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Abstract

The hydrogen impurity is ubiquitous in all semiconductors. Hydrogen unavoidably pen-

etrates into samples in many growth techniques and changes their electronic and optical

properties. In solids, hydrogen impurity can take several charge and bonding states, and

this is the origin of the wide variety of phenomena caused by hydrogen. Because experi-

mental detection of hydrogen impurity is rather challenging, theoretical study is essential

to understand the properties of hydrogen impurity.

In this thesis, we performed a reliable simulation of hydrogen impurity in silica based

on first-principles methods. To describe electronic structures, we used the diffusion Monte

Carlo (DMC) method, which is known to be one of the most reliable methods to simulate

electronic systems in condensed matter. Furthermore, we developed a method to calculate

the transition barriers between different charge states by extending the nudged elastic band

(NEB) method.

We calculated the formation energy of three possible charge states of hydrogen (H−, H0

and H+) in quartz SiO2 (q-SiO2) and rutile SiO2 (r-SiO2) with density functional theory

(DFT) and DMC. Atomic configurations optimized with generalized-gradient approxima-

tions (GGA) within DFT are used also for DMC. The finite-size effects of charged states

are corrected with the Makov-Payne (MP) correction. Compared to DFT, the calculated

formation energy with DMC are lower for H+ in q-SiO2 and higher for H− in r-SiO2,

while the calculated formation energy of H0 is larger than that of H− and H+ in all the

range of electron chemical potential with both DFT and DMC. Hence we conclude that

the H0 state is thermodynamically unstable in the both polymorphs of SiO2, and this is

consistent with electron spin resonance experiments.

Transition barriers between different charge states of hydrogen impurities in silica were

estimated with simple linear interpolated paths and optimized paths calculated with the

extended NEB method. Calculated transition barriers with the extended NEB method are

several tenth of an eV lower than that with the straight path. The transition barrier cal-

culated with DMC is larger than that with DFT both for q-SiO2 and r-SiO2. Each charge

state has a finite transition barrier in some regions of the electron chemical potential.

Experimental detections of large amount of muonium, which is a small-mass counterpart
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of H0, is explained by its metastability that has finite transition barriers to other states.

Finally, we studied possible molecular complexes of two hydrogen impurities. For q-

SiO2, we found two stable complexes, H2 molecule and H∗
2. The latter is a complex of

nearest-neighbored H+ and H− impurities. As a two hydrogen complex, only H+ + H+

and H2 and H− +H− are thermodynamically stable in q-SiO2. For r-SiO2, we found two

stable complexes, H2 molecule and H+
2 molecule. H+

2 molecule is uniquely found in r-SiO2.

The calculated formation energies indicate that thermodynamically stable complexes are

H2 and H+ +H+. Thermodynamically stable states are common to DFT and DMC.

This thesis reveals the thermodynamic and metastable properties of hydrogen impuri-

ties in silica with the state-of-the-art first-principles methods.
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Chapter 1

Introduction

1.1 Hydrogen impurity in semiconductors

The hydrogen impurity is ubiquitous in all semiconductors[1]. Because hydrogen is highly

diffusive and reactive, it can easily penetrate into samples and change their electronic and

optical properties. There are two main motivations to study the effect of hydrogen impu-

rity: intentional doping and unintentional contaminations. Intentional doping is performed

in order to enhance properties of samples by passivating the existing dangling bonds. A

typical example is amorphous silicon (a-Si), which is used in photovoltaics and thin film

transistors. Before hydrogen doping, a-Si includes many dangling bonds, 1019/cm3, which

act as the electron-hole recombination centers and cause in-gap states. Because the dan-

gling bonds degrade the performance, they should be removed. Hydrogen can passivate

the dangling bonds and drastically reduce their numbers to 1015 -1016/cm3. The hydrogen

doping is necessary to use a-Si in practice. Unintentional contamination of hydrogen some-

times causes an unexpected change of electronic properties. The example is ZnO, which is

used in piezoelectric transducers and is a candidate for a blue and ultraviolet light emitter.

ZnO always shows n-type conductivity. The origin of the conductivity had been a long-

standing puzzle in spite of several decades of researches. Although intrinsic defects were

first considered to be the origin because of the universality of the n-type conductivity,

theoretical study showed that they could not explain the conductivity. First-principles

calculations identified the cause, which is the hydrogen impurity. Although hydrogen is

usually amphoteric impurity, which means hydrogen is a self-compensated impurity, it se-

lectively behaves as a donor in ZnO. Unexpectedly, hydrogen impurity is the cause of the

puzzling n-type conductivity. Hydrogen unintentionally penetrates into not only ZnO but

also many other semiconductors because residual hydrogen contaminates samples in many

growth techniques, such as chemical vapor deposition, sputtering, hydrothermal synthesis

and molecular beam epitaxy. Therefore the effect of hydrogen impurity should be studied
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CHAPTER 1. INTRODUCTION

in almost all the semiconductors.

Some of novel physics and technologies are driven by hydrogen. In iron-based super-

conductor, substitution of oxygen with hydrogen breaks the limit of electron doping, which

is conventionally performed with the substitution with fluorine. The high electron doping

reveals the hidden two-dome structure in phase diagram[2]. The superconductivity with

the highest Tc is also achieved with a hydrogen-related material, hydrogen sulfide[3]. Hy-

drogen energy is a promising candidate for the next-generation energy system. Hydrogen

energy system will be supported with technologies such as the photochemical splitting for

hydrogen generation, hydrogen storage and hydrogen fuel cell.

Fundamental understanding of behaviors of hydrogen is important to facilitate the

active use of hydrogen or suppress its detrimental behavior. In order to investigate and

control the effect of hydrogen, both experimental and theoretical studies are indispensable.

Experimental detection of hydrogen impurity is rather difficult. Because hydrogen

has no core electrons, x-ray photoluminescence cannot be used to detect the impurity.

Secondary ion mass spectrometry (SIMS) is a powerful method to assess impurities quan-

titatively by destroying the surface of a sample and counting the secondary ions. Although

SIMS is usually a high-sensitive method, its application to hydrogen is difficult because

of the existence of hydrogens in residual gas. Nuclear reaction analysis (NRA) can detect

hydrogen and even its depth profiling near a surface by using the nuclear reaction between
15N and 1H. Although NRA is promising to investigate the properties of hydrogen impu-

rities, it is rarely applied to solids. Vibrational spectroscopies, infrared (IR) absorption

and Raman scattering, can give the local vibrational modes (LVM) of defects. When

hydrogen forms bonding to other atoms and a nonzero dipole moment exist, the LVM

of the bonding can be detected by IR spectroscopy. Even if the dipole moment is zero,

which is the case for hydrogen molecules in solids, Raman spectroscopy can measure the

LVM when the polarizability changes by the vibration. The LVMs are useful to determine

the charge and bonding state when combined with the first-principles estimation of vibra-

tional frequencies. Electron spin resonance (ESR) and electron nuclear double resonance

(ENDOR) can identify paramagnetic defects by the hyperfine coupling of electrons and a

nucleus. These methods can be used to identify the isolate hydrogen impurity in solids.

Muon spin rotation (µSR) experiment is an important method to study hydrogen impurity

[4, 5, 6]. In µSR experiment, muon is used as a pseudo-isotope of hydrogen, which has 9

times smaller mass than hydrogen. µSR can give results similar to ESR experiments with

high sensitivity. Although the µSR experiment is informative about hydrogen impurity, its

result should be interpreted with taking into account the finite life time of muon, 2.2µs,

and its light mass. The finite life time may result the metastable state, not the ther-

modynamically stable state. The light mass yield large quantum effects and muon may

not correspond to hydrogen. Electrical measurements, such as the deep level transient
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spectroscopy (DLTS), may determine a position of defective in-gap state.

Theoretical study reveals many properties of hydrogen impurity [1, 7]. Because hydro-

gen impurity takes various atomic positions and electronic properties, which depend on its

charge state and a host crystal, simple treatments such as the tight-binding method cannot

be used. Therefore first-principles methods are necessary to study hydrogen impurities.

Density functional theory (DFT) [8, 9] is the standard method to study defects in solids

including hydrogen impurity because of its relatively low computational cost with includ-

ing electron correlation. DFT can directly give microscopic properties of defects, such

as charge density, LVMs and defect levels. These quantities can be compared with ESR

(or µSR) experiments, vibrational spectroscopies and DLTS, respectively. Furthermore,

thermodynamical stability can be discussed with the formation energy, which is calculated

with the total energies for various charge states of defects. The formation energy deter-

mines the population of defects. Because experimental quantitative analysis of hydrogen

impurities are rather difficult, the calculated formation energy is important information.

1.2 Hydrogen impurity in silica: previous studies

Properties of hydrogen impurities in silica, SiO2, have been studied for its technological

importance. Amorphous-SiO2 (a-SiO2) is especially important because of its application

to wide variety of technologies, such as optical lenses, optical fibers and insulating layer

of Si-based metal-oxide-semiconductor (MOS) devices. These applications are based on

unique properties of a-SiO2. The properties are its transparency from infrared to vacuum

ultraviolet light, high chemical durability and high workability. Hydrogen sometimes im-

prove the properties of SiO2-based technology. In MOS devices, many dangling bonds exist

in the interface of Si and SiO2 because of the lattice mismatch between them. Passivating

the dangling bonds with hydrogen impurity is necessary for reliable operation of MOS

devices. Another example is synthetic SiO2 glass as an optical lens for photolithography.

Ultraviolet light makes defects in SiO2, and the defects reduce the optical transparency.

