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Abstract

Scalar fields such as inflaton could play crucial roles in the early Universe. To estimate
the e↵ects of the scalar fields on the cosmological scenario, the dynamics of them is usually
calculated in perturbative ways. However, it is known that through non-perturbative
e↵ects, scalar fields form localized objects, and by the formation of those objects, dynamics
of the scalar fields such as decay processes would be changed. In this thesis, we study a
class of such localized objects, namely I-balls.

I-balls are spatially localized objects. By numerical simulations, it is known that they
are formed for a flatter potential than the quadratic one. The flatter potentials appear
in various situations in cosmology. In this thesis, we study whether I-balls are formed
for the R2 inflation, and then find that the formation does not occur. Thus, our results
validate the estimation of the decay rate of the inflaton of the R2 inflation, which is calcu-
lated by the perturbative way. We also study the formation of I-balls for the logarithmic
potential M2⇤2 ln

⇥

1 + �2/⇤2

⇤

motivated by the quantum or thermal correction during
reheating. Then, it is found that for this potential, I-balls are formed. We show that
the I-balls are formed when the potential is dominated by the quadratic term, which is
consistent with an idea that the stability of I-balls is due to conservation of an conserved
quantity called adiabatic charge.

The analytical understandings of I-balls are not yet obtained well. In this thesis, we
try to verify the stability of I-balls analytically based on the adiabatic charge. We give a
rigorous proof of conservation of the adiabatic charge for a potential that allows a periodic
motion of a scalar field even in the presence of the non-negligible spatial gradient energy.
We show that such potential is uniquely determined to the quadratic one with a logarithmic
correction (m2/2)�2

⇥

1�K ln
�

�2/M2

�⇤

, and that for this potential, the adiabatic charge
is conserved. We numerically check the conservation of the adiabatic charge of I-balls by
slowly varying the coe�cient of the logarithmic term. The result supports the idea that
the stability of I-balls is due to the adiabatic charge.
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Chapter 1

Introduction

1.1 Overview

By the discovery of the Higgs boson in the Large Hadron Collider [1, 2], it has been
established that a scalar field exists in nature. Furthermore, cosmological observations
suggest that other scalar fields exist and would have played various crucial roles in the
early Universe. A scalar field called inflaton can induce inflation in the early Universe [3–7].
In other cases, an oscillating scalar field can be a candidate of the dark matter [8, 9]. A
light scalar field can obtain large fluctuations during inflation, and it might be the origin
of cosmological perturbations instead of the inflaton [10–12]. Decays of scalar fields which
have baryon charge can be a source of the present baryon asymmetry [13–16]. In some
cases, decays of scalar fields would spoil the hot big bang nucleosynthesis (BBN) [17–19].

It has been known that in some class of potentials scalar fields form solitons. The
solitons are spatially localized and long-lived classical objects formed through non-linear
processes. These solitons are classified into the topological solitons [20, 21] and non-
topological solitons by the topological structure of the scalar potentials. As examples of
the non-topological solitons, there exist Q-balls [22] and I-balls (oscillons) [23–26] which
are formed from coherently oscillating scalar fields. By the formation of these solitons,
the dynamics of the scalar fields such as the decay rates [22,27] would be a↵ected. Thus,
to predict the e↵ect of the scalar fields on the cosmology, we have to pay attention to the
formation of those solitons.

Properties of the topological solitons or Q-balls are understood based on conserved
quantities. In the case of topological solitons, topological numbers account for their sta-
bilities, and in the case of Q-balls, U(1) global charge does. However, in the case of I-balls,
their properties are not yet analytically understood well since it is di�cult to define a con-
served quantity for them. Thus, to study the I-balls, non-linear numerical simulations
such as lattice simulations are required. In this thesis, we focus on these non-topological
solitons, I-balls.

The I-balls are spatially localized objects, which consist of a real scalar field. Inside
the I-balls, the scalar field is periodically oscillating, and the period is approximately
given by the inverse of the mass of the field. By numerical simulations, it is known that
the formation of I-balls takes place for a specific shape of potentials that are flatter than
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the quadratic one. When the scalar field is oscillating with small fluctuations, I-balls are
formed through rapid growth of fluctuations of the scalar field by parametric resonance or
other non-perturbative e↵ects [28, 29]. Numerical simulations also have revealed that in
some potentials I-balls emit scalar waves from their surface, but the lifetime of I-balls is
significantly larger than the period of oscillations. Thus, if I-balls are formed in the early
Universe, they might survive for cosmological time scales, and then a↵ect cosmological
scenarios.

Scalar fields with the flatter potentials would appear in various situations in the early
Universe. From observations of cosmic microwave background (CMB) such as Planck [30],
it is suggested that the shape of the inflaton potential would be flatter. The flatter
potentials also appear in the theories of scalar fields whose potentials have logarithmic
forms by the thermal or quantum corrections (e.g. thermal log potential [31]). In this
thesis, we investigate the formation of I-balls for two cases, one is a specific model of
inflation, R2 inflation [5, 32], and the other is the logarithmic potential motivated by the
thermal or quantum corrections.

A distinctive feature of the R2 inflation is that the dynamics of the inflaton is deter-
mined by only one mass parameter. This mass parameter determines the amplitude of
fluctuations of the inflaton during inflation, and the decay rate of the inflaton into other
particles. Thus, by evaluating the decay rate precisely, we can give predictions for CMB
uniquely. In [33–35], the decay rate is evaluated in perturbative ways, and the predictions
of the spectral index and tensor-to-scalar ratio are given by ns ' 0.963 and r ' 0.004,
which can be tested by future observations of CMB. However, the formation of I-balls
might change this predictions since their formation would change the decay process of the
inflaton and hence the decay rate. The potential of the R2 inflation is flatter than the
quadratic one for the field value larger than the Planck mass, and inflation takes place in
that region. Thus, to validate the decay rate of the inflaton and test the R2 inflation by
the future observations of CMB, we study whether the inflaton of the R2 inflation forms
I-balls.

After inflation, the inflaton decays into other particles, and through subsequent decays
and scatterings they make a thermal bath in the Universe. Then as the temperature
of the Universe drops to a few MeV, BBN [36] begins. During this epoch, scalar fields
interacting with the thermal bath would receive corrections for their potentials. Quantum
corrections would also alter their potentials. If these corrections for a scalar potential
is significant, the field would oscillate along the corrected potential whose form is often
logarithmic. Since this logarithmic potential is flatter than the quadratic one, the field
might be form I-balls, and their decay dynamics would be changed. Thus, motivated by
the thermal or logarithmic corrections, in this thesis we study the formation of I-balls
for the logarithmic potential. To study the formation, we use a non-linear numerical
simulation, lattice simulation.

The logarithmic potential is also important to understand the properties of I-balls. In
previously known cases, the formation of I-balls are confirmed for polynomial potentials,
and it takes place when the quadratic terms dominate the potential. Since the logarithmic
potential is not written with finite polynomial series, the formation of I-balls for the
potential is nontrivial.

As mentioned, properties of I-balls are not yet analytically understood well. Thus,
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numerical simulations are required to verify the properties such as the formation process
or lifetime of them. If we can clarify what makes I-balls stable analytically, we could un-
derstand the dynamics better. In the case of other solitons such as the topological defects
or Q-balls, their stabilities are accounted for by conserved quantities, topological number
or U(1) global charge. As for I-balls, we also expect a conserved quantity accounting for
the stability of I-balls. In this thesis, we consider adiabatic charge as a conserved quantity.

In [26], it was conjectured that the stability of I-balls is due to conservation of the
adiabatic charge. The adiabatic charge comes from the adiabatic invariant which is known
in a classical mechanical system [37, 38] and can be extended to a scalar field theory. If
the adiabatic charge is conserved for an oscillating field, we can consider the lowest energy
state of the field for a fixed value of the charge. The authors of [26] showed that the
configuration of the scalar field for the lowest energy state is a localized one if the potential
is flatter than the quadratic one. Thus, by the adiabatic charge, we can understand the
heuristic condition for the potentials to allow the formation of I-balls. In this thesis, we
proved that the adiabatic charge is really conserved for a scalar field theory with specific
potential. Further we showed that the potential is uniquely determined to the quadratic
one with a logarithmic term V = (m2/2)�2

⇥

1�K ln
�

�2/2M2

�⇤

. For this potential, the
radius of the I-ball is determined by the dimension less parameter K and mass of the field
m. If we vary K slowly, the I-ball deforms, while the adiabatic charge is conserved. In this
thesis, we have investigated whether the deformation follows the profile estimated from
the adiabatic charge performing lattice simulations.

This thesis is organized as follows. In chapter 2, we briefly review inflation. Next,
in chapter 3, we briefly review I-balls. There we give the proof of the conservation of
the adiabatic charge. In chapter 4, we investigate the formation of I-balls in the R2

inflation. Next, in chapter 5, we move to the investigation of the formation of I-balls for
the logarithmic potential. To confirm its formation, we perform lattice simulations. In
chapter 6, we study the relation between I-balls and the adiabatic charge. To verify the
relation, we perform lattice simulations. Finally in chapter 7, we conclude this thesis.

In this thesis, we work with the metric signature (+,�,�,�), R↵
µ�⌫ = @��↵µ⌫ + · · ·

and Rµ⌫ = R↵
µ↵⌫ for convention. We adopt the natural units in which ~ = c = kB = 1,

and we use the reduced Planck mass, Mp ⌘ 1/
p
8⇡G ' 2.4⇥ 1018GeV
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Chapter 2

Review of Inflation

The standard cosmology is based on the Big Bang model. In the model, the Universe
stars out from a hot and dense initial state, and subsequently it expands and cools [36].
In the early high energy state, elementary particles are produced, and the abundances
of light elements such as 4He are explained. At the same time, this model predicts that
the Universe is filled with black body radiation, which is confirmed by the discovery of
CMB by Penzias and Wilson [39]. Thus, the Big Bang model explains our Universe in
many ways. However, there remains several problems to be solved such as the horizon and
flatness problems, and, if we assume the GUT theory, the monopole problem. To solve
these problems, we need some theory beyond the standard Big Bang model.

To solve the cosmological problems in the standard cosmology, the theory of inflation
was invented [3–7]. This theory is based on assumptions that the potential energy (vacuum
energy) of some scalar field dominates the Universe. The scalar field is called inflaton. If
the domination is established, an accelerated expansion of the Universe, which is called
inflation, starts, and then by the expansion, the cosmological problems are solved.

As inflation is achieved with a high energy density, which could be as high as GUT
scale, quantum fluctuations of the inflaton are excited copiously. Then, by the accelerated
expansion of the Universe, the momenta of excited fluctuations are stretched to cosmolog-
ical scales. After su�cient expansion of the Universe, inflation ends, and then the inflaton
decays into elementary particles. By the decay of the inflaton, the fluctuations of the
inflaton are transferred to relativistic particles, which consist of elementary particles such
as photons and baryons. As the energy density of the fluids is so high, the photons interact
with the baryons strongly, but as the Universe cools, the interaction becomes ine�cient,
and the photons decouple from the fluids. After the decoupling, the photons propagate
freely through the Universe. These freely propagating photons become CMB. Thus, by
measuring CMB, we can test inflation. COBE [40] for the first time observed the temper-
ature anisotropies of CMB with �T/T ' 10�5 whose spectrum is almost scale invariant.
This nearly scale invariant spectrum is consistent with the predictions of inflation. In
fact, the theory predicts a slight scale dependence. The scale dependence is measured by
more precise observations such as WMAP [41] and Planck [30], which strongly suggests
that inflation really occurs in the early Universe. As the scale dependence of the spec-
trum depends on the shape of the inflaton potential, by the measurements, we can obtain
constraints on the inflaton potential. Indeed it is revealed that the shape of the potential
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would be a flatter one than the quadratic potential.
In addition to fluctuations of the inflaton, there could also occur the excitation of

gravitational waves, which is imprinted on CMB as tensor fluctuations. A distinctive
feature of the gravitational waves is that their amplitude mainly depends on the energy
scale of inflation, i.e., absolute value of the vacuum energy. Thus, if we can detect the
gravitational waves or measure the tensor fluctuations of CMB caused by the gravitational
waves, we can determine the absolute value of the potential, which will strongly support
inflation.

As mentioned, the inflaton decays into other elementary particles after inflation [32,42,
43]. When the decay rate of the inflaton becomes comparable with the Hubble expansion
rate, the decay of the inflaton becomes e�cient, and then the decay products dominate
the Universe. Further decays and scatterings of the decay products produce a thermal
bath. We call this epoch reheating. After the completion of reheating, the temperature
of the thermal bath drops by the cosmic expansion. As the temperature drops to a few
MeV, BBN proceeds.

In this chapter, we first briefly describe the standard cosmology, and then next review
inflation. After reviewing the reheating process, we review a specific inflation model; R2

inflation [5, 32]. This part is following the reviews and book [44–47].

2.1 Standard cosmology

First, we briefly describe the standard cosmology. In the standard Big Bang cosmology,
the cosmological principle is assumed that the Universe is homogeneous and isotropic on
averaging over large volumes. Based on this assumption, the metric of space-time is given
by Friedmann-Robertson-Walker (FRW) form,

ds2 = gµ⌫dx
µdx⌫ = dt2 � a2



dr2

1�Kcr2
+ r2(d✓2 + sin2 ✓d�2)

�

. (2.1.1)

Here, t is the cosmic time, a is the scale factor and Kc is the spatial curvature. In this
section, we neglect fluctuations of the metric. Furthermore, we assume that the action of
the gravity and matter contents are given by the Einstein-Hilbert action,

S =

Z

d4x
p
�g

"

M2

p

2
(R+ 2⇤c) + L

matter

#

. (2.1.2)

Here, g is the determinant of the metric, ⇤c is the cosmological constant, L
matter

is the
Lagrangian of matter contents and R is the Ricci scalar. By taking variation of the action
with respect to the metric, we obtain the equation of motion for space-time, which is called
Einstein equation,

Rµ⌫ �
1

2
gµ⌫R� ⇤cgµ⌫ =

1

M2

p

Tµ⌫ . (2.1.3)

Here Mp is the reduced Planck mass M2

p ⌘ 1/(8⇡G), and Tµ⌫ is the energy momentum
tensor given by

Tµ⌫ =
2p
�9



�(
p�gL

matter

)

�gµ⌫
� @

@x↵
�(
p�gL

matter

)

�gµ⌫,↵

�

. (2.1.4)
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From the Einstein equation, we can see that the geometry of the Universe is determined
by the particle contents.

As we have assumed that the Universe is homogeneous and isotropic, the energy mo-
ment tensor is given by the form of a perfect fluid,

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ , (2.1.5)

where u⌫ is the 4-velocity normalized as uµu
µ = 1, ⇢ is the energy density and P is the

pressure. Substituting this form and FRW metric into the Einstein equation, we obtain
the Friedmann equation,

H2 =
⇢

3M2

p

� Kc

a2
, (2.1.6)

and Raychaudhuri equation,
ä

a
= �⇢+ 3P

6M2

p

, (2.1.7)

where the over dot means the derivative with respect to t. We have defined the Hubble
parameter by H ⌘ ȧ/a, which gives the expansion rate of the Universe. Combining the
above two equations, we obtain the continuity equation of the fluid,

⇢̇+ 3H(⇢+ P ) = 0. (2.1.8)

From the Friedmann equation, we can see that the expansion rate of the Universe is
determined by the energy density of the fluid. From the Raychaudhuri equation, we
can see that the expansion is accelerated or decelerated depending on the equation of
state !s = P/⇢. In the case of !s < �1/3, the expansion is accelerated: ä > 0. If !s is
time independent, we can solve the continuity equation and obtain

⇢ / a�3(1+!s). (2.1.9)

Thus, we can see that the dilution rate of the energy density by the Hubble expansion is
determined by the equation of state of the fluid.

Here let us consider some particles whose distribution function is given by the Bose-
Einstein one or the Fermi-Dirac one,

f(~k) =
1

exp [(!k � µc)/T ]⌥ 1
, (2.1.10)

where ~k is the momentum of particles, µc is the chemical potential and !k is the energy

of the particle given by !k =
q

|~k|2 +m2 with m being the mass of the particle. For this
distribution, the number density of the particle n, energy density ⇢ and pressure P are
given by

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

n = g⇤
Z

d3k

(2⇡)3
f(~k),

⇢ = g⇤
Z

d3k

(2⇡)3
!kf(~k),

P = g⇤
Z

d3k

(2⇡)3

~k2

3!k
f(~k),

(2.1.11)
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where g⇤ is the degree of freedom of the particle. We calculate the above equations in two
limits of the temperature: relativistic limit T � m and non-relativistic limit T ⌧ m. In
the case of the relativistic limit, the equations are reduced to

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

n
r

= g⇤
⇣(3)

⇡2
T 3 ⇥

(

1 boson

3/4 fermion
,

⇢
r

= g⇤
⇡2

30
T 4 ⇥

(

1 boson

7/8 fermion
,

P
r

=
1

3
⇢.

(2.1.12)

On the other hand, in case of the non-relativistic limit, they are reduced to
8

>

>

>

>

>

<

>

>

>

>

>

:

n
nr

= g⇤
✓

mT

2⇡

◆

3/2

exp

✓

�m� µc

T

◆

,

⇢
nr

= mn+
3

2
nT,

P
nr

= nT.

(2.1.13)

From eqs. (2.1.12) and (2.1.13), we can see that, for relativistic particles, the equation
of state becomes !s = 1/3 and for non-relativistic particles it becomes !s ' 0. Hence,
the energy density of relativistic particles dilutes as ⇢

r

/ a�4 and that of non-relativistic
particles as ⇢

nr

/ a�3. From the Raychaudhuri equation, we can see that under the
domination of relativistic or non-relativistic particles, the expansion of the Universe is
decelerated.

Here we briefly explain the problems in the standard Big Bang model. Let us first
define the critical energy density by the Hubble parameter as

⇢c ⌘ 3M2

pH
2, (2.1.14)

and we define a density parameter ⌦ by the ratio of the energy density to ⇢c,

⌦ ⌘ ⇢

3M2

pH
2

=
⇢

⇢c
. (2.1.15)

Using ⌦ and H, the Friedmann equation is written as

⌦� 1 =
K

a2H2

. (2.1.16)

Since the energy density consists of relativistic particles, non-relativistic particles, and
dark energy, ⌦ is written as ⌦ = ⌦

r

+ ⌦
nr

+ ⌦DE where ⌦
r

= ⇢
r

/⇢c, ⌦nr

= ⇢
nr

/⇢c and
⌦
DE

= ⇢
DE

/⇢c. Then, we rewrite the Friedmann equation as

⌦r + ⌦nr

+ ⌦DE + ⌦Kc = 1, (2.1.17)

where we have defined ⌦Kc by

⌦Kc ⌘ � Kc

a2H2

. (2.1.18)
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By the observation of CMB, it is confirmed that the present value of |⌦Kc | is smaller than
unity. From eq. (2.1.18), when the cosmic expansion is decelerated, |⌦Kc | in the early
Universe is much smaller than the present value. Thus, the density parameter ⌦ should
be extremely close to unity in the past such as |⌦ � 1| < O(10�16) at BBN [47]. This is
called flatness problem.

There exists other problems for the decelerated expansion of the Universe. Due to the
deceleration, causally connected regions at the last scattering surface of CMB are smaller
than today’s Hubble radius, which corresponds to an angle of order 1�. However the
observations of CMB show that temperature fluctuations are order �T/T ' 10�5 in all
directions. This is called horizon problem. Furthermore, if we assume the GUT, symmetry
breaking of a gauge group in the early Universe leads to production of monopoles. In that
case, about one monopole would be produced within a causally related region at the
symmetry breaking. The number density of monopoles produced at that time would be
estimated as n

mon

' 1/[(1/H
GUT

)3] ' T 6

GUT

/M3

p . Since the monopoles are diluted as
like non-relativistic particles, its ratio to the entropy is conserved up to now as n

mon

/s '
(T

GUT

/Mp)3 ' 10�6(1016GeV/Mp)3. This ratio is much larger than the baryon to entropy
ratio, resulting in ⌦

now

� 1. This is called monopole problem.
In the standard cosmology, it is di�cult to solve the above cosmological problems,

however, if there occurs an accelerated expansion in the very early Universe (inflation),
such problems can be solved. By inflation, ⌦Kc and monopoles are diluted away, and
then the flatness and monopole problems are solved. By inflation, causally un-connected
regions at present are connected in the early Universe, and then the horizon problem is
solved. From the Raychaudhuri equation, we can see that inflation is achieved when an
energy component with a negative equation of state: !s < �1/3 dominates the Universe.
This negative !s could be achieved by some scalar filed, in other words, inflaton. We
explain this inflation theory in the next section.

2.2 Inflation

Let us consider a scalar field � with a Lagrangian:

L =
1

2
@µ�@

µ�� V (�), (2.2.1)

where V (�) is the potential of �. Inflation is achieved if the potential energy dominates
the Universe for a su�ciently long time, which is explained as following.

The energy momentum tensor of � is given by

Tµ⌫ = @µ�@⌫�� gµ⌫L. (2.2.2)

In this section, we assume the FRW metric and neglect fluctuations of the field and metric.
For the homogeneous field, the energy density and pressure are given by

8

>

<

>

:

⇢ =
1

2
�̇2 + V (�),

P =
1

2
�̇2 � V (�).

(2.2.3)
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Thus, the equation of sate is given by

!s =
1

2

�̇2 � V (�)
1

2

�̇2 + V (�)
. (2.2.4)

From the above equation, we can see that, if the potential energy dominates over the
kinetic energy, the equation of state is approximately given by !s ' �1. As we can
see from the Raychaudhuri equation (2.1.7), the accelerated expansion is achieved for
!s . �1/3. Thus, by the domination of the potential energy with !s ' �1, inflation is
achieved.

Let us define e-folding number as

N
e

⌘ ln
ae
a

=

Z tf

tp

Hdt, (2.2.5)

where te and ae are the cosmic time and the scale factor when inflation ends. Here tp is the
time when the length scale corresponding to the present Hubble radius leaves he horizon
⇠ H�1 during inflation. By using N

e

, we can discuss how much the Universe expands
during the inflation from t = tp to te. The exact value of Ne depends on the energy scale
of inflation and cosmological scenario after inflation. Conversely, predictions of inflation
for observations depend on N

e

as explained later. In this section, we assume typically
N

e

' 55.
Next we briefly explain the dynamics of inflaton during inflation, and define several

parameters, which are useful for the discussion of inflation. The equation of motion for �
is given by

�̈+ 3H�̇+
@V

@�
= 0. (2.2.6)

During inflation, the Universe is dominated by the inflaton. Thus, the Hubble parameter
is determined by the energy density of the inflaton:

H2 =
1

3M2

p

✓

1

2
�̇2 + V (�)

◆

. (2.2.7)

The domination of the potential energy over the kinetic energy V � �̇2 should continue
over cosmological times & N

e

/H. This long domination of the potential is achieved when
the inflaton slowly rolls down along the potential. In the slow-roll regime, the friction
term in the equation of motion dominates over the acceleration term:

|�̈| ⌧ 3H|�̇|. (2.2.8)

Thus, by neglecting �̈, we can approximate the equation of motion as

3H�̇ ' �@V
@�

. (2.2.9)

The dynamics of the inflaton during inflation is approximately given by the above equation.
We have mentioned two conditions for inflation: �̇2/V ⌧ 1 and |�̈|/(3H�̇) ⌧ 1, which we
call as slow-roll conditions.

9



For later discussions, we introduce several parameters. Using eq. (2.2.9), �̇2/V ⌧ 1 is
reduced to

✏V ⌘
M2

p

2

✓

V 0

V

◆

2

⌧ 1, (2.2.10)

where the prime means the derivative with respect to �. We call this parameter ✏V as
slow-roll parameter. We can define the other slow-roll parameter:

⌘V ⌘ M2

p

V 00

V
, (2.2.11)

which should be much smaller than unity (⌘v ⌧ 1) from eq. (2.2.8). For later use, we
define another parameter:

⇠2V ⌘ M2

p

V 0V 000

V
, (2.2.12)

which is also required to be much smaller than unity for inflation. The accelerated expan-
sion ä > 0 is identical to the condition that the evolution rate of the Hubble parameter
during one Hubble time is smaller than unity,

ä > 0 () ✏H ⌘ |Ḣ|
H2

< 1. (2.2.13)

With the time derivative of eq. (2.2.7) and the equation of motion for �, Ḣ is written as
Ḣ = ��̇2/(2M2

p ). From this relation and eq. (2.2.9), ✏H is reduced to ✏V as

✏H =
�̇2/(2M2

p )

H2

' 1

2M2

p

V 02

9H4

'
M2

p

2

✓

V 0

V

◆

2

= ✏V , (2.2.14)

where we have approximated the Hubble parameter asH2 ' V/(3M2

p ) in the third equality.
As we have mentioned, for the achievement of inflation, the slow-roll parameters are

required to be smaller than unity. From the definition of the parameters (2.2.10) and
(2.2.11), the condition implies that the slope and curvature of the potential should be
su�ciently small for the enough duration of inflation. Thus, we expect that the inflaton
potential would be flat.

2.3 Cosmological perturbation

Next, we consider fluctuations of the inflaton and metric. The inflaton acquires quantum
fluctuations during inflation and, as the inflaton is coupled with the metric by the Einstein
equation, they are related to the fluctuations of the metric. After inflation, the fluctua-
tions give seeds of the large scale structures [48, 49]. The fluctuations are also imprinted
on the temperature anisotropies of CMB. Measuring the anisotropies, we can constrain
inflationary models [30].
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Here we treat fluctuations of the inflaton as well as the metric perturbations at linear
level. Let us divide � into its background �

0

and fluctuations �� as

�(t, ~x) = �
0

(t) + ��(t, ~x). (2.3.1)

We also consider perturbations for the FRW metric,

ds2 = (1 + 2Ag)dt
2 � 2a(@iBg � Sgi)dx

idt

+ a2 [(1� 2 g)�ij + 2@ijEg + @iFgj + @jFgi + hij ] . (2.3.2)

Here, Ag, Bg, g and Eg are scalar modes, Sgi and Fgi are vector modes, which are trans-
verse as @iSgi = @iFgi = 0, and hij is a tensor mode, which is traceless and transverse
as @ihij = hii = 0. The perturbations of � and metric are related through the Einstein
equation. If we consider a single field inflation model, the vector modes Sgi and Fgi damp
significantly compared with other modes. So, in this section, we mainly focus on the scalar
and tensor modes.

Gauge invariant variable

The perturbations are not invariant variables under coordinate transformations: xµ !
xµ + ⇠µ where

⇠µ = (�t, �ij@i�x+ �xi). (2.3.3)

Here, �t and �x are scalar transformations and �xi is a vector one. (Explicit transformation
law is given in Appendix A.) Thus, in order to remove the gauge freedoms, we have to fix
the gauge or construct gauge invariant variables. In the following, we show some gauge
invariant variables.

