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Abstract

The LHC discovered the Higgs boson but has not discovered any supersymmetric (SUSY) par-

ticles. The heavy sfermion scenario, or the SUSY scenario in which the SUSY scalar partners

of the SM fermions (sfermions) are heavy > O(1–10)TeV, is compatible with these results. In

addition, the constraints from the flavor changing neutral current problem is relaxed. Thus, the

heavy sfermion scenarios have attracted attentions. In this case, the neutralino lightest SUSY

particle (LSP) can be the candidate for the dark matter (DM) only in limited cases. The Bino-

Higgsino resonant DM model is one of the attractive models. In this model, the DM candidate

is the Bino LSP which mixes with the Higgsino slightly. When the mass of the LSP is half of

the Higgs boson mass or the Z boson mass, the current relic abundance can be explained with

the resonant annihilation.

This model contains the light DM (Bino LSP) with the O(10) GeV mass and the heavy neu-

tralinos and the chargino (Higgsinos) with the O(100) GeV masses. It makes the phenomenology

rich in many experiments. Especially, the direct detections, the invisible decay and the LHC

searches are sensitive to this model. In this thesis, we investigate the phenomenology of the

Bino-Higgsino resonant DM model with combining these experiments. We consider the case

that all the sfermions are heavy and the model is described by only three SUSY parameters.

We study all parameter space comprehensively to investigate the rich phenomenology especially

in the blind spot where the DM-DM-Higgs couplings vanishes. As a result, it is shown that

there is still large viable parameter space. It is also shown that the combination of the future

experiments can reveal almost all region of this model.
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Chapter 1

Introduction

The standard model (SM) is a well-established model which can explain many experimental

results in the particle physics. In addition, the Higgs boson was discovered at the LHC in July

2012 [1, 2]. Although all particles in the SM have been found, there are still many problems

and mysteries about the SM. For example, there exists the hierarchy problem and there is no

candidate for the dark matter (DM). To solve these problems, supersymmetric (SUSY) model is

considered as one of the promising candidates for the new physics models beyond the SM [3,4].

SUSY is the symmetry between bosons and fermions, and SUSY models contain the partner

particle (SUSY particle) for each SM particle. The contributions from the SUSY particles cancel

out the quadratic divergence of the quantum corrections to the Higgs boson mass. Although the

little fine tuning with the size of O(10−2 ∼ 10−6) remains, the hierarchy problem which need

the unnatural fine tuning with the size of O(10−32) is solved. In addition, the lightest SUSY

particle (LSP) can be a dark matter candidate if the R-parity is conserved.

To search these SUSY particles directly, the LHC had run at
√
s =7 TeV during 2010 to 2011,

at 8 TeV during 2012 and the LHC is running at 13 TeV now (from 2015). However, there is no

sign of new particles yet and the mass bounds for new particles have been becoming stronger.

For example, the squark mass should be larger than 1.6 TeV and the lower mass bound for the

gluino is 1.4 TeV in mSUGRA model [5]. In addition, the masses of the stops are required to

be heavier than O(1–10) TeV to explain the Higgs boson mass 125GeV in the minimal SUSY

extension of the SM (MSSM) [6–8]. From these facts, the heavy sfermion scenarios, or the SUSY

scenarios in which the scalar partners of the SM fermions (sfermions) are heavy > O(1–10) TeV,

have attracted attentions [9–16]. In these scenarios, not only the Higgs boson mass can be

explained but also the constraints from the LHC can be evaded. In addition, the constraints

from the flavor changing neutral current (FCNC) problem are also relaxed [17, 18]. Thus, the

heavy sfermion scenarios are considered as one of the attractive SUSY scenarios. We consider

the heavy sfermion scenario in this thesis.

In the heavy sfermion scenario, although the lightest neutralino can be a DM candidate,

the correct thermal relic abundance, Ωχ ≃ 0.120 [19], can be obtained only in limited cases. It
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happens when the mass of the pure Wino DM is about 3 TeV [20, 21], when the mass of the

(almost) pure Higgsino DM is about 1 TeV [21,22], when the gaugino coannihilation occurs [23–

27] or when the Bino mixes with the Higgsino sizably [28–36].

The Wino DM and the Higgsino DM with the mass O(100) GeV tend to give small thermal

relic abundance since they can annihilate to the SM particles effectively. Since heavier mass

decreases the annihilation cross section, the mass of the Wino (Higgsino) should be 3 (1) TeV to

explain the current relic abundance [20–22]. In contrast, the Bino DM is typically overabundant

if all the sfermions are heavy > O(1–10) TeV and the mixing with the Higgsinos is small.

There are two ways for the Bino DM to give the correct thermal relic abundance: the Bino

DM coannihilates with the other gauginos, or the mixing with the Higgsinos become sizable

with O(100) GeV Higgsinos. The former case, the gaugino coannihilation scenario, is valid for

the DM mass O(0.1–1) TeV [23–27]. In this case, with nearly degenerated Bino and gauginos,

the coannihilation can decrease the number density of the DM and the current relic abundance

can be obtained. The latter case, the Bino-Higgsino DM scenario, has two parameter regions:

where the Bino-Higgsino mixing is tuned (well-tempered scenario) [28–30], and where the DM

annihilate resonantly via the Higgs boson or the Z boson (resonant scenario) [30–37]. In the well-

tempered scenario, the Higgsinos are nearly degenerated with the Bino. The mixing between the

Bino and the Higgsino is maximized and the coannihilations among the neutralinos and chargino

become also effective. These make the DM annihilation cross section large and the current relic

abundance can be explained. However, almost all region except the blind spot where the DM-

Higgs coupling vanishes [38] is excluded already [38, 39]. In the resonant scenario, although

the mixing between the Bino and the Higgsino is not so large as the well-tempered model, the

resonant annihilation can enhance the DM annihilation cross section. It happens when the mass

of the DM, mχ0
1
, is a half of the Higgs boson or the Z boson, mχ0

1
∼ mh/2 or MZ/2, and the

DM annihilation cross section is enhanced by the Higgs- or Z-resonance. In these regions, the

DM mass is less than 100 GeV and the masses of the second and third heavier neutralino and

the lightest chargino are O(0.1–1) TeV.

Although the heavy sfermion scenario is one of the attractive SUSY scenarios, the sfermions

are heavy and it is difficult to search them directly by the experiments. Thus, the studies

about the neutralinos/charginos, especially the DM, become necessary. Among the above DM

models, the Bino-Higgsino resonant DM model gives variety of phenomena in the energy scale

10∼1000 GeV: the DM scattering with nuclei, the invisible decays of the Higgs/Z boson to the

DMs and the productions of the heavy neutralinos/chargino at the colliders. Thus, there are rich

phenomena in the experiments even in the case where all the sfermions are heavy. Studying such

phenomenology is important not only theoretically but also experimentally since the combining

the results of various experiments is shown to be important to reveal this SUSY scenario. Thus,

we study the phenomenology of the Bino-Higgsino resonant DM model in this thesis.

To investigate this Bino-Higgsino resonant model comprehensively, we include the following

experimental constraints and future prospects: the relic abundance [19], the DM direct detec-
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tion [40–43], the invisible decays of the Higgs/Z boson [44–49] and the chargino/neutralino

searches [50,51]. In this thesis, we assume the gluino and the Winos are heavier than a few TeV

while the sfermions are assumed to be heavy > O(1–10) TeV. This is because the Wino with the

mass ≳ 500–700 GeV and the gluino do not affect the DM phenomenology. In addition, since

the existence of O(100) GeV gluino and Winos enlarges the covered region of the constraints and

the future prospects of the LHC SUSY searches, to evade the constraints and to give the con-

servative future prospects, we assume they do not contribute to the LHC SUSY searches. Thus,

the gluino and the Winos are assumed to be heavier than a few TeV and we do not consider

their effects. Then, the model is determined only by the three parameters: the Bino mass, M1,

the Higgsino mass, µ, and the ratio of the up-type and down-type Higgs vacuum expectation

value, tanβ. Nevertheless, this scenario gives a variety of phenomena, especially near the blind

spot where the DM-Higgs coupling vanishes. We will show that large parameter region is still

viable and almost all region will be searched complementarily by the future experiments.

Let us comment on the standpoint of our study. There are studies which investigate the

Bino-Higgsino DM model with resonant annihilation [32–36]. However, in these papers, only

the scatter plots are performed. In contrast, we investigate essentially the whole parameter

space of (M1, µ, tanβ). It makes the existence of the blind spot clear, and the importance of it

for the phenomenology is emphasized in our study which none of the previous works has done.

In addition, we comprehensively include all the possible phenomena and experiments. Although

the study for the spin independent (SI) cross section is performed in all papers [32–37], the study

of the spin dependent (SD) cross section is partially done only in Ref. [36] . The Higgs boson

invisible decay is also only commented in Ref. [33]. The LHC search with the 8 TeV analysis is

investigated in Ref. [34–36]. On the other hand, the 14 TeV prospects are discussed with their

original analysis only up to mχ0
2
< 320 GeV in Ref. [34]. Furthermore, none of the previous

studies have analyzed the 14 TeV LHC prospects for the current model by using the results of

the LHC [51]. We investigate all these phenomenology and show the importance of combining

these experiments.

This thesis is based on the work by the author [52].

This thesis is outlined as follows.

First, in Chapter 2, we review the SUSY models. The minimal SUSY extension of the

SM (MSSM) and the heavy sfermion models are reviewed. We also review the Bino-Higgsino

resonant DM model briefly in Sec. 2.2.6.

Second, in Chapter 3, we review the phenomenology of the DM, especially of the Majorana

DM. The thermal relic abundance, the direct detections, the invisible decays, the collider searches

and the indirect detections are reviewed.

Then in Chapter 4, we introduce the Bino-Higgsino resonant DM model which we investigate

in this thesis. The typical behavior of the masses and the couplings are also shown. We discuss

the blind spot and the typical behavior of the heavy neutralinos/chargino at the LHC.
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We analyze the Bino-Higgsino resonant DM model in Chapter 5. We calculate, analyze

and discuss the following phenomena: relic abundance, SI scattering, SD Scattering, invisible

decay, heavy neutralinos/chargino searches at the LHC, mono-photon/jet searches and indirect

detections. We show the calculation of our analysis and the method of the simulations.

The results of our analysis are shown in Sec. 6. Especially, the main results are given in

Figures 6.1–6.5. Sec. 7 is devoted to the conclusion.

In Appendix A, we show the SM values used in this thesis. We show the Wino contributions

to the DM phenomenology in Appendix B. In Appendix C, we show the analytical calculations

in the Bino-Higgsino resonant model. Especially, we perform O(MZsW /µ) expansion. Ap-

pendix D is devoted to the detailed calculation whose results are used in our analysis. Finally,

in Appendix E, we show the validation of our analysis for the LHC searches.
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Chapter 2

Supersymmetry

The standard model (SM) is a well-established model in the particle physics. However, there

is a hierarchy problem and the SM does not have a candidate for the dark matter (DM). As

one of the solutions to these problems, supersymmetry (SUSY) is considered to be a promising

candidate for new physics beyond the SM [3]. Here, we briefly review SUSY models, especially

the minimal SUSY extension of the SM (MSSM) in Sec. 2.1 and the heavy sfermion models in

Sec. 2.2.

2.1 MSSM

First, we introduce the minimal SUSY extension of the SM (MSSM). Since SUSY is the sym-

metry between bosons and fermions, it adds the new partner particles (SUSY particles) for each

SM particle (see Sec. 2.1.1). In Sec. 2.1.2, we see the spontaneous symmetry breaking of the

Higgs fields. We show the solution to the hierarchy problem in Sec. 2.1.3: the contributions

from the SUSY particles cancel out the quadratic divergence of the quantum corrections to the

Higgs boson mass. In addition, the MSSM contains the candidate for the DM if the R-parity is

conserved (Sec. 2.1.4). In this case, the lightest SUSY particle (LSP) can be a candidate for the

DM. We also review the constraints from the Higgs boson mass (Sec. 2.1.5), the LHC searches

(Sec. 2.1.6) and the FCNC problem (Sec. 2.1.7).

2.1.1 Lagrangian

The matter content of the MSSM is shown in Table 2.1. The charges under the gauge (SU(3)C ,

SU(2)L, U(1)Y ) and the global symmetry (U(1)B and U(1)L) are also shown. Note that two

Higgs multiplets are necessary due to the holomorphy of the superpotential and the anomaly

cancelation.

In the SUSY, the fermion χX and its corresponding boson ϕX are combined into one su-

perfield with the superspace coordinates θ, θ̄ and the auxiliary field. The chiral superfield X is
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superfield boson fermion SU(3)C SU(2)L U(1)Y U(1)B U(1)L

Lf ϕlf =

(
ϕνf

ϕef

)
χlf =

(
χνf

χef

)
1 2 -1/2 0 1

Ef ϕef χef 1 1 1 0 -1

Qf ϕqf =

(
ϕuf

ϕdf

)
χqf =

(
χuf

χdf

)
3 2 1/6 1/3 0

Uf ϕuf χuf 3 1 -2/3 -1/3 0

Df ϕdf χdf 3 1 1/3 -1/3 0

B Bµ χB 1 1 0 0 0

W i W i
µ (i = 1 ∼ 3) χi

W 1 3 0 0 0

Ga Ga
µ (a = 1 ∼ 8) χa

G 8 1 0 0 0

Hu Hu =

(
H+

u

H0
u

)
χHu =

(
χH+

u

χH0
u

)
1 2 1/2 0 0

Hd Hd =

(
H0

d

H−
d

)
χHd

=

(
χH0

d

χH−
d

)
1 2 -1/2 0 0

Table 2.1: Matter content of the MSSM. The subscript f denotes the family and f = 1, 2, 3.

written with the auxiliary field FX as [4]

X = ϕX(y) +
√
2θχX(y) + θθFX(y) , (2.1)

where yµ = xµ+ iθ̄σ̄µθ. The vector superfield V a for the gauge field is written with the auxiliary

field Da in the Wess-Zumino gauge as

V a = θ̄σ̄µθV a
µ (y) + θ̄θ̄θχV (y) + θθθ̄χ̄V (y) +

1

2
θθθ̄θ̄Da

V (y) . (2.2)

The field strength W a
α of the vector superfield V a where α is a spinor index is also written with

the field strength of the gauge field F a
µν as

W a
α = (χa

V )α + θαD
a +

1

2
i (σµσ̄νθ)α F

a
µν + iθθ (σµ∇µχ̄a

V )α , (2.3)

where ∇µχ̄a
V = ∂µχ̄a

V +gV f
abcV b

µ χ̄
c
V .

1 Here, gV denotes the gauge coupling for the gauge field V

where g′, g, gs are the U(1)Y , SU(2)L, SU(3)C gauge couplings respectively. fabc is the structure

constant of the gauge
[
T a, T b

]
= ifabcT c and T a is the representation matrix of SU(2)L and

SU(3)C .

The Lagrangian is composed of the Kähler potential which includes kinetic terms, the su-

perpotential and the field strength terms as [4]

L =

∫
dθ2dθ̄2K +

(∫
dθ2W + h.c.

)
+

1

4

∑
V

(∫
dθ2WαW

α + h.c.

)
. (2.4)

1Note that for U(1)Y , the superscript a does not exist and ∇µχ̄B = ∂µχ̄B .
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K is the Kähler potential

K =
∑
P

X†
P e

∑
V 2gV TaV a

XP , (2.5)

where P runs all the chiral superfields. W is the superpotential

W =

3∑
f,f ′=1

(
−Y ff ′

e (Lf ·Hd)Ef ′ + Y ff ′
u (Qf ·Hu)Uf ′ − Y ff ′

d (Qf ·Hd)Df ′ + µHu ·Hd

)
, (2.6)

with Yukawa couplings Y and the mu parameter µ.2 After the auxiliary fields are integrated

out, the Lagrangian becomes as:

L = −1

4
FµνF

µν + iχBσ
µ∂µχB − 1

4
W i

µνW
iµν + iχi

Wσ
µDµχ

i
W − 1

4
Ga

µνG
aµν + iχa

Gσ
µDµχ

a
G

+
∑
P

[
(DµϕP )

†DµϕP + iχPσ
µDµχP −

√
2YP g

′
(
ϕ†PχB · χP + χP · χBϕP

)
−
√
2g
(
ϕ†Pχ

i
WT

i · χP + χP · χi
WT

iϕP

)
−

√
2gs

(
ϕ†Pχ

a
GT

a · χP + χP · χa
GT

aϕP

) ]
−µχHuχHd

−
∑

{p1,p2,p3,p4}

Yp1 (ϕp2χp3χp4 + ϕp3χp2χp4 + ϕp4χp2χp3) + h.c.

−|µ|2
(
|Hu|2 + |Hd|2

)
−

∑
{p1,p2,p3,p4}

|Yp1 |2
(
|ϕp2ϕp3 |

2 + |ϕp2ϕp4 |
2 + |ϕp3ϕp4 |

2
)

−g
′2

2

(∑
P

YPϕ
†
PϕP

)2

− g2

2

(∑
P

ϕ†PT
iϕP

)2

− g2s
2

(∑
P

ϕ†PT
aϕP

)2

, (2.7)

where P runs all the superfields and {p1, p2, p3, p4} = {ef ,Hd, Lf , Ēf}, {uf ,Hu, Qf , Ūf}, {df ,Hd,

Qf , D̄f}. YP is a charge of U(1)Y for multiplet P and T i, T a are the representation matrices of

SU(2)L, SU(3)C .

At this stage, the SUSY particles’ masses are the same as the SM particles. However, since

the SUSY particles which have such masses are not discovered, the SUSY should be broken and

the masses of the SUSY particles should be increased. In order not to violate the cancellation

of the quadratic divergence, the SUSY should be broken softly. The breaking terms are called

soft terms and given as [4]

Lsoft = −1

2

∑
X=B,W,G

MXχ
(i)
X · χ(i)

X + h.c.−
∑
P,ff ′

m2
P̃ ff ′ϕ

†
PfϕPf ′ −m2

Hu
H†

uHu −m2
Hd
H†

dHd

−
3∑

f,f ′=1

(
−Aff ′

e (ϕLf ·Hd)ϕEf ′ +Aff ′
u (ϕQf ·Hu)ϕUf ′ −Aff ′

d (ϕQf ·Hd)ϕDf ′

)
+ h.c.

−BµHu ·Hd + h.c. (2.8)

We denote M1,2,3 =MB,W,G respectively. The phenomenology of SUSY models are determined

by these soft terms.
2Here, we assume R-parity conservation.
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2.1.2 Spontaneous Electroweak Symmetry Breaking

In the MSSM, two Higgs fields have the vacuum expectation values (vev) after the spontaneous

electroweak symmetry breaking. The tree level potential of the Higgs fields V tree
H is obtained

from the Lagrangian (2.7) and (2.8),

V tree
H =

(
|µ|2 +m2

Hu

)
|Hu|2 +

(
|µ|2 +m2

Hd

)
|Hd|2 + (BµHu ·Hd + h.c.)

+
g2 + g′2

8

(
|Hu|2 − |Hd|2

)2
+
g2

2
|H†

dHu|2 . (2.9)

Here we assume the charged fields and the colored fields do not have the vev in order not to break

the U(1)Y and SU(3)C symmetries. In addition, since we assume the R-parity is conserved, the

sneutrinos also do not have vevs. Then only the Higgs fields have vevs. We can redefine the

Higgs fields to satisfy ⟨H+
u ⟩ = 0 by using the degree of freedom of SU(2)× U(1) symmetry, and

the vev of the Higgs fields can be written as

⟨Hu⟩ =

(
0

vu

)
≡

(
0

v sinβ

)
, ⟨Hd⟩ =

(
vd

0

)
≡

(
v cosβ

0

)
. (2.10)

The Higgs fields have non-zero vev when H0
u = H0

d = 0 is not the minimum,

det

 ∂2V tree
H

∂(H0
u)

2

∂2V tree
H

∂H0
u∂H

0
d

∂2V tree
H

∂H0
u∂H

0
d

∂2V tree
H

∂(H0
d)

2


Hu=Hd=0

< 0 ,

→
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
< |Bµ|2 . (2.11)

In this case, v2 = ⟨Hu⟩2+ ⟨Hd⟩2 becomes the SM Higgs vacuum expectation value v ∼ 174 GeV.

The condition for the potential minimization can be written as

∂V tree
H

∂H0
u

∣∣∣
vev

=
∂V tree

H

∂H0
d

∣∣∣
vev

= 0 . (2.12)

From these equations, the following relations among the SUSY parameters can be obtained,

|µ|2 = −
M2

Z

2
+
m2

Hu
tan2 β −m2

Hd

1− tan2 β
, (2.13)

Bµ = −1

2
sin 2βM2

Z +
tanβ

(
m2

Hu
−m2

Hd

)
1− tan2 β

, (2.14)

where M2
Z =

(
g2 + g′2

)
v2/2 is the mass of the Z boson.

As we see in Sec. 2.1.5, it is important to include the radiative corrections to the Higgs sector

when we calculate the SM Higgs boson mass. Since the radiative corrections change Eq. (2.13)

and (2.14), we show the contribution here. As an example, we show the one-loop corrections

from the top and stops which give the largest contribution to the SM Higgs mass. Including the
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one-loop corrections from the tops and stops, the potential of the Higgs fields changes as [53]

VH = V tree
H + V t

H , (2.15)

V t
H =

1

32π2

3
∑
i=1,2

M4
t̃i

(
ln
M2

t̃i

Q2
− 3

2

)
− 6M4

t

(
ln
M2

t

Q2
− 3

2

) ,

where Q is the renormalization scale and

M2
t̃1,2

=
1

2

(
2Y 2

t |H0
u|2 +m2

t̃
+m2

t̃
∓
√

(m2
t̃
−m2

t̃
)2 + 4Y 2

t X
2
t |H0

u|2
)
, (2.16)

Mt = YtH
0
u . (2.17)

Here, m2
t̃
= m2

Q̃33
,m2

˜̄t
= m2

˜̄U33
, Xt = At − µ cotβ,At = A33

u and we assume that the stops do

not mix with the other squarks, e.g. m2
Q̃3f

= 0 for f ̸= 3 (see also Eq. (2.8)). Including these

corrections, the condition for the potential minimization (2.12) changes as ∂VH
∂H0

u

∣∣∣
vev

= ∂VH

∂H0
d

∣∣∣
vev

= 0

and the following relations are obtained

|µ|2 = −
M2

Z

2
+
m2

Hu
tan2 β −m2

Hd

1− tan2 β
+

1
2vu

∂V t
H

∂H0
u

∣∣∣
vev

tan2 β − 1
2vd

∂V t
H

∂H0
d

∣∣∣
vev

1− tan2 β
, (2.18)

Bµ = −1

2
sin 2βM2

Z +
tanβ

(
m2

Hu
−m2

Hd

)
1− tan2 β

+
tanβ

(
1

2vu

∂V t
H

∂H0
u

∣∣∣
vev

− 1
2vd

∂V t
H

∂H0
d

∣∣∣
vev

)
1− tan2 β

.(2.19)

After the spontaneous symmetry breaking, the SM fermions have the mass. For example,

the top quark get the mass mt = Ytv sinβ. In order for the Yukawa coupling Yt not to blow

up in high energy scale, tanβ > 1 is considered. tanβ = ⟨Hu⟩/⟨Hd⟩ is the ratio of the vacuum

expectation values of the up- and down-type Higgs and it is the important parameter for the

phenomenology.

2.1.3 Hierarchy Problem

Here, we see the cancellation of the quadratic divergence between the SUSY particles and the

SM particles.

First, let us see the hierarchy problem [54–57]. In the SM, the Higgs sector is written as

L ∋ (DµHSM)†(DµHSM)− µ2SMH
†
SMHSM − λSM(H†

SMHSM)2 , (2.20)

where HSM is the SM Higgs field. Thus the Higgs boson mass m2
h at the tree level is given by

m2
h = −2µ2SM . (2.21)

The problem is that quantum corrections for this parameter have the quadratic divergences. For

example, the radiative correction from the top loop (Figure 2.1 (a)) is

m2
h = −2µ2SM − Y 2

t

8π2
Λ2 +O

(
log(Λ2)

)
, (2.22)
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(a) (b)

t

t̃h h

h h

Figure 2.1: An example of the cancellation of the quadratic divergence between the SM particle

(a: top) and the SUSY particle (b: stop).

where Λ is a cutoff scale of the SM. If we consider that the SM is valid up to Planck scale

(O
(
1019

)
GeV), the second term of the right hand side of Eq. (2.22) becomes O

(
1036

)
GeV2.

Since mh = 125 GeV [58], the left hand side of Eq. (2.22) becomes O
(
104
)
GeV2 and µSM

should be tuned to satisfy Eq. (2.22). Thus, the unnatural fine tuning with the size of 10−32 is

needed. This is the hierarchy problem.

In SUSY, the partner particles of the SM particles which give the quadratic divergence

cancel out the divergence from the SM particles. Let us see the divergence of the top particle

for example. In the MSSM, there are two stops. By the symmetry, the stops’ couplings to the

Higgs field is proportional to the top’s coupling Yt as shown in Eq. (2.7)

L ∋ −YtH0
uχtχt̄ − Y 2

t |H0
u|2|ϕt|2 − Y 2

t |H0
u|2|ϕt̄|2 . (2.23)

Then, calculating the the contributions from Figure 2.1 (a) and (b), the quadratic divergence is

cancelled as [4]

m2
h =

(
mtree

h

)2 − Y 2
t

8π2
Λ2 +

Y 2
t

16π2
Λ2 × 2 +O

(
log(Λ2)

)
, (2.24)

where the third term comes from the stop contributions. As a result, the problem of the

unnatural fine tuning seems to be solved.

On the other hand, the logarithm terms become large when the SUSY particles are heavy

≫ O(100)GeV. For example, the logarithm term from the stops in Eq. (2.24) is given as

m2
h =

(
mtree

h

)2 − Y 2
t

8π2
M2

t̃
ln

Λ2

M2
t̃

+ · · · , (2.25)

where · · · denote the terms which are independent of Λ and the higher loop corrections. Here,

we assume that two stops have the same mass Mt̃. From this equation, if we consider the very

heavy SUSY particles ≫ O(100)GeV, the problem of the unnatural fine tuning arises again.

Thus, the hierarchy problem is solved when the masses of the SUSY particles are not different

so much with the electroweak scale. When the stops are 1 (100) TeV, the logarithm term

becomes O(106(10)) GeV2 and the size of the tuning becomes O(10−2(6)). In SUSY, although

the problem of the unnatural fine tuning (the size of 10−32) is solved, there still remains the

little fine tuning (the size of O(10−2∼−6)) when the masses of the SUSY particles are O(1–100)

TeV.
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u

u u

ū

e+d

p

π0

d̃fc
11f
4 c

11f
3

Figure 2.2: An example of the proton decay process is shown. Here, we assume R-parity is

violated and there exist non-zero coupling c11f3 and c11f4 .

2.1.4 Dark Matter

In Eq. (2.6), we assume R-parity conservation. R-parity is a discrete symmetry defined as

Rp = (−1)3B+L+2S , (2.26)

where S is a spin and B (L) is the baryon (lepton) number defined in Table. 2.1. With this

definition, the SM particles have Rp = 1 and the SUSY particles have Rp = −1. If R-parity is

violated, the following terms can exist in the superpotential [4]

W ∋ cf1Hu · Lf + cff
′f ′′

2 Lf · Lf ′Ef ′′ + cff
′f ′′

3 Qf · Lf ′Df ′′ + cff
′f ′′

4 ϵαβγU
α
fD

β
f ′D

γ
f ′′ , (2.27)

where α, β, γ denote color indices. c1 ∼ c3 terms violate the lepton number and c4 term violates

the baryon number. If both of the lepton number breaking term and the baryon number breaking

term exist, the proton can decay. For example, if there exist c11f3 and c11f4 , sdown(d̃f ) exchange

process for proton decay p→ e+π0 arises (see Figure 2.2). The decay width for this process can

be roughly estimated by dimensional analysis as [4]

Γ(p→ e+π0) ∼ m5
p

1

m4
d̃f

|c11f3 c11f4 |2 . (2.28)

When the proton decays only by this process, the lifetime of the proton τp becomes as

τp =
1

Γ(p→ e+π0)
∼
m4

d̃f

m5
p

1

|c11f3 c11f4 |2

∼ 8.2× 1033years

(
md̃f

1TeV

)4
(
1.9× 10−27

|c11f3 c11f4 |

)2

(2.29)

From the Super-Kamiokande experiment, the lifetime of the proton is strongly constrained [59]:

τp < 8.2 × 1033 years. When there is the above process only and the mass of the sdown md̃i is

1 (100) TeV, the constraints become |c11f3 c11f4 | ≲ 10−27(10−23). Thus, one of c3 or c4 should be

suppressed at least. In order to suppress these terms, we assume R-parity conservation.
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When R-parity is conserved, the lightest SUSY particle (LSP) becomes stable since it has

Rp = −1 and can not decay to the SM particles. Especially, when all scalar SUSY particles

(sfermions) are heavy, the lightest neutralino LSP can be a good candidate for the DM. There

are four neutralinos in the MSSM and the mass term is written as,

L ∋ −1

2

(
χB χ3

W χH0
d
χH0

u

)


M1 0 −MZsW cβ MZsW sβ

0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ
MZsW sβ −MZcW sβ −µ 0



χB

χ3
W

χH0
d

χH0
u


+h.c. . (2.30)

sβ ≡ sinβ, cβ ≡ cosβ and sW = sin θW = g′/
√
g2 + g′2, cW = cos θW denote the Weinberg

angle.