Doping hydrogen molecules improves the light durability of SiO2 because hydrogen atoms

released from the molecules can passivate dangling bonds indeced by ultraviolet light. On

the other hand, degradations are also caused by hydrogen impurity. In MOS devices, ex-

cess doping of hydrogen promotes dangling bonds at Si-SiO2 interface because the excess

hydrogen can depassivate the passivated dangling bonds by the formation of hydrogen

molecules. In a-SiO2, hydrogen breaks a weak elongated bond and generate a dangling

bond. Hydrogen in silica is also studied from the perspectives of earth science because

about 60 % of crust are made of silica.

To understand the behavior of hydrogen impurities, it is important to study two fun-

damental properties: thermodynamical stability and diffusion process.
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As for thermodynamical stability, one of our prime concerns is the stability of isolated

hydrogen (H0) because there seems to be contradictions in ESR experiments and µSR

experiments. An experimental observation of isolated hydrogen atoms is especially diffi-

cult because the atoms do not show unique vibrational modes. Only the ESR or the µSR

experiments can be detect the H0 atoms because they have an unpaired electron. In ESR

experiments, H0 atoms in silica are only detected with irradiated samples [10, 11, 12].

Without irradiation, no H0 atoms are observed. The irradiation may generate the isolated

hydrogen by breaking O-H or Si-H bonds. ESR experiments also show that the population

of H0 atom decreases exponentially when the temperature increases beyond around 100K.

These facts indicate that the isolated hydrogen is not thermodynamically stable. On the

other hand, µSR experiments[13, 14] indicate the existence of a muonium (Mu0), which

is a pseudo isotope of a hydrogen atom composed of a positive muon and an electron. In

µSR experiments, majority of the incident muons is observed as Mu0. Furthermore, the

population of Mu+/− becomes smaller when temperature becomes higher, and hence the

population of Mu0 seems to become larger by increasing the temperature. This indicates

that the Mu0 is thermodynamically stable and suggests that H0 is also thermodynami-

cally stable. This discrepancy between ESR experiments and µSR experiments is usually

assigned to the metastable feature of µSR experiments due to finite lifetime of muon.

However, the reason why Mu0 is observed is not discussed furthermore.

Theoretical studies support the metastability of the H0 state in silica. Thermody-

namically stable charge states of hydrogen impurity have been investigated for various

polymorphs of silica. The first theoretical study was performed by Yokozawa et al. for

cristobalite[15]. They calculated the formation energy of three possible charge states of

hydrogen impurity with local density approximation (LDA) within DFT and found that

hydrogen impurity shows amphoteric behavior, which means that the charge state of the

defect depends on the Fermi energy (or electron chemical potential). The isolated hydro-

gen atom (H0) is not found to be thermodynamically stable. They also calculated LVMs

of Si-H− and O-H+ and concluded that these states can be detected by vibrational spec-

troscopies. Blöchl studied hydrogen impurity, and also hydrogen-related defects, in quartz

SiO2 with generalized-gradient approximation (GGA) of DFT[16]. Thermodynamically

stable states are only H+ and H− just like the case for cristobalite. Charge states of hy-

drogen impurity in amorphous SiO2 is also studied by Godet et al.[17] with DFT-GGA.

They prepared an amorphous structure and calculated the formation energies for several

interstitial positions of H atom. Although the formation energy of H0 is lower for larger

interstitial voids, H0 is not thermodynamically stable again, and H has an amphoteric

feature. All these studies indicate that H0 is not thermodynamically stable, and this is

consistent with ESR experiments. However, the µSR experiments cannot explained by

these studies.
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Diffusions of hydrogen atoms have been theoretically studied[18, 19]. Tuttle studied

the diffusion of neutral atomic hydrogen in cristobalite with DFT-LDA and obtained

the activation energy barriers about 0.2 eV, which is consistent with experimental values

0.05 0.2 eV[18]. Godet et al. studied the diffusion of H+ (proton) in amorphous SiO2

with DFT-GGA. The calculated activation energy, 0.50 eV, is in good agreement with

experimental one, 0.38 eV[19]. Although these studies can explain experimental values

related to diffusions, they assume that the charge state of hydrogen does not change

during the diffusion. The hydrogen diffusion with changing its charge state is a concern

of this study as described in the next section.

1.3 Purposes and outline of this study

Previous theoretical studies of hydrogen impurity in silica have two missing perspectives.

The first one is the transitions between different charge states. In previous studies, only

thermodynamically stable states were investigated, and the stability of metastable states

was not discussed. Because the metastable states may be observed in µSR experiments,

the stability of metastable states should also be discussed. The charge state transition

may also occur when hydrogen diffuses through samples. For example, hydrogen may

change its charge state from H+ via H0 to H− during a diffusion when the atom changes

its position from a near-oxygen site via an interstitial site to oxygen vacancy. To treat

such diffusion, the transition barrier between different charge states should be discussed.

The second one is the reliability of density functional theory to describe electronic

structures of hydrogen impurities in silica. Previous theoretical studies are based on DFT,

which has some shortcomings. The band-gap problem is a typical one, where conventional

exchange correlation functionals, such as LDA or GGA, significantly underestimate the

band gap. Hybrid functionals can improve the estimation of band gaps by partially taking

the exact exchange term. However, their ability to describe the total energies is still

under debate. Indeed, the hybrid Heyd-Scuseria-Ernzerhof functional, which is one of

the most reliable functionals in solid-state calculations, sometimes predicts the wrong

thermodynamically stable charge state[20].

Our purposes are to investigate these two missing points. For the first point, we studied

the transition barriers between different charge states. The barriers were investigated with

a linearly interpolated path between optimized structures and also with the optimized

path. To calculate the optimized path, we extend the nudged elastic band method (NEB)

[21], which is the standard method to calculate the minimum energy path between given

two structures. In this study, the NEB method is extended to treat the minimum energy

path over two different potential energy surfaces corresponding to two charge states. We

discuss the stability of H0 with the calculated transition barriers.
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For the second point, we use the diffusion Monte Carlo (DMC) method [22, 23, 24]

to simulate electronic structures from first principles. DMC is another method to treat

defects in solids within reasonable computational time. In DMC, electronic structures

are represented by a many-body wave function. DMC is in principle more accurate than

DFT and actually is. DMC can describe wide variety of materials within small errors. It

can estimate cohesive energies with errors within 0.1 eV compared to experimental values,

lattice parameters with a several tenth of a percent and the band gaps within several tenth

of eV. Furthermore, DMC can well describe strongly correlated materials[25, 26] or van

der Waals systems[27], which are difficult to treat with DFT. DMC has also been applied

to defective systems, such as self-interstitial in Si[28], vacancy in diamond[29] and Al[30],

Schottcky defect in MgO[31] and recently various defects in ZnO[20]. These studies show

that DMC can well describe the experimental properties of defects. DMC has several

shortcomings against DFT. A major one is that forces acting on ions are unfeasible in

DMC because statistical sampling of the Hellman-Feynman force results in the divergence

of statistical error and the force is indefinite. This means that atomic configurations

cannot be relaxed with DMC. Another one is in evaluating physical quantities which do

not commute with Hamiltonian. To evaluate the quantities, one must use the extrapolated

estimators[22] which introduce some additional errors. We overcome these difficulties with

complimentary use of DFT.

We studied the hydrogen impurity in two types of polymorphs of silica, quartz SiO2

(q-SiO2) and rutile SiO2 (r-SiO2, stishovite). Because silica is used for many technological

applications as described in the previous section, the fundamental study of hydrogen in

silica is very important. In µSR experiments of both systems, majority of muon is observed

as muonium, and hence H0 is suggested to be thermodynamically stable[14]. This is

surprising because r-SiO2 has 1.6 times larger density than q-SiO2, and thus Mu0 may

be difficult to exist. Crystal structures of q-SiO2 and r-SiO2 are shown in Fig. 1.1. In

q-SiO2, a Si atom has a tetrahedral coordination. The tetrahedral coordination is common

to many silica polymorphs, such as coesite or cristobalite, which differ from each other in

the way to connect tetrahedra. On the other hand, a Si atom in r-SiO2 has an octahedral

coordination. Because of the difference of the coordination number, q-SiO2 and r-SiO2

have different electronic properties.

This thesis is organized as follows. Chapter 2 outlines first-principles methods to

describe electronic structures and how to treat charge states of hydrogen impurities in this

study. Chapter 3 describes the nudged elastic band method and its extension to calculate

the transition barriers between different charge states. In chapter 4, the properties of

an interstitial hydrogen atom in q-SiO2 and r-SiO2 is investigated with DMC. Chapter 5

shows the transition barriers between different charge states calculated with the method

described in chapter 3. Chapter 6 illustrates possible forms of molecular complex of two
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1.3. PURPOSES AND OUTLINE OF THIS STUDY

Figure 1.1: Crystal structures of quartz SiO2 (upper) and rutile SiO2 (lower). Left figures

show the view from crystallographic a-axis and right figures from c-axis.

hydrogen impurities in q-SiO2 and r-SiO2 and its stability calculated with DFT and DMC.

