δ},

Dη

(
XAY − (−)XYYAX − (−)X[AX, AY]

η
Aη

)
= 0. (6.35)

To derive it, consider the action of the commutator of X and Y on Aη:

[[X,Y]]Aη = XYAη − (−)XYYXAη

= (−)YXDηAY − (−)XY(−)XYDηAX

= (−)Y
(
[DηAX, AY]

η
Aη

+ (−)XDηXAY
)
− (−)XY+X([DηAY, AX]

η
Aη

+ (−)YDηYAX
)

= (−)Y+XDη

(
XAY − (−)XYYAX − (−)X[AX, AY]

η
Aη

)
. (6.36)

We used [[X, Dη]]B = [DηAX, B]ηAη
which follows from (6.30) and (6.34). Since the commutator equals

zero: [[X,Y]] = 0, we obtain (6.35). We may write

F η
XY = XAY − (−)XYYAX − (−)X[AX, AY]

η
Aη
, (6.37)

then (6.35) reads DηF
η
XY = 0.

Dual WZW-like action

We define the η-based WZW-like action by

Sη =

∫ 1

0
dt⟨At(t), QAη(t)⟩. (6.38)

In the following we see that this action is gauge invariant.

Variation of the action

Let us take the variation of the action (6.38). Note that the computations are based on the WZW-

like relations (6.32) and (6.34), and the specific parameterization of the functionals Aη and AX are

not used.

First, consider the variation of the integrand of (6.38):

δ
⟨
At(t), QAη(t)

⟩
=

⟨
δAt(t), QAη(t)

⟩
+

⟨
At(t), QδAη(t)

⟩
. (6.39)
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Utilizing (6.35), the first term of the right-hand side of (6.39) can be transformed into⟨
δAt(t), QAη(t)

⟩
=

⟨
∂tAδ(t) + [Aδ(t), At(t)]

η
Aη(t)

, QAη(t)
⟩
. (6.40)

Utilizing (6.34) and (6.30), the second term of the right-hand side of (6.39) can be transformed into⟨
At(t), QδAη(t)

⟩
=

⟨
At(t), QDηAδ(t)

⟩
=

⟨
DηQAt(t), Aδ(t)

⟩
=

⟨
−QDηAt(t)− [QAη(t), At(t)]

η
Aη(t)

, Aδ(t)
⟩
. (6.41)

The second terms of the right-hand side of (6.40) and the right-hand side of (6.41) are canceled because

of the cyclicity of Aη-shifted Lη. Then we find that the variation of the integrand of (6.38) becomes

a total derivative in t:

δ
⟨
At(t), QAη(t)

⟩
=

⟨
∂tAδ(t), QAη(t)

⟩
−

⟨
QDηAt(t), Aδ(t)

⟩
=

⟨
∂tAδ(t), QAη(t)

⟩
+

⟨
Aδ(t), Q∂tAη(t)

⟩
= ∂t

⟨
Aδ(t), QAη(t)

⟩
. (6.42)

Integrating it over t, the variation of the action is given by∫ 1

0
dt δ⟨At(t), QAη(t)⟩ =

∫ 1

0
dt ∂t⟨Aδ(t), QAη(t)⟩ = ⟨Aδ(1), QAη(1)⟩, (6.43)

where we used that the pure-gauge-like field Aη and the associated field AX vanish at t = 0. Then the

variation of the action becomes

δSη = ⟨Aδ(1), QAη(1)⟩. (6.44)

We find that the variation of the action does not depend on t, and therefore the t-dependence of the

dynamical string field is topological. Then, the equation of motion reads

QAη(1) = 0. (6.45)

Note that, as in the conventional WZW-like formulation, to identify QAη = 0 as an equation of motion,

we actually need to impose the regularity condition on Aδ: an arbitrary variation of fundamental string

field provides arbitrary Aδ.

Gauge invariances

It follows from the nilpotency of Q and Dη that the WZW-like action Sη is invariant under the

following form of gauge transformations:

Aδ(1) = DηΩ+QΛ, (6.46)

where Ω and Λ are gauge parameters belonging to the large Hilbert space, which carry ghost numbers

0, and picture numbers 1 and 0, respectively.
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6.3 Parameterization by string field in the small Hilbert space

In this subsection, we see that the L∞-action is one parameterization of the η-based WZW-like action:

SEKS[Φ] = Sη[Φ]. (6.47)

Recall that the action in the L∞-formulation is given by

SEKS[Φ] =

∫ 1

0
dt ⟨π1

(
G(ξte

∧Φ(t))
)
, Q π1

(
G(e∧Φ(t))

)
⟩. (6.48)

One can show that the functionals of the dynamical string field Φ appearing in the action

Aη[Φ(t)] = π1G
(
e∧Φ(t)

)
, (6.49)

AX[Φ(t)] = π1G
(
ξXe

∧Φ(t)
)
, (6.50)

satisfy the WZW-like relations:

0 = π1L
η
(
e∧Aη

)
, (6.51)

(−)XXAη = Dη AX. (6.52)

Let us confirm the fields Aη[Φ(t)] and AX[Φ(t)] satisfy the WZW-like relations. The first relation

(6.51) directly follows from the constraint that Φ belongs to the small Hilbert space:

Lη
(
e∧Aη [Φ(t)]

)
= Lη

(
e∧π1G(e∧Φ(t))

)
= (GηG−1)G

(
e∧Φ(t)

)
= Gη

(
e∧Φ(t)

)
= G

(
ηΦ(t) ∧ e∧Φ(t)

)
= 0.

(6.53)

The second relation (6.52) can be confirmed similarly. For the operator X which commutes with Lη,

[[X,Lη]] = 0, since [[G−1XG,η]] = 0 holds, one can define the coderivation ξX such that

G−1XG = (−)X[[η, ξX]]. (6.54)

Note that for the operator X which commutes also with G, such as ∂t and δ, ξX is a coderivation

derived from Xξ. Then, utilizing this ξX, the following relation holds:

(−)XXG
(
e∧Φ(t)

)
= (−)XG (G−1XG)

(
e∧Φ(t)

)
= Gη ξX

(
e∧Φ(t)

)
= LηG ξX

(
e∧Φ(t)

)
= Lη

(
π1G ξX

(
e∧Φ(t)

)
∧ e∧π1G(e∧Φ(t))

)
. (6.55)

Since Dη = π1L
η
(
I ∧ e∧Aη

)
, we can see Aη[Φ(t)] and AX[Φ(t)] satisfy the WZW-like relation (6.52).

Thus the functionals Aη and AX are the pure-gauge-like field and the associated field, and the

action in the L∞-formulation is one realization of the WZW-like action:

SEKS[Φ] =

∫ 1

0
dt ⟨At[Φ(t)], QAη[Φ(t)]⟩ = Sη[Φ]. (6.56)
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The variation of the action, the equation of motion, and the gauge transformation can be written in

the WZW-like form (6.44), (6.45), and (6.46) 17). For competition, let us consider the regularity of

Aδ in this case. Utilizing QAη = −DηAQ, Dη = π1L
η( · ∧ eAη), Lη = GηG−1, and e∧Aη = Ge∧Φ, we

can transform QAη as follows:

QAη = −π1(GηG−1)(AQ ∧ e∧Aη) = −π1G
(
π1ηG

−1(AQ ∧ e∧Aη) ∧ e∧Φ
)
. (6.57)

Then, utilizing Aδ = π1G(ξδΦ ∧ e∧Φ), and the cyclicity of the cohomomorphism G

⟨π1G(A ∧ e∧C), π1G(B ∧ e∧C)⟩ = ⟨A,B⟩, (6.58)

the variation of the action can be written in the following form:

δSη =
⟨
Aδ, QAη

⟩
=

⟨
ξδΦ,−π1ηG−1(AQ ∧ e∧Aη)

⟩
=

⟨⟨
δΦ,−π1ηG−1(AQ ∧ e∧Aη)

⟩⟩
. (6.59)

This parameterization is regular in this sense. Utilizing AQ = π1GξQ(e
∧Φ), one can check that the

dual WZW-like action gives an equation of motions of L∞-formulation (4.83) as follows:

−π1ηG−1(AQ ∧ e∧Aη) = −π1ηG−1(π1GξQ(e
∧Φ) ∧ e∧Aη) = −π1ηξQe∧Φ = π1L

NSe∧Φ, (6.60)

where we used −[[η, ξQ]] = LNS which follows from (6.54). One may check the equivalence of (6.45)

and (4.83) more easily by

π1L(e
∧Φ) = π1G

−1QG
(
e∧Φ

)
= π1G

−1Q
(
e∧Aη [Φ]

)
= π1G

−1((QAη[Φ]) ∧ e∧Aη [Φ]
)
. (6.61)

Since πG−1( · ∧ e∧Aη) is invertible, (6.45) and (4.83) are equivalent.

6.4 Parameterization by string field in the large Hilbert space

Let V be a dynamical string field which belongs to the large Hilbert space and carries ghost number

1 and picture number 0. In this subsection, we provide a parameterization of the pure-gauge-like field

Aη = Aη[V ] and the associated fields AX = AX[V ] by a set of differential equations which are the

Z2-reversed version of those in [52].

Pure-gauge-like field Aη[V ]

A pure-gauge-like field of Aη is a solution of the the Maurer-Cartan equation for Lη:

Fη(Aη) = π1L
ηe∧Aη = 0. (6.62)

Aη[V ], the pure-gauge-like field parameterized by V , is obtained by the same procedure in the pure

gauge construction of [52]. Let us introduce a real parameter τ ∈ [0, 1] and a functional parameterized

by τ , Aη[τ ;V ]. We define Aη[τ ;V ] by the differential equation

∂τAη[τ ;V ] = Dη(τ)V

= η V +

∞∑
k=1

κm−1

m!

[
Aη[τ ;V ], . . . , Aη[τ ;V ]︸ ︷︷ ︸

m

, V
]η
, (6.63)

17) The relations of the gauge transformations in the WZW-form (6.46) and the original form (4.85) are discussed

in [62].
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with the initial condition Aη[τ = 0;V ] = 0. Aη[V ] is given by setting τ = 1 of Aη[τ ;V ]:

Aη[V ] ≡ Aη[τ = 1;V ]. (6.64)

One can check that the differential equation (6.63) actually provides a solution for the Maurer-

Cartan equation for Lη

Fη(Aη[τ ;V ]) = π1L
ηe∧Aη [τ ;V ] = 0. (6.65)

Differentiating Fη(Aη[τ ;V ]) in τ , we obtain

∂τFη(Aη) = πLη
(
∂τAη ∧ e∧Aη

)
= Dη(∂τAη) = DηDηV = −[Fη(Aη), V ]ηAη

. (6.66)

Note that we do not use the nilpotency of Dη since it follows from (6.65), what we are going to show.

At τ = 0, it satisfies the initial condition Fη(Aη[τ = 0;V ]) = 0. Then this homogeneous differential

equation (6.66) ensures (6.65) for arbitrary τ , namely by setting τ = 1, (6.62).

Associated fields AX[V ]

The associated fields AX are the functionals satisfying

(−)XXAη = DηAX. (6.67)

Again, we introduce a real parameter τ ∈ [0, 1] and a τ -parameterized functional AX[τ ;V ]. Let us

introduce a functional I(τ) by

I(τ) ≡ Dη(τ)AX[τ ;V ]− (−)XXAη[τ ;V ], (6.68)

and consider its differentiation in τ :

∂τI(τ) = [V, I(τ)]ηAη
+Dη

(
∂τAX − XV − κ[V,AX]

η
Aη

)
. (6.69)

We define the associated fields AX[τ ;V ] by the differential equation

∂τAX[τ ;V ] = XV + κ
[
V,AX[τ ;V ]

]η
Aη [τ ;V ]

, (6.70)

with the initial condition AX[τ = 0;V ] = 0. Then, the equation (6.69) becomes homogeneous,

∂τI(τ) = [V, I(τ)]ηAη
, and leads to I(τ) = 0 at arbitrary τ since I(τ = 0) = 0. We define the

associated field by setting τ = 1:

AX[V ] ≡ AX[τ = 1;V ]. (6.71)

AX[V ] satisfies the WZW-like relation (6.67) since I(1) = 0. Note that AX is invertible as a function

of XV . In particular, Aδ is invertible as a function of δV , which guarantees the regularity condition,

and QAη provides correct equation of motion.
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Action Sη[V ]

Utilizing the pure-gauge-like string field Aη[V ] and associated fields AX[V ] which are defined by

(6.63) and (6.70) to satisfy the WZW-like relations (6.62) and (6.67), one can construct a gauge-

invariant action for the dynamical string field V by

Sη[V ] =

∫ 1

0
dt ⟨At[V (t)], QAη[V (t)]⟩. (6.72)

In the same manner as section 6.2, the variation of the action cam be taken and the gauge transfor-

mations can be derived as follows:

δSη[V ] = ⟨Aδ[V ], QAη[V ]⟩, (6.73)

Aδ[V ] = DηΩ+QΛ, (6.74)

where Ω and Λ are the gauge parameters belonging to the large Hilbert space, which carry ghost

numbers 0, and picture numbers 1 and 0, respectively.

6.5 Equivalence to the L∞-type formulation

The η-based WZW-like actions in different parameterizations, namely Sη[V ] and SEKS[Φ] = Sη[Φ], are

equivalent if the pure-gauge-like string fields in both parameterizations are identified 18)

Aη[Φ(t)] ≡ Aη[V (t)]. (6.75)

Note that it provides the equivalence of the equations of motions QAη[V ] = QAη[Φ].

Under this identification Aη[Φ] ≡ Aη[V ], the associated fields in both parameterizations are equiv-

alent up to Dη-exact terms AX[Φ] = AX[V ]+ (Dη-exact terms), which is guaranteed by the WZW-like

relation (−)XXAη = DηAX:

Dη

(
AX[Φ(t)]−AX[V (t)]

)
= (−)XX

(
Aη[Φ(t)]−Aη[V (t)]

)
= 0. (6.76)

Recall that there exists arbitrariness to add Dη-exact terms in the associated fields, since they do not

affect to the WZW-like relation (−)XXAη = DηAX. Besides, since QAη is Dη-exact, the difference

between At[Φ] and At[V ] does not contribute to the action.

Then, the two actions are shown to be equivalent:

SEKS[Φ] =

∫ 1

0
dt ⟨At[Φ(t)], QAη[Φ(t)]⟩ =

∫ 1

0
dt ⟨At[V (t)], QAη[V (t)]⟩ = Sη[V ]. (6.77)

Note that we only use the WZW-like relations here, and therefore this identification provides the

equivalence of the WZW-like actions in the arbitrary parameterizations as long as the WZW-like

relations hold.

18)The equivalence is shown in almost the same procedure in [42]: the equivalence of A∞-action and the Berkovits

action are shown by identifying Aη and πG 1
1−Ψ

.
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Relation of the fields Φ and V , and Partial-gauge-fixing

We also derive the relation of two dynamical string fields Φ and V from the identification of the

pure-gauge-like fields.

The identification Ψη[Φ] ≡ Ψη[V ] can be solved by Φ. Exponentiating both hand side, eΨη [Φ] =

eΨη [V ], and using the property of the cohomomorphism and group-like element, the condition becomes

e∧Ψη [Φ] = e∧π1G(e∧Φ) = G(e∧Φ) = e∧Ψη [V ]. (6.78)

Since G is invertible, by acting G−1 and projecting by π1, the condition which provides Sη[V ] from

the L∞-action SEKS[Φ] is obtained:

Φ[V ] = π1G
−1(e∧Ψη [V ]). (6.79)

Expanding it in powers of V , it reads

Φ[V ] = ηV − κ

2
ηλ

[0]
2 (V, ηV ) +

κ2

12
η
(
− λ

[0]
3 (V, ηV, ηV ) + 2λ

[0]
2 (λ

[0]
2 (V, ηV ), ηV )

− λ
[0]
2 (V, λ

[0]
2 (ηV, ηV )) + 2λ

[0]
2 (V, ηλ

[0]
2 (V, ηV ))

)
+O(κ3). (6.80)

The identification Ψη[Φ] ≡ Ψη[V ] can be solved also by V when the η-symmetry is fixed. By

expanding V = V [Φ] = V1(Φ) + V2(Φ,Φ) + V3(Φ,Φ,Φ) + · · · in powers of Φ and acting with ξ on

both hand sides of Ψη[Φ] ≡ Ψη[V ], one can determine Vn perturbatively. A simple choice of the

partial-gauge-fixing condition is ξV = 0, which provides ξηV = V . Then the explicit form of the

partially-gauge-fixed string field V (Φ) which provides the L∞-action SEKS[Φ] from Sη[V ] is obtained

as follows:

V [Φ] = ξΦ+
κ

2
ξηλ

[0]
2 (ξΦ,Φ) +

κ2

12
ξη

(
λ
[0]
3 (ξΦ,Φ,Φ)− 2λ

[0]
2 (λ

[0]
2 (ξΦ,Φ),Φ) + λ

[0]
2 (ξΦ, λ

[0]
2 (Φ,Φ))

+ λ
[0]
2 (ξΦ, ηλ

[0]
2 (ξΦ,Φ)) + 3λ

[0]
2 (ξηλ

[0]
2 (ξΦ,Φ),Φ)

)
+O(κ3). (6.81)

6.6 Towards the equivalence to the conventional WZW-like formulation

6.6.1 Open string with/without stubs

This formulation also works for the open string by replacing the product Lη with Mη, as in sec-

tion 5.4.1. We first explain the characterization and the parameterization for the open string with

stubs. Then, we focus on the special case, open string without stubs, and see the equivalence to the

conventional WZW-like formulation.

Characterization for the open string with stubs

The pure-gauge-like string field Aη is defined as a solution for the Maurer-Cartan equation for Mη:

0 = π1M
η 1

1−Aη
= ηAη +Mη

2 (Aη, Aη) +Mη
3 (Aη, Aη, Aη) + · · · . (6.82)

Aη is degree even. Mη
n carries ghost number 2 − n and picture number n − 2, and Aη carries ghost

number 1 and picture number −1. The associated string fields are defined by (−)XXAη = DηAX. AQ
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is degree even and carries ghost number 1 and picture number 0, and At and Aδ are degree odd and

carry ghost number 0 and picture number 0. Then, the dual WZW-like action is given by

Sη = −
∫ 1

0
dt
⟨
At(t), QAη(t)

⟩
. (6.83)

The equation of motion QAη = 0 and the gauge transformations Aδ = DηΩ + QΛ can be derived in

the same manner as in the heterotic string. The gauge parameters Λ and Ω carry ghost number −1
and picture number 0 and 1, respectively.