This 4×4 mass matrix, Mn, can be diagonalized by an orthogonal matrix, On, as

OnMnO
T
n =


ϵ1mχ0

1
0 0 0

0 ϵ2mχ0
2

0 0

0 0 ϵ3mχ0
3

0

0 0 0 ϵ4mχ0
4

 ,


χχ0

1

χχ0
2

χχ0
3

χχ0
4

 ≡ On


χB

χ3
W

χH0
d

χH0
u

 . (2.31)

ϵi = ±1 and we define as 0 < mχ0
1
< mχ0

2
< mχ0

3
< mχ0

4
. The lightest neutralino, χ0

1, can be a

DM candidate. We call the DM model as X-ino DM model when X-ino is the main component

of χ0
1: for example, Bino DM model for χ0

1 ∼ χB and Bino-Higgsino DM model where χ0
1 is

composed of χB, χH0
d
and χH0

u
.

2.1.5 Higgs Boson Mass

The Higgs boson was discovered at the LHC in July 2012 [1,2]. Its mass has also been determined

by combining the results of the ATLAS and the CMS [58]

mh = 125.09± 0.21(stat.)± 0.11(syst.)GeV . (2.32)

Here, we briefly review the Higgs boson mass in the MSSM.

After the spontaneous symmetry breaking, the Higgs fields becomes as

Hu =

(
H+

u

vu + 1√
2
(hu + iAu)

)
, Hd =

(
vd +

1√
2
(hd + iAd)

H−
d

)
, (2.33)

where Au,d is the pseudo scalar Higgs, H+ is the charged Higgs and the hu,d is the neutral Higgs.

The mass matrix for the neutral Higgs is calculated from the potential Eq. (2.9) as

L ∋ −1

2
(hu hd)

(
|µ|2 +m2

Hu
− 1

2c2βM
2
Z + s2βM

2
Z −Bµ− 1

2s2βM
2
Z

−Bµ− 1
2s2βM

2
Z |µ|2 +m2

Hd
+ 1

2c2βM
2
Z + c2βM

2
Z

)(
hu

hd

)

= −1

2
(hu hd)

(
c2βm

2
A + s2βM

2
Z −1

2s2β(m
2
A +M2

Z)

−1
2s2β(m

2
A +M2

Z) s2βm
2
A + c2βM

2
Z

)(
hu

hd

)
, (2.34)
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wherem2
A = 2Bµ/s2β is the diagonalized mass of the pseudo scalar Higgs and we use the relation

Eq. (2.13) and (2.14). We can diagonalize this matrix by the mixing angle α as(
h

H

)
≡

(
cosα − sinα

sinα cosα

)(
hu

hd

)
, (2.35)

m2
h,H =

1

2

(
m2

A +M2
Z ∓

√(
m2

A −M2
Z

)2
+ 4m2

AM
2
Zs

2
2β

)
, (2.36)

tan 2α =
m2

A +M2
Z

m2
A −M2

Z

tan 2β . (2.37)

In the limit mA ≫MZ , h becomes the SM Higgs boson. Thus, at the tree level, the mass of the

Higgs boson is written as

(
mtree

h

)2
=

1

2

(
m2

A +M2
Z −

√(
m2

A −M2
Z

)2
+ 4m2

AM
2
Zs

2
2β

)
. (2.38)

Note that this value can not exceed the Z boson mass MZ and mh = 125 GeV can not be

explained.

On the other hand, the radiative corrections can raise this Higgs boson mass [6,7]. Including

the radiative corrections, mh = 125GeV can be explained in the MSSM. Here, we show the

one-loop contributions from the top and stops which give the largest corrections. Including the

contribution from the top and stops, the potential of the Higgs fields changes as Eq. (2.15).

Then, the mass matrix for the neutral Higgs changes as

L ∋ −1

2
(hu hd)M

(
hu

hd

)
, (2.39)

M =|µ|2 +m2
Hu

− 1
2c2βM

2
Z + s2βM

2
Z + 1

2
∂2V t

H
∂(H0

u)
2

∣∣∣
vev

−Bµ− 1
2s2βM

2
Z + 1

2
∂2V t

H

∂H0
u∂H

0
d

∣∣∣
vev

−Bµ− 1
2s2βM

2
Z + 1

2
∂2V t

H

∂H0
u∂H

0
d

∣∣∣
vev
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=
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∂(H0

u)
2 − 1

2vu
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−1
2s2β(m

2
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1
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 .

Here, m2
A = 2Bµ/s2β with the conditions (2.18) and (2.19). In the case mA ≫MZ , the mixing

angle α does not change compared to the tree level one and the diagonalization is performed as

Eq. (2.35). Then the mass of the Higgs boson is calculated as

m2
h =

(
mtree

h

)2
+∆m2

h , (2.40)

∆m2
h =

cos2 α

2

(
∂2V t

H

∂ (H0
u)

2

∣∣∣
vev

− 1

vu

∂V t
H

∂H0
u

∣∣∣
vev

)
+
sin2 α

2

(
∂2V t

H

∂
(
H0

d

)2 ∣∣∣vev − 1

vd

∂V t
H

∂H0
d

∣∣∣
vev

)
− sinα cosα

∂2V t
H

∂H0
u∂H

0
d

∣∣∣
vev

.
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Then substituting Eq. (2.15), the Higgs boson mass becomes as

m2
h =

(
mtree

h

)2
+

3m4
t

4π2v2

(
ln

(
M2

S

m2
t

)
+
X2

t

M2
S

(
1− X2

t

12M2
S

))
. (2.41)

Here, M2
S =

√
m2

t̃1
m2

t̃2
where mt̃i

= Mt̃i
|vev is the mass of the stop. In this expression, for

example when MS ∼ 1 TeV and Xt = 0, mh = 125 GeV can be explained.

As we saw, mh = 125 GeV can be explained if we include the radiative corrections. However,

there are other contributions from the down type particles and higher loops which can give the

negative corrections. Thus, including these contributions are also important. The results with

including two-loop level calculation are shown in Ref. [8]. In the High-scale Supersymmetric

model where all the SUSY particles have the same mass as the supersymmetry breaking scale

and Xt is tuned to give a maximal contribution, the result is shown in the left of Figure 2.3. The

result of the Split Supersymmetric model is shown in the right of Figure 2.3 where the fermonic

SUSY particles are assumed to be relatively light M1 = mt = M2/2 = µ/2 = M3/6.4 and the

other SUSY particles have the same mass as the supersymmetry breaking scale. Although the

mass of the Higgs boson depends on the spectra of the SUSY particles and the A-terms, typically

the SUSY breaking scale are needed to be O(2–107) TeV to explain the Higgs boson mass 125

GeV. Thus, in the MSSM, sfermions, especially stops, are supposed to be heavier than 1 ∼ 10

TeV.

2.1.6 LHC Searches

The LHC is the proton-proton collider and searching new physical signals. The discovery of the

Higgs boson is the prominent result. In addition, the SUSY particles have been searched at the

LHC. However, there is no signal of the SUSY particles yet. Thus, the mass spectra of them are

constrained. Here, we briefly review these constraints.

At the LHC, there are experiments called as the ATLAS and the CMS. Since they give the

similar results, we review results of the ATLAS here. The LHC had run from 2010 to 2011 at
√
s = 7 TeV and in 2012 at

√
s = 8 TeV. The ATLAS recorded the integrated luminosity 4.7

fb−1 at 7 TeV and 20.3 fb−1 at 8 TeV. For the preparation to run in the high energy, the LHC

had stopped during 2013 to 2014. And now, in 2015, the run at 13 TeV is starting.

The SUSY particles, especially colored particles, are the main targets at the LHC. This is

because the LHC is the proton-proton collider and the production cross sections of the colored

particles are large. Especially, the gluino and the squarks are easily produced at the LHC

with the processes like pp → g̃g̃ or pp → q̃q̃ and so on where g̃, q̃ denotes gluino and squark

respectively. The produced gluinos and squarks decay to the SM particles and the DMs since

the gluino and squarks have odd R-parity and the final state should also contain odd R-parity

lightest particle, i.e. the LSP. Since the gluino/squark decay produces many quarks and the

DMs, the typical signal is composed of many jets, a few leptons and the missing energy. This

is because the light quark is observed as a jet, the top quark can decay to leptons via the W

2.1. MSSM 14
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Figure 2.3: The contours of the Higgs boson mass is shown. These are the results of Ref. [8].

(left) The result of the High-scale Supersymmetric model where all the SUSY particles have the

same mass as the supersymmetry breaking scale and Xt is tuned to give a maximal contribution.

(right) The result of the Split Supersymmetric model where the fermonic SUSY particles are

relatively light M1 = mt =M2/2 = µ/2 =M3/6.4 and the other SUSY particles have the same

mass as the supersymmetry breaking scale. The green shaded region denote 124 GeV< mh <126

GeV.

boson and the DM which can not be detected is observed as missing energy. Thus, multi-jets

plus missing energy processes including a few (or zero) leptons have been searched.

Since no significant excess of number of events is discovered, the mass spectra of the gluino

and the squarks are constrained. Although the constraints depend on the mass spectra, here we

show some results of simple model in Figure 2.4. The left upper figure and the lower figures are

the results in Ref. [5] and the right upper figure is the result in Ref. [60]. First, let us see the

result for the mSUGRA/CMSSM model (the left upper figure of Figure 2.4). In this model, the

soft terms are determined only by four parameters: the universal sfermion massm0, the universal

gaugino mass m1/2, the universal A-term A0 and the sign of µ. In addition, tanβ is also the

parameter. These masses and A-terms are assumed to be same for all sfermions (gauginos) at

the grand unified theory scale ∼ 1016 GeV. At the low energy ∼ 1TeV, these values of each SUSY
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particle become different since the dependence of the Yukawa couplings or the gauge couplings

and their radiative effects are different for each SUSY particle. Especially, the stops tends to

be lighter than the other squarks and the gaugino masses become as M1 : M2 : M3 ≃ 1 : 2 : 7.

With these mass spectra, the constraints are obtained as the left upper figure of Figure 2.4. In

this case, the constraints become mg̃ ≳ 1.4 TeV and mq̃ ≳ 1.6 TeV.

Next, let us see the result of the simplified model. The left lower figure shows the constraints

on the mass of the gluino when the squarks are heavy enough and the gluino decay to the top

pairs and the DM via virtual stop. The constraint becomes mg̃ ≳ 1.4 TeV when the DM is

relatively light mχ0
1
∼ O(100) GeV. The right lower figure shows the constraints on the masses

of the first and second generation squarks when the gluino is heavy enough. The constraint

becomes mq̃ ≳ 0.9 TeV when mχ0
1
∼ O(100) GeV. The right upper figure shows the constraints

on the mass of the stop in Ref. [60]. This is the case when the gluino is heavy enough and the

constraint becomes mt̃ ≳ 0.7 TeV when mχ0
1
∼ O(10) GeV.

Although the results change by the mass spectrum, the light SUSY particles with the mass

O(100) GeV are constrained now. The productions of the neutralinos/charginos are also searched

at the LHC. We review this in Sec. 3.4.2.

2.1.7 Flavor Changing Neutral Current

In the MSSM, if no symmetries are assumed in the soft terms, there can be sizable off-diagonal

soft mass terms, i.e. m2
P̃ ff ′ , A

ff ′
p with f ̸= f ′. These terms results flavor changing neutral

current (FCNC) process. However, no FCNC process for the SM leptons are observed and

constraints are set by experiments. Especially, the MEG experiment sets strongest bound on

the branching ratio of the process µ→ eγ: Br(µ→ eγ) < 5.7× 10−13 [61].

In the MSSM, the diagrams shown in Figure 2.5 contribute to the process µ → eγ if there

exists non-zero value of m2
l̃ff ′ ,m

2
˜̄eff ′ . The effective Lagrangian related to this process can be

written as

L ∋ 1

2
emµψ̄µσµν

(
ALPL +ARPR

)
ψeF

µν + h.c. . (2.42)

From this Lagrangian, the decay width for µ→ eγ can be calculated as

Γ(µ→ eγ) =
e2

16π
m5

µ

(
|AL|2 + |AR|2

)
. (2.43)

AL, AR are calculated from the diagrams in Figure 2.5. Although the detailed calculations are

given in Ref. [62], here we show a simple example case to estimate the constraints. For example,

let us consider the loop contribution from the Wino-slepton loop assuming that there exist non-

zero value of m2
l̃12

and other off-diagonal terms are zero. In this case, only AL becomes non-zero

and can be estimated by mass insertion approximation as [18]

AL = − g2

128π2
δl̃12
m2

l̃

, (2.44)
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Figure 2.4: The current constraints for the gluino and the squarks are shown. The left upper

figure and the lower figures are the results in Ref. [5]. The right upper figure is the results in

Ref. [60]. See text for details.

where δl̃12 = (m2
l̃12

−m2
l̃
)/m2

l̃
and we assume m2

l̃
= m2

l̃11
= m2

l̃22
and M2 ∼ |µ| ≪ ml̃. Then the

branching ratio Br(µ→ eγ) becomes as

Br(µ→ eγ) =
Γ(µ→ eγ)

Γµ

∼ 1

Γµ

e2

16π
m5

µ

(
g2δl̃12

128π2m2
l̃

)2

(2.45)

∼ 5.7× 10−13 ×
(
δl̃12
0.3

)2(6 TeV

ml̃

)4

, (2.46)

where Γµ is the total decay width of µ and Γµ = 2.99 × 10−19 GeV [63]. Thus, to evade the

MEG constraints, ml̃ ≳ 6 TeV is needed for δl̃12 = 0.3.
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Figure 2.5: The diagrams which contribute to the µ→ eγ process are shown.

The calculations for the heavy sfermion models are performed in Ref. [17,18] (see Figure 2.6).

In Ref. [17] (left figure of Figure 2.6), two models, the heavy gaugino model and the AMSBmodel,

are considered with µ = ml̃, tanβ = 50, δl̃12 = δ˜̄e12 = 0.1 where δ˜̄e12 = (m2
˜̄e12

− m2
˜̄e
)/m2

˜̄e
and

other off-diagonal terms are zero. In the heavy gaugino model, the masses of the gauginos are

assumed as M3 = ml̃ with the GUT relation 3
5
M1
g′2 = M2

g2
= M3

g2s
. In the AMSB model, the masses

of the gauginos are assumed as Mi = − big
2
i

16π2m3/2 where bi = (−11,−1, 3) and m3/2 = 5ml̃. The

right figure of Figure 2.6 is the result of Ref. [18] with assuming M1 = M2 = |µ|, tanβ = 5

and all relevant off-diagonal terms sizable δP̃ ff ′ = 0.3. Although the constraints change by the

mass spectra of the gauginos and the Higgsinos, typically ml̃ ≳ O(10) TeV is needed for sizable

off-diagonal soft term δP̃ ff
′ ∼ O(0.1).

2.2 Heavy Sfermion Models

As shown in Sec. 2.1.5, to explain the Higgs boson mass 125 GeV in the MSSM, the SUSY

breaking scale is needed to be higher than ∼1 TeV. Especially, when the SUSY breaking scale is

larger than O(1–10)TeV, not only the Higgs boson mass can be explained but also the constraints

from the LHC can be evaded (Sec. 2.1.6). In addition, the constraints from the FCNC problem

are also relaxed (Sec. 2.1.7). Thus, the high scale SUSY models, especially the heavy sfermion

models, are one of the attractive SUSY models and have attracted attentions. Here, we review

the heavy sfermion scenario (Sec. 2.2.1).

In the SUSY models, the lightest neutralino can be a candidate for the DM . However, in the

heavy sfermion scenario, the correct thermal relic abundance can be obtained only in limited

cases (Sec. 2.2.2): pure Wino DM with the mass about 3 TeV [20, 21] (Sec. 2.2.3), (almost)

pure Higgsino DM with the mass about 1 TeV [21, 22] (Sec. 2.2.4), gaugino coannihilation

scenario [23–27] (Sec. 2.2.5) and Bino-Higgsino DM [28–36] (Sec. 2.2.6).

Although the heavy sfermion model is one of the attractive SUSY models, the sfermions are

heavy and it is difficult to search them directly by the experiments. Thus the studies about

the neutralinos/charginos, especially the DM, become necessarily. Among the DM models, the

Bino-Higgsino resonant DM model gives variety of phenomena in the energy scale 10∼1000 GeV.

It is important to study such phenomenology combining the possible experiments. In this thesis,
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Figure 2.6: The example of the constraints from µ→ eγ are shown. The left figure is the result

of Ref. [17] with µ = ml̃, tanβ = 50, δl̃12 = δ˜̄e12 = 0.1 where δ˜̄e12 = (m2
˜̄e12

−m2
˜̄e
)/m2

˜̄e
and other

off-diagonal terms are zero. The red line is the result of the heavy gaugino model assuming

M3 = ml̃ with the GUT relation 3
5
M1
g′2 = M2

g2
= M3

g2s
. The green line is the result of the AMSB

model assuming Mi = − big
2
i

16π2m3/2 where bi = (−11,−1, 3) and m3/2 = 5ml̃. The right figure is

the result of Ref. [18] with assuming M1 = M2 = |µ|, tanβ = 5 and all relevant off-diagonal

terms δP̃ ff ′ = 0.3.

we investigate the Bino-Higgsino resonant DM comprehensively (Sec. 2.2.6).

2.2.1 Heavy Sfermion Scenarios

As written above, the SUSY model with the SUSY breaking scale larger than O(1–10)TeV is

one of the attractive models since it can explain the Higgs boson mass, it is compatible with the

LHC results and it can evade the FCNC problem. In this case, the sfermions are heavy as the

SUSY breaking scale. On the other hand, the gauginos are suggested to be relatively light when

the DM is the thermal relic DM. Thus, there have been studies to explain the gap between the

size of the soft terms for the sfermion masses and for the gauging masses (for example there are

Refs. [9–16]).

In the heavy sfermion scenarios, typically the soft terms for the sfermion masses are given

in the tree level while the soft terms for the gaugino masses are given in the one loop level. It

occurs when the SUSY breaking fields are charged under some global symmetries. Since the

representation of the SUSY breaking fields and the shapes of the couplings are different in each

model, the mass spectra are a little bit different in these scenarios. For example, in the split

SUSY [9–11], the sfermions are very heavy ≫ O(10) TeV while the Bino, the Wino and the

Higgsino are within O(0.1–1) TeV and each neutralino can be a candidate for the DM. In the

spread SUSY [12, 13], the mass spectra of the gauginos and Higgsinos become wider than the
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split SUSY and the candidates for the DM is the Wino or the Higgsino. In the pure gravity

mediation model [14–16], the sfemions are heavy O(10–1000) TeV and the gauginos are O(1)

TeV. The Wino is the LSP and can be a candidate for the DM.

Although there are many studies to explain the size of the soft terms, we concentrate on

the phenomenology of the DM and we assume the low energy effective Lagrangian as shown in

Sec. 4.

2.2.2 DM in Heavy Sfermion Scenarios

In the heavy sfermion scenarios, the lightest neutralino LSP can be a candidate for the DM.

However, the correct thermal relic abundance can be obtained only in limited cases. There

are cases where the dominant component of the DM is the Wino, the Higgsino and the Bino.

In the Wino DM case, the thermal relic abundance can be explained with the mass about 3

TeV [20, 21]. The Higgsino DM is also the candidate of the thermal relic DM when the mass

is about 1 TeV [21, 22]. We show these models in Sec. 2.2.3 and 2.2.4. On the other hand,

when the dominant component of the DM is the Bino and there is almost no contribution

from the Wino and the Higgsino, the DM is typically overabundant. In this case, the Bino

DM should coannihilate with the gauginos [23–27] or the mixing with the Higgsino should be

increased [28–36]. The former case, gaugino coannihilation model, is reviewed in Sec. 2.2.5. The

latter case, the Bino-Higgsino model is also discussed in Sec. 2.2.6.

2.2.3 Pure Wino DM

In the Wino DM case, the DM can annihilate to the SM particles effectively since the Wino

couples to the gauge bosons. When the mass of the Wino is O(100) GeV, the annihilation cross

section becomes larger than ∼ 10−26cm3s−1 and it makes the relic abundance to be too small

compared to the current value (see also Sec. 3.1). The annihilation cross section decreases as

the mass increases. Thus, the heavier the Wino become, the larger the relic abundance become.

When the mass of the Wino become ∼ 3 TeV, the relic abundance can be explained [20,21].

When the soft masses of the gauginos are given by the one loop level supergravity effects

which are called as the anomaly mediated gaugino masses, the Wino tends to become the

LSP [64, 65]. In this case, the charged Wino is nearly degenerated with the lightest neutral

Wino. Thus, the coannihilations among the charged Wino and the neutral Wino contribute to

the annihilation cross section. In addition, the non-perturbative effects called as the Sommerfeld

enhancement give the large contribution to the annihilation cross section [20, 21]. This occurs

because the nearly degenerated Winos attract each other. Including these effects, the mass of

the Wino in order to explain the current relic abundance becomes ∼ 3 TeV [20,21].

Although this model contains about 3 TeV Winos and other heavier ≳ O(10) TeV SUSY

particles, the LHC can probe this model with searching the disappearing track of the chargino

decay [66–68]. With the indirect detections, for example detection of cosmic rays such as photons,

anti-protons and positrons, this model also can be probed [69–74]
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2.2.4 (Almost) Pure Higgsino DM

The (almost) pure Higgsino DM case is similar to the pure Wino DM case. The Higgsino couples

to the gauge bosons and its annihilation cross section is larger than ∼ 10−26cm3s−1 when the

mass is O(100) GeV. Thus, the relic abundance is typically small for O(100) GeV Higgsino and

the mass of the Higgsino ∼ 1 TeV is necessary [21,22].

There are the charged Higgsino and two neutral Higgsinos in this model. Since the Higgsino

mix with the gauginos, the masses of the two neutral Higgsinos are different. Thus, in this model,

the two neutral Higgsinos form the two Majorana neutralinos and the lightest one becomes the

Majorana DM. The mass difference between the two Majorana neutralinos decreases as the

mixing with the gauginos decreases. When the Bino and the Wino become heavier than ∼ 108

GeV, the mass differences becomes small ∼ 10−4 GeV and it is constrained from the inelastic

scattering with the nucleus [22]. Thus, the mixing between the Higgsinos and the Bino/Wino

can not become too small and we call this model as (almost) pure Higgsino DM model.

In this model, it is different from the pure Wino case that there is small Sommerfeld en-

hancement in the annihilation cross section since the Higgsino forms SU(2) doublets while the

Wino forms SU(2) triplet [20,21]. Since the mass splitting of the chargino and the neutralino is

not small enough, there are no disappearing track in the LHC which is different form the pure

Wino case: in pure Wino case the mass differences between the chargino and the LSP is ∼160

MeV and the chargino travels O(1–10) cm before decay [67], in (almost) pure Higgsino case the

mass differences is ∼ 350 MeV and the chargino travels ≲ 1cm [22]. Thus the LHC can not

search this model easily. However, since the two neutral Higgsinos are nearly degenerated, this

model is sensitive to the inelastic scattering with the nucleus [22].

2.2.5 Gaugino Coannihilation

When the gauginos are nearly degenerated, the coannihilation can occur [23–27]. The coan-

nihilation is the process that the DM and the gaugino which is slightly heavier than the DM

annihilate to the SM particles: i.e. the process like DM χ0
2 → SM SM where χ0

2 is the nearly

degenerated gaugino. In this case, these particles freeze out at approximately the same tempera-

ture and the coannihilation process decreases the DM number density. Thus, even the Bino DM

which does not mix with the Higgsino sufficiently can explain the current relic abundance. The

Bino-Wino coannihilation and the Bino-Gluino coannihilation can give the proper relic abun-

dance when their masses are O(0.1–1) TeV. In these cases, the Higgsinos are considered to be

heavy and there is no DM scattering with the nucleus. However, since the gauginos are within

the reach of the LHC, this model can be probed by the LHC experiments [75–77].

2.2.6 Bino-Higgsino DM

When the dominant component of the DM is the Bino and the all sfermions are heavy enough,

this pure Bino DM can not explain the current thermal relic abundance. This is because ob-
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viously the pure Bino does not couple to any other particles sufficiently in this case. There

is almost no annihilation cross section and the freeze out occurs at the early time. It results

in an overabundant DM (See also Sec. 3.1). Thus, to explain the current relic abundance, the

pure Bino should coannihilate with other gauginos or mix with the Higgsinos sizably to increase

the annihilation cross section. The gaugino coannihilation case is shown in Sec. 2.2.5. Here we

consider the latter case that the Bino mixes with the Higgsino sufficiently.

The Bino-Higgsino DM is one of the good candidates for the DM. To enhance the annihilation

cross section, there are two mechanisms: (i) enhance the couplings and include coannihilations

with tunings, or (ii) enhance the cross section by resonant annihilation. The former type (i)

is called well-tempered model [28–30]. In this model, the Bino and the Higgsino are tuned to

be nearly degenerated, mχ0
1
∼ mχ0

2
∼ mχ0

3
∼ mχ±

1
. This tuning gives maximal mixing of the

Bino and the Higgsino and the DM’s couplings to the SM particles become large. In addition,

with nearly degenerated neutralinos and charginos, new processes contribute to increase the DM

annihilation cross section: for example, the process DM DM→W+W− with t-channel chargino

exchange and the coannihilation process DM χ0
2 → SM SM are added. From these two effects,

the DM annihilation cross section becomes large enough to explain the current relic abundance.

Although the current relic abundance can be explained in the wide range of the parameter space

100 GeV≲ |µ| ≲ 1000 GeV with M1 ∼ |µ|, almost all regions except for the blind spot where

the DM-Higgs coupling vanishes are already excluded by the DM direct searches [38,39].

On the other hand, in the latter case (ii), the DM annihilation cross section is enhanced

by the resonant annihilation. Since the Bino mixes with the Higgsino slightly, the Bino can

annihilate to SM particles especially via the Higgs boson or the Z bosons. When the mass of

the DM is about half of the particle X which the DM couples, the cross section of the process

DM DM → X → SM SM is enhanced. The candidates for the resonant particle are the Higgs

boson and the Z boson when all other SUSY particles are heavy [30–36]. The allowed mass

range is mχ0
1
∼ M1 ∼ mh/2 or MZ/2 while µ can change in wider range (100 GeV≲ |µ| ≲2500

GeV).

Since the mass of the DM is O(10) GeV and the masses of the heavier neutralinos and

charginos are O(100) GeV, this model gives a variety of phenomena in the experiments. Espe-

cially, when all the sfermions are heavy, the light neutralinos and charginos are one of the clues to

reveal the SUSY models. As shown in Sec. 3, the direct detections have good sensitivity in this

mass range, the invisible decay can occur and the LHC can search these particles. Combining

these experiments, we can extract information about the new particles and identify the model.

Thus, it is very important to investigate the light DM model in the heavy sfermion scenario now.

The light DM is the special property of the Bino-Higgsino resonant model. To prepare for the

discovery or the exclusion by the experiments and to give the insight to new experiments, we

investigate this Bino-Higgsino model with resonant annihilation comprehensively in this thesis.

In this thesis, we investigate essentially the whole parameter space while the previous

works [32–36] has done only the scatter plots. With this analysis, the existence of the blind
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spot becomes clear, and the importance of investigating the blind spot region is emphasized (see

Chapter 4, 5 and 6). In addition, we comprehensively study the phenomenology including the

direct detection, the invisible decays and the LHC searches. The study for the SI cross section

is performed in all papers [32–36]. However, the study for the SD cross section is partially done

only in Ref. [36] and the Higgs boson invisible decay is also only commented in Ref. [33]. Al-

though the LHC search with 8 TeV analysis is investigated in Ref. [34–36], the 14 TeV prospects

are discussed with their original analysis only up to mχ0
2
< 320 GeV in Ref. [34]. Furthermore,

none of the previous studies have analyzed the 14 TeV LHC prospects of the current model

by using the results of the LHC [51]. We investigate all these phenomenology and show the

importance of combining these experiments. The detailed description of this model is given in

Chapter 4.
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Chapter 3

Dark Matter

The dark matter (DM) is one of the clue to the new physics since the SM does not contain

a candidate for the DM. Especially, weakly interacting massive particles (WIMPs) are good

candidates for the DM. In order to search the DM, there are many experiments. Here we briefly

review the phenomenology of the DM, especially the Majorana DM.