Chapter 7 presents conclusions and future perspectives of this study.
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Chapter 2

Density functional theory and

quantum Monte Carlo method

2.1 Density functional theory

Density functional theory (DFT) is the most standard method to simulate electronic sys-

tems of condensed matter from first principles. DFT is based on the celebrated Hohenberg-

Kohn theorems [8]. The first theorem shows that the external potential of the electronic

system can be determined only by the electron density of the ground state n(r). Thus the

ground state |Ψ⟩ is a functional of n(r). The second theorem states that the total energy

E[n] is variational in terms of n(r),

E[n] = F [n] +

∫
vext(r)n(r)d

3r ≥ E0, (2.1)

where vext(r) is the external potential. F [n] is the universal functional defined as

F [n] = ⟨Ψ[n]|T̂ + Vee|Ψ[n]⟩, (2.2)

which is independent of the external potential. The key quantity in DFT is this universal

functional F [n], which includes all the difficulty of the many-body problem. If this uni-

versal functional had been determined in a simple system such as electron gas, then any

electronic system would be solved exactly.

The Kohn-Sham (KS) scheme [9] makes DFT-based simulation feasible. In the KS

scheme, an interacting electron systems is mapped onto a fictitious noninteracting system,

which has the same electron density as the interacting one. The scheme separates F[n]

into three parts,

F [n] = Ts[n] + Eh[n] + Exc[n]. (2.3)

The first part is the kinetic energy of the reference system. The second term is the Hartree

term, which describes the classical Coulomb repulsion between electrons. The third term is
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called the exchange-correlation functional, which is the rest part of F [n]. Exc[n] includes

the remainder of the kinetic energy and the exchange-correlation interactions between

electrons. This Exc[n] is the central quantity that determines how accurately interacting

electrons is described. By this division, minimizing E[n] results the KS equation,[
−1

2
∇2 + vext(r) + vh(r) + vxc(r)

]
ψi(r) = ϵiψi(r), (2.4)

vxc =
δExc[n]

δn
, n(r) =

∑
i

|ψi(r)|2, (2.5)

where the summation in Eq. (2.5) is taken for occupied orbitals. The ground state

density and energy is obtained by solving this one-body self-consistent-field equation.

By introducing the noninteracting reference system, the kinetic energy in F [n] can be

described accurately. Therefore, the KS scheme can reproduce the electron shells of atoms,

which is essential to simulate condensed matter. This is a major advantage of the KS

scheme compared to earlier density functionals such as the Thomas-Fermi method[32].

The conventional exchange correlation functional is the local density approximation

(LDA) [33] and the generalized gradient approximation (GGA)[34]. They are parameter-

ized by the accurate diffusion Monte Carlo simulation of homogeneous electron gas[35].

Because these functionals include part of electron correlation despite of its low compu-

tational cost, they have been used as the standard functional even in recent simulations.

A major drawback of LDA and GGA is the underestimation of band gap of semicon-

ductors and insulators, typically a half of the experimental one. This underestimation is

due to an incomplete cancellation of self interactions in Hartree and exchange potentials

(so-called self-interaction error or delocalization error)[36]. Hybrid functional overcomes

this drawback to some extent by taking the Hartree-Fock exchange energy into the ex-

change functional. Especially, the Heyd-Scuseria-Ernzerhof (HSE) functional, which is a

screened-hybrid functional, is one of the most succesful functionals to predict the band

gap[37]. Although numerous exchange correlation functionals have been developed to im-

prove accuracy, systematic improvements are difficult because the exchange correlation

functional includes many-body physics.

These difficulties can be circumvented by another group of methods, wave function

theories (WFTs). In WFTs, the many-body Hamiltonian are used without any modi-

fications or simplifications. Therefore, although an approximated form of a trial wave

function causes an error, the approximation can be actually improved systematically and

the self-interaction does not exist in WFTs.

2.2 Quantum Monte Carlo method

Ab initio quantum Monte Carlo methods, the variational and diffusion Monte Carlo
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method, can accurately describe correlated electrons in solids. We use the variational

Monte Carlo method to optimize Slater-Jastrow trial wave functions. The optimized wave

function is then used as the trial wave function in the diffusion Monte Carlo method.

2.2.1 Variational Monte Carlo method

In the variational Monte Carlo method (VMC) [23, 24], the many-body wave function is

expressed as an explicitly correlated trial wave function |ΨT⟩. The trial wave function is

optimized with the variational principle and used to evaluate the physical quantity. The

energy with the trial wave function, which is called the VMC energy EVMC, is expressed

as

EVMC =
⟨ΨT |Ĥ|ΨT ⟩
⟨ΨT |ΨT ⟩

=

∫
d3NREL(R)ρVMC(R). (2.6)

Here EL(R) is the local energy defined as EL(R) = ĤΨT(R)/ΨT(R), and ρVMC(R) =

|ΨT (R)|2/⟨ΨT |ΨT ⟩. The integration are performed with the Monte Carlo method for

computational efficiency.

The form of a trial wave function determines the electron correlation retrieved in VMC.

In solid-state calculations, the trial wave function is almost always the Slater-Jastrow

wave function, which is a product of a Slater determinant and a Jastrow factor. A Slater

determinant is a mean-field wave function of a many-body system, where the orbitals

are usually Hartree-Fock or Kohn-Sham ones. The Jastrow factor describes the explicit

electron correlation, which is a function of the electron distances. In solid state calculation,

the Jastrow factor usually has the electron-electron, the electron-ion and the electron-

electron-ion terms[38]. The Jastrow factor is optimized with the Kato cusp condition[39].

The cusp condition is critical for efficient and stable simulations because the divergence

of the local energy is removed by this condition.

Optimizing the trial wave function is critical in VMC. The optimization is also im-

portant in the diffusion Monte Carlo method because the statistical error largely depends

on the quality of the trial wave function. The trial wave function is usually optimized

with the variance minimization, which is based on the zero-variance principle. The zero-

variance principle states that the variance of the energy would be zero if and only if the

trial wave function were the exact eigenstate. Because the variance is positive when a trial

state is not an eigenstate, the variance minimization is a reasonable way to optimize the

wave function. To optimize variational parameters {α} in a trial wave function Ψ
{α}
T , the

variance is usually approximated as an unreweighted variance,

σ
2,{α},{α0}
VMC =

∫
dR3N (E

{α}
L (R)− EVMC)

2ρ
{α0}
VMC. (2.7)

Here, {α0} are the parameters used to generate the Monte Carlo distribution, and {α} are

the variational parameters to be optimized. This optimization is repeated by updating
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{α0} until the variance is converged. The merits of this variance minimization is its sta-

bility and efficiency. Furthermore, high efficiency is achieved when only linear parameters

are optimized[40].

A drawback of VMC is its strong dependence on the trial wave function. If total

energies of different systems are compared to estimate, e.g., the cohesive energy or the

formation energy, the choice of the trial wave function significantly affects the result be-

cause retrieved electron correlation is different from each other. This drawback can be

suppressed with the diffusion Monte Carlo method discussed in the next section.

2.2.2 Diffusion Monte Carlo method

The diffusion Monte Carlo method (DMC) method is one of the most reliable meth-

ods to simulate the electronic structure of solids within reasonable computational time

[23, 24]. DMC can retrieve the electron correlation missed with VMC by projecting

out the lowest energy state in an initial trial wave function. This projection is real-

ized by the imaginary-time Schrödinger equation. How the imaginary-time propagation

works is easily understood by expanding an initial state by the eigenstates, Ψ(R, τ =

0) =
∑

i ciΨi(R). The solution of the imaginary-time Schrödinger equation becomes

Ψ(R, τ) =
∑

i ciΨi(R) exp(−Eiτ), where Ei is the energy of the eigenstate Ψi(R). The

propagation in imaginary time thus project out the most slowly decaying component,

which is the ground state.

Although DMC is simple and elegant in principle, it suffers from the notorious fermion-

sign problem to simulate electron systems. To circumvent the fermion-sign problem, the

fixed-node approximation [41, 42] must be imposed. This approximation fixes the nodal

surface of the ground state to that of a trial wave function, sign[Ψ(R, τ)] = sign[ΨT(R)],

in order to prevent the wave function from decaying to the ground state. The fixed-node

approximation is imposed by the importance sampling. With the importance sampling,

the wave function itself is not treated but the product of the wave function and the trial

wave function, f(R, τ) = Ψ(R, τ)ΨT(R) is. By assuming f(R, τ) ≥ 0, the fixed-node

approximation is imposed. The imaginary-time propagation of f(R, τ) can be written as

− ∂

∂τ
f(R, τ) = −1

2
∇2f(R, τ) +∇ · [vDf(R, τ)] + [EL(R)− ET]f(R, τ), (2.8)

where vD ≡ Ψ−1
T (R)∇ΨT(R) is the drift velocity, and EL(R) is the local energy. The

most standard form of the trial wave function is the Slater-Jastrow wave function.

Although DMC can in principle treat electronic systems more accurately than other

methods such as DFT, careful treatments of its approximations are necessary for reliable

simulation. The sources of error are the fixed-node approximation, the pseudo-potential

approximation, the finite-size error due to the inexact quantization of one-body orbitals
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and the spurious periodic exchange-correlation hole and the finite-time-step error. We

examined these errors and achieved the accuracy of 0.1 eV, as discussed later.

In this study, we use DMC for reliable estimations of the formation energy of hydrogen

impurity. Besides DMC, perturbative methods such as the GW method are also known

as accurate methods. They can accurately predict band gaps and the positions of in-gap

states induced by impurity [43, 44, 45]. However, because the total energy is not feasible

with the perturbative methods at present they cannot be used to estimate the formation

energies of charged impurities, which is necessary to discuss the thermodynamical stabil-

ity. Wave function theories (WFTs) commonly used in quantum chemistry are promising

candidates to estimate total energy with high accuracy. Indeed, Møller-Plesset 2 (MP2)

theory and the“gold standard” coupled-cluster (CC) theory have been used to calculate

total energy of solid. These methods, especially CC with singles, doubles and perturbative

triple excitations (CCSD(T)) method, accurately predict cohesive energies and band gaps

of solids[46]. However, the computational costs of most WFTs are too high to treat the

defective system. For example, the computational order is O(N5) for the MP2 method

and O(N7) for the CCSD(T) method where N is the number of electron in the system.