Note that the shifted structure for the open string is defined by

Mη
n,Aη

(B1, ..., Bn) = π1M
η
( 1

1−Aη
⊗B1 ⊗

1

1−Aη
⊗ ...⊗ 1

1−Aη
⊗Bn ⊗

1

1−Aη

)
. (6.84)

Recall that the shifted structure for the heterotic string is defined by

[B1, ..., Bn]
η
Aη

= π1L
η(B1 ∧ ... ∧Bn ∧ eAη). (6.85)

The relations in from the section 6.1 to the section 6.5 hold also for the open string under the

reinterpretation

[B1, ..., Bn]
η
Aη
←→ π1M

η(B1 ∧ ... ∧Bn ∧ eAη) =
∑
σ

(−)σ({B})Mη
n,Aη

(Bσ(1), ..., Bσ(n)). (6.86)

Note that the sign factor (−)σ({B} is based on the degree. For example, the commutator of X =

{Q, ∂t, δ} and Dη, and F
η
XY given by (6.37) read

[[X, Dη]]B = (−)X
(
Mη

n,Aη
(XAη, B) + (−)deg(B)XMη

n,Aη
(B,XAη)

)
, (6.87)

FXY = XAY − (−)XYYAX − (−)XMη
n,Aη

(AX, AY)− (−)X+(X+1)(Y+1)Mη
n,Aη

(AY, AX). (6.88)

Parameterizations for the open string with stubs

Let us consider the parameterization by the string field ϕ of open NS string, which is a Grassmann-

even state in the large Hilbert space of ghost number 0 and picture number 0. We do not need b−0 and

L−0 conditions. We introduce a string field ϕ(t) satisfying ϕ(0) = 0 and ϕ(1) = ϕ. The construction in

section 6.4 works under the reinterpretation of the shifted structure (6.86):

∂τAη [τ ] = Dηϕ, (6.89)

∂τAX[τ ] = Xϕ+Mη
n,Aη

(ϕ,AX[τ ]) + (−)X+1Mη
n,Aη

(AX[τ ], ϕ). (6.90)

The open string without stubs

If we start with the star product, we obtain MB
2 = m2 and MB

n≥3 = 0, and one can find the dual

products are also truncated:

Mη
1 (B) = ηB, Mη

2 (B1, B2) = −m2(B1, B2) = −(−)deg(A)A ∗B, Mη
n≥3 = 0, (6.91)
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and so do the dual products shifted by some field A with even degree:

DηB = ηB +Mη
2 (A,B) +Mη

2 (B,A) = ηB − [[A,B]]∗, (6.92)

Mη
2,A(B1, B2) =Mη

2 (B1, B2) = −(−)deg(B1)B1 ∗B2, (6.93)

Mη
n≥3,A = 0. (6.94)

In this case the interpretation (6.86) becomes

DηB1 ←→ DηB1 = ηB − [[A,B]]∗, (6.95)

[B1, B2]
η
Aη
←→Mη

2 (B1, B2) + (−)deg(B1)deg(B2)Mη
2 (B2, B1) = −(−)deg(B1)[[B1, B2]]

∗, (6.96)

[B1, ..., Bn≥3]
η
Aη
←→ 0. (6.97)

Then (6.89) and (6.90) become the same form for X = η,Q, ∂t, δ,

∂τAX[τ ] = Xϕ+ [[ϕ,AX[τ ]]]
∗, (6.98)

and the solutions are given by

AX[τ ] = −eτϕ(Xe−τϕ). (6.99)

The dual WZW-like action (6.83) is written in terms of AX as

Sη = −
∫ 1

0
⟨At(t), QAη(t)⟩, (6.100)

which are equivalent to the Berkovits action in Z2-reversed description (5.59). Then we obtain the

equivalence of the conventional and dual WZW-like actions for the open string without stubs, and

under the identification (6.75) they are also equivalent to the A∞-action

SWZW = Sη = SEKS. (6.101)

For completion, one can verify that the equation of motion and the constraint in terms of Aη are given

by

Constraint : ηAη − gAη ∗Aη = 0, E.O.M. : QAη = 0, (6.102)

which are equivalent to (5.64), and to (5.65) under the identification Ψ′ = Aη.

6.6.2 Heterotic string

For the heterotic string, however, it is not known whether and how the WZW-like action has this

Z2-reversing property. Then, to show the equivalence between Sη and the conventional WZW-like

action SWZW remains to be understood.

At least perturbatively, one can discuss the equivalence of Sη[V ] and SWZW[Ṽ ], where we denoted

the dynamical string field for the conventional WZW-like action by Ṽ to distinguish it from the

dynamical string field for Sη. The actions are given by

Sη[V ] =
1

2
⟨V,QηV ⟩+ κ

3!
⟨V,Q[V, ηV ]η⟩+ κ2

4!
⟨V,Q

(
[V, ηV, ηV ]η + [V, [V, ηV ]η]η

)
⟩+ · · · , (6.103)

SWZW[Ṽ ] =
1

2
⟨ηṼ ,QṼ ⟩+ κ

3!
⟨ηṼ , [Ṽ , QṼ ]⟩+ κ2

4!
⟨ηṼ ,

(
[Ṽ , QṼ ,QṼ ] + [Ṽ , [Ṽ , QṼ ]]

)
⟩+ · · · . (6.104)
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Since Lη
2 = −LB

2 , we can identify Ṽ = V + O(κ2) and the first nontrivial order is κ2, the quartic

interaction. Let us see how the equivalence can be shown at this order.

We can show that Lη
3 and LB

3 are made from the same gauge product λ
[1]
3 :

Lη
3 = −1

2
[[Q,λ

[1]
3 ]], LBOS

3 =
1

2
[[η,λ

[1]
3 ]]. (6.105)

The latter comes from its construction, and the former will be derived in section 9.1. Utilizing them,

the first terms of the quartic interactions in both actions can be written in term of λ
[1]
3 as

⟨V,Q[V, ηV, ηV ]η⟩ = −1

2
⟨QV, λ[1]3 (QV, ηV, ηV )⟩+ ⟨QV, λ[1]3 (V,QηV, ηV )⟩, (6.106)

⟨ηṼ , [Ṽ , QṼ ,QṼ ]⟩ = −1

2
⟨ηṼ , λ[1]3 (ηṼ ,QṼ ,QṼ )⟩ − ⟨ηṼ , λ[1]3 (Ṽ , QηṼ ,QṼ )⟩. (6.107)

The difference between the quartic interactions comes from the second terms of (6.106) and (6.107):

Sη,4[V ]− SWZW,4[Ṽ ] =
κ2

4!
⟨QηV, 2λ[1]3 (V, ηV,QV )⟩+O(κ3), (6.108)

which can be compensated by the following field redefinition:

Ṽ = V +
2κ2

4!
λ
[1]
3 (V, ηV,QV ) +O(κ3). (6.109)

Thus, if we identify the string fields Ṽ and V by the field redefinition (6.109), two actions Sη[V ] and

SWZW[Ṽ ] are shown to be equivalent up to κ2.
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Part III

Construction of heterotic string field theory

including the Ramond sector

In part III, we provide a construction of an action of heterotic string field theory including the Ramond

sector. First, we briefly review the construction of complete action of open superstring field theory,

which is quadratic order in the Ramond string field. Then, in section 8, we naturally extend it to

the heterotic string, and provide an action of heterotic string field theory up to quadratic order in

the Ramond string field, starting with the dual WZW-like action for the NS sector. For the heterotic

string, interaction terms of higher order in the Ramond string field will be necessary. In section 9, we

construct an action of heterotic string field theory at quartic order in the Ramond string field. Our

action is all-order in the NS string field at each order in the Ramond string field.

7 Complete action of open superstring field theory

Recently in the work by Kunitomo and Okawa [20], the first construction of a complete action of

open superstring field theory, including both the NS sector and the Ramond sector, is provided. It is

known that one can write an appropriate kinetic term for the Ramond string field which is restricted

to certain subspace of the small Hilbert space [45–50]. In [20], starting with the Berkovits action in the

Z2-dual description for the NS sector, a complete action which contains the full interaction including

the Ramond string field is constructed. Later, in [51], the gauge invariance of the action in [20] is

understood through the WZW-like relation including the Ramond sector, and the relation between

the equation of motion in [20] and that in A∞-formulation [40] is discussed. In this section we briefly

review [20] and [51].

7.1 Kinetic term for the Ramond sector

XY -projection

The string field for the Ramond sector of the open string Ψ is Grassmann odd, carries ghost number

1 and picture number −1/2, and belongs to the small Hilbert space: ηΨ = 0. The superconformal

ghost can be described by β(z) and γ(z), which is related to the description by ξ(z), η(z), and ϕ(z)

as follows:

β(z) = ∂ξ(z)e−ϕ(z), γ(z) = eϕ(z)η(z). (7.1)

The string field Ψ can be expanded based on the zero modes as

Ψ =
∞∑
n=0

(γ0)
n(ϕn + c0ψn), (7.2)

where

b0ϕn = 0, β0ϕn = 0, b0ψn = 0, β0ψn = 0. (7.3)
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In [45–47], it is shown that the physical state condition can be written as QΨ = 0 with the string field

Ψ which is restricted to the following form:

Ψ = ϕ− (γ0 + c0G)ψ, (7.4)

where G = G0 + 2b0γ0. It is pointed out in [50] that the restriction (7.4) is given by the projection

by XY , where X and Y are Grassmann even operators with ghost numbers 0 and picture numbers 1

and −1, respectively, which are given by

X = −δ(β0)G0 + b0δ
′(β0), (7.5)

Y = −c0δ′(γ0). (7.6)

In particular, the string field Ψ in the restricted form (7.4) satisfies the projection invariance

XYΨ = Ψ. (7.7)

We say Ψ is in the restricted space when Ψ satisfies (7.7).

Properties of X and Y

The operators X and Y satisfy the following properties:

XYX = X, Y XY = Y, [[Q,X]] = 0, ηXη = 0, ηY η = 0, XY QXY = QXY. (7.8)

In particular, the first means that any state of the form A = XB satisfies XY A = A, and the last

means that if Ψ belongs to the restricted space, QΨ also belongs to it.

Since X is BRST-closed, it can be written as a BRST-exact operator in the large Hilbert space

X =[[Q,Ξ]], (7.9)

where Ξ is Grassmann odd and carries ghost number −1 and picture number 1. One can take Ξ to

be BPZ-even19)

⟨ΞA,B⟩ = (−)ϵ(A)⟨A,ΞB⟩, (7.10)

and satisfies

[[η,Ξ]] = 1. (7.11)

In [20], Ξ in [76] is used, which is defined by

Ξ = Θ(β0), (7.12)

where Θ is the Heaviside step function.

Since (7.11), we can use Ξ to relate the inner products in the small Hilbert space and in the large

Hilbert space:

⟨⟨A,B⟩⟩ = ⟨ξA,B⟩ = ⟨ΞA,B⟩. (7.13)

19) This assumption is not necessary, see [20].
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The properties of the inner product is preserved: for a pair of string fields A and B in the small

Hilbert space,

⟨⟨A,B⟩⟩ = (−)ϵ(A)ϵ(B)⟨⟨B,A⟩⟩, ⟨⟨QA,B⟩⟩ = (−)ϵ(A)+1⟨⟨A,QB⟩⟩. (7.14)

For the inner product in the small Hilbert space, X is BPZ-even

⟨⟨XA,B⟩⟩ = ⟨⟨A,XB⟩⟩. (7.15)

The appropriate inner product for a pair of string fields A and B in the restricted space is given by

⟨⟨A, Y B⟩⟩. (7.16)

The following properties follow from XY A = A, XY B = B, (7.8), and (7.15) :

⟨⟨Y A,B⟩⟩ = ⟨⟨A, Y B⟩⟩, ⟨⟨QA, Y B⟩⟩ = (−)ϵ(A)+1⟨⟨A, Y QB⟩⟩. (7.17)

Kinetic term

The kinetic term for Ramond open string field Ψ is given by

S2 = −
1

2
⟨⟨Ψ, Y QΨ⟩⟩. (7.18)

The variation of the action can be taken as follows:

δS2 = −⟨⟨δΨ, Y QΨ⟩⟩. (7.19)

The equation of motion derived from this action is

QΨ = 0. (7.20)

The action is invariant under the gauge transformation

δΨ = Qλ, (7.21)

where the gauge parameter λ is Grassmann even, carries ghost number 0 and picture number −1/2,
and belongs to the small and restricted space.

The operator Y in the kinetic term (7.18) can be replaced with Ymid, an insertion of Y (z) =

−c(z)δ′(γ(z)) at the midpoint of the open string. Utilizing XYmidX = X20), (7.18) becomes

S2 = −
1

2
⟨⟨Ψ, YmidQΨ⟩⟩. (7.22)

It coincides with the kinetic term in the Witten theory [21] for Ψ in the restricted space. The necessity

of the restriction (7.4), or equivalently the XY -projection (7.7), was also pointed out in [48–50].

20)See [20] for more details.
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7.2 Complete action

In this subsection, we introduce the complete action constructed in [20] and its WZW-like structure

including the Ramond sector pointed out in [51]. We only show results and essences. For the detail

and explicit computations, see [20] and [51]. One may refer to section 8 where the computations for

the heterotic string are given: by truncating the higher products of LB (or MB), which was discussed

in section 6.6.1, they are reduced to those for the open string.

NS sector

As the action for the NS sector, the Berkovits action is used in [20]. Note that the Berkovits action

can be written in the η-based WZW-like form :

−
∫ 1

0
dt⟨At(t), QAη(t)⟩, (7.23)

where Aη(t) is the pure-gauge-like field which satisfies

ηAη(t)−Aη(t) ∗Aη(t) = 0, (7.24)

and AX(t) is the associated field which satisfies

(−)XXAη(t) = Dη(t)AX(t), (7.25)

where Dη(t) is given by

Dη(t)B = ηB − [[Aη(t), B]]∗. (7.26)

We do not need to specify their parameterization, since the gauge invariance follows from these rela-

tions. We assume the dynamical string field is parameterized by t and vanishes at t = 0. Since Aη satis-

fies the Maurer-Cartan equation forMη = η−m2, wherem2(A,B) = (−)deg(A)A∗B = (−)ϵ(A)+1A∗B,

Dη(t) and the star product ∗21) satisfy A∞-relations, namely Dη(t) is nilpotent and act as a derivation

with respect to the star product:

(Dη(t))
2 = 0, Dη(t)(A ∗B) = (Dη(t)A) ∗B + (−)ϵ(A)A ∗Dη(t)B. (7.27)

Dη(t) is BPZ-odd, which follows from the cyclicity of Mη:

⟨A,Dη(t)B⟩ = (−)ϵ(A)+1⟨Dη(t)A,B⟩. (7.28)

Complete action

With the restricted Ramond string field XYΨ = Ψ and the kinetic term (7.18), the complete

action of open superstring field theory is constructed in [20] as

S = −1

2
⟨⟨Ψ, Y QΨ⟩⟩ −

∫ 1

0
dt⟨At(t), QAη(t) + F (t)Ψ ∗ F (t)Ψ⟩, (7.29)

21) Consider the dual products based on the star product Mη = η−m2, and their shifted structure. Since Mη
n≥3 are

zero, the shifted 2-product Mη
2,Aη

is just the star product m2. See also (6.93). The shifted structures of Mη, namely

Mη
1,Aη

= Dη and Mη
2,Aη

= m2, satisfy the A∞-relations, since Aη is a solution for the Maurer-Cartan equation for Mη.
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where F (t) is an operator defined by

F (t) =
1

1 + Ξ(Dη(t)− η)
= 1 +

∞∑
n=1

(
− Ξ(Dη(t)− η)

)n
. (7.30)

We may write Dη(t)− η = −[[Aη(t), · ]]∗. F (t) satisfies F (t = 0) = 1 since Aη(t = 0) = 0. Note that

the Ramond string field Ψ does not depend on t.

This F (t) is invertible and F−1(t) is given by F−1(t) = 1+Ξ(Dη(t)−η). F (t) satisfies the following
properties:

F (t)η = Dη(t)F (t), [[Dη(t), F (t)Ξ]] = 1, ΞF (t) = Ξ, ⟨F (t)ΞA,B⟩ = (−)A⟨A,F (t)ΞB⟩. (7.31)

F (t)Ψ is annihilated by Dη(t) since it is Dη(t)-exact:

F (t)Ψ = F (t)ηΞΨ = Dη(t)F (t)ΞΨ. (7.32)

Utilizing these properties the variation of the action is taken as

δS = −⟨Aδ, QAη + FΨ ∗ FΨ⟩ − ⟨⟨δΨ, Y (QΨ+ ηXFΨ)⟩⟩. (7.33)

Here we write AX(1) = AX and F (1) = F . The equation of motion can be read from it as

0 = QAη + FΨ ∗ FΨ, 0 = QΨ+ ηXFΨ. (7.34)

which is equivalence to that in [36] under the suitable field redefinition, see section 5 of [20]. The

action is invariant under the gauge transformations

Aδ = DηΩ+QΛ + [[FΨ, FΞ([[FΨ,Λ]]∗ − λ)]]∗, (7.35)

δΨ = Qλ+XηFΞDη([[FΨ,Λ]]
∗ − λ). (7.36)

In [51] the action (7.29) was transformed into the following form by introducing the t-parameterized

string field Ψ(t) satisfying Ψ(0) = 0 and Ψ(1) = Ψ:

S = −
∫ 1

0
dt
(
⟨ΞY ∂tΨ(t), QF (t)Ψ(t)⟩+ ⟨At(t), QAη(t) + F (t)Ψ(t) ∗ F (t)Ψ(t)⟩

)
. (7.37)

Note that we used

QΨ+XηF (t)Ψ = ηΞQF (t)Ψ. (7.38)

The variation of the action can be taken as

δS = −⟨ΞY δΨ, QFΨ⟩ − ⟨Aδ, QAη + FΨ ∗ FΨ⟩. (7.39)

WZW-like structure including the Ramond sector

The properties of F (t) of (7.30), which is necessary for the gauge invariance of the action (7.29),

can be encoded into a WZW-like structure including the Ramond sector [51]. Introducing a Ramond

pure-gauge-like field AR
η (t) by

AR
η (t) = F (t)Ψ(t), (7.40)
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the action (7.37) can be written as follows:

S = −
∫ 1

0
dt
(
⟨ΞY ∂t(PsAR

η (t)), QA
R
η (t)⟩+ ⟨ANS

t (t), QANS
η (t) +AR

η (t) ∗AR
η (t)⟩

)
, (7.41)

where we write ANS
η = Aη and ANS

X = AX, and Ps = ηξ is a projector to the small Hilbert space.