First, we show two gauge invariant variables constructed only by the perturbations of
the metric. In the shear zero gauge frame Bg = 0 and Eg = 0, Ag and  g become gauge
invariant variables:

�g ⌘ Ag|Eg=Bg=0

= Ag �
d

dt

h

a2(Ėg �Bg/a)
i

, (2.3.4)

 g ⌘  g|Eg=Bg=0

=  g + a2H
⇣

Ėg �Bg/a
⌘

. (2.3.5)

These invariant variables �g and  g are called Bardeen potentials. As the energy momen-
tum tensor is defined by the variation of the Einstein-Hilbert action with respect to the
metric, perturbations for matter contents are also gauge dependent variables. Under the
gauge transformation, the perturbations for the energy density and pressure transform as

�⇢! �⇢�⇢̇ �t and �P ! �P�Ṗ �t. From these transformations, the pressure perturbation
at the uniform density gauge (�⇢ = 0) is gauge invariant:

�P
nad

⌘ �P � Ṗ

⇢̇
�⇢. (2.3.6)

If a single inflaton achieves inflation, the perturbation for the pressure is proportional to

that for the energy density (�P = (Ṗ /⇢̇)�⇢), and the perturbation is adiabatic. We show
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another gauge invariant variable. The (0, i) component of the energy momentum tensor
�T

0i = @i�q transforms as
�q ! �q + (⇢̄+ P̄ )�t. (2.3.7)

Thus, the perturbation for the energy density at the comoving gauge (�q = 0) is gauge
invariant:

�⇢c ⌘ �⇢� 3H�q. (2.3.8)

Combinations of the metric perturbations and matter perturbations can be also gauge
invariant variables. The curvature perturbation on the uniform density gauge is gauge
invariant:

� ⇣ ⌘  g +
H
¯̇⇢
�⇢. (2.3.9)

The curvature perturbation on the comoving gauge is also gauge invariant:

Rc ⌘  g �
H

⇢̄+ P̄
�q. (2.3.10)

These two curvature perturbations are related by �⇢c as

� ⇣ = Rc +
H
˙̄⇢
�⇢c. (2.3.11)

We note that the tensor perturbation hµ⌫ is also gauge invariant.
Here let us construct a useful variable with the perturbations of �. The perturbation

of the scalar field (2.3.1) transforms as �� ! �� � �̇�t. Combining with the metric
perturbations, we can construct a gauge invariant variable. The perturbation of the field
in the flat gauge  g = 0 is a gauge invariant variable:

�� g ⌘ ��+
�̇

H
 g. (2.3.12)

This gauge invariant variable is called Sasaki-Mukanov variable [50–52]. This Sasaki-
Mukanov variable is related to the comoving curvature perturbation as

Rc ⌘
H

�̇
�� g . (2.3.13)

Evolution of perturbations

We have shown some gauge invariant variables. Next, we consider their evolutions. The
evolutions of the perturbations are given by the Einstein equation,

�Gµ⌫ =
1

M2

p

�Tµ⌫ . (2.3.14)

Calculating the (0, 0) and (0, i) components, we obtain the following constraint equations:
8

>

>

>

<

>

>

>

:

3H
⇣

 ̇g +HAg

⌘

+
k2

a2

h

 g +H(a2Ėg � aBg)
i

= � �⇢

2M2

p

(0, 0),

 ̇g +HAg = � �q

2M2

p

(i, 0).

(2.3.15)
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Combining these two equations, we obtain the Poisson equation,

k2

a2
 g = �1

2

�⇢c
M2

p

, (2.3.16)

which is gauge invariant. Calculating the (i, j) components, we obtain two independent
equations as

8

>

>

>

<

>

>

>

:

 ̈g + 3H ̇g +HȦg + (3H2 + 2Ḣ)Ag =
1

2M2

p



�P � 2

3
k2�⇧

�

,

d

dt

⇣

Ėg �Bg/a
⌘

+ 3H
⇣

Ėg �Bg/a
⌘

+
 g �Ag

a2
=

�⇧

2M2

p

,

(2.3.17)

where �⇧ is the scalar mode of the anisotropic stress. The second equation can be rewritten
with the Bardeen potentials as

 g � �g =
1

M2

p

a2�⇧. (2.3.18)

From this relation, we can see that, in the absence of the anisotropic stress, the two
Bardeen potentials are identical,  g = �g.

From the conservation of the energy-momentum tensor, we obtain the equations of
motion for �⇢ and �q as

8

>

<

>

:

�⇢̇+ 3H(�⇢+ �P ) =
k2

a2
�q + (⇢̄+ P̄ )

h

3 ̇g + k2
⇣

Ėg �Bg/a
⌘i

,

�q̇ + 3H�q = ��P +
2

3
k2�⇧� (⇢̄+ P̄ )Ag.

(2.3.19)

We can rewrite the equation for �⇢ using gauge invariant variables, and then obtain the
equation of motion for the uniform density curvature perturbation,

⇣̇ = �H
�P

nad

⇢̄+ P̄
� ⌃. (2.3.20)

Here ⌃ is defined by

⌃

H
⌘ �1

3

✓

k

aH2

◆

⇣ � 1

3

✓

k

aH

◆

2

 g

"

1� 2

9

⇢̄

⇢̄+ P̄

✓

k

aH

◆

2

#

. (2.3.21)

For the single field inflation, the non-adiabatic perturbation �P
and

vanishes. In that case,
the time derivative of the curvature perturbation on the super horizon scale k/(aH) ⌧ 1
becomes zero ⇣̇ ' 0 until the scale reenters in the horizon k/(aH) & 1.

The comoving curvature perturbation is related to the uniform density curvature per-
turbation as eq. (2.3.11). Thus, using the Poisson equation (2.3.16), we can rewrite the
curvature perturbation as

Rc = �⇣ � 2

9

⇢̄

P̄

✓

k

aH

◆

2

 g. (2.3.22)
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We can see that on the super horizon scale, the two curvature perturbations are identical
except for the sign: Rc ' �⇣ for k/aH ⌧ 1.

As for the tensor mode, the equation of motion is given by

ḧij + 3Hḣij +
k2

a2
hij = 2

�⇧T
ij

M2

p

, (2.3.23)

where �⇧T
ij is the tensor mode of perturbations of the fluid. Thus, in the absence of �⇧T

ij ,
the evolution of hij is identical to that of a massless scalar field in the unperturbed FRW.

Here we again make a remark on vector perturbations. In absence of the anisotropic
stress, the vector modes of the metric damp out quickly. If inflation is achieved by a single
scalar field, the anisotropic stress is not produced. Thus, we neglect the vector modes.

Perturbations from inflaton

We calculate perturbations from a single field inflation model. For the single inflaton, the
perturbations of the energy density, pressure and momentum are given by

8

>

>

>

<

>

>

>

:

�⇢ = �̇
0

⇣

��̇� �̇
0

Ag

⌘

+ V 0��,

�P = �̇
0

⇣

��̇� �̇
0

Ag

⌘

� V 0��,

�q = ��̇
0

��.

(2.3.24)

From these perturbations, the comoving density perturbation is written as

�⇢c = �̇
0

(��̇� �̇
0

Ag � �̈
0

��). (2.3.25)

Substituting these forms into the equation of motion for �⇢ (2.3.19), we obtain the equation
of motion for �� as

��̈+ 3H��̇+
k2

a2
��+ V 00�� = �2V 0Ag + �̇

0



Ȧg + 3 ̇g +
k2

a2

⇣

a2Ėg � aBg

⌘

�

, (2.3.26)

where we have used the equation of motion for �
0

and continuity equation.
Let us take the flat gauge and calculate the evolution of perturbations. In the flat

gauge  g = 0, Ag and (Ėg �Bg/a) become

Ag| g=0

= � �q

2M2

pH

�

�

�

�

 g=0

=
�̇
0

2M2

pH
�� g , (2.3.27)

and

k2

a2
a2
✓

Ėg �
Bg

a

◆

�

�

�

�

 g=0

=
k2

a2
 g

H
= � �⇢c

2M2

pH

= �
�̇
0

��̇ g � �̈
0

�� g � �̇2
0

Ag| g=0

2M2

pH
, (2.3.28)
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where we have used the momentum constraint of the Einstein equation and the poisson
equation. Substituting these relations into the equation of motion for ��, we can reduce
the equation to

��̈ g + 3H��̇ g +

"

k2

a2
+ V 00 � 1

M2

p

a�3

d

dt

 

a3�̇2
0

H

!#

�� g = 0. (2.3.29)

This equation is simplified by using of variables vk = a�� g , z = a�̇
0

/H and d⌧ = a�1dt
to

d2

d⌧2
vk +

✓

k2 � @2⌧ z

z

◆

vk = 0. (2.3.30)

This equation is called Sasaki-Mukanov equation. Here @2⌧ z/z is written using slow-roll
parameters [53, 54] as

@2⌧ z

z
= (aH)2

⇥

2 + 5✏H � 3⌘H + 9✏2H � 7✏H⌘H + ⌘2H + ⇠2H
⇤

, (2.3.31)

where

⌘H ⌘ 2✏H � ✏̇H
2H✏H

, ⇠2H ⌘
✓

2✏H � ⌘̇H
H⌘H

◆

⌘H . (2.3.32)

If the slow-roll approximation is satisfied, these parameters are approximately identical to
⌘V and ⇠2V respectively at leading order. During the slow-roll regime, we can treat ✏H , ⌘H
and ⇠2H as time independent variables. Thus, the conformal time and the e↵ective mass
@2⌧ z/z are given by

⌧ ' � 1

(1� ✏H)aH
, (2.3.33)

and
@2⌧ z

z
=
⌫2R � 1/4

⌧2
, (2.3.34)

where

⌫R ' 3

2
+ 3✏H � ⌘H . (2.3.35)

With these approximations, the solution of the Sasaki-Mukanov equation is given by Han-
kel functions as

vk '
p

⇡|⌧ |
2

ei(1+2⌫R)⇡/4
h

c
1

H(1)

⌫R
(k|⌧ |) + c

2

H(2)

⌫R
(k|⌧ |)

i

. (2.3.36)

Here c
1

and c
2

are arbitrary constants. We assume that the fluctuations within the horizon
are in the vacuum state and normalize the mode function as

vk(⌧) =
1p
2k

e�ik⌧ (2.3.37)

for �k⌧ � 1. This assumption is identical to the choice of parameters as c
1

= 1 and
c
2

= 0. Thus, for the normalized mode function, the power spectrum on the super horizon
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scale is given by

P�� g ⌘ k3

2⇡2
|�� g |2

=

✓

H

2⇡

◆

2

✓

k

aH

◆

3�2⌫R

(1� ✏H)2⌫R�122⌫R�3



�(⌫R)

�(3/2)

�

2

, (2.3.38)

where we have used the asymptotic form of the Hankel function:

H(1)

⌫ (k|⌧ |) ! �(i/⇡)�(⌫)(k|⌧ |/2)�⌫ (2.3.39)

for k/(aH) ! 0. Using the relation between the comoving curvature perturbation Rc

and the Sasaki-Mukanov variable (2.3.13), we obtain the power spectrum of the curvature
perturbation as

PRc ⌘
k3

2⇡2
|Rc|2 =

✓

H

�̇
0

◆

2

P�� g

=

✓

H2

2⇡�̇
0

◆

2

✓

k

aH

◆

3�2⌫R

, (2.3.40)

where we have assumed that the slow-roll parameters are small, ✏H ⌧ 1 and ⌘H ⌧ 1.
In the super horizon scales, the amplitude of the curvature perturbations does not

change. Thus, the initial conditions of temperature anisotropies are determined by the
value of the curvature perturbations at the exit of the horizon. Therefore, the measurement
of temperature anisotropies gives constraints on the curvature perturbations at k = aH,

PRc |k=aH =

✓

H2

2⇡
�̇
0

◆

2

' 1

12⇡2
V 3

M6

pV
02 ' 1

24⇡2
V

M4

p ✏
. (2.3.41)

By the observation of CMB, we obtain PRc ' 2 ⇥ 10�9 at the pivot scale (k�1 =
0.002Mpc�1) [30]. The scale dependence of the curvature perturbations is characterized
by the spectrum index and running as

ns � 1 ⌘ d lnPRc

d ln k

�

�

�

�

k=aH

' 1� 6✏H + 2⌘H ' 1� 6✏V + 2⌘V , (2.3.42)

↵Rc ⌘ dns

d ln k

�

�

�

�

k=aH

' 16✏H � 24✏2H � 2⇠2H ' 16✏V � 24✏2V � 2⇠2V . (2.3.43)

We can also calculate the power spectrum of the tensor mode which is given by

PT ' 8

M2

p

✓

H

2⇡

◆

2

✓

k

aH

◆�2✏H

22✏H


(1� ✏H)
�(⌫T )

�(3/2)

�

2

, (2.3.44)

where

⌫T =
3

2
+ ✏H . (2.3.45)
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At the horizon exit, k ' aH, the power spectrum of the tensor mode is determined as

PT |k=aH ' 8

M2

p

✓

H

2⇡

◆

2

. (2.3.46)

The spectral index and running of the tensor mode are given by

nT ' �✏T , (2.3.47)

↵T ' �4✏2H + 8✏H⌘H . (2.3.48)

The ratio of the power spectrum of the curvature perturbations to that of the tensor mode
is given by

r ⌘ PT

PRc

' 16✏. (2.3.49)

Substituting the value of the curvature perturbation PRc ' 2⇥10�9, we obtain the relation
between the energy scale of inflation V and tensor to scalar ratio r as

V 1/4

1016GeV
' 3

⇣ r

0.1

⌘

1/4
✓

PRc

2⇥ 10�9

◆

1/4

. (2.3.50)

Thus, the measurement of r determines the energy scale of inflation.

Constraints from observations

As we have explained, the quantum fluctuations of the inflaton field induce the curvature
perturbations, which are conserved in the super horizon scales. After the perturbations
re-enter the horizon, they give the seeds of temperature anisotropies. In photon-baryon
relativistic fluids, the anisotropies evolve following the Boltzmann equation and after the
recombination, photons start to freely propagate in the Universe. Thus, by measuring
these photons, we can constrain inflation models.

Here we show the constraints on the spectral index ns and tensor to scalar ratio r given
by Planck satellite in fig. 2.1 [30]. On the same panel, predictions of ns and r for each
inflation model are plotted. For example, the simple quadratic inflation model (V / �2)
is on the edge of the 2� excluded region, whose width on the (ns, r) plane is due to the
ambiguity of the e-folding number N

e

. As like the simple model, other inflation models
also have some ambiguities for the predictions on the (ns, r) plane. In the near future,
by more precise managements of the tensor mode of CMB, the constraint on r would be
improved. Thus, in order to test inflation models, we have to give predictions with low
ambiguities.

2.4 Reheating

The vacuum energy of the inflaton drives inflation in the early Universe and solves the
cosmological problems, while at the same time the exponential expansion of space dilutes
the matter and radiation that existed before inflation, and the Universe becomes highly
non-equilibrium and very cold state.
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Figure 2.1: Marginalized joint 68% and 95% CL regions for ns and r from Planck alone
and in combination with its cross correlation with BICEP2/Keck Array and/or BAO data
compared with the theoretical predictions of selected inflationary models [30].

After inflation, the inflaton decays into other particles, and the energy stored in the
inflaton is transferred to them. At some time the inflaton decay is completed, and the
decayed particles dominate the Universe making a thermal equilibrium state. This process
is called reheating. Then, after the Universe cools down to a temperature of O(MeV), BBN
begins.

In many inflation models, it is considered that, after the end of inflation, the inflaton
coherently oscillates around the minimum of the potential. The coherent oscillation of
the inflaton can be treated as like particles with large occupation numbers stored in zero
mode. In this case, the decay of the inflaton is calculated in the perturbative way [42,43].

In addition to the perturbative decay, there occur other decay processes. The coherent
oscillation acts as like a classical external force on other fields, which have interactions
with the inflaton. This leads to an explosive decay of the inflaton in non-perturbative
ways such as the parametric resonance [28, 29]. This non-perturbative process is called
preheating.

In the non-perturbative decay, fluctuations of the fields are enhanced [28, 29]. After
fluctuations grow comparable with the background field, re-scattering with the zero mode
or with other modes starts, and the distribution of the energy density becomes highly
inhomogeneous. 1 It is known that, in some class of potentials, scalar fields fragment into
spherical objects such as Q-balls or I-balls. These objects are spatially localized stable
or quasi-stable objects. Through the formation of these objects, the decay rate of the
scalar field would be enhanced by the bose enhancement [27, 56] or would be suppressed

1 Fermionic fields are not e�ciently amplified for this mechanism due to the Pauli blocking [55].
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by the Pauli blocking [22]. Thus, in order to estimate the decay rate precisely, we have to
pay attention to the formation of these objects. We will explain these objects in the next
chapter. In this chapter, we briefly review the dynamics of the reheating and comment
about the preheating mainly following the reviews [45,46].

2.4.1 Perturbative decay

First, we review the perturbative decay of the inflaton. As a simple example, we suppose
that the inflaton � decays into a scalar field � and a fermion field  through interactions
given by

L 3 ⌫d���
2, hd� ̄ , (2.4.1)

where � is a constant with mass dimension one, and ⌫d and hd are dimensionless coupling
constants. For these interactions, the decay rates are calculated at tree-level as

�(�! ��) =
⌫2d�

2

8⇡m�

✓

1� 4m2
�

m2
�

◆

1/2

' ⌫2d�
2

8⇡m�
, (2.4.2)

�(�!   ̄) =
h2
dm�

8⇡

✓

1� 4m2
 

m2

◆

3/2

' h2
dm�

8⇡ , (2.4.3)

where m�,�, is the mass of �, � or  , and the latter approximate equations are valid
when the mass of the decay products is small. As the inflaton decays, its energy density
decreases. We treat the damping of the energy density by adding a dissipation term into
the equation of motion as

⇢̇� + (3H + �
tot

) ⇢� = 0, (2.4.4)

where �
tot

is the total decay rate of the inflaton:

�
tot

⌘ �(�! ��) + �(�!   ̄). (2.4.5)

Here we have assumed that the energy density of the inflaton is diluted as like non-
relativistic particles.

Just after the end of inflation, as the Hubble parameter H is larger than the decay
rate �

tot

, the dilution by the decay is negligible compared with that by the Hubble ex-
pansion. Thus, the decay products cannot be the dominant component of the Universe at
first. However, as the Hubble parameter decreases and becomes below the decay rate �

tot

(2.4.4), the energy density of the inflaton starts to decrease exponentially. Then, the
Universe is dominated by decay products soon after �

tot

' H. Here we assume that the
thermalization of decay products occurs instantaneously just after �

tot

= 3H. Under this
assumption, the Universe is dominated by relativistic particles in thermal equilibrium, and
their energy density is given by

⇢r =
⇡2

30
g⇤ T 4 = 3M2

pH
2. (2.4.6)

From this relation, we can estimate the temperature of relativistic particles at the com-
pletion of reheating, which is called reheating temperature:

TR ' 0.4

✓

100

g⇤

◆

1/4
p

�
tot

Mp. (2.4.7)
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Here we have assumed that the decay time is given by 3H = �
tot

.

2.4.2 Preheating

We have estimated the reheating temperature by the perturbative decay. Next, we consider
non-perturbative decay processes of the inflaton.

For the sake of discussion, let us consider a specific interaction of the inflaton with
another scalar field � as V

int

= (g2i /2)�
2�2 where gi is a coupling constant. Furthermore,

we assume that the inflaton potential is dominated by a quadratic term (m2

�/2)�
2 with

inflaton mass m�. In this case, the equations of motion for � and � are given by

�̈+ 3H�̇� 1

a2
r2�+m2�+ g2i �

2� = 0, (2.4.8)

�̈+ 3H�̇� 1

a2
r2�+ g2i �

2� = 0, (2.4.9)

where we have assumed that the mass of � is negligibly small compared with m�.
During reheating, the inflaton coherently oscillates. By the oscillation, the frequency

of � is modulated through the interaction term g2i �
2�2. In this case, the non-perturbative

decay of the inflaton could enhance fluctuations of � at particular scales. This dynamics
is investigated by numerical simulations such as [57] by performing lattice simulations.
One of the results is shown in fig. 2.2. From the figure, we can see that the rapid growth
of fluctuations of � at a particular scale k ' 10m�. Furthermore, we can see that as
the fluctuations grow, they start to re-scatter with other scales, and the spectrum of the
fluctuations broadens for higher momenta. This non-perturbative and non-linear process
is called preheating [28,29].

By the rapid growth of the fluctuations of the � field, the energy of the inflaton is
transferred into �. In many cases, after the su�cient growth, the coherent oscillation
of inflaton is a↵ected by backreactions, and the preheating terminates. Then, the decay
process of the inflaton is completed in perturbative ways. However, in some class of
potentials, enhanced fluctuations fragment into stable or quasi-stable objects. We consider
this case in the next chapter.

2.5 Inflation model

We have explained the dynamics of inflation, and how the cosmological perturbations
are produced in the inflationary Universe. Furthermore, we have explained the decay
process of the inflaton. In this section, we briefly review a specific inflation model, i.e., R2

inflation [5, 32].
The R2 inflation is one of the oldest inflation models, which was proposed by Starobin-

sky [5, 32] even before the cosmological problems were claimed to be solved. The unique
point of this inflation model is that we do not extend the matter contents in order to
achieve inflation. On the other hand, we extend the gravitational sector adding an extra
scalar freedom of the gravity. The extra scalar graviton achieves inflation, we call it infla-
ton. 2 By rescaling the metric, this scalar graviton behaves as if a scalar field minimally

2 More strictly, it is called scalaron, but in this thesis, we call simply inflaton.
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Figure 2.2: Evolution of the power spectrum of � [57]. Each line is plotted when the
inflaton � takes the maximal value. k is the momentum of the � field in unit of m�.

coupled to the Einstein gravity. We call this rescaled frame as the Einstein frame. In the
Einstein frame, the dynamics of the R2 inflation is similar to the ordinary slow-roll infla-
tion model. After su�cient exponential expansion, the inflaton starts to oscillate around
the minimum of the potential, and then decays into other particles [58, 59].

This inflation model is characterized by a single parameter M . Thus, the curvature
perturbations, spectrum index and tensor-to-scalar ratio are determined only by this one
parameter. As the origin of the inflaton for this inflation model is the scalar graviton, the
inflaton interacts with elementary particles of the standard model only through gravita-
tional interactions. Thus, the decay rate into the elementary particles is determined by
M . Therefore, the predictions for temperature anisotropies are determined uniquely. In
this section, we briefly review the dynamics of the R2 inflation and its perturbative decay.

Dynamics of inflation

The action of the R2 inflation is written as [5]

S =

Z

d4x
p
�g

"

M2

p

2
f(R) + L

matter

#

, (2.5.1)

where L
matter

is the Lagrangian of the standard model particles. Here f(R) is a function
of the Ricci scalar and is given by

f(R) = R+
1

6

R2

M2

, (2.5.2)
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where M is a constant with mass dimension one. Compared with the Einstein-Hilbert ac-
tion, the R2 inflation model is extended with respect to the gravity sector by the quadratic
term of the Ricci scalar. We can see that, by this additional quadratic Ricci scalar, the
scalar freedom of the gravity becomes dynamical:

R̈+ 3HṘ+M2R = 0, (2.5.3)

where we have neglected the matter contents and assumed the FRW Universe. In the case
H � M , the dynamical evolution of the Ricci scalar is approximately time independent,
and inflation is achieved. Rescaling the metric and re-defining the scalar freedom, we can
treat this inflation dynamics as like the ordinary inflation model. In the rescaled frame, the
scalar freedom behaves as a canonical scalar field with minimally coupled to the Einstein
gravity [60,61], and its fluctuations give the curvature perturbations [62]. These curvature
perturbations become the seeds of the matter fluctuations. We call this rescaled frame as
the Einstein frame, and in this thesis we consider the dynamics of the R2 inflation in the
Einstein frame.

For convenience of discussions, let us take a Legendre transformation with respect to
R as

8

<

:

' ⌘ @f

@R
,

U ⌘ 'R� f.
(2.5.4)

=)

8

>

<

>

:

' = 1 +
R

3M2

,

U =
3

2
M2 (�� 1)2 .

(2.5.5)

The Lagrangian of the gravity sector is reduced to

p
�gL

grav

=
p
�g

M2

p

2
['R� U ] . (2.5.6)

We conformally transform the metric by ⌦ as

g̃µ⌫ ⌘ ⌦2gµ⌫ . (2.5.7)

With appropriate choice of ⌦, we obtain the Einstein frame. For this rescaling, the deter-
minant of the metric and Ricci scalar are transformed as

8

>

<

>

:

p
�g = ⌦�4

p

�g̃,

R = ⌦2



R̃+ 3⇤̃ ln⌦2 +
3

2
g̃µ⌫ @̃µ ln⌦

2@̃⌫ ln⌦
2

�

,
(2.5.8)

where

⇤̃ =
1p
�g̃

@̃µ

⇣

p

�g̃ g̃µ⌫ @̃⌫

⌘

. (2.5.9)
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Here, the tilde means that the metric is g̃µ⌫ . Substituting these forms into the Lagrangian,
we obtain

p
�gL

grav

=
p

�g̃
n

�

⌦�2'
�

hM2

p

2
R̃+

1

2
g̃µ⌫ @̃µ

 

r

3

2
Mp ln⌦

2

!

@̃⌫

 

r

3

2
Mp ln⌦

2

!

+

p
6

2
⇤̃
 

r

3

2
Mp ln⌦

2

!

i

�
M2

p

2
⌦�4U

o

. (2.5.10)

Now we obtain the Einstein frame by taking

⌦2

E ⌘ '. (2.5.11)

In this frame, the action of the gravity sector is reduced to

S =

Z

d4
p
�gE

2

4

M2

p

2
RE +

1

2

 

@E,µ

r

3

2
Mp ln'

!

2

�
M2

p

2

U

'2

3

5 , (2.5.12)

where the subscript E means that the metric is gE,µ⌫ . Here we deleted the surface term:

Z

d4x
p
�gE

p
6

2
⇤E
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3

2
ln⌦E

!
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p
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p
�gEg

µ⌫
E @E,⌫Mp

r

3

2
ln⌦E

!

= 0. (2.5.13)

Let us redefine the dynamical variable by

� ⌘
r

3

2
Mp ln'. (2.5.14)

Then, the actions is reduced to

S =

Z

d4x
p
�gE

"

M2

p

2
RE +

1

2
(@E,µ�)

2 � 3

4
M2M2

p

⇣

1� e�
p

2/3�/Mp

⌘

2

#

. (2.5.15)

Thus, in the Einstein frame, the Lagrangian of the scalar freedom is written as

L
grav

=
p
�g

"

M2

p

2
R+

1

2
@µ�@µ�� V (�)

#

, (2.5.16)

where

V (�) =
3

4
M2M2

p

⇣

1� e�
p

2/3�/Mp

⌘

2

. (2.5.17)

Here for a while, we omit the index E. It is seen that the Lagrangian for � is identical to
that of a canonical scalar field minimally coupled to the Einstein gravity with the potential
(2.5.17). The potential is plotted in fig. 2.3. Since the potential is flat for � & Mp, � slowly
rolls down along the potential, and then inflation occurs. At � ' Mp, inflation ends and �
starts to oscillate. When the decay rate becomes comparable with the Hubble parameter,
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Figure 2.3: Inflaton potential of the R2 inflation (2.5.17).

� decays into the standard model particles e�ciently. After the completion of reheating,
� settles down to the vacuum value � = 0.

For this inflaton potential, we can calculate the cosmological perturbations as explained
in sec. 2.3. We can see in eqs. (2.5.1) and (2.5.2), that the action has only a single extra
parameter M . Thus, the dynamics of the R2 inflation is determined by M . First, let us
calculate the e-folding number under the slow-roll approximation,

Ne =

Z te

tp

Hdt '
Z �p

�e

V

M2

pV
0d�

=

p
3

2
p
2

1

Mp

Z �p

�e

d�
⇣

e
p

2/3�/Mp � 1
⌘

' 3

4
e
p

2/3�p/Mp , (2.5.18)

where tp is the time that the pivot scale exits the horizon, and te is the one that inflation
ends. Here we have assumed that the field value at the pivot scale is larger than the Planck
mass: �p > Mp. The field value at the end of inflation is estimated by the break down of
the slow-roll condition ✏V = 1 as �

e

' 0.94Mp. Using this and eq. (2.3.41), we can estimate
the power spectrum of the curvature perturbations at the pivot scale (k�1 ' 0.002M

pc

�1)
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By the observation of CMB, the amplitude is measured as P
Rc ' 2⇥ 10�9 [30]. Thus, the

mass parameter M is determined as

M ' 10�5
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Mp. (2.5.20)

Let us also calculate the values of the slow-roll parameters ✏V and ⌘V at the pivot scale,
8

>

>

<

>

>

:

✏V =
M2

p

2

✓

V 0

V

◆

2

' 4

3
e�2

p
2/3�p/Mp ' 3

4

1

N2

e

,

⌘V = M2

p

V 00

V
' �4

3
e�

p
2/3�p/Mp ' � 1

N
e

.