These high computational costs disable us to use such standard WFTs to simulate defec-

tive systems, which need simulations of large systems typically including several tenths to

several hundreds of atoms.

2.3 Defective system

2.3.1 Charge state calculation

Defects may be charged up by exchanging electrons with other defects or impurities. Be-

cause it is time-consuming to treat multiple defects simultaneously, ab initio treatment of

charged defects is performed with a charged system where only the target defect exists.

In the charged system, the total charge of electrons does not match that of nuclei. Net

charge in periodic systems produces the divergence of electrostatic interaction. The di-

vergence is avoided by introducing uniform background charge which compensates for the

net charge. Although the divergence can be avoided, spurious interactions arise due to the

electrostatic interaction between the periodic defective charge and the background charge.

This spurious interaction virtually reduces the energy of charged systems and should be

corrected to compare the stability of various charge states. This effect of the spurious

interaction is known as the finite-size effect because the effect depends largely on the size

of the simulation cell and becomes zero when system size is infinite.

A traditional method to correct the finite-size effect is the Makov-Payne approximation[47],

which is expressed as

EMP
corr = EPC +

β

Ω
+O(Ω−5/3). (2.9)
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Here, Ω is the volume of the simulation cell. The first term EPC is the point-charge

correction, which is the Madelung potential between the point charge on the defect position

and the background charge. For anisotropic systems, EPC is defined as EPC = − q
2VPC,

and VPC is [48],

VPC =
∑
Ri

q√
|ϵ̄|

erfc(γ
√
Ri · ϵ̄−1 ·Ri)√

Ri · ϵ̄−1 ·Ri

− πq

Ωγ2
+

i̸=0∑
Gi

4πq

Ω

exp(−Gi · ϵ̄ ·Gi/4γ
2)

Gi · ϵ̄ ·Gi
− 2γq√

π|ϵ̄|
,

(2.10)

where Ri and Gi are real and reciprocal lattice vectors, respectively. ϵ̄ is the dielectric

tensor and γ is a convergence parameter. The second term in Eq. (2.9) retrieves the inter-

action arising from higher order terms of defective charge such as a dipole moment. This

term can be calculated with either estimating defective charge or extrapolating energies

into the infinite system size. In this study, we performed the extrapolation as shown in

Fig. 4.1.

2.3.2 Formation energy

The most stable charge state can be determined by the formation energy, which is the

difference of energies between the defective system and the reference system (Fig. 2.1).

The number of electrons and the impurity atom are different between these systems, and

the differences are compensated with the chemical potentials of electrons and impurities,

respectively. The electron chemical potential is conventionally notes as the Fermi energy.

Because the Fermi energy is determined by the other defects present in a sample, the

Fermi energy depends on the way to prepare the sample.

The formation energy of hydrogen impurity is formulated as

Ef [H
q] = (Etot[H

q]− Etot[perfect])− nHµH + q(µVBM + EF) + Ecorr[H
q], (2.11)

where Hq means the hydrogen impurity with charge state q. Etot[H
q] and Etot[perfect] is

the total energy of a defective system and pristine system, respectively. nH is the number

of impurity hydrogen and µH is its chemical potential. µVBM is the energy of the valence

band maximum (VBM) and EF is the Fermi energy relative to VBM. Ecorr[H
q] represents

the finite-size correction discussed in the previous section. The most stable charge state

is the state that has the lowest formation energy.

Typical formation energies are shown in Fig. 2.2. Because the formation energy

depends on the Fermi energy, Thermodynamically stable state also depends on the Fermi

energy. The stability of the neutral defect can be discussed with the Ueff parameter[49]

defined as

Ueff = Eq+1
f + Eq−1

f − 2Eq
f . (2.12)

Ueff can be sketched graphically as in Fig. 2.2. Ueff is the effective Coulomb interaction

between electrons on the same defective site. Different from the Hubbard U parameter,
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Figure 2.1: A schematic illustration of the formation energy.

Ueff includes not only the electrostatic interaction but also the effect of lattice relaxation.

If the lattice relaxation largely affects the stability, Ueff may become negative. Negative

Ueff means that the state of charge q is not stable thermodynamically and favors to form

the q + 1 and q − 1 impurities, e.g. 2H0 → H+ + H−. Another important quantity is

the thermodynamic transition level ϵ(+/−), which is defined as the Fermi energy where

positive and negative charge states have the same formation energy. If the Fermi level is

below ϵ(+/−), positive charge state is thermodynamically stable, and vice versa.
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Figure 2.2: A typical formation energy for (a) Ueff > 0 and (b) Ueff < 0. The definition of

the thermodynamic transition level ϵ(+/−) is also shown.
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Chapter 3

Nudged elastic band method for

transition barriers between

different charge states

3.1 Nudged elastic band method

The nudged elastic band (NEB) method is a method to find the minimum energy path

(MEP) between a given initial and final state[21, 50]. The NEB has been used to analyze

chemical reactions[51], diffusion of interstitial impurities in solids[52, 53], and so on. The

reaction rate between the two states is determined by the activation energy, which is the

highest energy on the MEP.

In the NEB method, a string of images (replicas) of the systems are used to describe

the MEP (Fig. 3.1). Each image has a different atomic configuration. Initial images are

usually prepared by the linear interpolation between the initial and final state. Then the

images are relaxed to locate on the MEP. The forces acting on the images are made of

two kind of forces, the true force perpendicular to the path and the spring force parallel

to the path. The former is the force by the potential energy surface and ensure that the

images locate on the MEP. The latter is a spurious force that makes the distances between

adjacent images equal. Images relaxed with this forces are equally arranged on the MEP

and thus express the MEP.

The detailed formulation of the forces in the NEB method is as follows,

FNEB
i = F

true|⊥
i + F

spring|∥
i , (3.1)

F
true|⊥
i = F true

i − (F true
i · τi)τi, (3.2)

F
spring|∥
i = k(|Ri+1 −Ri| − |Ri −Ri−1|)τi, (3.3)

where FNEB
i is the NEB force acting on the image i. τi is the unit vector along the path on
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Figure 3.1: A schematic illustration of the NEB method.

the image i. τi changes its direction when the path changes. F
true|⊥
i is the perpendicular

component of the force by the potential energy surface, which is the Hellman-Feynman

force in this study. F
spring|∥
i is the parallel component of the spring force by adjacent

images. k is the spring constant, which does not affect the converged path. The spring

force is evaluated with the distance between adjacent images in order to ensure the equal

intervals between images.

For stable calculations, {τi} are expressed by the improved tangent[21]. Its formulation

is

τi =

τ+i Ei+1 > Ei > Ei−1,

τ−i Ei+1 < Ei < Ei−1,
(3.4)

where

τ+i = Ri+1 −Ri, τ−i = Ri −Ri−1. (3.5)

Here, Ei is the energy of image. If the energies of both adjacent images are lower or higher

than an image i, which means Ei+1 < Ei > Ei−1 or Ei+1 > Ei < Ei−1 , τi is calculated

by weighted average of τ+i and τ−i ,

τi =

τ+i ∆Emax
i + τ−i ∆Emin

i Ei+1 > Ei−1

τ+i ∆Emin
i + τ−i ∆Emax

i Ei+1 < Ei−1

(3.6)

where

∆Emax
i = max(|Ei+1 − Ei|, |Ei−1 − Ei|) ∆Emin

i = min(|Ei+1 − Ei|, |Ei−1 − Ei|). (3.7)

The images are relaxed until the residual forces, |FNEB
i |, is less than a tolerance, Ftor.
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Figure 3.2: A schematic illustration of the extended NEB method.

The computational efficiency of the NEB method depends on the choice of the op-

timization method [54]. In this study, we used the conjugate-gradient (CG) method to

optimize the configurations of images. Although the CG method is not the most efficient

for the NEB method, we choose the method because its implementation is easy.

3.2 Extended nudged elastic band method

Although the NEB method is a powerful method to calculate the MEP, the method cannot

be used to obtain the transition barrier between different charge states because each charge

state has a different PES. In order to treat the MEPs over different charge states, we

extended the NEB method.

Figure 3.2 illustrates the extended NEB method. In this method, we always calculate

the total energies of both PESs with an atomic configurations of each images. Then

we choose the lower energy one at each image to construct another PES, labeled PES3.

The NEB forces are evaluated for PES3, and the images are updated with the forces.

For updated images, we calculate the total energy of both PESs again, and repeat the

procedure. This procedure is repeated until the NEB forces are less than some tolerance,

as the same way in the standard NEB method.
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EF increaes

E[H
-
] - EF

E[H0]

E[H
+
] + EF

Figure 3.3: A schematic picture of the potential energy surface (PES) calculated in this

study. The dependence of PESs on the Fermi energy EF is illustrated. In some Fermi

energy, finite transition barriers exist.

In our calculation, two PESs correspond to the different charge states of hydrogen

impurity in silica. Because different charge states have different numbers of electrons, the

total energies should be corrected to compensate the difference. In the same way as the

formation energy, we correct the total energy with the electron chemical potential, or the

Fermi energy. Thus the corrected energies of the negative, neutral and positive states is

Etot[H
−] − qEF, Etot[H

0] and Etot[H
+] + EF, respectively. Therefore, transition barriers

depend on the Fermi energy (Fig. 3.3). The lower the Fermi energy is, the more stable

the H+ state is and the more unstable H− state is. Because the MEP depends on the

Fermi energy, the accurate estimate of the transition barrier requires to evaluate the MEP

at each Fermi energy.