Note that ηΞFΨ = ηΞΨ = Ψ. The variation of the action and the gauge transformations are given by

δS = −⟨ΞY δ(PsAR
η (t)), QA

R
η ⟩ − ⟨ANS

δ , QANS
η +AR

η ∗AR
η ⟩, (7.42)

ANS
δ = DηΩ+QΛNS + [[AR

η ,Λ
R]]∗, (7.43)

δ(PsAR
η ) = −PsQ(DηΛ

R − [[AR
η ,Λ

NS ]]∗), (7.44)

where the gauge parameters are given by ΛNS = Λ and ΛR = FΞ(−λ+[[AR
η ,Λ]]

∗). Note that δ(PsAR
η )

has to be in the restricted space: XY δ(PsAR
η ) = δ(PsAR

η ). In this representation, the properties of

F (t) of (7.30) is encoded into the following relations which is called the WZW-like relations including

the Ramond sector in [51]:

DηA
R
η = 0, XY (PsAR

η ) = PsAR
η , (7.45)

(−)XXAR
η + [[AR

η , A
NS
X ]]∗ = (Dη-exact) ≡ DηA

R
X , (7.46)

where AR
X is called the Ramond associated field. Using F of (7.30), it can be parameterized as

(−)XAR
X = FΞ

(
XΨ− (−)X[[ANS

X , FΨ]]∗ + η[[Ξ,X]]FΨ
)
. (7.47)

It is pointed out in [51] that the variation of the action and the gauge invariance (7.42), (7.43), and

(7.44) can be derived from these relations (7.45) and (7.46).

Also in [51], the unified notation using the concept of the Ramond number proposed in [40] is

introduced. The pure-gauge-like field and the associated field including both sectors are introduced

as follows:

Aη = ANS
η +AR

η , AX = ANS
X +AR

X , (7.48)

and their defining equations are written as

ηAη −
1

2
[[Aη,Aη]]

∗
|0 = 0, (−)XXAη = DηAX, (7.49)

where

Dη = η − [[Aη, · ]]∗|0. (7.50)

The subscript 2r of |2r denotes the Ramond number: the number of the Ramond inputs minus the

number of the Ramond outputs. Since the number of the Ramond outputs are always 0 or 1, b2|0

vanishes when both inputs are the Ramond inputs, and b2|2 is nonvanishing only when both inputs

are the Ramond inputs. The action and its variation are written in terms of Aη and m2|2 as

S = −
∫ 1

0
dt⟨A∗t (t), QAη(t) +m2|2(Aη(t),Aη(t))⟩, (7.51)

δS = −⟨A∗δ , QAη +m2|2(Aη,Aη)⟩, (7.52)
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where A∗X for X = ∂t, δ is defined by

A∗X = ANS
X + ΞY X(PsAR

η ). (7.53)

The equation of motion is give by

QAη +m2|2(Aη,Aη) = 0. (7.54)

In [51], the relation between this equation of motion and that in [40] is discussed.
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8 Heterotic string field theory up to quadratic order in the Ramond

string field

In the previous section we see the construction of the complete action of open superstring field theory

without stubs. The aim of this section and the following section is its extension to the heterotic string,

the construction of a complete action of heterotic string field theory. This section and the following

section are based a collaboration with H. Kunitomo.

Towards the construction of the complete action of heterotic string field theory, we construct a

gauge-invariant action order by order in the Ramond string field. To begin with, let us explain the

notation used in this section and the following section. We denote the power of the Ramond string

field Ψ by superscript22), and expand the action as

S = S(0) + S(2) + S(4) + · · · . (8.1)

We define E(k) as an left-hand side of equation of motion with k Ramond string fields:

δS(2n) = −⟨⟨δΨ, Y E(2n−1)⟩⟩+ ⟨Aδ, E
(2n)⟩. (8.2)

In this section and the following section, we omit the parameter dependence if t = 1, for example, we

write AX(1) = AX. Also, the gauge transformations are expanded as

Aδ = A
(0)
δ +A

(2)
δ +A

(4)
δ + · · · , (8.3)

δΨ = δΨ(1) + δΨ(3) + · · · . (8.4)

Note that the superscript also counts the gauge parameter λ that we will introduce soon. We determine

the action and the gauge transformations order by order in the Ramond string field so that the action

is invariant under the gauge transformations in each power of the Ramond string field:

0 = −
n∑

k=1

⟨⟨δΨ(2n−2k+1), Y E(2k−1)⟩⟩+
n∑

k=0

⟨A(2n−2k)
δ , E(2k)⟩. (8.5)

In this section, after summarizing the properties of the dual products Lη and introducing the

action for the NS sector S(0), we provide S(2) and the gauge transformation A
(2)
δ and δΨ(1) so that

the action is gauge invariant at quadratic order in the Ramond string field:

0 = −⟨⟨δΨ(1), Y E(1)⟩⟩+ ⟨A(2)
δ , E(0)⟩+ ⟨A(0)

δ , E(2)⟩. (8.6)

This S(2) can be taken in almost the same form as that of open string [20], with replacing the

commutator [[A,B]]∗ with the shifted 2-product [A,B]ηAη
. We explicitly show the gauge invariance

at quadratic order in the Ramond string field in almost the same manner as [20]. We also present

S(2) in various forms: a form without a parameter integration, a form with a topological parameter

dependence of the Ramond string field, and the WZW-like form including the Ramond sector, as

in [51].

The same construction works also for open string with stubs, by replacing Lη with Mη, or more

basically LB with MB. The interpretation of the higher shifted products is given by (6.86). See also

section 6.6.1.
22) Although we denoted the picture number of string products in the same manner in section 4.2.2, hereafter we do

not use it, and there will not arise any confusion about the notation.
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8.1 Action for the NS sector

For the NS sector we use the η-based WZW-like action, which we construct in section 6. In this

subsection we review what is necessary in the rest of this section: the properties of dual products and

the WZW-like action.

Dual products Lη

The dual products Lη =
∑

n=1 L
η
n are degree odd products satisfying the L∞-relations [[Lη,Lη]] = 0

and theQ-derivation properties [[Q,Lη]] = 0. The n-product Lη
n carries ghost number 3−2n and picture

number n− 2. We write

π1L
η
n(B1 ∧ ... ∧Bn) = [B1, ..., Bn]

η, (8.7)

and [B]η = ηB. The L∞-relations and the commutativity with the operators X = {Q, ∂t, δ} can be

written as ∑
σ

n∑
k=1

1

k!(n− k)!
(−)|σ|

[
[Biσ(1)

, . . . , Biσ(k)
]η, Biσ(k+1)

, . . . , Biσ(n)

]η
= 0, (8.8)

X
[
B1, . . . , Bn

]η
=

n−1∑
i=1

(−)X(B1+···+Bk−1+1)
[
B1, . . . ,XBk, . . . , Bn

]η
. (8.9)

In addition, we require Lη to be cyclic,

⟨B1, [B2, · · · , Bn+1]
η⟩ = (−)B1+B2+···+Bn⟨[B1, · · · , Bn]

η, Bn+1⟩, (8.10)

where ⟨A,B⟩ is the c−0 -inserted BPZ inner product, which satisfies

⟨A,B⟩ = (−)(A+1)(B+1)⟨B,A⟩, ⟨QA,B⟩ = (−)A⟨A,QB⟩. (8.11)

In this section we only use these properties and not an explicit form of Lη. One can construct

such products by Lη = GηG−1, where G is the cohomomorphism used in defining the NS products

LEKS = G−1QG. See section 6.1 or appendix D.

Let Aη be a solution for the Maurer-Cartan equation for Lη:

0 = π1L
η(e∧Aη) = ηAη +

1

2
[Aη, Aη]

η +
1

3!
[Aη, Aη, Aη]

η + · · · . (8.12)

The Aη-shifted dual products, which are defined by

[B1, ..., Bn]
η
Aη

=
∞∑

m=0

1

m!
[Aη, Aη, · · · , Aη︸ ︷︷ ︸

m

, B1, ..., Bn]
η, (8.13)

satisfy the L∞-relations

∑
σ

n∑
k=1

1

k!(n− k)!
(−)|σ|

[
[Biσ(1)

, . . . , Biσ(k)
]ηAη

, Biσ(k+1)
, . . . , Biσ(n)

]η
Aη

= 0. (8.14)
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We write [B]ηAη
= DηB. The lowest two L∞-relations mean that Dη is nilpotent and that Dη acts as

a derivation with respect to [A,B]ηAη
:

(Dη)
2 =0, (8.15)

Dη[A,B]ηAη
=− [DηA,B]ηAη

− (−)A[A,DηB]ηAη
. (8.16)

The next lowest L∞-relation reads

Dη[A,B,C]
η
Aη

=− [DηA,B,C]
η
Aη
− (−)A[A,DηB,C]

η
Aη
− (−)A+B[A,B,DηC]

η
Aη

− [[A,B]ηAη
, C]ηAη

− (−)BC [[A,C]ηAη
, B]ηAη

− (−)A[A, [B,C]ηAη
]ηAη

. (8.17)

The shifted dual products are cyclic, which follows from that of the dual products:

⟨B1, [B2, · · · , Bn+1]
η
Aη
⟩ = (−)B1+B2+···+Bn⟨[B1, · · · , Bn]

η
Aη
, Bn+1⟩. (8.18)

Because of the shift, the operators X = {Q, ∂t, δ} are not derivations with respect to the shifted

product:

X
[
B1, . . . , Bn

]η
Aη

=

n−1∑
i=1

(−)X(B1+···+Bk−1+1)
[
B1, . . . ,XBk, . . . , Bn

]η
Aη

+ (−)X[XAη, B1, . . . , Bn]
η
Aη
.

(8.19)

In particular,

XDηB = (−)XDηXB + (−)X[XAη, B]ηAη
, (8.20)

X[B,C]ηAη
= (−)X[XB,C]ηAη

+ (−)(1+B)X[B,XC]ηAη
+ (−)X[XAη, B, C]

η
Aη
. (8.21)

Action for the NS sector S(0)

As in [20], we use the η-based WZW-like action23) as the action of the NS sector S(0):

S(0) =

∫ 1

0
dt⟨At(t), QAη(t)⟩. (8.22)

Aη(t) is the pure-gauge-like field which satisfies the Maurer-Cartan equation for the products Lη,

0 = π1L
η(eAη(t)) = ηAη(t) +

1

2
[Aη(t), Aη(t)]

η +
1

3!
[Aη(t), Aη(t), Aη(t)]

η + · · · , (8.23)

and AX(t) for X = {Q, ∂t, δ} is the associated field which satisfies

(−)XXAη(t) = Dη(t)AX(t). (8.24)

For a pair of derivations X,Y = {Q, ∂t, δ}, the following relation can be derived from (8.24):

0 = Dη

(
XAY (t)− (−)XY YAX(t) + (−)Y X+Y [AY (t), AX(t)]ηAη(t)

)
. (8.25)

23) In [20], the Berkovits action is used as the action for the NS sector. In particular, they use the Berkovits action

as the η-based WZW-like action. See section 7. As its natural extension to the heterotic string, we use the η-based

WZW-like action constructed in [62], which is the subject of the section 6.
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Utilizing these properties, the variation of the action can be taken as

δS(0) =
⟨
Aδ, QAη

⟩
, (8.26)

We define E(0) by δS(0) = ⟨Aδ, E
(0)⟩:

E(0) = QAη. (8.27)

The equation of motion without the Ramond string fields is given by E(0) = QAη = 0. The gauge

transformations can be derived from the nilpotency of Dη and Q:

A
(0)
δΩ

= DηΩ, A
(0)
δΛ

= QΛ. (8.28)

We do not need to specify the parameterizations of Aη and AX, since the gauge invariance follows

from the WZW-like relations (8.23) and (8.24). We assumed that the dynamical string field for the

NS sector is parameterized by t and vanishes at t = 0, then Aη(t = 0) = 0 and AX(t = 0) = 0.

8.2 Kinetic term for the Ramond sector

XY -projection

The kinetic term for the Ramond sector of heterotic string field theory can be constructed in the

same manner as open superstring field theory [20]. The string field for the Ramond sector of the

heterotic string Ψ is Grassmann even, carries ghost number 2 and picture number −1/2, and satisfies

ηΨ = 0, b−0 Ψ = 0, L−0 Ψ = 0. (8.29)

As in the case of the open string, we impose XY -projection condition on Ψ. We define X by

X =[[Q,Ξ]], (8.30)

where Ξ is an operator which is Grassmann odd and BPZ-even,

⟨ΞA,B⟩ = (−)A+1⟨A,ΞB⟩, (8.31)

carries ghost number −1 and picture number 1, and satisfies

[[η,Ξ]] = 1, [[b−0 ,Ξ]] = 0, [[L−0 ,Ξ]] = 0. (8.32)

X is Grassmann even and BPZ-even,

⟨XA,B⟩ = ⟨A,XB⟩, (8.33)

carries ghost numbers 0 and picture number 1, and satisfies

[[b−0 , X]] = 0, [[L−0 , X]] = 0, [[Q,X]] = 0, [[η,X]] = 0. (8.34)

We also require that, when acting on a state with picture number −3/2, X is given by

X = −δ(β0)G0 + b0δ
′(β0). (8.35)
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Then, we impose XY -projection condition on Ψ:

XYΨ = Ψ, (8.36)

where Y is a Grassmann even operator with ghost numbers 0 and picture number −1, which is given

by

Y = −c+0 δ
′(γ0). (8.37)

Note that X and Y commute with b−0 and L−0 : [[b
−
0 , Y ]] = 0, [[L−0 , Y ]] = 0. We say Ψ is in the restricted

space when Ψ carries picture number −1/2 and satisfies (8.36). The operators X of (8.35) and Y

satisfy the following properties:

XYX = X, Y XY = Y, ηY η = 0, XY QXY = QXY. (8.38)

In particular, the first means that any state of the form A = XB satisfies XY A = A. and the last

means that if Ψ belongs to the restricted space, QΨ also belongs to it.

Since [[η,Ξ]] = 1, we can use Ξ to relate the inner products in the small Hilbert space and in the

large Hilbert space:

⟨⟨A,B⟩⟩ = ⟨ξA,B⟩ = ⟨ΞA,B⟩. (8.39)

For the fields A and B in the small Hilbert space, the inner product satisfies

⟨⟨A,B⟩⟩ = (−)(A+1)(B+1)⟨⟨B,A⟩⟩, ⟨⟨QA,B⟩⟩ = (−)A⟨⟨A,QB⟩⟩. (8.40)

The operator X is BPZ even:

⟨⟨XA,B⟩⟩ = ⟨⟨A,XB⟩⟩. (8.41)

The appropriate inner product for A and B in the restricted space is given by

⟨⟨A, Y B⟩⟩. (8.42)

The following properties follow from XY A = A, XY B = B, (8.38), and (8.41) :

⟨⟨Y A,B⟩⟩ = ⟨⟨A, Y B⟩⟩, ⟨⟨QA, Y B⟩⟩ = (−)A⟨⟨A, Y QB⟩⟩. (8.43)

For a general state A and a state Br in the restricted space,

⟨A,Br⟩ = ⟨⟨ηXA, Y Br⟩⟩, ⟨Br, A⟩ = (−)B+1⟨⟨Y Br, ηXA⟩⟩. (8.44)

Kinetic term for the Ramond sector

The kinetic term for the Ramond sector of the heterotic string field Ψ is given by

S
(2)
2 = −1

2
⟨⟨Ψ, Y QΨ⟩⟩, (8.45)
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where we denote the order of the field by subscript. The variation of the S
(2)
2 can be taken as follows:

δS
(2)
2 = −⟨⟨δΨ, Y QΨ⟩⟩. (8.46)

The equation of motion is given by

E
(1)
1 = QΨ = 0. (8.47)

The kinetic term S
(2)
2 is invariant under the gauge transformation

δλΨ
(1)
1 = Qλ, (8.48)

where the gauge parameter λ is Grassmann odd, carries ghost number 1 and picture number −1/2,
and belongs to the small and restricted space. Note that the superscript is taken to count not only

the Ramond string field Ψ but also the Ramond gauge parameter λ.

8.3 Gauge-invariant action at quadratic order in the Ramond string field

In this subsection, we provide the action at quadratic order in the Ramond string field S(2), by a

natural extension of the action of the open string [20]:

S(2) = −1

2
⟨⟨Ψ, Y QΨ⟩⟩+

∫ 1

0
dt
⟨
At(t),

1

2
[F (t)Ψ, F (t)Ψ]ηAη(t)

⟩
, (8.49)

where F (t) is the linear operator defined by

F (t) =
1

1 + Ξ(Dη(t)− η)
= 1 +

∞∑
n=1

(
− Ξ(Dη(t)− η)

)n
. (8.50)

In what follows, we see that the variation of the action S(2) is taken as

δS(2) = −⟨⟨δΨ, Y (E(1))⟩⟩+
⟨
Aδ, E

(2)
⟩
= −⟨⟨δΨ, Y (ηΞQFΨ)⟩⟩+

⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
, (8.51)

and show that the action S(0) + S(2) is invariant at quadratic order in the Ramond string field:

0 = δ(S(0) + S(2))
∣∣(2) = −⟨⟨δΨ(1), Y E(1)⟩⟩+

⟨
A

(0)
δ , E(2)

⟩
+

⟨
A

(2)
δ , E(0)

⟩
, (8.52)

under the gauge transformations at this order

A
(0)
δ = DηΩ+QΛ, (8.53)

A
(2)
δ = −[FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
+

1

2
[Λ, FΨ, FΨ]ηAη

− [FΞλ, FΨ]ηAη
, (8.54)

δ(1)Ψ = ηΞQFΞ[DηΛ, FΨ]ηAη
+ ηΞQFλ. (8.55)

Properties of F

We first summarize the properties of F (t) which we use in this section and the following section.

F (t) satisfies F (t = 0) = 1 since F (t) depends on t only through Aη(t) and Aη(t = 0) = 0. F (t) is

invertible and F−1(t) = 1 + Ξ(Dη(t)− η) = ηΞ + ΞDη(t). F (t) satisfies

F (t)η = Dη(t)F (t), [[Dη(t), F (t)Ξ]] = 1, ΞF (t) = Ξ, ⟨F (t)ΞA,B⟩ = (−)A+1⟨A,F (t)ΞB⟩.
(8.56)
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The first can be derived by acting with F (t) from the right and the left of ηF−1(t) = F−1(t)Dη(t),

which follows from the expression of F−1(t) and nilpotency of η and Dη(t). The second can be derived

as follows:

Dη(t)F (t)Ξ + F (t)ΞDη(t) = F (t)ηΞ + F (t)ΞDη(t)

= F (t)− F (t)(−Ξ(Dη(t)− η))

=
∞∑
n=0

(
− Ξ(Dη(t)− η)

)n
−
∞∑
n=1

(
− Ξ(Dη(t)− η)

)n

= 1. (8.57)

The commutator of F (t) and X = Q, ∂t, δ which are derivations with respect to Lη is given by

[[X, F (t)]]B = −F (t)[[X, F−1(t)]]F (t)B

= −F (t)[[X,Ξ]](Dη(t)− η)F (t)B − F (t)Ξ[XAη(t), F (t)B]ηAη(t)
. (8.58)

For later uses, we also summarize the properties of F (t)Ψ. Since ηΨ = 0 and F (t)η = Dη(t)F (t),

F (t)Ψ is Dη(t)-exact:

F (t)Ψ = F (t)ηΞΨ = Dη(t)F (t)ΞΨ. (8.59)

For X = Q, ∂t, δ, utilizing [[X, Dη(t)]]B = (−)X[XAη(t), B]ηAη(t)
, XF (t)Ψ can be written as

XF (t)Ψ = (Dη(t)F (t)Ξ + F (t)ΞDη(t))XF (t)Ψ

= Dη(t)F (t)Ξ(ηΞXF (t)Ψ)− F (t)Ξ[XAη(t), F (t)Ψ]ηAη(t)
. (8.60)

In particular for X = ∂t, δ which commute with Ξ, it can be transformed into the following form:

XF (t)Ψ = Dη(t)F (t)ΞXΨ+ (−)XF (t)ΞDη(t)[AX, F (t)Ψ]ηAη(t)
(8.61)

= Dη(t)F (t)ΞXΨ+ (−)X[AX(t), F (t)Ψ]ηAη(t)
− (−)XDη(t)F (t)Ξ[AX(t), F (t)Ψ]ηAη(t)

, (8.62)

where we used ΞF (t) = Ξ, ηΨ = 0, XAη(t) = (−)XDη(t)AX(t), and [[Dη(t), F (t)Ξ]] = 1.