First, we see about the thermal relic abundance in Sec. 3.1. In Sec. 3.2, the current status

of the direct detections for the spin independent scattering and the spin dependent scattering

are discussed. Sec. 3.3 is written about the invisible decay of the Higgs boson and the Z boson.

The collider searches for the DM is also discussed in Sec. 3.4. Finally, we take a glance at the

indirect searches in Sec. 3.5.

3.1 Thermal Relic Abundance

Here, we briefly show the calculation of the thermal relic abundance [78, 79]. At the early

stage of the Universe, the DM is thermalized. Then the number density of the DM evolves

by the expansion of the Universe and the balance of the creation and annihilation. When the

temperature is higher than the mass of the DM, the DM is in thermal equilibrium. However, as

the temperature decreases, the number density deviates from the equilibrium number density.

Then the yield which is the ratio of the number density of the DM and the entropy density

becomes constant. It is called as freeze out (see Figure 3.1). Finally, the DM remains until

today. The current DM relic abundance is observed as Ωh2 =0.120 by the Planck [19].

Next, we show the calculation of the thermal relic abundance. The thermal relic abundance

of the DM is calculated by solving the Boltzmann equation [78]

1

a3
d
(
a3n
)

dt
=
dn

dt
+ 3Hn = ⟨σv⟩(n2eq − n2) , (3.1)

where n is the DM number density, a is the cosmological scale factor and t is the cosmic time.

Here, H = a−1da/dt =
√

8πGρ/3 is the Hubble parameter with the gravitational constant G
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Y

m/T

<σv> small

<σv> large

Yeq

Figure 3.1: The evolution of the DM abundance is shown in (m/T, Y )-plane. The black line

denotes the equilibrium yield Yeq. The red, green and blue lines show the yield with changing

the value of ⟨σv⟩.

and the total energy density ρ = π2gρT
4/30. T denotes the temperature which is related to t by

dt

dT
= − 1

HT

(
1 +

1

3

d(ln gs)

d(lnT )

)
. (3.2)

Here, parameters gs and gρ are the relativistic degrees of freedom associated to the entropy

density and the energy density respectively. As shown in Eq. (3.1), the evolution of the DM

number is determined by the Hubble expansion and the balance on the equilibrium number

density neq with the thermally averaged annihilation cross section ⟨σv⟩. With the modified

Bessel functions of the first and second kind K1,2, neq and ⟨σv⟩ are written as [79]

neq = gχ
m2T

2π2
K2(m/T ) (3.3)

⟨σv⟩(T ) =

∫
d3p1d

3p2 e
−E1/T e−E2/Tσv∫

d3p1d3p2 e−E1/T e−E2/T

=
1

8m4T (K2(m/T ))
2

∫ ∞

4m2

σ(s)
√
s(s− 4m2)K1(

√
s/T )ds . (3.4)

where m is the DM mass and gχ = 2 for the Majorana DM. σ(s) is the annihilation cross section

of the DM and it depends on the model. The Boltzmann equation is rewritten by using Y = n/s

with the entropy density s = 2π2gsT
3/45,

dY

dt
= s⟨σv⟩(Y 2

eq − Y 2) . (3.5)

Let us see the behavior of the Boltzmann equation (3.1) (see also Figure 3.1). At the early

epoch T ≫ m, H ≪ ⟨σv⟩neq is satisfied and Eq. (3.1) becomes dn
dt ∼ ⟨σv⟩(n2eq − n2). In this

time, the DM is in the equilibrium n ∼ neq and the number density decreases by n ∝ T 3. After

the temperature decreases T ≲ m, the equilibrium number density decreases exponentially
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neq ∝ exp(−m/T ). Then near T ∼ m/20, the production of the DMs becomes suppressed

and Eq. (3.1) becomes dn
dt ∼ −3Hn − ⟨σv⟩n2. As the number density obeys this equation,

it decreases differently from the equilibrium number density, neq. After the number density

decreases further, the annihilation of the DMs becomes also suppressed. Finally, when T ≪ m,

Eq. (3.1) becomes dn
dt ∼ −3Hn and the number density evolves only by the Hubble expansion.

At this stage Y = n/s becomes constant and the DM remains until today. This is the freeze

out. The relic abundance Ω is given by

Ω =
ms(T0)Y (T0)

ρcrit
, ρcrit = ρ(T0) =

3H2(T0)

8πG
, (3.6)

where T0 is the current temperature of the Universe. The relic abundance is determined by the

mass of the DM, m, and the annihilation cross section of the DM, σ. As shown in Figure 3.1,

the small value of ⟨σv⟩ tends to make the DM abundance large and the large value tends to

make the DM abundance small.

As we can see from Figure 3.1, the size of the annihilation cross section σ or ⟨σv⟩ is important

to explain the current relic abundance value. With too small annihilation cross section, the DM

can not annihilate to the SM particles enough and it becomes overabundant. On the other

hand, with too large annihilation cross section, the DM tends to annihilate more than necessary

and it does not remain enough. If the annihilation cross section is constant, it is needed to be

∼ 3× 10−26cm3s−1 to explain the current DM abundance.

3.2 Direct Detection

The DM has been searched by direct detection experiments. Especially, the LUX [40] and the

XENON [41–43] have high sensitivity in the vast region of the DM mass, mDM = O(1–104) GeV.

In these experiments, the nuclei (xenon) can be scattered by the DM if the interaction between

the DM and the nuclei exists. They see the recoil energy of the nuclei. However, there is no

signal of the DM yet, and they give constraints. Here we briefly show the current status and

the future sensitivity for the spin-independent (SI) cross section of the DM (Sec. 3.2.1) and the

spin-dependent (SD) cross section of the DM (Sec. 3.2.2).

3.2.1 Spin Independent Scattering

The spin independent (SI) scattering cross section is determined by the coupling between the

nucleon and the DM. When the DM is a Majorana fermion, the effective coupling is given as

L ∋
∑

N=p,n λNψDMψDMNN . 1 With this coupling, the SI cross section can be calculated as

σSIN =
4

π
λ2N

m2
Nm

2
DM

(mDM +mN )2
, (3.7)

1Note that the term as ψDMγµψDM vanishes for the Majorana fermion DM.
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Figure 3.2: Current status for the SI scattering cross section. The constraints from the LUX [40]

(left: blue line) and the future prospects from the XENON [41] (right: red line) are shown.

where mN is the mass of the nucleon. The scalar exchanging process, for example the Higgs

boson exchange, can contribute to this cross section.

Now, the LUX [40] sets the strongest constraints on this SI scattering cross section σSIN
(Figure. 3.2). It reaches to O(10−45–10−44) cm2 depending on the mass of the DM. The future

prospect of the XENON [41] is also shown in Figure. 3.2. The XENON 1T can reach up to

O(10−47) cm2 for 20 ≲ mDM ≲ 200 GeV.

3.2.2 Spin Dependent Scattering

The spin dependent (SD) scattering cross section is similar to the SI scattering cross section

except that it corresponds to the spin dependent process. The effective coupling between the

nucleon and the DM is given by L ∋
∑

N=p,n ξNψDMγ
5γµψDMNγ

5γµN . The cross section

becomes as

σSDN =
12

π
ξ2N

m2
Nm

2
DM

(mDM +mN )2
. (3.8)

For example, the vector boson exchanging process like the Z boson exchanging process can

contribute to this process.

The current constraints come from the XENON100 [42].2 The future prospects of the

XENON 1T are estimated in Ref. [43]. We show these results in Figure. 3.3. Note that the

constraints and the future prospects for the cross section between the neutron and the DM

are stronger than those for the one between the proton and the DM. The constraints reach to

O(10−40) cm2 and the future prospects reach to O(10−41) cm2.

2The LUX has not published the results of the SD scattering. There is a study [80] giving the SD constraints

which is based on the LUX data.

3.2. DIRECT DETECTION 28



XENON10

CDMS

ZEPLIN−III

WIMP Mass [GeV/c
2
]

S
D

 W
IM

P
−

n
e

u
tr

o
n

 c
ro

s
s
 s

e
c
ti
o

n
 [

c
m

2
]

 

 
neutron

10
1

10
2

10
3

10
4

10
−40

10
−39

10
−38

10
−37

10
−36

10
−35

10
−34

XENON100 limit (2013)

± 2σ expected sensitivity

± 1σ expected sensitivity

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

´

´

´

´

´

´
´

´
´

´

´´

´

´

´

´

´

´́

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´́

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´ XENON1T

DARWIN- like

XENON100 '12XENON10 ' 08

ZEPLIN
- III

'12

CDMS ' 06

mass - degenerate
11 - p MSSM

àà
æ

´

XENON100 '12
Bonn A

Bonn CD

Engel
Nijmegen II

Menendez +

10 102 103 10410- 42

10- 41

10- 40

10- 39

10- 38

10- 37

10- 36

10- 35

m Χ @GeV D

SD
-

n
eu

tr
on

cr
os

s
-

se
ct

io
n

@c
m

2
D

Figure 3.3: Current status for the SD scattering cross section. The constraints from the

XENON100 [42](left: blue line) and the future prospects estimated in Ref. [43] (right: red

line) are shown.

3.3 Invisible Decay

If the DM is a fermion and has a coupling to the boson X with a form like X-DM-DM, the

boson X decays to two DMs for mDM ≤ mX/2. Especially, the Higgs boson and the Z boson

can decay to two DMs for mDM ≤ mh/2 and mDM ≤ MZ/2 respectively. Since the DM can

not be detected in the collider experiments, these boson seem to decay invisibly. The process

which X decays invisibly is called as invisible decay of the particle X. There are experiments

to search these processes [44–49]. We briefly review the invisible decay of the Higgs boson and

the Z boson here.

3.3.1 Higgs boson Invisible Decay

In the SM, the Higgs boson can decay invisibly only by the process h → ZZ∗ → νννν with

small fraction Br(h → νννν) = Γ(h → νννν)/Γ(h → SM) ≃ 1 × 10−3.3 On the other hand, in

new physics models if the DM couples to the Higgs boson with mDM ≤ mh/2, the Higgs boson

can also decay invisibly by the process h→ DMs. In this case, the branching ratio of the Higgs

boson invisible decay becomes

Br(h→ invisible) =
Γ(h→ νννν) + +Γ(h→ DMs)

Γ(h→ SM) + Γ(h→ DMs)
. (3.9)

This Higgs boson invisible decay process is searched and planed to be searched [44–48].

At present, there are constraints by the global fits of the Higgs boson which use the data from

the Tevatron and the LHC [44, 45]. In the analyses, the χ2 fittings on the experimental cross
3Here, we estimate the branching ratio by multiplying the theoretical Higgs branching ratio Br(h → ZZ∗ →

4f) = 0.0264 [63] and the square of the Z boson branching ratio Br(Z → νν)=0.2000±0.0006 [63] where f denotes

the SM fermion except the top and the Higgs boson mass is 125 GeV.
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sections of the Higgs boson production processes are performed. As the fitting parameters, the

Higgs boson couplings to the SM particles and the Higgs boson invisible decay width are used.

As the experimental cross sections, they consider the combination of the production processes

(gluon gluon fusion, vector boson fusion, and associated production with a top pair) and the

decay processes (h → ZZ∗,WW ∗, γγ, τ+τ−, bb̄). Various constraints are obtained by changing

the assumption for the fitting parameters. In the case all the Higgs boson couplings are assumed

to be the SM value and only the Higgs boson invisible decay width is the fitting parameter, the

constraints become as Br(h → invisible) < 0.17 (95% CL.) [44] and Br(h → invisible) < 0.19

(95% CL.) [45]. In the case the Higgs boson couplings to the gluon and the photon are also added

to the fitting parameters, the constraints become as Br(h → invisible) < 0.26 (95% CL.) [44]

and Br(h→ invisible) < 0.29 (95% CL.) [45].

There are plans to search the invisible decay of the Higgs boson directly. At the High-

Luminosity (HL) LHC, there are studies for the process pp→ Zh, h→invisible. The sensitivity

for this process with 3000 fb−1 is estimated [46, 47]. The sensitivity depends on the size of the

systematic uncertainties: for “realistic scenario” in Ref. [46] Br(h → invisible) < 0.062 (95%

CL), for “conservative scenario” in Ref. [46] Br(h→ invisible) < 0.14 (95% CL) and in Ref. [47]

Br(h → invisible) < 0.08–0.16 for the ATLAS and 0.06–0.17 for the CMS (95% CL). The ILC

is also planning to measure the Higgs boson invisible decay width directly with the process

e−e+ → Zh, h →invisible. The sensitivity is estimated as Br(h → invisible) < 0.004 (95% CL)

with 1150 fb−1 at
√
s = 250 GeV [48].

3.3.2 Z boson Invisible Decay

The difference between the Higgs boson invisible decay and the Z boson invisible decay is that

the Z boson can decay invisibly with a large fractions even in the SM. It is because the Z boson

couples to the neutrinos and it can decay to two neutrinos. This decay width Γ(Z → νν) is

well measured at the LEP [49]. If the DM couples to the Z boson with mDM ≤ MZ/2, new

contribution to the invisible decay width is added,

Γ(Z → invisible) = Γ(Z → νν) + Γ(Z → DM DM) . (3.10)

Thus, a gap between the experimental value of Γ(Z → invisible) and the SM prediction value

of ΓSM(Z → νν) is used to set the constraint on new physical invisible decay width like a decay

to the DMs: ∆Γ(Z → invisible) = Γ(Z → invisible)− ΓSM(Z → νν) < 2.0 MeV (95% CL) [49].

3.4 Collider Searches

The DM can be produced at the colliders and there are experiments to search it. There are

two types of the production: (i) the direct production [80, 81] and (ii) the production by other

particle’s decay [50, 51, 82, 83]. In the former case (i), the DMs are produced by the process

like pp → DM DM or e+e− → DM DM. However, since the DM can not be detected at the
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collider, these processes give no signals in events. Thus, the additional radiation process, i.e.

mono-jet or mono-photon process, is considered pp → DM DM j or e+e− → DM DM γ. We

review these searches in Sec. 3.4.1. The later case (ii) depends on not only the DM itself but

also the model which includes the DM. The models which contain the DM candidates typically

introduce additional particles and the Z2 symmetry. The Z2 charge of the DM is odd and the

additional particles which also have odd charge can decay to DM. Thus, when the additional

particles are within the range of the collider, they are produced and decay to the DMs. The

processes like pp → Y1Y2 → X DM DM can appear in the experiments where Yi denotes the

additional particles and X denotes the combination of the SM particles. For example, in the

SUSY case, the heavy neutralino χ0
2 and the chargino χ±

1 can be produced at the LHC with

the process like pp → W± → χ0
2χ

±
1 → Zχ0

1W
±χ0

1 → llχ0
1lνχ

0
1 where l denotes the SM lepton

and χ0
1 is the DM (see also Sec. 2.1.6). As same as the direct production, the DMs can not be

detected. Thus the final states with the SM particles and the missing energy are searched. We

review this heavy neutralino and chargino production searches of the SUSY models at the LHC

in Sec. 3.4.2.

3.4.1 Mono-photon and Mono-jet

The mono-photon events and the mono-jet events are the typical signature of the DM production.

Since the DM can not be detected in the collider experiments, the initial state radiations (ISR)

become the clues to search the DM. The DMs are measured as the missing energy and the signal

contains the ISR and the missing energy.

In the e+e− collision, the process e+e− → DM DM γ can occur where the ISR is the photon.

The LEP searched this process [81]. However, the results are consistent with the value of the

SM prediction process e+e− → ννγ. The constraint is set on the unknown process e+e− → Xγ:

its cross section should be ≲ 0.05–0.2 pb at
√
s = 205 GeV depending on the missing energy

60–200 GeV (see Figure 3.4).

In the LHC, the process pp→ DMDM j can occur where the ISR is the jet. It is the same case

as the LEP that there is no excess in the signal. In Ref. [80], the constraints from the CMS [84]

at
√
s = 8 TeV 19.5fb−1 are translated to the constraints on the generic vector mediator model.

In Ref. [80], two vector mediator models are considered: vector model L ∋
∑

q gqZ
′
µψ̄qγ

µψq +

gDMZ
′
µψ̄DMγ

µψDM and axial-vector model L ∋
∑

q gqZ
′
µψ̄qγ

µγ5ψq + gDMZ
′
µψ̄DMγ

µγ5ψDM where

q denotes the SM quarks. The constraints are set on the couplings gq, gDM and the masses of

Z ′
µ and the DM. The results with assuming gq = gDM is shown in the blue lines of Figure 3.5.

Here, we roughly extract the constraints for the case that the mediator is the SM Z boson and

the DM couples to the SM Z boson with the axial-vector coupling. For the SM Z boson, there

exists both of the vector and axial-vector couplings L ∋
∑

q(g
V
q Zµψ̄qγ

µψq+g
A
q Zµψ̄qγ

µγ5ψq) and

gVu = 0.07, gAu = 0.19, gVd = −0.13, gAd = −0.19 while the constraints are set by assuming there is

only vector (axial-vector) coupling. However, since the cross section becomes σ ∝ (gVq )
2+(gAq )

2

in the massless limit mq → 0 and the results for the vector model are almost same as the axial-
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Figure 3.4: The constraints from the LEP mono-photon search [81] are shown. Depending on

the missing mass, the cross section for e+e− → Xγ is constrained at
√
s = 205 GeV.

vector model (see Figure 3.5), we roughly estimates that the constraints in this case becomes

same as those of the axial-vector model with gq ∼ 0.2 and Mmed = MZ = 91.2 GeV. Then the

constraints on the DM coupling to the Z boson become as |gDM| ≲ 0.2–0.6 for the mass of the

DM 10–100 GeV.

3.4.2 Heavy Neutralino/Chargino Production

The production of the neutralinos/charginos are searched at the LHC like those of the col-

ored SUSY particles (see Sec. 2.1.6). Although the production cross sections of the neutrali-

nos/charginos are smaller than those of the colored SUSY particle, typically the decay prod-

uct contains the leptons and the QCD background can be suppressed. Thus, the neutrali-

nos/charginos can be searched at the LHC.

As shown in Sec. 2.2, the heavy sfermion scenarios in the SUSY models are well studied.

In these scenarios, the neutralinos/charginos searches become important since the sfermions are

heavy and not produced at the LHC. In this case, the pair of the neutralinos/charginos are pro-

duced by the electroweak process. If kinematically arrowed, the produced neutralino/chargino

decay to the DM associated with the gauge boson or the Higgs boson. These processes are

searched and especially the process,

pp→ χ0
2χ

±
1 → Zχ0

1W
±χ0

1 → llχ0
1lνχ

0
1 , (3.11)

(l denotes e, µ, τ) are well studied by the ATLAS and CMS since this process gives a high

sensitivity [50,51,82,83]. Here, we review the searches for this process.
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Figure 3.5: The constraints from the mono-jet search are shown. These are the results of Ref. [80]

and the constraints from the CMS [84] at
√
s = 8 TeV 19.5fb−1 are translated to the constraints

on the generic vector mediator model (left: vector model, right: axial-vector model). See text

for details.

At 8 TeV, since there is no discovery of the signal for these searches, the constraints are set

by the ATLAS with 20.3 fb−1 [50]. Note that the CMS also gives the constraints which are

weaker than the ATLAS results [82]. When the sleptons are absent, the process (3.11) gives

the strongest constraints. Although there is also analysis for the Wh process, pp → χ0
2χ

±
1 →

hχ0
1W

±χ0
1 → llχ0

1lνχ
0
1, it gives very weak constraints. The constraints for the process (3.11)

given by the ATLAS [50] are shown in Figure 3.6. This constraints are set by assuming the

simplified pure Bino-Wino model:

(i) There exist the pure Bino DM χ0
1, the pure Wino neutralino χ0

2 and the pure Wino chargino

χ±
1 .

(ii) The masses of χ0
2 and χ±

1 are the same, mχ0
2
= mχ±

1
.

(iii) They decay as χ0
2 → Zχ0

1 and χ±
1 → W±χ0

1 with 100%, i.e. Br(χ0
2 → Zχ0

1) =Br(χ±
1 →

W±χ0
1)=1.

Note that the pure Wino can not decay to the Bino. The slight mixing with the Higgsino makes

it possible for the pure Wino to decay to the Higgs boson and the Bino. Even in this case, the

(almost) pure Wino can not decay to the Z boson and the Bino with larger fraction. Thus, this

pure Bino-Wino model is a toy model and only the benchmark of the searches. In addition, in

this analysis, the production cross section is calculated by assuming the pure Wino. It makes

the cross section larger than that of the neutralinos which contain the Higgsino component.

In order to translate these constraints to the physical model, we need to simulate the ATLAS

analysis and reinterpret the constraints in that model (see also Sec. 5.5). As a benchmark, the

pure Wino mass up to 350 GeV is excluded when the mass of the DM is 0–100 GeV.
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Figure 3.6: The constraints and the future prospects of the neutralino/chargino searches by the

ATLAS are shown. (left) The constraints set by the ATLAS [50] at 8 TeV are shown. (right)

The future prospects by the ATLAS [51] at 14 TeV with 300 fb−1 and 3000 fb −1 are shown. In

these plots, the pure Bino-Wino model is assumed (see text for details).

The future prospects at 14 TeV are also given by the ATLAS [51] and the CMS [83]. Since

the ATLAS and the CMS give the similar results, we review the ATLAS analysis. It is the same

as the 8 TeV case, the process (3.11) gives a highest sensitivity while the Wh process gives a

weaker sensitivity. The future prospects for the process (3.11) given by the ATLAS [51] is shown

in Figure 3.6. Here, the pure Bino-Wino model is also assumed. Thus, we need to simulate and

reinterpret the future prospects in order to apply them to the physical model. In Figure 3.6, the

results with 300 fb−1 and 3000 fb −1 are shown. The exclusion limit for the Wino mass can be

800 GeV and 1100 GeV for the DM mass 0–100GeV with 300 fb−1 and 3000 fb −1 respectively.

3.5 Indirect Detection

The DM can annihilate in the present Universe. There are many experiments to search this

phenomenon. Especially, the observation of the cosmic rays (Sec. 3.5.1) and the observation of

the neutrinos from the Sun (Sec. 3.5.2) exist. Here, we briefly review these observations.

3.5.1 Cosmic Rays

In the present Universe, the DM can annihilate to the SM particles in the high DM density

regions. The produced SM particles emit the photons, positrons, anti-protons and so on which

lead cosmic rays. For the light DM, the strong constraints come from the observation by the

Fermi-LAT [85]. In the experiment, the targets are the gamma rays from the dwarf spheroidal

satellite galaxies of the Milky Way where the dwarf spheroidal satellite galaxies contain the
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Figure 3.7: The constraints from the observations of the gamma rays from the dwarf spheroidal

satellite galaxies by the Fermi-LAT are shown [85]. The constraints on the each annihilation

channel e+e−, µ+µ−, τ+τ−, uū, bb̄,W+W− are shown where 100% branching fraction is assumed

for each channel.

substantial DM component. Since there is no excess of the signal, there are constraints. The

constraints are set on the DM annihilation cross section in the present Universe: ⟨σv⟩ with the

limit v → 0. The results are shown in Figure 3.7. Here, the constraints on the each annihilation

channel e+e−, µ+µ−, τ+τ−, uū, bb̄,W+W− are shown where 100% branching fraction is assumed

for each channel. W+W− channel is considered when the DM mass is larger than the W boson

mass. As shown, the constraints are similar for all channels since the gamma ray spectra are

similar and it mainly depends on the mass of the DM. The constraints reach up to 10−27 ∼
10−26cm3s−1 for the mass of the DM 10–100 GeV.

3.5.2 DM Annihilation in the Sun

In the present Universe, the DM can be captured in the Sun. The captured DMs annihilate to

the SM particles and it leads to generate the neutrinos. The emitted neutrinos from the Sun

are searched. However, there is no excess now and the Super-Kamiokande gives the strongest
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bound [86]. The constraints are set on the effective scattering cross section as [87]

σSI/SD(eff)
p = σSI/SDp tanh2

(√
Γcap.Γann.t⊙

)
, (3.12)

where σ
SI/SD
p is the SI/SD scattering cross section, Γcap.,Γann. are the capture rate and the

annihilation rate of the DM in the Sun and t⊙ ∼4.5 billion years is the age of the solar system.

Here,
√

Γcap.Γann.t⊙ can be calculated as [87]

√
Γcap.Γann.t⊙ = 1.8(1.3)×

(
σ
SI/SD
p

10−40cm2

)1/2(
⟨σv⟩ |v→0

10−29cm3s−1

)1/2(50GeV

mDM

)1/4

. (3.13)

Note that the DM annihilation cross section is the one in the present Universe, i.e. ⟨σv⟩ with the

limit v → 0. When
√

Γcap.Γann.t⊙ ≫ 1 is satisfied, the DMs are in the equilibrium between the

capture and the annihilation. In this case, the capture and the annihilation occur continuously

and the effective scattering cross section become as σ
SI/SD(eff)
p = σ

SI/SD
p . Note that tanh(x) = 1

for x≫ 1 and tanh(x) = 0 for x = 0.

The constraints are set by the Super-Kamiokande [86] (Figure 3.8). The results are shown

with assuming the branching fraction 100% for each bb̄, τ+τ−,W+W−) channel. W+W− channel

is considered when the mass of the DM exceeds the mass of the W boson. The constraints for

the τ+τ− channel is stronger than the bb̄ channel. This is because τ emits the neutrino directly

by its decay while b emits the neutrons from the hadronic decays. The constraints on the SI

effective scattering cross section are much weaker than those of the direct detections (Sec. 3.2.1).

On the other hand, the constraints on the SD effective scattering cross section are same order

with those of the direct detections (Sec. 3.2.2). However, these constraints are set on the effective

cross section (3.12) where the branching fraction is assumed to be 100%. Note that there are

differences of the branching ratio factor and the tanh2 factor between these constraints and the

constraints from the direct detections. Thus, these constraints can be weaker than those of the

direct detections depending on the branching ratio and the annihilation cross section.
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Figure 3.8: The constraints from the Super-Kamiokande which searches the neutrino from the

Sun are shown [86]. The left (right) figure shows the result for the SI (SD) effective scattering

cross section. The red line SK(bb̄) (SK(τ+τ−), SK(W+W−)) shows the constraints when the

branching fraction of the annihilation to bb̄ (τ+τ−,W+W−) channel is assumed to be 100%.
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Chapter 4

Bino-Higgsino Resonant DM model

In this thesis, we investigate the phenomenology of the Bino-Higgsino resonant DM model. As

we see in Sec. 2.2, the heavy sfermion scenario is one of the attractive scenario since it can

explain the Higgs boson mass, evade the LHC constraints and improve the FCNC problem. In

that case, the Bino-Higgsino resonant DM model is one of the good candidate for the DM models

as discussed in Sec. 2.2.6. The current relic abundance is explained by the resonant enhancement

of the annihilation cross section. Here, we consider the Bino-Higgsino resonant DM model as

one of the heavy sfermion scenarios. We assume all the sfermions and heavy Higgses are heavy

> O(1–10) TeV and do not consider their effects.1 We also assume the gluino and the Winos

are heavier than a few TeV which do not affect the phenomenology of the Bino-Higgsino system

and we do not consider their effects (Sec. 4.1). Then, these models are determined by only three

parameters, the Bino massM1, the Higgsino mass µ and tanβ. Although it is simple, this model

gives a variety of phenomena. We investigate this model comprehensively. Our study includes

the investigation of the whole parameter space of (M1, µ, tanβ), the phenomenology of the blind

spot and all the possible phenomena and experiments (see Sec. 5).

In Sec. 4.1, we introduce the Bino-Higgsino resonant DM model. The Lagrangian is shown

in Sec. 4.2. In Sec. 4.3 and 4.4, the behavior of the masses and the couplings of the DM are

shown. The brief description of the DM is also shown in Sec. 4.4. In Sec. 4.5, the behavior of

the couplings of the heavy neutralinos and the chargino is discussed which is important in the

LHC analyses. The detailed analysis and the results will be discussed in Chapter 5 and 6.

4.1 Matter Content and Conditions

The matter content in the Bino-Higgsino model is shown in Table 4.1. Here, we consider the case

where all the sfermions and heavy Higgses are heavy > O(1–10) TeV and do not consider their

effects. We also assume that the masses of the gluino and the Winos are heavier than a few TeV.