(2.5.21)

In sec. 2.3, we have explained that the spectral index ns and tensor to scalar ratio r are
written by the slow-roll parameters. Thus, for the R2 inflation, those are determined by
N

e

as

ns � 1 ' �6✏V + 2⌘V ' � 2

N
e

, (2.5.22)

r ' 16✏V ' 12

N2

e

. (2.5.23)

By estimating the e-folding number, we can predict these parameters theoretically.
The theoretical prediction of N

e

is related to the reheating temperature TR. Its relation
is obtained by comparing the present comoving horizon (a

0

H
0

)�1 to the comoving horizon
scale when the corresponding scale exits the horizon (apHp)

�1 during inflation:
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Here ⇢c is the present critical density ⇢c '
�

3.⇥ 10�3eV
�

4

0.672, T
0

is the present CMB
temperature T

0

' 2.7K, and g⇤ is the relativistic freedom at the reheating g⇤ ' 106.75.
Substituting these parameters and the energy scale of the inflation V (�e) ' (3/4)M2M2

p ,
we obtain the relation between the e-folding number and reheating temperature as

N
e

' 54 +
1

3
ln

TR

109GeV
. (2.5.25)

The reheating temperature is determined by the decay rate of the inflaton as explained in
sec. 2.4.
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Perturbative decay

Since the inflaton of the R2 inflation is the scalar graviton, it has gravitational interactions
with other particles. Thus, without supposing additional interactions, it decays into the
standard model particles [32, 58]. In order to define the Einstein frame, we have rescaled
the metric. By this rescaling, the metric of the matter sector is also modified. In the
Einstein frame, we can explicitly write down the interactions between the inflaton � and
other particles [33–35]. Here we review the decay process of the inflaton in the Einstein
frame, mainly following [34].

The Lagrangian of the standard model contains a scalar filed(=Higgs) � and fermion
fields(=leptons and quarks)  . To make physics clear, consider a U(1) charge for those
fields with a gauge field Aµ. Furthermore, we assume that the vacuum expectation value
of the Higgs field during the reheating is small, and then the mass of the standard model
particles are smaller than the inflaton mass. The Lagrangian of the matter sector is written
as

L
matter

= L� + L + LAµ

=

N�
X

s=1

⇥

(Dµ�s)
⇤Dµ�s �m2

s|�s|2
⇤

+

N 
X

f=1

 ̄f (i 6D �mf ) f

� 1

4
Fµ⌫F

µ⌫ , (2.5.26)

where N� and N are the number of degrees of freedom of the scalar and fermion fields.
Here Fµ⌫ is the field strength of the gauge field:

Fµ⌫ ⌘ gµ⇢g⌫� (A�;⇢ �A⇢;�) = gµ⇢g⌫� (@⇢A� � @�A⇢) . (2.5.27)

We have defined covariant derivatives:

(

Dµ� ⌘ gµ⌫ (@µ � igaA⌫)�,

6D ⌘ eµ↵�
↵ (@µ � �µ � igaAµ) ,

(2.5.28)

where �↵ is the Gamma matrix, eµ↵ is the tetrad with Lorentz indices: ↵,�, · · · and coordi-
nate indices: µ, ⌫, · · · , and �µ is the spin connection defined as �µ ⌘ (1/8)

⇥

�↵, ��
⇤

e�↵e��:µ.
By the rescale of the metric (2.5.7), the kinetic terms of the fields are also rescaled. In
order to keep them canonical, we rescale the fields:

8

>

>

<

>

>

:

�E ⌘ ⌦�1

E �,

 E ⌘ ⌦�3/2
E  ,

AE,µ ⌘ Aµ ! Aµ
E = ⌦�2

E Aµ.

(2.5.29)

26



For these transformations, the Lagrangians are reduced to

p
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, (2.5.30)
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p
�gLAµ = �1

4

p
�gE gµ⇢E g⌫�E FE,µ⌫FE,⇢�. (2.5.32)

Here the covariant derivatives in the Einstein frame are defined as
(

DE,⌫ �E = @E,µ �E + �E @E,µ ln⌦E � igaAE,µ�E ,

6DE  E = ieµE,↵�
↵ (@E,µ � �E,µ � igaAE,µ) E .

(2.5.33)

We have defined the Einstein frame by

⌦2

E = ' = e�
p

2/3�/Mp . (2.5.34)

Thus, through the conformal factor ⌦2

E , the scalars and fermions have the interactions
with the inflaton �. By these interactions, the inflaton decays into those fields. On the
other hands, as the gauge fields are conformally invariant, the inflaton does not have direct
interactions with them. However, if we consider quantum e↵ects, the inflaton decays into
the gauge fields by loop e↵ect. In the case that the mass of particles is larger than the
inflaton mass, breakings of the conformal invariance become significant, and then the
inflaton decays into gauge fields more copiously. In this section, let us limit the discussion
for the smaller mass of fields.

First, let us consider interactions with �. Expanding the covariant derivative and mass
terms with respect to �, we can obtain the following interactions:
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where we have only considered leading terms in the expansion. Thus, from the above
interactions, the decay rate of the inflaton into � is given by
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As for  , the interactions arise from the mass term as
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=) L
int,� ¯  ' m p

6Mp

� ̄E E . (2.5.39)

Thus, for these interactions, the decay rate is given by
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Since the gauge field is conformally invariant, the inflaton does not have interactions
with it. However, by the propagation of the fermion or the scalar field in the loop as
shown in fig. 2.4, the inflaton can decay into the gauge field at the quantum level. In the
diagrams in fig. 2.4, the relevant interactions between the gauge field and  or � are give
by ' gaA ̄ or ' g2aA

2�2, and hence the interactions between inflation and  or � are
given by ' (m /Mp)�  ̄ or '

�

m2

�/Mp

�

��� and ' (1/Mp)� |@�|2. Thus, the decay
rates are estimated as [34]
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where the functions If (⇠) and Is(⇠) are defined as

If (⇠) =
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1
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dx
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, (2.5.43)
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0

dx
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1� ⇠xy
. (2.5.44)

Here ↵ is a gauge coupling constant ↵ ⌘ g2a/(4⇡) ⌧ 1. We are now considering that
the inflaton mass m� ' M ' 10�5Mp is much heavier than m and m�, m� � m 

and m� � m�. For this limit, the functions behave as If (⇠) ! 0 and Is(⇠) ! 0 while
(2 + ⇠)Is(⇠) ! 2 in the limit of ⇠ ! 1. Hence, in the limit of m� � m , m�, the decay
rates are reduced to �f ! 0 and �s ! ↵2/(768)(M/Mp)2M . Thus, the total decay rate
is given by

�
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(2.5.45)

Note that, in the standard model, � is the Higgs boson and N� = 4.
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Now we have determined the decay rate by the mass parameter M . Thus, using
eq. (2.4.7), we can calculate the reheating temperature:

TR ' 0.4
p

�
tot

Mp ' 0.4

✓

N�

96⇡

◆

1/2 M

Mp

p

MMp ' 10�9Mp. (2.5.46)

Using this, we can give the prediction for the e-folding number corresponding to the pivot
scale for the R2 inflation model:

Ne ' 54 +
1

3

✓

TR

10�9M
p

◆

. (2.5.47)

Figure 2.4: 1-loop diagram for the decay of the inflaton into the gauge field [34]. Note, we
have changed the notion from [34] such as � ! �. In the upper panel (lower two panels),
the fermion  (scalar �) is propagating in the loop.
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Chapter 3

Review of I-balls

It is known that some of scalar fields could form stable and localized objects such as
topological defects or Q-balls. By the formation of such objects, the dynamics of the
field such as the decay process or dilution rate of the energy density due to the Hubble
expansion would be a↵ected. Thus, to study the scenario of the Universe, we have to pay
attention to the formation of the objects.

The stability of such objects are guaranteed by a conserved quantity such as a topolog-
ical number for topological defects or a U(1) charge for Q-balls. Based on the conserved
quantities, the formation of the objects and their longevity are explained. However, there
is some objects whose formation and stability are not yet clarified analytically. One of such
objects is I-balls. I-balls are spatially localized objects, which consist of a real scalar field.
Inside I-balls, the field is oscillating periodically, and its period is approximately given by
the inverse mass of the field. By numerical simulations, the natures of I-balls have been
investigated, and it is found that the lifetime of the objects is significantly larger than
the period of the oscillation. However, the longevity has not yet been explained very well.
As I-balls are formed by an oscillating real scalar field, it seems di�cult to consider some
conserved quantities like topological defects or Q-balls. Thus, if we want to study whether
I-balls are formed or not for a specific potential, numerical simulations are required.

I-balls were first discovered in [23, 24] when the authors were studying elementary
particles of a finite size, and after a while, I-balls were rediscovered in [25] when the author
was studying a spontaneous symmetry breaking. By further investigations, especially by
numerical simulations, the properties of I-balls have been revealed. It is heuristically
known that for the formation of I-balls, the potential of the field should be flatter than
the quadratic one. If the initial state of the field is a coherent oscillation, the formation
occurs after significant oscillations. After the formation, for some potentials, I-balls emit
radiations from the surface and then gradually decay [63,64].

As I-balls are spatially localized objects, if the initial field is nearly homogeneous, for
the formation of I-balls, small fluctuations around the homogeneous distribution should
be enhanced by some mechanism such as the parametric resonance. By the parametric
resonance, fluctuations grow at a particular scale exponentially at first. Then, after they
grow and become comparable with the background field, the interactions of fluctuations
with other mode become e�cient. For some class of potentials with flatter shape, the field
may fragment into I-balls through the non-linear process. The formation is also confirmed
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even in the expanding Universe [65]. In [66–68], it is verified by numerical simulations
that for the formation in the expanding Universe, the growth rate of fluctuations should
be larger than the Hubble parameter. First, we review the mechanism of the enhancement
of fluctuations, and then review the heuristic condition on the growth rate.

As mentioned above, the stability of I-balls are yet not understood, but there’re some
proposals for the stability of I-balls. It was conjectured in [26] that the stability of I-balls is
due to an existence of some conserved quantity like Q-balls and topological defects, which
we call as adiabatic charge. The adiabatic charge comes from the adiabatic invariance
known in a classical mechanical system extended to a classical field theory. The adiabatic
invariant is briefly explained as follows. Let us here consider a periodic oscillation of a
point particle in a classical mechanical system. In the system, the motion of the particle
on the phase space is periodic and closed. Thus, evidently, the area surrounded by the
trajectory of the motion is time independent. In the case that there is an external force on
the system, the trajectory is not closed, and the oscillation is quasi-periodic. It is known
that, even for the quasi-periodic oscillation, the area is approximately time independent.
This area is called adiabatic invariant. In [26], the authors showed that the adiabatic
invariant (or charge) exists even for a classical field theory, and they showed that the
nature of I-balls could be understood by it. If the adiabatic charge is conserved for an
oscillating field, we can consider the lowest energy state for a fixed value of the adiabatic
charge. In this case, it is verified that a localized configuration of the field exists for
potentials that are flatter than the quadratic one. Thus, by the adiabatic charge, we can
derive the heuristic condition on the shape of potentials for I-balls to form.

In [26], the conservation of the adiabatic charge was proved in a certain case where the
spatial gradient energy is negligible. In this chapter, we give a more general and rigorous
proof that the adiabatic charge is conserved for a potential that allows a periodic motion
of the field. In contrast to the previous work [26], this argument does not rely on the
assumption that the spatial gradient energy is negligible. After the proof, we derive the
condition on the shape of potentials for the formation of I-balls.

3.1 Growth of fluctuations

Let us consider a scalar field � interacting with another scalar field �, and assume that �
is oscillating coherently. In this case, fluctuations of � might be enhanced by the motion
of � through the interaction. We describe the mechanism of the enhancement.

As � is oscillating, the interaction term of � with it oscillates periodically. Thus, the
frequency of the mode function of � would become a periodic function. We denote the
time dependent frequency by f(t, k). Then, the equation of motion for the mode function
of �, �k is written as

d2

dt2
�k + f(t, k)�k = 0. (3.1.1)

The above equation is a linear one with respect to �k with a periodically oscillating
coe�cient f(t, k). According to the Floquet theorem, the solution of such equation is
written by a complex parameter Mk and stationary periodic function P±(t) as

�k(t) = c
+

P
+

(t)eMkt + c�P�(t)e�Mkt, (3.1.2)
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where c
+

and c� are arbitrary constants. The stability/instability of the solution is deter-
mined by the parameter Mk. When the real part of Mk is non-zero as µk ⌘ Re(Mk) 6= 0,
the solution exponentially increases. The explicit form of the parameter Mk and function
P±(t) depend on the potential of the scalar fields and their interactions. If the potentials
allow the parametric resonance to take place, µk is non-zero at particular momentum. If
the potentials are such as a double well potential, which allows the spontaneous symme-
try breaking, µk is non-zero for momenta lower than the mass of the field. In this case,
fluctuations grow more violently than the parametric resonance, which is called tachyonic
resonance.

The parametric resonance or other mechanisms gives a rapid growth of fluctuations,
and they re-scatter with the background field or other modes. When this backreaction
becomes e�cient, the dynamics of the coherent mode is a↵ected, and then the resonance
terminates. In this stage, the spatial distribution of the energy density is highly inhomo-
geneous. Through the non-linear state, for some class of potentials, the field fragments
and forms I-balls, which is described later.

3.1.1 Parametric resonance

As analytically solvable examples, we explain the parametric resonance. For simplicity,
we assume that a scalar field � only couples to another scalar field �, the Lagrangian of
which is given by

L =
1

2
(@µ�)

2 � V (�) +
1

2
(@µ�)

2 � 1

2
m2

��
2 � V

int

(�,�), (3.1.3)

where V (�) is the potential of �, m� is the mass of � and V
int

(�,�) is the interaction
between the two fields. In this subsection, we assume that the mass of � is su�ciently
small compared with the mass of � and set it to zero. (If we identify � with fluctuations
of � as � = �� and choose an appropriate interaction, we can analyze the amplification of
fluctuations of � itself.)

Instabilities of the mode function �k depend on V (�) and V
int

. For the convenience,
in this sub-section, we mainly consider a quartic interaction and a quadratic or quartic
potential for V (�). In the case that � oscillates with a quadratic potential, the equation
of motion for �k is reduced to the Mathieu equation [69]. On the other hand, in the case
that � oscillates with a quartic potential, the equation of motion is reduced to the Lamé
equation [28,29,70,71]. Considering the two cases, we calculate the growth rate µk.

Quadratic potential

First, we consider the scalar field � with a quadratic potential,

V (�) =
1

2
m2

� �
2, (3.1.4)

and a quartic interaction,

V
int

=
1

2
g2�2�2, (3.1.5)
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where g is a dimensionless coupling constant. By the interaction term, the e↵ective mass
of � depends on �. Here we assume that � oscillates with a time independent amplitude
�. In this case, the e↵ective mass of � oscillates periodically:

m2

�,e↵ = g2�2 sin2(m�t), (3.1.6)

where we have neglected an arbitrary phase of �’s oscillation. Thus, the frequency of �k

is time dependent:
!2

k = k2 + g2�2 sin2(m�t). (3.1.7)

Normalizing the time variable by the mass of � as z ⌘ m�t, we can reduce the equation
of motion for �k to the Mathieu equation [69], which is characterized by two parameters
q and Ak as

d2

dz2
�k + (Ak � 2q cos(2z))�k = 0, (3.1.8)

where q and Ak are defined as
8

>

>

>

<

>

>

>

:

q ⌘ g2

4

✓

�

m�

◆

2

,

Ak ⌘
✓

k

m�

◆

2

+ 2q.

(3.1.9)

In most parameter regions of (A, q), the solution of the Mathieu equation is stationary
with a periodic oscillation, in other words, the growth rate is zero, which is presented as
the white region in fig. 3.1. However, if the set of parameters (A, q) is in the blue region
in fig. 3.1, the solution grows exponentially,

�k / eµkz = eµkm�t. (3.1.10)

Here, µk is non-zero when (Ak, q) is located in the instability region. This exponential
growth of �k corresponds to the rapid production of particles by the oscillation of �. For
this mode, the occupation number is defined by the Hamiltonian divided by the frequency
!k as

nk ⌘ !k

2

✓

|�̇k|2
!2

k

+ |�k|2
◆

� 1

2
. (3.1.11)

Thus, the rapid growth of the occupation number at the instability mode is given by

nk / e2µkm�t. (3.1.12)

The instability region shown in fig. 3.1 is divided into two regions according to the
typical width of the instability band and to the behavior of the amplification. The two
regions are classified by q as

(

q < 1 ! narrow resonance

q > 1 ! broad resonance.
(3.1.13)

In the case q < 1, the enhancement of the fluctuations is called narrow resonance, and in
the other case q > 1, the enhancement is called broad resonance.
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The feature of the narrow resonance is that the instability occurs for a narrow range
of A, and its width is described by an integer n and q up to numerical factors as

|A� n2| < qn. (3.1.14)

The growth rate in the instability region µk is characterized by n and q. The most e�cient
one is for n = 1, and for larger n, it becomes smaller. Here we show the explicit relation
for the largest growth rate, i.e., µk for n = 1 (first band) as [28, 37]

µk|n=1

=



⇣q

2

⌘

2

� 1

4
(Ak � 1)2

�

1/2

' q

2
. (3.1.15)

At this first band, the mode function and the occupation number increase as shown in
the left panel of fig. 3.2 [70], where the parameters are set to (A, q) = (1, 0.1). From this
figure, we can see that the resonance occurs continuously through the oscillation of �.

In the case of the broad resonance q > 1, the instability occurs for a broad range of A.
The instability is characterized by breakdown of the adiabatic condition:

|!̇k|
!2

k

� 1. (3.1.16)

Left hand side of eq. (3.1.16) is evaluated as

|!̇k|
!2

k

'
˙|�|

g�2
' m�

g�
. (3.1.17)

Thus, the breakdown of the adiabatic condition occurs when the velocity of � becomes
large, and amplitude does small, i.e., around the minimum of the potential. The increase
of the mode function by the broad resonance is shown in the right panel of fig. 3.2 [70],
where parameters are set as (A, q) = (1, 200). Since the broad resonance occurs for q larger
than unity, the frequency !k at the resonance band is larger than the mass of �. Thus,
�k experiences lots of oscillations during one oscillation of �, and as � passes around the
minimum of the potential, it is amplified. This mechanism is explained as bellow.

For the convenience of discussion, suppose that � passes the bottom of the potential
at time tj (j = 1, 2, ...). Most region between tj�1

and tj , the adiabatic condition is
satisfied: |!̇k|/!2

k < 1, and �k oscillates stationary. In this region, the solution of the
equation of motion

�̈k + !2

k�k = 0, (3.1.18)

is given by the WKB approximation as

�k(t) =
↵j
kp
2!k

ei
R
!kdt +

�jkp
2!k

ei
R
!kdt. (3.1.19)

Here the coe�cients ↵j
k and �jk are called Bogolyubov coe�cients, which satisfy the fol-

lowing normalization:
|↵j

k|
2 � |�jk|

2 = 1. (3.1.20)
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The occupation number is calculated using the Bogolyubov coe�cients as

nk = |�k|2. (3.1.21)

As � reaches the bottom of the potential, the adiabatic condition breaks down, and the
solution of the mode equation cannot be approximated by the WKB solution. However,
we can obtain the solution of the equation of motion using the approximation form of
�2(t). When � oscillate around the minimum of potential, the argument of � modulo ⇡/2
is nearly zero. Thus, we can approximate �2(t) by a quadratical function of the time as

�2(t) ' �2m2

�(t� tj)
2. (3.1.22)

By this approximation, we can reduce the mode equation to the Weber’s equation as

d2

d⌧2
�k + (2 + ⌧2)�k = 0, (3.1.23)

where we have normalized the time variable as ⌧ ⌘ g�m�(t� tj), and the momentum as
2 ⌘ k2/(g�m�). The exact solution of this Weber’s equation is given by the parabolic
cylinder function W (�2/2;±⌧).

Connecting the asymptotic form of the cylinder function to the WKB solution (3.1.19),
we obtain the transformation matrix of the Bogolyubov coe�cients:

 

↵j+1

k

�j+1

k

!

=

0

@

p

1 + e�⇡2ei'k ie�
⇡
2 

2
+2i✓jk

�ie�
⇡
2 

2�2i✓jk
p

1 + e�⇡2ei'k

1

A

 

↵j
k

�jk

!

. (3.1.24)

Here ✓jk is the phase variation from t = 0 to t = tj and is given by

✓jk =

Z tj

0

!kdt, (3.1.25)

and 'k is given by

'k ⌘ arg

⇢

�

✓

1 + i2

2

◆�

+
2

2

✓

1 + ln
2

2

◆

, (3.1.26)

where � is the Gamma function. Using the transformation matrix, we can calculate the
occupation number nj+1

k after � passes through the bottom of the potential as

nj+1

k = e�⇡
2
+ (1 + 2e�⇡

2
)nj

k � 2e�
⇡
2 

2
p

1 + e�⇡2
q

nj
k(1 + nj

k) sin ✓
j
tot

, (3.1.27)

where the total phase ✓j
tot

is given by

✓j
tot

= 2✓jk � 'k + arg�jk � arg↵j
k. (3.1.28)

From the relation between nj+1

k and nj
k (3.1.27), we can see that for the increase of

the occupation number by the broad resonance,  needs to be smaller than 1/
p
⇡. Thus,

the instability band of the broad resonance is given by

k <
p

g�m�. (3.1.29)
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After several oscillations, the occupation number becomes larger than unity, and (3.1.27)
is approximately reduced to

nj+1

k =
⇣

1 + 2e�⇡
2 � 2e�

⇡
2 

2
p

1 + e�⇡2 sin ✓j
tot

⌘

nj
k. (3.1.30)

Thus, by the relation, we obtain the growth rate for the broad resonance:

µj
k =

1

2⇡
ln
⇣

1 + 2e�⇡
2 � 2e�

⇡
2 

2
p

1 + e�⇡2 sin ✓j
tot

⌘

. (3.1.31)

Quartic potential

We have seen that the oscillation of � with the quadratic potential induces the instability
of � with the quartic interaction. Reducing the mode equation for � to the Mathieu
equation, we have calculated the growth rate, which is shown by (3.1.15) for the narrow
resonance and by (3.1.31) for the broad resonance. Not only the quadratic oscillation, but
a quartic oscillation of � with a potential

V =
�

4
�4, (3.1.32)

also induces the instability of � with the quartic interaction V
int

= (g2/2)�2�2. Further-
more, in this case, the quartic oscillation induces the instability in fluctuations of � itself.
For the quartic oscillation of � with a time independent amplitude �, we can reduce the
equation of motion for �k to the Lamé equation:

d2

dz2
�k +



2 +
g2

�
cn

✓

z;
1p
2

◆�

�k = 0, (3.1.33)

where we have normalized the time variable as z ⌘
p
�� t and the momentum as 2 ⌘

k2/(��2), and cn(x; 1/
p
2) is the elliptic function. As for fluctuations of �, the equation

of motion for the mode function is also reduced to the Lamé equation as

d2

dz2
��k +



2 + 3cn

✓

z;
1p
2

◆�

��k = 0. (3.1.34)

Here we have divided the scalar field � as �(t, ~x) = �
0

(t) + ��(t, ~x). In the same way as
the Mathieu equation, in some region in (, g2/�) plane the growth rate is non-zero, and
then the solution increases exponentially. The instability chart is shown in fig. 3.3 [71].

Expanding Universe

In the early Universe, the cosmic expansion rate is large due to the high energy density
of the Universe. For the large expansion rate comparable with the mass of the oscillating
field, the parametric resonance would be suppressed to some extent. Even in this case,
by rescaling the field variables and space-time coordinates, we can reduce the equation of
motion for the mode function to the Mathieu equation or Lamé equation, and then we
can discuss the e↵ects of the parametric resonance.
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Figure 3.1: Stability and instability chart for Mathieu equation [45]. In the blue region,
the solution is stationary, and in the white region the solution grows exponentially.
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Figure 3.2: Evolution of the mode function �k and its occupation number nk for narrow
and broad resonances [70] in the Minkowski spacetime. The left panel shows the narrow
resonance for (A, q) = (1, 0.1). The right panel shows the broad resonance for (A, q) =
(1, 200). The unit of the time is the mass of the � as m� with the division by 2⇡ as m�/2⇡
.
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Figure 3.3: The stability-instability chart for the Lamé equation [71]. Shaded areas are
regions of instability. In the instability bands, the darker shade means the larger Floquet
index µk. One color step corresponds to the increment �µk = 0.0237.

In the FRW universe with zero curvature, the equation of motion for �k at a comoving
momentum k is written as

�̈k + 3H�̇k +



k2

a2
+ g2�2(t)

�

�k = 0, (3.1.35)

where H is the Hubble parameter and a is the scale factor, and we assumed the quartic
interaction.

Due to the Hubble expansion, the amplitude of the field damps adiabatically, and then
the energy density of � decreases. In the case of the quadratic potential, the energy density
damps like non-relativistic particles, and the amplitude of the field scales as � / a�3/2.
In the case of the quartic potential, the energy density damps as like relativistic particles,
and the amplitude scales as � / a�1.

First, we consider the quadratic potential V = m2

� �
2/2. In this case, we rescale the

fields as �̃ = a3/2 � and �̃ = a3/2 �. Then, the equation of motion is reduced to the
Mathieu equation as

d2

dz2
�̃k +

⇣

Ãk � 2q̃ cos(2z)
⌘

�̃k = 0, (3.1.36)

where we have normalized the cosmic time as z ⌘ m�t. The parameters q̃ and Ãk are
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given by
8
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>

>

>

<

>

>

>

>

:

q̃ ⌘ a�3

g2

4

 

�̃

m�

!

2

,

Ãk = 2q̃ +
(k/m�)2

a2
� 9

4

H2

m2

�

� 3

2

Ḣ

m2

�

,

(3.1.37)

where �̃ is the rescaled amplitude as �̃ ⌘ a3/2� to be time-independent. In the case that
q̃ is smaller than unity, the narrow resonance occurs, and the resonance band is given
by |Ã � n2| < q̃n. As is seen from the above equation, in the expanding Universe, the
parameters q̃ and Ã depend on the scale factor. Thus, the resonance band changes as
the scale factor evolves by the redshift of the momentum and decrease of the amplitude
of the background field.1 In the case that q̃ is larger than unity, the broad resonance
occurs, a numerical result of which is shown in fig. 3.4 [29]. There appears a characteristic
feature of the resonance in the expanding Universe. Compared to the instability in the
Minkowski space-time shown in fig. 3.2, the mode function and the occupation number
either increase or decrease, but on average they increase. This stochastic nature is due
to the time dependence of the accumulated phase of the mode function for one oscillation
of � as �✓jk =

R tj
tj�1

dt!k(t). Since in the expanding Universe, the momentum is red-

shifted as k/a, and the e↵ective mass of the mode function g2�2 damps as / a�3, the
accumulated phase for a single oscillation varies. This variation of the phase accumulation
makes the stochastic change of the total accumulated phase (3.1.28) modulo 2⇡, and then
the growth rate (3.1.31) becomes either negative or positive. Even though fluctuations
decrease at one time, at most times they increase because the enhancement is realized for
0 < ✓j

tot

(mod 2⇡) < ⇡/4 and 3⇡/4 < ✓j
tot

(mod 2⇡) < 2⇡. Thus, on average, fluctuations
are enhanced.