8.3.1 Equations of motion

Variation of S
(2)
int

Let us consider the variation of the interaction vertex with two Ramond string fields:

S
(2)
int ≡

∫ 1

0
dt
⟨
At(t),

1

2
[F (t)Ψ, F (t)Ψ]ηAη(t)

⟩
. (8.63)

From here to (8.68), we omit the t-dependence for notational brevity. We first consider the variation

of the integrand:

δ
⟨
At,

1

2
[FΨ, FΨ]ηAη

⟩
=

⟨
δAt,

1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
At, [δFΨ, FΨ]ηAη

⟩
+

⟨
At,

1

2
[δAη, FΨ, FΨ]ηAη

⟩
. (8.64)
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For the first term on the right-hand side of (8.64), since 1
2 [FΨ, FΨ]ηAη

is Dη-exact, we can use (8.25)

and obtain

(1st) =
⟨
∂tAδ + [Aδ, At]

η
Aη
,
1

2
[FΨ, FΨ]ηAη

⟩
. (8.65)

For the second term on the right-hand side of (8.64), utilizing (8.62), we find

(2nd) = −
⟨
[At, FΨ]ηAη

, δFΨ
⟩

= −
⟨
[At, FΨ]ηAη

, DηFΞδΨ+ [Aδ, FΨ]ηAη
−DηFΞ[Aδ, FΨ]ηAη

⟩
= −

⟨
[At, FΨ]ηAη

, [Aδ, FΨ]ηAη

⟩
−

⟨
FΞDη[At, FΨ]ηAη

, δΨ− [Aδ, FΨ]ηAη

⟩
= −

⟨
[At, FΨ]ηAη

, [Aδ, FΨ]ηAη

⟩
−

⟨
∂tFΨ, δΨ− [Aδ, FΨ]ηAη

⟩
= −

⟨
[At, FΨ]ηAη

, [Aδ, FΨ]ηAη

⟩
+

⟨
δΨ, ∂tFΨ

⟩
+

⟨
Aδ, [∂tFΨ, FΨ]ηAη

⟩
. (8.66)

From the third line to the fourth line, we used (8.61) and ∂tΨ = 0. For the third term on the right-hand

side of (8.64), utilizing the L∞-relation of Aη-shifted Lη, we obtain

(3rd) =
1

2

⟨
At, [DηAδ, FΨ, FΨ]ηAη

⟩
=

1

2

⟨
At,−Dη[Aδ, FΨ, FΨ]ηAη

− 2[[Aδ, FΨ]ηAη
, FΨ]ηAη

+ [Aδ, [FΨ, FΨ]ηAη
]ηAη

⟩
=

1

2

⟨
∂tAη, [Aδ, FΨ, FΨ]ηAη

⟩
+

⟨
[At, FΨ]ηAη

, [Aδ, FΨ]ηAη

⟩
+

1

2

⟨
[At, Aδ]

η
Aη
, [FΨ, FΨ]ηAη

⟩
=

1

2

⟨
Aδ, [∂tAη, FΨ, FΨ]ηAη

⟩
+

⟨
[At, FΨ]ηAη

, [Aδ, FΨ]ηAη

⟩
− 1

2

⟨
[Aδ, At]

η
Aη
, [FΨ, FΨ]ηAη

⟩
. (8.67)

The second term on the right-hand side of (8.65) and the first term on the right-hand side of (8.66)

cancel with the third term and the second term on the right-hand side of (8.67) respectively. Then

the total variation is given by

δ
⟨
At,

1

2
[FΨ, FΨ]ηAη

⟩
=

⟨
∂tAδ,

1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
Aδ, [∂tFΨ, FΨ]ηAη

⟩
+

⟨
δΨ, ∂tFΨ

⟩
+

1

2

⟨
Aδ, [∂tAη, FΨ, FΨ]ηAη

⟩
= ∂t

(⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
δΨ, FΨ

⟩)
. (8.68)

Integrating it by t, we obtain∫ 1

0
dt∂t

(⟨
Aδ(t),

1

2
[F (t)Ψ, F (t)Ψ]ηAη(t)

⟩
+

⟨
δΨ, F (t)Ψ

⟩)
=

⟨
Aδ(1),

1

2
[F (1)Ψ, F (1)Ψ]ηAη(1)

⟩
+

⟨
δΨ, F (1)Ψ

⟩
. (8.69)

Note that AX(0) = 0, and that ⟨δΨ, F (0)Ψ⟩ = 0 since F (0) = 1l and there is no Ξ insertion. Then the

variation of the interaction with two Ramond string fields is given by

δS
(2)
int =

⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
δΨ, FΨ

⟩
=

⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
−

⟨⟨
δΨ, Y (XηFΨ)

⟩⟩
. (8.70)

For the open string with and without stubs, the variation can be taken in the same manner. In

particular, for the open string without stubs the shifted dual products are truncated, as seen in (6.94).
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Concretely, the shifted 2-product [A,B]ηAη
and the shifted higher products [A,B, ...]ηAη

are replaced

with −(−)deg(A)[[A,B]]∗ and 0, respectively. Then, the third term on the right-hand side of (8.64) does

not appear, and the second term on the right-hand side of (8.65) cancels with the first term on the

right-hand side of (8.66) because of the associativity of the star product.

Equations of motion

Since S(2) = S
(2)
2 + S

(2)
int, δS

(2) is given by

δS(2) = −⟨⟨δΨ, Y (QΨ+XηFΨ)⟩⟩+
⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
. (8.71)

The equations of motion E(1) and E(2) can be read from it:

E(1) = QΨ+XηFΨ, (8.72)

E(2) =
1

2
[FΨ, FΨ]ηAη

. (8.73)

We can check the consistency with the XY -projection XY E(1) = E(1), by XYQXY = QXY and

XYX = X. Utilizing ηXF = ηΞQF −QηΞ which follows from [[Q,Ξ]] = X and ΞF = Ξ, we obtain

QΨ+XηFΨ = QηΞΨ+XηFΨ = ηΞQFΨ, (8.74)

and the variation of the action S(2) and the equations of motion E(1) can be written as

δS(2) = −⟨⟨δΨ, Y (ηΞQFΨ)⟩⟩+
⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
, (8.75)

E(1) = ηΞQFΨ. (8.76)

8.3.2 Gauge invariance

We can determine δΨ(1) and A
(2)
δ by requiring the gauge invariance at quadratic order in the Ramond

string field:

0 = δ(S(0) + S(2))
∣∣(2) = −⟨⟨δΨ(1), Y E(1)⟩⟩+

⟨
A

(0)
δ , E(2)

⟩
+

⟨
A

(2)
δ , E(0)

⟩
. (8.77)

Transformation with Ω

For the invariance under the transformation with Ω

0 = −⟨⟨δΩΨ(1), Y E(1)⟩⟩+
⟨
A

(0)
δΩ
, E(2)

⟩
+

⟨
A

(2)
δΩ
, E(0)

⟩
, (8.78)

since A
(0)
δΩ

= DηΩ and DηE
(2) = 0, we obtain ⟨A(0)

δΩ
, E(2)⟩ = 0. Then, we can set

A
(2)
δΩ

= 0, δΩΨ
(1) = 0. (8.79)

Transformation with Λ

Let us consider the invariance under the transformation with Λ:

0 = −⟨⟨δΛΨ(1), Y E(1)⟩⟩+
⟨
A

(0)
δΛ
, E(2)

⟩
+

⟨
A

(2)
δΛ
, E(0)

⟩
. (8.80)
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The second term can be transformed as follows:⟨
A

(0)
δΛ
, E(2)

⟩
=

⟨
QΛ,

1

2
[FΨ, FΨ]ηAη

⟩
=

⟨
Λ,−[QFΨ, FΨ]ηAη

− 1

2
[QAη, FΨ, FΨ]ηAη

⟩
. (8.81)

Utilizing (8.60), QFΨ is written as

QFΨ = DηFΞ(ηΞQFΨ)− FΞ[QAη, FΨ]ηAη
= DηFΞ(E

(1))− FΞ[E(0), FΨ]ηAη
. (8.82)

Then all terms on the right-hand side of (8.81) contain E(0) or E(1), and therefore one can determine

A
(0)
δΛ

and δΛΨ
(1) so that the gauge invariance at quadric order in the Ramond string field (8.80) holds.

Explicitly, the first term on the right-hand side of (8.81) becomes

(1st) = −
⟨
[Λ, FΨ]ηAη

, QFΨ
⟩

= −
⟨
[Λ, FΨ]ηAη

, DηFΞ(ηΞQFΨ)− FΞ[QAη, FΨ]ηAη

⟩
= −

⟨
FΞDη[Λ, FΨ]ηAη

, (ηΞQFΨ)
⟩
+

⟨
FΞ[Λ, FΨ]ηAη

, [QAη, FΨ]ηAη

⟩
= −

⟨⟨
XηFΞDη[Λ, FΨ]ηAη

, Y (ηΞQFΨ)
⟩⟩

+
⟨
[FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
, QAη

⟩
, (8.83)

and then the right-hand side of (8.81) becomes⟨
A

(0)
δΛ
, E(2)

⟩
= −

⟨⟨
XηFΞDη[Λ, FΨ]ηAη

, Y (ηΞQFΨ)
⟩⟩

+
⟨
[FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
− 1

2
[Λ, FΨ, FΨ]ηAη

, QAη

⟩
. (8.84)

From (8.80) and (8.84) we can determine the gauge transformations at this order as

A
(2)
δΛ

= −[FΞ[Λ, FΨ]ηAη
, FΨ]ηAη

+
1

2
[Λ, FΨ, FΨ]ηAη

, (8.85)

δΛΨ
(1) = −XηFΞDη[Λ, FΨ]ηAη

(8.86)

Utilizing −XηFΞDη[Λ, FΨ]ηAη
= ηΞQFΞ[DηΛ, FΨ]ηAη

, which follows from ηXF = ηΞQF − QηΞ,

δΛΨ
(1) can be written as

δΛΨ
(1) = ηΞQFΞ[DηΛ, FΨ]ηAη

. (8.87)

Transformation with λ

Finally, let us consider the invariance under the transformation with λ:

0 = −⟨⟨δλΨ(1), Y E(1)⟩⟩+
⟨
A

(2)
δλ
, E(0)

⟩
. (8.88)

Note that since the superscript counts λ, A
(0)
δλ

never appears. We write δλΨ
(1) = δλΨ

(1)
1 + δλΨ

(1)
int.

Since δλΨ
(1)
1 = Qλ, E(1) = ηΞQFΨ = QΨ + ηXFΨ, and ⟨⟨Qλ, Y (QΨ)⟩⟩ = 0, the following equation

holds:

−⟨⟨δλΨ
(1)
1 , Y E(1)⟩⟩ = −

⟨⟨
Qλ, Y (ηXFΨ)

⟩⟩
=

⟨
Qλ,FΨ

⟩
= −

⟨
λ,QFΨ

⟩
. (8.89)

Then, (8.88) becomes

0 = −
⟨
λ,QFΨ

⟩
− ⟨⟨δλΨ

(1)
int, Y E

(1)⟩⟩+
⟨
A

(2)
δλ
, E(0)

⟩
. (8.90)
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As seen in (8.82), QFΨ consists of two terms which contain E(0) and E(1), and then one can determine

δλΨ
(1)
int and A

(2)
δλ

so that the gauge invariance (8.88) holds.

Explicitly, utilizing (8.60), (8.89) can be transformed as follows:

−
⟨
λ,QFΨ

⟩
= −

⟨
λ,DηFΞ(ηΞQFΨ)− FΞ[QAη, FΨ]ηAη

⟩
= −

⟨
FΞDηλ, ηΞQFΨ

⟩
+

⟨
FΞλ, [QAη, FΨ]ηAη

⟩
= −

⟨⟨
XηFΞDηλ, Y (ηΞQFΨ)

⟩⟩
+

⟨
[FΞλ, FΨ]ηAη

, QAη

⟩
. (8.91)

From (8.91) and (8.88), we can determine the gauge transformations as

δλΨ
(1)
int = −XηFΞDηλ, (8.92)

A
(2)
δλ

= −[FΞλ, FΨ]ηAη
. (8.93)

δλΨ
(1) = δλΨ

(1)
1 + δλΨ

(1)
int is given by

δλΨ
(1) = Qλ−XηFΞDηλ = ηΞQFλ, (8.94)

where we used Qλ−XηFΞDηλ = ηΞQFλ which follows from [[Dη, FΞ]] = 1 and DηF = Fη.

8.4 Various forms of the action in this order

To conclude this section, let us represent S(2) in various forms.

Action S(2) in the integrated form

We can perform the t-integration in the action S
(2)
int. Utilizing F (t)Ψ = Dη(t)F (t)ΞΨ and

Dη(t)At(t) = ∂tAη(t), we can transform the integrand of the interaction term S
(2)
int as follows:

⟨At(t), [F (t)Ψ, F (t)Ψ]ηAη(t)
⟩ = −⟨At(t), Dη(t)[F (t)ΞΨ, F (t)Ψ]ηAη(t)

⟩ = ⟨∂tAη(t), [F (t)ΞΨ, F (t)Ψ]ηAη(t)
⟩

= ⟨F (t)ΞΨ, [∂tAη(t), F (t)Ψ]ηAη(t)
⟩ = −⟨Ψ, F (t)Ξ[∂tAη(t), F (t)Ψ]ηAη(t)

⟩ = ⟨Ψ, ∂tF (t)Ψ⟩. (8.95)

In the last line, we use ∂tF (t)Ψ = −F (t)Ξ[∂tAη(t), F (t)Ψ]ηAη(t)
which follows from (8.60). Integrating

it by t, we obtain

S
(2)
int =

1

2

∫ 1

0
dt⟨At(t), [F (t)Ψ, F (t)Ψ]ηAη(t)

⟩ = 1

2

∫ 1

0
dt⟨Ψ, ∂tF (t)Ψ⟩ =

1

2
⟨Ψ, F (1)Ψ⟩. (8.96)

Note that ⟨Ψ, F (0)Ψ⟩ = ⟨Ψ,Ψ⟩ vanishes since there is no Ξ insertion. Then S(2) can be written as

S(2) = −1

2
⟨⟨Ψ, Y QΨ⟩⟩+ 1

2
⟨Ψ, FΨ⟩ = −1

2
⟨⟨Ψ, Y (QΨ+ ηXFΨ)⟩⟩ = −1

2
⟨⟨Ψ, Y (ηΞQFΨ)⟩⟩. (8.97)

Utilizing ηΞFΨ = ηΞΨ = Ψ, it can also be written as

S(2) = −1

2
⟨⟨ηΞFΨ, Y (ηΞQFΨ)⟩⟩. (8.98)
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Action S(2) with the topological t-dependence of both the NS and Ramond string fields

If string fields for both the NS sector and the Ramond sector are parameterized by t, the action of

δ and ∂t are the same: they commute with Lη, are Grassmann-even, and act only on the string fields.

Then, since we have derived

δS(2) = δ
(
− 1

2
⟨⟨Ψ, Y (ηΞQFΨ)⟩⟩

)
= −⟨⟨δΨ, Y (ηΞQFΨ)⟩⟩+

⟨
Aδ,

1

2
[FΨ, FΨ]ηAη

⟩
, (8.99)

the same computation holds for ∂t:

∂t
(
− 1

2
⟨⟨Ψ(t), Y (ηΞQF (t)Ψ(t))⟩⟩

)
= −⟨⟨∂tΨ(t), Y (ηΞQF (t)Ψ(t))⟩⟩+

⟨
At(t),

1

2
[F (t)Ψ, F (t)Ψ(t)]ηAη(t)

⟩
.

(8.100)

Then we can write S(2) in terms of the NS and Ramond string fields which are parameterized by t as

follows:

S(2) =

∫ 1

0
dt∂t

(
− 1

2
⟨⟨Ψ(t), Y (ηΞQF (t)Ψ)⟩⟩

)
=

∫ 1

0
dt
(
− ⟨⟨∂tΨ(t), Y (ηΞQF (t)Ψ(t))⟩⟩+

⟨
At(t),

1

2
[F (t)Ψ(t), F (t)Ψ(t)]ηAη(t)

⟩)
. (8.101)

Action S(2) in the WZW-like form

As in [51], the gauge invariance at the quadratic order in the Ramond string field does not depend

on the specific expression of F . We write ANS
η = Aη, A

NS
X = AX, Ps = ηΞ and

AR
η (t) = F (t)Ψ(t). (8.102)

Note that PsAR
η = ηΞAR

η = ηΞFΨ = ηΞΨ = Ψ. The action can be written in terms of ANS
η , ANS

X ,

and AR
η :

S(2) =

∫ 1

0
dt
(
− ⟨⟨∂t(PsAR

η ), Y (ηΞQAR
η )⟩⟩+

⟨
ANS

t ,
1

2
[AR

η , A
R
η ]

η
ANS

η

⟩)
. (8.103)

The gauge invariance can be shown by the following relations

DηA
R
η = 0, (8.104)

(−)XXAR
η − [ANS

X , AR
η ]

η
ANS

η
= (Dη-exact) ≡ DηA

R
X . (8.105)

The property (8.60) which is crucial in the computations of the variation of the action and the gauge

invariance can be written as

XFΨ− (−)X[AX, FΨ]ηAη
= DηFΞ(ηΞXFΨ)− (−)XDηFΞ[AX, FΨ]ηAη

, (8.106)

and it is equivalent to (8.105) if we define

(−)XAR
X = FΞ

(
ηΞXFΨ− (−)X[ANS

X , FΨ]η
ANS

η

)
. (8.107)

The computations of the variation of the action and the gauge invariance at quadratic order in the

Ramond string field based on (8.104) and (8.105) are the same as the open string case [51].
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9 Heterotic string field theory at quartic order in the Ramond string

field

Since S(0) + S(2) is not invariant at quartic order in the Ramond string field under the gauge trans-

formations A
(0)
δ +A

(2)
δ and δΨ(1), ⟨

A
(2)
δ , E(2)

⟩
̸= 0, (9.1)

we need interaction terms in higher order in the Ramond string fields and corrections for the gauge

transformations. In this section we construct the action in quartic order in the Ramond string field S(4)

and the corrections in the gauge transformations A
(4)
δ and δΨ(3) so that the action S(0)+S(2)+S(4) is

invariant at quartic order in the Ramond string field under the gauge transformations A
(0)
δ +A

(2)
δ +A

(4)
δ

and δΨ(1) + δΨ(3):

0 = −
⟨⟨
δΨ(1), Y E(3)

⟩⟩
−

⟨⟨
δΨ(3), Y E(1)

⟩⟩
+

⟨
A

(0)
δ , E(4)

⟩
+

⟨
A

(2)
δ , E(2)

⟩
+

⟨
A

(4)
δ , E(0)

⟩
, (9.2)

where E(3) and E(4) are equations of motion derived from S(4):

δS(4) = −
⟨⟨
δΨ, Y (E(3))

⟩⟩
+

⟨
Aδ, E

(4)
⟩
. (9.3)

Note that for the open string without stubs, where the dual 2-product is associative, the shifted

dual products are truncated, as seen in (6.94). Then, S(0) + S(2) is invariant at quartic order in the

Ramond string field under the gauge transformations A
(0)
δ +A

(2)
δ and δΨ(1): ⟨A(2)

δ , E(2)⟩ = 0, and the

action quadratic in the Ramond string field S(0) + S(2) provides the complete action [20].