1As shown in Sec. 2.1.5, to explain the Higgs mass, the masses and A-terms of heavy particles, especially of

the stops, are restricted in some parameter spaces. However, since they are heavy enough, we do not consider

their effects and we set the Higgs boson mass 125 GeV.
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SM fermions (quarks, leptons)

SM gauge bosons

H0
u(hu, Au)

H0
d(hd, Ad)

⇒
H

A

)
→ heavy > O(1− 10)TeV

h

χB

χH0
u

χH0
d

⇒
χ0
1

χ0
2

χ0
3

χH+
u

χH−
d

⇒ χ±
1

Table 4.1: The matter content of the Bino-Higgsino resonant model. The Higgs fields, the

neutralino fields and the chargino fields are diagonalized and the heavy Higgses become heavy.

There are following reasons. First, the gluino does not mix with the Higgsino and the Bino and

does not affect the phenomenology of the DM. On the other hand, the Wino mixes with the Bino

via the mixing with the Higgsino. However, when the mass of the Wino are heavier than ∼500–

700 GeV, the Wino also does not affect the phenomenology of the DM as shown in Appendix B.

Second, when the gluino and/or the Winos are light O(100) GeV, the LHC phenomenology

changes. However, it is independent from the DM phenomenology and the existence of these light

gluino and Winos enlarges the covered region of the constraints and the future prospects of the

LHC SUSY searches. To evade the constraints and to give the conservative future prospects, the

masses of the gluino and the Winos are assumed heavier than a few TeV where the gluino/Winos

does not change the LHC phenomenology of the Bino/Higgsinos. Thus, we do not consider their

effects.

Here, we do not consider the CP-violation terms in the Lagrangian.2 Then the Lagrangian

is determined only by three parameters, the Bino mass M1 > 0, the real Higgsino mass µ and

tanβ (see the next section Sec. 4.2). As we will see in Sec. 5.1, the current relic abundance can

be explained at mχ0
1
∼ mh/2 orMZ/2 and |µ| ≲ 2500 GeV. Thus, here we consider the following

parameter range,

20GeV ≤M1 ≤ 80GeV , (4.1)

100GeV ≤ |µ| ≤ 2500GeV , (4.2)

2 ≤ tanβ ≤ 50 , (4.3)

where the condition for µ is to satisfy the LEP bound for the chargino mχ±
1
= |µ| [63]. In the

outer region of Eq. (4.1) and (4.2), the DM becomes overabundant except the well-tempered
2The existence of the CP-violation terms adds the terms like L ∋ λhψ̄χ0

1
γ5ψχ0

1
. It changes the phenomenology

of the DM. It is interesting to investigate such case but it is beyond this thesis and we simply assume there is no

CP-violating terms.
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Figure 4.1: The mass spectrum of the Bino-Higgsino resonant model is shown.

region (see Sec. 2.2.6). The mass spectrum of this model is shown in Figure. 4.1. We define z, z1

as

z ≡ MZsW
µ

, z1 ≡
M1

µ
. (4.4)

Note that |z|, |z1| < 1. In the following subsections, we show the expansions of the masses or

the couplings by these values.

4.2 Lagrangian

The Lagrangian after the spontaneous symmetry breaking, integrating out the heavy fields and

neglecting the gluino/Winos in Eq. (2.7) is written as follows

L = LSM +
∑
X

iχXσ
µ∂µχX +

(
−1

2
M1χBχB + µχH0

u
χH0

d
− µχH+

u
χH−

d
+ h.c.

)
− 1√

2
g′vsβχBχH0

u
+

1√
2
g′vcβχBχH0

d
− 1

2
g′cαhχBχH0

u
− 1

2
g′sαhχBχH0

d
+ h.c.

−eχH+
u
σµχH+

u
Aµ + eχH−

d
σµχH−

d
Aµ

+

(
− 1√

2
gχH+

u
σµχH0

u
W+

µ − 1√
2
gχH−

d
σµχH0

d
W−

µ + h.c.

)
(4.5)

+
e

s2W
χH0

u
σµχH0

u
Zµ − e

s2W
χH0

d
σµχH0

d
Zµ − e

t2W
χH+

u
σµχH+

u
Zµ +

e

t2W
χH−

d
σµχH−

d
Zµ ,

where X = B,H+
u ,H

0
u,H

0
d ,H

−
d . When the heavy Higgses are heavy enough, α ∼ β − π/2 (i.e.

cα ∼ sβ, sα ∼ −cβ) is satisfied (see also Eq. (2.37)).
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The mass matrix of the neutralinos (Eq. (2.30)) becomes 3×3 matrix,

L ∋ −1

2
(χB χH0

d
χH0

u
)

 M1 −MZsW cβ MZsW sβ

−MZsW cβ 0 −µ
MZsW sβ −µ 0


 χB

χH0
d

χH0
u

+ h.c. . (4.6)

Note that MZsW = g′v/2. We diagonalize this matrix Mn with a real orthogonal matrix On

OnMnO
T
n =

ϵ1mχ0
1

0 0

0 ϵ2mχ0
2

0

0 0 ϵ3mχ0
3

 ,

χ
0
1

χ0
2

χ0
3

 ≡ On

 χB

χH0
d

χH0
u

 . (4.7)

ϵi = ±1 and the negative mass ϵi = −1 is absorbed by the additional rotation of the neutralino

fields with a diagonal matrix Ψn where (Ψn)ij = δijηi and ηi = 1 for ϵi = 1, ηi = i for

ϵi = −1. The chargino is composed only by the Higgsino. The mass of the chargino is ϵµµ where

ϵµ = sign(µ).

After diagonalizing the neutralino mass matrix, the Lagrangian is rewritten with the Majo-

rana neutralinos (ψχ0
i
) and the Dirac chargino (ψχ±

1
=
(
ϵµiσ

2χT
H−

d

χH+
u

)T
) as

L = LSM +
1

2

∑
i=1,2,3

iψχ0
i
γµ∂µψχ0

i
+ iψχ±

1
γµ∂µψχ±

1
− 1

2

∑
i=1,2,3

mχ0
i
ψχ0

i
ψχ0

i
− µϵµψχ±

1
ψχ±

1

+h
∑

i,j=1,2,3

ψχ0
i

(
λhLijPL + λhRijPR

)
ψχ0

j
+ Zµ

∑
i,j=1,2,3

ψχ0
i
γµλZLijPLψχ0

j

+W+
µ

∑
i=1,2,3

ψχ±
1
γµ
(
λWL1iPL + λWR1iPR

)
ψχ0

i
+ h.c.

−eψχ±
1
γµψχ±

1
Aµ − e

t2W
ψχ±

1
γµψχ±

1
Zµ , (4.8)

where

λhLij = −1

2
g′ (On)i1

(
cα (On)j3 + sα (On)j2

)
η∗i η

∗
j , (4.9)

λhRij =
(
λhLji

)∗
, (4.10)

λZLij =
e

s2W
ηiη

∗
j

(
(On)i3 (On)j3 − (On)i2 (On)j2

)
, (4.11)

λWL1i = − 1√
2
gη∗i (On)i3 , (4.12)

λWR1i =
1√
2
gϵµηi (On)i2 . (4.13)

All phenomenology is determined by these couplings and the masses of the neutralinos and the

chargino which depend on only M1, µ and tanβ.

4.3 Masses

Here, we show the behavior of the masses.
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With the expansion by z =MZsW /µ, the eigenvalues of the mass matrix are written as (see

Appendix C)

m1 = M1

(
1− z2

1

1− z21
(1− 1

z1
s2β) +O

(
z4
))

,

m2 = −µ
(
1 +

1

2
z2

1

1 + z1
(1− s2β) +O

(
z4
))

, (4.14)

m3 = µ

(
1 +

1

2
z2

1

1− z1
(1 + s2β) +O

(
z4
))

.

Here, mi denotes the eigenvalues of the mass matrix Mn (Eq. (4.6)) and it does not equivalent

to the mass of χ0
i , mχ0

i
. The relations between mi and mχ0

i
are depending on the parameters.

Especially in our parameter regions, for µ > 0, the relation becomes as mi = ϵimχ0
i
. On the

other hand, for µ < 0, the relation changes as m2,3 = ϵ2,3mχ0
2,3

or m2,3 = ϵ3,2mχ0
3,2

depending

on the parameters. For example, in the case of µ < 0, if we change the value of M1 fixing other

parameters, the flip of |m2| > |m3| → |m2| < |m3| can occur. The relation between |m2| and
|m3| is calculated as

|m3| − |m2| = z2
1

1− z21
(z1 + s2β) +O

(
z4
)
. (4.15)

Obviously, the order of |m2| and |m3| flips at3

M1 ∼ −µs2β . (4.16)

With this flip, the couplings seems to change discontinuously when one keeps track of the

couplings of χ0
2 (χ0

3). Now, we define χ0
p (χ0

m) as the heavy neutralino whose ϵ is positive

(negative): i.e. χ0
p = χ0

2 and χ0
m = χ0

3 when ϵ2 > 0 and ϵ3 < 0, χ0
p = χ0

3 and χ0
m = χ0

2 when

ϵ2 < 0 and ϵ3 > 0.4 Then, if we keep track of the couplings of χ0
p (χ0

m), there is no discontinuous

change. This is because the subscript 2, 3 of χ0
2, χ

0
3 is only determined by the order of the mass

and it is not determined by its component (i.e. more like χH0
d
or more like χH0

u
).

From Eq. (4.14), the mass of the DM becomes mχ0
1
∼ M1 and the masses of two heavy

neutralinos become mχ0
2
∼ mχ0

3
∼ |µ|. Note that the mass of the chargino is ϵµµ as shown in

Sec. 4.2. Note that, mh < 2|mχ0
2,3
| ∼ 2mχ±

1
andMW < mχ0

1
+mχ±

1
are satisfied. Thus, the Higgs

boson and the Z boson can not decay to the heavy neutralinos/charginos and the W boson can

not decay to the DM and the chargino.

4.4 Dark Matter

In the current set up, the lightest neutralino LSP χ0
1 can be a candidate for the DM. This DM is

mainly composed of the Bino and slightly couples with the Higgsino (see Eq. (4.6)). Thus, we call

3This is the same condition of the blind spot which we see in Eq. (4.22).
4Note that ϵ1 = 1 and ϵ2 × ϵ3 = −1 holds when |µ| ≫M1.
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this model as the Bino-Higgsino DM model. The phenomenologies of this DM are determined

only by its mass mχ0
1
and the two couplings λh, λZ :

LDM =
1

2
iψχ0

1
γµ∂µψχ0

1
− 1

2
mχ0

1
ψχ0

1
ψχ0

1
+

1

2
λhhψχ0

1
ψχ0

1
+ λZZµψχ0

1
γµPLψχ0

1
, (4.17)

where

λh ≡ λhL11 + λhR11 = −g′ (On)11 (cα (On)13 + sα (On)12) , (4.18)

λZ ≡ λZL11 =
e

s2W

(
((On)13)

2 − ((On)12)
2
)
. (4.19)

Note that λhL11 = λhR11, ϵ1 = 1. See also Eq. (4.8) and Eq.(4.9)–(4.13). We can expand these

couplings by z as

λh =
1

2
g′z

1

1− z21
(z1 + s2β) +O

(
z3
)
, (4.20)

λZ =
e

s2W
c2βz

2 1

1− z21
+O

(
z4
)
. (4.21)

(see also Appendix C). The relic abundance, the SI/SD scattering cross section and the Higgs/Z

invisible decay width are all determined only by these mass and couplings.

Let us briefly discuss the thermal relic abundance. Since the pure Bino DM is overabundant,

it should mix with the Higgsino and the annihilation cross section should be increased. As we

can see from Eq. (4.6), the Bino mixes with the Higgsino with the mixing size ∼ MZ/µ. It

makes possible for the DM to couple with the Higgs boson and the Z boson. The DM can

annihilate to the SM particles only via these bosons. However, as shown in Eq. (4.20) and

(4.21), the couplings are small when |µ| ≫ M1,MZ holds and they are not sufficiently large to

increase the annihilation cross section. Meanwhile, when the mass of the DM is half of the Higgs

boson mass or the Z boson mass, the annihilation cross section can be also increased drastically

by the resonant enhancement. With non-zero couplings (Eq. (4.20) and (4.21)), this resonant

enhancement works well. This is the main feature of the Bino-Higgsino model with resonant

annihilation. We will see the detailed calculations in Sec. 5.1 and the results in Sec. 6.1.

In the region with the Higgs resonance mχ0
1
∼ mh/2 and the Z resonance mχ0

1
∼MZ/2, the

current relic abundance can be explained. However, as we can see in Eq. (4.20), the DM-DM-

Higgs coupling vanishes when the following relation holds:

M1 ≃ −µs2β . (4.22)

This is called as the blind spot [38]. In this region, the annihilation cross section of the DM

becomes too small even when the resonant annihilation occurs mχ0
1
∼ mh/2. Thus the current

relic abundance can not be explained when µ < 0 , mχ0
1
∼ mh/2 and Eq. (4.22) hold. This

gives very interesting phenomena. Especially, since even in the blind spot region the DM-DM-Z

coupling λZ does not vanish, the combination of the experiments becomes important to cover

these region. We will see these in Chapter 5 and 6.
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Figure 4.2: The behaviors of the mass and the couplings are shown. The values of tanβ = 10

are shown with µ < 0 (left) and µ > (right). The black lines denote the mass of the lightest

neutralino or the mass of the DM mχ0
1
. The lines with mχ0

1
= 30, 45.6 ≃MZ/2, 62.5 ≃ mh/2, 79

GeV are shown. The blue and green lines denote the size of the DM-DM-Higgs coupling λh.

Note that the sign of λh changes in µ < 0 region. The size of the DM-DM-Z coupling λZ is also

shown in the red lines.

We show the behaviors of the mass and the couplings in Figure 4.2. The mass and the

couplings are calculated by solving the equations in Sec. 4.2 and we do not assume any ap-

proximations like |µ| ≫ M1,MZ . The black lines denote the mass of the lightest neutralino or

the mass of the DM mχ0
1
. The lines with mχ0

1
= 45.6 GeV ≃ MZ/2 and 62.5 GeV ≃ mh/2

are shown. The blue and green lines denote the size of the DM-DM-Higgs coupling λh. The

size of the DM-DM-Z coupling λZ is also shown in the red lines. Although the behavior of the

tanβ = 10 case is shown, other value of tanβ gives similar results. Note that in the µ < 0 plane,

the blind spot λh ∼ 0 is clearly seen. The behavior of λh depends on the sign of µ drastically.

On the other hand, the behavior of λZ does not depend on the sign of µ and M1. It is easily

understood by Eq. (4.21). In addition, λZ does not depend on tanβ so much as far as tanβ ≳ 2.

In our setup, |λZ | becomes maximum λZ = −0.0775 at M1 = 80 GeV, µ = −100 GeV and

tanβ = 2, i.e.

−0.078 < λZ < 0 . (4.23)

4.5 Heavy Neutralinos and Chargino

Here, we see the branching ratios and the couplings of the heavy neutralinos and the chargino.

These are important in the LHC analyses. Especially, since the LHC phenomenology does not
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Figure 4.3: The branching ratios of the heavy neutralinos are shown (left: µ < 0, right:µ > 0).

The red line shows Br(χ0
2 → Zχ0

1) and the blue line shows Br(χ0
3 → Zχ0

1). Here, we setM1 = 50

GeV and tanβ = 10 for an example.

depend on λh and λZ , the LHC can shed a light even on the blind spot.

First, let us see the decays of the heavy neutralinos and the chargino. The chargino decays

to the DM and the W boson exclusively when mχ±
1
> mχ0

1
+MW . On the other hand, the heavy

neutralinos can decay with two processes depending on their mass.

χ0
2,3 → Zχ0

1 , for mχ0
2,3
> mχ0

1
+MZ , (4.24)

χ0
2,3 → Zχ0

1 and χ0
2,3 → hχ0

1 , for mχ0
2,3
> mχ0

1
+mh . (4.25)

The decay widths of these particles are shown in Appendix C.4. We can see that the widths are

narrow.

The branching ratios of the heavy neutralinos are important in the LHC analyses since the

results depend on the final states. The branching ratio of the process χ0
2,3 → Zχ0

1 becomes as

(Appendix C.4)

Br(χ0
2,3 → Zχ0

1) = 1.0 , for mχ0
1
+mh > mχ0

2,3
> mχ0

1
+MZ , (4.26)

=
1

2
(1± z1)

2(1± s2β)
1

1 + 2z1s2β + z21
+O(z2) ,

for mχ0
2,3
> mχ0

1
+mh . (4.27)

Note that the following relation is satisfied

Br(χ0
2 → Zχ0

1) + Br(χ0
3 → Zχ0

1) = 1 +O(z2) , for mχ0
2,3
> mχ0

1
+mh . (4.28)

The typical behavior of the branching ratio is shown in Figure 4.3. Here, we set M1 = 50 GeV

and tanβ = 10 for an example. We can see that the branching ratio of the process χ2,3 → Zχ0
1

is 1 for mχ0
1
+mh > mχ0

2,3
> mχ0

1
+MZ . In the µ < 0 case, the flip occurs at µ ∼ −225GeV (see

also Sec. 4.4). If we draw the graph with χ0
p,m instead of χ0

2,3, the lines become continuos.
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Next, let us see the couplings. The couplings and their z expansions are shown in Ap-

pendix C.3. As we can see in Sec. 3.4.2 and 5.5, the following processes are important.

pp→W± → χ0
2,3χ

±
1 → Zχ0

1W
±χ0

1 . (4.29)

The production, pp → W± → χ0
2,3χ

±
1 , depends on the couplings λWL1j , λ

W
R1j where j = 2, 3.

However, as we can see in Eq. (C.40)–(C.43), these couplings are almost constants. In the decay

of the chargino, χ±
1 →W±χ0

1, the corresponding couplings λ
W
L11 and λ

W
R11 can be converted to the

decay width Γχ±
1
and the ratio λWL11/λ

W
R11. Although the width depends on mainly µ, the width

is already narrow enough and the value does not change the LHC phenomenology. On the other

hand, the ratio depend on tanβ as we can see from Eq. (C.38) and (C.39). This may change

the chirality of the produced W boson. In the decay of the heavy neutralino, χ0
2,3 → Zχ0

1, the

related couplings are only λZL12,L13 . These couplings can be converted to the decay widths Γχ0
2,3
.

The width do not affect the LHC phenomenology as same as the chargino case. The chirality

of the produced Z boson also does not change since they have only left handed couplings. The

detailed analysis is shown in Sec. 5.5.
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Chapter 5

Analysis

In this section, we investigate the phenomenology of the Bino-Higgsino resonant DM model

introduced in Chapter 4. We consider the thermal relic abundance, the SI scattering cross

section, the SD scattering cross section, the invisible decays, the LHC searches, the mono-

photon/jet searches and the indirect searches. We show the detailed studies of these phenomena

to investigate this model comprehensively. We summarize the analyses and the experimental

results considered in this thesis in Table 5.1. The SM values used in our analysis are given in

Appendix A. In our analysis, we assume the standard halo model for the DM [88,89]: the local

density ρ0 =0.3 GeVcm−3, the local velocity v0 = 220kms−1 and the galactic escape velocity

vesc = 544kms−1.

Before going to the detailed studies, we show the dependences of each phenomenon on the

masses and couplings in Table 5.2. Although the relic abundance and the invisible decays seem

to depend on both of λh and λZ in this table, actually they depend on only one of λh and λZ

in each Higgs or Z region: the relic abundance in the Higgs (Z) resonant region depends on

only λh (λZ) and the invisible decay of the Higgs (Z) boson depends on only λh (λZ). Since

each phenomenon depends on different combination of the masses and couplings, study of these

phenomenology can reveal this model comprehensively. Especially, the blind spot where λh ∼ 0

holds exhibits interesting behaviors.
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relic abundance (Sec. 5.1)

Planck result Ωh2 =0.120 [19]

SI scattering cross section (Sec. 5.2)

LUX constraints left figure of Figure 3.2 [40]

XENON 1T prospects right figure of Figure 3.2 [41]

SD scattering cross section (Sec. 5.3)

XENON100 constraints left figure of Figure 3.3 [42]

XENON 1T prospects right figure of Figure 3.3 [43]

Higgs invisible decay (Sec. 5.4)

global fit constraints Br(h→ χ0
1χ

0
1) < 0.19 [45]

(HL) LHC prospects Br(h→ χ0
1χ

0
1) < 0.062 [46]

ILC prospects Br(h→ χ0
1χ

0
1) < 0.004 [48]

Z invisible decay (Sec. 5.4)

LEP constraints Γ(Z → χ0
1χ

0
1) < 2.0 MeV [49]

LHC chargino/neutralino search (Sec. 5.5)

8 TeV constraints reinterpretation of left figure of Figure 3.6 [50]

14 TeV prospects reinterpretation of right figure of Figure 3.6 [51]

mono-photon search (Sec. 5.6)

LEP constraints Figure 3.4 [81]

mono-jet search (Sec. 5.6)

CMS constraints |λZ | < 0.2–0.6 [80] (Sec. 3.4.1)

cosmic rays (Sec. 5.6)

Fermi-LAT constraints Figure 3.7 [85]

DM annihilation in the Sun (Sec. 5.6)

Super-Kamiokande constraints Figure 3.8 [86]

Table 5.1: The analyses and the results used to set the constraints and estimate the future

prospects are summarized.
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mχ0
1

λh λZ heavy neutralinos/charginos

relic abundance (Sec. 5.1) ◦ ◦ ◦ −
SI scattering (Sec. 5.2) ◦ ◦ − −
SD scattering (Sec. 5.3) ◦ − ◦ −
invisible decays (Sec. 5.4) ◦ ◦ ◦ −
LHC productions (Sec. 5.5) ◦ − − ◦

Table 5.2: The dependences of each phenomenon on the masses and couplings are shown. ◦
denotes that the phenomenon depends on the mass or couplings, and − denotes that it does not

depend on them. “heavy neutralinos/charginos” includes the masses of the heavy neutralinos

and charginos mχ0
2,3
,mχ±

1
and the couplings which related to them like λhLij where i ≥ 2 or (and)

j ≥ 2 (see also Sec. 4.5).
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5.1 Relic Abundance

First, we calculate the thermal relic abundance of the Bino-Higgsino resonant DM. Since the

DM couples only with the Higgs boson and the Z boson (see Eq. (4.8) and (4.17)), the DM

can annihilate to the SM particles only through the Higgs boson and the Z boson as shown in

Figure 5.1. The annihilation cross section of the DM, σann.(s), is calculated as

σann.(s) = σ(χ0
1χ

0
1 → SM particles)(s)

=
∑
f

σ(χ0
1χ

0
1 → h→ f)(s) +

∑
f

σ(χ0
1χ

0
1 → Z → f)(s) , (5.1)

where f denotes possible final states and

σ(χ0
1χ

0
1 → h→ f)(s) ≃ 1

2
(λh)2

√
1−

4m2
χ0
1

s

1

(s−m2
h)

2 + (mhΓh)2
s

mh
Γ(h→ f) , (5.2)

σ(χ0
1χ

0
1 → Z → f)(s) ≃ (λZ)2

√
1−

4m2
χ0
1

s

1

(s−M2
Z)

2 + (MZΓZ)2
s

MZ
Γ(Z → f) . (5.3)

s denotes the squared center of mass energy. Γh (ΓZ) is the total decay width of the Higgs (Z)

boson and Γ(h(Z) → f) is the partial decay width of the process h(Z) → f . Here, we neglect the

SM fermion mass terms which is proportional to (mf/mχ0
1
)2 ≪ 1. The detailed calculations are

written in Appendix D.1. Note that there is no interference term since the Higgs boson and the

Z boson have different spins. Then with summing all the possible final states, the annihilation

cross section can be written as

σann.(s) =
1

2
(λh)2

√
1−

4m2
χ0
1

s

1

(s−m2
h)

2 + (mhΓh)2
s

mh
Γh

+(λZ)2

√
1−

4m2
χ0
1

s

1

(s−M2
Z)

2 + (MZΓZ)2
s

MZ
ΓZ . (5.4)

As described in the previous chapters, the resonant annihilation is important since the DM’s

couplings with the SM particles are not large enough. That is, typical size of the annihilation

cross section σann.(s) is small except the resonant region. As we can see from Eq. (5.4), when

s ∼ m2
h or s ∼ M2

Z is satisfied, the annihilation cross section is enhanced drastically. We show

this behavior in Figure 5.2. The left figure corresponds to the Higgs resonance with
(
λh
)2

=

2mhΓh and λZ = 0. The right figure corresponds to the Z resonance with
(
λZ
)2

= mZΓZ and

λh = 0. Although the actual annihilation cross section is determined by λh and λZ , the typical

behavior becomes the sum of these resonances. The resonance condition s ∼ m2
h,M

2
Z is satisfied

especially for mχ0
1
∼ mh/2,MZ/2 respectively.

As we show in Sec. 3.1, the relic abundance of the DM is calculated by solving the Boltzmann

equation (3.1). The relic abundance depends on ⟨σv⟩(T ) i.e. σann.(s) strongly. Here, let us see

the typical behavior of the thermal average of the annihilation cross section ⟨σv⟩(T ) in the
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χ0

1
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h

SM

SM
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1
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1

Z

SM

SM

λh λZ

Figure 5.1: The diagrams which contribute to the annihilation cross section are shown. The

Higgs boson exchange (left) and the Z boson exchange (right) are the only process where the

DM χ0
1 can annihilate to the SM particles.

√s (GeV)

    σ
(GeV   )-2

√s (GeV)

    σ
(GeV   )-2

Figure 5.2: The annihilation cross sections with the Higgs resonance (left) and the Z resonance

(right) are shown. Here, to exhibit the shape of the resonance, the couplings are set as follows:

(left)
(
λh
)2

= 2mhΓh and λZ = 0, (right)
(
λZ
)2

= mZΓZ and λh = 0.

resonant region. ⟨σv⟩(T ) is calculated by Eq. (3.4) with Eq. (5.4). The behavior of ⟨σv⟩(T ) is
shown in Figure 5.3. When the mass is 60.0 GeV (the blue line in Figure 5.3) which is a little

smaller than the half of the Higgs boson mass, mh/2 ≃ 62.5 GeV, the thermal average of the

annihilation cross section is enhanced at small m/T ∼ O(10). This is because s = 4(m2
χ0
1
+ p2)

can satisfy s ∼ m2
h with sizable p ∼ 18 GeV for mχ0

1
= 60.0 GeV where p is the DM momentum.

When the mass goes near the half of the Higgs boson (the green/black line), s ∼ m2
h can be

satisfied only with small momentum. Thus, the temperature when the enhancement occurs goes

lower, m/T ∼ O(100). When the mass exceeds mh/2 (the red line), obviously the enhancement

disappears since s ∼ m2
h can not be satisfied. The enhancement which occurs at m/T ∼ O(10)

is important to explain the current relic abundance.

The final relic abundance of the DM is calculated by solving the Boltzmann equation (3.1)

using the annihilation cross section Eq. (5.4).1 It depends on the mass of the DM, mχ0
1
, and the

1We have checked that the values of the relic abundance in our calculation agree with the values using mi-

crOMEGAs [90–92] within a few % (micrOMEGAs is the public program which can calculate the relic abundance,

the scattering cross sections, the annihilation cross sections and so on). In the calculation, as the value of the
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m/T

<σv>
(GeV   )-2

60.0 GeV 62.0 GeV 62.3 GeV

62.6 GeV

Figure 5.3: The thermal average of the annihilation cross sections is shown with changing the

DM mass mχ0
1
. For simplicity,

(
λh
)2

= 2mhΓh and λZ = 0 are assumed.

couplings λh, λZ . We show the results where the current DM relic abundance Ωh2 =0.120 [19]

can be explained in Sec. 6.1.

5.2 Spin Independent Scattering

Here, we calculate the SI scattering cross section. It is constrained now and the future ex-

periments are planed as shown in Sec. 3.2.1. In the Bino-Higgsino resonant model, the SI

scattering cross section is determined only by the mass of the DM, mχ0
1
, and the coupling λh.