We developed a code of this NEB method and combined it to xTAPP code, which

is a first-principles plane-wave pseudopotential code. We used the method to study the

stability of metastable charge states of hydrogen impurity in silica.
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Chapter 4

Isolated hydrogen atom in silica

In this chapter, we discuss the stability of an isolated hydrogen in quartz SiO2 and rutile

SiO2 (abbreviated as q-SiO2 and r-SiO2 hereafter) using the reliable diffusion Monte Carlo

method. Firstly, the relaxed atomic configurations and the density of states of hydrogen

impurity are shown for three possible charge states, H−, H0 and H+. Then the most stable

charge state is investigated with the formation energy. To compare the results with µSR

experiments, the quantum effect of muon is considered within the zero-point energy.

4.1 Computational details

4.1.1 Density functional theory

We used the eXtended Tokyo Ab-initio Program Package (xtapp) code [55, 56] for DFT

calculations with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional[34],

which is based on the generalized-gradient-approximation (GGA). The norm-conserving

pseudopotentials were used with a plane-wave basis sed with an energy cutoff of 100 Ry.

We optimized the lattice parameters for the pristine crystals with the gamma-centered

k-point meshes of 6 × 6 × 6 both for q-SiO2 and r-SiO2 until residual stress were below

0.05 GPa. While optimizing the lattice structures, we kept the cutoff energy constant

with the method of Bernasconi et al.[57]. The optimized lattice structures were also used

to calculate the defective systems. The atomic configurations of defective systems were

optimized with 2× 2× 2 k-point meshes until residual forces were below 0.01 eV/Å. The

total energies of charge states were corrected by the Makov-Payne method[47] (see section

2.3.1) with the extrapolation using supercells containing 73, 109 and 163 atoms. The

extrapolation for r-SiO2 is illustrated in Fig. 4.1. Whereas larger supercells do not change

the calculated formation energy of the H0 state, the other charge states are largely affected

and should be extrapolated to the infinite size of the supercell.
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Figure 4.1: The Makov-Payne corrections of the formation energies of hydrogen impurity in

r-SiO2 calculated with the GGA-PBE functional. The linear extrapolation was performed

using from 2× 2× 3 to 3× 3× 4 super cells.

4.1.2 Diffusion Monte Carlo method

Quantum Monte Carlo (QMC) calculations were performed with the casino code[23].

The trial wave function is the Slater-Jastrow wave function where the Slater determinant

consists of the Kohn-Sham orbitals calculated with the GGA functional. The orbitals are

firstly prepared in the plane-wave basis with the xTAPP code[55, 56] and then converted

into the blip-function basis[58], which is a very efficient localized basis. We used the

natural spacing of the blip grid as a = π/kmax, where kmax is the cutoff of the wave vector.

The convergence of one-body orbitals were checked by increasing the plane-wave cutoff

energy and comparing DMC energies. We found that the stable DMC simulation requires

the plane-wave cutoff of 144 Ry for q-SiO2 and 121Ry for r-SiO2. These relatively large

cutoff energies are necessary for stable calculations of the transition barriers between the

charge states, discussed later.

We checked the fixed-node error by comparing the formation energies calculated with

DMC using the GGA, the Hartree-Fock[59] and the hybrid PBE0[60] orbitals. All these

fixed-node DMC calculations show almost the same formation energies. Their differences

are within 0.1eV, which is the typical statistical error in this study. Therefore, we conclude

that the choice of one-particle orbitals does not affect our results. The nodal surface may

be improved by many-body wave functions beyond the Slater-Jastrow wave function, such

as the backflow wave functions[61] or paring wave functions[62]. However, such a wave

function is very time-consuming to use in solid state calculations and is therefore beyond

the scope of this study.
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Table 4.1: The ionization potentials of SiH4 and H2O molecule (in eV). Statistical errors

of DMC calculations are shown in parenthesis. a Reference[65]. b Reference[66].

.

GGA DMC Exp.

SiH4 11.95 12.68(3) 12.6a

H2O 12.51 12.68(3) 12.61b

The Jastrow factors included the electron-electron (e-e), electron-ion (e-i) and electron-

electron-ion (e-e-i) terms. We used the standard formulation of the Jastrow factor used

in solid state calculations[38]. The Jastrow factors were optimized by minimizing the

unreweighted variance, which is known to be very stable and efficient[40]. We used the

same Jastrow factors for the same atomic species in each charge system. This means that

if, for example, a Si atom forms chemical bonding with hydrogen impurity, we use the

same Jastrow factor for the Si atom as that for other Si atoms. This treatment may give

inaccurate Jastrow factors, and they may cause instability or sizable errors in the DMC

simulation. To verify our Jastrow factors, we calculated the DMC energies of smaller

systems with Jastrow factors where H-bonded atoms have different parameters from other

atoms. We confirm that our Jastrow factor has sufficient accuracy by comparing the DMC

energies with the Jastrow factor and our Jastrow factor.

In QMC calculations, we used the same norm-conserving pseudopotentials as the GGA

calculations. Because the pseudopotential is not made for QMC calculations, this may be

another source of error. Our pseudopotentials are verified by calculating the ionization

potential (IP) of SiH4 and H2O molecules. Table. 4.1 shows the calculated IPs. Because

the experimental IPs are well reproduced by DMC calculations, the pseudopotentials seem

to give no additional error for DMC calculations. The non-local part of the pseudopo-

tentials were treated by the localization approximations[63]. We also used the Casulas’

t-move scheme[64] to estimate the error caused by the localization approximation, and got

the difference of the formation energies within 0.1 eV.

Other sizable errors may be caused by the imaginary time step and the finite number

of a twist grid in the twisted-boundary condition[67]. We checked the convergence of

the DMC energies about these conditions by decreasing the time step and increasing the

number of the grids. To achieve the error within 0.1 eV, we used the time step of 0.02

a.u. and the grids of 2× 2× 2 for both q-SiO2 and r-SiO2.

The valence band maximum (VBM) and the conduction band minimum (CBM) were

estimated with the formula E[N ] − E[N − 1] and E[N + 1] − E[N ], respectively. Each

value is extrapolated to the infinite system size in order to remove the finite-size effect.
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All the DMC calculations were performed using the supercomputers at the Institute for

Solid State Physics, the University of Tokyo. We typically used 144 nodes (12cores/nodes)

and kept the number of walkers for DMC 10 walkers/core. We performed statistical

sampling of 4800 imaginary-time steps after initial 200 steps for projecting out the ground

state and achieved the statistical error of 0.0025eV/SiO2 (or 0.06 eV per simulation cell,

which consists of Si24O48H)

4.2 Relaxed structures and density of states

Hydrogen impurity may take three possible charge states, H+, H0 and H−. We optimized

the atomic configurations of each charge states using DFT with the PBE functional[34].

Figure 4.2 shows the optimized structures of q-SiO2 and r-SiO2. The optimum position of

H atom largely depends on its charge state. H+ forms a chemical bonding with an O atom

while H− with a Si atom. These chemical bondings are reasonable because O atoms and Si

atoms are negatively and positively charged, respectively. H0 is located at the interstitial

void of SiO2 with no chemical bond. This state is the isolated hydrogen, which can be

observed experimentally in ESR and µSR experiments due to its finite spin density.

The optimized atomic configurations of q-SiO2 are consistent with a previous study[17].

In H− state, the Si atom moves to the surface of the oxygen tetrahedra, and a bipyramidal

structure is formed. H0 is at the position with the maximum distance, 2.37Å, from oxygen

atoms. The bond lengths are 1.02Å for O-H in H+ and 1.50Å for Si-H in H−. In r-SiO2,

the hydrogen impurity is on the ab-plane where Si atoms and O atoms exist. The bond

lengths of Si-H and O-H are 1.38Å and 1.01Å, respectively. The distance between H0

and the nearest oxygen atoms are 1.73Å , which is shorter than that of q-SiO2 because of

smaller interstitial voids.

The density of states (DOS) of r-SiO2 and q-SiO2 are shown in Fig. 4.3. The electronic

structure of silica is assigned to the major contributions of ionic bondings and the minor

contributions of covalence bondings. The valence band mainly consists of 2s and 2p orbitals

of oxygen atoms because of the high ionicity. The small covalency add the components of

3s and 3p orbitals of silicon atoms to the valence band. The conduction bands are well

described by the orbitals of Si atoms. In the H0 state, there is an in-gap state which has

the feature of 1s orbital of hydrogen. Except for the in-gap state, the entire DOS is similar

to that of the pristine crystal. This indicates that the hydrogen is isolated without any

chemical bonding as expected from the atomic configuration. In the H+ state, hydrogen

state locates below the O 2s states due to hybridization of H 1s an O 2s orbitals in O-H

bonding.