To construct S(4), we first determine E(3) by requiring the gauge invariance under the transforma-

tion with the gauge parameter λ:

0 =−
⟨⟨
ηΞQFλ, Y (E(3))

⟩⟩
−

⟨⟨
δλΨ

(3), Y (ηΞQFΨ)
⟩⟩

+
⟨
− [FΞλ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
A

(4)
δλ
, QAη

⟩
. (9.4)

For the gauge invariance, it is crucial that the dual products Lη are Q-exact and can be written as

commutators of Q and some products ρ which we call dual gauge products:

Lη = [[Q,ρ]]. (9.5)

In section 9.1 we define ρ and its shifted structure, and explain their properties. Then, in section 9.2,

we determine E(3) and S(4) in terms of this ρ, and derive E(4) from S(4). In section 9.3, we determine

A
(4)
δ and δΨ(3) so that the gauge invariance (9.2) holds. First we determine δλΨ

(3) and A
(4)
δλ

by (9.4).

Next, we see that the gauge invariance under the transformation with the gauge parameter Ω trivially

holds since E(4) is Dη-exact,

0 =−
⟨⟨
δΩΨ

(3), Y (ηΞQFΨ)
⟩⟩
+

⟨
DηΩ, E

(4)
⟩
+

⟨
A

(4)
δΩ
, QAη

⟩
, (9.6)

and that the transformations with the gauge parameter Ω do not need corrections at this order:

A
(4)
δΩ

= 0, δΩΨ
(3) = 0. (9.7)
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Finally we show that one can construct the transformations δΛΨ
(3) and A

(4)
δΛ

which leave the action

invariant at this order:

0 =−
⟨⟨
ηΞQFΞ[DηΛ, FΨ]ηAη

, Y (E(3))
⟩⟩
−
⟨⟨
δΛΨ

(3), Y (ηΞQFΨ)
⟩⟩

+
⟨
QΛ, E(4)

⟩
+

⟨
− [FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
+

1

2
[Λ, FΨ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
A

(4)
δΛ
, QAη

⟩
.

(9.8)

We also provide explicit forms of δΛΨ
(3) and A

(4)
δΛ

, while we omit the detail of the derivation. In

section 9.4, we provide the observations that the equations of motion and the gauge transformations

are related which might be important for construction of a complete action. This section are based

on collaboration with H. Kunitomo.

9.1 Dual gauge products and the shifted structure

In the construction of the action at quartic order in the Ramond string field Ψ and for the gauge invari-

ance at this order, the Q-exactness of dual products Lη plays an important role. For the preparation

for the following subsections, we define the products ρ which we call dual gauge products satisfying

Lη = [[Q,ρ]], and explain their properties and the relation to the gauge products λ. We also define

the shifted structure of the dual gauge products and summarize its properties. More details will be

provided in appendix D.

Dual gauge products ρ

Since Lη commutes with Q, Lη itself is written as commutator of Q and some product ρ,

Lη(τ) = [[Q,ρ(τ)]], (9.9)

where we call ρ dual gauge product, and it can be expanded as

ρ(τ) =

∞∑
n=0

τnρn+1. (9.10)

ρn is a coderivation derived from a n-fold map ρn: in the present context, ρn defines ρn by

ρn(B1, ..., Bn) = π1ρn(B1 ∧ ... ∧Bn). (9.11)

The definition (9.9) reads

Qρn(B1, ..., Bn) = [B1, ..., Bn]
η +

n∑
k=1

(−)B1+...+Bk−1ρn(B1, ..., QBk, ..., Bn). (9.12)

The n-th dual gauge product ρn is Grassmann-even, carries ghost number 2− 2n and picture number

n− 2, and is cyclic:

⟨B1, ρn(B2, · · · , Bn+1)⟩ = (−)B2+···+Bn+1⟨ρn(B1, · · · , Bn), Bn+1⟩. (9.13)

The ρ commute with ∂t and δ, but not with η.
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Hereafter we take a choice of Lη(τ) = G(τ)ηG−1(τ) where G(τ) =
←
P exp

( ∫ τ
0 dτ

′λ[0](τ ′)
)
is a

cohomomorphism used in defining the NS string products LNS = G−1QG. Lη satisfies the following

differential equation:

∂2τL
η(τ) = −[[Q,G(τ)λ[1](τ)G−1(τ)]]. (9.14)

For the derivation, see (D.13). One can find that the dual gauge product ρ and the gauge product λ

are related by

∂2τρ(τ) = −G(τ)λ[1](τ)G−1(τ). (9.15)

Since the left-hand side of (9.15) is expanded in powers of τ as

∂2τρ(τ) =

∞∑
n=0

(n+ 1)(n+ 2)τnρ3+n = 2ρ3 + 6τρ4 + 12τ2ρ5 + 20τ3ρ6 + · · · , (9.16)

(9.15) determines ρn≥3 in terms of λ[0] and λ[1], which consist of LB, ξ, and η.24) Note that the

cyclicity of ρ follows from those of λ[0] and λ[1]. Note also that in the following subsections we do not

use ρ1 and ρ2: we only use ρn≥3 and they can be constructed in terms of ξ, η, and LB. Expanding the

right-hand side of (9.15) in powers of τ , the explicit form of ρn in lower order are obtained as follows:

ρ3 = −
1

2
λ
[1]
3 , (9.17)

ρ4 = −
1

6

(
λ
[1]
4 + [[λ

[0]
2 ,λ

[1]
3 ]]

)
, (9.18)

ρ5 = −
1

12

(
λ
[1]
5 + [[λ

[0]
2 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
3 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]

)
, (9.19)

ρ6 = −
1

20

(
λ
[1]
6 + [[λ

[0]
2 ,λ

[1]
5 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
4 ]]]]

+
1

3!

(
2[[λ

[0]
4 ,λ

[1]
3 ]] + 2[[λ

[0]
2 , [[λ

[0]
3 ,λ

[1]
3 ]]]] + [[λ

[0]
3 , [[λ

[0]
2 ,λ

[1]
3 ]]]] + [[λ

[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]]]

))
.

(9.20)

Shifted dual gauge products ρn,Aη

We define the shifted dual gauge products ρn,Aη by

ρn,Aη(B1, ..., Bn) =

∞∑
m=0

1

m!
ρn+m(Am

η , B1, ..., Bn). (9.21)

Note that ρn,Aη contains all ρm≥n. The shifted dual products ρn,Aη are cyclic, which follows from the

cyclicity of ρ:

⟨B1, ρn,Aη(B2, · · · , Bn+1)⟩ = (−)B2+···+Bn+1⟨ρn,Aη(B1, · · · , Bn), Bn+1⟩. (9.22)

24) To define ρ1 and ρ2 the so-called homotopy operator R satisfying [[Q,R]] = 1 is necessary, see appendix D.
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They are related to the shifted dual products [B1, ..., Bn]
η
Aη

as follows:

[B1, ..., Bn]
η
Aη

=

∞∑
m=0

1

m!

(
Qρm+n(Aη, · · · , Aη︸ ︷︷ ︸

m

, B1, ..., Bn)−mρm+n(Aη, · · · , Aη︸ ︷︷ ︸
m−1

, QAη, B1, ..., Bn)

−
n∑

k=1

(−)B1+...+Bk−1ρm+n(Aη, · · · , Aη︸ ︷︷ ︸
m

, B1, ..., Bk−1, QBk, Bk+1, ..., Bn)
)

= Qρn,Aη(B1, ..., Bn)− ρn+1,Aη(QAη, B1, ..., Bn)

−
n∑

k=1

(−)B1+...+Bk−1ρn,Aη(B1, ..., Bk−1, QBk, Bk+1, ..., Bn). (9.23)

The shifted dual gauge product ρn,Aη does not commute with X = ∂t, δ:

Xρn,Aη(B1, ..., Bn) =

n∑
k=1

ρn,Aη(B1, ...,XBk, ..., Bn) + ρn+1,Aη(XAη, B1, ..., Bn). (9.24)

9.2 Action at quartic order in the Ramond string field

To determine the action at quartic order in the Ramond string field, let us focus on the gauge invariance

under the transformation with the gauge parameter λ:

0 =−
⟨⟨
ηΞQFλ, Y (E(3))

⟩⟩
−

⟨⟨
δλΨ

(3), Y (ηΞQFΨ)
⟩⟩

+
⟨
− [FΞλ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
+

⟨
A

(4)
δλ
, QAη

⟩
. (9.25)

In this subsection, we show that the third term on the right hand side of (9.25) can be written as the

sum of terms with ηΞQFλ, terms with ηΞQFΨ, and terms with QAη, and therefore we can determine

E(3), A
(4)
δλ

, and δλΨ
(3) so that the gauge invariance (9.25) holds. Then, we explicitly determine E(3)

from (9.25), and construct S(4) which reproduces E(3):

δS(4) = −
⟨⟨
δΨ, Y (E(3))

⟩⟩
+

⟨
Aδ, E

(4)
⟩
. (9.26)

We also derive E(4) from S(4).

Gauge invariance

Utilizing the L∞-relations of the shifted dual products [B1, ..., Bn]
η
Aη

, the third term on the right-

hand side of (9.25) can be transformed as follows:

(3rd) =
⟨
− [FΞλ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
= −1

2

⟨
FΞλ, [FΨ, [FΨ, FΨ]ηAη

]ηAη

⟩
=

1

6

⟨
FΞλ,Dη[FΨ, FΨ, FΨ]ηAη

⟩
=

1

6

⟨
Fλ, [FΨ, FΨ, FΨ]ηAη

⟩
. (9.27)

Here we used DηFΨ = 0 and DηFΞλ = Fλ. Utilizing the property of the shifted dual gauge product

(9.23), [FΨ, FΨ, FΨ]ηAη
can be transformed as

[FΨ, FΨ, FΨ]ηAη
= Qρ3,Aη(FΨ, FΨ, FΨ)− 3ρ3,Aη(QFΨ, FΨ, FΨ)− ρ4,Aη(QAη, FΨ, FΨ, FΨ).

(9.28)
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Then the third term on the right-hand side of (9.25) becomes

(3rd) =− 1

6

⟨
QFλ, ρ3,Aη(FΨ, FΨ, FΨ)

⟩
− 1

2

⟨
Fλ, ρ3,Aη(QFΨ, FΨ, FΨ)

⟩
− 1

6

⟨
Fλ, ρ4,Aη(QAη, FΨ, FΨ, FΨ)

⟩
. (9.29)

Utilizing 1 = DηFΞ + FΞDη, QFΨ and QFλ can be transformed into a following form:

QFΨ = (DηFΞ + FΞDη)QFΨ = DηFΞ(ηΞQFΨ)− FΞ[QAη, FΨ]ηAη
, (9.30)

QFλ = (DηFΞ + FΞDη)QFλ = DηFΞ(ηΞQFλ)− FΞ[QAη, Fλ]
η
Aη
. (9.31)

We find that the third term on the right-hand side of (9.25) consists of three types of terms: terms

with ηΞQFλ, terms with ηΞQFΨ, and terms with QAη, and therefore we can determine E(3), A
(4)
δλ

,

and δλΨ
(3) so that the gauge invariance (9.25) holds.

Determination of the action

Picking up the ηΞQFλ term in (9.25),

0 = −
⟨⟨
ηΞQFλ, Y (E(3))

⟩⟩
− 1

6

⟨
DηFΞ(ηΞQFλ), ρ3,Aη(FΨ, FΨ, FΨ)

⟩
= −

⟨⟨
ηΞQFλ, Y (E(3))

⟩⟩
− 1

6

⟨
(ηΞQFλ), FΞDηρ3,Aη(FΨ, FΨ, FΨ)

⟩
= −

⟨⟨
ηΞQFλ, Y (E(3))

⟩⟩
+

1

6

⟨⟨
Y (ηΞQFλ), ηXFΞDηρ3,Aη(FΨ, FΨ, FΨ)

⟩⟩
, (9.32)

one can determine E(3):

E(3) =
1

6
ηXFΞDηρ3,Aη(FΨ, FΨ, FΨ). (9.33)

Note that, utilizing XFΞ = ΞQFΞ which follows from ΞFΞ = 0, one can write

E(3) =
1

6
ηΞQFΞDηρ3,Aη(FΨ, FΨ, FΨ). (9.34)

To construct the action in quartic order in the Ramond string field S(4) which reproduces E(3),

δS(4)
∣∣
Aδ=0

= −⟨⟨δΨ, Y (E(3))⟩⟩, let us transform δS(4)
∣∣
Aδ=0

as follows:

δS(4)
∣∣
Aδ=0

= −1

6

⟨⟨
δΨ, Y ηXFΞDηρ3,Aη(FΨ, FΨ, FΨ)

⟩⟩
=

1

6

⟨
δΨ, FΞDηρ3,Aη(FΨ, FΨ, FΨ)

⟩
=

1

6

⟨
FδΨ, ρ3,Aη(FΨ, FΨ, FΨ)

⟩
. (9.35)

In the last line we used DηFΞδΨ = FδΨ. Since δ(FΨ)
∣∣
Aδ=0

= FδΨ, δ(Aη)
∣∣
Aδ=0

= 0, and ρ3,Aη is

cyclic, the following S(4) reproduces (9.35) and therefore E(3):

S(4) =
1

24

⟨
FΨ, ρ3,Aη(FΨ, FΨ, FΨ)

⟩
. (9.36)
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Let us derive E(4) by taking the variation of S(4) by the NS field: δS(4)
∣∣
δΨ=0

= ⟨Aδ, E
(4)⟩. It is

given by

δS(4)
∣∣
δΨ=0

=+
1

6

⟨
[[δ, F ]]Ψ, ρ3,Aη(FΨ, FΨ, FΨ)

⟩
+

1

24

⟨
FΨ, ρ4,Aη(δAη, FΨ, FΨ, FΨ)

⟩
=+

1

6

⟨
− FΞ[δAη, FΨ]ηAη

, ρ3,Aη(FΨ, FΨ, FΨ)
⟩
+

1

24

⟨
FΨ, ρ4,Aη(δAη, FΨ, FΨ, FΨ)

⟩
=− 1

6

⟨
δAη, [FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

⟩
+

1

24

⟨
δAη, ρ4,Aη(FΨ, FΨ, FΨ, FΨ)

⟩
=+

1

6

⟨
Aδ, Dη[FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

⟩
− 1

24

⟨
Aδ, Dηρ4,Aη(FΨ, FΨ, FΨ, FΨ)

⟩
,

(9.37)

where we used (8.58), the cyclicity of ρn,Aη , and δAη = DηAδ. Then, E
(4) is obtained as follows:

E(4) = +
1

6
Dη[FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

− 1

24
Dηρ4,Aη(FΨ, FΨ, FΨ, FΨ). (9.38)

9.3 Gauge transformations

Transformation with λ

We have seen that one can determine δλΨ
(3) and A

(4)
δλ

so that (9.25) holds. Picking up the ηΞQFΨ

terms and QAη terms in (9.25), we can determine δλΨ
(3) and A

(4)
δλ

as follows:

δλΨ
(3) =

1

2
ηXFΞDηρ3,Aη(Fλ, FΨ, FΨ), (9.39)

A
(4)
δλ

=− 1

6
[Fλ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

+
1

2
[FΨ, FΞρ3,Aη(Fλ, FΨ, FΨ)]ηAη

− 1

6
ρ4,Aη(Fλ, FΨ, FΨ, FΨ). (9.40)

Transformation with Ω

The gauge invariance under the transformation with the gauge parameter Ω is written as

0 =−
⟨⟨
δΩΨ

(3), Y (ηΞQFΨ)
⟩⟩
+

⟨
DηΩ, E

(4)
⟩
+

⟨
A

(4)
δΩ
, QAη

⟩
. (9.41)

Since E(4) derived in (9.38) is Dη-exact, the second term vanishes:
⟨
DηΩ, E

(4)
⟩
= 0. Then, the trans-

formations with the gauge parameter Ω do not need corrections at this order:

A
(4)
δΩ

= 0, δΩΨ
(3) = 0. (9.42)

Note that, since the NS string fields are contained in S(4) only through Aη, Dη-exactness of E(4) is

automatic: it follows from δAη = DηAδ.