In the case of the quartic potential V = (�/4)�4, we choose other rescaling of the fields
and the time as �̃ = a�, X = a� and d⌘ = dt/a. By this rescaling, the equation of motion
for �k is reduced to

d2

d⌘2
Xk +



k2 + g2�̃2 � a�1

d2

d⌘2
a

�

Xk = 0. (3.1.38)

The structure of the resonance depends on the last term in the bracket. If � dominates
the Universe, the expansion is as like the domination of relativistic particles as a / t1/2.
Then, the last term vanishes, and the equation of motion is reduced to the Lamé equation.

3.1.2 Tachyonic resonance

We have shown that, by the oscillation of the scalar field, the parametric resonance occurs,
and fluctuations increase. The key point of this resonance is that the frequency of the
mode function becomes a periodic function by the interaction with the oscillating field. In

1The growth of �k is given by �k / a�3/2e(q̃/2)m�t = exp
⇥
ln a

��3/2 + a�3q̃0/(2�)m�t0
�⇤
, where we

have parametrized the evolution of the scale factor by � as a = (t/t0)
� , and the initial value of q̃ as q̃0.

From this expression, we can see that, in the case that q̃0 is smaller than unity, the resonance e↵ect is
smaller than the dilution e↵ect by the cosmic expansion.
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Figure 3.4: Evolution of mode function �k and occupation number nk for broad resonance
in the expanding Universe [29]. The unit of the time is the mass of the � as m� with the
division by 2⇡ as m�/2⇡ .

the previous section, we have assumed the quartic interaction with g2 > 0. On the other
hand, in the case of g2 < 0, there occurs more explosive enhancement of fluctuations [72].

As we have explained, the broad resonance occurs when the adiabatic condition breaks
down. At that time, the mode function deviates from the WKB solution, and then the
mixing of the Bogolyubov coe�cients occurs, which corresponds to the creation of par-
ticles. The deviation from the WKB solution is crucial for the broad resonance, but the
square of the frequency itself is always positive. By the negative coupling, the square of
the mass directly becomes negative (tachyonic), and hence the square of the frequency of
the mode function becomes negative for lower momenta. As the square of the frequency
becomes negative, the enhancement of the mode function occurs, which is called tachyonic
resonance. This tachyonic resonance is also induced by cubic interactions [73–75]. At a
spontaneous symmetry breaking, the tachyonic resonance also occurs [76, 77]

As one example, we consider a scalar field � with a double well potential:

V =
�

4

�

�2 � v2
�

2

, (3.1.39)

where � is a positive constant, and v is the vacuum expectation value of �. In the case
that � starts to oscillate near the local maximum of the potential � ' 0, its e↵ective mass
becomes tachyonic up to the inflection point, and then the equation of motion for the
mode function is given by

�̈k + (k2 +m2)�k = 0, (3.1.40)
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where we have defined the tachyonic mass as m2 ⌘ ��v2 < 0. From this equation,
we can see that the solution of the mode equation for lower momenta k2 < �m2 grows
with µk . 1. With this rate fluctuations grow exponentially, and then re-scattering be-
comes e�cient within only several oscillations. Assumed the initial fluctuations ��k(t0) =

(1/
p
2k)e�ikt0+i~k~x, the variance of fluctuations at t becomes

h��2i =
Z |m2|

0

dk2

8⇡2
e2t

p
|m2|�k2 . (3.1.41)

3.1.3 Backreaction

We have seen that the coherent oscillation of the scalar field � makes the modulation of the
frequency of fluctuations, and then triggers the explosive particle productions at particular
momenta. The growth rate of the fluctuations is calculated explicitly for some potentials
as shown in (3.1.15), (3.1.31) and (3.1.41). As the particle production proceeds, the
fluctuations trigger non-liner processes such as the re-scattering of the fluctuations with the
coherent mode or other modes of the fluctuations. Thus, by the growth of the fluctuations,
the dynamics of the background field is a↵ected, and at some time the resonance becomes
ine�cient. In order to investigate the non-linear processes extensively, we have to perform
numerical simulations, but the typical time scale that the back-reactions become non-
negligible can be estimated using the Hartree approximation [29,70,78].

For convenience of discussions, we consider the quartic interaction. We deal with the
back reaction e↵ect by the Hartree approximation:

�̈+ 3H�̇+
@V

@�
+ g2 h�2i� = 0, (3.1.42)

where the variance is calculated by the mode function as

h�2i = 1

2⇡2

Z

dk k2|�k|2. (3.1.43)

The e↵ective mass of � depends on the variance h�2i. At the beginning of the resonance,
the induced mass due to the fluctuations is negligible compared to the bare mass of �,
but after the su�cient production of particles, it becomes comparable with the bare mass,
and then the field amplitude �t adiabatically decreases as

�t '
m�

m
e↵

�
0

, (3.1.44)

where �
0

is the initial amplitude of �, m� is the bare mass of � and m
e↵

is the e↵ective
mass of � given by

m2

e↵

= m2

� + g2 h�2i . (3.1.45)

By the decrease of the amplitude, the parameter q of the Mathieu equation (3.1.9) also
decreases as

q =
g2

4

�2

t

m2

e↵

' g2

4

m2

��
2

0

m4

e↵

' 1

4g2
m2

��
2

0

h�2i2
. (3.1.46)
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Since the absolute value of q determines the strength of the resonance, by the damping, the
resonance of � becomes gradually ine�cient. The typical time scale that the backreaction
becomes e�cient can be estimated by the time when the induced mass becomes comparable
with the bare mass. Assumed the parametric resonance with growth rate µk for the
resonance band k2 . g�

0

m� ⌘ k2⇤, the variance of the fluctuations is calculated as

h�2i = 1

2⇡2

Z

dk k2|�k|2 ' k3⇤
1

k⇤
e2µkm�t = g�

0

m� e
2µkm�t. (3.1.47)

Then, the induced mass is approximately estimated as g2 h�2i ' g3�
0

m� exp(2µkm�t).
Thus, the time that the induced mass becomes comparable with the bare mass g2 h�2i '
m2

� is estimated as

t
bk

' 1

2µk⇤m�
ln

✓

1

g2�
0

◆

' 1

µkm�
. (3.1.48)

3.2 I-ball formation

We have explained that, by the oscillation of the scalar field, its fluctuations are enhanced
through the self-coupling, and they evolve non-linearly. Then some scalar fields fragment
into stable objects such as the topological defects or Q-balls. The stability of the objects
is guaranteed by conserved quantities such as the topological or U(1) charge, respectively.
On the other hand, there is a case that, without explicit conserved quantities, stable
objects are formed. It is known that an oscillating real scalar field could fragment into
localized objects called I-balls, oscillons or pulsons.

The formation process of I-balls is yet to be revealed analytically. However, some
heuristic natures have been found by performing numerical simulations. In [23, 25, 25] it
is found that, when the initial configuration of a scalar field is a spherical bubble, I-balls
are formed through the collapse of a bubble. More extensive investigations of the I-balls
revealed that I-balls emit radiations from their tail and that within I-balls amplitude at
multi frequencies around the mass of the field is excited [64,79–81].

Numerical simulations also revealed that I-balls are formed from a nearly homogeneous
field with small fluctuations, even under the expansion of the Universe [65–68,82,83]. Due
to the expansion, fluctuations are diluted, and their momenta are red-shifted. Thus, the
expansion of the Universe would suppress the resonance, and it would a↵ect the formation
of I-balls. In [66–68], the heuristic conditions for the formation of I-balls are obtained by
lattice simulations.

3.2.1 I-ball by the collapse of Gaussian bubble

In the relativistic field theory, the I-ball was first discovered in [23,24] by using numerical
simulations when the classical models of finite-size particles were investigated. Then after
a while, the I-ball was rediscovered in [25] when a dynamical symmetry breaking was
studied with a double well potential V = (�/4)(�2 � v2)2. The authors in [25] studied
an evolution of a Gaussian bubble configuration, and then found that the configuration
settles down to a quasi-stable state (I-ball) by rapid emission of radiations. The quasi-
stable state is studied more expensively in [64, 79–81]. Then, it was found that the I-ball
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is formed for a slightly flatter potential than the quadratic one, and the lifetime is larger
than the inverse of the mass of the scalar field. Here we briefly review the collapse of the
Gaussian bubble for several potentials following [64].

As one example, we consider the double well potential V = (�/4)(�2 � v2)2. We set a
Gaussian bubble configuration as the initial condition:

�(t = 0, r) = v(1 + exp(�r2/r2
0

)), (3.2.1)

where r
0

it the initial radius of the bubble. At first, the bubble emits radiations, and then
the energy of the bubble decreases. However, after a while, the bubble settles down to a
stationary state, called I-ball. In order to confirm this collapse, [64] has performed lattice
simulations with the initial condition (3.2.1) with r

0

= 3.0/
p
2�v. In the simulations, the

spherical symmetry is assumed for the field. By this assumption, the equation of motion
is reduced to

�̈� d2

dr2
�� D � 1

r

d

dr
�+ V 0(�) = 0, (3.2.2)

where D is the dimension of space. In [64], the numerical simulations were performed in
D = 2 and D = 3 cases. In the simulation, the energy inside the shell of radius r = 5r

0

was calculated, which is shown in fig. 3.5 [64]. The figure shows the result of D = 3.
The energy inside the shell rapidly decreases at the beginning, and after a while, the
energy stabilizes to E ' 40

p
2�v. Then, after the steady decrease of the energy, the I-ball

abruptly breaks down at t ' 7200/
p
2�v.

The stationary state after the collapse of the Gaussian bubble also appears for other
potentials such as the axion like potential V = (m2↵2)/⇡2 [1 + cos(⇡�/↵)]. In the case
of this potential, [64] performed simulations in D = 2.2 For the axion like potential, the
collapse to the stationary state is confirmed by numerical simulations, where the initial
Gaussian bubble is set as

�(r, t = 0) = ↵
⇥

1� exp(�r2/r2
0

)
⇤

, (3.2.3)

with r
0

= 2.9/m. The time evolution of the energy inside the shell of radius r = 5r
0

is calculated and shown in fig. 3.6 [64]. From this figure, we can see that the Gaussian
bubble with the axion like potential also collapses to the stationary state.

By the numerical simulations, some natures of I-balls have been revealed. The energy
density of the I-ball is approximately time independent, while the field is oscillating within
it. Without the localized objects, the oscillation of the field is described by one frequency.
However, the frequency of I-balls has some multiplicity, and higher modes are excited. In
order to see the excitations, [64] performed Fourier transformation for the amplitude at
the center of an I-ball as

�(t, r = 0) =

Z

d! �(!)ei!t. (3.2.4)

The power spectrum of �(!) is calculated for the double well potential and the axion like
potential. The results of simulations are shown in fig. 3.7 for the double well potential
and in fig. 3.8 for the axion like potential. For the double well potential, the Fourier

2Note that in D = 2 space, mass dimension of � is one half, and then ↵ is a constant of mass dimension
one half.
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transformation is performed over the interval �t = 200/(
p
2�v) from t = 4000/(

p
2�v).

For the axion like potential it is performed over the interval �t = 500/m from t =
5.12⇥107/m. From the figures, we can see that the spectrum has several peaks and that the
largest peak is located just below the mass of the field ! . m. Even at higher frequencies
than the mass, the spectrum has also peaks. The I-ball loses its energy gradually as
shown in fig. 3.5 and in fig. 3.6. It is suggested that this decay of the I-ball is related to
the excitation of the power spectrum at the higher frequencies.

3.2.2 I-balls from homogeneous mode

An I-ball is a spatially localized object. In the previous subsection, we have explained that
the I-ball is formed after the collapse of the Gaussian bubble for slightly flatter potentials.
On the other hand, it is know that, without the initial bubble configuration, I-balls are
also formed. In the case that the scalar field is oscillating homogeneously with small
fluctuations, the formation could also take place. As I-balls are the spatially localized
objects, in this case, the growth of fluctuations is necessary. After the enhancement of the
fluctuations, through the non-linear process, the fluctuations fragment into I-balls. The
formation is also confirmed in other cases such as a rapid quench of a potential from a
quadratic potential to a double well potential with thermal fluctuations [84–86].

In the early Universe, the expansion rate may be comparable with the oscillation scale
of the scalar field, and then the enhancement of fluctuations would be suppressed by the
dilution of the Hubble expansion. Thus, the expansion rate of the Universe is related to
the formation of I-balls. The formation under the expansion is studied in [66–68,82,83]. As
the formation process proceeds through the parametric resonance, I-balls would be formed
for the growth rate larger than the Hubble expansion rate. This threshold is expected to
be order unity. By numerical simulations, the threshold is investigated in [66–68] for a
generic class of inflaton potentials. In this subsection, we review the formation of I-balls
in the expanding Universe, and explain that, for the formation, the growth rate of the
fluctuations need to exceed the expansion rate.

First, we consider the formation of I-balls for a scalar field � not restricting to the
inflaton, but we assume that � dominates the Universe. We suppose the potential of � by

V =
1

2
m2�2 � �

4
�4 +

g2
6

6m2

�6. (3.2.5)

Here we assume that the ratio of the dimension less coupling � to g
6

is smaller than
unity (�/g

6

)2 ⌧ 1 and � is positive. The expansion rate of the Universe is determined by
the Friedmann equation:

H2 =
1

3M2

p



1

2
�̇2 +

1

2
(r�)2 + V (�)

�

. (3.2.6)

Here we assume that the scalar field is oscillating with an initial amplitude �i with small
fluctuations ��. As we have explained, the fluctuations are enhanced by the parametric
resonance with a growth rate µk. In this case, the growth rate is analytically estimated as

µk ' 1

2

k/a

m
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✓
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. (3.2.7)
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Figure 3.5: Evolution of the energy inside a shell of radius r = 5r
0

for the double well
potential [64]. Unit of the energy is

p
2�v, and the unit of time is its inverse.
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Figure 3.6: Evolution of the energy inside a shell of radius r = 5r
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for the axion like
potential [64]. Unit of the energy is ↵2, and time is 1/m.
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Here a is the scale factor, which is set to unity at t = ti, � is the amplitude of � adiabat-
ically damping as � = �ia

�3/2 and �
ins

is defined as

�
ins

=

✓

3�

5g2

◆

1/2

m. (3.2.8)

With the growth rate, the amplitude of fluctuations grows as

��k =
��k,i

a3/2
exp

✓

Z

µk(t)dt

◆

= ��k,i exp



Z

✓

µk

H
� 3

2

◆

d ln a

�

, (3.2.9)

where ��k is the Fourier mode of the fluctuations of �. By the parametric resonance,
fluctuations are amplified when their momentum passes through the instability band.
On the other hand, the Hubble expansion suppresses the fluctuations. For the value
µk/H = 3/2, the enhancement and suppression of fluctuations are balanced, and then
the fluctuations do not decrease nor also increase. The suppression rate estimated by the
Hubble parameter is given by

H ' a�3/2 �ip
6Mp

m. (3.2.10)

We set the initial amplitude of the homogeneous mode to �i = �
ins

. By this, the ratio of
the growth rate to the expansion rate is reduced to

µk

H/m
= �

1

k̃

s

9

4a2

✓

1� 1

a3

◆

� k̃2

a
. (3.2.11)

Here we have rescaled the comoving momentum as

k̃ ⌘ g
6

�

k

m
, (3.2.12)

and defined �
1

as

�
1

=
p
�
�

g
6

Mp

m
. (3.2.13)

The enhancement of the instability is most e�cient at k̃ ⇠ 0.4, which gives the ratio
maximally as µkm/H ' 0.5�

1

. In [68], the formation of I-balls is simulated for various �
1

,
and then it is verified that the formation occurs for �

1

> 50 as shown in fig. 3.9, where
the left panel shows the ratio of the energy in I-balls to the total energy, and the right
panel shows the mean energy per an I-ball. As the momentum which experiences the
enhancement passes through the instability bands due to the redshift, the growth rate is
smaller than the case without the expansion of the Universe. Thus, the typical ratio of
the growth rate to the expansion rate is smaller than �.

From (3.2.9), we can estimate the typical ratio of the growth rate to the expansion
rate as

hµk m

H
i ' ln (��k/��i,k)

� ln a
+

3

2
. (3.2.14)

Here hµk/Hi is the average value of the ratio from a = a
1

to a evaluated from
Z

µkdt =

Z

µk

H
d ln a = hµk

H
i� ln a, (3.2.15)
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where � ln a = ln a� ln ai. For the value �1 = 50, we evaluate the typical growth ratio. For
this parameter, we have numerically calculated the fluctuations with linear perturbation
method from a = 1 to a = 5, by solving the following coupled equations

�̈
0

+ 3H�̇
0

+
@V (�

0

)

@�
0

= 0, (3.2.16)

��̈k + 3H��̇k +
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2

+
@2V (�

0
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@�2
0

#

��k = 0. (3.2.17)

In fig. 3.10, we show the growth of Nk which is defined by

Nk =
!k

2

"

|��̇k|2
!2

k

+ |��k|2
#

, (3.2.18)

where !k is defined by !k =
q

|@2V/@�2|+ (k/a)2. We set the initial value of �
0

to
�
0,i = �

ins

. In the figure, we normalized the vertical axis by the initial value of Nk,i. From
this result, the typical ratio is estimated as

hµkm

H
i ' ln 10

p
11/2

ln 5
+

3

2
' 5. (3.2.19)

This result means that for the formation of I-balls, the amplitude of fluctuations need to
grow against cosmic expansion (i.e. hµkm

H i � 3

2

).
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Figure 3.9: The left panel shows the ratio of the energy in I-balls to the total energy.
The right panel shows the mean energy per an I-ball [68]. The black and orange points
correspond to simulations with parameters (�/g)2 = 0.2 and 0.1.

Next we explain the formation of I-balls for an inflaton potential following [66]. As we
have noted that the formation of I-balls could occur for a slightly flatter potential than
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the quadratic one. For this potential, the scalar field is oscillating around the minimum
of the potential with a quadratic term ⇠ m2�2/2, but the curvature of the potential is
suppressed far away from the minimum as VI ⇠ �2↵, where ↵ is smaller than unity. In
order to capture this nature, we set the potential as

VI =
m2M2

2↵

✓

1 +
�2

M2

◆↵

� 1

�

, (3.2.20)

where M is a constant with mass dimension one. Here we suppose that � is an inflaton.
↵ = 1 corresponds to the quadratic chaotic inflation. For this inflation potential, we can
calculate the curvature perturbation at the pivot scale:

PRc =
1

96⇡2↵3

✓

m

M
pl

◆

2

✓

M

M
pl

◆

2�2↵

(220↵)1+↵, (3.2.21)

where we have assumed the 55 e-folds and used the slow-roll approximation. By the
observation of CMB, it is determined as PRc = 2.9⇥ 10�10 [30]. In the investigation, the
parameters are chosen to satisfy this value.

When we neglect the redshift e↵ects on the momentum, the maximal ratio of the
growth rate to the expansion rate is approximately given using ↵ and M as [66]

µk

H/M
' M

pl

M

1

2

⇥

(1� ↵)� 0.1(1� ↵)2
⇤

= �
2

1

2

⇥

(1� ↵)� 0.1(1� ↵)2
⇤

, (3.2.22)

where we have defined a parameter as �
2

= M
p

/M . We assume that the typical value
of ↵ is O(0.1). Thus, �

2

is typically equals to the ratio of the growth rate to the cosmic
expansion rate (i.e. �

2

' µkM/H ). However if we include the redshift e↵ects on the
momentum, the instability band and the growth rate change due to the Hubble expansion,
and the typical ratio is smaller than �.

Using �
2

, we can reduce the curvature perturbation (3.2.21) to

PRc =
(220↵)1+↵
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. (3.2.23)

For several sets of parameters (↵,�
2

), the formation of I-balls just after inflation are
investigated in [66] using lattice simulations. Then, the fraction of the energy of I-balls to
the total energy

f =

R

⇢>2h⇢i ⇢dV
R

⇢dV
(3.2.24)

is calculated as shown in fig. 3.11 [66]. Here h⇢i is the spatial average of the energy
density. From the figure, we can see that the significant production of I-balls occurs for
�
2

& 20, where the fraction f can be larger than 0.3. Thus, for the formation of I-balls, the
growth rate neglected the redshift e↵ect should be tens of times larger than the Hubble
expansion rate µkM/H & 10 (without redshift). In the figure, the black thick contour
denotes µkM/H > 7 (without redshift). For these parameters, we numerically evaluate
the typical ratio including the redshift e↵ects as (3.2.14).
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As fiducial values, we evaluate the ratio for the parameters (↵,�) = (0.5, 29.5) and
(0.6, 36.5), which are the thresholds for the formation of I-balls as shown in 3.11. We
have numerically solved following coupled equations as

�̈
0

+ 3H�̇
0

+
@VI(�0)

@�
0

= 0, (3.2.25)
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0

#

��k = 0 (3.2.26)

from a = 1 to a = 7. We set the initial field values of the inflaton by which the time deriva-
tive of the inflaton first becomes zero, �̇

0

= 0 after inflation as the same way in [66]. In

fig. 3.12, we show the evolution of Nk, where we define !k by !k =
q

|@2VI/@�2|+ (k/a)2.
From the results, the typical ratio is estimated as

hµkm

H
i ' ln 10

p
4/2

ln 7
+

3

2
' 4. (3.2.27)

Figure 3.11: The distribution of f on (↵,�) at a = 7 [66]. The black thick contour
denotes (µkm/H)

max

= 7, and the white ones correspond to (µkm/H)
max

= 1 and 3.

We have reviewed that for the formation of I-balls in the expanding Universe the
growth rate of fluctuations needs to exceed the Hubble expansion rate. The ratio is
evaluated by numerical simulations in [66–68]. As shown by (3.2.19) and (3.2.27), the
ratio is order unity, but should be larger 3/2, which means that for the formation of
I-balls, the amplitude of the fluctuations need to grow against cosmic expansion.
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Figure 3.12: Evolution of Nk for the potential (3.2.20) from a = 1 to a = 7. We set the
parameters to (↵, �) = (0.5, 29.5) on the left panel and (↵, �) = (0.6, 36.5) on the right
panel.

3.3 Adiabatic charge

As we have noted, in most cases, the stability of solitons is guaranteed by some conserved
quantities such as U(1) charge corresponding to Q-balls or topological charge correspond-
ing to topological defects. As for I-balls, it seems that there is no explicit conserved
quantity. However, in the previous study [26], it is conjectured that an adiabatic charge
can be the candidate to guarantee the stability of I-balls. The study showed that, if we
consider the lowest energy state for a fixed value of the adiabatic charge, the configuration
of the scalar field for flatter potentials becomes a localized one, i.e., I-ball. In this section,
we prove the conservation of the adiabatic charge. This proof is based on my work col-
laborated with Masahiro Kawasaki and Fuminobu Takahashi [87], which is the improved
version of [26].

3.3.1 Adiabatic invariant in classical mechanics

The proof of the conservation of the adiabatic charge is based on the ways in a classical
mechanical system. First we briefly review the conservation of the adiabatic invariant in
a classical mechanical system [37,38], especially following the argument by Tomonaga.

We consider a point particle with a Hamiltonian:

H =
p2

2m2

+ V (q,�f (t/T )), (3.3.1)

where �f (t/T ) is an external parameter that changes su�ciently slowly compared to the
typical time scale of the point particle. T defines the time scale over which the external
parameter changes from �f,i ⌘ �f (0) to �f,f ⌘ �f (1), and it will be set to be infinity in the
end. We suppose that the point particle is oscillating quasi-periodically. Since the external
parameter is time dependent in this case, the Hamiltonian is not time independent as

d

dt
H =

@H

@�f

d�f (t/T )

dt
. (3.3.2)
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Let us consider a hypothetical system for one period of the motion from t = ⌧ until
t = ⌧ + 1/⌫⌧ , while the external parameter �f (t/T ) is fixed to be the value at t = ⌧ , i.e.,
�f (t/T ) = �f (⌧/T ). Here ⌫⌧ is the frequency for �f = �f (⌧/T ). In such a hypothetical
system, the trajectory on the phase space is periodic and closed. We denote the trajectory
of (q(t), p(t)) in the hypothetical system by (q⌧ (t), p⌧ (t)). For this hypothetical system,
the Hamiltonian is time independent with a constant energy:

H(p⌧ (t), q⌧ (t),�f (⌧/T )) = E(⌧). (3.3.3)

Solving this equation with respect to p⌧ (t), we obtain

p⌧ = p⌧ (q⌧ (t), E(⌧),�f (⌧/T )). (3.3.4)

Thus, the canonical momentum p⌧ (t) can be regarded as a function of q⌧ (t), E(⌧) and
�f (⌧/T ). For later use, we di↵erentiate eq. (3.3.3) with respect to E and �f :

✓

@H

@p⌧

◆

q⌧ ,�f

✓

@p⌧
@E

◆

q⌧ ,�f

= 1 (3.3.5)

()
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@p⌧
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◆
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=

✓

@H

@p⌧

◆�1

q⌧ ,�f

(3.3.6)
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✓

@H

@p⌧
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q⌧ ,�f

✓

@p⌧
@�f

◆

q⌧ ,E

= 0 (3.3.7)
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@p⌧
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q⌧ ,E
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⇣

@H
@�f

⌘

p⌧ ,q⌧
⇣

@H
@p⌧

⌘

q⌧ ,�f

. (3.3.8)

Now let us define the area surrounded by the closed trajectory:

IT (⌧) = 2

Z q
(2)
⌧

q
(1)
⌧

p⌧ (q⌧ , E(⌧),�(⌧/T ))dq⌧ ,

where q
(1)

⌧ and q
(2)

⌧ are the roots of p⌧ = 0. In order to estimate the time variation of IT ,
we di↵erentiate IT (⌧) with respect to ⌧ :

@IT (⌧)

@⌧
= 2



p⌧ (q⌧ (t), E(⌧),�f (⌧/T ))
dq⌧
d⌧

�q
(2)
⌧

q
(1)
⌧

+ 2

Z q
(2)
⌧

q
(1)
⌧

"

✓

@p⌧
@E(⌧)

◆

q⌧ ,�f

@E(⌧)

@⌧
+

✓

@p⌧
@�f

◆

q⌧,E

d�f (⌧/T )

d⌧

#

dq⌧ , (3.3.9)

where the first term vanishes as p⌧ vanishes at the end points. Using eqs. (3.3.6) and
(3.3.8), we obtain

dIT (⌧)

d⌧
= 2

Z q
(2)
⌧

q
(1)
⌧

"

@E(⌧)

@⌧
�
✓

@H

@�f

◆

p⌧ ,q⌧

d�f (t/T )
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#

✓

@H

@p⌧

◆�1

q⌧ ,�f

dq⌧

=
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⌧

"

@E(⌧)

@⌧
�
✓

@H

@�f

◆

p⌧ ,q⌧

d�f (⌧/T )

d⌧

#

dt, (3.3.10)
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where we have used the Hamilton’s equation:
✓

@H

@p⌧

◆

q⌧ ,�f

=
@q⌧ (t)

@t
. (3.3.11)

We can replace the time variable t in eq.(3.3.2) by ⌧ , and substitute it into the above
equation:

dIT (⌧)

d⌧
=

Z ⌧+1/⌫⌧

⌧

h

✓

@H(p(⌧), q(⌧),�f (⌧/T ))

@�f (⌧/T )

◆

d�f (⌧/T )

d⌧

�
✓

@H(p⌧ (t), q⌧ (t),�f (⌧/T ))

@�f (⌧/T )

◆

d�f (⌧/T )

d⌧

i

dt. (3.3.12)

As ⌧ varies, the first term oscillates around some finite value. The second term is exactly
subtracts the finite value from the first term. Thus, by the integration of dIT /d⌧ over one
oscillation, the oscillation term vanishes in the limit of T ! 1, since in this limit, the
trajectories q and q⌧ become identical. Therefore, IT is conserved if �f changes su�ciently
slowly.