This is because the process which contribute to the SI scatteing is only the Higgs boson ex-

change process which is shown in the left side of Figure 5.4.2 The DM-DM-N -N coupling λN ,

L ∋
∑

N=p,n λNψχ0
1
ψχ0

1
NN , can be calculated with λh by integrating out the Higgs boson as

λN =
λh

2
√
2m2

hv
mNfN . (5.5)

Here,

fN =
∑

q=u,d,s

fNq +
2

9
fNg =

2

9
+

7

9

∑
q=u,d,s

fNq , (5.6)

relativistic degrees of freedom gs and gρ, we use the fitting formula in Ref. [93].
2The heavy SUSY particle (heavy Higgs or sfermion) exchange process can contribute to the SI scattering if

their masses are relatively light ∼ a few TeV. Here, we assume they are heavy enough and do not consider their

contributions.
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Z

p, n p, np, n p, n

Figure 5.4: The diagrams which contribute to the scattering cross sections are shown. The Higgs

boson exchange process (left) is sensitive only to the SI scattering cross section. The Z boson

exchange process (right) corresponds only to the SD scattering cross section.

and

mNf
N
q =

⟨
N |mqψqψq|N

⟩
, (5.7)

mNf
N
g = −9αs

8π
⟨N |GµνG

µν |N⟩ . (5.8)

See also Appendix D.2 for the detailed calculation.

The SI scattering cross section is calculated by Eq. (3.7) using the coupling Eq. (5.5). In our

numerical analysis, we use fN = 0.284. This is the default value used in micrOMEGAs [90–92]

where fpu = 0.0153, fpd = 0.0191 and fps = 0.0447. The value fN changes a lot by choosing

different values of fps which are the results of the lattice simulations and can be O(0.1). Here,

the value fps = 0.0447 is the weighted mean value of the lattice results and it is already small.

If we use the value fps ≃ 0.009 in Ref. [94], fN becomes fN ≃ 0.256. Thus, the SI cross section

may decrease up to 20%. If we use fN = 0.284, the SI cross section becomes as

σSIN = 5.2× 10−43 × (λh)2
m2

χ0
1

(mχ0
1
+mN )2

[cm2] . (5.9)

It depends on the coupling λh and slightly on the mass of the DM mχ0
1
. As a result, the SI

scattering searches have no sensitivity in the blind spot region, λh ∼ 0.

As the constraints, we use the LUX [40] results which give the strongest constraints now:

O(10−45–10−44) cm2 (see left side of Figure 3.2). We also consider the future prospect of the

XENON [41] which can reach up to O(10−47) cm2 (see right side of Figure 3.2). The results are

shown in Sec. 6.2.3

3We have checked that the SI scattering cross sections in our calculation agree with those in using mi-

crOMEGAs [90–92] within a few %.
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5.3 Spin Dependent Scattering

In contrast to the SI scattering cross section, the SD scattering cross section depends on the mass

of the DM mχ0
1
and the coupling λZ . This is because the process which contribute to the SD

scattering is only the Z boson exchange process which is shown in the right side of Figure 5.4.4

The SD scattering cross section is constrained and the future experiments are planed as shown

in Sec. 3.2.2.

The DM-DM-N -N coupling ξN in this case, L =
∑

N=p,n ξNψχ0
1
γµγ5ψχ0

1
Nγµγ5N , can be

calculated with λZ as

ξN =
eλZ

2s2Wm2
Z

∑
q=u,d,s

T 3
q ∆

N
q . (5.10)

See also Appendix D.3 for the detailed calculation. The SD scattering cross section is cal-

culated by Eq. (3.8) with Eq. (5.10). In our numerical analysis, we use the values used in

micrOMEGAs [90–92], ∆p
u = ∆n

d = 0.842, ∆p
d = ∆n

u = −0.427, and ∆p
s = ∆n

s = −0.085. In

this case, the sum becomes
∑

q T
3
q ∆

n(p)
q = 0.677 (−0.592). This value of ∆p

s(∆n
s ) is determined

by the HERMES experiments [95]. The value of ∆p,n
s can be larger if we use the early exper-

imental results of EMC and SMC [96]. In this case ∆p
u = ∆n

d = 0.78, ∆p
d = ∆n

u = −0.48,

∆p
s = ∆n

s = −0.15 [90] and the sum becomes
∑

q T
3
q ∆

n(p)
q = 0.705 (−0.555). Thus, the SD

cross section may increase/decrease up to 10% for the proton/neutron respectively. Here, we

use the latest values (former values) used in micrOMEGAs which leads to
∑

q T
3
q ∆

n(p)
q = 0.677

(−0.592). Then the cross section becomes as

σSDn(p) = 2.3 (3.0)× 10−37 × (λZ)2
m2

χ0
1

(mχ0
1
+mN )2

[cm2] . (5.11)

Similarly to the SI scattering cross section, it depends on the coupling λZ and slightly on the

mass of the DMmχ0
1
. However, since this does not depend on λh, the search for the SD scattering

can cover even in the blind spot region, λh ∼ 0.

The current constraints come from the XENON100 [42] and the estimated future prospects

of the XENON 1T [43] are taken into account in our analysis. They reach up to O(10−40) cm2

and O(10−41) cm2 respectively (see Figure 3.2). The results are shown in Sec. 6.3.5

5.4 Invisible Decay

As shown in Sec. 3.3, when the mass of the DM is less than the half of the Higgs boson mass

or the Z boson mass, the Higgs boson or (and) the Z boson can decay to the DMs. Especially,
4The heavy SUSY particle (heavy Higgs or sfermion) exchange process can contribute to the SD scattering

cross section if their masses are relatively light ∼ a few TeV. Here, we assume they are heavy enough and do not

consider their contributions.
5We have checked that the SD cross sections in our calculation agree with those in using micrOMEGAs [90–92]

within a few %.
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Figure 5.5: The diagrams which contribute to the invisible decays are shown. The Higgs boson

decay (left) and the Z boson decay (right) can exist depending on the mass of the DM.

in our case, when mχ0
1
≤ mh/2 ≃ 62.5 GeV, the Higgs boson can decay to two DMs and when

mχ0
1
≤MZ/2 ≃ 45.6 GeV, not only the Higgs boson but also the Z boson can decay to two DMs.

The diagrams which contribute to these invisible decays are shown in Figure 5.5. Obviously,

both of these invisible decays depend on the mass of the DM mχ0
1
and the Higgs (Z) boson

invisible decay also depend on the coupling λh (λZ) respectively.

The decay width of the Higgs boson to the DMs can be calculated as

Γ(h→ χ0
1χ

0
1) =

(λh)2

16π
mh

(
1−

4m2
χ0
1

m2
h

)3/2

, for mχ0
1
≤ 1

2
mh . (5.12)

The decay width of the process Z → χ0
1χ

0
1 is also calculated as

Γ(Z → χ0
1χ

0
1) =

(λZ)2

24π
MZ

(
1−

4m2
χ0
1

M2
Z

)3/2

, for mχ0
1
≤ 1

2
MZ . (5.13)

See also Appendix D.4.

For the Higgs boson invisible decay, the constraints and the future prospects are set on the

branching ratio Br(h → invisible). This branching ratio can be calculated from Eq. (3.9) with

Eq. (5.12). To see the behavior we can write as

Br(h→ invisible) =
X

1 +X
, for mχ0

1
≤ 1

2
mh , (5.14)

X =
Γ(h→ χ0

1χ
0
1)

Γ(h→ SM)
=

(
1

Br(h→ χ0
1χ

0
1)

− 1

)−1

≃
(
λh

0.04

)2
(
1−

(
mχ0

1

62.5 GeV

)2
)3/2

,

where we use Γ(h → SM) = 4.07 × 10−3 GeV [63]. Here, we neglect the SM contribution

h→ ZZ∗ → νννν.6 As the constraints, we use the results from the global fit [45]. In our setup,
6It does not change the results of the global fit constraints and the (HL) LHC prospects since Br(h→ ZZ∗ →

νννν) ≃ 0.001. Although the result of the ILC prospects may change, we do not include this contribution for

simplicity which leads conservative results.
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the Higgs couplings to the SM particles become SM like as follows. The Higgs couplings to the

gauge bosons normalized by the SM Higgs couplings are sin(β−α). The Higgs couplings to the

up (down) type fermions normalized by the SM Higgs couplings are cosα/ sinβ (− sinα/ cosβ).

In our setup, these factors become 1 since the heavy Higgses are heavy enough, i.e. α ∼ β−π/2
(see Sec. 4.2). Thus, we use the global fit results Br(h → invisible) < 0.19 which is derived

by assuming the Higgs couplings are same as the SM values (see also Sec. 3.3.1). This value

corresponds to X ≲ 0.235. As the future prospects, we consider the (HL) LHC [46] and the

ILC [48]. As the future prospects from the (HL) LHC, we use the value Br(h→ invisible) < 0.062

which is the “realistic scenario” for the systematic uncertainties. The sensitivity of the ILC is

Br(h → invisible) < 0.004. These values correspond to X ≲ 0.066 and X ≲ 0.004 respectively.

In our numerical analysis, we calculate the branching ratio and set the limits on it (not on X).

The results are shown in Sec. 6.4.

For the Z invisible decay, the constraints are set on the decay width as shown in Sec. 3.3.2.

From Eq. (5.13), the decay width of the process Z → χ0
1χ

0
1 can be written as

Γ(Z → χ0
1χ

0
1) ≃

(
λZ

0.03

)2
(
1−

(
mχ0

1

45.6 GeV

)2
)3/2

MeV , for mχ0
1
≤ 1

2
MZ . (5.15)

The constraints on the process Z → DM DM are calculated by subtracting the decay width to

the neutrinos from the Z invisible decay width. The constraint becomes Γ(Z → χ0
1χ

0
1) < 2.0

MeV [49]. The results are shown in Sec. 6.4.

5.5 Heavy Neutralinos/Chargino Searches at the LHC

In our model, since the heavy neutralinos and the chargino are O(100) GeV, they can be pro-

duced at the LHC. As we can see in Sec. 3.4.2, the following process give the high sensitivity

when all the other SUSY particles are heavy,

pp→ χ0
2,3χ

±
1 → Zχ0

1W
±χ0

1 → llχ0
1lνχ

0
1 . (5.16)

Note that l denotes the SM leptons e, µ, τ and ν denotes the neutrinos νe, νµ, ντ . The relevant

diagram is shown in Figure 5.6. As the constraints, we reinterpret the ATLAS 8 TeV analysis

which gives the strongest constraints [50]. We analyze the future prospects at 14 TeV given by

the ATLAS [51].

As shown in Sec. 3.4.2, these ATLAS analyses assume the pure Bino-Wino model. In the

Bino-Higgsino resonant model, there are several different points compared to this pure Bino-

Wino model:

(i) There exist the Bino DM χ0
1, two Higgsino neutralinos χ0

2,3 and the Higgsino chargino χ±
1 ,

and the Bino and the neutral Higgsinos mix slightly.
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Figure 5.6: The diagrams which contribute to the neutralinos/chargino searches at the LHC are

shown.

(ii) The masses of χ0
2,3 and χ±

1 are different, mχ±
1
< mχ0

2
< mχ0

3
. The differences become

large especially when |µ| is small: e.g. at most 35 GeV for |µ| =100 GeV and 5 GeV for

|µ| = 400 GeV.

(iii) There are two processes of the heavy neutralinos decay, χ0
2,3 → Zχ0

1 and χ0
2,3 → hχ0

1,

while the chargino decays as χ±
1 → W±χ0

1 with 100%, i.e. Br(χ0
2,3 → Zχ0

1) = O(1),

Br(χ0
2,3 → hχ0

1) = O(1) and Br(χ±
1 →W±χ0

1)=1.

These differences change the LHC phenomenology. First, the cross section σ changes as follows:

(a) The production cross section of the Higgsino is about a fourth of the pure Wino case, i.e.

σ(pp → (χ0
2)Higgsino(χ

±
1 )Higgsino) ∼ 1

4σ(pp → (χ0
2)Wino(χ

±
1 )Wino) for the same mass since

the Higgsino-W couplings is about half of the Wino-W coupling.

(b) There are two processes pp → χ0
2χ

±
1 and pp → χ0

3χ
±
1 , and the sum of all the production

cross sections
∑

i σ(pp→ χ0
iχ

±
1 ) becomes roughly a half of the pure Wino case.

(c) The cross section changes by the mass differences of mχ±
1
,mχ0

2
,mχ0

3
especially for small

|µ|: for example, σ(pp → χ0
2χ

±
1 ) > σ(pp → χ0

3χ
±
1 ) and σ(pp → χ0

2χ
±
1 )|mχ0

2
=m

χ±
1

> σ(pp →

χ0
2χ

±
1 )|mχ0

2
>m

χ±
1

for the same mχ±
1
and the same couplings.

(d) The branching ratio with Br(χ0
2,3 → Zχ0

1) ≤ 1 decreases the relevant cross sections for the

process (5.16).

In addition, the acceptance A (the efficiency of the cut, see Eq. (5.18)) also changes:

(e) The acceptance depends on the masses not only mχ±
1
,mχ0

2
,mχ0

3
but also mχ0

1
, i.e. in

the two parameter points which give the same cross section but the different masses, the

acceptances are not the same.
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(f) The acceptance changes by the mass differences of mχ±
1
,mχ0

2
,mχ0

3
especially for small |µ|:

for example A|m
χ0
2
=m

χ±
1

̸= A|m
χ0
2
>m

χ±
1

for the same mχ±
1
and the same couplings.

(g) The acceptances of pp → χ0
2χ

±
1 and pp → χ0

3χ
±
1 are different especially for small |µ| since

the masses are different.

The differences (c), (f) and (g) can be seen only in the small |µ| region since the mass differences

(difference (ii)) can be neglected in the large |µ| region. However, even in the large |µ| region,
the rescale of the ATLAS results by the cross section gives wrong results due to the other

differences (a), (b), (d) and (e). Thus, we can not apply the ATLAS results directly and the

reinterpretations are necessary. In order to investigate the LHC analysis, we need to perform

the simulations.

In the ATLAS analysis [50,51], several signal regions (SRs) are defined by various kinemat-

ical cuts. The expected numbers of events for each SR are simulated in the SM. In the 8 TeV

analysis [50], the observed numbers and these expected SM numbers are compared and the con-

straints are set on the numbers of events which are caused by the additional non-SM processes.

For the 14 TeV prospects [51], the expected exclusion/discovery limits on the numbers of the

non-SM process events are estimated. Thus, in order to reinterpret the ATLAS analysis, we

simulate and obtain the expected numbers of events in the Bino-Higgsino resonant model and

compare these numbers with the numbers of the ATLAS constraints and the prospects.

We investigate the process (5.16). Then the expected number of events for the SR X is

calculated as

NSRX =
∑
j=2,3

∑
χ±

σ(pp→ χ0
jχ

±
1 )× Br(χ±

1 →W±(∗)χ0
1 → lνχ0

1)× Br(χ0
j → Z(∗)χ0

1 → llχ0
1)

×ASRX ×
∫

Ldt , (5.17)

where
∫
Ldt denotes the integrated luminosity. ASRX is the acceptance and defined by

ASRX =
# of events which pass the cuts of SR-X

# of generated events in pp→ χ0
jχ

±
j →W±(∗)χ0

1Z
(∗)χ0

1 → lνχ0
1llχ

0
1

. (5.18)

Here, we consider only the leptonic decays of the W boson and the Z boson for simplicity since

three leptons are needed in each events as we see in the definition of the SR X (see Sec. 5.5.1

and 5.5.2). The branching ratios are given by (when kinematically allowed)

Br(χ±
1 →W±χ0

1 → lνχ0
1) = Br(χ±

1 →W±χ0
1)× Br(W± → lν) , (5.19)

Br(χ0
j → Zχ0

1 → llχ0
1) = Br(χ0

j → Zχ0
1)× Br(Z → ll) . (5.20)

Note that Br(χ±
1 →W±χ0

1) = 1. See also Sec. 4.5 for the branching ratio of the neutralinos and

Appendix A for those of the W,Z bosons.

We also include other all possible processes like pp→ χ0
2χ

0
3, χ

+
1 χ

−
1 in the 8 TeV analysis for

sample points shown in Sec. 6.5.1. Note that the cross sections with the conditions that the
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final state contains more than two leptons, i.e. σ(pp → χχ → X) where X includes more than

two leptons, for these processes are at most 10% of those of the process (5.16). However, since

the O(10)% differences are important in the 8 TeV case as shown in Sec. 6.5.1, we include and

simulate their effects. In 14 TeV case, since O(10)% differences do not change the result much

as shown in Sec. 6.5.2, we do not include these processes due to the limitation of the machine

power.

In the numerical calculations, we generate the events with MadGraph5 aMC@NLO 2.2.3 [97]

in combination with PYTHIA 6.4 [98] at the leading order (LO). Delphes 3 [99] is used to simulate

the detector effects. Then, the acceptance is calculated by applying the cuts. We calculate the

cross section at the next-leading order (NLO) by Prospino 2.1 [100,101] with CTEQ6L1 parton

distribution functions [102]. We show the detailed analysis of 8 TeV and 14 TeV in Sec. 5.5.1

and 5.5.2 respectively.

5.5.1 8TeV

In the 8 TeV analysis [50], many SRs are considered depending on the target model. Among

them, we consider the SR0τa, which is sensitive to the process (5.16). The SR0τa is composed

of 20 disjoint bins, SR0τa1–SR0τa20 defined by different kinematical cuts. In these SRs, the

following cuts are applied [50]. First, the candidates for the lepton and the jets are selected with

the condition for the pseudorapidity η, azimuthal angle ϕ and the transverse momentum pT . The

electron, muon and hadronic decaying tau candidates are required as |η| < 2.47, 2.5, 2.47 and

pT > 10 GeV respectively. The jets candidates reconstructed with the anti-kt algorithm [103]

with ∆R =
√
(δϕ)2 + (δη)2 = 0.4 are required as |η| < 2.5 and pT > 20 GeV. Here, the

jets generated by the bottom quark are identified as bottom-tagged jet with 80% and the jets

generated by the light quarks are miss-identified with 4%. The missing energy Emiss
T is calculated

by the sum of pT of all candidates and calorimeters. In order to remove double counting of the

leptons and jets, the following cuts are performed: discard the smaller pT electron if two electrons

exist within ∆R < 0.1, discard the jet which exists within ∆R < 0.2 from an electron, discard

the hadronic decaying tau which exists within ∆R < 0.2 from an electron or a muon, discard

the electron (muon) which exists within ∆R < 0.4 from a jet, discard the jet which exists within

∆R < 0.2 from a tau. Then the events are selected as follows:

• Exactly three isolated leptons with no taus are required.

• At least one pair of same flavor opposite sign (SFOS) leptons should exist. Among the

SOFS pairs, the SOFS mass which is closest to the Z boson mass should be in the range

defined in each SR, for example mSFOS = 60–81.2 GeV for SR0τa9–12 and mSFOS = 81.2–

101.2 GeV for SR0τa13–16 (see Table 5.3).

• Events including the b-tagged jets are vetoed.

• The events are further divided into four bins depending on the missing transverse energy
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Emiss
T and the transverse mass mT , where mT is calculated with missing energy and the

lepton which does not form the SFOS lepton pair whose mass is closest to the Z boson

mass (see Table 5.3). For example Emiss
T ≥90 GeV and mT =0–110 GeV for SR0τa14,

Emiss
T =50–135 GeV and mT ≥110 GeV for SR0τa15 and Emiss

T ≥135 GeV and mT =≥110

GeV for SR0τa16.

• In some SRs (SR0τa5, SR0τa13, SR0τa19), additional requirement on the trilepton mass,

|m3l −MZ | > 10 GeV, is applied (see Table 5.3).

Note that m2
T = 2plTET (1− cos∆ϕ) where ∆ϕ is the angle between the lepton and the missing

transverse energy.

SR mSFOS mT Emiss
T 3l mass

SR0τa1 12–40 0–80 50–90 no

SR0τa2 12–40 0–80 > 90 no

SR0τa3 12–40 > 80 50–75 no

SR0τa4 12–40 > 80 > 75 no

SR0τa5 40–60 0–80 50–75 yes

SR0τa6 40–60 0–80 > 75 no

SR0τa7 40–60 > 80 50–135 no

SR0τa8 40–60 > 80 > 135 no

SR0τa9 60–81.2 0–80 50–75 yes

SR0τa10 60–81.2 > 80 50–75 no

SR0τa11 60–81.2 0–110 > 75 no

SR0τa12 60–81.2 > 110 > 75 no

SR0τa13 81.2–101.2 0–110 50–90 yes

SR0τa14 81.2–101.2 0–110 > 90 no

SR0τa15 81.2–101.2 > 110 50–135 no

SR0τa16 81.2–101.2 > 110 > 135 no

SR0τa17 > 101.2 0–180 50–210 no

SR0τa18 > 101.2 > 180 50–210 no

SR0τa19 > 101.2 0–120 > 210 no

SR0τa20 > 101.2 > 120 > 210 no

Table 5.3: The definition of the SRs for the 8 TeV analysis are shown. In all SRs, the requirement

of three isolated leptons with no taus and the veto of including the b-tagged jets are also imposed.

The all values are shown in units of GeV.

To analyze these cuts, we use the CheckMATE program [104] in the 8 TeV analysis.7 The

validation of our analysis is shown in Appendix E.1. We simulate this analysis in all the param-

7CheckMATE uses Delphes 3 [99], FastJet [105,106], and the anti-kT jet algorithm [103].
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eter space. However, since the machine power is limited and not enough, we simulate as follows.

We calculate the cross sections and the acceptance for 100 ≤ |µ| ≤ 400 GeV since for |µ| > 400

GeV the constraints are not sensitive due to the small cross sections. We take 31 sample points

for |µ| per 10 GeV, i.e. |µ| = 100, 110, 120, · · · , 400 GeV. For each |µ|, the sample points for

other parameters are taken as follows. Cross sections : For each |µ| ≤ 200 GeV, we take

6× 2× 3 = 36 sample points as the combination of M1 = 30, 40, · · · , 80 GeV, sign(µ) = ± and

tanβ = 2, 5, 50. For each |µ| ≥ 200 GeV, we take 2 sample points as (M1, sign(µ), tanβ) = (80

GeV,+,2) and (30 GeV,+,50). From these sample points, for each |µ| ,we can get two dimen-

sional data sets {(mχ0
j
−mχ±

1
, σ)} where j = 2, 3.8 Note that mχ±

1
= |µ|. Next, we calculate

the cross sections normalized by the couplings, σ′ = σ/(|(On)j2|2 + |(On)j3|2), and the data

sets {(mχ0
j
− mχ±

1
, σ′)} are obtained (See Figure 5.7.). We make the interpolated function of

σ′ as the function of mχ0
j
− mχ±

1
for each |µ|. Then, the cross section σ′ for the points with

M1 = 30, 35, 40, · · · , 80 GeV, sign(µ) = ± and tanβ = 2, 3, 4, · · · , 50 are calculated with the

interpolated function. Then the cross section is obtained by σ = σ′ × (|(On)j2|2 + |(On)j3|2).
Since the normalized cross sections σ′ depend almost only on the masses mχ0

2,3
,mχ±

1
as we see in

Sec. 4.5, this approximation give good accuracy, at most ∼ 5% errors for small |µ|. Acceptance:

we calculate the acceptances with changing the masses mχ0
1
,mχ0

2,3
while keeping the couplings

as the fixed values of M1 = 50 GeV, µ = 200 GeV, tanβ=5. This is because the acceptances

depend almost on the masses as discussed in Sec. 4.5 and the simulation needs much machine

power and times. We have checked that actually the differences of the couplings in our cur-

rent setup does not change the acceptance.9 Thus, we calculate the acceptances with changing

mχ0
1
,mχ0

2,3
. The sample points are taken as mχ0

j
−mχ±

1
= 0, 10, · · · ,max(mχ0

j
−mχ±

1
) GeV and

mχ0
1
= 30, 35, 40, · · · , 80 GeV. We make the interpolation function of acceptance as the function

of (mχ0
j
−mχ±

1
,mχ0

1
). Then, the acceptances for the points with M1 = 30, 35, 40, · · · , 80 GeV,

sign(µ) = ± and tanβ = 2, 3, 4, · · · , 50 are calculated with the interpolated function. Finally,

the number of events are calculated by Eq. (5.17). The results are shown in Sec. 6.5.1.

5.5.2 14TeV

Here, we investigate the future prospects of the LHC at 14 TeV. In the ATLAS analysis [51],

there are three (four) SRs for 300 (3000) fb−1, denoted as SRA–SRC (SRA–SRD). The cuts are

8The above sample points (M1, sign(µ), tanβ) = (80 GeV,+, 2), (30 GeV,+,50) are taken because the calcula-

tions of these points give the smallest value of mχ0
2
−m

χ±
1

and largest value of mχ0
3
−m

χ±
1

for given |µ|.
9We have calculated the acceptance with randomly changing the couplings while the masses are fixed. We

have changed the couplings within the values which can be realized in our setup. We have checked with 4 × 10

sample points where 4 sample points for the fixed masses and 10 sample points for changing the couplings are

taken into account. As a result, the acceptances for each fixed mass point agree within the statistical uncertainties

of the Monte-Carlo events. Note that although the acceptance does not change when we change the couplings

within the values realized in our setup, if we take the extreme value of the ratio λW
L11/λ

W
R11 such as ≪ −1 or ≫ 1,

the acceptances changes a lot (in our case, λW
L11/λ

W
R11 ∼ O(0.1)). Thus, the chirality of the chargino decay is

important and we should include the spin correlations for the decays properly (we did in our simulation).
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Figure 5.7: The cross sections normalized by the couplings for the heavy neutralinos/chargino

productions are shown. The cross sections is normalized by the couplings, σ′ = σ/(|(On)j2|2 +
|(On)j3|2). Each set of the alined points denotes the results with fixing the value of |µ|. Here,

for simplicity we show the results with |µ| = 100, 110, · · · , 190 GeV.

similar with the 8 TeV analysis. First, the candidates for the electrons (muons) are selected

as |η| < 2.47(2.4) and pT > 10 GeV. The jets reconstructed with the anti-kt algorithm with

∆R =
√

(δϕ)2 + (δη)2 = 0.4 are required as |η| < 2.5 and pT > 20 GeV. The bottom tagging

efficiency is 80% and the miss-identification rate is 1% for the light quarks. In order to remove

double counting of the leptons and jets, the following cuts are imposed: discard the jet which

exists within ∆R < 0.2 from an electron, discard the leptons which form SFOS massmSFOS < 12

GeV, discard the lepton if it is not isolated i.e. the sum of the transverse momentum of the

track within ∆R < 0.3 around the lepton should be < 15 %, discard the two leptons which exist

within ∆R < 0.1 from each other, discard the lepton which exists within ∆R < 0.4 from a jet.

Then the following cuts are applied.

• There should be exactly three leptons in each event, and at least one SFOS lepton pair is

required to have invariant mass |mSFOS −MZ | < 10 GeV.

• Events with b-tagged jets are discarded.

• The pT of three leptons should be larger than 50 GeV.

• Then, the events are divided into SRs depending on the missing transverse energy Emiss
T

and the transverse mass mT , where mT is calculated with the missing transverse energy

and the lepton which does not form the SFOS lepton pair whose mass is closest to the Z

boson mass (see Table. 5.4).
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We analyze these cuts by our original code. The validation of our analysis is shown in Ap-

pendix E.2.

cut SRA SRB SRC SRD

mSFOS 81.2–101.2

# of b-tagged jets 0

lepton pT > 50

Emiss
T > 250 > 300 > 400 > 500

mT > 150 > 200 > 200 > 200

Table 5.4: The definition of the SRs for the 14 TeV analysis are shown. The lepton pT cut is

imposed on all three leptons. The all values except the number (#) of b-tagged jets are shown

in units of GeV. SRD is considered only in 3000 fb−1 analysis.

In the ATLAS analysis [51], the expected 95% exclusion limit is calculated by combining the

disjoint SRs. The disjoint SRs (we denote this as SR dis. X) are defined in order to make each

SR independent:

SR dis. D = SR D ,

SR dis. C = SR C− SR D ,

SR dis. B = SR B− SR C , (5.21)

SR dis. A = SR A− SR B .

Here subtraction is in the sense of the set theory. In our analysis, we simulate the expected

exclusion limit as follows. (i) For each disjoint SR X, we calculate the expected upper limit on

the number of non-SM events NX from the number of the background events given in Ref. [51].

(ii) At each model point, the expected number of the signal events in each SR is calculated. (iii)

The model point is excluded if and only if it is excluded in at least one of the SRs. First, we

calculate (i). In Ref. [51], the Monte-Carlo simulation data of the number of the SM background

events for SR X, NX
b , is given as

Ndis.A
b = 163 , Ndis.B

b = 47.9 , Ndis.C
b = 17.4 , Ndis.D

b = 10.3 , (5.22)

for 3000 fb−1 and

NdA
b = 6.51 , NdB

b = 3.54 , NdC
b = 2.35 , (5.23)

for 300 fb−1 . In addition, the error of these numbers, δXb , are estimated as δXb = NX
b × 0.3.