Transformation with Λ

We first show that one can determine δΛΨ
(3) and A

(4)
δΛ

so that the gauge invariance at quartic order

in the Ramond string field under the transformations with the gauge parameter Λ, which is given by
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the following equation, holds:

0 =−
⟨⟨
ηΞQFΞ[DηΛ, FΨ]ηAη

, Y
(1
6
ηXFΞDηρ3,Aη(FΨ, FΨ, FΨ)

)⟩⟩
−

⟨⟨
δΛΨ

(3), Y (ηΞQFΨ)
⟩⟩

+
⟨
QΛ,

1

6
Dη[FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

− 1

24
Dηρ4,Aη(FΨ, FΨ, FΨ, FΨ)

⟩
+

⟨
− [FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
+

1

2
[Λ, FΨ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
+
⟨
A

(4)
δΛ
, QAη

⟩
. (9.43)

If there are no terms which can not be compensated by −⟨⟨δΛΨ(3), Y (ηΞQFΨ)⟩⟩ and ⟨A(4)
δΛ
, QAη⟩,

one can determine δΛΨ
(3) and A

(4)
δΛ

so that the gauge invariance (9.43) holds. Since terms containing

ηΞQFΨ and QAη can be compensated by −⟨⟨δΛΨ(3), Y (ηΞQFΨ)⟩⟩ and ⟨A(4)
δΛ
, QAη⟩, respectively, what

we have to show is that the right-hand side of (9.43) vanishes up to terms containing ηΞQFΨ and

QAη:

0 ∼=−
⟨⟨
ηΞQFΞ[DηΛ, FΨ]ηAη

, Y
(1
6
ηXFΞDηρ3,Aη(FΨ, FΨ, FΨ)

)⟩⟩
+

⟨
QΛ,

1

6
Dη[FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

− 1

24
Dηρ4,Aη(FΨ, FΨ, FΨ, FΨ)

⟩
+

⟨
− [FΞ[Λ, FΨ]ηAη

, FΨ]ηAη
+

1

2
[Λ, FΨ, FΨ]ηAη

,
1

2
[FΨ, FΨ]ηAη

⟩
, (9.44)

where we write A ∼= B to denote that A equals to B up to terms containing ηΞQFΨ and QAη.

Obviously one finds ηΞQFΨ ∼= 0 and QAη
∼= 0. The following properties hold:

QFΨ ∼= 0, (9.45)

Q[B1, ..., Bn]
η
Aη
∼=

n∑
k=1

(−)1+B1+...+Bk−1 [B1, ..., QBk, ..., Bn]
η
Aη
, (9.46)

[[Q,Dη]] ∼= 0, (9.47)

Qρn,Aη(FΨ, ..., FΨ) ∼= [FΨ, ..., FΨ]ηAη
. (9.48)

Utilizing them, the first term on the right-hand side of (9.44) becomes

(1st) = −1

6

⟨
ΞQFΞ[DηΛ, FΨ]ηAη

, ηFΞDηρ3,Aη(FΨ, FΨ, FΨ)
⟩

=
1

6

⟨
[Λ, FΨ]ηAη

, DηFΞQFΞDηρ3,Aη(FΨ, FΨ, FΨ)
⟩

=
1

6

⟨
[Λ, FΨ]ηAη

, DηFΞQ(1−DηFΞ)ρ3,Aη(FΨ, FΨ, FΨ)
⟩

∼=
1

6

⟨
[Λ, FΨ]ηAη

, DηFΞ[FΨ, FΨ, FΨ]ηAη

⟩
− 1

6

⟨
[Λ, FΨ]ηAη

, QDηFΞρ3,Aη(FΨ, FΨ, FΨ)
⟩

=
1

6

⟨
[Λ, FΨ]ηAη

, (1− FΞDη)[FΨ, FΨ, FΨ]ηAη

⟩
− 1

6

⟨
[Λ, FΨ]ηAη

, QDηFΞρ3,Aη(FΨ, FΨ, FΨ)
⟩

=
1

6

⟨
Λ, [FΨ, [FΨ, FΨ, FΨ]ηAη

]ηAη

⟩
− 1

6

⟨
FΞ[Λ, FΨ]ηAη

, Dη[FΨ, FΨ, FΨ]ηAη

⟩
− 1

6

⟨
[Λ, FΨ]ηAη

, QDηFΞρ3,Aη(FΨ, FΨ, FΨ)
⟩
. (9.49)

The second term and the third term on the right-hand side of (9.44) become

(2nd) ∼=
1

6

⟨
Λ, [FΨ, QDηFΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

⟩
+

1

24

⟨
Λ, Dη[FΨ, FΨ, FΨ, FΨ]ηAη

⟩
, (9.50)

(3rd) ∼=
1

4

⟨
Λ, [FΨ, FΨ, [FΨ, FΨ]ηAη

]ηAη

⟩
− 1

2

⟨
FΞ[Λ, FΨ]ηAη

, [FΨ, [FΨ, FΨ]ηAη
]ηAη

⟩
. (9.51)
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Then we can show that the right-hand side of (9.44) vanishes by the L∞-relations of Aη-shifted dual

products:

(r.h.s) ∼=
1

24

⟨
Λ, Dη[FΨ, FΨ, FΨ, FΨ]ηAη

+ 4[FΨ, [FΨ, FΨ, FΨ]ηAη
]ηAη

+ 6[FΨ, FΨ, [FΨ, FΨ]ηAη
]ηAη

⟩
− 1

6

⟨
FΞ[Λ, FΨ]ηAη

, Dη[FΨ, FΨ, FΨ]ηAη
+ 3[FΨ, [FΨ, FΨ]ηAη

]ηAη

⟩
= 0. (9.52)

Recall that FΨ is annihilated by Dη.

We can explicitly determine δΛΨ
(3) and A

(4)
δΛ

by picking up the terms with ηΞQFΨ and QAη,

respectively. Here we omit the computation and present the results:

δΛΨ
(3) =− 1

6
ηXFΞDη[DηΛ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

+
1

2
ηXFΞDηρ3,Aη(FΞ[DηΛ, FΨ]ηAη

, FΨ, FΨ)

− 1

6
ηXFΞDηρ4,Aη(DηΛ, FΨ, FΨ, FΨ), (9.53)

A
(4)
δΛ

=+
1

24
ρ5,Aη(DηΛ, FΨ, FΨ, FΨ, FΨ)

− 1

24
[Λ, ρ4,Aη(FΨ, FΨ, FΨ, FΨ)]ηAη

− 1

6
ρ4,Aη(FΞ[DηΛ, FΨ], FΨ, FΨ, FΨ)

− 1

6
[FΨ, FΞρ4,Aη(DηΛ, FΨ, FΨ, FΨ)]ηAη

− 1

6
[FΞ[DηΛ, FΨ], FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

− 1

6
[Λ, [FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

]ηAη

− 1

6
[FΨ, FΞ[DηΛ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

]ηAη

+
1

6
[DηΛ, FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

, ]ηAη

+
1

2
[FΨ, FΞρ3,Aη(FΞ[DηΛ, FΨ], FΨ, FΨ)]ηAη

. (9.54)

9.4 Towards all-order construction

To conclude with this section, we present observations from the results in section 8 and section 9:

the equations of motion and the gauge transformations are related by replacing fields with gauge

parameters. Then one can find that the following relation holds:

• NS-EOM and AδΛ For k = 0, 1, 25)

(
Λ

δ

δAη

)
E(2k) = A

(2k)
δΛ

. (9.55)

25)We have not confirmed k = 2 yet.
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• NS-EOM and Aδλ For k = 1, 2,

−
(
λ
δ

δΨ

)
E(2k) = DηA

(2k)
δλ

(9.56)

Note that
(
λ δ
δΨ

)
is degree odd.

• R-EOM and δλΨ For k = 0, 1

−
(
λ
δ

δΨ

)
E(2k+1) = δλΨ

(2k+1). (9.57)

• R-EOM and δΛΨ For k = 0, 1

(
(DηΛ)

δ

δAη

)
E(2k+1) = δΛΨ

(2k+1). (9.58)

Note that
(
(DηΛ)

δ
δAη

)
is degree odd.

These relations might be an appearance of an L∞-structure of the action constructed in the previous

section and this section: in formulations based on the L∞-products, the gauge transformation is given

by a functional differentiation of the equation of motion. For example, in closed bosonic string field

theory, the following relation holds:

δΦ = π1L
B(ΛB ∧ e∧Φ) = −

(
ΛB δ

δΦ

)
π1L

B(e∧Φ) = −
(
ΛB δ

δΦ

)
(EOM). (9.59)

To elucidate the role of the relations (9.55), (9.56), (9.57), and (9.58) in detail remains as future works

which may provide an insight for a construction of an action to all orders.
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10 Conclusion

In the present thesis, we have constructed the action of heterotic string field theory up to quartic

order in the Ramond string field, and to all orders in the NS string field. First, we have constructed

the alternative action for the NS sector Sη in terms of the pure-gauge-like field Aη which satisfies

the Maurer-Cartan equation for the dual L∞-products Lη and its associated fields AX satisfying

(−)XXAη = DηAX. This action is dual to the conventional WZW-like action, and is equivalent to

the L∞-(or A∞-) action. Then, we have demonstrated that, starting with S(0) = Sη, an natural

extension of the complete action of open superstring field theory [20] provides an action of heterotic

string field theory in quadratic order in the Ramond string field S(2). We also discussed that the gauge

invariance follows from the WZW-like structure including the Ramond sector, as in [51]. Finally, we

have constructed the action in quartic order in the Ramond string field S(4) in terms of the Aη-shifted

structure of the dual gauge products ρ satisfying Lη = [[Q,ρ]]. The action up to quartic order in the

Ramond string field which is constructed in this thesis is given by

S =

∫ 1

0
dt⟨At(t), QAη(t)⟩ −

1

2
⟨⟨ηΞFΨ, Y (ηΞQFΨ)⟩⟩+ 1

24
⟨FΨ, ρ3,Aη(FΨ, FΨ, FΨ)⟩+ · · · . (10.1)

The equations of motion derived from this action are

ENS = QAη +
1

2
[FΨ, FΨ]ηAη

+
1

24
Dη

(
4[FΨ, FΞρ3,Aη(FΨ, FΨ, FΨ)]ηAη

− ρ4,Aη(FΨ, FΨ, FΨ, FΨ)
)
+ · · · , (10.2)

ER = ηΞQFΨ+
1

6
ηΞQFΞDηρ3,Aη(FΨ, FΨ, FΨ) + · · · . (10.3)

This action is gauge invariance up to quartic order in the Ramond string field.

Discussions

It remains as an important future works to construct an action to all orders in the Ramond string

field and to understand the relation to other formulations. There may be some possible approaches

to these problems.

WZW-like relations including the Ramond sector

For the open string, the relation between the complete action [20] and the equation of motion

including the Ramond sector in the A∞-formulation [40] is discussed through the WZW-like structure

including the Ramond sector, in [51]. The WZW-like relations including the Ramond sector are

expected to be important also for the heterotic string.

In the heterotic string, the string products LB is not truncated, and the WZW-like structure will

receive corrections at higher orders in the Ramond string field. Let us consider the generalization of

the pure-gauge-like field of the following form:

Aη =

∞∑
n=0

A(n)
η = π1G(e∧(Φ+Ψ)), (10.4)
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where Φ and Ψ are string fields in the NS sector and the Ramond sector, respectively, and belong to

the small Hilbert space. G is a cohomomorphism which we do not specify.26) As seen in the section

6, the η-constraint on the sting fields naturally induces the constraint on Aη as

0 = π1(GηG−1)(e∧Aη), (10.5)

which is expanded in power of the Ramond string field to provide the constraint on A
(n)
η in the following

way:

0 = π1(GηG−1)(e∧A
(0)
η ), (10.6)

0 = DηA
(1)
η , (10.7)

0 = DηA
(2)
η +

1

2
[A(1)

η , A(1)
η ]′, (10.8)

0 = DηA
(3)
η + [A(2)

η , A(1)
η ]′ +

1

6
[A(1)

η , A(1)
η , A(1)

η ]′, (10.9)

0 = DηA
(4)
η + [A(3)

η , A(1)
η ]′ +

1

2
[A(2)

η , A(2)
η ]′ +

1

2
[A(2)

η , A(1)
η , A(1)

η ]′ +
1

24
[A(1)

η , A(1)
η , A(1)

η , A(1)
η ]′, (10.10)

where DηB = π1(GηG−1)(B∧ e∧A
(0)
η ) and [B1, ..., Bn]

′ = π1(GηG−1)(B1∧ ...∧Bn∧ e∧A
(0)
η ). One can

also define the associated field AX for X which commutes with GηG−1 by

(−)XXAη = DηAX, (10.11)

where DηB = π1(GηG−1)(B ∧ e∧Aη). Expanding AX in power of the Ramond string field as AX =∑∞
n=0A

(n)
X , the defining equations for A

(n)
X at lower orders read

(−)XXA(0)
η = DηA

(0)
X , (10.12)

(−)XXA(1)
η = DηA

(1)
X + [A(1)

η , A
(0)
X ]′, (10.13)

(−)XXA(2)
η = DηA

(2)
X + [A(1)

η , A
(1)
X ]′ + [A(2)

η , A
(0)
X ]′ +

1

2
[A(1)

η , A(1)
η , A

(0)
X ]′. (10.14)

The gauge invariance at quadratic order can be understood by the WZW-like structure (10.7) and

(10.13), as in [51]. It will be important to understand the gauge invariance at quartic order in the

Ramond string field by the WZW-like structure (10.8), (10.14), and possibly higher order relations.

Relation to the equations of motion derived in [57,58]

The equations of motion including Ramond sector are constructed in [57,58] in the context of the

conventional WZW-like formulation, as

ηΨQ +
1

2
[B− 1

2
, B− 1

2
]ΨQ

+QΨQ
B−1 = 0, QΨQ

B− 1
2
= 0, (10.15)

where Bp is a functional with picture number p, and they are determined by the consistency conditions

given by

η
(
ηΨQ +

1

2
[B− 1

2
, B− 1

2
]ΨQ

+QΨQ
B−1

)
= 0, η

(
QΨQ

B− 1
2

)
= 0, (10.16)

26) In appendix D we introduce dual products with picture deficit. A similar consideration is possible if we use G with

the Ramond number projection [40].
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under the equations of motion. These conditions are equivalent, under the equations of motion, to

0 = ηB− 1
2
+ [B− 1

2
, B−1]ΨQ

+
1

6
[B− 1

2
, B− 1

2
, B− 1

2
]ΨQ

+QΨQ
B− 3

2
, (10.17)

0 = ηB−1 + [B− 1
2
, B− 3

2
]ΨQ

+
1

2
[B− 1

2
, B− 1

2
]ΨQ

+
1

2
[B− 1

2
, B− 1

2
, B−1]ΨQ

+
1

24
[B− 1

2
, B− 1

2
, B− 1

2
, B− 1

2
]ΨQ

+QΨQ
B−2, (10.18)

where B− 3
2
and B−2 are determined by new consistency conditions, which can be solved using B− 5

2

and B−3. This sequence of consistency conditions does not terminate but produces an infinite number

of equations with an infinite number of functionals B−n
2
to be determined. The resultant equations

can be written in a simple form

(Q+ η)B̂ +
∞∑

m=2

1

m!
[B̂m] = 0, (10.19)

where B̂ =
∑∞

n=0B−n
2
and B0 = ΨQ.

It will be interesting to discuss the relation between the dual description of the above equations of

motion and those derived in this thesis. Let us consider their (naive) Z2-dual description by replacing

(LB, η, Bp) with (Lη, Q, B̃1−p). The equations of motion (10.15) are mapped to

QAη +
1

2
[B̃− 1

2
, B̃− 1

2
]ηAη

+DηB̃0 = 0, (10.20)

DηB̃− 1
2
= 0, (10.21)

where B̃p is a functional with picture number p and is determined by the consistency condition which

is the dual of (10.17):

0 = QB̃− 1
2
+ [B̃− 1

2
, B̃0]

η
Aη

+
1

6
[B̃− 1

2
, B̃− 1

2
, B̃− 1

2
]ηAη

+DηB̃ 1
2
. (10.22)

As in the conventional description, there are an infinite number of consistency conditions, but they

are summarized in a simple form:

(η +Q)B̃ +

∞∑
m=2

1

m!
[B̃m]η = 0, (10.23)

where B̃ =
∑∞

n=0 B̃n−2
2

and B̃−1 = Aη.

One can find that (10.20) is related to (10.2) by the following identification:

B̃− 1
2
= FΨ− 1

6
DηFΞρ3,Aη(FΨ, FΨ, FΨ) + · · · , B̃0 = −

1

24
ρ4,Aη(FΨ, FΨ, FΨ, FΨ) + · · · .

(10.24)

In the identification, while (10.21) is satisfied trivially, (10.3) is equivalent to (10.22) up to quartic

order in the Ramond string field:

ηΞ
(
QB̃− 1

2
+

1

6
[B̃− 1

2
, B̃− 1

2
, B̃− 1

2
]ηAη

)
= 0. (10.25)

This equivalence implies that the equations of motion derived in this thesis can be understood in the

form of (10.23), and higher order corrections can be determined by consistency conditions on B̃.
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Appendices

A String products defining bosonic string field theories

In this appendix, we provide the definitions of the BPZ-inner product and the string products defin-

ing bosonic string field theories, via conformal maps. Note that, in oscillator representation, string

products are given by the Neumann coefficients, which differ depending on the theories.

A.1 BPZ inner product

Open string

For open string, string field Ψ is a state of world-sheet conformal field theory, which is defined on

upper half unit circle. Utilizing the state operator correspondence, it is equivalent to the upper half

unit disk with the insertion of a vertex operator Ψ(z = 0) at the origin. Schematically,

Ψ = Ψ(0)

.
(A.1)

The BPZ inner product can be defined by

⟨A|B⟩ = ⟨I ◦A(0)B(0)⟩UHP, (A.2)

where ⟨· · · ⟩UHP is a correlation function of world-sheet conformal field theory on a upper half plane,

and I is a inversion map defined by

I(z) = −1

z
. (A.3)

This inversion map can be illustrated as follows:

A(0)

0

I

I ◦A(0)
∞

.

(A.4)

The BPZ inner product corresponds to the following glueing:

⟨A|B⟩ =
I ◦A(0)

∞
B(0)

0
.

(A.5)
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Closed string

For closed string, the BPZ inner product can be defined similarly. Closed string state is defined

by a unit circle, and it is equivalent to a unit disk with insertion of the vertex operator at the origin.

The BPZ inner product can be defined by a correlation function in whole complex plane:

⟨A|B⟩ = ⟨I ◦A(0)B(0)⟩C, (A.6)

where the inversion map for closed string is (conventionally) taken as

I(z) = 1

z
. (A.7)

It can be illustrated as follows:

⟨A|B⟩ =
I ◦A(0)

∞
B(0)

0

.

(A.8)

A.2 Star product

The star product Ψ2 ∗Ψ3 of two open string fields Ψ2 and Ψ3 is defined to be a glueing of the right half

of the first string Ψ2 and the left half of the second string Ψ3. It can be represented using conformal

maps as follows:

⟨Ψ1|Ψ2 ∗Ψ3⟩ = ⟨h1 ◦Ψ1(0)h2 ◦Ψ2(0)h3 ◦Ψ3(0)⟩disk, (A.9)

where hk is a conformal map defined by

hk(z) = ei
2(k−1)π

3

(1 + iz

1− iz

) 2
3
= ei

2(k−1)π
3

+i 4
3
arctan(z). (A.10)

These conformal maps provide the following glueing of three half disks:

h1 ◦Ψ1(0)

h2 ◦Ψ2(0)

h3 ◦Ψ3(0)

Ψ1(0)
h1

Ψ2(0)

Ψ3(0) h3

h2

.
(A.11)

Using a conformal map, we can transform (A.9) into a correlation function in upper half plane

⟨Ψ1|Ψ2 ∗Ψ3⟩ = ⟨f1 ◦Ψ1(0) f2 ◦Ψ2(0) f3 ◦Ψ3(0)⟩UHP , (A.12)
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where fk is given by a composition of a map hk and a map from a unit disk to upper half plane:

fk(z) = −i
hk(z)− 1

hk(z) + 1
= tan

(k − 1

3
π +

2

3
arctan(z)

)
. (A.13)

Schematically, the maps f1, f2, f3 are represented by

f3 ◦Ψ3(0)

−
√
3

f1 ◦Ψ1(0)

0

f2 ◦Ψ2(0)

√
3

.