3.3.2 Adiabatic invariant (adiabatic charge) for a classical scalar field

In the previous sub-section, we have explained the conservation of the adiabatic invariant
I in the classical mechanical system. As for the classical field theory, there also exists a
conserved quantity, which we call as adiabatic charge, for a system that a scalar field is
oscillating quasi-periodically. We explain the conservation of the adiabatic charge. The
proof explained as bellow is based on [87].

We consider a real scalar field � with a Lagrangian:

L =
1

2
@µ�@

µ�� V (�,�f (t/T )), (3.3.13)

where �f (t/T ) is an external parameter as explained in the previous subsection. The
Hamiltonian is given by

H =
1

2
�̇2 +

1

2
(@i�)

2 + V (�,�f (t/T )), (3.3.14)

and the equation of motion is given by

�̈(x)� @2i �+ V 0(�,�f (t/T )) = 0. (3.3.15)

Using this equation of motion, we can write down a (non-)conservation law of the energy:

@µj
µ =

@V

@�f

d@�f (t/T )

dt
=
@H
@�f

d�f (t/T )

dt
, (3.3.16)

where the current density is given by

j0 = H, ji = ��̇(x)@i�(x). (3.3.17)
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The energy is not conserved because of the external parameter �f (t/T ). As is clear from
the derivation, spatial components of the current arises from the gradient term, which
is the crucial di↵erences from the case of the single degree of freedom in the classical
mechanical system.

For later use, let us rewrite the above equation as

@H
@t

� @i

✓

@�(x)

@t
@i�(x)

◆

=
@H
@�f

d�f (t/T )

dt
. (3.3.18)

One can define another energy density H̃ which di↵ers from H by a total spatial derivative
as

H̃ = H� 1

2
@i (�@i�) . (3.3.19)

For a vanishing surface term, the spatial integrals of H and H̃ are equal:

Z

d3xH =

Z

d3x H̃. (3.3.20)

Using H̃, we can rewrite eq. (3.3.18) as

@H̃
@t

� @i



1

2

⇣

�̇(x)@i�(x)� �(x)@i�̇(x)
⌘

�

=
@H

@�f

d�f (t/T )

dt
=
@H̃
@�f

d�f (t/T )

dt
. (3.3.21)

This equation will be important in the following argument.
We limit ourselves to the case in which the dynamics of the scalar field is approximately

periodic. In particular, we assume that, if �f (t/T ) is fixed to a constant value at t = ⌧ ,
the scalar dynamics is exactly periodic, and the scalar field has a solution in a separable
form,

�(x) = �(~x)f(t,�f (⌧/T )), (3.3.22)

where f(t,�f (t/T )) is a periodic function:

f(t,�f (⌧/T )) = f(t+ 1/⌫⌧ ,�f (⌧/T )). (3.3.23)

Here ⌫⌧ is the frequency of the scalar dynamics for �f = �f (⌧/T ), and the maximum
value of f(t,�(⌧/T )) is normalized to be unity. We emphasize here that such a periodic
motion is not guaranteed at all for a generic form of the potential, and the scalar potential
must be close to the quadratic one, as we shall see later in chap. 6. Here we do not
specify the form of the potential in order to include a case in which the scalar dynamics
can be approximated by the above separable form over a su�ciently long time scale of
interest. Most importantly, H̃ is a constant of motion for the separable solution (3.3.22)
with a constant �f = �f (t/T ), because �̇(x)@i�(x) = �(x)@i�̇(x) holds in this case (see
eq.(3.3.21)).

As the external parameter �f (t/T ) depends on time, the dynamics of the scalar field
is not strictly periodic. In particular, a significant amount of the energy can be trans-
ferred to other spatial points by scalar waves, in contrast to the case of one dynamical
degree of freedom in the classical mechanical system. For a constant �f , the trajectory of
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(�(x),⇡(x)) in the phase space is a closed one so that H̃ at each spatial point is a constant
of motion. Here ⇡(x) = �̇(x) is the canonical momentum of �(x).

Following the approach in the previous sub-section, we consider a hypothetical system
for one period of the motion from t = ⌧ to ⌧ +1/⌫⌧ , while the external parameter �f (t/T )
is fixed to the value at t = ⌧ , i.e., �f (t/T ) = �f (⌧/T ). We denote the trajectory of
(�(x),⇡(x)) in such a hypothetical system by (�⌧ (x),⇡⌧ (x)). As we mentioned, for the
separable form (3.3.22), H̃ is a constant of motion at each point,

H̃(⇡⌧ (x),�⌧ (x),�f (⌧/T )) = ⇢̃(⌧, ~x). (3.3.24)

Solving this equation for ⇡⌧ (x), we obtain

⇡⌧ = ⇡⌧ (�⌧ (x), ⇢̃(⌧, ~x),�f (⌧/T )). (3.3.25)

Thus, ⇡⌧ can be regarded as a function of �⌧ (x), ⇢̃(⌧, ~x) and �f (⌧/T ). The dependence of
the spatial derivative dose not a↵ect the following discussion. For later use, we di↵erentiate
eq. (3.3.24) with respect to ⇢̃ and �f :3
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= 1 (3.3.26)
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(3.3.27)
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⌘
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. (3.3.29)

In analogy with the argument in the classical mechanics, let us calculate the area in
the phase space surrounded by the trajectory at each spatial point:

J0

T (⌧, ~x) = 2

Z �
(2)
⌧

�
(1)
⌧

⇡⌧ (�⌧ (x), ⇢̃(⌧, ~x),�f (⌧/T ))d�⌧

=

Z ⌧+1/⌫⌧

⌧

⇣

�̇⌧ (t, ~x)
⌘

2

dt, (3.3.30)

where �(1)⌧ and �(2)⌧ are the two roots of ⇡⌧ = 0, and we assume �(1)⌧ < �
(2)

⌧ . Here we note
that x represents (t, ~x) not (⌧, ~x). Let us first di↵erentiate J0

T (⌧, ~x) with respect to ⌧ :
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#

d�⌧ , (3.3.31)

3With respect to ⇢̃ and �f , the partial derivative of H̃ is identical to that of H.
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where the first term vanishes as ⇡⌧ vanishes at the end points. Using eq. (3.3.27) and
(3.3.29), we can reduce the derivative to

@J0
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Z �
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⌧

�
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dt, (3.3.32)

where we have used the Hamilton’s equation:
✓

@H
@⇡⌧

◆

�⌧ ,�f

=
@�⌧ (x)

@t
(3.3.33)

in the second equality. Compared with the one in the classical system (3.3.10), so far,
there is no di↵erence in the form but for the extra label, ~x. The di↵erence comes from
that the energy is transferred to other spatial points by current. We replace the time
variable t in eq. (3.3.21) with ⌧ and substitute it into the above equation:
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, (3.3.34)

where it should be noted that the third integral over t is trivial and the integrand is
independent of t. Let us now define the spatial component of the adiabatic current as

J i
T (⌧, ~x) = � 1

2⌫⌧
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and then eq. (3.3.34) can be rewritten as
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In order to show the conservation of the adiabatic charge, let us integrate (3.3.35) over
one period from ⌧ = ⌧i to ⌧i + 1/⌫⌧i :
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(3.3.37)
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As we explained in the previous subsection, in the case of the single degree of freedom,
J0

T is conserved for the adiabatic change of �f , i.e., in the limit of T ! 1. In the case of
the field theory, we expect that the adiabatic current Jµ

T is also conserved in the limit of
T ! 1. This conservation is explained as bellow.

Now let us see that the above quantity approaches zero faster than O(1/T ) as T ! 1.
One can see that the RHS of the above equation contains a factor d�f (⌧/T )/d⌧ , which is
proportional to 1/T . In addition, as we shall see below, the first and second terms contain
an additional factor which oscillates fast about zero; the first integrand in the RHS is
independent of t, and it contains functions ⇡(⌧, ~x) and �(⌧, ~x), which oscillate fast as ⌧
varies. In general it oscillates fast about some finite value. The second integrand exactly
subtracts the finite value, as it is obtained by averaging the first term over one period.
(Note that, in the limit of T ! 1, the di↵erence between �(⇡) and �⌧ (⇡⌧ ) becomes
negligible.) Thus, when integrated over the period, the sum of the first and second terms
approaches zero faster than O(1/T ).

To summarize, we have proved that the adiabatic current is conserved,

@µJµ = 0 (3.3.38)

with

J0 ⌘ 2⇡

!
�̇2, J i ⌘ �⇡

!

⇣

�̇@i�� �@i�̇
⌘

, (3.3.39)

if the dynamics of the scalar field is periodic at each point, and if the external param-
eter varies su�ciently slowly. Here ! = 2⇡⌫ is the angular frequency, and the overline
represents the average over one period of the motion:

X(t) ⌘ ⌫

Z t+1/⌫

t
X(t0)dt0. (3.3.40)

Note that the spatial components of the adiabatic current are induced by the weak de-
viation from the separable form. This implies that the adiabatic charge is transferred to
other spatial points gradually as the external parameter varies adiabatically, which allows
the deformation of I-balls as we shall see later in chap. 6.

We define the adiabatic charge:

I ⌘ 1

2⇡

Z

dDxJ0 =

Z

dDx
�̇2

!
, (3.3.41)

where D denotes the spatial dimension, and the pre-factor 1/2⇡ is just a convention. For
a spatially localized configuration, the adiabatic charge is conserved:

I = const. (3.3.42)

as long as the external parameter changes su�ciently slowly with time.

3.4 Lowest energy state under the conservation of I

In the previous section 3.3, we have proved that, for an oscillating scalar field, the adiabatic
charge is conserved if �f changes slowly. If we consider the lowest energy state for a fixed
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value of the adiabatic charge, the configuration of the field becomes spatially localized one
for some class of potentials. In this section, we will derive a necessary condition for the
potentials to have the localized solution.

3.4.1 Necessary condition

In the proof of the conservation of the adiabatic charge, we have assumed the separable
form (3.3.22) for the field. As we show later in chap. 6, the form is satisfied for some class
of potentials that are dominated by a quadratic term with slight modulation by higher
terms

V =
m2

2
�2 + �V, (3.4.1)

where m is the mass of the field � and �V represents higher order terms. When �V is
absent, the field just oscillates with a frequency m. In this subsection, we explain the
condition for the modulation �V that the configuration of � becomes a localized one.

As the quadratic term dominates the potential, � oscillates with a frequency ! ' m.
Thus, we assume the oscillation by a separable form as

�(t, ~x) = �(t, ~x) cos(mt). (3.4.2)

As we explain later, the periodic oscillation of the field is established for the potential
mainly dominated by the quadratic term with a logarithmic correction. In this case,
� is a time-independent function. For potentials deviated from that, � has slight time
dependence as

|�̇|/�⌧ m. (3.4.3)

By the slight deviation from the separable form, the trajectory of the phase space would
not be closed, and there would occur a violation of the conservation of the adiabatic charge
at some amount. Noting that the adiabatic invariant in the classical mechanical system
is a well conserved quantity, and its variation is exponentially suppressed for a small
breaking of the adiabaticity [37]. Thus, it would be expected that the adiabatic charge is
conserved approximately even for the field theory. Here we assume that the conservation
is established, and its value is fixed to a value I.

We investigate the configuration of the field that the energy becomes the lowest one
for a fixed I. For the investigation, let us minimize the following energy Ē!̃ of the field
for the fixed I using a Lagrange multiplier:

E!̃ ⌘ E + !̃

✓

I �
Z

dDx
1

!
�̇2
◆

=

Z

dDx
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2

✓

1� 2
!̃

!

◆

�̇2 +
1

2
(r�)2 + V

�

+ !̃I. (3.4.4)

Here E is the energy of the field, !̃ is a multiplier, ! is the frequency of the oscillation,
which is estimated by the mass of the field, ! ' m and D is the dimension of space. As
I is a variable defined by the time average for one oscillation, we have used the time-
averaged energy. Since we have approximated the oscillation of the field by a harmonic
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function (3.4.2), the time average of polynomials of the field and its time derivative are
approximately given by

�n ' cn�
n, �̇2 ' !2

2
�2, (3.4.5)

where cn is real parameters:
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16
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�

. (3.4.6)

Substituting the time averages (3.4.5) into (3.4.4), E!̃ is written as
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Let us take a functional derivative of the above equation with respect to �:
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From the lowest energy condition �E!̃ = 0 for the above equation, we obtain the following
bounce equation for �:

r2�� !2
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1� 2
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◆

�� 2
@V

@�
= 0. (3.4.9)

Now we assume that the bounce solution is spherically symmetric, � = �(r), where r
is the radial coordinate. Then the Laplacian can be written as

r2 =
d2

dr2
+

D � 1

r

d

dr
. (3.4.10)

Thus, the di↵erential equation for � is reduced to
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r

d
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@�
U = 0, (3.4.11)

where
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�2. (3.4.12)

Since we have assumed that the potential is dominated by the quadratic term (3.4.1), the
potential U is written as

U = �2�V �


m2 +
!2

2

✓

1� 2
!̃

!

◆�

�2. (3.4.13)

Comparing the di↵erential eq. (3.4.11) to the equation of motion for a point particle, we
can regard r as like the time variable. By this identification, we can regard eq. (3.4.11)
as the evolution equation for � from r = 0 to 1 with a friction term (D � 1) d�/dr. In

61



order to evaluate the solution of this equation, we set boundary conditions at r = 0 and
1 as

8

>

<

>

:

d

dr
�(r = 0) = 0,

�(r = 1) = 0.

(3.4.14)

As the object that we are now investigating is radially symmetric, the gradient of the
field at the center vanishes, which is the first condition. As the object is the localized
one, amplitude at infinity should be zero, which is the second condition. Above boundary
conditions are satisfied for some shape of potentials, which is explained as follows. Since
we have assumed that the potential is dominated by the quadratic one around minimum,
the curvature of U near � ' 0 is determined by the quadratic one, and its sign is negative
as shown in fig. 3.13. On the other hand, far away from the minimum, the potential
is dominated by the higher term �V . The sign of �V is important whether the bounce
solution becomes a localized one or not. In the case that the sign of it is positive �V > 0,
U is not supported from the bellow as shown by the blue line in fig. 3.13. For this unstable
potential, the boundary condition (3.4.14) is not satisfied. On the other hand, in the case
that the sign of the higher term is negative �V < 0, U looks as shown by the red line
in fig. 3.13, and a bounce solution exists. Thus, from above arguments, we can obtain a
necessary condition for the potential to have the solution of the localized configuration,

�V < 0. (3.4.15)

This necessary condition is identical to the heuristically known condition that, the slightly
flatter potential is necessary for the formation of I-balls [23–25].
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Figure 3.13: The condition for the existence of I-ball. The red line corresponds to �V < 0,
and the blue one is for �V > 0.
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Chapter 4

The possibility of the formation of
I-balls in the R2 inflation

We have briefly reviewed the dynamics of the R2 inflation in sec. 2.5. A distinctive
feature of this model is that the dynamics of inflation is determined only by one additional
mass parameter M to the ones of the standard model. The interactions of the inflaton
with standard model particles are given by the gravitational ones, and their strength is
determined by the mass parameter. Thus, the mass parameter also determines the decay
rate of the inflaton uniquely. Therefore, if we can evaluate the decay rate, we can determine
the e-folding number at the pivot scale only by M , and then give the predictions of ns

and r uniquely, which can be tested by the future observations.
As we have reviewed in sec. 2.5, within the perturbative regime, the decay rate of the

inflaton is estimated as �
tot

' (N�/96⇡) (M/Mp)
2M [33–35]. Thus, the reheating tem-

perature of this inflation model is estimated as TR ' 0.4 (N�/96⇡)
1/2 (M/Mp)

p

MMp '
10�9Mp, and then the e-folding number is determined as Ne ' 54 + (1/3)TR/109GeV.
However, the formation of I-balls might change the above estimation of the decay rate.

After inflation, the inflaton of the R2 inflation coherently oscillates around the mini-
mum of the potential. As we have explained in sec. 3.1, fluctuations of the particles that
couple with the inflaton could be enhanced by the parametric resonance. By the reso-
nance, the fluctuations would grow exponentially, and then at some time, they start to
interact with other modes. As we have explained in sec. 3.2, by the non-linear dynamics
after the non-perturbative evolution of the fluctuations, the inflaton might lead to the
formation of I-balls. If I-balls are formed after inflation, the energy density of the inflaton
would localize at finite regions, and then the decay process of it would be changed. Thus,
to validate the estimation of the decay rate, we investigate the formation of I-balls.

It is heuristically known that the formation of I-balls could occur if the potential of
the field is flatter than the quadratic one. Indeed, the shape of the potential of the R2

inflation

V =
3

4
M2M2

p

h

1� exp
⇣

�
p

2/3�/Mp

⌘i

2

(4.0.1)

is flatter where the field value of the inflaton is larger than the Planck mass � & Mp,
and inflation occurs in this region. If fluctuations are su�ciently enhanced after the R2

inflation, there might occur the formation of I-balls. As explained in sec. 3.2, a necessary
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condition for the formation is heuristically obtained; the growth rate of fluctuations need
to exceed the Hubble expansion rate [66–68].

In this chapter, we investigate whether the inflaton of the R2 inflation forms I-balls
during reheating. In particular, we study the growth rate of fluctuations during reheating,
and compare it with the Hubble parameter. This chapter is based on the author’s work [88]
collaborated with Yuki Watanabe.

4.1 Instability (H = 0)

Just after inflation, the inflaton is coherently oscillating with small fluctuations. If a
su�cient growth of the fluctuations takes place, the I-balls may be formed. As we explained
in sec. 3.2, the growth rate should be larger than the Hubble expansion rate (Numerical
value is given by hµkM/Hi & 4� 5 in (3.2.19) and (3.2.27)). Thus, in order to investigate
the possibility of the formation of I-balls, we study the resonance structure of the potential.
First of all, to clarify the resonance structure, we consider the Minkowski space-time
(H = 0). In this space-time, we study the growth rate of the fluctuations numerically and
understand it analytically.

In the Minkowski space-time, the equation of motion for the inflaton field � is given
by

�̈(x, t)�r2�(x, t) + V 0(�) = 0. (4.1.1)

In order to study the stability of fluctuations, we divide �(x, t) into the background and
fluctuations as �(t, ~x) = �

0

(t) + ��(t, ~x), and then we obtain coupled equations as

�̈
0

+ V 0(�
0

) = 0, (4.1.2)

and
��̈k +

⇥

k2 + V 00(�
0

)
⇤

��k = 0, (4.1.3)

where

V 0(�) =

r

3

2
M2Mp



1� e
�
q

2
3
�

Mp

�

e
�
q

2
3
�

Mp , (4.1.4)

V 00(�) = M2



�1 + 2e
�
q

2
3
�

Mp

�

e
�
q

2
3
�

Mp . (4.1.5)

Here, we defined ��k by the Fourier mode of ��(t, ~x). Numerically solving above coupled
equations, we study the instabilities and understand them analytically by reducing the
equations to the Mathieu equation.

4.1.1 Numerical result

We assume that �
0

is oscillating with a constant amplitude �. In this case, we can see
that the frequency of ��k in (4.1.3) is periodically oscillating one !2

k = k2+V 00(�
0

). As we
explained in sec. 3.1, by this periodic oscillation of the frequency, the parametric resonance
occurs, and then fluctuations are enhanced at a particular resonance band. In order to
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investigate this resonance band, first we numerically solve the coupled equations (4.1.2)
and (4.1.3) with the method of the 4-th order Runge-Kutta.

We set the initial conditions for the background field as

�
0

(t
0

) = �, �̇
0

(t
0

) = 0. (4.1.6)

The field value of inflaton at the end of inflation is comparable with the Planck mass.
Thus, we performed simulations for the initial value of the amplitude around the Planck
mass: �/Mp = 2, 0.5, 0.1 and 0.01. Since eq. (4.1.3) is a linear equation with respect to
��, the ratio of the fluctuation at t to the one at the initial ��k(t)/��k(t0) is independent
on the initial amplitude. Thus, in order to know the resonance structure of the potential,
i.e., the growth rate of fluctuations, we set the initial amplitude by hands with a flat
spectrum as

��k(t0) = 10�5MpM
�3. (4.1.7)

We show the results of simulations in fig. 4.1, which show the time evolution of fluc-
tuations for di↵erent �. Each panel shows the power spectrum of ��k at four or five time
slices. From the figure we can see that, for � & 0.1Mp, fluctuations are amplified around
a particular scale k ⇠ 0.1 M , and for � . 0.01Mp, they are amplified around k ⇠ 0.01 M .
We find that the typical time scale of the amplification, if it happens, is larger than hundred
unit times �t & 100/M . Parametrizing this enhancement as ��k(t) = ��k(t0) exp(µkMt),
we can estimate the typical growth rate at the resonance band as

µk = ln (��k(t0 +�T )/��k(t0))
1

M�t
. 0.01.

(4.1.8)

Thus, in the Minkowski space-time, the growth rate of the R2 inflation’s potential is
typically smaller than 10�2. In the expanding Universe, the expansion would a↵ect the
resonance, and it is expected that by the dilution and red-shift, the growth rate would be
more suppressed.

4.1.2 Analytical understanding

The self-resonance of � can be understood analytically, based on the Mathieu equation as
we have reviewed in sec. 3.1.

Let us approximate the oscillation of the background field by the harmonic function
with a constant amplitude as

�
0

' � cos(Mt). (4.1.9)

In order to clarify the resonance band, we expand eq. (4.1.5) up to quadratic terms:

V 00 ' M2

"

1�
p
6
�

Mp
+

7

3

✓

�

Mp

◆

2

#

. (4.1.10)

By this expansion, the equation of motion for ��k is written as

��̈k + !2

k��k = 0, (4.1.11)
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Figure 4.1: Time evolution of fluctuations from t = 0 for each initial amplitude of the
background field �/Mp = 2, 0.5, 0.1 and 0.01. Each line is the snapshot of the spectrum of
the fluctuations at several time. The vertical axis ��k is the Fourier mode of the fluctuation
��(x), and the horizontal axis k is the corresponding momentum.
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where

!2

k = k2 +M2

"

1 +
7

6

✓

�

Mp

◆

2

#

�
p
6M2

�

Mp
cos(Mt) +

7

6
M2

✓

�

Mp

◆

2

cos(2Mt). (4.1.12)

For smaller �, the time dependence of the frequency (4.1.12) is dominated by cos (Mt),
while for larger �, it is also contributed by higher harmonics such as cos (2Mt). We
parametrize the contribution of the higher harmonic terms by defining the ratio of the two
coe�cients of cos(Mt) and cos(2Mt) as

↵r ⌘
7

6
p
6

�

Mp
. (4.1.13)

In order to clarify the resonance structure, we consider the contribution of the oscillating
terms respectively.

Resonance by cos(Mt) term

When ↵r . 1, the expansion of the potential makes sense. This condition corresponds to
� . 2Mp, and the lower harmonic term / cos(Mt) dominates the frequency:

!2

k ' k2 +M2

"

1 +
7

6

✓

�

Mp

◆

2

#

�
p
6M2

�

Mp
cos(Mt). (4.1.14)

With this time dependent frequency, the equation of motion is reduced to the Mathieu
equation as

d2

dz2
��k + [A

1k � 2q
1

cos(2z)] ��k = 0, (4.1.15)

where we rescaled the time variable as z ⌘ Mt. Here, the parameters q
1

and A
1k are given

by

q
1

⌘ 2
p
6
�

Mp
, (4.1.16)

A
1k ⌘ 4 + 4

✓

k

M

◆

2

+
7

36
q2
1

. (4.1.17)

As we explained in sec. 3.1, the solution of the Mathieu equation has growing mode solution
depending on the two parameters. In the case q

1

. 1, the narrow resonance occurs, and
the resonance band is estimated by the relation A

1k ' n2. In the case q
1

& 1, the broad
resonance occurs, and the resonance band is estimated by considering the parameters that
break the adiabatic condition |d!k/dt|/!2

k > 1.
First consider the broad resonance q

1

& 1, i.e., 0.2Mp . � . 2Mp. In this case, the
growth of fluctuations occurs when the adiabatic condition breaks down |d!k/dt|/!2

k > 1.
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Figure 4.2: Non-adiabatic condition triggered by the harmonic term / cos(Mt) for
the initial amplitude �/Mp = 2, 1, 0.5 and 0.1. The vertical axis is momentum. The
horizontal axis is the time variable which is defined as ✓ ⌘ Mt (modulo 2⇡). The curved
lines in the figure are the right hand side of the resonance condition (4.1.18) for di↵erent
�. The broad resonance occurs when each line locates over the k = 0 line.
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Substituting the frequency (4.1.14) into this condition, we obtain the instability band of
the broad resonance triggered by / cos(Mt) term as

✓

k

M

◆

2

<� 1� 7

6

✓

�

Mp

◆

2

+
p
6
�

Mp
cos(Mt) +

✓

3

2

◆

1
3
✓

�

Mp

◆

2
3

|sin(Mt)|
2
3 . (4.1.18)

Fluctuations whose momenta satisfy the above equation are enhanced by the broad reso-
nance. We numerically solved the right hand side of (4.1.18) and then plot the results in
fig. 4.2. In the figure, the region above k = 0 and bellow each line is the instability mode
for each �. Hence we can see that the broad resonance does not occur for � = 2Mp and
0.1Mp cases, but occurs for � = 0.5Mp and 1Mp for a resonance band. Thus, we expect
that the resonance for � = 2Mp and 0.1Mp observed in fig. 4.1 would be triggered by higher
harmonic terms or by the narrow resonance. On the other hand, for � = 0.5Mp case, we
can see that the resonance occurs for 0 < k < 0.47M , which explains the enhancement
shown in the upper right panel of fig. 4.1.

Next let us consider the narrow resonance q
1

. 1, i.e. � < 0.2Mp. For the narrow
resonance, the instability band is given up to numerical factors by

� qn . Ak � n2 . qn, (4.1.19)

where n is an integer. The band width of the narrow resonance shrinks as qn for larger
n, and the growth rate decreases. Thus, the resonance at lower bands is more important.
Since now there is no real solution for n = 1 and Ak = A

1k, the second band is most
important. In this case, the condition (4.1.19) can be given more precisely by (Sec. 20.2.25
of [69])

� 1

12
q2 < Ak � 4 <

5

12
q2. (4.1.20)

Thus the instability at the 2nd band for q = q
1

and Ak = A
1k is given by

0  k

M
<

1

3
p
2
q
1

. (4.1.21)

The condition for the narrow resonance shows that, for � = 0.1Mp and 10�2Mp, insta-
bilities occur within 0  k/M < 1/(5

p
3) ⇡ 0.115 and 0  k/M < 1/(50

p
3) ⇡ 0.0115,

respectively. This explains the enhancement of fluctuations for � = 0.1Mp and 10�2Mp

shown in the bottom two panels of fig. 4.1.

Resonance by cos(2Mt) term

Next, we consider the e↵ect of the higher harmonic term / cos(2Mt) in the frequency
!k (4.1.12). When ↵r & 1, higher order terms of the potential a↵ects the dynamics of
the fluctuations and would change the structure of the resonance. To see the e↵ect of the
higher terms, as a reference, we consider the e↵ect of the cos(2Mt) term.