With the number of the non-SM signal events of the SR X, NX , the significance-like variable
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ZX
N can be defined as [107]

ZX
N = Φ−1(1− pX), Φ(z) =

1√
2π

∫ z

−∞
e−t2/2dt ,

pX =

∫ ∞

0

Γ(NX + b, 0, b)

Γ(NX + b)

1√
2πδXb

e
− (b−NX

b )2

2(δX
b

)2 db , (5.24)

where Γ(a, b) =
∫∞
b ta−1e−tdt is the incomplete gamma function and Γ(a) = Γ(a, 0), Γ(a, b, c) =

Γ(a, b)− Γ(a, c). From this expression (5.24), the expected number NX which results the given

significance ZX
N can be obtained. We denote the number as NX(ZX

N = z) for the given significant

z. The expected exclusion limit on NX at 95% CL is derived by solving Eq. (5.24) with ZX
N =

1.64 in Ref. [51]. Thus, we calculate these numbers. The results become as

Ndis.A(Zdis.A
N = 1.64) = 21.7 , (5.25)

Ndis.B(Zdis.B
N = 1.64) = 12.2 , (5.26)

Ndis.C(Zdis.C
N = 1.64) = 7.70 , (5.27)

Ndis.D(Zdis.D
N = 1.64) = 6.12 , (5.28)

for 3000 fb−1 and

Ndis.A(Zdis.A
N = 1.64) = 4.92 , (5.29)

Ndis.B(Zdis.B
N = 1.64) = 3.81 , (5.30)

Ndis.C(Zdis.C
N = 1.64) = 3.23 , (5.31)

for 300 fb−1. Using these number, we set on the expected exclusion limit with the calculation

(ii), (iii).

We calculate the cross sections and the acceptance for 100 ≤ |µ| ≤ 1000 GeV. We take 91

sample points for |µ| per 10 GeV, i.e. |µ| = 100, 110, 120, · · · , 1000 GeV. For each |µ|, the sample

points for other parameters are taken as follows. Cross sections : We take 2 sample points as

(M1, sign(µ), tanβ) = (80 GeV,+,2) and (30 GeV,+,50). From these sample points, in the same

way written in Sec. 5.5.1, we can get the data sets {(mχ0
j
−mχ±

1
, σ′)} where σ′ = σ/(|(On)j2|2+

|(On)j3|2). Then, interpolating σ′ as the function of mχ0
j
− mχ±

1
, the cross section σ′ for the

points with M1 = 30, 35, 40, · · · , 80 GeV, sign(µ) = ± and tanβ = 2, 3, 4, · · · , 50 are calculated.

Then the cross section is obtained by σ = σ′× (|(On)j2|2+ |(On)j3|2). Acceptance: we calculate

the acceptances changing the masses mχ0
1
,mχ0

2,3
while keeping the couplings as the fixed values

of M1 = 50 GeV, µ = 200 GeV, tanβ=5. This is the same reason written in Sec. 5.5.1. We have

checked that actually the differences of the couplings in our current setup does not change the

acceptance.10 The sample points are taken as mχ0
j
−mχ±

1
= 0, 10, · · · ,max(mχ0

j
−mχ±

1
) GeV and

10We have checked in the same way written in Sec. 5.5.1 with 4×8 sample points where 4 sample points for the

fixed masses and 8 sample points for changing the couplings are taken into account. As a result, the acceptances

for each fixed mass point agree within the statistical uncertainties of the Monte-Carlo events.
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mχ0
1
= 30, 35, 40, · · · , 80 GeV for each |µ| ≤ 300 GeV and mχ0

1
= 30, 40, 50, · · · , 80 GeV for each

|µ| > 300 GeV. Interpolating the acceptance as the function of (mχ0
j
−mχ±

1
,mχ0

1
), the acceptances

for the points with M1 = 30, 35, 40, · · · , 80 GeV, sign(µ) = ± and tanβ = 2, 3, 4, · · · , 50 are

calculated. Finally, the number of events are calculated by Eq. (5.17). Here, we do not consider

the region of mχ0
j
−mχ0

1
< mZ , for simplicity. The results are shown in Sec. 6.5.2.

5.6 Mono-photon/jet Searches and Indirect Detections

We analyze the mono-photon/jet process and the indirect detections. Here, we briefly discuss

the calculations.

5.6.1 Mono-photon and Mono-jet

The mono-photon search is performed by the LEP [81]. In our model, only the process e+e− →
Z → χ0

1χ
0
1γ contributes to the mono-photon process. To compare the results from the LEP [81],

we calculate the cross section of this process at
√
s = 205 GeV. In the calculation, we use

the MadGraph5 aMC@NLO 2.2.3 [97]. As the constraints, we use the results for the unknown

process e+e− → Xγ which give σ(e+e− → Xγ) ≲ 0.05–0.2 pb depending on the missing energy

60–200 GeV (see Figure 3.4). The results are shown in Sec. 6.6.

The mono-jet search is performed by the LHC [84]. The constraints from the CMS [84] are

translated to the generic vector mediator model in Ref. [80]. In our model, only the process

pp → Z → χ0
1χ

0
1j contributes. In Sec. 3.4.1, we reinterpret the constraints on the Z boson

mediated process. With rough estimation, |λZ | < 0.2–0.6 is obtained. Although this estimation

is rough, our model seems not to be sensitive to this constraint (see Eq. (4.23)). We calculate

λZ in all points and compare with the constraint. The results are shown in Sec. 6.6.

5.6.2 Cosmic Rays

As we can see in Sec. 3.5.1, the DM can annihilate in the present Universe. In our model, the

annihilation occurs in only two ways: χ0
1χ

0
1 → h →SMs and χ0

1χ
0
1 → Z → SMs. However,

these process are mainly the p-wave process, i.e. the cross section is proportional to the velocity

v (see Eq. (5.2) and (5.3)). Only the terms Eq. (D.11) which are neglected in Eq. (5.3) and

proportional to the SM fermion masses mf give the s-wave process, i.e. the cross section is

not proportional to the velocity. Since the annihilation in the present Universe occurs in the

limit v → 0, only the process which is the Z boson exchange process and is proportional to the

SM fermion masses contribute to this phenomenology. Especially, since the dominant masses

of the SM fermions which the Z boson can decay to are mb and mτ , we consider the process
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χ0
1χ

0
1 → Z → bb̄, τ−τ+. The annihilation cross section is calculated as

⟨σv⟩b |v→0 ≡
⟨
σv(χ0

1χ
0
1 → Z → bb̄)

⟩
|v→0

=
1

8π

e2

s22W
(λZ)2

3m2
b

m4
Z

≃ 2.5× 10−26 · (λZ)2 cm3s−1 , (5.32)

⟨σv⟩τ |v→0 ≡
⟨
σv(χ0

1χ
0
1 → Z → τ+τ−)

⟩
|v→0

=
1

8π

e2

s22W
(λZ)2

m2
τ

m4
Z

≃ 2.9× 10−27 · (λZ)2 cm3s−1 . (5.33)

We use the mass of the tau lepton mτ = 1.777GeV [63] and the running mass for the bottom

quark m̄M̄S
b ≃ 3GeV [108].11 The constraints are given by the Fermi-LAT [85]. The constraints

are set by comparing the above annihilation cross sections and the Fermi-LAT constraints Fig-

ure 3.7 for each channel bb̄ and τ+τ−. The results are shown in Sec. 6.6.

5.6.3 DM Annihilation in the Sun

The DM annihilation in the Sun is also constrained now from the Super-Kamiokande [86] (see

Sec. 3.5.2). It is the same as the cosmic rays that only the s-wave process χ0
1χ

0
1 → Z →

bb̄, τ−τ+ contribute to this phenomenology. Thus, only the spin dependent process contributes

and the constraints are set on σ
SD(eff)
p (see Eq. (3.12)). Note that since the constraints from

the Super-Kamiokande are obtained by assuming 100% branching ratio, we need multiply the

branching ratio. Thus we calculate the following effective cross sections (σ
SD(eff)
p )b,τ = σ

SD(eff)
p ×

Br(b, τ) where Br(b, τ) ≃ ⟨σv⟩b,τ |v→0

⟨σv⟩b|v→0+⟨σv⟩τ |v→0
. Here, Br(b) ≃ 3m2

b/(3m
2
b + m2

τ ) ≃ 0.90, and

Br(τ) ≃ m2
τ/(3m

2
b +m2

τ ) ≃ 0.10. The effective cross sections multiplied these branching ratios

are compared to the constraints set by the Super-Kamiokande for each channel bb̄, τ+τ− [86]

(Figure 3.8). Note that not only the above branching ratios but also the tanh2 factors in

Eq. (3.12) are taken into account. The results are shown in Sec. 6.6.

11We have checked that the cross sections in our calculation agree with those in using micrOMEGAs [90–92]

within O(1)% for τ−τ+ channel and O(10)% for bb̄ channel.
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Chapter 6

Results

Here, we show the results of our analysis. Main results are shown in Figures 6.1–6.5. Here we

present the results in the (mχ0
1
,mχ±

1
)-planes for 2 ≤ tanβ ≤ 50. In the outer region of the

shown region, the DM becomes overabundant. In the figures, each line corresponds to each

experimental constraints/prospects as follows:

black line : relic abundance, Ωh2 = 0.120 (Sec. 6.1)

gray shaded region : excluded region by the current constraints as below

− blue dashed line : the LUX constraints

on the SI scattering cross section (Sec. 6.2)

− green dashed line : the XENON100 constraints

on the SD scattering cross section (Sec. 6.3)

− magenta dashed line : the global fit constraints

on the Higgs invisible decay (Sec. 6.4)

light yellow region : region which can be probed

by the future experiments as below

− blue solid line : the XENON 1T prospects

on the SI scattering cross section (Sec. 6.2)

− green solid line : the XENON 1T prospects

on the SD scattering cross section (Sec. 6.3)

− magenta dot-dashed line : the (HL) LHC prospects

on the Higgs invisible decay (Sec. 6.4)

− magenta solid line : the ILC prospects on the Higgs invisible decay (Sec. 6.4)

− red dotted line : the 14 TeV LHC prospects with 300 fb−1 (Sec. 6.5.2)

− red solid line : the 14 TeV LHC prospects with 3000 fb−1 (Sec. 6.5.2)

− light orange region : region which can be probed by the 14 TeV LHC

with 300 fb−1 (Sec. 6.5.2)

The blind spot, λh = 0, is also shown with a brown dotted line for µ < 0. There are no con-

straints from the Z boson invisible decay (Sec. 6.4), the LHC 8TeV analysis (Sec. 6.5.1), the

mono-photon/jet searches and the indirect searches (Sec. 6.6). In the following sections, we
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Figure 6.1: Main results of tanβ = 2 and 3, and of µ < 0 (left) and µ > 0 (right). The

explanation of the lines are written in the text.

show the results in detail.
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Figure 6.2: Results of tanβ = 4, 5 and 6. For µ < 0, the blind spot λh = 0 is shown with the

brown dotted line. Other lines are the same as Figure 6.1.

71 Chapter 6 Results



Figure 6.3: Results of tanβ = 7, 8 and 9. The same as Figure 6.1.
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Figure 6.4: Results of tanβ = 10, 15 and 20. The same as Figure 6.1.
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Figure 6.5: Results of tanβ = 30, 40 and 50. The same as Figure 6.1.
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6.1 Relic Abundance

The contours of the relic abundance with Ωh2 = 0.120 are shown with the black lines in Fig-

ures 6.1–6.5. As we can see, clearly there are the regions where the Z boson resonance or the

Higgs boson resonance occur, mχ0
1
∼MZ/2 ≃ 45.6 GeV and mχ0

1
∼ mh/2 ≃ 62.5 GeV. In these

regions, the annihilation cross sections become large as shown in Sec. 5.1, and the couplings λZ

and λh can be small. It results that the current relic abundance can be explained with the large

value of the chargino mass, mχ±
1
= |µ|. The upper bounds of the chargino mass to explain the

relic abundance are about 500 GeV for the Z resonance and 2500 GeV for the Higgs resonance.

Since the chargino and the heavy neutralinos with the masses O(100) GeV can be produced

within the LHC, the LHC searches for the heavy neutralinos/chargino become important.

In the Z resonant region, the relic abundance shows the universal behavior for all tanβ ≫ 1.

This is because the DM-DM-Z coupling λZ is almost independent of tanβ for tanβ ≫ 1, as

shown in Eq. (4.21). In this region, the coupling is about |λZ | ≳ 0.0034.

In the Higgs resonant region, the behavior of the relic abundance strongly depends on tanβ

as well as sign(µ). This is also understood in terms of the DM-DM-Higgs coupling λh (see

Eq. (4.20)). As shown in Figure 6.2, for µ < 0 and 4 ≤ tanβ ≤ 6, we can clearly see the blind

spot, λh = 0, corresponding to Eq. (4.22) which is denoted with the brown dotted line. There

are two regions corresponding to Ωh2 ≤ 0.120 above and below this line. The coupling λh has

opposite signs in the two separate regions. For µ < 0 and tanβ ≳ 7, the region of large mχ±
1

disappears because a sufficiently large |λh| can no longer be obtained there. For both µ < 0

and µ > 0 and for all tanβ, the coupling is about |λh| ≃ 0.0052 at the tip of the Higgs resonant

region. For tanβ ≳ 10, the upper bound on the chargino mass to explain the current relic

abundance is as small as mχ±
1

≲ 400 GeV for µ < 0 and mχ±
1

≲ 500–800 GeV for µ > 0. It

is the same as the Z resonance case that the LHC searches become important in these regions.

For small tanβ, however, a much larger chargino mass is allowed: for example at most mχ±
1
≲

2500 GeV for tanβ = 2 and µ > 0. Although such a heavy chargino is out of the 14 TeV LHC

reach, the direct detection can cover most of the region, as we see in Sec. 6.2.

6.2 SI Scattering

The direct detection constraints/prospects for the SI scattering cross section can cover large

region. The constraints from the LUX [40] and the future prospects of XENON 1T [41] are

shown in the blue dashed and solid lines respectively in Figures 6.1–6.5. Since the SI scattering

cross section depends only on the mass of the DM, mχ0
1
, and the coupling λh (see also Sec. 5.2),

the results are understood in terms of the coupling λh.

As shown in the figures, for µ > 0, the region with mχ±
1
≲ 120–400 GeV (150–400 GeV) are

already excluded by the LUX for the Z resonance and the Higgs resonance respectively. The

XENON 1T can cover most of the viable parameter space for µ > 0, except for the tip of the

Higgs resonance and the tip of the Z resonance for tanβ ≳ 30. Here, the couplings become as
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λh ≃ 0.0052 (see Sec. 6.1) and the cross section becomes σSIN ≃ 1.4 × 10−47cm2. Note that the

SI scattering cross sections in these regions are just below the sensitivity shown in Ref. [41].

Therefore, it is expected that future experiments with higher sensitivity [109] can cover the

whole parameter region for µ > 0.

For µ < 0, because of the blind spot, the constraint and the sensitivity are significantly

reduced. As we can see in Figure 6.2, for µ < 0 and 4 ≤ tanβ ≤ 6, the blind spot can not be

probed by the XENON 1T while the Higgs resonant region can still be mostly covered. This is

because both of the relic abundance and the SI scattering cross section are determined by the

same coupling λh. However, in the Z resonant region, the relic abundance and the SI scattering

cross section are determined by the different couplings, λZ and λh, respectively. This results in a

large parameter region which gives the correct relic abundance but very small SI scattering cross

section, as can be seen in Figures. 6.3–6.5. Thus, the Z resonant region in the blind spot can

not be probed by the SI scattering. To explore these region, we should consider the experiments

which do not depend on λh such as the SD scattering (Sec. 6.3) and the LHC searches (Sec. 6.5).

6.3 SD scattering

Next, let us show the direct detection constraints/prospects for the SD scattering cross section.

The constraints from the XENON100 [42] and the future prospects of XENON 1T [43] are shown

in the green dashed and solid lines respectively in Figures 6.1–6.5.

As shown in Sec. 5.3, the SD scattering cross section depends only on the mass of the DM,

mχ0
1
, and the coupling λZ . Since the coupling λZ is almost independent of tanβ as shown in

Eq. (4.21), the results are similar in all tanβ. The constraints and the future prospects are less

sensitive than the SI scattering for µ > 0. However, in the blind spot region with small mχ±
1

for µ < 0, these gives strongest constraints mχ±
1
≲ 100–140 GeV. The prospects are also more

sensitive than the SI scattering and the Higgs invisible decay: mχ±
1
≲ 280–350 GeV. These are

understood by the blind spot behavior as discussed in Sec. 6.2. Since there is the blind spot,

these region can not be probed by the SI scattering and the Higgs invisible decay. On the other

hand, since the SD scattering depends on λZ and not on λh, the constraints and prospects are

not suppressed with λh ∼ 0. Thus, although the constraints and the prospects are weak for

µ > 0, the searches for the SD scattering plays a complementary role to probe the blind spot

for µ < 0.

6.4 Invisible Decay

Here, we show the constraints and the future prospects by the searches for the Higgs boson

invisible decays. The constraints from the global fit Br(h→ invisible) < 0.19 [45], and the future

prospects of the (HL) LHC Br(h → invisible) < 0.062 [46] and the ILC Br(h → invisible) <

0.004 [48] are shown with magenta dashed, dot-dashed and solid lines respectively in Figures 6.1–

6.3. SD SCATTERING 76



6.5.

As we can see in the figures, a large parameter space is covered by the Higgs invisible decay

search. For µ > 0, in the part of the Z resonant region, the constraints from the global fits give

the strongest constraints. In addition, the whole Z resonant region will be covered by the ILC

even though the XENON 1T searches for the SI scattering can not probe. The tip of the Higgs

resonant can not be probed since the decay width for mχ0
1
∼ mh/2 is suppressed kinematically

(see Eq. (5.12)).

For µ < 0, the blind spots are again clearly seen. As is the same case with the SI scattering,

the Higgs boson invisible decays can not probe the blind spot as clearly shown in Figure 6.2.

Thus, the combination of the searches for the SD scattering and the heavy neutralinos/chargino

at the LHC is necessary.

The constraints from the Z boson invisible decays result no constraints. This is because

simply the constraints from the LEP [49] are weak in the present scenario. We can calculate

from Eq. (5.15) that the Z boson decay width to the DMs is Γ(Z → χ0
1χ

0
1) ≃ 0.43× (λZ/0.03)2

MeV for mχ0
1
= 30 GeV and Γ(Z → χ0

1χ
0
1) ≃ 0.11 × (λZ/0.03)2 MeV for mχ0

1
= 40 GeV.

Although λZ can be at most |λZ | = 0.078 in our setup (see Eq. (4.23)), this value is obtained

at mχ0
1
≃ 80 GeV and it can not be satisfied in the present case mχ0

1
< MZ/2 = 45.6 GeV. In

the mass range where the Z boson invisible decay occurs, the maximal value of |λZ | becomes

smaller. For example, for mχ0
1
≃ 30 GeV, |λZ | can be maximum |λZ | = 0.063 at M1 = 35

GeV, µ = −100 GeV, tanβ = 20 which leads to Γ(Z → χ0
1χ

0
1) = 1.9 MeV. For mχ0

1
≃ 40

GeV, |λZ | can be maximum |λZ | = 0.067 at M1 = 45 GeV, µ = −100 GeV, tanβ = 10 which

leads to Γ(Z → χ0
1χ

0
1) = 0.53 MeV. The larger |µ| becomes, the smaller |λZ | becomes as shown

in Figure 4.2. Note that for mχ0
1
< 45.6 GeV and |µ| = 110 GeV, the maximal value of |λZ |

becomes |λZ | = 0.057 at M1 = 50 GeV, tanβ = 10. Thus, Γ(Z → χ0
1χ

0
1) in our model is always

smaller than the LEP constraint Γ(Z → χ0
1χ

0
1) < 2 MeV.

6.5 Heavy Neutralinos/Chargino Searches at the LHC

Here, we show the results of the heavy neutralinos/chargino searches at the LHC. There are no

constrains from the 8 TeV analysis while the future prospects of the 14 TeV analysis cover wider

range. We see this in Sec. 6.5.1 and 6.5.2 respectively.

6.5.1 8TeV

The heavy neutralinos/chargino searches at the LHC 8 TeV with the ATLAS analysis give no

constraints on the Bino-Higgsino resonant model. Here, we check this results in detail.

In order to investigate carefully, we show the detailed results in Table 6.1 for the following
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12 model points

(mχ±
1
,mχ1) = (200, 50), (200, 25), (150, 37.5) GeV ,

tanβ = 5, 40 , sign(µ) = ± . (6.1)

In this table, the masses of heavy neutralinos mχ0
2,3
, the NLO production cross sections∑

χ±
1
σ(pp → χ±

1 χ
0
j ), the branching ratio of the WZ mode Br(WZ) = Br(χ0

j → Zχ0
1),

1 the

acceptance ASR0τa16 of SR0τa16 and the expected number of signal events NSR0τa16 in SR0τa16

are shown. Note that SR0τa16 gives the strongest constraints in our set up. For comparison,

we also show the case of pure Bino-Wino model (pBW) with Br(χ0
2 → Zχ0

1) = 1. As we can see,

the acceptance in the present scenario is slightly better than the pure Bino-Wino case. Note

that larger mχ0
2,3

lead to larger acceptance. On the other hand, the production cross section,∑
j=2,3 σ(pp → χ±

1 χ
0
j ), is about a half of the pure Bino-Wino case as we see in Sec. 5.5. The

branching fraction of theWZ mode is also smaller for (mχ±
1
,mχ0

1
) = (200, 50) and (200,25) GeV.

As a result, the expected number of events in SR0τa16, NSR0τa16, becomes less than about 40%

and 65% of the pure Bino-Wino case for (mχ±
1
,mχ0

1
) = (200, 50/25) GeV and (150, 37.5) GeV,

respectively.

So far, we have considered only the process (5.16). In order to check the contributions from

the other channels, we have generated all the possible processes: all the possible pair production

processes, pp → χ0
iχ

0
j , χ

0
iχ

±
1 , χ

+
1 χ

−
1 , (i, j = 1, 2, 3), the decay into the Higgs boson, χ0

2,3 → hχ0
1,

and the hadronic decays of the W boson and the Z boson. The expected number of events in

SR0τa16 including all these processes, NAll
SR0τa16, are shown in the last column of Table 6.1.2 They

are at most about 15% larger than NSR0τa16. We have checked that the additional contributions

mainly come from the production channel pp→ χ0
2χ

0
3.

In Table 6.2, we show the expected number of events in SR0τa14, 15, and 16. Here, we have

included all the processes discussed above. We compare them with the upper limit constraints

at 95% CL on the number of non-SM events for each signal region, N95
obs [50]. In the other signal

regions, i.e. SR0τa1–13 and 17–20, the signal events are less than about 10% and 25% of the

upper limits for (mχ±
1
,mχ0

1
) = (200, 50/25) GeV and (150, 37.5) GeV, respectively. We find

that none of these model points are excluded. In order to check the difference of the simulation

programs, we have also simulated with Herwig++ 2.7 [110] in all the parameter points written

above. The results by using Herwig++ agree with the above results by using MadGraph and

PYTHIA within the statistical uncertainties of the Monte-Carlo events.

Note that as shown in Appendix E.1 our results for the pure Bino-Wino model are about

20% weaker than those of the ATLAS. It may be due to the differences of the hadronic tau

identification efficiencies since it is considered difficult to simulate the identification in the fast

simulations and the latest efficiency is not available in Ref. [50]. Anyway, we should consider

the effects of the O(10)% uncertainties. If we change the result with O(10)%, the result for

1Note that Br(χ±
1 →W±χ0

1) = 1.
2We have generated 3,000,000 events for each model point to calculate NAll

SR0τa16.
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mχ±
1
,

mχ1

tβ, ϵµ χ0
j mχ0

j
σ(χ±

1 χ
0
j ) Br(WZ) ASR0τa16 × 103 NSR0τa16 NAll

SR0τa16

5, + χ0
2 202.3 192 0.958 16.9 ± 0.2 2.08 ± 0.02

χ0
3 208.8 171 0.328 18.7 ± 0.2 0.70 ± 0.01 2.91 ± 0.10

5, − χ0
2 203.9 185 0.697 18.0 ± 0.2 1.55 ± 0.02

χ0
3 205.3 183 0.819 18.2 ± 0.2 1.82 ± 0.02 3.75 ± 0.12

200, 40, + χ0
2 203.6 188 0.919 17.7 ± 0.2 2.05 ± 0.02

50 χ0
3 206.7 177 0.490 18.1 ± 0.2 1.05 ± 0.01 3.25 ± 0.11

40, − χ0
2 204.0 186 0.902 18.0 ± 0.2 2.01 ± 0.02

χ0
3 206.0 179 0.538 18.5 ± 0.2 1.19 ± 0.01 3.53 ± 0.12

pBW χ0
2 200 788 1.0 15.5 ± 0.2 8.15 ± 0.09

5, + χ0
2 202.6 191 0.902 22.4± 0.2 2.58 ± 0.02

χ0
3 207.6 176 0.405 24.1± 0.2 1.14 ± 0.01 3.84 ± 0.12

5, − χ0
2 203.3 188 0.761 23.3 ± 0.2 2.23 ± 0.02

χ0
3 205.9 182 0.657 23.7 ± 0.2 1.89 ± 0.02 4.49 ± 0.13

200, 40, + χ0
2 204.0 186 0.822 23.1 ± 0.2 2.35 ± 0.02

25 χ0
3 205.7 180 0.572 23.4 ± 0.2 1.61 ± 0.01 4.18 ± 0.13

40, − χ0
2 204.4 186 0.792 22.8 ± 0.2 2.24 ± 0.02

χ0
3 205.2 182 0.618 23.1 ± 0.2 1.74 ± 0.02 4.47 ± 0.13

pBW χ0
2 200 788 1.0 20.3 ± 0.1 10.7 ± 0.1

5, + χ0
2 153.0 575 1.0 2.76 ± 0.07 1.06 ± 0.03

χ0
3 161.7 474 1.0 3.67 ± 0.09 1.16 ± 0.03 2.41 ± 0.16

5, − χ0
2 155.1 545 1.0 3.06 ± 0.08 1.11 ± 0.03

χ0
3 157.0 536 1.0 3.15 ± 0.08 1.13 ± 0.03 2.46 ± 0.17

150, 40, + χ0
2 154.7 558 1.0 3.08 ± 0.08 1.15 ± 0.03

37.5 χ0
3 158.8 503 1.0 3.42 ± 0.08 1.15 ± 0.03 2.68 ± 0.17

40, − χ0
2 155.2 553 1.0 3.23 ± 0.08 1.19 ± 0.03

χ0
3 158.0 513 1.0 3.49 ± 0.08 1.19 ± 0.03 2.43 ± 0.16

pBW χ0
2 150 2427 1.0 2.26 ± 0.07 3.66 ± 0.11

Table 6.1: The detailed results of the 8 TeV analysis are shown. The masses of heavy neutralinos

mχ0
2,3
, the NLO production cross sections σ(χ±

1 χ
0
j ) =

∑
χ±
1
σNLO(pp → χ±

1 χ
0
j ), the branching

ratio of the WZ mode Br(WZ) = Br(χ0
j → Zχ0

1), the acceptance ASR0τa16 of SR0τa16, and

the expected number of signal events NSR0τa16 in SR0τa16 are shown. For comparison, we also

show the results for the pure Bino-Wino model (pBW). The errors of ASR0τa16 are the statistical

errors of Monte-Carlo events only. NSR0τa16 is calculated by using Eq. (5.17). NAll
SR0τa16 is the

expected number including all the production and decay channels. The masses and the cross

sections are in units of [GeV] and [fb], respectively.

79 Chapter 6 Results



(mχ±
1
,mχ0

1
) (200, 50) [GeV] (200, 25) [GeV] (150, 37.5) [GeV]

tanβ 5 5 40 40 5 5 40 40 5 5 40 40

sign(µ) + − + − + − + − + − + − N95
obs [50]

NAll
SR0τa14 7.2 7.7 7.9 8.1 7.7 8.2 8.2 8.1 21.9 22.9 22.2 22.4 65

NAll
SR0τa15 6.9 8.2 7.5 7.9 7.2 7.8 7.4 8.0 19.2 21.0 21.2 21.0 27.6

NAll
SR0τa16 2.9 3.8 3.3 3.5 3.8 4.5 4.2 4.5 2.4 2.5 2.7 2.4 5.2

Table 6.2: The expected numbers of events including all processes for the 8 TeV analysis are

shown. N95
obs is the upper limit constraints at 95% CL on the number of non-SM events for each

signal region given in Ref. [50].

tanβ = 5 becomes as Figure 6.6. Here, we include all the possible processes and the numbers of

signal events are multiplied by 1.3 (blue line), 1.5 (red line) and 1.7 (green line). As we can see,

in this mass range, the expected number of signal events are same order for all parameter points

and the difference of O(10)% changes the results drastically. Thus, when we set the limit, we

should deal with O(10)% differences carefully. However, even including these uncertainties, our

results do not change since our results are already conservative which do not set the exclusion

limits.