(A.14)

Note that the state Ψ2 ∗Ψ3 is defined to be a state satisfying (A.9), or equivalently (A.12).

A.3 Zwiebach’s string products

Let us consider a set of closed-string products {LB
k }k≥1. The k-th product LB

k is a product of k

closed string fields Ψ1, ...,Ψk which are annihilated by b−0 and L−0 . The output LB
k (Ψ1, ...,Ψk) is also

annihilated by b−0 and L−0 .

Two-string product

The 2-string product LB
2 (Ψ1,Ψ2) is defined by the same map as the star product:

⟨Ψ1, L
B
2 (Ψ2,Ψ3)⟩ = ⟨f1 ◦Ψ1(0) f2 ◦Ψ2(0) f3 ◦Ψ3(0)⟩C. (A.15)

These conformal maps provide the following glueing of three closed string fields :

f3 ◦Ψ3(0)

−
√
3

f1 ◦Ψ1(0)

0

f2 ◦Ψ2(0)

√
3

. (A.16)

Higher products

Let Mn be a moduli space of Riemann surfaces with n punctures and without genus. Consider

the decomposition ofMn with respect to the number of internal lines:

Mn = Rn
0 ∪Rn

1 ∪ ... ∪Rn
n−3, (A.17)
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where we denote by Rn
I the region of moduli space covered by Feynman diagrams constructed with I

internal lines. Higher string products LB
k for k ≥ 3 are defined by a correlation function of the string

states with a integration over Rk+1
0 , the region which is not covered by Feynman diagrams with lower

string products and propagators. It can be written as

⟨Ψ1, L
B
n−1(Ψ2, ...,Ψn)⟩ =

∫
Rn

0

⟨ 2n−6∏
I=1

dmI BI Ψ1(ζ1 = 0)Ψ2(ζ2 = 0)...Ψn(ζn = 0)
⟩
, (A.18)

where ζk is a local coordinate for k-th puncture, mI is a real coordinate parameterizing the moduli

space of n-punctured sphere, and BI is an insertion of b-ghost and b̄-ghost providing the correct

measure on the integration on moduli space. Thus defined string products {LB
k }k≥1, where LB

1 = Q,

are known to naturally satisfy the L∞-relations. For more details, see [8, 19].

For example, let us consider R3
0. If we set the position of Ψ1,Ψ2,Ψ3 to 0, 1,∞, respectively, the

position of Ψ4 corresponds to the modulus of 4-punctured spheres. Schematically, the integration

region R3
0 in this expression can be illustrated as follows:

.

∞0 1

(A.19)

The white regions are covered by the Feynman diagrams with one propagator, which correspond to

s, t, u-channel contributions respectively. The gray region is a region which cannot be covered by them.

Note that the analytic expressions of the boundary curves are not known, while numerical description

is given in [77].
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B Path-ordered exponentials

In this appendix, we provide the details of the path-ordered exponential map which we introduce in

section 4.2.3.

Definition and properties

We define the path-ordered exponential maps by

A[τf ,τi] =
→
P exp

(∫ τf

τi

dτ ′O[τ ′]

)
= 1l +

(∫ τf

τi

dτ1O[τ1]

)
+
∞∑
n=2

(∫ τf

τi

dτ1O[τ1]

)(∫ τ1

τi

dτ2O[τ2]

)
· · ·

(∫ τn−1

τi

dτnO[τn]

)
, (B.1)

so that it satisfies the following differential equation with the initial condition A[τ,τ ] = 1l:

∂τfA[τf ,τi] = O[τf ] · A[τf ,τi]. (B.2)

If τf ≥ τi is assumed, the right arrow → over P denotes the ordering of the operations in which

the “late-time” operator will act from the left. Equivalently it denotes the direction along which the

integration variables τ become small: τf ≥ τ1 ≥ τ2... ≥ τi. The definition also works for τf ≤ τi. In

that case, the meaning of “late-time” and “early-time” is reversed: τf ≤ τ1 ≤ τ2... ≤ τi. In either

case, the operators are “time ordered” from τf to τi, from the left to the right. We also denote it by

the ordering of the argument of A[τf ,τi].

A[τf ,τi] also satisfies the following differential equation:

∂τiA[τf ,τi] = −A[τf ,τi] · O[τi]. (B.3)

It follows from the reparameterization of the range of the integrals:

A[τf ,τi] = 1l +

(∫ τf

τi

dτ1O[τ1]

)
+

∞∑
n=2

(∫ τf

τi

dτ1

∫ τ1

τi

dτ2 · · ·
∫ τn−1

τi

dτn

)
O[τ1]O[τ2] · · · O[τn]

= 1l +

(∫ τf

τi

dτ1O[τ1]

)
+

∞∑
n=2

(∫ τf

τi

dτn

∫ τf

τn

dτn−1 · · ·
∫ τf

τ2

dτ1

)
O[τ1] · · · O[τn−1]O[τn]. (B.4)

We may represent it by

A[τf ,τi] = 1l +

(∫ τf

τi

dτ1O[τ1]

)
+

∞∑
n=2

(∫ τf

τ2

dτ1O[τ1]

)
· · ·

(∫ τf

τn

dτn−1O[τn−1]

)(∫ τf

τi

dτnO[τn]

)
. (B.5)

Note that in this form the integrations are defined to be performed from the right to the left.

In addition, this path-ordered exponential also satisfies the following “exey = ex+y” property:

A[τf ,τ
′]A[τ ′,τi] = A[τf ,τi]. (B.6)

It can be seen from ∂τ ′A[τf ,τ
′]A[τ ′,τi] = 0, which follows from (B.2) and (B.3). The left-hand side is

independent of τ ′ and then, A[τf ,τ
′]A[τ ′,τi] = A[τf ,τi]A[τi,τi] = A[τf ,τi].
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Explicit form

For a operator O which can be expanded in powers of τ as O[τ ] =
∑∞

k=0 τ
kOk+2, let us consider

lower-order terms in τf and τi ofA[τf ,τi] =
→
P exp

(∫ τf
τi
dτ ′O[τ ′]

)
. For the convenience of the explanation,

we represent it as

A[τf ,τi] =
→
P exp

(∫ τf

τi

dτ ′O[τ ′]

)
=
→
P exp

(∫ τfi

0
dτ ′O[τ ′+τi]

)
=
→
P exp

(∫ τfi

0
dτ ′O′[τ ′]

)
, (B.7)

where τfi = τf − τi, and O′[τ ′] is the τi-shifted operator:

O[τ ′+τi] =
∞∑
n=0

τ ′
n
( 1

n!
(∂τi)

nO[τi]

)
=
∞∑
n=0

τ ′
n
( ∞∑

k=n

k!

n!(k − n)!
τk−ni Ok+2

)
≡ O′[τ ′] =

∞∑
n=0

τ ′
nO′n+2. (B.8)

Note that if On+2 is an (n+ 2)-product, O′n+2 contains higher products and is not purely an (n+ 2)-

product. Utilizing the explicit forms of lower-order operators,

O′2 = O[τi] = O2 + τiO3 + τ2i O4 + · · ·

O′3 = ∂O[τi] = O3 + 2τiO4 + · · ·

O′4 = 1
2∂

2O[τi] = O4 + · · · , (B.9)

lower terms of A[τf ,τi] can be obtained in the following form:

A[τf ,τi] =1l + τfiO′2 +
τ2fi
2
(O′3 +O′2O′2) +

τ3fi
3!

(2O′4 + 2O′3O′2 +O′2O′3 +O′2O′2O′2) + · · ·

=1l + (τf − τi)O2 +
(τf − τi)2

2
O2O2 +

τ2f − τ2i
2
O3

+
(τf − τi)3

3!
O2O2O2 +

(τf − τi)2

3!
(τf + 2τi)O2O3 +

(τf − τi)2

3!
(2τf + τi)O3O2 +

τ3f − τ3i
3
O4

+ · · · . (B.10)

If O is independent of τ , (B.10) becomes an usual exponential.

Inverse map

The inverse of the path-ordered exponential is given by reversing the arguments:(
A[τf ,τi]

)−1
= A[τi,τf ] (B.11)

To prove it, consider the differential equation for A[τi,τf ]A[τf ,τi]− 1l:

∂τf

(
A[τi,τf ]A[τf ,τi]− 1l

)
=

(
−A[τi,τf ]O[τf ]

)
A[τf ,τi] +A[τi,τf ]

(
O[τf ]A[τf ,τi]

)
= 0. (B.12)

Since the initial condition at τf = τi is given by A[τi,τi]A[τi,τi]− 1l = 0, the solution for the differential

equation is A[τi,τf ]A[τf ,τi]− 1l = 0, which leads to

A[τi,τf ]A[τf ,τi] = 1l. (B.13)

Acting with A[τf ,τi] from the left and with A−1[τi,τf ] from the right on (B.13), A[τf ,τi]A−1[τi,τf ] = 1l can

also be obtained, which proves (B.11).
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Note that the inversion of the arguments corresponds to the inversion of the signs of operators

O → −O and the reversal of the order of the iterated integrations:

A[τi,τf ] =
←
P exp

(
−
∫ τf

τi

dτ ′O[τ ′]

)
= 1l +

(
−
∫ τf

τi

dτ1O[τ1]

)
+

∞∑
n=2

(
−
∫ τn−1

τi

dτnO[τn]

)
· · ·

(
−
∫ τ1

τi

dτ2O[τ2]

)(
−
∫ τf

τi

dτ1O[τ1]

)
,

(B.14)

where the left arrow← over P denotes the ordering of the operations: the operators are “time ordered”

so that τi ≤ τn ≤ ... ≤ τ2 ≤ τ1 ≤ τf for the case of τi ≤ τf , and τi ≥ τn ≥ ... ≥ τ2 ≥ τ1 ≥ τf for the

case of τi ≥ τf .

Response to operations

We compute how operators act on the path-ordered exponentials. For notational convenience, we

denote the range of the integrations as follows:

→
P
(∫ τf

τi

dτ ′
)n

=

∫ τf

τi

dτ1

∫ τ1

τi

dτ2

∫ τ2

τi

dτ3 · · ·
∫ τn−3

τi

dτn−2

∫ τn−2

τi

dτn−1

∫ τn−1

τi

dτn. (B.15)

In this notation, A can be represented as

A[τf ,τi] =

∞∑
n=0

→
P
(∫ τf

τi

dτ ′
)n
O[τ1]O[τ2] · · · O[τn]. (B.16)

Then consider the commutation relation of A and an operator q̂ which commutes with the integration:

[[q̂,A[τf ,τi]]] =

∞∑
n=1

n∑
k=1

→
P
(∫ τf

τi

dτ ′
)n
O[τ1] · · · O[τk−1][[q̂,O[τk]]]O[τk+1] · · · O[τn], (B.17)

where we assume O is even degree. We can change the parameterization of the range of the integrations

as follows:
∫ τf
τI
dτk :

→
P
(∫ τf

τi

dτ ′
)n

=

∫ τf

τi

dτ1

∫ τ1

τi

dτ2

∫ τ2

τi

dτ3 · · ·
∫ τn−3

τi

dτn−2

∫ τn−2

τi

dτn−1

∫ τn−1

τi

dτn

=

(∫ τf

τ2

dτ1

∫ τf

τ3

dτ2 · · ·
∫ τf

τk

dτk−1

)
×

∫ τf

τi

dτk ×
(∫ τk

τi

dτk+1

∫ τk+1

τi

dτk+2 · · ·
∫ τn−1

τi

dτn

)
=
→
P
(∫ τf

τk

dτ ′
)k−1

×
∫ τf

τi

dτk ×
→
P
(∫ τk

τi

dτ ′
)n−k

. (B.18)

Then we can transform the commutator further:

[[q̂,A[τf ,τi]]] =
∞∑
n=1

n∑
k=1

→
P
(∫ τf

τk

dτ ′
)k−1

∫ τf

τi

dτk
→
P
(∫ τk

τi

dτ ′
)n−k

O[τ1] · · · O[τk−1][[q̂,O[τk]]]O[τk+1] · · · O[τn]

=

∞∑
l=0

∞∑
m=0

→
P
(∫ τf

τk

dτ ′O[τ ′]

)l
∫ τf

τi

dτk[[q̂,O[τk]]]
→
P
(∫ τk

τi

dτ ′O[τ ′]

)m
. (B.19)

Finally we obtain

[[q̂,A[τf ,τi]]] =

∫ τf

τi

dτ ′A[τf ,τ
′] · [[q̂,O[τ ′]]] · A[τ ′,τi]. (B.20)
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C NS string products by path-ordered exponentials

In this appendix, we start with L(s, τ) in the form of a similarity transformation of LB(s), and derive

the condition for the η-derivation properties and the cyclicity, based on the properties of the path-

ordered exponentials. Discussions in this appendix are also applicable to the open string. We also

discuss the case where we start with the associative star product.

Let us consider the generating functions of L[d]:

L(s, τ) =

∞∑
m=0

smL[m](τ) =

∞∑
m=0

∞∑
n=0

smτnL
[m]
m+n+1. (C.1)

At τ = 0 and s = 0, L(s, τ) are identified with the string products LB and LNS, respectively:

L(s, 0) = LB(s) =
∞∑
n=0

snLB
n+1, L(0, τ) = L[0](τ) = LNS(τ). (C.2)

L∞-relations

We first require L(s, τ) to satisfy the L∞-relations:

0 = [[L(s, τ),L(s, τ)]]. (C.3)

Such products L(s, τ) can be defined by the following differential equations:

∂τL(s, τ) = [[L(s, τ),λ(s, τ)]], (C.4)

where λ(s, τ) is the generating function for the gauge products with deficit picture λ[d], defined by

λ(s, τ) =
∞∑

m=0

smλ[m](τ) =
∞∑

m=0

∞∑
n=0

smτnλ
[m]
m+n+2. (C.5)

The solution for the differential equation ∂τL(s, τ) = [[L(s, τ),λ(s, τ)]] can be written as a similarity

transformation of L(s, 0) = LB(s):

L(s, τ) = G−1(s; τ, 0)LB(s)G(s; 0, τ), (C.6)

where G(s; τi, τf ) is an invertible cohomomorphism which is defined by the path-ordered exponentials:

G(s; τi, τf ) =
←
P exp

(∫ τf

τi

dτ ′λ(s, τ ′)
)
, G−1(s; τf , τi) =

→
P exp

(
−

∫ τf

τi

dτ ′λ(s, τ ′)
)
. (C.7)

Note that in section 4 we omitted the dependence on τi = 0, for example we wrote G(s; τ) instead of

G(s; 0, τ). G(s; τi, τf ) and G−1(s; τf , τi) satisfy the following differential equations:

∂τfG(s; τi, τf ) = G(s; τi, τf )λ(s, τ), ∂τfG
−1(s; τf , τi) = −λ(s, τ)G−1(s; τf , τi) (C.8)

with the initial conditions G(s; τ, τ) = 1l and G−1(s; τ, τ) = 1l. For more details, see appendix B. We

can check that (C.6) is a solution for the differential equation ∂τL(s, τ) = [[L(s, τ),λ(s, τ)]] with the

initial condition L(s, 0) = LB(s). See also section 4.2.3.
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The L∞-relation follows from only the fact that L(s, τ) can be written as a similarity transformation

of LB which is nilpotent. One can cheek it easily as follows:

L(s, τ)L(s, τ) =
(
G−1(s; τ, 0)LB(s)G(s; 0, τ)

)(
G−1(s; τ, 0)LB(s)G(s; 0, τ)

)
= G−1(s; τ, 0)LB(s)LB(s)G(s; 0, τ)

= 0. (C.9)

That is, if we only require L to satisfy the L∞-relations, the gauge products can be taken arbitrary.

In what follows, we discuss the conditions on a choice of the gauge products which are required by

the cyclicity and η-derivation property of L(s, τ).

Cyclicity

If the gauge products λ(s, τ) are BPZ-odd, G satisfies (G(s; τ, 0))† = G−1(s; 0, τ), which leads to

the cyclicity of L(s, τ):

(L(s, τ))† = (G(s; 0, τ))†(LB(s))†(G−1(s; τ, 0))† = −L(s, τ). (C.10)

Note that (LB(s))† = −LB(s).

For the cyclicity of the NS product L[0] = LNS, it is sufficient to require λ[0](τ) to be BPZ-odd.

Recall that the NS products L[0] = LNS is written as a similarity transformation of L[0](0) = Q:

LNS(τ) = G−1(τ, 0)QG(0, τ), (C.11)

where G(τi, τf ) and its inverse are defined by

G(τi, τf ) =
←
P exp

(∫ τf

τi

dτ ′λ[0](τ ′)
)
, G−1(τf , τi) =

→
P exp

(
−

∫ τf

τi

dτ ′λ[0](τ ′)
)
. (C.12)

If the gauge products λ[0](τ) are BPZ-odd, G satisfy (G(τ, 0))† = G−1(0, τ), and then LNS(τ) in

cyclic:

(LNS(τ))† = (G(0, τ))†Q†(G−1(τ, 0))† = −LNS(τ). (C.13)

η-derivation properties

Next, let us consider the conditions for the η-derivation properties of L(s, τ):

0 = [[η,L(s, τ)]]. (C.14)

By the direct calculation using the technique introduced in Appendix B, one can obtain

[[η,L(s, τ)]] = [[η,G−1(s; τ, 0)]]L(s; 0)G(s; 0, τ)−G−1(s; τ, 0)L(s; 0)[[η,G(s; 0, τ)]]

= −
∫ τ

0
dτ ′G−1(s; τ, τ ′)[[η,λ(s; τ ′)]]G−1(s; τ ′, 0)L(s; 0)G(s; 0, τ)

−G−1(s; τ, 0)L(s; 0)

∫ τ

0
dτ ′G(s; 0, τ ′)[[η,λ(s; τ ′)]]G(s; τ ′, τ)

= −
∫ τ

0
dτ ′G−1(s; τ, τ ′)

[[
[[η,λ(s; τ ′)]],G−1(s; τ ′, 0)L(s; 0)G(s; 0, τ ′)

]]
G(s; τ ′, τ)

= −
∫ τ

0
dτ ′G−1(s; τ, τ ′)

[[
[[η,λ(s; τ ′)]],L(s; τ ′)

]]
G(s; τ ′, τ). (C.15)
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We used (B.20) and [[η,LB(s)]] = 0. We can see that
[[
[[η,λ(s; t′)]],L(s; t′)

]]
= 0 is the condition on a

choice of λ(s, τ) for the η-derivation of L. If gauge products are given, the identification [[η,λ(s, τ)]] =

∂sL(s, τ) leads to the η-derivation property. Or, in reverse direction, if we define the gauge products

from L(s, τ) by

ξ ◦ ∂sL(s, τ) = λ(s, τ), (C.16)

L(s, τ) satisfy the η-derivation property: differentiating (C.15) in τ , one can obtain the homogeneous

differential equation (4.67), and then [[η,L(s, 0)]] = 0 ensures the solution [[η,L(s, τ)]] = 0. See also

section 4.2.2.