In order to clarify the e↵ect of cos(2Mt) term, we neglect cos(Mt) term in the fre-
quency:

!2

k ' k2 +M2

"

1 +
7

6

✓

�

Mp

◆

2

#

+
7

6
M2

✓

�

Mp

◆

2

cos(2Mt). (4.1.22)
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For this approximation, we can reduce the equation of motion for ��k to the Mathieu
equation:

d2

dz2
��k + [A

2k � 2q
2

cos(2z)] ��k = 0. (4.1.23)

Here, the parameters q
2

and A
2k are given by

q
2

⌘ 7

12

✓

�

Mp

◆

2

, (4.1.24)

A
2k ⌘ 1 +

✓

k

M

◆

2

+ 2q
2

. (4.1.25)

Substituting the frequency (4.1.22) into the non-adiabatic condition |d!/dt|/!2 > 1,
we obtain the instability band of the broad resonance triggered by / cos(2Mt) as

✓

k

M

◆

2

<� 1� 7

6

✓

�

Mp

◆

2

[1 + cos(2Mt)] +
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7
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2
3
✓

�

Mp

◆

4
3

|sin(2Mt)|
2
3 . (4.1.26)

Fluctuations whose momenta satisfy the above condition (4.1.26) exponentially grow. We
have numerically solved the right hand side of (4.1.26) for �/Mp = 2, 1 and 10 and then
plot the result in fig. 4.3. Instabilities occur if the lines lie above zero for some time. For
� = 2Mp, the broad resonance is induced within 0  k < 0.37M . These k-modes explain
the enhancement of fluctuations for � = 2Mp shown in the upper left panel of fig. 4.1.
We have also studied the instability band for � = 10Mp. The result of the simulation in
fig. 4.3 shows the breakdown of the adiabatic condition for 0  k < 2.2M . For this case,
amplitude of the higher terms are comparable to the lowest one / cos(Mt). Thus, we can
expect that the broad resonance e↵ects would be achieved by the multi higher harmonic
terms / cos(nMt). This multi resonance bands can be seen by the numerical simulations
shown in fig. 4.4.

In this section, we have investigated the resonance structure of the R2 inflation’s poten-
tial in the Minkowski space-time. We have found that the narrow and broad parametric
resonances are induced by the oscillation of the background field with self-interactions
(4.1.12). For smaller amplitude of the background field � < 0.2Mp, fluctuations are
enhanced by the narrow resonance at 2nd band. On the other hand, for larger ampli-
tude � & 0.2Mp, the enhancement is induced by the broad resonance. In the case of
� < 2Mp, this broad resonance is achieved by a harmonic term cos(Mt) in the frequency.
For � > 2Mp, the resonance is triggered by multi harmonic terms in the potential, and
then the enhancement occurs at multi resonance modes.

We have investigated the enhancement of fluctuations of the inflaton in the Minkowski
space-time. In order to investigate the formation of I-balls, next, we study the growth
rate in the expanding Universe, i.e., during reheating. In the expanding Universe, the
redshift of the momenta of fluctuations would change the structure of the resonance, and
the Hubble expansion would dilute fluctuations. In order to study these e↵ects, again we
perform calculations numerically and understand the results analytically.
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Figure 4.3: Non-adiabatic condition triggered by the higher harmonic term / cos(2Mt)
for initial amplitude �/Mp = 10, 2 and 1. The vertical axis is momentum. The horizontal
axis is the time variable which is defined as ✓ ⌘ Mt (modulo 2⇡). The curved lines are the
right hand side of the resonance condition (4.1.26) for di↵erent �. The broad resonance
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4.2 Instability (H 6= 0)

So far, we have ignored the Hubble expansion, which triggers the redshift of momentum
and dilutes fluctuations. Structures of the parametric resonance would be a↵ected by the
Hubble expansion. Thus, in this section, we investigate the enhancement of fluctuations
including the e↵ect of the expansion.

4.2.1 Rigid Friedmann background

Let us consider the FRW metric. For this metric, the equation of motion for the inflaton
is given by

�̈+ 3H�̇� r2

a2
�+ V 0(�) = 0. (4.2.1)

Just after inflation, the Universe is dominated by the inflaton, and the Hubble parameter
is dominantly determined by the energy density of the inflaton as

H2 =
1

3M2

p

✓

1

2
�̇2 + V (�)

◆

. (4.2.2)

To investigate the structure of the resonance, we divide � into the background and fluc-
tuations as �(x, t) = �

0

(t) + ��(x, t), and we write the equation as

�̈
0

+ 3H�̇
0

+ V 0(�
0

) = 0, (4.2.3)

��̈k + 3H��̇k +
k2

a2
��k + V 00(�

0

)��k = 0. (4.2.4)

Here we evaluate the Hubble parameter approximately by the background field as H2 '
[�̇2

0

/2 + V (�
0

)]/(3M2

p ). We denote the time when inflation ends by te. This time is
estimated by the breaking of the slow-roll condition, which is determined by that the
slow-roll parameter becomes unity ✏V = 1, which gives �

0

(te) = 0.94Mp.
In the previous section, we have found that the growth rate of the inflaton in the

Minkowski space-time is typically µk . 10�2 if the background field is oscillating with a
amplitude of the Planck mass. Thus, for the significant growth of fluctuations, it takes
more than hundred unit times �t & 100 /M . In the expanding Universe, the expansion
would suppress the growth of fluctuations. Due to the expansion, the amplitude of the
background field damps as �

0

/ a�3/2 / t�1. By this damping, the amplitude of the
background �

0

becomes too small to induce the growth of the fluctuations after a hun-
dred unit times or a few tens of oscillations: �

0

(te + �t) ⇡ 0.94Mp/100 ⇠ O(10�2)Mp.
Therefore, the enhancement by the parametric resonance would not be e�cient after the
R2 inflation.

We have studied the evolution of the background field and fluctuations, numerically
solving the equations (4.2.3) and (4.2.4). The result of the simulation for the evolution of
the amplitude of the background is shown in fig. 4.5. The initial value of the field is set
to �

0

(t
ini

) = 1Mp. The amplitude of �
0

is indeed decreasing as t�1. From this figure, we
can see that inflation ends at t ⇡ 4/M and �

0

⇡ 0.9Mp, and that �
0

⇠ O(10�2)Mp after
a hundred unit times t ⇠ 100/M as was expected.
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Figure 4.6 shows the time evolution of fluctuations ��k for comoving wave numbers k
from 2⇡⇥10�2M to 2⇡⇥10M . This simulation covers resonance bands studied in fig. 4.1.
Since the eq. (4.2.4) is a linear one for the fluctuation, the growth rate of that to the initial
one ��k(t)/��k(t0) is independent of the initial value. In order to investigate the structure
of the growth rate µk in the expanding Universe, we set the initial value by a flat spectrum
as ��k = 10�5M�3Mp for every k-mode. From the result of the simulation, we can see
that fluctuations are indeed decreased by the expansion of the Universe. This means that
the growth rate in the expanding Universe is smaller than the Hubble expansion rate as
µkM/H < 1. By using lattice simulations [66–68], the heuristic condition for the su�cient
production of I-balls in the expanding Universe is investigated, and it is shown that for
the formation the amplitude of fluctuations need to grow as robustly hµkM/Hi > 3/2
as explained in sec. 3.2. (Numerical value is given by hµkM/Hi ' 4 � 5 in (3.2.19) and
(3.2.27)). Following this heuristic condition, we can see that the enhancement of the
fluctuations for the R2 inflation is not su�cient to produce I-balls.
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4.2.2 Metric preheating

As we have explained in sec. 2.3, the evolution of fluctuations is correlated with the metric
perturbation by the Einstein equation. We have neglected this e↵ect in the previous
subsection. In order to include this e↵ect, we construct gauge invariant variables or choose
some specific gauge. The comoving gauge curvature perturbation Rc (2.3.10) is one of the
gauge invariant variables. This gauge invariant variable becomes time independent after
the exit of the horizon. After the re-enter of the horizon, it gives the initial fluctuations of
the relativistic fluids. By theoretically calculating Rc and constraining it observationally,
we can test inflation models. However, it is not useful to calculate this variable within
the horizon during reheating because, since by the oscillation of inflaton Rc has a singular
behavior as seen by (2.3.13):

Rc ⌘
H

�̇
�� g . (4.2.5)

Thus Rc becomes ill-defined. In order to avoid this di�culty, we use the Sasaki-Mukanov
variable [50] and then can avoid the singular behavior [89–94]. As we have shown in
(2.3.29), at the flat gauge  g = 0, the Sasaki-Mukanov equation is given by

��̈ g + 3H��̇ g +



k2

a2
+ V 00(�

0

) +�F

�

�� g = 0. (4.2.6)

Here we denote the back-reaction from the metric perturbations by �F as

�F ⌘
˙2�
0

M2

pH
V 0(�

0

) +
�̇2
0

M4

pH
2

V (�
0

). (4.2.7)

We have numerically integrated the coupled eqs. (4.2.3) and (4.2.6). Initial conditions
for the background and fluctuations are set to the same values as in the subsection 4.2.1.
In fig. 4.7, we show the evolution of fluctuations from t = 0 to 104/M for comoving
momentum between k = 2⇡ ⇥ 10�2M and 2⇡ ⇥ 10M . From this figure, we can see
that the fluctuations damp for larger momenta due to the Hubble expansion. For smaller
momenta, on the other hand, we find the growth of the fluctuations. The instability occurs
near the horizon scale k ⇠ 1M . This enhancement is explained as following. Just after
the end of inflation, the enhancement is achieved by the breakdown of slow-roll. Slowly
rolling inflaton suddenly starts to oscillates, and then by this rapid change of the velocity,
fluctuations with low momenta are enhanced slightly, but this enhancement occurs just
at the end of inflation only once. After inflation, the growth is balanced with the Hubble
expansion. This result agrees with the previous works [91–94], in which the evolution of
the Sasaki-Mukhanov variable for momentum bellow the horizon sale is calculated during
reheating with a quadratic potential.

In fig. 4.7, one may notice that there is a decrease of fluctuations at low momenta k .
M at t = 100/M . This damping is caused simply by the phase dependence of fluctuations
��k ⇡ fk(t) cos(!kt) with !k =

p
k2 +M2, where the amplitude fk(t) is constant in time.

(This phase dependence can be found also in figs. 4.1, 4.4 and 4.6.) In order to remove
this phase dependence, we plot a phase independent variable given by

Nk =
!k

2

 

|��̇k|2
!2

k

+ |��k|2
!

. (4.2.8)
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Figure 4.7: Time evolution of fluctuations from t = 0 to t = 104/M with the Sasaki-
Mukhanov equation. Each line is the snapshot of the spectrum of fluctuations at Mt =
0, 10, 102, 103 and 104. The vertical axis ��k is the Fourier mode of the fluctuation ��(x),
and the horizontal axis k is the corresponding momentum.
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Figure 4.8: Time evolution of Nk from t = 0 to 104/M . Each line is the snapshot of the
spectrum of Nk at Mt = 0, 10, 102, 103 and 104. The horizontal axis k is the comoving
momentum corresponding to each Nk.

Time evolution of this variable is shown in fig. 4.8. The phase independent variable jumps
to Nk ' 5M�5M2

p at the first half oscillation and stays constant afterward for k . M .

4.2.3 Analytical understanding

We have numerically found that the metric preheating occurs for the R2 inflation for
k . M . The growth rate is balanced with the Hubble expansion rate. This balance and
resonance band are understood as following.

We can approximately solve the equation of motion (4.2.3) for the background �
0

as

�
0

(t) ' �
0

(t
ini

)
⇣a

ini

a

⌘

3
2
sin (Mt), (4.2.9)

which is consistent with fig. 4.5. Substituting this solution into the frequency of ��k, we
find

!2

k ' k2

a2
+M2

 

1�
p
6
�
0

Mp
+

2�̇
0

�
0

HM2

p

!

. (4.2.10)
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Here we have neglected the decaying terms faster than a�3, while the last two terms
decay as a�3/2. If the origin of the instability is the parametric resonance by the two
terms, we can treat each term independently and then can take the linear combination.
We first analyze the last term !2

k ' k2/a2 + M2 + 2�̇
0

�
0

M2/(HM2

p ), which is from the

back-reaction of the metric. We rescale the field value and time variable as �'k ⌘ a3/2��k
and z ⌘ Mt � ⇡/4. By this rescaling, we can remove the Hubble friction term from the
equation of motion as

d2

dz2
'k + [A

3k � 2q
3

cos(2z)] �'k = 0, (4.2.11)

where we have neglected the term decaying faster than a�3. Here q
3

and A
3k are given by

q
3

⌘ a3
ini

�2
0

(t
ini

)M

2a3HM2

p

, (4.2.12)

A
3k ⌘ 1 +

k2

a2M2

. (4.2.13)

Eq. (4.2.11) is the Mathieu equation, and the structure of the resonance is determined by
the parameters q

3

and A
3k. At the initial time, q

3

' 1. Thus, in this case, the narrow
resonance occurs for

0  k

M
. a

ini

H
ini

r

3a
ini

aHM
, (4.2.14)

where we have used 3M2

pH
2

ini

' M2�2
0

(t
ini

)/2. Hence, the first band of the instability

starts from k . a
ini

p
3H

ini

M at t = t
ini

and broadens as a1/4. Since, in the 1st band of
the narrow resonance, the growth rate is given by µ = q

3

/2, the fluctuations in the band
grow as

�'k / exp

✓

Z

q
3

2
dz

◆

= exp

✓

a3
ini

�2
0

(t
ini

)M2

2M2

p

Z

dt

a3H

◆

' exp

✓

3

2

Z

da

a

◆

. (4.2.15)

Therefore, ��k in the resonance band stays constant as ��k = a�3/2�'k = constant, which
accounts for fluctuations at lower momenta in figs. 4.7 and 4.8.

Note that there exists the following second band

3a2 � 3a6
ini

H4

ini

4a4H2M2

. k2

M2

. 3a2 +
15a6

ini

H4

ini

4a4H2M2

, (4.2.16)

the width of which narrows as a�1, and disappears quickly.
Next let us consider the second-to-last term in the frequency (4.2.10), which is from self-

interactions of the inflaton. This case corresponds to sub-sec. 4.2.1, and !2

k ' k2/a2+M2�p
6�

0

M2/Mp. For this term, we rescale variables as �'k ⌘ a3/2��k and 2z ⌘ Mt � ⇡/2,
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and then reduce the equation of motion (4.2.6) to the Mathieu equation with

q
4

⌘ 2
p
6
�
0

(t
ini

)a3/2
ini

Mpa3/2
, (4.2.17)

A
4k ⌘ 4 +

4k2

a2M2

. (4.2.18)

Although q
4

= 4
p
6 > 1 at t = t

ini

, it becomes smaller than unity within a few e-folds of
the expansion as q

4

/ a�3/2. The first band of the narrow resonance is given by

k2

M2

< �3

4
a2 +

p
6�

0

(t
ini

)a3/2
ini

p
a

2Mp
, (4.2.19)

which closes rapidly as / a2. The second band is given by

k2

M2

<
5�2

0

(t
ini

)a3
ini

2M2

pa
, (4.2.20)

which narrows as / a�1. In sec. 4.1, we have learned that it takes t & 103/M for in-
stabilities to grow at the second band; the value of q

4

is too small before this time. In
fact, we have confirmed that there is no instability in fig. 4.5 by using a variable a3/2��k
that counteracts the e↵ect of the Hubble expansion. Thus, the resonance band closes, and
fluctuations stop growing long before the growth overcomes the Hubble damping.

We have confirmed the origin of the resonance, which is the narrow resonance at
the first band induced by the last term of the frequency in (4.2.10) with q

3

. Using this
parameter, we can calculate the ratio of the growth rate to the Hubble expansion rate as

µkM

H
' 1

2

q
3

H
' 1

2

�
0

(t
ini

)2M2

(a/ai)3H2M2

p

' 3

2
= 1.5, (4.2.21)

where we have used relation for the initial condition as 3H2

i M
2

p ' M2�
0

(t
ini

)2/2. This ratio
means that the fluctuations do not increase nor decrease. As explained in sec. 3.2, for the
formation of I-balls, fluctuations need to grow (Numerical value is given by hµkM/Hi &
4 � 5 in (3.2.19) and (3.2.27)). Thus, we can see that the formation of I-balls does not
occur for the R2 inflation even including the back reaction of the metric.

Here we note about the spectrum. In figs. 4.6 and 4.7, there are intermediate regions
of blue spectra with |��k|2 / k for k & M . For su�ciently higher k, the spectra are
flat (not shown for t = 103/M and 104/M). The appearance of the blue spectra can
simply be understood by the time evolution of ��k in the absence of interactions. For
k > aM , eq. (4.2.6) is approximated by �̈�k + 3H ˙��k + (k/a)2��k ' 0, the solution of
which is ��k / a�1; while for k < aM , �̈�k + 3H ˙��k +M2��k ' 0, the solution of which
is ��k / a�3/2. Since physical momentum k/a is red-shifted by the Hubble expansion,
more fluctuations become “heavy” and decay relatively faster as time passes. Thus, the
flat spectrum develops to the blue one for k < aM .
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4.3 Possibility of the I-ball formation

Heuristically it is known that, for some class of potentials that are flatter than the
quadratic one, there may occur the formation of I-balls. The potential of the R2 inflation
is indeed the flatter one, and inflation is achieved where the curvature of the potential
is negative. Thus, there is a possibility that the inflaton of the R2 inflation would form
I-balls after inflation, and they dominate the Universe.

The conditions for the production of I-balls were investigated by numerical simulations
in the previous studies. Especially, in the expanding Universe, a heuristic condition for
the growth rate of fluctuations were studied in [66–68], and then it is shown that for the
formation, amplitude of fluctuations need to grow as hµkM/Hi > 3/2 (Numerical value
is given by hµkM/Hi & 4� 5 in (3.2.19) and (3.2.27)). We have studied whether the R2

inflation satisfies this condition.
In sec. 4.1, we have investigated the evolution of fluctuations of the inflaton in the

Minkowski space-time. Then, we have numerically shown that the enhancement of the
fluctuations occurs, and analytically understood that the resonance is induced by the
parametric resonance. The mechanism of the resonance is classified by the amplitude of
the background field �. In the case � < 0.2Mp, the narrow resonance at the second band
occurs for the momenta 0  k < 2M�/(

p
3Mp) (4.1.21). In the case � > 0.2Mp, the broad

resonance occurs for the momenta with eq. (4.1.18) (� . 2Mp) and for the momenta with
eq. (4.1.26) (� & 2Mp).

Then, we have investigated the growth of fluctuations in the expanding Universe,
especially during reheating. As we can see from the Einstein equation, the evolution of
the fluctuations of the field is correlated with those of the metric. First, we have neglected
the e↵ect of the metric. Then, in sec. 4.2, we have shown that the e↵ect of the Hubble
expansion makes the parametric resonance ine↵ective. This is because, before the su�cient
growth of the fluctuations, the background of the field damps by the expansion, and its
expansion also dilutes the fluctuations. Thus, as the fluctuations do not grow, I-balls are
not formed.

Next, we investigated the evolution including the e↵ect of fluctuations of the metric.
Then, we have found that the metric preheating happens by the narrow resonance in the
first band 0  k . a

ini

H
ini

<
p

3a
ini

M/(aH). For this metric preheating, the growth rate
of the fluctuations is balanced with the Hubble parameter µkM/H ' 1.5. Thus, we can
see that, even included the e↵ect of the fluctuations of the metric, there does not occur
the su�cient growth of the fluctuations, and the su�cient production of I-balls for the R2

inflation does not take place. Therefore, the original predictions of the R2 inflation for the
decay rate of the inflaton is held, and the cosmological scenario is unchanged.
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Chapter 5

Formation of I-balls for a
logarithmic potential

We move to the investigation of the production of I-balls for a more general case. Including
the inflaton, a scalar field may have interactions with other particles, and then the potential
would be corrected so that it becomes flatter than the quadratic one. For instances, in
supersymmetric (SUSY) theories, when the breaking of SUSY takes place by the gauge
mediation [95], the potential becomes a logarithmic one. In this case, if the scalar field
has a U(1) charge, its fluctuations are amplified for the phase direction leading to the
fragmentation of the field into Q-balls [96, 97]. However, if the phase direction has a
large mass for some reasons, and the motion of the scalar field is restricted in the radial
direction, I-balls may be produced. Furthermore, another class of logarithmic potentials
appears in more general situations, especially during reheating. After inflation, the decay
of the inflaton produces a thermal bath. If a scalar field interacts with the thermal plasma,
its potential has a thermal log correction V

th

' T 4 ln(�2/T 2) [31].

If there really occurs the formation of I-balls for the logarithmic potentials, the forma-
tion would a↵ect the decay process of scalar fields in various scenarios such as the curvaton
scenario [10–12] and non-thermal leptogenesis scenario [15, 16, 98]. Thus, in order to de-
termine the cosmological scenario correctly, we study whether there occurs the production
of I-balls. In this study, to clarify the nature of the logarithmic potential, we consider the
following simple potential V = M2⇤2 ln

⇥

1 + �2/⇤2

⇤

.

Apart from the cosmological motivation, this logarithmic potential is attractive for the
understanding of the formation of I-balls. The potentials which leading to the production
of I-balls in the previous studies [23–25, 67, 68, 99], are quasi-quadratic ones where the
polynomial terms are added to the quadratic potential, and the formation occurs when
the field value damps so that the quadratic term dominates. As shown later in chap. 6,
the separable form of the field, which is assumed for the proof of the conservation of the
adiabatic charge, is achieved for the potential that is dominated by the quadratic one.
Thus, if the adiabatic charge is crucial for the stability of I-balls, the quadratic term is
important. For the case of the logarithmic potential, we can not simply write the potential
as polynomials for larger field value, which is infinite series of higher order polynomials.
Thus, by investigating the formation of I-balls for the logarithmic potential, we may clarify
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some role of the quadratic term.
First, we confirm the production of I-balls performing lattice simulations. Next, we

study the structure of the resonance for the logarithmic potential. Then, we analytically
estimate the nature of I-balls based on the adiabatic charge. This chapter is based on the
work with Masahiro Kawasaki [100].

5.1 Simulation

First, we investigate the formation of I-balls for a scalar field � with a logarithmic potential
given by

V = M2⇤2 ln



1 +
�2

⇤2

�

, (5.1.1)

performing lattice simulations. Here M is the mass of the field, and ⇤ is a constant of
mass dimension (D� 1)/2. We perform lattice simulations in the space of D = 1 in order
to follow the dynamics of the scalar field for a su�ciently long time. In the cosmic time,
the equation of motion for � is given by 1

�̈+DH�̇� r2

a2
�+ V 0(�) = 0. (5.1.2)

In the simulations, we solve the equation of motion in the conformal time d⌧ = dt/a. In
the case of D = 1, the equation of motion is written as

d2

d⌧2
��r2�+ a2V 0(�) = 0. (5.1.3)

Note that, in this dimension, � and ⇤ are dimensionless. Here we suppose that the Universe
expands as like the matter dominated one.2 In this case, the scale factor is given by

a

a
0

=

✓

⌧

⌧
0

◆

2

, (5.1.4)

where a
0

and ⌧
0

are the initial values of a and ⌧ . The relation between the cosmic time t
and the conformal time ⌧ is given by

t = t
0

+
⌧
0

3

"

✓

⌧

⌧
0

◆

3

� 1

#

(5.1.5)

=
⌧
0

3

"

✓

⌧

⌧
0

◆

3

+ 2

#

, (5.1.6)

1Here we note that for D = 1 and 2 cases, the Hubble friction term is hypothetical one.
2The time dependence of the scale factor we have adopted is for the case that the Universe is dominated

by non-relativistic particles for D = 3 and it is ad hoc for D = 1. We include the Hubble expansion in
order to see stable I-balls in the simulation. Without the expansion, I-balls collides each other frequently
and are destroyed in the simulation for D = 1. The expansion dilutes the I-balls and avoids unwanted
collisions. So the precise time dependence of the scale factor is not important. To confirm this, we have
performed the simulations for the scale factor to evolve as relativistic particles dominate the Universe and
found that the result is not changed.
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where we have set the initial value of t equal to that of ⌧ as t
0

= ⌧
0

. The Hubble parameter
is given by

H = 2
⌧2
0

⌧3
. (5.1.7)

We set the initial value of H
0

equal to the mass of the field as H
0

= M . Thus, the initial
value ⌧

0

is given by

⌧
0

=
2

M
. (5.1.8)

We investigate whether the production of I-balls occurs for the coherently oscillating
scalar field. Thus, we set the initial conditions of the filed by nearly homogeneous �

0

with
small fluctuations ��

0

as
�(⌧

0

, x) = �
0

+ ��
0

(x),

d�

d⌧
(⌧

0

, x) = 0.
(5.1.9)

We perform simulations for several initial values of the homogeneous mode as �
0

/⇤ =
10�1, 1, 10 and 102. We set the initial fluctuations ��

0

(x) at each lattice grids by random
variables which follow the Gaussian probability function P (��(x)) given by

P (��(x)) =
1p
2⇡�2

exp

✓

���(x)
2

2�2

◆

, (5.1.10)

where � is the variance set to 10�5⇤.
Now let us present the result of simulations in fig. 5.1. In the simulation, the initial

amplitude of the background field is set to �
0

= ⇤. This figure shows the snap shots of
the spatial distribution of the energy density

⇢ =
1

2
�̇2 +

1

2a2
(r�)2 + V (5.1.11)

=
1

a2

"

1

2

✓

d�

d⌧

◆

2

+
1

2
(r�)2

#

+ V (5.1.12)

at Mt = 0, 4⇥ 103, 4⇥ 104 and 4⇥ 105. In this simulation, we set the box size L and grid
number N to (L, N) = (5/M, 32768), which gives the comoving spatial resolution �x =
1.5⇥10�4/M , and physical spatial resolution at the end of the simulation�x

phy,e = 2.0/M .
From the figure, we can see that first ⇢ decreases by the Hubble expansion. At the same
time, the fluctuations are enhanced. Then, after �t ' 104/M , the fluctuations of the field
start to fragment into I-balls. By this simulation, the formation of I-balls is confirmed
for the logarithmic potential, which occurs after the enhancement of fluctuations. The
formation of I-balls also takes place for other initial values �

0

/⇤ = 0.3, 10 and 100. The
results of the simulations are summarized in fig. 5.2. The panels in the figure show the
snap shot of the spatial distribution of the energy density after the formation of I-balls for
each �

0

. The box size, grid number and the spatial resolution are summarized in Table 5.1.
The time step is set to be �⌧/�x < 1/5. In Appendix B, we have studied the dependence
of the results on the spatial resolution for a reference value �

0

/⇤ = 10. Furthermore, in
Appendix C, we have investigated the finite box e↵ect on the formation process.
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�
0

/⇤ 0.3 1 10 100
M�t

max

107 106 104 105

ML 5 5 1 0.1
N 65032 32768 1024 256

M�x 7.7⇥ 10�5 1.5⇥ 10�4 9.8⇥ 10�4 3.9⇥ 10�4

M�x
phy,e 4.6 2.0 5.5⇥ 10�1 1.1

Table 5.1: The numerical values of the parameters and spatial resolutions for the simu-
lations of �

0

/⇤ = 0.3, 10 and 102.