This result does not agree with the previous work [35] where mχ±
1
≲ 250 GeV is excluded

depending on tanβ and mχ0
1
. Our analysis would lead to the similar bounds in Ref. [35] if

the event numbers are increased by about 50%. As shown above, we simulate including all

possible processes pp → χχ, the hadronic decay of gauge bosons and the decay χ0
2,3 → hχ0

1. In

addition, we also simulate with Herwig++. Although this setup is same [111] for our analysis

and Ref. [35], our analysis results no exclusion. The detailed date like the cross sections, the

branching ratios, the acceptances and so on is not available [111] and we can not compare with

them. Thus, we can not identify the origin of the difference. However, as noted above, since

O(10)% uncertainties change the results drastically, we should be careful to give the constraints.

6.5.2 14TeV

The future prospects of the 14 TeV LHC analysis at 3000 fb−1 are shown with the red lines in

Figure 6.1–6.5. The expected exclusion region at 300 fb−1 is also shown in the light orange region

with the red dotted lines. We can see that the tip of the Z resonance in the whole parameter

space can be probed at 300 fb−1 even in the blind spot. For tanβ ≥ 30, the Higgs tip can also

be covered. The small mχ±
1
region is not covered because of the small mass differences between

χ0
2,3, χ

±
1 and χ0

1.

At 3000 fb−1, much larger parameter space will be probed, up to mχ±
1

∼ 800 GeV. The

Higgs resonant regions are covered for tanβ ≳ 15 (tanβ ≥ 6) for µ > 0 (µ < 0). Although the

small mχ±
1

region can not be covered even at 3000 fb−1, combination with other experiments
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×1.3

×1.5

×1.7

Figure 6.6: The exclusion limits with the number of signal events multiplied by a factor 1.3

(blue line), 1.5 (red line) and 1.7 (green line) for tanβ = 5 are shown. See text for details.

such as the direct detections can probe almost all the parameter region of the present scenario.

As can be seen in the figures, the expected reach at 3000 fb−1 for the chargino mass, mχ±
1
∼

800 GeV, is almost independent of tanβ and mχ0
1
. This can be understood as follows. In the

large mχ±
1

region, the cross section is mainly determined by |µ| because the mass difference

among χ0
2,3, χ

±
1 are small mχ0

2
≃ mχ0

3
≃ mχ±

1
= |µ|. The coupling which corresponds to the

production of χ0
2,3χ

±
1 is also almost constant as shown in Sec. 4.5. In addition, because of the

large mass hierarchy mχ0
2,3

≃ mχ±
1
≫ mχ0

1
,MZ ,MW , the acceptance is determined almost only

by |µ|. Thus, from Eq. (5.17), the number of events for the SR X, NSRX, can be written as

NSRX ≃
∑
χ±
1

σ(pp→ χ±
1 χ2)× Br(χ±

1 →W±χ0
1)× Br(W± → lν)×ASRX ×

∫
Ldt

×

∑
j=2,3

Br(χ0
j → Zχ0

1)

× Br(Z → ll) . (6.2)

The first line of this equation is determined almost only by |µ|. The first term of the second

line can be expanded in terms of O(MZsW /µ) as Br(χ0
2 → Zχ0

1) + Br(χ0
3 → Zχ0

1) = 1 +

O((MZsW /µ)
2) (see Eq. 4.28). Thus NSRX is almost independent of tanβ and mχ0

1
, and the

results become similar for all tanβ and mχ0
1
.

As shown in Appendix E.2, it is different from the 8 TeV analysis that our results for the

pure Bino-Wino model agree well with those of the ATLAS. This may be due to that the tau

identification is not used in 14 TeV analysis. In addition, even if we includeO(10)% uncertainties,

the results for the Bino-Higgsino resonant model do not change much since the numbers of the
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signal events are much different for different mass points.

Finally, we comment on the importance of the simulation to reinterpret the ATLAS analysis.

If we simply set the future prospects by rescaling the ATLAS results with the cross sections,

the expected exclusion limit becomes mχ±
1
≲ 900 GeV for 3000 fb−1 and mχ±

1
≲ 650 GeV for

300 fb−1. These results are much different from our results mχ±
1
≲ 800 GeV for 3000 fb−1 and

mχ±
1
≲ 500 GeV for 300 fb−1. Thus, taking account of the differences between our model and

the pure Bino-Wino model written in Sec. 5.5 is very important and the detailed simulations

are necessary.

6.6 Mono-photon/jet Searches and Indirect Detections

There are no constraints from the mono-photon/jet searches and the indirect detections. For

the mono-photon process, we calculate the cross section e+e− → Z → χ0
1χ

0
1γ at

√
s = 205 GeV

as shown in Sec. 5.6.1. The cross section decreases as |µ| increases since the mass mχ0
1
increases

and the coupling λZ decrease as |µ| increases. Thus, the cross section becomes maximum at

|µ| = 100 GeV in our setup. We show the cross sections for |µ| = 100 GeV in Figure 6.7. Here,

we take the 7 × 2 × 2 = 28 sample points with the combination of M1 = 20, 30, · · · , 80 GeV,

sign(µ) = ± and tanβ = 2, 50. Since these sample points are at the edge of our parameter region,

the cross sections for other parameters with |µ| = 100 GeV result within the range between the

smallest value 0.03 fb and the largest value 21 fb in Figure 6.7. Note that for mχ0
1
< 30 GeV,

the DM become overabundant. As a result, the cross section is at most 15 fb for mχ0
1
> 30 GeV.

Thus, the upper bound 0.05–0.2 pb (Figure 3.4) is too weak and there is no constraints.

The mono-jet process also gives no constraints. As estimated in Sec. 5.6.1, the constraints

|λZ | <0.2–0.6 are much weak in our setup where |λZ | < 0.078 is satisfied (see Eq. (4.23)).

The cosmic rays from the DM annihilation in the present Universe is constrained from the

Fermi-LAT [85] as shown in Sec. 5.6.2. Since |λZ | is at most 0.078 in our setup (see Eq. (4.23)),

the annihilation cross sections become at most ⟨σv⟩b |v→0 ∼ O(10−29) cm3s−1 and ⟨σv⟩τ |v→0 ∼
O(10−30) cm3s−1 (see Eq. (5.32) and (5.33)). The constraints are O(10−27–10−26) cm3s−1

(Figure 3.7) and very weak compared to the annihilation cross section in our parameter space.

Finally, we see the constraint come from the DM annihilation in the Sun. As we can calculate

from Eq. (3.13), in the present case, the annihilation rate is not saturated by the scattering rate,√
Γcap.Γann.t⊙ ≲ 1. Note that σSDp is at most 10−40 cm2 in our model. Thus the effective cross

sections become at most (σ
SD(eff)
p )b ∼ 10−40cm2 and (σ

SD(eff)
p )τ ∼ 10−41cm2 which are smaller

than the constraints (σ
SD(eff)
p )b ≤2–3×10−39cm2 and (σ

SD(eff)
p )τ ≤1–2×10−40cm2 (Figure 3.8).

These results are understood as follows. The mono-photon/jet constraints are simply weak

due to the difficulties of the experiments. In the indirect detections, cosmic rays and the DM

annihilation in the Sun, the point is that the annihilation cross section is mainly p-wave sup-

pressed. The only contributions from the s-wave processes are proportional to the SM fermion

masses and tend to be small. Thus, these constraints become weak.
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Figure 6.7: The cross sections of the mono-photon process e+e− → Z → χ0
1χ

0
1γ for |µ| = 100

GeV are shown. Sample points are taken as the combination of M1 = 20, 30, · · · , 80 GeV,

sign(µ) = ± and tanβ = 2, 50. The blue (green) points denote the cross sections for tanβ = 2

and sign(µ) = + (−) while the red (orange) points denote the cross sections for tanβ = 50 and

sign(µ) = + (−).
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Chapter 7

Conclusion

In this thesis, we have investigated the Bino-Higgsino resonant DM model. The Bino-Higgsino

resonant DM model is one of the attractive DM models when all the sfermions are heavy > O(1–

10) TeV. In this model, the Bino LSP mixes with the Higgsino slightly and can be the candidate

for the DM. When the mass of the DM is half of the Higgs boson mass or the Z boson mass,

mχ0
1
∼ mh/2,MZ/2, the current relic abundance can be explained with the resonant annihilation.

Since the annihilation cross section is enhanced resonantly, the mixing between the Bino and

the Higgsino can be small, i.e. Higgsino can be heavy as O(100–1000) GeV. Thus, this model

contains O(10) GeV light Bino DM, two heavy neutralinos and the chargino with the masses

O(100–1000) GeV. This mass spectrum gives rich phenomena in many experiments. We have

investigated all the possible phenomenology and the experiments comprehensively.

We assumed that all the sfermions are heavy enough > O(1–10) TeV. The masses of the

gluino and winos are assumed to be heavier than a few TeV which do not affect the phenomenol-

ogy of the Bino/Higgsino system and we do not consider their effects. Then, the phenomenology

of this model is determined only by three parameters, the Bino massM1, the Higgsino mass µ and

tanβ. We have investigated the current constraints and the future prospects comprehensively

for essentially all the parameter space. We have included the following phenomena: the relic

abundance, the direct detection for the SI scattering, the direct detection for the SD scattering,

the Higgs boson invisible decay and the heavy neutralinos/charginos productions at the 14 TeV

LHC. We have also considered the Z boson invisible decay, the mono-photon/jet searches, the

8 TeV LHC searches and the indirect detections. However, these results no constraints in our

parameter space.

It was shown that there is still a large viable parameter space, and almost all the parameter

space of the scenario will be covered complementarily by the direct detection experiments,

the Higgs invisible decay searches and the LHC searches. It is interesting that, depending on

the parameters, M1, µ and tanβ, different combinations of positive and negative signals from

different experiments may appear. Especially, the blind spot is rich in the phenomenology. In

this thesis, it was shown that the current constraints come from all of the SI scattering, the SD
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scattering and the invisible decay. The combination of these experiments is important not only

for the current constraints but also for the future prospects. The experiment which can probe

the given parameter point depends on its parameter. The direct detection for the SI scattering

can probe the large region except the tip of the Higgs resonant region and the blind spot. The

direct detection for the SD scattering is sensitive in the lighter Higgsino region |µ| < 300 GeV

even in the blind spot. The Higgs invisible decay can cover the Z resonant region except the

blind spot. The 14 TeV LHC searches can reveal almost all region for 200 < |µ| < 800 GeV.

Thus, exploring these experiments is important to investigate this model.

In this thesis, we have investigated the phenomenology of the Bino-Higgsino resonant DM

model and found that the comprehensive analyses is necessary. The combination of the future

experiments can reveal the Bino-Higgsino resonant DM model.
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Appendix A

Physical Values

Here, we show the physical values which we use in this thesis. We use the values in Ref. [63] if

it is not mentioned with other references. The parentheses denote the error of the value.

Gauge Couplings

α−1(MZ) = 127.944(14) , s2W (MZ) = 0.23126(5) , (A.1)

where α = e2/4π. From these values, we can calculate as

g′(MZ) = 0.35744(2) , g(MZ) = 0.65169(7) ,
e

s2W
(MZ) = 0.37164(3) . (A.2)

Masses and Widths

MW = 80.385(15) GeV , MZ = 91.1876(21) GeV , (A.3)

ΓW = 2.085(42) GeV , ΓZ = 2.4952(23) GeV . (A.4)

The Higgs boson mass has been determined by the ATLAS and the CMS [58]

mh = 125.09± 0.21(stat.)± 0.11(syst.)GeV . (A.5)

As the width of the Higgs boson, we use Γh = 4.07 × 10−3 GeV which is the theoretical SM

value for mh = 125 GeV in this thesis.

The Branching ratio is also important in the LHC analyses. We use the following values

where l denotes e, µ, τ ,

Br(W → lν) = 0.3258(27) , Br(Z → ll) = 0.100974(69) . (A.6)

Astrophysical Constants The DM abundance of the Universe is given by Ref. [19]

ΩDMh
2 = 0.1199(27) , h = 0.673(12) . (A.7)
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We use the following critical density of the Universe

ρcrit = 1.05375(13)× 10−5h2 GeV cm−3 . (A.8)

The present temperature of the Universe T0 is

T0 = 2.755(6) K . (A.9)

These values are written in GeV units as ρcrit = 8.06× 10−47h2 GeV4, T0 = 2.35× 10−13 GeV.

The gravitational constants G is given as

G = 6.70837(80)× 10−39GeV−2 . (A.10)

SI/SD Scattering The masses of the proton and the neutron are

mp = 0.938272046(21) GeV , mn = 0.939565379(21) GeV . (A.11)

As the nucleon quark form factors, the following values which are the default values in mi-

crOMEGAs [91] are used

fpu = 0.0153 , fpd = 0.0191 , fps = 0.0447 , (A.12)

∆p
u = ∆n

d = 0.842 , ∆p
d = ∆n

u = −0.427 , ∆p
s = ∆n

s = −0.085 . (A.13)
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Appendix B

Wino Contribution to the DM

Phenomenology

Here, we consider the contributions from the Wino to the DM phenomenology in the Bino-

Higgsino resonant DM model introduced in Sec. 4. The DM phenomenology is determined by

the mass of the DM mχ0
1
and the DM couplings to the Higgs boson and the Z boson λh, λZ as

shown in Sec. 4.4. We show the Wino dependence for these parameters.

If we take the Wino into account, the mass matrix for the neutralinos in the Bino-Higgsino

system Eq. (4.6) becomes as Eq. (2.30). Thus, first, the mass of the DM χ0
1 which is the

lightest eigenvalue of the mass matrix changes. In addition, the diagonalization matrix changes.

We denote the 4 × 4 diagonalization matrix in this case O′
n. Then, the DM couplings in the

Lagrangian (4.17) becomes as

λh = −
(
g′
(
O′

n

)
11

− g
(
O′

n

)
12

) (
cα
(
O′

n

)
14

+ sα
(
O′

n

)
13

)
, (B.1)

λZ =
e

s2W

(((
O′

n

)
14

)2 − ((O′
n

)
13

)2)
. (B.2)

Note that the subscripts of the diagonalization matrix change from Eq. (4.18) and (4.19) since

the basis of the mass matrix changes as (χB χH0
d
χH0

u
) → (χB χ3

W χH0
d
χH0

u
).

Here, we show the dependence of M2 to mχ0
1
, λh, λZ . Note that for tanβ ≥ 2, cβ becomes

maximum cβ = 0.45 at tanβ = 2 and cβ decreases as tanβ increases while sβ ≃ 1. Thus,

in the case of tanβ = 2, the Wino contributions become maximum since the Wino and the

Bino mixes with not only χH0
u
but also χH0

d
with sizable cβ. For M1, in the case of M1 = 80

GeV, the Wino contributions become maximum since the mass differences between the Bino

and the Wino becomes the smallest and the mixing become the largest. AlthoughM1 = 80 GeV

results mχ0
1
∼ 80 GeV and it results overabundant DM, we show the results with M1 = 80 GeV,

tanβ = 2 since for other cases the M2 dependences become weaker.

The M2 dependences on mχ0
1
, λh, λZ are shown in Figure B.1, B.2, B.3 respectively. In all

cases, ifM2 > 500–700 GeV, the dependences of the Wino become negligible. From these results,

it is shown that the phenomenology of the DM is not affected by the Winos for M2 > 500–700
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Figure B.1: The contributions from the Wino to the DM mass are shown. The lines denote

the contour of the DM mass mχ0
1
in the units of GeV. The red (blue) lines are the results (not)

including the Wino contributions. The left (right) figure is the case of µ < 0 (µ > 0).
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Figure B.2: The contributions from the Wino to the DM-DM-Higgs coupling are shown. The

lines denote the contour of the coupling λh. The red (blue) lines are the results (not) including

the Wino contributions. The left (right) figure is the case of µ < 0 (µ > 0).
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Figure B.3: The contributions from the Wino to the DM-DM-Z coupling are shown. The lines

denote the contour of the coupling λZ . The red (blue) lines are the results (not) including the

Wino contributions. The left (right) figure is the case of µ < 0 (µ > 0).
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Appendix C

Analytical Calculations in the

Bino-Higgsino Resonant model

The analytical calculations of the masses and the couplings in the Bino-Higgsino resonant

model are written here. See also Sec. 4.

First, we see the mass eigenvalues of Eq. (4.6) in Appendix C.1. Then, in Appendix C.2, the

calculations of the diagonalization matrix are shown. We also show the behavior of the couplings

with the expansion of O(MZ/µ) in Appendix C.3. Finally, we calculate the decay widths of the

heavy neutralinos and the chargino in Appendix C.4.

C.1 Masses

Here, we calculate the mass eigenvalues of Eq. (4.6).

The mass matrix is written as

Mn =

 M1 −MZsW cβ MZsW sβ

−MZsW cβ 0 −µ
MZsW sβ −µ 0

 . (C.1)

The eigenvalues of this matrix, λ, are calculated by solving the following equation,∣∣∣∣∣∣∣
λ−A −B −C
−B λ −D
−C −D λ

∣∣∣∣∣∣∣ = 0 , (C.2)

A =M1, B = −MZsW cβ, C = MZsW sβ, D = −µ ,

i.e. solving the next equation,

λ3 −Aλ2 − (B2 + C2 +D2)λ+AD2 − 2BCD = 0 . (C.3)

Here, the three solutions of the cubic equation,

x3 + a2x
2 + a1x+ a0 = 0 , (C.4)
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can be written as

x = u+ v − a2
3
, uω1 + vω2 −

a2
3
, uω2 + vω1 −

a2
3
, (C.5)

where

ω1 =
−1+

√
3i

2 , ω2 = ω2
1 = −1−

√
3i

2 ,

u = (Q+
√
Q2 + P 3)1/3 , v = (Q−

√
Q2 + P 3)1/3 ,

Q = −1
2a0 +

1
6a1a2 −

1
27a

3
2 , P = 1

3a1 −
1
9a

2
2 .

(C.6)

Now, the following relations are satisfied,

a2 = −M1 , a1 = −µ2 −M2
Zs

2
W , a0 =M1µ

2 − µM2
Zs

2
W s2β . (C.7)

Thus, from Eq. (C.6), u and v are calculated as

u3(v3) = −1

3
µ2M1 +

1

2
µM2

Zs
2
W s2β +

1

54
M1

(
2M2

1 + 9M2
Zs

2
W

)
± 1

3
√
3

[
− µ6 + µ4

(
2M2

1 − 3M2
Zs

2
W

)
− 9µ3M1M

2
Zs

2
W s2β

−µ2
(
M4

1 + 5M2
1M

2
Zs

2
W + 3M4

Zs
4
W

(
1− 9

4
s22β

))
+µM1M

2
Zs

2
W s2β

(
M2

1 +
9

2
M2

Zs
2
W

)
− 1

4
M4

Zs
4
W

(
M2

1 + 4M2
Zs

2
W

) ]1/2
. (C.8)

If we expand this solution by MZsW /µ, u(v) becomes as

u(v) =
1

2
µ
[
1− 1

3
z1 ± i

1√
3
(1 + z1) (C.9)

+
1

2
z2

1

1− z1

(
(1 + s2β)± i

1√
3

1

1 + z1
(1− 3s2β + z1 (−3 + s2β))

)
+O

(
z4
) ]
,

where

z ≡ MZsW
µ

, z1 ≡
M1

µ
. (C.10)

Then the mass eigenvalues can be written as

m1 = uω2 + vω1 +
1

3
M1

= M1

(
1− z2

1

1− z21
(1− 1

z1
s2β) +O

(
z4
))

,

m2 = uω1 + vω2 +
1

3
M1

= −µ
(
1 +

1

2
z2

1

1 + z1
(1− s2β) +O

(
z4
))

, (C.11)

m3 = u+ v +
1

3
M1

= µ

(
1 +

1

2
z2

1

1− z1
(1 + s2β) +O

(
z4
))

.
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The relation between mχ0
i
and these eigenvalues mi are written in Sec. 4.3 in detail. Note that

|mi| = mχ0
i
satisfies for µ > 0 and µ > M1. However, the relation changes as |m2,3| = mχ0

2,3
or

|m2,3| = mχ0
3,2

depending on the parameters for µ < 0 and |µ| > M1: i.e. |m2| > |m3| can occur.

See also Sec. 4.3 for details.

C.2 Diagonalization Matrix

The diagonalization matrix, a real orthogonal matrix On (Eq. (4.7)) with

OnMnO
T
n =

ϵ1mχ0
1

0 0

0 ϵ2mχ0
2

0

0 0 ϵ3mχ0
3

 , (C.12)

can be obtained by the following calculations. First, let us define On as

OT
n =

a
1
1 a21 a31
a12 a22 a32
a13 a23 a33

 . (C.13)

Then the three equations can be obtained by Eq. (C.12) asA B C

B 0 D

C D 0


a

i
1

ai2
ai3

 = ϵimχ0
i

a
i
1

ai2
ai3

 . (C.14)

We can solve these equations and get the solutions as

a
i
1

ai2
ai3

 = Ki


1

ϵimχ0
i
B+CD

m2
χ0
i

−D2

ϵimχ0
i
C+BD

m2
χ0
i

−D2

 = Ki


1

MZsW
µ

yicβ+sβ
1−y2i

MZsW
µ

yisβ+cβ
y2i −1

 , (C.15)

where yi = ϵimχ0
i
/µ and

Ki =
|y2i − 1|√

(z21 − 1 + 2z2)y2i + z2(z1 + 3s2β)yi + 1− z21 + z2 + z1z2s2β

≡ |y2i − 1|
Xi

. (C.16)

Thus, the solutions can be written asa
i
1

ai2
ai3

 =


|y2i −1|
Xi

−sign(y2i − 1)z
yicβ+sβ

Xi

sign(y2i − 1)z
yisβ+cβ

Xi

 . (C.17)
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In the case that |µ| > M1 and |µ| > MZ , y
2
1 < 1 and y22, y

2
3 > 1 are satisfied from Eq. (C.11). In

this case, with Eq. (C.11) and the expansion by z, the diagonalizing matrix is shown as

OT
n =



1− 1
2z

2 1
(1−z21)

2 z
√

1−s2β
2

1
1+z1

z
√

1+s2β
2

1
1−z1

×
(
1 + 2z1s2β + z21

)
z 1
1−z21

(sβ + z1cβ) − 1√
2
+ 1

4
√
2
z2

√
1−s2β

(1+z1)2
− 1√

2
+ 1

4
√
2
z2

√
1+s2β

(1−z1)2

× (2sβ + z1(cβ + sβ)) × (2sβ + z1(cβ − sβ))

−z 1
1−z21

(cβ + z1sβ) − 1√
2
− 1

4
√
2
z2

√
1−s2β

(1+z1)2
1√
2
+ 1

4
√
2
z2

√
1+s2β

(1−z1)2

× (2cβ + z1(cβ + sβ)) × (−2cβ + z1(cβ − sβ))


+O

(
z3
)
, (C.18)

Here, we choose the relation |m2,3| = mχ0
2,3
. When the order of |m2|, |m3| changes as |m2,3| =

mχ0
3,2
, the above expression of OT

n should be changed as
(
OT

n

)
i2
↔
(
OT

n

)
i3

(see also Sec. 4.3).

C.3 Couplings

Here, we show all the couplings in Eq. (4.9) ∼ (4.13) with the expansion by z using the results of

Appendix C.1 and C.2. See also the Lagrangian (4.8). The couplings are shown in the relation

|m2,3| = mχ0
2,3
. When the order of |m2|, |m3| changes as |m2,3| = mχ0

3,2
, these expression should

be read as λXY 12 ↔ λXY 13 and λXY 22 ↔ λXY 33 (see also Sec. 4.3).
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h couplings

λhLij = −1

2
g′ (On)i1

(
cα (On)j3 + sα (On)j2

)
η∗i η

∗
j , (C.19)

λhL11 =
1

2
g′z

1

1− z21
(z1 + s2β) +O

(
z3
)
, (C.20)

λhL22 =
1

4
g′zϵ2

1

1 + z1
(1− s2β) +O

(
z3
)
, (C.21)

λhL33 = −1

4
g′zϵ3

1

1− z1
(1 + s2β) +O

(
z3
)
, (C.22)

λhL12 =
1

2
g′η∗2

√
1− s2β

2
+O

(
z2
)
, (C.23)

λhL13 = −1

2
g′η∗3

√
1 + s2β

2
+O

(
z2
)
, (C.24)

λhL21 =
1

2
g′η∗2

√
1− s2β

2
z2

1

(1− z21)(1 + z1)
(z1 + s2β) +O

(
z4
)
, (C.25)

λhL31 = −1

2
g′η∗3

√
1 + s2β

2
z2

1

(1− z21)(1− z1)
(z1 + s2β) +O

(
z4
)
, (C.26)

λhL23 =
1

4
ig′|c2β|z

1

1 + z1
+O

(
z3
)
, (C.27)

λhL32 = −1

4
ig′|c2β|z

1

1− z1
+O

(
z3
)
. (C.28)

Note that λhRij =
(
λhLji

)∗
and c2β ≤ 0 for 1 ≤ tanβ.

Z couplings

λZLij =
e

s2W
ηiη

∗
j

(
(On)i3 (On)j3 − (On)i2 (On)j2

)
, (C.29)

λZL11 =
e

s2W
c2βz

2 1

1− z21
+O

(
z4
)
, (C.30)

λZL22 = − e

2s2W
c2βz

2 1

1 + z1
+O

(
z4
)
, (C.31)

λZL33 = − e

2s2W
c2βz

2 1

1− z1
+O

(
z4
)
, (C.32)

λZL12 =
e

s2W
η∗2

√
1 + s2β

2
z

1

1− z1
+O

(
z3
)
, (C.33)

λZL13 =
e

s2W
η∗3

√
1 + s2β

2
z

1

1 + z1
+O

(
z3
)
, (C.34)

λZL23 =
e

s2W
η2η

∗
3 +O

(
z2
)
. (C.35)
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Note that λZLij =
(
λZLji

)∗
.

W couplings

λWL1i = − 1√
2
gη∗i (On)i3 , (C.36)

λWR1i =
1√
2
gϵµηi (On)i2 , (C.37)

λWL11 =
1√
2
gz

1

1− z21
(cβ + z1sβ) +O

(
z3
)
, (C.38)

λWR11 =
1√
2
gϵµz

1

1− z21
(sβ + z1cβ) +O

(
z3
)
, (C.39)

λWL12 =
1

2
gη∗2 +O

(
z2
)
, (C.40)

λWR12 = −1

2
gη2ϵµ +O

(
z2
)
, (C.41)

λWL13 = −1

2
gη∗3 +O

(
z2
)
, (C.42)

λWR13 = −1

2
gη3ϵµ +O

(
z2
)
. (C.43)

C.4 Decay Width

The decay widths of the heavy neutralinos χ0
2,3 and the chargino χ±

1 can be calculated from the

Lagrangian (4.8). Here, we assume the relation |m2,3| = mχ0
2,3
. When the flip occurs, change

the couplings as λXY 12 ↔ λXY 13 (see also Appendix C.3 and Sec. 4.3).