Note on L[1](τ) ̸= G(τ, 0)−1L[1](0)G(0, τ)

In general, L[d≥1](τ) cannot be written as a similarity transformation of L[d≥1](0), namely L[1](τ) ̸=
G−1(τ, 0)L[1](0)G(0, τ). L[1](τ) corresponds to the s1 part of L(s, τ): L[1](τ) = ∂sL(s, τ)|s=0. The s

1

part of L(s, τ) can be computed as follows:

∂sL(s, τ) = G−1(s; τ, 0)∂sL(s; 0)G(s; 0, τ)−
∫ τ

0
dτ ′G−1(s; τ, τ ′)∂sλ(s, τ

′)G−1(s; τ ′, 0)L(s; 0)G(s; 0, τ)

+G−1(s; τ, 0)L(s; 0)

∫ τ

0
dτ ′G(s; 0, τ ′)∂sλ(s, τ

′)G(s; τ ′, τ)

= G−1(s; τ, 0)∂sL(s; 0)G(s; 0, τ)−
∫ τ

0
dτ ′G−1(s; τ, τ ′)[[∂sλ(s, τ

′),L(s; τ ′)]]G(s; τ ′, τ).

(C.17)

Taking s = 0 and using G−1(s; τ, 0) = G−1(τ, 0) +O(s), L[1](τ) is written as follows:

L[1](τ) = G−1(τ, 0)L[1](0)G(0, τ)−
∫ τ

0
dτ ′G−1(τ, τ ′)[[λ[1](τ ′),L[0](τ ′)]]G(τ ′, τ). (C.18)

If LB
2 are associative, LB

2 L
B
2 = 0, we can set λ[1] = 0 and then L[1](τ) = G−1(τ, 0)L[1](0)G(0, τ) holds.

Note on the truncated case

In what follows we consider the case of the open string and write M and µ instead of L and λ. If

MB
2 is associative, MB

2M
B
2 = 0, higher products are not necessary for A∞-relations, and can be set to

zero: MB
N>3 = 0. Then, MB consists of MB

1 and MB
2 :

MB(s) = MB
1 + sMB

2 . (C.19)

In this case, one can set M[d≥2] = 0 and µ[d≥1] = 0. The nonvanishing products are the NS products

with deficit picture 0 and 1, M[0] and M[1], and the gauge products with deficit picture 0, µ[0]. The

generating functions are truncated:

M(s, τ) = M[0](τ) + sM[1](τ), µ(s, τ) = µ[0](τ). (C.20)

In this case, M[1] is also nilpotent:

[[M[1],M[1]]] = 0. (C.21)
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µ(s, τ) does not depend on s, and G does not acquire the s-dependence:

G(s; 0, τ) =
←
P exp

(∫ τ

0
dτ ′µ[0](τ ′)

)
= G(0, τ). (C.22)

As in M[0] which can be written as a similarity transformation of Q, M[0] = G−1(τ, 0)QG(0, τ),

M(s, τ) is also given by

M(s, τ) = G−1(s; τ, 0)MB(s)G(s; 0, τ) = G−1(τ, 0)MB(s)G(0, τ). (C.23)

Then, expanding in powers of s as

M(s, τ) = G−1(τ, 0)
(
MB

1 + sMB
2

)
G(0, τ)

= G−1(τ, 0)MB
1G(0, τ) + sG−1(τ, 0)MB

2G(0, τ)

= M[0](τ) + sM[1](τ), (C.24)

one can find that M[1] can be written as a similarity transformation of MB
2 :

M[1](τ) = G−1(τ, 0)MB
2G(0, τ). (C.25)

Note that one can derive (C.25) also from (C.18).
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D η-based L∞-products and dual gauge products

In this appendix we define η-based L∞-products and dual gauge products, and summarize their

properties.

D.1 η-based L∞-products Lη

Definitions and basic properties

The dual product Lη is defined using the cohomomorphism G which appears in the construction

of the NS product LNS = G−1QG, by

Lη(τ) = G(τ)ηG−1(τ) =

∞∑
p=0

τpLη
p+1. (D.1)

Lη is degree odd and the n-th dual product Lη
n carries ghost number 3−2n and picture number n−2.

The following basic properties of Lη follow directly from its definition:

1. The initial condition at τ = 0 reads Lη(0) = η, which follows from G(0) = 1.

2. the L∞ relation follow from G−1G = 1 and η2 = 0:

[[Lη(τ),Lη(τ)]] =
1

2
G(τ)ηG−1(τ)G(τ)ηG−1(τ) =

1

2
G(τ)η2G−1(τ) = 0. (D.2)

3. The Q-derivation property of Lη follows from [[η,LNS(τ)]] = 0:

[[Q,Lη(τ)]] = [[Q,G(τ)ηG−1(τ)]] = G(τ)[[LNS(τ),η]]G−1(τ) = 0. (D.3)

4. The cyclicity of Lη follows from G−1 = G†, i.e. the BPZ-oddness of gauge products.

5. Lη satisfies the following differential equation:

∂τL
η(τ) = G(0, τ)λ[0](τ)ηG−1(τ, 0)−G(0, τ)ηλ[0](τ)G−1(τ, 0)

= [[G(0, τ)λ[0](τ)G−1(τ, 0),Lη(τ)]]. (D.4)

6. Expanding the path-ordered exponential G, we can obtain the following expression:

Lη(τ) =η+ τ [[λ
[0]
2 ,η]] +

τ2

2

(
[[λ

[0]
3 ,η]] + [[λ

[0]
2 , [[λ

[0]
2 ,η]]]]

)
+

+
τ3

3!

(
2[[λ

[0]
4 ,η]] + 2[[λ

[0]
2 , [[λ

[0]
3 ,η]]]] + [[λ

[0]
3 , [[λ

[0]
2 ,η]]]] + [[λ

[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,η]]]]]]

)
+ · · ·

=η− τL[1]
2 +

τ2

2

(
− L

[1]
3 − [[λ

[0]
2 ,L

[1]
2 ]]

)
+

+
τ3

3!

(
− 2L

[1]
4 − 2[[λ

[0]
2 ,L

[1]
3 ]]− [[λ

[0]
3 ,L

[1]
2 ]]− [[λ

[0]
2 , [[λ

[0]
2 ,L

[1]
2 ]]]]

)
+ · · · . (D.5)
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Relation to L[1]

Lη carries the same quantum numbers as L[1]. They are related by the following relation:

Lη(τ) = G(0, τ)ηG−1(τ, 0)

= η+G(0, τ)[[η,G−1(τ, 0)]]

= η−G(0, τ)

∫ τ

0
dτ ′G−1(τ, τ ′)[[η,λ[0](τ ′)]]G−1(τ ′, 0)

= η−
∫ τ

0
dτ ′G(0, τ ′)L[1](τ ′)G−1(τ ′, 0). (D.6)

From this expression, we can derive the differential equation connecting them:

∂τL
η(τ) = −G(0, τ)L[1](τ)G−1(τ, 0). (D.7)

Truncated case

If MB
2 is associative, MB is given by MB = Q +MB

2
27), and the second term on the right-hand

side of (D.6) becomes

−
∫ τ

0
dτ ′G(0, τ ′)M[1](τ ′)G−1(τ ′, 0) = −

∫ τ

0
dτ ′M[1](0) = −τMB

2 . (D.8)

Thus, in the associative case, the dual products are also truncated and are given by

Mη(τ) = η− τMBOS
2 . (D.9)

Expression in which Q-derivation property is manifest

Utilizing the relation between L[1](τ) and L[1](0), Lη can be written as follows:

Lη(τ) = η−
∫ τ

0
dτ ′G(0, τ ′)

(
G−1(τ ′, 0)L[1](0)G(0, τ ′)

−
∫ τ ′

0
dτ ′′G−1(τ ′, τ ′′)[[λ[1](τ ′′),L[0](τ ′′)]]G(τ ′′, τ ′)

)
G−1(τ ′, 0)

= η− τL[1](0) +

∫ τ

0
dτ ′′(τ − τ ′′)G(0, τ ′′)[[λ[1](τ ′′),L[0](τ ′′)]]G−1(τ ′′, 0). (D.10)

We used
∫ τ
0 dτ

′ ∫ τ ′

0 dτ ′′ =
∫ τ
0 dτ

′′ ∫ τ
τ ′′ dτ

′. We can transform it in the following way:

Lη(τ) = η− τL[1](0) +

∫ τ

0
dτ ′′(τ − τ ′′)G(0, τ ′′)[[λ[1](τ ′′),L[0](τ ′′)]]G−1(τ ′′, 0)

= η− τL[1](0) +

∫ τ

0
dτ ′′(τ − τ ′′)[[G(0, τ ′′)λ[1](τ ′′)G−1(τ ′′, 0),G(0, τ ′′)L[0](τ ′′)G−1(τ ′′, 0)]]

= η− τLBOS
2 −

∫ τ

0
dτ ′′(τ − τ ′′)[[Q,G(0, τ ′′)λ[1](τ ′′)G−1(τ ′′, 0)]]. (D.11)

In this expression, theQ-derivation property is manifest. We can also find that the following differential

equations hold:

∂τL
η(τ) = −LBOS

2 −
∫ τ

0
dτ ′′[[Q,G(0, τ ′′)λ[1](τ ′′)G−1(τ ′′, 0)]], (D.12)

∂2τL
η(τ) = [[Q,−G(0, τ)λ[1](τ)G−1(τ, 0)]]. (D.13)

27) We use M since we consider the open string.
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D.2 Dual gauge products ρ

Since [[Q,Lη(τ)]] = 0, Lη can be written as the commutator of Q and some product ρ:

Lη(τ) = [[Q,ρ(τ)]] =
∞∑
n=0

τn[[Q,ρn+1]]. (D.14)

We will call ρ dual gauge products.

ρ1 and ρ2 can be constructed using the homotopy operator R satisfying [[Q,R]] = 1. For example,

if we require the cyclicity, they can be defined by

ρ1 = R ◦ η =
1

2
(Rη − ηR), (D.15)

ρ2 = R ◦ Lη
2 = −1

3

(
RLB

2 − LB
2 (R ∧ I)

)
, (D.16)

where we write R◦ in the same sense as (4.41) and (4.42).

ρn≥3 can be written without R. Recall that Lη satisfies ∂2τL
η(τ) = −[[Q,G(τ)λ[1](τ)G−1(τ)]]. The

dual gauge products ρ are related to the gauge products λ as

∂2τρ(τ) = −G(τ)λ[1](τ)G−1(τ). (D.17)

Expanding in powers of τ , the left-hand side becomes

∂2τρ(τ) =

∞∑
n=0

(n+ 1)(n+ 2)tnρ3+n = 2ρ3 + 6τρ4 + 12τ2ρ5 + 20τ3ρ6 + · · · , (D.18)

and then this relation determines ρn≥3. The cyclicity of ρn≥3 follows from that of λ[0] and λ[1].

Expanding in powers of τ , the right-hand side of (D.17) becomes

−G(τ)λ[1](τ)G−1(τ)

= −λ[1](τ)− τ [[λ[0]
2 ,λ

[1](τ)]]− τ2

2

(
[[λ

[0]
3 ,λ

[1](τ)]] + [[λ
[0]
2 , [[λ

[0]
2 ,λ

[1](τ)]]]]
)
+

− τ3

3!

(
2[[λ

[0]
4 ,λ

[1](τ)]] + 2[[λ
[0]
2 , [[λ

[0]
3 ,λ

[1](τ)]]]] + [[λ
[0]
3 , [[λ

[0]
2 ,λ

[1](τ)]]]] + [[λ
[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,λ

[1](τ)]]]]]]
)
+ · · ·

= −λ[1]
3 − τ

(
λ
[1]
4 + [[λ

[0]
2 ,λ

[1]
3 ]]

)
− τ2

(
λ
[1]
5 + [[λ

[0]
2 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
3 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]

)
− τ3

(
λ
[1]
6 + [[λ

[0]
2 ,λ

[1]
5 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
4 ]]]]

+
1

3!

(
2[[λ

[0]
4 ,λ

[1]
3 ]] + 2[[λ

[0]
2 , [[λ

[0]
3 ,λ

[1]
3 ]]]] + [[λ

[0]
3 , [[λ

[0]
2 ,λ

[1]
3 ]]]] + [[λ

[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]]]

))
+ · · · ,

(D.19)

then we obtain the following expressions:

ρ3 = −
1

2
λ
[1]
3 , (D.20)

ρ4 = −
1

6

(
λ
[1]
4 + [[λ

[0]
2 ,λ

[1]
3 ]]

)
, (D.21)

ρ5 = −
1

12

(
λ
[1]
5 + [[λ

[0]
2 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
3 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]

)
, (D.22)

ρ6 = −
1

20

(
λ
[1]
6 + [[λ

[0]
2 ,λ

[1]
5 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
4 ]]]]

+
1

3!

(
2[[λ

[0]
4 ,λ

[1]
3 ]] + 2[[λ

[0]
2 , [[λ

[0]
3 ,λ

[1]
3 ]]]] + [[λ

[0]
3 , [[λ

[0]
2 ,λ

[1]
3 ]]]] + [[λ

[0]
2 , [[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]]]

))
. (D.23)
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D.3 η-based L∞-products with deficit picture Lη(s) and its gauge products ρ(s)

Although we do not use these structures in the main text, we can define dual products with deficit

picture by the cohomomorphism G(s, τ).

Definition and basic properties of Lη(s)

We can define η-based L∞ products with deficit picture by

Lη(s; τ) = G(s; τ)ηG−1(s; τ) =
∞∑
d=0

sdLη[d](τ) =
∞∑
d=0

sd
∞∑
p=0

τpL
η[d]
d+p+1. (D.24)

We denote [d] by the picture deficit relative to Lη. As in Lη, they satisfy the following properties:

1. As the initial condition at τ = 0, Lη(s, 0) = η. That is, L
η[d]
d+1 = 0.

2. Lη(s, τ) satisfies the L∞-relations:

[[Lη(s, τ),Lη(s, τ)]] = 0. (D.25)

3. Lη(s, τ) commutes with LBOS(s), which follows from [[η,LBOS(s)]] = 0:

[[LBOS(s),Lη(s, τ)]] = 0. (D.26)

4. The cyclicity of Lη follows from G−1 = G†, i.e. the BPZ-oddness of gauge products.

5. Lη(s; τ) satisfies the following differential equation:

∂τL
η(s, τ) = [[G(s; 0, τ)λ(s, τ)G−1(s; τ, 0),Lη(s, τ)]]. (D.27)

Relation to L(s, τ)

By a calculation parallel to (D.6) for the case of Lη(τ) without picture deficit, Lη(s, τ) and L(s, τ)

are related by the following relation:

Lη(s, τ) = η−
∫ τ

0
dτ ′G(s; 0, τ ′)

(
∂sL(s, τ

′)
)
G−1(s; τ ′, 0). (D.28)

Differentiated in τ , the relation becomes

∂τL
η(s, τ) = −G(s; 0, τ)∂sL(s, τ)G

−1(s; τ, 0). (D.29)

LB(s)-closed form

Again, by the calculation parallel to the case of Lη(τ) without picture deficit, Lη(s; τ) can be

written in the LB(s)-closed form:

Lη(s, τ) = η− τ∂sLB(s)−
∫ τ

0
dτ ′′(τ − τ ′′)[[LB(s),G(s; 0, τ ′′)∂sλ(s, τ

′′)G−1(s; τ ′′, 0)]]. (D.30)
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Utilizing [[η,LB(s)]] = 0 and [[∂sL
B(s),LB(s)]] = 0, one can find

[[LB(s),Lη(s, τ)]] = 0. (D.31)

From (D.30), we can find that the following differential equations hold:

∂τL
η(s, τ) = −∂sLBOS(s)−

∫ τ

0
dτ ′′[[LBOS(s),G(s; 0, τ ′′)∂sλ(s, τ

′′)G−1(s; τ ′′, 0)]], (D.32)

∂2τL
η(s, τ) = −[[LBOS(s),G(s; 0, τ)∂sλ(s, τ)G

−1(s; τ, 0)]]. (D.33)

Dual gauge products with deficit picture ρ(s)

Since [[LB,Lη(s, τ)]] = 0, Lη(s, τ) can be written in an LB-exact form:

Lη(s, τ) = [[LB(s),ρ(s, τ)]], (D.34)

ρ(s, τ) =

∞∑
d=0

sdρ[d](τ) =

∞∑
n=0

∞∑
d=0

τnsdρ
[d]
d+n+1 =

∞∑
n=0

∞∑
d=0

τnsdρ
(n−1)
d+n+1 =

∞∑
n=0

τnρ(n−1)(s). (D.35)

We call ρ(s, τ) dual gauge products with deficit picture. We identify ρ[0](τ) = ρ(τ). We denoted the

picture number p of the product by superscript as (p).

ρ(n≥1) can be written without using R. The equation (D.33) provides the relation between ρ(s, τ)

and λ(s, τ):

∂2τρ(s, τ) = −G(s; τ)∂sλ(s, τ)G
−1(s; τ). (D.36)

This equation determine ρ
[d]
N in the region of ghost and picture numbers where corresponding λ

[d]
N

exist.

ρ(0) can be constructed using R which is the homotopy operator satisfying [[Q,R]] = 1. We can

represent LB as a similarity transformation of Q:

LB(s) = h−1(s)Qh(s), h(s) =
←
P exp

[ ∫ s

0
ds′σ(s′)

]
, (D.37)

where σ(s) =
∑∞

k=0 s
kσ2+k is a new gauge product. We can define this σ(s) from LBOS(s) and R

recursively by the differential equation for LB(s) which is given by ∂sL
B(s) = [[LBOS(s),σ(s)]]. Its sN

part reads (N + 1)LB
N+2 =

∑N
n=0[[L

B
n+1,σN−n+2]], and it determines σN+2 from σn≤N+1:

σN+2 = R ◦
(
(N + 1)LB

N+2 −
N∑

n=1

[[LB
n+1,σN−n+2]]

)
. (D.38)

Since τ0 part of the equation (D.32) reads [[LBOS(s),ρ(0)(s)]] = −∂sLBOS(s), one can find that ρ(0) is

given by

ρ(0)(s) = −σ(s). (D.39)
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