From the distributions shown in fig. 5.2, we have determined the typical amplitude of
I-balls for each �

0

. As the field is oscillating within I-balls, it has a phase dependence.
In order to remove the phase dependence, we used a relation between the energy density
⇢(r = 0) and amplitude �(r = 0) at the center of an I-ball r = 0:

⇢(r = 0) =
1

2
�̇2 + V = V (�). (5.1.13)

To confirm the formation time of I-balls, we define a quantity

E
over

⌘ a

Z

dx ⇢ ✓ (⇢� 2 h⇢i) (5.1.14)

' a
L

N

N
X

i

⇢ ✓ (⇢� 2 h⇢i) , (5.1.15)

where ✓ is the heaviside function, and h⇢i is the total average of the energy density.
Dividing this quantity by L, we obtain the density of E

over

as

✏
over

=
E

over

L
(5.1.16)

= a
1

N

N
X

i

⇢ ✓ (⇢� 2 h⇢i) . (5.1.17)

We are now considering the situation that the initial energy density is homogeneous. Thus,
at the initial time, the deviation of the energy density from the average is small, and hence
✏
over

is nearly zero. After some oscillations of the field, fluctuations are expected to be
enhanced by the parametric resonance. Then, ⇢ exceeds h⇢i at some regions, and hence
✏
over

increases. Through the enhancement of the fluctuations, the field would fragment
and form I-balls. After the completion of the formation, the evolution of the amplitude
in I-balls decouples from the Hubble expansion, and the comoving energy density of them
becomes constant. Therefore, after the completion of the formation of I-balls, ✏

over

takes
a constant value. We show the time evolution of this variable for �

0

= 10⇤ in fig. 5.3. We

86



can see that ✏
over

becomes constant at t ' 103/M , which is the time that the formation
of I-balls are completed as explained. We summarize the order of magnitude estimation
of the formation time �T and the typical amplitude �(0) for each initial value �

0

in
Table 5.2.

�
0

[⇤] 0.3 1 10 100
�T [1/M ] 106 105 103 104

�(0) [⇤] 10�3 10�1 1 1

Table 5.2: Typical values of formation time �T and I-ball amplitude �(0) for each initial
value �

0

.

From the simulations, it seems that the quadratic term is important for the formation
of I-balls. For the logarithmic potential (5.1.1), the inflection point is � = ⇤. The deviation
from the quadratic potential becomes significant beyond this point. Table 5.2 shows that,
the formation of I-balls occurs even for the larger initial amplitude than the inflection
point: �

0

� ⇤.3 On the other hand, the table also shows that I-balls are formed with the
amplitude � . ⇤ even for the larger initial amplitude. In the case of �

0

� ⇤, although
the enhancement of fluctuations starts even at the larger value of the background field
than the inflection point & ⇤, the formation of I-balls is completed when the amplitude
drops to O(⇤) due to the Hubble expansion. In previously known cases, I-balls are formed
with quasi-quadratic potentials. For the case of the logarithmic potential, I-balls are also
formed, and the formation occurs when the scalar field oscillates in the region where the
potential is approximately given by a quadratic form, which results in �(0)/⇤  1 as seen
in Table 5.2. This fact that I-balls are formed when the quadratic term is dominant is
consistent with the idea that the adiabatic charge is crucial in the formation of I-balls.

In addition, we see that the time scale of the formation of I-balls becomes shorter as
�
0

is larger up to �
0

< 10⇤, but becomes longer as �
0

> 10⇤. This amplitude depen-
dence is related to the growth rate of the fluctuations. In the logarithmic potential, the
amplification of the fluctuations per one oscillation becomes larger as the amplitude is
larger, but the period of a single oscillation becomes longer for larger amplitude than ⇤.
As a consequence, the growth rate in unit time of 1/M becomes larger as the amplitude
is larger up to �

0

. 10⇤, but becomes smaller for �
0

& 10⇤, which leads to the amplitude
dependence of the time scale of the formation.

5.2 Structure of the resonance

We have shown that the formation of I-balls occurs for the logarithmic potential, and it
does after the growth of fluctuations. It is expected that the growth would be induced
by the parametric resonance. In this section, we clarify the structure of resonance for the
logarithmic potential.

3Note, in space of D = 1, ⇤ is a dimension less parameter. We set it unity for simplicity.
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Figure 5.1: Snap shots of the spatial distribution of the energy density ⇢ at Mt = 2(=
Mt

0

), 5⇥103, 105 and 106, respectively from the top left panel to the bottom right panel.
The initial amplitude is set to �

0

= 1⇤. The box size and grid number are set to L = 5/M
and N = 32768. The horizontal axis is the comoving spatial coordinate.
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For simplicity, first, we ignore the cosmic expansion and consider the Minkowski space-
time. In order to study the structure of resonance, we treat the fluctuations by linear
perturbations dividing the field into the background and fluctuations as �(t, ~x) = �

bg

(t)+
��(t, ~x). By this division, the equations of motion for �

bg

and �� are written as

�̈
bg

+
2M2

1 + �2
bg

/⇤2

�
bg

= 0, (5.2.1)

��̈+

2

6

4

�r2 + 2M2

1� �2
bg

/⇤2

⇣

1 + �2
bg

/⇤2

⌘

2

3

7

5

�� = 0. (5.2.2)

In the Fourier space, the equation of motion for the fluctuation ��k is given by

��̈k +

2

6

4

k2 + 2M2

1� �2
bg

/⇤2

⇣

1 + �2
bg

/⇤2

⌘

2

3

7

5

��k = 0. (5.2.3)

From the equations we can see that the frequency of fluctuations becomes a periodic func-
tion by the oscillation of the background. As we explained in sec. 3.1, by the modulation
of the frequency, the parametric resonance would occur.

Let us first consider the case that the background field is smaller than the inflection
point �

bg

< ⇤. In this case, eq. (5.2.3) is approximated as

��̈k +
⇥

k2 + 2M2(1� �2
bg

/⇤2)
⇤

��k = 0. (5.2.4)

Since below the inflection point the potential is dominated by the quadratic term, we can
approximate the oscillation of the background field by a harmonic one with a constant
amplitude �

bg

as �
bg

(t) = �
bg

cos(
p
2Mt). Substituting this into the above equation, we

obtain the Mathieu equation,

d2

dz2
��k + [Ak � 2q cos(2z)] ��k = 0, (5.2.5)

with parameters q and Ak given by

q =
1

4

✓

�
bg

⇤

◆

2

, Ak =
1

2

✓

k

M

◆

2

+ 1� 2q. (5.2.6)

Here we have rescaled the time variable as z ⌘
p
2Mt. As we are now considering the

case of �
bg

< ⇤, q is smaller than unity. Thus, the resonance is induced by the narrow
resonance, and the most e�cient mode is in the first band Ak ' 1, which is reduced to

k

M
'
p

4q =
�
bg

⇤
. (5.2.7)

Therefore, for the field oscillating with amplitude �
bg

smaller than the inflection point,
the parametric resonance takes place, and the fluctuations with k ' (�

bg

/⇤)M grow.
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For larger amplitude �
0

> ⇤, the deviation from the quadratic term becomes signifi-
cant, and we cannot simply approximate the oscillation of the field by the harmonic one,
but it is represented by a periodic function g(t) as �

bg

(t) = �
bg

g(t). In this case, we
study the structure of the resonance by solving the equations of motion numerically. As
the equation (5.2.4) is a linear one for ��k, the growth rate of it is independent on initial
conditions. Thus, to clarify the structure of the resonance, we set the initial conditions by
hand to a flat spectrum: ��k(t0) = 10�5⇤M�D.4 We study the structure of the resonance
for four di↵erent amplitudes of the background field: �

bg

/⇤ = 1, 5, 10 and 100. The re-
sults of simulations are summarized in fig. 5.4. From the results, we can see that there
occurs the enhancement of the fluctuations in more multi-bands of momenta for the larger
�
bg

. For the larger amplitude than the inflection point, the higher polynomials contribute
to the oscillation of the field, and it would trigger the enhancement in the multi-bands.
The most rapidly growing mode is typically located at k ⇠ O(0.01)�O(0.1)/M . Here we
note that the absolute value of the amplitude is unphysical because for such amplitudes
as shown in the figure, the re-scattering with other modes becomes e�cient, and then
the growth would be suppressed, which is beyond the scope of the linear analysis. The
location of the resonance and its growth rate are important.

Next, we study the structure of the resonance including the expansion of the space.
The equations of motion for the background and fluctuations are given by

�̈
bg

+H�̇
bg

+
2M2

1 + �2
bg

/⇤2

�
bg

= 0 (5.2.8)

and

��̈k +H��̇k +

2

6

4

k2

a2
+ 2M2

1� �2
bg

/⇤2

⇣

1 + �2
bg

/⇤2

⌘

2

3

7

5

��k = 0. (5.2.9)

Here we consider the space of D = 1. We have numerically solved the coupled equations
for four di↵erent initial amplitudes of the background field, �

bg

(t
0

)/⇤ = 1, 5, 10 and 100.
As for the fluctuations, we set the initial spectrum to the flat one as ��k(t0) = 10�5⇤M�D

in the same way as without the expansion. In fig. 5.5, we show the snapshot of of the
spectrum of fluctuations at several times. We can see that the fluctuations are diluted,
and their momenta are red-shifted by the cosmic expansion. In the expanding Universe,
the multi-instabilities at higher momenta disappear.

We have investigated the structure of the resonance of the logarithmic potential with
linear perturbations methods. However, if we take into account the non-linear interactions,
the re-scattering of fluctuations becomes e�cient, and then the growth of fluctuations
stops. As we have verified in the previous section, by the non-linear processes, there
occurs the fragmentation of the fluctuations into I-balls.

5.3 Analytical estimation

We have numerically confirmed that I-balls are formed for the logarithmic potential, and
furthermore studied the structure of the resonance of the fluctuations. After the formation,

4Again we note that the mass dimension of ⇤ depends on the dimension of space as dim (⇤) = (D�1)/2.
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their profiles oscillate with time around some values. This oscillating behavior is also
confirmed in the case of Q-balls in [101], where the state is called Q-axiton. It is found that
the energy of the Q-axiton is larger than Q-balls. This state is considered as the excited
state of Q-balls. In [101], it is numerically shown that the Q-axiton emits radiations, and
then the energy gradually decreases. As for the case of I-balls, the oscillating behavior
might also represent the excited state of I-balls, and finally settle down to the lowest energy
state. In our simulation time, we could not confirm the su�cient relaxation of I-balls to
the lowest energy state, but the typical amplitude of them is resolved as summarized in
Table 5.2. It shows that the I-balls are formed when the potential is dominated by the
quadratic term. Indeed, the amplitude of I-balls is limited from above �(0)  ⇤ as shown
in the Table 5.2.

It is suggested that for the stability of I-balls the adiabatic charge is important. If
the adiabatic charge is conserved, the configuration of the field at the lowest energy state
becomes a spatially localized one. In this section, we derive the configuration assuming
the conservation of the adiabatic charge.

As we have explained in chap. 3, the adiabatic charge is defined by

I =

Z

dDx
�̇2

!
, (5.3.1)

where the over line means the time average over oscillations, and ! is the frequency of
the field. Let us minimize the energy of the field for a fixed value of I using a Lagrange
multiplier !̃ as

E!̃ ⌘ E + !̃

"

I �
Z

dDx
�̇2

!

#

=

Z

dDx

✓

1� 2
!̃

!

◆

1

2
�̇2 +

1

2
(r�)2 + V (�)

�

. (5.3.2)

Since we have confirmed that I-balls are formed with amplitude . ⇤, we consider the case
that the potential is dominated by the quadratic one and expand the potential up to the
quartic term as

V ' M2�2 � 1

2

✓

M

⇤

◆

2

�4. (5.3.3)

As shown in the next chapter, for the potential that is dominated by the quadratic term,
the oscillation of � is approximately periodic one, i.e., � is separated into a periodically
oscillating part and time independent part as

�(x) ' �(~x)f(t). (5.3.4)

As we have proved in chap. 3, the adiabatic charge is conserved for this separable form.
Thus, the assignment of the fixed I might be plausible. In the region where the potential
is dominated by the quadratic term, we can approximate f as a harmonic function with
a frequency ! '

p
2M . By this approximation, we can evaluate the time average of

functions of f and of its time derivative as

f2 ' 1

2
, f4 ' 3

8
, ḟ2 ' 1

2
!2. (5.3.5)
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Thus, the time averages of functions of � and of its time derivative are given by
8
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(5.3.6)

Then, we obtain
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1
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To find the lowest energy state, let us consider the variation of E!̃ with respect to �:

�E!̃ =
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. (5.3.8)

From the lowest energy condition �E!̃ = 0, we obtain a bounce equation for � as

r2��


m2 + !2
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1� 2
!̃

!

◆�

�+
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2

✓

M
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◆

2

�3 = 0. (5.3.9)

We assume that the solution of the bounce equation is spherically symmetric, � = �(r),
where r is the radial coordinate. Then the Laplacian operator can be written as

r2 =
d2

dr2
+

D � 1

r

d

dr
(5.3.10)

depending on the dimension of the space. To solve the equation, let us rescale variables
as

�̃ ⌘ �

⇤
, r̃ ⌘ Wr, (5.3.11)

where

W ⌘
s

2M2 + !2

✓

1� 2
!̃

!

◆

. (5.3.12)

With these rescalings, the bounce equation is reduced to

d2

dr̃2
�̃+

D � 1

r̃

d

dr̃
�̃� �̃+

3

2

✓

M
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◆

2

�̃3 = 0. (5.3.13)

We can solve the equation exactly in the case of D = 1, and the solution is given by

�̃ =
2p
3

W

M
sech(r̃) for D = 1. (5.3.14)
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With the other dimensions, by the e↵ect of the friction term in the bounce equation (D�
1)/r̃(d�̃/dr̃), the solution slightly deviates from the one for D = 1, but it is approximately
identical to the hyperbolic function. Thus, we obtain the solution of the bounce equation
as

� ' 2p
3
⇤
W

M
sech(Wr). (5.3.15)

From this result, we can estimate the typical radius and amplitude at the center of the
I-ball as

�c '
2p
3

W

M
⇤ ' ⇤,

R ' 1/W ' 1/M.

(5.3.16)

Let us here compare the analytical profile derived based on the adiabatic charge to the
results of simulations. For the analytical profile (5.3.15), the energy density is given by

⇢
ana

= M2�2

"

1 +
3

16

✓

�c

⇤

◆

2

tanh2
 p

3

2

�c

⇤
Mr

!#

, (5.3.17)

where we have approximated the potential energy by the quadratic term as V ' M2�2,
and have used the time average of the oscillation as f2 ' 1/2. In fig. 5.6, we show the
comparison of this analytical profile (5.3.17) to the result of the simulation, where we
set the initial amplitude of � to �

0

= 10⇤. The left (right) panel shows the snapshot of
⇢ at t = 103/m (106/m). Since I-balls are in the excited state just after the formation
(t = 103/m), the energy density is larger than the analytical profile as shown in the left
panel. At later time t = 106/m, the di↵erence between the analytical profile and the
numerical results becomes small, which would suggest the relaxation of I-balls toward the
lowest energy state.
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Figure 5.6: The comparison of the analytical form of the energy density (5.3.17) to the
numerical result. The set of parameters is (ML,N) = (1, 32768). The left (right) panel is
the snapshot of ⇢ at t = 103/m (106/m).
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As we have obtained the profile of I-balls, we can evaluate the adiabatic charge explic-
itly for each I-ball,

I =

Z

dDx
�̇2

!
'
Z

dDx
ḟ2

!
�2

'
Z

dDx
ḟ2

!
�2

c sech
2 (W |~x|)

' b(D)
2

3

!W 2�D

M2

⇤2, (5.3.18)

where we have used the time average of ḟ : ḟ2 ' !2/2. Here b(D) is the integration of the
hyperbolic secant function over the space of the dimension of D as

b(D) ⌘
Z 1

�1
dDx sech2(|~x|), (5.3.19)

and its value is typically order one: {b(1), b(2), b(3)} = {2, 2⇡ ln(2),⇡2/3}. Substituting
the definition of W into the above expression, we can obtain a relation between ! and I
as

M2⇤�2I ' !
�

2M2 + !2

�

1�D/2
, (5.3.20)

where we have neglected the order one coe�cient.
We have derived the localized configuration assuming the conservation of the adiabatic

charge. Then, the typical amplitude is estimated as � ' ⇤. This typical value agrees with
the numerical results summarized in Table 5.2. As for the initial amplitude smaller than
the inflection point �

0

< ⇤, the amplitude of I-balls are smaller than the typical one
�(0) < ⇤. For the smaller initial value, the adiabatic charge is small from the beginning

as seen from the definition I =
R

dDx �̇2/! . ⇤2M
R

dDx. On the other hand, the
adiabatic charge for the analytical estimation (5.3.18) is proportional to the square of
the amplitude as I ' �2

cM
R

V dDx sech(Wx). Here V is the volume of the localized

configuration, determined by the radius as V ' (1/R)D ' (1/W )D. For this smaller value
of the adiabatic charge, the derived amplitude � is smaller than ⇤.

As we have explained in sec. 3.2, I-balls for the double well and axion-like potentials
decay gradually by the emission of radiations from the tail as shown in fig. 3.5 and 3.6.
As explained later, stable I-balls are achieved for a specific potential, which is a quadratic
potential with a correction of a logarithmic term as (m2/2)�2

⇥

1�K ln
�

�2/M2

�⇤

where
K is a dimensionless parameter smaller than unity. Deviated from this form, the I-balls
would decay gradually. As for the logarithmic potential, the I-balls would also decay. By
the decay of I-balls, the amplitude decrease. We assume that by the decay of I-balls, the
adiabatic charge would gradually decrease.

Here let us suggest the evolution of the localized configuration (5.3.15) assuming that
the adiabatic charge gradually decreases. We pay attention to the relation (5.3.20) between
! and I. The explicit forms of the relation for each dimension D = 1, 2 and D = 3 are
written as

M4⇤�4I2 '
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>
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!2/
�
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(D = 2)

(D = 3).

(5.3.21)
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In the relations, the right hand sides are all monotonically increasing functions of !. Thus,
as I decreases, ! would become smaller in each dimension. From the profile given by
(5.3.15), it can be seen that the profile is determined by W ; the amplitude is proportional
to W (�(0) / W ), and the radius is proportional to inverse of W (R / 1/W ). By
the decrease of !, W would also become smaller because it is a monotonically increasing
function of !, which can be seen from (5.3.12). Therefore, we expect that by the decrease
of I, I-balls would deform so that the amplitude (radius) decreases (increases). In the
relations (5.3.21), ! dependence of I becomes weaker for the higher dimensions. Thus, we
expect that the deformation of I-balls would be milder in the higher dimensions when we
consider the same amount of decrease of the adiabatic charge I.

We have discussed the evolution of I-balls assuming a decrease of the adiabatic charge
and that the localized configuration (5.3.15) really represents the profile of I-balls. Then,
we have suggested that the amplitude of I-balls decreases with a increase of the radius for
each dimension. Furthermore, we have suggested that the deformation would be milder
in the case of the higher dimensions of the space if we assume the same amount of the
decrease of the adiabatic charge. However, to estimate the evolution of I-balls completely,
we have to clarify the dynamics of the decrease of the adiabatic charge.
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Chapter 6

Understanding of I-balls based on
the adiabatic charge

I-balls are spatially localized objects of a real scalar field. As we have explained, they
are formed from a nearly coherent oscillation of the field. The formation of I-balls is
confirmed by numerical simulations, and the properties of I-balls are known heuristically.
Interestingly, the lifetime of I-balls is significantly long or even exactly stable at classical
level. However, analytical understandings of the stability is yet to be completely clarified.
In the case of other solitons such as Q-balls or topological solitons, their natures are
extensively investigated. Then, it is clarified that some conserved quantities are crucial
to guarantee the stability; U(1) charge accounts for the stability of Q-balls, and the
topological number does for topological defects. We expect that, as for I-balls, there would
also exist some conserved quantity. In chap. 3, we have conjectured that the adiabatic
charge is a candidate to guarantee the stability of I-balls.

As we have explained, the adiabatic charge is a quantity conserved for the quasi-
periodical oscillation of a field like the adiabatic invariant in a classical mechanical system.
In the case of a scalar field, it has the gradient energy. Thus, through the gradient term,
there exists a flow of the current. This is di↵erent from the mechanical system. As a result
the energy density of the field at each point of the space is not a constant of the motion
even without the external force on the system. In the proof of the adiabatic invariant in the
classical mechanical system, we have used the fact that the momentum is a function of the
coordinate and energy because in that case the energy is a constant of motion, which is the
crucial point of the proof. In contrast, in the case of the field theory, we can not obtain the
canonical momentum by solving the energy density with respect to the momentum because
the energy density is not the constant of motion. However even in this case, we can prove
the conservation of the adiabatic charge with an additional assumption. In the proof, we
have assumed that there exists a potential that allows the periodic motion of the field,
i.e., the field is separated to a temporal and spatial dependent part: �(t, ~x) = �(~x)f(t).
If the separation of the field is really allowed, we can find a constant of motion in the
system H̃ = H � (1/2)@i(�@�i) at each point of the space. Owing to this constant of
motion instead of the energy density, we can write down the canonical momentum by
the canonical variable. Then, we have proved the conservation of the adiabatic charge.
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Therefore, the existence of the potential that allows the periodic motion of the field is
crucial for the proof.

In this chapter, we investigate the potential that allows the periodic motion. We
then show that the potential to allow the periodic motion is uniquely determined to the
quadratic potential with a logarithmic correction like V = (m2/2)�2

⇥

1�K ln
�

�2/2M2

�⇤

,
where K is the coe�cient of the logarithmic correction. For the formation of I-balls, K
must be positive. Such logarithmic correction determines the strength of non-linear e↵ects.
In particular, the I-ball radius is determined by K (and m). We also perform numerical
simulations to confirm that the adiabatic charge of I-balls is indeed conserved. Specifically
we vary the value of K su�ciently slowly with time and follow the evolution of the I-ball
configuration to see if their behavior agrees with the analytical solution based on the
conservation of the adiabatic charge.

This chapter is based on the paper collaborated with Masahiro Kawasaki and Fuminobu
Takahashi [87].

6.1 Potential to allow the separable form

For the proof of the conservation of the adiabatic charge, we have assumed the existence
of a potential V (�) that allows periodic motion of the field for which the solution is given
in a separable form,

�(t,~c) = �(~x)f(t), (6.1.1)

where the periodic function f(t) is normalized so that its maximum value is equal to
unity. Now we determine the form of such potential. Substituting the separable form of
the solution into the equation of motion, we obtain

f̈

f
� r2�

�
= �V 0(�f)

�f
. (6.1.2)

This equation implies that the derivative of the potential in the right-hand side should
take a form of

V 0(�f)
�f

= A(�) +B(f), (6.1.3)

where A(�) are B(f) are functions of � and f respectively. On the other hand, as the
potential is a function of �, the derivative of the potential is given by

V 0(�f)
�f

= C(�f), (6.1.4)

where C(�) is a function of �. Combining the relations (6.1.3) and (6.1.4), we obtain an
algebraic equation for C:

C(�f) = A(�) +B(f) = C(�) + C(f)�A(a)�B(1)

= C(�) + C(f)� C(1). (6.1.5)
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This equation is satisfied if and only if C(�) = a ln (�/b), where a and b are constants.1 Then,
we obtain

V =
1

2
m2�2



1�K ln
�2

2M2

�

, (6.1.7)

where m is a constant with mass dimension (D� 1)/2 and K is a dimensionless constant.
Therefore, the scalar potential must be the quadratic potential with the logarithmic correc-
tion, and we call it the logarithmically running (LR) mass term potential in the following.
Note that there are in fact only two independent parameters, as M can be absorbed by
rescaling m and K. The above argument does not fix the magnitude and sign of the
parameters. As we shall see in the next section, the I-ball solution exists if m2 > 0 and
0 < K ⌧ 1.

6.2 I-ball solution

In this section, we derive the profile of I-balls for the LR mass term potential. For the
derivation, we again assume that the I-ball is formed as the lowest energy state for a given
value of the adiabatic charge. Then, we derive that the configuration of I-balls is given
by a Gaussian distribution. Furthermore, we numerically confirm that the scalar field
dynamics is periodic and H̃ = ⇢̃ is really a constant of motion for the I-ball solution. Note
that the proof of the conservation of the adiabatic charge and the form of the potential
are valid for any number of spatial dimensions D, and we consider the case of D = 1, 2, 3
in numerical simulations.

6.2.1 Gaussian field Configuration

Profile

We would like to find a configuration of the field that minimizes the energy for a given
value of the adiabatic charge I. To solve this problem, we use the method of the Lagrange
multipliers. Thus, let us minimize the following energy with a multiplier !̃:

E!̃ =

Z

dDx ⇢̃(x) + !̃

 

I �
Z

dDx
�̇2

!

!

= !̃I +

Z

dDx

✓

1

2
� !̃

!

◆

�̇2 � 1

2
�r2�+ V (�)

�

, (6.2.1)

where ⇢̃ is a constant of motion given by

⇢̃ ⌘ H̃ =
1

2
�̇2 � 1

2
�r2�+ V. (6.2.2)

1This can be seen by noting that one can derive the following di↵erential equation for C(�),

dC(�)

d�
= lim

��!0

C(�+��)� C(�)

��
= lim

��!0

C (1 +��/�)

��/�

1

�
= C0(1)

1

�
. (6.1.6)

Integrating the above equation, we obtain a logarithmic function.
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Here we have used ⇢̃ = ¯̃⇢ in the second equality of (6.2.2).
To evaluate the configuration, we have to perform the time average. For the separable

form (6.1.1), we can perform the time average of f(t). If there was not the logarithmic
correction, the periodic motion is simply given by a homogeneous scalar field oscillating
in a quadratic potential. In this case, the periodic function is given by a harmonic func-
tion f(t) = cos(mt). For this oscillation, the time averages of the oscillating functions are

trivial: f(t)2 = 1/2, ḟ(t)2 = m2/2 and f(t)2 ln f(t)2 = 1/2 � ln 2. With the logarithmic
potential, those results are modified by a factor of 1 +O(K), and we write them as

f(t)2 = c, (6.2.3)

ḟ2 = d!2, (6.2.4)

f(t)2 ln f(t)2 = l, (6.2.5)

where c, d and l are constants of order unity. Then E!̃ is given by

E!̃ = !̃I +

Z

dDx



d

2

✓

1� 2
!̃

!

◆

!2�2 � c

2
�r2�

+
c

2
m2�2

⇢✓

1� l

c
K

◆

�K ln

✓

�2

2M2

◆��

. (6.2.6)

The variation of E!̃ with respect to � is

�E!̃ =

Z

dDx ��



d

✓

1� 2
!̃

!

◆

!2�� cr2�

+cm2�

⇢✓

1� l

c
K

◆

�K �K ln

✓

�2

2M2

◆��

. (6.2.7)

Thus, by the lowest energy condition �E!̃ = 0, we obtain a bounce equation,

r2��W 2�+Km2� ln
�2

2M2

= 0, (6.2.8)

where we have defined W 2 as

W 2 ⌘ m2

✓

1�K � l

c
K

◆

+ !2

d

c

✓

1� 2
!̃

!

◆

. (6.2.9)

We assume that the solution of the bounce equation is spherically symmetric, � = �(r),
where r is the radial coordinate. Then the Laplacian operator can be written as

r2 =
d2

dr2
+

D � 1

r

d

dr
. (6.2.10)

The solution is obtained by the Gaussian ansatz [26],

�(r) = �c exp
�

�r2/R2

�

, (6.2.11)
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where �c is the amplitude of the I-ball at the center, and R is the radius. Substituting
the ansatz into the bounce equation (6.2.8), we obtain

r2
4

R2



1

R2

� K

2
m2

�

�


2D

R2

+W 2 �Km2 ln
�2

c

2M2

�

= 0. (6.2.12)

This relation should be satisfied for an arbitrary value of r, thus the radius R and the
Lagrange multiplier !̃ are determined as

R =

r

2

K

1

m
, (6.2.13)

and

!̃ =
!