The decay width of the chargino which decays to the DM and theW boson only is calculated

as

Γχ±
1

= Γ(χ±
1 →W±χ0

1) =
1

32π
mχ±

1

(
1− (y1 − w)2

)1/2 (
1− (y1 + w)2

)1/2
(C.44)

×
((

|λWL11|2 + |λWR11|2
)(

1 + y21 − 2w2 +
(1− y21)

2

w2

)
− 6y1

(
λWL11

(
λWR11

)†
+
(
λWL11

)†
λWR11

))
,

where y1 = mχ0
1
/mχ±

1
, w = MW /mχ±

1
(see also Appendix D.4). Note that mχ±

1
= ϵµµ and we

assume mχ±
1
> mχ0

1
+MW . The heavy neutralinos can decay in two ways, χ0

2,3 → Zχ0
1 and
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χ0
2,3 → hχ0

1. Each partial decay width can be calculated as

Γ(χ0
2,3 → Zχ0

1) =

∣∣∣λZL12,L13∣∣∣2
16π

mχ0
2,3

(
1− (r12,3 − rz2,3)

2
)1/2 (

1− (r12,3 + rz2,3)
2
)1/2

×

(
1 + 6ϵ2,3r

1
2,3 + (r12,3)

2 − 2(rz2,3)
2 +

(1− (r12,3)
2)2

(rz2,3)
2

)
, (C.45)

for mχ0
2,3
> mχ0

1
+MZ ,

Γ(χ0
2,3 → hχ0

1) =

∣∣∣∣λhL12,L13 + (λhR12,R13

)†∣∣∣∣2
16π

mχ0
2,3

(
1− (r12,3 − rh2,3)

2
)1/2

×
(
1− (r12,3 + rh2,3)

2
)1/2 (

(1 + ϵ2,3r
1
2,3)

2 − (rh2,3)
2
)
, (C.46)

for mχ0
2,3
> mχ0

1
+mh ,

where r12,3 = mχ0
1
/mχ0

2,3
, rz2,3 = mZ/mχ0

2,3
, rh2,3 = mh/mχ0

2,3
. The total decay width depends on

whether the decay can occur or not,

Γχ0
2,3

= Γ(χ0
2,3 → Zχ0

1) , for mχ0
1
+mh > mχ0

2,3
> mχ0

1
+MZ , (C.47)

= Γ(χ0
2,3 → Zχ0

1) + Γ(χ0
2,3 → hχ0

1) , for mχ0
2,3
> mχ0

1
+mh . (C.48)

The z expansions for the decay widths in the case µ > 0 with using the results of Ap-

pendix C.1 and C.3 become as

Γχ±
1

=
1

64π
g2t2W |µ|(1− z21)(1 + 2z1s2β + z21) +O(z2) , (C.49)

Γ(χ0
2,3 → Zχ0

1) =
1

128π
g′2|µ|(1± 2s2β)(1∓ z1)(1± z1)

3 +O(z2) , (C.50)

Γ(χ0
2,3 → hχ0

1) =
1

128π
g′2|µ|(1∓ 2s2β)(1± z1)(1∓ z1)

3 +O(z2) , (C.51)

Γ(χ0
2,3 → Zχ0

1) + Γ(χ0
2,3 → hχ0

1)

=
1

64π
g′2|µ|(1− z21)(1 + 2z1s2β + z21) +O(z2) . (C.52)

The results for the case µ < 0 are similar to these expressions.

The branching ratio of the process χ0
2,3 → Zχ0

1 can be obtained as follows.

Br(χ0
2,3 → Zχ0

1) =
Γ(χ0

2,3 → Zχ0
1)

Γχ0
2,3

= 1.0 , for mχ0
1
+mh > mχ0

2,3
> mχ0

1
+MZ , (C.53)

=
1

2
(1± z1)

2(1± s2β)
1

1 + 2z1s2β + z21
+O(z2) ,

for mχ0
2,3
> mχ0

1
+mh . (C.54)
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Appendix D

Calculations

Here, we show the detailed calculations whose results are used in the text. The annihilation

cross section used in Sec. 5.1 is calculated in Appendix D.1. The calculations for the spin

independent and spin dependent scattering cross sections (used in Sec. 5.2 and 5.3) are shown in

Appendix D.2 and D.3. The decay width used in Sec. 5.4 and Appendix C.4 is also calculated

in Appendix D.4.

D.1 Annihilation Cross Section

We show the calculations of the annihilation cross sections which are used in Sec. 5.1. First,

we calculate the annihilation cross section for the process χ0
1χ

0
1 → h → SMs. Here, we use the

optical theorem,

∑
f

σ
(
χ0
1χ

0
1 → h→ f

)
=

Im M(χ0
1χ

0
1 → h→ χ0

1χ
0
1)

2ECMpCM
, (D.1)

where f denotes all possible states and M is the amplitude of the forward scattering. Note that

ECM and pCM are the energy and the momentum of the DM in the center of the mass frame,

s = 4
(
m2

χ0
1
+ p2CM

)
= E2

CM , (D.2)

2ECMpCM =
√
s
√
s− 4m2

χ0
1
. (D.3)

The spin averaged amplitude of the forward scattering M(χ0
1(p1)χ

0
1(p2) → h → χ0

1(p1)χ
0
1(p2))

can be calculated with the Lagrangian L ∋ 1
2hλ

hψ̄χ0
1
ψχ0

1
as

1

2

1

2

∑
spin

M(χ0
1(p1)χ

0
1(p2) → h→ χ0

1(p1)χ
0
1(p2))

=
(λh)2

2

(
s− 4m2

χ0
1

) −(s−m2
h) + isΓh/mh(

s−m2
h

)2
+ s2Γ2

h/m
2
h

, (D.4)

103 Appendix D



where Γh is the total width of the Higgs boson. Thus, the annihilation cross section for the

Higgs boson exchange process can be calculated as

∑
f

σ
(
χ0
1χ

0
1 → h→ f

)
=

(λh1)
2

2

√
1−

4m2
N1

s

sΓh/mh(
s−m2

h

)2
+ s2Γ2

h/m
2
h

. (D.5)

Note that since the term s2Γ2
h/m

2
h in the denominator is effective only when s ∼ m2

h, the

approximation of s2Γ2
h/m

2
h → m2

hΓ
2
h in the denominator does not change the cross section.

Next, let us calculate the Z boson exchange process χ0
1χ

0
1 → Z → SMs. Here, we can write

the Lagrangian as

L ∋ λZψ̄χ0
1
γµPLψχ0

1
Zµ +

∑
f

ψ̄fγ
µ
(
Cf
V − Cf

Aγ5

)
ψfZµ , (D.6)

where ψf denotes the SM fermions and Cf
V , C

f
A are couplings with Cf

V = − g
2cW

(T3f − 2s2WQf ),

Cf
A = − g

2cW
T3f . T3f is 1

2 (−1
2) for up (down) type fermions and Qf is the electric charge for the

particle f . Then the cross section of the process χ0
1χ

0
1 → Z → SMs can be calculated as

∑
f

σ(χ0
1χ

0
1 → Z → ff̄) =

1

16π

1

s

(
1−

4m2
χ0
1

s

)−1/2∑
f

Nc,f

√
1−

4m2
f

s
Ff (s) ,

Ff (s) =
4

3

(λZ)2

(s−M2
Z)

2 +M2
ZΓ

2
Z

[
12|Cf

A|
2
m2

χ0
1
m2

f

M4
Z

(s−M2
Z)

2

+
(
|Cf

V |
2(s+ 2m2

f ) + |Cf
A|

2(s− 4m2
f )
)
(s− 4m2

χ0
1
)
]
. (D.7)

Here, Nc,f = 1, 3 for the leptons and the quarks. If we neglect the term proportional to m2
f , the

cross section becomes∑
f

σ(χ0
1χ

0
1 → Z → ff̄)

= (λZ)2

√
1−

4m2
χ0
1

s

sΓZ/MZ

(s−m2
Z)

2 +M2
ZΓ

2
Z

1

ΓZ

1

12π
MZ

∑
f

Nc,f

(
|Cf

V |
2 + |Cf

A|
2
)
. (D.8)

Then we use the relation of the total decay width of the Z boson,

ΓZ =
1

12π
MZ

∑
f

Nc,f

(
|Cf

V |
2 + |Cf

A|
2
)
, (D.9)

and the cross section becomes

∑
f

σ(χ0
1χ

0
1 → Z → ff̄) = (λZ)2

√
1−

4m2
χ0
1

s

sΓZ/MZ

(s−M2
Z)

2 +M2
ZΓ

2
Z

. (D.10)
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The non vanishing terms in the limit v → 0 (s → 4m2
χ0
1
) which are proportional to m2

f and

neglected above are also calculated as

σv→0 =
1

π
(λZ)2

(s−M2
Z)

2

(s−M2
Z)

2 +M2
ZΓ

2
Z

m2
χ0
1

M4
Z

1

s

(
1−

4m2
χ0
1

s

)−1/2

×
∑
f

Nc,f |Cf
A|

2m2
f

√
1−

4m2
f

s
. (D.11)

D.2 Spin Independent Scattering Cross Section

We calculate the spin independent scattering cross section in the Higgs boson exchange process

(see Sec. 5.2). After integrating out the top quark, the relevant terms are given as

L ∋ −1

2
m2

hh
2 − 1√

2

∑
i

Yihψ̄qiψqi +
αs

12
√
2πv

hGµνG
µν +

1

2
λhhψ̄χ0

1
ψχ0

1
, (D.12)

where qi denotes the quark except the top and Gµν is the field strength of the gluon. If we

integrate out the Higgs boson, this Lagrangian becomes

L ∋ − λh

2
√
2m2

h

ψ̄χ0
1
ψχ0

1

∑
i

(
Yiψ̄qiψqi

)
+

αsλ
h

24
√
2πvm2

h

ψ̄χ0
1
ψχ0

1
GµνG

µν

= cN ψ̄χ0
1
ψχ0

1

(∑
i

(
mqiψ̄qiψqi

)
− αs

12π
GµνG

µν

)
, cN = − λh

2
√
2m2

hv
. (D.13)

We used the relation mqi = Yiv. To calculate the scattering with the nucleon, we consider the

quark/gluon contribution to the nucleon state

⟨N |mqiψ̄qiψqi |N⟩ = mNfq , (D.14)

−9αs

8π
⟨N |GµνG

µν |N⟩ = mNfg . (D.15)

From the trace anomaly, the following relation is satisfied [112]

mN = ⟨N |Tµ
µ |N⟩ = −9αs

8π
⟨N |GµνG

µν |N⟩+
∑

q=u,d,s

⟨N |mqiψ̄qiψqi |N⟩ ,

→ 1 = fg +
∑

q=u,d,s

fq . (D.16)

Here, we define fN as

fN ≡ ⟨N |
∑
i

(
mqiψ̄qiψqi

)
− αs

12π
GµνG

µν |N⟩/mN

= ⟨N |
∑

q=u,d,s

(
mqiψ̄qiψqi

)
− αs

4π
GµνG

µν |N⟩/mN

=
∑

q=u,d,s

fq +
2

9
fg =

2

9
+

7

9

∑
q=u,d,s

fq . (D.17)
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We used the relation ⟨N |mqψ̄qiψqi |N⟩ = − αs
12π ⟨N |GµνG

µν |N⟩ for qi = c, b [112]. Note that

Eq. (D.13) is a Lagrangian at the scale ∼ mh (∼ 125 GeV) and Eq. (D.17) is the relation at

the scale ∼ mN (∼ 1 GeV). The value of αs depends on the scale strongly, e.g. αs(MZ) ≃ 0.12

and αs(mτ ) ≃ 0.33 [63] where MZ ≃ 91.2 GeV and mτ ≃ 1.78 GeV [63]. However, the

operator αsGµνG
µν is scale independent at the leading order [113]. Thus, the scale dependence

of Eq. (D.13) seems not to be large and we do not include the effects of the renormalization

group running. Then the cross section for the process χ0
1(pA)N(pB) → χ0

1(p1)N(p2) can be

calculated as follows,

dσ =
(2π)4δ4(

∑
k pk − pA − pB)

2EA2EB|vA − vB|

n∏
k=1

d3pk
(2π)32Ek

|Mfi|2 , (D.18)

where

|M |2 = 16c2Nf
2
Nm

2
N

(
p1 · pA +m2

χ0
1

) (
p2 · pB +m2

N

)
. (D.19)

The cross section becomes

σ =

∫
dσ =

c2Nf
2
Nm

2
N (2m2

χ0
1
+ |p|2)(2m2

N + |p|2)

π(EA + EB)2
, (D.20)

where we consider in the center of mass frame (pA = (EA, 0, 0, p)). Now, since the velocity of

the DM is small v ∼ 0.001c, we neglect the momentum and the cross section can be written as

σ =
4c2Nf

2
Nm

4
Nm

2
χ0
1

π(mχ0
1
+mN )2

. (D.21)

D.3 Spin Dependent Scattering Cross Section

Next, we calculate the spin dependent scattering cross section in the Z boson exchange process

(see Sec. 5.3). We assume the following Lagrangian,

L ∋ 1

2
M2

ZZµZ
µ − e

s2W

∑
i

ψ̄qiγ
µ
(
2T 3

qiPL − 2s2WQqi

)
ψqiZµ + λZψ̄χ0

1
γµPLψχ0

1
Zµ . (D.22)

After integrating out the Z boson, this Lagrangian becomes

L ∋ eλZ

s2WM2
Z

ψ̄χ0
1
γµPLψχ0

1

∑
i

ψ̄qiγµ
(
2T 3

qiPL − 2s2WQqi

)
ψqi

∋ dN ψ̄χ0
1
γµγ5ψχ0

1

∑
i

ψ̄qiγµγ5T
3
qiψqi , dN =

eλZ

2s2WM2
Z

. (D.23)

Note that ψ̄χ0
1
γµψχ0

1
= 0 for the Majorana fermions. We neglected the terms ψ̄χ0

1
γµγ5ψχ0

1
ψ̄qiγµψqi

since they vanish in the limit of the zero momentum transfer. As is the same case of the SI

scattering cross section, we consider the quark/gluon spin contribution to the neutron state

⟨N |ψ̄qiγµγ5ψqi |N⟩ = 2sµ∆
N
q , (D.24)
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where sµ is the spin vector of the nucleon and ∆N
q is the quark contribution to the nucleon spin.

Then the cross section is calculated as

σSD =
12ξ2Nm

2
N

π

m2
χ0
1

(mχ0
1
+mN )2

, ξN = dN
∑
u,d,s

T 3
q ∆

N
q , (D.25)

in the zero momentum limit. Here, we neglect the contributions from the heavy quarks (c, b, t)

since they are small enough [114].

D.4 Decay Width

Here, we briefly calculate the decay rates in generic expressions. These results are used in

Sec. 5.4 and Appendix C.4.

The differential decay rate (at the rest frame) of particle A to n particles (k=1,· · · n) can

be written as

dΓ =
(2π)4δ4(

∑
k pk − pA)

2mA

n∏
k=1

d3pk
(2π)32Ek

|M |2 , (D.26)

where M is the transition amplitude.

Here, we assume that the scalars have no color and the fermions have Nc color (Nc = 1 for

non-colored particle.)

• ϕ→ ψMψM

First, let us consider the process that the particle A (real scalar) decays to two Bs (Majo-

rana fermions). We assume mA > 2mB and the interacting term as

Lint =
1

2
λϕAψ̄BψB . (D.27)

From this Lagrangian, the squared matrix element (spin summed) can be calculated as

|M |2 = 2NCλ
2
(
m2

A − 4m2
B

)
. (D.28)

Note that this is the same results as the one with the Dirac fermions. However, the decay

rate Γ should be divided by two since two final state particle is identical,

Γ =
1

2

∫
dΓ =

1

2

∫
(2π)4δ4(

∑
k pk − pA)

2mA

2NCλ
2
(
m2

A − 4m2
B

)
(2π)62E12E2

d3p1d
3p2

=
NCλ

2

16π
mA

(
1− 4b2

)3/2
, (D.29)

where b = mB/mA.

• Zµ → ψMψM

Next, let us consider the process that particle Z (real vector boson) decays to two Bs

(Majorana fermions). We assume mZ > 2mB and the interacting term as

Lint = λψ̄Bγ
µPLψBZµ . (D.30)
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The squared matrix element (spin summed) can be calculated as

|M |2 =
4

3
NCλ

2
(
m2

Z − 4m2
B

)
. (D.31)

The decay rate Γ is

Γ =
1

2

∫
dΓ =

NCλ
2

24π
mZ

(
1− 4b2

)3/2
, (D.32)

where b = mB/mA and note that the division by two is necessary.

• ψDA → ψMBW

Next, let us consider the process that particle A (Dirac fermion) decays to particle B

(Majorana fermion) and particle W (charged vector boson). We assume mA > mB +mW

and the interacting term as

Lint = ψ̄MBγ
µ (λLPL + λRPR)ψDAW

−
µ + h.c. . (D.33)

The squared matrix element (spin summed) is calculated as

|M |2 =
1

2

(
|λL|2 + |λR|2

)(
m2

A +m2
B − 2m2

W +
(m2

A −m2
B)

2

m2
W

)
−3mAmB

(
λLλ

†
R + λRλ

†
L

)
. (D.34)

The decay rate Γ is

Γ =

∫
dΓ =

1

32π
mA

(
1− (b− w)2

)1/2 (
1− (b+ w)2

)1/2
(D.35)

×
((

|λL|2 + |λR|2
)(

1 + b2 − 2w2 +
(1− b2)2

w2

)
− 6b

(
λLλ

†
R + λRλ

†
L

))
,

where b = mB/mA, w = mW /mA.

• ψMA → ψMBZ

Next, let us consider the process that particle A (Majorana fermion) decays to particle B

(Majorana fermion) and particle Z (real vector boson). We assume mA > mB +mZ and

the interacting term as

Lint = λψ̄MBγ
µPLψMAZµ + h.c. . (D.36)

The squared matrix element (spin summed) is calculated as

|M |2 = |λ|2
(
m2

A +m2
B − 2m2

Z +
(m2

A −m2
B)

2

m2
Z

)
+ 3(λ2 + (λ†)2)mAmB . (D.37)

The decay rate Γ is

Γ =

∫
dΓ =

1

16π
mA

(
1− (b− z)2

)1/2 (
1− (b+ z)2

)1/2
×
(
|λ|2

(
1 + b2 − 2z2 +

(1− b2)2

z2

)
+ 3b(λ2 + (λ†)2)

)
, (D.38)

where b = mB/mA, z = mZ/mA.
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• ψMA → ψMBh

Finally, let us consider the process that particle A (Majorana fermion) decays to particle

B (Majorana fermion) and particle h (real boson). We assume mA > mB +mh and the

interacting term as

Lint = hψ̄MB(λLPL + λRPR)ψMA + h.c. . (D.39)

The squared matrix element (spin summed) can be calculated as

|M |2 =
(
|λL|2 + |λR|2 + λLλR + λ†Lλ

†
R

)
(m2

A +m2
B −m2

h)

+mAmB

(
(λL)

2 + (λR)
2 + (λ†L)

2 + (λ†R)
2 + 2λ†LλR + 2λLλ

†
R

)
. (D.40)

The decay rate Γ is

Γ =

∫
dΓ =

1

16π
mA

(
1− (b− h)2

)1/2 (
1− (b+ h)2

)1/2
×
[ (

|λL|2 + |λR|2 + λLλR + λ†Lλ
†
R

)
(1 + b2 − h2)

+b
(
(λL)

2 + (λR)
2 + (λ†L)

2 + (λ†R)
2 + 2λ†LλR + 2λLλ

†
R

) ]
(D.41)

where b = mB/mA, h = mh/mA.
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Appendix E

Validation of the LHC Analysis

In this appendix, we show the validation of our analysis for the heavy neutralinos/chargino

searches at the LHC. We show the 8 TeV analysis in Appendix E.1 and the 14 TeV analysis in

Appendix E.2. See also Sec. 5.5.

E.1 8 TeV

Here, we show the validation of our 8 TeV analysis. See also Sec. 5.5.1. To compare with the

ATLAS results, we use the pure Bino-Wino model. First, we show the cut flows of some SRs. We

check the following two model points which are validated by the CheckMATE collaboration [115]

(mχ0
2
,mχ±

1
,mχ0

1
) = (175, 175, 100), (350, 350, 50) GeV . (E.1)

Here, we assume Br(χ±
1 → W±χ0

1) =Br(χ0
j → Zχ0

1) = 1 for kinematically allowed region, and

Br(χ±
1 → W±∗χ0

1 → lνχ0
1) =Br(W± → lν) and Br(χ0

j → Z∗χ0
1 → llχ0

1) =Br(Z → ll) for

kinematically forbidden region. The results are shown in Table E.1. The cut flows are defined

in Sec. 5.5.1. The initial event number is normalized to the one of Ref. [115]. Our results agree

with the ones of Ref. [115] within 10%. In particular, in the SR0τa16 which gives the strongest

constraint in most of the parameter region, the acceptance in our analysis agrees very well with

Ref. [115].

Second, in Table E.2, we compare the cross section and the acceptance of our analysis with

those of the ATLAS analysis for the model points (mχ0
2
= mχ±

1
,mχ0

1
) = (200, 50), (200, 25) and

(150, 37.5) GeV.1 Here, the acceptance ASR0τa16 is defined as Eq. (5.18). The effective acceptance

of the ATLAS is calculated as AATLAS
SR0τa16 = [A× ϵ]ATLAS

SR0τa16 ×Br(Z → ll)−1Br(W± → lν)−1, where

the acceptance times the efficiency [A× ϵ]ATLAS
SR0τa16 is taken from the HepData [116].2 Compared

1These model points are chosen because the efficiency, the acceptance, and the production cross section in the

ATLAS analysis are available in Ref. [116].
2In our simulation, the contributions from the hadronic decays of the W boson and the Z boson are negligibly

small.
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Point mχ0
2
= mχ±

1
= 175 GeV, mχ0

1
= 100 GeV

Source ATLAS [50,116] CheckMATE [115] our analysis

Generated events 20000 50000 50000

Initial Events 897 ± 0 897 ± 0 897 ± 0

3 isol. lep., no tau 148 ± 2.4 142 ± 1.5 138 ± 1.6

SFOS, mSFOS = 60–81.2 GeV 78 ± 1.8 73.9 ± 1.1 67.7 ± 1.1

b-veto 75 ± 1.8 71.1 ± 1.1 65.8 ± 1.1

SR0τa9 Emiss
T = 50–75 GeV 20 ± 0.94 19.4 ± 0.58 17.7 ± 0.56

mT = 0–80 GeV 13 ± 0.76 13.5 ± 0.49 12.4 ± 0.47

|m3ℓ −mZ | > 10 GeV 10 ± 0.67 9.45 ± 0.41 8.16 ± 0.38

SR0τa10 Emiss
T = 50–75 GeV 20 ± 0.94 19.4 ± 0.58 17.7 ± 0.56

mT ≥ 80 GeV 7 ± 0.56 5.95 ± 0.33 5.47 ± 0.31

SR0τa11 Emiss
T ≥ 75 GeV 19 ± 0.91 18.8 ± 0.57 16.7 ± 0.55

mT = 0–100 GeV 15 ± 0.81 15.7 ± 0.53 13.9 ± 0.50

SR0τa12 Emiss
T ≥ 75 GeV 19 ± 0.91 18.8 ± 0.57 16.7 ± 0.55

mT ≥ 100 GeV 4 ± 0.42 3.07 ± 0.23 2.93 ± 0.23

Point mχ0
2
= mχ±

1
= 350 GeV, mχ0

1
= 50 GeV

Source ATLAS [50,116] CheckMATE [115] our analysis

Generated events 20000 50000 50000

Initial Events 49.2 ± 0 49.2 ± 0 49.2 ± 0

3 isol. lep., no tau 11 ± 0.14 11.9 ± 0.094 11.7 ± 0.11

SFOS, mSFOS = 81.2–101.2 GeV 10 ± 0.14 9.87 ± 0.088 9.47 ± 0.097

b-veto 10 ± 0.14 9.39 ± 0.086 9.11 ± 0.095

SR0τa13 Emiss
T = 50–90 GeV 1.1 ± 0.051 1.03 ± 0.031 1.03 ± 0.032

mT = 0–110 GeV 0.6 ± 0.038 0.673 ± 0.026 0.671 ± 0.026

|m3ℓ −mZ | > 10 GeV 0.6 ± 0.038 0.665 ± 0.025 0.665 ± 0.026

SR0τa14 Emiss
T ≥ 90 GeV 8 ± 0.13 7.87 ± 0.081 7.63 ± 0.0866

mT = 0–110 GeV 2.4 ± 0.075 2.53 ± 0.049 2.34 ± 0.048

SR0τa15 Emiss
T = 50–135 GeV 2.9 ± 0.082 2.78 ± 0.051 2.66 ± 0.051

mT ≥ 110 GeV 1.6 ± 0.062 1.29 ± 0.035 1.25 ± 0.035

SR0τa16 Emiss
T ≥ 135 GeV 7 ± 0.12 6.12 ± 0.073 6.00 ± 0.077

mT ≥ 110 GeV 5 ± 0.11 4.4 ± 0.063 4.40 ± 0.066

Table E.1: The cut flow validation of the 8 TeV analysis is shown. The errors are the statistical

errors of Monte-Carlo events.
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mχ0
2
= mχ±

1
,mχ0

1
[GeV] σNLO

χ±
1 χ0

2

[fb] σATLAS
χ±
1 χ0

2

[fb] ASR0τa16 × 103 AATLAS
SR0τa16 × 103

200, 50 788 802 15.5 ± 0.2 18.5

200, 25 788 802 20.3 ± 0.1 24.0

150, 37.5 2427 2452 2.26 ± 0.07 2.71

Table E.2: The validation of the cross section and the acceptance for the ATLAS 8 TeV analysis

is shown. The errors for the acceptances are the statistical errors of Monte-Carlo events.

Figure E.1: The reinterpretation of the ATLAS 8 TeV analysis [50]. The black line shows the

ATLAS result given in Ref. [50, 116]. The red line denotes the result of our analysis.

to the ATLAS analysis [50, 116], the estimated acceptance is about 20% smaller. The cross

sections are well reproduced within 1–2%.

Finally, we perform the same analysis in the (mχ0
2
,mχ0

1
)-plane, and show the exclusion con-

tour in Figure E.1. Here, all the 20 SRs (SR0τa1–20) are taken into account. The ATLAS

result [50] is shown in the black line (see also Figure 3.6).3 The red line denotes the result of

our analysis. In this plane, our results agree with the ATLAS analysis within 20%. Although

the shape near the kinematical edge mχ0
2
−mχ0

1
∼ MZ seems to be different, the differences of

the event numbers between our results and the ATLAS analysis are within 20%.

In order to check the differences between the simulation programs, we also simulate with

Herwig++. The results using Herwig++ agree with the above results using MadGraph and

PYTHIA within the statistical uncertainties of the Monte-Carlo events.

3The black line is drawn using the data of Ref. [116].
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(mχ0
2
,mχ0

1
) SRA SRB

ATLAS [51] our analysis ATLAS [51] our analysis

(400,0) 407±6 408.8±7.3 224±5 209.2±5.2

(600,0) 194.8±2.0 205.8±3.1 148.9±1.7 153.4±2.6

(800,0) 69.6±0.6 68.6±0.9 59.1±0.6 58.7±0.8

(1000,0) 22.94±0.19 21.9±0.3 20.42±0.18 19.5±0.3

(mχ0
2
,mχ0

1
) SRC SRD

ATLAS [51] our analysis ATLAS [51] our analysis

(400,0) 67.9±2.6 55.8±2.7 19.7±1.4 14.9±1.4

(600,0) 81.6±1.3 78.6±1.9 33.5±0.8 28.9±1.1

(800,0) 42.4±0.5 41.2±0.7 25.2±0.4 22.9±0.5

(1000,0) 16.36±0.16 15.7±0.2 11.55±0.14 10.9±0.2

Table E.3: The validation of the number of events for the ATLAS 14 TeV analysis is shown.

The errors are the statistical errors of Monte-Carlo events.

E.2 14 TeV

Here, we show the validation of our 14 TeV analysis. See also Sec. 5.5.2.

As a validation of our analysis, we simulate with the pure Bino-Wino model. In Table E.3,

we show the comparison of the expected number of events at 3000 fb−1 for the model points

(mχ0
2
= mχ±

1
,mχ0

1
) =(400,0), (600,0), (800,0), (1000,0) GeV. The ATLAS results are given in

Ref. [51]. They are in good agreement with the ATLAS analysis.

We also show perform the validation for the (mχ0
2
,mχ0

1
)-plane in Figure E.2. The exclusion

limits are set by the method as written in Sec. 5.5.2. The envelopes denoted by the black lines

are the discovery/exclusion prospects of our analysis where the yellow, red, blue and green lines

denote the results from the SR A, B, C and D respectively. The black lines correspond to the

black lines in Figure 3.6. Here, not only the 95% CL exclusion prospects (dashed lines) but also

the 5 σ discovery prospects (solid lines) are shown. To calculate the 5 σ discovery prospects

where ZX
N = 5, we use the following value which is calculated as in Sec. 5.5.2

Ndis.A(Zdis.A
N = 5) = 77.2 , (E.2)

Ndis.B(Zdis.B
N = 5) = 43.7 , (E.3)

Ndis.C(Zdis.C
N = 5) = 27.9 , (E.4)

Ndis.D(Zdis.D
N = 5) = 22.4 , (E.5)

for 3000 fb−1. As we can see, the results of the ATLAS can be reproduced.
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Figure E.2: The reinterpretation of the ATLAS 14 TeV analysis [51] is shown. The yellow,

red, blue and green lines denote the results from the SR A, B, C and D respectively. The solid

lines correspond to the 5 σ discovery prospects and the dashed lines correspond to the 95%

CL exclusion prospects. The envelopes denoted by the black lines are the discovery/exclusion

prospects of our analysis which correspond to the black lines in Figure 3.6.
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