The structural optimization using DMC was also performed in order to study its effect

on the stability of the H0 state. Because the ionic forces were not feasible in usual DMC
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Figure 4.2: Optimized atomic configurations of (a) H−, (b) H0 and (c) H+ for q-SiO2 and

(d) H−, (e) H0 and (f) H+ for r-SiO2.

simulations[68], we prepared candidates of optimized structures and compared their en-

ergies. The candidates were constructed with the linear interpolation and extrapolation

between the pristine and H0 structures optimized with the GGA calculations. The extrap-

olation was considered up to the 150 % lattice distortion of the H0 state. The resulting

energy variation for r-SiO2 is shown in Fig. 4.4. Figure 4.4 illustrates that the effect of

the structural optimization is at most 0.1 eV. Because the interstitial voids are smaller in

r-SiO2 than in q-SiO2, the effect of optimizing structure may be smaller in q-SiO2. There-

fore we conclude that the stability of H0 is not affected by the structural optimization with

DMC both in r-SiO2 and in q-SiO2. Although the relaxation with DMC does not affect

the H0 state, other states may be affected by, e.g., optimizing the bond length. However,

because our main concern was whether isolated hydrogen atom exists or not, we did not

perform the structural optimization of other charge states.

4.3 Formation energy

We investigated which charge state of hydrogen impurity is the most stable in silica in

terms of the formation energy. The formation energy was calculated with DFT and DMC.

The formation energy calculated with GGA is shown in dotted line in Fig. 4.5. The

range of the Fermi energy is between VBM and CBM calculated with GGA. The origin of

the Fermi energy is taken as VBM calculated with DMC. The calculated thermodynamic
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Figure 4.3: Density of states for hydrogen impurities of each charge states calculated with

Si24O48H structure using the GGA functional. The upper panel corresponds to q-SiO2

and the lower panel to r-SiO2. In each panel, the density of states of H−, H0 and H+ are

shown in the upper, middle and lower figure, respectively.
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Figure 4.4: Structural optimization of the H0 state in r-SiO2 using DMC. The structure

of host crystal is that of the pristine crystal for 0%, that of the GGA optimized structure

for 100% and the over-relaxed structure for 150%.

transition levels ϵ(+/−) with GGA calculation are 3.8 eV in q-SiO2 and 4.8 eV in r-

SiO2. The Ueff parameter is −0.4 eV and −1.7 eV in q-SiO2 and r-SiO2, respectively.

The formation energy of q-SiO2 is consistent with the previous study[17]. The negative

Ueff behavior appears in both systems, and the isolated hydrogen, H0, is predicted to be

unstable in these systems.

The formation energy was also evaluated with DMC (solid line in Fig. 4.5). The

formation energy is plotted in the region between VBM and CBM calculated with DMC.

DMC changes the formation energy calculated with GGA in a different fashion for q-SiO2

and r-SiO2. For q-SiO2, little variations of Ef [H
−] and Ef [H

0] were observed whereas

Ef [H
+] decreased about 0.6 eV. On the other band, for r-SiO2, Ef [H

−] increases about

1.8 eV and Ef [H
0] and Ef [H

+] shows little change. This difference may be due to the

different bonding characters between q-SiO2 and r-SiO2. In q-SiO2, the coordination

number of Si and O atom is 4 and 2, repectively, while the coordination number is 6 and 3

in r-SiO2. Because the electron correlation in these systems are different from each other,

the explicitly correlated DMC method give qualitatively different predictions from GGA.

The thermodynamic transition level and Ueff is 6.4 eV above VBM and -1.1 eV for

q-SiO2 and 6.9 eV above VBM and -0.4 eV in r-SiO2. The different effects of DMC causes

the large opposite correction for Ueff . The values of Ueff are still negative for both systems.

Therefore, we conclude that the H0 state is metastable for all the range of the Fermi energy

in these systems. This result supports the prediction of ESR experiments[11, 12] and is

opposite to that of µSR experiments[13, 14] (see section 1.2).
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(a) (b)

Figure 4.5: The formation energy of three charge states of hydrogen impurity in (a) q-

SiO2 and (b) r-SiO2. Solid lines represent the formation energy calculated with DMC and

dotted lines with GGA.

4.4 Quantum effect: zero-point energy

The results in the previous section cannot explain the µSR experiments where the majority

of incident muons are observed as muonium, which is a counterpart of H0 made of a positive

muon (µ+) and an electron. The main difference between a positive muon and a proton is

their mass. Because muon has 9 times smaller mass than proton, the quantum effect may

largely affect the stability of Mu. In order to discuss the stability of Mu0, we corrected

the formation energies with the zero-point energy(ZPE). Because each charge state has

different bonding character, ZPE is also different from each other. Because Mu0 locates at

the interstitial void of the host crystal without any bonding, its ZPE is lower than other

charge states.

In order to estimate the ZPEs, we evaluated the dynamical matrix with the frozen-

phonon method using GGA-PBE calculations. The calculation was performed with the

defective systems, which contain not only the host SiO2 but also the hydrogen impurity.

The vibrational frequencies were estimated by diagonalizing the dynamical matrixes. Be-

cause evaluating the vibrational frequencies with DMC is rather challenging due of its high

computational cost and statistical error, we use GGA-PBE to calculate the frequencies. In

molecular systems, the error in calculated vibrational frequency with PBE is typically 100

cm−1[69], which is about 0.01eV. Therefore, PBE seems to be accurate enough to estimate

vibrational frequencies in our purpose. The light mass of muon produces three localized

phonon modes. Using the frequencies of these modes, {ωi}3i=1, ZPE was evaluated as

ZPE =
∑

i
1
2ℏωi.

Table 4.2 shows the calculated ZPEs for q-SiO2 and r-SiO2. Common to both systems,
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Table 4.2: The zero-point energies of Mu and H in each charge state (in eV).

.

q-SiO2 r-SiO2

+ 0 - + 0 -

Mu 0.93 0.33 0.75 1.03 0.58 0.96

H 0.31 0.11 0.25 0.34 0.19 0.32

the Mu+ and Mu− states have larger ZPEs than the Mu0 state. This is because the Mu+/−

state forms chemical bonding to other atoms whereas no chemical bonding exists for the

Mu0 state, as mentioned before. The difference in ZPE between Mu0 and other states

increases Ueff and thus increases the relative stability of Mu0 compared to other charge

states. The ZPE of Mu0 is lower in q-SiO2 than in r-SiO2. This may be due to the larger

size of interstitial voids in q-SiO2. Adding the ZPEs to the formation energies calculated

with DMC, the value of Ueff increases from -1.1 eV to -0.6 eV in q-SiO2 and from -0.4 eV

to 0.0 eV in r-SiO2. Mu0 may thus be the most stable in r-SiO2 at some Fermi energies.

However, the region of the Fermi energy where Mu0 is the most stable is very narrow.

Therefore, this result cannot explain µSR experiments that indicate that Mu0 is the most

stable state.

Other quantum effects, such as the quantum tunneling, may affect the stability of

Mu0. Although these effects may be important to discuss Mu[70], the effects are beyond

the scope of this study.
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Chapter 5

Transition barriers between

different charge states

The formation energies presented in the previous chapter indicate that the isolated hy-

drogen (H0) is not the most stable in silica. To study the stability of the metastable H0

state, we calculated the transition barriers between different charge states.

5.1 Linearly interpolated reaction path

Firstly, we took the reaction path as the linear interpolation between the optimized struc-

tures of each charge states. For example, the linear path between the H0 state and the

H+ state is Rα[H
0 → H+] = αR[H0] + (1 − α)R[H+], where R[H0] and R[H+] are the

optimized atomic positions of all atoms and α is a parameter of the interpolation taking

the values in 0 < α < 1.

The potential energy surfaces (PESs) of q-SiO2 and r-SiO2 are shown in Fig. 5.1. The

calculated PESs depend on the Fermi energy of the system as discussed in section 3.2. The

Fermi energy is taken as the thermodynamic transition level ϵDFT(+/−) or ϵDMC(+/−),

corresponding to the computational method. DMC calculations were performed only

for the circular points. The intervals were interpolated using the DFT results. The

interpolation was performed with adding a linear function to the DFT curves to match the

corrected DFT energies and the calculated DMC energies. By comparing DMC and DFT,

DMC generally increases the calculated energies of each charge states with inconsistent

atomic configurations, such as the H0 state with the R[H−] configuration or the H+ state

with the R[H0] configuration, and so on. Thus DMC seems to increase the estimations of

transition barriers. This behavior is consistent with a general drawback of GGA. Semilocal

functionals of DFT are known to underestimate activation barriers of chemical reactions

due to the subtle electronic structures of the transition state[71]. Because DMC can
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r-SiO2q-SiO2

Figure 5.1: Transition barriers of hydrogen impurity in q-SiO2 (left) and in r-SiO2 (right).

The dashed line is the PES calculated with DFT-GGA and the solid line is with DMC.

retrieve electron correlation with high accuracy, the error in GGA can be corrected with

DMC. The underestimation with GGA and the correction with DMC are also known to

occur in an activation barrier of the diffusion of an impurity in solids[28]. In the same

way as chemical reactions without a change of charge state, GGA seems to underestimate

the transition barriers between different charge states. Therefore accurate DMC seems to

predict the higher transition barriers than GGA.

Figure. 5.2 and 5.3 illustrate the dependence of calculated transition barriers on the

Fermi energy. The range of the Fermi energy is between VBM and CBM calculated with

each method. Decreasing the Fermi energy reduces the transition barrier from H0 to H+

and H− to H0, and increasing the Fermi energy reduces the transition barrier from H0 to

H− and H+ to H0. In the shaded region, the H0 state has finite barriers for transitions to

H+ and H− and therefore is metastable. When the Fermi energy takes the value outside the

shaded region, H0 is not even metastable and therefore will change its charge state to H+

or H− corresponding to the Fermi energy. Note that this transition barrier corresponds to

a situation where electrons or holes on the Fermi level are around the defect. Because the

actual reaction path is, of course, more complicated than ours, the calculated transition

barrier is the upper bound of the actual ones. The transition barriers calculated with the

optimized reaction path is discussed in the next section.