2



1 +
c

d

m2

!2

⇢

1 + (D � 1)K � l

c
K �K ln

✓

�2

c

2M2

◆��

. (6.2.14)

From (6.2.13), we can see that the radius of I-balls is determined by the coe�cient K
and mass m. As mentioned before, the choice of M is arbitrary as it can be absorbed by
rescaling m and K. If we set M = �c/

p
2, the Lagrange multiplier is given by

!̃ =
!

2



1 +
c

d

m2

!2

⇢

1 + (D � 1)K � l

c
K

��

= ! (1 +O(K)) , (6.2.15)

where we have used ! ' m and c ' d in the second equality.

Analytical form of I, ⇢̃ and other variables

We have evaluated the profile of I-balls for the LR potential. Next, using the profile, we
evaluate the adiabatic charge I and modified energy density ⇢̃. By the construction of the
profile, it is evident that ⇢̃ is time independent, i.e., a constant of motion. Furthermore,
for the later use, we define several variables using ⇢̃.

Let us evaluate the adiabatic charge for the profile derived above,

I =

Z

dDx
1

!
�̇2 =

1

!
ḟ2

Z

dDx�2

c exp
�

�2r2/R2

�

=

✓

1

m

r

⇡

K

◆D
�2

c ḟ
2

!
. (6.2.16)

When the parameters are varied adiabatically, the adiabatic charge I is expected to be
conserved. We shall see that this is the case in numerical simulations.

Next we evaluate ⇢̃ by substituting the profile (6.2.11) with (6.2.13) into (6.2.2):

⇢̃ = �2



1

2
ḟ2 +

1

2
m2f2

⇢

1 +KD �K ln

✓

�2

c

2M2

f2

◆��

. (6.2.17)

At a first glance, ⇢̃ is dependent on time because of f . However, by solving the equation of
motion, we can see that it is independent on time. The equation of motion for f is given
by substituting the profile (6.2.11) with (6.2.13) into the equation of motion for � (6.1.2),

f̈(t) +m2



1 +K (D � 1)�K ln

✓

�2

c

2M2

f2(t)

◆�

f(t) = 0. (6.2.18)
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We can integrate this equation of motion and obtain

ḟ2 = m2

�

1� f2

�



1 +KD �K ln

✓

�2

c

2M2

◆�

+Km2f2 ln f2, (6.2.19)

where we have used the normalization, f(0) = 1 when ḟ(0) = 0. Using (6.2.19), we can
rewrite ⇢̃ as

⇢̃(r) = ⇢̃c exp
�

�2r2/R2

�

(6.2.20)

with

⇢̃c ⌘
m2�2

c

2



1 +DK �K ln

✓

�2

c

2M2

◆�

. (6.2.21)

From this equation, it is obvious that ⇢̃ is the constant of motion as expected.
For comparison with numerical simulations, we define the I-ball radius R

1/2 where ⇢̃
is equal to ⇢̃c/2:

R
1/2 ⌘

r

ln 2

K

1

m
. (6.2.22)

We also define the e↵ective amplitude of the scalar field �̃c in terms of ⇢̃ as

�̃c ⌘
p

2⇢̃c/m2

= �c



1 +DK �K ln

✓

�2

c

2M2

◆�

1/2

. (6.2.23)

Note that �̃c is roughly equal to the actual oscillation amplitude �c up to a correction of
O(K).

6.2.2 Numerical simulations

Here we numerically confirm that the profile of I-balls obtained above is indeed a solution
of the equation of motion. In particular we will see that ⇢̃ is a constant of motion.

The LR mass term potential (6.1.7) contains a logarithmic function of �, and so we
have inserted a small parameter ✏ into the potential and its derivative as

8

>

>

>

<

>

>

>

:

V =
m2

2
�2


1�K ln

✓

✏+
�2

2M2

◆�

,

@V

@�
= m2�



1�K
1

✏+ �2/(2M2)

�2

2M2

�K ln

✓

✏+
�2

2M2

◆�

(6.2.24)

for numerical stability. We have set ✏ = 10�30 in our numerical simulations, and we have
checked that our results are insensitive to the value of ✏ as long as it is much smaller than
unity. This regularization is adopted in the numerical simulations here and in sec. 6.3

We have performed lattice simulations for the cases of D = 1, 2 and 3. As the initial
condition, we adopt the Gaussian profile (6.2.11) with �c = 2M and K = 10�1 and follow
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its evolution from t = 0 to 103/m. The box size L and number grid N for D = 1, 2 and 3
are

8

>

<

>

:

D = 1, L = 100/m, N = 2048,

D = 2, L = 100/m, N = 2562,

D = 3, L = 50/m, N = 1283,

(6.2.25)

for which the spatial resolution is �mx = 4.8⇥ 10�2, 0.39 and 0.39, respectively. We set
the time step to �t = 10�2/m.

We show the results for the case of D = 1 in fig. 6.1. In the top left panel, the spatial
distributions of ⇢̃c at di↵erent times are shown. All the lines are overlapped, implying
that the Gaussian ansatz is valid and ⇢̃c stays a constant in time. From the other panels,
we can see that all of ⇢̃c, R

1/2 and �̃c remain constant in time, and their values are in
perfect agreements with the analytical results (6.2.21), (6.2.22) and (6.2.22), respectively.
We have also confirmed that the time evolution and the properties of the configuration of
I-balls in numerical simulations are in very good agreements with the analytic results for
the cases of D = 2 and 3. Therefore, we conclude that the adiabatic charge I is indeed
conserved in the numerical simulations.

6.3 Adiabatic deformation of I-balls

In the previous section, we have derived the configuration of I-balls so that it minimizes
the energy for a given adiabatic charge I. We have also numerically confirmed that the
obtained configuration indeed satisfies the equation of motion and ⇢̃ remains a constant
of motion, which plays a crucial role in the proof of the conservation of the adiabatic
charge. In this section, in order to further support the conjecture that the stability of
I-balls is due to the conservation of the adiabatic charge, we follow the evolution of I-balls
while the coe�cient of the logarithmic potential K is varied adiabatically. If the adiabatic
invariance indeed guarantees the stability of I-balls, the configuration would be gradually
deformed into another Gaussian profile with a di↵erent value of K, while the adiabatic
charge I is conserved.

We introduce the time variation of K as

K(t) =
K

0

(1 + ↵mt)
, (6.3.1)

where K
0

is the initial value of K at t = 0, and ↵ is the coe�cient of the time variation.
For ↵ ⌧ 1, K varies much more slowly than the oscillation period, and therefore, it is
expected that an I-ball evolves into another Gaussian profile with a di↵erent value of K.
Thus, we expect that the I-ball radius R and R

1/2 evolve as

R(t) =

r

2

K
0

(1 + ↵mt)1/2
1

m
, (6.3.2)

R
1/2(t) =

r

ln 2

K
0

(1 + ↵mt)1/2
1

m
. (6.3.3)
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Figure 6.1: Numerical results of the I-ball for the case of D = 1. We have set K = 10�1

and �c = 2M . The top left panel shows snapshots of the spatial distribution of ⇢̃ at
mt = 0, 10, 102 and 103, and all the lines are overlapped, implying that ⇢̃ is a constant
of motion. The top right, bottom left and bottom right panels show the time evolution
of ⇢̃c, R̃

1/2 and �̃c in a very good agreement with the analytical results (6.2.21), (6.2.22)
and (6.2.22), respectively. The box size is L = 100/m, and the grid number is N = 2048.
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The typical time scale �tR over which the radius R changes significantly is

�tR '
 

Ṙ

R

!�1

=

✓

↵m

2

1

1 + ↵mt

◆�1

' 2

↵m
. (6.3.4)

Therefore, we need to follow the evolution of I-balls for a su�cient long period (� �tR)
in order to see the adiabatic deformation.

Here we estimate the magnitude of ↵ which allows the I-ball to deform adiabatically.
To do this, let us consider the deformation induced by excitations of wave packets inside
the I-ball. The typical time scale for the wave packets to transverse the entire region of
the I-ball can be estimated as

�t�� ' R

vg
' 2

K
0

m
, (6.3.5)

where vg is the group velocity, vg = @!/@k(k ' 1/R) '
p

K
0

/2. For the adiabatic
deformation of the I-ball, this propagation scale �t�� should be much smaller than �tR,
i.e., �t�� ⌧ �tR, which constrains ↵ and K

0

as

↵⌧ K
0

. (6.3.6)

If this condition (6.3.6) is met, the I-ball would deform adiabatically.
The adiabatic charge I of the I-ball is expected to be conserved during the adiabatic

deformation,

RD
0

�2

c,0

 

ḟ2

!

!

t=0

= R(t)D�c(t)
2

 

ḟ2

!

!

t=t

, (6.3.7)

where the subscript 0 means that the variable is evaluated at t = 0 (6.2.16). As long as
K ⌧ 1, the frequency of the oscillation is given by m up to a correction of order K, and
so,

 

ḟ2

!

!

t=0

=

 

ḟ2

!

!

t=t

+O(K). (6.3.8)

Therefore, the amplitude of the oscillation at the center �c should evolve with time as

�c(t) ' �c,0

✓

R(t)

R
0

◆�D/2

= �c,0 (1 + ↵mt)�D/4 , (6.3.9)

up to a small correction of order K. With this approximation, the e↵ective amplitude �̃c

evolves similarly, �̃c(t) ' �c(t) (6.2.23).
First let us perform simulations for the case of D = 1, where we set the box size L,

grid number N and time step �t to

L = 100RI(t = 0), N = 2048, �t = 10�2

1

m
. (6.3.10)

We have followed the evolution of an I-ball from t = 0 to 104/m for K
0

= 10�1 and
↵ = 10�2. As a result, the coe�cient K(t) evolves from K

0

to approximately K
0

/100, and
the I-ball radius is expected to become larger by a factor of 10. In fig. 6.2, we show the
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results of the simulation. The top two panels show snapshots of the spatial distribution
of ⇢̃ at mt = 0, 102, 103 and 104 with linear and logarithmic scales. One can see that the
I-ball radius becomes larger and its amplitude at the center becomes smaller as expected.
The two bottom panels show the time evolution of R

1/2 and �̃c in very good agreements
with the analytical estimation. This result clearly shows that the adiabatic charge I of
the I-ball is indeed conserved and that the configuration of the I-ball follows the analytical
solution obtained at the minimal energy state for a given adiabatic charge.

We have similarly studied the deformation of an I-ball in the cases of D = 2 and 3 for
K

0

= 10�1 and ↵ = 10�2. We set the box size and grid number as:

L = 100/m, N = 2562, for D = 2 (6.3.11)

L = 50/m, N = 1283, for D = 3 (6.3.12)

and �t = 102/m for both cases, and followed the evolution from t = 0 to 103/m. The
results of the simulations are summarized in fig. 6.3. From the top panels, we can see that
as the coe�cient K becomes smaller, the I-ball radius becomes larger. This deformation
follows the analytic solutions obtained under the assumption of the conservation of the
adiabatic charge, as can be seen from the middle and bottom panels in the figure.

We have confirmed the adiabatic deformation of the I-ball for ↵ = 10�2. For a larger
↵, however, the deformation of an I-ball is no longer adiabatic (see (6.3.6)), and it does
not follow the analytic profile as the adiabatic charge is not conserved. In fig 6.4, we show
results for the case of D = 1 with (K

0

,↵) = (10�1, 10�1), for which the condition (6.3.6)
is (marginally) broken. The I-ball does not have much time to deform itself in response
to the change of K. As one can see from the figure, the configuration of the I-ball does
not follow the Gaussian profile any more, and the evolution of the radius and amplitude
do not math the analytic one.

6.4 Short Summary

It was conjectured that the stability of I-balls is guaranteed by the adiabatic charge [26].
For the conservation of the adiabatic charge, the periodic motion of the field is impor-
tant. In this chapter, we have shown that the periodic motion is realised for the spe-
cific form of the potential; the quadratic potential with the logarithmic correction V =
(m2/2)�2

⇥

1�K ln
�

�2/2M2

�⇤

. For this potential, ⇢̃ defined as (6.2.2) becomes a constant
of motion, which plays a crucial role for the proof of the conservation of the adiabatic
charge.

For the LR mass term potential, we have derived the I-ball solution using the Gaussian
ansatz, under the condition of the conservation of the adiabatic charge. We have verified
that the profile is indeed the solution of the equation of motion, and ⇢̃ is the constant of
motion, analytically and numerically. Furthermore we have followed the adiabatic defor-
mation of an I-ball while the coe�cient of the logarithmic potential K varies su�ciently
slowly with time, and confirmed that the numerical results perfectly agree with the ana-
lytical estimations based on the conservation of the adiabatic charge. Thus, our results
show that the stability of I-balls is due to the conservation of the adiabatic charge.
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Figure 6.2: The results of the numerical simulation for the parameters of (K
0

,↵) =
(10�1, 10�2) for the case of D = 1. The top panels show the snapshots of the spatial
distribution of ⇢̃ at mt = 0, 102, 103 and 104 with linear and logarithmic scales. The
bottom panels show the evolution of R

1/2 and �̃c from t = 10/m to 104/m. The red
(green) line shows the numerical (analytical) result (See (6.3.3) and (6.3.9)).
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Figure 6.3: The results of the numerical simulations for the parameters of (K
0

,↵) =
(10�1, 10�2) for the cases of D = 2 and 3. The left (right) panels show the results for
the case of D = 2 (3). The top two panels show snapshots of the spatial distribution of
⇢̃ at mt = 10, 102 and 103, where Nx, Ny and Nz represent the grid point number of the
lattice. The middle (bottom) panels show the evolution of R

1/2 (�̃c) from t = 1/m to
103/m in very good agreements with the analytical ones (See (6.3.3) and (6.3.9)).

111



100

101

102

100 101 102 103

R
1

/2
 [
1
/m

]

t [1/m]

K0=10-1,α=10-1

simulation
analytic

10-1

100

101

100 101 102 103

Φ~
c 

[M
]

t [1/m]

K0=10-1,α=10-1

simulation
analytic

Figure 6.4: Sam as fig. 6.2 but for ↵ = 10�1. The deformation of the I-ball is no longer
adiabatic, and it does not follow the analytic one.

Here let us comment about the other types of potentials dominated by a quadratic po-
tential. I-balls for such potentials are considered to be long-lived due to the approximate
conservation of the adiabatic charge. Let us denote the deviation from the LR mass term
potential by a small parameter ✏. For those potentials, the dynamics of the scalar field
is no longer given by the separable form (6.1.1) because of the deviation. In particular,
the trajectory over one period is not closed by an amount of ✏. Noting that the adia-
batic invariant in the classical mechanics is a well conserved quantity and its variation is
exponentially suppressed for a small breaking of the adiabaticity [37], it is plausible that
the approximate conservation of the adiabatic charge accounts for the longevity of I-balls
observed in various numerical simulations [64, 65, 79, 102]. As we have explained, I-balls
in those simulations emit scalar waves and then gradually decay. The violation of the
adiabatic charge may enable us to understand the lifetime of I-balls analytically.
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Chapter 7

Conclusions

Scalar fields are expected to play various roles in the early Universe. As reviewed in
chap. 2, if the potential energy of an inflaton dominates the Universe, it drives inflation,
which is required to solve cosmological problems and is tested by many observations such
as CMB and large scale structures. In the high energy state during inflation, other scalar
fields might also have large field values, and they would dynamically evolve, especially
during reheating.

During reheating, such scalar fields oscillate coherently with small fluctuations. By
various numerical simulations, it is confirmed that some of the coherently oscillating scalar
fields could fragment and form I-balls if the potential is flatter than the quadratic one
as reviewed in chap. 3. The flatter shape of the potential attracts attentions recently;
the precise measurement of CMB suggests that the inflaton potential would be a flatter
one. Furthermore in the thermal environment during reheating, the logarithmic correction
would make the potential flat. In this thesis, we have studied the formation of I-balls for
the R2 inflation and for the logarithmic potential motivated by the thermal correction.

The R2 inflation is distinctive because only one mass parameter determines the inflaton
potential and its interaction with the standard model particles. Thus, by the parameter,
we can determine the dynamics of the inflaton uniquely such as the decay rate as reviewed
in sec. 2.5. In this thesis, we have studied whether the estimation of the decay rate is
valid even including the non-perturbative evolution of the fluctuations of the inflaton, i.e.,
whether the formation of I-balls takes place in chap. 4. In that chapter, we have inves-
tigated the resonance structure of the inflaton. We have verified that, in the Minkowski
space-time, the fluctuations are enhanced for momenta below the mass scale of the infla-
ton, by the parametric resonance. However, we have revealed that the enhancement is
suppressed in the expanding Universe, especially during reheating. As the inflaton of the
R2 inflation is an additional scalar degree of freedom of the gravity, the self interaction of
the inflaton is so weak that its fluctuations are suppressed by the dilution of the Hubble
expansion. Thus, there does not occur the formation of I-balls. Therefore, it is confirmed
that the decay rate of the inflaton is accurately estimated by the perturbative way, and
we can predict the observables in CMB precisely.

In the early Universe other scalar fields are also expected to oscillate along the loga-
rithmic potential which comes from the correction by the quantum e↵ect or the thermal
e↵ect due to the decay products of the inflaton, and they might form I-balls. Thus, we
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have considered the logarithmic potential V = M2⇤2 ln(1 + �2/⇤2) (See (5.1.1)). Then,
in chap. 5, we have confirmed the formation of I-balls for this potential, the results of
which are summarized in Table 5.2. By our results, it is expected that the formation of
I-balls might occur in the thermal bath, where the potential is the thermal logarithmic
one with the temperature dependent coe�cient: ⇤ ' T . By the formation, the energy
density of the field would localize in finite regions, and the distribution of it would be-
come highly inhomogeneous. If the decay into fermion particles is restricted by the Pauli
blocking as in the case of Q-balls, the decay would be suppressed. If there occurs the bose
enhancement inside I-balls, the decay would be enhanced. Therefore, to verify the decay
process of scalar fields in the thermal bath during reheating, we have to pay attention to
the formation of I-balls.

For many potentials, the formation and longevity of I-balls are confirmed by numerical
simulations, but the stability of them is yet to be revealed analytically. It was conjectured
that the stability is guaranteed by the adiabatic charge in [26], which explained I-balls
as the lowest energy state of the field for a given adiabatic charge. In sec. 3.3, we have
gave the rigorous proof of the conservation of the adiabatic charge even in the presence
of non-negligible gradient energy, on which the proof is more general compared to the one
of [26]. The crucial point of the proof is that we have assumed the potential that allows
the periodic motion of the field.

In chap. 6, we have found that the potential to allow the periodic motion is uniquely
determined to the quadratic potential with the logarithmic correction V = (m2/2)�2

⇥

1�
K ln

�

�2/2M2

�⇤

(See (6.1.7)) and derived the I-ball solution using the Gaussian ansatz
under the condition of the conservation of the adiabatic charge. By performing lattice
simulations, we have confirmed that the profile is indeed the solution of the equation of
motion and that the oscillation of the field is periodic. Furthermore, we have followed
the adiabatic deformation of an I-ball while the coe�cient of the logarithmic potential K
varies su�ciently slowly with time, and confirmed that the numerical results perfectly
agree with the analytic estimations based on the conservation of the adiabatic charge.
Our results show that the stability of I-balls is due to the conservation of the adiabatic
charge.

For the LR mass term potential, the adiabatic charge is conserved, and I-balls are
absolutely stable at the classical level because the quadratic potential and the logarithmic
correction of / �2 ln�2 allows the periodic motion. Thus, it is expected that for other
types of potentials dominated by the quadratic term, the adiabatic charge is approximately
conserved, and it guarantees the stability of I-balls. Indeed, it is numerically confirmed
that, for the logarithmic potential V = M2⇤2 ln

�

1 + �2/⇤2

�

, the formation of I-balls
occurs for �(0) . ⇤ where the potential is dominated by the quadratic term as summarized
in Table 5.2.

Observationally and theoretically, the flatter potentials attract attentions in the various
situations in the early universe. In order to give general predictions for the formation of
I-balls not by the case study, we have to theoretically understand the physical processes
of the formation and decay, which are yet clarified. Our study suggests that the adiabatic
charge would be important for the stability of I-balls. Using or interpreting the role
of the adiabatic charge during the evolution of the scalar field would give us the deep
understanding of I-balls.
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Appendix A

Note on calculation

In this section, we summarize the basic equations.

A.1 Gauge transformation

We summarize the gauge transformation of the metric. We consider the perturbed FRM
Universe:

ds2 = (1 + 2Ag)dt
2 � 2a(@iBg � Sgi)dx

idt

+ a2 [(1� 2 g)�ij + 2@ijEg + @iFgj + @jFgi + hij ] .
(1.1.1)

We summarize the gauge dependence of the metric perturbation for the gauge transfor-
mation

xµ ! xµ + ⇠µ = xµ + (�t, �ij@i�x+ �xi). (1.1.2)

For this transformation, gauge dependence of the metric is given by

Ãg = Ag � �̇t, (1.1.3)

B̃g = Bg � a ˙�x+ a�a�t, (1.1.4)

 ̃g =  g +H�t, (1.1.5)

Ẽg = E � �x, (1.1.6)

S̃gi = Si + a�ij ˙�x
j
, (1.1.7)

F̃gi = Fi � �xj , (1.1.8)

h̃ij = hij . (1.1.9)
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Appendix B

Resolution dependence of the
simulation

In chap. 5, we have performed simulations for several initial values of the field amplitude,
and the formation of I-balls is confirmed. In this appendix, we perform simulations with
finer resolutions, and then validate the results.

As a reference value, we perform simulations for �
0

= 10⇤ from ⌧ = 2/M(= ⌧
0

) to
49/M in conformal time, which corresponds to t = 2/M(= t

0

) to 104/M in the cosmic
time. We set the box size L = 1/M and 5/M , and set the grid number N = 1024, 4096 and
8192. In addition to that, we further perform with a much large grid number N = 131072
for L = 1/M . The comoving spatial resolution �x for each set of the parameters is
summarized in Table B.1, and the physical resolution in the end of simulation �x

phy,e is
summarized in Table B.2. We set the time step equal to �x/5 as

�⌧ =
1

5
�x. (2.0.1)

We show the results of the simulations for a set of parameters (ML,N) = (1, 8192),
which corresponds to the comoving spatial resolution�x = 1.2⇥10�4/M and final physical
one �x

phy,e = 7.4⇥10�2/M . The time step is set to be �⌧ = 2.44⇥10�5/M . We show the
snap shots of the spatial distribution of the energy density at Mt = 2(= Mt

0

), 10, 102, 103

and 104 in fig. B.1. The localization of the energy density can be seen on the panels of
t = 103/M and of 104/M . In fig. B.2 we show the last panel of the fig. B.1 by changing the
range of the horizontal axis to x 2 [0, 0.4/M ] and the scaling of the vertical axis, where
the vertical axis of the left (right) panels are on semi (log) scale. We can see more clearly
the localization of the energy density with typically ⇢ ' M2⇤2. In fig. B.2, we have also
plotted the snapshots of the distribution with much high resolution, whose parameters
are set to (ML,N) = (1, 131072). We can not observe significant di↵erences between the
simulations of the high and low resolutions.

To confirm the formation time, we show the evolution of ✏
over

for the sets of the
parameters in fig. B.3. We can see that ✏

over

stars to increases between t = 102/M and
103/M . Among the sets of the parameters, we can not observe the significant di↵erences
for the evolution of ✏

over

.
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Figure B.1: The snap shots of the spatial distribution of the energy density ⇢ at Mt =
2(= Mt

0

), 10, 102, 103 and 104 from the top left panel to the bottom panel. The initial
value of the field is �

0

= 10⇤. Box size and grid number are L = 1/M and N = 8192
respectively, which correspond to the comoving spatial resolution �x = 1.2⇥10�4/M and
final physical resolution �x

phy,e = 7.4 ⇥ 10�2/M . The horizontal axis is the comoving
spatial coordinate.
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M�x N = 1024 4096 8192 131072
LM = 1 9.8⇥ 10�4 4.9⇥ 10�4 1.2⇥ 10�4 7.6⇥ 10�2

5 4.9⇥ 10�3 1.2⇥ 10�3 6.1⇥ 10�4

@
@
@

Table B.1: The comoving spatial resolution �x for each set of the parameters.

M�x
phy,e N = 1024 4096 8192 131072

ML = 1 5.9⇥ 10�1 1.48⇥ 10�1 7.4⇥ 10�2 4.6⇥ 10�3

5 2.96 7.4⇥ 10�1 3.7⇥ 10�1

@
@
@

Table B.2: Spatial resolution at the end of the simulation �x
phy,e for each set of the

parameters.
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Figure B.2: The snap shots of the distribution of ⇢ at t = 104/M , where the initial value of
the field is �

0

= 10⇤. On the top panels, the parameters are set to (ML, N) = (1, 8192),
and on the bottom panels, the parameters are (ML, N) = (1, 131072). The vertical axis
of the left (right) panels is semi scale (log scale). The horizontal axis is the comoving
spatial coordinate.
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Appendix C

Finite box e↵ect

In chap. 5, we have confirmed the formation of I-balls. However, due to the limitation of
the size of the simulation box, scalar waves could propagate through the simulation box
many times if the simulation time is significantly large. This propagation is unphysical,
and it might a↵ect the formation of I-balls. Thus, to study the e↵ect of the unphysical
propagation, we perform simulations with a su�ciently large size of the simulation box.

The distance that the scalar waves can propagate is limited by the speed of light c = 1,
and hence the maximal distance is estimated by c times simulation time. Thus, to remove
the propagation e↵ects, we set the size of the box to be larger than c ⇥ �T

max

, where
�T

max

is the simulation time.
As a reference value, we study the formation for �

0

= 10⇤ from t = 2/M to 103/M .
To remove the e↵ect of the box size, we set the box size to be larger than the distance
that the light can propagate during the simulation to

L > c⇥�T
max

' 103
1

M
. (3.0.1)

We perform a simulation for the set of parameters (ML, N) = (1024, 1024 ⇥ 1024 =
1.048576⇥ 106), which gives the comoving spatial resolution �x ' 10�3/M and physical
one at the end of the simulation �x

phy,e ' 6.2⇥ 10�2/M . We show the snap shots of the
spatial distribution of the energy density at Mt = 2(= Mt

0

), 10, 102 or 103 in fig. C.1.
We can see the fragmentation and localization of � into I-balls on the panel of t = 103/M
as the same way in the smaller box size L = 1/M . We show the last panel of fig. C.1 by
changing the range of the horizontal axis to x 2 [0, 1/M ] in fig. C.2, where vertical axis
on the left (right) panel is semi (log) scale.

We have seen that the localization occurs even for this large box size. To confirm the
formation time, we show the evolution of ✏

over

in fig. C.3, where we also plot the result
in the case of smaller box size L = 1/M . From the figure, we can see that ✏

over

stars to
increase and saturate on the same time scale for both sizes L = 1/M and 1024/M .
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Figure C.1: The snap shots of the distribution of the energy density ⇢ at Mt = 2(=
Mt

0

), 10, 102 and 103 from the top left panel to the bottom right panel. The initial value
of the field is �

0

= 10⇤. Box size and grid number are L = 1024/M and N = 1024⇥ 1024
respectively, which corresponds to the comoving spatial resolution �x = 10�3/M and final
physical spatial resolution �x

phy,e = 6.2 ⇥ 10�2/M . The horizontal axis is the comoving
spatial coordinate.
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