In q-SiO2, there are upper and lower bound of the Fermi energy where the H0 state

is metastable, and this trend is common to both PBE and DMC. This indicates that, in

n-type or p-type q-SiO2, the H0 state is not even metastable and translate into the H− or

H+ state. By contrast, the H0 state in r-SiO2 has finite transition barrier even when the

Fermi energy is at the conduction band minimum. Therefore, isolated hydrogen atom can
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GGA DMC

Figure 5.2: Dependence of transition barriers on the Fermi energy in q-SiO2 calculated

with linearly interpolated reaction paths.

GGA DMC

Figure 5.3: Dependence of transition barriers on the Fermi energy in r-SiO2. calculated

with linearly interpolated reaction paths.
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exist metastably in n-type r-SiO2.

We note a relation between the transition barriers and µSR experiments[13, 14]. In

the µSR experiments, majority of incident muons becomes muonium (Mu0), which is a

counterpart of H0. However, as discussed in the previous chapter, H0 or Mu0 is not

thermodynamically stable. Although the reason why majority of the muons becomes Mu0

is still unresolved, the existence of Mu0 can be explained by the finite transition barriers

between neutral and other charge states existing in some regions of the Fermi energy.

Furthermore, the calculated barriers suggest that muonium is metastable in n-type r-SiO2

but not even metastable in n-type q-SiO2. Therefore, the results predict that no muonium

seems to be found in n-type q-SiO2

We compared the calculated barriers with a temperature dependence of experimental

ESR signals of H0. Because the temperature dependence of ESR signals in q-SiO2 or

in r-SiO2 is not found, we use the dependence in amorphous SiO2 (a-SiO2)[11]. Both

q-SiO2 and a-SiO2 have tetrahedrally coordinated SiO2, and we expect that both systems

have similar transition barriers. In the experiment, H0 is produced by irradiation and

the population decreases with increasing the annealing temperature. The decrease may

be due to the reactions such as H0 → H+/− or 2H0 → H2. Among these reactions, we

only take the H0 → H+/− reaction into account. From the temperature dependence of

experimental ESR populations, the activation barrier is estimated as about 0.51 eV. On

the other hand, our results (Fig. 5.2) indicate that the barriers between H0 and H+/−

take the values from 0 eV to 0.91 eV. Our calculated barriers thus seem to be consistent

with the experimental barriers.

5.2 Reaction path with the extended nudged elastic band

method

We optimized the reaction path between different charge states with the extended NEB

method developed in this study(Sec. 3.2). The calculations were performed with DFT-

PBE with the computational conditions written in section 4.1.1. The number of atoms

were 73 both for q-SiO2 and r-SiO2. We took 11 images to represent a path. The spring

constant for the NEB method was optimized with smaller cell calculations (13 atoms) of

r-SiO2, and the optimized one is 0.2 Hartree/Bohr2. This value was also used for q-SiO2.

The images were relaxed until residual NEB forces were below 2×10−3 Hartree/Bohr.

The calculated transition barriers between H0 and other charge states for q-SiO2 are

illustrated in Fig. 5.4. The Fermi energy was taken as 2.88 eV above the VBM where the

transition barrier of H0 to H− and H0 to H+ take the same value with a straight reaction

path (the Fermi energy of the cross point of red and blue lines in Fig.5.2). By optimizing

the reaction path, the calculated transition barriers reduce their values about several tenth
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of an eV. However, even with the extended NEB method, the finite transition barriers still

exists. Therefore, the barrier indicates that H0 is metastable in some regions of the Fermi

energy.

Figure 5.5 illustrates the transition barriers for r-SiO2 calculated with the extended

NEB method. The Fermi energy was taken as 3.95 eV above the VBM, which is the

equivalent setting as for q-SiO2 in the previous paragraph. Same as q-SiO2, the optimized

paths lower the calculated transition barriers about several tenth of an eV than the straight

path. The calculated transition barrier from H0 → H− is very small and easily activated.

This indicates that there is no transition barrier for the reaction. However, because DMC

largely increases the calculated transition barriers as shown in the previous section, there

may be a finite barrier for that reaction with DMC. It is an important future work to

estimate the transition barriers with the extended NEB method and DMC.

In both q-SiO2 and r-SiO2, the transition barriers with the optimized path are several

tenth of an eV lower than that with the linear path. This amount of reduction seems

to be typical when the extended NEB method is used. The reduction is large enough to

affect the predictions of the stability of charge states and diffusion process of hydrogen.

Therefore the extended NEB method developed in this study is essential to estimate the

barriers.
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q-SiO2: H0          H+

H0

H+

q-SiO2: H0          H-

H0

H-

Straight Path

Optimized Path

Figure 5.4: Transition barriers between H0 and H− (left) and that between H0 and H+

(right) in q-SiO2 with a straight path and a path optimized with the extended NEB

method. The Fermi energy is taken as 2.88 eV above the VBM.

r-SiO2: H0          H+r-SiO2: H0          H-

Straight Path

Optimized Path

H0

H-

H0

H+

Figure 5.5: Transition barriers between H0 and H− (left) and that between H0 and H+

(right) in r-SiO2 with a straight path and a path optimized with the extended NEB

method. The Fermi energy is taken as 3.95 eV above the VBM.
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Chapter 6

Hydrogen molecules in silica

Hydrogen molecules in solids are called the hidden hydrogen reservoir because they are

not detectable with infrared spectroscopy and are sometimes missed in experiments. A

typical example is H2 molecules in ZnO. Annealing the sample produces an additional

O-H vibrational mode in spite of no H-related modes present before annealing. The

additional mode is formed by supplying hydrogens from the hidden hydrogen reservoir,

the H2 molecules.

Hydrogen molecules are known to be beneficial in an optical lenses for photolithog-

raphy, as described in 1.2. Hydrogen molecules in silica are also studied from the earth-

science interests. Silica is abundant in earth’s crust or mantle and undergoes the pressure-

induced phase transition towards various types of polymorphs. Besides silica, high-pressure

gases are known to exist in the crust and mantle. Therefore, small molecules such as H2

or He may penetrate into silicas and may affect their physical properties, such as the

compressibility.

In this section, we study stable forms of molecular hydrogen complexes in q-SiO2 and

r-SiO2 and their thermodynamical stability. We also estimate vibrational frequencies of

the hydrogen molecules, which are detectable with the Raman spectroscopy.

6.1 Atomic configurations of molecular hydrogen complexes

We optimized the atomic configurations of two interstitial hydrogens in q-SiO2 and r-SiO2

with DFT using the PBE functional. Computational conditions were the same as in Sec.

4.1.1. Figure 6.1 and 6.2 show the optimized structures with a neutral charge state. For

q-SiO2, we find that there are two kinds of stable structures, a H2 molecule and a H∗
2

complex. The H2 molecule in q-SiO2 has a bond length of 0.745 Å, which is close to the

value of a free H2 molecule 0.753 Å in PBE calculation. The H∗
2 structure is a complex

of H+ and H− impurities, where H+ and H− are located in a nearest neighbor site. This
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a

b
c

H2 H2*

Figure 6.1: The optimized structures of complexes of two hydrogen impurities in q-SiO2.

Left figure illustrates the structure of a H2 molecule and right a H∗
2 complex.

structure is more stable than the structure with separated H+ and H− impurities.

For r-SiO2, we found two stable forms of molecular hydrogen, one of which is oriented

along c-axis (labeled H2(c)) and another one is located in ab-plane (H2(ab)) (Fig. 6.2).

The bond lengths are 0.708 Å and 0.692 Å in H2(c) and H2(ab), respectively. The energy

of H2 state is lower than H+ + H− impurities about 2.94 eV and 2.67 eV for H2(c) and

H2(ab), respectively, with PBE calculation. With DMC, the calculated energy difference

between H2 and H+ +H− is 3.8(2) eV for H2(ab) and 4.2(2) eV for H2(c).

Figure 6.3 shows DOS and PDOS of hydrogen for H2 in q-SiO2 and r-SiO2. In r-SiO2,

there is an in-gap state assigned to hydrogen whereas no in-gap state appears in q-SiO2.

This indicates the possible existence of the H+
2 state in r-SiO2. This difference between

q-SiO2 and r-SiO2 may be due to a hybridization of H2 orbitals with the host crystal.

Because the interstitial spacing is smaller in r-SiO2 than in q-SiO2, the hybridization is

stronger in r-SiO2 and the in-gap state appears.

The atomic configurations of the H+
2 state in r-SiO2 are shown in Fig. 6.4. In this

state, an electron is removed from the H2 molecule, and the remaining electron is located

at the H+
2 molecule. For q-SiO2, if we remove an electron from the system, the electron

gets out of host SiO2. Thus H+
2 state does not exist in q-SiO2 and is unique in �r-SiO2.

The H+
2 state has two stable geometries, H+

2 (c) and H+
2 (ab) similar to H2 state. The bond

lengths of H+
2 (c) and H+

2 (ab) are 0.843 Å and 0.861 Å, respectively, which is longer than

the bond lengths of the H2 states. The orientation of a H2 molecule is different between

in the H2 state and in the H+
2 state. In the H2 state, the molecule is directed to avoid

surrounding oxygen atoms and causes a large lattice relaxation. On the other hand, in the

H+
2 state, the molecule turns and directed towards the oxygen atoms with the host lattice

almost unchanged.
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Figure 6.2: The optimized structures of complexes of two hydrogen impurities in r-SiO2.

Left figure illustrates the structure of a H2 molecule oriented to c-axis and right locates

in ab-plane.

PDOS(H:1s)

Total DOS r-SiO2

Total DOSPDOS(H:1s)

q-SiO2

Figure 6.3: Density of states and partial density of states of H2 in q-SiO2 and r-SiO2

calculated with Si24O48H2 structures. The upper panel corresponds to r-SiO2 and the

lower panel to q-SiO2. In each panel, total DOS is shown in black lines and PDOS of H

in green line.
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Figure 6.4: The optimized structures of H+
2 impurities with different configurations. Left:

H+
2 oriented along c-axis. Right: H+

2 located in ab-plane.

6.2 Formation energy of molecular hydrogen complex

We evaluated the formation energies of molecular hydrogen complexes in order to deter-

mine the thermodynamically stable states (Fig. 6.5). The calculated formation energies

with GGA and DMC are plotted in the regions of the Fermi energy between VBM and

CBM calculated with each method. The origin of the Fermi energy is taken as VBM calcu-

lated with DMC. Figure 6.5 shows not only the formation energies of hydrogen complexes

discussed in the previous section but also that of two separated hydrogen impurities such

as 2H+ = H++H+. In q-SiO2, as a two-hydrogen impurity, 2H+, 2H− and the H2 molecule

are thermodynamically stable. Although H++H− is the most stable in two mono-hydrogen

impurities, H2 molecule is more stable than this state. H∗
2 state has higher energy than

H2 molecule, and therefore not thermodynamically stable. However, H∗
2 may affect the

diffusion mechanism of hydrogen impurity. When hydrogen atom diffuses through the

interstitial voids of q-SiO2 with rich hydrogen impurities, the atom may hop between the

H2∗ states.

In r-SiO2, only H++H+ and H2(c) molecule is thermodynamically stable. Other states

such as H− + H− or the H+
2 state are not thermodynamically stable. Although H+

2 state

is metastable, it may be created by irradiation and detected with ESR experiments.

Both in q-SiO2 and r-SiO2, H2 molecule is thermodynamically stable. Therefore, H2

molecules may exist in both systems as a hidden hydrogen reservoir.

6.3 Vibrational frequencies of hydrogen molecules in silica

We calculated the vibrational frequencies of hydrogen molecules in silica with the PBE

functional in order to access the experimental identification of the molecules. We estimated
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Figure 6.5: The formation energies of molecular hydrogen complexes in q-SiO2 (left) and

in r-SiO2 (right).

the vibrational frequencies with changing the bond length of H2 molecules whereas fixing

the structure of the host lattice. Calculated frequencies for neutral H2 molecules are

4318.12 cm−1 for a free H2, 4390.31 cm
−1 for H2 in q-SiO2, 4834.26 cm

−1 and 5166.30 cm−1

for H2(c) and H2(ab) in r-SiO2, respectively. The frequencies for H+
2 are 2820.62 cm−1 in

vacuum, 3066.67 cm−1 and 4149.86 cm−1 for H+
2 (c) and H+

2 (ab) in r-SiO2, respectively.

These frequencies are well separated and can be distinguished with spectroscopy. These

vibrational frequencies may be observable by the Raman scattering technique.
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Conclusions

In this thesis, we investigated the properties of hydrogen impurities in silica with reliable

first-principles methods. Generally, hydrogen impurity in semiconductors can adopt mul-

tiple charge states due to the amphoteric character of the hydrogen atom. The relative

stability between these states is known to be quite subtle, which have rendered reliable in-

vestigation on them difficult. We have addressed this problem with efficient first-principles

methods. Specifically, we employed the diffusion Monte Carlo (DMC) method to achieve

reliable description of electronic structures. Also, we developed a method to calculate

the energy barriers between different charge states by extending the nudged elastic band

(NEB) method. Applying these methods to silica, we have achieved precise description of

the possible hydrogen charge states there.

In chapter 3, we showed the extension of the NEB method, which enables us to calculate

the minimum energy path across the potential energy surfaces for different charge states.

In chapter 4, we studied the properties of single hydrogen impurity in quartz SiO2

(q-SiO2) and rutile SiO2 (r-SiO2) with a combined analysis based on the first-principles

method based on density functional theory (DFT) and the DMC. We calculated the forma-

tion energies of hydrogen for three possible charge states (H−, H0, H+) and find that the

formation energy for the H0 state is larger than those for H+ and H−, which is consistent

with the DFT and DMC approaches. This result indicates that hydrogen impurity is am-

photeric and isolated hydrogen H0 is not thermodynamically stable. There is quantitative

difference between DFT and DMC. Compared to DFT, calculated formation energies with

DMC are lower for H+ in q-SiO2 and higher for H− in r-SiO2 whereas other states are un-

changed. These results indicate that the effect of electronic correlation, which is accurately

treated with the DMC, may be particularly large for these states. The origin of this may

be due to the difference in electronic structures of the systems arose from different coordi-

nation number. The fact that DFT and DMC give different formation energies indicates

the importance to use reliable first-principles methods to describe electronic structures of
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hydrogen-related systems.

In chapter 5, we estimate transition barriers between different charge states with a new

method described in chapter 3. The calculated barriers indicate that each charge state

is stable in some regions of the electronic chemical potential and is not even metastable

in other regions. For n-type or p-type q-SiO2, isolated hydrogen is not metastable. This

indicates that during the diffusion in n-type and p-type q-SiO2, hydrogen atom does

not adopt the H0 state. Comparing the barriers calculated with DFT and DMC, DMC

gives larger values in both q-SiO2 and r-SiO2, and so this behavior may be general. We

compared the barriers obtained with the simple straight paths and that obtained with the

minimum energy path calculated with the extended NEB method. The result indicates

that the calculated barriers are lower with the NEB method about several tenth of an

eV, which is large enough to affect the predictions of the stability of charge states and

diffusion process of hydrogen. Therefore the new NEB method developed in this study is

essential to describe the transition barriers between different charge states.

In chapter 6, we studied the possible forms of molecular complexes of two hydrogen

atoms and their stability. In q-SiO2, we found two stable forms, hydrogen molecule (H2)

and H∗
2 complex. The latter is a complex of nearest-neighbored H+ and H−. For r-SiO2, we

found two stable forms, H2 and H+
2 . Uniquely, the H

+
2 molecule is stabilized only in r-SiO2.

This is due to the interactions between H2 molecule and host SiO2. Because interstitial

voids of r-SiO2 is smaller than that of q-SiO2, H2 in r-SiO2 has larger interactions with host

SiO2. This may be the reason why H+
2 is stable in r-SiO2. As two hydrogen impurities,

thermodynamically stable states in q-SiO2 are H
++H+, H2 and H−+H−. The H∗

2 state is

metastable in q-SiO2, but this state may be still important to discuss the diffusion process

of hydrogen atoms. In r-SiO2, H
++H+ and H2 are thermodynamically stable whereas H+

2

is metastable, but the H+
2 state is nevertheless important because this state is detectable

with electron spin resonance experiments of an irradiated sample.

We conclude this thesis by future perspectives around this work. Assessing the reliabil-

ity of DFT to describe systems including hydrogens is important to study hydrogen-related

technologies, such as hydrogen storage or fuel cell. This study shows that, even in weakly

correlated systems, DFT may give different predictions from DMC. This fact suggests the

importance to use accurate first-principles methods to study hydrogen systems. Because

the total energy is not feasible in the perturbative methods, such as the GW method,

some of wave function theories, such as DMC, is a promising one as shown in this study.

Furthermore, DMC is suitable for massively parallel computations. We therefore expect

future applications of DMC to hydrogen systems.

The method to calculate transition barriers between different charge states may have

various possible applications. A typical one is to study the diffusion process of impurities.

Hydrogen impurity adopts several charge states in various semiconductors. Furthermore,
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not only hydrogen but also many other impurities have several stable charge states. When

the impurities diffuse in solids, they may exchange electrons with other defects and thus

can change its charge state during the diffusion. To treat such a diffusion, the transition

barriers between different states are fundamental information.
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[24] J. Kolorenč and L. Mitas, “Applications of quantum Monte Carlo methods in con-

densed systems,” Rep. Prog. Phys. 74, 026502 (2011).

[25] H. Zheng and L. K. Wagner, “Computation of the correlated metal-insulator transi-

tion in vanadium dioxide from first principles,” Phys. Rev. Lett. 114, 176401 (2015).

[26] L. K. Wagner, “Ground state of doped cuprates from first-principles quantum Monte

Carlo calculations,” Phys. Rev. B 92, 161116(R) (2015).

[27] A. Benali, L. Shulenburger, N. A. Romero, J. Kim, and O. A. von Lilienfeld, “Applica-

tion of diffusion Monte Carlo to materials dominated by van der Waals interactions,”

J. Chem. Theory Comput. 10, 3417 (2014).

[28] W. K. Leung, R. J. Needs, G. Rajagopal, S. Itoh, and S. Ihara, “Calculations of

silicon self-interstitial defects,” Phys. Rev. Lett. 83, 2351 (1999).

[29] R. Q. Hood, P. R. C. Kent, R. Needs, and P. R. Briddon, “Quantum Monte Carlo

study of the optical and diffusive properties of the vacancy defect in diamond,” Phys.

Rev. Lett. 91, 076403 (2003).

[30] R. Q. Hood, P. R. C. Kent, and F. A. Reboredo, “Diffusion quantum Monte Carlo

study of the equation of state and point defects in aluminum,” Phys. Rev. B 85,

134109 (2012).
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